
Mechanisms Towards Energy-Efficient Dynamic Hardware Specialization

by

Chen-Han Ho

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2014

Date of final oral examination: 10/30/2014

The dissertation is approved by the following members of the Final Oral Committee:
Gurindar Sohi, Professor, Computer Science
Mark Hill, Professor, Computer Science
David Wood, Professor, Computer Science
Nam Sung Kim, Associate Professor, Computer Science
Karu Sankaralingam, Associate Professor, Computer Science

© Copyright by Chen-Han Ho 2014

All Rights Reserved

i

acknowledgments

First I would like thank my advisor Karu Sankaralingam, who had continuously supported

my study and research. Without your patience, tutelage, enthusiasm and knowledge this work

would have never been written. Thank you, Karu.

Besides my advisor, I would like to thank the rest of my graduation committee members: Dr.

Gurindar Sohi, Dr. Mark Hill, Dr. David Wood, and Dr. Nam Sung Kim. Guri pushed me to

think critically and to revisit the insights in past ideas when formulating new solutions. Mark

gave me many inspiring comments, which are not only for research but also for the life and

career; his teaching and mentoring style was one of my pursuits. David was a great listener (with

year-round warm and smiling face), and he found many new possibility to very specific things

in my research. I especially thank to Nam for encouraging me after an exhaustive preliminary

exam.

I thank the CS and ECE faculty for so many wonderful courses, with special thanks to Dr.

Mary Vernon and Dr. Susan Horwitz, who taught me patiently and sparked my interests in

different areas. A special acknowledgement goes to Dr. Azadeh Davoodi for her teaching,

mentoring and support; I greatly appreciate her recognition in my first few years in Madison.

I would also like to thank Dr. Doug Burger at Microsoft Research, who is an alumnus of UW-

Madison, and Dr. Hadi Esmaeilzadeh at Georgia Tech for the support on Neural Processing

Units.

Thanks to the Vertical group. In particular I have received significant help and learned many

skills from my collaborator Dr. Venkatraman Gvindaraju. Thanks to the DySER prototyping

team, Jesse, Chris, Ryan, Zach, Preeti, and Ranjini, who all did a great work and made DySER

real. Amit, Shuou, Matt, Emily, Raghu, Jai, Jin, Newsha, Vinay, and Vijay: thank you for your

feedback and support. Thanks to Ziliang for the great help on writing in English. Thanks to

Tony for all the fun discussions and cultural knowledge. Special thanks to Marc de Kruijf, for

being more than supportive and for showing me how to write and think with ease and elegance.

Thanks to everyone in the computer architecture group. Srinath and Gagan: thank you for

many stimulating discussions. Jason and Marc: thank you for all the valuable feedbacks. Nilay

ii

and Joel: thank you for the discussions and help on the simulator. Rathijit, Somayeh, Hamid,

Shoaib, Srinath, Gagan, Hongil, Lena, and Jayneel: thank you and it is my pleasure to be one of

the group.

Many thanks to the architecture alumni, with special thanks to Dr. Kevin Moore for his

mentoring and support. Thank you Jichuan for all the favors and advices. Dan: I did use the

SPARC machine for good, not evil; you may not know but I learned many from your work. Min,

Luke, Derek, Polina, and Arka: thank you and I appreciate your help.

Thanks to Oracle Labs and Lawrence Livermore Laboratory for the internships. Special

thanks to Erik Schlanger, my supervisor at Oracle Labs, for his kind help and many career

advices. I would also like to thank Greg Wright at Qualcomm, who gave insightful comments

to this work in different aspects.

Thanks to the faculty of National Taiwan University, with special thanks to Dr. Hsu-Chun

Yen, Dr. Wanjiun Liao, and Dr. Farn Wang, who never hesitate to provide help and support.

Without you I could never be prepared to be in a PhD program.

Finally, I would like to thank my family. You may not know what this work is about but you

are always my strongest support.

iii

contents

Contents iii

List of Tables vi

List of Figures vii

Abstract ix

1 Introduction 1

1.1 Building Specialized Hardware 2

1.2 Dynamically Specialized Execution 3

1.3 Contributions 5

1.4 Dissertation Organization 7

2 Hardware Specialization and Dynamically Specialized Execution (DySE) 8

2.1 Hardware Specialization, Background and Examples 8

2.2 Dynamically Specialized Execution 15

2.3 Manual and Compiler-Assisted DySE 21

2.4 Chapter Summary 26

3 Dynamically Specialized Execution Resources (DySER) 27

3.1 DySER Design Goals and Overview 27

3.2 DySER Internal Microarchitecture 29

3.3 Configuring DySER 33

3.4 Integrating DySER 35

3.5 Chapter Summary 43

4 SPARC-DySER Prototype 44

4.1 SPARC-DySER Integration 44

4.2 Incorporating DySER into OpenSPARC 47

iv

4.3 Summary and Lessons Learned 49

5 Memory Access Dataflow (MAD) 50

5.1 MAD Design Goals 50

5.2 Memory Access Dataflow Overview 53

5.3 MAD Microarchitecture 59

5.4 Complex Scenarios 65

5.5 Integration 68

5.6 Chapter Summary 70

6 Evaluation Methodology 71

6.1 Architectural Models 71

6.2 Benchmarks 74

6.3 Measurements and Metrics 75

7 Evaluation 79

7.1 DySER with Host General Purpose Processor as The Access Engine 79

7.2 DySER with MAD 88

7.3 MAD Driving Other Execute Accelerators 93

7.4 MAD Executing Access-Only Benchmarks 97

7.5 Chapter Summary 98

8 Related Work 100

8.1 DySER and Execute Architectures 100

8.2 MAD and Access Architectures 103

8.3 Chapter Summary 105

9 Conclusions and Future Work 106

9.1 Contributions and Conclusions 106

9.2 Future Work 107

9.3 Reflections 108

v

A The Encoding of MAD ISA 112

A.1 Dataflow Graph Node 112

A.2 ECA Rules 113

B The Set/Reset Protocol 114

Bibliography 117

vi

list of tables

4.1 OpenSPARC RTL modifications (comments included) 45

4.2 A stylized listing of the DySER instructions . 46

4.3 Design of the DySER instruction extensions for OpenSPARC 46

4.4 Summary of the performance evaluation works . 49

5.1 Dataflow patterns: Exec Comp.: Execute component, Acc. I/F: Accelerator interface

instructions in the access component code, SP: Stack pointer, Off.: Offset, Base: Base

address . 55

6.1 General purpose host processor models . 72

6.2 Architectural models . 72

6.3 Benchmarks in evaluation . 76

7.1 Power breakdown of DySER’s sub-modules . 86

8.1 Comparison to related work . 104

A.1 The encoding of the dataflow graph . 113

A.2 The encoding of the ECA rules . 113

vii

list of figures

2.1 Hardware Specialization Taxonomy . 9

2.2 Hardware specialization execution model . 10

2.3 An out-of-order general purpose processor pipeline 13

2.4 Power breakdown of 2 and 4-issue out-of-order processor pipeline, modeling Intel

Silvermont and Sandy Bridge . 14

2.5 Decoupled Access/Execute . 16

2.6 Decoupled Access/Execute: microarchitecture . 17

2.7 Performance of 2-issue OOO vs. 1-issue in-order with accelerator

Speedups normalized to non-accelerated 2-OOO for both bars 20

2.8 Manual DySE programming . 22

3.1 Dynamically Specialized Execution Resources (DySER) 28

3.2 DySER microarchitecture: the network of switches and functional Units 29

3.3 DySER microarchitecture: switch . 30

3.4 DySER microarchitecture: functional unit . 31

3.5 DySER microarchitecture: Phi-function . 32

3.6 DySER microarchitecture: configuration mode . 33

3.7 Fast config switching example . 34

3.8 Fast config switching in a DySER switch . 35

3.9 Simple queue-based DySER interface . 36

3.10 OOO DySER interface . 37

3.11 OOO DySER interface with speculative execution 38

3.12 OOO DySER interface: An alternative solution . 40

3.13 Vector port mapping . 41

3.14 Vector port mapping: microarchitecture . 42

4.1 SPARC-DySER integration . 48

viii

5.1 The block diagram and the execution of an out-of-order host processor with an

accelerator . 51

5.2 The MAD ISA . 54

5.3 An example execution of the MAD hardware . 57

5.4 MAD microarchitecture . 60

5.5 Detailed MAD execution with a simple code . 63

5.6 MAD execution with a complex example . 64

5.7 The integration of accelerators and the MAD hardware 67

7.1 The reduced dynamic instructions in percentages 80

7.2 Execute component size in operations . 81

7.3 Speedup over 2-OOO baseline . 81

7.4 Energy reduction over 2-OOO baseline . 82

7.5 Instruction and operation level parallelism . 84

7.6 Instruction window size . 84

7.7 Dynamic power . 85

7.8 DySER’s sensitivity on different access hardware . 87

7.9 Speedup over 2-OOO baseline . 88

7.10 Energy reduction over 2-OOO baseline . 89

7.11 Parallelism in MAD/DySER . 90

7.12 Dynamic power . 91

7.13 MAD’s sensitivity on hardware resources . 92

7.14 Performance of MAD/Accelerators . 94

7.15 Energy reduction of MAD/Accelerator . 95

7.16 Energy reduction of MAD/Accelerator . 96

7.17 MAD (Access-only) performance and energy . 97

ix

abstract

In the past few decades, Von Neumann superscalar processors have been the prevalent approach

for general purpose processing. Hardware specialization, as a complementary technique, offers

superior performance, power or energy efficiency on specific tasks. Today, with an increased fo-

cus on energy critical platforms such as datacenters and mobile devices, hardware specialization

are becoming an important and widely used approach to improving the overall efficiency.

Our work is motivated by observing that in frequent program phases, using specialized

hardware could eliminate the conventional ”instruction processing” in a superscalar pipeline.

To this end, we propose two supporting architectures, for both computation and data acquisition,

under a hardware-software co-designed execution model– Dynamically Specialized Execution

(DySE). This model leverages re-configurable hardware and decoupled access/execute for energy

efficiency, generality and flexibility. The two architectures discussed in this dissertation are:

Dynamically Specialized Execution Resources (DySER) and Memory Access Dataflow (MAD).

Decoupling access and execute components in a program phase enables different optimization

opportunities in hardware. DySER, the supporting architecture for the execute component, is

a circuit-switched functional unit fabric that can be viewed as a long-latency, multi-input and

asynchronous unit. MAD, on the other hand, is an event-driven dataflow memory access engine.

It efficiently performs two primitive tasks found in a superscalar processor: (1) computations

that generate recurring address patterns/branches; (2) event-condition evaluations that trigger

resulting data movements. By turning off the host, using MAD to drive the accelerators delivers

energy improvement compared to an out-of-order host processor.

This dissertation has the following findings: First, we prove that DySER is a viable approach

by building a SPARC-DySER prototype, which integrates DySER into OpenSPARC. In the eval-

uation of DySER, we observe 80% saving in dynamic instruction count, 3.47× speedup and

3.55× energy reduction over a power-efficient 2-issue out-of-order processor; DySER increases

the parallelism for such speedup through its hardware, vector interface, and decoupled ac-

cess/execute. Second, we support DySER with MAD and increase the overall speedup and

energy reduction over the same base to 5.3× and 5.6×, respectively. MAD can also drive other

x

execute accelerators or perform access-only codes for energy-efficiency. Compared to a 2-issue

superscalar host, MAD increases the parallelism and lowers the power consumption through

its microarchitecture, which benefits from the exposure of computation, dataflow events and

actions in the MAD ISA.

1

1 introduction

In the past few decades, process scaling has offered doubled transistors on a chip every generation

as Moore’s Law predicts. The performance of processors has consequently increased with

constant power density by leveraging these smaller and faster transistors that consume less power.

Conventionally, computer architects pipeline the microarchitecture for a faster clock frequency,

and spend the raised transistor budget on speculative execution and dynamic scheduling

(e.g., branch predictors and out-of-order execution). However, these microprocessor design

techniques eventually hit the Power Wall. The frequency scaling ends because of practical thermal

limitations; moreover, the power density per unit area has been increased over generations

because of the breakdown of Dennard Scaling [41]. As a result, the industry shifted to Chip

Multiprocessors (CMPs) and mitigated this problem by offering better performance through

thread-level parallelism. Fundamentally, the Power Wall still exists, and the evidence of the

incapacity of the traditional core architecture design has been discovered recently. Azizi et

al. [14] show that microprocessor design techniques like changing issue width, improving

prediction accuracy, etc. cannot provide significant improvements in energy efficiency as the .

Specifically, they show that a dual-issue out-of-order processor, under voltage and frequency

scaling, is within 3% of the energy-delay metric of any other out-of-order processing design.

Esmaeilzadeh et al. [44] show that power limitations of conventional microprocessor techniques

will severely curtail the performance, and significant changes are required to match the historical

annual cumulative performance growth of 30% to 40%.

In general, the dynamic power consumption of a CMOS circuit could be represented as

follows:

P = ACV 2
ddF

Where P is the dynamic power, A is the activity factor (the switching activity of the circuit), C

is the capacitance of the circuit, Vdd is the supply voltage and F is the clock frequency. Among

the above variables, the scaling on supply voltage V is not enough, and capacitance C and

the frequency F are held constant for performance. Computer architects, consequently, turn

to hardware specialization to lower the activity factor A [103, 45, 122, 57, 34, 47, 100, 88]. By

2

reducing the reliance on power hunger structure in a general purpose pipeline, hardware

specialization decreases the overall switching activity yet provides similar or even improved

performance. I begin this dissertation with a discussion on general-purpose hardware, from

which I describe how hardware specialization improves energy efficiency. Next, I develop

Dynamic Hardware Specialization (DySE) to address the demands found in the observations. I

show how Dynamic Hardware Specialization and its supporting architectures tackle the issues

in energy efficiency. I then briefly outline my contributions in this work and summarize this

chapter with an overview of this dissertation.

1.1 Building Specialized Hardware

General purpose hardware, typically, executes an application in the following steps. First, the

execution pipeline fetches the application as instructions from the instruction cache sequen-

tially. Second, these instructions are decoded, where each of the decoded instructions carries

a piece of information in the application. In a limited instruction window, the information

from instructions is analyzed and scheduled to drive the execution units and storage inside

the pipeline. The instruction window is either the same as the issuing width or is much larger

in the case of out-of-order execution. To utilize the pipeline more aggressively, speculation is

often used with out-of-order execution to schedule the speculated instructions and pay the

potential recovery cost in mis-speculations. The above fetch, decode and issue stages are the

front-end of the pipeline. Last, the back-end of the pipeline, which operates on the work of

the application, is composed of the execution units and the data from storage. The execution

units read from register file and data cache for operation, and write the resulting data values

back. The controlling and forwarding signals of the execution units and storage are produced

dynamically by the information from the front-end.

Specialization alters the general purpose hardware with specific optimizations. In the front-

end, a specialization approach changes the general purpose execution model such that there is

less dynamic scheduling (which saves power) in a given instruction window. For example, the

Single-Instruction-Multiple-Data (SIMD) execution model operates on multiple data. Compared

3

to using multiple instructions, SIMD effectively reduce the overall instruction scheduling. In the

back-end, the execution units may be specialized for some sophisticated application. Depending

on the granularity, the execution units may be organized to reduce the overhead in dynamically

producing the controlling and forwarding signals. For example, C-Cores [122] lays out the

execution units in a region of the pipeline as a single piece in hardware; the control of its

execution units, data access and forwarding datapath are all statically routed and performed to

save power. Another optimization in the back-end is to optimize the data acquisition mechanism.

Specialized memory [90, 30], registers [108], and/or scratch pad memory [67, 40] are examples

of this optimization. There are also proposals only focused on data acquisition such that they use

a simple in-order Von Neumann pipeline with optimized memory and memory interface [77] to

achieve energy efficiency.

1.2 Dynamically Specialized Execution

This dissertation seeks to provide a comprehensive hardware specialization which eliminates

the per-instruction overheads in both the front-end and the back-end of a general purpose

processor pipeline. This approach, called Dynamically Specialized Execution (DySE), leverages

an alternative execution model based on Decoupled Access/Execute [112] to effectively create

a huge instruction window with “ultra-wide“ instructions. In the DySE execution model,

the application is abstracted as a sequence of ultra-wide instructions (through compiler or

programming techniques), each representing an application phase. Before entering a specialized

application phase, the host general purpose processors dynamically configure the hardware

to specialize for these application phases. In an application phase, the code is divided into

access (memory loads and stores) and execute components (mainly computations), where the

two components are executed on different hardware substrates. This decoupling thus allows

different optimizing opportunities. By dynamically configuring and reusing of the configured

phases, the specialized hardware substrate is able to target a variety of different applications.

Two supporting architectures are proposed under the DySE model, Dynamically Specialized

Execution Resources (DySER) and Memory Access Dataflow (MAD). They are hosted by a general

4

purpose processor pipeline and can be used separately or together to maximize the energy

efficiency. First, DySER is proposed as a non-intrusive, multi-ported, long latency and asyn-

chronous execution unit in the processor pipeline. It can be integrated into the host processor

pipeline non-intrusively with instruction set extensions and interface buffers, and performs

the execution component in an application phase. Second, MAD is motivated from the fact

that driving specialized execution units, such as DySER, with host general purpose processor

pipeline incurs significant overhead. In an application phase that executes with a specialized

execution hardware substrate, the host general processor’s role is merely delivering data from

the cache to the substrate. As a result, a light-weight memory access dataflow engine, MAD, can

be employed to access the cache and move the data between cache and the specialized hardware.

The design goals of DySE, DySER and MAD are as follows:

• Energy efficiency: The DySE model is proposed to remove the overheads in general

purpose hardware. It aims at energy efficiency such that using DySER and MAD brings

power efficiency (removing the overheads) with improved performance. DySE achieves

power efficiency by decoupling the access and execute code, thus creating an extremely

large instruction window without general purpose structures. DySER and MAD then

perform the execution and data acquisition with their efficient dataflow microarchitecture.

On the performance side, MAD and DySER extract instruction and data level parallelism

in the access and execute code, utilizing a vectorized memory interface.

• Area efficiency and programmability: While Application-Specific Integrated Circuits

(ASICs) can be built for different applications or application phases, DySE dynamically

specializes the application phases on DySER and MAD and achieves area efficiency. To this

end, DySER and MAD are designed for reconfigurability. In the DySE model, compiler

or programming techniques can be used to identify the profitable application phases

and create the configuration bits. This model removes the dynamic energy overhead of

using hardware to analyze applications and phases at runtime for constructing specialized

datapath.

• Design complexity and flexibility: The DySE model and the supporting architectures are

5

designed as a viable and flexible approach. A compiler framework was also developed for

decoupling the access and execute component and generating optimized configuration

automatically. This access/execute decoupling reduces the hardware design complexity,

offering a well-defined flexible interface between host processor, DySER and MAD. With

this interface, the host processor can use DySER, MAD or both of them. When using

DySER alone, the access code can be executed on the host processor so that it is responsible

for both configuration and data delivery. When applying both MAD and DySER, the host

processor can be turned off during the specialized application phase to save power. In

the case that the application phase is mostly composed of data accesses (e.g. a linked-list

traversal), MAD can also be used alone with no execution specialization.

1.3 Contributions

This dissertation makes contributions by conceiving the Dynamically Specialized Execution

model (DySE, Section 1.3.1) and the two supporting architectures, Dynamically Specialized

Execution Resources (DySER, Section 1.3.2) and Memory Access Dataflow (MAD, Section 1.3.3).

It studies the aspects of microarchitecture, architecture, the execution model, compiler and

application to explore the benefits of dynamic specialization.

1.3.1 Dynamically Specialized Execution

The hardware specialization approaches can be roughly classified under two different building

philosophies: specialization at fine granularity, focusing only on computation or execution

units, or specialization at a coarse granularity that encapsulates the execution units, data access

mechanism, and the control logic holistically. The first contribution of this work is the DySE

model (Chapter 2), which captures both computation and memory access in application phases

at a coarse-grained level but achieves fine-grain specialization efficiency by decoupling access

and execute to enable efficient hardware optimization. Second, this dissertation supports DySE

with a few observations about application phases and the energy efficiency of a general purpose

superscalar pipeline. It develops the entire software/hardware stack and describes how to

6

decouple the access and execute components with compiler or programming techniques. This

decoupled execution addresses the inefficiencies in a general purpose pipeline by leveraging

specialized architectures.

1.3.2 Dynamically Specialized Execution Resources

This dissertation proposes the specialized hardware architecture for the execute component in the

DySE model. It describes this hardware, Dynamically Specialized Execution Resources (DySER,

Chapter 3), in terms of the architecture and microarchitecture details. DySER dynamically

synthesizes specialized datapaths for computation operators in an application phase and relies on

the host processor or MAD to deliver the data. To explain the latter, this dissertation discusses the

integration of DySER with an out-of-order processor or MAD, as well as the microarchitectural

interface and DySER’s reconfigurability. It then presents a thorough analysis on Parboil [6],

Throughput Kernels [110] and Rodinia [25] benchmarks to show the overall performance, power

and energy efficiency (Chapter 7); this dissertation also conducts a series of microarchitectural

analyses to reveal the tradeoffs and potential bottlenecks. DySE and DySER are joint works with

my collaborator , Venkatraman Govindaraju [58].

To prove that DySER is a flexible and viable approach, this dissertation demonstrates SPARC-

DySER, an OpenSPARC T1 processor integrated with DySER, with a FPGA prototype. It

details the practical integration issues, and the lessons learned from bringing up a prototype.

Chapter 4 gives a strong evidence that one can straightforwardly build DySER following its

design specification and integrate it with a commercial processor.

1.3.3 Memory Access Dataflow

Last, this dissertation proposes the specialized hardware architecture for the access component

in the DySE model, Memory Access Dataflow (MAD, Chapter 5). MAD is the first work to

provide a unified interface for all accelerators and specialized hardwares that fit in DySE (or

the Decoupled Access/Execute model). It introduces the event-action dataflow ISA to expose

the data movement to the MAD hardware. This dissertation illustrates the execution flow of

MAD, the architecture, microarchitecture, and the integration details of DySER and MAD. It

7

also discusses the integration between MAD and three other accelerators, x86 Streaming SIMD

Extensions (SSE) unit, Neural Processing Unit [45], and Conversation Cores [122].

1.4 Dissertation Organization

Chapter 2 discusses the motivation, background material, and related work of Dynamically

Specialized Execution. Chapter 3 elaborates DySER’s architecture and microarchitecture designs,

and Chapter 4 integrates DySER into OpenSPARC T1. Chapter 5 develops the MAD architec-

ture with supporting examples. Chapter 6 discusses the experimental setup and evaluation

methodology. Chapter 7 first evaluates DySER with the host processor delivering the data; it

then evaluates MAD with DySER, MAD with other accelerators, and a special case where MAD

is used alone, without execute accelerators, for access-only application phases. I conclude this

dissertation in Chapter 9 and summarize the key insights, findings, and future work.

The contents of Chapter 2, 3 and 7 inherit from my prior publications, HPCA2011 [57] and

IEEE-MICRO2012 [59]; they overlap with the dissertation of Govindaraju [58] , my collogue

and the co-author of the above publications, but provide more detail and differ in evaluation.

Regarding differences, Chapter 2 focus on hardware rationale and manually optimized data

parallel benchmarks. Chapter 3 and 7 focuses on the microarchitecture and analyses that details

the potential overheads of the microarchitecture design. The content of Chapter 4 is a follow-up

work of published prototype at HPCA2012 [18]; this Chapter discusses the integration and

design choices in-depth. Last, the MAD architecture described in Chapter 5 and its evaluation

differ from the prior work [28] with a more developed design.

8

2 hardware specialization and dynamically specialized execution

(dyse)

This chapter discusses the background of hardware specialization and proposes the Dynamically

Specialized Execution (DySE) model. Section 2.1 discusses different execution models and

classifies the common specialization approaches based on programmability and granularity.

It then investigates a traditional out-of-order (OOO) superscalar processor to understand how

specialized hardware, with the above differences, can save power and increase the energy

efficiency of an OOO processor pipeline. Through the above observation, Section 2.2 develops

the DySE model as an alternative execution model based on decoupled access/execute and two

supporting architectures, Dynamically Specialized Execution Resources (DySER) and Memory

Access Dataflow (MAD). Section 2.3 then describes how to program for DySE and discusses

the efforts in automating the transformation, from a conventional program to the codes and

configurations that can be executed with DySE supporting architectures.

2.1 Hardware Specialization, Background and Examples

Today, the general propose processor design is dominated by Von Neumann superscalar proces-

sors. The idea of hardware specialization, however, is used extensively to support the general

propose processors in improving performance, reducing power, or both. From a hardware

viewpoint, these specializations can be characterized in two axises:

• Programmability: Specialized hardware can either be programmable or completely static

like Application-Specific Integrated Circuits (ASICs). Among the programmable spe-

cializations, they can be pure-dynamic which reads instruction in-flight as superscalar

processors do, or are synthesized by compiler or programming techniques before invoking

the specialized hardware. Examples of the former include CCA [36], VEAL [31] and

PipeRench [54]; the latter includes Field-Programming Gate Array (FPGA) based acceler-

ators, GARP [68] and Chimaera [126]. The trade-off between different programmability is

often the power efficiency; more dynamism in hardware in general consumes more power.

9
Pr

og
ra

m
m

ab
ili

ty

Micro-Op
Fusion

Instruction Set Architecture
Specialization

DySE

FPGA and ASIC

Granularity

...
CMP %rax, %rbx
JE .L
...

CMPJE %rax,%rbx,.L

Micro-Ops

Instructions

Fused
Instruction

Decoder

...
add %eax, %ebx
add %ecx, %edx
add %r8d, %r9d
add %r10d,%r11d
...

configurations

addps %xmm0, %xmm1

Specialized
ISA&Units

FPGA or
ASIC

Configuration&
Reconfigurable
Hardware

Programming/Compiler

Programming/Compiler

Hardware Development

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

Application
Phases

main

func1

func3
func2

Application

Figure 2.1: Hardware Specialization Taxonomy

• Granularity: Specialized hardware offloads work from a general purpose processor; the

specialization granularity depends on the effective instructions in the work they offload.

A fine-grain specialized example is Micro-Op Fusion, where a few micro-ops are bundled

together and be executed in a specialized datapath. In contrast, coarse-grain specialization

may effectively offload hundreds of instructions at one time such as in Graphics Processing

Units. In this dissertation, we do not consider an approach that differs from general purpose

Von Neumann pipeline but “specializes“ arbitrary applications, since they are essentially general

purpose. For instance, dataflow machines like RAW [119], TRIPS [109], and WaveScalar [117]

are not considered as hardware specialization approaches.

Figure 2.1 presents the taxonomy of hardware specialization. The leftmost block illustrates

Micro-Op fusion, which has the highest programmability. In the execution, the hardware

(decoder) dynamically analyses a collection of instructions and produces fused instructions. No

static programming or compiling effort is required before using the fused datapath, and the

hardware can be used in any program that contains the target instruction sequence. Although

their granularity limits the overall benefit, they can be very efficient in implementation and no

modification is needed in the software stack.

10

...

...

Instruction
Stream

(a) General Purpose
 Hardware

(b) Opaquely
 Specialized Hardware

(c) Transparently
 Specialized Hardware

(d) Statically Specialized
 Hardware

...
mov 56(%rsp), %r15
mov $0, 80(%rsp)
sar %ecx
add %eax, %eax
mov %ecx, 84(%rsp)
cmp %rax, %rbx
je .L
...

...
add %eax, %eax
mov %ecx, 84(%rsp)

cmp %rax, %rbx
je .L

Specialized Front-end HW

Specialized Back-end HW Reconfigurable
Hardware

...

configuration

Invoke instr.

Specialized
Region
(Instr.)

Specialized
Region
(Config.)

Specialized
Execution

...

Statically Specialized
Hardware

...

Invoke instr.

Specialized
Region
(HW)

Figure 2.2: Hardware specialization execution model

Instruction set architecture extension specialization is illustrated at the next column; the

examples are multimedia SSE [4] ISA extensions and cryptographic hardware accelerators [3, 1,

111]. In these cases, the specialized hardware are not programmable and executes pre-defined

instruction extensions. Compiler or programming model changes have to be made in order to

leverage the specialized hardware.

At the far right, FPGA and ASIC based accelerators [86, 23, 123] have the coarsest granularity

and can offload a large code region or the entire application in hardware. The trade-offs here are

the communication overhead, custom memory/storage design and software changes. Compared

to ASICs, FPGAs are more programmable but less power efficient in hardware microarchitecture.

2.1.1 Employing Specialized Hardware in Different Execution Models

Orthogonal to the granularity and programmability, specialized hardwares are often integrated

in a general purpose system with some alternation in the original execution model. Figure 2.2

compares a general purpose execution model and specialized execution models:

• Model (a), General Purpose Hardware: In the general purpose execution, the pipeline

processes instruction streams sequentially through pipeline stages. The instructions are

dynamically analyzed and assigned to execution units in the pipeline.

• Model (b), Opaquely Specialized Hardware: The first set of examples of the specialized

hardware execution model includes a specialized front-end to analyze the instructions and

program the specialized hardware dynamically. The specialized front-end constructs the

11

specialized region in-flight and controls back-end units for execution. This model matins

the homogeneity in the software at the cost of a hardware front-end, which may consume

much power when the back-end units are large and difficult to program. Micro-Op fusion

and CCA [36] belong to this model.

• Model (c), Transparently Specialized Hardware: The second set of examples relies on

the software to generate configurations for the specialized hardware. Analogous to the

instructions, the configurations contain the information to control the specialized hardware;

previous models differ in the fact that the configurations in this model have little or no

abstraction. No dynamic analysis (such as decode, instruction queuing, and reordering) of

configurations is needed. During the execution, the host processor sends the configuration

bits to set up the specialized hardware before starting the specialized region. This model

preserves the capability of targeting different tasks and improves the power efficiency with

configuration cost and compiler/programming changes. Chimaera [126] and DySE [57, 59]

belongs to this model.

• Model (d), Statically Specialized Hardware: In the specialized execution model, a region

in the instruction stream is offloaded onto the specialized hardware. Static hardware

specialization like ISA extension specialization utilizes integrated instructions to offload

the work from the host. These specialized instructions invoke pre-defined (before silicon)

functions in the specialized unit that is not programmable. Compared to other approaches,

this model is not opaquely specialized because programmer have to invoke them explicitly;

but it is also not fully transparent in terms of the programmability. By sacrificing the

programmability, statically specialized hardware offers the best power efficiency.

2.1.2 Improving Efficiency with Specialized Hardware

With a modified execution model, the host general purpose hardware can exploit specialized

hardware to reduce overheads. Figure 2.3 is a block diagram of a hypothetical general purpose

out-of-order pipeline. It resembles state-of-the-art out-of-order processor pipeline designs such

12

as Intel’s Haswell [66]. Logically, this general purpose pipeline has six stages: Fetch, Decode and

Dispatch, Issue, Execute, Memory, and Write-back stages. 1 In particular:

• Fetch: The fetch stage is guided by the program counter and branch predictor to fetch

instructions from the instruction cache. Often, an entire cache line is read from the

instruction cache to lower the memory access overhead; buffers are used to hold these

instructions temporarily. The fetch logic then selects the desired instructions following

the program order and delivers them to the next stage. Because the fetch width (i.e. the

number of instructions that fetch stage delivers) may not perfectly match the number of

instructions in a cache line, dynamic scheduling of instruction access, buffering, ordering

and selection are needed. While opaquely specialized hardware (model (b)) can hardly

specialize this stage , static specialized hardware and transparent specialized hardware

(model (c) and (d)) reduce this dynamic scheduling by fusing the instructions.

• Decode and Dispatch: The decode and dispatch stage decodes the instruction, buffers

them in the instruction queue, searches for available resources that could execute the

instruction, and allocates entries in the scheduler in the next (issue) stage. This stage also

resolves the register structural hazards by register renaming, which dynamically assign a

local register to an entry in the physical register file. The scheduling, buffering, and the

size of the physical register file determines the length of the instruction window of this

pipeline. Specialized hardware units usually have dedicated resources such as execution

units and datapaths; even with shared resources, the specialized execution model can

reduce the overhead of general purpose dynamic scheduling in many cases. For instance,

the SIMD accelerators may read data values from a shared register file; compared with a

general purpose processor, they can still reduce the overhead of scheduling because now

only a single SIMD instruction is needed for scheduling multiple computation operations.

• Issue: The issue stage selects the instructions to drive the execution unit, tracks the

execution status, and wakes-up the dependent instructions in the decode and dispatch

stages for resource allocation. A scheduler (variant designs could be called issue queue,
1Each stage may be physically pipelined internally.

13

Branch
Predictor

Branch
History

Fetch

Fetch Decode&Dispatch Issue Execute Memory WB

Decode

In
st

ru
ct

io
n

Q
ue

ue

RF

ROB

I$

D$

FU
A
G

U

LS
Q

Bypass

S
ch

ed
ul

er

Figure 2.3: An out-of-order general purpose processor pipeline

reservation station, etc.) in this stage uses CAMs to match and wake up instructions and

operands, uses arbiters to drive execution units, and uses buses to broadcast and distribute

data. In addition, a reorder buffer (ROB) is accessed in parallel to hold the instructions in

flight and maintain the program order. In the case of mis-speculation, exceptions and traps,

a precise state can be restored by inspecting the ROB and flushing/re-executing the correct

instructions. In static specialized hardware and transparent specialized hardware (model

(c) and (d)) the operator scheduling is determined before execution by a dedicated datapath

or configuration bits. In opaquely specialized hardware (model (a)), the specialized

scheduler may have to cooperate with the general purpose scheduler in this stage.

• Execute: The execution stage comprises execution units (operators), datapath for operators,

and bypass logic. Common execution units may include: integer and floating-point arith-

metic units (ALUs), address generation units, multipliers and divider(s). When dependent

instructions are scheduled in consecutive cycles, the data value can be forwarded through

the bypass logic. In practice, the complexity of bypass logic scales quadratically with the

number of execution units [69]. Specialized hardware units can significantly reduce the

complexity in the bypass logic with a pre-determined static datapath. In addition, they

may combine the bypass logic and execution units into fused execution units, thus enable

circuit level optimization.

• Memory: The memory stage accesses the data cache and brings the operands into registers.

14

2-issue out-of-order

P
o
w

e
r

(%
)

5.0%

12.7%

4.4%19.2%

30.3%

28.5%

4-issue out-of-order

3.0%

44.0%

10.0%

12.7%

13.5%

16.7%

Fetch
Decode and Dispatch
Issue
Register and Bypass Logic
Functional Units
Load-Store Unit

Figure 2.4: Power breakdown of 2 and 4-issue out-of-order processor pipeline, modeling Intel
Silvermont and Sandy Bridge

It buffers the memory load and stores, performs memory disambiguation, and tracks

the miss state by Miss Status Holding Registers (MSHR). Sophisticated mechanisms have

been developed to tolerate memory latency [74, 27, 121] and reduce the complexity of the

memory buffers [116] in a general purpose pipeline. Regarding specialized hardware, fine-

grained proposals utilize the well-developed general purpose pipeline to deliver data from

the cache. Coarse-grained proposals could use specialized memory [90, 30], registers [108],

or scratch pad memory [67, 40] to reduce the dynamism in this stage. However, changing

the memory system is intrusive and often demands a different programming model.

• Write-back: The write-back stage writes the resulting data values from the execute and

memory stages back to the register file. Also, the ROB commits and retires instructions in

this stage if it is safe. Specialized hardware without a centralized register file may lower

the switching activity of accessing the multi-ported SRAMs.

Figure 2.4 quantifies the power consumed in each stage of an efficient 2-issue and a 4-issue

out-of-order core, which models Intel’s Silvermont and Sandy Bridge respectively [7, 5]. The

figure reports the power from the execution of data parallel workloads; the experimental setup,

and details of workloads and models can be found in Chapter 6. Here, this result presents a

first-order observation–even with a power efficient out-of-order core, one-third of the overall

power still goes to the front-end, register and bypass logic of the pipeline, where this power

is not used for computation or accessing memory. In a high-performance core, the design is

15

even unbalanced, and the power-hungry out-of-order structures consume over 50% of the total

power.

2.2 Dynamically Specialized Execution

The Dynamically Specialized Execution model, as shown in the third column in Figure 2.1,

leverages reconfigurable hardware to provide programmability with coarse granularity. It

adopts the reconfigurable specialized hardware execution model such that the application

phases are compiled/programmed into configurations and sent to specialized hardware before

executing the phase. These phases communicate with each other through memory. Overall, the

execution proceeds in three phases: (1) host processor executes non-specialized phase; (2) host

processor configures the specialized hardware into a specialized phase; and (3) host processor

invokes specialized hardware to execute the specialized application phase. To understand the

execution inside a specialized phase, we first revisit the Decoupled Access/Execute model first

proposed in ISCA1982 [112].

2.2.1 Inside Specialized Application Phase: Decoupled Access/Execute

The Decoupled Access/Execute model (DAE) [112] was proposed to efficiently issue the instruc-

tions that are designated for access and execute. It hides the delay of the memory communication

by decoupling these responsibilities. Figure 2.5 presents the basic concept of the DAE model

with an example of specialized execution. Beginning from the left, an arrow represents the

non-specialized execution of an application, and a purple box shows the application phase to be

specialized 2. When reaching the specialized application phase, the execution splits into two

arrows, which represents the two decoupled components, the access component and the execute

component. The access component is composed of loads, stores, and address calculations; the

execute component is the computation— a+ b in this example. The two decoupled components

can be executed independently and communicate asynchronously; as a result, a pipeline is

formed between the access and execute components. The access component loads data values
2Originally, the DAE proposal exploits two instruction streams for general purpose execution; there is no

transformation between non-specialized to specialized execution

16

Time

S
pa

ce

Non-specialized
Execution

Decoupled Access Execute

load A[i] -> a

load A[i+1] -> b

add a, b -> a

store a -> a[i]

l
d

A
[
i
+
1
]

a
+
b

a
+
b

a
+
b

l
d

A
[
i
]

l
d

A
[
i
+
1
]

l
d

A
[
i
]

l
d

A
[
i
+
1
]

l
d

A
[
i
]

s
t
o
r
e

s
t
o
r
e

s
t
o
r
e

Access
Component

Execute
Component

Figure 2.5: Decoupled Access/Execute

by iteration, and sends them to the execute component for computation. Originally, DAE was

proposed to tolerate the memory access latency with such a decoupled pipeline (at that time,

there was no cache).

The DAE model resembles the data streaming model [15, 20] when the access component

works on subsequent items that can be modeled in data streams; however, they differ in the fact

that DAE’s access component can perform random memory access and trigger a different parts

of the execute component. Figure 2.6a presents the original design of the DAE microarchitecture.

Two processors, the Execute processor (E-processor) and the Access processor (A-processor),

executes two different instruction streams, where the two processors communicate through

data (AEQ, EAQ) and control (BranchQ) queues. The A-processor is responsible for issuing

the memory reads and writes in the access component, and the E-processor is responsible for

computing with the operands sent from the A-processor. In addition, the A-processor could

send control signals through branch queue to drive the E-processor to a different branch when it

completed the computation. Overall, DAE physically provides two decoupled microarchitectures

to execute the decoupled instruction stream, thus allowing the two components to be optimized

separately. It contrasts with pre-fetching schemes [74, 27, 121] apropos of the modification

(decoupling) in the main instruction stream 3.

While originally the DAE model was proposed to mitigate the memory latency, this trans-

formation concept influences superscalar processors [73] as well as many specialization pro-
3Recent pre-fetch proposals often leverage spare cycles to pre-load the data into cache non-bindingly (the data

may not be used), where DAE explicitly alters the instruction stream and decouples it into two components that are
performed in different hardware units.

17

Functional
Units

(a) Decoupled Access-Execute
AddrQ

C
acheBranchQ

RF

Functional
Units and
Adderss
Gen.
Units

RF

Decode&
Issue

I$

Decode&
Issue

I$

(b) DAE with Accelerator

Specialized HW
Ctrl I/FEA

Q

A
EQ

E-processor

A-processor AddrQ

C
ache

Functional
Units and
Adderss
Gen.
Units

RF

Decode&
Issue

I$

A-processor (Host)

E-procssor (Accelerator) Q
ueue/

special R
F

Figure 2.6: Decoupled Access/Execute: microarchitecture

posals [118, 92, 11]. Figure 2.6b describes a common DAE paradigm: an accelerator integrated

into host processor, where the accelerator replaces the execute processor, and the host processor

becomes the A-processor. This paradigm is widely used in various specialization proposals; if

the accelerator is reconfigurable and fits in the Reconfigurable Specialized Hardware execution

model (as described in Section 2.1.1), the host processor and accelerator can be viewed as using

the DySE model as well. The profitability of DAE in the specialized phase (or the DySE model)

largely depends on two characteristics: (1) the construction of a specialized phase, and (2) the

phase behavior. In a prior work on DySE, "Energy Efficient Computing Through Compiler As-

sisted Dynamic Specialization" [58], Govindaraju conducted a series of analyses on the compiler

assisted DySE to understand the effectiveness of such a model. The two major findings were:

• Across a wide variety of benchmarks, it is observed that the application phases of enough

computation instructions (execute component) can be identified for specialization; and

• Most applications re-invoke the same phase multiple times before switching to another.

From the above, with efficient specialized hardware for execute and access components, the

DySE model can be applied to a general purpose application and provide performance and

energy efficiency on specific phases.

2.2.2 Supporting Architecture for Execute: DySER

To fully exploit the benefits of decoupled access/execute, two supporting architectures are

conceived for each component. For the execute component, the hardware should address the

18

following design goals:

• It should be able to efficiently perform many computation operations, with some local

branches but no memory loads or stores;

• It should be able to be programmed for different application phases; and

• It should be able to be interfaced with the access component, and be flexible or agnostic to

the hardware implementation of the access component;

Dynamically Specialized Execution Resources (DySER, Chapter 3) is conceived to address

the above design goals. First, DySER provides heterogeneous functional units for the primitive

operators in an application phase. Between these function units, DySER leverages a circuit-

switched mesh-like reconfigurable network to create datapaths. Although a packet-switched

network allows dynamic resource allocation for data segments, it introduces more hardware

overhead in decoding and forwarding data; DySER takes a radical approach that assigns every

operation in an application phase to a dedicated functional unit, thus providing an opportunity

to enable the circuited-switched network. In the network, dataflow is data-independent and

follows a pre-configured datapath that is used many times before reconfiguration. This reuse

avoids power-hungry structures like packet switching routers, centralized register files, and

crossbars.

Second, while it is possible to create a common case array of frequently used functional

units [57] for a phase, they have to be efficiently programmed for phases with different sizes. As

a result, DySER utilizes the existing datapath to construct parallel configuration routes to the

switches and functional units. The configuration of DySER is virtualized such that a phase with

more primitive operations than available functional units can still be mapped to DySER.

Third, the configuration and data is delivered through a queue-based interface; DySER does

not require any special front-end and all the control and data computation is driven by the

readiness of the data in these queues. Via instructions extensions, host processor can send

configuration to DySER, and the access hardware can also use exactly the same interface to

send data and control. The primitive interface instructions are: (1) dyserload and dyserstore,

19

which loads data from memory to DySER and stores data from DySER output to memory; (2)

dyserinit, which initializes DySER by sending the configuration bits.

2.2.3 Supporting Architecture for Access: MAD

Intuitively, one can use the host processor to drive DySER through the queue-based interface;

in fact, many specialization proposals use a host processor and ISA extensions to control the

accelerator and deliver data. In such a paradigm, the host processor is often one of the following:

• Out-of-Order Processor: In single-thread performance sensitive platforms, out-of-order

(OOO) processors are often used as the host. However, because the dataflow between cache

and accelerator in an application phase is usually dominated by a few access patterns, using

an OOO processor becomes a less-desirable option. OOO’s general purpose structures

are power-hungry and tend to be an over-provisioned design for driving accelerators (as

described in 2.1.2).

• In-order Processor: In-order processors are widely used in power critical platforms such

as embedded systems. Some power-oriented specialization proposals [122] assume an

in-order baseline so that the overall system offers best power efficiency. For other accelera-

tors, an in-order integration may result in mediocre speedup even compared to a general

purpose OOO processor. Figure 2.7 illustrates this issue with two different accelerators:

DySER [57] and SSE [4] (details of the configuration and accelerator setting can be found in

Chapter 6).The accelerators are modeled in the gem5 cycle-accurate simulator and executes

the accelerated phases (kernels) of a mix of Parboil [6], Rodinia [25], and Throughput

Kernel [110] Benchmarks. Compared to a 2-issue out-of-order with an accelerator, im-

provements from acceleration are severely reduced when using the in-order processor;

this demonstrates that high-performance OOO processing capability is necessary for some

accelerators. Our evaluation in Chapter 7 discusses the use of access component hardware

with different performance in more depth.

• In-order VLIW Processor: One feasible approach of using in-order or low complexity pro-

cessor to achieve high performance is the Very Long Instruction Word (VLIW) processors.

20

cu
tc

p ff
t

lb
m

m
m

m
ri

-q
sa

d
sp

m
v

st
e
n
ci

l
tp

a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e
n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

2

4

6

8

10

12

14

S
p
e
e
d
u
p

(a) DySER

cu
tc

p ff
t

lb
m

m
m

m
ri

-q
sa

d
sp

m
v

st
e
n
ci

l
tp

a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e
n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) SSE

In-order/Accel 2-OOO/Accel

Figure 2.7: Performance of 2-issue OOO vs. 1-issue in-order with accelerator
Speedups normalized to non-accelerated 2-OOO for both bars

VLIW processors rely on the compiler to perform much of the work done in the front-end

of the pipeline. The instructions are pre-scheduled and bundled in the compiler, and thus

there is no dependence checking, OOO execution, and dynamic scheduling/forwarding

within a bundle. Considering a general purpose host, using VLIW is cumbersome because

the applications (even without specialization) have to be recompiled over hardware gener-

ations; compilers for VLIW processor may be overly complex in order to target general

purpose irregular programs and achieve high performance. For our purpose, always

assuming a VLIW host for the access component under DySE is unrealistic.

Our goal is to build an in-core data delivery architecture non-intrusively, which can be effi-

ciently reconfigured for application phases, efficiently move data between cache and accelerator,

and be non-intrusively integrated with a variety of execute component accelerators. To this end,

we propose Memory Access Dataflow (MAD, Chapter 5); MAD translates instructions into a

low-level event-driven ISA, and executes the translated events and actions on a reconfigurable

dynamic dataflow substrate. By examining the access component, it can be observed that: (1)

The program follows few dataflow patterns to compute the address and control behavior; (2)

The outcome of these few dataflow patterns creates recurring “events“, such as values returning

from cache; and (3) Based on these events, the program has a few “actions“ to move the data

21

between the accelerator and memory. These findings describe the fact that the access component

of a specialized application phase program region is orchestrating a specialized dataflow mem-

ory movement for the computation component. An event-action/dataflow hybrid architecture

can be the key towards efficient dataflow pattern computation, event triggering and action

arbitration.

2.2.4 DySE Unprofitable Cases

As previously mentioned, the DySE model specializes profitable application phases–the frequent

phases that have enough computation and few memory access patterns. For certain applications,

however, they do not have such phases for DySE to specialize. In particular,

• Flat phase profile: For some applications, the phase profile is flat, and there are no

prominent “frequent“ phases. Specializing phases that are executed only one or two times

results in no benefit, and may lower the performance because of the configuration cost.

• Irregular and control-intensive phases: While some applications may have frequent

phases that have a reasonable compute to memory access ratio, they could be irregular and

control-intensive such that it is not efficient to leverage DySER or MAD. Govindaraju et

al. [60] have discovered some specific issues related to control-flow in legacy benchmarks,

which limits the overall improvement from the DySE model.

These two cases, while they are not the target of this dissertation, may be solved with software

techniques or different hardware designs. Supporting these phases in the DySE model is a

planned future improvement.

2.3 Manual and Compiler-Assisted DySE

In the DySE model, application phases are transformed into decoupled access and execute

components before running on the supporting architectures. Such transformation can be done

manually by programming (manual DySE), or by compiler techniques (compiler assisted DySE).

The transformation includes two steps: (1) phase analysis, which discovers the profitability of

22

(a) Original Code

(c) Access Code

(d) Processor Pipeline

Reprogramming

Observation

for (i=0; i<8; ++i){
 for(j=0; j<8;++j) {
 float sum =0,sum1=0;
 dyserloadvec(matA[i*matAcol], 2);
 dyserloadvec(matA[i*matAcol+4], 2);
 dyserloadvec(matB[j*matBrow], 3);
 dyserloadvec(matB[j*matBrow+4], 3);
 dyserrecv(45,sum);
 dyserrecv(45,sum1);
 matC[i*matBcol+j]+=sum+sum1;
 }
}

dyserrecv

Access
Component

Interface
Instructions

Original
Code

Execute
Componentfor(i=0; i<8; ++j) {

 for(j=0; j<8; ++j) {
 float sum=0;
 for(k=0; k<8; ++k) {
 sum+=matA[i*matAcol+k]*matB[j*matBrow+k];
 }
 matC[i*matBcol+j]+=sum;
 }
}

x

+

x x

+

+

x x

+

+

+

x x

+

m
a
t
A
C
o
l

m
a
t
B
R
o
w

m
a
t
A
C
o
l

m
a
t
B
R
o
w

m
a
t
A
C
o
l

s
u
m

m
a
t
B
R
o
w

m
a
t
A
C
o
l

m
a
t
B
R
o
w

m
a
t
A
C
o
l

m
a
t
B
R
o
w

m
a
t
A
C
o
l

m
a
t
B
R
o
w

m
a
t
A
C
o
l

m
a
t
B
R
o
w

m
a
t
A
C
o
l

m
a
t
B
R
o
w

Dataflow
Graph

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

Fetch
Logic

Decode
Logic

Execute
Pipeline

Data
Cache

I$

Register
File

Input B
uffers

O
utput B

uffers

(b) Execute Component

dyserloadvec

x

Figure 2.8: Manual DySE programming

each piece of the code and schedules them on to two different components; and (2) configuration

generation, which generates the configuration for the access and execute architecture. The

manual DySE transformation works on high-level code and assigns access and execute code

manually. The compiler assisted transformation, on the other hand, automatically analyzes

the internal representation of the phase and partitions it into access and execute components.

This section presents the manual DySE transformation with an example, and discusses how

the compiler assisted DySE can achieve the same transformation performance with automatic

analysis and optimization techniques.

2.3.1 Manual DySE by Example

As a flexible execution model, DySE can leverage different supporting architectures to specialize

the application phase. Figure 2.8 shows an example transformation on Matrix-Multiply (mm in

the Parboil benchmark suite). For explanation purposes, the access component is performed on

23

host processor instead of MAD to simplify the configuration generation step. The details of the

MAD ISA are introduced with the microarchitecture of the MAD hardware in Chapter 5.

First, Figure 2.8a shows the original non-specialized code of Matrix-Multiply. In the example

code, three nested for loops walk through two matrices, A and B, to perform multiplication.

Each element in the column of matrix A is first multiplied by one element in the row of matrix

B, and then the results are summed together into matrix C. Here, the most frequently executed

computations are the multiplications and additions in the inner-most loop. Through obser-

vations, a parallel structure of multiplications and additions can be discovered, as shown in

Figure 2.8b. In this dataflow graph, the loop with induction variable k is unrolled eight times,

and the multiplications can be executed in parallel; the results of the multiplication operations

are merged by a tree of additions. The extracted graph meets two expectations of an execute

component: (1) it has no memory operations and can be turned into pure dataflow; and (2) it

is profitable to be specialized because of the operational parallelism within. With the above

characteristic, this graph can be mapped onto DySER with scheduling tools that generate con-

figuration; the scheduling tool incorporates DySER’s physical hardware layout for routing and

functional unit assignment.

The graph extraction and transformation has been explored in the literature; Program

Dependence Graph (PDG) [48] can be used to describe the graph and its transformations in

formal. In a prior work, Govindaraju et al. [60] developed Decoupled Access/Execute Program

Dependence Graph (AEPDG) for compiler assisted DySE transformations. In this dissertation,

the extracted execute component graph is referred to as Execute-PDG, and the access component

graph is referred to as Access-PDG.

After the execute component is extracted, the rest of the code is merely preparing the memory

addresses and accessing cache. The access component can be constructed by the following

memory access codes and interface instructions. Figure 2.8c shows the access component of

Matrix-Multiply in stylized C-style codes. In the access codes, the two outer loops remain

unchanged, and the inner loop is replaced with a series of interface instructions (as stylized

function calls) and an aggregation of the results. In the example, two interface instructions are

used: a parallel dyserloadPD and dyserrecv. The former is the parallel variant of the primitive

24

dyserload, which loads eight elements from a cacheline, and the latter is a register variant of

dyserstore, which retrieves a data value from the execute component (on DySER) to a register.

The argument of the interface instructions are (1) register or memory address, and (2) a DySER

port. The DySER port number represents an input of the execute component dataflow graph,

and is physically routed to an input of the functional units (in this case, a multiplier).

2.3.2 Hardware Mechanisms to DySE

As many other specialization proposals, it is possible to completely offload the burden of identi-

fying the profitable DySE phases to the hardware. Using the opaquely specialized hardware

execution model (Section 2.1.1), we can build a front-ending for DySER to construct DySER

configurations at run-time. Building such a front-end configuration engine, however, requires

careful design such that this specialized front-end does not consume too much power when

generating phase information and configuration. Two fundamental tasks have to be performed

in the hardware in such case:

• Phase identification: Trace cache [105, 49] or the mechanisms in instruction reuse de-

sign [114] can be used for caching and analyzing the dynamic instruction from the host

processor and create profitable phases.

• Configuration generation: Hardware supported binary translation or virtual machine [113]

can be used for this purpose. In terms of the two supporting architecture in DySE, the

DySER and MAD configuration may be generated with a greedy hardware translator that

maps instructions to the functional units, switches, events or actions in their architecture.

CCA [36] and Chimaera [126] are two examples that leverage a specialized front-end to

generate the configuration in hardware. In this dissertation, we do not use this approach mainly

because of the overheads in power consumption.

25

2.3.3 Compiler-Assisted DySE

Many efforts have been made to automate the DySE transformation. Although the design and

implementation of compiler assisted DySE transformation are not the focus of this dissertation 4,

in this section we summarize the qualitative and quantitative findings from the implementation

work, which includes the DySER Compiler published in PACT2013 [60], a spatial scheduler in

PLDI2013 [95], and Govindaraju’s dissertation [58].

Breaking SIMD shackles: Govindaraju et al. proposed a variant of Program Dependence

Graph [48], called Access Execute Program Dependence Graph (AEPDG) to enable the compila-

tion for DySER [60, 58]. The AEPDG is a PDG that is partitioned into two components: the access

PDG and the execute PDG. After the front-end compilation, the compiler generates the control-

flow graph (CFG) with standard scalar optimizations (Constant propagation, Loop Invariant

Code Motion, and so forth.). Next, the compiler generates AEPDG from CFG and performs

the DySE optimizations. These optimizations include: loop unrolling for PDG Cloning, strip

mining for vector deepening, subgraph matching, execute PDG splitting, scheduling execute

PDGs, unrolling for loop dependence, traditional loop vectorization, and load/store coalescing.

Equipped with these optimizations, the compiler schedules the Execute-PDG onto DySER and

inserts DySER interface instructions to the Access-PDG for the host processor.

The authors built a LLVM based compiler and compare the performance of the compiler

(accelerated by DySER) with manually optimized programs and Intel’s ICC (which generates

SSE/AVX codes). With the flexibility in the DySE model, the compiler can employ many more

optimizations and create significant parallelism for the underlying specialized hardware (DySER)

than a conventional SIMD compiler. Overall, the compiler achieves a 1.8X speedup on DySER

over conventional SIMD vectorization in simulation, and the compiler’s performance is close to

the ideal manually optimized code.

Spatial Scheduling for DySER: The DySER scheduling of the execute component, which is a

graph mapping and spatial scheduling program, can be done in various ways from naive greedy
4All evaluations in other sections use manual transformation

26

algorithms [57] to more sophisticated approaches. Nowatzki et al. [95] proposed a general

scheduling framework based on integer linear programming that solves this spatial scheduling

problem on DySER and other spatial architectures. In the DySE-specific analysis, this ILP-based

scheduler outperforms both the automated greedy approach and manual transformation by

36% and 2% in latency, respectively. It also improves overall performance and throughput in

many cases.

2.4 Chapter Summary

In order to enable an efficient specialization, the execution must be freed from the original exe-

cution model; otherwise, any optimization is highly restricted so that only minor performance

or power efficiency gains can be achieved over the general purpose processor. This chapter dis-

cussed the Dynamically Specialized Execution (DySE) model based on a discussion of hardware

specialization. It developed DySE’s application phase specialization, decoupled access/execute,

and introduced the supporting architectures. It then presented the Matrix-Multiply as an exam-

ple of manual DySE programming. Last, it summarized the work in automating the DySE code

generation from a traditional program.

In summary, the DySE model is a specialized execution model that modularly enables

different supporting architectures. The flexibility in the model and interface heavily reduces the

design complexity of the design and integration of the supporting architectures, as well as the

compiler optimizations.

27

3 dynamically specialized execution resources (dyser)

The DySE execution model and transformation elaborated in Chapter 2 decouples an application

phase into access and execute components, where the execute components are mapped onto

the specialized hardware, DySER. Regrading power, DySER leverages static dataflow execution

on a circuit-switched network to eliminate the excess dynamism in a superscalar out-of-order

processor. This static dataflow, moreover, is dynamically reconfigurable between different

application phases. The DySER network thus can efficiently offer operation and data level

parallelism for performance with the functional units inside. This chapter discusses the hardware

mechanisms that deliver performance, power efficiency, and programmability. It first outlines

the design goals of DySER (Section 3.1) and gives an overview of the architecture of DySER. Next,

it describes the internal microarchitecture of DySER (Section 3.2) and how to configure them

with an efficient mechanism (Section 3.3). Third, Section 3.4 discusses the integration interface

of DySER, and how DySER supports data level parallelism. Last, Section 3.5 summarizes this

chapter.

3.1 DySER Design Goals and Overview

Dynamically Specialized Execution Resources (DySER) is proposed to perform the execute

component in the DySE model. It executes the computations in a frequent application phase,

represented by program dependence graphs (PDG) [48]. DySER supports the extracted execute

component graph, Execute-PDG (described in Section 2.3.1), with an efficient fabric of functional

units and a switch network. Specifically, DySER has several design goals:

• First, the microarchitecture of this fabric should eliminate the dynamic overheads of a

general purpose processor, provided that a scheduled configuration is executed statically;

during execution, DySER should exploit the pipeline and instruction (operation) level

parallelism for similar or better performance as OOO processors;

• Second, DySE decouples the execute component of a specialized phase as a program

dependence graph, which may have control-flow, and should efficiently support the

28

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

Fetch
Logic

Fetch Decode Execute

: Switch : Functional Unit

Memory WriteBack

Decode
Logic

Execute
Pipeline

Data
CacheI$ Register

File

Input B
uffers

O
utput B

uffers

S FU

Access
Component
acquires
data

Data
arrive at
Input
Buffer

Data
Sync

Compute

1
2

3

4 Pre-configured
route

5

Data output
to memory
or register
file by interface
instructions

6

Figure 3.1: Dynamically Specialized Execution Resources (DySER)

control-flow within a phase;

• Third, DySER should be programmable to map different application phases;

• Forth, DySER should flexibly support large and small regions with hardware/software

mechanisms;

• Fifth, the integration of DySER and the host processor should be flexible and non-intrusive,

given the interface defined by the DySE model, and DySER should exploit the data level

parallelism in the hardware for speedup over OOO.

These goals define the design of DySER; generally speaking, DySER leverages a reconfig-

urable circuit-switched network to remove the overhead of dynamic scheduling (goal 1). This

network constructs routes that connect many functional units that can be activated in parallel for

high performance (goal 2). Inside the network, DySER supports control flow with its functional

units and the meta-bits (goal 3) and supports efficient configuration with the existing datapath

in the network (goal 4). DySER is designed as a long latency, multi-ported execution unit that

can be intuitively interfaced with queues and interface instructions (goal 5).

Figure 3.1 illustrates an overview of DySER. To simplify the explanation, the access compo-

nent is performed on a host superscalar without specialization; DySER, in this case, logically

resides in the execute stage. First in step 1, the access component executes interface instructions

to load data from memory or the register file to DySER. In step 2, the data arrives at input

buffers of DySER, where a hand-shake flow control protocol is implemented to notify the in-

terconnect network in DySER to consume data. Next in step 3, through the protocol, the data

29

FU

S S

FU

S

FU

S

FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

S S

To Input
Interface

To Output
Interface

FU : Functional Units

: Switch-Switch I/C

: DySER I/O ports

: FU-Switch I/C

S S S

S S S S S

S S S S S

S S S S S

S : SwitchS

Figure 3.2: DySER microarchitecture: the network of switches and functional Units

move between switches along the preconfigured route, and they then arrive at the input of a

functional unit. The data is buffered here until all inputs of this functional unit arrive; the inputs

are then consumed by the functional units for computation (step 4). The result, following the

preconfigured routes and passing the posterior switches and functional units, finally reaches

the output buffers (step 5). Lastly, the access component executes another interface instruction

to retrieve the result and move it to memory or its register.

Three major tasks in this figure are explained in the next few sections: (1) internal microarchi-

tecture of the DySER network, which satisfies the goals 1 to 3 by design; (2) the configuration of

this network, which satisfies the 4th goal with the reuse of DySER’s internal microarchitecture;

and (3) the integration of DySER, which fulfills the last goal via a non-intrusive interface.

3.2 DySER Internal Microarchitecture

DySER satisfies the first goal with a network of switches and functional units that can map a

program dependence graph and execute it statically; this network, after configuration, does

not dynamically analyze input data as a packet, but performs static dataflow execution on

pre-configured routes. Figure 3.2 presents the network topology of a 4x4 DySER, which has

4x4 functional units and 5x5 switches. For the simplicity of explanation, all the functional units

have two inputs and one output. The DySER network is a mesh network composed by switches

(the black boxes with “S“), where the network is augmented with functional units in the “hole“

30

Stage
FSM

Credit
signals
from
8 outputs

Data and Ready signals from 5 input directions

Data and Ready signals to 8 outputs

Credit signals
to 5 inputs

Stage
FSM

Stage
FSM

Stage
FSM

Stage
FSM

D
ecoder

Config
Cache

Figure 3.3: DySER microarchitecture: switch

of the mesh (Red boxes and arrows). Compared to the FPGA-like network, DySER has smaller

fanins and fanouts at each switch and functional unit; this is because an FPGA tile tends to

have many more input and output signals than a node (i.e., an operation, which often has few

input/output data values) in DySER. At the edge of the mesh network, input and output ports

of the switches are connected to DySER’s input and output interface. These ports are exposed

to the software such that a programmer or a compiler can write a DySE application phase that

leverages the ports to send/receive data. For a 4x4 DySER, each side of the network has eight

inputs or eight outputs; thus, a total of 16 input ports and 16 output ports can be used.

3.2.1 DySER Switch

The heart of the network is DySER switches, which route data values to functional units for

computation. Figure 3.3 details the microarchitecture of a switch. The building blocks in a

switch are multiplexers, flip-flop stages, a decoder and a configuration cache that stores the

configuration. A DySER switch has five inputs (north, east, west, south, and northeast) and

eight outputs (north, east, west, south, northeast, northwest, southeast, southwest) 1. Flip-flop

stages are used at each input direction to hold the data, and multiplexers are used at each output

to select data from these stages. Controlling the flip-flop stages, the finite state machine (Stage

FSM) is responsible for the flow-control along the configured routes. DySER implements a

credit-base flow-control protocol in the stage FSM with two meta signals, a forward ready signal
1 In the case of multi-output function, the switches have to support more inputs from a functional unit.

31

Data and Ready signal from 4 inputs

Data and Ready
to output

Credit signal from
to output

C
redit signal to 4 inputs

D
ecoder

Config
Cache

Stage
FSM

Comp.
Logic

Figure 3.4: DySER microarchitecture: functional unit

(red arrows) and a backward credit signal (blue arrows). After configuration, each stage on

the configured route is initialized with a credit. Whenever a stage sees a ready data from the

previous stage, it gives its credit to the previous stage and consumes the ready data. The stage

is then turned into a zero credit state, until the subsequent stage passes its credit for the ready

data. The credit signals, which come from the output (subsequent stages), are decoded and

forwarded to the corresponding stage FSM. This handshake protocol enables pipelining and

stalling in the network.

3.2.2 DySER Functional Unit

Figure 3.4 presents the microarchitecture of a functional unit; the logics for supporting control

flow is omitted in this figure and deferred to the next subsection. In a functional unit, there is a

computation logic selecting input operands via multiplexers from 4 input directions (northeast,

northwest, southeast and southwest), and output to the southwest neighbor switch. The stage

FSM and flip-flop are also used in functional units; it in addition synchronizes the input data

from different directions. The stage FSM in a functional unit controls the computation logic

such that it only computes when both two of its operands are ready. When the computation

finishes, the stage FSM then gives credit to both of the inputs and latches the result in the flip-flop

stage. In the decoupled access/execute model, the inputs from the access component are not

always synchronized (i.e., the input of a functional unit may come in at different cycles) and the

synchronization inside DySER is necessary. This microarchitecture design has two advantages:

32

φ
S

S

S

S
+

S

S
-

S S
>

S

Data and Ready signal from 4 inputs

Valid signal
from 4 inputs

Data and Ready
to the output

Credit signal from
outputs

(a) Functional Unit with Valid Signal (b) Branch Code (c) Dep. Graph (d) DySER Config.

C
redit signal to 4 inputs

D
ecoder

Config
Cache

Stage
FSM

Comp.
Logic

if (a>b)
 e=c+5
else
 e=d-5

a

ac

e
e

c

b
b

d

d

+

>

-

Φ

Figure 3.5: DySER microarchitecture: Phi-function

(1) It eliminates the need for a packet-switching router to synchronize the data; and (2) Stage FSM

synchronization works with pipelining and stalling, thus the operand scheduling is agnostic to

software (i.e., no operand scheduling has to be done by the programmer or compiler).

3.2.3 Control-flow in DySER

DySER functional units play an important role in the second design goal–supporting control-

flow. Figure 3.5 shows the microarchitecture and an example from source code to DySER

configuration. First, besides the ready and credit meta signal, all functional units in addition

have a valid signal along the configured path to indicate the validness (i.e., whether the values

should be used in the following stages) of the execution. This valid signal works as a predicate

to a functional unit such that the functional unit produces a valid/invalid output, and can

be merged by a select operator, φ. Figure 3.5b presents a simple example which has a branch

and two computations. In the program dependence graph of this code snippet, the value of

e is determined by either of the branches and has multiple producers in the graph. In Single

Static Assignment (SSA) form [39], the results of each branch will be assigned as “e1“ and “e2“

as shown in Figure 3.5c, which are then merged and selected via a φ-function. Based on the

validness of e1 and e2, the φ-function generates the final output “e“. Last, in Figure 3.5d, the

program dependence graph is mapped onto DySER as configuration, and the functional units

of operator “ + “ and “− “ takes the valid signal output from the companion operator. Based on

the configuration and valid input, these two functional units output data with valid/invalid

33

FU FU

FUFU

Input
buffer

Decoder Decoder

Control
Signals

3
29

North
East

Control
Signals

3

29

North
East

Configuration
bits

C
onfig

C
ache

C
onfig

C
ache

Figure 3.6: DySER microarchitecture: configuration mode

state to the φ-function, which selects the correct value of e.

3.3 Configuring DySER

To program DySER, the host processor sends configuration bits into the configuration caches at

each functional unit and switch. DySER reuses its network to transmit the configuration bits

as shown in Figure 3.6. When the host processor sets DySER into configuration mode using

dyserinit, the switches construct parallel lanes from input to each configuration cache; in this

mode, the switches are controlled by hard-coded bits and forward data from north to south

and from east to west. These parallel lanes deliver configuration messages, each with a 3-bit

index tag and 29 bit payload data in a 32-bit datapath. When a message reaches a switch, a

comparator examines the index tag to check if this message is meant for the current node. In

such case, the value is written into the configuration cache. This design configures DySER

efficiently without dedicated configuration wires; further, the configuration lanes are parallel

and pipelined to reduce the configuration cost. Compared to repeatedly fetching and executing,

DySER is configured once and re-used many times to save dynamic power.

3.3.1 Fast Configuration Switching

It is often observed that the application phase, identified by the programmer or the compiler,

may encompass many more or fewer operators than what are in the DySER network. In the case

of a small phase, many software techniques (e.g., combining the neighboring phase, unrolling

loops for more parallel operators [59]) can be applied to create a larger execute component with

34

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

FU

R R
cycle 0 cycle 2 cycle 3cycle 1

+

- -

+

-
+

-

S

S

S

S

S -+

-

R

R

R

R

R

Figure 3.7: Fast config switching example

an appropriate number of operators; hardware power gating can also be used on the idling

functional units to save power. In the case of an overly large phase, the execute component

could be divided into regions that are proportional to the size of DySER. DySER can then be

switched between different configurations of subregions of the same phase. However, this incurs

configuration overhead that can be reduced through several hardware enhancements.

Figure 3.7 illustrates the basic concept of the fast configuration switching mechanism– a

“Set/Reset“ protocol. This protocol explicitly reuses the dataflow in the two regions to synchro-

nize the set and reset signals. These two signals are also exposed to the software such that the

access component can explicitly trigger the switching of configurations. The protocol works as

follows:

• The access component fires the reset signals to the DySER ports that are used in the current

subregion of a divided phase;

• The reset signal follows the configured route of the current sub-region in the phase and

turns off the functional units or switches along the route;

• During the “reseting“ of the current sub-region, the access component can fire the set

signal to the DySER ports that are used in the next sub-region; and

• If a functional unit or switch receives a set signal, and it and all of its neighboring functional

unit and switches are “freed“ by the reset signal, it can switch its configuration to the next

sub-region.

In the example, the set and reset signals switch the network from configuration (a+ b)− c to

configuration (a− b) + c.

35

Stage
FSM

Stage
FSM

Free signal to 8 neighbors

Set, Reset (and Ready) signal path:
 Set turns on FSM and Reset tuns off (set free)

Set and Reset to Config Cache

Switch configuration when receiving
‘Set’ and all neighbors are free

free
Stage
FSM

Stage
FSM

Stage
FSM

D
ecoder

Config
Cache

Free signal from 8 neighbors

Figure 3.8: Fast config switching in a DySER switch

Figure 3.8 presents the hardware microarchitecture that enables fast configuration switching

in a DySER switch. In each functional unit or switch, the configuration cache could store multiple

configurations for different regions. In additional to the extra configuration storage, a 1-bit free

signal network is introduced to connect configuration caches; this free signal indicates that if

the functional unit or switch is “freed“ and can accept new operations or routing assignments.

The reset and set signals, on the other hand, are augmented with the existing datapath and

deactivate/activate the stage FSMs along the route. A reset-free-set hardware cycle proceeds

as: (1) a reset signal deactivates the stage FSM; (2) all stage FSMs in current switch/functional

units are turned off, creating a free signal that broadcast to neighbors; and (3) after all neighbors

are freed, a switch/functional unit can accept set signals from its inputs (if any) and switch

its configuration. The free signal in this cycle guards between reset and set signals and avoids

overlapping. A first-order proof of the Set/Reset protocol can be found in Appendix B

3.4 Integrating DySER

To summarize, from the above discussion there are several communication primitives from

access component or host to DySER:

• dyserload/dyserstore, dysersend/dyserrecv: Send/receive (register) and load/store

36

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

dyserload(mem[i], port0)

dyserstore(port12, mem[j])

Decode

Register
File

Data
Cache

In-order
Access
Componenet
Pipeline

DySER Interface Instructions

Execute Componenet (DySER)

deque

select

enque

0 1 2 3 4 5

18 19 20 21 22 23

6

7

8

9

10

11W
rite-B

ack B
us

Input Interface

Output Interface

Queues

12

13

14

15

16

17

Port
Index

Figure 3.9: Simple queue-based DySER interface

(memory) primitives are the fundamental interface that delivers data to DySER ports in a

first-in, first-out fashion;

• dyserinit: This primitive configures DySER by triggering the configuration mode of

DySER and a series of configuration sends to DySER ports in parallel; and

• dyserset/dyserrst: Set/reset signals also targets DySER ports to wipe out current

configuration and switch to the next one.

A DySER integrated core should provide instruction extensions for these interfacing prim-

itives. Integrating DySER is flexible and non-intrusive; based on the execution model of the

access component hardware, the DySER integration interface can be (1) a simple queue-based

interface, or (2) a speculation capable queue-based interface. These two interfaces can in addition

be enhanced with a parallel datapath from the memory or the vector register to the input ports

and are discussed in the reminder of this section.

3.4.1 Simple Queue-based Interface

As previously mentioned, the execution component in a specialized phase is transformed into

Execute-PDG, which is mapped onto DySER. During the execution, this graph could be invoked

37

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

Decode

ROB

S
cheduler

Register
File

Data
Cache

OOO
Access
Componenet
Pipeline

DySER Interface Instructions

Execute Componenet (DySER)

0 1 2 3 4 5

18 19 20 21 22 23

6

7

8

9

10

11

W
rite-B

ack B
us

Port State
Register

bit

0

.

.

.

.

.

.

23

dyserload(mem[i+1], port0)

dyserstore(port12, mem[j+1])

dyserload(mem[i], port0)

dyserstore(port12, mem[j])

Resource
(port)
Allocation

Contention

Cache miss on mem[i]

12

13

14

15

16

17

Figure 3.10: OOO DySER interface

multiple times before switching to the next phase. DySER executes the program dependence

statically, following the invocation ordering; for a DySER port, the data values belong to a

previous invocation are sent/received first to/from DySER, and then the data of succeeding

invocations can be sent/received. As a result, DySER can be easily integrated into an in-order

machine via queues (FIFOs) for buffering. Figure 3.9 presents the design of a simple queue-

based interface. The access pipeline reads instruction extension for the port index and sends

data to the corresponding queue, where the port index is analogous to named registers, and a

decoder/multiplexer can be used to drive the input/output of queues.

3.4.2 Out-of-Order Execution and Speculation

DySER can also be flexibly integrated into an out-of-order machine, where the data values may

be sent/received to queues out-of-order. Few restrictions apply:

• Within an invocation of the program dependence graph, the data values can be sent to

DySER in arbitrary order;

• Between invocations, the data values that are sent/received to different DySER ports can

also be done in arbitrary order; and

38

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

Decode

ROB

S
cheduler

Register
File

Data
Cache

OOO
Access
Componenet
Pipeline

DySER Interface Instructions

Execute Componenet (DySER)

0 1 2 3 4 5

18 19 20 21 22 23

6

7

8

9

10

11

W
rite-B

ack B
us

dyserload(mem[i+1], port0)

dyserstore(port12, mem[j+1])

dyserload(mem[i], port0)

dyserstore(port12, mem[j])

Oldest
Entries

12

13

14

15

16

17

DySER Interface
Inst. Log Buffer
(1-bit)

Source Operands
(resend when roll-back)

Figure 3.11: OOO DySER interface with speculative execution

• Between invocations, the data values that are sent/received to the same DySER port has

to follow the invocation order.

Figure 3.10 explains the last rule with an example. The access pipeline experienced a data

cache miss in the current invocation, and port 0’s data is delayed due to the miss. While the next

DySER instruction to port 0 may be dispatched during the delay, the data of this next instruction

cannot be pushed into DySER because it breaks the invocation order. To avoid such situation, a

port state register is used to indicate if the port is currently occupied by a delayed long latency

DySER interface instruction; if so, the next DySER interface instruction is stalled from issuing to

the same port. This design is analogous to the out-of-order issuing, where each port represents

separate resources, and two instructions targeting the same port contend for the resource.

Speculative Execution, Exception and Recovery The access component may be executed

speculatively and encounter a mis-speculation or exception. The DySER interface, as a result, has

to support recovery based on the latest executed invocation of the execute program dependence

graph in the application phase. In the event of an exception or mis-speculation, specifically:

• All instructions belonging to previous invocations are committed first;

39

• The instructions after the mis-speculated/exception instruction in the current invocation

and the front-end (fetch, decode and dispatch) pipeline are flushed;

• For instructions that belong to the current invocation and are issued before the faulty

instruction, a buffer is required to record the DySER interface instructions for later recovery;

• Before the recovery, DySER and the DySER interface are completely flushed;

• The DySER interface is now in a clean state; and

• The DySER interface recovers its state by re-issuing the instructions before mis-speculated/exception

instruction.

Figure 3.11 presents the microarchitecture that supports recovery. The recovery of the

DySER interface is analogous to the recovery mechanism in a merged register file based architec-

ture [55], where an “invocation-wise“ instruction log buffer checkpoints the latest invocation of

the program dependence graph. After all previous invocations are committed and all following

invocations are flushed, the host processor travels through this log buffer and recovers to a

correct state by resending the source operands of corresponding DySER interface instructions

via the ROB and the scheduler. The ROB, in such a case, has to work with the instruction log

buffer, and prevent the speculated DySER outputs from committing.

An alternative design can be used to reduce the recovery overhead in traversing the instruc-

tion log in the current invocation and leave the ROB and the scheduler untouched. Figure 3.12

shows this approach: all input buffers are augmented with state bits to indicate the invocation

state, and the recovery can be done by flushing the mis-speculated invocation and re-injecting the

buffered values that were prior to the mis-speculated instruction. With the help of distributed

state bits, flushing can be pipelined with re-injecting values. Based on the buffer state, DySER

interface first injects dummy values to fill all ports that belong to the current invocation and

create dummy outputs; DySER outputs then drop these dummy values; and then the DySER

input interface re-injects the correct values based on buffer states. An element in the buffer may

have the following state: ready to be consumed, valid to be retired, and invlaid to be flushed

or dropped. Compared to the first approach, this design improves the recovery speed by not

40

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

Decode

ROB

S
cheduler

Register
File

Data
Cache

OOO
Access
Componenet
Pipeline

DySER Interface Instructions

Execute Componenet (DySER)

0 1 2 3 4 5

18 19 20 21 22 23

6

7

8

9

10

11

W
rite-B

ack B
us

bit

0

.

.

.

.

.

.

23

dyserload(mem[i+1], port0)

dyserstore(port12, mem[j+1])

dyserload(mem[i], port0)

dyserstore(port12, mem[j])

12

13

14

15

16

17

State bits:
In-place buffer
and record
the state
of speculative
data values

I/O queues
inject dummy
values for flush
and drop them
at output

Processor sets a buffer to “valid”
state for retire when commiting
the corresponding interface inst.

Figure 3.12: OOO DySER interface: An alternative solution

always restarting invocations from sequential traversals of the ROB and the log buffer, but comes

with more hardware cost.

Page Faults, Context-Switches, etc. Pages faults may arise when the access component per-

forms a memory access. DySER, during a page fault, can leverage the recovery mechanism

discussed to restore to a given memory access instruction after a page fault is served. The OS

routine to handle the page-faults is assumed not to use DySER. To handle context-switches,

the processor waits until all DySER invocations are complete before allowing the operating

system to swap in a new process; thus no mix of different phases/program dependence graphs

is allowed in DySER. Operating systems consider the configuration in DySER and the data in

the input and output ports of DySER as architectural state and store them as part of process

context. In all, restarting DySER after a context switch is the same as restarting DySER after a

pipeline squash.

3.4.3 Vectorizing DySER Interface

The profitable application phase often has abundant data level parallelism. In order to fully

exploit the parallelism in the application phase, the DySER interface buffers are enhanced to cover

41

(a)VEC-Intra (b)VEC-Inter (c)Hybrid

1
1

2

23

3
4

4

FU

FU

FU

FU

S

S

S

S

FU

FU

FU

FU

S

S

S

S

FU

FU

FU

FU

S

S

S

S

FU

FU

FU

FU

S

S

S

S

1 4 7

2 5 8

3 6 9

FU

FU

FU

FU

S

S

S

S

FU

FU

FU

FU

S

S

S

S

1

2

3

4

1

1

2

2

3

3
4

4

Figure 3.13: Vector port mapping

vectorized memory reads and distribute multiple data words from contiguous memory locations

at once. As mentioned, a vector dyserloadvec is used in this case; this vectorized DySER

interface instruction moreover reduces the pressure of processing instructions in the access

component. This section discusses the microarchitectural support for data-level parallelism

from memory to DySER.

Vectorizing Memory Access Patterns State-of-the-art superscalar processors also have SIMD/vec-

tor instruction extensions that load contiguous sections of memory to its vector interface, often

registers. DySER utilizes the same concept, but provides more flexibility in mapping the data

words in a loaded vector to the DySER input ports. In particular:

• Intra-invocation Communication (VEC-Intra): Figure 3.13(a) shows a simplified execute

program dependence graph from the convolution (CONV) benchmark; each contiguous

memory word is mapped to a different input port of DySER (all belong to the same

invocation). This pattern is referred to as Intra-invocation (VEC-Intra) communication.

Figure 3.14(a) shows a simple way of supporting VEC-Intra communication. The data

loaded from memory is held in a special vector buffer, which is pre-configured to distribute

data to different DySER input queues. The configuration information includes the mapping

from each vector buffer entry to destination input port of DySER. Additional datapaths

and multiplexers are used prior to the original DySER interface buffers in order to consume

the data from the vector buffer.

• Inter-invocation Communication (VEC-Inter): Figure 3.13(b) shows the computation sub-

region from the stencil(STNCL) benchmark. Each contiguous memory word is mapped

42

.

.

.

.

.

.

(a)VEC-Intra (b)VEC-Inter (c)Hybrid

1
1

2

23

3
4

4
VEC
buffer

1

2

3

4

1

2

3

4

sequencer

2

3

Figure 3.14: Vector port mapping: microarchitecture

to the same port since subsequent invocations use contiguous memory addresses, thus

allowing lower latency between multiple pipelined invocations. This pattern is referred

to as Inter-invocation (VEC-Inter) communication. The implementation of VEC-Inter

communication is straight forward; as shown in Figure 3.14(b), multiplexers are used

before the DySER input ports to drain the data in the vector buffer in-place. An alternative

implementation is to directly dump all data values into the target queue; the tradeoff here

is that it may increase the overhead in examining the available spaces in a DySER input

buffer for vectors of various lengths.

• Hybrid Communication: Figure 3.13(c) shows a computation sub-region from the TPACF

benchmark. The vector buffer has sub-words 1 to 9, which is fed to three different buffers.

The pattern is that sub-words 1, 4, 7 have to be fed to the first input port, 2, 5, 8 and 3, 6, 9

to the second and third port. Neither inter-invocation nor intra-invocation is sufficient to

perform such a vector communication. As a result, a hybrid method is needed to forward

the data. Figure 3.14(c) shows the microarchitecture of this Hybrid communication. In the

figure, an example vector insertion with 4 sub-words is shown, where sub-words 1 and 4

have to be fed into the first port, and sub-words 2 and 3 have to be fed into the second and

third port, respectively. A sequencer is introduced in the Hybrid communication; first,

a sequencer sends data 1, 2, 3 to their destinations via the same logic in used VEC-Intra.

Next, this sequencer reads the pre-configured control microcode, moves to the remaining

data and distributes them.

43

3.5 Chapter Summary

Under the DySE model, an application phase is transformed into execute and access components,

and the execute component, represented as a program dependence graph, is mapped and

executed on DySER. This Chapter details the hardware design goals of DySER, an energy-

efficient reconfigurable architecture. It details the microarchitecture, configuration, integration

interface and the supporting mechanism for data level parallelism. While first-order analyses of

DySER can be found in [57, 59], in the next chapter a full-system prototype of DySER, integrated

with OpenSPARC, is discussed to prove the concept of the DySER architecture.

44

4 sparc-dyser prototype

Although early stage results from simulation and modeling provide reasonable estimates, perfor-

mance prototyping on a physical implementation uncovers the fundamental sources of improve-

ment and bottlenecks in a concrete manner. In this chapter we walk through SPARC-DySER,

the OpenSPARC T1 integrated with DySER, in terms of the ISA extensions, microarchitectural

integration details, and the lessons learned from a practical DySER implementation. This inte-

gration by construction proves that DySER can be non-intrusively integrated into a commercial

processor with some effort.

4.1 SPARC-DySER Integration

OpenSPARCT1 is an open-source release of Sun’s UltraSPARCT1, a highly integrated processor

that implements the 64-bit SPARC V9 instruction set. The release contains the full implemen-

tation of OpenSPARC T1 (an 8-core chip multiprocessor), as well as a Xilinx FPGA evaluation

kit (system and electronic design automation tools, scripts, ready-to-use Xilinx Embedded De-

velopment Kit project, and so forth). It is the best off-the-shelf open source processor with a

FPGA evaluation kit; this significantly reduces the prototyping time of DySER while providing

a practical integration experience.

OpenSPARC T1’s pipeline consists of six stages: fetch, thread select, decode, execute, memory

and writeback; the major blocks are ifu (instruction fetch unit, including decode and thread

selection stages), exu (execution unit), lsu (load-store unit), ffu (floating-point unit), tlu (trap

logic unit), spu (special function unit) and few peripheral blocks. We implement DySER as a

sub-block in the OpenSPARC T1 Verilog RTL and reverse-engineer the code to integrate DySER

into the pipeline. Table 4.1 details the new logic and signals introduced in the number of new

lines. In the decode, execute and load-store unit, a total of 432 lines are added into original

RTL files. Except rare cases such as replacing the implementation-dependent instruction in

OpenSPARC for DySER interface instruction, most of these lines are non-intrusively augmented

on top of OpenSPARC’s logics. The wrapper module, sparc_dyser, is the only new RTL file

which we developed from scratch.

45

File Description #New Lines
Decode RTL files

sparc_ifu_dec Instruction decode, added decode logics for DySER inter-
face instructions

72

sparc_ifu_fcl Fetch control, added DySER stall and roll-back logics 61
sparc_ifu_swl Thread switch, added DySER stall and stall completion

support
38

sparc_ifu_swpla Long latency instruction control, changing the control of
DySER interface instrucitons

6

sparc_ifu_thrcmpl Thread completion control, added DySER stall and stall
completion support

31

sparc_ifu_ifu Fetch, thread Select, and decode unit’s top level 50
Execute RTL files

sparc_exu_byp Bypass muxes, added datapath to DySER 14
sparc_exu_ecl Execute control, added write and stall request signals 36
sparc_exu_ecl_wb Bypass Control, added DySER write signals 38
sparc_exu Top level 38

Load Store Unit RTL files
lsu_dctl Datapath control, added controls for DySER load/store

miss
12

lsu Top level, added datapath between DySER and LSU 36
SPARC-DySER interface

sparc_dyser Retire buffer, flush signals, thread stall/wakeup signals 458

Table 4.1: OpenSPARC RTL modifications (comments included)

The above modifications or additions mainly serve two purposes: (1) to interface DySER with

manually optimized or compiled DySE codes; and (2) to incorporate DySER into OpenSPARC.

The two following subsections describe them respectively in depth.

4.1.1 Interfacing DySER

Table 4.2 provides a stylized listing of the assembly instructions added for OpenSPARC. Table 4.3

shows the exact instruction encodings. dyser_init, dyser_send, and dyser_recv are encoded via the

impdep2 instruction in the SPARC ISA with bits [7:5] as the DySER instruction opcode. dyser_load

and dyser_store are encoded as SPARC load/store type instructions. The instructions provide a

means for the processor and compiler to configure and interact with the DySER block.

dyser_init: Once a dyser_init is decoded, DySER is signaled to take the 21 configuration bits

from the instruction in the execute stage.

46

Instruction Description
dyser_init [config data] DySER block placed in config mode, and the config data

shifted in.
dyser_send RS1→ DI1 Reads data from the register file and sends the data to a

DySER input port. 1 or 2 source
dyser_send RS1 → DI1,
RS2→ DI2

registers are sent to the specified DySER input ports.

dyser_recv DO→ RD Write data from DySER output port DO to register RD.
dyser_load [RS]→ DI Read from memory address in register RS and send result

to DySER input port DI.
dyser_store DO→ [RS] Writes data from DySER output port DO to memory using

the address in register RS.

Table 4.2: A stylized listing of the DySER instructions

Instruction Instruction encoding
dyser_init 10 config 110111 config 000 config
dyser_send 10 DI1[4:0] 110111 RS1[4:0] DI2[4:0] V 001 RS2[4:0]
dyser_recv 10 DO1[4:0] 110111 RD[4:0] unused 010 unused
dyser_load 10 DI1[4:0] 000000 RS1[4:0] 0 1000000 000 RS2[4:0]
dyser_store 10 DO1[4:0] 000100 RS1[4:0] 0 1000000 000 RS2[4:0]

Table 4.3: Design of the DySER instruction extensions for OpenSPARC

dyser_send: A dyser_send reads up to two values from the register file, specified by RS1 and

RS2, and pipelines the data to the DySER input ports denoted by DI1 and DI2 respectively.

Setting the ’V’ bit to zero sends only the first value.

dyser_recv: A dyser_recv sends the results from a DySER output port, specified by DO1,

to a register file destination, denoted by RD. It behaves no differently than a normal SPARC

arithmetic instruction by pipelining the data and register destination from the execute stage to

writeback.

dyser_load: dyser_load loads data from memory directly into DySER, using the bits normally

restricted for the register destination as the DySER port destination. The source address is

specified by r[RS1] + r[RS2]. The dyser_load is identical in every way to a normal SPARC load

instruction except for bits [10:5], which are reserved for loading from alternate space. If no

alternate memory is specified (as is the default case for OpenSPARC), then anything non-zero

would throw an illegal instruction exception. We take advantage of this behavior by reserving

the most significant alternate space bit for dyser_loads and dyser_stores and remove them from

47

being trapped by the illegal instruction logic. The difference between a load and a dyser_load

is that when the data comes back, it is forwarded to DySER instead of the register file. It is

important to note that in neither the dyser_load nor dyser_store are we allowed to use immediate

bits instead of a register operand. Loads with immediate values do not have the reserved bits

for alternate space, making it very difficult to decode in our scheme.

dyser_store: As with dyser_loads, dyser_stores also take advantage of the alternate space bits

for decoding. dyser_stores behave similar to dyser_recvs in that the data coming out of DySER is

stored, but in memory. It is also similar to SPARC stores in that the ALU calculates the memory

address destination.

4.2 Incorporating DySER into OpenSPARC

It is often straightforward to add an arbitrary accelerator into a processor pipeline and create

instruction extensions and a datapath for it; to make the accelerator function correctly with

the pipeline, however, is a more delicate task. This task can be extremely difficult when the

accelerator design is intrusive, and the processor pipeline is complex. Fortunately, DySER and

OpenSPARC can be integrated without prohibitive effort because of the simplicity in the DySER

interface.

As previously described, DySER interfaces with processor pipeline via queues. Ideally when

executing a specialized program phase, the data can be sent to DySER via these queues with

interface instructions. Nevertheless, two situations may break this ideal assumption: (1) a DySER

send/receive instruction is issued when the queue is full or the data has not been produced at

DySER’s output ports yet; and (2) a trap or an exception occurs in the OpenSPARC T1 pipeline.

While the former can be naively solved by padding NOP (bubble) instructions, it requires the

programmer to count DySER’s worst case latency manually. Because DySER’s internal latency is

static for a specific configuration, padding NOP instructions is possible in hand-optimized DySE

programs. However, requiring the compiler to reason about the hardware pipeline design is

over-burdensome. Regarding traps and exceptions, unfortunately, there is no simple solution

because the architectural state of OpenSPARC has to be maintained to ensure a correct execution

48

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

FU

S

S

S

S

FU

S S

FU

S

S

FU

S

FU

S

S

FU

S
FU

S S
FU

S
FU

S

Fetch
Logic

Fetch DecodeThread Sel Execute Memory WriteBack

Inst.
Buffers

S
el M

ux

Decode

I$ Regster
File In

p
u

t B
u

ffers

O
u

tp
u

t B
u

ffersState changes
at decode
stage!

Retire
Buffers

dyser_recv,
dyser_store

dyser_send

dyser_load

OpenSPARC
State Changes
at here

Data
Cache

Execute
Units

Figure 4.1: SPARC-DySER integration

in any case.

To overcome this issue, we first modify the existing OpenSPARC rollback mechanisms to take

DySER into account. When a dsend sends a value to DySER, it follows the same execution model

of a potentially long latency instruction inside OpenSPARC–it switch out its thread, informing

the pipeline to monitor the completion of itself so that the pipeline can switch the thread back in

and fetch new instructions. If the queue is full or a trap/exception occurs, the value is flushed,

and the pipeline is rolled back.

Next, while the OpenSPARC T1’s roll-back mechanism resolves the state change at writeback

stage, DySER does not; in addition to the above change in DySER interface instructions, modifi-

cations have to be made to the processor pipeline to avoid incorrect state changes. Figure 4.1

details this issue. In the prototype, stateful DySER interface queues are integrated at the decode

stage, mimicking the behavior of the register file (values are ready to use in execute stage). This

design, however, changes the microarchitectural state of the pipeline because the dequeued

values leave storage structures permanently before the instruction commits in the writeback

stage; in the case of a flush, the data from DySER is lost. Therefore, we introduce DySER retire

buffers at execute, memory, and writeback stages, each 64 bit wide. The retire buffer discards

DySER outputs only after all exceptions are resolved. This microarchitectural support not only

correctly resolves the traps and exceptions, but also enables compiler efficiency because it does

not have to pad NOPs to account for DySER internal latency.

49

Work Quantitative results Demonstrated in-
sights

DySER

Early-stage: 2.1 × AVG on workloads [57]
Prototype: improvement on irregular workloads requires
further compiler work, 3× compiler, 6 .2× hand,on data-
parallel workloads

Dynamic
pecialization

TRIPS ◦ 1 IPC in most SPEC benchmarks
◦ best case 6.51 [52]

Dataflow
efficiency

RAW ◦ up to 10× on ILP workloads
◦ up to 100× on stream workloads [119]

Tiled
architecture

Wave
Scalar

◦ 0.8 to 1.6 AIPC on SPEC
◦ 10 to 120 AIPC with mutli-threading [102]

Dataflow
efficiency

Imagine IPC from 17 to 40, GFLOPS from 1.3 to 7.3 [8] Streaming

Table 4.4: Summary of the performance evaluation works

4.3 Summary and Lessons Learned

The findings of some other prototype evaluations are summarized in Table 4.4. Although quan-

titative results have sometimes been lower in early stage results because of features eliminated

from the prototype compared to the design proposals, the studies have a lasting impact by

establishing the fundamental merit of their underlying principles.

In a separate work on the performance evaluation of SPARC-DySER, we also found the same

discrepancy; this projected performance gap between simulator model and prototype are mainly

because the low-performance of OpenSPARC T1. However, the prototyping tasks, including

RTL implementation, verification, FPGA mapping, and manually re-writing/optimizing the

code for DySE are proved manageable, and the prototyping of DySER proves that DySER can

be non-intrusively integrated to a processor in practice.

A questions left for us to answer is: Can DySER be non-intrusively integrated into a high-

performance processor with a more sophisticated processor-DySER interface? Reflecting on

the experiences, it would be advantageous to have open-source implementations of high-

performance baseline processors reflecting state-of-art designs. Among what is available, Open-

RISC [96] and Fabscalar [29] have low performance (OpenRISC’s average IPC is 0.2) — and this

could impede the prototyping of new accelerator proposals.

50

5 memory access dataflow (mad)

According to the Dynamically Specialized Execution model, specialized phases are divided into

access and execute components. Chapter 3 discusses the specialized hardware that supports

the execute component, which leverages a reconfigurable network to perform computations.

While this execute accelerator can attach to a general purpose pipeline and leverage it for data

delivery, the access component of the phase can be performed on a specialized hardware which

is optimized for memory access. This chapter presents the Memory Access Dataflow (MAD)

architecture for this purpose. The MAD architecture applies the concept of Event-Condition-

Action and dataflow execution, and natively supports the dataflow delivery from the cache to

the execute accelerator for computation.

This chapter first discusses the design goals and the motivations for an access component

specialization. It then describes the MAD ISA, the microarchitecture, and complex scenarios with

examples. Finally, this chapter also demonstrates how the MAD architecture can be integrated

with different execute component accelerators to show MAD’s generality.

5.1 MAD Design Goals

General purpose processors have long thrived in the market, delivering sustainable performance

to various applications. Although now many specialization approaches prosper, general purpose

processors are still the heart of a microprocessor. In practice, the processor industry has strived to

build high-performance out-of-order general purpose processors to respond to various demands

in applications, even on power/energy critical platforms [10].

The DySE model assumes a platform that requires (1) a powerful general purpose processor to

executes arbitrary applications; and (2) a specialized hardware that optimizes application phases

when “profitable“– the profitable phases have recurring and parallel patterns that may exists in

any applications. Under such a dynamic framework, DySER is first proposed to specialize the

execute component dynamically in a decoupled access/execute fashion, and it leverages the

recurring and parallel patterns in the application phase. The access component, which may be

executed on host high-performance general purpose hardware, also retains the recurring and

51

Specialized HW

Ctrl I/F
Queue/
special RF

Execute Component Accelerator

Branch
Predictor

Branch
History

Fetch

Fetch Decode&Dispatch Issue Execute Memory WB

Decode

In
st

ru
ct

io
n

Q
ue

ue
RF

ROB

I$

D$

FU
A
G

U

LS
Q

Bypass

S
ch

ed
ul

er

Address/Branch
Computations from
Dataflow patterns

1

Dataflow
events
created ２React to

events &
create next
pattern

３

Figure 5.1: The block diagram and the execution of an out-of-order host processor with an
accelerator

parallel patterns and can be specialized and optimized with a different hardware. Specifically,

there are several design goals to specialize the access component in a profitable application

phase:

• The access specialization should provide justifiable performance to deliver data from

memory to execute accelerator, in a profitable application phase in an arbitrary application;

• Similar to DySER, the access specialization in the DySE model should minimize the

dynamic power overheads in its microarchitecture, leveraging reconfigurable hardware

for efficiency.

These two goals suggest that the access specialization should provide similar, or better, performance

to a general purpose processor with lower power. To enable such an optimization in hardware, we first

investigate the general purpose processor that is accessing memory for an execute accelerator

under the decoupled access/execute model, as shown in Figure 5.1. This out-of-order general

purpose processor is the same as the hypothetical OOO processor described in Section 2.1.2,

and is integrated with an execute component accelerator. In a specialized application phase, the

processor first follows few dataflow patterns to generate memory addresses. These dataflow

patterns are encoded in Von Neumann instruction steam, and the computations within are

52

dynamically captured in the register file, the functional units and address generation units of the

OOO pipeline (step 1). Second, the front-end of the processor pipeline and the reorder buffer

track the dataflow events, which are the arrival of the computation results in OOO pipeline, to

drive the program counter and the issue logic (step 2). Last, the scheduler issues the instructions,

which can be viewed as the event-driven actions, to move the data to/from data cache (ld/st

instructions) thus to trigger the computation in the accelerator or the next computation pattern

in the host processor (step 3).

5.1.1 Access Component Specialization

To sum up, the basic building blocks of the dataflow patterns in the access component are:

address/branch computation, event matching, and action triggering. An access component

specialization should be optimized for the above building blocks, in particular:

• Address and Branch Computation: The access component specialization should optimize

for a few dataflow patterns to compute memory addresses and control branches within an

application phase;

• Dataflow Event: The access component specialization should provide hardware to store

the outcome of the addess and branch computations; and

• Data-Movement Action: Based on the stored events, the access component specialization

should trigger data movement actions to move data between the accelerator and memory,

often a data cache.

Under the DySE model, the above building blocks of the access component in addition

follows two principles:

• Recurrence: A few dataflow patterns (consist of computations, events and actions) repeat

during a specialized phase.

• Concurrency: Based on the dataflow dependencies, independent computations, events

and actions can be performed in parallel.

53

The first principle allows area efficiency; a reconfigurable architecture can be used to map

the computations, events and actions without prohibitive configuration overhead. The second

principle, moreover, implies that an access specialization architecture developed with the basic

building blocks may achieve similar performance compared to an out-of-order processor if

providing the same amount of parallelism to process computations, events, and actions as an out-of-order

processor. Given these two principles, it is evident that a specialized hardware, which is natively

optimized for address/branch computations, dataflow events and data-movement actions, can

be built with reconfigurability and parallelism such that it can provide similar performance

compared to an out-of-order processor with lower power.

5.2 Memory Access Dataflow Overview

Thus far, we have described the goals of building an access component specialization architecture

and identified three basic building blocks in an access component of a specialized application

phase. The Memory Access Dataflow (MAD) architecture is one such access component special-

ization architecture that supports the Dynamic Specialized Execution model. The key insight

of the MAD architecture is to expose the three building blocks explicitly in an ISA that is only

used in accelerated phases. This MAD ISA, consequently, enables the native support for the ad-

dress/branch computation, dataflow events and data-movement actions in the microarchitecture.

Because of the recurrence of the dataflow patterns, and since the total number of the patterns

are small, the above tasks can be encoded in the MAD ISA with little complexity. The MAD

hardware, which executes the MAD ISA, eliminates most of the dynamism in computations,

events and actions and hence is more efficient than an out-of-order processor’s power-hungry

“general” structures. This section describes the MAD architecture with a simple example, which

walks through the ISA transformation, basic building blocks of the microarchitecture, and the

integration interface.

54

Base of A,B is mapped to r0, r1
DySER i/o port is mapped
to acc0,acc1 / Acc2
i is mapped to r2
$ n is mapped to r3
.L0 dld $r0+$r2 -> $acc0
 dld $r1+$r2 -> $acc1
 dst $acc2 -> $r0+$r2
 addi $r2, 1 -> $r2
 ble $r2, $r3 .L0

Base A Base B 1 n i

Event-Condition-Action Rules
on $eq0 if do ld,$eq0->$eq1
on $eq2^&eq3 if do st,$eq3->$eq2
on $eq4 if do ld,$eq4->$eq5
on $eq6^$eq8 if $eq8(true) do mv,$eq6->$eq7,$eq8->

(a)Pseudo Program (b)RISC ISA

(c)MAD ISA

for (i=0;i<n;i++){
 dyserload(A[i], 0);
 dyserload(B[i], 1);
 dyserstore(2,A[i]);
}

+ + + <

Program
counter
sequence

Computation

Event Queue
Assignment

Invariants
Dataflow event

Data movement
Dataflow Graph Nodes
N0: $eq7 + base A -> $eq0,$eq2 #Addr A
N1: $eq7 + base B -> $eq4 #Addr B
N3: $eq7 + 1 -> $eq6 #i++
N4: $eq7 < n -> $eq8 #i<n

Base of A,B and n is pre-configured as invariant constants
Accel i/o is mapped to $eq1,$eq5 / $eq3
Addresses are mapped to DF output $eq0,$eq2,$eq4
i is mapped to $eq7(DF in), $eq6(DF out)

Figure 5.2: The MAD ISA

5.2.1 Encoding the Computations

In the decoupled access/execute model, the access component contains a few computations

(sometimes with branches) in order to generate memory addresses. To support the computations

and branches inside an access component, MAD leverages dataflow analysis and a reconfigurable

hardware. Figure 5.2a shows a pseudo access component program, which has a loop that sends

the data in array A and B to DySER. This pseudo program is re-written into a stylized hypothetical

RISC ISA as shown in 5.2b. In this RISC ISA, the base address of array A and B is mapped

to register $r0 and $r1; the DySER interface port is mapped to acc0, acc1, and acc2; and the

induction variable i and iteration number n is mapped to register $r2 and $r3. The RISC

program contains five instructions: two loads to the accelerator, one store to the cache, a loop

counter increment instruction and a branch.

By observation, computations in this access component code can be found in the two load

instructions (computing address), addi (induction variable), store (address) and a branch com-

parison. The MAD architecture encodes these computations in dataflow graphs, as shown

in Figure 5.2c. The input of dataflow graph nodes can be (1) phase invariants, which does

not change during an application phase and can be pre-configured to hardware as constants

at runtime; and (2) Dataflow events, which are dynamically generated as events during the

execution of MAD. In the MAD ISA, the former is encoded as invariant constants (similar to

immediate values in a RISC ISA), and the latter is assigned to named event queues. These event

55

bench- Insts. Ld/St Acc. Exec. SP/Off. Base/Off. Base/Index/. Base/Index/
mark I/F Comp. Off. Width/Off.

(#) (%) (%) (%) (%) (%) (%) (%)
radar 33 15.2 51.5 33.3 40 20 40 0
nbody 73 24.7 42.5 32.9 27.8 50 22.2 0
stencil 555 33.7 47.8 18.6 73.8 5.9 15.0 5.4

fft 162 37.7 44.4 17.9 77.1 16.4 0 6.6
cutcp 207 38.7 53.6 7.7 87.5 7.5 1.3 3.8

kmeans 253 20.6 71.5 7.9 38.5 38.5 13.5 9.6
Avg.(All) 254.4 24.5 40.1 35.4 57.8 31.3 6.4 4.5

Table 5.1: Dataflow patterns: Exec Comp.: Execute component, Acc. I/F: Accelerator interface
instructions in the access component code, SP: Stack pointer, Off.: Offset, Base: Base address

queues serve as an interface and the storage between computation microarchitecture in MAD,

the accelerator, and the cache; they are also used in the Event-Condition-Action (ECA) rules

which are explained later.

The few recurring computation patterns in the access component of a specialized phase are,

in fact, small in size. Table 5.1 shows quantitative characteristics of the access component code for

representative benchmarks and average for all. The second column shows the total instructions

in the phase (e.g., multiple basic blocks that may include a nested loop) in the original code; the

access component is shown in column 3 and 4, in terms of load/store instructions and accelerator

interface instructions; the execute components are shown in the fifth column in percentage of the

original code. The patterns, classified in the combination of memory address primitives (stack

pointer, base address, offset, index, width), are listed in column 6 to 9. Here, the main point

is that a few patterns dominate, but are not trivial either because of the computations of these

primitives may vary. Thus, a coarse-grain reconfigurable/switched fabric can be used to map

these computations. The MAD ISA describes the nodes in the graph of Dataflow-Computation in

3-tuples: source nodes, the operation, and destination nodes. This node description is analogous

to the computations and registers in a von Neumann ISA. For example, the addi instruction in

RISC ISA becomes node N3: $eq7 + 1 -> $eq6.

56

5.2.2 Event-Condition-Action in MAD

The concept of event-driven action has been developed in many settings. For example, Event-

Action-Condition (ECA) is used in active databases, network and workflow management [101,

89, 26, 93]. The Memory Access Dataflow architecture leverages the same concept to encode the

dataflow events and data-movement actions in the MAD ISA. This section describes the syntax

of events and actions in the MAD ISA in terms of Event-Action-Condition.

An ECA rule in the MAD ISA has the following syntax:

on event if conditions do actions

The event defines when a rule has to be triggered; a triggered rule examines the current

state and matches it with the condition; and actions are fired if the condition holds. Executing a

rule may fire the action that in turn triggers another rule. In the MAD ISA, there is an end of

program rule that triggers an action that finishes the specialized phase and gives the control

back to the host processor to continue the application.

Events The event in a MAD ECA rule is a combination of primitive dataflow events, which

is the arrival of data; the MAD architecture use queues to hold such a primitive event. Each of

these queues, called event queue, indicates a primitive “data arrived“ event when it is not empty.

Primitive events can be combined with event algebra [53, 16]. While there are many common

operators in a traditional event algebra, the MAD ISA only adopts conjunction operator (∧),

which can be naturally implemented with and gates in hardware.

Conditions The conditions in a MAD ECA rule specifies the additional states with the trigger-

ing events that have to be satisfied to drive an action. In the MAD architecture, these states are

coupled to a primitive event, inferring the result of a conditional branch—true or false. A MAD

ECA rule may not need to examine the state of the event; the primitive event itself fulfills the

driving condition. In such a case, the condition part of the rule is empty.

57

Compiler/
Binary Translation

Specialized HW

Execute Component Accelerator

Memory Access Dataflow HW

Host Processor

Branch
Predictor

Branch
History

Fetch Decode

In
st

ru
ct

io
n

Q
ue

ue

RF

ROB

I$

D$FU
A
G

U

LS
Q

Bypass

S
ch

ed
ul

er

Event
Block

Action
Block

Comp.
Block

Application Phase

Execute Accelerator
Compiler/Programming

Execute Code

Access
Code

MAD
Compiler/translator

for (i=0;i<n;i++){

 dyserload(A[i], 0);

 dyserload(B[i], 1);

 dyserstore(2,A[i]);

}

Event-Condition-Action Rules
on $eq0 if do ld,$eq0->$eq1
on $eq2^&eq3 if do st,$eq3->$eq2
on $eq4 if do ld,$eq4->$eq5
on $eq6^$eq8 if $eq8(true) do mv,$eq6->$eq7

Dataflow Graph Nodes
N0: $eq7 + base A -> $eq0,$eq2 #Addr A
N1: $eq7 + base B -> $eq4 #Addr B
N3: $eq7 + 1 -> $eq6 #i++
N4: $eq7 < n -> $eq8 #i<n

1

 Host processor
 configures, sends
 initial value, and
 then sleep2

Compute

Events
Created

Drive
Action

3

4

Matching
ECA rules

5

6

issue
actions

7

Figure 5.3: An example execution of the MAD hardware

Actions The action part in a MAD ECA rule specifies data-movement actions, which includes

loads, stores, or moves between event queues. These actions pop or push data from event queues

and hence create new “data arrived“ primitive events if there is new data in the queue output.

MAD ECA Rules Example As shown in Figure 5.2c, parts of the RISC instructions are trans-

lated into ECA rules. The Event-Condition and Action are separately color coded in green and

blue, respectively. Events are described with named event queues, and the condition is the states

with event queues. The ECA rules of load and store actions are often triggered by the dataflow

primitive events on memory addresses (and data in cases of stores). The branch instruction (ble

$r2, $r3, .L0) in the program, however, includes a non-empty condition part; this condition

part examines the state of the 8th event queue ($eq8), and drives the action when the state is

true. The action moves the induction variable for the next loop condition check and pops the

8th event queue (and discard it) since the value is no longer needed. A detailed description of

the encoding of the ECA rules can be found in Appendix A.

5.2.3 Generating the MAD Configuration

Generating the MAD configuration bits in the MAD ISA can be done in a co-designed compiler

or a binary translator. After manual or compiler-assisted DySE (described in Chpater 2), the

58

compiler can produce the MAD configuration in the machine code generation pass using its

internal representation of the access component. In our work, the MAD configuration generation

is done in a binary translator, which follows the steps below:

• first, it scans the instructions and constructs the program dependence graph from the

instructions, which are the nodes in the graph;

• second, it breaks the graph into sub-graphs and map computations into the computation

block;

• third, it assigns the leaf nodes in the subgraphs may either be a load/store action, a move

action (moving data between event queues), or a branch output that triggers different

actions based on the outcome of the branch; and

• last, it prioritizes the above actions based on the program order, creating ECA rules for

each action.

While compiling from source code may enable more opportunities for optimization, we use

a binary translator to evaluate the first-order characteristics of the MAD architecture.

5.2.4 Executing Memory Access Dataflow

The MAD hardware natively supports the three basic building blocks (computations, events

and actions) in the MAD ISA. Figure 5.3 shows a sketch of the MAD architecture with an

execution example labeled with sequence numbers. In this hypothetical integration, an execute

component accelerator and a MAD implementation are coupled to a general purpose host

processor. The application, divided into phases, is regionally specialized (e.g., only profitable

phases are specialized) via the compiler/programmer of the execute accelerator, and then a

MAD compiler/binary translator. This MAD compiler/translator only works after all the access

binaries or internal representations are generated, thus it is decoupled from a specific accelerator

and can support different execute accelerators (described in Section 5.5).

Following the DySE model, the host processor first configures the execute accelerator and

the MAD hardware before entering a specialized application phase. Second, in addition to

59

the configuration microcode that sets up the events, actions and computations, the host also

sends initial events to start MAD execution. Third, the processor goes to sleep mode and turns

on the MAD hardware, which has three basic building blocks: a computation block, an event

block, and an action block; each of the building blocks corresponds to a part of the MAD ISA.

The computation block has a reconfigurable network with functional units that performs the

computations; the event block contains event queues that serves as the I/O interface of the

computation block and the execute accelerator; and the action blocks prioritizes the triggered

actions and drives them when there is available bus bandwidth.

Fourth, the initial events trigger the computations in the computation block or accelerator;

the execution model of event block to computation block/execute accelerator triggering is

pure static dataflow, which means that whenever a ready data appears at the input queues of

computation block/execute accelerator, the computation is triggered. Based on the outcome of

the computation, a new set of events are created in parallel at the event block. Fifth, the event

block matches these primitive events and conditions with pre-configured Event-Condition-

Action (ECA) rules, and then generates the actions indices that should be driven to the action

block. In step 6 and 7, the action block takes the indices, selects the ones that could be issued in

the current cycle, and controls the data bus to move the data values to accelerator or between

event queues. This whole cycle then repeats itself and stops when the ”end of program” action

is triggered, which is the branch evaluation in this case. Finally, the MAD hardware wakes up

the host processor to continue the application, and through memory passes all the architectural

state changes during acceleration to the host processor.

5.3 MAD Microarchitecture

Figure 5.4 presents the detailed microarchitecture of the MAD hardware, which consists of three

blocks.

• Computation Block: The computation block executes the dataflow graph to generate the

memory addresses and branches with a fine grain (tens of RISC instructions) reconfigurable

fabric.

60

Action
Block

decoder

Action 0
Action 1
Action 2
Action 3

Arbiter

Action
Table

ECA Rule 2

ECA Rule 2

ECA Rule 1

ECA Rule 3

ECA Rule 2

ECA Rule 2

ECA Rule 1

ECA Rule 3

ECA Rule 2

ECA Rule 2

ECA Rule 1

ECA Rule 3

To/From Accelerator

To LSQ

Computation
Block

Event
Block

Queue
states

actions (bit vector)

Computation Block
I/O Event Queues

FU and
Switches

Accelerator
I/O Event Queues

ECA Rule 2

ECA Rule 2

ECA Rule 1

ECA Rule 3

Comparator
Array

ECA Rule
Table

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

FU
S

Figure 5.4: MAD microarchitecture

• Event Block: The event block includes event queues to hold dataflow events. It also stores

ECA rules and uses comparators to check if a rule can be triggered and if the conditions

are satisfied. It produces results in the form of action indices.

• Action Block: The action block receives and grants the action indices from the event block

based on priority; it then drives the interconnect bus to move data between event queues

and cache.

MAD execution is similar to a dataflow machine: it assumes the execute accelerator automati-

cally executes when the required data arrives and produces data to pre-designated event queues.

The execution of address computations and accelerated code can be seen as static dataflow;

the triggering of ECA rules, however, is dynamic dataflow but follows the “dataflow order“ in

the program (enforced by ordered queues). This dataflow execution results in a weak memory

consistency model. It may reorder the reads and writes to different memory address locations

and thus break the memory consistency model of the host processor. For example, using MAD

in SPARC architecture breaks SPARC’s TSO model.

61

5.3.1 Computation Block

The computations block computes the pre-configured dataflow graph statically with functional

units (responsible for compute operators) and switches (responsible for forming the edges in

a dataflow graph). Figure 5.4 outlines a 16-functional unit computation block. In this design,

four function units and four switches constructs a cluster, and the clusters are interfaced with

event queues to talk to the cache, accelerator, or between clusters themselves. Since it performs

static dataflow execution, no dynamic popping (pushing) of the input (output) event queues is

necessary; all I/O input event queues are used immediately when available.

The switches and functional units are the same as in DySER. They implement the same

flow-control and synchronization stages such that the input dataflow events can occur at any

time (e.g., it is not required that all inputs are prepared before invoking a cluster; the fabric will

automatically buffer and synchronize the data when ready)

An alternative implementation for the computation block is the BERET-like Subgraph Exe-

cution Block [63], which leverages conventional centralized register file and write-back bus with

the reconfigurable functional unit clusters.

5.3.2 Event Block

The event block connects the datapath between the cache, the computation block and the execute

accelerator. As shown in Figure 5.4, it has the following sub-blocks:

• Accelerator I/O event queues: It is required that the execute component accelerator is

interfaced with event queues in an Accelerator/MAD integration. MAD assumes a data-

driven execute component accelerator, which consumes data as soon as they appear at the

input event queue, and produces results to the output event queues. The integration of

execute accelerators is described later in Section 5.5.

• Computation I/O event queues: As mentioned, the clusters in the computation block are

interfaced with event queues. Same as the execute accelerator I/O queues, the computation

block consumes the input event queues when there exists available data and produces

results to output event queues.

62

• ECA rule table: The ECA rules in the translated program are stored in the ECA rule table,

and are compared to the state of event queues to trigger actions.

• Comparator array: The event block employs a comparator array to match the dataflow

events and states from event queues to pre-configured ECA rules. The comparator array

takes 3 types of inputs: (1) the pre-configured ECA rules from the ECA rule table; (2)

the not-empty state of the event queues from the controller of the queues; (3) the state

of the first output data in an event queue. The last input, representing the state (true or

false) of the corresponding dataflow event, is compared with the condition part in an

ECA rule. In our design, a non-zero value in the event queue represents the true state.

The comparator compares the (1) ECA rules to the (2) event and (3) condition states and

outputs a bit-vector, which represent the indices of triggered actions.

The triggering of the event-condition and the execution of the action is decoupled; the

triggering event queues in a satisfied ECA rule turn into an inactive state before the values are

popped by actions. This strategy of deferring the driving of the actions reduces the timing and

bandwidth requirement over an approach that always matches events and drives actions in the

same cycle.

5.3.3 Action Block

The last building block in Figure 5.4 is the action block; it is responsible for controlling the data

movement between event queues and the load-store queue of the host processor. The actions in

MAD ECA rules are stored in an action table; they are indexed by the action index bit vector

(received from the event block). When the triggered actions arrive as a bit vector, the action

block buffers them and decodes them with a priority decoder, which arbitrates the buffered

actions. If there are more triggered actions than the bandwidth of the data bus, actions with

higher priority are issued first.

63

Actions0

Actions1

Actions2

Actions3

Addr

Addr

Return value

Arbiter

Bus
control

Re
su

lt
B
us

ld->$eq1

FU FU

FUFU

$eq0:ldA
$eq1:in

$eq2:stA

$eq6:i++

$eq4:ldB

$eq8:i<n

i

LS
Q

A
ccelerator

st

ld

ld val.

Val

+A

B +

1 +

<

S S

S S

Comparator
Array

Event Table

Action Table
ECA Rule 0 : A0

ECA Rule 1 : A1

ECA Rule 2 : A2

ECA Rule 3 : A3

stall&bus
control

events:
eq0,2,3

1100

1
1
0
0

A0

A1

com
parators

on $eq0 : A0
on $eq2^eq3 : A1
on $eq4 : A2
on $eq6^$eq8 if $eq8(true) : A3

priotiry
decoder

2

3

4

Dataflow Graph Nodes
N0:$eq7 + base A ->$eq0,2 #Addr A
N1:$eq7 + base B ->$eq4 #Addr B
N3:$eq7 + 1 ->$eq6 #i++
N4:$eq7 < n ->$eq8 #i<n

1

$eq3:out

A0:ld,$eq0->$eq1
A1:st,$eq3->$eq2
A2:ld,$eq4->$eq5
A3:mv,$eq6->$eq7,$eq8->

Figure 5.5: Detailed MAD execution with a simple code

5.3.4 Microarchitectural Execution Flow

Carrying the same pseudo program, Figure 5.5 shows the MAD execution of the occurrence of

two events, the matching two ECA rules, and the driving of two actions. Before the execution,

the processor configures the 3 blocks of the MAD hardware and fills configurations as shown in

the colored dialogue boxes. For illustration purposes, we simplify the drawing to present only

the activated microarchitecture logics. The example execution flow begins with three primitive

dataflow events: there exists data in event queue 0, 2, and 3. Since there no conditions need

to be evaluated in these two rules, these events directly triggers two actions, action 0 and 1,

as in the action index vector (step 2). Reaching the action index buffer, the priority decoder

decodes the bit-vector, and outputs the two actions, ld,$eq0->$eq1 and st,$eq3->$eq2, to the

bus controller (step 3). Finally, in step 4, the bus controller pops the event queues and moves the

data values to D$.

5.3.5 Implementation and Design Decisions

We implemented the MAD hardware in Verilog RTL and synthesized it with a TSMC 55nm

library. This section discusses several design decisions. First, one can intuitively implement the

interconnections between event queues and comparator array as a fully connected network; this

implementation, however, may cause timing problems and is over-designed. We observed that,

in a typical program, the ECA rules can be divided into disjoint sets, and the hardware (event

64

(a) Code Listing

(b) Indirect Access

(c) Nested Loop

for (i=0; i<dep ; i++) {

 int i_ptr=ptr[i];

 int i_len=len - i_ptr;

 for (j=0; j<i_len; j+=2) {

 int x=i_ptr+j ;

 float temp ;

 DyLOADPD(data[x],0) ;

 DyLOAD(v[ind[x+off+0]], 16);

 DyLOAD(v[ind[x+off+1]], 12);

 DyRECVF(45, temp) ;

 dst[perm[j+off]]+= temp;

 }

}

LSQAccelerator

j<i_len

i j

i < dep

４

mv i++ -> i #outer

mv 0 > j #inner

j<i_len ->$eq0

i<dep ->$eq1

５

1

j<i_len(false) #inner

jd<dep(true) #outer

２
３

Accelerator LSQ

ind[x+off+0] (rdy)

v[ind[x+off+0]](rdy)

ld ind[..]->DF ind[..]

ld v[ind[..]]->...

３

５
２

ind(Base)+x+off+0 -> ind[x+off+0]

v(Base)+ind[x+off+0] -> v[ind[x+off+0]]

x off

ind[..]

addr val.

vec[ind[..]]

４
1

Figure 5.6: MAD execution with a complex example

queues and comparators) can be clustered.

Second, the number of functional units in the computation block determines the maximum

available computational parallelism in the MAD hardware. The implementation details of the

three blocks are:

• The computation block has 32 integer ALU and 4 integer multipliers, supports up to 256

dataflow graph nodes; each cluster (4 ALU, 1 or no multiplier) can switch between different

configurations stored in a config cache.

• The event block has 32+32 event queues (computation block + execute accelerator); they

clustered in to 8 groups and support up to 256 ECA rules. An ECA rule can use at most 4

primitive events and 4 condition states.

• The action block has four 8-wide 32 bit action index buffers, each decodes 2 actions in one

cycle; however, the load and store action bandwidth are still limited by the number of data

cache ports in the host processor.

65

The runtime dynamic power of our implementation is around 1 Watts @ 1GHz with the

selected benchmarks, which is equivalent to one-third of the power of a 2-issue out-of-order pro-

cessor (a highly optimistic OOO setting). Last, the total configuration bits in the implementation

is close to 1.5KB.

5.4 Complex Scenarios

To demonstrate MAD’s generality, several complex scenarios are discussed here: (1) memory

disambiguation; (2) indirect memory access, which creates irregular offset addresses for a base;

and (3) nested loops. Both are ubiquitous in data structure traversal. Sparse Matrix-Dense Vector

Multiplication (spmv) from the Parboil suite [6] is used as the example.

Figure 5.6a shows the code of matrix-multiply accelerated with DySER accelerator (variable

names modified for readability). In the example, DySER is performing blocked matrix multiply

based on i and j indices. The DyLOADPD and DyRECVF are the DySER instructions (ISA extensions

produced by DySER compiler for host) which load from the data cache to DySER ports and

receive from DySER ports to the MAD hardware, respectively. The MAD compiler compiles

these instructions as ECA rules where the actions load and receive data.

5.4.1 Memory Disambiguation

In an out-of-order processor, the pipeline allows out-of-order execution and thus requires

memory disambiguation and in-order retirement to preserve the sequential semantics. Since

the MAD architecture executes in dataflow order, it could allow independent instructions from

a sequential program to execute "out-of-order" in terms of its sequential semantics. In the

example code snippet, the two loads are independent and can be executed in any order. Also,

the computation of the induction variable j in any order does not depend on the outcome of the

load-accelerator-store dataflow chain; they can run ahead to trigger a new set of load-accelerator-

store computation when the previous iteration is not finished because of a store miss. While the

dataflow order may increase the performance, may-alias memory access between independent

dataflow may cause conflicts. In particular:

66

• The MAD hardware needs memory disambiguation for may-alias memory accesses, which

is provided by the load-store queue. The index (time sequence) for disambiguation is the

action index with the iteration number from the event queues.

• When the memory dependence predictor predicts wrong (the may-alias memory accesses

alias and conflict), the MAD hardware has to roll-back to the correct state before mis-

speculation.

The latter case implies that the MAD hardware has to support checkpointing; this is done

with additional state bits in each event queue and ECA rule table. If the MAD execution

reaches a load that may-alias with a previous store, it sets the destination event queue entry into

speculative state. The speculative state propagates to triggered ECA rules and computation block.

If mis-speculated, the MAD hardware flushes all the incorrect values in the event queues (and

also the computation block that consumes this mis-speculated value) by walking through the

event block. If a speculative action targets an event queue that already contains speculative data,

the execution stalls; this simplifies the hardware design by preventing overlapped speculation.

Merging the LSQ and MAD, or more aggressive speculative execution in MAD could potentially

increase the energy efficiency and are future work.

5.4.2 Indirect Access

The indirect access that occurs in the following code of spmv: DyLOAD(v[ind[x+off+0]],16);

is shown in Figure 5.6b. The ECA rule table, the action table, and the dataflow graph nodes in

the computation block are labeled with sequence numbers and the same color code as previous

figures. For illustration purpose, stylized ECA rules and computations (as dataflow graph nodes)

are used. First, the computation block computes the inner offset (step 1: ind(Base)+x+off+0,

and creates a dataflow event (step 2) that triggers the first load action (step 3). Next, the action

block loads the data of ind[..] from D$ back to the computation block for the second base and

offset computation (step 4). Finally, the address of v[ind[..]] is ready (step 5) and triggers the

indirect load.

67

CCores

(a) DySER (b) SSE

(c) NPU (d) C-Cores

Host Proc.

Host Proc. (off)

DySER

Queue SSE RF

MAD

DySER

Event-Q

Use
Accel.
I/O
Event
Queue

Use
Accel. I/O
Event Queues,
config cache
and scheduler

Host Proc.

SSEFetch,
Decode,
Issue,

Scheduler

Host Proc.

Host Proc. (off)

NPU

Queue

MAD

NPU

Event-Q

Host Proc.

Host Proc. (off)

ld/st U

MAD

Event-Q

Host Proc. (off)

MAD

SSE

Event-Q

Config

Config

Config

CCores

Use
Accel.
I/O
Event
Queue

Use Accel.
I/O Event
Queues and
remove ld/st
Unit

Computaion
Operators

Figure 5.7: The integration of accelerators and the MAD hardware

5.4.3 Nested Loops

The two-level loop in spmv iterates on two loop indices, i and j. Starting from the end of the

inner loop, Figure 5.6c shows the execution of the nested loops. First, the computation of inner

loop condition is completed (step 1) and creates a "false" state on the event queue (step 2), which

drives the action of moving the incremented outer loop index i++ for next computation (step

3). This action pops the data value from the output of the computation block back to its input

event queue. Next, the computation block computes the outer loop condition i<dep (step 4) and

creates a "true" state on the event (step 5). Finally, this event and the “true“ state matches the

ECA rule and triggers the action of sending an initial value 0 for the next inner loop iteration,

such that the new inner loop condition computation can be executed.

68

5.5 Integration

The flexibility of the DySE model allows different hardware to assume the role of the execute

component, where MAD can be used to drive these different hardwares. We discuss the integra-

tion between the MAD architecture, DySER and other accelerators using three representative

cases to demonstrate MAD’s generality/diversity. In particular:

• Intel SSE: The SSE instruction set extension represents the performance-oriented vector

accelerator and demonstrates “practical/industry” relevance; it is widely used in various

applications.

• Neural Processing Unit (NPU): Esmaeilzadeh et al. [45] built a multi-layer perceptron arti-

ficial neural network accelerator to accelerate approximated application regions generated

from NPU compiler; it is a representative domain-specialized accelerator that synergisti-

cally combine novel algorithmic and micro-architecture ideas to deliver acceleration.

• Conversation Cores (C-Cores): Venkatesh et al. [122] developed a compiler to ASIC ap-

proach towards an extreme power efficiency; Conversation Cores hardware are directly

generated from compiler and used with in-order processors for low power platforms. It is

representative of hard-ASIC acceleration.

In the description of the MAD architecture, we include one part of the execute hardware–the

accelerator I/O event queues. This fundamental assumption of MAD implies two integration

details: (1) the supported execute accelerators have to use the accelerator I/O event queues

(described in Section 5.3) as their interfaces to the memory; and (2) the supported execute

accelerators may have to be modified such that they are data driven, where the data from these

I/O event queues trigger accelerators’ execution. If the above integration implications can be

satisfied, MAD can be used to drive any given accelerators that follw the DySE or DAE model.

Below, we describe how DySER, SSE, NPU and C-Cores can be integrated into the DySE model

with the MAD hardware. Most of the integration is fairly straight-forward as shown in Figure 5.7

— top half is original design from literature and bottom is the MAD integration.

69

DySER (Figure 5.7a) Since DySER is naturally interfaced with queues, the accelerator I/O

events queues in MAD can natively support DySER to drive its execution.

SSE (Figure 5.7b) In order to drive a SIMD accelerator such as SSE unit, two modifications have

to be made: (1) the input operands of the SIMD unit have to be changed from specialized vector

register to the accelerator I/O event queues in MAD; and (2) the front-end processor pipeline

that decodes SSE instructions for driving the SSE unit is now replaced with a small configuration

cache and a reconfigurable scheduler. The configuration cache in the latter modification stores

all the instructions inside an application phase, and the scheduler checks the operand readiness

from event queues to issue SSE instructions to the SSE unit. Note that with this change, in the

software side the programmer/SSE compiler has to identify the application phase and provide

a configuration mechanism to set up the configuration cache and scheduler.

NPU (Figure 5.7c) Similar to DySER, NPU is interfaced with queues and can be naturally

driven with the accelerator I/O event queues in MAD.

C-Cores (Figure 5.7d) Conservation Cores, focusing on power efficiency, encompass non-

reconfigurable hard datapath to issue memory requests in-order for its computation operators (

i.e., functional units). To apply the MAD architecture, we remove all memory related datap-

ath (including address computation) and replace them with the accelerator I/O queues; this

replacement creates many small C-Core computation operator clusters, where each of them is

attached to some subset of accelerator I/O event queues for I/O operands. The benefit of MAD

integration is that it allows higher throughput delivery of memory to C-Cores compared to the

original “power-efficient extremely“ design.

5.5.1 Stand-Alone MAD

Often, in some applications there exist phases that are only responsible for accessing and

preparing data. In such a case, the computation to memory operation ratio is considerably low,

and the phase may have no execute component (all computation is for memory accesses) or

the execute component may only have a few computation operators. If the phase is frequently

70

used, MAD can be applied with no execute accelerator. This stand-alone MAD configuration

is similar to the original design, although the event block has no accelerator I/O interface

queues. We evaluate this configuration in the end of Chapter 7 with several memory intensive

microbenchmarks.

5.6 Chapter Summary

This chapter presented the MAD architecture that natively supports the three basic building

blocks in the access component of a specialized application phase. We discussed the motivation,

design goals, ISA and microarchitecture of MAD. In summary, MAD exposes the computation

patterns, the triggering events, and the data-movement actions within a specialized application

phase in a low-level ISA, which enables a native support in hardware that does not require

power-hungry structures in a general purpose out-of-order pipeline.

This chapter demonstrates MAD’s feasibility and generality via execution examples and

provides integration details for four different execute component accelerators. Specifically, we

discussed memory disambiguation, nested loop and indirect access for feasibility; and presented

the integration of DySER, SSE, NPU and C-Cores for MAD’s generality.

71

6 evaluation methodology

This chapter discusses the evaluation methodology that evaluates the Dynamically Specialized

Execution Model and its supporting architectures, DySER and MAD. Since these two architec-

tures supports the two decoupled components in an application phase, the evaluation is done

in an incremental approach to detail the contribution of each supporting architecture. To this

end, four architectural configurations are used in the DySE model. In particular:

• Host(Access)/DySER(Execute): In this configuration, the DySER is used to perform the ex-

ecute component, and is integrated into a general purpose out-of-order processor pipeline

that is responsible for executing the access component of a specialized phase.

• MAD(Access)/DySER(Execute): This configuration exploits the full potential of the DySE

model with DySER and MAD.

• MAD(Access)/SSE,NPU or C-Cores(Execute): The DySE model can be flexibly applied

to many execute accelerators other than DySER; while the efficiency varies, the MAD

architecture can be non-intrusively integrated with different execute accelerators.

• MAD(Access-only): Sometimes, an application may include phases that merely accesses

data and do very few computations. In such a case, the MAD architecture can be solely

used for power efficiency.

This Chapter describes the architecture models (Section 6.1), the benchmarks (Section 6.2),

and the evaluation methodology to evaluate the above configurations (Section 6.3).

6.1 Architectural Models

The DySE model assumes a general purpose host processor. We modeled our x86 out-of-order

architectures as the host processor in gem5 [19], a cycle-accurate simulator that is parameterized

and offers processor models at various level and also with different ISA. The x86 out-of-order

processor model in gem5 has fetch, decode, rename, issue, execute, writeback and commit

stages; it models a tournament branch predictor with 4K branch target buffer and a return

72

Parameters Dual-issue OoO 4-issue OoO
Fetch, Decode, 2 4Issue, and Writeback Width
ROB Size 40 168
Scheduler (issue queue) 32 54
Register File (int/fp) 56/56 160/144
LSQ (ld/st) 10/16 64/36
DCache Ports 1(r/w) 2(r/w)
L1 Caches I-Cache: 32 KB, 2 way, 64B lines D-Cache: 64 KB, 2 way, 64B lines
L2 Caches 2 MB, 8-way unified, 64B lines

Table 6.1: General purpose host processor models

Architectures Configuration Models
GP Host x86 out-of-

order
gem5 Used in DySER+host config-

uration, also as baseline
DySER 64 functional

units
gem5, RTL Used in DySER+host and

DySER+MAD
SSE SSE, SSE2,

SSE3
gem5 Used in SSE+host and

SSE+MAD
NPU 8 Processing

Elements [45]
gem5 used in NPU+host and

NPU+MAD
C-Cores ASIC gem5, RTL Used in C-Cores+host and C-

Cores+MAD
MAD 256 DFG

Nodes, 256
ECA rules

gem5, RTL Used in MAD+DySER, SSE,
NPU and C-Cores, also in
MAD-only configuration

Table 6.2: Architectural models

address stack, a reorder buffer, an issue queue (scheduler), a load-store queue with memory

dependence prediction using store sets. Two different host design points are modeled: a low

power dual-issue out-of-order processor and a 4-issue high-performance out-of-order processor.

The former is similar to the state-of-the-art low power OoOs such as Intel Silvermont or AMD

Bobcat [7, 65], and the latter is similar to desktop processors such as Intel Sandy Bridge [5].

Table 6.1 details the microarchitectural parameters.

We implemented DySER, MAD and few other accelerators (SSE, NPU, C-Cores) in our

general purpose code model in simulator, Table 6.2 summarizes the architectural models; each

of them is explained below.

73

6.1.1 DySER

The DySER architecture model is developed and integrated into the gem5-based host general

purpose processor model. It models the DySER network, switches and functional units and

integration details. Two major changes are made in the host processor model to integrate DySER:

(1) the decode stage, which is extended to support DySER interface instructions; and (2) the

issue stage, which needs to be modified to correctly schedule DySER interface instructions,

especially in the case of mis-predictions and exceptions. The scheduling policy of DySER

interface instructions in our model is implemented as described in Section 3.4. The DySER ports

are exposed and are viewed as separate hardware resources; the status of ports are examined

before issuing the interface instructions. When there is a dysersend to full port or a dyserrecv

on empty port, the instruction is stalled due to a structural hazard (the instructions to other

ports can still be issued freely). A separate log buffer (as mentioned in Section 3.4.2)is used to

record DySER interface instructions such that when using the out-of-order host, DySER can be

flushed and rolled-back to a correct state if mis-prediction occurs.

Two variants of DySER is modeled for floating-point and integer workloads: (1) a 64-

functional unit DySER with 16 INT ALUs, 16 FP ALUs, 12 INT multipliers, 12 FP multipliers, 4

FP dividers, and 4 FP square root functions; and (2) a 64-functional unit DySER with 40 INT

adders, 16 INT comparator and shifters, and 8 INT multipliers. While they have different power

and area, these two configuration of DySER are comparable to an Intel AVX unit [58].

RTL Model Part of the DySER RTL implementation mentioned in Chapter 4 is also used in

the evaluations of this dissertation. Unlike the prototyping and proof-of-concept paper [18], this

dissertation focus on the analysis on energy efficiency and architectural trade-offs; hence, the

DySER RTL model here is not integrated on SPARC but serves as a stand-alone model which

supports the gem5 based simulator model and provides power estimates. We create testbenches

from the trace of gem5 simulations and run these testbenches with Synopsys VCS simulator for

SAIF (Switching Activity Interchange Format) files. These SAIF files are then fed into Synopsys

Design Compiler along with DySER Verilog RTL to collect power numbers for the TSMC 55 nm

standard cell library.

74

While the gem5 trace generation is based on the DySER model in the simulator, we have

verified our DySER simulator model with the RTL model regarding performance, architectural

events, and power. This calibration compared the execution traces of both models, and helped

us to correct any discrepancies in interface mechanisms, latencies, protocols and so forth.

6.1.2 Other Execute Accelerators

As described in Section 5.5, many accelerators naturally lend them self to the decoupled ac-

cess/execute model or the DySE model. Three execute accelerator models are built in gem5,

which are the SSE unit [4], NPU [45] and C-Cores [122]. Intel SSE instruction set extensions,

including SSE, SSE2, and SSE3 are built-in instruction in gem5; the neural processing unit (NPU)

and Conservation Cores are the simulator models we built in-house. We have tested them to

verify the correctness and accuracy when comparing to the published results. For C-Cores,

RTL models are built to acquire a better understanding of C-Cores ASIC’s (Application-Specific

Integrated Circuit) power behavior; similar to DySER, this RTL model takes a gem5 trace as

input and produce power/energy estimates.

6.1.3 MAD

The Memory Access Dataflow architecture model was built in the gem5 simulator, which uses

a binary translator to translate the x86 binary from the host processor to the MAD hardware

model. RTL implementation of the computation block, the event block and the action block are

also built for energy estimates. The details of our implementation and the simulator model are

previously described in Section 5.3.5 and are also summarized in Table 6.2.

6.2 Benchmarks

An ideal application phase for the DySE model has sufficient computation that can be executed in

accelerators; this dissertation selects benchmarks from Parboil [6], Intel Throughput Kernels [110]

and Rodinia [25] benchmarks. The reason behind the selection of benchmarks are: (1) they have

to be complex enough and representative of emerging or real workloads; (2) they have to be

75

reasonably large, such that re-programming and targeting different accelerators are feasible.

Efforts have been made to identify meaningful application phases in these benchmarks and

re-program them into accelerator configuration and access component codes. These benchmarks

are referred as “base benchmarks“ as shown in Table 6.3. The configurations of Host/DySER,

MAD/DySER, MAD/SSE and MAD/C-Cores uses these benchmarks. In our implementation,

the specialized phases sometimes involve changes in the algorithm. For example, software

pipelining may be used to optimize the access component code such that DySER can be utilized

better. These optimizations, however, can only be used on specific accelerators and hence are

considered as specialization features instead of additional improvements over the original codes.

In the NPU/MAD configuration, we use NPU specific benchmarks [45] instead of imple-

menting neural network approximation in our base benchmarks. These benchmarks are reported

to be efficient when applying neural approximation, sufficiently utilizing the NPU hardware.

The NPU benchmarks are shown in the second part of Table 6.3.

Last, in order to evaluate the MAD only configuration, a few benchmarks are selected for

their access-only phases. Three micro-benchmarks are used to represent common data structure

traversal phases in real workloads, and two SPECINT [115] benchmarks are selected as examples

of access-only phases in legacy applications. These benchmarks are referred as “Access-only

Benchmarks.“

All the benchmarks are compiled with GNU GCC with full optimizations (option -O3).

We annotate the benchmarks such that all simulation statistics are collected from the phase of

interest. The benchmarks that have the same name but belong to different sets (e.g., kmeans and

fft) either use a different algorithm or are simulated in different phases.

6.3 Measurements and Metrics

Across different architectural configurations, performance, power and energy efficiency are

measured and compared to the same dual-issue out-of-order x86 baseline for speedup and

energy reduction. In addition, microarchitectural studies are conducted to reveal the reasons

behind the efficiency of DySER and MAD in the hardware. The metrics are elaborated below:

76

Benchmark Suite Benchmark Description
Base Benchmarks
Parboil cutcp Distance-Cutoff Coulombic Potential
Parboil fft Fast Fourier Transform
Parboil lbm Lattice-Boltzmann Method Fluid Dynamics
Parboil mm Dense Matrix-Matrix Multiply
Parboil mriq Magnetic Resonance Imaging - Q
Parboil sad Sum of Absolute Differences
Parboil spmv Sparse-Matrix Dense-Vector Multiplication
Parboil stencil 3-D Stencil Operation
Parboil tpacf Two Point Angular Correlation Function
GPGPU-Sim nnw Neural Network
Rodinia kmeans(kmns) Dense Linear Algebra
Rodinia needle Needleman-Wunsch Method
Throughput Kernel conv 2-D Convolution
Throughput Kernel merge Merge Kernel
Throughput Kernel nbody Simulation of System of Particles
Throughput Kernel radar 1-D Convolution
Throughput Kernel treesearch(tsrch) Linear Search on Queries
Throughput Kernel vr Volume Rendering
Access-only Benchmarks
Micro-benchmark agg Array Aggregation
Micro-benchmark fs File Scan
SPECINT libquantum Physics / Quantum Computing
SPECINT mcf Combinatorial Optimization
Micro-benchmark sortmerge Join Kernel
NPU Benchmarks [45]
NPU fft Fast Fourier Transform
NPU invk2j Inverse Kinematics for 2-joint Arm
NPU jmeint Triangle Intersection Detection
NPU jpeg JPEG Encoding
NPU kmeans Dense Linear Algebra
NPU sobel Sobel Edge Detector

Table 6.3: Benchmarks in evaluation

77

Performance The overall performance improvement over non-specialized baseline is measured

as an improvement in execution time in cycle counts from our gem5 based model:

Baseline Execution T ime(cycles)
Specialized Execution T ime(cycles)

Here the baseline execution time is the time of the general purpose host processor executing

original (non-specialized) code. Although the evaluated architectures may have different impli-

cations in timing, we assume that they can all be implemented in a state-of-the-art 2GHz host

processor and functions at the same core clock.

Power and Energy-Efficiency The power consumption of the baseline host processor, includ-

ing the SSE unit, is modeled in McPAT [85]. McPAT is a parameterized power estimation tool

that takes microarchitectural parameters and events as input (e.g., reads and writes to cache,

functional unit accesses) and provides dynamic, peak and leakage power. For our purpose, only

the runtime dynamic power is used. As previously mentioned, we built our power model for

DySER, MAD, NPU and C-Cores based on RTL implementations.

This dissertation uses the power delay-product (Power × Execution T ime) as the energy

measurement. The other common metric, energy-delay product, is not used because it may

over-emphasize the performance on battery-critical platforms like mobile devices. The overall

energy reduction is calculated with the following:

Baseline Execution Energy

Specialized Execution Energy

This metric guarantees that the reduction is always a positive value; compared to the baseline,

an inefficient specialization approach results in a value that is lower than 1.

Microarchitectural Studies This dissertation focuses on two supporting architectures in the

DySE model, DySER and MAD; detailed microarchitectural studies are performed to understand

the sources of speedup, potential bottlenecks, and their sensitivity to hardware resources. These

studies include the microarchitectural events like instructions or operations per cycle, the

78

instruction window size; we also break the power consumption at microarchitecture level to

examine the tradeoffs with our specialized hardware. Regarding the sensitivity study, we alter

the cache bandwidth and LSQ size, as well as the overall execution parallelism in our models.

The former (events and power breakdown) are collected through instrumenting our architecture

models in the gem5 simulator, and the latter are simply changes in microarchitectural parameters.

79

7 evaluation

The Evaluation of Dynamically Specialized Execution and its supporting architectures are

performed in an incremental basis. DySE, as a flexible model, is evaluated in four different archi-

tectural configurations, where each of them leverages one or both of the supporting architectures

(DySER and MAD) developed in this dissertation. We evaluate the overall performance, power

and energy efficiency compared to a non-specialized platform, and investigates the microarchi-

tectural trade-offs and potential bottlenecks. This chapter is organized as follows: Section 7.1

presents the results of using DySER with a general purpose host processor as access component

hardware; Section 7.2 evaluates the full-potential of the DySE model, using DySER with MAD

to perform execute and access component, respectively; Section 7.3 examines MAD’s generality

with the integration of MAD and other accelerators; and last, Section 7.4 discuss MAD as a

single accelerator that performs access-only phases.

7.1 DySER with Host General Purpose Processor as The Access

Engine

The first step of applying the Dynamically Specialized Execution model is to integrate DySER

into a general purpose host processor. In this configuration, this general purpose processor is

responsible for both hosting DySER (configuration and executing non-specialized phase) and

executing the access component of the phase. These phases, in our hand-optimized benchmarks,

are identified and decoupled into access and execute components by programmers. Such

transformation process improves the overall performance and energy efficiency as the following:

(1) it reduces the total number of instructions by offloading operations to DySER as well as

leveraging the vector interface of DySER. (2) it uses DySER to execute offloaded operations,

which is the execute component in the DAE model.

Reducing the Dynamic Instructions By vectorization and offloading instructions to DySER,

the number of instructions is significantly reduced; the processor pipeline is now only responsible

for a few packed memory accesses. Compared to conventional SIMD or vectorization, DySER’s

80

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

.1

.2

.3

.4

.5

.6

.7

D
y
n
a
m

ic
 I
n
st

ru
ct

io
n

19.7%

Figure 7.1: The reduced dynamic instructions in percentages

flexibility in its vector interface allows more aggressive vectorization and hence reduce more

instructions [58]. Figure 7.1 presents the total percentage of dynamic instruction that is reduced,

with the execution of the same phases. In data-parallel kernels such as fft, mm, conv, close to

90% of the dynamic instructions can be eliminated; some of these instructions are turned into

compact vector instructions, and others are offloaded to DySER. Overall, when the host processor

and DySER execute programs that are written in the DySE model, 60% of the instruction, on

average, can be eliminated and thus reliefs the host processor pipeline. We refer to these

instruction reductions again when explaining speedup results.

It is observed that in these data-parallel benchmarks, the interface instructions are not an

overhead when re-programming; for some general purpose workloads the DySER interface

instruction may results in a higher overall instruction counts [58].

Size of the Execute Component Figure 7.2 summarizes the number of operations (each is

mapped onto DySER’s functional units) in the execute component of dominated phases in our

benchmarks. While these application phases may be very different, our manually optimized

benchmarks can exploit from roughly 10 to 60 functional units on DySER. Note that these

operations may not be viewed as “instructions“ because it may require many more Von Neumann

instructions that the number of nodes (operations) to construct a dataflow graph. In a first-

order observation, the above results suggest that the Host/DySER configuration increases the

overall energy efficiency by removing the load on the general purpose pipeline, in both software

81

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

10

20

30

40

50

60

70

#
 o

f
o
p
e
ra

ti
o
n
s

18

Figure 7.2: Execute component size in operations

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

1

2

3

4

5

6

7

8

S
p
e
e
d
u
p

22X 11X

3.47X

Figure 7.3: Speedup over 2-OOO baseline

(re-programming and the reduction of dynamic instructions) and hardware (operations are

executed on DySER).

7.1.1 Speedup and Energy Reduction

Figure 7.3 quantifies the overall performance improvement over the baseline 2-issue out-of-order

processor when applying DySER; this Host/DySER configuration speedups the benchmarks

from roughly 1.1× to 22×. The speedup in general follows the trend observed in the reduction of

instructions; the benchmarks that use fewer instructions (compared to baseline) in consequence

have higher speedup. For example, in highly regular benchmarks such as conv and radar, the

application phases can be programmed with the least instructions and DySER can effectively

82

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

1

2

3

4

5

6

7

8

E
n
e
rg

y
 R

e
d
u
ct

io
n

12X 17X 10X 14X

3.55X

Figure 7.4: Energy reduction over 2-OOO baseline

exploit its vector interface to perform the computations in the execute component. For the

benchmarks that the DySE version did not reduce many instructions, in contrast, the performance

gain from DySER is minor. In particular:

• lbm has a very large phase, and the execute component we extracted from it is not propor-

tional to the size of the phase.

• spmv and nnw’s access components have many indirect memory accesses. While we tried

to move some address calculations in the access components to the execute ones, the true

data dependency between the two components limits the overall performance.

• treesearch has a long dependence chain which can only be executed serially.

• vr cannot be efficiently vectorized because of the irregular control-flow and control-

dependent memory accesses.

The above performance improvements, moreover, are the major contributor of the energy

reduction. Figure 7.4 plots the energy reduction of Host/DySER compared to non-specialized

baseline. On average, utilizing DySER reduces the overall energy by 3.55×, which is roughly

70% of the energy; we also observed that the overall power is reduced while we in fact are using

more hardware (DySER) for execute component. For example, in the benchmark that has no

83

speedup such as vr, the overall energy is still reduced because of the lower power. The next

subsection elaborates more on the details.

7.1.2 Microarchitectural Analysis

The decoupling of access and execute component in the DySE model enables two microarchi-

tectural benefits. First, it allows the use of the hardware resources in the execute component

accelerator and improves parallelism. Second, it effectively creates a larger instruction window

to saturate the execute component accelerator without increasing the size of general purpose

structures such as reorder buffer. Below, we discuss the instruction and operation level paral-

lelism in the Host/DySER configuration, and also quantifies the effective instruction window

size. At the end of this section, we examine the power breakdown of Host/DySER to conclude

on DySER’s efficiency.

Instruction and Operation Level Parallelism While we have seen that the performance im-

provements are proportional to the use of vectorized instructions, these instructions, in the end,

are fetching data from memory to DySER for parallel computation. To evaluate the parallelism

in both host processor and DySER, we use IPC (for host) and DySER operations per cycle (DySER

OPC) as the metrics. As shown in figure 7.5, Host/DySER configuration has a lower IPC in the

processor pipeline, but it increases the parallelism, on average, by two DySER operations per

cycle with the DySER functional units. In our power efficient out-of-order baseline configuration

(where the non-specialized execution has an average IPC of 0.9), roughly the DySER OPC in-

creases the overall parallelism by 3×. The lower parallelism in host pipeline in the Host/DySER

configuration, however, is because that the host often waits for values from memory access or

DySER computation to proceed its execution.

DAE and Instruction Window In an out-of-order superscalar processor, the parallelism in

the pipeline is supported by a wide instruction window that buffers in-flight instructions

and saturates the execution stage. The Host/DySER configuration, similarly, holds a large

instruction window for both the instructions in host and the functional units in DySER. The

84

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

1

2

3

4

5

In
st

ru
ct

io
n
/O

p
e
ra

ti
o
n
s

p
e
r

C
y
cl

e

7.1 6.3 5.9 6.2 5.9

0.9

2.7

Base

Host/DySER

Host IPC DySER OPC

Figure 7.5: Instruction and operation level parallelism

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

10

20

30

40

50

60

In
st

ru
ct

io
n
 W

in
d
o
w

 S
iz

e Base

Host/DySER

ROB LSQ DySER I/F DyOPs

Figure 7.6: Instruction window size

size of this window impacts the “extractable“ parallelism in the application phase, since a small

instruction window may be filled with dependent instructions and incapable of executing new

independent instructions. As shown in Figure 7.6, we present this effective instruction window

in the baseline processor and Host/DySER as the sum of the following: (1) mean reorder buffer

entries (ROB); (2) mean load store queue entries (LSQ); (3) mean DySER interface instructions

in the DySER interface buffers (DySER I/F); and (4) mean DySER operations (DyOps). In the

results, Host/DySER on average has twice the window size than non-specialized baseline. A

few observations are:

85

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

.5

1

1.5

2

2.5

3

3.5

4

4.5

D
y
n
a
m

ic
 P

o
w

e
r

(W
a
tt

s) Base Host/DySER

Fetch Decode & Dispatch Issue RF & Bypass FU LSU DySER

Figure 7.7: Dynamic power

• The memory access burst length (the number of memory access in a given short period) is

larger in Host/DySER than non-specialized baseline, which results in larger LSQ bar in

the figure. This phenomenon is because that the decoupled access/execute model tend to

pipeline many memory accesses for loading values to DySER, and then issue many stores

for the outputs from DySER. Fortunately, our 1 data cache port and 26-entry LSQ host is

still capable of tolerating this burst with its LSQ.

• The reorder buffer in Host/DySER holds more instructions, because some instructions

may depend on DySER output.

• In the benchmarks that have long dependence chain (treesearch), or many interface

instructions (vr), or employ software pipelining (conv), the DySER instructions may have

to stay in the buffer for some time before they can commit.

The above results show that while the Host/DySER configuration has a wider instruction

window, it may stress the ROB or LSQ. In the next analysis, we inspect the power breakdown of

Host/DySER to understand its power-efficiency.

Power Breakdown Figure 7.7 plots the power breakdown in the following categories: (1) fetch,

(2) decode and dispatch, (3) issue, (4) register file and bypass logic (including the result bus), (5)

functional units in the pipeline, (6) load store unit. In particular:

86

Sub-Module Functional Unit (Int) Functional Unit (FP) Switch I/O Queue
Power 6.7mW 3mW 5.2mW 1.9mW

Table 7.1: Power breakdown of DySER’s sub-modules

• DySER is not a major contributor to the overall power; it consumes roughly 400 mW ,

which is less than 15% of the total power.

• The increased instruction window does not result in visible power increase in ROB or LSQ.

• However, the data cache is stressed in a shorter execution time and hence uses more power.

• In every benchmark, the power of register file is reduced; on average using DySER results

more than 2× of saving in RF power.

We observed that half (9/18) of the benchmarks use more power than the non-specialized

baseline. In fft, tpacf, kmeans, convolution, and treesearch, the data cache accesses are the

major contributor because of more frequent accesses in the re-programmed code. In cutcp,

stencil, nnw, and sad, the power consumption of host and non-specialized baseline are similar,

and DySER becomes the additional cost. Although not shown in graph, the Host/DySER

configuration will be more power-efficient if considering a more aggressive baseline (such

as 4-issue out-of-order host); the reason behind is that the savings from the general purpose

structures increases with a power-hunger host.

Table 7.1 details the power breakdown of functional units, switch, and I/O queues in DySER,

where the power is the average power across all benchmarks in this section. In the model,

the floating-point functional unit 1 uses the most power; the switch power is similar to the

floating-point unit power. Compared to the above two modules, the functional unit with integer

ALU and the I/O queues use less power, roughly 0.5×.

Sensitivity on Hardware Resources In the DySE model, the data delivery rate of the access

component impacts the overall performance. The design decisions of the out-of-order host

under the DySE model, moreover, may be different from a general purpose machine. Figure 7.8
1we use an open-sourced float-point unit from open-cores for our purpose [2].

87

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

2

4

6

8

10

S
p
e
e
d
u
p

3.5, 3.5, 4.5, 6.2X

2-OOO 2-OOO: 2 Memory Ports 2-OOO: Larger Inst. Window 4-OoO

Figure 7.8: DySER’s sensitivity on different access hardware

presents our finding of DySER when integrating to our baseline 2-issue out-of-order processor,

a 2-issue out-of-order with the same parameters as baseline but doubling the resources in LSU

(the cache port doubled from 1 to 2, doubled LSQ entries), a 2-OOO with the same cache ports

but a larger instruction window (the LSQ, the ROB and the scheduler size are equal to the sizes

in 4-OOO), and a 4-issue out-of-order processor modeling the high-performance Intel Sandy

Bridge architecture. From the results, the 2-OOO/DySER with 2×memory port configuration

shows speedup only on benchmarks that have a higher LSQ usage, such as fft and mm; these

benchmarks have more memory access bursts and benefits from the doubled LSQ and cache

ports. Other benchmarks, however, are still limited by the front-end of the pipeline, including the

issue width and the instruction window size. In the case of a larger (≈ 4×) instruction window,

the performance is increased by roughly 30%. If DySER is driven by 4-OOO, both the limitations

in the execution width and the instruction window are removed, and we observe prominent

speedup (77% on average) across all benchmarks. Overall, the performance is highly correlated

to the data delivery speed, which involves both the parallelism, the instruction window and the

cache bandwidth.

88

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

2

4

6

8

10

S
p
e
e
d
u
p

10X 14X 11,47,32X

3.5,6.2,5.3X

2-OOO/DySER 4-OOO/DySER MAD/DySER

Figure 7.9: Speedup over 2-OOO baseline

7.2 DySER with MAD

In the analysis on Host/DySER configuration, we have observed that DySER is not a major con-

tributor to the overall power, and the host processor spends half of the power on the front-end,

issue, RF, bypass and functional units of the pipeline. For a more aggressive pipeline (wider

than our baseline low-power 2-OOO configuration), the power consumption in these super-

scalar structures may also increase. The MAD architecture, on the other hand, provides more

parallelism than a 2-OOO processor from its dataflow scheduling and parallel microarchitecture

with lower power. In this section, we summarize the overall speedup and energy reduction of

MAD/DySER configuration and compare it with two reference design points: 2-OOO/DySER

and 4-OOO/DySER.

7.2.1 Speedup and Energy Reduction

Figure 7.9 shows the performance when using DySER with different access component hard-

wares. Here, 2-OOO/DySER represents a basic configuration that specializes only the execute

component of the program phase, and 4-OOO/DySER offers a better performance than the basic

configuration via faster data delivery. From the results, we can observe that with a wider issuing

width, larger instruction window and more cache ports, 4-OOO/DySER achieves roughly 2×

more performance than 2-OOO/DySER. In particular:

89

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

1

2

3

4

5

6

7

8

E
n
e
rg

y
 R

e
d
u
ct

io
n

12,9,16X
10,10,14X

14,12,26X

3.5,2.6,5.6X

2-OOO/DySER 4-OOO/DySER MAD/DySER

Figure 7.10: Energy reduction over 2-OOO baseline

• In benchmarks that have abundant parallelism (e.g., mm and fft), the 2-wide pipeline

width of 2-OOO is not able to extract all the parallelism in the access component code; this

results in significant speedup from 2-OOO/DySER to 4-OOO/DySER.

• In vr and lbm, the 4-OOO pipeline can tolerant the cache misses (roughly 20%) and buffer

the load store instructions with its wider pipeline and larger instruction window; thus

4-OOO/DySER has a 2× performance boost.

The MAD/DySER configuration has more functional units (in the computation block) com-

pared to 2-OOO/DySER, but has the same load-store unit and same number of cache ports; it

can benefit from the parallelism but cannot buffering loads and stores as aggressive as 4-OOO

host. Therefore, in the benchmarks that have little stress on the load store queue (e.g., cutcp, sad,

needle, and nbody), MAD/DySER can perform as 4-OOO/DySER. In needle, we specifically

re-arrange the loads such that the required values can be pre-load from memory; this results in

slightly better speedup in MAD/DySER than 4-OOO/DySER. Overall, with MAD’s dataflow

architecture, the performance is increased by roughly 50% than 2-OOO/DySER but off by 16%

when compared with 4-OOO/DySER.

Unlike the performance, 4-OOO/DySER is not the best choice among three design points

regarding the overall energy. Figure 7.10 presents the energy of 2-OOO/DySER, 4-OOO/DySER,

and MAD/DySER. First, in our power model the 4-OOO processor (modeling Intel Sandy Bridge

90

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

1

2

3

4

5

6

7

8

In
st

ru
ct

io
n
/O

p
e
ra

ti
o
n
s

p
e
r

C
y
cl

e

2-OOO/DySER

4-OOO/DySER

MAD/DySER

2-OOO: 0.6,2.1
4-OOO: 1.1,3.5
MAD : 0.9,2.8

Host IPC DySER OPC MAD OPC

Figure 7.11: Parallelism in MAD/DySER

architecture) on average consumes 2× power compared to 2-OOO. This gap in the model results

in higher energy consumption of 4-OOO/DySER than 2-OOO/DySER (and hence little or no

energy reduction in many of the benchmarks) event though its performance is better. Second,

the results show that MAD/DySER configuration offers better energy reduction; compared

to 2-OOO/DySER and non-specialized baseline, it is 1.6× and 2.1× better respectively. Thus,

using the MAD architecture can be more energy-efficient than increasing the hardware budget

for a faster and wider out-of-order engine.

7.2.2 Microarchitectural Analysis

The MAD architecture performs dataflow execution for performance and power efficiency.

For the former, it breaks a sequential phase into dataflow graph and extracts parallelism from

concurrent events, actions and computations; this section examines the effectiveness of our MAD

phase transformation. For the power efficiency, the MAD architecture leverages pre-configured

computations and ECA rules to avoid the excess dynamism inside a processor pipeline; the

section presents the power breakdown of the MAD/DySER configuration to quantifies this

power-efficiency. In the end, a sensitivity study is performed to validate the design point of our

implementation of the MAD hardware.

91

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

2

4

6

8

10

12

14

D
y
n
a
m

ic
 P

o
w

e
r

(W
a
tt

s) MAD+LSU:
 0.9+1.3
2-OOO

 Other+LSU:
 1.5+0.9

2-OOO/DySER
4-OOO/DySER

MAD/DySER

Front-End, Issue, RF and Bypass FU LSU DySER MAD

Figure 7.12: Dynamic power

Dataflow Parallelism in MAD Figure 7.11 plots the instruction/operation level parallelism.

In host processor (2-OOO and 4-OOO), the parallelism is evaluated with instructions per cycle.

In MAD, we calculate the operations per cycle as below:

MADOP C = # of actions + # of compute operations

cycles

where the compute operations are the activated functional units inside the computation block of

the MAD hardware. In all, the MAD can trigger around one action or activate one computation

per cycle and deliver the data faster (hence better DySER OPC) compared to our 2-OOO host,

under the same number of cache port. We also observed that, during the MAD execution, the

execution pattern is more like computation or action bursts followed by waiting for DySER

outputs. Similar to other statically scheduled spatial architecture, MAD’s simple hardware

may have a lower utilization rate but does not need many auxiliary structures to saturate a few

functional units.

Power Breakdown In a specialized phase, the MAD hardware replaces processor’s role on the

front-end, issue, execute and write back stages. We summarize the power of these stages and

compare the host pipeline with the MAD hardware. As shown in Figure 7.12, the host pipe is

break into functional units (which performs the necessary address computation), the load-store

92

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

1

2

3

4

5

6

7

8

9

S
p
e
e
d
u
p

MAD MAD-2m (Memory Ports) MAD-2c (Doubled Comp. Block) MAD-2mc (2Mem+2Comp.) 4-OOO

Figure 7.13: MAD’s sensitivity on hardware resources

unit and a composition of other stages. Few observations are:

• The MAD hardware consumes less power than the sum of Fetch, Decode, Dispatch, Issue,

Execute, and Write-back stages while they are performing the same work;

• MAD/DySER stress LSQ more than 2-OOO/DySER because more frequent accesses (less

total execution time); and

• Compared to 4-OOO/DySER, MAD/DySER has similar power consumption on LSQ but

significantly better in other parts.

In our design, the integration of MAD bottlenecks in load-store queue when considering

power; one of our future works is to merge load-store queue into event queues to save power.

Sensitivity on Hardware Resources Thus far, we have studied our MAD hardware implemen-

tation with two canonical design points of commercial out-of-order processor. To understand

that if our MAD hardware design point is a balanced implementation as our 2-OOO and 4-

OOO model, here we discuss the MAD architecture’s sensitivity on its hardware resources

(the number of functional units in the computation block) and interface (the number of cache

ports). Figure 7.13 considers three additional design points: (1) MAD-2m, where we use two

cache ports (and a wider action block) instead of the 1 cache ports to increase the bandwidth;

93

(2) MAD-2c, where we use doubled functional units in the computation block with doubled

computation block I/O event queues; (3) MAD-2mc, where the computation block and cache

ports are both doubled. The 4-OOO/DySER configuration is also plotted for reference. Two

observations are:

• MAD is more sensitive on the memory bandwidth; our 2-OOO baseline’s one cache port

and small LSQ may be overly conservative for a MAD integration. Simply increase the

computation block size does not increase parallelism or performance.

• However, with both higher bandwidth and more functional units, MAD increases the

performance by roughly 25%. Although not shown here, the overall energy reduction is

not as good as performance increase because the additional consumption on hardware.

The finding of this sensitivity study is different from the study on 2-OOO, where we increased

the cache ports and LSQ but observed little speedup. This observation suggests that, effectively,

MAD provides more parallelism and a larger instruction window with its pre-configured

dataflow execution compared to our power-efficient 2-OOO model.

7.3 MAD Driving Other Execute Accelerators

Section 5.5 discusses three additional integrations, MAD/SSE, MAD/NPU and MAD/C-Cores,

and shows the flexibility of the MAD architecture. In this section, we quantitatively analyze the

performance and energy reduction when using MAD to diving these accelerators. A specific

in-order core design point is used in this section for C-Cores; this is because the Conservation

Cores proposal [122], it was integrated into an in-order machine for maximum power efficiency.

To control the experimental variables, we use the same issue width, branch predictor, cache

configurations as our 2-OOO host (it does not have ROB or other out-of-order specific structures).

7.3.1 Speedup of MAD/Accelerators

Figure 7.14 presents the performance of the three accelerators when driving by MAD, 2-OOO or

4-OOO. First in Figure 7.14a, 4-OOO/SSE and MAD/SSE have prominent improvement over

94

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

1

2

3

4

5

6

S
p
e
e
d
u
p

(a) SSE

ff
t

in
v
k2

j

jm
e
in

t

jp
e
g

km
n
s

so
b
e
l

g
m

0

5

10

15

20
(b) NPU

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

1

2

3

4

5

6

7

8
(c) C-Cores

2-OoO
4-OoO
MAD
in-order

Figure 7.14: Performance of MAD/Accelerators

2-OOO/SSE; this is because that, when compared to DySER other accelerator, SSE use more

instructions and requires a wider front-end to issue them. These fine-grained instructions are

often independent or with some ILP in our benchmarks, and 4-OOO and MAD can effectively

perform them. In benchmarks like conv, our software-pipelined phase contains many more

parallel SSE instructions such that even 4-issuing is not enough; MAD/SSE performs better

because the MAD hardware can be configured with more parallel lanes. needle and merge and

nbody have similar characteristic.

Figure 7.14b shows that MAD/NPU has similar performance as 4-OOO/NPU, and both

of them are better than 2-OOO/NPU. The speedup increase is not as large as what in the SSE

analysis because of two reasons: (1) in NPU benchmarks, there are dependencies between

invocations of a neural network in NPU; and (2) NPU does not have a vector interface. Overall,

MAD/NPU offers roughly 20% more performance over 2-OOO/NPU.

As previously mentioned in MAD/C-Cores analysis, we compare MAD against in-order

and 2-OOO hosts. As shown in Figure 7.14c, the performance of in-order C-Cores is limited

95

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

1

2

3

4

5

E
n
e
rg

y
 R

e
d
u
ct

io
n (a) SSE

ff
t

in
v
k2

j

jm
e
in

t

jp
e
g

km
n
s

so
b
e
l

g
m

0

5

10

15

20
(b) NPU

cu
tc

p ff
t

lb
m

m
m

m
ri

-q

sa
d

sp
m

v

st
e
n
ci

l

tp
a
cf

n
n
w

n
e
e
d
le

km
n
s

co
n
v

m
e
rg

e

n
b
o
d
y

ra
d
a
r

ts
rc

h v
r

g
m

0

2

4

6

8

10

12

14

16
(c) C-Cores

2-OoO
4-OoO
MAD
in-order

Figure 7.15: Energy reduction of MAD/Accelerator

because of the sequential execution, and is always less than MAD/C-Cores and 2-OOO/C-Cores;

MAD and 2-OOO is a better access component architecture when it can exploit the parallelism

in memory access dataflow and feed multiple C-Cores (with only computation operations)

concurrently. In addition, we observe that 2-OOO/C-Cores surpasses MAD/C-Cores in a few

benchmarks. Because C-Cores is built with an inherently sequential execution model for low

power (no vector interface as well), our C-Cores program cannot fully exploit the parallelism in

the MAD hardware.

7.3.2 Energy Reduction of MAD/Accelerators

The basis of energy improvement is straightforward: the MAD hardware consumes 50% less

power compared to the sum of Front-end, issue, RF and functional units of a 2-OOO host.

In Figure 7.15a, we observed that MAD/SSE outperforms 2-OOO/SSE in energy; the SSE

instructions create a heavy load on the 2-OOO pipeline, but not in the spatially configured MAD

hardware. This observation suggests that the design of our MAD hardware integration can

96

2-OOO/DySER

24.5%34.1%

12.3%29.0%

3.0W

MAD/DySER

53.9%

13.4%32.7%

2.9W

2-OOO/SSE

20.3%33.1%

8.7%
37.8%

3.3W

MAD/SSE

55.9%

13.6%30.5%

3.3W

2-OOO/NPU

20.5%35.0%

13.0%31.5%

3.0W

MAD/NPU

54.5%

15.2%30.3%

2.6W

2-OOO/C-Cores

22.3%30.1%

21.2% 26.4%

2.5W

MAD/C-Cores

43.6%

28.3%
28.1%

1.8W

FU
LSU
Accel
Other
MAD

Figure 7.16: Energy reduction of MAD/Accelerator

effectively reduce the dynamism in the pipeline (in fact our power model reports a higher overall

power on 2-OOO/SSE and 4-OOO/SSE compared to non-specialized baseline). On average,

MAD/SSE offers roughly 2× energy reduction, which is 50% less energy.

Figure 7.15b presents the overall energy reduction of MAD/NPU, 2-OOO/NPU and 4-

OOO/NPU. It is observed that NPU energy reduction is dominated by the energy consumption

of the access component hardware; our power model shows that the NPU hardware consumes

a lower power than all the other accelerators used. In such a case, MAD/NPU offers the best

energy reduction (more than 4×) over the baseline.

In Chapter 2 we have discussed that in-order processors are not comparable to out-of-order

hosts in the two following cases: executing general purpose phases of an application and the

overall energy envelope. Figure 7.15c validates this statement with C-Cores as an example; in

many cases, in-order/C-Cores consumes more energy during the specialized phase because of a

longer execution time. 2 From the results, using MAD is slightly better than 2-OOO on average,

and our 2-OOO/C-Cores and MAD/C-Cores consumes less energy because of better speedup.

97

agg fs libq mcf sm gm
0

.5

1

1.5

2

2.5

S
p
e
e
d
u
p

2-OOO 4-OOO MAD

agg fs libq mcf sm gm
0

.5

1

1.5

2

2.5

E
n
e
rg

y
 R

e
d
u
ct

io
n

Figure 7.17: MAD (Access-only) performance and energy

7.3.3 Overall Power Breakdown of MAD/Accelerators

Figure 7.16 summarizes the power breakdown of MAD/Accelerators. For simplicity, we classify

the power in to the five categories, functional unit, load-store-unit, accelerator, other, and MAD

as described in Section 7.2.2 and only shows the result of 2-OOO. The power consumption

numbers are the average across all the benchmarks in the corresponding set (e.g., MAD/NPU

uses NPU benchmarks). By observation, in the 2-OOO/Accelerator configurations, the one-third

of “other“ (Fetch, Decode and Dispatch, Issue, RF and Bypass) and the power of functional

unit are merged into the MAD hardware in the MAD/Accelerator configuration. While in

general the power of load-store unit increases because of the better performance and utilization,

MAD/Accelerator is a more balanced design compared to 2-OOO/Accelerator.

7.4 MAD Executing Access-Only Benchmarks

We evaluate five memory intensive kernels to understand the potential of the MAD hardware

as a pure memory access engine without any accelerators attached. The five kernels are: (1)

array aggregation (agg), (2) filescan (fs), (3) two node array traversal and conditional update

kernels in libquantum (libq), (4) mcf from SPECINT [115], and (5) a join kernel in sortmerge
2Compared to 2-OOO without acceleration, the energy reduction of our in-order/C-Cores configuration is less

than the energy reduction reported in [122]. This is because of the performance of the OOO processors are much
better than in-order with our data-parallel workloads.

98

(sm). These kernels traverse through data structures and have very little computation, which are

often not specializable for compute accelerators.

7.4.1 Speedup and Energy Reduction

Figure 7.17 shows the speedup and energy reduction when using the MAD hardware to exe-

cute these access-only application phases. On average, MAD(Access-only) offers roughly 40%

speedup over the non-specialized baseline, with 1.7× energy reduction. In a specialized phase,

the results give the evidence that the MAD architecture can improve the overall performance

without the cost of power-hunger out-of-order structures. In benchmarks that have many mis-

prediction from memory-dependent branches like fs, MAD can offer a better performance than

4-OOO from less overhead in rollbacks.

7.5 Chapter Summary

This chapter explores four different configurations under the DySE model, and deeply investigate

the efficiency of the two supporting architecture– DySER and MAD.

DySER Conventional out-of-order processor design uses many auxiliary structures to guar-

antee a sustainable performance when executing applications for different purpose; the DySE

model helps relief the load of this general purpose pipeline by decoupling and specializing

application phases. Our analysis shows that we can effectively create a more efficient code (with

fewer instructions) and use DySER to perform the execute component in a specialized phase.

With a general purpose host executing the access component code, DySER improves the overall

performance and energy efficiency and is not a major source of power consumption. Regarding

the performance sources and bottlenecks, DySER is offering much more parallelism through its

hardware, vector integration interface, and the re-programming of the phase; it is bottlenecked

by its host in both performance and energy.

MAD To exploit more benefit from the DySE model, the MAD architecture can be used to

perform the access component code in a specialized phase. MAD/Accelerator configuration

99

replaces the power in-efficient general purpose host and performs memory access for execute

accelerators. Our analysis on the MAD hardware reports better performance and energy re-

duction compared to a 2-OOO host, diving four different accelerators. We also observed that,

while providing more performance with lower energy, our MAD hardware is bottlenecked on

the load-store queue and the memory bandwidth.

The MAD/DySER Integration Although not emphasized in the evaluation, MAD/DySER

exploits the full potential of the DySE model and achieves the best speedup and energy reduction

over our 2-issue out-of-order baseline processor. It performs better than MAD/SSE or MAD/C-

Cores in the same benchmarks, which follows the finding prior works [60, 58]. The flexibility in

the interface design allows DySER and MAD to specialize the application phase efficiently with

more parallelism, and the microarchitecture of DySER and MAD eliminates the use of power

hunger out-of-order structures.

100

8 related work

Numerous hardware specialization approaches have been proposed to address power and

energy efficiency. As previously mentioned, we only consider architectures that target specified

tasks, regions, or phases as a specialization approach–not a different architecture that executes

an arbitrary program. In particular, this section compares the two supporting architectures

in our DySE model to related architectures. Section 8.1 discusses DySER and other execute

architectures and Section 8.2 compares MAD to other access architectures.

8.1 DySER and Execute Architectures

The closest work to DySER is the Burroughs Scientific Processor (BSP) [81]. BSP uses arithmetic

elements implemented with pipelining to accelerate vectorized FORTRAN code. The evolution of

two important insights from BSP lead to the DySER architecture. First, compilers are used achieve

generality in both BSP and DySER; they enable automatic identification and specialization of

application phases. DySER further expands the flexibility by using a circuit-switch network and

a vector interface. Second, both BSP and DySER identify the critical role of intermediate value

storage. The arithmetic elements in the BSP have dedicated register files that are not part of the

architecture state. Unlike this “centralized“ design, DySER provides distributed storage in its

network using flow-control pipelined registers. The final difference is in the implementation.

While the BSP spends much effort on building a fast storage system (register, I/O, special

memory), DySER can leverage the flexibility in the DySE model and use conventional core or

MAD to achieve the same goal.

In addition to BSP, we briefly discuss a few execute specialization architectures, in the order

of increasing granularity (as described in Chapter 2 Figure 2.1).

Fine-Grain Execute Specialization Fine-grain execute specialization approaches often in-

volves a smaller number of functional units and a simpler specialized control logic or front-end;

these advantages allow a lower deploy cost. Intel’s MicroOp-fusion is one successful exam-

101

ple, where a simple specialized front-end keeps examining the instructions stream and uses

specialized datapath for fused micro-ops.

Another commercialized example is the SIMD accelerator, which extends a single instruction

into multiple functional units and process parallel data streams at the same time. These archi-

tectures specialize the parallel patterns in an application and can be extremely efficient when

executing regular data-parallel patterns. However, using SIMD accelerators usually requires

some amount of programming effort; despite continuous effort on compiler development over

decades, automatic code generation for SIMD accelerators such as Intel SSE [4] is still difficult

and sub-optimal because of the underlying restricted hardware structure.

Moreover, even with programmers’ involvement, they cannot execute irregular workloads

efficiently. It is often observed that some programs can be ported to SIMD accelerators with

very limited gain or worse performance. Various techniques have been proposed to address the

above issue. In addition, there are efforts to compile and generate SSE code automatically. Lark

et al. proposed the idea of Liquid SIMD [35] to vary the SIMD width to address data-parallel

inefficiency.

Coarse-Grain Execute Specialization Coarse-grain execute specialization usually implies

more changes in the hardware or integration. From the recent literature, the CCA and VEAL

Loop accelerator architectures [32, 91, 30, 33] are related. These implementations target loops

and hence are designed with limited scalability, supporting only a few functional units. Specif-

ically, VEAL is limited to inner-most loops that must be modulo-schedulable, and CCA has

limited branching support. They do not support a diverse applications like DySE, and have

memory access limitations (CCA does not allow a code-region to span across load/stores).

VEAL exploits the loop’s modulo-schedulability for a novel design which is limited to 2 INT

ALU, 2 FP and one compound unit; CCA uses a feed-forward cross-bar network connecting

consecutive rows which can limit scalability and thus generality to many domains. Compared to

them, the circuit-switched interconnection network and pipelining are the profoundly powerful

features in DySER

Other reconfigurable architectures include the following: Garp uses an FPGA-like substrate

102

for tight-inner loops but suffers when loop iterations are small [68]; the hardware also lacks

the capability of mapping control-flow, which limits the patterns it can specialize. Chimaera

maps instruction sequences to a reconfigurable, FPGA-like substrate [126]. Compared to DySER,

it specializes execution at the circuit level using look-up tables, registers and FPGA routing;

DySER, on the other hand, intuitively specializes at operation level and natively supports

compiler generated graphs.

At coarse granularity, there are also non-reconfigurable accelerators. These application-

specific integrated circuits (ASICs) provides maximum hardware efficiency, in terms of area and

power for a specific program. For example, Conservation Cores (C-Cores) is similar to DySER

in that the functionality of applications is extracted at compiler IR level, by which a synthesis

and mapping process statically specializes the functionality into fixed hardware substrates. To

add flexibility of patching the target application, C-cores offer exception-handling capabilities.

From above, C-cores maximize the energy efficiency with limited flexibility.

Compared to DySER, Conservation Cores can save more power but sacrifice a significant

amount of performance since no parallelism is extracted. In addition, the generality is limited

since only little reconfigurability is provided. DySER, as a more balanced approach, may provide

energy efficiency over conservation cores because of a higher improvement in performance.

Works related to DySER Microarchtiecture The DySER microarchitecture design is similar to

tiled architectures like RAW [82], Wavescalar [117], and TRIPS [22]. DySER is a pure computation

fabric and thus has no buffering, instruction storage, or data-memory storage in the tiles. Second,

DySER implements circuit-switched static routing of values, thus making the network far more

energy efficient than the dynamically arbitrated networks. While these architectures distribute

design complexity to different tiles, DySER does not add complexity. The DySE model and

the decoupling of access and execute components enable several simplifications and DySER

only needs to perform computation. In all, they are a different architecture aiming for general

purpose, but DySER is a specialization approach for specific application phases.

Recent Proposals The design philosophy of DySER can be seen in several recent proposals

in their principles; here we classify recent proposals that related to DySER in two categories:

103

algorithmic specific acceleration and dynamic composition of primitive functions.

• Algorithmic specific acceleration: Convolution Engine [103], Widx accelerator in the

Meet the Walkers [78], HARP [124], and NPU [45] accelerates a specific algorithm in hard-

ware, which enables efficient hardware optimization and often involves a specialized data

acquisition mechanism. Convolution Engine customizes load, store, register file and the

datapath (map and reduce logic) to deliver data to its functional units; the Widx accelerator

accesses hash buckets in parallel for advanced hash computation, but with a conventional

RISC processor; HARP accelerates range partitioning, where it applies a decoupled execute

model that interfaces its comparator to memory with queues (stream buffer); and NPU, as

previously mentioned, is developed for computing multi-layer perceptron neural networks.

Among these proposals, NPU and HARP are more related to DySER because of their

decoupled execution model.

• Dynamic Composition of primitive functions: BERET [63], Q100 [125] both identify the

primitive functions in phases. BERET constructs such phases as subgraph execution graphs

and developed functional units and interconnection to map the graph; Q100 focuses on

database primitives and links these primitives together for a larger phase. They both

remove the overheads of issuing instructions to perform primitive functions in a phase.

8.2 MAD and Access Architectures

In terms of overall goals, MAD is most closely related to the position paper by Hou et al. [70],

which describes “the common characteristics of the data access patterns of the accelerators; and

points out both opportunities and practical challenges in addressing deficiencies in existing

designs.” As depicted in Table 8.1, MAD is a novel confluence of concepts in three disparate

categories - accelerators/heterogeneity, the decoupled access/execute model, and dataflow. Pre-

computation and loop accelerators share MAD’s end goal of improving the memory behavior.

Prior works are either too narrowly tied to a “native” platform (Loop accelerators), or too general

that they become unusable in concert with accelerators (Dataflow), or do not target memory

access, power, and performance goals (DAE and Pre-computation)

104

Topic Closest re-
lated

Similarity Conceptual difference

DAE Outrider [38] Goal is same - DAE to
improve memory per-
formance

Outrider creates many threads,
MAD does exposed fine-grained
dataflow for energy efficiency

Dataflow Triggered
Execution
(TE) [99]

Events & Actions ex-
posed in ISA

MAD µarchitecture targeted
for integration with accelera-
tor, lower-level µarchitectural
events, & MAD does dataflow
computation

Pre-
computation

SDDM [107,
106]

Data-driven “strands”
of address compute

SDDM is von-Neumann and
“strands” run as SMT threads;
MAD’s native dataflow achieves
energy efficiency

Loop accelera-
tors

RSVP [30] “Configurable” address
generation patterns for
DMA-like engine

RSVP supports only vector model
(memory access mechanism tied
to RSVP compute fabric), no
branching allowed and host pro-
cessor must remain on.

Table 8.1: Comparison to related work

Access Component in Decoupled Access/Execute The classic DAE model was introduced

in the early 1980s [112, 56], and is incarnated in classic vector processors, conditional vectors,

decoupled vector clustered microarchitectures [76, 62], VT and Maven [80, 84, 17, 83], coarse-

grain software decoupling [79, 71] in very recent work, in a fragment processor design [12]

allowing/exploiting extremely regular addresses in graphics workloads, and hosted acceler-

ators [103, 45, 122, 57]. In a sense, accelerators can be viewed as vector cores with arbitrary

vector chaining, and the FIFOs provide are akin to a highly “irregular” vector register file. In

that regard, dynamic vectorization conceptually seeks to achieve the same as specializing the

access-code [97, 120].

Dataflow MAD’s dataflow execution resembles the classic dataflow machines from 70s to 90s

[42, 64, 72, 13, 98], and more recent incarnations [109, 117, 21]: we also specify explicit targets and

dataflow based computation of work. As shown in the Table 8.1, Triggered Instructions(TI) [99]

which combined action/events with dataflow is most similar to MAD. Scheduled Dataflow [75]

is also quite similar to TI and has inspired many other DAE/dataflow hybrids. None of them

105

use low-level dataflow for memory access.

Pre-computation, pre-computation with reintegration In pre-computation, the idea is to ex-

ecute a “reduced” version of a program in the hope of triggering cache accesses early for costly

cache misses [128, 127, 9, 94] or for branch mispredictions [46]. Assisted execution [43] and

SSMT [24] are general paradigms for such pre-computation, and lookahead combines pre-

computation and DAE [51, 104, 50]. Pre-computation with register integration, as developed in

the SDDM work when viewed in the accelerator context, creates a data-driven thread for each

load and store. This approach is conceptually similar to MAD’s execution model, but with a

very different implementation because of different end goals.

8.3 Chapter Summary

In this chapter, we discussed the related work to the two supporting architectures, DySER

and MAD. Prior works related to DySER differ in the granularity and the microarchitecture

capability (e.g., control-flow, reconfigurability, and the vector interface). MAD, moreover, is a

very different approach that efficiently realizes the access component; it differs from the related

work in its execution model and the event-driven dataflow microarchitecture.

106

9 conclusions and future work

This dissertation describes an integrated approach of hardware specialization by computation

and data acquisition optimization under the DySE model. In this final Chapter, we summarize

the contributions and discuss the possible areas of future work.

9.1 Contributions and Conclusions

Architectural hardware specialization have thrived over the past 20 years, and this work begins

with a summary of the underlying principles of hardware specialization in Chapter 1. It then

details the Dynamically Specialized Execution model and its two supporting architectures:

The Execution Model This dissertation develops an alternative execution model, DySE, which

replaces the original Von Neumann superscalar execution in profitable application phases. It

shows how decoupled access/execute and reconfigurable hardware can be effectively utilized

to enable new optimizations.

An Execute Specialization Architecture We detailed the design, implementation and evalua-

tion of DySER, the execute component hardware and accelerator under the DySE model. DySER

uses a light-weight and reconfigurable circuit-switched network to construct the computation

datapath dynamically. With the reconfigurability, the flow-control protocol design, the capability

of supporting control flow and data-parallel integration interface, DySER can eliminate the

overheads in conventional instruction processing and provide energy reduction. We specifically

discuss a successful integration, SPARC-DySER, as a proof of the concept for DySER.

An Access Specialization Architecture We examine the out-of-order core architecture and

discover the fundamental tasks when driving an execute accelerator in a specialized application

phase. We then propose the MAD architecture, which replaces the role of the host processor

and drives a family of execute accelerators that fits in the decoupled access/execute model. We

developed the ISA, microarchitecture, and integration of MAD; then evaluate it with DySER

and other accelerators, and explore its potential with access-only application phases.

107

9.2 Future Work

The DySE model and its two supporting architectures are empirically evaluated, with analysis of

many aspects. Through the design decision and evaluations, we identified several optimization

opportunities for future works, in both microarchitecture and system level design. This section

discusses the directions of future work, enlightened by our findings.

System Level Integration DySE like other specialization approaches can be applied out of

the processor core; following the configure-execute-reuse philosophy, DySER and MAD can

be integrated onto a system-wide interconnection and work as co-processors for specific code

regions. This type of integration implies the some changes to the current design, in particular:

• Memory: Leaving the processor core, DySER and MAD lacks a well-defined memory

subsystem that previously was provided by the data cache inside the core. A specialized

memory subsystem (or even scratchpad memory) can be used and may increase efficiency;

a cache compliant memory subsystem is also applicable and has advantages in sharing

data between general purpose cores or other accelerators on chip. However, the latter may

require modifications in MAD to work with a coherent cache.

• Configuration and Interface: The configuration and DySER/MAD interface to cores of

a system-level integration may be different from the instructions extensions discussed

in this dissertation. The processor cores have to send remote message packets over the

system to configure DySER and MAD, which may not be very efficient. One intuitive

solution is to use an additional DMA to configure both DySER and MAD by reading from

a given memory block.

• Resource Sharing and Scheduling: The use of DySER and MAD under system level en-

able opportunities in sharing DySER and/or MAD; consequently this integration requires

scheduling of cores and application phases that are executed on DySER/MAD.

Software or Hardware Specialized Front-End Section 2.2.4 discussed two cases that the cur-

rent DySE model cannot efficiently support with the architectures we designed: the flat profile

108

and control intensive phases. Besides re-writing the application manually, compiler or program-

ming language techniques may be used to organize the generated configurations differently. For

example, the SNACK middleware [61] programming language, although in a different domain,

allows the compiler to re-organize the control flow of the final program. Control-flow optimiza-

tion [87, 37] is another long-developed software approach to address such issues. Section 2.3.2

also approached the solution; if a hardware front-end can be built, it can dynamically profile and

cache the frequent phases instead of creating it at compile time. While a pure hardware approach

may result in prohibitive power consumption or limit the phase size, a hardware/software

co-designed runtime profiling and phase creation platform could be a future direction.

Merging LSQ into MAD In the evaluation of MAD, we observed that the load-store queue,

the data TLB and data cache becomes a major source of power consumption. While the data

cache and data TLB are necessary, the load-store queue can be merged into MAD since the MAD

hardware already has storage structures (event queues) that temporally holds data values. To

utilize the existing distributed event queues, we can borrow the wisdom from prior efforts on

removing the CAM structure of the load-store queue [116]. The basic idea is to use dependence

predictors to predict if the loads are dependent on a prior store, and to push the values from the

event queue that contains the store data to the target event queue that is supposed to hold the

future loaded data. In such a case, roll-back and flush mechanisms have to be modified in the

event block to manage mis-predictions.

9.3 Reflections

This final section provides few lessons learned from the work with a closing remark. First, it

discusses possible alternatives regarding the microarchitecture design; with even simpler and

straight-forward hardware, DySER or MAD can be an alluring approach for industrial architects.

Second, this section revisits the findings of the microarchitectural analysis, which provides some

insights for future research.

109

9.3.1 Even Simpler Microarchitecture Designs

The microarchitectural design complexity can be critical in the industry; in such a circumstance,

simpler microarchitecture help to justify the deployment of a new unit such as DySER or MAD.

To reduce the complexity of MAD or DySER, we consider the following designs:

Trading Generality for Complexity

In the DySER network and the MAD computation block, we can reduce the complexity by

supporting fewer functions or lower connectivity between functions. This approach, however,

scarifies the generality and may not be able to execute some dataflow graphs with the simpler

network.

Homogeneous Functional Units and Alternatives to the Interconnection Network

In the DySER network and the MAD computation block, reconfigurable fabrics are used to

perform static dataflow computations. Several approaches can be used to reduce the complexity.

First, homogeneous functional units can lower the scheduling complexity; they come with a

higher overhead in power because more logics may be unused in a configuration. Second, with

the homogeneous functional units, we can use grouped FUs (like compound functional units)

instead of a dataflow network. Unlike the circuit switched dataflow network, which is the

original design, using the grouped FUs makes the execution similar to the execution stage in

a superscalar pipeline; grouped FUs switch between pre-configured instructions to execute

a dataflow graph. Buffers (temporal registers) can be used to chain the computation within

grouped FUs in different cycles. While this design may use more energy per computation

operation, it follows conventional wisdom and can be simple in implementation.

Event Triggering with CAM and Temporal Registers

In the MAD event block, we use fine-grained ECA rules to check the dataflow events and states

in the event queues. Instead of spatially clustered queues and comparator arrays, A CAM and

temporal registers can be used to hold the values and check the readiness the values. This

approach resembles the instruction wakeup logic in a superscalar pipeline, where the scheduler

sends register ID, value and the state bit to the CAM for waking up the consumer instructions.

110

With the previously mentioned grouped FUs, the event triggering can be done at a coarser

granularity with a packet of temporal register IDs, values and state bits; the CAM then takes

this packet from grouped FUs and wakes up the pre-configured instructions to the grouped

FUs. The action block, however, have to be changed to schedule pre-configured instructions

besides scheduling the loads and stores.

Overall, the ideas of DySER and MAD can be implemented differently with tradeoffs in

complexity, performance and power.

9.3.2 Revisiting the Observations

This dissertation developed several observations in microarchitecture design. Although it may

take more efforts to generalize these observations, they are intuitive and can be hints to future

research:

• Parallel execution units or stage is energy-efficient, and the harder problem is to create

such parallelism in hardware. The performance from pipeline width have to be considered

along with the instruction window size. The hardware units that create the parallelism,

like the scheduler, register file and reorder buffer in a superscalar pipeline, are not only

cycle-critical but also power-critical.

• Software can help hardware to create the parallelism for the execution units; pre-configuration

of a hot code-region is one of the approaches that relief the burden of the hardware. Conven-

tional instruction stream does not help much since the hardware units have to dynamically

analyze the relationships between each instruction.

• Cache bandwidth and the capability to process cache access requests in the same cycle are

not only critical to the throughput, but also to the execution time or latency. In the case

of decoupled access/execute, having memory values faster results in a lower execution

time of the access and the execute components and more overlapping between the two

components. It changes the critical path.

111

9.3.3 Closing Remark

Today, hardware specialization and accelerators are everywhere, from high-performance com-

puting and servers to mobile devices. Every new spark, inevitably, face the same question

on novelty and has to distinguish itself from a vast sea of literature. In the development of

DySER and MAD, we went through the same question and developed a complete statement that

covers the software stack, the execution model, and the support architecture and microarchitec-

ture. Hardware specialization is not merely about parallelism for performance or producing

microarchitectures that “harden“ tasks from software for power efficiency; it should has de-

sign principles and mechanisms, different than the ones in general purpose machines, that

enables more parallelism or lower power on specific tasks. Besides offering a new hardware

specialization approach, we hope this work also improves the development process of future

proposals, facilitating the realization of better hardware specializations in commodity processors

or systems.

112

a the encoding of mad isa

This chapter discusses the MAD ISA and the encoding of the configuration bits. Specifically,

Section A.1 discuss the encoding of the dataflow graph nodes, which use the same encoding of

the functional unit and switches in DySER. Section A.2 details the encoding of the ECA Rules

(described in Chapter 5) inside the event and action table.

A.1 Dataflow Graph Node

In the MAD ISA, the address and branch computation are represented as dataflow graph nodes;

Section 5.2.1 described the dataflow graph nodes in 3-tuples (source, operation, destination). This

description abstracts the underlying hardware and thus could support different implementations.

Here, we discuss a specific implementation of the MAD computation block; it leverages the

idea of DySER and constructs the dataflow graph with functional units and switches. In this

implementation, the graph is mapped onto the hardware (which is exposed into the MAD binary

translator) and encoded in terms of functional units and switches. The functional units are

responsible for the operations in dataflow graph nodes, and the switches construct the edges

in-between.

Table A.1 presents the encoding of the functional unit and switch; each of them is 24-bit in

length. We describe the two encoding below.

Switch The first row of Table A.1 shows the encoding of a switch. It has 8 output multiplexers

(W, SW, S, SE, E, NE, N, and NW); each of them selects from 5 input direction and forwards to the

destination. The encoding of a switch is straightforward: Each of the multiplexer uses 3 bits to

select the input.

Functional Unit The functional units has the following fields: (1) Data input mux selection

from DI0 to DI2, where each of them uses 3 bits; (2) 4-bit control flow code (CF), which specifies

if this functional unit uses predicate, phi function, or selection; and (3) 10-bit opcode (Opcode).

The second row of Table A.1 lists the encoding.

113

µarch Encoding
Switch W[2:0] SW[2:0] S[2:0] SE[2:0] E[2:0] NE[2:0] N[2:0] NW[2:0]

FU DI0[2:0] DI1[2:0] DI2[2:0] CF[3:0] Opcode[9:0]

Table A.1: The encoding of the dataflow graph

Rule Encoding
Event-Conditions EQ0-4[15:0] Condition0-4[7:0]

Actions Src-Dst0[7:0] Src-Dst1[7:0] Op0[1:0] Op1[1:0] reserved

Table A.2: The encoding of the ECA rules

A.2 ECA Rules

In the MAD hardware, an ECA rule is decoupled into Event-Conditions and Actions. The

former is stored in the event table of the event block, and the latter is stored in the action table

of the action block. Similar to the encoding of the functional units and the switches, each of the

encoding of Event-Conditions or Actions is 24 bits.

Event-Conditions As described in Section 5.3.5, an ECA rule in our implementation supports

four triggering event queues. For each of the event queue, a condition field can be set to examine

the condition of the corresponding event queue. The condition of the event queue can be true,

false, or empty, which indicates that the examination of the state is not required for this event

queue. The first row of Table A.2 shows the encoding of the Event-Conditions.

Action The second row of the Table A.2 presents the encoding of the actions. Each action

supports two source-destination event queue pairs (Src0, Dst0, Src1, Dst1); each of the

source-destination event queue pair has a Op field, which indicates if this movement is a load, a

store, or a simple move. In the case of loads and stores, the data in the source or destination

event queue is used as memory addresses.

114

b the set/reset protocol

This chapter sets out to prove the correctness of the Set/Reset protocol (described in Section 3.3.1).

In particular we prove two properties: i) The reset phase sets all nodes in a configuration into

free state; and ii) the set phase that follows sets them all correctly into the new configuration

state.

To begin, we can model the DySER network as a connected graph G that has some number

of nodes. A configuration of DySER uses a subset of the nodes to construct a directed subgraph

G′.

Assumption B.1. The DySER network G is a bi-directional connected grid graph (i.e., a partially

connected mesh topology).

This assumption simplifies the topology and connection of the DySER network; this proof

can be extended to the real DySER network with some effort. We define the configuration

subgraph G′ as the following:

Definition B.2. In an configuration, a subset of nodes and edges of G constructs subgraph G’, which is

an acyclic graph; each of the node ∈ G’. has some producers and some consumers. In G’, there exists some

source nodes and sink nodes that has no producer or consumer.

Using the set and reset protocol, the DySER network is able to switch between different

configurations, where each of the configuration may use different nodes and edges and thus

has a different subgraph than others. For a node n ∈ G, it can be in one of the following state:

• Used : the node is currently in use. This state represents n ∈ G ∧ n ∈ G′.

• Free : the node is free to be set to a new configuration; it may still in the free state (not

used) after it is set to a new configuration.

• Set : the node received a set signal and about to be used (will be turned into the used state

in future); similar to the used state, it represents n ∈ G ∧ n ∈ G′.

• Reset : the node received at least one reset signal and about to be freed.

115

The data (as well as the set and reset signals) are sent from the edge nodes of the current

configuration subgraph G′. These data are processed in-order in the used nodes in G′. Two

additional variables, Pn and Cn, are used to describe the set of producer nodes and the set of

consumer nodes of node n in G′. We assume that a correct hand-shake flow-control protocol is

responsible for the data and the signals between the nodes.

Assumption B.3. For the data or signal that is send from node n to m, a hand-shake protocol guarantees

the receipt of the data or signal; if it has not been received, the data or signal is hold (asserted) in node n

until node m receives it. Node n does not receive any new data or signals if it holds any data or signal, or

if it have not received all data from Pn, which is required for processing the data.

The set and reset signal may modify the state, the sources, and the destinations of a node;

they are represented in two functions set(n,m) and reset(n,m). neighboring nodes is in the

free state. With the above states and functions, we define the state machine of the set and reset

protocol below:

• A nodem in the used state turns into the reset state if all nodesn ∈ Pm have sent reset(n,m)

and the data processing is done;

• A node n in the reset state sends reset(n,m) to all nodes m ∈ Cn and turns into the free

state after all m have received the reset signal;

• A node m in the free state turns into the set state if any of the neighboring node n sent a

set(n,m) signal, and other neighboring nodes are in free state; and

• A node n in the set state sends set(n,m) to all nodes m ∈ Cn and turns into the used state,

after all m have received the set signal.

Note that the set(m,n) and reset(m,n) follows Assumption B.3; this implies that reset(n,m)

only occurs after all data from n have been processed at m. Initially, the nodes in graph G′ is

in the used state, and the nodes in G−G′ is in the free state. The first step of the proof is the

correctness of the reset protocol:

116

Lemma B.1. Sending reset signals to the source nodes in the subgraph G’ of the current configuration

eventually turns all nodes in G’ into the free state.

Proof. First, the processor sends the reset signal to all source nodes n in G′. These nodes turn

into the reset state and send reset(n,m) for all m ∈ Cn; after confirming the receipt, they can

turn into the free state. Since G′ is a connected directed acyclic graph, the nodes in G′ turn into

free state in-order and all nodes can be freed.

The second step of the proof is the correctness of the set protocol:

Lemma B.2. After the sending reset signals, sending the set signals to the source nodes (in the free state)

of the new acyclic subgraph G” (new configuration) can correctly set all nodes in G” to the used state.

Proof. Sending the set signal to all source nodes n in G′′ turns them into the set state. These

source nodes are then turned into the used state after sending set(n,m) to all m ∈ Cn. A node

m may be in one of the following two conditions:

• Condition 1: m /∈ G′.

• Condition 1: m ∈ G′.

If condition 1 is true, then the set signal can be propagated. If the condition 2 is true, then the

node m will eventually be reseted into the free state (Lemma B.1) and the set signal can be

propagated.

117

bibliography

[1] “ARMv8 Instruction Set Overview,” http://www.element14.com/community/servlet/

JiveServlet/previewBody/41836-102-1-229511/ARM.Reference_Manual.pdf, accessed:

2014-08-14.

[2] “Floating Point Unit :: Overview,” http://opencores.org/project,fpu, accessed: 2014-08-

14.

[3] “Intel Advanced Encryption Standard (AES) Instructions Set,” https://software.intel.

com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set, accessed:

2014-08-14.

[4] “Intel Streaming SIMD Extensions 4 (SSE4),” http://http://www.intel.com/technology/

architecture-silicon/sse4-instructions/index.html, accessed: 2014-08-14.

[5] “Intel’s Sandy Bridge Microarchitecture,” http://www.realworldtech.com/

sandy-bridge/, accessed: 2014-08-14.

[6] Parboil Benchmark Suite. http://impact.crhc.illinois.edu/parboil.php.

[7] “Silvermont, Intel’s Low Power Architecture,” http://www.realworldtech.com/

silvermont/, accessed: 2014-08-14.

[8] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Evaluating the imagine

stream architecture.”

[9] M. Annavaram, J. M. Patel, and E. S. Davidson, “Data prefetching by dependence graph

precomputation,” in Proceedings of the 28th Annual International Symposium on Computer

Architecture, ser. ISCA ’01. New York, NY, USA: ACM, 2001, pp. 52–61. [Online].

Available: http://doi.acm.org/10.1145/379240.379251

[10] ARM, Cortex-A15 Processor. http://www.arm.com/products/processors/cortex-

a/cortex-a15.php.

http://www.element14.com/community/servlet/JiveServlet/previewBody/41836-102-1-229511/ARM.Reference_Manual.pdf
http://www.element14.com/community/servlet/JiveServlet/previewBody/41836-102-1-229511/ARM.Reference_Manual.pdf
http://opencores.org/project,fpu
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
http://http://www.intel.com/technology/architecture-silicon/sse4-instructions/index.html
http://http://www.intel.com/technology/architecture-silicon/sse4-instructions/index.html
http://www.realworldtech.com/sandy-bridge/
http://www.realworldtech.com/sandy-bridge/
http://www.realworldtech.com/silvermont/
http://www.realworldtech.com/silvermont/
http://doi.acm.org/10.1145/379240.379251

118

[11] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Boosting mobile gpu performance

with a decoupled access/execute fragment processor,” in Proceedings of the 39th

Annual International Symposium on Computer Architecture, ser. ISCA ’12. Washington,

DC, USA: IEEE Computer Society, 2012, pp. 84–93. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2337159.2337169

[12] ——, “Boosting mobile gpu performance with a decoupled access/execute fragment

processor,” in Proceedings of the 39th Annual International Symposium on Computer

Architecture, ser. ISCA ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.

84–93. [Online]. Available: http://dl.acm.org/citation.cfm?id=2337159.2337169

[13] K. Arvind and R. S. Nikhil, “Executing a program on the mit tagged-token dataflow

architecture,” IEEE Trans. Comput., vol. 39, no. 3, pp. 300–318, Mar. 1990. [Online].

Available: http://dx.doi.org/10.1109/12.48862

[14] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, “Energy-performance

tradeoffs in processor architecture and circuit design: a marginal cost analysis,” in

Proceedings of the 37th annual international symposium on Computer architecture, ser. ISCA ’10.

ACM, 2010, pp. 26–36. [Online]. Available: http://doi.acm.org/10.1145/1815961.1815967

[15] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in

data stream systems,” in Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, ser. PODS ’02. New York, NY, USA: ACM,

2002, pp. 1–16. [Online]. Available: http://doi.acm.org/10.1145/543613.543615

[16] E. Bach, “The algebra of events,” Linguistics and Philosophy, vol. 9, no. 1, pp. 5–16, 1986.

[Online]. Available: http://dx.doi.org/10.1007/BF00627432

[17] C. F. Batten, “Simplified vector-thread architectures for flexible and efficient data-parallel

accelerators,” Ph.D. dissertation, Cambridge, MA, USA, 2010, aAI0822514.

[18] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T. Nowatzki, and K. Sankar-

alingam, “Design, integration and implementation of the dyser hardware accelerator into

http://dl.acm.org/citation.cfm?id=2337159.2337169
http://dl.acm.org/citation.cfm?id=2337159.2337169
http://dl.acm.org/citation.cfm?id=2337159.2337169
http://dx.doi.org/10.1109/12.48862
http://doi.acm.org/10.1145/1815961.1815967
http://doi.acm.org/10.1145/543613.543615
http://dx.doi.org/10.1007/BF00627432

119

opensparc,” in High Performance Computer Architecture (HPCA), 2012 IEEE 18th International

Symposium on, Feb 2012, pp. 1–12.

[19] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.

Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and

D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,

Aug. 2011. [Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[20] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan,

“Brook for gpus: Stream computing on graphics hardware,” in ACM SIGGRAPH 2004

Papers, ser. SIGGRAPH ’04. New York, NY, USA: ACM, 2004, pp. 777–786. [Online].

Available: http://doi.acm.org/10.1145/1186562.1015800

[21] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein, “Spatial Computation,” in

ASPLOS XI.

[22] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R. Moore,

J. Burrill, R. G. McDonald, W. Yoder, and the TRIPS Team, “Scaling to the end of silicon

with EDGE architectures,” IEEE Computer, vol. 37, no. 7, pp. 44–55, 2004.

[23] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,

and T. Czajkowski, “Legup: High-level synthesis for fpga-based processor/accelerator

systems,” in Proceedings of the 19th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 33–36.

[Online]. Available: http://doi.acm.org/10.1145/1950413.1950423

[24] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt, “Simultaneous

subordinate microthreading (ssmt),” in Proceedings of the 26th Annual International

Symposium on Computer Architecture, ser. ISCA ’99. Washington, DC, USA: IEEE Computer

Society, 1999, pp. 186–195. [Online]. Available: http://dx.doi.org/10.1145/300979.300995

[25] S. Che, M. Boyer, M. anoyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, and K. Skadron, “Rodinia:

A benchmark suite for heterogeneous computing.”

http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/1186562.1015800
http://doi.acm.org/10.1145/1950413.1950423
http://dx.doi.org/10.1145/300979.300995

120

[26] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “Niagaracq: A scalable continuous query

system for internet databases,” in Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, ser. SIGMOD ’00. New York, NY, USA: ACM, 2000, pp.

379–390. [Online]. Available: http://doi.acm.org/10.1145/342009.335432

[27] T.-F. Chen and J.-L. Baer, “Effective hardware-based data prefetching for high-performance

processors,” Computers, IEEE Transactions on, vol. 44, no. 5, pp. 609–623, May 1995.

[28] K. S. Chen-Han Ho, Sung Jin Kim, “Memory access dataflow,” University of Wisconsin

Computer Sciences Technical Report CS-TR-2014-1802, Mar 2007.

[29] Choudhary et al., “Fabscalar: Composing synthesizable rtl designs of arbitrary cores

within a canonical superscalar template,” in ISCA ’11.

[30] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, and A. Saidi,

“The reconfigurable streaming vector processor (rsvp trade;),” in Microarchitecture, 2003.

MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium on, 2003, pp. 141–

150.

[31] N. Clark, A. Hormati, and S. Mahlke, “Veal: Virtualized execution accelerator for loops,”

in ISCA ’08, pp. 389 –400.

[32] ——, “Veal: Virtualized execution accelerator for loops,” in Computer Architecture, 2008.

ISCA ’08. 35th International Symposium on, June 2008, pp. 389–400.

[33] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-specific processing

on a general-purpose core via transparent instruction set customization,” in Microarchitec-

ture, 2004. MICRO-37 2004. 37th International Symposium on, Dec 2004, pp. 30–40.

[34] N. Clark, A. Hormati, and S. Mahlke, “Veal: Virtualized execution accelerator for loops,”

in Proceedings of the 35th Annual International Symposium on Computer Architecture, ser.

ISCA ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 389–400. [Online].

Available: http://dx.doi.org/10.1109/ISCA.2008.33

http://doi.acm.org/10.1145/342009.335432
http://dx.doi.org/10.1109/ISCA.2008.33

121

[35] N. Clark, A. Hormati, S. Yehia, S. Mahlke, and K. Flautner, “Liquid simd: Abstracting

simd hardware using lightweight dynamic mapping,” in HPCA ’07.

[36] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-specific processing

on a general-purpose core via transparent instruction set customization,” in Proceedings of

the 37th annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 37,

2004, pp. 30–40. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2004.5

[37] J. D. Collins, D. M. Tullsen, and H. Wang, “Control flow optimization via dynamic

reconvergence prediction,” in Proceedings of the 37th Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO 37. Washington, DC, USA: IEEE Computer

Society, 2004, pp. 129–140. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2004.13

[38] N. C. Crago and S. J. Patel, “Outrider: Efficient memory latency tolerance with decoupled

strands,” in Proceedings of the 38th Annual International Symposium on Computer Architecture,

ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 117–128. [Online]. Available:

http://doi.acm.org/10.1145/2000064.2000079

[39] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently computing

static single assignment form and the control dependence graph,” ACM TOPLAS, vol. 13,

no. 4, pp. 451–490, Oct 1991.

[40] L. De Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam, “Plug: flexible lookup

modules for rapid deployment of new protocols in high-speed routers,” in Proceedings of

the ACM SIGCOMM 2009 conference on Data communication, ser. SIGCOMM ’09, 2009, pp.

207–218. [Online]. Available: http://doi.acm.org/10.1145/1592568.1592593

[41] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of

ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of Solid-State

Circuits, vol. 9, pp. 256–268, October 1974.

[42] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic data-flow

processor,” in Proceedings of the 2Nd Annual Symposium on Computer Architecture,

http://dx.doi.org/10.1109/MICRO.2004.5
http://dx.doi.org/10.1109/MICRO.2004.13
http://doi.acm.org/10.1145/2000064.2000079
http://doi.acm.org/10.1145/1592568.1592593

122

ser. ISCA ’75. New York, NY, USA: ACM, 1975, pp. 126–132. [Online]. Available:

http://doi.acm.org/10.1145/642089.642111

[43] M. Dubois and Y. H. Song, “Assisted execution,” Department of EE-Systems, University

of Southern California, Tech. Rep. #CENG 98-25, 1998.

[44] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark silicon

and the end of multicore scaling,” SIGARCH Comput. Archit. News, vol. 39, no. 3, pp.

365–376, Jun. 2011. [Online]. Available: http://doi.acm.org/10.1145/2024723.2000108

[45] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for

general-purpose approximate programs,” in Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO ’12. Washington,

DC, USA: IEEE Computer Society, 2012, pp. 449–460. [Online]. Available: http:

//dx.doi.org/10.1109/MICRO.2012.48

[46] A. Farcy, O. Temam, R. Espasa, and T. Juan, “Dataflow analysis of branch mispredictions

and its application to early resolution of branch outcomes,” in Proceedings of the 31st

Annual ACM/IEEE International Symposium on Microarchitecture, ser. MICRO 31. Los

Alamitos, CA, USA: IEEE Computer Society Press, 1998, pp. 59–68. [Online]. Available:

http://dl.acm.org/citation.cfm?id=290940.290960

[47] E. Fernandez, W. Najjar, S. Lonardi, and J. Villarreal, “Multithreaded fpga acceleration

of dna sequence mapping,” in High Performance Extreme Computing (HPEC), 2012 IEEE

Conference on, Sept 2012, pp. 1–6.

[48] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its

use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, Jul. 1987.

[Online]. Available: http://doi.acm.org/10.1145/24039.24041

[49] D. H. Friendly, S. J. Patel, and Y. N. Patt, “Putting the fill unit to work: Dynamic opti-

mizations for trace cache microprocessors,” in Proceedings of the 31st annual ACM/IEEE

international symposium on Microarchitecture. IEEE Computer Society Press, 1998, pp.

173–181.

http://doi.acm.org/10.1145/642089.642111
http://doi.acm.org/10.1145/2024723.2000108
http://dx.doi.org/10.1109/MICRO.2012.48
http://dx.doi.org/10.1109/MICRO.2012.48
http://dl.acm.org/citation.cfm?id=290940.290960
http://doi.acm.org/10.1145/24039.24041

123

[50] A. Garg and M. C. Huang, “A performance-correctness explicitly-decoupled architecture,”

in Proceedings of the 41st Annual IEEE/ACM International Symposium on Microarchitecture,

ser. MICRO 41. Washington, DC, USA: IEEE Computer Society, 2008, pp. 306–317.

[Online]. Available: http://dx.doi.org/10.1109/MICRO.2008.4771800

[51] A. Garg, R. Parihar, and M. C. Huang, “Speculative parallelization in decoupled

look-ahead,” in Proceedings of the 2011 International Conference on Parallel Architectures and

Compilation Techniques, ser. PACT ’11. Washington, DC, USA: IEEE Computer Society,

2011, pp. 413–423. [Online]. Available: http://dx.doi.org/10.1109/PACT.2011.72

[52] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz, M. Marino, N. Ranganathan,

B. Robatmili, A. Smith, J. Burrill, S. W. Keckler, D. Burger, and K. S. McKinley, “An

evaluation of the trips computer system,” in ASPLOS ’09.

[53] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “Composite event specification

in active databases: Model & implementation,” in Proceedings of the 18th

International Conference on Very Large Data Bases, ser. VLDB ’92. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 1992, pp. 327–338. [Online]. Available:

http://dl.acm.org/citation.cfm?id=645918.672484

[54] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor, “PipeRench:

A Reconfigurable Architecture and Compiler,” IEEE Computer, vol. 33, no. 4, pp. 70–77,

April 2000.

[55] A. GonzÃ¡lez, F. Latorre, and G. Magklis, “Processor microarchitecture: An

implementation perspective,” Synthesis Lectures on Computer Architecture, vol. 5, no. 1, pp. 1–

116, 2010. [Online]. Available: http://dx.doi.org/10.2200/S00309ED1V01Y201011CAC012

[56] J. R. Goodman, J.-t. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter, and H. C. Young, “Pipe:

A vlsi decoupled architecture,” in Proceedings of the 12th Annual International Symposium on

Computer Architecture, ser. ISCA ’85. Los Alamitos, CA, USA: IEEE Computer Society Press,

1985, pp. 20–27. [Online]. Available: http://dl.acm.org/citation.cfm?id=327010.327117

http://dx.doi.org/10.1109/MICRO.2008.4771800
http://dx.doi.org/10.1109/PACT.2011.72
http://dl.acm.org/citation.cfm?id=645918.672484
http://dx.doi.org/10.2200/S00309ED1V01Y201011CAC012
http://dl.acm.org/citation.cfm?id=327010.327117

124

[57] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically specialized datapaths for

energy efficient computing,” in High Performance Computer Architecture (HPCA), 2011 IEEE

17th International Symposium on, 2011, pp. 503–514.

[58] V. Govindaraju, “Energy Efficient Computing Through Compiler Assisted Dynamic Spe-

cialization,” PhD Dissertation, Unversity of Wisconsin-Madison, 2014.

[59] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam, and

C. Kim, “Dyser: Unifying functionality and parallelism specialization for energy efficient

computing,” IEEE Micro, vol. 33, no. 5, 2012.

[60] V. Govindaraju, T. Nowatzki, and K. Sankaralingam, “Breaking simd shackles: Liberating

accelerators by exposing flexible microarchitectural mechanisms,” in Proceedings of the

22nd International Conference on Parallel Architectures and Compilation Techniques ”’(PACT)”’,

2013.

[61] B. Greenstein, E. Kohler, and D. Estrin, “A sensor network application construction kit

(snack),” in Proceedings of the 2Nd International Conference on Embedded Networked Sensor

Systems, ser. SenSys ’04. New York, NY, USA: ACM, 2004, pp. 69–80. [Online]. Available:

http://doi.acm.org/10.1145/1031495.1031505

[62] W. Gruenewald and T. Ungerer, “A multithreaded processor designed for distributed

shared memory systems,” in Proceedings of the 1997 Advances in Parallel and Distributed

Computing Conference (APDC ’97), ser. APDC ’97. Washington, DC, USA: IEEE Computer

Society, 1997, pp. 206–. [Online]. Available: http://dl.acm.org/citation.cfm?id=523660.

786383

[63] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled execution of recurring

traces for energy-efficient general purpose processing,” in Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-44 ’11, 2011, pp.

12–23. [Online]. Available: http://doi.acm.org/10.1145/2155620.2155623

http://doi.acm.org/10.1145/1031495.1031505
http://dl.acm.org/citation.cfm?id=523660.786383
http://dl.acm.org/citation.cfm?id=523660.786383
http://doi.acm.org/10.1145/2155620.2155623

125

[64] J. R. Gurd, C. C. Kirkham, and I. Watson, “The manchester prototype dataflow

computer,” Commun. ACM, vol. 28, no. 1, pp. 34–52, Jan. 1985. [Online]. Available:

http://doi.acm.org/10.1145/2465.2468

[65] T. R. Halfill, “AMD Bobcat snarls at Atom,” Microprocessor Report, August 2010.

[66] P. Hammarlund, A. Martinez, A. Bajwa, D. Hill, E. Hallnor, H. Jiang, M. Dixon, M. Derr,

M. Hunsaker, R. Kumar, R. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik,

S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza, and T. Burton, “Haswell: The fourth-

generation intel core processor,” Micro, IEEE, vol. 34, no. 2, pp. 6–20, Mar 2014.

[67] E. N. Harris, S. L. Wasmundt, L. De Carli, K. Sankaralingam, and C. Estan, “Leap:

Latency- energy- and area-optimized lookup pipeline,” in Proceedings of the Eighth

ACM/IEEE Symposium on Architectures for Networking and Communications Systems,

ser. ANCS ’12. New York, NY, USA: ACM, 2012, pp. 175–186. [Online]. Available:

http://doi.acm.org/10.1145/2396556.2396595

[68] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable Copro-

cessor,” in Proceedings of the IEEE Symposium on Field-Programmable Custom Computing

Machines, April 1997, pp. 16–18.

[69] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 3rd ed.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002.

[70] R. Hou, L. Zhang, M. Huang, K. Wang, H. Franke, Y. Ge, and X. Chang, “Efficient data

streaming with on-chip accelerators: Opportunities and challenges,” in High Performance

Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on, 2011, pp. 312–320.

[71] L. W. Howes, A. Lokhmotov, A. F. Donaldson, and P. H. Kelly, “Deriving efficient

data movement from decoupled access/execute specifications,” in Proceedings of the 4th

International Conference on High Performance Embedded Architectures and Compilers, ser.

HiPEAC ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 168–182. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-92990-1_14

http://doi.acm.org/10.1145/2465.2468
http://doi.acm.org/10.1145/2396556.2396595
http://dx.doi.org/10.1007/978-3-540-92990-1_14

126

[72] R. A. Iannucci, “Toward a dataflow/von neumann hybrid architecture,” in Proceedings

of the 15th Annual International Symposium on Computer Architecture, ser. ISCA ’88. Los

Alamitos, CA, USA: IEEE Computer Society Press, 1988, pp. 131–140. [Online]. Available:

http://dl.acm.org/citation.cfm?id=52400.52416

[73] G. P. Jones and N. P. Topham, “A comparison of data prefetching on an access decoupled

and superscalar machine,” in Proceedings of the 30th Annual ACM/IEEE International

Symposium on Microarchitecture, ser. MICRO 30. Washington, DC, USA: IEEE Computer

Society, 1997, pp. 65–70. [Online]. Available: http://dl.acm.org/citation.cfm?id=266800.

266807

[74] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small

fully-associative cache and prefetch buffers,” in Proceedings of the 17th Annual International

Symposium on Computer Architecture, ser. ISCA ’90. New York, NY, USA: ACM, 1990, pp.

364–373. [Online]. Available: http://doi.acm.org/10.1145/325164.325162

[75] K. M. Kavi, R. Giorgi, and J. Arul, “Scheduled dataflow: Execution paradigm, architecture,

and performance evaluation,” IEEE Trans. Comput., vol. 50, no. 8, pp. 834–846, Aug. 2001.

[Online]. Available: http://dx.doi.org/10.1109/12.947003

[76] K. M. Kavi, H. Y. Youn, and A. R. Hurson, “Pl/ps: A non-blocking multithreaded archi-

tecture with decoupled memory and pipelines,” in Proc. of the Fifth International Conference

on Advanced Computing (ADCOMP ’97), 1997.

[77] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri, S. S. Lumetta,

M. I. Frank, and S. J. Patel, “Rigel: An architecture and scalable programming interface

for a 1000-core accelerator,” in ISCA ’09, pp. 140–151.

[78] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ranganathan, “Meet

the walkers: Accelerating index traversals for in-memory databases,” in Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO-46. New York, NY, USA: ACM, 2013, pp. 468–479. [Online]. Available:

http://doi.acm.org/10.1145/2540708.2540748

http://dl.acm.org/citation.cfm?id=52400.52416
http://dl.acm.org/citation.cfm?id=266800.266807
http://dl.acm.org/citation.cfm?id=266800.266807
http://doi.acm.org/10.1145/325164.325162
http://dx.doi.org/10.1109/12.947003
http://doi.acm.org/10.1145/2540708.2540748

127

[79] K. Koukos, D. Black-Schaffer, V. Spiliopoulos, and S. Kaxiras, “Towards more

efficient execution: A decoupled access-execute approach,” in Proceedings of the

27th International ACM Conference on International Conference on Supercomputing, ser.

ICS ’13. New York, NY, USA: ACM, 2013, pp. 253–262. [Online]. Available:

http://doi.acm.org/10.1145/2464996.2465012

[80] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and K. Asanovic,

“The vector-thread architecture,” Micro, IEEE, vol. 24, no. 6, pp. 84–90, 2004.

[81] D. J. Kuck and R. A. Stokes, “The burroughs scientific processor (bsp),” IEEE

Trans. Comput., vol. 31, no. 5, pp. 363–376, May 1982. [Online]. Available: http:

//dx.doi.org/10.1109/TC.1982.1676014

[82] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amarasinghe, “Space-

time scheduling of instruction-level parallelism on a RAW machine,” in ASPLOS VIII.

[83] Y. Lee, “Efficient VLSI Implementations of Vector-Thread Architectures,” MS Thesis, UC

Berkeley, 2011.

[84] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanović, “Exploring

the tradeoffs between programmability and efficiency in data-parallel accelerators,”

in Proceedings of the 38th Annual International Symposium on Computer Architecture,

ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 129–140. [Online]. Available:

http://doi.acm.org/10.1145/2000064.2000080

[85] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “Mcpat: An integrated

power, area, and timing modeling framework for multicore and manycore architectures,”

in Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on,

2009, pp. 469–480.

[86] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch, “Thin servers with

smart pipes: Designing soc accelerators for memcached,” in Proceedings of the 40th Annual

International Symposium on Computer Architecture, ser. ISCA ’13. New York, NY, USA:

ACM, 2013, pp. 36–47. [Online]. Available: http://doi.acm.org/10.1145/2485922.2485926

http://doi.acm.org/10.1145/2464996.2465012
http://dx.doi.org/10.1109/TC.1982.1676014
http://dx.doi.org/10.1109/TC.1982.1676014
http://doi.acm.org/10.1145/2000064.2000080
http://doi.acm.org/10.1145/2485922.2485926

128

[87] S. H. Low and D. E. Lapsley, “Optimization flow control—i: Basic algorithm and

convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6, pp. 861–874, Dec. 1999. [Online].

Available: http://dx.doi.org/10.1109/90.811451

[88] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F. Wenisch, and

S. Mahlke, “Composite cores: Pushing heterogeneity into a core,” in Proceedings of the

2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO ’12.

Washington, DC, USA: IEEE Computer Society, 2012, pp. 317–328. [Online]. Available:

http://dx.doi.org/10.1109/MICRO.2012.37

[89] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb: An acquisitional

query processing system for sensor networks,” ACM Trans. Database Syst., vol. 30, no. 1, pp.

122–173, Mar. 2005. [Online]. Available: http://doi.acm.org/10.1145/1061318.1061322

[90] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz, “Smart Memories: A

modular reconfigurable architecture.” in ISCA ’00: Proceedings of the 27th Annual Interna-

tional Symposium on Computer Architecture, June 2000, pp. 161–171.

[91] B. Mathew and A. Davis, “A loop accelerator for low power embedded vliw processors,”

in Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004. International

Conference on, 2004, pp. 6–11.

[92] B. Mathew, A. Davis, and Z. Fang, “A low-power accelerator for the sphinx 3 speech

recognition system,” in Proceedings of the 2003 International Conference on Compilers,

Architecture and Synthesis for Embedded Systems, ser. CASES ’03. New York, NY, USA:

ACM, 2003, pp. 210–219. [Online]. Available: http://doi.acm.org/10.1145/951710.951739

[93] D. McCarthy and U. Dayal, “The architecture of an active database management system,”

in Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data,

ser. SIGMOD ’89. New York, NY, USA: ACM, 1989, pp. 215–224. [Online]. Available:

http://doi.acm.org/10.1145/67544.66946

[94] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi, “Slice-processors: An

implementation of operation-based prediction,” in Proceedings of the 15th International

http://dx.doi.org/10.1109/90.811451
http://dx.doi.org/10.1109/MICRO.2012.37
http://doi.acm.org/10.1145/1061318.1061322
http://doi.acm.org/10.1145/951710.951739
http://doi.acm.org/10.1145/67544.66946

129

Conference on Supercomputing, ser. ICS ’01. New York, NY, USA: ACM, 2001, pp. 321–334.

[Online]. Available: http://doi.acm.org/10.1145/377792.377856

[95] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan, and B. Robatmili, “A

general constraint-centric scheduling framework for spatial architectures,” in Proceedings

of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation,

ser. PLDI ’13. New York, NY, USA: ACM, 2013, pp. 495–506. [Online]. Available:

http://doi.acm.org/10.1145/2491956.2462163

[96] “Openrisc project, http://opencores.org/project,or1k.”

[97] A. Pajuelo, A. González, and M. Valero, “Speculative dynamic vectorization,” in

Proceedings of the 29th Annual International Symposium on Computer Architecture, ser.

ISCA ’02. Washington, DC, USA: IEEE Computer Society, 2002, pp. 271–280. [Online].

Available: http://dl.acm.org/citation.cfm?id=545215.545246

[98] G. Papadopoulos and D. Culler, “Monsoon: an explicit token-store architecture,” in

Proceedings of the 17th Annual International Symposium on Computer Architecture, May 1990,

pp. 28–31.

[99] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig, V. Pavlov,

A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess, S. Maresh, and J. Emer,

“Triggered instructions: A control paradigm for spatially-programmed architectures,”

in Proceedings of the 40th Annual International Symposium on Computer Architecture,

ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 142–153. [Online]. Available:

http://doi.acm.org/10.1145/2485922.2485935

[100] M. S. Park, S. Kestur, J. Sabarad, V. Narayanan, and M. Irwin, “An fpga-based accelerator

for cortical object classification,” in Design, Automation Test in Europe Conference Exhibition

(DATE), 2012, March 2012, pp. 691–696.

[101] A. Poulovassilis, G. Papamarkos, and P. T. Wood, “Event-condition-action rule languages

for the semantic web,” in Proceedings of the 2006 International Conference on Current Trends

http://doi.acm.org/10.1145/377792.377856
http://doi.acm.org/10.1145/2491956.2462163
http://dl.acm.org/citation.cfm?id=545215.545246
http://doi.acm.org/10.1145/2485922.2485935

130

in Database Technology, ser. EDBT’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.

855–864. [Online]. Available: http://dx.doi.org/10.1007/11896548_64

[102] A. Putnam, S. Swanson, K. Michelson, M. Mercaldi, A. Petersen, A. Schwerin, M. Oskin,

and S. J. Eggers, “The Microarchitecture of a Pipelined WaveScalar Processor: An RTL-

based study,” Tech. Rep. TR-2005-11-02, 2005.

[103] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. A. Horowitz,

“Convolution engine: Balancing efficiency & flexibility in specialized computing,”

in Proceedings of the 40th Annual International Symposium on Computer Architecture,

ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 24–35. [Online]. Available:

http://doi.acm.org/10.1145/2485922.2485925

[104] W. Ro, S. Crago, A. Despain, and J.-L. Gaudiot, “Design and evaluation of a hierarchical

decoupled architecture,” The Journal of Supercomputing, vol. 38, no. 3, pp. 237–259, 2006.

[Online]. Available: http://dx.doi.org/10.1007/s11227-006-8321-2

[105] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low latency approach to high

bandwidth instruction fetching,” in Proceedings of the 29th annual ACM/IEEE international

symposium on Microarchitecture. IEEE Computer Society, 1996, pp. 24–35.

[106] A. Roth and G. Sohi, “Register integration: a simple and efficient implementation of

squash reuse,” in MICRO ’33, 2000.

[107] A. Roth and G. S. Sohi, “Speculative data-driven multithreading,” in Proceedings of

the 7th International Symposium on High-Performance Computer Architecture, ser. HPCA

’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 37–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=580550.876429

[108] R. M. Russell, “The CRAY-1 Computer System,” Communications of the ACM, vol. 22, no. 1,

pp. 64–72, January 1978.

[109] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, S. W. Keckler, D. Burger, and C. R.

Moore, “Exploiting ILP, TLP and DLP with the Polymorphous TRIPS Architecture,” in

http://dx.doi.org/10.1007/11896548_64
http://doi.acm.org/10.1145/2485922.2485925
http://dx.doi.org/10.1007/s11227-006-8321-2
http://dl.acm.org/citation.cfm?id=580550.876429

131

ISCA ’03: Proceedings of the 30th Annual International Symposium on Computer Architecture,

June 2003, pp. 422–433.

[110] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar, and

P. Dubey, “Can traditional programming bridge the ninja performance gap for parallel

computing applications?” in Proceedings of the 39th Annual International Symposium on

Computer Architecture, ser. ISCA ’12. Washington, DC, USA: IEEE Computer Society, 2012,

pp. 440–451. [Online]. Available: http://dl.acm.org/citation.cfm?id=2337159.2337210

[111] M. Shah, R. Golla, G. Grohoski, P. Jordan, J. Barreh, J. Brooks, M. Greenberg, G. Levinsky,

M. Luttrell, C. Olson, Z. Samoail, M. Smittle, and T. Ziaja, “Sparc t4: A dynamically

threaded server-on-a-chip,” Micro, IEEE, vol. 32, no. 2, pp. 8–19, March 2012.

[112] J. E. Smith, “Decoupled access/execute computer architectures,” in Proceedings of

the 9th Annual Symposium on Computer Architecture, ser. ISCA ’82. Los Alamitos,

CA, USA: IEEE Computer Society Press, 1982, pp. 112–119. [Online]. Available:

http://dl.acm.org/citation.cfm?id=800048.801719

[113] J. E. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol. 38, no. 5, pp.

32–38, 2005.

[114] A. Sodani and G. S. Sohi, Dynamic instruction reuse. ACM, 1997, vol. 25, no. 2.

[115] SPEC CPU2006. Standard Performance Evaluation Corporation, 2006.

[116] S. Subramaniam and G. H. Loh, “Fire-and-forget: Load/store scheduling with no store

queue at all,” in Proceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO 39. Washington, DC, USA: IEEE Computer Society, 2006,

pp. 273–284. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2006.26

[117] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,” in Proceedings of the

36th annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 36, 2003,

pp. 291–. [Online]. Available: http://dl.acm.org/citation.cfm?id=956417.956546

http://dl.acm.org/citation.cfm?id=2337159.2337210
http://dl.acm.org/citation.cfm?id=800048.801719
http://dx.doi.org/10.1109/MICRO.2006.26
http://dl.acm.org/citation.cfm?id=956417.956546

132

[118] D. Talla and L. K. John, “Mediabreeze: A decoupled architecture for accelerating

multimedia applications,” SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 62–67, Dec.

2001. [Online]. Available: http://doi.acm.org/10.1145/563647.563659

[119] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P. Johnson,

J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. P. Amarasinghe, and

A. Agarwal, “Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architecture

for ILP and Streams,” in Proceedings of the 31st Annual International Symposium on Computer

Architecture, 2004, pp. 2–13.

[120] S. Vajapeyam, P. J. Joseph, and T. Mitra, “Dynamic vectorization: A mechanism for

exploiting far-flung ilp in ordinary programs,” in Proceedings of the 26th Annual International

Symposium on Computer Architecture, ser. ISCA ’99. Washington, DC, USA: IEEE Computer

Society, 1999, pp. 16–27. [Online]. Available: http://dx.doi.org/10.1145/300979.300981

[121] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM Comput. Surv., vol. 32,

no. 2, pp. 174–199, Jun. 2000. [Online]. Available: http://doi.acm.org/10.1145/358923.

358939

[122] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson,

and M. B. Taylor, “Conservation Cores: Reducing the Energy of Mature Computations,”

in ASPLOS ’10.

[123] M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, R. Bruce, D. Kershaw,

A. Reid, M. Wilder, and K. Flautner, “From soda to scotch: The evolution of a wireless

baseband processor,” in Proceedings of the 41st Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO 41. Washington, DC, USA: IEEE Computer Society,

2008, pp. 152–163. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2008.4771787

[124] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross, “Navigating big data with high-throughput,

energy-efficient data partitioning,” in Proceedings of the 40th Annual International Symposium

on Computer Architecture. ACM, 2013, pp. 249–260.

http://doi.acm.org/10.1145/563647.563659
http://dx.doi.org/10.1145/300979.300981
http://doi.acm.org/10.1145/358923.358939
http://doi.acm.org/10.1145/358923.358939
http://dx.doi.org/10.1109/MICRO.2008.4771787

133

[125] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: the architecture and

design of a database processing unit,” in Proceedings of the 19th international conference

on Architectural support for programming languages and operating systems. ACM, 2014, pp.

255–268.

[126] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “Chimaera: a high-performance archi-

tecture with a tightly-coupled reconfigurable functional unit,” in ISCA ’00.

[127] C. Zilles and G. Sohi, “Execution-based prediction using speculative slices,” in

Proceedings of the 28th Annual International Symposium on Computer Architecture,

ser. ISCA ’01. New York, NY, USA: ACM, 2001, pp. 2–13. [Online]. Available:

http://doi.acm.org/10.1145/379240.379246

[128] C. B. Zilles and G. S. Sohi, “Understanding the backward slices of performance degrading

instructions,” in Proceedings of the 27th Annual International Symposium on Computer

Architecture, ser. ISCA ’00. New York, NY, USA: ACM, 2000, pp. 172–181. [Online].

Available: http://doi.acm.org/10.1145/339647.339676

http://doi.acm.org/10.1145/379240.379246
http://doi.acm.org/10.1145/339647.339676

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Building Specialized Hardware
	Dynamically Specialized Execution
	Contributions
	Dissertation Organization

	Hardware Specialization and Dynamically Specialized Execution (DySE)
	Hardware Specialization, Background and Examples
	Dynamically Specialized Execution
	Manual and Compiler-Assisted DySE
	Chapter Summary

	Dynamically Specialized Execution Resources (DySER)
	DySER Design Goals and Overview
	DySER Internal Microarchitecture
	Configuring DySER
	Integrating DySER
	Chapter Summary

	SPARC-DySER Prototype
	SPARC-DySER Integration
	Incorporating DySER into OpenSPARC
	Summary and Lessons Learned

	Memory Access Dataflow (MAD)
	MAD Design Goals
	Memory Access Dataflow Overview
	MAD Microarchitecture
	Complex Scenarios
	Integration
	Chapter Summary

	Evaluation Methodology
	Architectural Models
	Benchmarks
	Measurements and Metrics

	Evaluation
	DySER with Host General Purpose Processor as The Access Engine
	DySER with MAD
	MAD Driving Other Execute Accelerators
	MAD Executing Access-Only Benchmarks
	Chapter Summary

	Related Work
	DySER and Execute Architectures
	MAD and Access Architectures
	Chapter Summary

	Conclusions and Future Work
	Contributions and Conclusions
	Future Work
	Reflections

	The Encoding of MAD ISA
	Dataflow Graph Node
	ECA Rules

	The Set/Reset Protocol
	Bibliography

