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Abstract 

Strain affects the properties of crystalline material by changing the atomic symmetry. 

Controlling the strain in semiconductors helps to tune properties of material and design new 

material. For instance, strained semiconductor heterostructures have improved the efficiency of 

traditional solar cells remarkably. Another example of strain application is in electronic devices. 

Strained heterostructure nanowires provide a better control on electronic properties of gates used 

in transistors. Gate-all-around nanowires are promising candidates to power microprocessors in 

future. Strain is also used to make quantum dot structures from semiconductors. These quantum 

dots are used in quantum computing, diode lasers and sensors. 

Once the stored strain in a structure reaches a critical limit, it relaxes by triggering different 

phenomena in the structure. For instance, strain causes morphology change, plastic deformation, 

phase separation and intermixing, fracture, buckling, bulging and peeling. In order to use these 

strained structures for design purposes, it is critical to understand these different relaxation 

phenomena and be able to control them.  

Modeling provides a powerful framework to understand different relaxation mechanisms and 

provide guidance to control these strain induced phenomena. In this thesis, I have developed a 

continuum based model called “phase field” to study morphology change, plastic deformation 

and phase separation in multi-component semiconductors during growth and annealing processes. 

The advantage of phase field approach compared to some other modeling techniques is that it 
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includes the effects of both thermodynamics and kinetics. Also, I have developed a continuum 

based elasto-plasticity model to study the effects of plastic relaxation in semiconductor 

nanowires. This model can particularly be useful for piezoelectric and surface stability analysis of 

nanowires.   
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 Introduction 

Motivation 

Semiconductors can be divided in two categories, elemental and compound. Silicon (Si) as an 

elemental semiconductor is the dominant material in chip fabrication while compound 

semiconductors are widely used in lasers and high efficiency electronic devices. Compound 

semiconductors have also shown better efficiencies in solar cells [1,2]. Despite the advantages 

offered by compound semiconductors, high material cost compared to elemental semiconductors 

has prevented them to be commonly used in industry in areas that more economic solutions such 

as silicon are available.    

Electronic, optic, and thermodynamic properties of semiconductors are affected by strain [3-

6]. One way to implement strain to semiconductors is by directly applying external force such as 

bending the structure. The advantage of this approach is the possibility to control and tune the 

applied strain and stress fields externally but there is a drawback associated with this approach. 

External application of stress and strain becomes increasingly more difficult by reducing the size 

due to physical limitations. For instance, direct application and control of stress and strains in 

nanoscale structures it is much more difficult compared to macroscale structures.  

In single crystalline semiconductor nanostructures, strain can be applied during growth 

through a mechanism that is called epitaxy. Epitaxy is the growth on a crystalline substrate of a 

crystalline substance that mimics the orientation of the substrate (Merriam Webster). If the film 

and substrate are made of the same material or have the same lattice parameter, this process is 

called homoepitaxy and in this case no strain is generated between the film and the substrate. If 

the film and substrate are made of different materials and have different lattice parameters, the 

growth process is called heteroepitaxy and the strain that is introduced in the film is called a 

misfit strain. Structures that made by heteroepitaxy are called heterostructures. Fig. 1.1 shows a 

schematic view of epitaxial growth. The strain that is produced in heterostructures can be 
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controlled by choosing the lattice parameter of the substrate. Silicon is usually used as substrate 

in heterostructures due to low cost and good electronic properties. However, Si is not a good 

candidate for optical devices since it does not emit light under normal conditions. Hence, 

compound semiconductors such as GaAs are used for optical applications. Since elemental 

semiconductors, such as silicon and germanium (Ge), and compound III-V semiconductors such 

as gallium-arsenide (GaAs) and indium-arsenide (InAs) offer only a few lattice constants, a 

limited number of options are available to tune the strain in these heterostructures. Expanding the 

palate of material by making new binary (SiGe), ternary (InGaAs), quaternary (GaAsBiP) and 

more complex alloys will provide more flexibility to tune the strain in heterostructures.  

 

Fig. 1.1 a) Homoepitaxy: film and substrate have the same lattice parameter at equilibrium. No 

strain is stored in the film. b) Heteroepitaxy: film and substrate have different lattice parameters 

at equilibrium and hence the structure is strained. 
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There are three main epitaxial growth modes for semiconductor heterostructures: Island 

growth (Volmer–Weber) [7], layer-by-layer growth (Frank–Van Der Merwe) [8] and mixed 

growth (Stranski–Krastanov) [9]. These growth modes are determined based on the surface and 

interfacial energies between film and the surface, strain energy inside the film due to difference 

between lattice parameter of the film and the substrate (see Fig. 1.2a) and also diffusivity of 

atoms at the surface. As plotted in Fig. 1.2, wetting angle θ is related to the surface (γSA and γSB) 

and interfacial (γAB) energies through Young’s equation [10] : 𝛾𝑆𝐴 = 𝛾𝐴𝐵 + 𝛾𝑆𝐵 cos𝜃 . The 

following criteria determines which growth mode is present.  

I. The Volmer–Weber growth mode (Fig. 1.2b) happens once at least one of the two 

following conditions is met:  

a) γSA ≥ γAB + γSB 

b) Slow surface diffusion compared to deposition flux (kinetically limited). 

II. The Frank–Van Der Merwe growth mode (Fig. 1.2c) happens when both of the following 

conditions are met:  

a) γSA < γAB + γSB 

b) Fast surface diffusion compared to deposition flux (close to equilibrium). 

III. The Stranski–Krastanov growth mode (Fig. 1.2d) starts with a layer-by-layer growth and 

so the conditions mentioned for Frank–Van Der Merwe growth should hold. After growth 

of a few layers, strain leads to instability and causes formation of islands in this growth 

mode. I will discuss the effect of strain energy and its competition with surface energy to 

form surface undulations in chapter 2.  
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Fig. 1.2 a) Lattice parameter for three different material: A, B and C. Lattice parameter for A and 

B are equal, but lattice parameter of C is larger than lattice parameter of A and B. b) Volmer-

Weber or island growth mode. c) Frank Van der Merwe or layer-by-layer growth mode. d) 
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Stranski-Krastanov or mixed epitaxial growth mode. Material C is under strain due to lattice 

mismatch with the substrate. 

 

One of the most important impacts of strain on semiconductors is on the electronic band 

structure and bandgap of these structures [11-13]. By changing the crystalline symmetry of 

semiconductors, appropriate strain can be used to tune the bandgap and band structure of 

semiconductor structures. For instance, it has previously been shown that strain can change the 

band structure of Ge to change the indirect bandgap to direct one [14]. Also in case of III-V 

semiconductors for instance InGaAs alloy, strain is used to design devices with a specific 

bandgaps.  

Despite many advantages that are provided by strain engineering in semiconductor 

heterostructures to modify material properties, there are some strain-induced phenomena that can 

also happen because of the strain. The driving force for these phenomena is relaxation of the 

strain energy stored in the system due to misfit strain. Fig. 1.3a shows structures with different 

lattice parameters where aA<aB<aC<aD. For thin films when thickness of the film is below a 

critical limit, growth is pseudomorphic and strain is stored in the film and substrate as shown in 

Fig. 1.1b. Once the thickness of the film passes a critical limit (elastic critical thickness), it has 

been observed in many heterostructures that the surface morphology of the film changes to relax 

the strain energy as shown in Fig. 1.3b, which leads to formation of islands on the surface. Elastic 

relaxation of thin films is a technique to make quantum dots and since individual dots are not 

deposited in this approach, this mechanism is called self-assembly [15-18]. However, elastic 

relaxation on the surface is not desirable for some device applications where the goal is to have a 

flat film such as quantum wells [19,20]. Formation of defects is another mechanism to reduce the 

strain energy in the system [21-23]. In heterostructures, the interface between the substrate and 

the film is a common place where misfit dislocations are initiated (see Fig. 1.3c) since strain 
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energy density in the film has its maximum value at the interface. These defects usually form 

when the thickness of the film passes a critical limit (plastic critical limit) [24]. Defects in general 

are not desirable since they deteriorate the material properties of the semiconductors. Another 

way that strain energy is released in heteroepitaxial systems is by phase separation (see Fig. 1.3d). 

Phase separation has been observed in compound thin film alloys during growth and annealing 

processes in forms of compositional modulations and clusters [25-27]. Fracture is another 

mechanism to relax the strain energy in the epitaxial structures as shown in Fig. 1.3d that happens 

when substrate is applying a tensile strain to the film. Crack formation in general is not desirable 

since it can deteriorate some of the mechanical and electronic properties of the film [20,28,29]. In 

addition to the above phenomena, buckling, peeling and bulging can relax strain in 

heterostructures. These strain relaxation mechanisms have been observed in heteroepitaxial 

semiconductors. Since these phenomena substantially affect mechanical, optical and electronic 

properties of semiconductor devices, it is crucial to understand and control them [20]. 
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Fig. 1.3 a) Lattice parameter for four different material: A, B, C and D are shown where 

aA<aB<aC<aD. Different Relaxation mechanisms for heteroepitaxial thin films: b) Elastic 

relaxation of the film by morphological changes at the surface. c) Plastic relaxation of thin film 

due to misfit strain. This type of deformation usually starts at the interface. d) Surface induced 

phase separation. e) Crack formation in the film under tensile strain. 

 

There are two main approaches to the growth of semiconductor heterostructures: physical 

vapor deposition (PVD) and chemical vapor deposition (CVD). In PVD, vapors of constituent 

materials that are usually made inside the chamber (from solid sources) are deposited on the 

substrate through a condensation process. No chemical reaction occurs in this process. Molecular 

beam epitaxy (MBE) is one of the most well-known PVD growth techniques. Since in MBE films 



8 

 

 

are grown at very low pressure, the concentration of impurities in the chamber is very low and 

hence high quality films can be grown. However, PVD is usually expensive and time consuming 

and hence is not usually used in industry. In CVD, reactant gases are introduced into the chamber. 

By setting the appropriate environmental condition (temperature, pressure, etc.), chemical 

reactions happen on the wafer substrate leading to the growth of thin film. Metal organic vapor 

phase epitaxy (MOVPE) is one of the dominant CVD growth techniques especially for III-V 

alloys. Although the films that are grown by CVD may have some contamination due to chemical 

reactions in the chamber, but the faster and more economic growth process has turned them into 

the dominant growth process in the industry.  

Scope of the thesis 

This thesis focuses on development of theoretical and analytical models to investigate and 

control the strain-induced phenomena in semiconductor heterostructures during growth and 

annealing processes. There are different physical phenomena that affect the growth and annealing 

of thin films, which can be divided in two general categories: thermodynamic and kinetic. Bulk 

free energy and interfacial energy between different components and phases in material system, 

and strain energies due to misfit strain and plastic deformations in the system are examples of 

thermodynamic phenomena. Bulk and surface diffusivities of different species in the material 

system, and the rate and the distribution of deposited material are kinetic terms that affect the 

growth and annealing of heterostructures. Our model captures the effects of both thermodynamics 

and kinetics. I will use this model to investigate and control growth and annealing processes of 

semiconductors.  

The first application of the model is to provide an understanding to control growth of thin 

films in patterned surfaces. This is important since aligned islands can be used as quantum dots in 

devices and ordering of quantum dots in devices is critical to the performance of the device. 

Previous experimental researches have studied the growth of thin films inside surface patterns 
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and have observed alignment of islands near the edge of trenches for some composition of the 

alloy. Given that these films are strained, formation of islands is usually the first strain relaxation 

mechanism while plastic deformation is another mechanism that usually happens afterwards 

during the growth. Since growth process usually happens away from equilibrium condition, 

kinetic effects such as deposition flux and overflow flux can also play an important role and 

hence need to be included. So the goal of this study is to investigate the effect of different 

parameters on formation of islands during growth of thin films inside surface patterns.   

Second application of the model includes the annealing of immiscible alloy semiconductors 

at high temperatures. It has been observed experimentally that surface-induced phase separation 

happens in compound semiconductor thin films (with miscibility gap in their phase diagram), 

however I want to study phase separation in nanowires. Surface-induced phase separation is more 

important in nanowires compared to thin films due to larger surface to volume ratio in nanowires. 

In addition, I would like to find a method to control this phase separation. One of the methods to 

control the phase separation is by applying strain to the nanowire and hence a shell has been 

included around nanowire core.   

Third part of the thesis provides an analytical model to find stress and strain fields in 

plastically deformed core-shell heterostructures. Although core-shell nanowires have less strain 

energy due to heteroepitaxy compared to the thin films with similar dimensions, but they also 

deform plastically when misfit strain between core and shell is large enough. This plastic 

deformation usually happens at the interface between core and the shell. Plastic deformation 

affects the strain and stress field and hence changes the piezoelectric and optoelectronic 

properties of these structures.  

Organization of this document 

Chapter 1 provides introduction and motivation to the study. Chapter 2 contains relevant 

background information about semiconductors and their applications. I talk about semiconductors 
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and their application. Then I discuss the effect of strain on changing electronic properties of 

semiconductors. I introduce heteroepitaxy as one of the mechanisms to grow single crystalline 

structures and also as a method to apply strain to semiconductors. Then I discuss some of the 

consequences of applying strain to semiconductor structures such as formation of defects, 

morphological roughness, phase separation and cracking. An overview of different experimental 

methods to grow epitaxial layers will be followed by a review on different simulation methods to 

study semiconductor heterostructures. Chapter 3 provides some details about phase field 

modeling and the numerical approach to solve the governing equations. I explain the general 

governing equations and boundary conditions used in the model. Then I discuss some methods 

that can be used to solve these governing equations. In chapter 4, I investigate the role of misfit 

strain, surface patterns and kinetics due to deposition on growth of heteroepitaxial III-V 

semiconductors thin films inside patterned substrates. This study enables us to understand the 

coupled effects of kinetics and thermodynamics during the growth in patterned substrates. Also, 

this study can provide us some guidance to better understand the self-assembly process of 

quantum dots. In chapter 5, I investigate the role of coating around nanowires to control phase 

separation of alloys during annealing. Looking at the phase diagram of many of III-V 

semiconductor material such as InGaAs, AlGaAs, and GaAsSb, one can find a miscibility gap 

indicating that under thermodynamic equilibrium these alloys tend to phase separate. Phase 

separation typically happens at high temperatures where atoms have enough mobility. Controlling 

the phase separation is important because it can deteriorate some of the electronic properties of 

the material such as photoluminescence intensity. Chapter 6 provides an analytical formulation 

for plastic deformation in core-shell nanowires. Plastic deformation at the interface of the 

substrate and the structure (thin film, nanowire, etc.) is one of the most important issues caused 

by heteroepitaxy. This plastic deformation changes the displacement, strain and stress field of the 

structure. These plastic deformations have been observed experimentally, however the analytical 
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study of these heteroepitaxial systems has been limited to the analysis of elastic regime till the 

onset of yield. In this chapter, I develop an analytical model that is able to predict not only the 

onset of plastic deformation, but also evolution of stress and strain fields beyond the yield regime. 

In chapter 7, I will conclude the work and will provide some suggestions for future studies for 

each of the projects.  
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 Background 

Semiconductors and their applications 

Semiconductors are considered as foundation of modern electronics. There are two types of 

semiconductor materials: elemental and compound. Elemental semiconductors such as Si and Ge 

are most commonly studied and used materials due to abundance, low price and easy processing. 

However, there are some drawbacks associated with elemental semiconductors such as having an 

indirect band gap, which prevents them from being used in optical applications. Compound 

semiconductor alloys are made from mixture of elements such as III-V, II-VI and IV-IV material 

in periodic table. Although compound semiconductors are expensive and difficult to process, but 

they provide some electronic and optoelectronic properties that are superior to properties of 

elemental semiconductors. Compound semiconductor materials are very interesting due to 

flexibility for tuning their band gap simply by changing the composition [1]. Specifically, III-V 

semiconductors are very interesting due superior electronic and optic properties compared to IV-

IV alloys. Therefore, many researchers have studied III-V semiconductors both experimentally 

and theoretically. One of the most popular III-V alloys is GaAs. Electron mobility of GaAs is six 

times higher than mobility of Si, which allows faster electronic operations. Unlike silicon, 

gallium arsenide has a direct band gap that makes it a good candidate for optoelectronic 

applications. Also, GaAs has a wider band gap compared to Si that enables GaAs to operate under 

higher temperatures with lower noise compared to Si. However, GaAs is expensive and 

challenging to process (e.g., it is brittle) and so it is only used when Si is not sufficient for the 

specific application. 

In this chapter, I first introduce electronic structure of semiconductors. Then I discuss 

different types of defects that are formed in semiconductor structures. Afterwards, I present some 

of the strain-related phenomena in heterostructures. Then I discuss some of the techniques that 

are used to grow semiconductor structures. Finally, I explain some of the modeling approaches 
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that have been used to investigate electronic structure, morphology and defect structures of 

semiconductors.  

Defects in semiconductors 

Defects in materials can be classified based on their dimensionality. There are zero 

dimensional (point defects such as vacancies and interstitials), one dimensional (line defects such 

as dislocations), two dimensional (plane defects such as grain boundaries and interfaces) and 

three dimensional (volume defects such as precipitates) defects.  

There are two main types of point defects: intrinsic and extrinsic. Intrinsic point defects are 

the ones that are only consist of native atoms of the material of interest while external defects are 

usually dopants that are incorporated into the system that I study. 

Extrinsic point defects are usually in the form of dopants that are atoms that replace one of 

the host atoms of the structure. For instance is GaAs structure, depending on the growth 

condition, sometimes these dopants are incorporated into the structure unintentionally. One type 

of impurities that has been observed in Hydride vapor phase epitaxy (HVPE) is Si. Si atoms 

would replace Ga and/or As lattice sites. Given that Si has four atoms in the valance band, it will 

cause a local negative or positive charge when it is substituted with Ga and As, accordingly. The 

Si defects are shown in Fig. 2.1 with green color. When Si sits on Ga site, it has an extra electron 

and hence creates an n-type material while sitting in Ga site will create an extra hole and 

subsequently a p-type material. Growth condition plays an important role in formation of this 

kind of defects. For instance in HVPE, researchers have found that high gas pressure of As 

precursor has an important effect on reduction of the Si impurities in the structure. 
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Fig. 2.1 Schematic representation of the incorporation of extrinsic point defect Si (green) for Ga 

(blue) and As (red) in GaAs. Elastic strain introduces by the impurity is not shown in this 

schematic picture. 

 

Intrinsic point defects are usually in the form of vacancies or antisites from the native atoms 

of the structure. The simplest form of intrinsic point defect is a vacancy. In compound systems 

such as GaAs, there are two types of vacancies: Ga vacancies (VGa) and As vacancy (VAs) as 

shown in Fig. 2.2. More complex form of vacancies can also exist in the structure where two or 

more vacancies are formed next each other. Another form of intrinsic point defect is called an 

anti-site. This is when a Ga atom occupies a site of an As atom or vice versa. These defects are 

labeled as GaAs or AsGa, respectively, and are shown in Fig. 2.3. For example in GaAs system, 

AsGa has direct correlation with one of the prominent defects in GaAs structure.  
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Fig. 2.2 Formation of vacancies in Ga (VGa) and As (VAs) sites. 

 

 

Fig. 2.3 Formation of GaAs and AsGa anti-sites in GaAs structure. 

 

Defects in semiconductors have important effects on electronic structure of these materials. 

They usually disrupt the crystalline structure and locally alter the bonds in the structure. These 

local defects usually cause formation of dangling bonds and associated strain field that leads to 

creation of states in their band gap. These states are usually close to the center of the bandgap and 

hence are called “deep states” or “deep traps”. The position of trap states in the bandgap 
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distinguishes them from states that are created by doping since they are close to either valance or 

conduction band of the structures. Deep traps act as recombination sites for charge carriers. These 

recombination sites usually reduce the efficiency of the device by removing charge carriers and 

hence are not favorable. In addition, deep traps can create noise in the current and negatively 

influence the performance of the device. Since deep traps reduce the lifetime of charge carriers 

and long lifetime of charge carriers is favorable, one needs to minimize the concentration of deep 

traps that leads to increase of device efficiency. 

In addition to point defects, there are one, two and three-dimensional defects that form in 

semiconductor structures. For simplicity, I call them extended defects. Dislocation is one type of 

the extended defects. One of the main causes of formation of dislocations is the heteroepitaxy as I 

briefly discussed in the first chapter. Heteroepitaxy has many uses such as synthesis of new 

devices and fabrication of economic semiconductor devices. For instance, heteroepitaxy has 

enabled researchers to fabricate quantum cascade laser devices. Also, it has provided the 

capability to choose reasonable substrates to replace the more expensive one to reduce the cost of 

devices. However, growth of heterostructures can be challenging depending on the strain applied 

to the film due to the difference between lattice parameter of the film and substrate. Below one 

can see how the bandgap of most common semiconductors changes as a function of lattice 

parameter. As it is shown in Fig. 2.4, there is a vast area of materials available, but only a small 

portion of the alloys are accessible experimentally. Due to limited number of commercially 

available substrates that are shown by green dashed lines in Fig. 2.4, researchers need to grow 

heterostructures to explore the ternary and quaternary alloys.  
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Fig. 2.4 Plot of bandgap as a function of the lattice parameter of common semiconductors (red 

dots). Solid black lines between each two dot show the alloy that can have specific bandgap based 

on the lattice parameter of the alloy. The areas between three or more dot represent compound 

alloys of more than three materials. The green dashed line represent the lattice parameter of 

commercially available substrates. Courtesy of Prof. Thomas Kuech from University of 

Wisconsin – Madison. 

 

Heteroepitaxy  

As mentioned in chapter one, heteroepitaxy means growth of film on substrate made from a 

different material that usually has a different lattice parameter. Due to this difference in lattice 

parameters, there is a strain stored in the film called misfit strain (Fig. 2.5a) which is defined as: 

𝜺0 =
𝑎𝑓𝑖𝑙𝑚 −𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
                   2-1 
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Heteroepitaxial growth of semiconductors usually starts by a pseudomorphic growth. As 

shown in Fig. 2.5b, film is coherently strained to fit its lattice parameter to that of the substrate 

and film is also strained out of the plane due to Poisson effect. By increasing film thickness, the 

strain energy in film increases until it reaches a critical value after which dislocations form 

(Fig. 2.5c). Formation of dislocation releases the strain energy stored in the system. Misfit strain 

is usually relaxed by edge dislocations that can be described as an extra half plane of atoms in the 

substrate or the film depending on their lattice parameters. The extra half plane created by edge 

dislocation is perpendicular to the Burger’s vector. Another type of dislocation is screw 

dislocation where the extra half plane of atoms is parallel to Burger’s vector.  

 

Fig. 2.5 a) Heteroepitaxial growth: film and substrate have different lattice parameters afilm and 

asubstrate. b) Coherent growth of thin film on substrate (pseudomorphic growth). c) Incoherent 

growth of thin film on substrate due to formation of misfit dislocations at the film/substrate 

interface. 

 

Nucleation of dislocation depends on the crystalline structure of the material. Once they are 

formed, they usually glide on the close packed planes. For III-V semiconductors such as GaAs 

with zinc-blend structure, family of {111} planes is the closed packed planes. In III-V structures, 
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60° dislocations with line direction along <110> are usually formed. The Burger’s vector for 

these dislocations is along a/2<101> and is inclined 60° from the hetero-interface. Hence, 

Burger’s vector has in plane contributions along a/4<110> due to misfit dislocations and out of 

plane contributions along a/2<001>. 

Similar to point defects, dislocations also disturb the periodicity of the crystal structure and 

hence cause formation of deep states in the bandgap. These deep states deteriorate the efficiency 

of devices and so are not favorable. Threading dislocations in particular have extremely negative 

effects on performance of semiconductors since they can potentially pass through the entire 

structure. 

Strain-related phenomenon in growth of semiconductor heterostructures 

In previous section, I introduced the misfit strain in heterostructures. This misfit strain is 

stored in the system as strain energy and once it reaches to a critical level, it relaxes. There are 

several mechanisms for energy relaxation in heterostructures. I named some on them in the first 

chapter. Here I explain these mechanisms in more details. One of the methods to partially relax 

the strain energy is by formation of morphological roughness (undulations) to the surface of the 

thin film. Researchers have investigated the stability of a flat surface under elastic strain and have 

found that flat surface is unstable with respect to the growth of perturbations with wavelengths of 

greater than a critical wavelength. It is found that for strained heterostructures in form of thin 

films, strain energy and surface energy are the important terms determining the surface 

undulations [2]. Here I consider a simple energetic analysis to show the nature of instability. Let’s 

consider a simple square shaped wave surface morphology as shown in Fig. 2.6. For this analysis, 

I consider the effect of surface energy and strain energy. The change in energy between cases 

shown in Fig. 2.6 b-c can be shown as: 
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Δ𝑊 = −
𝜎2

2𝐸

𝑐𝜆

4
+ 2𝑐𝛾                2-2 

where ΔW is the change in energy, σ is the stress in the film, γ is the surface energy, E is the 

Young’s modulus, c/2 is the amplitude of the undulation and λ is the wavelength. For this simple 

analysis, I have assumed the strain energy to be zero inside the square shaped protrusions. By 

making Eq. (2-2) equal to zero I found 𝜆 =
16𝛾𝐸

𝜎2
. So for wavelengths larger than this value the 

total energy is going to reduce by formation of undulations and hence it is thermodynamically 

favorable. Although this is a rough analysis, but it gives an idea why the surfaces of stressed 

structures are unstable. A more rigorous analysis of stressed surface can be found in research 

conducted by Srolovitz [2].  

 

Fig. 2.6 a) Relaxed heterostructure. b) Strained heterostructure. c) Film with a square wave 

surface profile. The surface profile has wavelength of 𝜆 and magnitude of c. 

 

Although these surface roughening may not be favorable for the growth of some devices that 

need flat surfaces, but it can be useful for the growth of self-assembled quantum dots. Formation 

of quantum dots (QDs) has been reported in number of experimental and theoretical papers. 

Notzel et al. [3] reported self-organization of QDs of strained InGaAs layers growing on GaAs 

(311)B using MOVPE technique. After growing AlGaAs buffer layer, InGaAs was deposited. 

Interestingly, the morphology of the AlGaAs buffer layer was changed due to a lateral mass 

transport and AlGaAs islands were formed. Deposited InGaAs layer formed clusters and buried 
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beneath the AlGaAs QDs. It is shown that by controlling the In content and hence the strain, one 

can control the size and distance between QDs [4]. Vertical control of QDs along with the lateral 

control provides us with a mechanism to grow three-dimensional arrays. Vertical alignment of 

dots in growth direction during subsequent deposition of layers and spacers has been observed by 

different groups for InGaAs/GaAs and Si/SiGe systems [5]. Average size and lateral separation of 

the islands depends on the strain field in the heterostructure where an InAs island locally changes 

the lattice parameter of GaAs spacer and hence the next layer of InAs prefers to grow on an area 

where misfit strain is lower. However this strain field is local and it has been found that the 

pairing of islands has an inverse relationship with the thickness of spacer layer due to decay of 

strain field. In addition to vertical ordering, lateral ordering has also been observed for different 

material systems. For instance, Grundmann et al. [6] observed high degree of lateral ordering for 

vertically aligned QDs where the thickness of spacer is small enough and initial dots are laterally 

close to each other. Stranski-Krastanow growth mode has been used for growth of QDs where 

actual control over the position of the islands is needed [7]. In addition to experimental studies 

about the self-assembly of QDs, theoretical investigations have also been performed. Wise et al. 

[8] modeled the effect of substrate strain patterning on self-assembly of QDs. They showed that 

strain patterned substrates by embedded inclusions resulted in formation of ordered self-

organized QD arrays. However these predictions were only valid for the case where surface 

energies are isotropic. Cubic surface energy would strongly influence the QD self-assembly and 

prevent the formation of ordered arrays of pyramids.  

Once the film thickness passes a critical value called “hc – critical thickness”, strain energy 

stored in the system reaches a threshold where formation of dislocations becomes favorable 

energetically. Because of the importance of the critical thickness, many researchers have 
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investigated it both experimentally and theoretically. Matthews and Blakeslee [9] have derived 

estimations for hc assuming equilibrium conditions:  

ℎ𝑐 = −
𝑏(1−𝜈 cos2𝛽)

8𝜋𝜀0(1+𝜈) cos𝛽
ln (

ℎ𝑐

𝑏
)                2-3 

where b is the Burgers vector, ν is Poisson’s ratio, β is the angle between dislocation line and its 

Burgers vector, and ɛ0 is the misfit strain between film and substrate. This theory does not 

consider the initial nucleation energy of dislocations. This simplification in theory leads to some 

discrepancies between the predictions and experimental results as shown in Fig. 2.7. However 

this discrepancy has only been observed for epitaxial films with very high quality while the 

experimental results and theoretical predictions are in good agreement for lower quality of films 

where some dislocations have already been nucleated in the system. 

 

Fig. 2.7 Critical thickness for SiGe/Si. Curves 1 and 2 represent critical thicknesses for 90° and 

60° dislocations and curve 3 represents experimental observations. The figure is taken from [10]. 
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Ozkan et al. [11] investigated strain relaxation and defect formation mechanisms during 

surface roughening for SiGe/Si system during annealing. They found that valley regions in 

undulated surfaces act as dislocation generation sites due to the stress concentration. Fitzgerald et 

al. [12] reported the effect of elastic and plastic strain in surface perturbation of heterostructures. 

They found that strain levels above 10-4 perturb thin film surface to relax the strain energy 

elastically. Wavelength for these relaxations is short. Besides, they found that misfit dislocations 

also affect the morphology of thin films, however they cause formation of long wavelength 

undulations. Hence, one can find the source of undulation based on the wavelength of the surface 

perturbation. 

Phase separation or compositional modulations and intermixing are two phenomena that 

affect the growth and annealing of semiconductors. Phase separation usually takes place in 

semiconductor alloys that have miscibility gap in their phase diagram, which is the case for many 

of III-V semiconductors. For instance, Luna et al. [13] found spontaneous formation of a lateral 

composition modulation (LCM) in GaAsBi epilayers grown by Molecular Beam Epitaxy (MBE). 

Hsieh et al. [14] observed LCM in AlGaAs film upon annealing and found that the phase 

separation was more pronounced near the free surface. The authors proposed a stress-driven 

vacancy-assisted mechanism to be responsible for this phenomenon. Tang et al. [15] used linear 

stability theory to study the role of free surfaces in spontaneous phase separation of alloys in thin 

films and found that stress relaxation begins at the surface. Markowitz et al. [16] studied AlGaAs 

nano-whiskers grown by solution-liquid-solid mechanism. Their results show a kinetically driven 

phase separation during the growth despite the fact that the thermodynamic phase diagram 

suggests a homogenous growth at the temperature of interest. Therefore, the authors concluded 

that phase separation is kinetically driven and hence the compositional modulation is metastable. 

Ueda et al. [17] reported epitaxial growth of lattice-matched InGaAsP and InGaP on GaAs 
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substrate. They observed modulated structures with compositional variations along <100> and 

<010> directions. In addition to phase separation, intermixing can also play a role in reducing the 

free energy of the system and hence affect the growth and annealing of heterostructures. For 

instance, Tu and Tersoff [18] developed a sharp-interface continuum based model to study 

formation of self-assembled QDs alloys from SiGe. Their model shows morphological changes 

and intermixing as two mechanisms to reduce the total free energy of the structure and the model 

also shows a strong coupling between morphological changes and intermixing. Phase separation 

has been initially initiated at the surface of the alloy due to the different surface energies of Si and 

Ge. 

If the film is under tensile strain, the relaxation mechanism is usually by formation of cracks. 

Similarly to a thin film under compressive strain, there is a critical thickness for a film under 

tensile strain below which film grows pseudomorphically. A number of studies have been 

reported regarding criteria for fracture during film growth. For instance, Matthews [19] has 

shown a critical thickness for the propagation of the cracks that is shown in Fig. 2.8. In this 

figure, line A represents critical thickness for crack propagation. For instance, line A shows that 

for 1% misfit strain (y axis), crack propagates for films with thicknesses equal or larger than 100 

nm (x axis). Line B corresponds to the fracture criterion that usually happens at high misfit strains 

larger than 5%. Line C represents the equilibrium critical thickness below which it is 

energetically favorable for the film to be coherently strained to the substrate. Dashed line 

represents plastic relaxation critical thickness below which there is no plastic deformation. At the 

strain of about 1%, there is a crossover between crack formation and plastic deformation lines. 

For strains reasonably higher than ~1%, very thin films are coherently strained to the substrate. 

By increasing the film thickness (crossing line C), film becomes metastable but no relaxation 

mechanism is activated till the film thickness reaches line A where cracks start to propagate. By 
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further increase in the film thickness, no plastic deformation happens since cracks do not allow 

dislocations to pass. For strains lower than ~1%, the order of relaxation mechanisms is reversed. 

After a film crosses line C, films become metastable but still coherently attached to the substrate. 

By increasing the film thickness (crossing dashed line), plastic deformation mechanism is 

activated. Further increase in the film thickness activates cracking at the point where the film 

thickness crosses line A.  

 

Fig. 2.8 Graphical summary of the predictions for films under tensile strain [19,20]. The graph 

shows misfit strain as a function of film thickness. Above line A, crack propagates. Above line B, 

film fractures spontaneously. Below line C, it is energetically favorable for the film to elastically 

relax. Dashed line shows relaxation critical thickness. 

 

In this sectioned, I focused on strain relaxation mechanisms that do not involve buckling and 

delamination. However in general, strain relaxation may involve such in plane and out of plane 

buckling and also delamination mechanisms such as peeling and bulging. Freund and Suresh [21] 

have provided more information about different relaxation mechanisms in more detail. 
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Film deposition techniques 

Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) are the most 

common approaches to grow thin films and heterostructures for depositing of material atom-by-

atom from a vapor phase on a substrate. Vapor deposition is a mechanism through which the 

material is transferred from a vapor environment into a solid surface and hence the mass of the 

substrate increases. To be able to control the vapor composition, this deposition process is usually 

carried in a vacuum chamber. If the material deposited is produced by chemical reactions, the 

process is called CVD. If physical means are used to transfer vapor to a substrate as solid film, 

then the process is called PVD. There are a variety of methods developed both under PVD and 

CVD categories, each were trying to use some particular advantages for a specific system of 

material. In this section, I explain the growth mechanisms used both on PVD and CVD and also 

describe some of the specific techniques developed for each of them. 

Physical vapor deposition is a technique in which atoms are physically deposited from a solid 

or a molten source onto a substrate. PVD uses physical processes such as evaporation, 

sublimation, and sputtering to produce thin films. A schematic view of evaporative deposition is 

shown in Fig. 2.9. In this mechanism, thermal energy is provided to the source to evaporate the 

atoms. There are different methods to heat the sample. Resistance, induction and electron beam 

heating are among the approaches that are used. Once the atoms are evaporated from the source, 

they travel in the low-pressure vacuum and condense on the substrate. The deposition rate of the 

film on substrate is a function of multiple parameters such as the distance between source and the 

substrate, impingement angle, temperature of the substrate and pressure of the chamber.    
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Fig. 2.9 Schematic view of evaporative PVD growth. The chamber is usually under high vacuum. 

A physical process is used to produce vapor from solid source of material. Material vapor is then 

deposited on substrate. 

 

Molecular Beam Epitaxy (MBE) is one the methods based on evaporation technique in ultra-

high vacuum (10-10 torr). MBE can provide high quality films and hence is used in research; 

however, its low growth rate compared to other techniques has made its application to be limited 

in industry. After putting the substrate into the chamber, it is exposed to high temperature for a 

short period of time to remove the defects and contamination that may exist at the surface. This 

process is called flashing and the high temperature is provided to the sample by conduction. 

Subsequently the sample is cooled down to the range of 400-700°C, which is the temperature 

regime for growth. Once the substrate is in this temperature range, the source will be heated up to 
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the point where atoms evaporate and atomic beams are emitted. Atomic beams are received on 

the substrate surface and film grows through condensation process. 

The basic idea of chemical vapor deposition is to grow a non-volatile film on the substrate by 

chemical reactions between volatile reactants and suitable gas environment to facilitate this 

process as shown in Fig. 2.10. Similar to PVD, vapor supersaturation as well as substrate 

temperature affect the growth rate in CVD. Low gas supersaturation and high substrate 

temperature leads to epitaxial growth of thin film while high supersaturation of environment gas 

along with low growth temperature of the substrate result in growth of less coherent and possibly 

amorphous thin films.  

 

Fig. 2.10 Schematic view of CVD growth. The chamber is under vacuum. Reactant gases flow 

into the chamber and products leave the chamber after the reaction is done at the surface. The 

reaction at the surface produces the desired deposit. 

 

There are different types of the CVD method. Here I explain each of these different types 

briefly. Atmospheric-Pressure CVD (APCVD) is the simplest and fastest CVD growth mode. 

However, the films grown by APCVD are usually non-uniform in thickness due to the limitation 

of mass transport. Low-Pressure CVD (LPCVD) provides high quality and uniform films but the 
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films are usually grown at high temperatures, which is not always favorable. Plasma Enhanced 

CVD (PECVD) is the most common growth technique for research. The advantage of this growth 

mode is that plasma helps the molecules to break up and hence the growth can be done at lower 

temperature and pressure. This approach is used for growth of electronics on plastics. However 

PECVD has a chemical contamination risk. Metal-organic CVD (MOCVD), also called organo -

metallic vapor phase epitaxy (OMVPE) is the most common technique to grow epitaxial thin 

films. These epitaxial films have applications in solar cells, LEDs and quantum wells. 

Similar to PVD, CVD enables the growths of crystalline and amorphous semiconductors, 

metal alloys and compounds with different stoichiometries. Each of these techniques has some 

advantages over the other approach. PVD films are usually grown at lower temperature and 

pressure as compared to CVD films and hence grown films with this technique have less 

contamination. Also, the PVD growth process usually does not involve toxic or corrosive gases 

and therefore is less dangerous than CVD process. On the other hand CVD has some advantages 

over PVD. Growth rate at CVD is usually higher than PVD and so this approach is preferred in 

industry. CVD allows growth of materials that are hard to evaporate and hence cannot be grown 

by PVD. 

Simulation methods to study growth and annealing of semiconductor heterostructures 

Ab-initio techniques has been used to study different aspects of semiconductors during 

growth and annealing such as surface recombination of heterostructures, strain engineering 

bandgap energy, and effect of defects on band structures. Here are some examples of studies that 

have used ab-initio approach. For instance, Kratzer et al. [22] used density-functional theory 

(DFT) to study stable surface reconstructions of GaAs. Specifically, the authors studied the 

adsorption, diffusion and desorption of Ga atoms. The authors found that Ga atoms are resistant 

to re-evaporation and hence their mobility determines the homogeneity of the growing layer. In 

another study, Kratzer et al. [23] used DFT in conjunction with kinetic Monte Carlo to 
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understand the mechanism for epitaxial growth of GaAs and InGaAs. It was reported that under 

As-rich condition, (2×3) reconstruction is more stable. In contrast, under less As-rich condition 

α2(2×4) reconstruction is the most stable one. Kusova et al. [24] studied the effect of tensile 

strain on silicon nanocrystals. They reported that the indirect bandgap of silicon changes to a 

direct bandgap due to the effect of tensile strain and quantum confinement. Luo et al. [25] studied 

quaternary alloy, GaAs1-x-yPyBix using DFT. The authors found that bandgap changes of GaAs1-x-

yPyBix relative to GaAs are mainly by local changes in the structure around P and Bi atoms. 

Janotti et al. [26] used DFT to study the effect of defects on band structure of zinc oxide (ZnO).  

They found oxygen vacancies and zinc vacancies to have the lowest formation energy, while 

oxygen interstitials and oxygen antisites (on zirconium) have high energies.  

Molecular Dynamics (MD) and Kinetic Monte Carlo (KMC) simulations have been used to 

model the growth of semiconductors. Researchers have used MD and KMC to study growth and 

formation of defects in heterostructures. Kwon et al. [27] studied the growth of amorphous and 

epitaxial silicon on Si(111) substrate. They reported that low surface diffusivity caused 

amorphous growth while high surface diffusivity lead to crystalline epitaxial growth. Chuang et 

al. [28] used MD simulations to study the growth of Ge on silicon dioxide. They reported critical 

size for island nucleation and the scaling of island density as a function of temperature. Srivastava 

et al. [29] studied growth of SiGe film on 2×1 surface reconstruction of Si substrate. Their results 

suggested a new mechanism for incorporation of adatoms in which diffusing atoms move 

perpendicular to the dimer rows of original surface. Schulze and Smereka [30] investigated the 

growth of strained heteroepitaxial structures using Monte Carlo method. They studied the effect 

of misfit strain and deposition rate on film morphology and formation of islands. Their results 

suggest a critical misfit strain for formation of islands. The authors also found that smaller values 

of deposition flux cause formation of larger and more separated islands. Remediakis et al. [31] 

provided a methodology to investigate dislocation energetics in segregated alloys based on KMC. 
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They extracted core energies for 60° dislocations that are very common in heteroepitaxial SiGe 

alloys. 

Continuum approaches have extensively been used to model microstructural evolution of 

materials. These microstructural evolutions include morphological, compositional or structural 

changes in materials. These evolutions take place to reduce the total free energy of the system. 

Total free energy of a system can include contributions from bulk chemical free energy, 

interfacial and surface energies, elastic and plastic strain energies, magnetic energy, electrostatic 

energy, and external forces such as stress, electro-magnetic field, and temperature. Due to 

complicated nature of these evolution equations, they usually are solved via numerical 

approaches. In traditional methods to solve the evolution equations of microstructures, the 

interfaces between different structural or compositional domains are treated as mathematical 

sharp interfaces and hence the displacements and forces from different fields are calculated at 

each time step that means external tracking of all internal boundaries. A schematic view of the 

interfaces where explicit tracking of them is needed in every time step is shown in Fig. 2.11.  

 

Fig. 2.11 a) Schematic view of different sub-domains inside the main domain. For evolution 

problems, in addition to solving governing equations in each sub-domain, boundary conditions 

between all sub-domains (such as displacement field, traction vector, etc.) are needed at each time 
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step to track the boundaries. b) Schematic view of sharp transition of a variable at an interface 

from 0 to 1. 

 

Here are a few examples where sharp interface models have been used to study 

microstructural evolution of material. Tersoff et al. [32] studied the growth of multilayer arrays of 

coherently strained islands using a continuum based sharp interface model. The authors reported 

that arrangement of islands is not simply repeated from layer to another layer. Instead, the size 

and spacing between islands grow progressively more uniform by depositing more layers. 

Spencer et al. [33] investigated the effect of compositional stress on stability of strained thin 

films. It is found that compositional stress always makes alloys more unstable than a single-

component film. Tu et al. [18] modeled the formation of self-assembled quantum dots using 

continuum mechanics modeling. The authors investigated the role of intermixing between 

deposited material and the substrate. It is found that surface morphology and intermixing are 

strongly coupled and they qualitatively reproduced trench formation and lateral island motion. 

Katsaros et al. [34] showed that nanoscale grooves can control the nucleation of the epitaxial Ge 

islands on Si substrate. Also, grooves can drive the islands laterally to sit directly on top of 

trenches. The reason for this lateral motion is that by positioning at the center of the grove 

minimizes the strain energy. Leontiou et al. [35] studied the competition between defect 

formation and intermixing in strained thin films using continuum modeling and Monte Carlo 

simulations. Authors reported that strain relaxation by defect formation can suppress the 

intermixing between film and the substrate. 

This explicit tracking of boundaries can be successful in one-dimensional problems, however 

the simulations become computationally expensive for problems with higher dimensions. To 

address this problem, phase-field modeling has been developed substantially in past two decades. 

Phase field modeling is one of the strongest approaches that can be used to model microstructural 
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evolution of structures. I will discuss phase field modeling approach and its application with more 

details in chapter 3. 
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 Method 

Phase field method 

 

Phase field is a diffuse-interface model that has been proposed by Van der Walls [1] more 

than a century ago and developed by Cahn and Hilliard more than 50 years ago [2]. In diffuse-

interface models, the microstructure is represented by phase field variables that are continuous in 

time and spaces. In phase field model, interfaces are represented by variables that change 

continuously from one side of the interface to the other side unlike the abrupt transition across the 

boundaries in sharp-interface models. For instance, let’s imagine a system with three different 

phases (orange, blue and green) as shown in Fig. 3.1a. Within each phase, phase field variables 

are constant values. These variables vary continuously across the boundaries. Variation of Φ3 

across the interface is shown in Fig. 3.1b. In diffuse-interface models, there is no need to track the 

boundaries explicitly and hence this method is computationally efficient for problems with 

complex microstructure that evolve in time. Also, this method can be used to model non-

equilibrium processes by imposing no flux boundary conditions at the boundaries. Nowadays 

phase fields models have been applied to many different mesoscale level problems such as 

solidification [3-5], phase transformation [6-8], thin film growth [9,10], crack formation and 

propagation [11-13], dislocation dynamics [14-16] and even some biological applications [17,18].  
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Fig. 3.1 a) Phase field variables: constant values inside a domain, continuous transition at the 

interfaces. b) Schematic view of transition of a phase field variable at an interface from 0 to 1. 

 

Phase field method uses two types of variables to describe the microstructural evolution of a 

system. These are conserved variables and non-conserved variables. Conserved variables are 

usually related to the local composition and have to satisfy a local conservation constraint. Non-

conserved variables usually contain information about the structure and orientation. There are 

three main variables in phase field model: composition variables (conserved), order parameters 

(non-conserved), and phase fields (non-conserved).  

Composition variables such as concentration, density, and molar fraction are examples of 

conserved variables [19]. For instance, let’s imagine a system with c components where ni is the 

number of moles of each component and i=1, 2 … c. Molar fraction xi and molar concentration ci 

of each component are defined as 

𝑥𝑖 =
𝑛𝑖

𝑛𝑡𝑜𝑡
                                                       3-1       

𝑐𝑖 =
𝑛𝑖

𝑉𝑡𝑜𝑡
=

𝑥𝑖.𝑛𝑡𝑜𝑡

𝑉𝑡𝑜𝑡
=

𝑥𝑖

𝑉𝑚
                               3-2 

where Vtot is the total volume, ntot is the total number of moles in system and Vm is the molar 

volume. At each particular position in the system, one can write 
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∑ 𝑥𝑖
𝑐
𝑖=1 = 1                            3-3 

∑ 𝑛𝑖
𝑐
𝑖=1 =

1

𝑉𝑚
.                 3-4 

In a closed system, the total number of moles of each component is conserved and hence the 

evolution of these variables are constrained by  

∫ 𝑐𝑖
 

𝑉
d𝑟 = ∫

𝑥𝑖

𝑉𝑚

 

𝑉
 d𝑟 = 𝑐𝑜𝑛𝑠𝑡.                3-5 

Order parameters (η) are non-conserved variables that are used to distinguish crystal 

symmetry relations between coexisting phases with different structures. These order parameters 

can be used to study second-order phase transformations and anti-phase boundaries [19]. For 

instance, Fig. 3.2 shows a phase transformation from cubic structure to tetragonal structure that 

represents a symmetry reduction in the structure. Three order parameters are needed to describe 

phase transformation since tetragonal structure has three orientations that are energetically 

equivalent [19]. Order parameters can also be used to describe the grain growth evolution and 

coarsening in microstructure [20-22]. 

 

Fig. 3.2 Phase transformation from cubic to tetragonal structure. Since tetragonal structure has 

three different orientations that are energetically equivalent, three order parameters (η1, η2 and η3) 
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are needed to model the transformation. ac, at and ct are lattice parameters of cubic and tetragonal 

structure [19]. 

 

Phase fields (φ) are used to distinguish between two different phases of a material. For 

instance in a solid-gas system phase field variable φ is 0 in gas phase, 1 in solid phase, and it 

continuously varies between 0 and 1 in the interface region. The phase field concept can also be 

applied to solid state phase transformation such as phase transformation in steel between austenite 

and ferrite phases [19]. 

Temporal evolution of phase field variables is described by a set of partial differential 

equations and these equations are usually solved numerically. Total free energy of a 

microstructure is comprised of such terms such as bulk energy, interfacial energy, and strain 

energy. Total free energy is a function of conserved and non-conserved variables and can be 

written as follows   

𝐹 = 𝐹𝑏𝑢𝑙𝑘 + 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝐹𝑝𝑙𝑎𝑠𝑡𝑖𝑐               3-6 

𝐹 = ∫ (𝑓0(𝑐1, 𝑐2, … , 𝑐𝑛 , 𝜂1, 𝜂2, … , 𝜂𝑛, 𝜑1, 𝜑2, … , 𝜑𝑛) + ∑
𝜀2

2
|∇𝑐𝑖|

2𝑛
𝑖=1 + ∑

𝛼2

2
|∇𝜂𝑖|

2𝑛
𝑖=1 +

 

Ω

∑
𝛽2

2
|∇𝜑𝑖|

2𝑛
𝑖=1 ) dΩ + ∫ 𝑊𝑖(𝑐1, 𝑐2, … , 𝑐𝑛, 𝜂1, 𝜂2, … , 𝜂𝑛, 𝜑1, 𝜑2, … , 𝜑𝑛)d𝑅

 

𝑅
.          3-7 

The above total free energy of the system consists of two integrals, and each of them is 

discussed below in detail. The first integral on the right hand side (rhs) of Eq. (3-7) represents 

short-range chemical interactions including bulk energy and interfacial energy [23]. The second 

integral represents long-range interactions (Wi) such as elastoplastic, electrostatic, magnetic 

interactions. 𝛺 and R represent the volume of system. f is the local free energy density that is a 

function of conserved variables (c) and non-conserved variables (η and φ). ε2, α2 and β2 are the 



42 

 

 

gradient energy coefficients. Driving force for the microstructural evolution is to reduce the total 

free energy of a system. 

Bulk free energy density is the first term in total free energy functional represented in Eq. 

(3.7) which determines the composition and volume fractions of equilibrium phases. This free 

energy has units of J/m3 and can be in general written as f0 = f0 (c, η, φ). Free energy density can 

be determined based on the common tangent to f0 as shown in Fig. 3.3. Bulk free energy density 

has minima at equilibrium states of the system. Common tangent is usually used for conserved 

variables such as concentration (see Fig. 3.3a). For non-conserved variables such as order 

parameters and phase fields, the minima in free energy density represent equivalent variants of 

the ordered structure and hence the free energy density is assumed to be zero at these minima. 

The difference between common tangent line and the double welled free energy density (shown 

as Δ𝑓0 in Fig. 3.3) corresponds to interfacial energy and hence needs to be reduced from bulk 

energy Fbulk and added to interfacial energy Fint.   

 

Fig. 3.3 a) Bulk free energy density as a function of molar fraction (x). There are two minima at 

xα1
B and xα2

B where a common tangent between those minima represents the energy of stable 

phases in between these two minima. b) Bulk free energy density as a function of order parameter 

(η) with minima at η = ±1 [19]. 
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As previously mentioned, bulk free energy Fbulk can be a function of different phase field 

variables (conserved and non-conserved). However, for simplicity, I will use only one order 

parameter (phase field) in bulk free energy density formulation from now on. If multiple 

concentrations and order parameters and phase fields are introduced in the system, the bulk free 

energy density will have some cross product terms. It has been reported that bulk free energy of 

systems with only one variable could be represented by a polynomial [19,23]. Landau was one of 

the first researchers to propose a polynomial to represent bulk free energy density [24]. When 

only two stable phases are allowed, a fourth-order polynomial is used.  

𝐹𝑏𝑢𝑙𝑘 = ∫ 𝑓0(𝜑)
 

𝑉
d𝑉 = ∫ (𝐴0 + 𝐵0𝜑 + 𝐶0𝜑

2 + 𝐷0𝜑
3 − Δ𝑓0(𝜑))

 

𝑉
d𝑉.                 3-8 

Assuming minima at φ = 0 and φ = 1, symmetric free energy around φ = 0.5 and f0 (φ = 0) = 0, 

a double welled free energy density is found as follows 

 𝐹𝑏𝑢𝑙𝑘 = ∫ (
1

4
𝑤0𝜑

2(1 − 𝜑)2 − Δ𝑓0(𝜑))
 

𝑉
d𝑉.              3-9 

In Eq. (3-9) free energy density is zero at φ = 0 and φ = 1 and has maximum of w0/64 at φ = 

0.5. A double-welled bulk free energy is plotted in Fig. 3.4. Sixth-order polynomials are used 

where three stable phases are allowed.  
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Fig. 3.4 Double-welled free energy density function [9]. This free energy density function 

describes a case where there are two thermodynamically stable phases at φ=0 and φ=1. The 

barrier height of free energy functional W/64 is calculated from interfacial thickness and 

interfacial energy as shown in Eqs. (3-12) and (3-13). 

 

The interfacial energy Fint of a system with bulk free energy as shown in Eq. (3-9) can be 

written as 

𝐹𝑖𝑛𝑡 = ∫ (Δ𝑓0(𝜑) +
𝛽2

2
|∇𝜑𝑖|

2)
 

𝑉
d𝑉                 3-10 

Δ𝑓0 is the same term as used in Eq. (3-9). Hence the sum of bulk and interfacial energy for a 

system with one order parameter can be written as 

𝐹𝑏𝑢𝑙𝑘 + 𝐹𝑖𝑛𝑡 = ∫ (
1

4
𝑤0𝜑

2(1 − 𝜑)2 +
𝛽2

2
|∇𝜑𝑖|

2)
 

𝑉
d𝑉.           3-11 

For this free energy density, one can find the relationship between interfacial energy γint 

(J/m2) and phase field parameters w0 and β [9].  
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𝛾𝑖𝑛𝑡 =
𝛽

6
√
𝑤0

2
               3-12 

𝛿 = 𝛽√
2

𝑤0
.               3-13 

Second integral on the rhs of Eq. (3-7) includes long-range interactions, such as electrostatic, 

magnetic and elastic strain. In this study, I consider the long-range contributions from elastic 

energy density. Assuming that both elastic and plastic free energies are only a function of 

concentration (c), they can be defined as 

𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝐹𝑝𝑙𝑎𝑠𝑡𝑖𝑐 = ∫ 𝑊𝑖(𝑐)
 

𝑅
d𝑅 = ∫ (𝑊𝑒𝑙(𝑐) +𝑊𝑝𝑙(𝑐)) d𝑅

 

𝑅
          3-14 

where 𝑊𝑖(𝑐) is the total work, 𝑊𝑝𝑙(𝑐) is the plastic work  

𝑊𝑝𝑙(𝑐) = ∫ 𝜎𝑖𝑗 𝑑𝑒𝑖𝑗
𝑝𝑙𝑒𝑝𝑙

0
                3-15 

𝑒𝑖𝑗
𝑝𝑙 is plastic strain tensor and 𝜎𝑖𝑗 is the Cauchy stress tensor. 𝑊𝑒𝑙(𝑐) is the elastic work that can 

be written as 

𝑊𝑒𝑙(𝑐) = ∫ 𝜎𝑖𝑗 𝑑𝑒𝑖𝑗
𝑒𝑙𝑒𝑒𝑙

0
=

1

2
𝜎𝑖𝑗 𝑒𝑖𝑗

𝑒𝑙              3-16 

here 𝑒𝑖𝑗
𝑒𝑙 is an elastic strain tensor, which can be given as  

𝑒𝑖𝑗
𝑒𝑙 = 𝑒𝑖𝑗

𝑡𝑜𝑡 − 𝑒𝑖𝑗
∗ − 𝑒𝑖𝑗

𝑝𝑙             3-17 

𝑒𝑖𝑗
𝑡𝑜𝑡 is the total strain, and 𝑒𝑖𝑗

∗ is the eigenstrain associated with the difference between lattice 

parameters of the film and the substrate. Assuming a linear strain displacement relationship, the 

total strain can be written as 

𝑒𝑖𝑗
𝑡𝑜𝑡 = 

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)               3-18 



46 

 

 

𝑢𝑖,𝑗 is the derivative in the j direction of the displacement in i direction. Assuming that 

mechanical equilibrium is reached much faster than chemical equilibrium, the total strain is 

calculated by solving the mechanical equilibrium (Cauchy-Navier) equation 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
= 0.                  3-19 

Stress is related to the elastic strain as follows: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙
𝑒𝑙 = 𝐶𝑖𝑗𝑘𝑙(𝑒𝑖𝑗

𝑡𝑜𝑡 − 𝑒𝑖𝑗
∗ − 𝑒𝑖𝑗

𝑝𝑙)             3-20 

where Cijkl is the elastic modulus and in general is a function of the order parameter φ since 

coexisting phases usually have different elastic properties. Eigenstrain in our model is defined as 

𝑒𝑖𝑗
∗ = 𝑒𝑓̂ 𝛿𝑖𝑗                   3-21 

here 𝛿𝑖𝑗 is Kronecker delta and 𝑒𝑓̂ is the lattice mismatch which is given by 

𝑒𝑓̂ =
𝑎𝑓𝑖𝑙𝑚 −𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
.                3-22 

To find the plastic strain tensor I need to define a yield function, a flow rule, and a hardening 

rule. Here, I use J2 plasticity (Von-Mises criterion) with the yield function  

𝐹(𝜎𝑖𝑗, 𝜎𝑌) = 𝜎𝑚𝑖𝑠𝑒𝑠 − 𝜎𝑌 ≤ 0             3-23 

F is the yield function, 𝜎𝑌 is the current yield stress, and 𝜎𝑚𝑖𝑠𝑒𝑠 is the Von-Misses stress. For 

isotropic hardening, flow rule is given by  

𝑒̇𝑖𝑗
𝑝𝑙 = 𝜆

𝜕𝐹(𝜎𝑖𝑗,𝜎𝑌)

𝜕𝜎𝑖𝑗
              3-24 

where 𝑒̇𝑖𝑗
𝑝𝑙 is the plastic strain rate and 𝜆 is plastic multiplier, which is a positive number. For the 

film and the substrate materials I assume a linear work hardening, which can be written as 

𝜎𝑌 = 𝜎𝑌0 + 𝜎ℎ               3-25 
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here 𝜎𝑌0 is the initial yield stress and 𝜎ℎ is the work hardening function 

𝜎ℎ = 𝐸𝑡 ∙ 𝑒
𝑝𝑙                     3-26 

𝐸𝑡 is the slope of stress-strain curve after linear elastic regime, which is also called tangential 

Young’s modulus. 

In the phase field model, temporal evolution of variables that represents the morphological 

evolution of the system is determined by solving a system of coupled partial differential 

equations. There is one such equation for each variable. These equations are chosen in a way that 

the free energy of the system decreases monotonically. Solving these equations provides the 

temporal evolution of the variables. There are two main types of evolution equations: Allen-Cahn 

(Ginzburg-Landau) [25] equation that is used to track the evolution of non-conserved variables, 

and Cahn-Hilliard [2] equation that models the evolution of conserved variables. 

Allen-Cahn equation governs non-conserved variables such as phase fields (φk) and order 

parameters (ηk) as follows 

𝜕𝜑𝑘

𝜕𝑡
= −𝐿𝑘(𝜑𝑘)

𝛿𝐹

𝛿𝜑𝑘
= −𝐿𝑘(𝜑𝑘) (

𝛿𝑓0

𝛿𝜑𝑘
− ∇. (𝛽𝑘

2∇𝜑𝑘) +
𝜕𝑊𝑖

𝜕𝜑𝑘
)          3-27 

𝜕𝜂𝑘

𝜕𝑡
= −𝐿𝑘(𝜂𝑘)

𝛿𝐹

𝛿𝜂𝑘
= −𝐿𝑘(𝜂𝑘) (

𝛿𝑓0

𝛿𝜂𝑘
− ∇. (𝛼𝑘

2∇𝜂𝑘) +
𝜕𝑊𝑖

𝜕𝜂𝑘
)          3-28 

where k = 1, 2,.., p represents different order parameters and f0 is the bulk free energy density 

which in general is a function of all conserved and non-conserved variables. βk is the gradient 

energy coefficient and Lk is the mobility. Both these coefficients may depend on conserved or 

non-conserved variables to represent anisotropy. In case that only one non-conserved variable φ 

exists, evolution equation can be written as 

𝜕𝜑

𝜕𝑡
= −𝐿

𝛿𝐹

𝛿𝜑
= −𝐿(𝜑)(

𝛿𝑓0

𝛿𝜑
− ∇. (𝛽2∇𝜑)).            3-29 

To model anisotropy, one needs to define the gradient energy coefficient as a function of 

orientation. This topic will be discussed later in this chapter. 
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Cahn-Hilliard equation governs evolution of conserved variables such as density, molar 

fraction, and concentration. For instance, let us consider a case where concentration (c) is the only 

conserved field variable. Concentration evolves according to the mass conservation equation  

𝜕𝑐

𝜕𝑡
= −∇. 𝐽               3-30 

J is the density flux, which can be related to the gradient of variational derivative of the free 

energy density functional as  

𝐽 = −𝑀(𝑐)∇
𝛿𝐹

𝛿𝑐
= −𝑀(𝑐)∇ (

𝜕𝑓

𝜕𝑐
− ∇. (𝜀2∇𝑐) +

𝜕𝑊𝑖

𝜕𝑐
) = 

−𝑀(𝑐)∇ (
𝜕𝑓

𝜕𝑐
− ∇. (𝜀2∇𝑐) +

𝜕𝑊𝑒𝑙

𝜕𝑐
+
𝜕𝑊𝑝𝑙

𝜕𝑐
)                            3-31 

where 
𝛿

𝛿𝑐
 is a variational derivative. The plasticity driving force on concentration field is 

𝜕𝑊𝑝𝑙

𝜕𝑐
. 

Since the majority of the plastic work in crystalline systems is released as heat, I assume that the 

effect of plastic work as driving force for evolution of the concentration filed is negligible. I 

previously discussed that anisotropy in interfacial energies can be incorporated in the gradient 

energy coefficients. Following the formulation developed by Egglestone et al. [9], anisotropic 

interfacial energy can be defined as 

𝜀(𝜃) = 𝜀0(1 + 𝜀4cos (4𝜃))             3-32 

where 𝜀0 is the gradient energy constant, 𝜃 is the angle between the normal to the contour of 

constant concentration and the x-axis and 𝜀4 is a constant between 0 to 1, which determines the 

degree of anisotropy. The variation of 𝜀4 with distance from the substrate has been adopted from 

Egglestone et al. [9]. Using anisotropic interfacial energy, the flux can be written as 

𝐽 = −𝑀(𝑐)𝛻 (
𝜕𝑓

𝜕𝑐
− ∇. (𝜀2∇𝑐) +

𝜕𝑊𝑒𝑙

𝜕𝑐
+

𝜕

𝜕𝑥
(𝜀

𝑑𝜀

𝑑𝜃

𝜕𝑐

𝜕𝑦
) −

𝜕

𝜕𝑦
(𝜀

𝑑𝜀

𝑑𝜃

𝜕𝑐

𝜕𝑥
))        3-33 

where ɛ4 is a positive constant smaller than 1/15. 
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There are two main kinetic terms that have be included in the phase field model in this thesis 

in order to model growth and annealing of semiconductor heterostructures. One term represents 

the effect of diffusivity (both surface and bulk diffusivities), which is incorporated in the model 

through M(c). M(c) is called mobility and depends on the concentration in the following way 

𝑀(𝑐) =  𝑀𝑠𝑐
2(1 − 𝑐)2              3-34 

where 𝑀𝑠 is the surface mobility and for ideal solution is equal to  

𝑀𝑠 =
𝐷0𝑉𝑚

𝑅𝑇
               3-35 

here D0 is surface diffusivity, R is the gas constant, T is temperature in Kelvin. The second kinetic 

effect is related to the deposition flux during film growth 

𝜕𝑐

𝜕𝑡
= −∇. 𝐽 +  𝐽𝑑𝑛𝑦              3-36 

where  𝐽𝑑  is the deposition flux and 𝑛𝑦  is the vertical component of the surface normal.  𝐽𝑑  is 

defined as [9] 

 𝐽𝑑 = 𝑉𝑑𝐴0 𝑅0 𝑐
2(1 − 𝑐)2             3-37 

where 𝑉𝑑 is the surface velocity (growth rate) due to deposition, 𝑅0 is a random number between 

0.95 to 1.05, and 𝐴0 =
6

𝛿
, where 𝛿 is the interfacial thickness. 

Combining Eqs. (3-33) and (3-36), one can derive the following Cahn-Hilliard equation [26] 

𝜕𝑐

𝜕𝑡
= ∇. [𝑀(𝑐)∇ (

𝜕𝑓

𝜕𝑐
+
𝜕𝑊𝑒𝑙

𝜕𝑐
− ∇. (𝜀2∇𝑐) +

𝜕

𝜕𝑥
(𝜀

𝑑𝜀

𝑑𝜃

𝜕𝑐

𝜕𝑦
) −

𝜕

𝜕𝑦
(𝜀

𝑑𝜀

𝑑𝜃

𝜕𝑐

𝜕𝑥
))] +  𝐽𝑑𝑛𝑦.        3-38 

Note that in this work, the coupling between plasticity and microstructural evolution is only 

through the elastic driving force, which is an approach often taken in the literature [27]. To make 

Eq. (3-38) non-dimensional, I use l* as the characteristic length, e* as the characteristic energy 

density, and t* as the characteristic time.  Using these dimensionless parameters, I define other 
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dimensionless quantities, which are free energy density (𝑓∗ =
𝑓

𝑒∗
), elastic moduli (𝐶𝑖𝑗

∗ =
𝐶𝑖𝑗

𝑒∗
), 

strain energy density (𝑊∗ =
𝑊

𝑒∗
), gradient energy coefficient (𝜀∗2 =

𝜀2

𝑙∗2.𝑒∗
), mobility (𝑀∗ =

𝑀𝑠𝑡
∗.𝑒∗

𝑙∗2
), and deposition flux rate (𝐽𝑑

∗ = 𝑡∗.  𝐽𝑑). I can also write a dimensionless form of the 

Cahn-Hilliard equation  

𝜕𝑐

𝜕𝑡̂
= ∇. [𝑀∗(𝑐)∇ (

𝜕𝑓∗

𝜕𝑐
+
𝜕𝑊𝑒𝑙∗

𝜕𝑐
− ∇. (𝜀∗2∇𝑐) +

𝜕

𝜕𝑥
(𝜀∗

𝑑𝜀∗

𝑑𝜃

𝜕𝑐

𝜕𝑦̂
) −

𝜕

𝜕𝑦̂
(𝜀∗

𝑑𝜀∗

𝑑𝜃

𝜕𝑐

𝜕𝑥
))]  +  𝐽∗𝑑𝑛𝑦        3-39 

where the ∇ symbol represents a gradient with respect to non-dimensional variables 𝑥 and 𝑦̂. 

Eq. (3-39) is a fourth order partial differential equation (PDE) and hence needs to be solved 

numerically. In this section, I discuss two possible approaches that have been used to solve these 

types of equations: finite difference method and finite element method. 

Numerical methods to solve governing equations 

Finite difference method (FDM) is one of the techniques to find solution for non-linear PDEs. 

In this method, the simulation domain is divided into small areas using a mesh (e.g., see the 2D 

domain shown in Fig. 3.5). Points at the intersection of the mesh lines are called grid points. 

Positions of these points in 2D domain is represented by two variables i and j. The value of 

function U at the point (i,j) is represented by U(i,j). The value of U at any grid point with a small 

distance away from point (i,j) can be calculated in terms of the function U and its derivatives at 

(i,j) using Taylor expansion. I assume the mesh size in x(hi) and y(hj) directions to be the same 

and equal to h for simplicity. U(i±mhi, j±nhj) is found as follows 

𝑈(𝑖 ± 𝑚ℎ, 𝑗 ± 𝑛ℎ) = 𝑈(𝑖, 𝑗) ±𝑚ℎ
𝜕𝑈(𝑖,𝑗)

𝜕𝑥
± 𝑛ℎ

𝜕𝑈(𝑖,𝑗)

𝜕𝑦
±
(𝑚ℎ)

2!

2 𝜕2𝑈(𝑖,𝑗)

𝜕𝑥2
±
(𝑛ℎ)

2!

2 𝜕2𝑈(𝑖,𝑗)

𝜕𝑦2
±

(𝑚ℎ)

3!

3 𝜕3𝑈(𝑖,𝑗)

𝜕𝑥3
±
(𝑛ℎ)

3!

3 𝜕3𝑈(𝑖,𝑗)

𝜕𝑦3
± ℎ(𝑂4).                3-40 
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Fig. 3.5 Meshing is a process of dividing a domain in small elements where there are grid points 

at the corners of each element. hi and hj show the length of each element in x and y directions. 

U(i,j) represents the value of function U at grid point (i,j). 

 

Assuming h=1 for simplicity, one can find U(i-1,j) and U(i+1,j) from Eq. (3-40). By 

subtracting U(i-1,j) from U(i+1,j), one can find the value of derivative of U at point (i,j) as 

follows 

𝜕𝑈(𝑖,𝑗)

𝜕𝑥
=

𝑈(𝑖+1,𝑗)−𝑈(𝑖−1,𝑗)

2ℎ
+ [

ℎ2

6

𝜕3𝑈(𝑖,𝑗)

𝜕𝑥3
+ 𝑂(ℎ4)].          3-41 

By neglecting the higher order terms in the square brackets of the above equation, one can 

find an estimate for the first derivative of function U in x direction. 

𝜕𝑈(𝑖,𝑗)

𝜕𝑥
≈

𝑈(𝑖+1,𝑗)−𝑈(𝑖−1,𝑗)

2ℎ
               3-42 
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which has an error of O(h2). This derivative is called the Centered Finite Difference derivative. A 

similar method can be used to find other derivatives in the problem, such as the time derivative at 

tp=t0+p.Δt where t0 is initial time, Δt is time step and p is an integer. This time derivate takes the 

form 

𝜕𝑈𝑝(𝑖,𝑗)

𝜕𝑡
=

𝑈𝑝+1(𝑖,𝑗)−𝑈𝑝(𝑖,𝑗)

∆𝑡
+ 𝑂(∆𝑡).            3-43 

The above method is called forward Euler differencing. The advantage of the Forward Euler 

approach is that the value of function at time step p+1 is only determined based on values from 

step p and hence this method is an example of an explicit approach. The drawback of this method 

is that it is first order approximation in time step and therefore it is less accurate than the Centered 

Finite Difference derivative, which is based on a second order approximation. Looking at Eq. (3-

39), one can find ∇. ∇= ∇2 is a higher order operator called Laplacian. The Laplacian of function 

V at point (i,j) can be calculated as the finite difference  

∇2(𝑉𝑝) =
𝑉𝑝(𝑖+1,𝑗)+𝑉𝑝(𝑖−1,𝑗)+𝑉𝑝(𝑖,𝑗+1)+𝑉𝑝(𝑖,𝑗−1)−4𝑉𝑝(𝑖,𝑗)

ℎ2
.          3-44 

By combining Forward Euler for time differentiation, Centered Finite Difference for special 

differentiation, and finite difference form for Laplacian one can write Eq. (3-39) as  

𝑐𝑝+1(𝑖,𝑗)−𝑐𝑝(𝑖,𝑗)

∆𝑡
= 𝑀∗(𝑐)∇2 (

𝑊0

2
(2(𝑐𝑝(𝑖, 𝑗))3 − 3(𝑐𝑝(𝑖, 𝑗))

2
+ 𝑐𝑝(𝑖, 𝑗)) +

𝜕𝑊𝑒𝑙∗

𝜕𝑐
−

𝜀∗2
𝑐𝑝(𝑖+1,𝑗)+𝑐𝑝(𝑖−1,𝑗)+𝑐𝑝(𝑖,𝑗+1)+𝑐𝑝(𝑖,𝑗−1)−4𝑐𝑝(𝑖,𝑗)

ℎ2
+

𝜕

𝜕𝑥
(𝜀∗

𝑑𝜀∗

𝑑𝜃

𝑐(𝑖,𝑗+1)−𝑐(𝑖,𝑗−1)

2ℎ
) −

𝜕

𝜕𝑦̂
(𝜀∗

𝑑𝜀∗

𝑑𝜃

𝑐(𝑖+1,𝑗)−𝑐(𝑖−1,𝑗)

2ℎ
))  +  𝐽∗𝑑𝑛𝑦.             3-45 

Assuming 𝐺(𝑖, 𝑗) = 𝜀∗
𝑑𝜀∗

𝑑𝜃

𝑐(𝑖,𝑗+1)−𝑐(𝑖,𝑗−1)

2ℎ
 and 𝐻(𝑖, 𝑗) = 𝜀∗

𝑑𝜀∗

𝑑𝜃

𝑐(𝑖+1,𝑗)−𝑐(𝑖−1,𝑗)

2ℎ
, one can plug 

Eq. (3-42) into Eq. (3.45) to get  
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𝑐𝑝+1(𝑖,𝑗)−𝑐𝑝(𝑖,𝑗)

∆𝑡
= 𝑀∗(𝑐)∇2 (

𝑊0

2
(2(𝑐𝑝(𝑖, 𝑗))3 − 3(𝑐𝑝(𝑖, 𝑗))

2
+ 𝑐𝑝(𝑖, 𝑗)) +

𝜕𝑊𝑒𝑙∗

𝜕𝑐
−

𝜀∗2
𝑐𝑝(𝑖+1,𝑗)+𝑐𝑝(𝑖−1,𝑗)+𝑐𝑝(𝑖,𝑗+1)+𝑐𝑝(𝑖,𝑗−1)−4𝑐𝑝(𝑖,𝑗)

ℎ2
+
𝐺(𝑖+1,𝑗)−𝐺(𝑖−1,𝑗)

2ℎ
−
𝐻(𝑖,𝑗+1)−𝐻(𝑖,𝑗−1)

2ℎ
) +  𝐽∗𝑑𝑛𝑦 .   

                3-46 

Another method to numerically solve governing equations is the finite element method 

(FEM). FEM is widely used in the fields of fluid mechanics, solid mechanics, structural 

dynamics, heat transfer and many other fields of engineering and mathematics.  

A schematic view of a simulation domain with prescribed boundary conditions is shown in 

Fig. 3.6a. For simplicity, I assume that a single field variable φ(x,y) is the only unknown in the 

domain of interest. To solve for φ(x,y), one needs to divide the domain into elements with finite 

size, which is similar to FDM. The differences between FEM and FDM will be discussed later. 

As an example, a single element with three nodes is shown in Fig. 3.6a. In the FEM, the value of 

field variable is calculated at each of the nodes. Then the value of the field variable is calculated 

everywhere inside the element using the approximation 

𝜑(𝑥, 𝑦) = 𝑁1(𝑥, 𝑦)𝜑1 + 𝑁2(𝑥, 𝑦)𝜑2 +𝑁3(𝑥, 𝑦)𝜑3          3-47 

where φ1, φ2, φ3 are values of the field variables at the nodes and N1, N2, N3 are interpolation 

functions. The nodal values are unknown constants to be determined and interpolation functions 

are usually polynomials with independent variables such as material properties. Smaller elements 

are usually used near the boundaries and at the points with force concentration to increase the 

accuracy of the approximation. Fig. 3.6b schematically shows how smaller and larger elements 

can be used incorporated in one simulation domain.  
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Fig. 3.6 a) 2D domain of variable φ(x,y) with a 3-node mesh. ϕ1, ϕ2 and ϕ3 are nodal values of the 

variable φ. b) Elements with different sizes can be used in the same domain. To solve the problem, 

one needs to fully populate the domain with elements. 

 

For structural applications (e.g. truss bridges, elastic bars), simple elements such as spring 

and bar are often used. The governing equations for these systems are usually algebraic equations, 

which explicitly include the relationship between force and displacement. However, for non-

structural applications the governing equations are usually in the form of differential equations. 

Due to the complexities from geometry and loading in non-structural problems, rarely there are 

exact solutions for the governing equations and so approximate solutions are indispensable. FEM 

uses approximate techniques to solve for these differential equations. One of these methods is 

called Weighted Residuals Method (WRM). WRM is an approximate technique to solve for 

boundary value problems using trial functions that satisfy the boundary conditions. The nodal 

values of unknowns are found by satisfying constraints that minimize the average error in the 

entire simulation domain. For instance, given a general form of one dimensional homogenous 

differential equation 

𝐷[𝑦(𝑥), 𝑥] = 0,     𝑎 < 𝑥 < 𝑏             3-48 

𝑦(𝑎) = 𝑦(𝑏) = 0.                          3-49 
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WRM seeks an approximate solution in the form of 

𝑦∗(𝑥) = 𝑐𝑖𝑛𝑖(𝑥)              3-50 

where y*(x) is an approximate solution for y(x), ci are constant unknown parameters, and ni(x) is 

an admissible trial function. Admissible trial function is continuous in the domain and satisfies 

the boundary conditions. Index i shows number of terms included in the trail solution and it 

follows Einstein notation convention. Given that the requirements for choosing these functions 

are not very restrictive, it is unlikely that these equations provide the exact solution. Hence, 

plugging in these functions into the differential equation results in a residual error R(x) 

𝑅(𝑥) = 𝐷[𝑦∗(𝑥), 𝑥] = 𝐷[𝑐𝑖𝑛𝑖(𝑥), 𝑥]            3-51 

In WRM, unknowns (ci) are found by solving following equations (i equations) 

∫ 𝑤𝑖(𝑥)𝑅(𝑥)
𝑏

𝑎
d𝑥 = ∫ 𝑤𝑖(𝑥)𝐷[𝑐𝑖𝑛𝑖(𝑥), 𝑥]

𝑏

𝑎
d𝑥 = 0          3-52 

where wi(x) is the weight function. In the so-called Galerkin’s global weighted residual method, 

which is one of the most commonly used techniques in the FEM, the weight functions are chosen 

to be identical to the trail functions. To find the unknown constants ci, one needs to solve the 

following algebraic equations  

∫ 𝑁𝑖(𝑥)𝑅(𝑥)
𝑏

𝑎
d𝑥 = 0.                  3-53 

The above Galerkin method is often referred to as the classical approach. Since this approach 

requires trail functions that are valid in the entire domain, it will be difficult to find such functions 

in two and three-dimensional problems. Consequently, Galerkin’s global approach has been 

adapted (for simplicity I will call it local Galerkin from now on) to be able to solve a system of 

partial differential equations in higher dimensions. In local Galerkin method, I divide the 

simulation domain into M elements and M+1 nodes (in this 1D example). The approximate 

solution of governing equation is  
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𝑦∗(𝑥) = ∑ 𝑦𝑖𝑁𝑖(𝑥)
𝑀
𝑖=1               3-54 

where yi is the value of solution function at x=xi and Ni(x) is the corresponding trail function. 

There are two main differences between local Galerkin method and a general WRM. First, the 

trail functions in local Galerkin approach are only non-zero on a small part of the entire domain. 

Second, the unknown coefficients (ci) in the general WRM approach become unknown values of 

solution function y evaluated at nodes. Substitution of Eq. (3-54) into Eq. (3-53) yields M+1 

algebraic equations where these equations can be written in the matrix form as 

[𝐾]{𝑢} = {𝑓}                               3-55 

where [K] is stiffness matrix, u is global vector of nodal displacements and f is global vector of 

nodal forces. 

Interpolation functions are usually chosen to be polynomials. These functions determine the 

accuracy of the FEM in an element. Higher order polynomials provide better estimates for the 

governing equations, but are computationally more expensive than lower order polynomials. 

Interpolation functions determine the number of nodes needed on each element as well. For 

example, I have shown triangular elements with different interpolation functions in Fig. 3.7. 

 

Fig. 3.7 Triangular elements: a) 3-node element with a linear interpolation function. b) 6-node 

element with a quadratic interpolation function. c) 10-node element with a cubic interpolation 

function. Interpolation functions with higher orders provide higher accuracy to numerical 

approximations. 
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Interpolation functions for each of the above elements can be found in terms of the area 

coordinates. These coordinates are defined as the ratio of subdomain areas (A1, A2 and A3) to the 

total area (A) of the element as shown in Fig. 3.8a. 

 

Fig. 3.8 a) An arbitrary point P is chosen inside the element. By connecting point P to the corners 

of the element, three subdomains are formed. A1, A2 and A3 are the areas of these triangular 

subdomains. L2 is the ration between A2 and A (total area of element). L2 is zero when point P is 

chosen on the line that connects corners 1 and 3. L2 is one when point P is chosen at corner 2.  b) 

L2 has three values in this element. L2=0, L2=0.5, and L2=1. c) L2 has four values in this element. 

L2=0, L2=0.5, and L2=1. 

 

In Fig. 3.8, point P is an arbitrary point inside the element. By connecting point P to corners 

of the element, three triangles are formed. A1, A2 and A3 are the areas of these triangles. Based on 

the location of the arbitrary point P, one can define area coordinates as follows 

𝐿1 =
𝐴1

𝐴
 , 𝐿2 =

𝐴2

𝐴
 , 𝐿3 =

𝐴3

𝐴
             3-56 

If point P coincides with point 2, A2=A and L2=1 while L1=L3=0. To find interpolation 

functions (Ni) for each node for 3-node and 6-node elements shown in Fig. 3.8a-b, one can write 

𝜙(𝑥, 𝑦) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 = 𝐿1𝜙1 + 𝐿2𝜙2 + 𝐿3𝜙3 = 𝑁1𝜙1 +𝑁2𝜙2 +𝑁3𝜙3        3-57 
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𝜙(𝑥, 𝑦) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑥
2 + 𝑏4𝑥𝑦 + 𝑏5𝑦

2 = 𝐿1(2𝐿1 − 1)𝜙1 + 𝐿2(2𝐿2 − 1)𝜙2 +

𝐿3(2𝐿3 − 1)𝜙3 + 4𝐿1𝐿3 + 4𝐿1𝐿2 + 4𝐿2𝐿3 = 𝑁1𝜙1 +𝑁2𝜙2 +𝑁3𝜙3 +𝑁4𝜙4 +𝑁5𝜙5 +𝑁6𝜙6 

                  3-58 

where ϕ(x,y) is a scalar function, aj are unknown constants where j=1,2 and 3, bi are unknown 

constants and ϕi are nodal values of ϕ(x,y) where i=1,2, ... 6. 

The main difference between FEM and FDM is that in FEM, interpolation functions are used 

to find the value of unknown variables everywhere inside an element where in FDM the unknown 

variables are only calculated at the grid points. So to increase the accuracy of the problem in 

FEM, one can either increase the order of interpolation functions or increase the number of 

elements where in FDM, the only method to increase the accuracy of the solution is by increasing 

the number of elements. 

I will now introduce governing equations of elasticity in FEM for general three-dimensional 

elements. First, strain tensor ε is related to displacement vector (u,v,w) as follows 

{𝜺} =

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝜀𝑧
2𝜀𝑥𝑦
2𝜀𝑥𝑧
2𝜀𝑦𝑧}

 
 

 
 

=

{
 
 
 
 

 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑧
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦]
 
 
 
 
 
 
 
 
 

{
𝑢
𝑣
𝑤
} = [𝐿] {

𝑢
𝑣
𝑤
}         3-59 

where u,v,w are displacements in x, y, and z directions. Stress and strain are related to each other 

using constitutive equations. For homogenous, isotropic, linear elastic material this equation can 

be written as 
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{𝜎} =

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}

 
 

 
 

=
𝐸

(1+𝜐)(1−2𝜐)

[
 
 
 
 
 
 
 
1 − 𝜐 𝜐 𝜐 0 0 0
𝜐 1 − 𝜐 𝜐 0 0 0
𝜐 𝜐 1 − 𝜐 0 0 0

0 0 0
1−2𝜐

2
0 0

0 0 0 0
1−2𝜐

2
0

0 0 0 0 0
1−2𝜐

2 ]
 
 
 
 
 
 
 

{𝜀} = [𝐷]{𝜀}.        3-60 

Following the general method explained at the beginning of this section for two dimensional 

elements, displacements for a three dimensional element can be written as 

𝑢(𝑥, 𝑦, 𝑧) = 𝑁𝑖(𝑥, 𝑦, 𝑧)𝑢𝑖             3-61 

𝑣(𝑥, 𝑦, 𝑧) = 𝑁𝑖(𝑥, 𝑦, 𝑧)𝑣𝑖             3-62 

𝑤(𝑥, 𝑦, 𝑧) = 𝑁𝑖(𝑥, 𝑦, 𝑧)𝑤𝑖             3-63 

here ui, vi and wi are nodal displacements, Ni(x,y,z) is the interpolation function associated with 

the number of nodes and i = 1,2,…, M indicates the node number. Nodal displacements are 

represented by 

{𝛿} = [𝑢1 𝑢2 … 𝑢𝑀 𝑣1 𝑣2 … 𝑣𝑀 𝑤1 𝑤2 … 𝑤𝑀]𝑇.            3-64 

Displacement field in the elements are related to nodal values of displacement 

{
𝑢
𝑣
𝑤
} = [

[𝑁] [0] [0]

[0] [𝑁] [0]
[0] [0] [𝑁]

] {𝛿} = [𝑁3]{𝛿}            3-65 

where [N] represents the interpolation function 

[𝑁] = [𝑁1 𝑁2 𝑁3 … 𝑁𝑀]𝑇.            3-66 

Total potential energy of an element is 

Π = 𝑈 −𝑊 =
1

2
∭ {𝜀}𝑇{𝜎} d𝑉

 

𝑉
− {𝛿}𝑇{𝑓} =

1

2
∭ {𝜀}𝑇[𝐷]{𝜀} d𝑉

 

𝑉
− {𝛿}𝑇{𝑓}       3-67 

where f is the vector of nodal forces 
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{𝑓} = [𝑓1𝑥 𝑓2𝑥 … 𝑓𝑀𝑥 𝑓1𝑦 𝑓2𝑦 … 𝑓𝑀𝑦 𝑓1𝑧 𝑓2𝑧 … 𝑓𝑀𝑧]
𝑇
.       3-68 

By substituting Eqs. (3.59) and (3.65) in Eq. (3.67), the total potential energy is  

Π = 𝑈 −𝑊 =
1

2
{𝛿}𝑇∭ [𝐵]𝑇[𝐷][𝐵] d𝑉

 

𝑉
{𝛿} − {𝛿}𝑇{𝑓}          3-69 

where [B] is defined as 

[𝐵] = [𝐿][𝑁3].               3-70 

Using Castigliano’s first theorem as follows, 

𝜕Π

𝜕𝛿𝑖
= 0.                3-71 

One can find the nodal equilibrium equation for three dimensional elasticity governing 

equations 

∭ [𝐵]𝑇[𝐷][𝐵] d𝑉
 

𝑉
{𝛿} = {𝑓}.             3-72 

By comparing Eq. (3.72) with Eq. (3.55), one can find stiffness matrix as  

[𝐾] =∭ [𝐵]𝑇[𝐷][𝐵] d𝑉
 

𝑉
.             3-73 

These equations will be modified to include plasticity in chapters 4 and 5 of this thesis. This 

is because these modifications depend on the yield criteria, flow rule and hardening rule that are 

specific to a given problem. 

In this study, I use FEM to solve the phase field governing equations. Rectangular elements 

with quadratic interpolation functions are chosen for both elastoplastic and evolution equations. 

For this study, I have used commercial software package called COMSOL Multiphysics.   
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 Effects of confinements on morphology of InxGa1-xAs thin film grown on 

sub-micron patterned GaAs substrate: elastoplastic phase field model  

Published in Journal of Applied Physics, Volume 116: 114313 (2014) 

Abstract 

An elastoplastic phase field model is developed to investigate the role of lateral confinement 

on morphology of thin films grown heteroepitaxially on patterned substrates. Parameters of the 

model are chosen to represent InxGa1-xAs thin films growing on GaAs patterned with SiO2. I 

determined the effect of misfit strain on morphology of thin films grown in 0.5µm patterns with 

non-uniform deposition flux. Growth of islands inside patterns can be controlled by non-

uniformity of deposition flux, misfit strain between film and the substrate, and also strain energy 

relaxation due to plastic deformation. Our results show that the evolution of island morphology 

depends non-monotonically on indium content and associated misfit strain due to coupling 

between the plastic relaxation and the confinements effects. Low indium concentration (0-40%) 

causes formation of instabilities with relatively long wavelengths across the width of the pattern. 

Low surface diffusion (due to low indium concentration) and fewer islands across the pattern (due 

to small misfit strain) lead to formation and growth of islands near the walls driven by overflow 

flux. Further increase in indium concentration (40-75%) increases the lattice mismatch and 

surface diffusivity of the film, and also activates plastic deformation mechanism, which leads to 

coalescence of islands usually away from the edges. By further increasing the indium 

concentration (up to 100%), plastic deformation relaxes most of the strain energy density of the 

film, which prevents formation of instabilities in the film. Hence, in this case islands are only 

formed near the walls. 
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Introduction 

Growth of semiconductors on patterned substrates provides an effective approach to fabricate 

ordered surface structures such as quantum-dots [1], nano-rods [2] and nano-rings [3]. These 

nano-structures are used for a number of different applications, including solar cells, sensors, 

electronic and photonic devices [4]. Advancements in patterning techniques, e.g., self-assembly 

processes [5], lithographic methods [6-8], scanning probe techniques [9] and block copolymer 

methods [10], make it now possible to prepare large-scale arrays with a precisely tailored shape, 

size, and crystallographic orientation [4].  

Of particular interest to this study is the use of patterned substrates to grow III-V 

semiconductor thin films. Multiple experimental studies have been reported in this area. For 

instance, Jha et al. [11] used block copolymer lithography (BCL) to pattern GaAs and to grow 

GaSb. Brammertz et al. [12] selectively grew GaAs films on Ge using SiO2 mask layers. Martin-

Sanchez et al. [13] combined atomic force microscopy and local oxidation nanolithography to 

grow InAs quantum dots on GaAs substrate. Elarde et al. [14] studied preferential sites for 

quantum dots growth of InGaAs/GaAs system using the selective area epitaxy method. Hoshii et 

al. [15] demonstrated that micro selective area growth is an effective way to increase the quality 

of crystal InGaAs on Si substrates using SiO2 patterns. They showed that one could control the 

nucleation process and potentially reduce the number of InGaAs nuclei on Si substrate by using 

very small area regions of Si. Ganesan et al. [16] used SiO2 patterns made by lateral epitaxial 

growth to study growth of InAs film on GaAs substrates using metalorganic chemical vapor 

deposition method. One of the key observations from these studies is that patterns can be utilized 

to control nucleation and growth of islands, as well as their crystallographic orientations. For 

example, in the study of Ganesan et al. [16], who used strip-shaped patterns (trenches), it was 

found that trenches of different sizes can provide an effective way to control the morphology of 

the islands. Specifically, for patterns that are approximately 0.6 𝜇m wide, scattered islands were 
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able to find and coalesce with each other [16], which can lead to reduction in the number of 

nuclei and an improvement in crystal quality [15]. The growth of islands near walls in patterned 

morphologies has been attributed to the effects of overflow growth, which means that an 

additional material is deposited near the walls because it does not stick to the patterned mask and 

flows down along the pattern walls into the trenches [17]. However, it is not clear how this 

contribution from overflow flux interacts with the effects of surface diffusion of the film, lattice 

mismatch between the film and the substrate, and plastic relaxation to produce the final 

morphology of the film. 

Contributions to energy during heteroepitaxial growth of thin films on patterned substrates 

come from strain energy due to the lattice mismatch between the film and the substrate, surface 

energy of the film, and interfacial energy between the film and the walls of the patterns. 

Morphology evolution (formation of islands) and plastic deformation due to formation of 

dislocations are two mechanisms that can relax the energy during such growth. Two main 

mechanisms have been proposed to lead to formation of islands: surface instability due to strain 

energy [18] and dewetting [18,19]. These mechanisms may be active simultaneously during 

heteroepitaxial growth [20]. Surface instability, which is caused by non-hydrostatic stress, is 

referred to as the Asaro-Tiller-Grinfeld-Srolovitz (ATGS) instability [21-23]. In this case, surface 

morphology is determined by the competition between strain energy due to lattice mismatch and 

surface energy, which competition may lead to formation of islands. These islands can 

subsequently coalesce and grow. On the other hand, the dewetting mechanism is driven by 

competition among surface energies of the film and the substrate and their interfacial energy. In 

this paper, I assume there is always a wetting layer between the film and the substrate and 

therefore our focus will be on the effects of the competition between strain and surface energy of 

the film. This assumption is consistent with the Stranski-Krastanov growth mode, which has been 

observed for InGaAs experimentally [24]. The wetting layer in these experiments was reported to 
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vary from a couple of monolayers to several nanometers. In my model I choose an intermediate 

value of 3 nm. An alternative strain relief method is formation of misfit dislocations, which 

usually happens when the film thickness is above a critical limit. Dislocations are mostly formed 

at film-substrate interface and can cause deterioration of electronic properties of the film. Several 

theoretical and experimental studies [25-29] have suggested that both morphological evolutions 

and plastic deformation take place in films above the critical thickness.  

Simulations provide a powerful approach that is complementary to experiments and that 

allows a systematic investigation of the various factors that impact morphological evolution of 

heteroepitaxially grown films. A range of computational tools has been previously employed to 

address different aspects of such growth. These tools include ab-inito methods [30], molecular 

dynamics based on classical force fields [31], kinetic Monte-Carlo [32] and continuum models, 

where the latter ones can be divided into sharp interface [33,34] and diffuse interface models 

[35,36]. In conventional continuum modeling approaches to microstructural evolution, the 

interfaces between different phases (e.g., the film/vapor and film/substrate interfaces) are 

considered to be sharp and consequently it is necessary to define a multi-domain structure to 

model these systems. For each domain one set of differential equations is being solved while the 

constitutive equations and flux boundary conditions have to be satisfied at the interfaces. Hence 

one needs to track explicitly each moving interface, which can be numerically challenging for 

morphologically complex interfaces and for multiphase systems (which contain many interfaces) 

[36,37].  

Each of the aforementioned modeling approaches has its own advantages. Of particular 

interest to the current study are continuum models since they enable simulations of growth on the 

experimental time and length scales [38-40]. One example of using continuum approaches to 

study growth is the study of Tu and Tersoff [40], who modeled the effect of intermixing of the 

deposited material and the substrate on the planar growth of thin films. The critical thickness 
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predicted by their model has a similar dependence on misfit strain as seen experimentally. The 

same authors have also used sharp interface models to investigate island formation and evolution 

of heteroepitaxial systems [39]. They observed morphological changes and alloy intermixing as 

active methods to reduce the free energy of the system. It was also found that there is a strong 

coupling between morphological and compositional evolutions due to surface diffusivity, which 

is the main mass diffusion mechanism implemented in the model in Refs. [39,40]. 

Among diffuse interface approaches, phase field modeling has emerged in recent years as an 

effective numerical tool for studies of film growth. In a phase field model one can capture both 

the thermodynamic effects (e.g., the elastic strain energy and the thermodynamic stability of a 

given phase) and the kinetic effects (e.g., the deposition flux and diffusion) on growth [36,41].  

Phase field models have already been successfully used to study problems related to the ATGS 

instability [33,42-46]. For instance, Eggleston et al. [35] developed a phase field model to 

investigate the growth of thin films on non-patterned and patterned substrates. The patterned 

systems consisted of long and narrow mesas deposited on the substrate. Simulations showed 

formation of wavelike islands due to surface instability of films during the growth. They also 

showed that the presence of mesas causes formation of highly ordered arrays of nanocrystalline 

islands. Interestingly, including anisotropy of the surface energy of the film led to a faster 

occurrence of instability on the film surface. This phenomenon reduced the distance over which 

instability wave travels, causing a reduction in the island ordering. In a different study Wise et al. 

[47] investigated the effects of an inclusion buried in the substrate on the morphology of the film 

during growth. The authors reported the same waviness on the surface as observed by Eggleston 

et al. [35]. It was found that the embedded particle localized the growing islands, leading to the 

idea that strain patterning could be used to increase the ordering of islands. In addition, Wise et 

al. [38] considered the effects of strain energy due to compositional strain and surface energy on 

the morphology of binary alloys. Simulations showed that there is a competition between the 
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surface energy and compositional strain energy, which leads to alignment of segregated phases 

with respect to the film surface. This alignment can be either parallel or perpendicular to the 

surface, depending on the simulation conditions. For large enough compositional strain, phase 

separation is controlled by strain energy and alignment of phases perpendicular to the free surface 

is more favorable. For smaller compositional strain, surface energy dominates the morphological 

evolution, leading to a parallel alignment of the separated phases with respect to the surface. The 

ATGS surface instability has been also studied by Boyne et al. [20], who used phase field to 

simulate heteroepitaxial morphological evolution of Gadolinia-doped ceria films deposited on 

Yttria-stabilized zirconia. The authors considered the effects of confinement (patches) present on 

the substrate. They assumed a constant misfit strain due to lattice mismatch throughout the film. 

Similarly to the previously discussed results, Boyne et al. [20] reported development of wavelike 

ordering in the stress driven instability on the surface of the thin film surface. Instabilities were 

initiated next to the surface patches and it was found that when a misfit stress exists in the 

substrate and in the patches, instability starts more quickly than in the case of stress-free patches. 

However, Boyne et al. [20] did not study the kinetic effect associated with the deposition flux and 

how this deposition flux couples to diffusion. Also the effect of relaxation associated with plastic 

deformation was not investigated in their model.  

In crystalline materials, plastic deformation is mainly due to formation of dislocations. 

Hence, several studies have been reported that couple dislocation plasticity to the phase field 

formation. Dislocations can be introduced into the model either explicitly or through constitutive 

elasto-plastic equations. Explicit models treat dislocations as continuous fields on each slip 

system and couple these fields to phase field variables. The most important advantage of this 

method is that it inherently includes interactions between dislocations. An example of this 

approach was reported in 2001 by Wang et al. [48,49], who studied multi-dislocation system in 

elastically anisotropic crystals. Later on, Hataaja et al. [50] introduced phase field formulation 
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coupled with dislocations as a model for non-equilibrium multiphase systems to simulate the 

dynamics of lattice-mismatched heteroepitaxial films. The authors investigated how dislocations 

can compete with surface instability to relief strain during the film growth. Hataaja et al. [51] 

later developed their model to include the effects of nucleation, interactions and dynamics of 

dislocation. Wang et al. [52] added an extension to the phase field microelasticity to study the 

dislocation dynamics near a free surface in heteroepitaxial thin films. However, there are a couple 

of drawbacks associated with the approach of studying dislocations explicitly. Firstly, one needs 

sub nanometer grid size to model the dislocation cores, which limits the total size of the 

simulation domain. Consequently, while explicit modeling of dislocations has been implemented 

before studying growth of heteroepitaxial thin films, this has been done only for non-patterned 

surfaces. Secondly, different mechanisms for dislocations (other than glide) have not been 

accounted for yet within phase field models, and this is still an active area of research [53]. 

Another approach is to model dislocations implicitly by coupling elasto-plastic constitutive 

equations to the phase field model through plastic strain field. This approach does not require 

very fine grid points and therefore is amenable to simulating larger simulation domains with 

nanopatterns. Flow rule and hardening law in the form of ordinary differential equations need to 

be solved in addition to equilibrium, constitutive and compatibility equations, and one needs to 

add a yield condition to the model. This approach was used by Guo et al. [54] who coupled 

plasticity to a phase field model to study the stress distribution around defects, such as cracks and 

holes. Gaubert et al. [55] developed an elasto-visco-plastic model to study microstructural 

evolution during a creep loading in superalloys. Cottura et al. [53] developed a size dependent 

viscoplastic phase field model to study the rafting of the microstructures. However, this kind of 

approach has not previously been applied to study heteroepitaxial growth on patterned substrates. 

Since I am not interested in lower length scale information about dislocation structures and also 

because of numerical efficiency of this type of method, I choose it for this investigation. 
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Specifically, here I developed a phase field model coupled with elastoplasticity governing 

equations to determine how surface patterning, misfit strain, and plastic relaxation affect 

morphology of thin films. In order to be consistent with typical experimental conditions, I include 

in the model a biased deposition, with statistical non-uniformity of the deposition flux expected 

for patterned substrates [17], and high interfacial energy between the film and the walls of the 

patterns (non-wetting conditions). One of the key questions that I answer with these simulations 

is under what conditions islands can nucleate and grown near the edges of the patterns. Such a 

growth pattern is attractive since it leads to a more uniform island size distribution and a more 

uniform crystallographic orientation of the islands [16]. Another important question I answer is 

under what circumstances small islands coalesce to form a single island across the pattern.  

Again, such single island structures are preferred as they can decrease the density of defects 

[15,56]. The parameters in our study are chosen so that the film has the effective properties of 

InxGa1-xAs, the substrate the properties of GaAs, and the pattern walls the properties of SiO2.  

Elastoplastic phase field model 

In this section I report governing equations, boundary conditions, and the simulation 

parameters used to model heteroepitaxial growth of thin films under the conditions of lateral 

confinements due to surface patterning. I will investigate the effects of misfit strain and plastic 

deformations on morphology of the thin film grown in 0.5 μm-wide pattern under effects of non-

uniform overflow flux and at a constant temperature. Schematic cross-sectional view of the 

patterned substrate with overflow deposition flux is shown in Fig. 4.1a. As shown in Fig. 4.1b, 

the model consists of the substrate (orange), walls of the confining pattern (dark blue), the gas 

phase (light blue) and the film (red). I treat each of these sections as a one-component system 

(one phase), with effective properties of GaAs (for the substrate), SiO2 (for the walls) and InxGa1-

xAs (for the film). The concentration of the growing film varies between c = 0 (representing the 

vapor phase and shown in light blue) to c = 1 (representing the solid phase and shown in red).  
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Fig. 4.1 a) Schematic cross-sectional view of the patterned substrate showing deposition flux non-

uniformity. The distance between two walls is 0.5 μm. Width of SiO2 pattern is also 0.5 μm but is 

not plotted to scale b) Boundaries in the simulation domain: b1 (the lower boundary of the 

substrate), b2 and b3 (outer boundaries of the wall and the substrate), b4 (outer/top boundary of 

the gas phase region), b5 (substrate/film interface), b6 and b7 (interface between wall and 

film/gas). The coordinate system originates at the interface between film and the substrate. 

 

In our simulations, I treat the film as one phase and do not allow for phase separation. This 

assumption is consistent with experimental observation of no phase separation in InGaAs grown 

on GaAs [16]. The wall and the substrate are considered to be in the solid phase with 

concentrations equal to 1. Here, I assume that there is always a wetting layer (called a boundary-

layer [35]) on the substrate. Therefore, the substrate is never exposed to the gas phase and the 

interface between the film and the substrate does not evolve with time. In addition, I assume that 
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the main mass transport mechanism in the film is via surface diffusion, which occurs around the 

film-vapor interface. This is a common assumption for heteroepitaxial growth of thin films [35]. 

Bulk diffusion is ignored in the film, the substrate, and the walls and there is no mass transport 

between these three regions. 

In many experiments, patterns have the form of long strips [15,16]. In our two-dimensional 

simulations I represent such experiments by assuming plain strain conditions. Specifically, the 

pattern wall has an infinite length along the z direction (into the plane of Fig. 4.1). Deposition 

flux has a random perturbation of ±5% in the flux magnitude introduced at each grid point across 

the width of pattern under both uniform and biased deposition conditions to represent the noise in 

deposition process [35]. Random numbers are drawn from a uniform distribution. This 

randomness also provides the perturbation needed to initiate surface instability [35].  

I model the film growth using the phase field method combined with elastoplasticity 

equations. Following Cahn and Hilliard [57] and Allen and Cahn [58] equations, the total free 

energy F of the system can be written in the following functional form 

𝐹 = ∫ (𝑓(𝑐) +𝑊(𝑐) +
𝜀2

2
|∇𝑐|2) dΩ

 

Ω
+ ∮ 𝑓𝑠(𝑐) d𝑙

 

𝐵1
             4-1 

The above total free energy of the system consists of two integrals, and each of them is 

discussed below in detail. In the first integral on the right hand side (rhs) of Eq. (4-1), 𝛺 

represents the cross-sectional area of the entire system, c is the concentration (density). ε2 is the 

gradient energy coefficient. Following the formulation developed by Egglestone et al. [35], 

anisotropic interfacial energy between film and gas is defined as 

𝜀(𝜃) = 𝜀0(1 + 𝜀4cos (4𝜃))               4-2 

where 𝜀0 is the gradient energy constant, 𝜃 is the angle between the normal to the contour of 

constant concentration and the x axis and 𝜀4 is a constant between 0 to 1, which determines the 
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degree of anisotropy. The variation of 𝜀4 with distance from the substrate has been adopted from 

Egglestone et al. [35]. 

In the first integral on the rhs of Eq. (4-1), 𝑓 is the free energy density and it is a function of 

concentration. I use a double-well potential, 𝑓1, for the free energy density function in the film. In 

the substrate and the walls, I use a single-well potential, 𝑓2 , to restrict their evolution [20]. 

Specifically,  

𝑓1(𝑐) =
1

4
𝑤0𝑐

2(1 − 𝑐)2                4-3 

𝑓2(𝑐) =
1

4
𝑤0(1 − 𝑐)

2                4-4 

where w0 represents the barrier height of the single and double-well functions representing the 

local free energy density. Symbol 𝑊 in Eq. (4-1) has contributions from elastic and plastic energy 

densities, which are defined as 

𝑊(𝑐) = 𝑊𝑒𝑙(𝑐) +𝑊𝑝𝑙(𝑐)               4-5 

where 𝑊(𝑐) is the total work, 𝑊𝑝𝑙(𝑐) is the plastic work  

𝑊𝑝𝑙(𝑐) = ∫ 𝜎𝑖𝑗 𝑑𝑒𝑖𝑗
𝑝𝑙𝑒𝑝𝑙

0
               4-6 

𝑒𝑖𝑗
𝑝𝑙 is plastic strain tensor and 𝜎𝑖𝑗 is the Cauchy stress tensor. 𝑊𝑒𝑙(𝑐) is the elastic work given 

as 

𝑊𝑒𝑙(𝑐) =
1

2
𝜎𝑖𝑗 𝑒𝑖𝑗

𝑒𝑙                4-7 

where 𝑒𝑖𝑗
𝑒𝑙 is an elastic strain tensor, which can be given as  

𝑒𝑖𝑗
𝑒𝑙 = 𝑒𝑖𝑗

𝑡𝑜𝑡 − 𝑒𝑖𝑗
∗ − 𝑒𝑖𝑗

𝑝𝑙               4-8 
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where 𝑒𝑖𝑗
𝑡𝑜𝑡 is the total strain and 𝑒𝑖𝑗

∗ is the eigenstrain associated with the difference between 

lattice parameters of the film and the substrate. Assuming a linear strain displacement 

relationship, the total strain can be written as 

𝑒𝑖𝑗
𝑡𝑜𝑡 = 

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)                4-9 

where 𝑢𝑖,𝑗 is the derivative in the j direction of the displacement in i direction. Total strain is 

calculated by solving the mechanical equilibrium (Cauchy-Navier) equation 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
= 0               4-10 

Following Egglestone et al.[35] eigenstrain in our model is defined as 

𝑒𝑖𝑗
∗ = 

1

2
 𝑒𝑓̂ (1 + 𝑓𝐵𝐿(𝑦)) 𝛿𝑖𝑗             4-11 

where 𝛿𝑖𝑗 is kreneckar delta and 𝑓𝐵𝐿 is the boundary layer function of the same form as in Ref. 

[35]  𝑒𝑓̂ is the lattice mismatch which is given by 

𝑒𝑓̂ =
𝑎𝑓𝑖𝑙𝑚 −𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
              4-12 

To find the plastic strain tensor I need to define a yield function, a flow rule and a hardening 

rule. Here, I use J2 plasticity (Von-Mises criteria) with the yield function  

𝐹(𝜎𝑖𝑗, 𝜎𝑌) = 𝜎𝑚𝑖𝑠𝑒𝑠 − 𝜎𝑌 ≤ 0             4-13 

where F is the yield function, 𝜎𝑌 is the current yield stress, and 𝜎𝑚𝑖𝑠𝑒𝑠 is the Von-Misses stress. 

For isotropic hardening, flow rule is given by  

𝑒̇𝑖𝑗
𝑝𝑙 = 𝜆

𝜕𝐹(𝜎𝑖𝑗,𝜎𝑌)

𝜕𝜎𝑖𝑗
              4-14 
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where 𝑒̇𝑖𝑗
𝑝𝑙 is plastic strain rate and 𝜆 is plastic multiplier, which is a positive number. For the 

film and the substrate materials I assume a linear work hardening, which can be written 

mathematically as 

𝜎𝑌 = 𝜎𝑌0 + 𝜎ℎ               4-15 

where 𝜎𝑌0 is the initial yield stress and 𝜎ℎ is the work hardening function 

𝜎ℎ = 𝐸𝑡 ∙ 𝑒
𝑝𝑙               4-16  

where 𝐸𝑡  is tangential Young’s modulus. This value was measured for InGaAs layers to be 

approximately 20% of the Young’s modulus [59] of InGaAs. Since 𝐸𝑡 was not measured for the 

entire range of compositions, I assume this value to be a reasonable approximation for all 

compositions I study. 

The second integral on the rhs of Eq. (4-1) corresponds to surface and interfacial energies on 

𝐵1, where 𝐵1 represents the interface between the film and the walls (b6 and b7 in Fig. 4.1b). 𝑓𝑠 

stands for the difference between interfacial energy densities for the film/wall and vapor/wall 

interfaces. There is a convenient way to include the term fs into the model, which was first 

introduced by Cahn [60] and later used by Wise et al. [38,61] . Specifically, 

𝑓𝑠(𝑐) = 𝑠1𝑐               4-17 

where 𝑠1 is a positive constant. Eq. (4-17) assumes that 𝑓𝑠 is linearly dependent on concentration 

of the nearby phase. Higher values of 𝑠1  correspond to more non-wetting conditions at the 

interface. The approximation given in Eq. (4-17) has been shown to be in agreement with the 

nearest-neighbor bond counting approximation [38,61], in which the surface/interfacial energy is 

calculated based on energy contributions from broken bonds at that surface/interface. To my 

knowledge, the interfacial energy between InxGa1-xAs film and the SiO2 wall has not been 

measured experimentally. However, experimental observations [16] imply non-wetting conditions 
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at such interface. Therefore in our simulations I will use s1 = 0.03, which corresponds to an 

interfacial energy that is high enough to produce non-wetting conditions in our simulations. The 

interfacial energy between InxGa1-xAs film and the GaAs substrate is assumed to be negligible. 

The interfacial energy between InxGa1-xAs film and the vapor will be defined later. 

The different boundaries present in these simulations are defined in Fig. 4.1b. I use the 

displacement and/or traction vectors to define boundary conditions. I assume that the 

displacements vanish at the lower boundary of the substrate (b1). The outer boundaries, b2 and 

b3, are also kept fixed (zero displacements) while the top boundary of the gas phase region (b4) is 

assumed to be traction free. Since the growing film is very thin, I assume that the traction vector 

at b5 is also zero. The displacement and the traction vectors are continuous across the boundary 

b5. The traction, which the elastic walls exert on the film, is proportional to the displacement 

along the x direction of the boundaries b6 and b7. In addition, the traction vector is continuous 

across the wall/film boundaries, b6 and b7. The x component of displacement vector ux is 

continuous across the boundaries b6 and b7, while the y component uy of displacement field is not 

in order to enable the film to climb up the wall in case it is favorable.  

In this model concentration (c) is a conserved field variable. Concentration evolves according 

to the mass conservation equation 

𝜕𝑐

𝜕𝑡
= −∇. 𝐽 +  𝐽𝑑𝑛𝑦              4-18 

where J is the density flux, which can be related to the gradient of variational derivative of the 

free energy density functional as  

𝐽 = −𝑀(𝑐)∇
𝛿𝐹

𝛿𝑐
= −𝑀(𝑐)∇ (

𝜕𝑓

𝜕𝑐
+
𝜕𝑊𝑒𝑙

𝜕𝑐
+
𝜕𝑊𝑝𝑙

𝜕𝑐
− ∇. (𝜀2∇𝑐) +

𝜕

𝜕𝑥
(𝜀

𝑑𝜀

𝑑𝜃

𝜕𝑐

𝜕𝑦
) −

𝜕

𝜕𝑦
(𝜀

𝑑𝜀

𝑑𝜃

𝜕𝑐

𝜕𝑥
))      4-19 

where 
𝛿

𝛿𝑐
 is variational derivative. The plasticity driving force on concentration field is 

𝜕𝑊𝑝𝑙

𝜕𝑐
. 

Since the majority of the plastic work in crystalline systems is released as heat, I assume that the 
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effect of plastic work as driving force for evolution of the concentration filed is negligible. 𝑀(𝑐) 

is the mobility, which depends on the concentration in the following way 

𝑀(𝑐) =  𝑀𝑠𝑐
2(1 − 𝑐)2              4-20 

where 𝑀𝑠 is the surface mobility. In Eq. (4-18),  𝐽𝑑 is the deposition flux and 𝑛𝑦 is the vertical 

component of the surface normal.  𝐽𝑑 is defined as [35] 

 𝐽𝑑 = 𝑉𝑑𝐴0 𝑅0 𝑐
2(1 − 𝑐)2 𝐾(𝑥)             4-21 

where 𝑉𝑑 is the surface velocity (growth rate) due to deposition, 𝑅0 is a random number between 

0.95 to 1.05, and 𝐴0 =
6

𝛿
, where 𝛿 is the interfacial thickness.  The function 𝐾(𝑥) = (126 − 125 ∙

𝐻(𝑥 − 2) + 125 ∙ 𝐻(𝑥 − 498))  describes the overflow flux, where 𝐻(𝑥)  is the Heaviside 

function. The parameters of the K(x) function correspond to the mesh of 500 elements, each 

element being 1 nm wide. The overflow flux is added to 2 mesh elements on each side of the 

pattern. The width of the masked substrate between two trenches is also 500 nm. I assume that the 

entire material deposited on the mask flows into the two adjacent trenches (half of the deposited 

material flows into each trench). The additional flux of 250 nm is added within the 2 nm distance 

near each wall. I evaluated that the additional flux effectively leads to an increase of the flux by 

125 times as compared to the deposition flux inside the trench.  

Combining Eqs. (4-18) and (4-19), one can derive the following Cahn-Hilliard equation [62] 

𝜕𝑐

𝜕𝑡
= ∇. [𝑀(𝑐)∇ (

𝜕𝑓

𝜕𝑐
+
𝜕𝑊𝑒𝑙

𝜕𝑐
− ∇. (𝜀2∇𝑐) +

𝜕

𝜕𝑥
(𝜀

𝑑𝜀

𝑑𝜃

𝜕𝑐

𝜕𝑦
) −

𝜕

𝜕𝑦
(𝜀

𝑑𝜀

𝑑𝜃

𝜕𝑐

𝜕𝑥
))] +  𝐽𝑑𝑛𝑦       4-22  

Note that in this work, the coupling between plasticity and microstructure evolution is only 

through the elastic driving force, which is an approach often taken in the literature [55]. 

As shown in Eq. (4-1) and Eq. (4-19), the phase field model is coupled to the elastic energy 

of the system. This coupling is implemented by solving Cauchy-Navier equations (Eq. (4.10)) in 

two dimensions simultaneously with the Cahn-Hilliard equation (Eq. (4.22)) to find the 
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displacement and concentration fields at each time step of the simulation. Since I have a 2-D 

model, all energies in the model are defined per unit of length along the z direction. I wrote the 

phase field code using the commercial software, COMSOL, which solves systems of partial 

differential equations using finite element method. The total dimensions of the model are 

500×180 grid points, with more grid points along the x direction. I use a non-uniform mesh along 

the y direction with a more refined mesh size (~1 Å) near the substrate and coarser mesh size (~1 

nm) in the gas phase away from the substrate.  

In the model I assume homogenous and cubic elastic constants for the film and the substrate 

while isotropic elastic constants has been used for the walls. The elastic constants, yield strength, 

surface energy, diffusion coefficient and growth conditions for different indium concentrations 

are listed in Table 4.1. 

 

Table 4.1 Elastic constants, yield strength, surface energy, diffusion coefficient and growth 

conditions for different indium concentrations. 

Input parameters Substrate 

(GaAs) 

Film  (InxGa1-xAs) 

Concentration x 0 0.1 0.25 0.5 0.75 1 

C11 (GPa) 118.8 

[63] 

115.2 109.9  101.1 92.2  83.4 [63] 

C12 (GPa) 53.4 [63] 52.6 51.4  49.4 42.5  45.4 [63] 

C44 (GPa) 59.6 [63] 57.6 54.6  49.5 44.5  39.5 [63] 

Yield strength 𝜎𝑌0 (GPa) 5 [59] 5.5 [59] 5.5 [59] 4.5 [59] 3 [59] 2.5 [59] 

Surface energy 𝛾 (J m-2) 0.714 

[63] 

0.712 0.710  0.706 0.703  

0.699 

[63] 
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Elastic constants, surface energy and diffusion coefficients for pure GaAs and InAs are found 

from Refs. [63-65], as indicated in Table 4.1. I use a linear interpolation between compositions x 

= 0 and x = 1 to find the properties for InxGa1-xAs for different indium concentrations. The yield 

stress of InGaAs, which is an input parameter to our model, is extracted from Korte et al. [59] 

The interfacial energy 𝛾 and interfacial thickness 𝛿 are related to gradient energy coefficient 𝜀0
2 

and the barrier height of the double-well function w0 through 𝛾 =
𝜀0

6
√
𝑤0

2
 and 𝛿 = 𝜀0√

2

𝑤0
 (see for 

instance Ref. [35]). The interfacial thickness is assumed to be about 5 Å and the grid size near the 

substrate is about 1 Å. From the expression for the interfacial thickness and interfacial energy, I 

calculate w0 to be 1.75 ×109 J m-3. To describe anisotropic interfacial energy, I accepted the 

formulation developed by Egglestone et al. [35], where gradient energy coefficient 𝜀0
2  is 

calculated and shown in Table 4.1 for different indium concentrations. The anisotropic gradient 

energy coefficient is assumed to vary with thickness as derived in Egglestone et al. [35] The 

surface mobility Ms depends on surface diffusion coefficient D0 through 𝐷0 = 𝑀𝑠𝑅𝑇, where T is 

temperature and R is gas constant. Ms is assumed to be 4.36×10-18 m5 J-1 s-1 for InAs and 3.54×10-

20 m5 J-1 s-1 for GaAs, which corresponds to surface diffusivity of 1×10-6 cm2 s-1 and 1×10-7 cm2 s-

1, respectively [63,65]. Growth temperature T is set to 650 ℃. Growth rate is assumed to be 1 

nm/s. The simulation parameters are normalized in the following way. I use l* as the 

characteristic length (taken to be 1 nm), e* as the characteristic energy density (taken to be 1010 J 

Gradient energy 

coefficient 𝜀0
2 (nJ m-1)  

- 2.137 2.131  2.119 2.108  2.097  

Lattice mismatch (%) 0 0.71  1.79  3.58  5.37  7.17  

Diffusion coefficient 

𝐷0(cm2 s-1) 

1×10-7 

[64] 

1.9×10-7 3.25×10-7  5.5×10-7 7.75×10-7  

1×10-6 

[65] 
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m-3) and t* as the characteristic time (chosen to be 10-8 s).  Using these dimensionless parameters, 

I define other dimensionless quantities, which are free energy density (𝑓∗ =
𝑓

𝑒∗
), elastic moduli 

(𝐶𝑖𝑗
∗ =

𝐶𝑖𝑗

𝑒∗
), strain energy density (𝑊∗ =

𝑊

𝑒∗
), gradient energy coefficient (𝜀∗2 =

𝜀2

𝑙∗2.𝑒∗
), mobility 

(𝑀∗ =
𝑀𝑠𝑡

∗.𝑒∗

𝑙∗2
) and deposition flux rate (𝐽𝑑

∗ = 𝑡∗.  𝐽𝑑). I can also write a dimensionless form of 

the Cahn-Hilliard equation  

𝜕𝑐

𝜕𝑡̂̂
= ∇. [𝑀∗(𝑐)∇ (

𝜕𝑓∗

𝜕𝑐
+
𝜕𝑊𝑒𝑙∗

𝜕𝑐
− ∇. (𝜀∗2∇𝑐) +

𝜕

𝜕𝑥
(𝜀∗

𝑑𝜀∗

𝑑𝜃

𝜕𝑐

𝜕𝑦̂
) −

𝜕

𝜕𝑦̂
(𝜀∗

𝑑𝜀∗

𝑑𝜃

𝜕𝑐

𝜕𝑥
))]  +  𝐽∗𝑑𝑛𝑦      4-23 

where the ∇ symbol here represents a gradient with respect to non-dimensional variables 𝑥 and 𝑦̂. 

Simulations are performed for the total time of 5×107, 1×108 and 5×108 simulation steps ∆t, 

where ∆t = 10-8 s. I report time in seconds, but one can convert seconds to time steps by dividing 

the simulation time by ∆t. The total time of the simulations was chosen so that the total energy 

variation between last two time steps is less than 1×10-6 percent of the total energy, indicating 

very small change in the morphology. 

Results 

I report results of phase field simulations of heteroepitaxial growth of thin films on patterned 

substrates coupled with elastoplastic governing equations, with parameters corresponding to the 

InxGa1-xAs/GaAs systems with SiO2 patterns. Our goal is to determine how patterns control the 

morphology of islands during growth. More specifically, I identify conditions leading to the 

island growth near the walls of the SiO2 patterns and conditions under which a single island 

grows away from the walls. I investigate how the morphology of the growing film is affected by 

the lattice mismatch between the film and the substrate and also I study the role of plastic 

relaxation in the film on morphology. The model includes a biased deposition flux and high 

interfacial energy between the film and confining walls of the pattern, to emulate experimental 

conditions. Although plastic relaxation is allowed in this model for all In concentrations in the 
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InxGa1-xAs/GaAs alloy, I found that it occurs only for In concentrations higher than 0.4. Therefore 

I break up the discussion of our results into the low- ( < 0.4) and high- ( > 0.4) In concentration 

regimes. 

Here I investigate the effect of misfit strain on the morphology of the islands across the 

pattern. It is of particular interest to know under what condition islands coalesce to make a single 

nucleus and when they form multiple nuclei. For instance, as discussed in the introduction, 

experimental observations have shown the existence of the overflow flux near the walls [17] and 

the question arises whether this overflow flux will always lead to formation of islands near the 

edges of the patterns or whether it competes with other equally strong effects on film 

morphology.  

First I study growth of In0.1Ga0.9As film on GaAs substrate with SiO2 confining walls. This 

model includes the effect of the overflow flux, which means that effectively there is a higher local 

deposition of material near the walls. Under experimental conditions, deposition flux is actually 

uniform throughout the entire patterned sample. However, since the deposited material does not 

form strong bonds with the SiO2 mask, it does not grow on top of the mask. This behavior was 

demonstrated experimentally for example during InAs growth on patterned GaAs substrate, 

where the deposited material was growing in the trenches only [16,17]. As a result, the material 

initially deposited on SiO2 flows down the walls toward the substrate and the film growing on top 

of it. This idea is schematically shown in Fig. 4.2a.  To estimate the flux near the walls, I assume 

the trenches are equally spaced and separated by 0.5 μm-wide SiO2 mask. Under these conditions, 

the overflow material deposited near each wall is equal to half of the material deposited on top of 

the SiO2 mask. I assume that this additional flux is spread over a distance of two finite element 

mesh grids in our simulations, which corresponds to a physical distance of 2 nm. The results of 

phase field simulations at different times during for growth with x = 0.1 In concentration are 
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shown in Fig. 4.2. This low indium concentration (with a corresponding lattice mismatch of 0.71 

%) does not cause any instability in the initial flat film, except for near the edges due to 

unfavorable interfacial energy between the film and the walls as shown in Figs. 2a-b. During 

further deposition of material, I observe only two relatively symmetric islands that are wide 

enough to spread between the edge and the center of the pattern. The wide spreading of the 

islands is possible due to the relatively low cost in the strain energy. The ratio of strain energy to 

total energy (which consists of surface and strain energies) after 10-5 s is 1.7% while this ratio 

increases to 7.8% after 5 seconds. Strain energy is increased due to deposition of additional 

strained material (where strain is caused by lattice mismatch between deposited film and the 

substrate) while the surface energy is slightly decreased. No plastic relaxation was observed 

during these simulations. One should note, however, that plastic deformation might occur at later 

stages of growth when the islands continue to grow and coalesce into a continuous film within the 

trench. 
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Fig. 4.2 Growth of In0.1Ga0.9As/GaAs inside a SiO2 pattern is shown in plots (a)-(d). Overflow 

deposition flux causes formation of two wide islands across the pattern. 

 

The results of simulation for In0.25Ga0.75As/GaAs are presented in Fig. 4.3. Except for the 

parameters that depend on In concentration (see Table 4.1), such as elastic properties, yield 

strength and surface diffusion coefficient, all other parameters are kept the same as the results for 

In0.1Ga0.75As/GaAs reported in Fig. 4.2. Starting from a flat thin film, I find that perturbations in 

the growing film first form near the walls as shown in Fig. 4.3a-b. The same phenomenon was 

reported by Boyne et al. [20] who studied heteroepitaxial growth of Gadolinia-doped ceria on 

Yttria-stabilized zirconia with patches (confinement) present on the substrate. After 0.1 s, 

perturbations due to ATGS instabilities are extended throughout the entire trench (see Fig. 4.3c). 

The critical wavelength expected based on the linear elasticity theory for infinite films [21] is 84 

nm, while the wavelength measured in our simulation is 91 nm. This difference can be attributed 
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to the effect of surface patterning, since the width of the pattern needs to accommodate an integer 

number of wave peaks and valleys. Since there is a wetting layer on the substrate, dewetting does 

not play any role in our simulations. In Fig. 4.3d, one can see that small islands are formed due to 

the coalescence of surface instabilities. Biased deposition flux causes faster growth rate of islands 

near the walls and once these islands are large enough, they absorb other small islands as shown 

in Fig. 4.3e. These two islands keep growing as long as I deposit the material as demonstrated in 

Fig. 4.3f. During the growth, strain energy of the system increases from 4.41×10-8 J/m after 10-5 s 

to 12.86×10-8 J/m after 5 s due to the deposition of additional strained material. Relatively slow 

surface diffusion (as compared to the deposition flux) combined with the effects of biased 

(overflow) flux are the most important reasons preventing coalescence of the two islands into a 

single island. It is easy to see that the islands in Fig. 4.3f for 0.25 In concentration have a similar 

size (length: ~130 nm, height: ~38 nm) and that the length of each island is much smaller than 

length of islands formed in the case of concentration x = 0.1 In concentration shown in Fig. 4.2d 

(length: ~250 nm, height: ~25 nm). Comparing the size of islands in these two cases shows that 

alloys with higher In concentration reduce their elastic energy by reducing the contact area with 

the substrate and by growing taller islands at the expense of increased surface energy.  
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Fig. 4.3 Growth of In0.25Ga0.75As/GaAs inside a SiO2 pattern is plotted in a-f. ATGS instability 

occurs across the pattern. Small islands coalesce to form two islands near the walls driven by the 

effects of overflow flux. 

 

In Fig. 4.4a I plot Von-Mises (effective) stress in the In0.25Ga0.75As/GaAs system after 5 s of 

growth. I find that due to formation of the ATGS instabilities, stress in the film that was high at 

the early stages of growth, is now relaxed. The stress is more relaxed near the top of the islands 
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whereas it is still concentrated at the corners of each island (see Fig. 4.4a). Since the yield 

strength of the material is higher than the effective stress in the simulations, yielding does not 

take place. It is instructive to consider the different components of stress along the AB line. As 

shown in Fig. 4.4b, all the components of the stress tensor are zero in the gas phase due to zero 

elastic constants while there are nonzero components of stress present both in the film and the 

substrate. The shear stress σxy is zero both in the substrate and the film along the AB line, but I 

found it to be finite at the corners of the islands. σyy is tensile everywhere and its magnitude 

decreases monotonically from 0.3 GPa at the interface between film and the substrate to around 

zero near the top of the island. The most important component of the stress, σxx, is tensile in the 

substrate but it suddenly becomes compressive in the film. By moving away from the film-

substrate interface, σxx becomes less compressive until it becomes slightly tensile at the top of the 

island. The presence of tensile stress at the top of the island has been reported in the literature 

[66-68]. Von Mises stress has its largest magnitude (about 1.8 GPa) at the film-substrate interface 

while it decreases to 1.6 GPa at the top of the islands and suddenly drops to zero in the gas phase. 

The variation of strain components along AB line is plotted in Fig. 4.4c. The eigenstrain is zero in 

the substrate and also in the gas phase, while it has a constant value across the film. Elastic strain 

εxx on the other hand, changes from compressive at the film-substrate interface to tensile at the 

top of the island. As expected, the total strain is always a sum of elastic strain and eigenstrain.   

Analysis of the above results for two different low In concentrations shows that biased 

deposition plays an important role in formation of islands near the walls. For both concentrations, 

only elastic relaxation was present during growth. The effects of plastic relaxation on film 

morphology (present in films with higher In concentrations) are discussed in the next section. 
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Fig. 4.4 a) Von Mises stress contour after 5×108 simulation steps.  Maximum Von Mises stress is 

3.56 GPa. Yield strength equals to 5.5 GPa. Current flow strength is 5.5 GPa. Stresses below 0.05 

GPa are shown in white. b) Von Mises stress (σVM - black) and components of stress tensor (σxx – 

blue, σyy – green, σxy – red). c) Strain components: ε_tot (blue) is the total strain in x direction, 

εxx (green) is elastic strain in x direction and ε* (red) is the eigenstrain of In0.25Ga0.75As/GaAs 

inside a SiO2 pattern along AB line. Dashed lines in plots b and c separate substrate, gas and the 

film. 

 

I now investigate the effect of further increase of In concentration on the morphology of a 

heteroepitaxially grown films. For concentrations of In higher than 0.4 I observe plastic 

relaxation in our simulations and I investigate the effect of plastic relaxation on the film 

morphology.  

I first study growth of In0.5Ga0.5As on GaAs substrates. Again, all the other parameters that do 

not depend on In concentration were kept constant in the model. By increasing the indium 

concentration (x), the lattice mismatch between the film and GaAs substrate increases (see 

Table 4.1) and so does the accumulated stress. When the effective stress rises above the yield 

strength of the film, plastic deformation takes place, which partially relaxes the elastic strain and 

subsequently reduces strain energy of the film. As discussed in Sec. 4.4.1, for the case of 

In0.25Ga0.75As (x = 0.25) on GaAs I found that the deposited material formed two islands at the 

walls (see Fig. 4.3). For comparison, in Fig. 4.5, I show the results of growth simulations for 

In0.5Ga0.5As/GaAs (x = 0.5) inside the SiO2 patterns. Similarly as in the case of x = 0.25, here I 

find that perturbations initiate at the edges of the trenches near the wall (see Figs. 5a-b). The ratio 

of elastic energy to the total energy is 28.8% after 10-4 s. This ratio drops to 24.5% after 10-3 s due 

to the formation of instabilities on the surface (Fig. 4.5c), which partially relaxes the strain energy 
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density. These instabilities grow into isolated islands and they are able to coalesce as shown in 

Figs. 5d-e. This coalescence causes further reduction in the ratio of elastic to total energy to 22% 

after 106 and 21.8% after 0.1 s. In this case, the maximum value of the effective plastic strain is 

0.1% while the eigenstrain is about 3.5%. Interestingly, during further deposition, all the islands 

coalesce and form one big island away from the walls as shown in Fig. 4.5f. The plastically 

deformed region has grown in size at the corners of the large island and the magnitude of the 

maximum value of plastic strain is 3% (see Fig. 4.5g). Partial relaxation due to plastic 

deformation leads to a slight decrease in the ratio of elastic to total energy, which is now 21.5% 

after 0.18 s. Further deposition of strained material increases this ratio again to 26.1% after 1 s 

(due to deposition of strained material). There are two qualitative differences in the final 

morphologies of In0.5Ga0.5As as (Fig. 4.5f) and of In0.25Ga0.75As (Fig. 4.3f): (i) There is only one 

island formed for the case of x = 0.5 whereas there are two islands for x = 0.25; (ii) For x = 0.5 

the island forms in the middle of the pattern whereas for x =0.25 the islands form near the edges. 

Formation of one island instead of two reduces the area of the interface between the strained film 

and the substrate. For the case of x = 0.5 the driving force for strain relaxation is higher (because 

of the higher misfit strain). In addition, for x=0.5 surface diffusivity of In0.5Ga0.5As is about 70% 

higher than surface diffusivity of In0.25Ga0.75As. Hence, small islands are able to coalesce before 

the deposition flux can grow islands near the walls. The effects of high surface diffusivity can 

also explain the second difference in morphology. Islands across the pattern find each other and 

coalesce due to high surface diffusivity. Once the islands grow in size, they cannot easily move 

since they can only move through surface diffusion of the material. I have performed 9 separate 

simulations for the case of x = 0.5, where I changed the random seed for the deposition flux. 

Although the exact position of the final island varies among these simulations, the qualitative 

conclusion that the island grows away from the walls is valid for all these simulations. 
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Fig. 4.5 Growth of In0.5Ga0. 5As/GaAs inside a SiO2 pattern is depicted in plots a-f. ATGS 

instability happens across the pattern. Small islands coalesce and form one big island, away from 

the walls. Plastically deformed regions for plot f is shown in plot g. 

 

This result demonstrates that overflow flux alone is not enough to grow islands near the 

edges. It competes with the effect of elastic energy and also plastic strain relaxation. 

In Table 4.2, I compare the energetics associated with the growth of In0.25Ga0.75As (x = 0.25), 

studied Sec. 4.4.1 (and plotted in Fig. 4.3) to the growth of In0.5Ga0.5As (x = 0.5) on GaAs shown 

in Fig. 4.5. The first two columns in the table show the energetics for In0.25Ga0.75As at the initial 

step and after 1 s of simulations. The last two columns of the table show the corresponding 

energetics for In0.5Ga0.5As. Initially, the total energy of In0.25Ga0.75As /GaAs system is 73.74×10-8 

J/m and the total energy of the In0.5Ga0.5As /GaAs system is 79.88×10-8 J/m. After 1 s, the total 

energy of these systems is 44.72×10-8 J/m and 55.74×10-8 J/m, respectively. Hence one can see 

that for the higher indium concentration the reduction of the total energy (30.22%) is slightly 

smaller than the reduction of 39.35% for lower indium concentration. For both systems, the 

largest contribution of the total energy comes from surface and interfacial energies. This 

contribution is 86% for In0.25Ga0.75As /GaAs (x = 0.25) and 73% for In0.5Ga0.5As /GaAs (x = 0.5). 

Surface and interfacial energies for both cases (x = 0.25 and x = 0.5 In concentration) are very 

close at the initial and the final simulation time (the difference is smaller than 6%) while 

relatively large differences are observed in strain energies. Specifically, in In0.25Ga0.75As the strain 

energy increases from 2.49×10-8 J/m at the beginning of simulation to 6.17×10-8 J/m after 1 s. The 

same qualitative trend is also found for In0.5Ga0.5As, but with a smaller relative increase. Plastic 

energy is zero at the beginning for both In0.25Ga0.75As/GaAs and In0.5Ga0.5As/GaAs systems. After 

1 s, this energy remains zero for x = 0.25 system while it is 0.31×10-8 J/m for x = 0.5, as shown in 

Table 4.2. 
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Table 4.2 Energy comparison between In0.25Ga0.75As and In0.5Ga0.5As thin films grown on GaAs. 

Surface energy refers to the energy of the film surface in contact with the gas phase. Interface 

energy refers to the energy between film and the walls. 

Composition In0.25Ga0.75As In0.5Ga0.5As 

Time (s) 0 1 0 1 

Surface and interface 

energy (10-8 J/m) 

71.25 38.54 70.87 41.19 

Strain energy (10-8 J/m) 2.49 6.17 9.01 14.55 

Plastic energy (10-8 J/m) 0 0 0 0.31 

Total (elastic + plastic + 

interfacial) energy (10-8 

J/m) 

73.74 44.72 79.88 56.05 

 

To bring further insights into the effect of lattice mismatch and plastic relaxation on film 

morphology I have simulated growth of alloys with higher In concentrations. For x=0.75, I see 

trends in morphology that are qualitatively similar to those for x = 0.5 shown in Fig. 4.5, 

specifically, instabilities start near the walls, spread throughout the pattern, islands form and 

coalesce into a single island in the middle of the pattern. Higher In concentration reduces the 

wavelength of ATGS instabilities, which is 20 nm for x = 0.75 and 29 nm for x = 0.5 (Fig. 4.5c). 

Another difference is that for x=0.75, plastic deformation begins in the film early on (at t = 

1×103) and generally plastic strain is larger. Hence it is instructive to analyze the stress and strain 

the film. Von Mises stress for In0.75Ga0.25As/GaAs after 0.16 s is shown in Fig. 4.6a. The stress in 

the thin film introduced by lattice mismatch is relaxed both by formation of instabilities and by 

plastic deformation. In this case, the flow strength in the film increases from the initial value of 
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3.5 GPa to value of 4.91 GPa at 0.16 s. It is worth pointing out that the GaAs substrate is also 

allowed to deform plastically. However, the effective stress never reaches that yields strength of 5 

GPa and therefore such relaxation does not take place in the substrate. Different components of 

stress along AB line are plotted in Fig. 4.6b. Since the AB line cuts through the middle of an 

island, shear stress σxy is zero both in the film and the substrate. σyy is tensile in substrate but 

reduces gradually and remains slightly compressive at the top of the island. σxx is tensile in the 

substrate with the highest magnitude near the film substrate interface, and it abruptly switches to 

compressive in the film. In addition, the magnitude of σxx shows a small drop in the film near the 

substrate. The same behavior is observed for Von Mises stress. This drop in stress is the result of 

plastic relaxation and it has not been observed in Fig. 4.4b for a lower In concentration of x = 

0.25. Strain components corresponding to the growth stage in Fig. 4.6a are plotted in Fig. 4.6c. 

Similarly to Fig. 4.4c, eigenstrain is constant across the film while it remains zero both in the 

substrate and gas. Plastic strain causes partial relaxation of elastic strain near the film-substrate 

interface while no plastic deformation occurs by moving away from the interface. Plastic strain 

remains zero both in the substrate and the gas phase. Elastic strain εxx, which is partially relaxed 

near the film-substrate interface, keeps increasing along AB line and it becomes tensile at the top 

of the island. 
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Fig. 4.6 a) Von Mises stress contour after 1.6×107 steps. Maximum Von Mises stress is 4.45 GPa. 

Initial yield strength equals to 3.5 GPa. Current flow strength is 4.45 GPa. Stresses below 0.1 

GPa are shown in white,  plastically deformed region is plotted in magenta. A small section of the 

pattern showing the stress in the island is magnified  b) Von Mises stress (σVM – black) 

components of stress tensor (σxx – blue, σyy – green, σxy – red). c) ε_tot (blue) is the total strain in 

x direction, εxx_el (green) is elastic strain in x direction, εxx_pl (green) is plastic strain in x direction, 

and ε* (red) is the eigenstrain of In0.75Ga0.25As/GaAs inside a SiO2 pattern along AB line. Dashed 

lines in plots b and c separate substrate, gas and the film. 

 

Finally, in Fig. 4.7 I show simulation results for growth of InAs/GaAs substrate on SiO2 

patterned surface. The film has a very large lattice mismatch with the substrate (~7%), which 

causes a large compressive stress σxx in the film. The initial yield strength of InAs is assumed to 

be 2.5 GPa [59], which leads to an instantaneous yielding in the film. Relatively large plastic 

strain (~3%) throughout the entire flat film reduces the elastic strain εxx and subsequently stress 

σxx. Hence the ATGS instability is suppressed in the film as shown in Fig. 4.7a-b. However, high 

interfacial energy between the film and the walls generates instabilities near the walls shown in 

Fig. 4.7b. These instabilities start to grow and form islands due to the effects of the overflow 

deposition flux (Fig. 4.7c-d). Due to the high misfit strain, I find that the plastic deformation 

extends throughout the entire flat film and throughout the entire islands. Maximum plastic strain 

measured at a given time increases from 3% after 1×102 to 7% after 0.1 s. Experimental growth 

of InAs on GaAs substrates in 0.6μm wide trenches with deposition flux of 1 nm/s revealed 

formation of random islands across the pattern while these islands coalesce and form a single 

nucleus[16] during growth in addition to small islands witch exist near the walls in some cases. 

Our results for high In concentration alloys which are done under growth conditions similar to the 

experiments (e.g. growth temperature, flux rate, width of the pattern) are in a qualitative 
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agreement with experimental studies by Ganesan et al. [16] on InAs/GaAs systems where the 

randomly nucleated islands across the pattern coalesce to form a single nucleus inside the pattern. 

 

Fig. 4.7 Growth of InAs/GaAs inside a SiO2 pattern are shown in a-d. No ATGS instability 

happens across the pattern. Islands are only formed at the walls. 

 

In Table 4.3, I compare energetics for InxGa1-xAs/GaAs systems for x = 0.5, 0.75 and 1 after 

0.1 s. The morphologies for x=0.5 and x=1 can be found in Fig. 4.5 and Fig. 4.7, respectively. As 

shown in the last row of Table 4.3, the total energy increases due to the increase in In 

concentration. This energy includes contributions from elastic, plastic, and interfacial energies. 

Higher In concentration causes a higher lattice mismatch and subsequently a higher stress in the 

film. Since the yield strength decreases when In concentration increases [59], higher plastic 

energy is expected for higher In concentration alloys. The plastic energy per unit length at a 

specific time for In0.5Ga0.5As is 0.01×10-8 J/m while it is substantially higher (16.18×10-8 J/m) for 

InAs at the same time. It may be intuitive to expect an increasing trend for elastic energy per unit 
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length with increasing In concentration. However, my results show that the elastic strain energy 

for InAs is 16.35×10-8 J/m is actually slightly smaller than the value found for In0.75Ga0.25As 

(16.61×10-8 J/m). The decrease in elastic energy for larger In concentration can be attributed to 

large plastic deformation that occurred in the entire film and relaxes the accumulated elastic 

energy. For InAs film grown of GaAs this energy relaxation is large enough so that the film does 

not form ATGS instabilities. Comparing the surface and interfacial energies in Table 4.3, one can 

see a 4% increase between In0.75Ga0.25As and InAs. The interface energy is zero since there is no 

contact between film and the walls. Hence this difference can be explained by the surface energy 

(the energy between the film and the gas phases) that has two contributions, one from free energy 

density function 𝑓(𝑐), and the other one from the gradient energy term 
𝜀2

2
|∇𝑐|2. Although the 

gradient energy coefficient (𝜀2) decreases by increasing In concentration as shown in Table 4.1 

and hence the gradient energy contribution to the surface energy is reduced, the surface energy 

increases due to increase in free energy density.  The same increasing trend in surface and 

interfacial energy is observed between In0.5Ga0.5As and In0.75Ga0.25As. 

 

Table 4.3 Energy comparison for InxGa1-xAs thin films (x = 0.5, 0.75 and 1) grown on GaAs. 

Surface energy refers to the energy of the film surface in contact with the gas phase, which has 

two contributions, one from free energy density and the other one from gradient energy. Interface 

energy refers to the energy between film and the walls. 

Composition In0.5Ga0.5As In0.75Ga0.75As InAs 

Surface and interface energy (10-8 

J/m) 

39.74 41.81 43.6 

Strain energy (10-8 J/m) 11.08 16.61 16.35 

Plastic energy (10-8 J/m) 0.01 5.24 16.18 
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Total (elastic + plastic + 

interfacial) energy (10-8 J/m) 

50.83 63.66 76.13 

Conclusions 

I developed a phase field model coupled with elastoplasticity to study the effects of sub-

micron sized patterns on morphology of heteroepitaxial films grown on patterned substrates. This 

model considers the effects of anisotropy in elastic properties, non-uniform deposition flux and 

anisotropy in surface energy (between film and gas). To investigate the effect of lattice mismatch 

between the film and substrate on morphology I performed all the simulations under effects of 

biased deposition flux, which is observed in experiments. Diffusion coefficients, growth 

conditions, elastic constants, yield strengths, surface energies and lattice mismatch were chosen 

to correspond to the typical growth conditions of InxGa1-xAs thin films on GaAs substrates 

patterned with SiO2.  

My results showed that there is a competition between overflow flux, surface diffusivity, 

strain energy and plastic relaxation on formation of islands in SiO2 patterned GaAs substrates. 

For InxGa1-xAs alloys with low indium concentration (x smaller than 0.4) islands are formed at the 

walls mainly due to effects of overflow flux while strain energy and surface diffusivity are 

relatively low because of low In concentration. There is no plastic deformation happening in this 

regime of concentrations. On the other hand, for InxGa1-xAs alloys with higher indium 

concentration (x larger than 0.4), surface diffusivity competes with the effect of the overflow flux 

to make a single island usually away from the walls. Elastic strain energy, which now has a 

higher value due to a higher lattice mismatch, is minimized by formation of a single island due to 

smaller area of strained interface. Plastic deformation partially relaxes strain energy of the island, 

which further reduces the motivation of the island to move. For In concentrations between 0.4 

and 0.6 (0.4 < x < 0.6), plastic deformation only happens at the corners of the islands while for 
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higher In concentration (0.6 < x < 1) the yielded region expands to the entire thin film and the 

islands. Also, the ATGS surface instability is suppressed for case of x = 1. 
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 Control of surface induced phase separation in immiscible semiconductor 

alloy core-shell nanowires 

Published in Computational Materials Science, Volume 130 (2017) 50-55 

Abstract  

Semiconductor nanowires have been shown to exhibit novel optoelectronic properties with 

respect to bulk specimens made of the same material. However, if a semiconductor alloy has a 

miscibility gap in its phase diagram, at equilibrium it will phase separate, leading to deterioration 

of the aforementioned properties. One way to prevent this separation is to grow the material at 

low temperatures and therefore to suppress kinetics. Such growth often needs to be followed by 

high-temperature annealing in order to rid the system of undesirable growth-induced defects. In 

this study, I propose a method to control phase separation in core-shell nanowires during high 

temperature annealing by tailoring geometry and strain. Using a phase field model I determined 

that phase separation in nanowires begins at the free surface and propagates into the bulk. I 

discovered that including a thin shell around the core delays the phase separation whereas a thick 

shell suppresses the separation almost entirely.  

Introduction 

High surface to volume ratio and the possibility of a lateral strain relaxation make nanowires 

promising candidates for growth of semiconductor structures. Semiconductor nanowires have 

shown outstanding electronic and optical properties, and therefore are being considered for use as 

lasers [1], light emitting diodes [1,2], transistors [3] and sensors [4]. In particular, many studies 

have focused on nanowires made of III-V semiconductors because the band gap energy in these 

materials can be controlled by alloy composition [5,6]. One challenge in growing multi-

component heterostructures, such as InGaAs, AlGaAs, and GaAsSb, is that these alloys have a 

miscibility gap in their phase diagrams and therefore at equilibrium these alloys phase separate 
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[7]. During growth process, phase separation can be kinetically inhibited for most III-V 

semiconductors because of the relatively low growth temperatures. However, these materials 

often need to be subsequently annealed in order to remove defects introduced during growth and 

the high temperature annealing can lead to undesirable phase separation. For instance, Luna et al. 

[8] found spontaneous formation of a lateral composition modulation (LCM) in GaAsBi epilayers 

grown by Molecular Beam Epitaxy (MBE). Hsieh et al. [9] observed LCM in AlGaAs film upon 

annealing and found that the phase separation was more pronounced near the free surface. The 

authors proposed a stress-driven vacancy-assisted mechanism to be responsible for this 

phenomenon. Tang et al. [10] used linear stability theory to study the role of free surfaces in 

spontaneous phase separation of alloys in thin films and found that stress relaxation begins at the 

surface. However, Tang et al. did not study the effects of geometry and strain on formation of 

surface induced compositional modulations. Also they did not investigate potential pathways for 

controlling this phase separation.  

As shown experimentally, the existence of a miscibility gap in phase diagrams of III-V 

semiconductors leads to compositional modulation during growth and annealing [8,9]. Here, I 

propose a method to control such phase separation under conditions where phase separation is 

thermodynamically favorable and kinetically allowed. This method takes advantage of the strain 

induced by a core-shell geometry of a nanowire. The effects of different factors, such as the 

miscibility gap, surface and bulk diffusion, and elastic strains, on the compositional modulation in 

the nanowire structure are investigated using the phase field model.  

Model 

I model the annealing process of the nanowires made of a generic immiscible alloy using 

phase field method combined with elasticity governing equations. I developed this continuum-

based model earlier to study the growth of thin films on patterned substrates [11] and continuum 

approaches have been found to be applicable for strain and stress field calculations in core-shell 
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nanowires [12]. In my model I do not account for possible faceting of the nanowires because my 

goal is to demonstrate the general effect of a shell on phase separation. For a given material pair, 

faceting may or may not play a role in phase separation and this effect should be further 

investigated. In this study, I do not include the effect of plastic deformations since they do not 

happen at the length scale of interest based on both theoretical predictions [13] and experimental 

observations [14-16].  

The model assumes a rotational symmetry along the axis of the nanowire. The 

circumferential component (uθ) of the displacement field is zero while the radial (ur) and the axial 

(uz) components of the displacement field are treated as variables. Displacement and traction 

vector continuity is assumed at all internal boundaries. The substrate is fixed (no displacements 

along r and z directions) at the bottom while all the external boundaries are traction-free. 

Semiconductor nanowires have been grown experimentally with diameters as small as 3 nm [17]. 

However, the range of diameters of interest is usually between 15-100 nm [15,18,19] due to 

difficulties associated with the growth of very small nanowires (<10 nm in diameter) and no 

practical advantage of larger nanowires (>100 nm in diameter) [17]. Throughout this study, the 

height of the nanowire and the diameter of the core are kept constant and equal to 200 nm and 20 

nm, respectively, while the shell material and thickness (ts) vary. GaAsSb is chosen as an 

example of immiscible alloy for the core nanowire. GaAsSb is thermodynamically unstable at 

650 °C and under equilibrium condition, it phase separates to GaAs-rich and GaSb-rich phases. 

Given that this phase separation process is effectively determined by interdiffusion of As and Sb 

on the same sublattice, diffusion of Ga does not play an important role and hence I have not 

included the diffusivity of Ga in this model. Hence I use a single concentration variable in the 

model. I use the effective diffusion coefficient with the value of 1×10-18 cm2 s-1 [20], which was 

determined in experimental studies of Sb diffusion in GaAs.  I define free energy density 

functional as  
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𝐹 = ∫ (𝑓(𝑐) +𝑊(𝑐) +
𝜀2

2
|∇𝑐|2) dΩ

 

Ω
              5-1 

where 𝛺 represents the system volume, W is the strain energy density, ε2 is the gradient energy 

coefficient, f  is the free energy density, and c is the concentration of Sb. For GaAsSb at 650 °C, 

the excess Gibbs free energy is taken from CALPHAD calculations [21] and it is given by 

𝑓𝑐𝑜𝑟𝑒 =
(𝐺𝑖𝑑𝑒𝑎𝑙 + 𝐿𝐺𝑎𝐴𝑠𝑆𝑏

0 c(1 − c) + 𝐿𝐺𝑎𝐴𝑠𝑆𝑏
1 c(1 − c)(1 − 2c))  

𝑉𝑚
𝐺𝑎𝐴𝑠                                                    5-2 

where 𝑉𝑚
𝐺𝑎𝐴𝑠 is the molar volume of GaAs and Gideal the ideal Gibbs free energy. The interaction 

parameters 𝐿𝐺𝑎𝐴𝑠𝑆𝑏
0  and 𝐿𝐺𝑎𝐴𝑠𝑆𝑏

1  are defined as follows 

𝐺𝑖𝑑𝑒𝑎𝑙 = RT(c ln(𝑐) + (1 − c) ln(1 − 𝑐))               5-3 

𝐿𝐺𝑎𝐴𝑠𝑆𝑏
0 = 24824 − 7.74301 × T              5-4 

𝐿𝐺𝑎𝐴𝑠𝑆𝑏
1 = 4774                5-5 

where R is the gas constant, and T is the temperature in Kelvin. For numerical reasons, I fitted the 

Gibbs free energy with a ninth order polynomial (shown in Fig. 5.1) and I used this polynomial 

function in my model. The polynomial function is given by 

𝐺𝑖𝑑𝑒𝑎𝑙 = −3.14808 × 10
6 − 4.81905 × 108𝑐 + 5.02091 × 109𝑐2 − 2.64836 × 1010𝑐3 +

8.04754 × 1010𝑐4 − 1.4885 × 1011𝑐5 + 1.63584 × 1011𝑐6 − 9.76861 × 1010𝑐7 + 2.44215 ×

1010𝑐8 + 2.01987𝑐9                5-6      
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Fig. 5.1 Excess Gibbs free energy of GaAsSb at 650 °C (solid line). Ninth order polynomial has 

been used to fit the function (dashed line). 

 

For the shell, I have chosen a material (GaAs) that is thermodynamically stable material at 

the temperature of interest (650 °C) and hence in my formulation it is sufficient to use a single-

welled free energy density [22] as follows  

𝑓𝑠ℎ𝑒𝑙𝑙/𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 = 𝛼0𝑐
2                5-7 

where α0 is a positive coefficient representing the sharpness of the single-welled function.  

The second term in free energy functional shown in Eq. (5-1) is strain energy density W that 

is defined as 
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𝑊(𝑐) =
1

2
𝜎𝑖𝑗 𝑒𝑖𝑗

𝑒𝑙                5-8 

𝜎𝑖𝑗 is the Cauchy stress tensor, and  𝑒𝑖𝑗
𝑒𝑙 is the elastic strain tensor. Elastic strain tensor satisfies 

the following relationship 

𝑒𝑖𝑗
𝑒𝑙 = 𝑒𝑖𝑗

𝑡𝑜𝑡 − 𝑒𝑖𝑗
∗                5-9 

where 𝑒𝑖𝑗
𝑡𝑜𝑡 is the total strain and 𝑒𝑖𝑗

∗ is the eigenstrain, which arises due to the lattice mismatch 

between core/shell and the substrate. 𝑒𝑖𝑗
∗ is given by  

𝑒𝑖𝑗
∗ =

𝑎𝑐𝑜𝑟𝑒/𝑠ℎ𝑒𝑙𝑙 −𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
 𝛿𝑖𝑗             5-10 

where 𝑎 is the lattice parameter of different parts of the nanowire specified in the subscript and 

𝛿𝑖𝑗 is the Kronecker delta. I use a linear interpolation to calculate the lattice mismatch between 

the core/the shell and the substrate as a function of alloy concentration. Assuming a linear strain-

displacement relationship (which is valid for an infinitesimal strain), I solve equilibrium 

equations to find the total strain. Both the strain-displacement and the equilibrium equations can 

be found in Ref. [11].  

The third term in free energy functional shown in Eq. (5-1) is interfacial energy that is a 

function of ε2 and c. In my model, c is a conserved field variable that evolves according to the 

mass conservation equation 

𝜕𝑐

𝜕𝑡
= −∇. 𝐽               5-11 

where J is the density flux and it is related to the gradient of variational derivative of the free 

energy density functional as 

𝐽 = −𝑀∇
𝛿𝐹

𝛿𝑐
= −𝑀∇(

𝜕𝑓

𝜕𝑐
+
𝜕𝑊𝑒𝑙

𝜕𝑐
− ∇. (𝜀2∇𝑐))           5-12 

here M is the effective mobility of alloy. Mobility and diffusivity are related to each other through 

MRT=DVm [23], where D is diffusivity and Vm is the molar volume. There are two separate mass 
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transport mechanisms included in my model, which are the surface and the bulk diffusion. In this 

model, the diffusion coefficient changes from 1×10-8 cm2 s-1 at the surface (in the region 

corresponding to the thickness of 3 monolayers) to 1×10-18 cm2 s-1 in the bulk. The thickness of 

the surface region is in agreement with the thickness of 2-4 monolayers reported in the literature 

based on experimental observations [24]. Combining Eqs. (5-11) and (5-12), the evolution 

equation, known as the Cahn-Hilliard equation, can be found 

𝜕𝑐

𝜕𝑡
= ∇. [𝑀∇(

𝜕𝑓

𝜕𝑐
+
𝜕𝑊𝑒𝑙

𝜕𝑐
− ∇. (𝜀2∇𝑐))]            5-13 

Eqs. (5-1) and (5-13) show that the strain energy is coupled to the phase filed model. This 

coupling means that in order to find the unknown variables in the model, I need to simultaneously 

solve for the Cauchy-Navier (equilibrium) equations in both the radial and the axial directions 

and the Cahn-Hilliard equation. Here the unknowns are the two displacement fields (ur and uz) 

and the concentration field (c). All energy values in the model are defined per unit of length. The 

aforementioned system of partial differential equations is solved using the finite element method 

as implemented in the COMSOL software. In the finite element mesh, I used 10 grid points per 

unit of length (1 nm), which means that each grid has dimensions of 1 Å by 1 Å.  

A schematic view of the nanowire structure is shown in Fig. 5.2a. The model consists of a 

substrate, a cap and a core. The shell will be shown in subsequent figures. The substrate is made 

of GaAs and the shell is made either of material GaAs or a composition of alloy GaAsSb to 

produce compressive or tensile strain in the core, respectively. The cap is made of a single 

element material and is chosen to be lattice matched with the core-nanowire. The results 

presented in this paper are not unique to a single semiconductor alloy and can be applied to alloys 

that have a miscibility gap at high temperatures (<700 °C) and that have a relatively high bulk 

diffusivity in the temperature range of interest. There are multiple phenomena that affect the 

phase separation in the core-shell nanowire. I isolated these phenomena to study the effect of each 
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on the phase separation. In order to study the effects of misfit strain between core and shell and 

also shell thickness on phase separation in the core, I first assumed that there is no mass transport 

(i.e., atomic mixing) between different sections of the nanowire (substrate, cap, core, and shell). I 

then include the possibility of intermixing to elucidate the effect of mass transport between core 

and shell on phase separation in the core. 

The material in the core is GaAs0.6Sb0.4, which separates into two phases under equilibrium 

conditions at 650 °C. GaAs-rich alloy (GaAs0.92GaSb0.08) and GaSb-rich alloy (GaAs 0.27 

GaSb0.73). This composition of GaAsSb is chosen because it is in the middle of a tie line of the 

phase diagram at the temperature of interest. Material properties of GaAs1-xSbx are calculated 

using a linear interpolation between properties of GaAs (x=0) and GaSb (x=1). For GaAs I take 

the following values for material properties [11]: elastic constants C11=118.8 GPa, C12=53.4 GPa, 

and C44=59.6 GPa, surface diffusion coefficient equal to 1×10-8 cm2 s-1. GaSb is assumed to have 

the following properties [25]: elastic constants  C11=83.3 GPa, C12=40.2 GPa, and C44=43.2 GPa, 

misfit strain with respect to GaAs equal to 7.83%. Bulk diffusion coefficient for GaAsSb is taken 

to be 1×10-18 cm2 s-1 [20]. Surface diffusivity of GaSb is assumed to be equal to the surface 

diffusivity of GaAs. Annealing temperature is 650 °C. The interfacial energy 𝛾 between GaAs 

and GaSb is 0.08 J/m2. This value is calculated from the Young’s equation knowing the surface 

energies of GaAs to be equal to 0.71 J/m2 [26] and GaSb which is 0.63 J/m2 [27], knowing that 

GaAsSb starts to grow in a layer-by-layer mode on GaAs [28] and hence the contact angle is zero. 

Following Cahn and Hilliard [29], gradient energy coefficient  𝜀0
2  is calculated from 𝛾 =

∫ √2𝜀0
2𝑓(𝑐)

0.73

0.077
 to be 6.52×10-10 J/m. I normalize the simulation parameters by defining three 

characteristic units: e* is the characteristic energy chosen to be 1010 J m-3, l* is the characteristic 

length which is equal to 10-9 m, and t* is the characteristic time taken to be 10-8 s. Using these 

characteristic units, one can define dimensionless quantities for the free energy density (𝑓∗ =
𝑓

𝑒∗
), 
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the elastic moduli (𝐶𝑖𝑗
∗ =

𝐶𝑖𝑗

𝑒∗
), the strain energy density (𝑊∗ =

𝑊

𝑒∗
), the gradient energy coefficient 

(𝜀∗2 =
𝜀2

𝑙∗2.𝑒∗
) and the mobility (𝑀∗ =

𝑀.𝑡∗.𝑒∗

𝑙∗2
). Finally, the non-dimensional form of the Cahn-

Hilliard equation is 

𝜕𝑐

𝜕𝑡̂
= ∇. [𝑀∗∇ (

𝜕𝑓∗

𝜕𝑐
+
𝜕𝑊𝑒𝑙∗

𝜕𝑐
− ∇. (𝜀∗2∇𝑐))]           5-14 

where 𝑡̂ is the computational time step and ∇ represents gradient with respect to non-dimensional 

variables 𝑥 and 𝑦̂.  

The results shown in this paper are generated using a 2D axisymmetric model of the nanowire 

because such model is computationally less expensive than a full 3D model. I have compared and 

validated the results of the 2D model against a full 3D model for selected cases and found the 

results to be similar. Specifically, the phase separation in both models starts at the free surface 

and then propagates inside the material. Also, in both models I observed that the phase separation 

is delayed when there is a thin shell around the core and by increasing the thickness of the shell 

the phase separation is suppressed. Comparison between 2D and 3D models is more qualitative 

since some of the parameters such as the interfacial energy coefficient have different values in 2D 

and 3D models and hence a quantitative comparison is difficult. 

Results  

I first use my model to understand the role of free surfaces in phase separation of 

semiconductor nanowires and therefore I simulate annealing of a core-only nanowire (i.e., shell 

thickness ts=0). I begin the simulation with a homogenous GaAs0.6Sb0.4 nanowire on a GaAs 

substrate (Fig. 5.2a). After annealing for 7×104 s, compositional modulations develop at the free 

surface, as shown in Fig. 5.2b. At this point in time, only 60% of the alloy is phase separated (the 

cutoff for phase separation in this study is chosen to be ± 2.5% of the initial composition). There 

are two driving forces for phase separation. The first driving force is the relaxation of the stress 
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(and the strain energy) near the substrate as the GaAs-rich phase newly formed at the bottom of 

the nanowire has a lower misfit strain with the substrate. The second driving force is the 

reduction in bulk free energy, since phase separation is thermodynamically favorable. Formation 

of LCM during annealing has been previously observed experimentally in III-V semiconductors 

by Hsieh et al. [9] and studied theoretically by Tang et al. [10]. After annealing for a longer time, 

my simulations reveal that phase separation propagates toward the center of the nanowire and, for 

instance, at 5×105 s about 93% of the original homogenous alloy is phase separated into GaAs-

rich and GaSb-rich phases (Fig. 5.2c). Propagation of compositional modulation into the bulk is 

driven by relaxation of alloy’s bulk free energy. Although, the strain energy cost for formation of 

axial heterostructures acts as a counterbalance force that slows down the propagation process, this 

energy cost is relatively low. Specifically, due to phase separation, strain energy increases by 

0.106×10-8 J while bulk free energy decreases by 1.495×10-8 J (Fig. 5.2d). In addition, the 

difference between lattice parameters (and hence volumes) of GaAs-rich and GaSb-rich phases 

causes formation of undulations at the free surface, as shown in the magnified view in Fig. 5.2c. 

These undulations partially relax the epitaxial stress. 
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Fig. 5.2 GaAsSb core-only nanowire during annealing a) before annealing, b) after 7×104 s and c) 

after 5×105 s of annealing at 650 ℃. Separated phases are GaSb-rich phase (red) and GaAs-rich 

phase (blue). d) Contribution of different energy components before annealing and after 

annealing for 5×105 s. 

      

Keeping in mind that phase separation is usually not desirable for opto-electronic applications 

of III-V semiconductors, I next focus on possible pathways for suppressing it. Specifically, I 

investigate whether including a shell around the nanowire’s core can allow for control of phase 

separation in the regime where phase separation is thermodynamically favorable. To answer this 

question, I consider two specific cases. First, I include a thin shell (ts=0.5 nm) made of GaAs 

around the core as shown in Fig. 5.3a. The 0.5 nm thickness corresponds to approximately 1 
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monolayer. Given that the lattice parameter of GaAs is smaller than GaAsSb, the shell imposes a 

compressive strain to the core. The purpose of having a thin shell around the core-nanowire is to 

enforce a kinetic constraint by substituting surface diffusivity with bulk diffusivity and therefore 

to determine the effect of surface diffusion on compositional modulation. My results (Fig. 5.3) 

show that a thin shell only delays phase separation, but it does not suppress it entirely. This delay 

is due to the fact that a shell (even if it is thin) eliminates the fast surface diffusivity and as a 

result the kinetics is controlled by slower bulk diffusivity. Phase separation is still initiated at the 

core surface (which has now become the core-shell interface) and the same driving force as 

discussed for the core-only nanowire is active here. However, in the case of the thin-shell 

nanowire there is an additional force that opposes phase separation. This opposing force is 

associated with the misfit strain between core and the shell, but it is not large enough to suppress 

the separation. After annealing the nanowire for 7×104 s, 13% of the alloy is phase separated, 

which is significantly lower than 60% of phase separation observed in the nanowire that does not 

have a shell around it as shown in Fig. 5.2. After longer annealing time (5×105 s), the phase 

separated region extends toward the center of the nanowire (Fig. 5.3a). At this point, 90% of 

phase separation is observed in nanowire that is comparable to 93% that was observed for only 

core nanowire. Contributions of different energy components to the total energy at the beginning 

of the annealing process and after 5×105 s are shown in Fig. 5.3c. Bulk free energy (grey) is the 

dominant term, but it decreases slightly over time.  
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Fig. 5.3 Composition of GaAsSb alloy core-shell nanowire with a GaAs thin shell after annealing 

for a) 7×104 s and b) 5×105 s. Separated phases are GaSb-rich phase (red) and GaAs-rich phase 

(blue). c) Contributions of different energy components to the total energy before annealing and 

after annealing for 5×105 s. 

 

I have shown that a thin shell around the core of a nanowire delays the phase separation. To 

explore whether such phase separation can be entirely suppressed I consider other geometries of 

the core-shell nanowire. In particular, it has been shown theoretically that stress and strain in the 

core increase when the shell thickness increases [12]. Here, I choose the shell thickness to be 5 

nm as an example that illustrates my point. Similarly as in the thin shell model, GaAs is chosen as 
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the shell and therefore the core is under the state of a compressive strain. After annealing at the 

same temperature of 650 ℃ as in the case of no-shell and thin-shell nanowires and for the same 

total amount of time (t = 5×105 s), I observe that LCM no longer develops (Fig. 5.4a). Although 

some phase separation is observed near the core-substrate and core-cap interface, the phase 

separation after 5×105 s has been reduced to about 16% which is substantially smaller than phase 

separation in the core-only nanowire (93%) and the thin-shell nanowire (90%) after the same 

annealing time. I observe a very small change in the ratio of the elastic strain energy to the bulk 

free energy during annealing (Fig. 5.4c). During annealing time, the total energy changes by less 

than 0.5%.  

So far I discussed the effects of thin (0.5 nm) and thick (5 nm) shells on delay/suppression of 

the phase separation. In order to have a better understanding of the role of the shell thickness in 

phase separation, in Fig. 5.4d I report the results of annealing simulations for nanowires with a 

range of shell thicknesses. I found that in general when the shell thickness increases, the phase 

separation is suppressed but it does not decay all the way to zero. The reason for this behavior is 

that while the presence of the shell suppresses phase separation that starts from the core/shell 

interface, the phase separation can still be initiated at both ends of the nanowire. To demonstrate 

the effect of the nanowire ends on phase separation, in Fig. 5.4d I show the amount of phase 

separation in different sections of the nanowire. For instance, by removing 30% of the nanowire 

length, phase separation in the remaining 70% of the nanowire approaches 6% for a 10 nm shell. 

This suppression of phase separation in the mid-section of the nanowire can be attributed to the 

increase of the strain energy cost associated with lattice mismatch between the phase-separated 

core and the shell. This energy term increases as the shell thickness increases. The only other 

contribution to the cost in energy is the strain energy arising from the lattice mismatch between 

the layers in the phase-separated core, but this energy contribution is not expected to depend on 

the thickness of the shell and, as shown in Fig. 5.2, it is quite small. These results demonstrate 
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that geometry and strain can be exploited in nanowire heterostructures as means for suppressing 

phase separation in an alloy with a thermodynamic driving force to separate at relatively high 

annealing temperatures. All the results in this paper have been generated for nanowires with 

diameters equal to 20 nm because of the computational efficiency. However, for selected cases I 

have also performed simulation for thinner (10 nm in diameter) and thicker (40 nm in diameter) 

nanowires and I have found the results to be qualitatively the same as in the case of the 20 nm 

nanowire. For instance, the effect of shell thickness on suppression of phase separation (similar to 

that shown in Fig. 5.4d) has been observed both in thinner and in thicker nanowires. 
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Fig. 5.4 Composition of GaAsSb core-shell nanowire with GaAs thick shell after annealing for a) 

7×104 s and b) 5×105 s. Separated phases are GaSb-rich phase (red) and GaAs-rich phase (blue). 

c) Contribution of different energy components before annealing and after annealing for 5×105 s. 

d) Effect of shell thickness on suppression of phase separation. The thicker the shell, the lower 

the phase separation. 

 

Up until now I have considered the effects of a compressive strain imposed by the GaAs shell 

(GaAs has -3.13% misfit strain with the GaAs0.6Sb0.4 core before annealing). It is interesting to 

investigate the effect of misfit strain between core and shell on phase separation in the core. For 

this reason I model high temperature annealing in a nanowire with shells made of GaSb (+4.69% 

misfit strain with GaAs0.6Sb0.4 core before annealing), GaAs0.28Sb0.73 (+2.58% misfit strain with 

the GaAs0.6Sb0.4 core before annealing), GaAs0.6Sb0.4 (lattice matched with the GaAsSb core 

before annealing) and GaAs0.922Sb0.078 (-2.53% misfit strain with the GaAs0.6Sb0.4 core before 

annealing). Comparison of the amount of phase separation under compressive, no misfit strain, 

and tensile strain during the same period of annealing (5×105 s) is shown in Fig. 5.5a. My results 

show that compressive strain suppresses the phase separation more than tensile strain. However 

for a case where there is a compressive misfit strain between core and shell (-2.53%), the model 

predicts that the phase separation is minimized. The high cost of strain energy between separated 

phases and the compressive GaAs0.922Sb0.078 shell compared to low gain in bulk free energy 

during phase separation is the reason for the suppression of such separation. Although the strain 

energy cost due to the lattice mismatch between the core and the shell cannot be easily isolated in 

my simulations, it must be lower when the core is under tensile stress (GaSb and GaAs0.28Sb0.73 

shells) than when it is under compression (GaAs and GaAs0.922Sb0.078 shell) or no strain 

(GaAs0.6Sb0.4) since more phase separation has been observed in these cases. In general, the exact 

amount of elastic strain energy arising from lattice mismatch between the core and the shell will 
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depend on the specific thermodynamic phases to which the multicomponent alloy separates, on 

their lattice parameters and elastic constants, as well as on the properties of the shell. 

Finally, I have investigated the effect of intermixing between the core and the shell on 

suppression of phase separation in the core. In Fig. 5.5b I compare the effect of shell thickness on 

phase separation of 5 nm GaAs shells with and without intermixing between the core and the 

shell after annealing for 5×105 s (material properties such as elastic constants, free energies, and 

diffusivities are kept constant). Similarly as in the case of when no intermixing is allowed, phase 

separation is significantly suppressed. However, the suppression of phase separation is less 

pronounced when intermixing is allowed. The effect of shell thickness on phase separation in the 

two cases is similar when the shell thickness is small; in this regime phase separation decreases 

with an increasing shell thickness.  When the shell thickness is sufficiently large (here larger than 

3 nm), phase separation saturates for the no-intermixing case (due to the end effects of a nanowire 

as discussed earlier) and it increases slightly with shell thickness for the case when intermixing is 

allowed. The reason for the latter trend is that strain energy in the core-shell structure increases as 

a function of the shell thickness and intermixing can relax this strain energy at the cost of 

increasing the bulk free energy in both the core and the shell. One should note that the 

intermixing occurs only in a relatively small fraction of the nanowire at the interface between the 

core and the shell (this intermixed region has the thickness of 2.0-2.5 nm). 
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Fig. 5.5 a) Effect of misfit strain between the core and the shell on phase separation in the core. 

Compressive strain suppreses phase separation more than tensile strain. Maximum suppression of 

phase separation happens for -2.53% misfit strain. b) Comparision between the effect of shell 

thickness on phase separation with and without intermixing allowed between the core and the 

shell. Intermixing increases the amount of phase separation taking place in the core when shells 

are sufficiently thick, but even in that case the shell is still able to suppress a significant amount 

of phase separation. 

Summary and conclusions 

I demonstrated that during annealing, a core-only nanowire develops surface-induced 

compositional modulations that take the form of axial heterostructures. Including a shell around 

the core-nanowire controls phase separation by two mechanisms. The first mechanism involves 

kinetics where phase separation is suppressed by removing surface diffusion as a pathway for 

mass transport. The second mechanism involves thermodynamics where the thicker the shell, the 

higher the elastic energy cost associated with lattice mismatch between the separated phases of 

the core and the shell. Both lattice matched and lattice mismatched shells suppress phase 

separation in the core. However, the effect is not necessarily symmetric and depends on the 

difference between lattice constants on the phases formed in the core during phase separation and 

the material of the shell.  
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 Analytical elastoplastic analysis of heteroepitaxial core-shell nanowires 

Abstract 

Semiconductor nanowires, grown heteroepitaxially, have many unique properties compared 

to heteroepitaxial thin films: e.g., the possibility of lateral relaxation, high surface to volume ratio 

and lower strain energy. While the onset of plastic deformation in thin films has been studied 

extensively, much less is understood about this phenomenon in the nanowire geometry. Here, I 

report results of a continuum analytical model that predicts not only the onset of plastic 

deformation, but also evolution of stress and strain fields beyond initial yield. This is the first 

analytical elastoplastic study of heteroepitaxial core-shell nanowires. The analytical model is 

validated via finite element simulations. To illustrate trends predicted by the model I chose the 

InAs-GaAs core-shell system as an example. My results show that the thickness of the plastically 

deformed region is proportional to the core radius and it has a non-monotonic dependence on the 

shell thickness. I find that there is a critical ratio, , of shell thickness to core radius that 

maximizes the thickness of the elastoplastic region. This critical ratio is independent of geometry 

and only depends on material properties such as elastic moduli and yield strength of the 

heterostructure.  

Introduction 

Semiconductor heterostructures have attracted much attention in the past few decades 

because one can tailor their electronic properties, such as electron and carrier mobility, by tuning 

their strain [1,2]. Strain in heterostructures is mainly caused by the difference between the lattice 

parameter of the film and of the substrate; this is called the misfit strain. The strain energy 

associated with the misfit strain can be relaxed via different mechanisms. One relaxation method 

involves bending and deforming the substrate [3]. This mechanism is only effective when the 

substrate is sufficiently thin and compliant. Other methods found to relax strain in a multi-
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component semiconductor can involve (i) phase separation [4,5], (ii) transition from 2D to 3D 

structure by forming undulations (islands) at the surface, [6,7] and (iii) plastic deformation (i.e., 

nucleation of misfit dislocations).  

Formation of misfit dislocations is highly undesirable in the fabrication of highly mismatched 

heterostructures since these defects significantly deteriorate electronic and optoelectronic 

properties of semiconductor heterostructures such as the electron field-effect mobility [8]. To 

eliminate or at least to partially reduce defect densities, many authors have focused on different 

approaches to reduce the strain energy in the system [3,9,10]. One of the methods that has been 

extensively studied is the use of compliant substrates that accommodate the high misfit strain 

between the film and the substrate [3]. Although this method has been shown to be promising, it 

is not always possible to use sufficiently thin or compliant substrates in practice. Another method 

to reduce the density of defects in a heterostructure is by changing the geometry. Studies have 

shown that heterostructures in the form of nanowires have less strain energy than epitaxial thin 

films [9,10]. The advantageous properties of nanowires have led to fabrication of nanowire-based 

devices such as lasers [11], light emitting diodes [11,12], transistors [13] and sensors [14]. Lateral 

relaxation of strains [15,16] with respect to the substrate and partial relaxation of strain in core-

shell structures due to nanowire geometry allow reduction in the density of structural defects such 

as dislocations. Nonetheless, when the misfit strain in nanowires is high enough, defects can still 

form and the structure deforms plastically. These defects have been observed in experiments 

[17,18] and theoretical studies have provided new insights into how elastic stresses can lead to 

formation of these defects at the onset of plasticity [9,10,17,18]. It remains an open question how 

the stress and strain fields are affected in the elastoplastic regime, beyond the onset of yield. 

A number of theoretical studies have been dedicated to understanding the strain and stress 

fields in nanowires before and at the onset of defect formation. For instance, Liang et al. [10] 

reported an analytical model of the critical thickness of the shell at which defects begin to form. 
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The authors assumed isotropic elastic properties for both the core and the shell material and they 

used a thick-walled cylinder theory to determine the stress and strain field in the structure. 

Another approach was reported by Trammell et al. [9], who developed analytical models for 

heterostructures in the form of thin films and nanowires. The authors showed that the strain 

energy per interfacial area of core and shell is lower in the nanowire structure than in the thin film 

geometry. Zhao et al. [19] investigated the effect of material properties and surface stress on the 

formation of an edge dislocation in core-shell nanowires. They showed that by increasing the 

ratio of shear moduli of the core and the shell, the critical film thickness first decreases and then 

increases again. In addition, the authors found that a negative (i.e., compressive) surface stress 

could decrease the formation energy of an edge misfit dislocation, making it easier for the defect 

to form. Gutkin et al. [20] used the theory of elasticity to investigate the elastic behavior of an 

edge dislocation inside the core of a core-shell structure and found the equilibrium position for 

the dislocation. They also studied the effect of core radius and shell thickness on forces acting on 

the dislocation. However, none of the above studies considered the evolution of the strain and 

stress fields in these heterostructures beyond initial yield.    

In this paper I derive a continuum analytical model of plastic deformation in highly 

mismatched core-shell nanowires. I choose InAs/GaAs core-shell nanowire as a specific example 

for parameters of the model, although there is nothing in the formulation of the model that limits 

it to a given material. In my formalism, I have included elastic constants and the presence of the 

misfit strain, and the diameters of the core and the shell are treated as parameters. I assume the 

Tresca yield criterion with the associated flow rule and a perfectly plastic material (with no work 

hardening). In addition, I have developed a finite element (FE) model to confirm the predictions 

of the analytical model. In the FE simulations, I have used both Tresca and Von Mises yield 

criteria with the associated flow rules. Two of the key questions I answer in this study are how 
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strain and stress fields evolve due to plastic deformation and how plastic strain can be minimized 

by designing the geometry of the nanowire. 

Model 

Fig. 6.1a and Fig. 6.1b show a schematic view of the core-shell nanowire cross-section.  

 

Fig. 6.1 (Color online) Schematic view of a nanowire cross-section: a) Before yield: due to 

symmetry, only normal components of stress (σrr, σθθ, and σzz) are nonzero. b) After yield: 

under high misfit strain, plastic deformation takes place in the structure. Elastoplastic region in 

the shell is shown in red while misfit dislocations at the core-shell interface are shown in dark 

blue.  c) Shear stress as a function of radial position. Zero on the horizontal axis is defined at 

the center of the nanowire. 

 

In order to find an analytical solution for strain and stress fields in this geometry, I use the 

elastoplastic governing equations for a homogeneous isotropic/cubic linear elastic-ideally plastic 
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core-shell nanowire in cylindrical coordinates. My analysis proceeds as follows:  I employ a 

cylindrical coordinate system with polar coordinates r, θ centered at the wire core and z directed 

along its axis.  The problem’s axisymmetry requires that the stress components σrθ and σθz are 

identically zero, and that stresses, strains and displacements are independent of θ.  A typical wire 

is long compared to its radius; thus, neglecting end effects, I assume all stresses and strains are 

independent of z.  My numerical FE simulations have shown that, in all cases, σrz, and while 

nonzero in general due to the axial core-shell misfit, is at least nine orders of magnitude smaller 

than all other nonzero stresses (Fig. 6.1c); therefore, I neglect it in my analytical model.  Thus, 

the only nonzero stresses are the three normal ones, σrr, σθθ, σzz, and these depend only on r.  

Finally, I assume εzz to be independent of r in the core and the shell, although one should note 

that in general εzz is not continuous across the core-shell boundary. 

With the above considerations, the three-dimensional governing equations can be simplified 

as follows: 

i. Equilibrium – satisfied in all regions  

d𝜎𝑟𝑟

d𝑟
+
𝜎𝑟𝑟−𝜎𝜃𝜃

𝑟
= 0.                  6-1 

ii. Strain-displacement – satisfied in all regions  

𝜀𝑟𝑟 =
𝜕𝑢𝑟

𝜕𝑟
, 𝜀𝜃𝜃 =

𝑢𝑟

𝑟
, 𝜀𝑧𝑧 =

𝜕𝑢𝑧

𝜕𝑧
 .              6-2 

iii. Stress-strain equations – satisfied in all regions   

𝜀𝑒 =
1+𝜈

𝐸
𝝈 −

𝜈

𝐸
𝑰𝑡𝑟𝝈,                6-3  

where E is Young’s modulus and ν is Poisson’s ratio, and εe
 is the elastic part of the strain tensor, 

which is equal to the difference between the total strain and the plastic strain:  
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𝜀𝑒 = 𝜀 − 𝜀𝑝.                 6-4 

E, ν, μ are defined in terms of elastic constants C11, C12 and C44 as follows:  

𝐸 =
(𝐶11

2+𝐶11𝐶12−2𝐶12
2)

(𝐶11+𝐶12)
,                6-5 

𝜈 =
𝐶12

(𝐶11+𝐶12)
,                 6-6 

𝜇 = 𝐶44.                 6-7 

Equation (6-3) assumes isotropic elasticity, that is C44 = (C11-C12)/2. This choice is made to 

simplify the analytical derivation. However, it is also justified by the fact that σrθ and σθz are 

zero and σrz is negligible, and therefore the value of the elastic constant C44 does not impact my 

solution. This fact has been confirmed by performing FE simulations with isotropic and cubic 

elastic constants, where I found that all the components of the stress field are the same. 

iv. Yield condition 

In yielded regions, I adopt the Tresca yield criterion. According to this criterion, yield occurs 

when the maximum shear stress attains a critical value, which is equal to half the uniaxial yield 

strength σY.  Yielding is found to occur only in the shell. Since the normal cylindrical stress 

components are the principal stresses and the maximum and minimum stresses are σθθ and σrr, 

respectively, the Tresca condition can be written as  

𝐹(𝝈) = 𝜎𝜃𝜃 − 𝜎𝑟𝑟 = 𝜎𝑌.               6-8 

I assume proportional stressing everywhere, which assumption has been validated by my 

numerical FE simulations. Consequently, the flow rule has the following form derived from the 

deformation-theory plasticity  

𝛆𝑝 = Λ
𝜕𝐹(𝝈)

𝜕𝝈
 .                   6-9 
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With the above considerations and governing equations I am now ready to derive the solution 

forms for the displacement field ur. In purely elastic regions, εe=ε. By substituting Eq. (6-2) into 

Eq. (6-3) and then into Eq. (6-1), one can find the following governing equation for ur: 

d2𝑢𝑟

d𝑟2
+
1

𝑟

𝑑𝑢𝑟

d𝑟
−
𝑢𝑟

𝑟2
= 0.              6-10 

The general solution to Eq. (6-10) is 

𝑢𝑟 = 𝐴𝑟 + 𝐵
1

𝑟
               6-11 

where A and B arbitrary constants. This is the general form ur can take in the shell elastic region. 

In the elastic core, I must take B = 0 to satisfy finite displacement at r = 0, and of course A is 

different from that in the shell. 

In the region of the shell that yielded plastically, the stress governing equations are given by 

Eq. (6-1) and Eq. (6-8). By plugging in Eq. (6-8) into Eq. (6-1), one can find the general form of 

the stress field  

𝜎𝑟𝑟 = 𝜎𝑌 ln 𝑟 + 𝐶,              6-12 

𝜎𝜃𝜃 = 𝜎𝑌 + 𝜎𝑟𝑟.              6-13 

where C is an arbitrary constant. Following an analysis by Koiter [21] of an elastic-plastic 

pressure vessel, I assume plastic incompressibility which means that the volumetric strain is 

purely elastic. Consequently: 

𝜀𝑟𝑟 + 𝜀𝜃𝜃 + 𝜀𝑧𝑧 =
𝑑𝑢𝑟

d𝑟
+
𝑢𝑟

𝑟
+ 𝜀𝑧𝑧 =

1−2𝜈

𝐸
(𝜎𝑟𝑟 + 𝜎𝜃𝜃 + 𝜎𝑧𝑧).         6-14 

Equations (6-8 - 6-9) show that εzz is purely elastic and thus one can write it as 𝜀𝑧𝑧 =

[𝜎𝑧𝑧 − 𝜈(𝜎𝑟𝑟 + 𝜎𝜃𝜃)] 𝐸⁄ . By substituting this equation into Eq. (6-14) I get  

1

𝑟

d(𝑟𝑢𝑟)

d𝑟
=

(1−2𝜈)(1+𝜈)

𝐸
(𝜎𝑟𝑟 + 𝜎𝜃𝜃) − 2𝜈𝜀𝑧𝑧.           6-15 
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Using Eqs. (6-12 - 6-13), one can write Eq. (6-15) as follows 

1

𝑟

d(𝑟𝑢𝑟)

d𝑟
=

(1−2𝜈)(1+𝜈)

𝐸
(2𝜎𝑌 ln 𝑒𝑟) − 2𝜈𝜀𝑧𝑧.           6-16 

Multiplying Eq. (6-16) by r, integrating with respect to r, and then dividing by r shows that in 

the yielded shell region ur has the form 

𝑢𝑟 = 𝐶1𝑟 +
𝐶2

𝑟
+ 𝐶3𝑟 ln 𝑟,             6-17 

where C1, C2 and C3 are constants. Thus, the displacement field in the elastic core (superscript 

“c”), the plastic shell region (superscript “sp”) and the elastic shell region (superscript “se”) will 

be as follows: 

𝑢𝑟
𝑐 = 𝐴𝑐𝑟,               6-18 

𝑢𝑧
𝑐 = 𝐸𝑐𝑧,               6-19 

𝑢𝑟
𝑠𝑝
= 𝐴𝑠𝑝𝑟 +

𝐵𝑠𝑝

𝑟
+ 𝐷𝑠𝑝𝑟 ln 𝑟,             6-20 

𝑢𝑧
𝑠𝑝
= 𝐸𝑠𝑝𝑧,               6-21 

𝑢𝑟
𝑠𝑒 = 𝐴𝑠𝑒𝑟 +

𝐵𝑠𝑒

𝑟
,              6-22 

𝑢𝑧
𝑠𝑒 = 𝐸𝑠𝑒𝑧.               6-23 

Using Eqs. (6-1 - 6-9), one can find the general form of stress and strain fields both in the 

elastic and elastoplastic regions of the nanowire. Generally, there are two different approaches to 

solve for the strain and stress fields in heteroepitaxial nanowires. One approach is to define the 

misfit strain between core and shell and then apply it as a boundary condition to the displacement 

field [10]. Another approach is to define an arbitrary reference state and then to define the misfit 

strain with respect to the reference state [9]. The strain and stress fields are expressed in terms of 

ten unknowns: the nine constants appearing in Eqs. (6-18 – 6-23), Ac, Ec, Asp, Bsp, Dsp, Esp, Ase, Bse, 
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Ese, and b, which is the radius of the elastoplastic zone. To solve for these unknowns, I need 10 

equations, which are as follows 

i. Along the axial direction, the gap (equal to the difference in displacements) between the 

core and the shell (in stress-free state) depends on the misfit strain as  

𝑢𝑧
𝑐|𝑟=𝑐 − 𝑢𝑧

𝑠𝑝
|
𝑟=𝑐

= (𝑧. 𝑒𝑧𝑧
∗ )|𝑟=𝑐 .            6-24 

In the above equation e* is the eigenstrain tensor associated with the misfit strain, which in 

turn is defined as the difference between lattice parameters of the core and the shell  

𝐞∗ =
𝑎𝑐𝑜𝑟𝑒−𝑎𝑠ℎ𝑒𝑙𝑙

𝑎𝑠ℎ𝑒𝑙𝑙
𝐈,              6-25

 

 

where I is the identity matrix. 

ii. The axial displacement field must be continuous across the elastic-plastic boundary 

𝑢𝑧
𝑠𝑝
|
𝑟=𝑏

= 𝑢𝑧
𝑠𝑒|𝑟=𝑏 .              6-26 

iii. In the radial direction, the gap between the core and the shell (in the stress-free state) 

depends on the misfit strain as 

𝑢𝑟
𝑐|𝑟=𝑐 − 𝑢𝑟

𝑠𝑝
|
𝑟=𝑐

= (𝑟. 𝑒𝑟𝑟
∗ )|𝑟=𝑐 .              6-27 

iv. The radial displacement field must be continuous across the elastic-plastic boundary 

𝑢𝑟
𝑠𝑝
|
𝑟=𝑏

= 𝑢𝑟
𝑠𝑒|𝑟=𝑏 .              6-28 

v. The net force on the surface perpendicular to the z direction is zero 

∫ ∫ 𝜎𝑧𝑧
𝑐𝑐

0

2𝜋

0
𝑟 d𝑟d𝜃 + ∫ ∫ 𝜎𝑧𝑧

𝑠𝑝𝑏

𝑐

2𝜋

0
𝑟 d𝑟d𝜃 + ∫ ∫ 𝜎𝑧𝑧

𝑠𝑒𝑐

𝑏

2𝜋

0
𝑟 d𝑟d𝜃 = 0,         6-29 

where σzz is the axial stress. 

vi. At the core-shell interface, the radial component of stress σrr must be continuous 

𝜎𝑟𝑟
𝑐 |𝑟=𝑐 = 𝜎𝑟𝑟

𝑠𝑝
|
𝑟=𝑐
.              6-30 
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vii. The radial component of stress must be continuous across the elastic-plastic boundary 

𝜎𝑟𝑟
𝑠𝑝
|
𝑟=𝑏

= 𝜎𝑟𝑟
𝑠𝑒|𝑟=𝑏 .              6-31 

viii. The traction vector is zero at the surface 

𝜎𝑟𝑟
𝑠𝑒|𝑟=𝑎 = 0.               6-32 

ix. The Tresca yield criterion is enforced at the elastic-plastic boundary (and everywhere in 

the yielded region) 

𝜎𝜃𝜃
𝑠𝑒|𝑟=𝑏 − 𝜎𝑟𝑟

𝑠𝑒|𝑟=𝑏 = 𝜎𝑌,             6-33 

where σθθ
 
is the tangential (hoop) stress. 

x. The radial equilibrium equation is already satisfied in the core and in the elastic part of 

the shell but it must also be satisfied in the yielded region 

d𝜎𝑟𝑟
𝑠𝑝

d𝑟
+
𝜎𝑟𝑟
𝑠𝑝
−𝜎𝜃𝜃

𝑠𝑝

𝑟
= 0.              6-34 

By solving the above system of equations, I find the unknown coefficients in terms of 

material properties and geometry. Then I employ these coefficients in Eqs. (6-10) and substitute 

these into the governing equations (Eqs. 6-1 - 6-9) to find an analytical solution for stress and 

strain fields. The solution for the strain components is 

𝜀𝑟𝑟
𝛼 =

d𝑢𝑟
𝛼

d𝑟
,               6-35 

𝜀𝜃𝜃
𝛼 =

𝑢𝑟
𝛼

𝑟
,               6-36 

𝜀𝑧𝑧
𝛼 =

d𝑢𝑧
𝛼

d𝑧
,               6-37 

where “α” can be “c”, “sp” or “se”. Assuming proportional loading and using Eq. (6-9), the 

plastic strain field is found to be 
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 𝜀𝑟𝑟
𝑝
=

−2𝐵𝑠𝑝(𝐶11
𝑠 −𝐶12

𝑠 )+𝑟2(𝐶11
𝑠 𝐷𝑠𝑝−𝐶12

𝑠 𝐷𝑠𝑝+𝜎𝑌)

2𝑟2(𝐶11
𝑠 −𝐶12

𝑠 )
=

1

2
(𝐷𝑠𝑝 −

2𝐵𝑠𝑝

𝑟2
+
(1+𝜈𝑠)𝜎𝑌

𝐸𝑠
),          6-38 

𝜀𝜃𝜃
𝑝
= −

1

2
(𝐷𝑠𝑝 −

2𝐵𝑠𝑝

𝑟2
+
(1+𝜈𝑠)𝜎𝑌

𝐸𝑠
) = −𝜀𝑟𝑟

𝑝
,           6-39 

𝜀𝑧𝑧
𝑝
= 0.               6-40 

here C11
s, C12

s, Es, and νs are components of the stiffness matrix in the shell.  Now using Eqs. (6-

35 - 6-40) in Eq. (6-4) gives the elastic strain field. Finally I substitute the elastic strain field into 

Eq. (6-3) to find the stress field in the core, the elastoplastic part of the shell and the elastic part of 

the shell. These are 

𝜎𝑟𝑟
𝛼 = 𝐶11

𝛼 𝑒𝑟𝑟
𝛼 + 𝐶12

𝛼 𝑒𝜃𝜃
𝛼 + 𝐶12

𝛼 𝑒𝑧𝑧
𝛼 ,            6-41 

𝜎𝜃𝜃
𝛼 = 𝐶12

𝛼 𝑒𝑟𝑟
𝛼 + 𝐶11

𝛼 𝑒𝜃𝜃
𝛼 + 𝐶12

𝛼 𝑒𝑧𝑧
𝛼 ,            6-42 

𝜎𝑧𝑧
𝛼 = 𝐶12

𝛼 𝑒𝑟𝑟
𝛼 + 𝐶12

𝛼 𝑒𝜃𝜃
𝛼 + 𝐶11

𝛼 𝑒𝑧𝑧
𝛼 .            6-43 

Similarly as in Eq. (6-35 – 6-37), here “α” represents “c”, “sp” or “se”. Also, err
α, eθθ

α, and 

ezz
α are the radial, the tangential and the axial components of the elastic strain tensor, respectively. 

This system of equations (Eqs. 6-9 and 6-24 – 6-34) will be solved analytically for the example of 

InAs and GaAs core-shell nanowire and the results will be discussed in Section 6.4. 

After finding the stress and strain fields, one can find the strain energy density  as 

𝑊𝑑 = ∫ 𝜎𝑖𝑗d𝜀𝑖𝑗
𝑒

0
,              6-44 

where  and  are components of the stress and the strain tensors, respectively, and the 

summation convention is employed for repeated subscripts. The elastic strain energy density  

is 

𝑊𝑑
𝑒 =

1

2
𝜎𝑖𝑗𝑒𝑖𝑗

𝑒 ,               6-45 

Wd

s ij eij

Wd
e
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In the elastoplastic region of the shell the strain energy density  is calculated from  

𝑊𝑑
𝑒 = 𝜎𝑌𝑒𝑒𝑓𝑓

𝑝
.               6-46 

Here e
eff
p  is the effective plastic strain  

𝑒𝑒𝑓𝑓
𝑝

= √
2

3
{(𝑒𝑟𝑟

𝑝
)
2
+ (𝑒𝜃𝜃

𝑝
)
2
+ (𝑒𝑧𝑧

𝑝
)
2
},            6-47 

where err
p, eθθp and ezz

p are the radial, the tangential and the axial components of the plastic 

strain tensor. One can also find the strain energy per interfacial area between the core and the 

shell (in the units of J/m2). Strain energy per interfacial area  in the core is given by 

𝑊𝑎
𝑐 =

𝑊𝑑
𝑒

𝐴𝑖
=

1

2𝑐
∫ 𝜎𝑖𝑗𝑒𝑖𝑗

𝑒𝑐

0
𝑟d𝑟,             6-48 

where Ai=2πcL is the interfacial area between the core and the shell. Here L is the length of the 

nanowire. Similarly, the plastic strain energy per unit area in the shell Wa
sp and the elastic strain 

energy per unit area in the shell Wa
se are defined as 

𝑊𝑎
𝑠𝑝
=

𝑊𝑑
𝑝

𝐴𝑖
=

1

2𝑐
∫ 𝜎𝑌𝑒𝑒𝑓𝑓

𝑝𝑏

𝑐
𝑟d𝑟,             6-49 

𝑊𝑎
𝑠𝑒 =

𝑊𝑑
𝑒

𝐴𝑖
=

1

2𝑐
[∫ 𝜎𝑖𝑗𝑒𝑖𝑗

𝑒𝑏

𝑐
𝑟d𝑟 + ∫ 𝜎𝑖𝑗𝑒𝑖𝑗

𝑒𝑎

𝑏
𝑟d𝑟].           6-50 

Results 

I demonstrate validity of the analytical solution by comparing its predictions to results from 

FE simulations performed on the same material system. The FE model is developed in 

commercial framework software, COMSOL. The model is axisymmetric due to the symmetry of 

the nanowire. In the FE model the radius of the core is 500 nm, the thickness of the shell is also 

500 nm, and the length of the wire is taken to be 10 μm. I use a mesh composed of quadratic 

elements with dimensions of 20×20 nm2. Similarly to the analytical model, I employ the Tresca 

W
d
p

Wa
c
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yield criterion with the associated flow rule for the elastoplastic model. For the purpose of 

illustration, I use parameters corresponding to InAs as core and GaAs as shell. Material properties 

for the GaAs and InAs are listed in Table 6.1.  

 

Table 6.1 Elastic constants, yield strength, and lattice mismatch for different InAs and GaAs. 

Input parameters Core (InAs) Shell (GaAs) 

C11 (GPa) 83.4 [22] 118.8 [22] 

C12 (Gpa) 45.4 [22] 53.4 [22] 

C44 (Gpa) 39.5 [22] 59.6 [22] 

Yield strength 𝜎𝑌0 (Gpa) 2.5 [23] 5 [23] 

Lattice mismatch (%) - 6.68 

 

I first validate stress field (Eq. (6-30)) predicted by my analytical model for the case of no 

plasticity against FE results. In this case, my analytical model reduces to the analytical solutions 

reported in Refs. [9,10]. I then apply my analytical model to study plastic behavior. I begin with 

the purely elastic case and in Fig. 6.2a I plot different components of stress along the radial 

direction of the nanowire. One can see that the numerical results match very well with the 

analytical predictions. σrr is continuous across the interface whereas both σθθ and σzz have 

jumps across the interface. In Fig. 6.2b, I compare the Von Mises and Tresca effective stresses to 

the yield strength of the material. This graph shows that there is a region in the shell near the 

core/shell interface where the effective stress is higher (by up to 100%) than the yield strength of 

the material and therefore the analytical solution for the stress and the strain fields derived 

assuming elastic material models [9,10] is not valid in this regime. Therefore in order to 
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accurately determine stresses and strains in the shell, one needs to consider elasto-plastic 

constitutive equations for deformation.    

 

Fig. 6.2 (Color online) Comparison of analytical solution (no plasticity) with FE simulations. a) 

Radial σrr , circumferential σθθ and axial σzz components of stress. b) Tresca and Von Mises 
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effective stress compared with the yield strength. Zero radial position corresponds to the center of 

the core and 1000 nm corresponds to the surface of the shell. 

 

Next, I test the analytical results for the elastoplastic model against results of the FE 

simulations. As shown in Fig. 6.3, there is a very good agreement between plastic stresses and 

strains in the core-shell structure. Fig. 6.3a shows that in the shell near the interface, 

circumferential (σθθ) and axial (σzz) components of stress are partially relaxed as compared to 

the stress components in only elastic case (Fig. 6.2a). In contrast, plastic deformation does not 

have a significant effect on the radial (σrr) component of stress. The region where stress is 

partially relaxed and the plastic strain is non-zero will be referred to as the elastoplastic region. 

Elastoplastic region is labeled in Fig. 6.3a as b-c and in Fig. 6.3b as shell-elastoplastic. Variation 

of plastic strain with the radius of the nanowire is shown in Fig. 6.3b. No plastic deformation 

takes place in the core since the effective stress in the core is lower than the yield strength of the 

material. Inside the shell, plastic deformation occurs in a region near the core-shell interface 

where the effective stress is higher than yield strength. Plastic strain vanishes at some distance 

from the core-shell interface.   
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Fig. 6.3 (Color online) Comparison of a) stress components b) plastic strain components between 

analytical solutions (Anl.) and FE simulations. Radial position of zero nanometers corresponds to 

the center of the core and 1000 nm corresponds to the surface of the shell. 
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Tresca and Von Mises yield criteria are commonly used for plastic deformation. The Tresca 

criterion is more conservative whereas the Von Mises criterion in general shows a better 

agreement with experimental results. Due to nonlinearity of stress components in the Von Mises 

yield criterion, finding a closed-form analytical solution for the elastoplastic deformation in core-

shell nanowire does not seem possible and therefore in my analytical approach I use the Tresca 

yield criterion. To show how the results will be affected if I use the Von Mises yield criterion 

instead of the Tresca yield criterion, I compare analytical results (which employ the Tresca yield 

criterion) with FE simulations (where in this case I employ the Von Mises yield criterion). 

Among the stress components shown in Fig. 6.4a, the largest difference between predicted values 

is observed for tangential component of stress (σθθ). The magnitudes of stress components are 

affected by the choice of the yield criterion mainly in the elastoplastic region, but even in this 

region stress components follow the same qualitative trends. The Von Mises criterion predicts a 

smaller thickness b-c of the plastic region, which is the thickness between the core-shell interface 

and the elastic region in the shell (Fig. 6.4b). Another difference between these two criteria is that 

the axial component of the plastic strain is predicted to be non-zero based on the Von Mises 

criterion, whereas it is equal to zero when the Tresca criterion is applied (Fig. 6.4b).  
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Fig. 6.4 (Color online) Von Mises vs. Tresca yield criteria: a) Stress field. b) Plastic strain field. 

Radial position of zero nanometers corresponds to the center of the core and 1000 nm 

corresponds to the surface of the shell. 
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The elastoplastic region in the core-shell nanowire is formed due to high misfit strain 

between core and shell. However, formation of this region is usually not desirable as it leads to 

deterioration of opto-electronic properties of devices. Using my newly developed analytical 

model, I wish to investigate the relationship between the thickness of the elastoplastic region and 

the geometry of the nanowire in order to determine if it is possible to minimize the thickness of 

the yielded region. In Fig. 6.5a, I plot the thickness of the elastoplastic region as a function of the 

core radius while the thickness of the shell is kept constant. A linear relationship between the 

thickness of the elastoplastic region and core radius is observed. Fig. 6.5a also shows that for a 

constant core radius, the thickness of the elastoplastic zone decreases as the shell thickness 

increases. Fig. 6.5b shows the change in the thickness of the elastoplastic region due to the 

change in the shell thickness for two different core radii. Regardless of the choice of the core 

radius, one can see an initial linear increase in the thickness of the elastoplastic region with 

increasing shell thickness. In this regime, the shell thickness is small enough so that the entire 

shell deforms plastically. By increasing the shell thickness, one can find critical values (points P 

and Q) after which the radius of the elastoplastic region starts to decrease with a further increase 

in the shell thickness. This critical shell thickness depends on the core radius as well as a number 

of material properties, such as elastic moduli and yield strength of core and shell. For instance, as 

shown in Fig. 6.5b the critical shell thickness for core radius of 1000 nm is about 270 nm whereas 

the critical value for nanowire with a smaller core radius (100 nm) is about 50 nm. 
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Fig. 6.5 Dependence of the thickness of the elastoplastic region (b-c) on a) the core radius, b) the 

shell thickness. 
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In Fig. 6.6a-b, I plot the thickness (b-c) of the elastoplastic region against , defined as the 

ratio of the shell thickness over the core radius. I report results for two different core radii. 

Similarly to Fig. 6.5b, two regimes are observed. In the first regime the thickness of the 

elastoplastic region increases linearly with  and in the second regime the thickness decreases 

with  and this decrease is non-linear. An interesting phenomenon that is observed here is that the 

critical ratio cr (corresponding to the transition between the two regimes) has the same value for 

both core radii and it is equal to 0.29. This critical ratio does not depend on the nanowire 

geometry (core and shell thicknesses) and only depends on material properties of both the core 

and the shell. For instance, reducing the yield strength of the shell from 5 GPa to 3 GPa increases 

cr from 0.29 to 0.66. 
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Fig. 6.6 Dependence of thickness of the elastoplastic region on the ratio  (defined in text). a)  

varies between 0 to 5. b)  varies between 0.25 to 1. 
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It is also interesting to ask what the effect of the nanowire geometry on the strain energy is. 

To understand that in Fig. 6.7a I plot the elastic and plastic strain energies per interfacial area 

(Eqs. (6-35 - 6-43)) as a function of . I find that the elastic strain energy increases with 

increasing  (both in the core and the shell) whereas plastic strain energy decreases with . The 

increase of elastic strain energies with  is nonlinear. Specifically, this increase is rapid at the 

beginning until  ≈ 1.5-2 and then it levels off. For  < 5, elastic strain energy per unit area in the 

shell is larger in magnitude than the strain energy in the core. In the same regime of , plastic 

strain energy per interfacial area shows a decrease with , but the rate of this decrease is very 

small. For  > 5, the magnitude of elastic strain energy per unit area in the core is larger than the 

strain energy in the shell. In this regime, the rate of increase in elastic strain energy and decrease 

in plastic strain energy are very small. Strain energy density across a core-shell nanowire (along 

the radial direction) is plotted in Fig. 6.7b. The elastic strain energy density is constant throughout 

the core, which is consistent with the fact that both the stress field and the elastic strain field are 

constant in the core and there is no plastic deformation in this region of the nanowire. In the shell, 

both the elastic and the plastic strain energy densities vary nonlinearly with the radial position. 

Plastic strain energy density decreases with the radial distance from the core-shell interface and it 

reaches zero at the elastoplastic region boundary. 
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Fig. 6.7 (Color online) a) Dependence of strain energy per interfacial area on ratio  (defined in 

text). b) Strain energy density across the nanowire. Zero radial position corresponds to the center 

of the core and 1000 nm corresponds to the surface of the shell. 
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Since the misfit energy depends on the specific choice of core and shell materials, it is 

instructive to consider the role of the misfit strain on the thickness of the elastoplastic region and 

on the strain energy stored in the nanowire. In Fig. 6.8a, I investigate dependence of thickness (b-

c) of the elastoplastic region on the misfit strain. For small misfit strains (less than 0.04%), there 

is no plastic deformation. Increasing the misfit strain leads to a linear increase in the thickness of 

the elastoplastic regime. Strain energy per interfacial area shows a nonlinear dependence on the 

misfit strain, as illustrated for the case of    = 1 in Fig. 6.8b. Elastic strain energies (in the core 

and in the shell) increase nonlinearly and the energy in the core is larger than in the shell. Plastic 

strain energy per interfacial area is equal to zero for misfit strains smaller than 4% and then starts 

to increase nonlinearly with increasing misfit strain (Fig. 6.8b).  
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Fig. 6.8 (Color online) Dependence of a) the thickness of the elastoplastic region and b) strain 

energies on the misfit strain. 
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Conclusions 

I developed an analytical model to study heteroepitaxially grown core-shell nanowires where 

the misfit strain between the core and the shell is large enough to produce plastic deformation in 

the shell. My model assumes infinitesimal strains and uses linear elasticity governing equations 

for the elastically deformed regions of the nanowire. For the elastoplastic regions, in addition to 

the linear elasticity governing equations I used the Tresca yield criterion with its associated flow 

rule and I assumed perfectly plastic behavior for the material (no work hardening). My results are 

validated against numerical simulations based on the elastoplastic FE analysis. Assuming InAs 

and GaAs as the core and the shell materials, respectively, I investigated the role of geometry 

(i.e., core and shell thicknesses) on the size of the elastoplastic zone. My results show that for a 

constant shell thickness, the elastoplastic region is larger for a larger core radius. Interestingly, I 

found that when the core radius is kept constant, there is a non-monotonic relationship between 

the shell thickness and the thickness of the plastically deformed region in the nanowire. For shell 

thickness up to a certain critical value, the entire shell has yielded plastically. By increasing the 

shell thickness above the critical value, the plastically deformed region shrinks, indicating that a 

thicker shell suppresses the amount of plastic deformation. In the case of InAs-GaAs core-shell 

nanowire, the critical ratio (shell thickness/core radius) of 0.29 maximizes the thickness of the 

plastically deformed region. 
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 Concluding remarks and future directions 

Implication of modeling on growth and annealing of heterostructures 

Modeling provides an important frame work to understand different strain induced 

phenomena in semiconductor heterostructures and to be able to control them. Here are my key 

findings: 

 I found that different regimes during the growth of self-assembled islands are mainly 

controlled by strain and deposition flux.  

 Surface induced compositional modulation in nanowires can be suppressed by thick 

coating around the core. 

 Plastic deformation in heterostructures causes stress relaxation, specially at the 

interfaces.  

Possible improvements in future modeling efforts 

Here, I briefly discuss some of the ideas about future work of my research. The ideas are 

categorized in three groups based on the order of the chapters in this document. 

1. Growth of thin films inside patterned surfaces:  

 3D model to study the growth of thin films inside surface patterns: As shown in the 

thesis, I have used a plane strain assumption to study the growth of thin films. Although 

this assumption makes sense for the case that patterns are strip-shaped, but it does not 

consider any changes in some parameters such as diffusivity in the perpendicular 

direction to the cross-section. Hence a 3D model can elaborate more details about the 

growth of thin films and may provide some new understanding on how to control the 

morphology. 

 Study phase segregation in multi-component thin films during growth inside 

surface patterns: many of the III-V semiconductors have miscibility gap in their phase 
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diagram. Depending on growth or annealing temperature, phase separation may also 

happen to relax bulk free energy or strain energy of the heterostructure. It will be 

interesting to study the coupling between phase segregation and strain relaxation during 

growth and investigate if this phase segregation plays any role to control the 

morphology. 

2. Phase segregation in III-V nanowires during annealing process: 

 Study growth of nanowires: Interesting phenomena have been observed during the 

growth of nanowires such as direction of the growth, stacking fault and instantaneous 

phase segregation during growth where there is no clear explanation for them. Given 

that phase field model can capture the effects of both thermodynamics and kinetics, it 

will be a good framework to investigate the growth of nanowires.  

 Study surface instability in core-shell nanowires: Similar to thin films, morphological 

changes at the surface of nanowire heterostructures are one of the methods to relax the 

strain energy of the system. Given that nanowire heterostructures store less strain energy 

compared to thin films, it will be interesting to investigate the role of misfit strain and 

geometry on surface instabilities. 

3. Analytical elastoplastic study of strain and stress fields in core-shell nanowires:  

 Investigate the role of different yield criterion, flow rule and hardening rule: I have 

developed an analytical solution for elastoplastic deformation in nanowire 

heterostructures using Tresca yield criterion and its associated flow rule and assumed no 

work hardening. It will be interesting if one can analytically solve the governing 

equations for other yield criterion such as Von Mises and Hill and their associated flow 

rules. Also it will be interesting to find analytical solution for a work hardening material.  
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