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Abstract

My dissertation is developed to address unresolved issues in the asset pricing literature,

focusing on both risk premium levels and dynamics. Chapter 1 addresses short-horizon risk

premium dynamics. In the data, stock market volatility weakly or even negatively predicts

short-run equity and variance risk premia, challenging positive risk-return trade-offs at the

heart of leading asset pricing models. I show that a puzzling negative volatility-risk premia

relationship concentrates in scattered high-uncertainty states, which occur about 20% of the

time. While at other times, the relationship is strongly positive. I develop a micro-founded

learning model in which due to learning frictions investors underreact to structural breaks

in high-volatility periods and overreact to transitory variance shocks in normal times. The

model can successfully explain the novel time-varying volatility-risk premia relationship at

short and long horizons. The model can further account for many other data features, such

as a robust positive correlation between equity and variance risk premium, the leverage effect,

and negative observations of equity and variance risk premia at the onsets of recessions.

Chapter 2, coauthored with Professor Bjorn Eraker, focuse on equilibrium derivatives

pricing. It is motivated by the observation that leading asset pricing models typically

can not explain the levels or dynamics of VIX options prices. We develop a tractable

equilibrium pricing model to explain observed characteristics in equity returns, VIX futures,

S&P 500 options, and VIX options data based on affine jump-diffusive state dynamics and

representative agents endowed with Duffie-Epstein recursive preferences. A specific model

aimed at capturing VIX options prices and other asset market data is shown to successfully



Abstract xii

replicate the salient features of consumption, dividends, and asset market data, including

the first two moments of VIX futures returns, the average implied volatilities in SPX and

VIX options, and first and higher-order moments of VIX options returns. In the data, we

document a time variation in the shape of VIX option implied volatility and a time-varying

hedging relationship between VIX and SPX options which our model both captures. Our

model also matches many other asset pricing moments such as equity premia, variance risk

premia, risk-free interest rates, and short-horizon return predictability.

To derive our specific model, we first develop a general framework for pricing assets under

recursive Duffie-Epstein preferences with IES set to one under the assumption that state

variables follow affine jump diffusions, as in Duffie et al. (2000). Relative to the literature,

our framework has a clear marginal contribution that it is an endowment-based equilibrium

model with (i) clearly stated affine state variable dynamics and (ii) precisely characterized

equilibrium value function, risk-free rate, prices of risks, and risk-neutral state dynamics.

We prove our state-price density is a precise IES → 1 limit of that approximately solved in

Eraker and Shaliastovich (2008). The recursive preference assumption implies that higher-

order conditional moments of the economic fundamental, such as its growth volatility and

volatility-of-volatility, are explicitly priced in equilibrium. Since VIX derivatives depend on

these factors, this in turn implies that the former carry non-zero risk premia.
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Chapter 1

Understanding Negative Risk-Return

Trade-offs

1.1 Introduction

Few data facts in Finance are as puzzling as the negative short-horizon risk-return trade-off.

Leading rational-expectations asset pricing models unanimously imply that equity premium

(EP) and variance risk premium (VRP) strongly rise with stock market variance.1 In the data,

however, EP and VRP are found to initially decrease with the market variance, and only

subsequently increase.2 The evidence presents a challenge for understanding the economic

link between uncertainty and risk premia in financial markets.

This paper takes on the underreaction of risk premia to volatility news, and argues that

it is caused by the slow response of institutional investors’ volatility forecasts to occasional

structural breaks. I show that the observed underreaction can be entirely attributed to a
1Leading asset pricing models that imply market variance positively predicts EPs include Merton (1980),

Campbell and Cochrane (1999), Bansal and Yaron (2004a), Wachter (2013a), and He and Krishnamurthy
(2013), et al. Those that imply market variance positively predicts VRPs include Bollerslev et al. (2009a),
Drechsler and Yaron (2011a), Wachter (2013a), Gabaix (2012), and Dew-Becker et al. (2017a), et al.

2See Glosten et al. (1993), Whitelaw (1994), Brandt and Kang (2004), Lettau and Ludvigson (2010),
Moreira and Muir (2017), Martin (2017), and Eraker (2020), et al, for evidence regarding EP and market
variance. See Cheng (2019) and Lochstoer and Muir (2021) for evidence regarding VRP and market variance.
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few high-volatility regimes, and risk premia indeed strongly rise with market volatility most

of the time. I rationalize my findings in a model where investors learn about the long-run

market volatility parameter with recency bias but do not understand occasional parameter

shifts. Investors’ subjective volatility expectations and objective risk premia endogenously

overreact to transitory variance shocks in normal times and underreact to parameter shocks

in market distress times. The model can explain the novel time-varying volatility-risk premia

relationship at short and long horizons, and is further consistent with a time-invariant positive

relationship between VRP and EP, as in the data. I provide additional supportive evidence

for the model by showing that several data proxies for institutional investors’ volatility

expectations (survey, implied variance, and GARCH forecast) all exhibit model-implied

time-varying reactions to market volatility shocks.

My empirical strategy is a two-state regime-switch vector autoregression (RS-VAR) as

proposed by Hamilton (1989) that consists of three factors: realized variance (RV), option-

implied variance (IV), and excess market return. This compact framework provides two

advantages. First, it allows for stochastic shifts in VAR parameters, helping identify potential

time variations or even breaks in system dynamics. Second, the choice of the included factors

allows to estimate conditional equity and variance risk premia and explore the dynamic

connections between the two.

The main finding is that the economy stochastically switches between a short-lasting

high-volatility/volatility-of-volatility regime and a long-lasting low-volatility/volatility-of-

volatility regime. Conditional on the former, RV predicts EP and VRP initially negatively

and subsequently positively with hump-shaped coefficients. Conditional on the latter, RV

significantly positively predicts EP and VRP with exponentially decreasing coefficients. Thus,

the primary finding can be equivalently formulated as EP and VRP respond negatively to

large variance shocks but positively to small variance shocks.

While the high-volatility regime occurs only about 20% of the time, its impact on average

risk premium dynamics is overwhelmingly large, leading to a puzzling observation of risk
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premium underreaction to volatility news. Finally, I find that conditional on both regimes,

VRP significantly positively predicts EP with decreasing coefficients, consistent with existing

evidence that VRP is a robust return predictor (Bollerslev et al. (2009a)).

My findings survive numerous robustness tests. A likelihood-based test rejects the null of

VAR in favor of RS-VAR with a p-value of zero, providing decisive evidence that structural

breaks occur to market volatility and returns. My RS-VAR results are robust to alternative

model inputs such as realized and implied volatility, and robustly hold in both halves of

my sample. I run standard OLS predictive regressions upon exemplifying short subsamples

with consecutive low or high volatility. OLS results strongly substantiate RS-VAR results,

alleviating concerns about model misspecification and risk premium mismeasurements. I

further show that my key findings hold internationally.

I proceed to develop a model to rationalize my findings, starting with a standard Epstein-

Zin pure-exchange equilibrium model with stochastic cash flow variance that follows an

AR(1). The unobservable AR(1) long-run mean parameter stochastically Markov-switches

between two values. However, the representative agent subjectively treats it as an unknown

constant parameter and learns about it by observing historical variance realizations with

fading memory as in Nagel and Xu (2021).

The model’s novelty is that two types of variance shocks, transitory and parameter shocks,

dominate respectively in low and high-volatility periods. Under parameter learning, the two

shocks drive the agent to mis-forecast variance in opposite directions, translating then to

opposite reactions of objective risk premia.

In long-lasting low-volatility times, transitory variance shocks dominate. A positive shock

incentivizes the agent to upward revise her posterior and required expected returns on stocks,

which pushes current stock prices down (French et al. (1987)). The transitory volatility

shock mean reverts immediately. Fading memory drives the agent’s posterior to mean revert

immediately. Stock prices thus mean revert immediately, forming positive objective EPs.

While the agent’s posterior rises, the objective parameter does not, meaning the agent over-
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forecasts long-run variance. The latter translates to a short-term variance over-forecast and

over-valued variance insurance - a positive objective VRP response. Therefore, a positive

variance shock drives both EP and VRP upward, as in the data.

In short-lived high-volatility times, parameter shocks dominate. Unlike transitory shocks

to which beliefs and risk premia overreact, parameter shocks generate belief and risk premium

underreaction. Specifically, a parameter upshift induces variance to drift up toward a higher

long-run average sharply and successively. But the agent does not understand these are signals

for structural breaks. Under fading memory, her posterior responds by converging toward

the objective parameter slowly and predictably. Her required expected returns thus also drift

up predictably, which pushes stock prices down predictably (French et al. (1987)), forming

negative objective EPs. The agent’s variance under-forecasts show up not only in equity

claims but also in variance claims, causing objective VRPs also to become negative. Therefore,

a positive structural variance shock negatively drives EP and VRP at short horizons.

While EP and VRP initially respond negatively to the parameter upshift, a similar

mechanism implies they become positive when the parameter subsequently downshifts. The

model thus generates hump-shaped responses of EP and VRP to variance shocks in high-

volatility periods, as in the data. The model further matches the observed time-invariant

positive predictive relationship of the VRP for EP, essentially because both are driven in the

same direction by the agent’s variance mis-forecast. They both overreact (underreact) to

transitory (structural) variance shocks in low-volatility (high-volatility) periods.

I then bring model-simulated data to RS-VAR and find the calibrated model recovers

the time-varying and average risk premium predictability in the data. Besides, the model

also generates a time-varying response of investors’ subjective and risk-neutral variance

expectations to market variance shocks: hump-shaped responses (underreaction) in high-

volatility periods versus exponentially decreasing responses (overreaction) in low-volatility

periods. I use regime-conditional IRFs to show that such responses are, in fact, in the data.

My first empirical proxy for subjective market variance expectation is the Shiller Survey
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U.S. Crash Confidence Index, designed to measure institutional investors’ overall six-month

forecast of stock market crash risk (market volatility). Lochstoer and Muir (2021) find this

survey forecast exhibits a hump-shaped response to RV shocks and cite it as evidence for

extrapolative volatility expectations. However, I find the response is hump-shaped conditional

on high-volatility regimes but exponentially decreasing conditional on low-volatility regimes.

This time-varying pattern is more consistent with my model and less with Lochstoer and

Muir (2021).

My subsequent evidence regards IV term structure. Consistent with the model, I find

that IV’s response to RV shocks is hump-shaped (exponentially decreasing) conditional

on high-volatility (low-volatility) regimes. Besides, I find that in high-volatility regimes,

longer-maturity IV consistently exhibits greater underreaction to RV shocks. This term

structure evidence also matches my model, in which the driving force for underreaction of

risk premia is that of investors’ long-run variance expectations in high-volatility periods.

My final evidence involves using a parameter learning (GARCH) model to reproduce

institutional investors’ subjective variance forecasts. I find that subjective variance forecast

term structure and IV term structure exhibit similar regime-dependent IRs to RV shocks,

consistent with my model. In particular, long-term GARCH variance forecasts strongly

underreact to RV shocks in high-volatility regimes. Prevalent theories (Collin-Dufresne

et al. (2016)) suggest that parameter learners’ posteriors overreact to transitory shocks,

leaving GARCH’s negligence on structural shocks as the only explanation for the observed

underreaction. The evidence thus helps micro-found my key model argument.

Besides explaining the novel time-varying risk premium predictability, the model can

further account for many other features of the market data. First, the model endogenizes the

"leverage effect." Under parameter learning, variance shocks, no matter which type, always

drive the agent’s subjective discount rates to move in the same direction, and thus stock

prices in the opposite direction through a "subjective discount rate effect" (French et al.

(1987)). Second, the model implies that following a positive parameter shock, objective
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equity and variance risk premia initially turn negative before subsequently turning positive.

This is consistent with negative estimates of equity (Gomez Cram (2021)) and variance risk

premia (Bekaert and Hoerova (2014); Cheng (2019)) at the onsets of recessions in the data.

Lastly, combining the above two effects, the model further explains the novel finding in

Gomez Cram (2021) that returns exhibit momentum in recessions and reversals in expansions.

In recessionary regimes, a positive (negative) parameter shock negatively (positively) drives

both equity returns and objective equity premia, leading to the failure of an "objective

discount rate effect" that contributes to return reversals. In expansionary regimes, parameter

learning implies belief overreaction, strengthening the objective discount rate effect.

Related Literature. My empirical analysis is related to several strands of literature. First,

it is closely related to Lochstoer and Muir (2021) which jointly study several short-run

predictability puzzles. Studies such as Glosten et al. (1993), Whitelaw (1994), Brandt and

Kang (2004), Lettau and Ludvigson (2010), Moreira and Muir (2017), Martin (2017), Cheng

(2019), Cheng (2020), and Eraker (2020) also find risk-return trade-off puzzles inconsistent

with standard theories. I show these puzzles’ time-varying characteristics contain important

information about why these puzzles arise.

Second, it is related to the literature on business cycle identification via regime-switch

models (Hamilton (1989); Chauvet (1998); Durland and McCurdy (1994); Maheu and

McCurdy (2000); Gomez Cram (2021)). I apply the methodology on a different issue and

document a novel risk premium predictability cycle overlapping with and faster-moving than

the business cycle.

Third, it is also related to the vast time-varying return predictability literature (Henkel

et al. (2011), Dangl and Halling (2012), Paye and Timmermann (2006), Rapach and Wohar

(2006), Timmermann (2008), Welch and Goyal (2008), Chen and Hong (2012), and Johannes

et al. (2014), Cujean and Hasler (2017), and Cederburg et al. (2020), among others). In

several cases (Ghysels et al. (2005); Rossi and Timmermann (2010), Cotter and Salvador

(2014), and Ghysels et al. (2016)), predictors are chosen as conditional volatility so that the
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findings are interpreted as time-varying or time-invariant risk-return trade-offs. Relative to

these studies, my empirical strategy offers two novelties. First, the entire term structure of

risk premium predictability at short and long horizons. Second, the dynamic link between

multiple predictabilities also including volatility-VRP and VRP-return relationships.

My theory is first related to the literature on using structural regime-switch models to

explain low-frequency puzzles: Lettau et al. (2008), Ghaderi et al. (2021a), Wachter and Zhu

(2019), Bansal et al. (2021), Farmer et al. (2021), and Ghaderi et al. (2021b), among others.

Second, it is related to the parameter learning literature. Unlike the literature where

learning is about cash flow growth rates (Bansal and Shaliastovich (2010), Shaliastovich

(2015), Collin-Dufresne et al. (2016), and Nagel and Xu (2021)), I explore a model where

investors learn about the cash flow volatility parameter with recency bias. Malmendier

and Nagel (2011) and Malmendier and Nagel (2016) show empirically that recency bias

affects investors’ expectations. As argued in Lochstoer and Muir (2021), parameter learning

models, especially those with recency bias, typically imply expectation overreaction. However,

the observed risk premium underreaction matches an extrapolative expectation mechanism,

which implies expectation underreaction. I show that, after closer inspection, data suggests a

time-varying volatility expectation (over)under-reaction that neither mechanism can explain

alone.

Third, it is finally related to the theoretical literature on short-horizon risk premium

predictability. Bollerslev et al. (2009a), Drechsler and Yaron (2011a), and Kilic and Shalias-

tovich (2019) construct stochastic volatility models to explain return predictability by VRP.

Lochstoer and Muir (2021) explain the negative risk-return trade-off with a model where sticky

volatility expectations endogenously translate to sticky responses of risk premia to volatility

shocks. Atmaz and Basak (2021) explain the negative risk-return trade-off with a model

where no-dividend stocks contain more unpriced risks than dividend-paying stocks. When the

stock market tilts toward no-dividend stocks, market volatility rises but equity premium falls.

Ai et al. (2021) explain the negative risk-return trade-off with an information-driven theory
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where lower post-announcement variances and returns follow higher variances realized upon

macroeconomic announcements. Nevertheless, none of these existing theories can explain the

novel risk-return relationships across regimes, horizons, and markets that the current paper

documents.

The remainder of the paper proceeds as follows. Section 1.2 and 1.3 respectively presents

my empirical methodology and findings. Section 1.4 presents my model, parameter calibration,

and model results. Section 1.5 presents additional empirical support for the model. Section

1.6 concludes. Robustness checks and model derivations are deferred to the Appendix.

1.2 Empirical Methodology

The empirical approach introduced in this section serves as a preliminary, reduced-form

analysis of the data. I assume realized variance (RVt), implied variance (IVt), and excess log

market return (rMt − rft−1) jointly follow a two-state regime-switch vector autoregression (RS-

VAR), as in Hamilton (1989) and Hamilton (1990). Specifically, the evolution of tomorrow’s

regime st+1 = 0, 1 given today’s st = 0, 1 is governed by a transitional probability matrix:

Π =
[
π00 π01
π10 π11

]
, (1.1)

where ∑
j=0,1 πij = 1 and 0 < πij < 1. Denote Xt = [RVt, IVt, rMt − rft−1]′. Conditional on

regime st+1 = i, i = 0, 1, the VAR follows:

Xt+1 = Ai +BiXt + εi,t+1, (1.2)

where Ai and Bi are regime-dependent constant vector and auto-regressive matrix, respectively.

εi,t+1 is the mean-zero jointly normal innovation vector with a regime-dependent variance-

convariance matrix Σi. I name this the baseline RS-VAR as other RS-VARs are estimated

later. The whole system is estimated via MLE under the Expectation-Maximization algorithm
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proposed by Dempster et al. (1977) and Hamilton (1990).3

Constrained by the availability of IV data, my sample spans January 1990 to December

2019. In particular, it excludes the COVID-19 Crisis. Following the literature, RVt is

measured by the sum of squared daily log market returns within month t, IVt end-of-month-t

VIX-squared, and rMt − rft−1 log stock market return realized over month t minus log risk-free

rate predetermined in month t − 1, downloaded from Professor Kenneth French’s website.

RV, IV, and VRP are monthly in basis point and excess return and equity premium monthly

in percentage throughout the paper.

The RS-VAR framework provides two advantages. First, it allows for stochastic shifts

in VAR parameters, thereby helping identify time variations or breaks in system dynamics.

Second, the model inputs are chosen such that both conditional EPt = Et[rMt+1 − rft ] and

V RPt = IVt − Et[RVt+1] can be estimated. The system thus can help explore connections

between a rich set of risk premium predictabilities. For instance, how EP and VRP respond

to RV shocks, how EP responds to IV shocks, and how EP responds to VRP shocks. The

model design is also partially motivated by Lochstoer and Muir (2021) which suggests that

there is an intrinsic relation between the above predictabilities.4

1.3 Empirical Findings

This section presents my empirical findings, starting with evidence at the unconditional level

and then proceeding onto regime-conditional evidence.
3As the algorithm is known to converge to a local maximum, I employ a large set of random initial

parameter values to maximize the chance of achieving the global maximum of the likelihood function.
4In particular, my system does not include the log price-dividend ratio, a typical control in short-term

return predictability studies (Bollerslev et al. (2009a); Drechsler and Yaron (2011a)) for several reasons. First,
technically, since the log price-dividend ratio is close to a unit root at a monthly frequency, forcing RS-VAR
also to fit it makes model identification difficult. Second, the price-dividend ratio is driven by low-frequency
risks other than volatility, such as productivity risks in Bansal and Yaron (2004a) and sentiments about
fundamentals in Gao and Martin (2021), that are not the focus of the current study.
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Figure 1.1: Unconditional Predictability: Data.
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Note: RV, IV, and rM − rf data is first fitted to a VAR, and then predictive regression coefficients are calculated.
X-axis denotes predicting horizon in month. Y-axis denotes slope coefficients.

1.3.1 Unconditional Predictability

As a benchmark, Figure 1.1 reproduces four unconditional predictive relationships, which

received a lot of attention in the literature, by estimating a VAR of RV, IV, and excess

returns. First, Panel VRP on RV reports βh for the regression5

IVt+h − Et+h[RVt+h+1] = αh + βhRVt + εt+h. (1.3)

As shown, RV predicts VRPs with initially negative, subsequently positive, and overall

hump-shaped coefficients. This relation has been shown robust to other VRP measures on the

LHS, including returns on short VIX futures (Cheng (2019)), variance swaps, and S&P 500
5To be consistent with the literature, I calculate predictive regression coefficients from the VAR. An

alternative approach is to study the impulse response functions, which produce very similar predictability.
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straddles (Lochstoer and Muir (2021)) positions. As argued in Cheng (2019), a considerable

number of asset pricing models (Drechsler and Yaron (2011a); Wachter (2013a); Dew-Becker

et al. (2017a)) imply that VRP rises with market variance, but data puzzlingly suggests the

opposite at short horizons. Second, Panel EP on RV reports βh for the regression

Et+h[rMt+h+1 − rft+h] = αh + βhRVt + εt+h. (1.4)

As shown, RV predicts EPs with a strikingly similar pattern, which is equally puzzling. As

argued in Moreira and Muir (2017), a strong positive risk-return trade-off is an implication

of leading asset pricing models with habits, long-run risks, rare disasters, and financial

intermediation. Still, data suggests the opposite at short horizons. Third, Panel EP on VRP

reports βh for the regression

Et+h[rMt+h+1 − rft+h] = αh + βh(IVt − Et[RVt+1]) + εt+h. (1.5)

As seen, VRP positively predicts EPs at short horizons, which relation alone has been

rationalized in models such as Bollerslev et al. (2009a) and Drechsler and Yaron (2011a), but

is notoriously difficult to reconcile with the other predictability in Figure 1.1. Fourth, Panel

EP on IV reports βh for the regression

Et+h[rMt+h+1 − rft+h] = αh + βhIVt + εt+h. (1.6)

As seen, IV predicts EPs insignificantly at short horizons and with hump-shaped coefficients

overall (Martin (2017); Eraker (2020)), again inconsistent with standard asset pricing theories,

which imply a robust positive relationship between IV and EP.
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Figure 1.2: Posterior Regime Identification: Data.
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Note: the figure plots the smoothed (posterior) probability that st = 1 from the RS-VAR, and the RVt (realized
variance), IVt (implied variance) and P Dt (price-dividend ratio, affine transformed) data processes, for each month t

from 1990/01 to 2019/12.

1.3.2 Posterior Regime Identification

I then proceed to the RS-VAR evidence. Throughout the paper, I use regime 1 (0) to refer

to the regime with relatively higher (lower) volatility. Figure 1.2 plots RS-VAR smoothed

(posterior) probability of each month belonging to regime 1, RV, IV, and the price-dividend

ratio. The estimated regime transitional probability is:

Π̂ =
[
0.90 0.10
0.35 0.65

]
, (1.7)

meaning regime 0 is more persistent. As a result, it occurs most of the time. Regime 1

occupies about 0.1/(0.1 + 0.35) ≈ 20% of the time. Regime 1 overlaps with NBER recessions

but is also broader, as high volatilities typically accompany recessions, but not vice versa.

For example, the Asian financial crisis (1997-2000) and the European debt crisis (2010-2012)
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Figure 1.3: Regime-Conditional Moments: Data.
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Note: the figures report regime-conditional mean, standard deviation, and autocorrelation of RV , IV , V RP , and
rM − rf in the data. The blue line within the boxplot indicates point estimate, and the black upper and lower bounds
of the boxplot indicate 90% Monte Carlo confidence intervals.

are identified as regime 1, but not recessions for the U.S.

Figure 1.3 reports regime-conditional moments. First, in regime 1, RV and IV are signifi-

cantly higher, but VRP and EP are lower. The fact that average risk premia are lower in

higher-volatility regimes is consistent with a negative volatility-risk premia relationship. Sec-

ond, variations in all variables are substantially higher in regime 1. Third, RV is considerably

more persistent in regime 1, which is not an artifact of model misspecification. I find RV

has an autocorrelation of 0.4 during a prolonged low-volatility period, 1991/02 to 1997/09,

agreeing with the RS-VAR estimate. Besides, excess returns exhibit mild momentum in

regime 1 and reversals in regime 0, which is reminiscent of the finding in Gomez Cram (2021)

that returns display momentum in recessions and reversals in expansions.
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Figure 1.4: Regime-1 Conditional Predictability: Data.
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Note: RV, IV, and rM − rf data is first fitted to a RS-VAR, and then predictive regression coefficients are calculated
from the regime-1 conditional VAR. X-axis denotes predicting horizon in month. Y-axis denotes slope coefficients.

1.3.3 Regime-Conditional Predictability

This section presents my key findings. Figures 1.4 and 1.5 plot respectively regime 1 and 0

conditional predictive coefficients and corresponding confidence intervals. Figure 1.4 illustrates

that conditional on regime 1, the predictive relationships are analogous to those in Figure

1.1, despite wider confidence bands due to the rarity of high-volatility observations.

Figure 1.5, however, shows that once regime 0 is conditioned upon, predictability is not

puzzling anymore. In particular, all four predictive relationships become significantly positive.

There are several other important observations. First, the figures on the top show that a shock

to RV has the largest predicting coefficients for VRP and EP at the nearest horizon, which

gradually decay with the predicting horizon. This pattern is qualitatively consistent with

standard asset pricing theories. Second, the evidence in regime 0 is more of an indication of
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Figure 1.5: Regime-0 Conditional Predictability: Data.
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Note: RV, IV, and rM − rf data is first fitted to a RS-VAR, and then predictive regression coefficients are calculated
from the regime-0 conditional VAR. X-axis denotes predicting horizon in month. Y-axis denotes slope coefficients.

risk premium overreaction to RV shocks. Eraker (2020) shows that the slope of the predictive

coefficients needs to match the persistence of the predictor in perfect information equilibrium

models. But the figures on the top show that the predictive coefficients in VRP and EP

mean revert much slower than the predictor RV. Third, comparison between Figures 1.4 and

1.5 shows that VRP robustly positively predicts EP in both regimes, but for different reasons:

a positive RV shock causes VRP and EP to both fall in regime 1 and to both rise in regime

0, a fact inconsistent with a class of models including Bollerslev et al. (2009a), Drechsler and

Yaron (2011a), and Lochstoer and Muir (2021). In these models, market variance always

either positively or negatively drives EP and VRP.

Overall, the novel findings presented in this section suggest that, contrary to traditional

views, risk premia do not robustly underreact to variance shocks. Specifically, the "negative
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risk-return trade-off puzzle" documented in Moreira and Muir (2017), among many others,

and the "low premium-response puzzle" reported in Cheng (2019) and Lochstoer and Muir

(2021) are both only limited to a short-lived, infrequent regime that occurs 20% of the time.

While at other times, EP and VRP do not underreact and, in fact, even overreact to volatility

shocks. Because the variations in market variance and risk premia are much higher in regime

1, strong positive risk premium predictability in regime 0 is entirely masked.

Suspecting high-volatility periods might be disproportionately important, Lochstoer

and Muir (2021) carry out a GLS regression and a weighted VAR to down-weight them.

Nevertheless, even these methods serve to confirm the robustness of the negative short-horizon

predictability and fail to distill out the "predictability dichotomy" as the RS-VAR did. In

Appendix, I show that the regime-dependent risk premium predictability is an empirical fact

that survives numerous robustness tests.

1.3.4 Nested Model Test: VAR vs. RS-VAR

The necessity of a regime-switch model is perhaps best seen through a nested model test. The

null and alternative are respectively VAR and RS-VAR.6 The test results in a p-value of zero,

decisively rejecting the null. This result implies that there is strong evidence that structural

breaks objectively occur to market volatility and returns. Models without incorporating

this feature might not help to thoroughly understand the risk-return trade-off puzzles. The

evidence helps motivate a model with objective parameter shifts in the next section.
6Hansen (1992) shows that for regime-switch models, the standard likelihood-ratio test is invalid since

there are nuisance parameters (π00, π11) not identifiable under the null. That is, the standard test statistic
λLR = −2

[
lnL(θ̂0) − lnL(θ̂)

]
is not chi-squared distributed. I derive the distribution of λLR under the null

via Monte Carlo simulations, following Lam (1990). The test statistic is λLR = −2[−4.07×103 +3.52×103] =
1, 100.
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1.4 The Model

In this section, I develop a model that explains the time-varying risk premium predictability.

The key mechanism is that investors have recency-biased volatility parameter learning,

unaware the parameter is subject to breaks. Thus, two types of variance shocks, transitory

and parameter shocks, can drive investors to mis-forecast variance in different directions,

translating to varying reactions of objective risk premia. In the next section, I provide

additional empirical support and micro-foundations for the model mechanism.

1.4.1 Cash Flow Dynamics

Consider an infinitely-lived representative agent in a pure-exchange economy with complete

markets but imperfect information. Let the objective process for aggregate log dividend

growth be given by:

∆dt+1 = µ+ σt+1εt+1 (1.8)

σ2
t+1 =

(
1 − ρ

)
θ(st) + ρσ2

t + σηηt+1, (1.9)

where µ is the drift of dividend growth. σ2
t+1 is the realized variance7 of dividend growth,

observed at time t+ 1. εt+1 and ηt+1 are uncorrelated i.i.d. standard normal shocks. σ2
t+1

follows an AR(1) process.8 Motivated by the data, I assume that the unobservable long-

run variance parameter θ(st) stochastically switches between a high value θ(h) and a low

value θ(l) in a Markov fashion. The switch is governed by a transitional probability matrix:

Π = [πhh, πhl; πlh, πll], where ∑
j=h,l πij = 1 and 0 < πij < 1.

7In standard models, σ2
t+1 is often replaced with conditional variance σ2

t . My specification follows
Lochstoer and Muir (2021), which helps with the exposition of model intuitions. All model intuitions go
through with the alternative specification.

8In many volatility studies (e.g., reduced-form: Eraker et al. (2003); structural: Drechsler and Yaron
(2011a)), σ2

t+1 is assumed to follow a Cox-Ingersoll-Ross (CIR) type of process. AR(1) delivers model
tractability, as with a CIR process, learning (introduced in the next) would be nonlinear and log-linearized
model solution cannot be obtained. All model results do carry over to the CIR case.
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1.4.2 Fading-Memory Parameter Learning

The agent understands equations (1.8) and (1.9) with one exception. That is, she does not

understand θ(st) is subject to latent breaks. She subjectively perceives θ(st) as an unknown

fixed parameter and tries to learn about its value by observing historical realized variance

data. To make sure the agent continues learning in the stationarity of the economy, I assume

the agent has recency bias or fading memory, as in Nagel and Xu (2021). Fading memory

parameter learning induces a posterior about θ that is stickier and slower-moving than the

objective θ data generating process, which is required to explain the data. As I will explain

in Section 1.4.7, rational-expectations learning does not allow for this feature and thus does

not help explain the data.

Specifically, let σ2
−∞:t denote an infinite history of realized variance data up to time t.

The agent with Bayesian learning but recency bias forms a posterior:

p(θ|σ2
−∞:t) ∝ p(θ)

∞∏
j=0

 exp
 −

(
σ2
t−j − [(1 − ρ)θ + ρσ2

t−j−1]
)2

2σ2
η

vj , (1.10)

where p(θ) is the agent’s prior. 0 < v < 1 is a parameter capturing the agent’s recency bias

as vj represents a weight on each past observation in forming the posterior. The weight is

geometrically declining with the time that recedes into the past, and v = 1 recovers the

standard full-memory Bayesian learning case where each observation in the past is equally

weighted. Importance of recency bias, for instance, has been shown in studies including

Malmendier and Nagel (2011) and Malmendier and Nagel (2016).

Suppose the agent holds a conjugate prior θ ∼ N (θ0, V0).9 Due to conjugacy, the agent’s

posterior is always a normal distribution. Denote the posterior mean and variance at time t

respectively θ̂t and V̂t. Then in stationarity, V̂t reduces to a constant:

V̂t =
(1 − v)σ2

η

(1 − ρ)2 , (1.11)

9Conjugacy is for tractability and model intuitions carry over to other priors.
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and the dynamics of θ̂t can be described by standard constant-gain parameter learning:

θ̂t+1 = θ̂t + (1 − v)
(
σ2
t+1 − ρσ2

t

1 − ρ
− θ̂t

)
(1.12)

where learning gain 1−v measures the sensitivity of the agent’s posterior to data surprise.10 It

then follows from equation (1.9) that in the agent’s mind, realized variance evolves according

to

σ2
t+1 = (1 − ρ)θ̂t + ρσ2

t +
√

2 − vσηη̃t+1, η̃t+1 ∼ N (0, 1), (1.13)

where
√

2 − v reflects the agent’s time-t subjective uncertainties about θt and shock ηt+1. It

follows then from equation (1.12) that, as in standard models, the agent cannot predict the

direction of her future learning.

Let ES
t [·] and EP

t [·] respectively denote expectations conditional on the agent’s time-t

subjective information set and under the objective probability. It follows that subjective and

objective one-period ahead realized variance expectations respectively equal:

ES
t [σ2

t+1] = (1 − ρ)θ̂t + ρσ2
t (1.14)

EP
t [σ2

t+1] = (1 − ρ)θt + ρσ2
t . (1.15)

As I will show, under recursive preferences, the agent’s variance mis-forecast ES
t [σ2

t+1] −

EP
t [σ2

t+1] would show up positively in equilibrium objective time-t equity and variance

risk premium. The model’s novelty is that two types of variance shocks, transitory shock

ηt and structural shock θt, can generate opposite risk premium responses by generating
10Without recency bias, i.e., v = 1, equations (1.12) implies that θ̂t+1 = θ̂t: the posterior degenerates

eventually after enough data have been observed, as in Collin-Dufresne et al. (2016). Fading memory prevents
this from happening by dictating the agent to forget memory at rate v as she learns each period. In the
Appendix, I show, as in Nagel and Xu (2021), the fading memory learning scheme (1.11) and (1.12) has an
equivalent Kalman filter interpretation where the agent is a Bayesian learner without fading memory but
believes the latent parameter θt follows a random walk so that she rationally leaves her posterior open to
variance news even in stationarity. Therefore, the model in this section has an alternative interpretation
that investors recognize that the latent long-run variance parameter is time-varying but underestimate how
fast-moving it can occasionally be.
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opposite variance mis-forecasts. Under fading-memory parameter learning, a positive ηt

shock would drive the agent to over-estimate the parameter θ̂t > θt and thus over-forecast

variance ES
t [σ2

t+1] > EP
t [σ2

t+1], positively driving risk premia. While a θt upshift would

cause the agent to under-estimate the parameter θ̂t < θt and thus under-forecast variance

ES
t [σ2

t+1] < EP
t [σ2

t+1], negatively driving risk premia. The two shocks dominate respectively in

prolonged low-volatility periods and infrequent high-volatility periods, explaining time-varying

risk premium predictability.

1.4.3 Preferences and Equilibrium

Following Bollerslev et al. (2009a) and Lochstoer and Muir (2021), I assume that the agent

has standard Kreps-Porteus, Epstein-Zin utility (Kreps and Porteus (1978); Epstein and Zin

(1989)) defined on the dividend stream:

Ut =
[
(1 − δ)D1−1/ψ

t + δ
(
ES
t (U1−γ

t+1 )
) 1−1/ψ

1−γ
] 1

1−1/ψ
, (1.16)

where δ, γ, and ψ are the time discounting rate, risk aversion, and intertemporal elasticity of

substitution (IES) parameter, respectively. It is well known that for Epstein-Zin preferences

the stochastic discount factor is given by:

Mt+1 = δθe− θ
ψ

∆dt+1+(θ−1)rd,t+1 , (1.17)

where θ = 1−γ
1−1/ψ and rd,t+1 is the log return on an asset claim that delivers the aggregate

dividend each period. Denote by Pd,t the post-dividend price of such a dividend claim, and

pdt = log(Pd,t/Dt) the log price-dividend ratio. It follows that rd,t+1 = log(1 + epdt+1) − pdt +

∆dt+1. I use standard log-linearization techniques of Campbell and Shiller (1988a) and Bansal

and Yaron (2004a) to write log return as rd,t+1 = κ0 + κ1pdt+1 − pdt + ∆dt+1, where κ0 and

κ1 are standard log-linearization constants determined in equilibrium and κ1 is a number

close to but less than one. Appendix shows that equilibrium log price-dividend ratio is linear
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in state variables:

pdt = C + Aσ2
t +Bθ̂t, (1.18)

with

A = 1
2

(1 − γ)(1 − 1/ψ)ρ
1 − ρκ1

(1.19)

B = 1
2

(1 − γ)(1 − 1/ψ)(1 − ρ)
(1 − ρκ1)(1 − κ1)

. (1.20)

Notice that if γ > 1 and ψ > 1, then we have A < 0 and B < 0. This is the standard

preference parameter configuration for asset pricing models with Epstein-Zin preferences (e.g.,

Bansal and Yaron (2004a)). Intuitively, this parameter configuration implies a preference

for early resolution of uncertainties. Since the agent believes dividend claim’s uncertainty

is positively affected by σ2
t and θ̂t, she requires a higher risk premium and prices the log

price-dividend ratio lower when σ2
t and θ̂t are higher. Also, note that since κ1 is close to

one, B is much larger than A, i.e., the agent’s long-run variance estimate has a much larger

impact on equity valuation than the current variance.

1.4.4 Equity Premium Predictability

I start by examining the relationship between realized variance11 and equity premium. Let rf,t

denote the one-period risk-free rate at period t. Appendix shows that subjective conditional

equity premium in equilibrium is:

ES
t [rd,t+1] − rf,t = δEP + (γ − 1

2)ES
t [σ2

t+1], (1.21)

where δEP is a positive constant. As in standard models, subjective equity premium encodes

two sources of compensations. The first term δEP reflects the compensation for variation
11I will show in the following subsection that equity return realized variance (RVt) is equal to cash flow

realized variance (σ2
t ) up to a constant. So I can use both interchangeably when studying predictability.
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in equity price due to discount rate shocks. The second term, equal to the product of risk

aversion and subjective conditional variance of dividend growth, reflects the compensation

for cash flow risks. 1/2 is the standard Jensen’s term arising from working with log returns

and is minor. The objective (true) equity premium, however, is:

EP
t [rd,t+1] − rf,t = ES

t [rd,t+1] − rf,t + EP
t [rd,t+1] − ES

t [rd,t+1]

= δEP + (γ − 1
2)ES

t [σ2
t+1]︸ ︷︷ ︸

(i) subjective EP

−κ1(A+B
1 − v

1 − ρ
)
(
ES
t [σ2

t+1] − EP
t [σ2

t+1]
)

︸ ︷︷ ︸
(ii) difference between objective and subjective EP

due to variance mis-forecast

. (1.22)

Note that objective equity premium consists of two parts: subjective equity premium and a

component proportional to the agent’s variance mis-forecast. −κ1
(
A+B 1−v

1−ρ

)
> 0 captures

a subjective discount rate effect. That the agent under-forecasts (over-forecasts) variance

means that variance would go up (down) unexpectedly from the agent’s perspective. Through

the subjective discount rate effect, the stock price would go down (up) unexpectedly.

The model has long-lasting normal periods without parameter shifts and short-lasting

high-volatility periods brought about by parameter upshifts. In normal times, transitory

shocks ηt dominate. The first column of Figure 1.6 depicts impulse response functions (IRFs)

of θt, θ̂t, EP
t [σ2

t+1], ES
t [σ2

t+1], and objective equity premium from t = 0 onward to a one

standard deviation ηt shock at t = 0. The shock drives σ2
t and thus objective variance

expectation EP
t [σ2

t+1] up (see (1.15)). Observing positive σ2
t movements, the agent upward

revises her posterior θ̂t and thus subjective variance expectation ES
t [σ2

t+1] (see (1.14)). Because

parameter estimate θ̂t increases while true parameter θt does not move, comparing (1.14)

and (1.15) suggests the agent over-forecasts variance, ES
t [σ2

t+1] > EP
t [σ2

t+1]. Hence, objective

equity premium increases for two reasons. First, as in standard models, subjective equity

premium increases because of an increase in subjective variance expectation (component (i)).

Second, the agent interprets shock ηt as evidence of a higher long-run variance parameter

and thus over-forecasts variance. Variance (stock price) next period therefore would be lower

(higher) than she has subjectively expected (component (ii)).
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Figure 1.6: Impulse Responses of Objective Risk Premia: Model.
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Note: the figures depict impulse responses of θt, θ̂t, EP
t [RVt+1], ES

t [RVt+1] (i.e., IVt), EPP
t , and V RPP

t (t = 0, 1, 2, ...)
to a one standard deviation shock ηt at t = 0 (first column), and a (hypothetical) permanent parameter shock from
θ(l) to θ(h) at t − 1 = −1 (second column) in the model. Responses of θt, θ̂t, EP

t [RVt+1], ES
t [RVt+1], and V RPP

t are
monthly in basis point. Responses of EPP

t are monthly in percentage. X-axis is in month.

Overall, the above analyses show that in normal times, realized variance positively predicts

equity premia. Besides, implied variance, as I will show in the next subsection, is linear in

subjective variance expectation ES
t [σ2

t+1]. It thus also positively predicts equity premia since

ηt shocks drive it also to rise.

In high-volatility periods, the effects of parameter shocks θt dominate. Equity premium

predictability at these times becomes sharply different. To fix ideas, consider a (hypothetical)

permanent θ upshift from θ(l) to θ(h) occurring at time t− 1 = −1.12 The second column
12The time t− 1 = −1 θ shock starts to affect the economy from t = 0 onward.
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of Figure 1.6 depicts IRFs of θt, θ̂t, EP
t [σ2

t+1], ES
t [σ2

t+1], and objective equity premium from

t = 0 onward to such a shock. The parameter upshift induces a sequence of positive σ2
t

shocks, observing which the agent upward revises her posterior θ̂t and thus ES
t [σ2

t+1]. But

as she does not understand the nature of the parameter shock, driven by fading memory,

her θ̂t only slowly converges toward the true parameter θ(h), implying that she consistently

under-estimates the parameter, θ̂t < θt. Comparing (1.14) and (1.15) thus suggests the

agent under-forecasts variance, ES
t [σ2

t+1] < EP
t [σ2

t+1]. Hence, the two components of objective

equity premium respond oppositely. First, subjective equity premium rises due to increased

subjective variance expectation (component (i)). Second, since the agent under-forecasts

variance, variance (stock price) next period would be higher (lower) than she has subjectively

expected (component (ii)). However, B is a large number that far exceeds γ as it reflects

the strong discount rate effect from the agent’s long-run variance estimate on equity price.

Under plausible parameters, the second component dominates, and time-t objective equity

premium turns negative. Hence, it appears that time-t realized variance shock σ2
t negatively

predicts time-t equity premium.

The model argues that equity premium can be objectively negative13 despite being

subjectively positive if the agent sufficiently under-forecasts variance. The latter is true

because the agent does not understand the nature of the structural shock and thus cannot

use that information to update posterior, which therefore reacts to the structural shock

sluggishly. Consistent with the model’s implication, Gomez Cram (2021) estimates negative

equity premia at the onsets of recessions in the data.

In fact, Figure 1.6 shows that not only can the response of time t = 0 objective equity

premium be negative, but also the time t + 1 = 1, t + 2 = 2 ones and so on. Only after θ

stays at θ(h) for several periods would the agent’s posterior θ̂ gradually catch up with it, her

variance under-forecast diminish, and objective equity premium restore positive. Before this,

however, it appears that realized variance negatively predicts equity premia. In addition,
13Note that a negative impulse response of equity premium also implies a negative level of equity premium,

as the effects of parameter shocks on equity premia are much larger relative to average levels of equity premia.
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implied variance can also exhibit a negative or weak predictive relationship for equity premia,

as the latter fall and the former rises in the above episode.

To help develop intuitions, the above argument conditions on the parameter not back

shifting. In data and model calibration, θ(h) is short-lived, typically lasting months to

years. When θ(h) shifts down, the mechanism described above works again, but with an

opposite direction: realized variance and implied variance fall, and equity premium rises. The

short-term negative risk-return trade-offs therefore do not change.

Finally, although the model implies time-varying return predictability, the contempora-

neous negative correlation between realized variance (thus implied variance) and returns,

the so-called "leverage effect," always holds. To see this, note that shocks to returns have a

component that is proportional to shocks to realized variance, regardless of shock types:

rd,t − EP
t−1[rd,t] = κ1

(
A+B

1 − v

1 − ρ

)
(σ2

t − EP
t−1[σ2

t ]) + σtεt, (1.23)

where κ1
(
A+B 1−v

1−ρ

)
< 0 reflects a subjective discount rate effect. That is, realized variance

shocks, no matter transitory or structural, always drive σ2
t , the agent’s posterior θ̂t, and

thus subjective equity premium (subjective discount rate) to move in the same direction and

equity price in the opposite direction.

1.4.5 Variance Risk Premium Predictability

I next turn to examine the relationship between realized variance and variance risk premium.

As pointed out in Bollerslev et al. (2009a) and Drechsler and Yaron (2011a), in practice the

conditional objective variance risk premium in month t is defined as

V RPt = EQ
t [RVt,t+1] − EP

t [RVt,t+1] (1.24)

RVt,t+1 =
n∑
j=1

[
pd,t+ j

n
− pd,t+ j−1

n

]2
. (1.25)
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VRP is the difference between the risk-neutral and physical expectations of next month’s stock

market realized variance, RVt,t+1. As the discrete-time model has a monthly interpretation, a

natural starting point to define RV is the squared demeaned monthly log return:

RVt = (rd,t − ES
t−1[rd,t])2

= κ2
1

(
A+B

1 − v

1 − ρ

)2
(2 − v)σ2

η η̃
2
t + κ1

(
A+B

1 − v

1 − ρ

)√
2 − vσtεtη̃t + σ2

t ε
2
t .

(1.26)

I then follow Lochstoer and Muir (2021) and set all the shocks in the second line equal to

their continuous-time limit to approximate the data practice of calculating RV as a monthly

sum of high-frequency squared log returns, (1.25). Doing so allows me to obtain RV as:

RVt = Θ + σ2
t , (1.27)

where Θ ≡ κ2
1(A+B 1−v

1−ρ)2(2 − v)σ2
η. Finally, RVt is equal to σ2

t up to a constant. Consistent

with the data, I then define time-t implied variance, IVt, as the swap rate that gives a

one-period variance swap whose payoff is next month’s RV a present value of zero:

0 = ES
t [Mt+1(RVt+1 − IVt)], (1.28)

implying
IVt = EQ

t [RVt+1]

= ES
t [Rf,tMt+1RVt+1]

= Θ + δV RP + ES
t [σ2

t+1],

(1.29)

where EQ
t [·] denotes risk-neutral expectation, and δV RP is a constant given in Appendix.

Consistent with equation (1.24), I then define VRP as the expected payoff of a short position in
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the variance swap contract.14 Appendix shows that subjective VRP is positive and constant:

V RP S
t = IVt − ES

t [RVt+1] = δV RP , (1.30)

which is a consequence of the fact that in the agent’s mind, realized variance follows a

homoscedastic process (see (1.13)). The objective (true) VRP, however, equals:

V RP P
t = IVt − EP

t [RVt+1]

= δV RP︸ ︷︷ ︸
(i) subjective VRP

+ ES
t [σ2

t+1] − EP
t [σ2

t+1].︸ ︷︷ ︸
(ii) difference between objective and subjective

VRP due to variance mis-forecast

(1.31)

As shown, objective VRP also contains two components: a constant subjective VRP, and

the agent’s variance mis-forecast. The second component’s existence implies that even with

a constant subjective VRP, the model can still generate rich objective VRP predictability

depending on how the agent mis-forecasts variance. Moreover, as the second component is a

part shared by objective equity premium (equation (1.22)), the analyses in the last subsection

can be carried over in the current context to explain the predictability of VRP.

I again start with normal times without parameter shifts. The first column of Figure

1.6 depicts IRFs of θt, θ̂t, EP
t [σ2

t+1], ES
t [σ2

t+1], and objective VRP from t = 0 onward to

a one standard deviation ηt shock at t = 0. As analyzed in the previous subsection,

under a parameter learning channel, such shock causes the agent to over-forecast variance:

ES
t [σ2

t+1] > EP
t [σ2

t+1], which by equation (1.31) generates a positive objective VRP response.

Intuitively, the agent interprets a positive realized variance shock as evidence of a higher

long-run variance parameter. She thus over-forecasts next period’s variance and thus prices

the variance insurance excessively high. In other words, IV increases in a way more than
14Previous discrete-time models allow for one extra period offset in defining VRP. For instance, Bollerslev

et al. (2009a) define that V RPt = EQ
t [VarP

t+1(rd,t+2)] − EP
t [VarP

t+1(rd,t+2)]; Drechsler and Yaron (2011a)
define that V RPt = EQ

t [VarQ
t+1(rd,t+2)] −EP

t [VarP
t+1(rd,t+2)]. As argued in Lochstoer and Muir (2021), these

definitions are inconsistent with VRP’s actual data construction. However, note that all the model intuitions
would go through with these definitions of VRP in earlier literature.
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offsetting the increase in objective RV expectation.15

Furthermore, note that comparing equations (1.14) and (1.15) implies that the variance

over-forecast ES
t [σ2

t+1]−EP
t [σ2

t+1] is proportional to the parameter over-estimate θ̂t−θt. Since

the former is an important common component shared by objective equity premium and

VRP, the persistence of equity premium and VRP predictability when there is no θt shock is

closely affected by the persistence of θ̂t, which can be shown equal to v in normal times from

equations (1.9) and (1.12). Carefully calibrating v allows the model to match the persistent

equity premium and VRP predictability by weakly persistent RV shocks in low-volatility

regimes observed in the data (see Figure 1.5).

In high-volatility periods, the effects of parameter shocks dominate, and VRP predictability

at these times is sharply different. To fix ideas, consider a (hypothetical) permanent θ upshift

from θ(l) to θ(h) occurring at time t − 1 = −1. The second column of Figure 1.6 depicts

IRFs of θt, θ̂t, EP
t [σ2

t+1], ES
t [σ2

t+1], and objective VRP from t = 0 onward to such a shock. As

analyzed in the previous subsection, under a fading-memory parameter learning channel, such

structural shock causes the agent to under-forecast variance: ES
t [σ2

t+1] < EP
t [σ2

t+1], which by

equation (1.31) generates a negative objective VRP response. Hence, it appears that time-t

RV shock negatively predicts time-t VRP.

Intuitively, a negative VRP16 arises because the agent under-forecasts variance and thus

prices the variance insurance too low. In other words, the increase in IV is not enough to

offset the rise in objective RV expectation. In particular, the model’s implication of negative

objective VRPs when structural shocks occur is consistent with negative estimates of VRPs

at the onsets of recessions and market distresses in the data (Bekaert and Hoerova (2014);

Cheng (2019)).
15Previous research such as Drechsler and Yaron (2011a) also implies that RV positively predicts VRP. The

economics, however, is different. In CIR-style models like Drechsler and Yaron (2011a), VRP is proportional
to variance because variance drives the exposure of variance swap payoff to variance shocks. The higher this
exposure, the higher the value of variance swap as a hedge against future volatility, i.e., the higher the VRP.
In the current model, VRP predictability is due to parameter learning: a positive RV shock drives investors
to over-forecast variance, forming a positive push on objective VRP.

16Again, note that a negative impulse response of VRP also implies a negative level of VRP, as the effects
of parameter shocks on VRP are much larger relative to average levels of VRP.
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Again, Figure 1.6 shows that not only can be the response of time t = 0 objective VRP

negative, but also the time t + 1 = 1, t + 2 = 2 ones and so forth. Only after θ stays

at θ(h) for several periods would the agent’s posterior θ̂ gradually catch up with it, her

variance under-forecast diminish, and objective VRP restore positive. When the parameter

subsequently shifts down, an exact opposite scenario occurs: RV falls, and VRP rises. The

short-term negative RV-VRP predictability still holds. In other words, the effects of shocks are

symmetric in the economy: both positive and negative transitory variance shocks (structural

variance shocks) induce positive (negative) RV-EP and RV-VRP predictability.

1.4.6 Summary: Regime-Conditional Predictability

Up until now, I have been analyzing the model’s ability to explain the initial risk premium

underreaction to structural variance shocks. The model can also account for the subsequent

risk premium overreaction. Suppose parameter θ shifts up at t−1 and shifts down at t+ν−1,

it should appear that the RV shock (thus IV shock) at t predicts EP and VRP initially (t,

t+1, ...) negatively and subsequently (t+ν, t+ν+1, ...) positively. This implies that RV-EP,

IV-EP, and RV-VRP predictability should be hump-shaped over the predicting horizon in

high-volatility periods.

In addition, since EP and VRP share the agent’s variance mis-forecast as a common

component ((1.22) and (1.31)), shocks in the economy always tend to drive them to move in

the same direction. Hence, VRP robustly positively predicts EP with standard decreasing

coefficients at short horizons. I have established the following main proposition of the paper.

PROPOSITION 1. The model features the following time-varying predictability. In low-

volatility times without parameter shifts,

• RV predicts VRP positively with exponentially decreasing coefficients;

• RV predicts EP positively with exponentially decreasing coefficients;

• VRP predicts EP positively with exponentially decreasing coefficients;
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• IV predicts EP positively with exponentially decreasing coefficients.

In high-volatility times containing parameter shifts,

• RV predicts VRP initially negatively and subsequently positively with a hump shape;

• RV predicts EP initially negatively and subsequently positively with a hump shape;

• VRP predicts EP positively with exponentially decreasing coefficients;

• IV predicts EP initially weakly and subsequently positively with a hump shape.

In the subsequent numerical sections, I will show how RS-VAR, when applied to model-

simulated data, can help capture this state-dependent predictability.

1.4.7 Rational-Expectations Benchmark

Rational-expectations learning does not help explain the data because latent regime shifts are

extremely detectable for rational learners. Let objective cash flow dynamics still be given in

(1.8) and (1.9). Assume the agent is a rational learner, who tries to learn about the posterior

probability that the current unobservable parameter is high, denoted Pr(θt = θ(h)|t). Figure

1.6 shows that variance shocks induced by transitory shock ηt and parameter shock θt are

of sharply different orders of magnitudes. Thus, when a θt shock occurs, a rational learner

would be able to figure out the observed large shocks to σ2
t almost surely come from the θt

shock, not ηt. She would adjust Pr(θt = θ(h)|t) to one almost immediately. As a result, a

negative second component in equations (1.22) and (1.31) that helps drag down objective

risk premia wouldn’t exist. In contrast, constant-gain parameter learning (1.12) allows θ̂t to

respond to σ2
t shocks linearly and slowly.17

17Recently, Ghaderi et al. (2021a) build a model where a rational investor learns about the unobservable
disaster intensity, which stochastically switches between two values. Due to imperfect information, the
investor identifies a regime shift slowly. However, this model implication requires the disaster intensity process
to be highly persistent (monthly persistence of 0.993) so that signals for regime shifts are released slowly.
Their calibration contradicts the frequency of the current paper’s findings. As shown in Figure 1.2, the signals
for regime shifts are released quickly and sharply.



31

1.4.8 Calibration

I calibrate model parameters, interpreted monthly, with a primary target toward matching

RS-VAR implied regime-dependent risk premium predictability. I compute and compare

data and model moments monthly or annually, whichever has an easier interpretation. Panel

A of Table 1.1 reports my parameter choices. Rate of time preference δ is set to match a

low risk-free rate. Risk aversion γ is set at 2.4 to generate 8.4% per annum equity premium.

The intertemporal elasticity of substitution ψ is set at 2.2, a value estimated in Bansal et al.

(2016) and used in Lochstoer and Muir (2021). µ is calibrated at 0.5% to target average

dividend growth rates directly.

To keep model parsimony, equation (1.9) allows for structural breaks only in parameter θ,

not ρ or ση. As a result, it is unlikely to accurately match moments of RV in both regimes.

The strategy is to calibrate ρ at 0.4 to match RV persistence in regime 0, about 0.4 (see

Figure 1.3). Parameter shifts endogenously induce a higher RV persistence in regime 1, as

in the data. The variance shock volatility ση is calibrated at 0.12% to match unconditional

volatilities of RV, IV, and VRP (see Table 1.1 Panel B), which is important for matching

predictive regression coefficients. The objective persistence of θt will closely drive that of

RS-VAR regimes. RS-VAR data estimates show that π11 = 0.65 and π00 = 0.9. I choose a

slightly higher πhh = 0.8 to give the model a better chance to release its mechanism.18 I then

set πll = 0.95 accordingly.

I choose θ(l) and θ(h) to match unconditional averages of RV and IV. My choices of θ(l)

and θ(h) imply an average annualized realized volatility of 19.7% and implied volatility of

20.1%, close to the data. The difference between θ(l) and θ(h) also influences variance mis-

forecasts induced by parameter shifts and therefore risk premium underreaction to structural
18Generally speaking, the more persistent θ(h) is, the better ability the model has to explain the risk

premium underreaction in regime 1. After all, the smaller πhh is, the more similar a parameter shift is
to a transitory variance jump. Transitory shocks do not help explain variance forecast and risk premium
underreaction. Later, I will bring model-simulated data (RV, IV, and excess returns) to RS-VAR, and show
that RS-VAR regimes (1,0) overlap with but do not necessarily coincide with parameter regimes (θ(h), θ(l)).
Due to model parsimony, RS-VAR is not identifiable under model-simulated data. For identification, I
introduce a small proportional normal noise to IV.
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Table 1.1: Calibration.

Panel A: Parameters
Parameter Description Value Targeted Moments
δ Rate of Time Preference 0.999 Risk-Free Rate
γ Relative Risk Aversion 2.4 Equity Premium
ψ IES 2.2 Literature
µ Average Dividend Growth 0.5% Average Dividend Growth
θ(l) Low Variance Parameter 0.06% RV, IV Mean; Predictability
θ(h) High Variance Parameter 1.2% RV, IV Mean; Predictability
ρ Persistence of Variance 0.4 RV Persistence, Regime 0
ση Volatility of Variance Shock 0.12% RV, IV, VRP Volatility
πll Persistence of Low Parameter 0.95 RS-VAR Estimates
πhh Persistence of High Parameter0.8 RS-VAR Estimates
1 − v Recency Bias 1 − 0.87 Predictability

Panel B: Moments
Moment Description Model Data
E[exp(pdt)] Price-Dividend Ratio (A) 18.6 26.6
σ(pdt) Log PD Ratio Volatility (A) 25% 27%
E[rf,t] Risk-Free Rate (M) -0.2% 0.2%
E[rd,t+1 − rf,t] Equity Premium (A) 8.4% 6.9%√
E[RVt] Square Root Avg. RV (A) 19.7% 17.4%√
E[IVt] Square Root Avg. IV (A) 20.1% 20.5%

σ(RVt) Volatility of RV (M) 0.43% 0.43%
σ(IVt) Volatility of IV (M) 0.32% 0.33%
σ(IVt −RVt) Volatility of VRP (M) 0.16% 0.23%
AC1(RVt) Persistence of RV (M) 0.84 0.71
AC1(IVt) Persistence of IV (M) 0.90 0.81
ρ(RVt, IVt) Corr(RV, IV) (M) 0.93 0.85
ρ(ret , R̃V t) Corr(Exs Rtn, RV Shock) (M)-0.55 -0.31
ρ(ret , ĨV t) Corr(Exs Rtn, IV Shock) (M) -0.54 -0.67
E

[ c·ret+1
V arPt (rd,t+1) − ret+1

]
Vol-Managed Alpha (A) 2.9% 4.9%

Note: Panel A reports model parameter values, all interpreted monthly, and their targeted moments. Penal B reports
model moments and their counterparts in the U.S. data, with A representing annual and M monthly.

shocks.

Finally, recency bias v is a key parameter capturing a tension between risk premium

responses to RV shocks across regimes 1 and 0. To see this, note that a high v, i.e., a

small recency bias, has two effects. First, it amplifies underreaction of the agent’s variance

expectation and thus risk premia to parameter shocks in regime 1. Second, it increases the

persistence of risk premium predictability in regime 0. v = 0.87 strikes a good balance.

Panel B of Table 1.1 reports several relevant model moments and their counterparts in the
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U.S. data. Learning induces substantial variation in the agent’s parameter estimate and thus

subjective discount rate, generating a reasonable variation in log price-dividend ratio, 0.26

annualized in the model. Importantly, RV, IV, and VRP volatilities are well-matched.19 The

model produces a persistence of RV and IV respectively at 0.84 and 0.90, slightly higher than

their data counterparts. Due to learning, IV, a linear function in θ̂t and σ2
t , is endogenously

more persistent than RV (σ2
t ), as in the data. Importantly, the model correctly implies

a strong negative contemporaneous correlation between excess market returns and RV/IV

shocks, that is, the "leverage effect."

1.4.9 Volatility-Managed Alpha

Moreira and Muir (2017) document that volatility-managed factor portfolios yield positive

alpha. To time the market factor, they consider a strategy consisting of the market index

and risk-free rate where each period the weight in the market index is c/V arPt (rd,t+1). c is a

scaling constant such that the timing portfolio has the same unconditional return variance as

the market, and V arPt (rd,t+1) is the objective conditional variance of the market return.20 I

implement the strategy under model-simulated data and find it produces an alpha of 2.9%

annualized, close to that reported in Moreira and Muir (2017), 4.9% (Table 1.1 Panel B).

The positive alpha reflects the unconditional negative short-term risk-return trade-off in the

model.

1.4.10 Regime-Conditional Predictability

I then bring model-simulated RV, IV, and excess market return data to the same RS-VAR

used in Section 1.2 and compute regime-conditional predictability. Figure 1.7 illustrates how
19The model under-matches average VRP, as in Bollerslev et al. (2009a) and Lochstoer and Muir (2021).

Incorporating jumps, either in fundamental or volatility, is important for generating a large VRP by allowing
pricing kernel and variance to co-move abruptly (see, e.g., Drechsler and Yaron (2011a); Dew-Becker et al.
(2017a); Eraker and Wu (2017b); Eraker and Yang (2021)). Although parameter shifts induce jump-like
behaviors in volatility in the current model, the agent is unaware of it.

20In data implementation, Moreira and Muir (2017) use RVt as a model-free proxy for V arP
t (rd,t+1). In

my model implementation, V arP
t (rd,t+1) can be calculated precisely.
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Figure 1.7: Posterior Regime Identification: Model.
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Note: the two figures depict the dynamics of the model in a sample path that includes several parameter shifts
and exemplifies the model’s working. In the top figure, the solid blue line, read from the left axis, denotes the true
parameter (st = 0 for θt = θ(l) and st = 1 for θt = θ(h)); the black dashed line, read from the left axis, indicates the
posterior probability of the state being regime 1 identified by the RS-VAR applied on model-simulated data. The
solid red line, the red dashed line, and the solid black line, all read from the right axis, respectively denote realized
variance (RVt), implied variance (IVt), and the agent’s posterior about long-run variance parameter θ̂t. The bottom
figure plots the price-dividend ratio.

RS-VAR identifies regimes in the model. As shown, regime 1 nests all the high-parameter

states θ(h). Hence, regime 1 controls the effects of structural shocks, leaving regime 0

exclusively picking up the effects of transitory variance shocks. This is why RS-VAR can

help capture the regime-dependent model implication summarized in proposition 1.

Figures 1.8, 1.9, and 1.10 then plot model-implied unconditional, regime 1, and regime 0

conditional OLS predictive regression coefficients and corresponding confidence intervals. As

seen, the coefficients match their respective data counterparts in Figures 1.1, 1.4, and 1.5

qualitatively tightly and quantitatively reasonably well. In particular, as in the data, the shape

of unconditional predictability closely mimics that of regime-1 conditional predictability in
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Figure 1.8: Unconditional Predictability: Model.
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Note: model is simulated to generate 500 samples each with the same length as the data, 360 months. For each
sample, RV, IV, and rM − rf data is first fitted to a VAR and then predictive regression coefficients are calculated.
X-axis denotes predicting horizon in month. Y-axis denotes slope coefficients.

the model. Besides, the model also reproduces the mismatch between persistent risk premium

predictability and weakly persistent predictor in regime 0.

1.4.11 Regime-Conditional Moments

Figure 1.11 plots regime-conditional model moments, directly comparable to Figure 1.3. Some

similarities are noteworthy. First, as in the data, average RV and IV are substantially higher

in regime 1, but average VRP and excess market return are lower in regime 1.

Second, as in the data, variation in each variable is substantially higher in regime 1.

Consistent with a higher RV, the excess return is more volatile in regime 1. Though the

volatility-of-volatility parameter ση is time-invariant, parameter shifts per se bring additional
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Figure 1.9: Regime-1 Conditional Predictability: Model.
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Note: model is simulated to generate 500 samples each with the same length as the data, 360 months. For each
sample, RV, IV, and rM − rf data is first fitted to a RS-VAR and then predictive regression coefficients are calculated
from regime-1 conditional VAR. X-axis denotes predicting horizon in month. Y-axis denotes slope coefficients.

fluctuations to RV, IV, and VRP, making their volatility appear higher in regime 1.

Third, as in the data, RV is more persistent in regime 1, despite that ρ is time-invariant.

As regime 1 contains parameter shifts, RV persistence at this time is an average of ρ, πhh,

and πll. As regime 0 does not contain parameter shifts, RV persistence at this time is

ρ = 0.4. Lastly, the model implies that excess returns exhibit momentum in regime 1 and

mild reversals in regime 0, consistent with the finding in Gomez Cram (2021) that returns

exhibit momentum in recessions and reversals in expansions. The intuition is as follows.

There are two competing forces in shaping the return’s serial correlation. First, a discount

rate effect as in French et al. (1987) implies that negative return shocks tend to accompany

positive conditional equity premium shocks, inducing return reversals. Second, persistent

conditional equity premia translate to return momentums. In the model, a positive parameter
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Figure 1.10: Regime-0 Conditional Predictability: Model.
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Note: model is simulated to generate 500 samples each with the same length as the data, 360 months. For each
sample, RV, IV, and rM − rf data is first fitted to a RS-VAR and then predictive regression coefficients are calculated
from regime-0 conditional VAR. X-axis denotes predicting horizon in month. Y-axis denotes slope coefficients.

shock negatively drives both equity returns and objective conditional equity premia. That is

to say, although a "subjective discount rate effect" always holds, an "objective discount rate

effect" is missing or weak in high-volatility (recession) regimes. In low-volatility (expansion)

times, parameter learning implies volatility belief overreaction, strengthening the objective

discount rate effect.

1.5 Additional Supportive Evidence for the Model

This section presents additional supportive evidence for the model. Figure 1.12 plots regime-

conditional IRFs of investors’ subjective and risk-neutral RV expectation term structure21

21Note that in the model, the variance process is homoscedastic in the agent’s mind, so subjective VRP is
a horizon-dependent constant. Thus, given any horizon τ , risk-neutral RV expectation EQ

t [RVt+1:t+τ ] and
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Figure 1.11: Regime-Conditional Moments: Model.
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Note: the figures report regime conditional mean, standard deviation, and autocorrelation of RV , IV , V RP , and
rM − rf in the model. The blue line within the boxplot indicates median estimate, and the black upper and lower
bounds of the boxplot indicate 5% and 95% percentile estimates.

and log price-dividend ratio to RV shocks in the model.22 As shown, the model offers two

additional testable implications.

First, investors’ subjective and risk-neutral RV expectations exhibit a time-varying

IR to RV shocks. Specifically, the IRs are hump-shaped conditional on regime 1 and

exponentially decreasing conditional on regime 0. This is consistent with the model’s key

mechanism: investors’ variance expectations underreact to structural variance shocks in
subjective RV expectation ES

t [RVt+1:t+τ ] are equal up to a constant and therefore share the same IRFs.
22The procedure to derive these regime-conditional IRFs is the following. For example, to derive each X’s

regime-conditional IRs to RV shocks, I re-estimate a RS-VAR with RV and X as model inputs via MLE.
But I exogenously fix each period’s regime probability at its baseline RS-VAR estimate, since the question I
pursue is how X responds to RV shocks respectively in regimes 1 and 0 established by baseline RS-VAR. I
follow the same procedure in the data exercises below.
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Figure 1.12: Regime-Conditional IRF of IV Term Structure to RV: Model.
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Note: the figures plot model-implied IRs of IV (equivalently, subjective RV expectation) term structure and log
price-dividend ratio to RV shocks. IRs are calculated respectively unconditionally (column 1), conditional on regime 1
(column 2), and conditional on regime 0 (column 3). Responses are for a one standard deviation shock to RV at t = 0.
All maturity IV is normalized monthly. RV and IV term structure responses are scaled by RV shock. pd responses are
in percentage. X-axis is in month.

high-volatility periods and overreact to transitory variance shocks in low-volatility periods.

Second, conditional on regime 1, longer-horizon subjective and risk-neutral RV expectations

consistently exhibit larger underreaction to RV shocks than shorter-horizon ones. This

is because, as shown in Appendix, in the model any-horizon RV expectation is a convex

combination of σ2
t and θ̂t, but longer-horizon RV expectation loads more (less) on θ̂t (σ2

t ).

While the model attributes price-dividend ratio and risk premium underreaction in high-

volatility periods fundamentally to underreaction of θ̂t to structural shocks θt.

Next, I provide three pieces of evidence supporting these model implications. I still use

the regime-conditional IRFs as a tool so that data evidence is comparable with Figure 1.12.
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Figure 1.13: Regime-Conditional IRF of Survey Expectation to RV: Data.

0 5 10 15 20
0

0.5

1
unconditional

RV

0 5 10 15 20
0

1

2
unconditional

Shiller Survey

0 5 10 15 20
-4

-2

0
unconditional

pd

0 5 10 15 20

0

0.5

1
Regime 1

RV

0 5 10 15 20
0

1

2
Regime 1

Shiller Survey

0 5 10 15 20
-6

-4

-2

0
Regime 1

pd

0 5 10 15 20
0

0.5

1
Regime 0

RV

0 5 10 15 20
0

0.1

0.2

0.3
Regime 0

Shiller Survey

0 5 10 15 20
-1

-0.5

0
Regime 0

pd

Note: the figures plot IRs of survey expectation and log price-dividend ratio to RV shocks. IRs are calculated
respectively unconditionally (column 1), conditional on regime 1 (column 2), and conditional on regime 0 (column
3). In fitting these RS-VARs, the probability of each period being in regime 1 is exogenously fixed at its baseline
RS-VAR estimate. Responses are for a one standard deviation shock to RV at t = 0. RV responses are scaled by RV
shock. X-axis is in month. Survey expectation is constructed from the Shiller Survey U.S. Crash Confidence Index,
which each point in time measures the fraction of institutional respondents who think that the probability of a market
crash in the next 6 months is greater than 10%. Survey expectation and log price-dividend ratio responses are both in
percentage. Survey data is available monthly from 2001/7 to 2019/12.

1.5.1 Survey Evidence

My first empirical proxy for investors’ subjective market variance expectation is the Shiller

Survey U.S. Crash Confidence Index, which at each point in time measures institutional

investors’ aggregate forecast of the market crash risk in the next six months. As a result, it

would be strongly correlated with their six-month ahead market volatility forecast, which I

interpret as a relatively long-run volatility forecast. Figure 1.13 plots regime-dependent IRs

of survey expectation as well as log price-dividend ratio to RV shocks.
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As seen, unconditionally, there is a hump-shaped response of survey expectation to RV

shocks, which Lochstoer and Muir (2021) document as evidence for extrapolative variance

expectations. However, Figure 1.13 shows that the response is hump-shaped conditional on

regime 1 and nearly exponentially decreasing conditional on regime 0. This time-varying

pattern is more consistent with the current learning model and less with extrapolative variance

expectations, because the latter always imply a hump-shaped response.

Moreover, the survey expectation inversely drives the price-dividend ratio (consistent

with institutional investors being marginal investors (He and Krishnamurthy (2013); Adrian

et al. (2014)). As in Figure 1.12, a time-varying response of survey expectation translates to

a time-varying response of price-dividend ratio and equity premia.

1.5.2 IV Term Structure Evidence

My second evidence regards the IV (VIX-squared) term structure. Figure 1.14 plots regime-

conditional IRs of 1, 3, 6, and 12-month IV to RV shocks. As shown, the data strongly

supports the model’s both implications. First, we see hump-shaped responses conditional on

regime 1 and exponentially decreasing responses conditional on regime 0. Second, conditional

on regime 1, the longer IV’s maturity, the more pronounced its underreaction is.

1.5.3 GARCH Evidence

My final evidence involves using a GARCH model to reproduce the term structure of institu-

tional investors’ subjective market variance forecasts. Consider a standard GARCH(1,1):

rt = µ+ εt

εt = σtzt

σ2
t = ω + αε2

t−1 + βσ2
t−1,

(1.32)
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Figure 1.14: Regime-Conditional IRF of IV Term Structure to RV: Data.
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Note: the figures plot IRs of IV (VIX-squared) term structure to RV shocks in the data. IRs are calculated respectively
unconditionally (row 1), conditional on regime 1 (row 2), and conditional on regime 0 (row 3). In fitting these
RS-VARs, the probability of each period being in regime 1 is fixed exogenously at its baseline RS-VAR estimate.
Responses are for a one standard deviation shock to RV at t = 0. Both RV and VIX-squared responses are scaled
by RV shock. X-axis is in month. VIX-squared term structure data are as in Johnson (2017) and downloaded from
Professor Travis Johnson’s website, normalized to be comparable with RV. The data are available monthly from
1996/1 to 2019/6. The IRFs are robust to using implied variance data in Dew-Becker et al. (2017a) (1996/1 to 2013/9)
and Berger et al. (2020) (1990/1 to 2019/12), both from Professor Stefano Giglio’s website.
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which I fit to historical daily log market return data {rs}s=t0:t at each month-end t from

January 1990 to December 2019, infer variance σ̂2
t , and then predict variances in the next 1,

3, 6, and 12 months by first applying the recursion σ̂2
t+1 = ω̂ + (α̂ + β̂)σ̂2

t and then summing

up daily variances, so that the obtained variance forecasts are directly comparable with RV.

Figure 1.15 plots regime-conditional IRs of GARCH variance forecasts to RV shocks. As

shown in the second column, with a short presample t0 = 1986, the GARCH variance forecast

term structure and IV term structure share similar regime-conditional IRs to RV shocks,

both consistent with the model (see Figure 1.12).

Moreover, inspecting the GARCH mechanism can further provide micro-foundations

for the model. In particular, the hump-shaped response in regime 1 is driven by GARCH

parameter underreaction, for two reasons. First, the third column in Figure 1.15 illustrates

that when I use a long presample t0 = 1950 to shut down GARCH’s parameter learning,

then underreaction in regime 1 almost disappears. Second, similar to IV term structure,

longer-term GARCH variance forecasts underreact more. Since the longer-term forecast

is more correlated with long-run variance parameter ω̂/(1 − α̂ − β̂) and less with current

variance σ̂2
t , this is evidence that parameter underreaction is the driving force.

However, what has caused GARCH’s parameter learning to underreact in high-volatility

periods? Transitory variance shocks cannot be the answer, as prevalent theories (e.g.,

Collin-Dufresne et al. (2016)) suggest that parameter learners’ posteriors and expectations

typically overreact to transitory shocks. Instead, the answer must be structural shocks. In

fact, one takeaway from the RS-VAR evidence (Figure 1.2) and the likelihood-based test

(Section 1.3.4) is that structural breaks objectively occur to market volatility. Since GARCH

by design neglects structural breaks, its parameter updates and thus variance forecasts

naturally underreact when the latter occur.23 Hence, the GARCH exercise has provided

micro-foundations for my key model argument on why risk premium underreaction exists.

To better understand how GARCH underreacted to structural breaks in the data, Figure
23In an independent study, Sichert (2019) also documents that a GARCH model that does not adjust for

structural breaks systematically mis-forecasts volatility.
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Figure 1.15: Regime-Conditional IRF of GARCH Variance Forecast to RV: Data.
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Note: the figures plot IRs of GARCH variance forecast term structure to RV shocks in the data. IRs are calculated
respectively unconditionally (row 1), conditional on regime 1 (row 2), and conditional on regime 0 (row 3). In fitting
these RS-VARs, the probability of each period being in regime 1 is fixed exogenously at its baseline RS-VAR estimate.
Responses are for a one standard deviation shock to RV at t = 0. Both RV and GARCH variance forecast responses
are scaled by RV shock. GARCH variance forecasts are normalized to be directly comparable with RV. X-axis is in
month. Specifically, at each month-end t from 1990/1 to 2019/12, a GARCH(1,1) model is fitted to historical daily
log market return data since t0, where t0 = 1986/1 for column 2 and t0 = 1950/1 for column 3. Then, 1, 3, 6, and
12-month ahead GARCH variance forecasts are calculated.

1.16 plots GARCH variance forecasts in a data sample containing the 2008 Crisis. The

intuition is as follows. In September 2008, RS-VAR identified a regime upshift - imagine

an upshift in some long-run volatility parameter. RV started to spike, i.e., market returns

became more volatile, which incentivized GARCH to upward revise its long-run variance

parameter and forecast (solid black line). However, GARCH was rather conservative in doing

so because it did not understand the sharp RV spike could mean a parameter break and

therefore updated its parameter by appropriately weighing all previous observations in its

memory. As RV further spiked (and peaked) in October 2008, GARCH further upward
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Figure 1.16: Variance Forecast Underreaction to the 2008 Crisis.
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revised its parameter. In November 2008, RV fell mildly, but GARCH kept upward updating

its parameter. Thus, GARCH long-run variance forecast could continue rising even after

RV has started to mean revert (consistent with Figure 1.15, columns 1 and 2, row 2). In

December 2008, RV continued falling, eventually driving GARCH to revise its long-run

variance parameter and prediction downward. Figure 1.16 also verifies that when a long

presample t0 = 1950 is used to initialize forecasting, then GARCH long-term variance forecast

(black dashed line) exhibited little underreaction to RV shocks at the early stages of the 2008

Crisis.

There is further evidence that underreaction in institutional investors’ variance forecasts

had contributed to risk premium underreaction. First, like the GARCH variance forecast,



46

Shiller Survey variance expectation (light blue line) also underreacted to the regime shift of

the 2008 Crisis and even more sluggishly. In particular, both indices exhibited significant

variance under-forecasts in September and October of 2008, which however is precisely the

time that the largest negative VRPs pre-COVID were observed according to various papers’

estimates (Bollerslev et al. (2009a); Bekaert and Hoerova (2014); Cheng (2019). See Figure

1.16 lower panel). Second, the sluggish response of Shiller Survey variance expectation

matched the equally slow reaction of the price-dividend ratio (Figure 1.16 lower panel),

translating to negative equity premia (Gomez Cram (2021)).

1.6 Conclusion

Much unlike long-term equity premium predictability (Fama and French (1988); Campbell

and Shiller (1988a); Campbell and Shiller (1988b)), short-term risk premium predictability is

empirically observed puzzling. Market variance measures are observed to negatively predict

equity and variance risk premia at short horizons, a fact that challenges traditional risk-return

trade-offs at the heart of leading asset pricing models.

This paper argues that the puzzles’ time-varying characteristics contain essential infor-

mation on why the puzzles arise. The key finding is that in an econometric framework that

explicitly controls for regime switches, the puzzling negative risk premium predictability

disappears and becomes significantly positive in low-volatility regimes, which occur most of

the time. The findings suggest that occasional structural breaks might be the root cause of

risk premium underreaction.

I then develop a model based on this idea. In the model, investors learn about the long-run

market volatility parameter with fading memory but do not understand occasional breaks

in such a parameter. Investors’ subjective volatility expectations endogenously overreact

to transitory variance shocks in normal times and underreact to parameter shocks in high-

volatility times. Objective risk premia reflect investors’ volatility mis-forecasts and display a
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time-varying reaction to market variance shocks as in the data.

The model can further account for many other features of the market data, such as a

robust positive correlation between equity and variance risk premium and the leverage effect.

It also matches negative observations of equity (Gomez Cram (2021)) and variance risk

premia (Bekaert and Hoerova (2014); Cheng (2019)) at the onsets of economic recessions or

market distresses. This is true despite positive subjective risk premia in the model.

I finally provide additional empirical support and micro-foundation for the model. In

survey data, I find institutional investors’ volatility forecasts overreact (underreact) to variance

shocks in low-volatility (high-volatility) periods. In a GARCH exercise, I find evidence that

institutional investors’ negligence on structural breaks can in fact cause their volatility

forecasts to underreact to market variance shocks in high-volatility periods. Both shreds of

evidence are consistent with the model.



48

Chapter 2

The Price of Higher-Order

Catastrophe Insurance: The Case of

VIX Options

by Bjorn Eraker and Aoxiang Yang

2.1 Introduction

Since their introduction in 2006, options on the VIX index have become the second most

traded contracts on the CBOE, surpassed only by S&P 500 (SPX) options.1 The trading

volume in VIX calls is about twice that of puts, reflecting a demand for speculative bets

on, or hedges against, market turmoil in the form of high volatility. In this respect, VIX

calls inherit some of the characteristics of out-of-the-money SPX put options, but with some

important differences. We investigate the differences in the pricing of SPX and VIX options

in this paper with a primary view towards understanding the factors that drive differences in

the pricing of these two types of catastrophe insurance contracts.
1The Option Clearing Corporation cleared a total of 1.5 Trillion SPX trades vs. 29 Billion VIX trades

year-to-date as of November 2020. See https://www.theocc.com/Market-Data/Market-Data-Reports/
Volume-and-Open-Interest/Monthly-Weekly-Volume-Statistics

https://www.theocc.com/Market-Data/Market-Data-Reports/Volume-and-Open-Interest/Monthly-Weekly-Volume-Statistics
https://www.theocc.com/Market-Data/Market-Data-Reports/Volume-and-Open-Interest/Monthly-Weekly-Volume-Statistics
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VIX options prices display interesting features that differ markedly from SPX. For example,

while implied Black-Scholes volatility is always a convex function of strike for SPX options,

we document that the shape varies from concave in normal times to convex in high volatility

periods for VIX options. VIX options’ implied volatilities decrease monotonically with

maturity and generally increase in the strike. The opposite is true for SPX.

The main objective of this paper is to try to understand these price characteristics from

the viewpoint of an equilibrium model. To this end, we derive a cutting-edge equilibrium

model that reproduces salient features of VIX futures and options, SPX returns, SPX

options, and consumption and dividend data. The model features a representative agent

with Duffie-Epstein recursive utility preferences who faces an endowment process with time-

varying volatility (σt) and jumping volatility to volatility with time-varying intensity (λt).

The exogenous shocks to consumption and its higher-order moments drive asset prices.

Specifically, the aggregative stock market value obtains as the present value of a levered

claim to consumption with unpriced risks, as in Bansal and Yaron (2004b). In equilibrium,

shocks that lead to higher uncertainty lower stock market valuations, as to generate a higher

conditional expected rate of return. This volatility-feedback effect endogenizes the negative

contemporaneous return-volatility correlation (sometimes referred to as the leverage effect)

that is observed to be very strong in the data. The model also endogenizes the stock market

volatility itself, and by extension, the forward-looking expected stock market volatility. Since

the VIX index is interpretable as a conditional risk-neutral 30-day forward-looking estimate

of market volatility, the model is interpretable as an equilibrium model of VIX. We use the

property of the conditional cumulant generating function for log stock price to obtain an

explicit expression for equilibrium VIX, and then apply a novel Fourier-type payoff transform

analysis to derive a semi-closed form (up to a single integral) formula for the value of VIX

options.

While there are countless studies of equity options market data, relatively fewer papers

study VIX options. Mencía and Sentana (2013) use a panel of VIX futures and options
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to fit a no-arbitrage based time-series model. Lin and Chang (2009) conduct a horse race

between extant reduced-form models and conclude that jumps in volatility help explain VIX

options data. Park (2015) uses SPX and VIX options information to predict market returns

(SPX), VIX futures returns, SPX and VIX options returns. Huang et al. (2019) derive a

diffusion-based no-arbitrage model to explain negative delta-hedged VIX options returns.

Both papers conclude that volatility of volatility risk is priced with a negative market risk

price. Bakshi et al. (2015) derive a two-period model to price VIX options, attributing

heterogeneity in beliefs to empirical evidence suggesting that both high and low volatility

states carry high risk premia. Park (2016) specifies a reduced form model for VIX directly in

order to price derivatives. This paper, to our knowledge, is the first to consider pricing of

VIX options, SPX options, the equity premium, the variance risk premium, risk free rates

while maintaining the discipline imposed by a consumption based, fully fledged equilibrium

framework.

We start our analysis by first seeking to understand some basic properties of ex-ante

pricing information in VIX options, including the patterns of implied Black-76 volatility

surfaces. Among the interesting features of implied volatility data are the facts that they

imply a severely right skewed risk-neutral distribution of VIX “returns.” The right skewed

distribution contrasts equity return distributions which tend to be negatively skewed, as

with the SPX. The VIX returns distribution is much more heavily skewed to the right than

SPX returns are skewed to the left. Unlike equity options, VIX options display a downward

sloping term structure: longer term VIX options have lower implied Black volatility than

do short maturity ones. This persuasive feature persists irrespective of strikes and market

conditions (i.e., high or low VIX). We show that this feature is related to mean-reversion

in VIX and lack thereof in the distributional assumptions underlying (Black-76) implied

volatility computation. Additionally, the shock to implied volatility of volatility (VVIX)

is positively but imperfectly correlated with the level of VIX itself, suggesting that VIX

option prices contain a component independent of VIX. This actually rules out single-factor
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conditional variance representations such as the models in Heston (1993), Bates (1996), and

Eraker (2004). VIX options prices and implied volatilities can only move independently of

VIX if there is a separate pricing factor that drives VIX options valuations. In fact, the

essence of our two-factor model is to capture the independent moves in VIX options prices.

A second element of our descriptive empirical evidence is a look at ex-post realized

VIX options returns. Huang et al. (2019) find that delta-hedged VIX options returns are

statistically significantly negative on average. Their interpretation is that after controlling

for directional volatility risk, volatility-of-volatility risk is priced. We compute average rates

of return on VIX calls and find them to be significantly negative. The average returns on

puts are mostly statistically significantly positive. A long call position gives the buyer a

positive volatility exposure. We can think of the underlying for the options as being the VIX

futures and thus, since VIX futures yield average rates of return that are in the -30% to -40%

range per annum (see Eraker and Wu (2017a)), calls (puts) should have negative (positive)

expected return. Our analysis confirms this.

Both VIX calls and SPX puts constitute crash insurance. During a short window of about

20 days in March 2020, the S&P 500 index fell almost 30% from its high in January of the

same year. Intraday VIX peaked at more than 80. Figure 2.1 shows the holding period

returns to an investor who were to buy and hold the respective option contracts over the

height of the Covid-19 crisis period. There are some interesting features of the data. For

SPX, option prices rose throughout March and dramatically on March 16 and 18, days in

which the SPX index dropped 12% and 5.18%, respectively. A fortuitous investor who bought

the farthest OTM SPX put with strike 1600 in the beginning of March would have had more

than a 200 fold increase in value if she had sold out on either one of these days. Note that

over this particular sample window, the returns are monotonically decreasing in strikes, so

the 1600 strike put had the highest return, although this, as well as the other low-strike SPX

puts eventually expired worthless. Investors in VIX options fared even better than SPX. The

price of a 70 strike VIX call increased 400 fold from March 2 until March 18, although this
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Figure 2.1: Returns to OTM SPX Puts and VIX Calls During the Height of the Covid-19
Crisis, March 2020.
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option would also expire worthless.

Figure 2.1 also suggests that the correlation between SPX and VIX options is high, but

imperfect. In particular, while prices of SPX puts peaked twice on March 16th and 18th, VIX

calls showed a much larger spike on the 18th. We find that VIX calls correlate even less with

SPX puts during calm market periods. Foreshadowing our model’s implications, SPX options

are impacted by cash flow shocks that do not impact VIX options. The cash flow component

is more important than the discount rate component in driving SPX options during periods

of low market volatility and vice versa during periods of high market volatility. The presence

of cash flow shocks breaks the correlation between SPX and VIX options, particularly during

low and normal volatility periods.

We analyze the factor structure of VIX call and SPX put returns. The results suggest

that there is one distinct common factor that drives about 80% of variation across the two

markets. We dub a second factor “SPX skew," a third “extreme tail,” and a fourth a pure

“VIX” factor. We also study the relationship between the crash insurance offered by OTM

SPX puts and OTM VIX calls through reduced form regressions. Specifically, we study the

extent to which SPX options can be hedged with a delta hedge (SPY), a position in VIX

futures, as well as positions in VIX calls. We find that during calm market periods, VIX

calls do not correlate substantially with SPX puts, and thus, do not improve on hedging

performance. By contrast, during turbulent periods, VIX calls substantially reduce hedging

errors. We compare these empirical results to results obtained through simulating data from

our model and find that the model replicates these results. To understand these relationships

better, we link SPX and VIX options returns to exogenous shocks to state variables in our

model. In low VIX regimes, we find that both VIX and SPX options respond linearly to

shocks. The variance decompositions show that higher-order polynomials of the innovations

in the state variables, which proxy for convexity, are important for explaining option returns

during high VIX periods. This explains how VIX options can be useful for hedging SPX

positions (or vice versa) in periods of market distress.
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Our model matches a number of observed moments of macro quantities and asset prices,

starting with the first two moments of aggregate consumption and dividend growth, interest

rates, and stock returns. It matches the consumption and dividend growth and interest

rate data up to negligible differences, matches both physical and risk-neutral equity market

volatility, and generates an equity premium and a variance risk premium both close to those

seen in the data. Our model replicates the first two moments of VIX futures ex-post returns

with reasonable precision. It also accurately captures the SPX option implied volatility

curves. It further matches various-order moments of VIX option ex-post return distributions,

including mean, variance, skewness, and kurtosis. It matches implied VIX volatility in

several dimensions: the average ATM implied VIX volatility (i.e., VVIX) is almost matched

identically; the average implied volatility surface over maturity and strike is similar to what

we observe: it is concavely, vastly skewed to the right (as would be consistent with an

extremely right-skewed underlying VIX distribution), and it has a sharply downward-sloping

term structure. Remarkably, our model also reproduces the change of the implied volatility

curve (as a function of the strike) from concave during low and average VIX periods to

convex during market stress periods. We argue this unique model implication is related to

the flexibility afforded by our two factor model.

To derive our model, we first develop a general framework for pricing assets under recursive

Duffie-Epstein preferences with IES set to one under the assumption that state variables

follow affine jump diffusions, as in Duffie et al. (2000). The model builds on Duffie and Epstein

(1992), Duffie and Lions (1992), and Duffie and Skiadas (1994), shares similarities with the

models of Eraker and Shaliastovich (2008), Benzoni et al. (2011), and Tsai and Wachter

(2018), but has a clear marginal contribution that it is an endowment-based equilibrium

model with (i) clearly stated affine state variable dynamics and (ii) precisely characterized

equilibrium value function, risk-free rate, prices of risks, and risk-neutral state dynamics.

We prove our state-price density is a precise IES → 1 limit of that approximately solved in

Eraker and Shaliastovich (2008). The recursive preference assumption implies that higher-
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order conditional moments of the economic fundamental, such as its growth volatility and

volatility-of-volatility, are explicitly priced in equilibrium. Since VIX derivatives depend on

these factors, this in turn implies that the former carry non-zero risk premia.

The rest of the paper is organized as follows. Section 2.2 and 2.3 describes our sample

of VIX options and presents reduced-form evidence, respectively. Section 2.4 presents our

equilibrium model of VIX option pricing. Section 2.5 presents results from our model

calibration exercise, and Section 2.6 summarizes our findings. The online appendix contains

our general theory as well as model derivations and extensions.

2.2 Data

The sample was collected from the CBOE2 and consists of data sampled at the one-minute

interval over the period from January 2006 until June 2020. The data set consists of best

bids, best asks, bid/ask quantities, and open high/low in addition to contract characteristics

over the one-minute intervals. The fact that the data are time-stamped down to the minute

interval mitigates the problem of non-synchronous quotes that are often problematic in

end-of-day data.

VIX options and futures are cash-settled to a special VIX computation with ticker code

VRO. VRO is computed from prices of constituent SPX options that are compiled through

a special auction that is held pre-market on the VIX expiration day, typically the third or

fourth Wednesday of the month. This contrasts the VIX itself, which is computed from

midpoints. While in theory, VRO should differ little from the open value of the VIX on the

settlement day, in practice, it may. Griffin and Shams (2018) suggest that the market is prone

to manipulation since OTM SPX options can be traded cheaply while having a comparably

large impact on VRO.

Some remarks regarding the relationship between VIX futures and options are in order.

VIX futures market prices have no direct effect on VIX options - both are settled to VRO.
2See https://datashop.cboe.com for details.

https://datashop.cboe.com
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However, the fact that the underlying VIX index is not a marketable asset has implications

for both futures prices and options. The most important impact on the prices of futures

contracts is they do not adhere to a standard futures-spot no-arbitrage parity condition. For

example, for a stock index value St, a τ period futures price Ft(τ) will satisfy

Ft(τ) = Ste
(r−q)(T−t) (2.1)

where r and q are the continuously compounding risk free rate and dividend yield, respectively.

This implies that Ft(τ) and St do not deviate by a substantial amount.

For VIX futures with long maturities, however, the deviation between spot VIX and

VIX futures prices can be very large. Mechanically, this happens because there is no way to

arbitrage the deviations. Fundamentally, futures prices should incorporate market participants’

expectations of mean reversion in VIX. Prices can also reflect a risk premium. Whaley (2013)

and Eraker and Wu (2017a) present evidence suggesting that expected returns on VIX futures

are substantially negative.

VIX options do not satisfy Put-Call parity with respect to the underlying VIX index.

They do, however, satisfy a version of Put-Call parity that includes the same-maturity futures,

namely

Ct = Pt + (Ft −K)e−r(T−t) (2.2)

where Ct and Pt are respectively prices of calls and puts with strike K and T maturity, and

Ft a T maturity futures price. Keeping in mind that mean reversion will imply that Ft is

below spot VIX when spot VIX is high (and vice versa), an ATM option (K = Ft) will have

a strike that is below spot VIX when spot VIX is high, and above spot VIX when spot VIX

is low. The fact that the underlying asset of a VIX option contract is a same-maturity VIX

futures contract implies that we should apply Black (1976)’s pricing formula to compute

implied volatilities.
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2.3 Exploratory Data Analysis

2.3.1 Option Implied Volatilities

To characterize the pricing of VIX options we first study Implied Volatilities. Figure 2.2 plots

implied volatility for VIX options on two different days. On November 12, 2008, the VIX

was high at 65.48 and on April 26, 2017 the VIX was low at 10.78. These days are typical of

what we observe in high and low VIX states in our sample. There are a number of features

of the data that are worth commenting on.

First, in both cases, for a given strike, the implied volatility is greater for short-maturity

options. That is, the term structure of implied volatility is downward sloping irrespective of

the level of VIX. To understand why this happens, it is important to remember that Black-76

assumes that the underlying is a random walk. If a time series follows a random walk, its

forecasted variance increases linearly with the forecast horizon. The downward-sloping term

structure we observe in VIX options implied volatility, therefore, is evidence that the market

does not think that VIX variance increases proportionally with the forecast horizon.

Second, the shapes of the implied volatility functions are mostly convex in the high-VIX

case, especially at the left end of the strike, though they are mildly concave to the right in

the high-VIX/short-maturity case, seen in the red six-day maturity case in the top graph. In

the low-VIX case, however, the implied volatility functions are uniformly forming a concave

frown rather than the usual convex smile seen in equity options data, including the SPX.

Third, and perhaps most surprising, if we compare maturities in the 70 to 90 day range

with relatively high strikes (say 40), we see that they were in some sense more expensive in

the 2017 low volatility state than they were in the 2008 high volatility state. For example,

both 69 and 97-day maturities in the 40-50 strike range were trading at implied volatilities

below 100% in November of 2008. On the other hand, 83-day maturity 40-50 strike range

options traded at above 100% implied volatilities in 2017. Our model successfully replicates

all three main characteristics, as shown later.
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Figure 2.2: Implied VIX Volatility on November 12, 2008 and April 26, 2017.
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Note: the shaded areas represent the IV computed from bids and asks.
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Table 2.1: Average Implied Black-76 Volatility

Data Model
Maturity (months) 1 2 3 6 1 2 3 6
Strike
12 0.72 0.59 0.53 0.48 0.72 0.62 0.59 0.57
14 0.79 0.66 0.60 0.52 0.64 0.54 0.50 0.47
16 0.90 0.74 0.66 0.52 0.71 0.61 0.57 0.50
18 0.98 0.80 0.70 0.54 0.79 0.70 0.64 0.55
20 1.04 0.83 0.73 0.56 0.88 0.77 0.71 0.60
22 1.11 0.88 0.77 0.58 0.96 0.84 0.76 0.64
24 1.15 0.92 0.80 0.59 1.04 0.89 0.81 0.67
26 1.19 0.96 0.82 0.61 1.11 0.93 0.84 0.69
28 1.23 0.99 0.85 0.62 1.16 0.97 0.87 0.71
30 1.26 1.01 0.87 0.63 1.21 1.00 0.89 0.72
32 1.27 1.03 0.89 0.64 1.25 1.02 0.90 0.72
34 1.30 1.05 0.90 0.65 1.28 1.03 0.91 0.73
36 1.30 1.07 0.92 0.66 1.30 1.04 0.92 0.73
38 1.32 1.09 0.93 0.67 1.33 1.05 0.92 0.72
40 1.35 1.11 0.95 0.67 1.34 1.06 0.92 0.72

Note: the table reports average (annualized) implied Black-76 volatility for VIX options by maturity and strike. The
left panel reports data results with a sample over the Jan 2006 - June 2020 period. The right panel reports results
computed from simulating the benchmark VIX model over 100,000 months.

Table 2.1 left panel shows the average VIX implied volatility surface over strike and

maturity, which should largely inherit the characteristics of implied volatility surface in the

low-VIX case which occupies a vast majority of the time. As seen, the two predominant

patterns for the low-VIX case discussed above are visually evident: the term structure is

sharply downward sloping and the volatility surface is increasing and concave in the strike

levels. In particular, the fact that implied volatility keeps increasing in strike even for very

high strike ranges indicates an extremely right-skewed underlying VIX distribution that

cannot be rationalized without jumps.

Figure 2.3 shows the relationship between VIX level, as measured by one-month futures

prices, and ATM VIX option implied volatility. The color coding shows data by year. As seen

in the plot, there is generally a positive relationship, and the unconditional correlation is 0.48.

However, the strength of the relation between the futures level and the implied VIX volatility
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Figure 2.3: Scatter Plot of One-Month VIX Futures Prices vs. One-Month ATM Implied
VIX Volatility.
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is time-varying. By running a regression year-by-year, we find that the slope coefficients vary

from a low of 0.01 in 2009 to 0.1 in 2014. This is not to be interpreted as a causal relation:

we do not believe that vol-of-vol, as measured by ATM VIX volatility, varies deterministically

over the calendar. Rather, the evidence suggests that vol-of-vol, and thereby VIX ATM

implied, is related to some persistent factor that is imperfectly correlated with volatility itself.

In our structural model, therefore, we specify a structure in which aggregate consumption

growth volatility, σt, is driven by exogenous shocks with two components. The first is a

regular CIR-style diffusion term. Second, aggregate volatility is also discontinuous, with

jumps arriving at a rate λt - an independent self-exciting diffusion process. In equilibrium,

both VIX and vol-of-vol are non-linear functions of σt and λt. This modeling specification

allows us to match not only the positive yet imperfect, time-varying correlation between

vol-level and vol-of-vol seen in Figure 2.3, but also the implied volatility surface presented in

Figure 2.2 and Table 2.1.
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2.3.2 Option Returns

2.3.2.1 Descriptive Evidence

Much like traditional asset pricing research, recent developments in option research emphasize

risk premia associated with factors-shocks. Coval and Shumway (2001a) show that average

returns to SPX options are statistically significantly negative. Their paper shows that

even delta-neutral straddles that are immune to tail-risk experience large negative returns.

Bondarenko (2003) reports Sharpe ratios of -0.38 and -3.93 for 4% and 6% OTM SPX puts,

respectively, while Eraker (2012) finds Sharpe ratios of about -0.5 for ATM straddles. It is well

known that implied volatility exceeds realized volatility by some considerable amount (e.g.,

Jackwerth and Rubenstein (1996), Bollerslev, Tauchen, and Zhou (2009b) among others),

which is interpreted as a volatility risk premium.

Table 2.2 presents summary statistics on returns to VIX options positions using data

from January 2006 until June 2020 - a period covering both the 2008 financial crisis and the

Covid-19 crash in March 2020. For comparison, Table 2.3 reports corresponding statistics

from the SPX options markets over the same period. Both tables report buy-and-hold

returns. The results suggest that VIX calls have negative average rates of return over the

sample period. Moreover, the bootstrapped confidence intervals indicate that the returns are

statistically significantly negative at a one-sided 5% sized test. This is similar to SPX put

options which also lose something between 69% and 29% on average. Like VIX options, OTM

SPX returns are statistically significantly negative at the 5% level using a one-sided test.

Long VIX put positions give negative exposure to VIX. In accordance with the negative

risk premium associated with VIX futures positions, one might expect that VIX puts earn

positive premiums, and they do: Table 2.2 shows that short maturity puts on average have

statistically significantly positive rates of return. Longer maturity VIX puts yield close to

zero average returns. The fact that VIX puts yield positive short-term and zero long-term

average returns is consistent with extant evidence on average rates of return on variance
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Table 2.2: VIX Option Returns.

CALLS PUTS
ITM ATM OTM ITM ATM OTM

One month maturity
mean -0.33 -0.48 -0.60 0.10 0.21 0.54

[-0.47,-0.19] [-0.66,-0.29] [-0.81,-0.39] [0.01,0.19] [0.07,0.35] [0.22,0.86]
std 1.57 3.05 4.98 0.66 1.01 2.21
Sharpe -0.73 -0.55 -0.42 0.55 0.73 0.85
skew 5.60 6.70 7.56 -0.23 0.27 2.39
kurt 50.51 59.47 68.29 2.24 1.89 9.33

Six month maturity
mean -0.53 -0.59 -0.61 -0.13 -0.02 0.21

[-0.79,-0.23] [-0.86,-0.30] [-0.92,-0.25] [-0.27,0.01] [-0.21,0.16] [-0.07,0.49]
std 1.94 2.58 3.28 0.80 1.01 1.45
Sharpe -0.39 -0.33 -0.27 -0.24 -0.04 0.20
skew 3.67 4.06 4.75 -0.31 -0.03 0.49
kurt 18.68 21.70 27.22 2.16 1.84 2.03

Note: the table reports sample statistics on buy-and-hold returns to option positions in VIX. Returns are defined
as payoffT /p0 − 1 where T is the expiration and p0 is the price (midpoint) of the option one month or six months
prior to expiration. ATM is defined as the option with strike closest to the option-implied Futures price of the same
maturity as the option. An OTM (ITM) is defined as a call option with a strike that is 3 points higher (lower) than
ATM. Confidence intervals (CI) for the expected returns are computed by bootstrapping the return distribution. The
sample period is Jan 2006 - June 2020. Sharpe ratios are annualized.

Table 2.3: SPX Put Option Returns.

30d 60d 180d

K/S 0-0.85 0.85-0.90 0.90-0.95 0-0.85 0.85-0.90 0.90-0.95 0-0.85 0.85-0.90 0.90-0.95
mean -0.69 -0.57 -0.30 -0.29 -0.44 -0.31 -0.79 -0.67 -0.57

[-0.95,-0.36] [-0.83,-0.26] [-0.53,-0.03] [-0.82,0.34] [-0.75,-0.06] [-0.55,-0.05] [-0.96,-0.58] [-0.87,-0.44] [-0.78,-0.34]
std 3.55 3.34 2.41 6.64 4.18 2.52 1.02 1.11 1.09
Sharpe -0.74 -0.60 -0.50 -0.08 -0.17 -0.26 -1.18 -0.90 -0.69
skew 19.30 12.79 6.46 11.53 8.56 5.85 7.63 5.01 3.09
kurt 402.18 202.79 61.79 153.37 92.44 47.63 62.33 30.75 13.78
Note: the table reports sample statistics on buy-and-hold returns to OTM S&P 500 options. Returns are defined as
payoffT /p0 − 1 where T is the expiration and p0 is the price of the option one, two or six months prior to expiration.
The sample period is Jan 2006 to June 2020. 90% confidence interval for the mean return is computed by bootstrapping.
Sharpe ratios are annualized.
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swaps and VIX futures. Our findings are consistent with those of Eraker and Wu (2017a), and

Dew-Becker, Giglio, Le, and Rodriguez (2017b) who document a sharply downward-sloping

term structure of risk premia for variance claims.

Figure 2.1 suggests that the pre Covid-19 prices of VIX options were cheaper than those

of SPX options. In the following we seek to add to this anecdotal evidence by presenting a

more detailed analysis of returns to the respective option classes over a longer period that

includes the 2008 financial crisis as well as the Covid-19 crisis.

Figure 2.4 presents visual evidence on the performance of option investments in VIX

calls and OTM SPX puts. These are not values of self-financing portfolios, as we would

typically look at for bond and stock investments. The reason we cannot compute the value

of self-financing portfolios is that the majority of OTM options expire worthless. The natural

way to overcome this for portfolio managers is to keep only a small fraction of ones’ capital

allocated to short or long positions. However, this approach implies that average returns

depend on the arbitrary amount of starting capital.

To overcome this, Figure 2.4 presents portfolio values of investments that are constantly

replenished with cash. Specifically, we assume that one invests a single dollar each month

into a target security based on moneyness and maturity. The graphs show the cumulative

P&L on these investments including minute-to-minute marking-to-market. The figures show

periods for which there is a constant one-dollar per month loss on average. This is true,

for example, for the 2012 to mid-2015 time period for all the SPX puts and for six-month

maturity VIX calls. This happens as the options have a near-constant time-decay plus some

random, smaller moves due to fluctuations in market prices.

The graphs also show that the main driver of returns to these constant cash investments

is the payoffs of the options. OTM options pay off during periods of financial turmoil. The

Fall of the 2008 financial crisis led to large payoffs for both VIX calls and SPX puts. Figure

2.4 shows that for both SPX and VIX options, March 2020 produced the largest payoffs seen

in the sample. Short-term VIX options jumped so much that they temporarily erased the
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Figure 2.4: Marked-to-Market Value of 30 and 180 Day VIX Call Options (Top) and SPX
Put Options (Bottom).
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entire cumulative loss of the previous 14 years. Confirming evidence from Figure 2.1, the

payoffs to VIX options holders were larger than for SPX.

Other periods, such as the European currency crisis periods in 2010 and 2011 also produce

positive option payoffs but to varying degrees depending on the underlying, the strike and

maturities. There are also other noticeable features: for example, on August 24th, 2015, the

Dow opened up one thousand points lower in response to a substantial decline in the Chinese

market. This led to an extreme spike in short-term OTM SPX put options, momentarily

wiping out losses of the previous 11 years to buyers of these contracts. Prices quickly reverted

and the episode had no impact on long-term performance. As seen in Figure 2.4, the impact

on VIX options was much less dramatic. On February 5, 2018, the SPX fell 4.6% while

the VIX index more than doubled. The event, dubbed “volpocalypse" by some VIX market

participants, forced the termination or restructuring of several VIX futures-linked ETFs.

2.3.2.2 Principal Component Analysis

To further understand the connection between returns to SPX and VIX options we perform a

principal component analysis (PCA) of the returns associated with the various maturity and

moneyness categories. PCA and latent Factor Analysis are standard tools to uncover factor

structures in returns. In their classic study, Roll and Ross (1982) applies factor analysis for

equity returns, Christoffersen, Fournier, and Jacobs (2017) and Alex Horenstein and Xiao

(2019) analyze factor structures in equity options, and Johnson (2017) performs PCA on the

VIX term structure.3

Figure 2.5 shows factor loadings associated with the first four principal components. The

first factor (dark blue) can be interpreted as a level factor. It loads highly on short-term SPX

options and less on VIX options. However, this factor accounts for 85.5% of the variation

in the data and, as such, is important for VIX options as well. The second (light blue) is a
3Other factor structure analyses for individual stock options include Bakshi, Kapadia, and Madan (2003),

Bakshi and Kapadia (2003), Serban, Lehoczky, and Seppi (2008), Duan and Wei (2009), Vasquez (2017) and
Brooks, Chance, and Shafaati (2018) among others. Differently, we apply PCA on different types of options -
SPX and VIX options.
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Figure 2.5: PCA Factor Loadings.

Note: the plots show the PCA factor loadings for the four first factors in the data as seen from two different angles.

short-term SPX skew factor. It loads positively on short-term deep OTM SPX options and

negatively on short-term near ATM options. This skew factor accounts for about 5.5% of

variation. The third factor (green) can be interpreted as an extreme tail factor as it loads

positively on far OTM SPX options and negatively on everything else. It accounts for 3.8%

of variation. The fourth factor, which accounts for 2.5% of variation, is essentially a VIX

factor, as it loads on VIX as well as far OTM SPX short-term options.

Figure 2.5 reveals that VIX and SPX options contain some common and some idiosyncratic

components. In our equilibrium model, first, shocks to consumption variance and variance-of-

variance are common to VIX and SPX, whereas cash-flow shocks are specific to SPX; second,

VIX and SPX endogenously obtain different exposures to these shocks. Both facts allow for

an imperfect correlation between payoffs to SPX and VIX options. Our model generates a

common factor structure where the factor coefficients depend on "deep parameters" (e.g.,

persistence in priced risk factors) along with preference parameters.
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2.3.3 VIX Options as Hedges For SPX Options

To understand exactly the relationship between SPX and VIX options, consider what it

would take to synthetically recreate an SPX option by dynamically trading in the underlying

in addition to other instruments. From Black and Scholes’ seminal 1973 paper, we know

that we can replicate the option payoff by holding delta number of shares of the SPX index

provided the index follows a geometric Brownian motion.4 If we generalize the distributional

assumptions of Black and Scholes to include stochastic volatility, we will have to include an

additional hedging instrument to hedge the SPX option. For example, under Heston (1993)’s

model, it can be shown that the introduction of VIX futures will complete the market such

that a dynamically adjusted portfolio of SPX futures and VIX futures will replicate SPX

options. Likewise, model economies with additional risk factors need more instruments to

complete the market.

Let Pt = P (t,Xt) denote the price of an SPX put option whereXt is anN dimensional state

variable. Assuming Xt is a continuous time, continuous path process, standard arguments

imply that Ito’s formula describes the dynamics of P ,

dPt = ∂P

∂t
dt+ ∂P

∂X

′
dXt. (2.3)

where the partial derivatives ∂P
∂t

and ∂P
∂X

are functions of t and Xt and the option’s strike and

maturity (arguments suppressed). We later make explicit assumptions about the evolution of

Xt and preferences to derive an explicit formula for Pt. Absent any such assumptions we can

compute hedge coefficients through a regression,

dPt = αt + β′
tdXt + dϵt (2.4)

where αt and βt are regression coefficients and dϵt an error term. The regression coefficients
4As a matter of practical implementation, a hedger would have to trade the SPX futures or an SPX-linked

ETF such as the SPY.
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Figure 2.6: Hedge Regressions.
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Note: the figure shows βvix option
t computed through the regression, △P i

t = αi,t + βSPY
i,t △SP Yt + βVIX futures

i,t △Ft +
βVIX option
i,t △Ct + errori,t where Pt is SPX put options, SP Yt is the S&P 500 index ETF, Ft is front month VIX

futures and Ct is OTM VIX call options. The regression is run intraday using ten minute price changes from
overlapping data sampled at the one-minute frequency. The figure shows the average estimated slope coefficient
βVIX option
t = 1

Nt

∑Nt

i=1 βVIX option
i,t where i indexes SPX put options that are at least 10% out of the money and have

less than 40 days to maturity and Nt is the number of SPX options that satisfy these criteria on day t.

βt are time-varying as they approximate ∂P
∂X

which depend on (t,Xt) provided the data used

to run the regression are sampled over a small time interval.

Figure 2.6 shows the results from regressions

△P i
t = αi,t + βSPY

i,t △SPYt + βVIX futures
i,t △Ft + βVIX option

i,t △Ct + errori,t (2.5)

where △Pt,i are changes in SPX put options, △SPYt is the change in the SPDR S&P 500

ETF, △Ft is the change in the front month VIX futures contract, and △Ct is the change in

the value of a VIX call option index.5 The regressions are run day by day using ten minute

price changes from overlapping data sampled at the one-minute interval. The typical number
5The VIX option index is an equally weighted index of Call midpoint prices that include options that are

at least 10% out of the money. It implicitly puts more (less) weight on lower (higher) strikes. The averaging
is applied to mitigate stale quotes.
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of observations is 405 minute intervals within a day. To average over sampling noise the

figure shows the average slope coefficient βVIX option
t = 1

Nt

∑Nt
i=1 β

VIX option
i,t for SPX puts with

less than 40 days to maturity.

The figure shows the results for βVIX option
t , allowing us to study the ability of OTM

VIX calls to hedge OTM SPX puts. As seen, during periods of market calm, the estimated

slope coefficients are close to zero, and during periods of high volatility, the estimated slope

coefficients are positive. This suggests that during high volatility periods, such as the Great

Recession and the COVID-19 crisis periods, VIX options serve as useful hedges for SPX

options. Our two-factor model, which replicates the pattern seen in Figure 2.6, can be used

to shine light on the non-linear relationship between changes in OTM SPX puts and OTM

VIX calls.

2.4 A Structural Approach to VIX Option Pricing

This section presents our model framework for pricing VIX options, which is a special case of

the general model developed in Appendix A. We first specify a specific economic environment

and describe equilibrium VIX, and then perform a generalized Fourier payoff transform

analysis to derive a pricing formula for VIX options as a single integral. Appendix C derives

pricing formulas for VIX futures and SPX options also as single integrals.

2.4.1 The Model

Consider an endowment economy with a representative agent who has Duffie and Epstein

(1992) recursive preferences described by

Vt = Et

∫ ∞

t
f(Cs, Vs)ds (2.6)

f(C, V ) = β(1 − γ)V (lnC − 1
1 − γ

ln((1 − γ)V )), (2.7)
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where Vt represents the continuation value. The parameter β is the rate of time preference,

γ is the relative risk aversion, and IES is implicitly set at one. Consumption, dividends,

and in the end, asset prices and returns are influenced by a key variable, the conditional

volatility of consumption growth, σt, which itself is exposed to both diffusion and jump risks.

Specifically, we assume the following affine structure for the evolutions of state variables

Xt ≡ [lnCt, σ2
t , λt]′

d lnCt = (µ− σ2
t

2 )dt+ σtdB
C
t (2.8)

dσ2
t = κV (θV − σ2

t )dt+ σV σtdB
V
t + ξV dNt (2.9)

dλt = κλ(θλ − λt)dt+ σλ
√
λtdB

λ
t , (2.10)

where lnCt is the log consumption supply, and σ2
t is the instantaneous conditional variance of

consumption growth. BC
t , B

V
t and Bλ

t are Brownian motions. The term ξV dNt is a jump term

where Nt is a compounded Poisson process with instantaneous arrival intensity λt which itself

follows a mean-reverting diffusion process, and ξV is a time-invariantly distributed random

variable representing the jump size with a moment generating function ϱ(·). Motivated by

Eraker and Shaliastovich (2008), Park (2016) and our VIX option data, we assume ξV > 0,

implying upward jumps in volatility are emphasized. We assume all three standard Brownian

motions BC
t , BV

t and Bλ
t and the jump size ξV are mutually independent. Our endowment

dynamics abstract from important mechanisms in leading asset pricing models such as long-

run productivity risks and rare disasters that occur to consumption. Instead, we focus on

jumps to consumption growth volatility, which is natural given our VIX and VIX derivatives

pricing concentration. In a nutshell, we pursue the simplest framework that captures as many

aspects of VIX derivatives data as possible.

As Cox, Ingersoll, and Ross (1985) discuss, the solution to (2.10) has a stationary

distribution provided that κλ > 0 and θλ > 0. This stationary distribution is Gamma

with shape parameter 2κλθλ/σ2
λ and scale parameter σ2

λ/(2κλ). If 2κλθλ > σ2
λ, then the

Feller condition (Feller (1951)) is satisfied, implying a finite density at zero. The stationary
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distribution of λt is highly right-skewed, arising from the square root term multiplying the

Brownian shock in (2.10). The square root term implies that high realizations of λt make the

process more volatile, and thus further high realizations more likely than they would be under

a standard AR(1) process. Therefore, the model implies that there are times when jumps to

volatility can occur with high probability, but these times are themselves rare. For similar

reasons, there is a σt term multiplying the Brownian shock in (2.9), helping both prevent σ2
t

from falling below zero and correctly replicate the right-skewness in its distribution.

2.4.2 State-Price Density

Appendix C shows that the equilibrium value function of the representative agent is given by6

J(Wt, Xt) = W 1−γ
t

1 − γ
exp

(
a+ b2σ

2
t + b3λt

)
(2.11)

where

a = 1
β

(
(1 − γ)(µ+ β ln β) + b2κ

V θV + b3κ
λθλ

)
(2.12)

b2 = (κV + β)
σ2
V

−

√
(κV + β)2 − σ2

V γ(γ − 1)
σ2
V

(2.13)

b3 = κλ + β

σ2
λ

−

√
(κλ + β)2 − 2σ2

λ(ϱ(b2) − 1)
σ2
λ

. (2.14)

Assume parameter values are such that b2 and b3 are both well defined. Note then that

(2.13) implies b2 > 0 if we assume γ > 1. (2.14) then implies b3 > 0 since by definition

ϱ(b2) − 1 = E[eb2ξV − 1] > 0 due to the positivities of both b2 and ξV . Hence, from (2.11) the

value function (marginal utility) is decreasing (increasing) in both σ2
t and λt. This means an

increase in consumption growth volatility reduces utility (increases marginal utility) for the

representative agent. Similarly, an increase in the probability of a volatility jump also reduces
6Because the specific model is a special case of our general model, the IES=1 implication that the

wealth-consumption ratio is constant, Wt/Ct = 1/β, is inherited, which contrasts the data slightly. But this
is a sacrifice for precise framework tractability. Importantly, for our purposes, the price-dividend ratio is not
constant, as we will show.
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utility (increases marginal utility) for the representative agent. Both results are intuitive.

Under recursive preferences the marginal utility depends on consumption as well as the value

function, which is explicitly affected by σ2
t and λt. The agent thus requires compensation for

bearing risks in both σ2
t and λt.

Appendix C shows the instantaneous risk-free rate is given by

rt = β + µ− γσ2
t , (2.15)

where β represents the role of discounting, µ intertemporal smoothing, and γσ2
t precautionary

savings.7 Appendix C also shows that the state-price density is given by

dπt
πt−

= −rtdt− Λ′
tdBt +

(
eb2ξV − 1

)
dNt − λtE[eb2ξV − 1]dt (2.16)

Λt = Σ(Xt)′λ (2.17)

Σ(Xt) = Diag
(
σt, σV σt, σλ

√
λt

)
(2.18)

λ = (γ,−b2,−b3)′, (2.19)

where Diag represents a diagonal matrix. The vector λ determines the market prices of risks

in the different components of Xt such that innovations to Xt,i are positively (negatively/not)

priced if and only if λi > 0 (< 0/ = 0). Therefore, in the present model, log consumption

lnCt has a positive market price of risk while consumption growth volatility σ2
t and volatility

jump intensity λt each warrants a negative market price of risk. The fact that all three

state variables are priced is in sharp contrast with the CRRA utility model in which only

innovations to consumption are priced and VIX derivatives have zero premia in equilibrium.

Appendix C shows that the evolution of the state variables under the risk-neutral measure
7Note that rt can become negative when σ2

t is sufficiently high. A standard arbitrage when real risk-free
rate is negative involves borrowing consumption goods at negative rates, storing them until maturity, and
then repaying a fraction back. This strategy does not work since no physical storage technology is available
in the economy. For the same reason, negative real interest rates are also possible in models such as Bansal
and Yaron (2004b) (not because of log-linear approximation errors) and Wachter (2013b).
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Q induced by the state-price density is given by

d lnCt =
(
µ− (1

2 + γ)σ2
t

)
dt+ σtdB

C,Q
t (2.20)

dσ2
t = κV,Q(θV,Q − σ2

t )dt+ σV σtdB
V,Q
t + ξQV · dNQ

t (2.21)

dλt = κλ,Q(θλ,Q − λt)dt+ σλ
√
λtdB

λ,Q
t , (2.22)

where

κV,Q = κV − b2σ
2
V ; κλ,Q = κλ − b3σ

2
λ (2.23)

θV,Q = κV

κV − b2σ2
V

θV ; θλ,Q = κλ

κλ − b3σ2
λ

θλ. (2.24)

Equation (2.20) shows that the drift of consumption growth is adjusted downward by γσ2
t

under Q measure. Equations (2.21) through (2.24) show that, for both σ2
t and λt, the mean

reversion becomes slower and the long-run mean becomes higher under Q measure. Moreover,

Appendix C shows that the jump arrival intensity is magnified under the Q measure by a

percentage ϱ(b2) − 1: λt under P versus ϱ(b2)λt under Q. As analyzed in the general model,

the jump size may be adjusted upward or downward under Q measure, with a moment

generating function ϱ(u) under P versus ϱ(u+ b2)/ϱ(b2) under Q. In the special case that ξV

is exponentially distributed, the jump size is adjusted upward in the sense that its mean is

increased under Q. Specifically, let ξV ∼ exp(µξ) under P , then ξQV ∼ exp( µξ
1−µξb2

) under Q.

By now, we have drawn upon all the key results from our general model, which help

characterize the equilibrium value function, risk-free rate, pricing kernel, and risk-neutral

dynamics. We next apply these results to price dividend strips, SPX, VIX, SPX options, and

VIX futures and options.
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2.4.3 Equity Price

Let us first price SPX. The continuous-time literature (Abel (1999); Campbell (2003); Wachter

(2013b)) specifies the aggregate dividend process, Dt, as leveraged consumption: Dt = Cϕ
t ,

so that Dt does not introduce a new state variable. However, this assumption has two

undesirable consequences: first, ϕ shapes both the exposure of dividend risk to consumption

risk and the average growth rate of dividend relative to consumption; second, consumption

and dividend are perfectly correlated. To address these shortcomings, we follow the long-run

risk literature (Bansal and Yaron (2004b)) that models dividend and consumption separately

d lnDt = ϕd lnCt + µDdt+ σDdB
D
t , (2.25)

where ϕ captures stock market leverage, µD allows a flexible dividend growth rate, and BD
t is

a standard Brownian motion independent of any other random process in the model, thus

representing the idiosyncratic risk in dividend growth.8 As a result, the state variable lnDt

remains redundant: dBD
t does not enter the pricing kernel, and lnDt does not enter the value

function, which one can confirm by including a fourth state variable lnDt in Xt, solving the

model all over again and verifying that b4 = 0. We note that the parameter σD has dual

roles: besides its apparent role to govern the correlation between consumption and dividend,

σD also affects dividend growth volatility, SPX return volatility, and eventually the level and

composition of VIX, thus affecting VIX derivatives premia. Our choice of σD in calibration

takes care of both aspects.

Let P (Xt, Dt) denote the price of the claim to all future aggregate dividends (the dividend
8The long-run risk literature (Bansal and Yaron (2004b)) typically assumes d lnDt = µddt+ ϕσtdB

C
t +

σDdB
D
t , which is equivalent to our specification (2.25) with properly chosen µd, up to a Jensen’s term which

is quantitatively unimportant. We write dividend in the form of (2.25) for convenience of applying the
discounted characteristic function as defined in (2.27), a very useful tool in continuous-time models, which
requires dividend being log-linear in consumption: Dt = Cϕ

t e
µDteσDBD

t .
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claim). Then no-arbitrage implies that P (Xt, Dt) is obtained as

P (Xt, Dt) =
∫ ∞

0
EQ
t

(
e−

∫ t+τ
t

ruduDt+τ

)
dτ

= eσDB
D
t +µDt

∫ ∞

0
e

(
σ2
D
2 +µD

)
τ
EQ
t

(
e−

∫ t+τ
t

rudueϕ lnCt+τ
)
dτ,

(2.26)

where the risk-neutral expectation in the first line represents the price of a dividend strip

paid off τ periods ahead. To compute the risk-neutral expectation in the second line as

well as other no-arbitrage asset prices such as riskless bond prices and derivatives prices, we

follow Duffie, Pan, and Singleton (2000) and define an important function, the discounted

characteristic function of Xt under the risk-neutral measure,

ϱQX(u,Xt, τ) ≡ EQ
t

(
e−

∫ t+τ
t

rudueu
′Xt+τ

)
. (2.27)

Appendix C shows that ϱQX is exponential affine in Xt for arbitrary u ∈ C3, and proves the

following proposition.

Proposition 2.1. The equilibrium price of the dividend claim (i.e., SPX) is

P (Xt, Dt) = DtG(σ2
t , λt)

= Dt

∫ ∞

0
e

(
σ2
D
2 +µD

)
τ+α(τ)+β2(τ)σ2

t+β3(τ)λt
dτ

(2.28)

where (α(τ), β2(τ), β3(τ)) solve equations (B.79) through (B.83) in Appendix C, and G(σ2
t , λt)

is the price-dividend ratio function.
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2.4.4 Equity Premium

We next discuss the equity premium. No-arbitrage implies the instantaneous equity premium

conditional on no jumps occurring in our economy, as shown in Appendix C, is given by

µP,t + Dt−

Pt−
− rt = γϕσ2

t − b2
G1

G
σ2
V σ

2
t − b3

G2

G
σ2
λλt + λtE

[
eb2ξV

(
1 − G(σ2

t + ξV , λt)
G(σ2

t , λt)
)]

= σ′
P,tΛt + λtE

[
eb2ξV

(
1 − G(σ2

t + ξV , λt)
G(σ2

t , λt)
)] (2.29)

with

σP,t =
[
ϕσt,

G1

G
σV σt,

G2

G
σλ

√
λt

]′
(2.30)

where G1 and G2 respectively denotes the partial derivative of G(·, ·) with respect to σ2
t and

λt. Four components arise in order. The first term, γϕσ2
t , represents a standard CRRA

risk premium which arises from the compensation for the diffusion risk in consumption,

dBC
t . The second component, −b2

G1
G
σ2
V σ

2
t , captures the compensation for the diffusion risk

in volatility, dBV
t . Appendix C shows that β2(τ) is negative for all τ as long as 1 < ϕ < 2γ

which we assume here and in our calibration, which immediately implies G1 < 0 (i.e., the

price-dividend ratio decreases in σ2
t ). Thus the second component takes a positive value. The

third component, −b3
G2
G
σ2
λλt, which has a similar interpretation as the second one, stands

for the compensation for the diffusion risk in volatility jump intensity, dBλ
t . Appendix C

shows that given β2(τ) is negative, β3(τ) is also negative for all τ , which implies G2 < 0 (i.e.,

the price-dividend ratio decreases in λt) and thus the third component also takes a positive

value. In contrast, the last term captures the compensation for the jump risk in volatility,

ξV dNt. It is positive since b2 > 0, ξV > 0 and G1 < 0. Intuitively, at the times volatility

jumps upward two things happen simultaneously: first, marginal utility jumps upward by a

percentage equal to eb2ξV ; second, the stock price jumps downward by a percentage equal to

1 − G(σ2
t+ξV ,λt)

G(σ2
t ,λt)

. Therefore, investors demand a jump risk premium for holding equity.

The instantaneous equity premium is given by (2.29) plus the expected percentage change

of the equity price if a jump to volatility occurs. That is to say, the population equity



77

premium in the economy is given by µP,t+ Dt−
Pt−

−rt plus a negative term: λtE
[
G(σ2

t+ξV ,λt)
G(σ2

t ,λt)
−1

]
.

Finally, we can write the analytical expression for the population equity premium as

ret − rt = σ′
P,tΛt + λtE

[(
eb2ξV − 1

)(
1 − G(σ2

t + ξV , λt)
G(σ2

t , λt)
)]
. (2.31)

Note that the last term in (2.31) remains positive, meaning that the positive compensation

for jump risks dominates the direct negative expected effect of jumps on equity return. The

above analysis establishes the following proposition.

Proposition 2.2. In equilibrium, innovations to σ2
t and λt are both negatively priced; the

price-dividend ratio G(σ2
t , λt) is strictly decreasing in both σ2

t and λt. Therefore, all sources

of risks (diffusion and jump risks) in σ2
t and λt help contribute to a positive equity premium.

2.4.5 VIX

Having obtained equilibrium SPX, we turn to define VIX. Given our model parameters have

an annual interpretation, VIX, as a measure of risk-neutral 30-day forward-looking market

volatility, can be expressed as9

V IX(Xt) = StdQt
[

lnPt+1/12
]
. (2.32)

To express VIX as a function explicitly in state variables, we follow Eraker and Wu (2017a)

and use the property of the conditional cumulant generating function for lnPt+1/12, which

requires expressing lnPt+1/12 as an affine function in state variables. Define the log price-

dividend ratio as g(σ2
t , λt) = lnG(σ2

t , λt). It follows from (2.25), (2.28) and a highly accurate
9Following the convention in the literature we define V IX2 as the risk-neutral variance of 30-day log

market return. The precise definition of V IX2 is V IX2
t = −2

(
EQ

t

[
lnPt+1/12

]
− lnEQ

t

[
Pt+1/12

])
as shown

e.g., in Martin (2011) Result 5. We show in Appendix D that our results change quantitatively negligibly
under the precise definition because the third and higher-order conditional moments of log equity return are
relatively unimportant compared with the second-order one. We thank an anonymous referee on this point.



78

log-linear approximation of the price-dividend ratio G around steady states that10

lnPt = g(σ2
t , λt) + lnDt

≃
(
g∗ − g∗

1σ
2∗ − g∗

2λ
∗
)

+ g∗
1σ

2
t + g∗

2λt + ϕ lnCt + µDt+ σDB
D
t ,

(2.33)

where g1 and g2 respectively denotes the partial derivative of g(·, ·) with respect to σ2
t and λt,

and letters with asterisks denote relevant functions or variables evaluated at steady states. It

follows that

V IX2(Xt) = VarQt
[
g∗

1σ
2
t+1/12 + g∗

2λt+1/12 + ϕ lnCt+1/12
]

+ 1
12σ

2
D, (2.34)

where to compute the conditional variance, we rely on the property of cumulant generating

functions. Appendix C shows that by doing so we can write VIX-squared as a function affine

in σ2
t and λt

V IX2(σ2
t , λt) = a1/12 + c1/12σ

2
t + d1/12λt, (2.35)

where a1/12, c1/12 and d1/12 are three positive constants that in equilibrium depend on investors’

preference parameters. For example, all of them are increasing in risk aversion γ because

VIX, as risk-neutral variance, implicitly incorporates market investors’ attitudes toward risks.

The more market investors are risk-averse, the higher the VIX index. In addition, a1/12,

c1/12 and d1/12 also depend on endowment dynamics parameters. For example, the more

persistent σ2
t is, the greater its impact on SPX volatility and thus VIX, that is, the higher

c1/12 is. However, we emphasize that the dividend-specific risk parameter σD only impacts

the constant component of VIX, a1/12. Since the risk is orthogonal to consumption risks and
10Our such log-linearization is highly accurate for two reasons. First, as in Seo and Wachter (2019), our

log-linearization of the price-dividend ratio is used only after the price-dividend ratio is exactly solved out.
This is different from the Campbell-Shiller log-linear approximation used before solving the model in many
asset pricing papers. Second, as argued in Pohl, Schmedders, and Wilms (2018) and Lorenz, Schmedders, and
Schumacher (2020), a necessary condition for the log-linearization technique generating a nontrivial numerical
error is that factors that impact the price-dividend ratio are extremely persistent. This is not the case in
our calibration. As we have verified, Pt is actually indistinguishably different from exponential affine, and
numerical errors in VIX calculations (due to log-linearization of Pt) across various states never exceed 1%.
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not priced, it affects VIX in a fashion independent of investors’ attitudes towards risks.11 It

follows that in equilibrium, the VIX index has a square root affine structure

V IX(σ2
t , λt) =

√
a1/12 + c1/12σ2

t + d1/12λt. (2.36)

Several observations are noteworthy. First, in the reduced-form literature, VIX typically

takes an affine or exponential affine structure (Mencía and Sentana (2013); Park (2016))

which delivers convenience for VIX option pricing. But in our model, VIX has a square

root affine structure, which we handle with a novel generalized Fourier transform in order to

price VIX options. Importantly, as we will explain, the square root structure is essential for

replicating the concave VIX option implied volatility curves seen in the data. Second, as VIX

loads positively on state variables σ2
t and λt, both of which command a negative market price

of risk, so does VIX. This implies that, in principle, an asset with positive (negative) VIX

exposure should earn itself a negative (positive) premium with no ambiguity, as in the data.

Examples include VIX futures and call options (put options), as we will verify quantitatively.

2.4.6 VIX Options

Our key focus is a (European) VIX call option which renders its holder the right, but not the

obligation, to obtain the difference between the VIX index at an expiration date t+ τ and a
11Appendix C shows that the differential equations pinning down c1/12 and d1/12 depend on almost all

model parameters except σD. If they depended on σD, then the impact of σD on c1/12 and d1/12 would be
γ-dependent.
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pre-specified strike K.12 No-arbitrage implies that the price of a VIX call option is given by

CV IX(Xt, τ,K) = EQ
t

[
e−

∫ t+τ
t

rudu
(
V IXt+τ −K

)+]
, (2.37)

where it follows from (2.36) that

V IXt+τ = V IX(σ2
t+τ , λt+τ ) =

√
a1/12 + c1/12σ

2
t+τ + d1/12λt+τ . (2.38)

The challenge in computing the expectation in (2.37) is to properly transform the non-

standard option payoff function
(√

x − K
)+

, to which end we apply a novel generalized

Fourier transform analysis. Appendix C shows that by doing so we can finally write the VIX

call price as

CV IX(Xt, τ,K) = 1
4
√
π

∫ izi+∞

izi−∞
e−iza1/12ϱQX

(
− iz(0, c1/12, d1/12)′, Xt, τ

)Ercf(
K

√
−iz

)
(−iz) 3

2
dz,

(2.39)

where the integration is performed on any a strip parallel to the real axis in the complex z

plane for which zi ≡ Im(z) > 0, ϱQX represents the complex-valued discounted characteristic

function defined in (2.27), and Ercf(·) is the complex-valued complementary error function

with an expression given in Appendix C.

A similar generalized Fourier transform analysis on the put’s payoff function
(
K −

√
x

)+

12Note that the standard convergence of futures price to the underlying price as the time to maturity
approaches zero holds regardless of whether the underlying is tradable or not. As a related issue, just as in
reality, the VIX futures-spot parity does not hold in our model. This is because the VIX index is not tradable.
That VIX were tradable is equivalent to the existence of an investment technology allowing the agent to
transfer

√
a1/12 + c1/12σ

2
t + d1/12λt units of consumption goods at t into

√
a1/12 + c1/12σ

2
t+τ + d1/12λt+τ

units of consumption goods at t+ τ (for any τ). Any such intertemporal consumption transfer however is
ruled out in the model. A τ maturity VIX futures at t is in essence a random consumption strip which pays
off

√
a1/12 + c1/12σ

2
t+τ + d1/12λt+τ units of consumption goods at t+ τ . The futures price is the equilibrium

(time t+ τ) price of such a strip. Relatedly, we only consider a VIX futures option and back out its implied
volatility using the Black (1976) formula. On the other hand, we back out implied volatility for SPX options
using the Black and Scholes (1973) formula, since SPX (the dividend claim) is a tradable asset.
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gives the VIX put price as

P V IX(Xt, τ,K) = − 1
4
√
π

∫ izi+∞

izi−∞
e−iza1/12ϱQX

(
−iz(0, c1/12, d1/12)′, Xt, τ

)1 − Ercf(K
√

−iz)
(−iz)3/2 dz,

(2.40)

where the integration is performed on any a strip parallel to the real axis in the complex z

plane for which zi ≡ Im(z) < 0.13 As the payoff structure we are looking at is not common, we

prove the existence of relevant Fourier transforms in Appendix C. An important contribution

of our paper to the option pricing literature is thus to fully characterize the working of a

generalized Fourier transform argument to price a European call and put option with a square

root affine underlying payoff structure, which no previous papers did to our best knowledge.

2.5 Quantitative Analysis

In the following, we perform parameter calibration for our model with the target toward

replicating salient features of consumption, dividends, equity, VIX, and VIX derivatives data.

2.5.1 Calibration

Table 2.4 displays our choices of model parameters. To facilitate comparison with recent

continuous-time asset pricing models, in our model, time is measured in years, and parameter

values should be interpreted accordingly. A rate of time preference β equal to 1% per annum

and an expected consumption growth µ equal to 3% per annum together help give rise to

a low average real yield on one-year Treasury Bill of 0.18%, roughly consistent with that

documented in Bansal and Yaron (2004b), 0.86%. We set µ relatively high to counter the

negative effect of a relatively large risk aversion or a relatively high mean volatility on risk-free

rate, since at least one of the latter is needed to produce large premia on VIX derivatives as
13In the numerical section, we have used both the Riemann rule and the quadrature rule to approximate

the integrals. They generate the same result. We also have compared the price obtained via integral with
that via risk-neutral Monte Carlo simulation. We found the difference is negligible as long as the VIX option
is not “too far OTM," which applies to all our reported results.
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those seen in the data. But this results in an excessively high dividend growth through the

stock market leverage parameter ϕ, to counter which we set the adjustment term µD = −2%,

finally generating a dividend growth of 5.84% per annum, close to the data.

We set the value of θV , the average annualized consumption growth variance without

jumps, to be 0.0004, which corresponds to a volatility of 2% per annum, consistent with that

used in Wachter (2013b). A reasonable range of values for the U.S. consumption growth

volatility that most previous research agrees upon is 1 − 3%. For example, Bansal and Yaron

(2004b) document a volatility of 2.93% while Wachter (2013b) documents a volatility of

1.34%.

Consistent with the literature, stock market leverage ϕ is calibrated at 2.7, a value between

that in Bansal and Yaron (2004b), 3, and that in Wachter (2013b), 2.6. This value of leverage

works well overall in terms of explaining various market data. Implicitly, the IES, which

value constitutes a source of debate, is set to one for tractability. Plus, a number of studies

conclude that the reasonable values for this parameter should be somehow close to one (e.g.,

Vissing-Jørgensen (2002); Hansen, Heaton, and Li (2008); Wachter (2013b); Thimme (2017)).

The parameter θλ has the interpretation as the average probability of a jump in consump-

tion volatility per annum. The parameter is hard to identify from monthly consumption

data alone. However, studies from equity market data, such as Eraker, Johannes, and Polson

(2003), suggest that jumps in equity market return volatility occur 1.5 times per year on

average. Starting from the mean level of volatility, an average-sized jump in volatility increases

volatility from 15% to 24%. Given that jumps in consumption volatility translate one-to-one

into jumps in equity price and return in our model, we are a little more conservative in setting

the average jump probability to be once every other year (θλ = 0.5), with each jump having

a larger impact on equity volatility.

We choose µξ such that in equilibrium an average-sized jump in volatility increases

steady-state VIX from 20.9 to 32.6, which is consistent with an average size of jump in
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Table 2.4: Parameters for the VIX Model.

Rate of time preference β 0.01
Relative risk aversion γ 14
Average growth in consumption µ 0.03
Mean reversion of volatility process κV 2.5
Average volatility-squared without jumps θV 0.0004
Diffusion scale parameter of volatility process σV 0.16
Average volatility jump size µξ 0.005
Mean reversion of jump arrival intensity process κλ 12
Average intensity of a jump in volatility θλ 0.5
Diffusion scale parameter of jump arrival intensity process σλ 2.6
Stock market leverage ϕ 2.7
Adjustment in dividend growth drift µD -0.02
Idiosyncratic risk in dividend growth σD 0.1
Note: the table reports parameter values for the VIX model in Section 2.4. Parameters values are interpreted in
annual terms.

VIX, 11.4, computed from historical VIX data from CBOE during the period 1990-2020.14

The unconditionally average consumption growth volatility is equal to the square root of

σ̄2
t = θV + µξθ

λ

κV
. With θV , µξ and θλ fixed, we then set κV at 2.5, implying a monthly

autocorrelation of 0.8 in VIX, which compares to 0.84 in the data. Our chosen consumption

volatility parameters imply an average consumption volatility of 3.08%, slightly higher than

2.93% documented in Bansal and Yaron (2004b) and higher than 1.34% in Wachter (2013b).

To calibrate the other model parameters, notably risk-aversion (γ), the diffusion parameter

of the volatility (σV ), the mean reversion of the jump intensity (κλ), the diffusion parameter

of the jump intensity (σλ), and the dividend growth idiosyncratic volatility (σD), we design a

coarse Simulated Methods of Moments procedure. Specifically, we search the parameter space

to overall best match the following six data moments: mean VIX (19.3); standard deviation of

VIX (7.4); average holding-period return on one-month ATM VIX call option (−48%); average

one-month ATM VIX option Black-76 implied volatility (0.69); monthly autocorrelation of

one-month ATM VIX option Black-76 implied volatility (0.53); contemporaneous correlation
14The number 11.4 is obtained as follows: we take monthly data of the VIX index from CBOE, identify all

the months during which VIX rises, and then take the mean of the largest 15. Given the period 1990-2020,
the number 15 is consistent with our earlier calibration that jumps are on average once every other year.
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between VIX and one-month ATM VIX option Black-76 implied volatility (0.48). The values

and data sources for these moments are summarized in Tables 2.2 and 2.5. We match a

majority of these moments well.

We calibrate risk aversion at 14, slightly higher than that in Bansal and Yaron (2004b)

and Bollerslev, Tauchen, and Zhou (2009b) (10) and Drechsler and Yaron (2011b) (9.5), and

higher than that in Wachter (2013b) (3) and Eraker and Wu (2017a) (8). Intuitively, the

high risk aversion arises from the effort to reconcile sizable premia on VIX derivatives (high

risk prices) with a low consumption growth volatility (low risk prices), while maintaining a

reasonable stock market leverage ϕ.

We calibrate σV at 0.16. Obviously, as a volatility-of-volatility parameter, it heavily

influences VIX volatility, VIX derivatives premia, the probability distribution of VIX, and

thus the contemporaneous correlation between VIX and one-month ATM VIX option Black-76

implied volatility. The parameter σV is again not a substitute for risk aversion since a too

large σV would make the model behave like a single-factor model. κλ is calibrated at a

high value, 12, in an effort to match a low monthly autocorrelation of one-month ATM VIX

option Black-76 implied volatility. Note that the latter is not monotonically decreasing in the

former because as κλ increases, the second factor, λt, becomes shorter-lasting and impacts

equilibrium VIX option price less (note that σ2
t is also a volatility-of-volatility factor which

impacts VIX option price). Finally, we set σλ = 2.6 and σD = 0.1 in order to match mean

and standard deviation of VIX and VIX option premia and implied volatility. Note that

VIX derivative (futures and option) premia are generally decreasing with σD as the dividend

idiosyncratic risk contained in σD is not priced in equilibrium and thus only contributes to the

constant component of the VIX index, thereby decreasing the exposure of VIX (derivative)

returns to σ2
t and λt.
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2.5.2 Simulation Results

2.5.2.1 General Moments

Table 2.5 displays a list of moments from a simulation of the model at calibrated parameters, as

well as their counterparts in U.S. data. The model is discretized using an Euler approximation

and simulated at a monthly frequency (dt = 1/12) for 100,000 months. Simulating the

model at higher frequencies produces negligible differences in the results. We then aggregate

simulated data to compute model moments primarily reported on a monthly or annual basis.

As seen in the table, we match a majority of the key moments that we are interested in. In

particular, we match average consumption growth volatility fairly well: 3.08% in the model

vs. 2.93% in the data. Notably, we match the correlation between consumption and dividend

growths closely: 0.69 in the model vs. 0.59 in the data. This outperforms leading asset

pricing models, as we see, for example, the correlation is 0.31 in Bansal and Yaron (2004b),

0.32 in Drechsler and Yaron (2011b), and 1 in Wachter (2013b), implying the balance between

systematic and idiosyncratic risks in dividend growth is more reasonable in our model. In

terms of the equity premium, we overshoot slightly, as our model produces 8.81% per annum.

This compares to 8.33% in the CRSP distributed in Ken French’s publicly available Mkt-Rf

time series. Our model produces an unconditional stock market volatility of 17.71%, which

compares to 18.31% in post-1990 S&P 500 data.15 Our model generates an average (one-year)

risk-free rate on par with what we see in the data, though the model-implied volatility of the

risk-free rate is a bit higher.

Our model does not match the observed (log) price-dividend ratio well. Empirically

observed p/d ratios vary substantially over time and display an annualized autocorrelation

that exceeds anything we could expect to generate with our model. This is a natural

consequence of the fact that our model structure is geared toward explaining derivatives

data and calibrated to do so at a relatively high frequency. Price-dividend ratios display
15We compare our estimate to SPX volatility using data collected after 1990 to make the estimate

comparable to the average VIX. The CRSP value-weighted index return over the risk-free rate has an annual
volatility of about 20.30% using data from 1927-2020.
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annualized persistence that way exceeds that seen in high-frequency derivatives-based variables

such as VIX and VVIX. Adding additional state-variables, such as in models by Campbell

and Cochrane (1999) (habits), Bansal and Yaron (2004b) (long-run persistent consumption

growth), and Wachter (2013b) (persistent disaster risk factor) helps the model fit the price-

dividend data better. In Appendix D, we solve and calibrate an extended version of our

baseline model in which the introduction of persistent long-run growth risks brings the

volatility and persistence of the price-dividend ratio substantially closer to the data while

leaving all the other moments largely unaffected. In Appendix D, we also report additional

model moments as well as return predictability, and discuss how the shortfall in long-term

return predictability can be addressed in an extended three-factor model.

Importantly, for the purposes of our study, we match the mean and standard deviation of

the VIX index almost exactly. The fact that mean VIX (19.41) is higher than equity return

objective volatility (17.71) illustrates the model’s ability to generate a large unconditional

variance risk premium close to that in the data. The monthly autocorrelation of the simulated

VIX index is 0.8, close to 0.84 in the data. Turning to the model’s ability to match key

moments of VIX options data, we see that the average implied volatility for one-month ATM

VIX options, denoted E(imp_volt), is estimated at 71.84 in the model simulations, which

compares to 68.8 in the data. The model produces a volatility of the simulated VIX implied

volatility, denoted σ(imp_volt), of 12.64 vs. 14.3 in the data - a slight miss on the low side.

The model also produces a monthly autocorrelation of one-month ATM VIX implied volatility,

denoted AC1(imp_volt), of 0.49 vs. 0.53 in the data.

Our model matches the observed positive but imperfect correlation between the implied

VIX volatility and VIX at 0.32 vs. 0.48 in the data. It is useful to consider this in relation to

a model where the arrival intensity of volatility jumps is constant λt = λ (Eraker and Wu

(2017a)) or volatility-driven λt = λ0 + λ1σ
2
t (Drechsler and Yaron (2011b)). In these cases,

VIX2 would be a linear function of σ2
t and thus derive its properties. From this, it follows

that the local variance of VIX2 will be a linear function of σ2
t , or equivalently V IX2

t . This
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Table 2.5: Simulation: Selected Model Moments.

Model U.S. Data Data Source
E[∆c] 2.96 1.80 BY2004
σ(∆c) 3.08 2.93 BY2004
AC1(∆c) 0.27 0.49 BY2004

E[∆d] 5.84 4.61 CRSP
σ(∆d) 11.56 11.49 BY2004
AC1(∆d) 0.24 0.21 BY2004

corr(∆c,∆d) 0.69 0.59 DY2011

E[exp(pd)] 21.98 26.56 BY2004
σ(pd) 9.14 29.00 BY2004
AC1(pd) 0.04 0.81 BY2004

E[ret − rft ] 8.81 8.33 Ken French
σ(ret ) 17.71 18.31 CRSP
E[rft ] 0.18 0.86 BY2004
σ(rft ) 2.86 0.97 BY2004

E[V IXt] 19.41 19.28 CBOE
σ(V IXt) 7.51 7.42 CBOE
AC1(V IXt) 0.80 0.84 CBOE

E[imp_volt] 71.84 68.80 CBOE
σ(imp_volt) 12.64 14.30 CBOE
AC1(imp_volt) 0.49 0.53 CBOE

corr(V IXt, imp_volt) 0.32 0.48 CBOE
Note: the table reports a list of model moments and their comparison with U.S. data. The model is simulated at
a monthly frequency (dt=1/12) and simulated data are then aggregated to an annual frequency. All the moments
in the first panel are on an annual basis. ∆c denotes log consumption growth rate, ∆d log dividend growth rate,
pd log price-dividend ratio, ret log return on the dividend claim, and rft yield on one-year riskless bond. All the
moments in the second panel are on a monthly basis, but the two variables V IXt (risk-neutral one-month log equity
return volatility index) and imp_volt (Black-76 implied volatility for one-month ATM VIX option) are themselves
annualized.
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shows that VIX option implied volatility (or simply vol-of-vol) should be (either positively or

negatively) perfectly correlated with VIX itself.

Our two-factor model breaks up the otherwise rigid correlation between VIX and vol-of-vol

by having an additional self-exciting λt factor. The latter typically drives VIX and vol-of-vol

in the same direction as follows. When λt increases, it first drives VIX up as VIX loads

positively on it; it second drives up the prices of VIX call options and thus implied vol-of-vol.

Huang, Schlag, Shaliastovich, and Thimme (2019) present empirical evidence suggesting

that VIX and vol-of-vol carry negative risk premia, which is true in our model: VIX is an

increasing function of σ2
t and λt, both of which have negative market risk prices, so has

VIX. Since vol-of-vol also loads positively on σ2
t and λt, it too carries a negative risk price.

However, Huang, Schlag, Shaliastovich, and Thimme (2019) propose a model where stock

market spot variance follows a mean-reverting process in which volatility is driven by an

independent diffusion process. The independence assumption counterfactually implies that

the correlation between VIX2 and volatility-of-volatility (or VVIX) is zero.16

2.5.2.2 VIX Futures Returns

Table 2.6 compares average returns and return standard deviations for VIX futures prices

computed from data (see Eraker and Wu (2017a)) and our model. We report average daily

arithmetic and logarithmic returns, and return standard deviations by re-simulating our

model at a daily frequency to facilitate comparison with the results in Eraker and Wu (2017a).

For one-month contracts, both log and arithmetic returns are ballpark the same for the

model as in the data. At longer horizons, the model generates a too high (negative) risk

premium. This is well known in the variance-risk literature. In fact, Dew-Becker, Giglio, Le,

and Rodriguez (2017b) report positive returns to long-maturity variance swaps, a finding

that cannot be reconciled with a negative volatility risk premium. Our model also matches
16The HSST model implies that V IX2

t is a linear function of stock market variance, Vt. It follows that we
can write dV IX2

t = (a+ bV IX2
t )dt+ c

√
ηtdWt where ηt is a mean-reverting diffusion independent of Vt and

therefore V IX2
t .
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Table 2.6: Simulation: VIX Futures Returns.

Maturity R1 R2 Std
Model

1 month -0.10 -0.18 3.75
2 month -0.09 -0.14 3.12
3 month -0.08 -0.12 2.71
4 month -0.07 -0.10 2.40
5 month -0.06 -0.08 2.14

Data
1 month -0.12 -0.20 3.98
2 month -0.07 -0.11 3.00
3 month -0.01 -0.04 2.47
4 month -0.03 -0.05 2.21
5 month -0.01 -0.03 2.01

Note: the table reports descriptive statistics of the model simulated VIX futures returns. R1 is the daily average
arithmetic constant-maturity return and R2 is the daily average logarithmic constant-maturity return, Std is the
standard deviation of daily logarithmic constant-maturity returns. Data moments are from Eraker and Wu (2017a).
All numbers are in percentages.

the observed daily return standard deviations of VIX futures almost exactly, although these

moments were never targeted in our parameter calibration. The Variance Risk Premium

is always positive in our model which follows from the fact that VRP is a positive linear

function of two positive state-variables.

To better understand how negative average VIX futures returns are generated in the

model, Figure 2.7 shows the expected returns under different market conditions (low vs. high

VIX). As in Eraker and Wu (2017), Figure 2.7, our model generates a consistent positive

difference between the Q (risk-neutral) and P (objective) expected path of VIX, irrespective

of the initial condition. Since expected returns are given by EP
t (V IXt+τ )/EQ

t (V IXt+τ ) − 1,

this implies that expected VIX futures returns are always negative in our model.

2.5.2.3 SPX Option Implied Volatilities

Before proceeding to our key focus, VIX options, we will discuss our model’s ability to

accurately capture SPX option implied volatilities. Figure 2.8 illustrates the Black and

Scholes (1973) implied volatilities for SPX put options in our model’s steady states. The
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Figure 2.7: VIX Futures Curves and Holding Period Returns.
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Note: the figure illustrates conditional VIX futures term structures and conditional expected holding period returns
on VIX futures in the model. Left: VIX futures curves (Q) and the objective-measure expected payoffs (P). Right:
expected holding period return, EP

t (V IXt+τ )/EQ
t (V IXt+τ ) − 1, to a long VIX futures position. State variables

conditioned upon for each row are the following. First row: steady state σ2
t and λt; second row: low σ2

t and steady
state λt; third row: high σ2

t and steady state λt; fourth row: steady state σ2
t and low λt; last row: steady state σ2

t

and high λt.
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Figure 2.8: Black-Scholes Implied Volatility Curves for SPX Options.
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Note: the figure plots (annualized) implied volatility curves computed from equating the Black-Scholes (1973) option
pricing formula with the SPX option price in the model at steady state. The horizontal axis denotes strike normalized
by SPX. Implied volatilities are computed for SPX options with four maturities: 1, 2, 3, and 6 month.

implied volatilities resemble those we see in data well. First, the levels of ATM and OTM

implied volatilities for various maturities are on par with those in the data. Second, fixing

moneyness, the implied volatility term structure is upward sloping for ATM options and

gradually transitions to downward sloping for (far) OTM options. Third, the implied volatility

curve is decreasing with the strike for most strike ranges, consistent with a highly left skewed

risk-neutral distribution of SPX returns.17

2.5.2.4 VIX Option Implied Volatilities

Table 2.1 right panel reports VIX implied volatilities from our model and is thereby comparable

to Table 2.1 left panel which uses real data. At short maturities and low strikes our model

mildly undershoots implied volatility, as seen for the 20 strike which averages 104% implied
17See Bates (2000), Broadie, Chernov, and Johannes (2007), Eraker (2004), Pan (2002), Santa-Clara and

Yan (2010), Backus, Chernov, and Martin (2011) and Seo and Wachter (2019) among others for models that
generate left skewness. In our model left skewness is endogenously achieved through the volatility feedback
mechanism.
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volatility in the data vs. 88% in our model. This is not a significant deviation when considering

that the size of the bid-ask spread often exceeds 20 implied volatility points - see Figure 2.2.

At higher strikes our model generates data that are close to what is reported in Table 2.1 left

panel. For example, at a 30 strike the data averages 126% implied vol which compares to

121% in the model. At a strike of 40 the numbers are 135% and 134%, respectively. At the

six-month horizon our model overshoots implied volatilities by roughly 5 percentage points

across all strikes. This is evidence that mean reversion of VIX in the model is slightly slower

than that in the data. On the other hand, the autocorrelation of VIX in the model (0.80) is

smaller than that in the data (0.84), suggesting, on the contrary, that VIX mean reversion in

the model is slightly faster than that in the data. The current parameter choices reflect a

balance struck between those tensions.

Figures 2.9 and 2.10 further illustrate the implied volatility patterns generated by our

model. While Figure 2.9 shows the steady-state implied volatilities and pretty much illustrates

the patterns in Table 2.1 right panel, Figure 2.10 shows what happens when we condition

upon a high and low initial VIX. In the low VIX case, where we have set the initial state

variables so low as to generate a VIX of 12.6, we see that the implied volatility curves are

almost everywhere increasing and concave. This closely resembles the patterns we saw in the

data on April 26, 2017 (Figure 2.2 bottom). The top panel shows that under a high initial

VIX, the implied volatility curves have changed to something that looks almost flat, and

marginally convex especially at the left end. Again, this strikingly resembles the data we saw

on November 12, 2008 (Figure 2.2 top).

To understand this contrast, note that there are two forces in shaping VIX option implied

volatility curves. First, equilibrium VIX-squared is linear in σ2
t and λt, but mainly driven by

σ2
t . Therefore, the implied volatility is shaped by the risk-neutral conditional distribution

of σ2
t . Second, the option is written on VIX, the square root of VIX-squared. The square

root payoff structure carries a moderate effect on distribution shape, that is, a square root

transform reduces (increases) a random variable’s right (left) skewness. Now consider the
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Figure 2.9: Black-76 Implied Volatility Curves for VIX Options.
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Note: the figure plots (annualized) implied volatility curves computed from equating the Black (1976) futures option
pricing formula with the VIX option price in the model at steady state. The horizontal axis denotes the absolute
value of the strike. Implied volatilities are computed for VIX options with four maturities: 1, 2, 3, and 6 month.

shapes of implied volatility curves across the two different market conditions in order.

The concavity in implied volatility seen in the low-VIX state is related to the fact that in

order to generate a low VIX, both state variables are set low. When λt is low it mean-reverts

fast so that during the option’s lifetime it likely experiences a considerable increase. By

contrast, σ2
t mean reverts slowly and remains persistently low unless there is a jump. The

σ2
t dynamics described by equation (2.21) shows that the effect of jumps dominates the

distribution of σ2
t and thus VIX-squared, inducing a fat right tail in the distribution of squared

VIX. This again leads to an increase in implied volatility across strikes. The moderate effect

of the square root transformation from VIX-squared to VIX, however, works oppositely by

dampening the right-skewness of VIX’s distribution, which is why the implied volatility curve

is concave. In other words, without the square root payoff structure, implied volatility is

convexly increasing in the strike, whereas without the possibility of jumps, implied volatility

would sharply decrease beyond a certain threshold strike and also would undershoot its data
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counterpart. Only combining a possibility of jumps and a square root payoff structure can

deliver a concavely increasing implied volatility curve, not only in low-volatility times (Figure

2.10) but also in average times (Figure 2.9).

On the other hand, in order to generate a high VIX simultaneously we need both high

spot volatility σt and high jump arrival intensity λt. The high probability of a jump arrival

fattens the right tail of the conditional distribution for VIX in high VIX regimes, generating

high implied volatilities for VIX options with high strikes. This counters the moderate effect

of the option’s square root payoff structure and generates a relatively heavy right tail of

VIX’s distribution, preventing the implied volatility curve from sharply sloping downward to

the right. The fact that σt is high also increases the volatility of σ2
t itself through the square

root diffusion term, assigning fat tails to both sides. Reinforced by the moderate effect of the

square root payoff structure that contributes to a left skewness, VIX now has a particularly

fat tail at the left end, making the implied volatility curve convex there.

2.5.2.5 VIX Option Returns

Figure 2.11 reports average returns on holding VIX call and put options to maturities. All

returns are normalized to a monthly frequency. Some striking patterns are as follows. First,

the model generates a negative (positive) premium for VIX call (put) options, intuitively

because the payoff of a VIX call (put) is a positive (negative) bet on σ2
t and λt both of

which are negatively priced in equilibrium. In other words, for market participants, VIX call

options are insurances against possible spikes in σ2
t and λt and thus a negative premium is

generated. Second, the model implies that, ceteris paribus, shorter maturity VIX options

always carry a greater premium than longer maturity ones, showing that the shorter the

maturity is, the more excessively expensive (cheap) the call (put) is. This is in principle

consistent with the downward sloping term structure of VIX option implied volatility shown

in Table 2.1 right panel. Below we show that this is true in the VIX implied volatility data.

Third, the premia for both call and put are decreasing with moneyness, showing that the more
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Figure 2.10: Black-76 Implied Volatility Curves for VIX Options: Conditional Analysis.
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Note: the figure plots (annualized) implied volatility curves for VIX options in the model conditional on high and low
initial VIX. In the upper case, we set both state variables very high: σ2

t = 10σ2
ss and λt = 10λss, implying a very high

VIX, 54.3. In the lower case, we set both state variables at minimum values: σ2
t = λt = 0, implying a small value of

VIX, 12.6.
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Figure 2.11: Average Returns on VIX Options.
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Note: the upper (lower) figure plots average (monthly) returns on VIX calls (puts) in the model. In each case, we
consider options with four maturities: 1, 2, 3, and 6 month, and the horizontal axis denotes the strike of relevant
option normalized by its underlying asset price.
out-of-the-money the VIX call (put) is, the more pronounced its role as a bet on (against)

volatility and volatility-of-volatility. This is in principle consistent with the upward sloping

VIX call option implied volatility curve across strike shown in Table 2.1 right panel.

Table 2.7 further reports returns to VIX options in our model with greater details. ITM

(OTM) here indicates 15% in-the-money (out-of-the-money). Given VIX futures price is most

of the time close to 20, 15% corresponds to 3 points, so that this table is directly comparable

with Table 2.2. A few comments on the similarities and dissimilarities between the data
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Table 2.7: Simulation: VIX Option Returns.

CALLS PUTS
ITM ATM OTM ITM ATM OTM

One month maturity
mean -0.14 -0.24 -0.36 0.05 0.06 0.07
std 1.23 2.12 3.18 0.68 1.09 2.47
Sharpe -0.40 -0.40 -0.39 0.24 0.18 0.10
skew 4.46 7.15 10.42 0.05 0.76 3.10
kurt 39.49 83.93 162.06 2.39 2.89 15.80

Six month maturity
mean -0.45 -0.53 -0.58 0.15 0.16 0.17
std 1.25 1.41 1.52 0.65 0.83 1.22
Sharpe -0.52 -0.53 -0.54 0.32 0.27 0.19
skew 3.53 4.27 5.06 -0.50 -0.08 0.56
kurt 18.61 25.65 34.85 2.32 1.88 1.98

Note: the table reports model moments of returns on holding VIX options for maturities of one and six months. ITM
and OTM are defined to be 15% in-the-money and 15% out-of-the-money. Sharpe ratios are annualized. All other
numbers are based on buy-and-hold returns.

averages and the model are in order. First, the model generates negative returns to call

options, and positive returns to put options. This is consistent with the data. The model

generates negative short maturity (one-month) call returns ranging from -14% (ITM) to -36%

(OTM) which compare to -33% (ITM) and -60% (OTM) in the data. We need to keep in

mind here that over the course of our sample, VIX spiked dramatically on several occasions,

including the financial crisis of 2008, the events of February 5th, 2018 discussed in Section

2.3, and the Covid-19 crisis, leading to large positive returns for OTM VIX calls. For the

longer maturity (six-month) call average returns, our model matches the data well: -45%

(ITM) to -58% (OTM) in the model which compare to -53% (ITM) and -61% (OTM) in

the data. Another commonality between the model and the data is the term structure of

(absolute) returns on VIX call is downward sloping. For example, for ATM calls, the monthly

return is -0.24 (-0.48) for one-month vs. -0.53/6 ≈ -0.09 (-0.59/6 ≈ -0.1) for six-month in the

model (data).

The model generates positive average returns on ITM, ATM, and OTM short and long
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maturity put options, consistent with the data in Table 2.2. The quantities are somehow

different, with the average return heavily dependent on moneyness in the data, but not in

the model. In particular, the data shows that short-maturity OTM puts have large average

returns due to the 2008 financial crisis and Covid-19 crisis periods.

Turning to an examination of higher-order return moments, we see that our model

generates patterns that are strikingly similar to what we estimate from data. For example,

one-month maturity call returns have an estimated standard deviation of 157% in the data vs.

123% in the model for ITMs, 305% vs. 212% (ATM), and 498% vs. 318% (OTM). The return

standard deviations are matched even better for short maturity puts, as one-month maturity

put returns have an estimated standard deviation of 66% in the data vs. 68% in the model for

ITMs, 101% vs. 109% (ATM), and 221% vs. 247% (OTM). At longer maturities, our model

slightly undershoots return standard deviations for calls as well as for puts. Notably, we also

match the estimated skewness and kurtosis coefficients fairly closely, especially for the puts.

One exception here is the large model-implied kurtosis for OTM one-month maturity calls:

this coefficient is 162.06 in the model vs. 68.29 in the data. In interpreting these deviations,

the reader should keep in mind that higher-order moments such as skewness and kurtosis are

difficult to accurately estimate from a relatively short sample of option returns.

2.5.3 VIX Options as Hedges For SPX Options

In order to get a clearer insight into the workings of our model economy, we present results

of a variance decomposition of data simulated from the model. We condition on the initial

values of the state variables σ2
t and λt so as to generate high and low volatility states or VIX

states. In each case, we simulate a large (N = 50, 000) realizations of state-variables one day

ahead, compute option prices and VIX futures prices. We ask which one of the state-variables

are important to various states of the world by running regressions of the price changes on

changes in state-variables as well as squared and cubed state-variables. The latter allows us

to approximately pinpoint the importance of convexity in option prices.
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Table 2.8: Variance Decomposition.

Asset Dt σ2
t (σ2

t )2 (σ2
t )3 λt (λt)2

High-VIX regime I: σ2
t = 10σ2

ss, λt = 10λss, V IXt = 54.3

ATM SPX Put 7.7 3.5 77.6 10.9 0.3 0.0
OTM SPX Put 0.0 10.0 55.3 34.6 0.0 0.0
ATM VIX Call 0.0 11.7 77.5 10.6 0.0 0.3
OTM VIX Call 0.0 14.2 60.9 24.9 0.0 0.0
VIX Futures 0.0 81.5 11.7 0.6 6.1 0.1

High-VIX regime II: σ2
t = 5σ2

ss, λt = 5λss, V IXt = 39.4

ATM SPX Put 18.5 0.2 69.3 11.3 0.7 0.0
OTM SPX Put 0.1 9.3 48.4 42.3 0.0 0.0
ATM VIX Call 0.0 2.2 82.7 14.2 0.4 0.5
OTM VIX Call 0.0 5.6 38.1 56.2 0.0 0.1
VIX Futures 0.0 81.7 10.5 0.7 7.0 0.1

Medium-VIX regime: σ2
t = σ2

ss, λt = λss, V IXt = 20.9

ATM SPX Put 41.4 33.0 19.2 5.3 1.1 0.0
OTM SPX Put 0.3 4.5 37.9 56.0 1.3 0.0
ATM VIX Call 0.0 27.7 47.8 21.2 3.0 0.3
OTM VIX Call 0.0 5.9 89.1 4.5 0.4 0.0
VIX Futures 0.0 79.0 11.6 1.7 7.7 0.0

Low-VIX regime: σ2
t = 0.01σ2

ss, λt = 0.01λss, V IXt = 12.7

ATM SPX Put 98.0 1.9 0.0 0.0 0.1 0.0
OTM SPX Put 35.1 0.4 0.0 0.0 64.5 0.0
ATM VIX Call 0.0 89.5 0.0 0.0 10.5 0.0
OTM VIX Call 0.0 23.5 0.6 0.0 75.9 0.0
VIX Futures 0.0 85.5 0.0 0.0 14.5 0.0

Note: the table reports decompositions of variance in different assets into fractions attributable to cash flow risk (Dt),
volatility risk (σ2

t ), second-order volatility risk ((σ2
t )2), third-order volatility risk ((σ2

t )3), jump intensity risk (λt),
and second-order jump intensity risk ((λt)2), conditional upon a high-VIX, a medium-VIX, and a low-VIX regime
respectively. Definitions of OTM, ATM and VIX futures characteristics are as in Figure 2.12. All numbers are in
percentages. We simulate the model (starting from four different initial states) for two periods (days) to obtain the
changes in all relevant variables. We repeat the simulation 50,000 times to obtain 50,000 observations and then obtain
variance decomposition from linear regressions.
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The results are presented in Table 2.8. Starting from the bottom we see that low values

of the state-variables, consistent with a VIX at 12.7, imply that ATM SPX options returns

are driven almost entirely by cash flow risks (Dt). OTM SPX options depend less on cash

flow Dt risk (35.1%) but heavily on variation in variance jump risk (λt). Intuitively, OTM

SPX options depend primarily on the possibility of a crash occurring which probability is

λt. This is consistent with Bollerslev and Todorov (2011) and Bollerslev, Todorov, and Xu

(2015) among others, who derive option-based tail-risk measures from far OTM options and

argue that these are priced state-variables. The convexity terms, (σ2
t )2, (σ2

t )3 and (λt)2 do

not matter in the low volatility regime.

VIX options and futures never depend on cash flow risk Dt. In the low VIX regime they

depend linearly on σ2
t and λt. In the steady state and higher VIX regimes, we see that both

VIX and SPX options depend increasingly on the convexity terms. This is in part because as

we increase the jump frequency λt, jump realizations become more important, leading to the

squared and cubed σ2
t terms instrumenting for the convexity in the options prices for both

VIX and SPX.

Our variance decompositions are based on state-variables that are not observable (to

econometricians): the state-variables cannot be traded, and there are no instruments that

load on the state-variables only, rendering the market incomplete. Options traders can hedge

SPX or VIX options using a standard delta hedge through index futures or ETFs, and they

can hedge volatility exposure with variance claims such as VIX futures. Recall that Figure

2.6 depicts the performance of hedging SPX options using stock prices (SPY), VIX futures

and VIX call options, and shows that during crisis periods, VIX calls significantly improve

hedging performance. Figure 2.12 above replicates this exercise using model-simulated data.

As seen, our model replicates the essential feature of the data: during periods of low volatility,

the estimated factor loading on VIX call options fluctuates around zero, whereas during

periods of high volatility, the estimated factor loading becomes positive. The pattern can

be traced back to information contained in the variance decomposition (Table 2.8). First,
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Figure 2.12: Hedge Regressions.
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Note: the figure shows βvix option
t computed through the regression under model-simulated data, ∆Pt = αt +

βSPX
t ∆ ln SP Xt + βvix futures

t ∆Ft + βvix option
t ∆Ct + errort, where Pt is half-a-month 30% OTM SPX put normalized

by SPX index (for stationarity in long-sample simulation), ln SP Xt is log market index, Ft is half-a-month VIX
futures, and Ct is half-a-month 50% OTM VIX call. Consistent with our data regressions in the empirical section, we
select relatively far OTM VIX calls and SPX puts. The regression is run each day using daily price changes with a
rolling window of one month. We then average daily coefficients within each month and plot βvix option

t and V IXt as a
monthly time series.

during normal times when VIX is low (λt and σ2
t low), variation in Dt dominates returns

to SPX and SPX options. This leads to a low correlation between VIX calls and SPX puts.

Second, during high VIX periods when σ2
t are high, variation in σ2

t and its polynomial terms

dominate variation in SPX options. Since λt and particularly σ2
t drive all the variation in

VIX options, the correlation between SPX and VIX options increases with these variables.

2.5.4 Comparative Static Analysis

In order to gain some additional insights into the workings of our model, we report the

results of some comparative statics. In doing so, we also emphasize the necessity of recursive

preferences (γ > 1/ψ) for the model to generate non-zero VIX derivatives premia. The

left subplot of Figure 2.13 illustrates the co-movements of seven important steady-state

conditional model moments with risk aversion. As shown, the equity premium is sensitive to
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Figure 2.13: Comparative Statics w.r.t. Risk Aversion.
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Note: the figure illustrates steady-state conditional model moments (left) and market risk prices (right) as a function
of risk aversion, γ. The left subplot reports VIX (VIX), variance risk premium (VRP), implied volatility of ATM VIX
options (implied vol-of-vol), instantaneous equity premium (equity premium), one-month VIX futures premium, and
one-month ATM VIX call and VIX put premiums. The right subplot reports the dependence of the market prices of
risks for the model’s three state variables, as represented by (γ,−b2,−b3), on risk aversion, γ. The plot uses γ in the
range from 1 to 16.1 - the upper limit for the existence of a model solution.

risk aversion universally: it increases with risk aversion almost linearly when the latter is

relatively low; and increasingly fast when the latter becomes higher. Recall from equation

(2.31) that equity premium reflects compensations for three sources of risks corresponding to

the model’s three state variables. The pattern of the equity premium’s variation with risk

aversion reflects the fact that market price of risk for consumption growth increases linearly

with γ, whereas the market prices of risks for volatility and its jumping risk only increase

slowly with γ at the beginning and increasingly faster afterwards.

The right subplot of Figure 2.13 shows the impact of risk aversion on the market risk

prices associated with the three state-variables, λ = (γ,−b2,−b3). Since the representative

agent has recursive preferences (and prefers early resolution of uncertainties for the current

parameter configuration), she is concerned about variations in her value function in the future,

which are affected by risks in σ2
t and λt. Both state variables therefore enter the agent’s

pricing kernel and are priced in equilibrium. However, these two state variables are by nature

higher-order. Specifically, σ2
t measures the spot variance of consumption growth and thus
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is a second-order moment in terms of its relation with consumption, while λt governs the

arrival intensity of jump in σ2
t and has third or even higher-order effects on consumption.

Accordingly, market risk prices associated with σ2
t and λt increase relatively slowly with risk

aversion.

Turning back onto the left subplot of Figure 2.13, it remains to check how other moments,

besides the equity premium, vary with risk aversion. VIX increases with γ, manifesting the

former’s dependence on state variables that are priced in equilibrium. VIX is a risk neutral

measure of market volatility. A larger risk aversion implies a higher market price of risk

associated with σ2
t and λt, a higher risk-neutral persistence, and mean of σ2

t and λt, and a

higher VIX. But this also implies that the average value of VIX increases relative to objective

variance, or put differently, the variance risk premium increases.

The left subplot of Figure 2.13 also shows the steady-state risk premia on one-month

ATM VIX put and call options. As the VIX call (put) option is a (negative) volatility claim,

it earns a negative (positive) premium. Both premia, however, increase in absolute values

with γ asymmetrically: premia in the puts increase more slowly than the calls. Thus, a larger

risk aversion leads investors to be willing to pay a comparably higher premium for the crash

insurance offered by VIX calls than the positive premium they demand for holding VIX puts.

Figure 2.13 finally saliently speaks to the necessity of the recursive preference assumption

in generating non-zero risk premia on VIX derivatives, since all premia are exactly zero

when γ = 1, in which case the Duffie-Epstein recursive preferences collapse into the CRRA

preferences. With the latter, neither σ2
t nor λt would be priced in equilibrium. This would

imply that a claim with mere exposure to σ2
t and λt would earn a zero premium.

2.6 Concluding Remarks

This paper studies the properties of VIX derivatives prices, including the returns to buy-and-

hold VIX options positions. We document negative return premia consistent with a negative
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price of volatility and volatility jump risk. Our paper follows the well-established literature

on consumption-based asset pricing models where persistent state dynamics generate risk

premia that exceed those seen under time-additive preferences by separating risk-aversion

from intertemporal elasticity of substitution, as in Bansal and Yaron (2004b), Eraker and

Shaliastovich (2008), Drechsler and Yaron (2011b), Wachter (2013b), and many others. Our

theoretical formulation mirrors the general framework outlined in Eraker and Shaliastovich

(2008), but has the advantage that it does not require any linearization approximations in

deriving the pricing kernel.

We use this modeling framework to specify a model that features a time-varying con-

sumption volatility and time-varying intensity of jumps in that volatility process. This is

different from the consumption disaster literature, as for example Barro (2006) or Wachter

(2013b), where disasters occur in consumption itself. Our model produces a smooth aggregate

consumption consistent with what we see in U.S. data.

Our model replicates many of the observed characteristics of asset market data: it is

within striking distance of the equity premium, unconditional stock market volatility, the

variance risk premium, the correlation between VIX and VVIX, the weak persistence in

VVIX, but most importantly for our purposes, it appears to replicate some of the features

we observe in the VIX derivative markets data with surprising accuracy. First, it replicates

large negative average returns to VIX futures. Second, it replicates with an acceptable degree

of accuracy the return premia seen in VIX options data. This includes the higher-order

moments. Third, we replicate the general shape of VIX option implied volatility functions,

including the positive skewness and downward sloping term structure.

In equity and variance swap options, it is well known that implied volatilities exhibit

convexity (i.e., smile) over strikes. In our VIX option data, the smile is actually a concave

frown for the most part of our sample, and particularly so when VIX is low. When VIX is

high, it surprisingly changes to a convex smile. Even more surprisingly, our model replicates

this empirical phenomenon.
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We show that VIX options variations are not necessarily spanned by SPX options as

a PCA decomposition shows that VIX options returns contain variation not seen in SPX

options. The model also replicates the time-varying nature of the hedging relationship

between SPX options, the underlying SPX index, VIX futures, and VIX options. In regressing

SPX put option changes onto changes in these variables, we find that VIX options are nearly

uncorrelated with SPX options in low volatility periods while the correlation spikes in high

volatility periods. Our model explains this through essentially time-varying factor loadings:

when volatility is low, ATM SPX options depend primarily on cash flow news, while ATM

VIX options depend on volatility and jump arrival intensity. In high volatility periods, the

correlations increase, and VIX call options can serve as important hedging instruments for

SPX puts.
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Appendix A

Chapter 1 Appendix

A.1 Kalman Filter Interpretation of Recency-Biased

Parameter Learning

I in this section show that the recency-biased parameter learning in the baseline model has

an equivalent Kalman filter interpretation. Suppose the agent is a fully rational learner but

believes variance follows the following processes

σ2
t+1 = (1 − ρ)θt + ρσ2

t + ηt+1, ηt+1 ∼ N (0, σ2
η) (A.1)

θt+1 = θt + ξt+1, ξt+1 ∼ N (0, σ2
ξ ), (A.2)

The agent observes realized variance σ2
t but not long-run variance θt which she believes follows

a random walk. Denote the mean and variance of the agent’s normal posterior about θt as:

θ̂t|t = E[θt|σ2
−∞:t] and V̂t|t = V ar[θt|σ2

−∞:t]. Then the prediction step writes

σ̂2
t+1|t = (1 − ρ)θ̂t|t + ρσ2

t (A.3)

θ̂t+1|t = θ̂t|t (A.4)

V̂t+1|t = V̂t|t + σ2
ξ . (A.5)
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As for the update step, note that

σ2
t+1 − σ̂2

t+1|t = (1 − ρ)(θt − θ̂t|t) + ηt+1 (A.6)

θt+1 = θ̂t|t + (θt − θ̂t|t) + ξt+1, (A.7)

from which it follows that

σ2
t+1 − σ̂2

t+1|t

θt+1

 ∣∣∣σ2
−∞:t ∼ N


 0

θ̂t

 ,
(1 − ρ)2V̂t|t + σ2

η (1 − ρ)V̂t|t

(1 − ρ)V̂t|t V̂t|t + σ2
ξ


. (A.8)

It then follows from the property of joint normal distribution that θt+1|σ2
−∞:t+1 is normal

with mean and variance updated as

θ̂t+1|t+1 = θ̂t|t + (1 − ρ)V̂t|t
(1 − ρ)2V̂t|t + σ2

η

(
σ2
t+1 − σ̂2

t+1|t

)
(A.9)

V̂t+1|t+1 = V̂t|t + σ2
ξ −

(1 − ρ)2V̂ 2
t|t

(1 − ρ)2V̂t|t + σ2
η

. (A.10)

In stationarity, V̂t|t = V̂ . The above equation system reduces to

θ̂t+1|t+1 = (1 −K)θ̂t|t +K
(
σ2
t+1 − ρσ2

t

1 − ρ

)
(A.11)

σ2
ξ = V̂ K (A.12)

K = (1 − ρ)2V̂

(1 − ρ)2V̂ + σ2
η

. (A.13)

It then follows from equation (A.1) that in the agent’s mind the time-t predictive distribution

of σ2
t+1 is

σ2
t+1 = (1 − ρ)θ̂t|t + ρσ2

t + ((1 − ρ)2V̂ + σ2
η)η̃t+1, ηt+1 ∼ N (0, 1). (A.14)
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One can verify that equation system (A.11), (A.12), and (A.14) exactly reduces to equation

system (1.11), (1.12), and (1.13) with parameter choice

σ2
ξ =

(1 − v)2σ2
η

(1 − ρ)2 . (A.15)

That is, recency-biased parameter learning in the baseline model has an equivalent inter-

pretation where the agent is fully Bayesian but believes θt follows a random walk with an

innovation whose variance is σ2
ξ = (1−v)2σ2

η

(1−ρ)2 . Intuitively, the larger the innovation variance σ2
ξ

is, the smaller recency bias v is.

A.2 Log-Linearized Model Solution

This section details the derivation of the log-linearized model solution. The agent needs to

keep track of two state variables σ2
t , θ̂t. Conjecture that log price-dividend ratio is linear:

pdt = C+Aσ2
t +Bθ̂t. Using the standard technique in Campbell and Shiller (1988a) and Bansal

and Yaron (2004a), I log-linearize equity return as: rd,t+1 = κ0 +κ1pdt+1 −pdt+ ∆dt+1, where

log-linearization coefficients are κ0 = −(1 − κ1) ln(1/κ1 − 1) and κ1 = exp(p̄d)/(1 + exp(p̄d)),

and p̄d denotes unconditional average of log price-dividend ratio and κ1 is very close to 1. The

SDF is given by Mt+1 = δθe− θ
ψ

∆dt+1+(θ−1)rd,t+1 , where θ = 1−γ
1−1/ψ . Substitute these equations

into the agent’s Euler equation for dividend claim holdings yields:

1 = ES
t [Mt+1Rd,t+1]

= δθES
t [e− θ

ψ
∆dt+1+θrd,t+1 ]

= δθES
t [e(1−γ)∆dt+1+θκ0+θκ1pdt+1−θpdt ]

= δθES
t [e(1−γ)(µ+σt+1εt+1)+θκ0+θκ1(C+Aσ2

t+1+Bθ̂t+1)−θ(C+Aσ2
t+Bθ̂t)]

= δθES
t

[
e

(1−γ)µ+ 1
2 (1−γ)2σ2

t+1+θκ0+θκ1

(
C+Aσ2

t+1+B
(
vθ̂t+(1−v)

σ2
t+1−ρσ2

t
(1−ρ)

))
−θ(C+Aσ2

t+Bθ̂t)]
,
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where law of iterated expectations has been used to get rid of εt+1, and (1.12) has been used

to substitute θ̂t+1 in the second last line. Then, using (1.13) to substitute σ2
t+1 in the last

line, taking the expectation, and then collecting and matching coefficients on σ2
t , θ̂t and the

constant coefficients, I obtain:

0 = −θκ1Bρ
1 − v

1 − ρ
− θA+ ρ

[1
2(1 − γ)2 + θκ1

(
A+B

1 − v

1 − ρ

)]
0 = θκ1Bv − θB + (1 − ρ)

[1
2(1 − γ)2 + θκ1

(
A+B

1 − v

1 − ρ

)]
0 = θ ln δ + (1 − γ)µ+ θκ0 + θκ1C − θC + 1

2

[1
2(1 − γ)2 + θκ1

(
A+B

1 − v

1 − ρ

)]2
(2 − v)σ2

η,

solving which one can get:

A = 1
2

(1 − γ)(1 − 1/ψ)ρ
1 − ρκ1

(A.16)

B = 1
2

(1 − γ)(1 − 1/ψ)(1 − ρ)
(1 − ρκ1)(1 − κ1)

(A.17)

C = 1
θ(1 − κ1)

[
θ ln δ + (1 − γ)µ+ θκ0 + 1

2

(1
2(1 − γ)2 + θκ1

(
A+B

1 − v

1 − ρ

))2
(2 − v)σ2

η

]
.

(A.18)

Note that in the standard case of γ > 1 and ψ > 1 (the agent has a preference for early

resolution of uncertainties), both A and B are negative: the price-dividend ratio decreases in

σ2
t and θ̂t. The solution is closed by finally setting p̄d = C + Aσ̄2 +Bθ̄ where σ̄2 and θ̄ are

respectively the unconditional mean of σ2
t and θ̂t.
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I next turn to compute conditional asset pricing moments. The risk-free rate is:

rf,t = − lnES
t [Mt+1]

= −θ ln δ − lnES
t [e−γ∆dt+1+(θ−1)(κ0+κ1pdt+1−pdt)]

= −θ ln δ − lnES
t [e−γµ+(θ−1)(κ0+κ1C−C)−(θ−1)Aσ2

t−(θ−1)Bθ̂t+(θ−1)κ1B(vθ̂t− 1−v
1−ρρσ

2
t )

e( 1
2γ

2+(θ−1)κ1A+(θ−1)κ1B
1−v
1−ρ )σ2

t+1 ]

= δrf + 1
2ρ

( 1
ψ

− γ − γ

ψ

)
σ2
t + 1

2(1 − ρ)
( 1
ψ

− γ − γ

ψ

)
θ̂t

= δrf + 1
2

( 1
ψ

− γ − γ

ψ

)
ES
t [σ2

t+1],

where

δrf = −θ ln δ+γµ−(θ−1)(κ0 +κ1C−C)− 1
2

(1
2γ

2 +(θ−1)κ1A+(θ−1)κ1B
1 − v

1 − ρ

)2
(2−v)σ2

η.

(A.19)

As 1
ψ

− γ − γ
ψ
< 0, risk-free rate is decreasing in subjective variance expectation, simply due

to a precautionary saving motive effect. Subjective conditional expected log return is:

ES
t [rd,t+1] = ES

t [κ0 + κ1pdt+1 − pdt + ∆dt+1]

= δrd + 1
2ρ(γ − 1)(1 − 1

ψ
)σ2

t + 1
2(1 − ρ)(γ − 1)(1 − 1

ψ
)θ̂t

= δrd + 1
2(γ − 1)(1 − 1

ψ
)ES

t [σ2
t+1],

where

δrd = κ0 + κ1C − C + µ. (A.20)

As (γ − 1)(1 − 1
ψ

) > 0, subjective conditional expected log return is increasing in subjective

variance expectation. It then follows that subjective equity premium is equal to:

ES
t [rd,t+1] − rf,t = δEP + (γ − 1

2)ES
t [σ2

t+1], (A.21)
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where

δEP =
(
1− v

2
)
σ2
η

[(1
2γ

2+(θ−1)κ1(A+B 1 − v

1 − ρ
)
)2

−
(1

2(1−γ)2+θκ1(A+B 1 − v

1 − ρ
)
)2]

. (A.22)

Objective equity premium, however, is:

EP
t [rd,t+1] − rf,t = ES

t [rd,t+1] − rf,t + EP
t [rd,t+1] − ES

t [rd,t+1]

= ES
t [rd,t+1] − rf,t + κ1

(
EP
t [pdt+1] − ES

t [pdt+1]
)

= ES
t [rd,t+1] − rf,t + κ1A

(
EP
t [σ2

t+1] − ES
t [σ2

t+1]
)

+ κ1B
(
EP
t [θ̂t+1] − ES

t [θ̂t+1]
)

= ES
t [rd,t+1] − rf,t + κ1

(
A+B

1 − v

1 − ρ

)(
EP
t [σ2

t+1] − ES
t [σ2

t+1]
)
,

where (1.12) has been used to obtain the last line. I next turn to price variance assets. The

squared demeaned log market return is:

RVt = (rd,t − ES
t−1[rd,t])2

=
(
κ1(pdt − ES

t−1[pdt]) + σtεt
)2

=
(
κ1

(
A+B

1 − v

1 − ρ

)
(σ2

t − ES
t−1[σ2

t ]) + σtεt

)2

=
(
κ1

(
A+B

1 − v

1 − ρ

)√
2 − vσηη̃t + σtεt

)2

= κ2
1

(
A+B

1 − v

1 − ρ

)2
(2 − v)σ2

η η̃
2
t + κ1

(
A+B

1 − v

1 − ρ

)√
2 − vσtεtη̃t + σ2

t ε
2
t .

Following Lochstoer and Muir (2021), I then set all the shocks in the last line equal to their

continuous-time limit to approximate the industry practice of calculating realized variance as

a monthly sum of high-frequency squared log returns: η̃2
t → 1, εtη̃t → 0, and ε2

t → 1. Doing

so allows me to obtain realized variance as:

RVt = Θ + σ2
t , (A.23)
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where Θ ≡ κ2
1(A+B 1−v

1−ρ)2(2 − v)σ2
η. It follows that implied variance is:

IVt = ES
t [Mt+1RVt+1]/ES

t [Mt+1]

= ES
t [Mt+1(Θ + σ2

t+1)]/ES
t [Mt+1]

= Θ + ES
t

[
Mt+1

(
(1 − ρ)θ̂t + ρσ2

t +
√

2 − vσηη̃t+1
)]
/ES

t [Mt+1]

= Θ + ES
t [σ2

t+1] + ES
t [Mt+1

√
2 − vσηη̃t+1]/ES

t [Mt+1],

where the last term in the last line is a constant. To see this, note that this last term is equal

to

ES
t

[
Mt+1

ES
t [Mt+1]

√
2 − vσηη̃t+1

]
= ES

t

 e

(
1
2γ

2+(θ−1)κ1A+(θ−1)κ1B
1−v
1−ρ

)√
2−vση η̃t+1

ES
t

[
e

(
1
2γ

2+(θ−1)κ1A+(θ−1)κ1B
1−v
1−ρ

)√
2−vση η̃t+1

]√
2 − vσηη̃t+1



= (2 − v)σ2
η

(1
2γ

2 + (θ − 1)κ1A+ (θ − 1)κ1B
1 − v

1 − ρ

)
,

(A.24)

where the expressions of Mt+1, rd,t+1 and pdt+1, and (1.13) have been used to cancel out

terms in the first line, and Stein’s Lemma has been used to obtain the second line. Denote

this constant term by δV RP :

δV RP = (2 − v)σ2
η

(1
2γ

2 + (θ − 1)κ1A+ (θ − 1)κ1B
1 − v

1 − ρ

)
. (A.25)

Then implied variance is equal to:

IVt = Θ + δV RP + ES
t [σ2

t+1]. (A.26)

It follows that subjective variance risk premium is:

V RP S
t = IVt − ES

t [RVt+1]

= δV RP .

(A.27)
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which is a consequence of the fact that in the agent’s mind, realized variance follows a

homoscedastic process (see (1.13)). But objective variance risk premium is:

V RP S
t = IVt − EP

t [RVt+1]

= δV RP + ES
t [σ2

t+1] − EP
t [σ2

t+1].

I next derive subjective and risk-neutral total RV expectation term structure. I derive

them up to a constant additive term since I only care about IRFs. Due to the homoscedastic

variance assumption, subjective VRP for any maturity is a constant. It follows that risk-

neutral and subjective RV expectations only differ by a constant for any maturity. Note

that

ES
t [RVt+1] = (1 − ρ)θ̂t + ρσ2

t + const, (A.28)

and

ES
t [RVt+2] = ES

t [σ2
t+2] + const

= ES
t [(1 − ρ)θt+1 + ρσ2

t+1] + const

= ES
t [(1 − ρ)θ̂t + ρ((1 − ρ)θ̂t + ρσ2

t )] + const

= (1 − ρ2)θ̂t + ρ2σ2
t + const.

Using induction, one can easily show:

ES
t [RVt+τ ] = (1 − ρτ )θ̂t + ρτσ2

t + const.

As shown, the recursive formula the agent uses to predict market return variance is similar to

that a GARCH model uses. Intuitively, the longer the forecasting horizon, the more (less) the

variance forecast loads on long-run (current) variance θ̂t (σ2
t ). It then follows that subjective
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and risk-neutral total RV expectation term structures are both given by:

IV τ
t ≡ EQ

t [RVt+1:t+τ ] =
(
1 −

τ∑
j=1

ρj/τ
)
θ̂t +

τ∑
j=1

ρj/τσ2
t + const. (A.29)

A.3 Robustness Checks

I perform robustness checks for the baseline RS-VAR evidence provided in Section 1.3.3.

A.3.1 Volatility as Input

The RS-VAR results are robust to using volatility instead of variance as input. Figure A.1

plots the posterior probability of each month belonging to regime 1, estimated from the

baseline RS-VAR. But now RV represents realized volatility (square root of realized variance),

IV implied volatility (the VIX), and V RPt = IVt −Et[RVt+1] volatility risk premium. Figure

A.2 plots unconditional and regime 1 and 0 conditional predictive coefficients. As seen,

the key findings barely change even though volatility carries a dampening effect relative to

variance, which might obscure regime identification but did not. The VAR versus RS-VAR

likelihood-based test statistic is reduced to 365, still resulting in a p-value of zero.

A.3.2 Splitting the Sample

One severe economic recession, the 2008 Crisis, disproportionately influences my results. I

show that while the underreaction of EP and VRP to RV shocks during the 2008 Crisis was

pronounced, the regime-dependent predictability is a general empirical fact. To this end, I

split my sample into two subsamples with equal lengths and then apply the RS-VAR on them

separately. Figures A.3 and A.4 report the regime-dependent predictability for the 1990-2004

and 2005-2019 periods, respectively. As shown, the primary findings hold for both subsamples.

In particular, while it is true that the 2005-2019 period features more significant EP and

VRP underreaction to RV shocks, the unconditional and regime-1 conditional hump-shaped
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responses of EP and VRP to RV shocks hold for the 1990-2004 period as well. Importantly, for

both periods, all regime-0 (low-volatility) conditional predictive coefficients are significantly

positive and exponentially decreasing, the essence of this paper’s finding.

A.3.3 Subsample OLS Regressions

My findings so far are based on a parametric model. A natural robustness test that can help

alleviate concerns about model misspecification and risk premium mismeasurements is to run

subsample OLS predictive regressions.1 Based on regime identification shown in Figure 1.2, I

select four representative subsamples: the entire sample (1990/01-2019/12), a high-volatility

clustered period covering the 2008 Crisis and the European debt crisis (2007/07 to 2012/06),

a prolonged low-volatility period before the Asian financial crisis (1991/02-1997/09), and a

low-volatility period leading to the 2008 Crisis (2003/04-2007/06). Table A.1 reports βH for

the regressions of future cumulative VRPs on RV:

1
H

H∑
h=1

(IVt+h −RVt+h) = αH + βHRVt + εt+H . (A.30)

I follow Bollerslev et al. (2009a) to define VRP model-free as V RPt = IVt − RVt. I then

allow for one extra period’s offset on the LHS to counter the fact that V RPt = IVt − RVt

mechanically loads negatively on RVt. As seen, short-horizon predictability is negative for

the entire sample, more so for the high-volatility subsample, and significantly positive for

the two low-volatility subsamples. Table A.2 shows that the result in Table A.1 is robust to

other VRP measures on the LHS including returns on short S&P 500 straddles (Coval and

Shumway (2001b)), variance swaps (Dew-Becker et al. (2017a)), and VIX futures (Cheng

(2019)) positions. Table A.3 reports βH for the regressions of future cumulative excess returns

on RV:
1
H

H∑
h=1

(rMt+h − rft+h−1) = αH + βHRVt + εt+H . (A.31)

1I perform overlapping regressions so that coefficients look smoother, given subsamples have small sizes.
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As shown, short-horizon predictability is negative for the entire sample, more so for the

high-volatility subsample, and significantly positive for the two low-volatility subsamples.

Table A.4 reports βH for the regressions of future cumulative excess returns on VRP:

1
H

H∑
h=1

(rMt+h − rft+h−1) = αH + βH(IVt −RVt) + εt+H . (A.32)

Again, I Bollerslev et al. (2009a) to define VRP model-free as V RPt = IVt −RVt. As seen,

the short-horizon predictability remains significantly positive throughout all four subsamples.

Table A.5 finally reports βH for the regressions of future cumulative excess returns on IV:

1
H

H∑
h=1

(rMt+h − rft+h−1) = αH + βHIVt + εt+H (A.33)

As shown, short-term predictability is insignificant for the entire sample and the high-volatility

subsample, but becomes significantly positive for the two low-volatility subsamples. To sum

up, OLS results well substantiate RS-VAR results.

A.3.4 Robustness to the COVID-19 Crisis

Figure A.5 shows that the RS-VAR regime-dependent predictability qualitatively holds

even when the sample includes the COVID-19 Crisis - 1990/1-2021/6. In particular, this

is consistent with Cheng (2020)’s finding that VRP underreacted to volatility spikes at the

early stages of the COVID-19 Crisis.

A.3.5 International Evidence

Figures A.6 and A.7 respectively illustrate the RS-VAR regime identification and regime-

conditional impulse responses of risk premia to RV shocks for other developed countries

besides the U.S. I follow Lochstoer and Muir (2021) and choose six developed countries that

have at least 15 years’ implied variance data available. Figure A.6 shows that the regime
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identification for each other country is similar to that for the U.S. Figure A.7 shows that,

though to varying degrees, different VRP and EP predictability across low and high-volatility

regimes appears to be a robust global fact.
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Table A.1: Subsample Predictive Regressions: VRP on RV.

1
H

∑H
h=1(IVt+h −RVt+h) = αH + βHRVt + εt+H

Horizon 1m 2m 3m 4m 5m 6m 9m 12m
Entire Sample: 1990/01-2019/12

βH -0.14 -0.10 -0.06 -0.02 -0.01 -0.003 0.01 0.02
t [-1.50] [-1.44] [-1.20] [-0.61] [-0.33] [-0.09] [0.44] [1.33]
R2 0.07 0.05 0.02 0.003 0.002 0.00 0.001 0.01

High-Vol Regime: 2007/07-2012/06
βH -0.20 -0.14 -0.07 -0.03 -0.01 -0.00 0.02 0.03
t [-2.19] [-2.43] [-2.01] [-1.19] [-0.62] [-0.07] [0.88] [1.64]
R2 0.14 0.10 0.04 0.01 0.002 0.00 0.01 0.03

Low-Vol Regime I: 1991/02-1997/09
βH 0.50 0.46 0.44 0.43 0.39 0.32 0.26 0.28
t [3.45] [3.40] [3.34] [3.23] [3.45] [3.44] [3.88] [3.62]
R2 0.16 0.18 0.21 0.22 0.21 0.14 0.11 0.16

Low-Vol Regime II: 2003/04-2007/06
βH 0.18 0.32 0.35 0.36 0.35 0.32 0.30 0.29
t [1.41] [2.77] [3.09] [2.92] [2.55] [2.55] [2.42] [3.30]
R2 0.04 0.18 0.26 0.31 0.31 0.30 0.32 0.39

Note: the table reports results from predictive regressions of future cumulative variance risk premia onto realized
variance. The same regressions respectively apply on four samples: the entire sample (1990/01-2019/12), a high-
volatility subsample (2007/07-2012/06), a low-volatility subsample (1991/02-1997/09), and a low-volatility subsample
(2003/04-2007/06). βH denotes the slope coefficient, t denotes the Newey-West robust t-statistic (with three more lags
than the predicting horizon), and R2 denotes the R-squared for the regression.
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Table A.2: Subsample Predictive Regressions: VRP on RV (Robustness).

−rV ariancet+1 = α+ β1RVt + εt+1

Low-Vol Regime: 2003/04-2007/06 High-Vol Regime: 2007/07-2012/06

Maturity 1m 3m 6m 12m 1m 3m 6m 12m
Variance Swaps

β1 2.75 0.79 0.56 0.58 -0.10 -0.09 -0.07 -0.02
t [2.23] [1.52] [1.68] [2.24] [-1.16] [-1.74] [-2.24] [-1.17]
R2 0.07 0.03 0.03 0.06 0.01 0.02 0.04 0.01

S&P 500 Straddles
β1 0.77 0.16 0.22 0.14 -0.02 -0.02 -0.01 -0.01
t [1.83] [0.83] [1.31] [1.19] [-0.75] [-1.15] [-0.47] [-0.92]
R2 0.04 0.01 0.02 0.02 0.004 0.01 0.002 0.01

VIX Futures
β1 0.45 0.42 0.03 -0.06 -0.05 -0.07
t [1.69] [1.52] [0.08] [-2.25] [-2.82] [-6.45]
R2 0.05 0.03 0.00 0.05 0.07 0.14

Note: the table reports results from predictive regressions of returns to constant-maturity variance claims (variance
swaps, S&P 500 straddles, and VIX futures) onto one-month lagged realized variance. The same regressions apply on
two samples: a high-volatility subsample (2007/07-2012/06), and a low-volatility subsample (2003/04-2007/06). β1

denotes the slope coefficient, t denotes the Newey-West robust t-statistic (with three more lags than the predicting
horizon), and R2 denotes the R-squared for the regression. Returns to variance claims are monthly in percentage.
Variance returns data are from Johnson (2017) and downloaded from Professor Travis Johnson’s website. Variance
swaps, S&P 500 straddles, and VIX futures data are respectively available 1996/1-2019/6, 1996/1-2019/6, and
2004/4-2017/12. I add a minus sign to all variance returns so that they positively correlate with VRP.
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Table A.3: Subsample Predictive Regressions: Excess Returns on RV.

1
H

∑H
h=1(rMt+h − rft+h−1) = αH + βHRVt + εt+H

Horizon 1m 2m 3m 4m 5m 6m 9m 12m
Entire Sample: 1990/01-2019/12

βH -0.014 -0.008 -0.008 -0.006 -0.004 -0.001 0.001 0.001
t [-1.98] [-1.36] [-1.35] [-1.09] [-0.81] [-0.28] [0.26] [0.29]
R2 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

High-Vol Regime: 2007/07-2012/06
βH -0.017 -0.009 -0.009 -0.006 -0.001 0.003 0.006 0.006
t [-2.97] [-1.60] [-1.98] [-1.28] [-0.26] [0.89] [2.36] [2.51]
R2 0.07 0.03 0.05 0.03 0.00 0.01 0.04 0.06

Low-Vol Regime I: 1991/02-1997/09
βH 0.11 0.08 0.06 0.06 0.04 0.03 -0.00 0.02
t [1.98] [1.46] [1.18] [1.30] [1.03] [0.80] [-0.04] [0.50]
R2 0.04 0.05 0.05 0.06 0.04 0.03 0.00 0.01

Low-Vol Regime II: 2003/04-2007/06
βH 0.14 0.10 0.11 0.09 0.08 0.08 0.06 0.04
t [2.48] [3.54] [4.81] [3.83] [3.58] [3.61] [2.70] [4.65]
R2 0.12 0.15 0.26 0.23 0.26 0.35 0.43 0.48

Note: the table reports results from predictive regressions of future cumulative excess returns onto realized variance.
The same regressions respectively apply on four samples: the entire sample (1990/01-2019/12), a high-volatility
subsample (2007/07-2012/06), a low-volatility subsample (1991/02-1997/09), and a low-volatility subsample (2003/04-
2007/06). βH denotes the slope coefficient, t denotes the Newey-West robust t-statistic (with three more lags than the
predicting horizon), and R2 denotes the R-squared for the regression.
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Table A.4: Subsample Predictive Regressions: Excess Returns on VRP.

1
H

∑H
h=1(rMt+h − rft+h−1) = αH + βH(IVt −RVt) + εt+H

Horizon 1m 2m 3m 4m 5m 6m 9m 12m
Entire Sample: 1990/01-2019/12

βH 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01
t [5.55] [5.02] [5.92] [5.25] [4.95] [4.21] [1.97] [1.37]
R2 0.06 0.07 0.09 0.09 0.06 0.04 0.01 0.00

High-Vol Regime: 2007/07-2012/06
βH 0.05 0.03 0.03 0.03 0.02 0.01 0.00 0.00
t [5.03] [3.78] [4.83] [4.71] [3.72] [2.67] [0.74] [0.09]
R2 0.20 0.13 0.19 0.17 0.09 0.04 0.00 0.00

Low-Vol Regime I: 1991/02-1997/09
βH 0.09 0.04 0.04 0.03 0.03 0.04 0.03 0.01
t [2.15] [1.75] [1.64] [0.83] [0.94] [1.46] [1.13] [0.74]
R2 0.03 0.02 0.03 0.01 0.02 0.05 0.04 0.01

Low-Vol Regime II: 2003/04-2007/06
βH 0.10 0.06 0.04 0.04 0.04 0.03 0.01 0.01
t [2.54] [1.68] [0.80] [0.94] [1.01] [0.77] [0.76] [0.79]
R2 0.05 0.05 0.02 0.04 0.05 0.03 0.02 0.01

Note: the table reports results from predictive regressions of future cumulative excess returns onto variance risk
premium. The same regressions respectively apply on four samples: the entire sample (1990/01-2019/12), a high-
volatility subsample (2007/07-2012/06), a low-volatility subsample (1991/02-1997/09), and a low-volatility subsample
(2003/04-2007/06). βH denotes the slope coefficient, t denotes the Newey-West robust t-statistic (with three more lags
than the predicting horizon), and R2 denotes the R-squared for the regression.
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Table A.5: Subsample Predictive Regressions: Excess Returns on IV.

1
H

∑H
h=1(rMt+h − rft+h−1) = αH + βHIVt + εt+H

Horizon 1m 2m 3m 4m 5m 6m 9m 12m
Entire Sample: 1990/01-2019/12

βH -0.001 0.003 0.003 0.004 0.005 0.007 0.005 0.004
t [-0.07] [0.30] [0.27] [0.37] [0.72] [1.22] [1.31] [1.21]
R2 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

High-Vol Regime: 2007/07-2012/06
βH -0.006 0.002 0.002 0.006 0.01 0.02 0.02 0.02
t [-0.33] [0.12] [0.14] [0.45] [1.33] [2.40] [3.60] [3.42]
R2 0.00 0.00 0.00 0.01 0.05 0.10 0.16 0.17

Low-Vol Regime I: 1991/02-1997/09
βH 0.08 0.05 0.05 0.04 0.03 0.03 0.02 0.02
t [2.78] [2.06] [1.72] [1.26] [1.08] [1.25] [0.58] [0.63]
R2 0.06 0.06 0.07 0.06 0.06 0.08 0.02 0.02

Low-Vol Regime II: 2003/04-2007/06
βH 0.13 0.09 0.09 0.07 0.07 0.06 0.05 0.03
t [5.17] [5.35] [4.95] [3.77] [3.78] [3.37] [3.25] [4.34]
R2 0.18 0.20 0.24 0.25 0.30 0.34 0.36 0.37

Note: the table reports results from predictive regressions of future cumulative excess returns onto implied variance.
The same regressions respectively apply on four samples: the entire sample (1990/01-2019/12), a high-volatility
subsample (2007/07-2012/06), a low-volatility subsample (1991/02-1997/09), and a low-volatility subsample (2003/04-
2007/06). βH denotes the slope coefficient, t denotes the Newey-West robust t-statistic (with three more lags than the
predicting horizon), and R2 denotes the R-squared for the regression.
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Figure A.1: Posterior Regime Identification: Volatility as Input.
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Note: the figure plots the smoothed (posterior) probability that st = 1 from the RS-VAR, RVt (realized volatility, i.e.,
square root of realized variance), and IVt (implied volatility, i.e., the VIX), for each month t from 1990/01 to 2019/12.
RV and IV are annualized in percentage.
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Figure A.2: Regime-Conditional Predictability: Volatility as Input.
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Note: the figures plot unconditional (first row), regime-1 conditional (second row), and regime-0 conditional (third
row) predictive regression coefficients, with RV and IV representing realized volatility and implied volatility, and VRP
volatility risk premium. RV, IV, and VRP are annualized in percentage. X-axis denotes predicting horizon in month.
Y-axis denotes slope coefficients.
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Figure A.3: Regime-Conditional Predictability: 1990-2004.
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Note: using data from 1990-2004, the figures plot unconditional (first row), regime-1 conditional (second row), and
regime-0 conditional (third row) predictive regression coefficients. X-axis denotes predicting horizon in month. Y-axis
denotes slope coefficients.
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Figure A.4: Regime-Conditional Predictability: 2005-2019.
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Note: using data from 2005-2019, the figures plot unconditional (first row), regime-1 conditional (second row), and
regime-0 conditional (third row) predictive regression coefficients. X-axis denotes predicting horizon in month. Y-axis
denotes slope coefficients.
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Figure A.5: Regime-Conditional Predictability: 1990/1-2021/6.
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Note: using data from 1990/1-2021/6, the figures plot unconditional (first row), regime-1 conditional (second row),
and regime-0 conditional (third row) predictive regression coefficients. X-axis denotes predicting horizon in month.
Y-axis denotes slope coefficients.
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Figure A.6: Regime Identification: International Evidence.
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Note: the figures plot the smoothed (posterior) probability that st = 1 from the RS-VAR, RVt and IVt processes for
each developed country. The corresponding sample period is shown after the country name.
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Figure A.7: Regime-Conditional Predictability: International Evidence.
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Note: the figures plot impulse responses of VRP and EP to RV shocks for each developed country. Columns 1 and 2
are conditional on regime 1. Columns 3 and 4 are conditional on regime 0. Responses are to a one standard deviation
shock to RV at t=0. VRP is scaled by the RV shock. EP is monthly in percentage. X-axis is in month.
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Appendix B

Chapter 2 Appendix

B.1 The General Model

This section presents a general equilibrium asset pricing model featuring recursive preferences

for a representative agent in an economy with affine jump-diffusive states. Exact solutions are

characterized for the value function, risk-free rate, state-price density, and induced risk-neutral

measure. The model is set in real terms, such that interest rates are to be interpreted as real

rates. The equity premium can be interpreted to be the same in real and nominal terms.1

B.1.1 Preferences

Consider a continuous-time formulation of an endowment economy where the representative

agent’s preferences over the uncertain consumption stream Ct are described by a recursive

utility function developed in Duffie and Epstein (1992). For tractability purpose, we assume

a limiting case of the utility function that sets the intertemporal elasticity of substitution

(IES) equal to one

Vt = Et

∫ ∞

t
f(Cs, Vs)ds (B.1)

1Extensions of standard LRR models into nominal economies have been considered by Piazzesi and
Schneider (2006), Eraker, Shaliastovich, and Wang (2016), among others. In these models, equity and VIX
derivative prices do not depend on inflation since inflation shocks are homoscedastic and therefore have
constant risk prices.
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f(C, V ) = β(1 − γ)V (lnC − 1
1 − γ

ln((1 − γ)V )), (B.2)

where Vt represents the continuation value. The parameter β is the rate of time preference,

and γ is the relative risk aversion. The logarithm form in (B.2) indicates that we have set

IES equal to one. It is well known that (B.2) is equivalent to the ψ → 1 limit of the more

general formulation

f(C, V ) = β

1 − 1
ψ

C1− 1
ψ − ((1 − γ)V ) 1

θ

((1 − γ)V ) 1
θ

−1
, (B.3)

where θ = (1−γ)/(1− 1
ψ

). The novel and appealing characteristic of the generalized preferences

described in (B.3), sometimes named the Kreps-Porteus preferences, is that they break the

tight link between intratemporal risk-aversion (γ) and intertemporal substitutability (ψ) and

thus allow capturing the agent’s preference for the timing of the resolution of uncertainty. For

example, risk aversion is usually assumed larger than the reciprocal of the IES, γ > 1/ψ, in

which case the agent prefers early resolution of uncertainty. As we will show, this ensures that

the compensations for various risks in our VIX model are of the right sign and quantitatively

important. Note that although the preferences in (B.3) collapse into the familiar power utility

with γ = 1
ψ
, in which case only risks to current consumption are priced, setting ψ = 1 and

γ > 1 (i.e., (B.2)) still maintains the recursive preferences structure. From an empirical

perspective, the relative size of the IES and one is also a source of debate. Several studies

conclude that reasonable values for this parameter lie in a range close to one, or slightly

lower than one (Vissing-Jørgensen (2002); Thimme (2017)), while the long-run risk literature

(Bansal and Yaron (2004b)) relies on an IES greater than one.

B.1.2 State Variables

We follow Duffie et al. (2000) and Eraker and Shaliastovich (2008) and assume that a set of n

state variables, Xt, in the economy follow an affine diffusion-jump process. For an endowment-

economy model to make sense, (log) consumption is taken to be part of the state-vector

Xt. The other state variables are broadly defined. For example, one needs to include as an
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additional state variable expected consumption growth in a long-run risk model (Bansal and

Yaron (2004b)), the arrival intensity of the jumps to consumption in a time-varying disaster

risk model (Wachter (2013b)), and the price level or expected inflation in a nominal bond

pricing model (Bansal and Shaliastovich (2013)). We emphasize that Xt includes all the state

variables the agent needs to keep track of. Specifically, we fix the probability space {Ω,F ,P}

and the information filtration Ft, and suppose that Xt is a Markov process in some state

space D ⊆ Rn with a stochastic differential equation representation

dXt = µ(Xt)dt+ Σ(Xt)dBt + ξt · dNt, (B.4)

where Bt is an Ft adapted standard Brownian motion in Rn. The term ξt · dNt (element-by-

element multiplication) captures n mutually conditionally independent jumps arriving with

intensities respectively equal to the n elements of the vector l(Xt) and jump sizes respectively

equal to the n elements of the random vector ξt defined on D.2 Formally, each ith element

of Nt is a Poisson process with time-varying intensity equal to the ith element of l(Xt).

We further assume that jump sizes ξ are i.i.d. over time but not necessarily independent

cross-sectionally. Their joint distribution is specified through the vector moment generating

function ϱ : Cn → Cn (also called the "jump transform")

ϱ(u) = E[euξ]. (B.5)

We assume that all the n moment-generating functions exist such that each ϱi(·) is well

defined for both complex and real arguments on some region of the complex plane. We
2Subsequently, a “·" always represents an element-by-element multiplication; a “·/" represents an element-

by-element division. By assuming independent jumps, our model does not allow for exogenous co-jumps in
state variables as seen in reduced-form models (Eraker et al. (2003); Duffie et al. (2000)). But note that
because our model is an equilibrium one, jumps in state variables would endogenously translate to jumps
in asset prices. For example, our specific VIX model endogenously implies co-jumps in SPX and volatility,
consistent with reduced-form model specifications. Nevertheless, we emphasize that our general model remains
tractable even with co-jumps in (B.4), in which case, to derive equilibrium, one needs to modify the HJB
equation (B.14) and follow our derivation from there.
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further impose an affine structure on the drift, diffusion, and intensity functions

µ(Xt) = M + KXt (B.6)

Σ(Xt)Σ(Xt)′ = h+
∑
i

HiXt,i (B.7)

l(Xt) = l + LXt, (B.8)

for (M,K) ∈ Rn × Rn×n, (h,H) ∈ Rn×n × Rn×n×n, (l, L) ∈ Rn × Rn×n. For X to be well

defined, there are additional joint restrictions on the parameters of the model, which are

addressed in Duffie and Kan (1996). To facilitate above matrix manipulations, note that

H = [H1, H2, ..., Hn] and Xt = (Xt,1, Xt,2, ..., Xt,n)′. We assume an endowment economy and

that the log consumption supply is always the first state variable of the economy. With a

selection vector δc = (1, 0, 0, ..., 0)′, this means

lnCt = δ′
cXt. (B.9)

We make three additional assumptions. First, we rule out any intertemporal physical storage

or transfer of consumption goods. Second, we assume the markets are not necessarily complete.

In applying our theory, we take a pragmatic approach and assume an asset exists whenever we

need to consider it. Examples include dividend claims, long-term riskless bonds, SPX options,

and VIX derivatives, etc., which our general model keeps agnostic. However, because of the

first assumption, market clearing implies the representative agent in equilibrium would strictly

consume what she is endowed with each period Ct, implying that these assets’ existences do

not affect equilibrium consumption and thus the pricing kernel. Third, for the derivation of

model equilibrium, we assume the consumption claim (a perpetual claim that exactly delivers

the aggregate consumption as its dividend each period) and the instantaneous risk-free asset

always exist (see Sections B.1.3, B.1.4 and B.1.5).3

3We note that all these assumptions are conventional in the endowment-based equilibrium asset pricing
literature (e.g., Abel (1999); Campbell and Cochrane (1999); Campbell (2003); Bansal and Yaron (2004b);
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B.1.3 Dynamic Programming

Let W denote the wealth of the representative agent and J(W,X) the value function. Because

Xt is a Markov process and nothing depends on t explicitly in the specifications of both

preferences and state variable dynamics, we conjecture that J is not explicitly t-dependent.

Conjecture that the equilibrium price-dividend ratio for the consumption claim is constant.

In particular, let St denote the price of the consumption claim. Then

St
Ct

= A (B.10)

for some constant A.4 (B.9), (B.10) and a vector version of Ito’s Lemma for jump-diffusion

processes together imply

dSt
St−

=
(
δ′
cµ(Xt) + 1

2δ
′
cΣ(Xt)Σ(Xt)′δc

)
dt+ δ′

cΣ(Xt)dBt + δ′
c

[
(eξ − 1) · dNt

]
, (B.11)

where eξ is an n× 1 vector which ith element is eξi and 1 is an n× 1 vector of ones. Recall

that the instantaneous net return on the consumption claim is

dSt + Ct−dt

St−
= dSt
St−

+ 1
A
dt. (B.12)

Let rt denote the instantaneous net risk-free rate. To solve for the value function, consider

the Hamilton-Jacobi-Bellman equation for an investor who allocates wealth Wt between St

and the risk-free asset. Let αt be the fraction of wealth invested in the (risky) consumption

claim St, and let Ct be the agent’s consumption choice. Wealth then follows the process

dWt =
[
Wt−αt(δ′

cµ(Xt) + 1
2δ

′
cΣ(Xt)Σ(Xt)′δc + 1

A
− rt) +Wt−rt − Ct−

]
dt

Drechsler and Yaron (2011b); Wachter (2013b)).
4Indeed, as pointed out in Wachter (2013b), the fact that St/Ct is constant (and equal to 1/β actually,

which we will verify) arises directly from a unit IES, and is independent of the details of the model. See also
Weil (1990).
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+Wt−αtδ
′
cΣ(Xt)dBt +Wt−αtδ

′
c

[
(eξ − 1) · dNt

]
. (B.13)

Optimal consumption and portfolio choice must satisfy the following Hamilton-Jacobi-Bellman

equation

sup
αt,Ct

JW(
Wtαt

(
δ′
cµ(Xt) + 1

2δ
′
cΣ(Xt)Σ(Xt)′δc + 1

A
− rt

)
+Wtrt − Ct

)
+ J ′

Xµ(Xt)

+1
2tr


JXX JXW

J ′
XW JWW


 Σ(Xt)Σ(Xt)′ WtαtΣ(Xt)Σ(Xt)′δc

Wtαtδ
′
cΣ(Xt)Σ(Xt)′ W 2

t α
2
t δ

′
cΣ(Xt)Σ(Xt)′δc




+Eξ1

[
J(Wt +Wtαt

(
eξ1 − 1

)
, Xt,1 + ξ1, Xt,−1)

]
l1(Xt)

+
n∑
i=2

Eξi
[
J(Wt, Xt,i + ξi, Xt,−i)

]
li(Xt) − J(Wt, Xt)1′l(Xt) + f(Ct, J(Wt, Xt))

 = 0, (B.14)

where Ji denotes the first derivative of J with respect to i, for i equal to W or X, and Jij

the second derivative of J with respect to first i and then j. The dimensions of all resulting

matrices are well understood. For example, JX is an n×1 vector. The operator tr() represents

the trace of the operated matrix. Note that the instantaneous expected change in the value

function is given by the continuous drift plus the expected change due to jumps to state

variables. The effects of jumps are not symmetric: jump to consumption affects J through

both W and X, whereas jumps to other state variables affect J only through X.

B.1.4 Value Function

In equilibrium, risk-free asset market clears: αt = 1, and the consumption claim market

clears: Ct = A−1St = A−1Wt. Substituting these policy functions into (B.14) implies

JWWt

(
δ′
cµ(Xt) + 1

2δ
′
cΣ(Xt)Σ(Xt)′δc

)
+ J ′

Xµ(Xt) + 1
2tr

(
JXXΣ(Xt)Σ(Xt)′

+WtJXW δ
′
cΣ(Xt)Σ(Xt)′

)
+ 1

2J
′
XWΣ(Xt)Σ(Xt)′δc + 1

2W
2
t JWW δ

′
cΣ(Xt)Σ(Xt)′δc
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+Eξ1

[
J(Wte

ξ1 , Xt,1 + ξ1, Xt,−1)
]
l1(Xt) +

n∑
i=2

Eξi
[
J(Wt, Xt,i + ξi, Xt,−i)

]
l1(Xt)

− J(Wt, Xt)1′l(Xt) + f(A−1Wt, J(Wt, Xt)) = 0. (B.15)

Conjecture that the solution to this equation, the equilibrium value function, takes the form

J(W,X) = W 1−γ

1 − γ
I(X). (B.16)

It is helpful to first solve for the wealth-consumption ratio prior to solving for I(X). By

definition

f(C, V ) = β(1 − γ)V (lnC − 1
1 − γ

ln((1 − γ)V )). (B.17)

Therefore,

fC(C, V ) = β(1 − γ)V
C
. (B.18)

The F.O.C. fC = JW , together with the derivative (B.18), the conjecture (B.16), and the

condition that in equilibrium J = V , imply

β(1 − γ)W
1−γ

1 − γ
I(X) 1

A−1W
= W−γI(X).

Solving for A yields A = β−1, i.e., Wt/Ct = 1/β. Having obtained the wealth-consumption

ratio, we next solve for I(X). It follows from (B.17) that

f(βW, J(W,X)) = βW 1−γI(X)
(

ln(βW ) − 1
1 − γ

ln(W 1−γI(X))
)

= βW 1−γI(X)
(

ln β − ln(I(X))
1 − γ

)
. (B.19)

Now substituting (B.16) and (B.19) into (B.15) yields

I(Xt)
(
δ′
cµ(Xt) + 1

2δ
′
cΣ(Xt)Σ(Xt)′δc

)
+ 1

1 − γ
IX(Xt)µ(Xt)
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+tr
( 1

1 − γ
IXX(Xt)Σ(Xt)Σ(Xt)′ + IX(Xt)δ′

cΣ(Xt)Σ(Xt)′
)

+1
2IX(Xt)′Σ(Xt)Σ(Xt)′δc − 1

2γI(Xt)δ′
cΣ(Xt)Σ(Xt)δc

+ 1
1 − γ

Eξ1

[
e(1−γ)ξ1I(Xt + δc · ξ)

]
l1(Xt) + 1

1 − γ

n∑
i=2

Eξi
[
I(Xt + δi · ξ)

]
li(Xt)

− 1
1 − γ

I(Xt)1′l(Xt) + βI(Xt)
(

ln β − ln(I(Xt))
1 − γ

)
= 0, (B.20)

where δi ≡ (0, ..., 0, 1, 0, ..., 0)′ denotes a selection vector for the ith state variable. Conjecture

that a function of the form

I(X) = ea+b′X (B.21)

solves (B.20). Then

IX(X) = bI(X) (B.22)

IXX(X) = bb′I(X). (B.23)

Substituting (B.21) through (B.23) into (B.20) implies

δ′
cµ(Xt) + 1

2δ
′
cΣ(Xt)Σ(Xt)′δc + 1

1 − γ
b′µ(Xt) + 1

2tr
( 1

1 − γ
bb′Σ(Xt)Σ(Xt)′

+bδ′
cΣ(Xt)Σ(Xt)

)
+ 1

2b
′Σ(Xt)Σ(Xt)′δc − 1

2γδ
′
cΣ(Xt)Σ(Xt)′δc + 1

1 − γ
ϱ1(1 − γ + b1)l1(Xt)

+ 1
1 − γ

n∑
i=2

ϱi(bi)li(Xt) − 1
1 − γ

1′l(Xt) + β
(

ln β − a+ b′Xt

1 − γ

)
= 0. (B.24)

Using equations (B.6) through (B.8) to rewrite µ(Xt), Σ(Xt)Σ(Xt)′ and l(Xt), and making

use of the property of the trace of matrices that tr(AB) = tr(BA) whenever both AB and

BA are defined, yield an equation linear in Xt

δ′
c

(
M + KXt

)
+ 1

2

(
δ′
chδc + (δcHδc)′Xt

)
+ 1

1 − γ
b′

(
M + KXt

)
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+1
2

1
1 − γ

(
b′hb+ (b′Hb)′Xt

)
+ 1

2

(
δ′
chb+ (δ′

cHb)′Xt

)
+ 1

2

(
δ′
chb+ (δ′

cHb)′Xt

)

−γ

2

(
δ′
chδc + (δcHδc)′Xt

)
+ 1

1 − γ

(
ϱ1(1 − γ + b1) − ϱ1(b1)

)
δ′
c(l + LXt)

+ 1
1 − γ

ϱ(b)′
(
l + LXt

)
− 1

1 − γ
1′

(
l + LXt

)
+ β

(
ln β − a

1 − γ

)
− β

1 − γ
b′Xt = 0. (B.25)

Collecting terms in Xt results in the following equation system for b

1
2b

′Hb+
(

K′ + (1 − γ)δ′
cH − diag(β)

)
b+ L′ϱ(b)

+
(
ϱ1(1 − γ + b1) − ϱ1(b1)

)
L′δc + (1 − γ)2

2 δ′
cHδc + (1 − γ)K′δc − L′1 = 0, (B.26)

which is a system of n equations for n unknowns (b1, b2, ..., bn). The system depends on the

moment generating functions of the jump sizes, ϱ(·), and admits an explicit solution only in

special cases. There are at least two cases in which (B.26) collapses into a quadratic equation

system in b and can be easily solved with a relatively low dimension of n. First, if there are

no jumps with state-dependent intensities, then L = 0. Second, if there is a jump only in

consumption while the jump intensity does not depend on consumption itself, then one can

also verify that (B.26) becomes a quadratic system. In many other cases, including our VIX

model considered in Section 2.4, we solve these equations numerically.

While multiple solutions to (B.26) possibly exist, there are at least two ways to choose

among them. First, Tauchen (2011) suggests choosing the solution which approaches a

non-explosive limit as coefficients associated with Xt in Σ(Xt)Σ(Xt)′ approach zero (see

equations (B.65) and (B.66) below). Second, Wachter (2013b) suggests one can choose the

solution that makes economic sense under a simple thought experiment. One such strategy

can be to consider that jump size is identically equal to zero while the jump intensity is not.

Because essentially those jumps should have no economic consequence, the value function

should somehow reduce to its counterpart under the standard diffusion model. Collecting
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constant terms in equation (B.25) results in the following characterization of a in terms of b

a = 1
β

{(
(1 − γ)δc + b

)′
M + 1

2
(
(1 − γ)δc + b

)′
h

(
(1 − γ)δc + b

)

+
((
ϱ1(1 − γ + b1) − ϱ1(b1)

)
δc + ϱ(b) − 1

)′
l + (1 − γ)β ln β

}
. (B.27)

Equations (B.16), (B.21), (B.26), and (B.27) and the relation Wt/Ct = 1/β together fully

characterize the equilibrium value function. Because in most settings γ > 1, equations (B.16)

and (B.21) imply that state variable Xi with a positive (negative) associated coefficient bi

would be negatively (positively) correlated with the value function, i.e., negatively priced.

As shown in Section B.1.6, the equilibrium prices of risks for Xt can be summarized by the

following n× 1 vector

λ = γδc − b. (B.28)

Intuitively, except for log consumption, any state variable positively (negatively) correlated

with the value function commands a positive (negative) market price of risk. Because log

consumption affects the value function additionally through W , its market price of risk has

an additional term γ. Now if γ = 1 ≡ 1/ψ, the Duffie-Epstein preferences collapse into the

familiar CRRA preferences, and thus, as one can easily verify, (B.26) admits b = (0, 0, ..., 0)′

as a solution and from (B.28) λ = (γ, 0, 0, ..., 0), which means only innovations to consumption

are priced. Therefore, while consumption is the only priced factor in CRRA utility models,

Duffie-Epstein preferences imply that all state variables are potentially priced.5

5It is known that, for a state variable to be priced, it ultimately has to influence consumption in some
systematic way. However, we emphasize that since our framework delivers exact solutions via a guess and
verify method, one can always include a state variable that one suspects should be priced as part of Xt, say
Xt,i, and solve equation (B.26) to check whether it is priced or not, that is, whether bi ̸= 0.



140

B.1.5 Risk-Free Rate

Taking the derivative of (B.14) with respect to portfolio choice αt and setting it to zero imply

δ′
cµ(Xt) + 1

2δ
′
cΣ(Xt)Σ(Xt)′δc + β − rt + b′Σ(Xt)Σ(Xt)′δc − γαtδ

′
cΣ(Xt)Σ(Xt)′δc

+ Eξ1

[(
1 + αt(eξ1 − 1)

)−γ(
eξ1 − 1

)
eb1ξ1

]
l1(Xt) = 0. (B.29)

Evaluating the above equation under equilibrium condition αt = 1 and rearranging yield

rt = β + δ′
cµ(Xt) + (1

2 − γ)δ′
cΣ(Xt)Σ(Xt)′δc + δ′

c

[(
ϱ(b+ 1 − γ) − ϱ(b− γ)

)
· l(Xt)

]
︸ ︷︷ ︸

CRRA Preferences

+ δ′
cΣ(Xt)Σ(Xt)′b︸ ︷︷ ︸

Duffie-Epstein Preferences

.

(B.30)

The terms above the first bracket in (B.30) arise even if we assume CRRA preferences. β rep-

resents the role of discounting, δ′
cµ(Xt) intertemporal smoothing, and (1

2 − γ)δ′
cΣ(Xt)Σ(Xt)′δc

precautionary savings due to diffusion risks in consumption6. δ′
c

[(
ϱ(b+1−γ)−ϱ(b−γ)

)
·l(Xt)

]
represents the representative agent’s response to jump risks in consumption. Suppose the

jump size for consumption is always negative, ϱ′
1(·) < 0, then ϱ1(b + 1 − γ) − ϱ1(b − γ) is

negative regardless of b. Intuitively, an increase in the probability of a downward jump

in consumption, l1(Xt), increases the representative agent’s desire to save and thus lowers

the risk-free rate. The term above the second bracket in (B.30) represents the representa-

tive agent’s saving motive response to risks in the economy that would only arise under

Duffie-Epstein preferences. δ′
cΣ(Xt)Σ(Xt) captures the comovement between the diffusion in

consumption and that in each state variable, while b determines the sign of the influence of

each state variable on the marginal utility of consumption. Multiplication of them, if positive

(negative), summarizes an additional aspect the representative agent likes (dislikes) about

the diffusion risks in the economy. To better understand this point, think about volatility as
6Here, 1

2 arises from applying Ito’s Lemma and working with log consumption, which is quantitatively
not important.
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the second state variable. Assume that the comovement between consumption and volatility

diffusions is negative, i.e., (δ′
cΣ(Xt)Σ(Xt)′)2 < 0, and that volatility positively (negatively)

affects marginal utility (utility), i.e., b2 > 0. Multiplying them would yield a negative push

on the risk-free rate. Intuitively, because the times at which consumption is low are also

times at which volatility and marginal utility are high, the representative agent dislikes and

wants to avoid being impacted by this source of diffusion risk. She will thus have another

precautionary saving motive, which pushes down the risk-free rate.

B.1.6 State-Price Density

Calculation of equilibrium prices and rates of returns is simplified considerably by using

the state-price density and the induced risk-neutral measure, which reflect the equilibrium

compensation the agent requires for bearing various risks in the economy. Unlike time-additive

preferences, recursive preferences imply that the state-price density depends explicitly on the

value function. In particular, Duffie and Lions (1992) and Duffie and Skiadas (1994) show

that the state-price density associated with the preferences in (B.1) and (B.2) is equal to

πt = exp
{ ∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt), (B.31)

where fC and fV denote the derivatives of f with respect to the first and second argument,

respectively.7 To derive the state-price density explicitly, substitute Wt = β−1Ct and (B.21)

into (B.16). Then taking (B.16) into (B.18) and taking the partial derivative of (B.19) with
7Section 6 of Duffie and Skiadas (1994) shows that three conditions are required to make the above

statement. First, our aggregator function f(C, V ) (equation (B.2)) is continuous so it is progressively
measurable. Second, as argued in Duffie and Epstein (1992), though our Kreps-Porteus aggregator f(C, V ) is
a typical example that does not satisfy the Lipschitz condition, the existence of the stochastic differential
utility Vt and the legitimacy of a pricing kernel as in (B.31) are proved by PDE methods in a Markov setting
by Duffie and Lions (1992) under a growth condition in consumption. Third, the growth condition requires
there existing a constant K such that f(C, 0) ≤ K(1 + |C|) for all possible C, which is trivially satisfied
as from (B.2) f(C, 0) = 0 for all C > 0 (since we specify dynamics of lnCt, Ct is always positive) noting
that limV →0 V lnV = 0. Therefore, our general theory does not place any specific restrictions on state
variable joint dynamics beyond its affine structure. We thank an anonymous referee for asking to check these
conditions.
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respect to V yield, respectively,

fC(Ct, J(W (Ct), Xt)) = βγC−γ
t ea+b′Xt (B.32)

fV (Ct, J(W (Ct), Xt)) = β(1 − γ) ln β − β(a+ b′Xt) − β. (B.33)

Finally, substituting (B.32) and (B.33) into (B.31) and noting lnCt = δ′
cXt yield

πt = βγ exp
{
ηt− βb′

∫ t

0
Xsds+ a+ (b′ − γδ′

c)Xt

}
, (B.34)

where η = β(1 − γ) ln β − βa− β. Applying Ito’s Lemma on (B.34) then implies

dπt
πt−

= µπ,tdt+ (b′ − γδ′
c)Σ(Xt)dBt +

(
e(b−γδc)·ξ − 1

)′
dNt, (B.35)

where

µπ,t = η − βb′Xt + (b′ − γδ′
c)µ(Xt) + 1

2(b′ − γδ′
c)Σ(Xt)Σ(Xt)′(b− γδc). (B.36)

Alternatively, given the form of the risk-free rate in (B.30), we can solve for µπ,t following

a familiar no-arbitrage argument. As no-arbitrage implies that πte
∫ t

0 rsds is a martingale,

Et[d(πte
∫ t

0 rsds)] must be zero. Using Ito’s Lemma, we can obtain

µπ,t = −rt −
(
ϱ(b− γδc) − 1

)′
l(Xt). (B.37)

Making use of (B.27), (B.26) and (B.30), one can verify that (B.37) is equivalent to (B.36).

We now define

Λt = Σ(Xt)′λ, (B.38)

where, recall (B.28), λ = γδc − b determines the market prices of risks in the different

components of Xt such that if λi = 0 then innovations to Xt,i are not priced. λi is related,
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through ϱi(·), to the price of jump risk with jump size ξi in the ith state variable. Λt,i is

literally the total price of the Brownian motion risks associated with Xt,i.

In Appendix B, we prove a convergence result: the equilibrium state-price density in (B.34)

is an IES → 1 limit of the more general state-price density approximately solved in Eraker

and Shaliastovich (2008), thanks to the similarity between the state variable dynamics used in

the two papers. Equivalently, the error in the log-linear approximation in that paper vanishes

as the IES approaches one. We derive our model following different methods than Eraker

and Shaliastovich (2008), but we will discuss the similarities in the IES=1 case. The benefit

of focusing on this special case is that the equilibrium becomes tractable and not subject to

any approximation errors, without losing any desirable features of recursive preferences.

B.1.7 Risk-Neutral Measure

With the state-price density at hand we can price assets with arbitrary state-dependent

payoffs. It is sometimes more convenient, and even necessary, to work with state variable

dynamics under the risk-neutral measure induced by the state-price density πt. The following

theorem is a generalization of Proposition 5 in Duffie et al. (2000) (proof follows the same

vein) to the settings of our model.

Theorem B.1. Under the risk-neutral measure Q induced by the state-price density πt the

state variables follow

dXt = (MQ + KQXt)dt+ Σ(Xt)dBQ
t + ξQt · dNQ

t , (B.39)

where

MQ = M − hλ (B.40)

KQ = K −Hλ (B.41)

dBQ
t = dBt + Λtdt (B.42)
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defines a Brownian motion under the risk-neutral measure.

The Q jump-arrival intensities are given by

lQ(Xt) = l(Xt) · ϱ(−λ). (B.43)

The Q jump-size densities are characterized by the vector moment generating function

ϱQ : Cn → Cn

ϱQ(u) = EQ[euξ] = ϱ(u− λ)./ϱ(−λ), (B.44)

where element-by-element multiplication and division are respectively performed in (B.43)

and (B.44).

Notice that if λi = 0, then there is no difference in the P versus Q jump measures, and

market prices of both diffusion and jump risks associated with Xi are zero. This is another

intuitive illustration of why λ summarizes the market prices of risks related to the diffusions

and jumps in the economy.

The jump intensity is greater (smaller) under the equivalent measure Q whenever λ is

negative (positive). Typically, we cannot say much about the relationship between jump sizes

under Q and P , except for a special case in which the jump size is exponentially distributed.

Suppose ξ is exponentially distributed with mean denoted by EP (ξ). Intuitively, one can

construct the following reward-to-risk ratio vector, which, though a bit too simple, can be an

illustration of the equilibrium compensations for jump size risks

ΛJump ≡
(
EP (ξ) − EQ(ξ)

)
./StdP (ξ) = 1 − ϱ(−λ). (B.45)

It is easy to see ΛJump
i and λi have the same sign, implying that the mean of ξ is adjusted

upward (downward) under Q measure for negatively (positively) priced state variables.

However, although tempting, it is somewhat misleading to coin this measure a market price
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of jump risk, which is characterized, and thus priced, not only according to its mean and

standard deviation but also higher-order moments.

B.1.8 Contribution of the General Model

The general model presented in this section is an endowment-based equilibrium model with

(i) clearly stated affine state variable dynamics and (ii) precisely characterized equilibrium

value function, risk-free rate, prices of risks, and risk-neutral state dynamics. In contrast,

Duffie and Epstein (1992), Duffie and Lions (1992), and Duffie and Skiadas (1994) define

and characterize utility function on an exogenous consumption process without assuming

affine state dynamics; thus, equilibrium risk price is not solved, that is, their terminal result

is equation (B.31). Duffie et al. (2000) do not take a stance on investors’ preferences and

impose an exogenous state-price density. In other words, market prices of risks (B.28),

state-price density (B.34), and risk-neutral dynamics (Theorem B.1) are uncharacterized

in DE92, DL92 and DS94, exogenous in Duffie et al. (2000), and endogenous to investors’

preferences and endowment dynamics in our model. Our theory has not only ready, wide

asset pricing applications (e.g., our VIX model in Section 2.4) but also nests several existing

applied models in the literature as special cases (e.g., Benzoni et al. (2011); Wachter (2013b);

Seo and Wachter (2019)).

B.2 Proof of Convergence of State-Price Density

Eraker and Shaliastovich (2008) solve a general equilibrium pricing model with an affine

jump-diffusion structure for the state variable dynamics identical to those we use and a

continuous-time limit of the discrete-time Epstein-Zin preferences. Because there is generally

no closed-form solution to that model when the IES parameter is different from one, they

also use a continuous-time limit of the log-linear approximation (see Campbell and Shiller

(1988c)) to maintain model tractability. We prove that the state-price density exactly solved
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in our paper is an IES → 1 limit of the state-price density approximately solved in Eraker

and Shaliastovich (2008).8

Proof. To this end, first note the relation between the time preference parameter β in this

paper and δ in their paper

β = 1 − δ

δ
. (B.46)

Because the affine structures for state variables are identical between both papers, the

difference in the state-price densities can only arise from the difference in λ, which completely

determines the market prices of various risks in the economy for both papers. The λ in Eraker

and Shaliastovich (2008) is given by

λ = γδc + (1 − θ)κ1B, (B.47)

where γ, δc and θ have identical interpretations as in our paper, κ1 is the slope coefficient in

log-linearization with an expression given by

κ1 = eE ln(St/Ct)

1 + eE ln(St/Ct)
(B.48)

and B is the coefficient associated with Xt in the approximately solved equilibrium wealth-

consumption ratio
St
Ct

= A+B′Xt. (B.49)

Because it has been shown that St
Ct

= 1
β

when ψ = 1, to prove convergence the only possibility

is St
Ct

= 1
β

+ o(1) as ψ → 1. It follows from (B.48) that

κ1 = 1
1 + β

+ o(1) = δ + o(1) (B.50)

8Eraker and Shaliastovich (2008) start with the discrete-time model and try to see what the log-linearization
equation and the pricing kernel become as the time interval shrinks from one to infinitesimal. Although such
extensions have been widely used, people do not know how precisely they work in continuous time. Our
convergence result and continuity show that it is accurate if the IES parameter is close to one.
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and from (B.49) that B = o(1). It then follows that as ψ → 1

λ = γδc − θκ1B + κ1B

= γδc − θκ1B + o(θκ1B)

= γδc − θκ1B + o(θδB)

= γδc −
(
θδB + o(θδB)

)
+ o(θδB)

= γδc − θδB + o(θδB),

(B.51)

where the first equality follows from (B.47), the second from the fact that θ ≡ 1−γ
1−1/ψ → ∞

as ψ → 1, and the third and the fourth from (B.50). Note because B → 0 and θ → ∞ as

ψ → 1, it is possible that λ approaches a well-defined limit, but when it does, from (B.51)

the limit can only be
γδc − lim

ψ→1
θδB

= γδc − lim
ψ→1

(
χ− (1 − γ)δc

)
= δc − lim

ψ→1
χ,

(B.52)

where the second equality follows from the definition of the vector χ in Eraker and Shaliastovich

(2008). Therefore, it follows from comparing (B.28) with (B.52) that what is only left to

show becomes

δc − lim
ψ→1

χ = γδc − b

or

lim
ψ→1

χ = (1 − γ)δc + b. (B.53)

Let’s reproduce the equation system that χ solves, equation (2.12) in Eraker and Shaliastovich

(2008)

K′χ− θ(1 − κ1)B + 1
2χ

′Hχ+ L′
(
ϱ(χ) − 1

)
= 0, (B.54)
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which after we substituting in a rearrangement of the definition of χ, θB = χ−(1−γ)δc
κ1

, becomes

K′χ− 1 − κ1

κ1

(
χ− (1 − γ)δc

)
+ 1

2χ
′Hχ+ L′

(
ϱ(χ) − 1

)
= 0. (B.55)

Therefore, to show (B.53), by continuity we only need to show that χ = (1 − γ)δc + b solves

the ψ → 1 limit of equation (B.55), which is

K′χ− β
(
χ− (1 − γ)δc

)
+ 1

2χ
′Hχ+ L′

(
ϱ(χ) − 1

)
= 0. (B.56)

This is actually true since we exactly reproduce (B.26) after substituting χ = (1 − γ)δc + b

into (B.56).

The above argument together establishes that whenever there is a solution λ(ψ) in Eraker

and Shaliastovich (2008) one can find a solution λ of our model which it converges to as

ψ → 1.

B.3 Solutions to the VIX Model

B.3.1 Value Function and State-Price Density

Define Xt = (lnCt, σ2
t , λt)′ and Bt = (BC

t , B
V
t , B

λ
t )′. It follows that the process for Xt is

equivalent to

dXt = (M + KXt)dt+ Σ(Xt)dBt + ξ · dNt; M = (µ, κV θV , κλθλ)′ (B.57)

K =


0 −1

2 0

0 −κV 0

0 0 −κλ

 ; Σ(Xt) =


σt 0 0

0 σV σt 0

0 0 σλ
√
λt

 ; Σ(Xt)Σ(Xt)′ = h+
3∑
i=1

HiXt,i

(B.58)
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h = H1 =


0

0
0

 ; H2 =


1

σ2
V

0

 ; H3 =


0

0
σ2
λ

 (B.59)

ξ = (0, ξV , 0)′; dNt = (0, dNt, 0)′; ϱ(u) = (0, ϱ(u2), 0)′, (B.60)

and the jump intensities are summarized by

l(Xt) = l + LXt; l = (0, 0, 0)′; L =

0 0 0
0 0 1
0 0 0

 . (B.61)

Define b = (b1, b2, b3)′. Then (B.26) implies that b should solve

− βb1 = 0 (B.62)

1
2σ

2
V b

2
2 − (κV + β)b2 + 1

2γ(γ − 1) = 0 (B.63)

1
2σ

2
λb

2
3 − (κλ + β)b3 + ϱ(b2) − 1 = 0. (B.64)

It follows from (B.62) that b1 = 0, and from (B.63) that

b2 =
(κV + β) ±

√
(κV + β)2 − σ2

V γ(γ − 1)
σ2
V

. (B.65)

Here we follow Tauchen (2011) to choose the negative root in (B.65), since otherwise b2 would

explode as σV → 0. Then (B.64) implies

b3 =
(κλ + β) ±

√
(κλ + β)2 − 2σ2

λ(ϱ(b2) − 1)
σ2
λ

. (B.66)

Once again we choose the negative root in (B.66). After solving out b we apply (B.27) to

obtain

a = 1
β

{
(1 − γ)(µ+ β ln β) + b2κ

V θV + b3κ
λθλ

}
. (B.67)
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Then apply (B.30) to obtain the risk-free rate

rt = Φ0 + Φ′
1Xt (B.68)

where

Φ0 = µ+ β; Φ1 = (0,−γ, 0)′. (B.69)

Applying (B.35) then implies the state-price density obeys

dπt
πt−

= −rtdt− Λ′
tdBt +

(
eb2ξV − 1

)
dNt − λtE[eb2ξV − 1]dt (B.70)

Λt = [γσt,−b2σV σt,−b3σλ
√
λt]′. (B.71)

Using Theorem B.1, the evolution of the state variables under the equivalent risk-neutral Q

measure induced by the state-price density is given by

dXt = (MQ + KQXt)dt+ Σ(Xt)dBQ
t + ξQV · dNQ

t ; MQ = (µ, κV θV , κλθλ)′ (B.72)

KQ =


0 −1

2 − γ 0

0 −κV + b2σ
2
V 0

0 0 −κλ + b3σ
2
λ

 ; dBQ
t ≡


dBC,Q

t

dBV,Q
t

dBλ,Q
t

 =


dBC

t

dBV
t

dBλ
t

 + Λtdt (B.73)

lQ(Xt) = lQ + LQXt =


0
0
0

 +


0 0 0
0 0 ϱ(b2)
0 0 0

Xt; ϱQ(u) =


0

ϱ(u2+b2)
ϱ(b2)

0

 . (B.74)

B.3.2 Equity Price

In order to price the dividend claim, we need to compute the discounted characteristic

function ϱQX(u,Xt, τ) evaluated at u = (ϕ, 0, 0)′, which, as shown by Duffie et al. (2000), is

equal to eα(τ)+β(τ)′Xt with α(τ) and β(τ) solving the following ODEs
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Riccati Equations for Discounted Characteristic Function

β̇(τ) = −Φ1 + KQ′
β(τ) + 1

2β(τ)′Hβ(τ) + LQ
′(
ϱQ(β(τ)) − 1

)
(B.75)

α̇(τ) = −Φ0 + MQ′
β(τ) + 1

2β(τ)′hβ(τ) + lQ
′(
ϱQ(β(τ)) − 1

)
(B.76)

with boundary conditions α(0) = 0, β(0) = (ϕ, 0, 0)′. Given the risk-neutral parameters above,

the ODEs become

β̇1(τ) = 0 (B.77)

β̇2(τ) = 1
2σ

2
V β

2
2(τ) + (b2σ

2
V − κV )β2(τ) + 1

2β
2
1(τ) − (1

2 + γ)β1(τ) + γ (B.78)

β̇3(τ) = 1
2σ

2
λβ

2
3(τ) + (b3σ

2
λ − κλ)β3(τ) + ϱ

(
β2(τ) + b2

)
− ϱ(b2) (B.79)

α̇(τ) = −β − µ+ µβ1(τ) + κV θV β2(τ) + κλθλβ3(τ). (B.80)

Together with boundary conditions, (B.77) implies

β1(τ) = ϕ,∀τ. (B.81)

Then as long as 1 < ϕ < 2γ the solution to (B.78) takes the following closed form

β2(τ) =
2(ϕ− 1)(γ − 1

2ϕ)
(
1 − e−ηϕτ

)
(ηϕ + b2σ2

V − κV )
(
1 − e−ηϕτ

)
− 2ηϕ

(B.82)

where

ηϕ =
√

(b2σ2
V − κV )2 + 2(ϕ− 1)(γ − 1

2ϕ)σ2
V . (B.83)

Note that since 1 < ϕ < 2γ the term inside the square root is guaranteed to be positive.

Moreover, ηϕ > |b2σ
2
V −κV | ≥ b2σ

2
V −κV , implying that the denominator (ηϕ+b2σ

2
V −κV )

(
1−

e−ηϕτ
)

− 2ηϕ is strictly negative for all τ . The above arguments establish that β2(τ) < 0

for all τ . Noting the similarity between the forms of equations (B.78) and (B.79), it then
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follows that a similar argument as above can establish that β3(τ) < 0 for all τ , as long as

ϱ
(
β2(τ) + b2

)
− ϱ(b2) < −ϵ for all τ for some ϵ > 0. But the latter is actually satisfied since

β2(τ) < 0, ∀τ and ϱ(·) is an increasing function. We have shown that β2(τ) < 0, β3(τ) < 0 for

all τ . This is important because the sign of β2(τ) and β3(τ) respectively finally determines how

the price-dividend ratio G(σ2
t , λt) responds to σ2

t and λt. The fact that β2(τ) < 0, β3(τ) < 0

for all τ implies that G(σ2
t , λt) is decreasing in both σ2

t and λt (recall (2.28)). This completes

the proofs of propositions 2.1 and 2.2. Generally, (B.79) and (B.80) do not admit closed-form

solutions, which we solve numerically.

B.3.3 Equity Premium

We solve for the equity premium analytically. A familiar no-arbitrage condition on the

equity market is that the discounted gains process πtPt +
∫ t

0 πsDsds is a P -martingale (for its

derivation, see e.g., Appendix A.IV. of Wachter (2013b)). It follows that the drift term in

Et
[d(πtPt+∫ t

0 πsDsds

)
πt−Pt−

]
is zero. Using Ito’s Lemma, this implies

µπ,t + µD,t − [ϕσt,
G1

G
σV σt,

G2

G
σλ

√
λt]Λt + G1

G
κV (θV − σ2

t ) + G2

G
κλ(θλ − λt)

+ 1
2
G11

G
σ2
V σ

2
t + 1

2
G22

G
σ2
λλt + Dt−

Pt−
+ λtE

[
eb2ξV

G(σ2
t + ξV , λ)
G(σ2

t , λ) − 1
]

= 0, (B.84)

where µπ,t and µD,t represent respectively the drift term in dπt
πt−

and dDt
Dt−

. Use µP,t to denote

the drift term in dPt
Pt−

, which, when Ito’s Lemma applied upon, implies

µP,t + Dt−

Pt−
− rt = µD,t + µπ,t + G1

G
κV (θV − σ2

t ) + G2

G
κλ(θλ − λt)

+ 1
2
G11

G
σ2
V σ

2
t + 1

2
G22

G
σ2
λλt + Dt−

Pt−
+ λtE

[
eb2ξV − 1

]
, (B.85)
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where we have used (B.37) to substitute rt. Rearranging (B.84) properly and then substituting

into (B.85) give rise to the expression for the equity premium conditional on no jumps occurring

µP,t + Dt−

Pt−
− rt =

[
ϕσt,

G1

G
σV σt,

G2

G
σλ

√
λt

]
Λt + λtE

[
eb2ξV (1 − G(σ2

t + ξV , λt)
G(σ2

t , λt)
)
]
. (B.86)

After accounting for the expected percentage change in equity price if a jump to volatility

occurs, we obtain the population equity premium as

ret − rt = σ′
P,tΛt + λtE

[(
eb2ξV − 1

)(
1 − G(σ2

t + ξV , λt)
G(σ2

t , λt)
)]

(B.87)

where

σP,t =
[
ϕσt,

G1

G
σV σt,

G2

G
σλ

√
λt

]′
. (B.88)

B.3.4 Equity Price Dynamics under Q

We solve for the dynamics of the log equity price under the Q measure. Ito’s Lemma implies

that under P measure

dPt
Pt−

=
(
µD,t + G1

G
κV (θV − σ2

t ) + G2

G
κλ(θλ − λt) + 1

2
G11

G
σ2
V σ

2
t + 1

2
G22

G
σ2
λλt

)
dt

+ σ′
P,tdBt + σDdB

D
t +

[
G(σ2

t + ξV , λt)
G(σ2

t , λt)
− 1

]
dNt, (B.89)

where µD,t denotes the drift term in dDt
Dt−

. It follows again from Ito’s Lemma that (after some

algebra)

d lnPt =
(
ϕ(µ− 1

2σ
2
t ) + µD + G1

G
κV (θV − σ2

t ) + G2

G
κλ(θλ − λt) + 1

2(G11

G
− G2

1
G2 )σ2

V σ
2
t

+ 1
2(G22

G
− G2

2
G2 )σ2

λλt

)
dt+ σ′

P,tdBt + σDdB
D
t + ln

[
G(σ2

t + ξV , λt)
G(σ2

t , λt)

]
dNt. (B.90)
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By plugging in the expressions for the diffusions under Q measure in equation (B.73) into

(B.90) and replacing ξV and Nt with their counterparts under Q, we recover the dynamics of

the log equity price under Q as

d lnPt =
(
ϕ(µ− 1

2σ
2
t ) + µD + G1

G
κV (θV − σ2

t ) + G2

G
κλ(θλ − λt) − σ′

P,tΛt

+ 1
2(G11

G
− G2

1
G2 )σ2

V σ
2
t + 1

2(G22

G
− G2

2
G2 )σ2

λλt

)
dt+σ′

P,tdB
Q
t +σDdB

D
t + ln

[
G(σ2

t + ξQV , λt)
G(σ2

t , λt)

]
dNQ

t .

(B.91)

B.3.5 VIX

By definition, V IX2(Xt) = VarQt
[

lnPt+1/12
]

= VarQt
[

ln P̃t+ 1
12

]
+ 1/12σ2

D, where we have

separated the dividend idiosyncratic risk out and

ln P̃t ≡ ϕ lnCt + g∗
1σ

2
t + g∗

2λt (B.92)

denotes the portion of the log equity price that only involves systematic risk. The conditional

cumulant generating function for ln P̃t+1/12 is given by

Φ(u) = lnEQ
t e

u ln P̃t+1/12 (B.93)

= lnEQ
t e

uλ′
XXt+1/12 (B.94)

= α(uλX , t, t+ 1/12) + β′(uλX , t, t+ 1/12)Xt (B.95)

where

λX ≡ (ϕ, g∗
1, g

∗
2)′. (B.96)

Therefore, using the property of the cumulant generating function, we see that VarQt
[

ln P̃t+1/12
]

=

ã1/12 +b1/12 lnCt+c1/12σ
2
t +d1/12λt, where ã1/12, b1/12, c1/12 and d1/12 are the second derivatives

w.r.t. u of α(uλX , t, t+1/12), β1(uλX , t, t+1/12), β2(uλX , t, t+1/12) and β3(uλX , t, t+1/12)
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evaluated at u = 0, respectively. Under appropriate technique conditions (see Duffie et al.

(2000)), let α(τ), β(τ) solve

Riccati Equations for Cumulant Generating Function

β̇(τ) = KQ′
β(τ) + 1

2β(τ)′Hβ(τ) + LQ
′(
ϱQ(β(τ)) − 1

)
(B.97)

α̇(τ) = MQ′
β(τ) + 1

2β(τ)′hβ(τ) + lQ
′(
ϱQ(β(τ)) − 1

)
(B.98)

with boundary conditions α(0) = 0, β(0) = uλX . Then α(uλX , t, t + 1/12) = α(1/12) and

β(uλX , t, t+ 1/12) = β(1/12). It turns out those ODEs are

β̇1(τ) = 0 (B.99)

β̇2(τ) = 1
2σ

2
V β

2
2(τ) + (b2σ

2
V − κV )β2(τ) + 1

2β
2
1(τ) − (1

2 + γ)β1(τ) (B.100)

β̇3(τ) = 1
2σ

2
λβ

2
3(τ) + (b3σ

2
λ − κλ)β3(τ) + ϱ

(
β2(τ) + b2

)
− ϱ(b2) (B.101)

α̇(τ) = µβ1(τ) + κV θV β2(τ) + κλθλβ3(τ). (B.102)

Together with boundary conditions, the solutions are

β1(τ) = uϕ,∀τ (B.103)

β̇2(τ) = 1
2σ

2
V β

2
2(τ) + (b2σ

2
V − κV )β2(τ) − 1

2uϕ
(
2γ + 1 − uϕ

)
(B.104)

β̇3(τ) = 1
2σ

2
λβ

2
3(τ) + (b3σ

2
λ − κλ)β3(τ) + ϱ

(
β2(τ) + b2

)
− ϱ(b2) (B.105)

α̇(τ) = µϕu+ κV θV β2(τ) + κλθλβ3(τ). (B.106)

Here β1(τ) has a closed-form solution, while β2(τ), β3(τ), α(τ) do not.9 It follows immediately
9β2(τ) does actually admit a closed-form solution. But due to its complication, we numerically solve it
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from (B.103) that b1/12 = 0, i.e., VIX does not explicitly depend on current consumption.

Finally, we can write V arQt
[

ln P̃t+1/12
]

as an affine function in σ2
t and λt

VarQt
[

ln P̃t+ 1
12

]
= ã1/12 + c1/12σ

2
t + d1/12λt, (B.107)

where both c1/12 and d1/12 can be shown to be positive coefficients. And

V IX2(Xt) = 1
12σ

2
D + ã1/12 + c1/12σ

2
t + d1/12λt. (B.108)

For notational convenience, we compound the two constant terms in (B.108) and denote it as

a1/12. It follows that

V IX(Xt) =
√
a1/12 + c1/12σ

2
t + d1/12λt. (B.109)

B.3.6 VIX Futures Pricing

The challenge in computing VIX futures price F V IX(Xt; τ) is to properly deal with the square

root in the expression of VIX. We adopt the numerical integration method in Appendix A.4.

of Eraker and Wu (2017a)

F V IX(Xt, τ) = EQ
t

[√
V IX2

t+τ

]
= 1

2
√
π

∫ ∞

0

1 − EQ
t [e−sV IX2

t+τ ]
s3/2 ds

= 1
2
√
π

∫ ∞

0

1 − e−a1/12sEQ
t [e−s(0,c1/12,d1/12)′Xt+τ ]
s3/2 ds

= 1
2
√
π

∫ ∞

0

1 − e−a1/12seα(s,τ)+β(s,τ)′Xt

s3/2 ds

= 1
2
√
π

∫ ∞

−∞
e−s/2

(
1 − e−a1/12e

s

eα(es,τ)+β(es,τ)′Xt
)
ds.

(B.110)

The second equality follows from a mathematical result
√
x = 1

2
√
π

∫ ∞
0

1−e−sx

s3/2 ds and Fubini’s

theorem to switch expectation and integral. The third equality follows from the expression

of equilibrium VIX-squared (2.35). The fourth equality follows from the definition of the



157

(undiscounted) characteristic function, where α(s, τ) and β(s, τ) are the solutions (evaluated

at τ) to the ODE system (B.99) through (B.102) with boundary conditions α(0) = 0; β(0) =

(0,−c1/12s,−d1/12s)′. The last equality follows from a change of variable to make the integrand

bell shaped for easier numerical computation. To see the above mathematical result, consider

a normal random variable with mean zero and standard deviation s/
√

2. Obviously, we have

1 = 1√
2π s√

2

∫ +∞

−∞
exp

(
− 1

2

(
t
s√
2

)2)
dt,

or

s = 2√
π

∫ +∞

0
e−( t

s
)2
dt,

or

√
x = 2√

π

∫ +∞

0
e− t2

x dt

= 2√
π

∫ +∞

0

x

2e
−xss− 1

2ds

= 1√
π

∫ +∞

0
s− 1

2d(1 − e−xs)

= 1√
π
s− 1

2 (1 − e−xs)
∣∣∣∣+∞

s=0
− 1√

π

∫ +∞

0
(1 − e−xs)(−1

2s
− 3

2 )ds

= 1
2
√
π

∫ ∞

0

1 − e−xs

s3/2 ds,

where the second line follows from a change of variable t = x
√
s, and the fourth an integral

by parts.

B.3.7 SPX Option Pricing

Before pricing VIX options, we first price a (European) SPX option, which value in the current

model is homogenous of degree one in SPX. To facilitate computation, we divide the standard

no-arbitrage option pricing equation through by SPX for a normalization. Specifically, let

P SPX(Xt, τ,K) denote the normalized price of an SPX put option with maturity τ and
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normalized strike K. No-arbitrage then implies

P SPX(Xt, τ,K) = EQ
t

[
e−

∫ t+τ
t

rudu
(
K − Pt+τ/Pt

)+]
(B.111)

= EQ
t

[
e−

∫ t+τ
t

rudu
(
K − elnPt+τ−lnPt

)+]
. (B.112)

Using the Parseval identity (a theorem saying that the payoff function for an option stays

unchanged under first a generalized Fourier transform and then a reverse generalized Fourier

transform; see e.g., Lewis (2001)), we have

P SPX(Xt, τ,K) = EQ
t

[
e−

∫ t+τ
t

rudu
(
K − elnPt+τ−lnPt

)+]
(B.113)

= 1
2πE

Q
t

[ ∫ izi+∞

izi−∞
e−

∫ t+τ
t

rudue−iz(lnPt+τ−lnPt)ω̂(z)dz
]
, (B.114)

where the generalized Fourier transform of the payoff function of the option (K − ex)+ is

given by

ω̂(z) ≡
∫ +∞

−∞
eizx(K − ex)+dx (B.115)

= − Kiz+1

z2 − iz
, (B.116)

for zi ≡ Im(z) < 0 (we restrict the imaginary part of z to be negative because, as one

can easily verify, the integral in (B.115) exists if and only if Im(z) < 0). Then, taking the

expectation operator inside the integral in (B.114) yields

P SPX(Xt, τ,K) = − 1
2π

∫ izi+∞

izi−∞
EQ
t

[
e−

∫ t+τ
t

rudue−iz(lnPt+τ−lnPt)
]
Kiz+1

z2 − iz
dz (B.117)

= − 1
2π

∫ izi+∞

izi−∞
eiz(ln P̃t−µDτ)− 1

2σ
2
Dz

2τϱQX

(
− iz(ϕ, g∗

1, g
∗
2)′, Xt, τ

)
Kiz+1

z2 − iz
dz,

(B.118)

where the integration is performed on any a strip parallel to the real axis in the complex z

plane for which zi ≡ Im(z) < 0. The second line follows from the definition of the complex-
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valued discounted characteristic function given in (2.27), equation (2.33), and the definition

of ln P̃t given in (B.92). For zi ≡ Im(z) > 1, (B.118) is also the pricing formula for an SPX

call option with maturity τ and normalized strike K, which follows from the well known fact

that the generalized Fourier transform of the payoff function of SPX call option (ex −K)+ is

also given by (B.116) but with zi ≡ Im(z) > 1 (See Lewis (2001)). Using integral variable

substitution x = z − zii, we obtain a numerically implementable pricing formula as

− 1
2π

∫ +∞

−∞
Re

[
e−(zi−xi)(ln P̃t−µDτ)− 1

2σ
2
D(x+izi)2τϱQX

(
(zi − xi)(ϕ, g∗

1, g
∗
2)′, Xt, τ

)

× K1−zi+xi

(x+ zii)(x+ (zi − 1)i)

]
dx, (B.119)

where we only need to take the real part of the complex-valued integrand because SPX put

price is theoretically guaranteed to be real.

B.3.8 VIX Call Option Pricing

Unlike an SPX option where normalization is convenient, it is more convenient to directly

compute the VIX option price without normalization since there is no homogeneity property.

No-arbitrage implies that the price of a VIX call option with maturity τ and strike K is

given by

CV IX(Xt, τ,K) = EQ
t

[
e−

∫ t+τ
t

rudu
(
V IXt+τ −K

)+]
(B.120)

= EQ
t

[
e−

∫ t+τ
t

rudu
(√

a1/12 + c1/12σ
2
t+τ + d1/12λt+τ −K

)+]
. (B.121)

Using the Parseval identity, we obtain

CV IX(Xt, τ,K) = EQ
t

[
e−

∫ t+τ
t

rudu
(√

a1/12 + c1/12σ
2
t+τ + d1/12λt+τ −K

)+]
(B.122)

= 1
2πE

Q
t

[ ∫ izi+∞

izi−∞
e−

∫ t+τ
t

rudue−iz(a1/12+c1/12σ
2
t+τ+d1/12λt+τ )ω̂(z)dz

]
, (B.123)
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where the generalized Fourier transform of the payoff function of the call option
(√

x−K
)+

is given by

ω̂(z) ≡
∫ +∞

−∞
eizx(

√
x−K)+dx

=
∫ +∞

K2
eizx(

√
x−K)dx

=
∫ +∞

K2
eizx

√
xdx−K

∫ +∞

K2
eizxdx

= 1
iz

∫ +∞

K2

√
xdeizx − K

iz
eizx
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x=K2

= 1
iz

√
xeizx
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x=K2
− 1
iz

∫ +∞

K2
eizxd

√
x− K

iz
eizx

∣∣∣∣+∞

x=K2
,

where in the last line, we have used integral by parts. Functions in the first and third terms

evaluated at +∞ are defined (and equal to 0) if and only if zi ≡ Im(z) > 0. In this case, the

two terms cancel out. Therefore,

ω̂(z) = − 1
iz

∫ +∞

K2
eizxd

√
x

= 1
(−iz)3/2

∫ +∞
√

−izK
e−u2

du

= 1
(−iz)3/2

(
π

2 −
∫ √

−izK

0
e−u2

du
)

=
√
πErcf

(
K

√
−iz

)
2(−iz) 3

2

where the second line follows from a change of variable
√

−iz
√
x = u, the third from a

standard result
∫ +∞

0 e−u2
du =

√
π/2, and the fourth from the definition of the complex-valued

complementary error function, Ercf(·), with an expression given by

Ercf(z) = 1 − 2√
π

∫ z

0
e−u2

du, (B.124)

for any complex number z. Then, taking the expectation operator inside the integral in

(B.123) and using the definition of the discounted characteristic function under risk-neutral
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measure as defined in (2.27), we can rewrite the VIX call price as

CV IX(Xt, τ,K) = 1
4
√
π

∫ izi+∞

izi−∞
e−iza1/12ϱQX

(
− iz(0, c1/12, d1/12)′, Xt, τ

)Ercf(
K

√
−iz

)
(−iz) 3

2
dz,

(B.125)

where the integration is performed on any a strip parallel to the real axis in the complex z

plane for which zi ≡ Im(z) > 0. Using integral variable substitution x = z − zii, we obtain a

numerically implementable pricing formula as

1
4
√
π

∫ +∞

−∞
Re

[
e(zi−xi)a1/12ϱQX

(
(zi − xi)(0, c1/12, d1/12)′, Xt, τ

)
Ercf(K

√
zi − xi)

(zi − xi) 3
2

]
dx, (B.126)

where we only need to take the real part of the complex-valued integrand because the VIX

call price is theoretically guaranteed to be real.

B.3.9 VIX Put Option Pricing

The generalized Fourier transform of the payoff function of a VIX put option
(
K −

√
x

)+
is

given by

ω̂(z) ≡
∫ +∞

−∞
eizx(K −

√
x)+dx

=
∫ K2

−∞
eizxKdx−

∫ K2

0
eizx

√
xdx

= K

iz
eizx

∣∣∣∣K2
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− 1
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0
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xdeizx

= K

iz
eizx

∣∣∣∣K2

x=−∞
− 1
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√
xeizx

∣∣∣∣K2

x=0
+ 1
iz

∫ K2

0
eizxd

√
x.

Note we have applied a trick in the second line. We should have set both integral lower

limits to zero, but did not. The second line is equivalent to transforming a continuous payoff

function equal to K for all x < 0. If the first integral also had a lower limit of zero, then the

payoff function we are transforming is discontinuous at zero, i.e., it is equal to zero for all

x < 0 and K for x = 0. This little twist on payoff function has no economic consequence
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since VIX-squared in equilibrium is always positive, but makes the transform for VIX put

more compact. In the last line, we have used integral by parts. The function in the first term

evaluated at −∞ is defined (and equal to 0) if and only if zi ≡ Im(z) < 0. In this case, the

first and second terms cancel out. Therefore,

ω̂(z) = 1
iz

∫ K2

0
eizxd

√
x

= − 1
(−iz)3/2

∫ √
−izK

0
e−u2

du

= −
√
π

2
1

(−iz)3/2

(
1 − Ercf(K

√
−iz)

)
,

(B.127)

where the second line follows from a change of variable
√

−iz
√
x = u, and the third from

the definition of the Ercf(·) function. To derive the VIX put pricing formula, we insert

equation (B.127) into (B.123), take the expectation operator inside the integral, and use the

definition of the discounted characteristic function under risk-neutral measure as defined in

(2.27), which gives

P V IX(Xt, τ,K) = − 1
4
√
π

∫ izi+∞

izi−∞
e−iza1/12ϱQX

(
−iz(0, c1/12, d1/12)′, Xt, τ

)1 − Ercf(K
√

−iz)
(−iz)3/2 dz,

(B.128)

where the integration is performed on any a strip parallel to the real axis in the complex z

plane for which zi ≡ Im(z) < 0. Using integral variable substitution x = z − zii, we obtain a

numerically implementable pricing formula as

− 1
4
√
π

∫ +∞

−∞
Re

[
e(zi−xi)a1/12ϱQX

(
(zi − xi)(0, c1/12, d1/12)′, Xt, τ

)1 − Ercf(K
√
zi − xi)

(zi − xi) 3
2

]
dx,

(B.129)

where again we only need to take the real part of the complex-valued integrand because the

VIX put price is theoretically guaranteed to be real.
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B.3.10 Black-Scholes (1973) Implied Volatility

We are interested in the implied volatilities for SPX put options. The underlying asset of

an SPX put option is the SPX. Therefore, we should resort to the option pricing formula in

Black and Scholes (1973). Consistent with our SPX put pricing, we consider a normalized

version of Black and Scholes (1973). Specifically, consider an SPX put option with normalized

strike K, and time to maturity τ . Let the corresponding continuously compounded bond

yield be rt(τ) and dividend yield be qt. Under the assumptions of Black and Scholes (1973),

the normalized price of the SPX put option should be given by

BSP (1, K, τ, rt(τ), qt, σ) = e−rt(τ)τK ·N(−d2) − e−qtτ ·N(−d1), (B.130)

where N(·) is the standard normal cumulative distribution function and

d1 = ln(1/K) + (rt(τ) − qt + σ2/2)τ
σ

√
τ

(B.131)

d2 = d1 − σ
√
τ . (B.132)

Then the model-implied implied volatility σimpt = σimp(Xt, τ,K) should solve

P SPX(Xt, τ,K) = BSP (1, K, τ, rt(τ), qt, σimpt )

= BSP (1, K, τ, r(Xt, τ), q(Xt), σimp(Xt, τ,K)),
(B.133)

where P SPX(Xt, τ,K) is given by (B.118), r(Xt, τ) = − ln
(
ϱQX(0, Xt, τ)

)
/τ by the definition

of the discounted characteristic function, and q(Xt) = ln(1+1/G(Xt)) with the price-dividend

ratio G(Xt) given by (2.28).
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B.3.11 Black-76 Implied Volatility

We are also interested in the implied volatilities for VIX call options. The underlying asset

of a VIX option is not the VIX index, but instead a VIX futures contract with the same

maturity as the option. Therefore, we should resort to the futures option pricing formula in

Black (1976). Specifically, consider a VIX call option with strike K, time to maturity τ , and

underlying price F V IX
t (τ). Let the corresponding continuously compounded bond yield be

rt(τ). Under the assumptions of Black (1976), the price of the VIX call option should be

given by10

BC(F V IX
t (τ), K, τ, rt(τ), σ) = e−rt(τ)τ

[
F V IX
t (τ) ·N(d1) −K ·N(d2)

]
, (B.134)

where N(·) is the standard normal cumulative distribution function and

d1 = ln(F V IX
t (τ)/K) + σ2τ/2

σ
√
τ

(B.135)

d2 = d1 − σ
√
τ . (B.136)

Then the model-implied implied volatility σimpt = σimp(Xt, τ,K) should solve

CV IX(Xt, τ,K) = BC(F V IX
t (τ), K, τ, rt(τ), σimpt )

= BC(F V IX(Xt, τ), K, τ, r(Xt, τ), σimp(Xt, τ,K)),
(B.137)

where CV IX(Xt, τ,K) is given by (B.125), r(Xt, τ) = − ln
(
ϱQX(0, Xt, τ)

)
/τ by the definition

of the discounted characteristic function, and F V IX(Xt, τ) is given by (B.110).
10Note that no-arbitrage implies V IXt = e−rt(τ)τFV IX

t (τ) if the VIX spot-futures parity holds. In this
case, the Black (1976) formula reduces to the Black and Scholes (1973) formula.
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B.4 Additional Model Results

B.4.1 Additional Model Moments

We report additional model moments. Table 2.5 in the body text shows that our model

can replicate the first and second-order moments of consumption and dividends. Panel A of

Table B.1 further compares higher-order moments of consumption and dividend growth rates

in the model and the data. As shown, the introduction of jumps in endowment volatility

does not affect odd moments of fundamentals. Both skewnesses are nearly zero simply due

to conditional log-normality. Model-implied kurtosis of consumption growth seems greater

than that in the data - the presence of jumps in volatility thickens the tail of consumption

growth distribution. However, the difference between model-implied and data kurtosis is

statistically insignificant. Model-implied kurtosis of dividend growth seems to undershoot its

data counterpart - because of the presence of idiosyncratic Brownian risk in dividend growth,

jumps in volatility do not thicken the tail of dividend growth distribution as much.

Panel B of Table B.1 compares moments of the conditional variance risk premium in the

model and the data. To ensure robustness, we define the conditional variance risk premium

in two ways: V RPt = V arQt [lnPt+1/12] − V arPt [lnPt+1/12], and V RPt = EQ
t [QVt,t+1/12] −

EP
t [QVt,t+1/12], where QVt,t+1/12 =

∫ t+1/12
t [d lnP, d lnP ]s is the total quadratic variation of

log market return between t and t + 1/12. It turns out our model does very well on this

dimension, although we never explicitly target the variance risk premium in our parameter

calibration.

B.4.2 Price-Dividend Ratio in a LRR-Augmented VIX Model

The shortcoming concerning the price-dividend ratio shown in Table 2.5 can be straightfor-

wardly addressed by introducing long-run risks into our benchmark model without causing

other moments to suffer. Following Bansal and Yaron (2004b), we assume the conditional

expected consumption growth xt is a time-varying, persistent process, and keep all other
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Table B.1: Additional Model Moments.

Model U.S. Data Data Source
5% 50% 95%

Panel A: higher-order fundamental

skewness(∆ct) -2.19 -0.10 1.80 -1.08 BEA Table
kurtosis(∆ct) 4.66 7.55 17.31 4.84 BEA Table

skewness(∆dt) -1.00 -0.02 0.84 -0.88 CRSP
kurtosis(∆dt) 2.72 3.96 8.24 8.67 CRSP

Panel B: variance risk premium

mean 9.04 10.68 13.35 11.27 DY2011
std. dev. 4.64 6.73 10.83 7.61 DY2011
median 7.69 8.75 10.35 8.92 DY2011
min 2.88 3.07 3.36 3.27 DY2011
skewness 1.14 1.80 3.03 2.39 DY2011
kurtosis 3.96 6.99 15.69 12.03 DY2011
AC(1) 0.39 0.61 0.80 0.65 DY2011

mean 6.28 7.00 7.83 11.27 DY2011
std. dev. 2.81 3.44 4.33 7.61 DY2011
median 5.51 6.12 6.92 8.92 DY2011
min 2.28 2.40 2.60 3.27 DY2011
skewness 0.89 1.34 2.07 2.39 DY2011
kurtosis 3.34 5.15 9.66 12.03 DY2011
AC(1) 0.29 0.46 0.62 0.65 DY2011

Note: the table reports additional model moments. Panel A reports higher-order moments of log consumption growth
and log dividend growth, both in the benchmark model and the data. We use real consumption and dividend data,
which both are from 1930 to 2020. Panel B reports moments of conditional variance risk premium, both in the
benchmark model and the data. We define the conditional variance risk premium in two ways. The first set of numbers
are based on the definition: V RPt = V arQt [ln Pt+1/12] − V arPt [ln Pt+1/12]. The second set of numbers are based on the
definition: V RPt = EQ

t [QVt,t+1/12] − EP
t [QVt,t+1/12], where QVt,t+1/12 =

∫ t+1/12
t

[d ln P, d ln P ]s is the total quadratic
variation of log market return between t and t + 1/12. Variance risk premium data moments are from Drechsler
and Yaron (2011b), Table 3 last column. The variance risk premium is monthly in basis points. The model-implied
moments are the 5%, 50%, and 95% quantile values from 1,000 simulations with the same length as the data sample.
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aspects of our benchmark model unchanged. Specifically, log consumption, expected con-

sumption growth, consumption growth volatility, volatility jump arrival intensity, and log

dividend are respectively given by

d lnCt = (µ+ xt − σ2
t

2 )dt+ σtdB
C
t

dxt = −κxxtdt+ σxσtdB
x
t

dσ2
t = κV (θV − σ2

t )dt+ σV σtdB
V
t + ξV dNt

dλt = κλ(θλ − λt)dt+ σλ
√
λtdB

λ
t

d lnDt = ϕd lnCt + µDdt+ σDdB
D
t ,

(B.138)

where κx is a small number. In equilibrium, long-run productivity xt heavily drives the price-

dividend ratio, and thus a persistent xt process translates into a persistent price-dividend

ratio. In order to match the moments overall well, we recalibrate the parameters. For

example, equity premium would be excessively high if we introduce long-run risks without

recalibrating other parameters. Table B.2 reports our recalibrated parameters. Compared

with benchmark calibration, we have let risk aversion be slightly lower and σ2
t be slightly

less persistent. Table B.3 shows that introducing long-run risks brings the volatility and

autocorrelation of the log price-dividend ratio substantially closer to the data, with none of

the other moments severely compromised. It is worth noting that VIX still has a two-factor

(σ2
t , λt) representation even with long-run risks, since VIX in equilibrium reflects only the

effects of the higher-order moments of the fundamental. Figures B.1 and B.2 confirm that

the new set of parameters does not compromise our model’s main results: steady-state and

low and high-VIX conditional VIX option implied volatility curves.

B.4.3 Return Predictability in the Benchmark Model

Table B.4 reports predictive regression results at both short and long horizons. Panel A shows

that our model generates sufficient excess return predictability by the log price-dividend
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Figure B.1: Black-76 Implied Volatility Curves for VIX Options in the LRR-Augmented VIX
Model.
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Note: the figure plots (annualized) implied volatility curves for VIX options in the LRR-augmented VIX model at
steady state. The horizontal axis denotes the absolute value of the strike. Implied volatilities are computed for VIX
options with four maturities: 1, 2, 3, and 6 month.

Table B.2: Parameters for the LRR-Augmented VIX Model.

Rate of time preference β 0.01
Relative risk aversion γ 11
Average growth in consumption µ 0.025
Mean reversion of expected consumption growth κx 0.16
Diffusion scale parameter of expected consumption growth σx 0.3
Mean reversion of volatility κV 4
Average consumption growth variance without jumps θV 0.0005
Diffusion scale parameter of consumption growth volatility σV 0.14
Average volatility jump size µξ 0.003
Mean reversion of jump arrival intensity κλ 10
Average jump arrival intensity θλ 0.8
Diffusion scale parameter of jump arrival intensity σλ 3
Stock market leverage ϕ 2.5
Adjustment in dividend growth drift µD 0.00
Idiosyncratic risk in dividend growth σD 0.11
Note: the table reports parameter values for the extended VIX model with long-run risks. In equilibrium, VIX has a
two-factor representation: V IXt =

√
a1/12 + c1/12σ2

t + d1/12λt. Parameters values are interpreted in annual terms.
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Figure B.2: Black-76 Implied Volatility Curves for VIX Options in the LRR-Augmented VIX
Model: Conditional Analysis.
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Note: the figure plots (annualized) implied volatility curves for VIX options in the LRR-augmented VIX model,
conditional on high and low initial VIX. In the upper case, we set both state variables very high: σ2

t = 10σ2
ss and

λt = 10λss, implying a very high VIX, 49.3. In the lower case, we set both state variables at minimum values:
σ2
t = λt = 0, implying a small value of VIX, 12.8.
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Table B.3: Selected Moments in the LRR-Augmented VIX Model.

Model U.S. Data Data Source
E[∆c] 2.39 1.80 BY2004
σ(∆c) 3.13 2.93 BY2004
AC1(∆c) 0.44 0.49 BY2004

E[∆d] 5.99 4.61 CRSP
σ(∆d) 11.90 11.49 BY2004
AC1(∆d) 0.33 0.21 BY2004

corr(∆c,∆d) 0.67 0.59 DY2011

E[exp(pd)] 19.05 26.56 BY2004
σ(pd) 15.73 29.00 BY2004
AC1(pd) 0.65 0.81 BY2004

E[ret − rft ] 9.36 8.33 Ken French
σ(ret ) 17.51 18.31 CRSP
E[rft ] 1.10 0.86 BY2004
σ(rft ) 1.92 0.97 BY2004

E[V IXt] 18.70 19.28 CBOE
σ(V IXt) 6.00 7.42 CBOE
AC1(V IXt) 0.72 0.84 CBOE

E[imp_volt] 70.25 68.80 CBOE
σ(imp_volt) 12.57 14.30 CBOE
AC1(imp_volt) 0.48 0.53 CBOE

corr(V IXt, imp_volt) 0.50 0.48 CBOE

E[rCV IX(τ=1/12)] -0.23 -0.48 CBOE
E[rPV IX(τ=1/12)] 0.09 0.21 CBOE

Note: the table reports a list of moments in the extended VIX model with long-run risks and their counterparts in the
U.S. data. The model is simulated at a monthly frequency (dt=1/12) for 100,000 months and simulated data are
then aggregated to an annual frequency. All the moments in the first panel are on an annual basis. ∆c denotes log
consumption growth rate, ∆d log dividend growth rate, pd log price-dividend ratio, ret log return on the dividend
claim, and rft yield on one-year riskless bond. All the moments in the second panel are on a monthly basis, but
the two variables V IXt (risk-neutral one-month log equity return volatility index) and imp_volt (Black-76 implied
volatility for one-month ATM VIX option) are themselves annualized. rC

V IX (τ=1/12) (rP
V IX (τ=1/12)) denotes net

holding-period return on one-month ATM VIX call (put) option.
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ratio at relatively short horizons, that is, less than two years. However, it undershoots

this predictability at longer horizons. Unsurprisingly, this is related to the fact that the

log price-dividend ratio does not carry sufficiently persistent information about the equity

premium far into the future. Panel B shows that our model implies little consumption growth

predictability by the log price-dividend ratio across all horizons, consistent with the data.

Finally, Panel C confirms our model’s ability to generate sufficient excess return pre-

dictability by the variance risk premium at relatively short horizons. The model-implied

slope coefficients are somehow higher than their data counterparts reported in Bollerslev

et al. (2009b), but closer to those reported in Drechsler and Yaron (2011b) which re-estimate

the variance risk premium using S&P 500 futures data to replace cash index data. Our

model-implied R2s are on par with the data at short horizons, and slightly higher than the

data at longer horizons.

B.4.4 Return Predictability in a Three-Factor VIX Model

The insufficient excess return predictability by the log price-dividend ratio at longer horizons

(Table B.4 Panel A) can be partially fixed in an extended three-factor model to include a

slow-moving component of the volatility process. Following Drechsler and Yaron (2011b), we

assume the long-run average of variance without jumps θt is a time-varying, persistent process,

and keep all other aspects of our benchmark model unchanged. Specifically, log consumption,

consumption growth transitory volatility, consumption growth long-run volatility, transitory

volatility jump arrival intensity, and log dividend are respectively given by

d lnCt = (µ− σ2
t

2 )dt+ σtdB
C
t

dσ2
t = κV (θt − σ2

t )dt+ σV σtdB
V
t + ξV dNt

dθt = κθ(θV − θt)dt+ σθ
√
θtdB

θ
t

dλt = κλ(θλ − λt)dt+ σλ
√
λtdB

λ
t

d lnDt = ϕd lnCt + µDdt+ σDdB
D
t ,

(B.139)
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Table B.4: Predictive Regressions in the Benchmark VIX Model.

Panel A: ∑H
h=1(rm,t+h − rf,t+h) = α + β1(pt − dt) + εt+H

Horizon 1Y 2Y 4Y 6Y 8Y 10Y
Model

β1 -1.07 -1.19 -1.24 -1.27 -1.27 -1.29
R2 0.11 0.07 0.04 0.03 0.02 0.02

Data
β1 -0.13 -0.23 -0.33 -0.48 -0.64 -0.86
R2 0.09 0.17 0.23 0.30 0.38 0.43

Panel B: ∑H
h=1 ∆ct+h = α + β1(pt − dt) + εt+H

Horizon 1Y 2Y 4Y 6Y 8Y 10Y
Model

β1 0.01 0.00 -0.01 -0.02 -0.03 -0.02
R2 0.00 0.00 0.00 0.00 0.00 0.00

Data
β1 -0.00 -0.01 -0.01 -0.01 -0.02 -0.01
R2 0.00 0.01 0.02 0.02 0.03 0.02

Panel C: 1
H

∑H
h=1(rm,t+h − rf,t+h) = α + β1V RPt + εt+H

Horizon 1M 2M 3M 6M 9M 12M
Model

β1 1.52 1.37 1.26 0.97 0.76 0.61
R2 0.03 0.06 0.07 0.09 0.09 0.08

Data
β1 0.47 0.70 0.56 0.36 0.20 0.14
β1 (0.76) (1.26) (0.86)
R2 0.01 0.07 0.07 0.05 0.02 0.01
R2 (0.02) (0.04) (0.06)

Note: the table reports R2 and slope coefficients from regressing cumulative excess market returns onto lagged log
price-dividend ratio and lagged variance risk premium and regressing consumption growth onto lagged log price-
dividend ratio, using data from simulating the benchmark model over 100,000 months. The time-t conditional variance
risk premium is calculated as: V RPt = V arQt [ln Pt+1/12] − V arPt [ln Pt+1/12]. Data regression results are also reported.
Data in Panels A and B are from Wachter (2013b). Data in Panel C are from Bollerslev et al. (2009b); numbers in
parentheses in Panel C are from Drechsler and Yaron (2011b). In Panel C’s regressions, all numbers follow Drechsler
and Yaron (2011b)’s data measures: returns are annualized in percentage, and variance risk premiums are monthly in
basis points.
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Table B.5: Parameters for the Three-Factor VIX Model.

Rate of time preference β 0.01
Relative risk aversion γ 17
Average growth in consumption µ 0.03
Mean reversion of transitory volatility κV 3.4
Diffusion scale parameter of transitory volatility σV 0.17
Average transitory volatility jump size µξ 0.004
Mean reversion of long-run volatility κθ 0.6
Average long-run volatility θV 0.0004
Diffusion scale parameter of jump arrival intensity σθ 0.03
Mean reversion of jump arrival intensity κλ 10
Average jump arrival intensity θλ 0.5
Diffusion scale parameter of jump arrival intensity σλ 3
Stock market leverage ϕ 3
Adjustment in dividend growth drift µD -0.02
Idiosyncratic risk in dividend growth σD 0.1
Note: the table reports parameter values for the extended three-factor VIX model. In equilibrium, VIX has a
three-factor representation: V IXt =

√
a1/12 + b1/12σ2

t + c1/12θt + d1/12λt. Parameters values are interpreted in
annual terms.

where κθ is a small number. In equilibrium, both the conditional equity premium and the

price-dividend ratio would be heavily driven by θt, investors’ long-run volatility expectation.

To the extent θt is persistent, the price-dividend ratio would possess long-term predictive

power for excess market returns. In order to match the moments overall well, we recalibrate

the parameters, which are reported in Table B.5. Table B.6 shows that the three-factor

extension not only leaves all the other moments unharmed, but also (partially) helps with

the volatility and autocorrelation of the log price-dividend ratio. Table B.7 Panel A shows

that long-term return predictability by the log price-dividend ratio is fixed to almost the

same extent as in Drechsler and Yaron (2011b). Panel C further shows that high-frequency

return predictability by the variance risk premium is nearly unaffected.

Importantly, this extension does not compromise the model’s ability to explain VIX

options data. Intuitively, although VIX now has a three-factor (θt, σ2
t , λt) representation, it

still loads in an important way on the two relatively fast-moving factors, σ2
t and λt. Properties

of VIX derivatives in our benchmark model are thus maintained. Implied volatility curves
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Table B.6: Selected Moments in the Three-Factor VIX Model.

Model U.S. Data Data Source
E[∆c] 2.91 1.80 BY2004
σ(∆c) 2.63 2.93 BY2004
AC1(∆c) 0.25 0.49 BY2004

E[∆d] 6.73 4.61 CRSP
σ(∆d) 11.44 11.49 BY2004
AC1(∆d) 0.25 0.21 BY2004

corr(∆c,∆d) 0.68 0.59 DY2011

E[exp(pd)] 23.44 26.56 BY2004
σ(pd) 11.68 29.00 BY2004
AC1(pd) 0.27 0.81 BY2004

E[ret − rft ] 8.97 8.33 Ken French
σ(ret ) 18.32 18.31 CRSP
E[rft ] 0.84 0.86 BY2004
σ(rft ) 2.34 0.97 BY2004

E[V IXt] 18.92 19.28 CBOE
σ(V IXt) 7.48 7.42 CBOE
AC1(V IXt) 0.80 0.84 CBOE

E[imp_volt] 67.81 68.80 CBOE
σ(imp_volt) 17.30 14.30 CBOE
AC1(imp_volt) 0.55 0.53 CBOE

corr(V IXt, imp_volt) 0.39 0.48 CBOE

E[rCV IX(τ=1/12)] -0.21 -0.48 CBOE
E[rPV IX(τ=1/12)] 0.08 0.21 CBOE

Note: the table reports a list of moments in the three-factor VIX model and their counterparts in the U.S. data. The
model is simulated at a monthly frequency (dt=1/12) for 100,000 months and simulated data are then aggregated to
an annual frequency. All the moments in the first panel are on an annual basis. ∆c denotes log consumption growth
rate, ∆d log dividend growth rate, pd log price-dividend ratio, ret log return on the dividend claim, and rft yield on
one-year riskless bond. All the moments in the second panel are on a monthly basis, but the two variables V IXt

(risk-neutral one-month log equity return volatility index) and imp_volt (Black-76 implied volatility for one-month
ATM VIX option) are themselves annualized. rC

V IX (τ=1/12) (rP
V IX (τ=1/12)) denotes net holding-period return on

one-month ATM VIX call (put) option.
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Table B.7: Predictive Regressions in the Three-Factor VIX Model.

Panel A: ∑H
h=1(rm,t+h − rf,t+h) = α + β1(pt − dt) + εt+H

Horizon 1Y 2Y 4Y 6Y 8Y 10Y
Model

β1 -0.63 -0.90 -1.18 -1.27 -1.32 -1.38
R2 0.11 0.12 0.11 0.09 0.07 0.06

Data
β1 -0.13 -0.23 -0.33 -0.48 -0.64 -0.86
R2 0.09 0.17 0.23 0.30 0.38 0.43

Panel B: ∑H
h=1 ∆ct+h = α + β1(pt − dt) + εt+H

Horizon 1Y 2Y 4Y 6Y 8Y 10Y
Model

β1 0.00 0.00 -0.00 -0.01 -0.02 -0.03
R2 0.00 0.00 0.00 0.00 0.00 0.00

Data
β1 -0.00 -0.01 -0.01 -0.01 -0.02 -0.01
R2 0.00 0.01 0.02 0.02 0.03 0.02

Panel C: 1
H

∑H
h=1(rm,t+h − rf,t+h) = α + β1V RPt + εt+H

Horizon 1M 2M 3M 6M 9M 12M
Model

β1 1.49 1.33 1.19 0.89 0.64 0.55
R2 0.03 0.05 0.06 0.07 0.06 0.06

Data
β1 0.47 0.70 0.56 0.36 0.20 0.14
β1 (0.76) (1.26) (0.86)
R2 0.01 0.07 0.07 0.05 0.02 0.01
R2 (0.02) (0.04) (0.06)

Note: the table reports R2 and slope coefficients from regressing cumulative excess market returns onto lagged log
price-dividend ratio and lagged variance risk premium and regressing consumption growth onto lagged log price-
dividend ratio, using data from simulating the three-factor model over 100,000 months. The time-t conditional variance
risk premium is calculated as: V RPt = V arQt [ln Pt+1/12] − V arPt [ln Pt+1/12]. Data regression results are also reported.
Data in Panels A and B are from Wachter (2013b). Data in Panel C are from Bollerslev et al. (2009b); numbers in
parentheses in Panel C are from Drechsler and Yaron (2011b). In Panel C’s regressions, all numbers follow Drechsler
and Yaron (2011b)’s data measures: returns are annualized in percentage, and variance risk premiums are monthly in
basis points.
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Figure B.3: Black-76 Implied Volatility Curves for VIX Options in the Three-Factor Model.
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Note: the figure plots (annualized) implied volatility curves for VIX options in the three-factor VIX model at steady
state. The horizontal axis denotes the absolute value of the strike. Implied volatilities are computed for VIX options
with four maturities: 1, 2, 3, and 6 month.

in Figures B.3 and B.4 confirm this point. Considering all these aspects, we think the

three-factor model has better explanatory power for low-frequency and high-frequency data

overall.11 In contrast, our benchmark model provides the most parsimonious framework

to explain all the high-frequency VIX derivatives data. Finally, we emphasize that all the

various model extensions considered in Appendix D fall within the description of our general

model.
11We thank an anonymous referee for suggesting the three-factor model specification.
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Figure B.4: Black-76 Implied Volatility Curves for VIX Options in the Three-Factor Model:
Conditional Analysis.
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Note: the figure plots (annualized) implied volatility curves for VIX options in three-factor VIX model, conditional on
high and low initial VIX. In the upper case, we set all state variables very high: σ2

t = 10σ2
ss θt = 10θss, and λt = 10λss,

implying a very high VIX, 54.9. In the lower case, we set all state variables at minimum values: σ2
t = θt = λt = 0,

implying a small value of VIX, 11.4.
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B.4.5 Precise Definition of VIX

As shown in Martin (2011) and Schneider and Trojani (2019b), the precise definition of

VIX-squared implied by its option-replicating portfolio is given by

V IX2
t = −2EQ

t

 ln Pt+1/12

EQ
t

[
Pt+1/12

]
 (B.140)

= −2EQ
t

 ln Pt+1/12

EQ
t

[
Pt+1/12

] −

 Pt+1/12

EQ
t

[
Pt+1/12

] − 1
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where the second line follows from subtracting a zero-value term, the third an identity,

and the fourth a Taylor expansion of the exponential function around zero. Hence, VIX-

squared involves the second as well as all higher-order risk-neutral cumulants for log market

return. The expression we use in the body text (equation (2.32)) actually only picks up the

second-order cumulant term.

Within our exponential affine framework, equation (B.140) can be computed under the help

of the risk-neutral cumulant generating function for log SPX (first term) and the undiscounted

characteristic function (second term). We find that V IXt =
√

0.0159 + 12.504σ2
t + 0.0207λt

under the original definition, and V IXt =
√

0.0154 + 12.299σ2
t + 0.0185λt under the precise

definition. The precise definition leads to three differences. First, VIX is smaller, because the

possibility of volatility up-jumps, through the "volatility feedback effect," implies log market

return is negatively skewed, i.e., a negative third-order cumulant. Second, the loading on λt

decreases the most, as conditional skewness is governed mainly by the jump arrival intensity

λt. Third, the changes in moments of VIX and VIX option prices are negligibly small, as

shown in Tables B.8 and B.9. That the third and higher-order cumulant terms are much
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Table B.8: Precise Definition of VIX: I.

Precise VIX Original VIX U.S. Data Data Source
E[V IXt] 19.04 19.41 19.28 CBOE
σ(V IXt) 7.53 7.51 7.42 CBOE
AC1(V IXt) 0.80 0.80 0.84 CBOE

E[imp_volt] 71.81 71.84 68.80 CBOE
σ(imp_volt) 13.43 12.64 14.30 CBOE
AC1(imp_volt) 0.50 0.49 0.53 CBOE

corr(V IXt, imp_volt) 0.34 0.32 0.48 CBOE

E[rCV IX(τ=1/12)] -0.25 -0.24 -0.48 CBOE
E[rCV IX(τ=6/12)] -0.54 -0.53 -0.59 CBOE
E[rPV IX(τ=1/12)] 0.06 0.06 0.21 CBOE
E[rPV IX(τ=6/12)] 0.16 0.16 -0.02 CBOE

Note: the table reports a list of moments of VIX and VIX options in the benchmark model and their counterparts in
the U.S. data. Column "Precise VIX" contains moments with VIX calculated using the precise definition given in
equation (B.140). Column "Original VIX" contains moments with VIX calculated using the original definition given
in equation (2.32). imp_volt denotes Black-76 implied volatility for one-month ATM VIX option. rC

V IX (τ=1/12)

(rP
V IX (τ=1/12)) denotes net holding-period return on one-month ATM VIX call (put) option, and so on.

smaller than the second-order term is not surprising since our model abstracts from jumps in

consumption which can make log market return heavily negatively skewed (Wachter (2013b)).

B.4.6 Schneider and Trojani (2019)’s NCC

Schneider and Trojani (2019a) show that physical conditional moments of market returns can

be bounded below if certain NCC (negative covariance condition) is satisfied. Specifically,

their Proposition 3 shows that the inequality

EP
t [Rn

T ] ≥ EQ
t [Rp+n

T ]
EQ
t [Rp

T ]
(B.144)

holds if the following NCC(p, n) is satisfied for p ∈ [0, 1] and p+ n > 1:

Covt[MTR
p
T , R

n
T ] ≤ 0, (B.145)
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Table B.9: Precise Definition of VIX: II.

Maturity (months)
Strike 1 2 3 6

12 0.66 0.59 0.56 0.55
14 0.63 0.54 0.51 0.47
16 0.72 0.63 0.59 0.51
18 0.81 0.72 0.67 0.58
20 0.91 0.80 0.74 0.63
22 1.00 0.87 0.79 0.67
24 1.08 0.92 0.83 0.69
26 1.14 0.96 0.87 0.71
28 1.20 0.99 0.89 0.72
30 1.24 1.02 0.91 0.73
32 1.27 1.04 0.92 0.74
34 1.30 1.05 0.93 0.74
36 1.33 1.06 0.93 0.74
38 1.35 1.07 0.93 0.74
40 1.36 1.07 0.93 0.73

Note: the table reports the average (annualized) Black-76 implied volatilities for VIX options by maturity and strike
in the benchmark model, with VIX calculated using the precise definition given in equation (B.140). Comparison with
Table 2.1 right panel in the body text shows that the difference in the entire implied volatility surface is quantitatively
very small.

where RT is gross market return over [t, T ], and MT corresponding pricing kernel. Moreover,

for each n, the lower bound increases with p such that the tightest lower bound always obtains

when p = 1. In particular, for n = 1 and p = 1, the NCC reduces to Martin (2017)’s NCC,

and the inequality reduces to a lower bound for conditional equity premium:

EP
t [RT ] −Rf,t ≥ V arQt [RT ]

Rf,t

. (B.146)

We derive the parameter space (γ, ϕ) such that an instantaneous (T = t+ dt) version of

Schneider and Trojani (2019a)’s NCC for all n ≥ 1 and p = 1 is satisfied in any state of our

model, fixing all the other parameters at their calibrated values. We do so because, as we
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analyze shortly, γ and ϕ are two key parameters that affect the NCC. We want

Covt
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dπt
πt−

+ 1
)(

dPt +Dt−dt
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)
,
(
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+ 1
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⇔ Covt
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⇔
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+ 1
]
λt ≤ 0,

(B.152)

where the second line obtains because: first, we can discard the term Dt−/Pt−dt (which

eventually surely generates higher-order terms than dt); second, we can then discard all

the second and higher-order terms of dPt−/Pt− in the binomial expansion whose values are

negligible compared with the first-order term when dt is small. This means for short horizons

NCCs are essentially the same for all n ≥ 1, p = 1. The third and fourth lines follow from

equations (B.70), (B.89) and (2.33), the fifth from some algebra and removing higher-order

terms than dt, and the sixth and seventh from some algebra, removing higher-order terms

than dt, and equations (B.71) and (B.88). In order for the last inequality to hold regardless

of σ2
t and λt, both premultiplying terms have to be non-positive. This leads to the parameter

space shown in Figure B.5.

We find Schneider and Trojani (2019a)’s NCC holds as long as γ exceeds ϕ by a small

margin. This is of course true under our current calibration (γ = 14, ϕ = 2.7). Intuitively,

NCC is a condition that requires the product of the pricing kernel and market return, MTRT ,
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Figure B.5: Parameter Space that Satisfies Schneider and Trojani (2019)’s NCC.
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Note: the figure plots the parameter space (γ, ϕ) such that Schneider and Trojani (2019)’s NCC (n ≥ 1, p = 1) holds
and does not hold in the model. All the other parameters are fixed at values in the baseline calibration.

and market return, RT , being negatively correlated. In the model, state shocks drive the

movements in MT and RT . On the one hand, increasing γ has two effects: first, it increases

(absolute) market prices of risks b2 and b3, the pricing kernel’s exposure to state shocks;

second, it increases market index return’s (absolute) exposure to state shocks, |g∗
1| and |g∗

2|.

On the other, increasing ϕ only increases market index return’s exposure to state shocks,

|g∗
1| and |g∗

2|, but does not affect the pricing kernel. Thus, when ϕ is high, the correlation

tends to be dominated by the movement in RT and tends to be positive. When γ is high, the

correlation tends to be shaped by the negative correlation between MT and RT and tends to

be negative. Example 4a of Martin (2017) derives the NCC in a dividend-based (implicitly

ϕ = 1) equilibrium asset pricing model with Epstein-Zin recursive preferences with ψ ≥ 1:

γ ≥ 1. So our NCC in an otherwise identical but more general consumption-based model,

γ > ϕ, is consistent with Martin (2017)’s result. Martin (2017) and Schneider and Trojani

(2019a) suggest that in structural models the NCC is sensitive to preference parameters. We

show that, in addition, the stock market leverage parameter is also important.
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