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Abstract 

Ecosystem change can be understood through many approaches, including mechanistic 

analyses of ecosystem processes, the study of generic indicators of approaching change, or using 

past observations to gauge the scale and frequency of extreme events. My dissertation focuses on 

aspects of these three approaches to understanding change in lake ecosystems. 

Metabolism is a fundamental process that occurs in all ecosystems. The metalimnion of 

some lakes can have high concentrations of chlorophyll and dissolved oxygen, which may be 

associated with high rates of primary production. However, metalimnetic metabolism is rarely 

quantified. Estimates of aquatic metabolism are facilitated by automated sensor technology, but 

time series collected from the metalimnion of a lake can be extremely noisy. We developed a 

metabolism model that uses a Kalman filter to estimate metabolism, and found that the 

metalimnion of Ward Lake is the locus of intense primary production. This model is able to 

reliably estimate metabolism from noisy metalimnetic time series. 

The organic matter in lakes originates from a variety of habitats, including the 

surrounding terrestrial ecosystem. Ward Lake is a small, naturally productive lake that contains 

organic matter derived from a wide variety of primary producers – terrestrial material, 

macrophytes, benthic algae, and phytoplankton in the epilimnion and metalimnion comprise the 

base of the food web. We quantified the contribution of these resources to zooplankton, a snail, 

and fishes using stable isotopes of carbon, nitrogen, and hydrogen. Resource support varied 

among consumers, and fishes tended to integrate over resources more thoroughly than other 

consumers. Few studies investigate the energetic roles of macrophytes and metalimnetic 

phytoplankton, but we found that these resources made substantial contributions to consumer 

biomass. Thus, a variety of resources can support the food web of a naturally productive lake. 
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Latent low-quality resources may become energetically important to a food web when 

resource availability declines, which is a mechanism that is theorized to stabilize food webs. To 

test the potential for alternative resources to support consumers, we experimentally darkened 

Ward Lake, whose consumers had relied heavily on algal resources. Declining oxygen and 

chlorophyll along with increasing pCO2 indicated reduced availability of resources and a shift to 

heterotrophy. A specialist copepod maintained high reliance on phytoplankton resources, but 

most other consumers (Chaoborus spp., a snail, fishes) received increased support from 

alternatives like floating-leafed macrophytes and terrestrial material. These shifts highlight the 

potential for increased support by alternative resources, which may provide a mechanism that 

stabilizes ecosystems. 

Regime shifts are large and sudden ecosystem changes that involve thresholds, and 

theory suggests that statistical indicators of changing resilience can be detected near thresholds. 

However, these statistical indicators are data-hungry, may not be evident in all variables, and the 

variables showing signs of declining resilience may vary across types of regime shifts. Thus, data 

collection is a major challenge to the application of indicators of declining resilience. Automated 

measures of metabolism could be a solution to the challenge of data collection – metabolism is a 

variable that is central to a variety of ecosystem processes, and can be estimated from automated 

sensors, which can simultaneously measure a variety of variables with little increase in cost or 

effort. We examined the capacity of automated measures of metabolism to assess resilience 

during an experimentally-induced transition in a whole-lake manipulation. A trophic cascade was 

induced in a planktivore-dominated lake by slowly adding piscivorous bass, while a nearby bass-

dominated lake remained unmanipulated and served as a reference ecosystem during the four-

year experiment. We used the sensors to monitor variables related to metabolism (oxygen, 
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chlorophyll, pH), as well as to estimate metabolic rates. We were unable to detect indicators of 

changing resilience from the estimates of metabolic rates. However, we detected indicators of 

declining resilience in the directly measured variables in the manipulated lake prior to the 

completion of the regime shift. Therefore, automated sensors and variables related to metabolism 

may be useful for detecting approaching ecosystem thresholds. 

An ecosystem can be greatly impacted by a single, large event. Massive events are more 

likely to be present in time series with extremes that follow fat-tailed probability distributions. 

As a result, the thickness of the tails of a distribution (tailedness) is often assessed for abiotic 

variables to gauge the size and frequency of disturbances like floods. However, the tailedness of 

biological time series is not well characterized. We analyzed 595 long-term lake time series 

spanning meteorological, physical, chemical, and biological variables, and show that a range of 

tailedness can be found in all variable types. Biological variables were the most fat-tailed time 

series in our data set, and were estimated to exceed their historical records more frequently than 

the other categories. Furthermore, we found that presuming a normal or log-normal distribution 

for ecological time series can result in a skewed perception of the time that will pass between 

recording breaking events. Even if a large event cannot be predicted, it is useful to know that it is 

possible. Thus, undue surprise from ecological extremes may be avoided by accounting for the 

tailedness of ecosystem variables, including biological populations.
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Introduction 

Ecosystem functioning is essential for human welfare. Therefore, understanding how and 

why ecosystems change is of utmost importance. My dissertation focuses on lake ecosystems and 

how they change. 

One way to anticipate ecosystem change is through a mechanistic understanding. We can 

learn how an ecosystem works by treating it like a jigsaw puzzle: we study its components and 

join them as we find links, thereby allowing a clear picture to emerge from distinct pieces. 

Certain types of pieces serve the same functions across puzzles – corner and edge pieces form 

the edge of a puzzle, just like primary producers serve as the energetic basis of a food web. For 

the interior of the puzzle, we define characteristics that permit a logical connection between 

pieces, like color or shape. Big changes in one piece of an ecosystem reveal mechanisms that 

link it to other pieces, helping us to anticipate the consequences of future changes. However, 

some big changes are extremely difficult to anticipate from studying mechanisms alone, making 

the puzzle approach ineffective. In these situations, it may be better to look for generic signals of 

impending change, or to simply know that a big change is possible. 

 The first three chapters of my dissertation focus on studying ecosystem dynamics as a 

jigsaw puzzle, while in the last two I search for generic patterns that provide information on the 

timing or magnitude of big change. In the first chapter I find an edge piece to the puzzle by 

developing an approach for quantifying primary production. In the second chapter I use stable 

isotopes to figure out how the energetic edges of the food web feed into the consumers of a small 

lake. In the third chapter I again connect energetic edges to consumers using stable isotopes, but 

I also experiment with the color of the lake to understand how these connections can change 

when primary production declines. In the fourth chapter I use the dynamics of primary producers 
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to detect generic indicators of an ecosystem regime shift. In the fifth chapter I study a variety of 

ecosystem time series in order to determine what types of variables are most capable of 

producing surprisingly large events. Together, the chapters take several approaches to 

understanding ecosystem change. 

 

Chapter 1: Kalman filter metabolism. Metabolism is a process common to all ecosystems, and 

includes net ecosystem production, respiration, and primary production. Primary producers 

necessarily comprise the ultimate source of organic energy in food webs. Thus, identifying loci 

of primary production is a critical step towards understanding food web and ecosystem 

functioning. 

Sometimes a narrow band of the metalimnion of a lake will contain an exceptionally high 

concentration of chlorophyll and oxygen, indicating high primary producer biomass, and 

possibly high primary production. Metalimnetic primary production and its contribution to the 

rest of the food web are rarely quantified, but metalimnetic primary production can be substantial 

(Fee 1976). However, estimating metalimnetic primary production with modern free-water 

sensor methods can be challenging. A sensor suspended in the metalimnion of a lake can be 

subjected to large amount of noise as internal waves vertically displace the sensor, causing it to 

move between several sublayers of the metalimnion. Because the metalimnetic chlorophyll and 

oxygen maximum is a spatially discrete and abrupt phenomenon (adjacent layers have 

exceptionally low oxygen or chlorophyll), the resultant data are noisy, and this noise severely 

confounds conventional models for estimating metabolism from sensor data. To solve this 

problem, the first chapter of my dissertation employs a statistical technique known as a Kalman 
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filter to reliably estimate metabolism in the presence of noise. I applied this technique to the 

metalimnion of Ward Lake, which I found to have high rates of primary production. 

 

Chapter 2: Resources supporting Ward Lake. The organic matter in lake ecosystems is 

derived from a variety of plant forms growing in a variety of lake habitats, and even includes 

organic matter originating from the surrounding terrestrial ecosystem. Ward Lake presented a 

variety of resources to its consumers: phytoplankton growing in the epilimnion and metalimnion, 

benthic algae, macrophytes, and terrestrial organic matter were present in this ecosystem. The 

contributions of some of these resources, such as metalimnetic phytoplankton and macrophytes, 

are not often quantified. Using stable isotopes as food web tracers, I found that all of these 

resources contributed to the consumers of Ward Lake, especially the algal resources. These 

results contribute to a small but growing body of evidence that metalimnetic and macrophyte 

resources support lake food webs. 

 

Chapter 3: Resources supporting a lake dyed blue. Although many types of resources 

supported consumers in Ward Lake, some resources like terrestrial organic matter did not 

support many consumers, despite being abundant. Resources like terrestrial material are not 

generally considered to be high-quality resources for lake consumers. However, latent resources 

may become more important in times when the heavily-used high-quality resources become less 

abundant – a phenomenon which is known to contribute to the stabilization of food web 

dynamics. 

Could the consumers of Ward Lake rely on these energetic alternatives? To test the 

potential for alternative resources to support a food web, we added a dye, Aquashade, to Ward 
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Lake in 2012. After Ward Lake was darkened and the abundance of important local resources 

(e.g., phytoplankton) declined, consumers were more greatly supported by alternative resources. 

This experiment demonstrates that alternative resources can support consumers when high-

quality resources are depleted, which highlights support by alternative resources as a plausible 

mechanism for stabilizing food webs. 

 

Chapter 4: Using sensors to detect declining resilience. The first three chapters of my 

dissertation describe a method for estimating primary production, and how primary production is 

linked to the flow of energy through a food web. These connections are mechanisms that aid in 

understanding how ecosystems might respond to particular environmental changes (e.g., 

darkening water). However, ecosystem regime shifts comprise a class of large ecosystem 

changes that can be sudden and difficult to reverse, but equally difficult to predict 

mechanistically. During a regime shift, an ecosystem can undergo sudden change as a small 

change in a key variable crosses a threshold. The exact location of this tipping point is hard to 

identify, which is what makes mechanistic prediction of regime shifts so difficult. 

However, as a system approaches a tipping point, it loses resilience. This loss in 

resilience manifests itself as sluggish dynamics in key ecosystem variables, which in turn can be 

quantified through statistics like temporal variance and autocorrelation (Dakos et al. 2012). 

These leading indicators of declining resilience are promising for anticipating regime shifts, but 

data collection remains a large challenge to accurately computing indicator statistics, and thus to 

detecting changes in resilience. Furthermore, not all types of variables will show clear signs of 

declining resilience, and the variables showing changing resilience may differ among types of 

regime shifts. 
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Metabolism is a variable that is central to a variety of ecosystem processes, and can be 

estimated from automated sensors, which can simultaneously measure a variety of variables with 

little increase in cost or effort. As such, if changes in resilience could be detected in metabolism 

and associated variables, automated sensors may greatly facilitate the application of early 

warning theory in a management scenario. In my fourth chapter I used automated sensor data 

associated with ecosystem metabolism to detect changing resilience in a food web undergoing an 

experimentally induced regime shift. 

 

Chapter 5: Fat tails. Previous chapters focused on mechanisms that guide ecosystems through 

change, and an approach to anticipating ecosystem change even when a precise mechanism is 

unknown. However, sometimes ecosystems are subjected to – or produce – large, surprising 

events. All variables have a set of largest observations over time – annual maxima, for example, 

may constitute such a set of extremes. 

The tail of the distribution of extremes (henceforth tailedness) reflects a variable’s 

propensity to exceed its historical precedent: a fat-tailed variable is more likely to massively 

exceed its record, whereas a thin-tailed variable is much more likely to break its record by a 

small margin (Coles 2001). Similarly, fat-tailed variables are likely to break their current record 

value more frequently than thin-tailed variables. Ecosystems can change drastically as a result of 

a single large event, which has made tailedness an important topic of study in environmental 

sciences. However, tailedness is typically evaluated for abiotic perturbations to ecosystems, but 

rarely assessed for the biotic components of ecosystems, like biological populations.  

In the fifth chapter of my dissertation I present an analysis of 595 time series from the 

North Temperate Lakes Long Term Ecological Research database. My analysis is the first to 
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show that time series of vertebrate populations can be fat-tailed, and that biological variables are 

more fat-tailed than abiotic variables measured in the same ecosystems. The presence of fat-

tailed biological variables could profoundly affect how we manage for ecosystem resilience, 

particularly because a variety of ecosystems are subject to regime shifts triggered by critical 

densities of biological populations (Folke et al. 2004, Carpenter et al. 2012). Managing for 

ecosystem resilience could be facilitated by investigating the mechanisms that generate fat tails, 

and by recognizing that fat tails exist in a variety of ecosystem variables, including biological 

populations. 
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Chapter 1: Free-water lake metabolism: addressing noisy time series with a Kalman filter* 

______________________________________________________________________________ 

Abstract 

Whole-ecosystem metabolism is often estimated in lakes using high-frequency free-water 

measurements of dissolved oxygen (DO) taken in the upper mixed layer. DO dynamics in the 

metalimnion are not adequately captured by measurements made in the upper mixed layer, which 

could reduce the accuracy of whole-lake metabolism estimates made from such data. However, 

estimating metabolism from metalimnetic DO time series can be challenging because of high 

variability (noise). This study used simulated and field data to determine if metabolism estimates 

from metalimnetic data containing noise can be improved by accounting for both process and 

observation error in models. When DO time series exhibited high variability, free-water 

metabolism estimates obtained using a Kalman filter (which accounts for both process and 

observation error) were substantially more accurate than estimates obtained from models that did 

not account for error or accounted for process error only.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
*Published as: Batt, R. D. and S.R. Carpenter. 2012. Free-water lake metabolism: addressing 
noisy time series with a Kalman filter. Limnology and Oceanography: Methods 10: 20-30, doi: 
10.4319/lom.2012.10.20 
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Introduction 

Metabolism is a fundamental ecosystem process that describes the collective fixation and 

mineralization of carbon by all organisms in a given ecosystem. Whole-lake metabolism 

characterizes the origin and fate of energy in lake food webs (Schindler et al. 1972; Cole et al. 

2000; Pace et al. 2004), and quantifies part of the role that lakes play in global carbon cycling 

(Cole et al. 2007). Ecosystem metabolism has been measured in aquatic ecosystems for decades 

using free-water measurements of dissolved oxygen (DO) concentration (Odum 1956). In recent 

years, free-water methods for estimating metabolism have become increasingly more common as 

technological advances have increased the availability of sensors (known as sondes) capable of 

making high-frequency measurements of DO over extended deployments. Free-water methods 

are less constrained by the questions of scale and container effects that arise in alternative 

methods, and high-frequency approaches are able to capture temporal dynamics that may be 

missed by discrete approaches (Stæhr and Sand-Jensen 2007). 

Although the use of high-frequency free-water DO measurements to estimate whole-lake 

metabolism has advantages over alternative approaches, it presents researchers with its own 

challenges. One conceptual challenge results from the spatial heterogeneity of metabolic 

processes within a system. Most whole-lake metabolism studies using high-frequency free-water 

DO measurements have used a single sonde placed in the pelagic epilimnion of a lake and 

assumed that measurements made there were representative of biological processes occurring 

throughout the system, although this assumption is often problematic (Stæhr et al. 2010). 

Because the spatial variation in metabolic processes in an aquatic system may not be promptly 

and fully integrated into the DO dynamics at a given location, metabolism estimates can vary 

with the horizontal (Caraco and Cole 2002; Lauster et al. 2006; Van de Bogert et al. 2007) and 
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vertical (Gelda and Effler 2002; Coloso et al. 2008; Sadro et al. 2011) location of a sensor. 

Metabolism in the metalimnion of lakes is not measured by a sonde near the surface, yet 

metalimnetic production may be important in total ecosystem metabolism (Fee 1976; St. Amand 

and Carpenter 1993; Sadro et al. 2011), although this role has been questioned in some cases 

(Pick et al. 1984; Coloso et al. 2008). Although measuring metalimnetic in addition to 

epilimnetic metabolism may be desirable, placing a sonde in this layer to address the conceptual 

challenge of spatial heterogeneity may yield time series of metalimnetic DO with high variability 

relative to the diel metabolic signal. This noise has many potential causes, but is likely caused in 

part by surface and internal waves shifting the sensor between metalimnetic sublayers, which can 

lead to inaccurate metabolism estimates (Coloso et al. 2008). Thus, efforts to measure 

metalimnetic metabolism and address the conceptual challenge of spatial heterogeneity are 

confronted by the statistical challenge of noisy data. 

Existing models used to estimate metabolism from sonde data either omit a term for error 

(Cole et al. 2000), or only include process error to represent lack of model fit (Hanson et al. 

2008; Ciavatta et al. 2008). These types of models may be appropriate in some situations, but the 

nature of the noise present in metalimnetic data may require a different approach. A Kalman 

filter can be used to estimate metabolic parameters while accounting for not only process error, 

but also observation error, which represents variability in the DO measurements that is not 

related to metabolism (Harvey 1989). Kalman filtering has been applied to automated sensor data 

to estimate net ecosystem production (Soetaert and Gregoire 2011), but to our knowledge has not 

been used to estimate gross primary production (GPP) or respiration (R). If observation error 

better characterizes the high-frequency noise associated with metalimnetic data than process 

error, accounting for it in models should permit more accurate metabolism estimates. This paper 
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evaluates the ability of a Kalman filter to improve the accuracy of whole-lake metabolism 

estimates made from DO measurements exhibiting different varieties and magnitudes of noise. 

Materials and procedures 

This study employed both simulated and measured dissolved oxygen data, and in both 

cases estimated gross primary production (GPP), respiration (R), and net ecosystem production 

(NEP) using three distinct models. All models evaluated metabolism as it would occur in the 

metalimnion of a lake, where there is no diffusive exchange with the atmosphere, and diffusive 

exchange with nearby water layers can be assumed to be minimal (Cole and Pace 1998; Gelda 

and Effler 2002), leaving changes in DO concentration attributable to biological processes. The 

first two models are commonly used in whole-lake metabolism studies, while the third model is 

novel and served to estimate metabolism as well as to filter DO time series before use in 

conjunction with the first two models. 

 Models—The bookkeeping model (BK) is based on the model presented by Cole et al. 

(2000), and is implemented in numerous other studies calculating whole-lake metabolism from 

high-frequency DO data (Hanson et al. 2003; Coloso et al. 2008). The model is rooted in the 

Odum (1956) model, 

ΔDO = NEP + F = GPP + R + F (1) 

where the change in oxygen between each measured time step (ΔDO) results from diffusive 

exchange with the atmosphere and other water layers (F), plus net ecosystem production (NEP). 

NEP is the sum of gross primary production (GPP ≥ 0) and total ecosystem respiration (R ≤ 0) 

during that time interval. F was set equal to zero because changes in oxygen between time steps 

resulting from diffusive exchange with the atmosphere and adjacent water layers are assumed to 

be negligible in the metalimnion. While NEP can be measured directly, R and GPP need to be 
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determined algebraically because these two processes occur simultaneously during the day. 

However, total nighttime R is equal to nighttime NEP because GPP does not occur at night: 

 

∑ ΔDOnight = NEPnight = 

 

∑ Rnight (2) 

Furthermore, by assuming that the respiration rate is constant over a 24-hour period (Carignan et 

al. 2000; Cole et al. 2000; Hanson et al. 2003), we were able to calculate the respiration rate 

during a given daylight period as the mean of the respiration rates from the nights (periods of 

darkness) preceding (night[-1]) and following (night[+1]) the daylight period of interest. 

Multiplying these daytime (calculated from Rnight[-1] and Rnight[+1]) and nighttime (Rnight) 

respiration rates by their respective durations (Δtday and Δtnight) and subtracting them from NEP 

then yields GPP for a given day: 

GPP = NEP – ([Rnight[-1] + Rnight[+1]]/2 × Δtday) – (Rnight × Δtnight) (3)  

GPP, R, and NEP are estimated by BK through the bookkeeping of diel changes in DO. 

 The second model is a linear model (LM) where change in DO between times t and t-1 is 

a function of surface photosynthetically active radiation (PAR; I), the natural logarithm of water 

temperature (T), diffusive exchange with the atmosphere and other water layers (F), and 

unknown processes modeled as normally distributed error (ε) with a mean = 0 and variance = σ2: 

DOt - DOt-1 =(β1 × It-1 + β2 × ln(Tt-1) + Ft-1) × Δt + εt ; ε~N(0, σ2) (4) 

F is set equal to zero because diffusive exchange is assumed to be negligible in the metalimnion, 

β1 and β2 are parameters to be fit, and are factors in the terms that correspond to GPP and R, 

respectively: 

GPP = β1 × I ; β1 ≥ 0 (5) 

R = β2 × ln(T); β2 ≤ 0 (6) 



	
   13 

In this model, change in GPP is driven by PAR, and change in R is driven by temperature. The 

Linear Model (LM) is similar to the simple model described in Hanson et al. (2008) in that it fits 

parameters to the DO time series and includes a term accounting for error in the modeled process. 

Models such as LM use fitted parameters, and are common in metabolism studies (Stæhr and 

Sand-Jensen 2006; Hanson et al. 2006; Van de Bogert et al. 2007; Langman et al. 2010), and 

contrast with the bookkeeping approach in that they include an error term, instead of subsuming 

the error in the estimates of the metabolism parameters. 

 The third model makes use of a Kalman filter, an approach that is well established in 

statistics (Kalman 1960; Harvey 1989). The process equation of the Kalman filter model (KF) is 

DO[True] t - DO[True]t-1 = (β1 × It-1 + β2 × ln(Tt-1) + Ft-1) × Δt + εt ; ε~N(0, Q) (7) 

where DO[True] is the true (but unknown) DO concentration, Q is the variance of the process error, 

and all other model parameters and terms are as described for LM. While models such as LM 

account for error in the predictions of DO (process error), they do not account for error in the 

observations of DO (observation error) that can occur if a sensor does not measure what it is 

intended to measure. Observation error occurs, for example, when surface waves shift a sensor 

into neighboring sublayers with DO concentrations distinct from the one intended for 

observation. Even though the sensor movement between layers is not related to metabolism, LM 

can only respond to this variability by adjusting estimates of biological parameters and process 

error variance. KF, in contrast, describes the relationship between true DO (DO in the sublayer 

of interest) and observed DO (the DO measured by the sensor) in a second equation, the 

observation equation, 

DO[Observed]t = DO[True]t + νt ; ν~N(0, H) (8) 
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where ν is the error associated with the imperfect observation of DO, and H is the variance of the 

observation error. 

The Kalman filter calculations (Harvey 1989, pp. 105-6) combine information about the 

data generating process (Eq. 7) with the manner in which the state variable is observed (Eq. 8). 

At each time step Eq. 7 gives an estimate of the true but unknown value of the state variable, DO. 

However, additional information concerning the true value of DO becomes available when a new 

observation of DO is made, and the Kalman filter routine updates the current estimate of DO to 

yield an estimate that is closer to the true value of DO than would be given by either Eq. 7 or 8. 

The update weights the two sources of information to yield a new estimate of DO that is 

somewhere between the predicted and observed value, but closer to the value that is more precise 

(1/Q for the prediction in Eq. 7, and 1/H for the observation in Eq. 8). Thus the Kalman filter 

recursion proceeds stepwise and unidirectionally through time, and given linear process and 

observation equations (Eqs. 7 and 8) with time-invariant model parameters (including the error 

variances Q and H) both the propagation of error variances through time and updating equations 

follow a standard algorithm (Harvey 1989, pp. 105-6, Eqs. 3.2.1-3). In Web Appendix A we 

have provided example code written in R (R Core Development Team 2011) that implements KF, 

and in Web Appendix B we have provided a sample data set that is used by the example code. 

 The parameters to be estimated in KF are β1, β2, Q, and H; however, values for Q and H 

cannot be fit simultaneously because a unique solution would not exist. β1, β2, and Q were fit 

using maximum likelihood estimation (Harvey 1989, p. 126, Eq. 3.4.5) after H was estimated 

independently and supplied to the model as a constant. H was estimated as the mean of a running 

variance of the DO time series with a window size of 10 samples (40 minutes). Window size was 

chosen to be small enough such that the effect of modeled and unknown processes on DO 
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variability would be minimal (leaving the majority of DO variability attributable to observation 

error), but large enough to acquire an accurate estimate of variance. The effects of our approach 

for estimating H on metabolism estimates and filtered DO are discussed later. 

 Because KF estimates of DO are dependent on temperature (Eq. 7), temperature data 

were filtered before being used to filter DO. The process equation for the temperature filter is 

T[True]t = (β1[T] × T[True]t-1 + β2[T] × (q[In]t - q[Out]t)) × Δt + εt ; ε~N(0, Q[T]) (9) 

where β1[T] and β2[T] are parameters to be fit, Q[T] is the variance of the process error, qIn is the 

amount of energy entering the layer of interest in watts, and qOut is energy exiting the layer. 

Energy values were estimated from PAR (400nm - 700nm) measurements, and energy (q) at a 

given depth (z) was calculated as  

qz = q0 × eµz (10) 

where q0 is the energy at the surface of the lake, e is the base of the natural logarithm, and µ is 

the attenuation coefficient of light in the lake. Light attenuation was calculated as 

µ = ln(0.01)/z0.01 (11) 

where z0.01 is the depth at which 99% of light incident at the surface of the lake has been 

attenuated in the water column (measured with depth profiles of PAR). The observation equation 

for the temperature filter is 

T[Observed]t = T[True]t + νt ; ν~N(0, H[T]) (12) 

where ν is the error associated with imperfect observation of temperature, and H[T] is its variance. 

The parameters and the error variance estimates for the temperature filter were calculated in the 

same fashion as they were for DO. 

 Measured data—Field data were collected from Ward Lake, a small (area = 1.9 ha, 

maximum depth = 8 m) mesotrophic lake at the University of Notre Dame Environmental 
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Research Center near Land O’ Lakes, Wisconsin, USA. From May 26 through May 31, 2010 

dissolved oxygen and temperature were measured every four minutes near the metalimnetic 

oxygen maximum (ca. 1% surface light and 4 m depth) using a YSI 600XLM sonde fitted with a 

rapid pulse oxygen probe (model 6562) and temperature probe. In the LM and KF models, the 

size of each time step (Δt) was set equal to the four-minute sampling frequency of DO and 

temperature as measured by the sonde. A vertical light profile was taken using LI-COR 

photosynthetically active radiation (PAR) sensors (models LI-190 and LI-193), and surface PAR 

was measured every 5 minutes with a LI-COR sensor on a buoy at nearby Peter Lake. 

 Simulated data—In order to assess the ability of the three models presented in this study 

to estimate metabolism accurately, DO time series with known underlying metabolic processes 

were simulated. DO time series were generated to fit the deployment duration and sampling 

frequency of measurements made by the sonde in Ward Lake. Eq. 7 and 8 were used to generate 

these data from field measurements of PAR, Kalman filtered temperature, and fixed values of β1 

and β2. PAR data were linearly interpolated and resampled to match the 4-minute sampling 

frequency of sonde measurements. The deterministic portion of Eq. 7 was used to generate a 

noiseless DO time series, where the true values of GPP and R (Eq. 5 & 6, respectively) drove the 

changes in DO. Various magnitudes of process and observation error were then added to this 

deterministic skeleton (noiseless time series) to simulate the noisy DO time series used in 

sensitivity analyses. These stochastic components (noise) were independently generated for each 

combination of Q (n=6) and H (n=5), and for each replicate (n=30) of these combinations. Thus 

each time series was an independent realization of the same stochastic process. 

Assessment 
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The ability of each model to accurately estimate true mean daily values for GPP (23.75 

µmol O2 L-1 d-1) and R (-16.09 µmol O2 L-1 d-1) was examined for simulated time series 

collectively exhibiting a wide range of observation and process error. In addition to examining 

the accuracy of each model for noisy simulated data, we explored the potential for using the 

methods sequentially by first filtering noisy time series using KF, then implementing BK and 

LM. Simulations were also used to demonstrate the sensitivity of metabolism calculations to 

estimates of H. Having assessed their performance on simulated data, the models were then 

evaluated in a similar fashion using observational data from Ward Lake. 

Simulation—When KF is applied to a DO time series, the resultant filtered time series 

contains substantially less variability than the noisy time series (Fig. 1). To test if such a 

reduction in variability would improve metabolism estimates generated by BK and LM, these 

models were run on thirty combinations of process error (ε~N(0, Q); Q = 0.1, 0.5, 1, 5, 50, 100 

(µmol O2 L-1)2) and observation error (ν~N(0, H); H = 1, 10, 50, 100, 500 (µmol O2 L-1)2) 

variance, both before and after filtering, replicated thirty times for each combination. Model 

estimates of GPP and R were calculated as the overall mean daily estimate for thirty replicate 

stochastic simulations of six-day deployments. 

Estimates of GPP and R generated by BK rapidly departed from true values as the 

variance of process (Q) and observation error (H) increased (Fig. 2A,C). Increases in Q for a 

given value of H consistently resulted in greater absolute deviations of GPP and R from true 

values, and increases in H for a given value of Q resulted in greater absolute deviations for all 

but the highest value of Q. Overall, filtering DO time series with KF prior to estimating 

metabolism with BK reduced mean absolute deviations of estimates from true values (unfiltered 

data = 50.21 µmol O2 L-1 d-1, filtered data = 39.17 µmol O2 L-1 d-1). Specifically, filtering 
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substantially reduced the impact of observation error on the ability of BK to accurately estimate 

GPP and R (Fig. 2B,D). However, the ability of filtering to mitigate the effects of error on the 

accuracy of BK were largely limited to observation error, as increases in process error resulted in 

less accurate metabolism estimates even after filtering. 

Metabolism estimated by BK and LM responded similarly to increased error variance in 

DO time series: increased process and observation error variances were accompanied by 

decreased accuracy (Fig. 3A,C). Furthermore, estimates from LM were more strongly influenced 

by process error than they were by observation error. Despite similarity in these trends, LM 

displayed a dampened sensitivity to increases in observation error variance relative to BK, and 

while filtering did serve to mitigate the effects of observation error, LM did not respond as 

strongly to filtering as BK (LM overall mean of GPP and R absolute differences for unfiltered 

and filtered data = 25.91 and 25.00 µmol O2 L-1 d-1, respectively). The overall mean accuracy of 

metabolism estimates was consistently greater in LM (25.45 µmol O2 L-1 d-1) than in BK (44.69 

µmol O2 L-1 d-1), and estimates derived from time series filtered by KF were closer to true values 

than unfiltered estimates for both models. 

Deviations of KF metabolism estimates from true values were driven almost exclusively 

by process error variance (Fig. 4), a pattern which is similar to that observed for the other two 

models when estimates were derived from filtered data. Estimates from KF (overall mean of 

GPP and R absolute differences = 24.99 µmol O2 L-1 d-1) were similar to those from LM on 

filtered data. This similarity between LM on filtered data and KF is reasonable because the main 

effect of filtering seems to be the removal of observation error, and the two models have an 

equivalent approach for estimating metabolism in the presence of the remaining process error. 

However, when values of H were high and values of Q low, the Kalman filter allowed LM to 
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yield metabolism estimates as accurate as those from KF. Among combinations of Q and H, KF 

tended to be equally or more accurate than LM. 

The effects of over- and underestimating H on metabolism estimates were assessed for 

each model. Estimates of H were adjusted by factors of 0.1, 0.25, 0.5 (three underestimates), 1 

(unadjusted), 2, 4, and 10 (three overestimates) for thirty stochastic simulations of DO time 

series (for each simulation Q and H = 0.5 and 100 (µmol O2 L-1)2, respectively). Mean model 

estimates of GPP, R, and NEP remained consistently near true values across all adjustments to 

the estimate of H (Fig. 5). Furthermore, variability was smallest near the unadjusted estimate of 

H for LM and KF estimates of GPP and R. However, variability in BK estimates of GPP and R 

declined as overestimates of H became more extreme. The variability in estimates of NEP was 

smallest for all models when H was adjusted by a factor of 0.5. Therefore metabolism estimates 

were robust to imperfect estimates of H, for their variability across adjustments to H was 

predictable and their mean never strongly biased. 

Case study—The DO time series measured in the metalimnion of Ward Lake was 

characterized by substantial noise, but filtering the data with KF resulted in reduced noise and 

maintained diel cycles and overall trend (Fig. 6). However, the ability of KF to reduce noise was 

diminished in the case of measured data, relative to simulations. Filtering nonetheless reduced 

the metabolism estimates from the BK and LM models, causing estimates among models to 

become more similar (Fig. 7). Despite substantial noise remaining in the measured DO time 

series after filtering with KF, increased agreement among models after filtering suggests that 

filtering still increased model accuracy. 

Estimates of H for measured data were adjusted to assess their influence on filter 

smoothing and metabolism estimates. Adjusting the estimate of H upward caused the DO time 
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series to be smoothed to a greater degree (Fig. 8), and also influenced metabolism estimates for 

all models (Fig. 9). As estimates of H were adjusted upward, estimates of GPP, R and NEP from 

all three models began to converge: estimates of GPP and R tended to decrease for the three 

models, and NEP tended to increase. These results are consistent with those for simulated data, 

where adjusting H had a minimal effect on the mean estimate but caused means among models to 

converge near true values as H was inflated (Fig. 5). 

Overestimating H increased the smoothing effect of KF on DO time series (Fig. 8), 

reduced variability around mean metabolism estimates, and caused mean estimates to approach a 

true value or converge upon a value common to all models (Fig. 5,9). Furthermore, the ability of 

filtering to result in more similar estimates among models (Fig. 7) was enhanced by 

overestimating H to further smooth the DO time series supplied to BK and LM, as supplying a 

smoother time series resulted in more similar model estimates (Fig. 9). Thus KF performed 

consistently with both observed and simulated data, where it proved to be robust to estimates of 

H, and resulted in improved metabolism estimates—both independently and in conjunction with 

the BK and LM models. 

Discussion 

 Application of a Kalman filter mitigated the adverse effects of observation error on 

metabolism estimates, and in simulation proved to be both necessary and sufficient to obtain the 

most accurate estimates among all models in this study. However, the advantage of the Kalman 

filter over the other models was confined to time series with high observation error and moderate 

to low process error. If substantial observation error was not present, or if process error was the 

main driver of inaccurate estimates, other models performed equally well. BK contained the 

simplest terms for processes (no error term or covariates), while LM and KF contained 
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equivalent process terms (temperature and PAR as covariates). KF performed better in 

simulation than the other models because it is the only model that included a term for 

observation error, giving it an advantage in the presence of observation error. Although the 

process equation used in KF was simple, other process error models can be incorporated into a 

Kalman filter framework, just as LM was incorporated into KF. 

 Although serially correlated process error caused DO time series smoothed by KF to 

depart from true values, smoothed time series were devoid of much of the noise caused by 

observation error, which is not serially correlated (Fig. 1,8). Furthermore, DO time series were 

smoother when estimates of the variance of observation error (H) were inflated (Fig. 8), a result 

consistent with other applications of the Kalman filter (Harvey 1989; Soetaert and Gregoire 

2011). Thus KF not only improved the accuracy of metabolism estimates (Fig. 1,8), but it also 

provided a smoother time series that could then be used with the other models. While providing 

filtered DO time series to BK and LM did not yield estimates of metabolism that were more 

accurate than those provided by KF, filtering time series may still be useful. Specifically, 

filtering a time series with a Kalman filter may be useful when the filtered data is not used to 

estimate the same process that was used to filter that data (i.e., the process estimated by the 

Kalman filter, as was the case when filtered DO was supplied to BK and LM). For example, the 

temperature time series supplied to KF was first filtered with a Kalman filter that used a process 

equation that described change in temperature as the loss and gain of energy in the sublayer 

intended for measurement. This filtered temperature time series was then supplied to the KF to 

guide respiration dynamics (a process different from that used to filter the time series), thereby 

facilitating more accurate estimates of whole-lake metabolism. 
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 Lakes play an important role in both regional and global carbon cycling (Cole et al. 2007; 

Buffam et al. 2010), and metalimnetic metabolism may be an important component of whole-

lake metabolism (Fee 1976; St. Amand and Carpenter 1993; Coloso et al. 2008; Sadro et al. 

2011), especially in oligotrophic and mesotrophic lakes which often exhibit a pronounced 

chlorophyll maximum (Moll and Stoermer 1982). Furthermore, the primary production in this 

habitat could be an important autochthonous food source for aquatic organisms (Winder et al. 

2003; Francis et al. 2011), although the magnitude of metalimnetic autochthony has been 

debated (Winder et al. 2004; Cole et al. 2011). Stæhr et al. (2010) highlighted the need to obtain 

accurate estimates of metalimnetic metabolism, and recommend the use of vertically profiling 

instruments to obtain depth-integrated estimates. The sampling frequency of a vertical profile of 

DO recorded by one sensor would be substantially lower than the four minute frequency used in 

this study, which may affect the accuracy of estimates of H by reducing the sampling size from 

which the variance is calculated. However, KF was shown to be robust to estimates of H, 

especially if H is overestimated, suggesting that it may be successfully coupled with a profiling 

sampling regime to obtain accurate metalimnetic metabolism estimates.  

Comments and recommendations 

Although process error in the simulations and models of this study can be easily 

distinguished from observation error because the former is serially correlated, the two can 

become conceptually similar from certain perspectives. For example, observation error in time 

series collected from the metalimnion of Ward Lake may be caused by physical processes that 

could conceivably be modeled, such as waves that cause motion of the sensor relative to the 

water layer of interest. Our results show that improved metabolism estimates can be obtained by 

treating these errors, which have an unknown cause, as observation errors modeled by KF. 
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Nonetheless, physical modeling may show that alternate approaches based on alternate filtering 

methods, such as Gaussian-filtering at the periods of lower-frequency internal waves (MacIntyre 

et al. 2009), may also improve metabolism estimates. Lake size may provide an important clue 

for physically-based approaches. Such extensions of physical limnology modeling for 

metabolism studies are an important topic for further research.  

KF was most useful when the dominant source of noise in simulated time series was 

observation error. The metalimnion of Ward Lake contained large amounts of noise that 

resembled the observation error in the DO time series simulated in this study, suggesting that 

future studies of metalimnetic metabolism may benefit greatly from the use of a Kalman filter. 

Most DO time series intended for use in lake metabolism studies are measured in the pelagic 

epilimnion, a habitat lacking the mechanisms believed to drive the high observation error present 

in metalimnetic time series. Although it was most advantageous to use KF when observation 

error was high, this study showed that under all simulated noise conditions a Kalman filter 

provides metabolism estimates that are similar to or better than those made by the other methods 

examined in this study, making it a useful approach to estimating metabolism in any aquatic 

habitat. 
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Fig. 1. Using the deterministic component of Eq. 4, the noiseless DO time series was simulated 

from field measurements of PAR and Kalman filtered water temperature. The noisy DO time 

series was generated by adding error to the noiseless time series (Observation Error σ2 (H) = 100 

(µmol O2 L-1)2; Process Error σ2 (Q) = 0.5 (µmol O2 L-1)2). The filtered DO time series was 

created by applying the Kalman filter (KF) to the noisy time series. 
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Fig. 2. The effects of filtering with KF on bookkeeping (BK) estimates of GPP and R. For each 

combination of Q (Process Error (PE) σ2) and H (Observation Error σ2), mean daily GPP and R 

were calculated for a 6-day simulation, and compared to the true values. Changes in the bar 

height for a given shading represents the effects of observation error on metabolism estimates; 

changes in bar height for a given observation error (the five bar groups in each panel) but among 

levels of shading represents the effects of process error on metabolism estimates. Differences in 
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bar height between the left (unfiltered) and right (filtered) column of panels indicates the effects 

of filtering on BK metabolism estimates. Bar heights are average absolute differences between 

calculated estimates and true values of GPP and R (23.75 µmol O2 L-1 d-1 and -16.09 µmol O2 L-1 

d-1, respectively) from 30 stochastic simulations. 
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Fig. 3. The effects of filtering with KF on linear model (LM) estimates of GPP and R. For each 

combination of Q (Process Error (PE) σ2) and H (Observation Error σ2), mean daily GPP and R 

were calculated for a 6-day simulation, and compared to the true values. Changes in the bar 

height for a given shading represents the effects of observation error on metabolism estimates; 

changes in bar height for a given observation error (the five bar groups in each panel) but among 

levels of shading represents the effects of process error on metabolism estimates. Differences in 
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bar height between the left (unfiltered) and right (filtered) column of panels indicates the effects 

of filtering on LM metabolism estimates. Bar heights are average absolute differences between 

calculated estimates and true values of GPP and R (23.75 µmol O2 L-1 d-1 and -16.09 µmol O2 L-1 

d-1, respectively) from 30 stochastic simulations. 
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Fig. 4. Accuracy of GPP and R estimates derived from the Kalman filter (KF). For each 

combination of Q (Process Error (PE) σ2) and H (Observation Error σ2), mean daily GPP and R 

were calculated for a 6-day simulation, and compared to the true values. Changes in the bar 

height for a given shading represents the effects of observation error on metabolism estimates; 

changes in bar height for a given observation error (the five bar groups in each panel) but among 
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levels of shading represents the effects of process error on metabolism estimates. Bar heights are 

average absolute differences between calculated estimates and true values of GPP and R (23.75 

µmol O2 L-1 d-1 and -16.09 µmol O2 L-1 d-1, respectively) from 30 stochastic simulations.  
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Fig. 5. Sensitivity of metabolic estimates to adjustments made to the variance of observation 

error (H). GPP, R, and NEP were estimated using the bookkeeping model (BK) on filtered data, 

the linear model (LM) on filtered data, and the Kalman filter (KF) on unfiltered data. Horizontal 

dashed lines represent the true values of the metabolic parameters. Vertical error bars are the 

standard deviations of metabolic estimates from 30 stochastic simulations of DO time series 

(Observation Error σ2 (H) = 100 (µmol O2 L-1)2; Process Error σ2 (Q) = 0.5 (µmol O2 L-1)2). Each 
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open circle is the mean model estimate of the metabolic parameter from those 30 stochastic 

simulations.  
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Fig. 6. Dissolved oxygen data collected from the metalimnion (4 m) of Ward Lake in 2010. The 

gray line represents unfiltered dissolved oxygen data, and the red line represents dissolved 

oxygen data after it was filtered with the Kalman filter (KF).  
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Fig. 7. Comparison of estimated metabolism for a 6-day deployment across models (data from 

Ward Lake). BK= bookkeeping, LM = linear model, KF = Kalman filter. R is represented by 

positive values for ease of comparison with GPP and NEP. Raw estimates are derived from the 

collected data before it was filtered with KF, whereas filtered estimates are derived from oxygen 

time series obtained by filtering the collected oxygen time series before using BK or LM to 

estimate metabolism.  
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Fig. 8. The effect of adjusting the estimated variance of Observation Error (OE) σ2 (H) on the 

filtered dissolved oxygen time series from Ward Lake when using the Kalman filter (KF). Gray 

lines are observed DO concentrations, red lines are filtered.  
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Fig. 9. Sensitivity of metabolic estimates to adjustments made to the variance of observation 

error (H). GPP, R, and NEP were estimated using the bookkeeping model (BK) on filtered data, 

the linear model (LM) on filtered data, and the Kalman filter (KF) on unfiltered data.  
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Chapter 2: Resources supporting the food web of a naturally productive lake* 

______________________________________________________________________________ 

Abstract 

A Bayesian mixing model and stable isotopes of carbon, nitrogen, and hydrogen were 

used to evaluate the extent to which six consumers (three fishes, two zooplankton, and a snail) in 

a naturally productive lake used terrestrial resources, epilimnetic and metalimnetic 

phytoplankton, benthic algae, and macrophytes. Resource use varied with consumer habitat use 

and feeding ability, but allochthony was consistently low (averaging 15% among consumers). 

The pelagic invertebrates Skistodiaptomus oregonensis and Chaoborus spp. relied on 

phytoplankton from the epilimnion (59% and 49%, respectively), and to a lesser extent from the 

metalimnion (28% and 26%, respectively); terrestrial resources comprised 9% and 18% of the 

diet of these consumers, respectively. The snail Helisoma trivolvis relied mainly on littoral 

resources (floating-leafed macrophytes; 68% of diet), but terrestrial resources also constituted a 

substantial portion of its diet (21%). The fishes integrated among habitats more evenly than the 

other consumers, but pelagic resources formed the largest portion of their diets (Pimephales 

promelas = 64%, Lepomis gibbosus = 47%, and Perca flavescens = 47%). L. gibbosus was the 

fish with the most allochthonous diet (23%). The consumers of this productive lake were not 

highly dependent on allochthonous materials, and tended to rely most heavily on local resources, 

including macrophytes.  
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Introduction 

The organic resources supporting a consumer often originate from a mix of habitats 

within an ecosystem, or even multiple ecosystems within a landscape. This spatial integration of 

organic resources by consumers is a long-recognized feature common to many food webs 

(Lindeman 1942; Polis et al. 1997) that influences ecosystem stability, dynamics, and metabolic 

balance (Cole et al. 1994; McCann and Rooney 2009). The importance of cross-habitat subsidies 

to a food web is influenced both by the relative availability of resources and by the extent to 

which its consumers use these subsidies (Marcarelli et al. 2011), making both availability and 

use relevant to ecosystem functioning. 

The structure of resource subsidy and consumption is not constant among ecosystems, 

and is particularly interesting in lakes because their position in the surrounding landscape can 

cause them to receive large subsidies of terrestrial carbon (Kratz et al. 1997). Several studies 

have experimentally manipulated the δ13C of aquatic primary producers and found that the use of 

terrestrially derived (allochthonous) resources by lake consumers can be substantial (Pace et al. 

2004; Carpenter et al. 2005; Pace et al. 2007). However, the extent to which allochthonous 

resources are used by consumers changes with the types of resources available (Caraco et al. 

2010; Marcarelli et al. 2011), the physiology and natural history of the consumers (Jansson et al. 

2007), and qualities of the lake ecosystem and its constituent habitats (Francis et al. 2011). As a 

result, the importance of allochthonous resource use (hereafter allochthony) is contingent upon 

other resource use, which can vary widely both among lakes and among consumers within a 

given food web. 

The use of terrestrial carbon by consumers is known to be variable among aquatic 

systems, and past studies have suggested that the magnitude of autotrophic production can 
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explain a portion of this variability in both lotic (Huryn 1996; Nakano and Murakami 2001) and 

lentic (Cole et al. 2002; Maguire and Grey 2006) systems. However, few studies have examined 

allochthony in the food webs of productive lakes (Cole In press). An important early effort by 

Bunn and Boon (1993) used ambient levels of the stable isotopes of carbon and nitrogen to 

examine the use of terrestrial carbon, phytoplankton, macrophytes, and epiphytes by consumers 

in several eutrophic billabongs. Although they found that many of the consumers in these 

productive systems relied primarily on aquatic resources, isotopic analysis was not able to 

resolve resource use for all consumers, in part due to isotopically indistinct end members. 

Other studies of productive lentic systems have either used isotopic labeling experiments 

or natural abundances of 2H to circumvent the issue of isotopically indistinct aquatic and 

terrestrial resources. Cole et al. (2002) and Carpenter et al. (2005) enriched aquatic primary 

producers with 13C in two experimentally fertilized lakes and found that the zooplankton in these 

systems were highly autochthonous. Carpenter et al. (2005) also found that benthic consumers 

and fish relied heavily on algal resources. However, the fishes in this study had slow rates of 

biomass turnover, and because the nutrient fertilization only lasted one season, their long-term 

allochthony is unclear (Carpenter et al. 2005). Moreover, Babler et al. (2011) used ambient 2H 

and found that gizzard shad (a detritivorous fish) exhibited a wide range of allochthony among 

several eutrophic and hypereutrophic impoundments. Together, these studies suggest that while 

fishes in eutrophic lakes rely heavily on phytoplankton, the extent of fish allochthony among 

eutrophic lakes can be highly variable. 

Although the importance of allochthonous resources is measured relative to that of 

aquatic (autochthonous) resources, macrophytes represent a group of autochthonous resources 

whose contribution to lake food webs is poorly known. The ability of macrophytes to serve as 
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carbon sources to consumers has long been debated (Lodge 1991; Newman 1991), and in several 

systems their support of food webs appears negligible (Hecky and Hesslein 1995; France 1996). 

Other studies have found that macrophytes are likely a substantial source of carbon for 

consumers (Carpenter and Lodge 1986; Sheldon 1987), which suggests that macrophytes could 

support consumers in macrophyte-rich lakes. In lakes where macrophytes or other resources 

contribute substantially to a food web but are overlooked during analysis, consumer use of 

resources, allochthonous or otherwise, may not be accurately evaluated.  

The present study uses ambient 13C, 15N, and 2H isotopes to investigate the extent to 

which allochthonous organic matter supports the food web of a naturally productive lake. Due to 

the high abundance of aquatic resources in this productive system, we hypothesized that 

consumer allochthony would be low. With the expectation that resource use would vary among 

consumers, we assess the extent to which zooplankton, a benthic consumer, and fishes are 

supported by terrestrial, epilimnetic and metalimnetic phytoplankton, periphyton, and 

macrophytes. We hypothesized that both allochthony and the use of specific aquatic resources 

would vary among consumer taxa according to the degree to which consumers use multiple 

habitats (e.g., fish potentially feed in the littoral, benthic, and pelagic habitats), the availability of 

the autochthonous resources in those habitats, and consumer feeding capabilities. 

Methods 

Study site—This study was conducted on Ward Lake, located at the University of Notre 

Dame Environmental Research Center near the Wisconsin-Michigan border (46º15’N, 89º31’W) 

during the summer of 2010. Ward Lake is a small (0.019 km2), shallow (max. depth = 8 m), 

dimictic and naturally productive lake. In 2010, the summer mean of surface total nitrogen and 

phosphorus concentrations were 491 µg L-1 and 22.9 µg L-1, respectively. The lake had relatively 
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high light absorbance (color) at 440 nm with a mean G440 of 2.49 m-1, and was alkaline with a 

mean pH of 8.03. The lake also had high chlorophyll a concentrations, both at the surface 

(summer mean = 8.63 µg L-1) and in the metalimnion (46.6 µg L-1) where chlorophyll was at a 

maximum vertical concentration for most of the summer.  

Ward Lake is located in a fen where speckled alder (Alnus incana subsp. rugosa) and 

sedges (Carex spp.) dominate the riparian plant community. Macrophytes are abundant, with 

18% of lake surface area being covered (6% volume infested; percent cover estimated visually 

from the surface). The macrophyte community is comprised of a number of species, the most 

abundant of which include a macroalga (Chara sp.), fragrant water lily (Nymphaea odorata), 

yellow water lily (Nuphar variegata), watershield (Brasenia schreberi), and small pondweed 

(Potamogeton pusillus). The calanoid copepod Skistodiaptomus oregonensis is abundant, as is 

the invertebrate predator Chaoborus spp. The fish community is dominated by a number of small 

fishes, including the pumpkinseed sunfish (Lepomis gibbosus) and the fathead minnow 

(Pimephales promelas). The top predator in Ward Lake is the yellow perch (Perca flavescens).  

Sample collection and isotope analysis—In order to trace the basal resources supporting 

the lake food web, autotrophic end members and aquatic consumers were collected between May 

and August of 2010 and subsequently analyzed for their δ13C, δ15N, and δ2H (deuterium) 

signatures. Between June and August, lake water was collected once a month from three sites 

near the center of the lake in the epilimnion (0.5 m) and in the metalimnion (at the depth of the 

chlorophyll maximum, which ranged from 2.5 m to 4 m), filtered through a 25 mm glass fiber 

filter (Whatman GF/F), and the filtrate stored for δ2H2O analysis (sample size of n = 12). 

Particulate organic matter (POM) was collected in June and August from lake water taken from 

three pelagic epilimnion sites (n = 6) and two pelagic metalimnion sites (n = 4). In June, the 
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liquid portion of the POM filtrate from the epilimnion and metalimnion was evaporated, and the 

dried residue sampled as dissolved organic matter (DOM; n = 2). For POM δ2H, the lake water 

was screened through a 153 µm mesh, and POM collected on a MicronSep Cellulosic filter, 

back-rinsed with a small amount of water, and dried at 60ºC. For δ13C and δ15N, the POM was 

collected on a previously ashed 25 mm GF/F filter and dried. 

Terrestrial, benthic, and littoral end members were sampled from around and within 

Ward Lake in June and August. The terrestrial end members were represented by A. incana 

subsp. rugosa (n = 5) leaves, Carex spp. (n = 5), and DOM (n = 2). Lake DOM in this region is 

predominantly allochthonous (Bade et al. 2007). By sampling key tree species in the area and 

using a Bayesian mixing model, we determined that the DOM in Ward Lake is also largely 

terrestrial (see below). Therefore, the terrestrial source in this analysis is comprised of shoreline 

plants and DOM, with DOM being a composite of shoreline and upgradient end members. The 

littoral end members were characterized by samples of five of the most prevalent macrophyte 

species in Ward Lake, collected from different locations in the littoral zone on several dates 

between June and August. The spatial and temporal extent of sampling was constrained by 

seasonal changes in the presence and relative abundance of each species. Leaves from N. 

variegata (n = 5), N. odorata (n = 5), and B. schreberi (n = 4) were collected on each date and 

cleaned of any debris and epiphytic growth. The leaves and stalk of P. pusillus (n = 5) and Chara 

sp. (n = 5) were also collected and rinsed several times to remove debris. Periphyton (n = 6) 

served as the benthic end member, and was grown on a series of ceramic tiles suspended 

throughout the littoral zone of the lake at a depth of 0.5 m and collected after four weeks of 

growth in June and in August. Periphyton samples were grown on tiles to facilitate separation of 

the algae from their substrate in order to obtain samples dominated by algal material. These 
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samples serve as generic physiological and isotopic surrogates for attached algae that may be 

available to consumers in Ward Lake. 

All consumers were sampled in June and again in August, except P. promelas, which was 

sampled in May and June. Zooplankton samples (n = 12) were taken from three pelagic 

epilimnion and three pelagic metalimnion sites by lowering the inlet hose of an open diaphragm 

bilge pump to the desired depth (0.5 m in the epilimnion, and the depth of the chlorophyll 

maximum in the metalimnion) and pumping water from the outlet hose into a 153 µm mesh net. 

S. oregonensis was the most abundant zooplankton species (by biomass), and enough S. 

oregonensis individuals were picked from each sample to reach a pooled biomass sufficient for 

isotopic analysis. Chaoborus spp. (n = 6) were collected at night using an oblique net tow 

through the water column, and pooled to reach sufficient biomass for a sample. The snail, H. 

trivolvis (n = 6), was sampled from across the littoral zone, and the foot of several individuals 

was dissected and pooled as a single sample. Fishes (n = 6 for each species) were also sampled 

from the littoral zone, with adult P. promelas and juvenile L. gibbosus being caught by minnow 

trap, and P. flavescens by hoop net. The intestinal tracts were excised from each fish, and the 

remainder of an individual treated as one sample. 

All solid samples were dried at 60ºC, ground to a powder, and stored in a desiccator 

pending analysis. Samples were sent to the Colorado Plateau Stable Isotope Laboratory (CPSIL) 

at Northern Arizona University where they were analyzed with isotope ratio mass spectrometers 

(IRMS). Analysis of δ2Η followed the methods of Doucett et al. (2007), and we report non-

exchangeable H in this paper. 

Model and food web analysis—This study employed a Bayesian mixing model adapted 

from Solomon et al. (2011) to describe lake consumers as a mixture of autotrophic resources 
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originating from terrestrial, pelagic epilimnion, pelagic metalimnion, benthic, and littoral habitats. 

We characterized consumers and end members by their isotopic signatures (δ13C, δ15N, and δ2H), 

and calculated the end-member composition of consumers using the following system of 

equations: 

δ13CC[i] =

 

j=1

4

∑ (φS[j] × δ13CS[j]) + εC[i] (1) 

δ15NC[i] =

 

j=1

4

∑ (φS[j] × δ15NS[j]) + Δtot + εN[i] (2) 

δ2HC[i] = (1 – ωtot[C]) ×

 

j=1

4

∑ (φS[j] × δ2HS[j]) + ωtot[C] × δ2HW + εH[i] (3) 

1 =

 

j=1

4

∑ φS[j] (4) 

where δ13CC[i], δ15NC[i], and δ2HC[i] are the isotopic ratios of sample i of consumer species C, 

δ13CS[j], δ15NS[j], and δ2HS[j] are the isotopic ratios of the jth source (S), εC[i], εN[i], and εΗ[i] are 

residual errors (normally and independently distributed with mean = 0 and variance = σ2) for 

each isotope and consumer sample C[i], and φS[j] is the fraction φ that source S[j] contributes to 

the diet of consumer C. The total trophic fraction of δ15N (Δtot) was calculated as 

Δtot = ΔHerb + ΔCarn × (τ – 1) (5) 

where ΔHerb is the δ15N fractionation of an herbivorous link (mean (µ) = 2.52‰, standard 

deviation (σ) = 2.5‰), ΔCarn is the δ15N fractionation of a carnivorous link (µ = 3.4‰, σ = 0.4‰), 

and τ is the trophic level of the consumer as levels above primary producers when primary 

production equals trophic level 0 (Vander Zanden and Rasmussen 2001). The total proportion of 

tissue H derived from water (W) in a given consumer species (ωtot[C]) was calculated as  

ωtot[C] = 1 – (1 – ω)τ (6) 



	
   51 

where ω is the fraction of tissue H derived from water by a particular consumer (as opposed to 

ωtot[C], which also includes water assimilated by the prey of the consumer). For each consumer, 

the mean and variance of ω were selected from the literature values of the most similar taxa 

available: S. oregonensis = 0.20, 0.0016; Chaoborus spp. = 0.14, 0.0036; H. trivolvis = 0, 0; 

fishes = 0.12, 0.0004 (Estep and Dabrowski 1980; Solomon et al. 2009). Based on presumed 

feeding habits, consumers were assigned a trophic level with a variance of 0.1 and the following 

means: S. oregonensis and H. trivolvis were assigned trophic level 1 (primary consumers); 

Chaoborus spp., L. gibbosus, and P. promelas trophic level 2; P. flavescens trophic level 3.  

The isotopic signatures of phytoplankton end members were estimated in the framework 

of a Bayesian mixing model by treating POM as a mixture of phytoplankton and terrestrial 

matter:  

δXPOM[L] = θP[L] × δXP[L] + θT[L] × δXT + εX[L] (7) 

1 = θT[L] + θP[L] (8) 

where δXPOM[L] and δXP[L] are the respective isotopic signatures for isotope X of POM and 

phytoplankton in layer L (either the epilimnion or metalimnion), δXT is the isotopic signature of 

terrestrial matter, θP[L] and θT[L] are the fractions that phytoplankton and terrestrial matter 

contribute to POM in layer L, and εX[L] the residual error (independently and normally distributed, 

µ = 0, variance = σ2). The values of δXPOM[L] and δXT are known from sampling, whereas δXP[L], 

θT[L], and θP[L] were not directly measured. However, phytoplankton δ2H was calculated from the 

known 2H2O photosynthetic fractionation of phytoplankton and from the δ2H2O taken from the 

appropriate layer (Solomon et al. 2009; Cole et al. 2011) and supplied to the model (Eqs. 7,8) as 

an informative prior, permitting the mixing model to estimate the remaining unknown values. 



	
   52 

 A challenge common among studies employing mixing models is the excess of end 

members relative to the number equations. In this study there are eleven end members, and each 

model has four equations afforded by the three isotopes. The two models described by Eqs. 7,8 

(one model for each value of L) can estimate the contribution of two sources to the POM mixture 

from layer L. By assuming that POM was comprised only of terrestrial matter and phytoplankton, 

the number of end members was limited to three. Some end members were grouped into 

aggregate sources in order to restrict the number of sources to two. Such grouping is commonly 

achieved by grouping the end members according to their proximity in isotopic space, or by their 

ecological similarity (Phillips et al. 2005). While the two approaches are not necessarily 

mutually exclusive, this study employed the latter, and in the case of Eqs. 7,8 the terrestrial end 

members were grouped into one source, while the phytoplankton end member remained a 

separate source. 

In the case of the consumer mixing models (Eqs. 1–4), the number of end members was 

first limited by excluding Chara sp. and P. pusillus from analysis because their isotopic 

signatures suggested that they were unlikely to contribute to the diets of any of the consumers 

(see Results and Discussion). The remaining end members were grouped into sources 

representing the terrestrial (A. incana subsp. rugosa, Carex spp., and DOM), pelagic epilimnion 

(phytoplankton), pelagic metalimnion (phytoplankton), benthic (periphyton), and littoral 

(floating-leafed macrophytes) habitats. Because there are five sources, two mixing models were 

run for each consumer: the first model grouped the benthic and littoral habitats into a single 

benthic-littoral source, and the second grouped the pelagic epilimnion and pelagic metalimnion 

into a single pelagic source while assessing the benthic and littoral habitats separately. Thus each 
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model examined the contribution of four sources to the diet of a consumer by grouping two 

similar habitats into a single source. 

The composition of DOM was assessed using a Bayesian mixing model similar to that 

used for the consumers of Ward Lake. In this model DOM was the mixture, Δtot and ωtot were set 

equal to zero, and the sources contributing to DOM were pelagic (pooled phytoplankton), 

benthic (periphyton), littoral (floating-leafed macrophytes), and terrestrial. For this analysis, the 

terrestrial end member included A. incana subsp. rugosa and Carex spp., as well as several 

upgradient tree end members. The leaves of these trees were sampled, and their isotopic 

signatures have been used in previous studies that investigated allochthony in lakes near Ward 

Lake (Solomon et al. 2011; Cole et al. 2011). The tree species include black spruce (Picea 

mariana), balsam fir (Abies balsamea), red maple (Acer rubrum), sugar maple (Acer saccharum), 

white cedar (Thuja occidentalis), and yellow birch (Betula alleghaniensis). For the purposes of 

this analysis, the isotopic signatures of these tree species were averaged for each species, and the 

mean of these averages taken to form a single ‘Tree’ end member. This Tree end member was 

analyzed as a part of the terrestrial source to the DOM mixture. The mode of the posterior 

distribution of the terrestrial contribution to DOM was 90%, while the modes of the other 

sources were near 0%. These results suggest that DOM in Ward Lake is predominantly terrestrial. 

As a result, we treated DOM as a terrestrial end member for the other analyses in this study. 

Grouping end members into a single source for use with the Bayesian mixing models 

required that a composite mean and variance be calculated for each source. The mean of a source 

comprised of multiple end members was calculated separately for each isotope as the equally 

weighted average of the isotopic ratios of the end members comprising the source. The variance 

of each source was calculated by one-way analysis of variance, using the ratio of a given isotope 
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as the response variable and end members as categorical treatments. If the treatment was not 

significant (p > 0.1), the variance of the source was set equal to the residual mean squared error 

(MSE). If the treatment was significant (p < 0.1), the variance of the source was calculated as the 

sum of the residual MSE and the treatment MSE. 

All calculations were performed in R (R Development Core Team 2012) and WinBUGS 

(Lunn et al. 2000) using the contributed R package R2WinBUGS (Sturtz et al. 2005), programs 

written by the authors, and programs adapted from Solomon et al. (2011). Unless otherwise 

stated, all parameters were given uninformative priors, and models were fit by running 8 Markov 

chains for 10,000 iterations with a 5000-iteration burn-in period and thinned so as to sample 

1000 iterations of the posterior distribution. 

Results 

Bayesian mixing models were used to estimate the contribution of phytoplankton and 

terrestrial end members to POM, the isotopic signature of the phytoplankton end member, as 

well as the reliance of consumers on basal resources. All estimates are presented here as the 

mean of the modeled posterior distribution. POM in the epilimnion of Ward Lake was comprised 

of 43% terrestrial matter and 57% phytoplankton (Fig. 1A,B). Epilimnetic phytoplankton δ13C 

was estimated as −33.5‰, δ15N as −0.14‰ (Fig. 1C,D), and δ2H as −230‰. Metalimnetic POM 

was comprised of slightly less terrestrial matter (38%) and more phytoplankton (62%) than 

epilimnetic POM (Fig. 2A,B). Metalimnetic phytoplankton δ13C, δ15N, and δ2H signatures were 

−36.2‰, 0.16‰ (Fig. 2C,D), and −232‰, respectively. Phytoplankton δ2H signatures in both 

habitats were similar to the priors supplied to the model, indicating that additional data had little 

effect on these distributions. 
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The isotopic signatures of end members varied between terrestrial, pelagic, benthic, and 

littoral habitats, as well as between consumers (Fig. 3). Phytoplankton were substantially more 

depleted in δ13C and δ2H than the other end members, while P. pusillus was the most enriched in 

δ13C (−14.1‰) followed by Chara sp. (δ13C = −16.7‰), and Chara sp. had the highest δ2H 

signature (−119‰) (Fig. 3A). The separation of end-member δ15N was not as strong as for the 

other isotopes, but phytoplankton were the most enriched and P. pusillus the most depleted (Fig. 

3B). Pelagic and terrestrial end members were isotopically similar to other end members within 

the same habitat, but there was more variability within the benthic-littoral habitat as Chara sp. 

and P. pusillus were far more enriched in δ13C than other macrophytes and periphyton, and 

periphyton was more depleted in δ2H than the macrophytes.  

The signatures of the consumers also varied, but less so than the end members (Fig. 3). 

Among consumers, S. oregonensis was the most depleted in δ13C (−33.5‰) and δ2H (−188‰), 

and H. trivolvis was the most depleted in δ15N (0.17‰). H. trivolvis had the most enriched 

signatures for δ13C (−25.3‰) and δ2H (−151‰), and L. gibbosus was the most enriched in δ15N 

(5.62‰). 

 Pelagic consumers relied heavily upon pelagic resources, with the pelagic resource 

constituting 82% of the diet for S. oregonensis and 71% for Chaoborus spp. (Fig. 4). Separating 

the pelagic resource into its constituent end members revealed that epilimnetic phytoplankton 

contributed more than metalimnetic phytoplankton to the diets of S. oregonensis (59% and 28%, 

respectively) and Chaoborus spp. (49% and 26%, respectively) (Fig. 4B,C). Terrestrial and 

benthic-littoral resources contributed minimally to the diets of these pelagic consumers in both 

groupings of model sources (Fig. 4). 
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 The benthic consumer H. trivolvis was supported almost exclusively by benthic-littoral 

and terrestrial resources (Fig. 4), although the terrestrial component shifted from 43% when the 

benthic-littoral end members were pooled, to 21% when periphyton was modeled as a source 

separate from the macrophytes (Fig. 4A,E). As a pooled source, the benthic-littoral end members 

were estimated to comprise 54% of the diet (Fig. 4D). As a separate benthic source, periphyton 

constituted 8% of the diet (Fig. 4G), whereas the littoral source (floating-leafed macrophytes) 

was estimated to be 68% of the diet (Fig. 4H). Thus the estimated diet composition of H. 

trivolvis was sensitive to how end members were grouped into sources, with the exception that 

the importance of pelagic resources remained low. 

 Fishes were similar to one another in diet composition, consuming mostly terrestrial and 

pelagic resources, although benthic-littoral resources constituted a non-trivial component of their 

diet as well (Fig. 4). P. promelas relied more heavily on the pooled pelagic resource (64%) than 

either L. gibbosus or P. flavescens (47% for both species) (Fig. 4F). The terrestrial source was of 

greatest importance to L. gibbosus (27% for the first grouping, 23% for the second) relative to P. 

promelas (11% and 8%) and P. flavescens (12% for both groupings) (Fig. 4A,E), and the 

respective benthic-littoral resource use was 20%, 25%, and 38% for these fishes (Fig. 4D). 

Metalimnetic resources comprised less of fish diets than epilimnetic resources, a difference that 

was larger for P. promelas (epilimnetic = 53%, metalimnetic = 17%) than it was for P. 

flavescens (34% and 17%) or L. gibbosus (31% and 17%) (Fig 4B,C). Although the estimate of 

resource use from the terrestrial, pelagic, and benthic-littoral habitats varied between the two 

groupings, the relative importance of these three habitats to fish diets generally remained the 

same. 

Discussion 
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 Ward Lake presents a large number of potential carbon sources to its consumers. Some of 

these sources appeared to be unimportant for all consumers—namely Chara sp. and P. pusillus. 

The position of these end members in isotopic space suggested that they were unlikely to be a 

major carbon source to consumers. These submersed macrophytes had an average δ13C of 

−15.4‰, and their lack of contribution to consumer diets is consistent with France (1996), who 

found that macrophytes with a δ13C signature near −16‰ did not support littoral consumers. 

Consequently, these end members were omitted from mixing models. Despite this initial 

screening, the number of end members still necessitated their grouping into aggregate sources, 

and this grouping influenced model estimates. The sensitivity of mixing model estimates to the 

grouping of end members is a common problem in food web studies that increases the 

uncertainty surrounding estimates of resource use (Phillips et al. 2005). However, the qualitative 

importance of resource use was less sensitive to grouping than were the quantitative estimates, 

and the role of these resources in supporting lake consumers was elucidated. 

 The pelagic consumers of Ward Lake relied heavily on pelagic resources, which is 

consistent with the findings of previous studies conducted in experimentally fertilized lakes 

(Cole et al. 2002; Carpenter et al. 2005). The contrasting terrestrial-phytoplankton composition 

of pelagic consumers vs. POM is indicative of selective feeding by pelagic herbivores, and is 

consistent with the ability of S. oregonensis to feed selectively among phytoplankton (Kerfoot 

and Kirk 1991). The ratio of color to chlorophyll in a lake can serve as an index of the relative 

availability of terrestrial and phytoplankton resources, respectively. Past studies of pelagic 

consumers that were conducted in lakes over a range of color : chlorophyll found that 

allochthony tends to increase as color : chlorophyll increases (Carpenter et al. 2005; Pace et al. 

2007; Cole et al. 2011). The allochthony of S. oregonensis relative to the color : chlorophyll in 
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Ward Lake is consistent with the trend found in these past studies, and the relationship suggests 

that resource use is influenced by the relative availability of resources (Fig. 5). Nonetheless, 

there is substantial variability around this relationship, and additional data are needed to assess 

the pattern among systems. 

Estimates of resource use suggest that phytoplankton from both the epilimnion and 

metalimnion were important to pelagic consumers. However, the overlap in the isotopic 

signatures of the two types of phytoplankton (Fig. 3) adds uncertainty to estimates that parse 

consumer use of epilimnetic and metalimnetic phytoplankton. Nonetheless, S. oregonensis feeds 

efficiently at high algal concentrations, and it would encounter especially high algal 

concentrations in the metalimnion of Ward Lake during diel vertical migration (Torke 2001). 

Also, algal production in the low-light, high-nutrient environment of the metalimnion could 

produce a high-quality food source for S. oregonensis and other zooplankton (Fee 1976; Sterner 

et al. 1997). Although the metalimnion may offer high-quality food and refuge from predators, 

the benefits of metalimnetic feeding may be offset by enhanced growth rates facilitated by the 

warmer temperatures in the epilimnion (Winder et al. 2004). Francis et al. (2011) also argue that 

metalimnetic phytoplankton may be an important part of zooplankton diets in lakes such as Ward 

Lake where the euphotic zone extends beyond the mixing depth. Thus, the characteristics of 

Ward Lake and the feeding abilities and habitat usage of S. oregonensis support the finding that 

both epilimnetic and metalimnetic phytoplankton were important food sources for pelagic 

consumers. Ward Lake may be an extreme case in this regard. It is highly productive, strongly 

stratified, and has metalimnetic chlorophyll concentrations that are exceedingly high. In two 

other lakes in this region that are less productive and have less-pronounced metalimnetic 

chlorophyll peaks, Cole et al. (2011) demonstrated that zooplankton were supported by a 
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combination of phytoplanktonic and terrestrial sources, with only minor contributions from the 

metalimnion. Our results point to the need for studying lakes over a broad range of conditions to 

determine the importance of terrestrial resources to zooplankton and the conditions that enhance 

or diminish this support. 

The benthic consumer H. trivolvis fed primarily on a combination of floating-leafed 

macrophytes and terrestrial matter, but fed minimally on periphyton and phytoplankton. While 

the absence of phytoplankton from the diet of a snail is not surprising, the minimal use of 

periphyton is more conspicuous because many snails feed heavily on periphyton. However, H. 

trivolvis is known to preferentially consume terrestrial detritus and living macrophytes over 

periphyton (Lombardo and Cooke 2002). The species of submersed macrophyte consumed by H. 

trivolvis in Lombardo and Cooke (2002) has a far lower phenolic concentration than the floating-

leafed macrophytes of this study (specifically, N. variegata), making the floating-leafed 

macrophytes a lower-quality diet item (Smolders et al. 2000). The presence of secondary 

chemicals such as phenolics is one reason the consumption of living macrophytes is thought 

uncommon (Lodge 1991; Newman 1991). However, when macrophytes decompose, their 

phenolic concentrations quickly decrease, and the alkaline water of Ward Lake accelerates this 

process (Kok et al. 1992). Furthermore, relatively modest variability surrounded the estimated 

contribution of littoral (epiphyte-free macrophytes) and terrestrial resources to the diet of the 

benthic consumer, H. trivolvis. Therefore, it is likely that H. trivolvis was mainly supported by 

terrestrial and macrophyte (living and/or detrital) resources, rather than by periphyton. 

The fishes in this study relied on a greater variety of resources than the benthic or pelagic 

consumers. While all fishes relied on pelagic production for a large portion of their diet, resource 

use was more evenly distributed among habitats for L. gibbosus and P. flavescens than it was for 
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other consumers. Although adult L. gibbosus are known to feed on mollusks, the individuals 

sampled in this study were unlikely to feed on mollusks because they were juveniles (mean 

length = 59.5 mm), permitting the difference in resource use between L. gibbosus and H. 

trivolvis. Fishes relied on resources from multiple habitats, a pattern consistent with that 

observed in other lakes (Vander Zanden and Vadeboncoeur 2002). Resource use by fishes also 

followed the more generalized expectation that consumers occupying higher trophic levels and 

with greater mobility will integrate among a greater number of habitats (Lindeman 1942; 

McCann and Rooney 2009). In this sense, resource use by P. flavescens represents the best 

single-consumer proxy for resource use at the ecosystem level, indicating that resources from all 

habitats contributed to the lake food web. 

The consumers of Ward Lake had consistently low allochthony, but their use of specific 

autochthonous resources was more variable. Furthermore, just as the food web of Ward Lake 

tended to use local (autochthonous) resources, consumer resource use tended to reflect their 

habitat use. For example, consumer use of pelagic resources was inversely proportional to littoral 

resource use, with zooplankton relying heavily on epilimnetic and metalimnetic phytoplankton, 

the snail primarily consuming macrophytes, and the mobile fishes exhibiting intermediate use of 

pelagic and littoral resources. Although frequently abundant in lakes and important resources in 

this study, metalimnetic phytoplankton and macrophytes are not commonly considered in the 

context of the allochthony of lake food webs. We suggest that these resources contributed to the 

food web because they were abundant, present in habitats used by consumers, and that the 

physiology of the consumers interacted with the characteristics of the resources (e.g., 

stoichiometry) and the ecosystem (e.g., alkalinity, temperature) in a way that made these 

resources available and of high quality. Future studies may gain further insight into patterns in 
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resource use by accounting for additional resource characteristics, such as the taxonomic 

composition of periphyton and phytoplankton. Our findings emphasize the variability in resource 

use among the consumers of a lake, and the importance of considering end members from 

multiple habitats when assessing which resources support lake food webs.  

Resource use is variable among consumers and food webs. However, our findings 

contribute to a growing body of literature that highlights resource quantity and quality as an 

important driver of this variability (Brett et al. 2009; Francis et al. 2011; Marcarelli et al. 2011). 

This literature also suggests that lake trophic status can serve as a measure of the quantity of 

high-quality autochthonous resources in lakes (Carpenter et al. 2005; Cole et al. 2006; Pace et al. 

2007), which is consistent with the high autochthony of Ward Lake consumers. Our study 

demonstrates that resources such as metalimnetic phytoplankton and macrophytes can be 

important to lake food webs, and should be included in future studies of resource use and 

allochthony. Furthermore, the use of deuterium in this study and others (Babler et al. 2011; Cole 

et al. 2011; Solomon et al. 2011) suggests that considering more end members in allochthony 

studies is more tractable now than in the past. In conclusion, we encourage future research to 

build upon an emerging understanding of which factors shape patterns in resource use across 

organisms and ecosystems. 
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Figure 1. Epilimnetic posterior estimates of particulate organic matter (POM) composition as 

fractions of (A) terrestrial matter and (B) phytoplankton; italicized values are mean percent 

contributions of terrestrial matter and phytoplankton to POM. Posterior estimates of 

phytoplankton (C) δ13C and (D) δ15N signatures; italicized values are mean isotopic signatures 

(‰). 
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Figure 2. Metalimnetic posterior estimates of particulate organic matter (POM) composition as 

fractions of (A) terrestrial matter and (B) phytoplankton; italicized values are mean percent 

contributions of terrestrial matter and phytoplankton to POM. Posterior estimates of 

phytoplankton (C) δ13C and (D) δ15N signatures; italicized values are mean isotopic signatures 

(‰). 
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Figure 3. The location of end members (circles) and consumers (gray squares) in isotopic space 

for (A) δ2H and δ13C, and for (B) δ15N and δ13C; all values are given in parts per mil (‰) relative 

to a standard. Circumscribed numbers designate particular end members and consumers: 1 = 

speckled alder (Alnus incana subsp. rugosa); 2 = watershield (Brasenia schreberi); 3 = sedge 

(Carex spp.); 4 = Chaoborus spp.; 5 = Chara sp.; 6 = dissolved organic matter; 7 = epilimnetic 

phytoplankton; 8 = ramshorn snail (Helisoma trivolvis); 9 = pumpkinseed sunfish (Lepomis 

gibbosus); 10 = metalimnetic phytoplankton; 11 = yellow water lily (Nuphar variegata); 12 = 

fragrant water lily (Nymphaea odorata); 13 = yellow perch (Perca flavescens); 14 = periphyton; 

15 = fathead minnow (Pimephales promelas); 16 = small pondweed (Potamogeton pusillus); 17 
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= calanoid copepod (Skistodiaptomus oregonensis); 18 = nearby tree species. Error bars 

represent ± 1 standard deviation; error bars not extending beyond the symbol perimeter are not 

shown. 
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Figure 4. Box plots of mixing model posterior distributions showing the fraction that each 

source contributed to the diet of a given consumer. The bottom of the box is the 25th percentile of 

the posterior, the thick line inside the box is the median, and the top of the box is the 75th 

percentile. (A-D) Grouping 1 shows the results of a model that pooled benthic and littoral end 

members into a single source, and separated pelagic end members into two sources. (E-H) 

Grouping 2 pooled pelagic end members and separated benthic and littoral end members. Each 
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source is comprised of one or more end members: Terrestrial = A. incana subsp. rugosa, Carex 

spp., and dissolved organic matter; Pelagic epilimnion = epilimnetic phytoplankton; Pelagic 

metalimnion = metalimnetic phytoplankton; Benthic = periphyton; Littoral = B. schreberi, N. 

variegata, and N. odorata. Consumer abbreviations are as follows: Calan = Calanoid (S. 

oregonensis); Chaob = Chaoborus spp.; FHM = fathead minnow (P. promelas); PKS = 

pumpkinseed sunfish (L. gibbosus); YWP = yellow perch (P. flavescens). 
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Figure 5. The relationship between mean allochthony of crustacean zooplankton and the color : 

chlorophyll ratio. The blackened triangle represents S. oregonensis from this study, and gray 

circles represent zooplankton taxa from past studies of other lakes (Pace et al. 2007; Solomon et 

al. 2011; Cole et al. 2011). The dotted line represents the predicted values of a linear regression 

of percent allochthony against the ratio of color : chlorophyll (R2 = 0.48; slope = 106, p < 0.01).  
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Chapter 3: Altered energy flow in the food web of an experimentally darkened lake* 

______________________________________________________________________________ 

Abstract 

Theory suggests that alternative energy sources may stabilize a food web when important 

resources become depleted. To test the potential for alternative resources to support consumers, 

we experimentally darkened a lake whose consumers had relied heavily on algal resources. 

Between a prior year and the darkened year phytoplankton biomass diminished by 50%, and net 

ecosystem production and pCO2 indicated a shift from autotrophy to heterotrophy. Although a 

specialist copepod maintained a high reliance on phytoplankton, a generalist zooplankton 

predator (Chaborus spp.) derived more support from terrestrial sources. Benthic algae 

contributed less to fish biomass after darkening, while phytoplankton support of fish converged 

towards its support of zooplankton. Overall, most consumers received more support from 

resource alternatives like terrestrial material (snail, Chaoborus, spp., some fishes) or from 

floating-leafed macrophytes (some fishes). These shifts highlight the potential for increased 

support by alternative resources, which may provide a mechanism that stabilizes ecosystems.  
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Introduction 

 Ecosystems across the globe are experiencing rapid shifts in environmental conditions 

that will alter the availability of the basal sources of carbon that support their food webs. Carbon 

fixation by primary producers is the ultimate source of the organic carbon in a food web, and 

most primary production requires light. In freshwater systems, light availability is closely linked 

to the concentration of dissolved organic matter (DOM). Lake color and DOM vary around a 

baseline condition (Pace and Cole 2002), but sustained trends of increasing DOM and color 

(which reduces clarity) have recently been documented in some freshwaters at northern latitudes 

(Monteith et al. 2007, Köhler et al. 2013). Furthermore, DOM in many northern lakes is 

predominantly terrestrial in origin (Karlsson et al. 2003, Wilkinson et al. 2013b), and an influx of 

DOM could increase the availability of terrestrial carbon resources while decreasing aquatic 

primary production via light limitation (Jones et al. 2012). Thus changes in DOM can 

differentially affect the availability of basal resources to lake food webs. 

Darkening water could greatly impact consumers that rely on resources that are 

susceptible to light limitation. Fish carbon is ultimately derived from a variety of habitats, but in 

many cases benthic algae (periphyton) contribute to a larger portion of fish biomass than would 

be suggested by its relative availability (Vadeboncoeur et al. 2002, Vander Zanden and 

Vadeboncoeur 2002, Vander Zanden et al. 2011). Periphyton production tends to be higher in 

clear lakes than in dark lakes (Vadeboncoeur et al. 2008, Ask et al. 2009), and is positively 

associated with fish biomass per area (Karlsson et al. 2009, Finstad et al. 2014). Furthermore, 

periphyton support of fish is proportionally lower in darker lakes, where a larger portion of fish 

biomass is derived from alternative resources (Karlsson et al. 2009). If this pattern in lakes 
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spanning a gradient of water clarity were echoed in a lake darkening over time, we would expect 

alternative resources to increasingly support its food web.  

 Fish can rely on a variety of other basal resources to complement the decreased support 

by periphyton. Compared to periphyton, phytoplankton and floating-leafed macrophytes are less 

prone to light limitation. Evidence for increased fish reliance on phytoplankton in darker lakes 

stems from isotope studies indicating that fish become more isotopically similar to zooplankton 

(Karlsson et al. 2009), the primary grazers of phytoplankton. However, terrestrially derived 

(allochthonous) carbon can support a substantial portion of zooplankton biomass, particularly in 

dark lakes (Wilkinson et al. 2013a). As a result, fish can derive terrestrial resources directly 

through terrestrial prey, or indirectly through allochthonous aquatic prey (Weidel et al. 2008, 

Tanentzap et al. 2014). Floating-leafed macrophytes can also contribute substantially to the 

biomasses of snails and fish (Batt et al. 2012, Mendonça et al. 2012, Kovalenko and Dibble 

2013), although little is known about the controls on the strength of this connection. Therefore, 

terrestrial material, macrophytes, or phytoplankton could serve as alternative basal resources for 

fish and other consumers in dark lakes with reduced periphyton. 

Theory suggests that allochthonous subsidies and alternative energy sources can confer 

stability on food webs (Huxel et al. 2002, Leroux and Loreau 2008, Rooney and McCann 2012, 

Tunney et al. 2012). However, few field studies have tracked changes in the relative 

contributions of carbon sources to consumer biomass as primary producers decline. In one 

experiment, the contribution of terrestrial resources to fish and invertebrates decreased when a 

lake was eutrophied (Carpenter et al. 2005), and subsequently increased upon cessation of the 

experimental fertilization (Solomon et al. 2011, Cole et al. 2011). In another system, a zebra 

mussel invasion led to decreased phytoplankton abundance, and was coincident with enriched 
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zooplankton δ13C, possibly indicating an increase in zooplankton allochthony (Maguire and Grey 

2006). By contrast, when phytoplankton production in San Francisco Bay decreased, 

zooplankton biomass decreased due to dietary recalcitrance of the terrestrial resource in that 

system (Sobczak et al. 2002). These studies suggest that if local resources are depleted and labile 

alternatives exist, carbon resources that previously did not contribute to consumer biomass could 

begin to support the food web. 

We tested this idea with a whole-ecosystem experiment, where we greatly reduced light 

availability by adding a dye to Ward Lake. The goal was to test if reducing light transmission in 

a naturally productive lake would alter ecosystem metabolism and change the basal resources 

supporting the food web. Prior to manipulation, consumers in Ward Lake were supported by a 

variety of basal resources, including algae and floating-leafed macrophytes, and to a lesser 

extent, terrestrial subsidies (Batt et al. 2012). We expected the relative availability of resources 

in a dyed (henceforth darkened) lake to be different than in the natural state, and that consumer 

support by terrestrial and floating-leafed macrophyte resources would increase relative to algal 

resources. 

Methods 

Study Site 

We measured resource support of consumers in Ward and Paul lakes in 2010 and 2012. 

In 2012 we added a blue dye, Aquashade (Applied Biochemists, Germantown, WI), to Ward 

Lake while using Paul Lake as an unmanipulated reference. Ward and Paul are small (1.9 ha and 

1.6 ha, respectively), shallow (maximum depth = 8 m and 12 m, respectively) lakes at the 

University of Notre Dame Environmental Research Center in northern Wisconsin, USA (46º 

15’N, 89º 31’W). These lakes are located less than a kilometer apart and experience similar 
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environmental conditions. Ward Lake is productive (summer surface means in 2010; 

chlorophyll-a [Chl] = 8.6 ug L-1, total phosphorus [TP] = 22.9 µg L-1, total nitrogen [TN] = 491 

ug L-1), has high alkalinity compared to other lakes in the region (pH = 8.03, dissolved inorganic 

carbon [DIC] = 1739 µmol L-1), and is colored with a water absorbance measured at 440 nm 

(color) of 2.49 m-1. Paul Lake is less productive (Chl = 6.3 µg L-1, TP = 3.8 µg L-1, TN = 224 µg 

L-1), has low alkalinity (pH = 6.6, DIC = 113 µmol L-1), and color of 1.34 m-1.  

Aquashade Manipulation 

Aquashade is a commercially available dye marketed for controlling the growth of 

aquatic plants. It contains the dyes acid blue 9 and acid yellow 23, and is blue in appearance. Our 

target concentration for Aquashade in Ward Lake was 1.5 ppm (volume fraction), which was 

within the range recommended by the manufacturer (0.5 ppm to 2.0 ppm). We used 

spectrophotometry to monitor Aquashade concentrations throughout the season because we 

anticipated that vertical mixing of the water column and surface flow into or out of the lake 

could dilute concentrations after the initial addition. To reach our target concentration of 1.5 ppm 

at the start of the season, we added 90.8 L of Aquashade to Ward Lake over three days starting 

April 23, 2012 (day of year 114) to initiate the experiment. Further additions on days 145 (3.8 L), 

163 (15.1 L), and 195 (22.7 L) were made to maintain the depth of the photic zone (depth of 1% 

surface light) and similar Aquashade concentration. In total we added 132.5 L of dye to Ward 

Lake. 

Physical, Chemical, and Biological Sampling 

Physical, chemical, and biological characteristics of the lakes were measured weekly in 

both years (Appendix). These included vertical profiles of light, oxygen and temperature (from 

the surface into the hypolimnion), profiles of chlorophyll concentration throughout the photic 
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zone (100% to 1% surface light), and surface measurements of pCO2. Chaoborus spp. and 

crustacean zooplankton community compositions were estimated from weekly vertical net tows, 

and their biomasses were estimated by applying standard mass–length regressions to lengths 

measured under a microscope (Appendix). 

The ecosystem metabolism of the lakes was estimated from data gathered by automated 

sensors. We made high-frequency surface measurements of dissolved oxygen (DO) and 

vertically distributed measurements of temperature, as well as measurements of the 

meteorological parameters of air temperature, relative humidity, photosynthetically active 

radiation, and wind speed. It is common in limnological research to estimate metabolism from 

models involving diel changes in dissolved oxygen and atmospheric gas exchange (Cole et al. 

2000, Stæhr et al. 2010, Hoellein et al. 2013). We used the R package rLakeAnalyzer to calculate 

high-frequency estimates of mixing depth, which in turn were supplied to models calculating 

atmospheric gas exchange (Read et al. 2011, 2012). To aid in mitigating potential bias 

introduced by noisy oxygen time series, we estimated net ecosystem production (NEP), gross 

primary production (GPP), and respiration (R) using a metabolism model that fits parameters in 

the framework of a Kalman filter (Batt and Carpenter 2012; Appendix). 

Isotope Methods 

Resource support of Ward Lake consumers was assessed using stable isotopes of carbon, 

nitrogen, and hydrogen and a Bayesian mixing model. Our methods follow those of Batt et al. 

(2012), who measured resource support of consumers in Ward Lake in 2010. Isotope samples 

were collected in 2010 and 2012, and our 2010 data partially supplement those data analyzed by 

Batt et al. (2012). Samples were collected monthly between May and August in 2010, and 
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between June and August in 2012. Samples for both consumers and end members were 

horizontally distributed among 5 sites in 2010, and 3 sites in 2012.  

Water samples taken from the epilimnion and metalimnion were analyzed for the δ2H of 

H2O, and δ13C, δ15N, and δ2H of particulate and dissolved organic matter (POM and DOM). In 

accordance with the methods of previous studies, POM samples formed the basis for calculating 

the isotope value of the phytoplankton end member (Solomon et al. 2009, Cole et al. 2011, Batt 

et al. 2012). Terrestrial end members included Larix laricina, Carex sp., and Alnus incana subsp. 

rugosa, and an aggregate “tree” end member taken from previously measured values of Picea 

mariana, Abies balsamea, Acer rubrum, Acer saccharum, Thuja occidentalis, and Betula 

alleghaniensis sampled in the watershed surrounding Ward Lake (Solomon et al. 2011, Cole et al. 

2011). Macrophytes included floating-leafed morphologies (Nymphaea odorata, Nuphar 

variegata, Brasenia schreberi, Potamogeton nodosus), and submersed morphologies (Chara sp., 

Najas flexilis, Potamogeton pusillus, Potamogeton amplifolius). Benthic algae were sampled 

from ceramic tiles, submerged at a depth of 0.5 m in 2010 and 0.25 m in 2012. The zooplankton 

primary consumer Skistodiaptomus oregonensis was sampled by bilge pump from the epilimnion 

and metalimnion, and the zooplankton predator Chaoborus spp. was sampled at night using 

oblique net tows. The snail Helisoma trivolvis was collected from the perimeter of the lake, 

where hoop nets and minnow traps were set to collect the fishes Pimephales promelas (fathead 

minnow), Phoxinus spp. (dace), Umbra limi (central mud minnow), and young-of-the-year 

Ameiurus melas (black bullhead). The foot of each snail and the non-gut biomass of fishes were 

analyzed for isotopes. All solid samples were dried at 60 ºC and sent to Colorado Plateau Stable 

Isotope Laboratory for analysis (Doucett et al. 2007). 

Isotope Mixing Model 
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Resource contributions to consumer biomass were estimated by analyzing consumer 

isotope values as a mixture of primary producer isotope values. We used a Bayesian mixing 

model similar to that used by Solomon et al. (2011) and identical to the model presented by Batt 

et al. (2012). The general form of the mixing model is Yi = XΦ + D + Εi. Y is a 3x1 vector 

containing the isotope values of sample i of the mixture. X is a 3xS matrix of end member 

isotope values, Φ is an Sx1 vector of the proportional contribution of each source to the organic 

matter of the consumer, and S is the number of organic matter sources. D contains discrimination 

factors, and Ε is a matrix of error terms. Furthermore, the sum of Φ was constrained to equal 1 

(sources in X fully comprise the mixture, Y). Written in long form, the model is 

 

The parameters estimated from data are the φ’s for each source (S), and the variances of the ε’s, 

which are normally distributed with means of 0 and variances . All Φ were given 

uninformative priors drawn from a uniform distribution in a centered log-ratio space. The total 

proportion of consumer 2H derived from 2H2O is ω=1–(1–ω0)τ. The fractional contribution of 

dietary water (ω0) is amplified with increasing trophic level, τ, because predators ingest 2H2O 

directly as well as indirectly through their prey, which incorporate dietary water themselves. The 

trophic enrichment of δ15N is Δ=Δherb+(τ–1)Δcarn. We used literature values for δ15N enrichment 

across herbivorous (Δherb; mean (µ) = 2.52‰, standard deviation (σ) = 2.5‰) and carnivorous 

(Δcarn; µ= 3.4‰, σ= 0.4‰) linkages, and for taxon-specific values for dietary water (respective 

means and standard deviations: S. oregonensis = 0.20, 0.04; Chaoborus spp. = 0.14, 0.06; H. 
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trivolvis = 0.21, 0.03; fishes = 0.12, 0.02) (Estep and Dabrowski 1980, Vander Zanden and 

Rasmussen 2001, Solomon et al. 2009, Bortolotti et al. 2013).  

 S. oregonensis and H. trivolvis (the primary consumers) were assigned trophic level 1 (levels 

above primary producers), and all other consumers were assigned trophic level 2. All trophic 

levels were assigned a variance of 0.1. Our data do not permit the estimation of isotope turnover 

rates in consumer tissue, and we assume that the isotopic composition of consumer tissue reflects 

recently incorporated organic matter. This assumption is met for the consumers born post-

manipulation (S. oregonensis, Chaoborus spp., and young-of-the-year A. melas), but is violated 

if a consumer sampled in 2012 bore the isotopic signature of resources incorporated in 2010. 

However, not accounting for isotopic disequilibrium in older consumers would result in a 

conservative bias that underestimates between-year changes in the isotope values of consumers 

(Y) and in the contributions of resources to those consumers (Φ). 

In the isotope mixing model, the number of sources (S) was limited to four (one plus the 

number of isotopes measured) because Φ was unknown. To reduce source number, end members 

can be pooled into ecologically similar groups (Phillips et al. 2005).  We pooled end members 

into the following groups: terrestrial resources, phytoplankton (both depths), floating-leafed 

macrophytes, submersed macrophytes, all macrophytes, and benthic algae. The isotope values of 

each resource were taken from the average of its constituent end members. The variances of the 

resource signatures were determined by performing a one-way analysis of variance for each 

isotope-resource combination: the variance was set equal to the total mean squared error if the 

taxa had significantly different signatures (p < 0.1), or to the residual mean squared error if they 

were not significantly different. For each consumer we used known feeding habits and deviance 

information criterion to select two, three, or four sources from the 7 possible groups of pooled 
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end members. Our estimates of source contribution (Φ) were robust to source selection 

(Appendix). 

Source contributions to POM and DOM were estimated using Eq. 1. In the case of POM, 

two Φ values (terrestrial and phytoplankton) were estimated along with the isotope values of the 

phytoplankton source. Phytoplankton δ2H was given an informative prior based on δ2H2O, and 

δ13C and δ15N of phytoplankton were given uninformative priors (Solomon et al. 2009, Batt et al. 

2012). The estimated isotope values for phytoplankton were subsequently used for the 

phytoplankton end member when estimating the composition of consumers and DOM. The 

composition of DOM was estimated after algebraically correcting for the influence of Aquashade 

on the isotope values of DOM by using measured concentrations, isotope values, and the C:N:H 

stoichiometry of the dye and of DOM (Appendix). The number of sources (S) was 4 for DOM, 

with the model containing terrestrial, macrophyte (both morphologies), phytoplankton, and 

periphyton sources. For both POM and DOM, trophic fractionation (Δ) and dietary water use (ω) 

were 0. 

The compositions of mixtures (consumers, DOM, POM) from 2010 and 2012 were 

estimated from independent model runs. Benthic algal and phytoplankton samples used as 

sources in X were restricted to the sampling year of the mixture, whereas this distinction was not 

made for macrophyte or terrestrial sources. The same restriction was applied to POM and δ2H2O 

when modeling phytoplankton isotope values. Analyses were performed in R and JAGS, using 

the packages R2WinBUGS, rjags, R2jags, and programs written by the authors (Plummer 2003, 

Sturtz et al. 2005, R Core Team 2014). Each JAGS model run generated 6000 iterations of 8 

Markov chains, thinned to 1000 samples of the posterior. 

Results 
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Light attenuation 

Aquashade was first added to Ward Lake in the spring of 2012, after which it remained 

near a concentration of 1.5 ppm. After Aquashade was added, the photic depth of Ward Lake 

was 2 m – half of the 4 m average in 2010 (Fig. 1). Similarly, the depth of the mixed layer was 

reduced from 1.8 m in 2010 to 0.9 m in 2012. Meanwhile, Paul Lake, a nearby unmanipulated 

lake, experienced a slight increase in mixed layer depth (2.4 m in 2010 to 2.8 m in 2012) and in 

photic zone depth (5.5 m in 2010 to 6.5 m in 2012). 

Chlorophyll, dissolved gases, zooplankton biomass 

 The areal density of chlorophyll in the photic zone is a measure of the biomass of 

phytoplankton that could be photosynthesizing. In Paul Lake, areal chlorophyll was similar 

between years (seasonal average; 54.6 µg m-2 in 2010 and 53.6 µg m-2 in 2012), but Ward Lake 

areal chlorophyll decreased from 86.9 µg m-2 in 2010 to 34.9 µg m-2 in 2012 (Fig. 2). Mean 

epilimnetic GPP increased in both lakes, although the change in Paul Lake GPP was relatively 

small (13.2 to 16.4 mmol O2 m-3 d-1) compared to that in Ward Lake (32.6 to 44.8 mmol O2 m-3 

d-1). In Paul Lake mean epilimnetic R was -18.1 mmol O2 m-3 d-1 in 2010 and -21.7 mmol O2 m-3 

d-1 in 2012, and in Ward Lake there was a strong increase in the magnitude of R, shifting from -

30.8 in 2010 to -66.6 mmol O2 m-3 d-1 in 2012. The epilimnion of Paul Lake was slightly net 

heterotrophic in both years (NEP = -5.0 mmol O2 m-3 d-1 in 2010, -5.3 mmol O2 m-3 d-1 in 2012), 

while the epiliminon of Ward Lake shifted from slightly net autotrophic in 2010 (NEP = 1.7 

mmol O2 m-3 d-1) to net heterotrophic in 2012 (NEP = -21.8 mmol O2 m-3 d-1) (Fig. 2). This 

pattern in metabolic balance was also reflected in high-frequency measurements of dissolved 

oxygen saturation (DO; saturation relative to 1 atm pressure) and in weekly measurements of the 

partial pressure of CO2 (pCO2). Paul Lake DO and pCO2 were similar between years (DO = 99% 
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and pCO2 = 987 µatm in 2010, 98% and 941 µatm in 2012), but Ward Lake DO decreased from 

101% to 87% and pCO2 increased from 976 µatm to 2134 µatm (Fig. 2). Summer means of 

weekly measurements of metalimnetic DO increased slightly in Paul Lake (90% in 2010, 99% in 

2012), but decreased drastically in Ward Lake (86% in 2010, 30% in 2012). 

In Ward Lake the zooplankton and Chaoborus spp. biomass declined between years 

(zooplankton = 0.9 g/m2 in 2010 and 0.5 g/m2 in 2012; Chaoborus spp. = 2.1 g/m2 in 2010 and 

0.4 g/m2 in 2012) (Fig. 2). In Paul Lake, the biomasses of zooplankton (annual mean was 0.6 

g/m2 in 2010 and 0.7 g/m2 in 2012) and Chaoborus spp. (6.8 g/m2 in 2010 and 9.0 g/m2 in 2012) 

were similar between years. The large change in zooplankton biomass in Ward Lake was not 

attributable to adult S. oregonensis, but to decreases in the adults of other copepod taxa and to a 

large decrease in the biomass of copepod larvae (Appendix). 

Isotope values and mixing model results 

 We summarize mixing model estimates of the composition (Φ) of consumers and other 

pools of organic matter in Ward Lake as means of the posterior distributions of Φ, reported as 

percentages. We refer to changes between years that were less than 10% as not being 

ecologically important. 

The sizes of the particulate and dissolved organic matter (POM and DOM) pools were 

similar between years (Appendix), but their compositions changed. POM in 2010 was 67% algal 

and 33% terrestrial, and in 2012 each of these end members comprised 50% of the POM pool. 

The DOM analysis included terrestrial material, macrophytes, phytoplankton, and periphyton as 

potential sources. In the baseline year terrestrial material comprised 89% of the DOM pool, but 

in 2012 macrophytes (pooled source of floating-leafed and submersed morphologies) were 56% 



	
   88 

of the DOM pool and terrestrial material was only 20%. In 2012, phytoplankton comprised 6% 

and periphyton 18% of DOM. 

Groups of end members (phytoplankton, periphyton, terrestrial, floating macrophytes, 

submersed macrophytes) occupied distinct regions of the three-dimensional (axes of δ13C, δ15N, 

δ2H) isotope space (Fig. 3A,B). Phytoplankton end members had the lowest δ2H and δ13C values, 

and also the highest δ15N values. By contrast, submersed macrophytes had the highest δ2H and 

δ13C isotope values, and also the lowest δ15N values. The δ13C values of the algal end members 

(periphyton, epilimnetic and metalimnetic phytoplankton) decreased between years; similarly, 

consumer δ13C tended to either decrease or be similar between years (Fig. 3 C-F). In 2010, δ2H 

values for S. oregonensis and Chaoborus spp. were similar, but in 2012 the δ2H values for these 

consumer became more distinct, with mean δ2H increasing in Chaoborus spp. but decreasing in S. 

oregonensis (Fig. 3C). In 2010 the isotope value of the snail H. trivolvis was similar to that of the 

floating leafed macrophytes, but in 2012 its isotope values became similar to the terrestrial end 

members (Fig. 3C,D). Little change was seen in the isotope values of U. limi, but for the three 

other fishes the largest changes in isotope values involved increases in δ2H and decreases δ13C 

(Fig. 3E,F). These changes in fish isotope values amount to fish shifting away from the location 

of isotopic space occupied by periphyton. 

Periphyton support of fish was lower in 2012 than in 2010, but phytoplankton support 

remained similar between years (Fig. 4). The periphyton end member was a potential source for 

three of the four fishes (not a source for U. limi), and support by this end member declined for 

each – from a mean posterior of 26% and standard deviation (σ) of 14% (2010) to 4% (σ =6%; 

2012) for P. promelas, 44% (σ =14%) to 32% ± (σ=19%) for Phoxinus spp., and 36% ± (σ 

=14%) to 10% ± (σ =11%) for A. melas. However, phytoplankton contribution to fish did not 
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decline, and for two of the fishes, phytoplankton support increased (U. limi = 31% [σ =9%] in 

2010 and 46% [σ =6%] in 2012; A. melas = 16% [σ =10%] in 2010 and 31% [σ =7%] in 2012). 

Support by terrestrial and macrophyte resources tended to be similar or increase between years, 

with the exception that U. limi allochthony was lower in 2012 (56% [σ =19%] down to 31% [σ 

=19%]). 

Allochthony increased for two of the three invertebrate consumers. Allochthony 

increased for both the snail H. trivolvis (from 36% [σ =12%] in 2010 to 62% [σ =14%] in 2012) 

and the predatory zooplankton Chaoborus spp. (from 19% [σ =11%] to 39% [σ =10%]). 

Increased Chaoborus spp. allochthony was complemented by decreased phytoplankton support 

(from 81% [σ =11%] to 67% [σ =10%]), whereas the snail received similar support from 

periphyton (34% [σ =18%] in 2010, 34% [σ =15%] in 2012) but derived less support from 

floating-leafed macrophytes (30% [σ =27%] to 4% [σ =6%]). In 2010, the zooplankton primary 

consumer S. oregeonensis was 15% (σ =7%) allochthonous, similar to Chaoborus spp. 

allochthony in the same year. However, unlike H. trivolvis and Chaoborus spp., S. oregonensis 

did not become more allochthonous in 2012, maintaining a high reliance on phytoplankton in 

both years (85% [σ =7%] in 2010, 93% [σ =5%] in 2012). 

Between years, relative resource support (Φ) changed for most consumers. The sources 

(S) present in mixing models varied among consumers, and the terrestrial resource was the only 

source present in all consumer models. Of the seven consumers, five of them were more 

allochthonous in 2012 than in 2010 (Fig. 5). At least one of the algal end members 

(phytoplankton or periphyton) was present in each model, and the sum of the change in algal 

support was negative for four of the consumers. Note that for the three consumers whose models 

only contained algal and terrestrial resources, model structure necessitated that any change in 
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support by these resources be complementary. However, the changes in algal and terrestrial 

support were not perfectly complementary for the four consumers supported by macrophyte 

resources, and H. trivolvis was the only consumer to receive less macrophyte support in 2012 

relative to 2010. 

In 2010, all fishes derived less support from the phytoplankton resource than Chaoborus 

spp. (Fig. 4). Phytoplankton support of Chaoborus spp. decreased between years but remained 

higher than that of the fishes, for which phytoplankton support either increased or was similar 

between years (Figs. 4, 5). Therefore, compared to 2010, in 2012 the phytoplankton contribution 

to all fishes was more similar to its contribution to Chaoborus spp. (Fig. 6). 

Discussion 

Darkening Ward Lake reduced net ecosystem production (NEP), altering the relative 

availability of resources. NEP provides a broad perspective on food web energy flow because it 

integrates across processes and habitats. Consistent with patterns of increasingly negative NEP 

across lakes with increasing DOC concentration, Ward Lake shifted toward net heterotrophy 

after the manipulation. Loss of benthic algal production likely contributed to this shift because 

benthic algae are consistently less productive in shaded lakes (Vadeboncoeur et al. 2001, Ask et 

al. 2012). Phytoplankton have a more complicated response to increased DOC and water color 

(Hanson et al. 2003, Ask et al. 2012), but in Ward Lake, both chlorophyll measurements and the 

abundance and composition of POM indicate that phytoplankton were less abundant in 2012. 

Particularly, metalimnetic phytoplankton tend to make a greater contribution to zooplankton 

biomass in clearer systems (Francis et al. 2011), and the drastically decreased DO in the 

metalimnion of Ward Lake after it was darkened suggests that this algal resource was less 

available in 2012. Therefore, decreased production by both phytoplankton and periphyton likely 
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contributed to heterotrophic NEP in 2012, which suggests that they were less available to 

consumers in 2012 relative to 2010. 

Changes in NEP can result from decreased gross primary production (GPP), increased 

respiration (R), or both. Both GPP and R increased in Ward Lake (37% increase in GPP, 116% 

increase in R) and in Paul Lake (25% increase in GPP, 20% increase in R). The increase in Ward 

Lake GPP was unexpected. Increased nutrient concentrations can stimulate both GPP and R, and 

relative to 2012, 2010 concentrations of total nitrogen (TN) and total phosphorus (TP) were 

much higher in both Paul Lake (TN = 223.6 µg/L in 2010, 427.8 µg/L in 2012; TP = 3.9 µg/L in 

2010, 14 µg/L in 2012) as well as in Ward Lake (TN = 491 µg/L in 2010, 726 µg/L in 2012; TP 

= 23 µg/L in 2010, 58 µg/L in 2012). Thus, it may be that amplified rates of GPP and R in both 

lakes were driven by increased nutrient availability, and that the proportional increase in GPP 

and R in Paul Lake but not Ward Lake was due to the massive reduction in light availability in 

Ward Lake. 

Estimates of decreased floating-leafed macrophyte support and unchanged periphyton 

support of H. trivolvis were surprising because decreased water clarity was expected to impact 

periphyton more than floating-leafed macrophytes. Although posterior estimates of resource 

support of H. trivolvis reveal a large degree of uncertainty for floating-leafed macrophyte support 

in both years, visual surface surveys indicated that the cover of floating-leafed macrophytes in 

the littoral zone (within 30 m of shore) of Ward Lake decreased from 27% in 2011 to 16% in 

2012. Furthermore, between 2010 and 2012, macrophytes (combined morphologies) supplanted 

allochthonous material as the dominant constituent of DOM. Thus, the change in H. trivolvis 

resource use may be tied to a shift of macrophyte organic matter from living to dissolved forms. 
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In contrast with previous studies, our hypotheses, and other Ward Lake consumers, the 

calanoid copepod S. oregonensis did not become more allochthonous after light transmission 

declined and phytoplankton became less abundant. Several studies have documented that 

zooplankton can use terrestrial resources, especially in high DOC lakes with allochthonous 

particulate matter, including many lakes that are in the same watershed as Ward Lake (Carpenter 

et al. 2005, Marcarelli et al. 2011, Wilkinson et al. 2013a, Taipale et al. 2014). Rather than 

increasing in allochthony, S. oregonensis maintained high use of phytoplankton, even as the 

biomasses of other zooplankton and copepod larvae declined considerably. However, because 

Chaoborus spp. is a predator that integrates across the zooplankton community, its moderate 

increase in allochthony suggests that other taxa of zooplankton in Ward Lake increased their 

allochthony in 2012, and that the zooplankton consumers exhibited a variety of feeding habits. 

Indeed, S. oregonensis is a highly selective feeder (Kerfoot and Kirk 1991), and calanoids tend to 

be less allochthonous than either cyclopoids or cladocerans (Karlsson et al. 2012, Cole 2013, 

Wilkinson et al. 2013a). Therefore, our results and those of previous studies suggest that 

zooplankton may become increasingly allochthonous as phytoplankton become less available, 

but taxon-specific feeding habits may impose a limit on the extent of change. 

The decreased contribution of periphyton to fishes in a darkened Ward Lake is consistent 

with patterns seen for fish and periphyton across lakes with increasing DOC concentration and 

decreased benthic primary productivity (Karlsson et al. 2009, Vander Zanden et al. 2011, Ask et 

al. 2012). Fish in darker lakes tend to be more isotopically similar to zooplankton, but we did not 

observe consistent complementarity between periphyton and phytoplankton support of fish. 

However, phytoplankton support of all fishes (including U. limi, which did not use periphyton) 

did become more similar to that of Chaoborus spp. In other words, the fishes showed an 
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increased connection to pelagic prey without necessarily relying more on pelagic primary 

producers, a pattern that was possible because some zooplankton relied less on phytoplankton in 

2012. Floating-leafed macrophytes were another alternative resource that increased its support of 

some fishes after Ward was darkened. This response contrasts with the change in macrophyte use 

observed for H. trivolvis, and highlights the diversity of consumer responses to the manipulation 

and the variety of pathways connecting consumers to basal resources. In fact, the high mobility 

and trophic position of fishes is thought to facilitate both breadth and flexibility in resource use, 

which in turn stabilize food web dynamics (Rooney and McCann 2012). Overall, while fish 

support by periphyton was partially exchanged for support by phytoplankton, their repertoire of 

compensatory resources was diverse and integrated several habitats and the terrestrial ecosystem. 

Future environmental changes may alter the base of food webs, removing preferred 

resources and forcing consumers to eat less or turn to alternative energy sources. When Ward 

Lake was darkened, algal resources became less abundant and a higher proportion of consumer 

biomass was supported by energetic alternatives like terrestrial material. This dynamic highlights 

that the strength of the energetic connection between consumer and source can change with 

resource availability and the environment. Given the global prevalence of rapid environmental 

change, further effort is needed to understand how resource support can change under other 

conditions and at other time scales. Our study challenges a perspective that holds resources as 

unimportant if they currently support a small fraction of consumer biomass, and embraces a view 

of such resources serving food webs as insurance, mitigating constricted energy flow and 

consumer starvation.  
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Figure 1. The top panel shows time series of Aquashade concentration in 2012 (black), photic 

depth in 2010 (red), and photic depth in 2012 (blue). Photic depth was defined as the depth 

where photosynthetically active radiation (PAR) was equal to 1% of PAR at 0 m. The bottom 

panels show temperature (thin lines) and dissolved oxygen (thick lines) profiles on a single 

representative day in each year (day 160 in 2010 and day 159 in 2012). 
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Figure 2. Box and whisker plots of areal chlorophyll (measured weekly), pCO2 (measured 

weekly), dissolved oxygen (DO, percent saturation; daily average of 5-min observations), net 

ecosystem production (NEP; daily), crustacean zooplankton biomass (weekly), and Chaoborus 

spp. biomass (weekly) in the manipulated lake (Ward Lake) and a nearby reference lake (Paul 

Lake) in 2010 (red) and in 2012 (blue). Each box bounds the 25-75th percentile of data, with each 

whisker extending to the most extreme datum that is no more than 1.5 * (interquartile range) 

beyond the box. The thick line in the center of a box is the median. All data were included in 

statistical calculations, but to preserve the scaling of axes, outliers are not displayed.  
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Figure 3. Biplots of  mean end member (circles) and consumer (squares) δ13C, δ15N, and δ2H 

isotope values and their standard deviations (black error bars). (A, B) End members; brown 

ellipse indicates terrestrial end members (1= A. incana subsp. rugosa, 18 = Carex sp., 19 = L. 

laricina, 20 = tree species), dashed green ellipses indicate macrophytes of floating (3 = B. 

schreberi, 12 = N. variegata, 13 = N. odorata, 16 = P. pusillus) and submersed morphologies (6 

= Chara sp., 11 = N. flexilis, 15 = P. amplifolius, 17 = P. pusillus), solid green ellipses indicate 

algal end members (14 = periphyton, 21 = epilimnetic phytoplankton, 22 = metalimnetic 

phytoplankton). (C, D) Invertebrate consumers; 4 = S. oregonensis, 5 = Chaoborus spp., 10 = H. 

trivolvis. (E, F) Fish consumers; 2 = A. melas, 7 = U. limi, 8 = Phoxinus spp., 9 = P. promelas. 

Red symbols correspond to 2010 values, blue to 2012, and white symbols correspond to end 

member values that were pooled between years.  
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Figure 4. Violin plots of the proportional contributions of resources to consumers (posterior of 

Φ) in Ward Lake in 2010 (red) and 2012 (blue). Each violin is a mirror image of a nonparametric 

density estimate of a posterior (violins are wider at higher densities), and in the center of the 

violins are boxplots. Consumers include S. oregonensis (a zooplankton primary consumer), 

Chaoborus spp. (predatory zooplankton), H. trivolvis (a snail), P. promelas (fathead minnow), U. 

limi (central mud minnow), Phoxinus spp. (dace), and young-of-year A. melas (black bullhead). 

Terr = terrestrial (A. incana subsp. rugosa, Carex sp., L. laricina, and other nearby tree species); 
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Phyto = phytoplankton; Float Mac = floating-leafed macrophytes (B. schreberi, N. variegata, N. 

odorata, and P. nodosus); Periphy = periphyton.  
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Figure 5. Changes in resource support between 2010 and 2012. The solid black line indicates 

where the changes in support by algal and terrestrial resources were perfectly complementary, 

which was necessitated by model structure for the three consumers that were not supported by 

macrophytes. Consumers below this line received more support from macrophytes in the second 

year, and the consumer above the line received less support from macrophytes. Positive values 

indicate an increase in the median support by the resource in 2012 relative to 2010. Error bars are 

25th and 75th percentiles of the differences. The change in the algal resource is the sum of the 

changes in the phytoplankton and periphyton resources.  

  



	
   108 

 

 

 

Figure 6. Phytoplankton support (φPhyto) of the four fishes, expressed as a deviation from φPhyto 

of Chaoborus spp. The vertical axis is the density of the difference between the posterior 

distributions of φPhyto for the two consumers. Thin lines are the posterior densities in 2010, and 

thick lines are from 2012. Negative values on the horizontal axis (to the left of the vertical 

dashed line) indicate that phytoplankton comprised a greater proportion of Chaoborus spp. than 

of the fish. The horizontal arrows show the direction and magnitude of the change in Fish φPhyto – 

Chaob φPhyto between years, with the arrow starting at the mean difference in 2010, and ending at 

the mean difference in 2012. In all cases, phytoplankton support of fish was more similar to 

support of Chaoborus spp. in 2012 than in 2010. 
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Appendix to Chapter 3 

Limnological measurements 

During the ice-free periods of 2010 and 2012 we took weekly measurements of a suite of 

limnological variables in Paul and Ward Lakes using standard methods, which are described 

briefly below. Detailed descriptions of these methods can be found in previous publications 

(Carpenter and Kitchell 1993, Carpenter et al. 2001) and in an online repository 

(http://c13.valuemembers.net/Documents/CascadeManual1998.pdf). 

Depth profiles of temperature and dissolved oxygen (DO) were taken from the surface (0 

m) to the hypolimnion at 0.5 m intervals. DO and temperature were measured using a YSI 

Professional Plus handheld meter. Profiles of photosynthetically active radiation (PAR, 400 nm 

to 700 nm) were taken at 0.25 m intervals from 0 m to 1 m, and at 0.5 m intervals from 1 m until 

1% of surface light was reached. PAR was measured with a LI-COR LI-193 underwater sensor 

for the depth profiles, and with a LI-COR LI-190 Quantum Sensor for surface readings. Depths 

corresponding to 100%, 50%, 25%, 10%, 5%, and 1% of surface light were obtained in the field 

by linearly interpolating the ratio of underwater PAR to surface PAR between consecutive 

depths. 

Measurements of chlorophyll (Chl), and dissolved inorganic carbon (DIC) were taken 

from water samples at depths corresponding to the aforementioned light gradient (100% to 1% 

surface light), while partial pressure of CO2 (pCO2), total nitrogen (TN), total phosphorus (TP) 

were measured from a pooled sample of three epilimnetic depths. Chl was measured from water 

samples filtered through a Whatman GF/F glass fiber filter, frozen, extracted in methanol, and 

analyzed using a fluorometer (Sequoia Turner Model 450). TN and TP were measured from 

unfiltered water samples (100 mL) that had been preserved using 1 mL of 1N Optima sulfuric 
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acid. DIC was measured on a Shimadzu gas chromatograph (GC-8A) by the syringe gas 

stripping method of Stainton (1973). pCO2 was measured using the large volume equilibration 

method of Cole et al. (1994). 

Weekly daytime vertical net tows were made with a conical net to measure the abundance 

and composition of the zooplankton biomass and community composition in each lake, and the 

same was done for Chaoborus spp., a zooplankton predator, using nighttime tows. Crustacean 

zooplankton were sampled using a net with a mesh size of 80 µm, and for Chaoborus spp. we 

sampled with a mesh of 153 µm. Both sets of samples were taken at a central location that was 

near the deepest point of the lake. In Paul Lake tows were taken from a depth of 8 m, and in 

Ward Lake from a depth of 6 m. Crustaceans and Chaoborus spp. were preserved in a 1% 

Lugol’s solution, subsampled and enumerated. The length of 15 individuals were measured and 

lengths converted to biomasses following the equations of Downing & Rigler (1984). 

 

Sensor and Metabolism Methods 

We used automated in situ sensors (sondes) to measure dissolved oxygen (DO), which 

was used to estimate metabolism, which includes gross primary production (GPP), respiration 

(R), and net ecosystem production (NEP). The sonde models were YSI 600XLM (rapid pulse 

DO probe model 6562) for Ward in 2010, and YSI 6600 V2 (optical DO probe model 6150) for 

Ward in 2012 and Paul in 2010 and 2012. We used thermistor chains to measure temperature in 

both lakes. In Paul Lake we used NexSens T-node sensors with thermistors placed every 0.5 m 

from 0.5 m to 4 m, and an additional thermistor at 5.0 m. In Ward Lake we used HOBO 

thermistors, which in 2010 were placed every 0.5 m between 0.5 m and 5.5 m, and in 2012 were 

placed every 0.25 m between 0 m and 2 m, and at 2.5 m and 3.0 m. Before June of 2010 high 
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frequency thermal profiles were not available for Ward Lake, and estimates of mixed layer depth 

were instead made from manual weekly profiles. We measured photosynthetically active 

radiation (PAR; W m-2 s-1) and wind speed (m s-1) at 2 m above the lake surface with an 

anemometer on a buoy on nearby Peter Lake (adjacent to Paul Lake, similar in size to both lakes 

in this study). Hourly measurements of air temperature, relative humidity, barometric pressure 

were made by a nearby weather station on the UNDEC property, and linearly interpolated to a 5-

minute frequency. This weather station also provided supplemental measurements of PAR and 

wind speed which were used to fill in missing portions of those time series collected by the Peter 

Lake buoy. Automated sensors for DO and temperature in Ward in 2010 sampled at a 4-minute 

frequency while sensors in other lakes or years sampled at a 5-minute frequency. 

Metabolism was calculated from automated high-frequency measurements of DO using a 

model that was fit in the framework of a Kalman filter (Batt and Carpenter 2012). This 

metabolism model includes process error and observation error, and fits parameters relating PAR 

to GPP and temperature to R using maximum likelihood. Process errors propagate throughout a 

time series but observation errors do not, and can be thought of as noise added to the oxygen data 

after they are generated. A model that makes this distinction between error types must explicitly 

consider both the true state of the system (which is unknown) and the observed state of the 

system (which we measure). Given such a model, the likelihood of the data given a set of 

parameter estimates can be computed using a Kalman filter (Kalman 1960, Harvey 1989). 

The negative log likelihood function involves two key sets of equations that describe the 

process and observation components of the model: 

yt = αt + ηt; η~N(0,H) [1] 

αt|t-1 = αt-1 + ι*It-1 + ρ*logeTt-1 + Ft-1 + εt; ε~N(0,Q) [2] 
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Where y is the observed concentration of oxygen (mmol O2 m-3), α is the true value of oxygen, η 

are observation errors, H is the variance of η, ι and ρ are a parameter to be estimated, T is water 

temperature (ºC), F is discrete atmospheric gas exchange (m per 5-minutes ) (Read et al. 2012), ε 

are process errors, and Q is the variance of ε. Written in a form that expands F and solves for gas 

exchange in continuous time, the process equation becomes: 

αt|t-1 = at*kt-1
-1*zt-1 + -exp{-kt-1*zt-1

-1}*at*kt-1
-1*zt-1 + αt-1 [3] 

at = ι*It-1 + ρ*logeTt-1 + kt-1*zt-1
-1*Os,t-1 [4] 

where z is the depth of the mixed layer in meters (Read et al. 2011), and Os is the concentration 

of oxygen at saturation given water temperature and atmospheric pressure. In addition to making 

predictions for the system state at each time step, the Kalman filter also makes predictions of the 

error covariance matrix, P: 

Pt|t-1 = Pt-1*(kt-1*zt-1
-1)2 [5] 

The subscript t|t-1 indicates that the estimates of α and P are only based on observations of y up 

to yt-1, and have not been updated to reflect information gained by yt. To incorporate the new 

information gained from the current observation of dissolved oxygen, yt, the Kalman filter 

updates the estimates of the predicted values by accounting for the current observation and the 

relative uncertainty surrounding the predictions and the observations – this process is akin to a 

weighted average of the prediction and the observation using precision (inverse of variance) as 

the weights. The updating equations are as follows: 

Et = Pt|t-1 + H [6] 

αt = αt|t-1 + Pt|t-1*(yt - αt|t-1)*Et
-1 [7] 

Pt = Pt|t-1 - Et*(Pt|t-1)-2 [8] 
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In this implementation of the Kalman filter, we initiate Pt=1 with Q, and αt=1 with yt=1. The 

parameters to be estimated are Q, H, ι, and ρ. The negative log likelihood, L, of the data given 

the current parameter estimates is 

L = Σ(t=1 to t=N) 0.5*loge(2*π) + 0.5*log(Et) + 0.5*(yt - αt|t-1)2*Et [9] 

 Having fit ι and ρ, they are multiplied by PAR and loge(temperature) at each time step, 

and summed up over the course of the day, yielding estimates of GPP and R in mmol O2 m-3 d-1, 

respectively. NEP was calculated as the sum of GPP and R on a given day. These parameters 

were fit separately for each day of data, and by convention ι is positive and ρ is negative; when 

these parameters take on the opposite sign, the estimates no longer are ecologically meaningful. 

On days where either ι or ρ had the wrong sign, that days estimates of GPP, R, and NEP were 

discarded from further analysis and did not contribute to seasonal estimates of metabolism. 

 

Sample Collection for Isotope Analysis 

Water was sampled from the epilimnion (at 0.5 m) and the metalimnion every month 

from May through August in 2010, and June through August in 2012. The samples were taken 

from 5 horizontally distributed locations in 2010, and 3 locations in 2012. The metalimnetic 

sampling depth was defined as the depth of the maximum saturation of dissolved oxygen (DO) 

below the mixed layer (Zmix). Sample filtrate (Whatman GF/F filters) was analyzed for water 

deuterium (δ2H of H2O) and the δ13C, δ15N, and δ2H of dissolved organic matter (DOM). Solid 

samples of DOM were obtained by evaporating the acidified filtrate (1mL 1N H2SO4 in 1L of 

filtrate) in a glass petri dish. The material collected on the Whatman GF/F filters was used to 

measure the carbon and nitrogen stable isotopes of particulate organic matter (POM). Material 

for POM analysis of hydrogen stable isotopes was collected on a MicronSep Cellulosic filter, 
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washed off of the filter with a small amount of deionized water, and dried at 60 ºC. DOM, δ2H2O, 

and POM sample sizes were 5, 8, and 33 in 2010, and 6, 18, and 14 in 2012.  

Algal end members included phytoplankton and benthic algae. Phytoplankton isotope 

values were computed from POM and δ2H2O, as described in the main text. Benthic algae were 

sampled from ceramic tiles submerged at 0.5 m and 0.25 m in 2010 and 2012, respectively (n = 6, 

6; this notation henceforth represents sample sizes in 2010, 2012). Tiles were deployed at 

horizontally distributed locations in the littoral zone of the lake throughout both summers, and 

samples were scraped from the tiles on each sampling date. Benthic algae sampled from tiles 

served as a morphological and isotopic surrogate for attached algae that might be growing in the 

lake, and the use of tiles avoided the potential for contamination by natural substrates (e.g., wood 

or sediment).  

Macrophytes and terrestrial plants comprised the other end members sampled for isotopes. 

Macrophytes were sampled throughout the lake and included taxa of floating-leafed (Nymphaea 

odorata [n = 5, 2], Nuphar variegata [n = 5, 2], Brasenia schreberi [n = 4, 2], Potamogeton 

nodosus [n = 0, 2]) and submersed (Chara sp. [n = 5, 1], Najas flexilis [n = 1, 3], Potamogeton 

pusillus [n = 5, 2], Potamogeton amplifolius [n = 0, 2]) morphologies. Macrophytes were 

thoroughly rinsed with tap water, and taxa with broad leaves were also gently scrubbed to 

remove any remaining epiphytic growth. Terrestrial vegetation (Larix laricina, Carex sp., Alnus 

incana subsp. rugosa) was collected from around the perimeter of the lake (total of 10 samples in 

2010, 4 samples in 2012). We used our previously measured isotope values of several tree 

species sampled from the watershed (Picea mariana, Abies balsamea, Acer rubrum, Acer 

saccharum, Thuja occidentalis, Betula alleghaniensis) to form an average “tree” isotopic 

signature (Solomon et al. 2011, Cole et al. 2011). Although we sampled macrophytes and 
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terrestrial end members in both years, we pooled samples from both years for use in mixing 

models. Furthermore, the isotope values of each taxon (e.g., Chara sp.) were averaged, then this 

average was averaged across taxa to form the isotope value of the group (e.g., submersed 

macrophytes). Therefore, differences in the sample sizes of individual taxa did not result in taxa 

with larger sample sizes having a larger influence on the group isotope values. Analysis of 

variance was used to calculate the variance of the groups. 

Consumers were sampled on approximately the same dates as end members. All 

consumers were sampled from locations that were horizontally distributed across the lake. The 

zooplankton Skistodiaptomus oregonensis was collected by pumping water from discrete depths 

in the epilimnion and metalimnion through a net (n = 34, 18). The zooplankton predator, 

Chaoborus spp., was sampled using nighttime oblique net tows through the epilimnion (n = 20, 

7). The snail Helisoma trivolvis was collected from the littoral zone of the lake, and the foot of 

each animal saved for isotope analysis (n = 6, 6). Fishes were captured using hoop nets and 

minnow traps placed around the perimeter of the lake. The gut tissue of each fish was excised, 

and the rest of the body used for isotope analysis. Fish species included Pimephales promelas 

(fathead minnow; n = 12, 14), Phoxinus spp. (dace; n = 12, 12), Umbra limi (central mud 

minnow; n = 9, 12), and young of the year Ameiurus melas (black bullhead; n = 7, 5). After 

sampling, all solid samples were dried at 60 ºC, ground to a fine powder, and sent to the 

Colorado Plateau Stable Isotope Laboratory (CPSIL) for isotope analysis (Doucett et al. 2007). 

At CPSIL, a benchtop equilibration procedure was used to correct for the exchange of H atoms 

between a set of standards including ground algal material and ambient water vapor. Solid 

samples were pyrolysed to H2 gas and analyzed using a Thermo-Finnigan TC/E and DeltaPLUS-

XL (Thermo Electron Corporation, Bremen, Germany). Theδ2H of water samples was analyzed 
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using cavity ring-down laser spectroscopy using Los Gatos Research Off-Axis Integrated Cavity 

Output coupled to a CTC LC-PAL liquid autosampler. 

Model Selection 

We explored models that differed in the sources for which their contribution to consumer 

biomass (Φ) was to be estimated. Possible sources in the model were terrestrial, phytoplankton, 

submersed macrophytes, floating macrophytes, all macrophytes, and periphyton. We restricted 

our sensitivity analysis to models that 1) had at least two but not more than four sources (2 ≤ S ≤ 

4); 2) contained the terrestrial end member (S1 was always terrestrial); 3) did not contain 

redundant sources (e.g., could not contain both floating-leafed macrophytes and all macrophytes 

as separate sources). In total, eighteen models were evaluated for each consumer in each year 

(252 distinct model runs).  

We used known consumer feeding habits and deviance information criterion (DIC) 

(Spiegelhalter et al. 2002) to choose which end members were included as sources in the mixing 

models. We only considered models that contained the terrestrial source and at least one other 

source. For the pelagic invertebrates, the two sources were terrestrial and phytoplankton organic 

matter. For the snail, DIC was used to select between models that did not contain phytoplankton, 

and periphyton and floating-leafed macrophytes were selected in addition to terrestrial. Models 

for the fishes were guided by DIC and contained three or four sources, with model selection 

always including terrestrial and phytoplankton, and never including submersed macrophytes. 

Our estimates of resource use were robust to model selection (Fig. S1). However, 

comparing across models requires care when the exclusion of a certain group of resources can 

cause another source to become the only source that bounds consumers in one or more 

dimensions of isotope space. In this case, the contribution (Φ) of the remaining source would be 
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higher than in models containing other groups that could bound consumer isotope values. For 

example, phytoplankton and periphyton were the two sources with the lowest values of δ2H (Fig 

3). The isotope values of several invertebrates (Fig. 3C) and fishes (Fig. 3E) could not easily be 

explained by a model that contained neither phytoplankton nor periphyton, because these algal 

end members were the only sources that had lower δ2H values. In other words, at least one of the 

algal sources was necessary for bounding consumers in the δ2H dimension of isotope space. As a 

result, if a consumer with a low δ2H value truly relied on phytoplankton, a model that did not 

contain phytoplankton might erroneously estimate a large contribution by periphyton, even if a 

model containing both end members estimates low periphyton contribution. For example, the 

final model for U. limi did not contain periphyton, but the average contribution of periphyton to 

U. limi across all models containing periphyton was 30% in 2010 and 34% in 2012. However, 

averaged across all models containing periphyton and phytoplankton, periphyton support of U. 

limi was 8% in 2010 and 7% in 2012. Similarly, for P. promelas and Phoxinus spp., periphyton 

support in the selected model was lower than that averaged across all models (Figure S1, median 

relative to circles); however, the average support by periphyton in models containing both algal 

end members was nearly identical to that in the selected model (Fig. S1, median relative to 

squares). 

Size of POC and DOC pools 

The sizes of the particulate and dissolved organic carbon (POC and DOC) pools were 

similar between years in Ward Lake and in Paul Lake. In Paul Lake, POC was 0.42 ± 0.16 mg L-

1 in 2010 and 0.45 ± 0.17 mg L-1 in 2012 (annual mean ± standard deviation), and in Ward Lake 

POC was 0.85 ± 0.17 mg L-1 in 2010 and 1.0 ± 0.31 mg L-1 in 2012. DOC concentrations 

followed the same pattern, with Paul Lake (4.8 ± 0.81 mg L-1 in 2010, 4.5 ± 0.32 mg L-1 in 2012) 
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and Ward Lake (9.6 ± 2.7 mg L-1 in 2010, 10.6 ± 1.3 mg L-1 in 2012) both having similar DOC 

concentrations between years. 

Biomasses of Copepod Zooplankton 

 Copepods are the dominant group of zooplankton in Ward Lake. We analyzed one 

species of calanoid copepod, S. oregonensis. The zooplankton biomass in Ward Lake decreased 

between years, while zooplankton biomass in Paul Lake remained similar (Main Text). However, 

the change in the seasonal average of zooplankton biomass in Ward Lake (from 0.88 g/m2 in 

2010 to 0.52 g/m2) was not attributable to a decline in S. oregonensis adults (Fig. S2, Calanoid), 

but rather to a 0.20 g/m2 decrease in copepod larvae (Fig. S5, Nauplii) and a 0.15 g/m2 decrease 

in the copepod Mesocyclops (Fig. S2). 

Aquashade and DOM Isotope Values 

Our goal in analyzing the composition of DOM was to estimate the relative contributions 

of macrophytes, phytoplankton, periphyton, and terrestrial end members to this pool. However, 

our experimental manipulation introduced Aquashade to the DOM pool. Therefore, the 

composition of DOM was estimated after algebraically correcting for the influence of Aquashade 

on the isotope values of DOM by using measured concentrations, isotope values, and the C:N:H 

stoichiometry of the dye and of DOM. We estimated the concentration of Aquashade in Ward 

Lake and corrected for its influence on the isotope value of DOM. Aquashade concentration was 

estimated using spectrophotometry. Each week we measured the absorbance of lake water 

between 300 nm and 900 nm, using wavelengths near Aquashade’s peak absorbance at 625 nm 

to estimate dye concentration. Absorbances at longer wavelengths (700 nm to 900 nm, far from 

the peak of Aquashade absorbance) were used to correct the rest of the spectrum for shifts in 

absorbance that were not caused by a change in Aquashade concentration. We then estimated the 
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volume fraction (ppm) of Aquashade in water by comparing the corrected spectrum to that of a 

known concentration of Aquashade. To convert the volume fraction of Aquashade to a 

concentration (mg L-1), we used a density of 1 g mL-1, which is within the range reported in the 

Material Safety Data Sheet for Aquashade. 

We used the elemental stoichiometries of DOM and Aquashade to estimate the 

concentration of DOM from the concentration of DOC, and to estimate the proportion of 

Aquashade that contributed to the mass of C, N, and H in DOM. The DOM stoichiometry was 

empirically derived as part of the same mass spectrometry analysis that yielded isotope values, 

which reported DOM (in 2012) as 10% C, 0.4% N, and 2.3% H by mass. The Aquashade product 

contains ingredients other than the dyes (combined dye formula is C53H51N8Na3O18S5, 46.46% C, 

8.5% N, 3.9% H by mass; the ratio of dyes is 9.9:1, giving the dye portion of Aquashade a 

composition of 54.20% C, 4.17% N and 4.09% H by mass), therefore we used the empirical 

stoichiometry, which was similar to that of the dyes (49.31% C, 4.39% N, 4.2% H). In 2012 the 

DOC concentration averaged 10.6 mg L-1, making the DOM concentration 106 mg L-1. The 

concentration of Aquashade was typically near 1.5 mg L-1, or 1.4% of the DOM pool. Therefore, 

Aquashade comprised 6.9%, 15.5%, and 2.6% of the C, N, and H of the DOM pool. 

The δ13C, δ15N, and δ2H of Aquashade were -26.82‰, -0.02‰, and -65.4‰, respectively. 

The δ13C, and δ15N values are similar to those of other end members and consumers in the study. 

The δ2H of Aquashade is similar to that of water, which is highly enriched relative to the other 

pools we analyzed. As a pre-manipulation reference, the isotope values of DOM in 2010 were 

δ13C = -28.2‰, δ15N = -3.7‰, and δ2H = -116.1‰. In 2012, DOM δ13C = -19.5‰, δ15N = 0.1‰, 

and δ2H = -156.9‰. After correcting for the contribution of Aquashade to DOM, the DOM 

isotope values become DOM δ13C = -18.9‰, δ15N = 0.1‰, and δ2H = -159.3‰. The isotope 
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values of DOM changed substantially between years, and this large change was not driven by the 

influence of Aquashade isotope values. To summarize, Aquashade was a minor portion of the 

DOM pool and had a minimal impact on our analysis of DOM composition, even if a correction 

had not been performed.  
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Figure S1. Boxplots of the proportional contributions of resources to consumers (posterior of Φ) 

supported by each resource in Ward Lake in 2010 (open) and 2012 (shaded). Boxes bound 25-75 

percentiles. Each whisker extends beyond its respective quartile by a factor of 1.5*(interquartile 

range), and the dark line designates the median. All data were included in statistical calculations, 

but outliers are not displayed. The boxes, whiskers, and medians reflect the posterior for the final 

model. Circles show the average estimate for that resource in any of the 18 models from the 

sensitivity analysis (which included different combinations of resources) containing that resource. 
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Squares are the average estimate for that resource in any of the 18 models containing that 

resource and the phytoplankton resource. 
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Figure S2. Biomasses of copepod zooplankton in Ward and Paul lakes in 2010 and 2012. 

Boxplot conventions as in Figure S1. 
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Chapter 4: Changes in ecosystem resilience detected in automated measures of ecosystem 

metabolism during a whole-lake manipulation* 

______________________________________________________________________________ 

Abstract 

Environmental sensor networks are developing rapidly to assess changes in ecosystems and their 

services. Some ecosystem changes involve thresholds, and theory suggests that statistical 

indicators of changing resilience can be detected near thresholds. We examined the capacity of 

environmental sensors to assess resilience during an experimentally-induced transition in a 

whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by 

slowly adding piscivorous bass, while a nearby bass-dominated lake remained unmanipulated 

and served as a reference ecosystem during the four-year experiment. In both the manipulated 

and reference lakes, automated sensors were used to measure variables related to ecosystem 

metabolism (dissolved oxygen (DO), pH, and chlorophyll a concentration (Chl-a)) and to 

estimate gross primary production (GPP), respiration (R), and net ecosystem production (NEP). 

Thresholds were detected in some automated measurements more than a year before the 

completion of the transition to piscivore dominance. Directly measured variables (DO, pH, Chl-

a) related to ecosystem metabolism were better indicators of the approaching threshold than were 

the estimates of rates (GPP, R, and NEP); this difference was likely a result of the larger 

uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems 

that were observed directly by the sensors were superior indicators of changing resilience. 
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Models linked to thresholds in variables that are directly observed by sensor networks may 

provide unique opportunities for evaluating resilience in complex ecosystems. 

 

Significance Statement 

Large changes can occur when ecosystems cross certain thresholds. Crossing such thresholds 

poses a challenge to ecosystem management because the positions of the threshold are uncertain 

and change over time. However, as an ecosystem approaches a threshold its resilience declines, 

resulting in changes in system dynamics that increase variance and autocorrelation. Calculating 

these statistics requires frequent and sustained sampling efforts. Our study detected an 

approaching threshold by computing the statistical indicators from data collected by automated 

sensors, which are far less labor-intensive than comparable manual methods. Thus it may be 

feasible to monitor for approaching ecosystem thresholds using automated methods. This finding 

highlights a powerful use of modern sensor technology. 
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Introduction 

In the 20th century, changes in land use, nutrient mobilization and species invasion altered 

Earth’s ecosystems more than in any previous century of human history (1). Changing climate 

and expanding human population and consumption are likely to exacerbate ecosystem change in 

the future. Ecosystem changes have significant effects on human well-being through benefits that 

people receive from nature. To assess and anticipate environmental changes, observation 

networks are expanding for hydrology, biogeochemistry of air and water, land cover, and other 

relevant features of ecosystems (2–5). The observed variables are often designed to address 

trends in particular resources or pollutants such as water flow, contaminant concentrations, 

ecosystem metabolism, carbon storage or living resources. While some applications of 

environmental observations are straightforward, rapid expansion of sensor networks, information 

management and analysis (6–8) may create new opportunities for detecting, anticipating or 

forecasting fundamental changes such as ecosystem regime shifts. 

Ecosystem thresholds are associated with large changes that can involve a significant loss 

of resources, or in other cases, trigger the restoration of desired conditions (9). Thresholds are 

uncertain, change over time, are not preceded by obvious changes in state, and are therefore 

difficult to anticipate. However, an ecosystem near a threshold has low resilience, and therefore 

is relatively sensitive to small perturbations and recovers slowly from these perturbations (10). 

Therefore, statistics related to variance or autocorrelation could be indicators of declining 

resilience or approaching thresholds (10, 11). Experimental tests of declining resilience in living 

systems are rare (12–17), especially in large-scale field settings. In terrestrial ecosystems such as 

forests and grasslands, changing resilience has been measured by analyzing the spatial patterns 

of vegetation maps obtained by satellite remote sensing (18, 19). In other cases, resilience has 
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been assessed using time series data (17, 20), though acquisition of appropriate data is 

challenging. Resilience indicators for time series such as variance, spectral power, and 

autocorrelation require high-frequency and long-term data sets. The intensity of sampling needed 

to acquire such data sets can be costly, and this cost is amplified if multiple variates must be 

monitored. Modern sensor technology permits automated, in situ, high frequency, long duration, 

and real time data collection that is less labor-intensive than comparable manual methods (6). 

Although automated sensors are promising for meeting intensive data requirements, it is not 

known whether variables measured by such sensors are suitable for assessing resilience or 

thresholds in complex ecosystems under field conditions. 

Sensor data are often used to estimate metabolic rates (e.g., primary production) at the 

ecosystem scale (21–23). Primary production and respiration are fundamental ecosystem 

variables, closely related to carbon balance, and have been the focus of extensive research in 

diverse ecosystems for many decades. Furthermore, metabolism is closely tied to primary 

producer biomass and life form, which have been used to detect changing resilience in both 

terrestrial (18, 19, 24) and aquatic systems (13, 17, 25). So far, however, it is unknown whether 

metabolism can be used to detect changes in ecosystem resilience. 

The objective of this study was to determine if automated measures of ecosystem 

metabolism could be used to detect declining resilience in a lake approaching a regime shift. We 

deployed automated sensors in Peter and Paul lakes from 2008 to 2011. Peter Lake experienced a 

regime shift due to an experimentally-induced trophic cascade, and Paul Lake was an 

unmanipulated reference lake. At the start of the experiment the lakes were in different stable 

states—the food web of the manipulated lake was dominated by planktivorous fishes and 

contained few largemouth bass (Micropterus salmoides), and the reference lake was dominated 
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by bass and contained few planktivorous fishes (Fig. 1). In one stable state, which we refer to as 

the “planktivore-dominated state”, the number of adults in a bass population is small and unable 

to recruit because their young are consumed or out-competed by other fishes. In the alternative 

stable state, which we call the “bass-dominated state”, a large population of adult bass limits the 

planktivore population. These two sets of feedbacks form the mechanistic basis for the 

alternative attractors (26–28). We added bass to the manipulated lake to induce a trophic cascade, 

pushing the manipulated lake toward the bass-dominated state that characterized the reference 

lake throughout the experiment. This critical transition shifts the ecosystem from a planktivore-

dominated state to a bass-dominated state when bass abundance passes a critical threshold (27). 

Resilience declines as the ecosystem approaches this critical threshold. The aim was to approach 

the unknown critical bass abundance slowly so that the ecosystem would be in transition long 

enough to assess indicators of changing resilience. Bass were added to the manipulated lake in 

several small stocking events over the course of four years: 12 bass were added on day 189 of 

2008, 15 on days 169 and 202 of 2009, none in 2010, and 32 on day 174 of 2011.  

Leading indicators, such as variance or autocorrelation, are statistics computed from time 

series of ecosystem variables that are affected by an approaching threshold. Trophic cascades 

affect gross primary production (GPP) and algal biomass, which in turn influence other 

metabolic rates (respiration (R), net ecosystem production (NEP)) and other variables associated 

with metabolism (e.g., pH and dissolved oxygen saturation (DO)). Automated measurements of 

these six variables (derived estimates = GPP, R, and NEP; direct measurements = chlorophyll-a 

concentration (Chl-a), pH, and DO) can be made more frequently and easily than their manually-

measured counterparts. Previous analyses of this experiment found that the variance and 

autocorrelation of manually-collected time series, including algal biomass, increased prior to day 
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230 of 2010, which was when the food webs of the two lakes became similar (17, 29, 30). Here 

we address whether or not automated measurements of three directly measured variables and 

three derived estimates of metabolism could be used to detect the loss of resilience in the 

manipulated ecosystem. We expected that the warning statistics computed from the time series of 

these six quantities would signal the approaching threshold before the manipulated lake became 

bass-dominated, but that there would be no such signal in the reference lake (Fig. 1). 

 

Results & Discussion 

Surprisingly, the calculated rates of metabolism (GPP, R, and NEP) did not provide 

consistent signals of the approaching threshold (Fig 2, Fig. S1). We used the quickest detection 

method to define the day of first alarm (DoFA)—the day when a statistical indicator, standard 

deviation (SD) or autocorrelation time (AcT), first became high enough to signal a nearby 

threshold (Materials and Methods). No alarms of the approaching threshold were detected in 

GPP. Alarms were detected in the AcT of R and NEP (DoFA in 2008 and 2009, respectively), 

but neither of these signals was corroborated by a change in SD.  

In contrast to the calculated rates of metabolism, automated measurements of the three 

directly measured variables (Chl-a, pH, DO) detected the approaching threshold more than a 

year in advance of its arrival (Fig. 3, Fig. S1). These three directly measured variables performed 

similarly—most of the DoFAs were in 2009 (the DoFA in the AcT of pH was in 2008, the DoFA 

in the SD of DO was in 2010). The DoFA for the SD of Chl-a, pH, and DO coincided with 

increases in low-frequency variability in the manipulated lake relative to the reference lake (Fig. 

4). The DoFAs in the directly measured variables were as early as the DoFAs in manual samples 

of chlorophyll (Fig. S1), which we analyzed as a benchmark because its SD and autocorrelation 
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are known to be indicators of this trophic cascade (17, 29, 30). Additionally, the directly 

measured variables were better correlated with manual daily chlorophyll concentrations than the 

calculated rates of metabolism, which had relatively noisy time series (Fig. S2,3). 

In summary, not all variables perform equally well when monitoring for changes in 

resilience. We detected consistent signals of declining resilience in directly measured variables 

that were associated with metabolism; we did not see consistent signals in the derived estimates 

of metabolism. Some regime shifts may involve mechanisms that obscure signals of declining 

resilience in aggregated system variables like NEP (31), but measurement error or other sources 

of noise could have a similar effect. In lakes, estimates of GPP, R, and NEP often exhibit high 

day-to-day variability (32, 33) and are often poorly correlated with potential driver variables (34, 

35). Sensor measurements are subject to measurement errors related to spatial heterogeneity and 

other processes (32, 36, 37). These measurement difficulties affect metabolism estimates (GPP, 

R, NEP) because these rates are calculated by fitting models to sensor data, and therefore 

incorporate uncertainty from both measurement and model errors (21, 36). The directly measured 

variables are subject only to measurement error. Therefore, additional noise in the model-derived 

estimates of metabolism may have obscured the signals of declining resilience that were 

detectable in the directly measured variables. 

Our findings suggest that monitoring for changes in the resilience of complex systems 

such as lakes requires a careful choice of variables, based on theory as well as field trials. 

Depending on the particular ecosystem under study, certain variables might be expected to signal 

several kinds of critical transitions. For example, aquatic ecosystem regime shifts that are driven 

by nutrient loading, organic matter loading, and changes in top predator abundance all affect 

metabolism (16, 38–40). Therefore, variables related to metabolism might be useful to monitor. 
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However, even variables with similar drivers can perform differently when used to compute 

resilience indicators. We found that direct measurements of variables related to metabolism were 

more accurate than estimates of metabolism for signaling changes in resilience.  

 Emerging sensor technology and networks are improving capabilities for environmental 

monitoring (6, 8). These technologies hold considerable promise for data-intensive and spatially 

extensive studies of ecosystem processes, such as metabolism, ecosystem stability, resilience, 

and threshold detection. Organizations such as the Global Lake Ecological Observatory Network 

(4), the National Ecological Observatory Network (2), and the Ocean Observatory Initiative (5) 

reflect the well-established and growing interest in using automated sensors that are similar to 

those used in this study. Our results suggest that considerable research is needed to determine the 

monitoring strategies and variables that are most useful for measuring and comparing resilience 

in a wide range of ecosystems. 

 The susceptibility of an ecosystem to changing drivers or random events depends on the 

characteristics of critical thresholds (41). Crossings of some thresholds are unwanted, such as 

loss of a coral reef or rangeland, while others are deliberately sought, as in restoration of 

productive vegetation on degraded lands (42, 43). Moreover, fundamental progress in ecology 

requires better understanding of thresholds and the tempo of change in ecosystems. Thus we 

expect that field studies of resilience and thresholds will continue to be important in ecology as 

well as in environmental sciences in general. Emerging technology for observing time series data 

and for detecting warnings of change will make growing contributions to this field. 

Materials & Methods 

Fish Communities. At the beginning of the experiment, Peter Lake had a small population 

of the piscivorous largemouth bass (Micropterus salmoides), and the fish community was 
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dominated by small fishes such as the pumpkinseed sunfish (Lepomis gibbosus), golden shiner 

(Notemigonus crysoleucas), central mud minnow (Umbra limi), fathead minnow (Pimephales 

promelas), brook stickleback (Culaea inconstans), and dace (Phoxinus spp.). To strengthen the 

planktivore-dominance of Peter Lake, we added 1200 golden shiners to Peter Lake on day 149 of 

2008. Conversely, Paul Lake was in a bass-dominated state throughout the experiment, with only 

a small number of L. gibbosus present. No manipulations were made in Paul Lake. 

Automated Sensor Data. Peter and Paul lakes were each monitored with two YSI 

multiparameter sondes (model 6600 V2-4) fitted with optical dissolved oxygen (DO) (model 

6150), pH (6561), optical chlorophyll-a (Chl-a; 6025), and conductivity-temperature (6560) 

probes. Sensor measurements were made at 0.7 m every 5 min and were calibrated weekly. Wind 

speed and mixed layer depth (zmix; shallowest depth below which temperature changes by at least 

1 ºC m-1) data supplemented other sensor data as input to calculate ecosystem metabolism. 

Statistical Indicators. Three statistical indicators were computed for each of the variables 

using programs written by the authors in the R programming language (44). Increasing standard 

deviation (45), increasing autocorrelation time (15, 20), and increasing spectral ratio (variance 

spectrum of the manipulated lake relative to that in the reference lake) at low relative to high 

frequencies (46) are signals of an approaching threshold. Standard deviation and autocorrelation 

time, -loge(autocorrelation)-1 (15), were computed for manual samples of Chl-a (µg L-1), daily 

averages of the three directly measured variables collected by automated sensors (pH, DO 

(percent saturation), and Chl-a (µg L-1)), and the three calculated metabolism rates (GPP, R, and 

NEP; mmol O2 m3 d-1) (Supplemental Information). Spectral ratio was computed only for the 

three direct measures of metabolism that were collected by automated sensors. Indicators were 

computed in 28-day rolling windows. We expected to detect signals of low resilience in the 
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manipulated lake in the form of the three indicators increasing prior to the regime shift in late 

2010. We expected no signals in the reference lake. 

Quickest Detection. To determine when the change in an indicator first became large 

enough to constitute a signal of low resilience, we employed the “quickest detection” (QD) 

method for detecting state changes (47–49). In our application, the QD method uses two 

probability distributions for an indicator: a baseline state where the indicator has low values (far 

from tipping point), and a critical state where the indicator has a high value (close to tipping 

point). Indicator x in lake i on day t (xi,t) follows probability density f(xi,t) for the baseline state 

and g(xi,t) for the critical state. The likelihood for the indicator being in either state is updated 

each time the systems are observed, and the ratio of these likelihoods is g(xi,t)/f(xi,t) = Λt. The 

detection statistic for the QD method is Rt, and Rt is updated as new Λt arrive: Rt = (1 + Rt-1) × Λt. 

When the indicator is more likely to be in the critical state than the baseline state, Λt is greater 

than one, which increases the rate at which Rt rises. The day of first alarm (DoFA) is when Rt 

first reaches a predefined threshold, A. We used the same formulation for calculating the 

parameters of f(xi,t) and g(xi,t) for all variables and indicators, and over broad ranges the DoFA 

was not sensitive to the value of these parameters or to our choice of A (Supplemental 

Information). The QD method is particularly useful for detecting approaching thresholds because 

observations after the shift to the new state are not needed to signal the alarm. 
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Fig. 1. Conceptual diagram outlining the experimental design and hypotheses. The first two rows 

are ball and cup diagrams, where the balls represent the state of the system, and the steepness of 

the cups is related to the stability of the system—a ball nestled in a deep cup is stable. In 2008, 

the manipulated lake (red) is stably situated in a basin characterized by few bass, and the 

reference lake (blue) is stable with many bass. In 2008 the lakes are in different stable states, but 

the manipulated lake begins to change as bass are added to it. The third row shows one variable 

representing the state of the two systems over time (e.g., chlorophyll concentration), and the 

fourth row shows leading indicators over time (e.g., autocorrelation time). In 2009 and 2010, the 

manipulated lake is not yet bass-dominated, but the system becomes unstable and the leading 



	
   142 

indicator rises. The star indicates the day of the “first alarm” of the approaching regime shift, as 

computed from the leading indicators by the quickest detection method. The elevated leading 

indicator and the first alarm precede the transition of the manipulated lake to a bass-dominated 

state. In 2011 both lakes are in a stable, bass-dominated state. 
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Fig. 2. Values of leading indicators (columns) computed from calculated rates of metabolism 

(rows) over time. Red lines are the manipulated lake, blue lines are the reference lake. Vertical 

dashed lines separate years (2008-2011). Bass were first added to the manipulated lake on day 

189 of 2008, and the regime shift completed near day 230 of 2010. Stars indicate the day of the 

first alarm, computed from a particular leading indicator-variable combination using the quickest 

detection method. Daily averages of calculated metabolism rates (mmol O2 m-3 d-1) were used to 

compute the leading indicators in the first (NEP), second (GPP), and third (R) rows. 
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Fig. 3. Values of leading indicators (columns) computed from directly-measured sensor variables 

(rows) over time. Red lines are the manipulated lake, blue lines are the reference lake. Vertical 

dashed lines separate years (2008-2011). Bass were first added to the manipulated lake on day 

189 of 2008, and the regime shift completed near day 230 of 2010. Stars indicate the day of the 

first alarm, computed from a particular leading indicator-variable combination using the quickest 

detection method. Daily averages of measurements made by automated sensors were used to 

compute the leading indicators in the first (chlorophyll, µg/L), second (pH), and third (dissolved 

oxygen percent saturation) rows. 
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Fig. 4. Time series of the log-ratio of the variance spectrum of the manipulated lake to that of the 

reference lake, computed from automated high-frequency (5-min) observations of (A) 

chlorophyll-a, (B) pH, (C) percent saturation of dissolved oxygen. The colors represent log-ratio, 

such that warm colors indicate that the manipulated lake is more variable at that frequency than 

the reference lake. Note that the log-ratio of variance (color) is scaled differently for each 

variable. The vertical axis is the log10(frequency) of the signal computed within the rolling 

window, such that a fortnightly variance signal is at -3.61, weekly = -3.30, daily = -2.46, and 

hourly = -1.08. The stars indicate the first alarms computed from the standard deviations of the 

daily averages of each variable (Figure 2). The horizontal placement of the stars indicates the day 

of the first alarm, and the vertical placement is at the daily frequency. Bass were first added to 

the manipulated lake on day 189 of 2008, and the regime shift completed near day 230 of 2010. 

Vertical dashed lines separate years (2008-2011). 
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Appendix to Chapter 4 

Study Systems. This study was conducted over four summers from 2008 to 2011 in Peter 

Lake and Paul Lake, located at the University of Notre Dame Environmental Research Center in 

the upper peninsula of Michigan (89°32' W, 46°13' N). Peter and Paul are small lakes (2.7 and 

1.7 ha, respectively). The two lakes were originally one hourglass shaped lake that was separated 

by an earthen dike in the 1940’s (1). Thus, Peter and Paul have similar chemical and 

limnological characteristics. Fish communities and manipulations are described in the main text. 

The Paul Lake zooplankton community was dominated by the large-bodied cladocerans Daphnia 

spp. and Holopedium gibberum throughout the experiment (2). Initially, the Peter Lake 

zooplankton community had a mixture of large and small zooplankton, including Bosmina sp., 

Diaphanosoma birgei, Daphnia spp., and H. gibberum. However, the taxa in Peter Lake shifted 

to larger-bodied species over the course of the experiment as a result of the fish manipulation. 

For example, the small-bodied D. parvula and D. dubia comprised the Daphnia in Peter Lake in 

2008, but the large-bodied D. rosea and D. pulex had much higher relative abundance by 2010. 

Both lakes are thermally stratified during summer and relatively unproductive: between 2008 and 

2011 the total P concentration (µg L-1) was 4.90 ± 2.52 (mean ± standard deviation) in Paul Lake 

and 5.96 ± 3.83 in Peter Lake, and the chlorophyll a concentration (µg L-1) was 3.48 ± 1.77 in 

Paul Lake and 4.71 ± 2.52 in Peter Lake. Detailed descriptions of both lakes are provided in 

Carpenter & Kitchell (1993) (1). 

Sensor Observations. To ensure the quality of time series prior to statistical analysis, raw 

sensor observations were inspected for missing values, outliers, and other possible deviations 

from statistical assumptions. The sensor time series included direct measurements of chlorophyll 

a concentration (Chl-a; µg L-1), pH, and dissolved oxygen (DO; percent saturation). The sensor 
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DO and temperature data were used to estimate gross primary production (GPP), respiration (R), 

and net ecosystem production (NEP) – all in units of mmol O2 m-3 d-1. Missing values (0.5% of 

data) were handled by computing statistics from the incomplete time series (e.g., computing 

variance from 27 instead of 28 days). If greater than 3 hr of data was missing during a day (0.9% 

of days), the entire day was treated as missing. Time series of DO, Chl-a, and pH were examined 

for outliers (greater than three standard deviations from annual mean), and were treated as 

missing data when detected (0.24% of data). Time series were inspected and corrected for mean 

shifts due to calibration of sensors or other differences between instruments (which were rotated 

among lakes weekly). To account for any between-lake difference in buffering capacity, annual 

time series of pH were scaled to have a mean of 0 and a standard deviation of 1. Quantile-

quantile plots of variables were consistent with a normal distribution. 

In total, we analyzed time series of seven variables collected from two lakes over four 

years (Fig. S2). In addition to the six sensor-based variables, we also analyzed manual 

measurements of Chl-a, which were obtained from laboratory analysis of daily samples of 

surface water (3). Missing values in the manual Chl-a time series were handled in the same 

manner as the sensor-based time series. 

Metabolism Calculations. Net ecosystem production (NEP) was estimated from time 

series of DO, water temperature, and wind speed using a simple variation of the Odum (1956) 

model which is widely used in limnology (5–7). The model attributes changes in DO 

concentration (mmol O2 m-3) between time steps of duration Δt (Δt = 5 min) to the metabolic 

processes of gross primary production (GPP) and respiration (R), and to exchange with the 

atmosphere (F): 

(DOt – DOt-1) × (Δt)-1 = (GPPt-1 + Rt-1) + Ft-1 (1) 
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Estimates of atmospheric flux were based on the disequilibrium between DO and atmospheric 

oxygen: 

Ft = kt × (DOSat,t – DOt) × (zmix,t)-1 (2) 

where DOSat is the oxygen concentration at atmospheric equilibrium. The piston velocity k (m-1) 

drives DO to atmospheric equilibrium, and was calculated from k600, which in turn was estimated 

from measurements of water temperature and wind speed (8, 9). NEP (mmol O2 m3 d-1) is the 

change in DO after accounting for atmospheric flux. R was computed each day as the 24-hr 

extrapolation of NEP during the nights (darkness) surrounding the daylight period. GPP was 

computed as the sum of R and NEP. 

 Statistical Indicators and Correlations between Variables. All statistics were computed 

in the R programming language (10). Statistical indicators were calculated over 28-day rolling 

windows within each year. The 28-day window was shifted by increments of one day for 

computing autocorrelation time (AcT) and standard deviation (SD) from daily time series, and by 

twelve hours for computing spectral ratio from high frequency time series. The spectral ratio was 

calculated as the ratio of the spectral density in the manipulated lake to that in the reference lake, 

and spectra were computed from the autocorrelation function. Autocorrelation time was 

computed from first order autocorrelation (AR1). Before computing AR1, time series were 

linearly detrended to achieve stationarity (11, 12). Autocorrelation time was computed as -

loge(AR1)-1 (13). 

 All seven variables were either estimates of, or closely related to, metabolism. We 

expected that these variables would respond similarly to the manipulations, and therefore would 

yield similar temporal patterns in the statistical indicators. However, the patterns in the statistical 

indicators differed among the variables (Fig. S1). Signals of declining resilience were detected in 
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the manual Chl-a measurements and in the directly measured sensor variables (Chl-a, pH, DO), 

but not in the time series of metabolism estimates (GPP, R, NEP). 

Variables that are highly correlated should show similar patterns in statistical indicators. 

We compared the correlation of daily time series of sensor-based variables to the daily time 

series of manually sampled Chl-a. We used manual Chl-a as the independent variable in these 

regressions because in the past it has responded to trophic cascades in these lakes (1, 14), and 

because previous analyses of this experiment have used it to detect changes in resilience (3, 15, 

16). Variables that gave the clearest signals of changing resilience were also those that were best 

correlated with manual Chl-a (Fig. S3). Perhaps unsurprisingly, sensor Chl-a was better 

correlated with manual Chl-a than the other sensor variables. DO and pH were also correlated 

with manual Chl-a. However, despite being largely based on DO dynamics, the metabolism 

estimates (GPP, R, NEP) were not correlated with manual Chl-a. All variables were subject to 

observation error, but metabolism estimates were influenced by both observation error and 

process (i.e., model) errors. The presence of this additional source of uncertainty in the 

metabolism estimates could have reduced their correlation with driver variables and obscured 

signals of changing resilience that might otherwise have been detectable in their time series. 

Compared to manual Chl-a in the manipulated lake, manual Chl-a in the reference lake 

rarely extended beyond a limited range of low concentrations, which would have contributed to 

the low R2 values for the reference lake compared to those for the manipulated lake (Fig. S3). 

 Quickest Detection. To determine when the change in an indicator first became large 

enough to constitute a signal of low resilience, we employed the “quickest detection” (QD) 

method for detecting state changes (17–19). The QD method defines two probability densities for 

xM,t, the observation of indicator x on day t in the manipulated lake: f(xM,t) is the probability 
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density of xt if the system was in the baseline state (far from tipping point), and g(xM,t) is the 

probability density of xt if the system was in the critical state (close to tipping point). Their ratio 

is g(xM,t)/f(xM,t) = Λt. The detection statistic for the QD method is Rt, and Rt is updated as new Λt 

arrive: Rt = (1 + Rt-1) × Λt. When the indicator is more likely to be in the critical state than the 

baseline state, Λt is greater than one, which increases the rate at which Rt rises. The day of first 

alarm (DoFA) is when Rt first reaches a predefined threshold, A. 

 Implementing QD requires defining f(xM,t), g(xM,t), and A. The functions for the 

probability densities were two normal distributions: 

f(xM,t) ~ N(µ = xC,t – Δf, σf,g) (3) 

g(xM,t) ~ N(µ = xC,t + Δg, σf,g) (4) 

where xC,t is the value of the indicator in the reference lake on day t. The mean of f(xM,t) is the 

current value of the indicator in the reference lake minus Δf, a baseline difference between the 

indicator in the two lakes. The mean of g(xM,t) is the current value of the indicator in the 

reference lake plus Δg, which was formulated so that xM,t in the critical state would be higher than 

xC,t: Δg = |Δf| + 2 × |xC,t|. The standard deviations of f(xM,t) and g(xM,t), σf,g, were equivalent and 

calculated as twice the standard deviation of the first 28 values of xC,t. Δf was calculated as the 

mean difference in the two lakes for the first 28 values of indicator in 2008 (up to day 189). All 

variable – indicator combinations used the same value for A (107), the same formulation for Δf, 

Δg, and σf,g.  

The DoFA detected in manual Chl-a, sensor Chl-a, pH, and DO showed little change 

over wide ranges of these parameter choices (Fig. S4-7). The parameter A describes the 

threshold amount of evidence that needs to be accumulated to signal entry to the critical state. 

Increasing the value of A will never reduce the time until alarm, and only in cases where a large 
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amount of evidence is accumulated in a single time step is it possible for increasing A to have no 

affect on the DoFA. We tested the sensitivity of the DoFA to our choice of A by varying it across 

13 orders of magnitude. For the manual and sensor Chl-a, increasing A over 13 orders of 

magnitude increased the DoFA by a few days (Fig. S4,5). The DoFA of the SD of DO changed 

little across A, but the AcT of DO and both indicators computed from pH had DoFA that 

increased suddenly at particular values of A (Fig. S6,7). However, the values of A that we used 

in our analysis were far from these abrupt shifts in DoFA, and in no case did our choice of A 

lead to a particular DoFA that was only observed for a narrow range of A. Therefore, the DoFA 

was robust to our choice of A over many orders of magnitude, and the results are representative 

of what would have been obtained for a wide choice of A values. 

The parameters Δf and Δg are used as offsets that are applied to the statistics computed 

from the reference lake, the sum of which can the be used to form an expectation of the value of 

the statistic in the manipulated lake in the baseline and critical states. Our method for calculating 

Δf and Δg was general enough to be used for all variables and statistics. The sensitivity of DoFA 

to Δf and Δg was assessed by varying these parameters over a range of values that were 

appropriate for each variable: the nominal values were multiplied by a sequence of coefficients 

ranging from 0 to 2. However, as was the case with A, a moderate increases or decreases in the 

values of Δf and Δg in the neighborhood of our nominal values changed the DoFA by only a few 

days. 

The uncertainty around the value of the indicator in the baseline state and critical state is 

represented by σf and σg, respectively. In our formulation, these two variables have the same 

value. Varying σf,g by a factor of 0.01 to 2 caused the DoFA of manual and sensor Chl-a to 

increase by a few days with increasing σf,g (Fig. S4,5). The DoFA of the SD of pH and DO 
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responded similarly to the Chl-a variables. The DoFA of their AcT showed abrupt shifts but 

nonetheless the nominal value of the parameter was not in the region of rapid change (Fig. S6,7). 

In general the DoFA was robust to σf,g, with the exception that lowest value of σf,g lead to an 

early DoFA for each combination of variables and statistics. This low value was one tenth of the 

value that we used for determining the DoFA in Fig. 2 and Fig. S2. 

In all cases, the nominal values of A, Δg, Δf, and σf,g resulted in DoFA that were similar 

to those found for a range of other parameter choices. Varying these four parameters tended 

result in either a “plateau” of DoFA (the DoFA was nearly constant across a range of parameter 

values), or a slowly-changing DoFA. Importantly, the nominal value used for all parameters was 

always situated in slowly changing region of a plateau of the DoFA. 
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Fig. S1. Values of leading indicators (columns) computed from each variable (rows) over time. 

Red lines are the manipulated lake, blue lines are the reference lake. Vertical dashed lines 

separate years (2008-2011). Bass were first added to the manipulated lake on day 189 of 2008, 

and the regime shift completed near day 230 of 2010. Red circles indicate alarms, computed 

from a particular leading indicator- variable combination using the quickest detection method. 
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The chlorophyll concentration in the first row was manually sampled. Daily averages of 

measurements made by automated sensors were used to compute the leading indicators in the 

second (chlorophyll, µg L-1), third (pH), and fourth (dissolved oxygen percent saturation, DO) 

rows. The three bottom rows show estimates of net ecosystem production (NEP, µmol O2 L-1 d-1), 

gross primary production (GPP, µmol O2 L-1 d-1), and respiration (R, µmol O2 L-1 d-1). 

Metabolism values were estimated from automated measurements of water temperature, DO, and 

wind speed.  
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Fig. S2. Daily time series of the six automated high-frequency measures and one daily manual 

measurement collected from both the manipulated lake (red line) and the reference lake (blue 

line) over the four years of the experiment. Manually sampled chlorophyll (ManChl; µg L-1) is 

related to metabolism. Directly measured variables collected by automated sensors include 

chlorophyll a (Chl-a; µg L-1), dissolved oxygen (DO; percent saturation), and pH. Gross primary 
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production (GPP; mmol O2 m-3 d-1), respiration (R), and net ecosystem production (NEP) are 

model estimates of metabolism that are derived from data collected by automated sensors.  
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Fig. S3. Comparison of the daily means of chlorophyll a (Chl-a), pH, dissolved oxygen (DO; 

percent saturation), net ecosystem production (NEP; mmol O2 m-3 d-1), respiration (R), and gross 

primary production (GPP) to the manual samples of Chl-a in Peter Lake (the manipulated lake) 

and Paul Lake (the reference lake) from the four years of the experiment. The italicized value in 

the bottom right corner of each panel is the R2 value from a linear regression of the two variables 
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in that panel. The scatter plots and linear regressions in the second column of panels excluded a 

single outlier from the time series of manual Chl-a (value of 23.8 µg L-1).  
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Fig. S4. Sensitivity of the day of first alarm (left axis) to parameters of the quickest detection 

algorithm (QD) when QD was as applied to the standard deviation (black points) and 

autocorrelation time (grey points) of manually-sampled Chl-a time series. The sensitivity 

analysis was conducted for the alarm threshold (A), the shift of the leading indicator in 

manipulated lake below that in the reference lake during the baseline state (Δf), the average shift 

of the leading indicator in the manipulated lake above that in the reference lake during the 

critical state (Δg), and the standard deviation of the leading indicator in the manipulated lake 

during either state (σf,g). The day of first alarm was computed across the same values of A for 

both leading indicators, with a nominal value of 107 (vertical dotted line). The day of first alarm 

was computed for values of Δf and Δg that ranged from 0 to 2 times the nominal value used with 
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the standard deviation (bottom axis) or autocorrelation time (top axis), and σf,g ranged from 0.01 

to 2 times the nominal value used with each leading indicator.  
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Fig. S5. Sensitivity of the day of first alarm (left axis) to parameters of the quickest detection 

algorithm (QD) when QD was as applied to the standard deviation (black points) and 

autocorrelation time (grey points) of time series of the daily averages of chlorophyll 

concentration measured by automated sensors. The sensitivity analysis was conducted for the 

alarm threshold (A), the shift of the leading indicator in manipulated lake below that in the 

reference lake during the baseline state (Δf), the average shift of the leading indicator in the 

manipulated lake above that in the reference lake during the critical state (Δg), and the standard 

deviation of the leading indicator in the manipulated lake during either state (σf,g). The day of 

first alarm was computed across the same values of A for both leading indicators, with a nominal 

value of 107 (vertical dotted line). The day of first alarm was computed for values of Δf and Δg 
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that ranged from 0 to 2 times the nominal value used with the standard deviation (bottom axis) or 

autocorrelation time (top axis), and σf,g ranged from 0.01 to 2 times the nominal value used with 

each leading indicator. No point was plotted if an alarm was not detected in a leading indicator 

for a given parameter value.  
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Fig. S6. Sensitivity of the day of first alarm (left axis) to parameters of the quickest detection 

algorithm (QD) when QD was as applied to the standard deviation (black points) and 

autocorrelation time (grey points) of time series of the daily averages of pH measured by 

automated sensors. The sensitivity analysis was conducted for the alarm threshold (A), the shift 

of the leading indicator in manipulated lake below that in the reference lake during the baseline 

state (Δf), the average shift of the leading indicator in the manipulated lake above that in the 

reference lake during the critical state (Δg), and the standard deviation of the leading indicator in 

the manipulated lake during either state (σf,g). The day of first alarm was computed across the 

same values of A for both leading indicators, with a nominal value of 107 (vertical dotted line). 

The day of first alarm was computed for values of Δf and Δg that ranged from 0 to 2 times the 
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nominal value used with the standard deviation (bottom axis) or autocorrelation time (top axis), 

and σf,g ranged from 0.01 to 2 times the nominal value used with each leading indicator. No 

point was plotted if an alarm was not detected in a leading indicator for a given parameter value.  
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Fig. S7. Sensitivity of the day of first alarm (left axis) to parameters of the quickest detection 

algorithm (QD) when QD was as applied to the standard deviation (black points) and 

autocorrelation time (grey points) of time series of the daily averages of dissolved oxygen 

(percent saturation) measured by automated sensors. The sensitivity analysis was conducted for 

the alarm threshold (A), the shift of the leading indicator in manipulated lake below that in the 

reference lake during the baseline state (Δf), the average shift of the leading indicator in the 

manipulated lake above that in the reference lake during the critical state (Δg), and the standard 

deviation of the leading indicator in the manipulated lake during either state (σf,g). The day of 

first alarm was computed across the same values of A for both leading indicators, with a nominal 

value of 107 (vertical dotted line). The day of first alarm was computed for values of Δf and Δg 
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that ranged from 0 to 2 times the nominal value used with the standard deviation (bottom axis) or 

autocorrelation time (top axis), and σf,g ranged from 0.01 to 2 times the nominal value used with 

each leading indicator. No point was plotted if an alarm was not detected in a leading indicator 

for a given parameter value.  
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Chapter 5: Tails of extremes in biotic and abiotic ecological time series* 

______________________________________________________________________________ 

An ecosystem can be greatly impacted by a single, large event. Massive events are more 

likely to be present in time series with extremes that follow fat-tailed probability 

distributions. As a result, scientists have stressed the importance of the thickness of the tails 

of a distribution (tailedness) for gauging the size and frequency of abiotic perturbations to 

ecosystems1–3. However, the tailedness of biological time series is not well characterized, 

which exposes us to being surprised by the extremes of these variables. We analyzed 595 

long-term lake time series spanning meteorological, physical, chemical, and biological 

variables, and show that a range of tailedness can be found in all variable types. Biological 

variables were the most fat-tailed time series in our data set, and were estimated to exceed 

their historical records more frequently than the other categories. Furthermore, we found 

that presuming a normal or log-normal distribution for ecological time series can result in 

a skewed perception of the time that will pass between record breaking events. Ecological 

extremes may be made less surprising by accounting for possible fat tails in variables like 

biological populations. 
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Extreme events are the largest or smallest values expressed by a variable over time  (e.g., annual 

maxima), and a single extreme can change an ecosystem drastically. Compared to variables with 

extremes following probability distributions with thin or bounded upper tails, fat-tailed variables 

have a greater capacity to massively exceed historical precedent. The tail thickness of the 

distribution of a variable’s extremes (i.e. the shape of the distribution of maxima, henceforth 

tailedness) can be quantified using extreme value theory, which is commonly applied to abiotic 

perturbations, such as natural disasters2,4–7. The statistics of extremes can be used to estimate 

how often flood stage breaches a levee5, temperature crosses the lethal limit for limpets, or 

waves dislodge mussels3. Even when a threshold lies far beyond a variable’s historical maximum, 

a threshold need only be crossed once to incite massive change. Therefore, it is crucial to know 

what types of variables can be fat-tailed.  

 

Although fat tails have been found in a variety of variables, very few studies have evaluated their 

existence in the extremes of biological time series. To our knowledge, the empirical precedent 

for fat-tailed biological extremes is provided by a single time series of copepod zooplankton8. 

Such examples may be rare because some patterns common to biological time series, like 

autoregressive moving average (ARMA) models with Gaussian errors, are unlikely to produce 

fat-tailed extremes. However, a variety of nonlinear processes can produce fat-tailed 

distributions9,10. Nonlinear processes are prevalent in biological time series11, and fat-tailed 

fluctuations (but not densities) have been observed in several biological populations12. For 

example, populations with nonlinear responses contingent upon rare conditions (i.e., the ‘perfect 

storm’) may have fat-tailed extremes (Fig. 1). Like ARMA models, jump-diffusion models are 

generic time series models and are commonly applied to financial time series; unlike ARMA, 
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jump-diffusion models involve chance multiplicative processes that are capable of producing fat-

tailed returns and prices13–15. Although jump-diffusion models are rarely applied to ecological 

time series, their essential elements are chance events and multiplicative processes, which are 

considered commonplace in the natural world. Thus it is plausible for fat tails to be present in the 

extremes of both abiotic and biotic ecosystem time series. 

 

Here we analyze 595 long-term lake time series (median duration of 29 years) from the North 

Temperate Lakes Long Term Ecological Research (NTL LTER) database to characterize the 

tailedness of biological, chemical, physical, and meteorological variables (Methods). The 

generalized extreme value distribution (GEV) is the limiting distribution for maxima16, and its 

shape parameter (ξ) is a measure of tail thickness – negative ξ indicates a bounded upper tail, ξ 

near 0 indicates a thin tail, and positive ξ indicates that the maxima are fat-tailed. 

 

We found a wide range of ξ in each variable category, but the biological variables were more fat-

tailed than the other types of variables (Fig. 2A), which had significantly thinner tails (Methods). 

Under the null hypothesis that ξ was not different from 0 (two-tailed t-test, p > 0.1), we used the 

estimates of ξ and associated standard errors to calculate the frequency of each category of 

tailedness (bounded, thin, fat) for each variable type. Of the 283 biological time series, 38% had 

a ξ greater than 0 – by far the largest frequency of fat-tailedness among variable types (13% for 

chemical, 4% for physical, 0% for meteorological). Only 1% of biological time series had a 

bounded tail, which was the lowest frequency among variable types (22% for chemical, 51% for 

physical, 42% for meteorological). The fish with the largest estimate of ξ were Lepomis spp. in 

Lake Mendota (ξ = 1.2; 90% CI: 0.7 < ξ < 1.8), the fattest-tailed zooplankton were Kellicottia 
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spp. in Crystal Bog (ξ = 1.2; 90% CI: 0.7 < ξ < 1.7), and Crystal Lake had the most fat-tailed 

chlorophyll time series (ξ = 0.5; 90% CI: 0.2 < ξ < 0.8). As estimates of ξ increase, the statistical 

moments ≥ 1/ξ become undefined16 – therefore the estimated ξ of Lepomis spp. in Mendota and 

Kellicottia spp. in Crystal Bog imply that the average of their annual maxima will not converge 

to a long-term mean as more data are collected. Similarly, the long-term variance of chlorophyll 

concentration in Crystal Lake will not converge with additional data. To our knowledge this 

analysis provides the first evidence that the extremes of vertebrate time series can be fat-tailed, 

and that the tailedness of biological variables is larger than other types of variables in the same 

ecosystems. 

 

Estimates of tailedness can provide valuable information on the size and frequency of large 

events. Record-breaking events are generally regarded as rare occurrences, but the difference in ξ 

across variables suggests that some types of variables may break records more often than others. 

We used the GEV fits to calculate the expected waiting time (years) until each time series broke 

its current record by at least 10%. Waiting time is heavily influenced by the value of ξ, but also 

depends on the other GEV parameters (µ and σ). The pattern in waiting times across variable 

types was similar to that in ξ: biological variables are likely to break their current records sooner 

than other categories of variables (Fig. 2B). In other words, not accounting for the distribution of 

extremes could lead to surprises in how often biological variables produce massive events. 

 

Comparing waiting times derived from the GEV to waiting times derived from normal and log-

normal distributions illustrates how these distributions can lead to vastly different expectations 

for the future (Fig. 3). When a variable has a bounded upper tail, the normal and log-normal 
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distributions both predict shorter waiting times than the GEV. As tail thickness increases, the 

normal distribution predicts waiting times that are much longer than those estimated from the 

log-normal or GEV. The GEV and log-normal estimate similar waiting times for most fat-tailed 

variables; however, in many cases the log-normal estimates waiting times several orders of 

magnitude longer than those estimated by the GEV. For example, the longest log-normal waiting 

time for a fat-tailed biological variable was 2,177 years for chlorophyll concentration in Crystal 

Lake, but the GEV estimate was only 103 years. By contrast, the longest GEV waiting time for a 

fat-tailed biological variable was 973 years for the zooplankton Mesocyclops spp. in Lake 

Monona, and the log-normal estimate was 256 years. It is difficult to know which distribution 

provides the most accurate estimate of waiting time for a given time series. Selecting among the 

three distributions by Akaike information criterion indicates that the log-normal was best-fitting 

for 60% of the time series and the GEV for 29%, which suggests that a single distribution is 

unlikely to give the best estimate of waiting time for all time series. Therefore, it may be risky to 

form intuition of future extremes without considering several distributions, including those that 

permit more flexibility in tail thickness, like the GEV. 

 

Our analysis clearly identified fat tails in several biological time series, but we were largely 

unable to explain the variability of ξ across time series. For example, time series ξ did not show a 

strong relationship with the number or eigenvalue of ARMA parameters, nor with the ξ of the 

ARMA residuals. The time series of fish (n=111) and zooplankton (n=165) spanned 28 and 34 

genera, respectively, but taxonomic classification was not strongly associated with ξ 

(Supplementary Notes, Extended Data Figs. 1-5). Although ξ was significantly different between 

variable categories, this pattern may change if our analysis were expanded to include variables 
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not present in our data set. Estimating a statistic based on rare events requires long time series1,7, 

and estimates of ξ may improve with continued data collection. Therefore we suggest that 

continuing long-term monitoring of ecological variables and characterizing the tailedness of 

additional time series is critical for understanding ecological extremes. 

 

It is dangerous to consider the future as a set of norms17,18, and forecasting future events, 

especially extreme events, is difficult. However, tailedness and related statistics may enhance our 

ability to prepare for an uncertain future by offering an approach to gauge the scale and 

frequency of large events that lie on the horizon. Furthermore, global environmental change is 

increasing the prevalence of extremes in some abiotic variables6,19, but it is unclear how global 

change might be influencing the tailedness of biological variables. The presence of fat-tailed 

biological variables could profoundly affect how we manage for ecosystem resilience, 

particularly because a variety of ecosystems are subject to regime shifts triggered by critical 

densities of biological populations20,21. Managing for ecosystem resilience could be facilitated by 

investigating the mechanisms that generate fat tails, and by recognizing that fat tails exist in a 

variety of ecosystem variables, including biological populations. 

 

Methods Summary 

Data were obtained through the NTL LTER database, and included data from 11 lakes and 2 

regions of Wisconsin, USA. Extremes were defined via the block-maximum method7, which 

yielded annual maxima. Each time series of extremes contained between 15 and 158 annual 

maxima (median = 29), and was categorized as biological (n=283 lake time series, including 

chlorophyll, 28 fish genera, and 34 zooplankton genera), chemical (n=220, e.g. ion 
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concentration), physical (n=80, e.g. water temperature), or meteorological (12 regional time 

series, e.g. mean daily wind speed). 

 

The GEV has three parameters, location (µ), scale (σ), shape (ξ)1, and its cumulative distribution 

function is 

 

The GEV parameters were fit using maximum likelihood after removing a linear temporal trend 

from time series of maxima1. Parameters for the normal and log-normal distributions were 

estimated from the means and standard deviations of the detrended time series of annual maxima 

and their logarithms, respectively. 

 

Waiting is the inverse probability (P; calculated from the cumulative distribution function) of 

observing a value ≥ 10% over the current record, multiplied by the observation frequency (F, 

years-1) of maxima in the time series (F was usually 1): Waiting Time = 1/P*F. Statistical 

analyses were performed in R22. 

 

AR(1) were simulated from:  

 xt =ϕxt−1 + ε t   

where x is the state at time t, φ=0.5 is the autoregressive coefficient, and ε are normal errors. 

Jump-diffusion models were simulated from13–15: 

F(x; µ,σ , ξ ) =
exp{−[1+ ξ(x − µ) /σ ]−1/ξ},
1+ ξ(x − µ) /σ > 0

ξ ≠ 0

exp{−exp[−(x − µ) /σ ]} ξ = 0.

⎧

⎨
⎪⎪

⎩
⎪
⎪
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rt+Δ − rt = µ(rt )Δ +σ (rt )ε t+Δ Δ + Jt+ΔZt+Δ

Jt+ΔZt+Δ = N(0,
i=1

n(t+Δ )

∑ σ Z n(t + Δ))i

n(t + Δ) = Pois(λΔ)

S(T ) = exp(rtΔ)
t=1

T

∏

  

where r is the change in state, µ=0, the size of each time step is Δ=1, σ=0.1, ε ~N(0,1) is a 

Weiner process, jump J of size Z has intensity λ=0.1 and is the sum of n(t+Δ) normal shocks with 

standard deviation (σZ=0.1)*n(t+Δ)0.5. The state variable S (S0=1) at time T is the product of 

exp(r) from times t to T. 
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Figure 1. An AR(1) model (A) and a jump-diffusion model (B) were used to simulate 35 

separate years of time series, each year with 100 observations. The AR(1) model evolves 

additively with normal errors (gray line in A), and the jump-diffusion model evolves 

geometrically with normal errors (diffusion) and a Pois(λ) chance of additional normal errors 

(jump) at each time step (gray line in B). Taking the maxima of each of the 35 short time series 

that comprise the gray lines yields annual maxima (circles in A, B). The empirical distributions 

of the full time series (i.e., parent distributions) are shown in gray, and the empirical distributions 

of the largest annual observations (extremes) are in blue and red (C,D). Fitting the GEV to the 

annual maxima reveals that the distribution of the extremes in A has a thin upper tail (E, blue 

distribution), whereas the distribution of extremes in B has a fat upper tail (E, red distribution).  
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Figure 2. Bean plots of ξ estimated from the GEV (top), and waiting times (years) estimated 

from the GEV fits (bottom). Waiting times are the time until the maximum observation in a time 

series is broken by at least 10%. Each “bean” consists of a mirror image of the density plot of ξ 

or of the waiting times in each category (red = biological, yellow = chemical, green = physical, 

blue = meteorological). The values of individual observations are indicated by the small black 

dashes inside each bean. Horizontal dotted line is the mean across all categories. Solid horizontal 

lines are the means within each category. 
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Figure 3. Density plots of waiting times for record-breaking events. Estimates from the GEV 

(red), log-normal (blue), and normal distributions (green) fitted to time series reflect the time 

until the next record-breaking event. Small circles indicate modes. All densities were scaled to a 

maximum of 1, and truncated at waiting times < 10-1 or > 1011 years. Panels distinguish ranges of 

ξ estimated from GEV fits to the time series under the null hypothesis that ξ = 0 (p > 0.1), and 

represent time series with a bounded (top), thin (middle), or fat (bottom) upper tail. 

  



	
   182 

APPENDIX 1 TO CHAPTER 5: METHODS 

Variables Analyzed. Raw data were downloaded from the online databases of the North 

Temperate Lakes Long-Term Ecological Research (NTL LTER) program 

(lter.limnology.wisc.edu/). Data were downloaded on April 18, 2013, except wind data, which 

were downloaded on March 30, 2014. Most time series from the northern lakes begin in 1981. 

Most time series from the southern lakes begin in 1996, except fish time series begin in 1995, 

zooplankton in 1976, and three ice cover time series that begin in 1851, 1852, and 1877. Most 

time series end between 2010 and 2012. Northern lakes include Allequash Lake, Big 

Muskellunge Lake, Crystal Bog, Crystal Lake, Little Rock Lake, Sparkling Lake, Trout Bog, and 

Trout Lake. The only time series from Little Rock Lake is ice cover. Southern lakes include Fish 

Lake, Lake Mendota, Lake Monona, and Lake Wingra. 

 

Meteorological variables included air temperature (daily minimum, maximum, range), sum daily 

precipitation, snow depth, and daily average wind speed. These metrics were available for two 

regions: northern and southern. Northern meteorological measurements were made at the 

Minocqua Dam, with the exception of wind speed, which was measured at the Minocqua Airport. 

Southern meteorological measurements were made in Madison, WI. Southern wind speed 

measurements were corrected for changes in anemometer location. 

 

Physical variables variable included epilimnetic averages for the following variables measured 

across a depth profile: dissolved oxygen concentration, dissolved oxygen percent saturation, 

water temperature, and the fraction of light at depth relative to light at surface. Physical variables 

also included non-profile variables: light extinction coefficient, Secchi depth (no viewer), lake 
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level, duration of the ice-free season (number of days), and the depth of the epilimnion. 

Epilimnetic depth (Zmix) was defined as the shallower of two consecutive temperature 

measurements in a depth profile that had an average decrease in temperature (ºC) per meter of at 

least 2 (ºC m-1). For variables measured over depth, epilimnetic averages were taken before 

cross-site measurements. If a depth profile was taken during mixis the average was taken across 

all depths, and the shallowest value of a profile was used on dates when Zmix could not be 

calculated (e.g. because temperature profile unavailable). 

 

Chemical variables included alkalinity, bicarbonate reactive silica (unfiltered), calcium, chloride, 

conductivity, dissolved inorganic carbon, dissolved organic carbon, dissolved reactive silica 

(filtered), iron, potassium, magnesium, manganese, sodium, ammonium, nitrate plus nitrite, pH, 

sulfate, total inorganic carbon, total organic carbon, total nitrogen (unfiltered), total phosphorus 

(unfiltered), and total particulate matter. 

 

Biological variables included the abundance of fishes and zooplankton, and epilimnetic 

chlorophyll concentration. Each genus of fish or zooplankton comprised its own time series. 

Therefore, each fish or zooplankton time series was the sum of several unique taxonomic 

identifiers – e.g., summing across identifiers corresponding to different species in the same genus, 

hybrids, and taxa identified to the genus level. Fishes included the following genera: Ambloplites, 

Ameiurus, Amia, Aplodinotus, Catostomus, Coregonus, Cottus, Cyprinus, Esox, Etheostoma, 

Labidesthes, Lepisosteus, Lepomis, Lota, Luxilus, Micropterus, Morone, Notemigonus, Notropis, 

Osmerus, Perca, Percina, Percina, Percopsis, Pimephales, Pomoxis, Salvelinus, Sander, and 

Umbra. Crustacean zooplankton included the following genera: Acanthocyclops, 
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Aglaodiaptomus, Bosmina, Ceriodaphnia, Chydorus, Daphnia, Diacyclops, Diaphanosoma, 

Diaoptomus, Eubosmina, Holopedium, Leptodiaptomus, Leptodora, Mesocyclops, Sinobosmina, 

Skistodiaptomus, Tropocyclops. Rotifer zooplankton included the following genera: Ascomorpha, 

Asplancha, Collotheca, Conochiloides, Conochilus, Filinia, Gastropus, Kellicottia, Keratella, 

Lecane, Lepadella, Monostyla, Notholca, Ploesoma, Polyarthra, Synchaeta, Trichocera. 

 

Fish catch per unit effort (number of individuals per hour trap set, CPUE) data were available for 

several methods: beach seines, electrofishing, fyke nets, gill nets (several mesh sizes), trammel 

nets. For a given lake, the availability of method-specific CPUE was typically consistent among 

years. However, in some cases a particular method was missing in a few years, or only present in 

a few years. Data from a particular method (per lake-year) could be missing either because the 

method did not capture any fish, or because it was not used. For gill nets, we assumed that an 

observation for at least 1 mesh size in a lake-year indicated that the full range of mesh sizes was 

deployed, as would be in accordance with NTL LTER protocol as indicated in the corresponding 

meta data. Thus, gill net catch was summed across mesh sizes, and gill net treated as a single 

method. For each lake we only used data observed with methods that were present in >95% of 

years for which data were available, and any methods that did not meet this criterion were 

removed from further consideration in our analysis. We defined the methods that met the 

aforementioned criteria in each lake as the “gear types” for that lake. Taxon-specific CPUE was 

calculated as the sum of CPUE across gear types. If a gear type was missing for a lake in a 

particular year, the CPUE of any taxa in that lake that had ever been caught by that gear type was 

designated as a missing value for that year, and therefore did not contribute to our analysis. This 
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procedure avoided erroneous fluctuations in species abundance that could be driven by 

interannual differences in methods used. 

 

Data quality assurance. Prior to performing any calculations, two methods of quality assurance 

were implemented to remove erroneous entries from the data set. First, most values flagged in 

the North Temperate Lakes Long Term Ecological Research database were removed from 

analysis. An exception was made for the chlorophyll data set, which included elements that were 

flagged because they were measured during a transient method change. For these flagged data, 

“uncorrected” values were used instead of “corrected” values, as recommended by the database 

meta data. In addition to removing flagged data, each parent time series (i.e., full time series of 

all observations, not just annual maxima) was manually scanned for erroneous values, which 

were removed when found. Values were declared erroneous if they violated the sign convention 

of the measurement (e.g., negative concentrations), or were not plausible given measurement 

conventions (e.g., fraction of light at depth relative to surface greatly exceeding 1 [due to 

measurement error induced by variable cloud cover]). Removing these values was taken as an 

extra precaution, although in most cases the manually removed values were negative and would 

not have been included in the set of annual maxima, and thus the results of our analyses 

unaffected by their presence or absence. 

 

Distribution fitting and waiting times. Time series were excluded from analysis if any of its 

annual maxima were less than 0, as this prevented comparison of waiting times with the log-

normal distribution (2 time series were excluded for this reason). In some cases (79 of the 595 
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time series), waiting times were undefined because the value 10% over the record was outside 

the support of the generalized extreme value distribution (GEV): 

   

For example, the return level could be outside support if ξ is less than zero, and the return level is 

greater the limit of the upper tail (µ–σ/ξ). Undefined waiting times were excluded from 

comparisons of waiting time between variable types and distribution types. 

 

ARMA Models. Autoregressive moving average (ARMA) models were fit to time series of 

detrended annual maxima using restricted maximum likelihood following the methods of 1,2. 

Because these likelihood surfaces are known to be rough, we used the differential evolution 

optimization algorithm as implemented in the DEoptim package in R3. We fit 12 possible 

combinations of ARMA(p,q) models, with AR(p) components ranging between p=1 to p=3, and 

MA(q) components ranging between q=0 to q=3. Model selection was performed using the 

corrected Akaike Information Criterion (AICc). We fit the GEV to the Cholesky residuals of the 

most parsimonious ARMA model for each time series. We refer to the order of the ARMA 

model as the sum p+q of the most parsimonious ARMA model, and the eigenvalue of the 

parameters is the maximum of the absolute values of the eigenvalues of the AR parameter matrix. 

 

Literature cited in Appendix 1 to Chapter 5: Methods 

1. Ziebarth, N. L., Abbott, K. C. & Ives, A. R. Weak population regulation in ecological time 

series. Ecol. Lett. 13, 21–31 (2010). 

x ∈ [µ  − σ /ξ,  +∞) when ξ  >  0,
x ∈ −∞,  +∞( ) when ξ  =  0,
x ∈ (−∞, µ  − σ /ξ ] when ξ  <  0.
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2. Ives, A. R., Abbott, K. C. & Ziebarth, N. L. Analysis of ecological time series with 

ARMA(p,q) models. Ecology 91, 858–71 (2010). 

3. Mullen, K., Ardia, D., Gil, D., Windover, D. & Cline, J. “DEoptim”: An R package for 

global optimization by differential optimization. J. Stat. Softw. 40, 1–26 (2011).  

  



	
   188 

APPENDIX 2 TO CHAPTER 5: EXTENDED DATA 

 

Extended Data Figure 1. Beanplots of the shape (ξ) of the ARMA residuals. Each “bean” 

consists of a mirror image of the density plot of ξ or of the waiting times in each category (red = 

biological, yellow = chemical, green = physical, blue = meteorological). The values of individual 

observations are indicated by the small black dashes inside each bean. Horizontal dotted line is 

the mean across all categories. Solid horizontal lines are the means within each category. 
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Extended Data Figure 2. The distributions and relationship between ξ of time series and ξ of 

the residuals of ARMA fits. Density plots in the margins reflect the distribution of the parallel 

axis. The color of the points in the scatter plot is proportional to the number of points in that 

coordinate region, with red colors in regions overlain with many points. The dashed line is a 

linear regression that provides a visual reference for the relationship between the axes. 
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Extended Data Figure 3. Marginal effects of top two predictor variables on ξ from random 

forest constructed from zooplankton data. Vertical axes indicate values for zooplankton ξ 

(conditioned on the other predictor variables) found in the random forest across the range of the 

standard error of ξ (top) or across the range of sample sizes (bottom). 
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Extended Data Figure 4. Marginal effects of top two predictor variables on ξ from random 

forest constructed from fish data. Vertical axes indicate values for fish ξ (conditioned on the 

other predictor variables) found in the random forest across the range of the standard error of ξ 

(top) or across lakes (bottom). Lake names are as follows: CB = Crystal Bog, TB = Trout Bog, 

MO = Lake Monona, WI = Lake Wingra, FI = Fish Lake, AL = Allequash Lake, TR = Trout 

Lake, SP = Sparkling Lake, CR = Crystal Lake, BM = Big Muskellunge Lake, ME = Lake 

Mendota. 
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Extended Data Figure 5. Marginal effects of top two predictor variables on ξ from random 

forest constructed from all data. Vertical axes indicate values of ξ (conditioned on the other 

predictor variables) found in the random forest across the range of the standard error of ξ (top) or 

across variable types (bottom). Variable types are as follows: Phys = physical, Met = 

meteorological, Chem = chemical, Bio = biological. 
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APPENDIX 3 TO CHAPTER 5: SUPPLEMENTARY NOTES 

Hypothesis testing. To estimate the standard errors of the ξ estimates, the covariance matrix 

from the GEV fit (thus parameter standard errors) was estimated from the solution to the Hessian 

computed by the optimization function. For optimization of the GEV, we used the Nelder Mead 

algorithm implemented in the optim function in R, which numerically derives the Jacobian of the 

algorithm gradient around optimized parameters. We identified a significant, positive correlation 

between the standard errors of the ξ estimates and ξ (linear regression between ξ as the response 

and standard errors plus intercept as predictors; regression multiple R2 = 0.22 [0.219 for 

adjusted], p < 2*10-16, t = 12.94, slope=2.0). Furthermore, there was evidence that the standard 

errors differed between categories (ANOVA, F=9.2, p < 6.2*10-6), although the explained 

variance was low (multiple R2=0.04, adjusted = 0.04). 

 

Due to the relationship between the standard errors of ξ and the estimates of ξ and variables 

types, we compared estimates of ξ across variable types using both least squares regression and 

weighted least squares regression. The response variable was ξ, and the four variable types were 

used as categorical predictors, with the biological type serving as the reference level (intercept). 

The inverse of the square of the standard error of ξ was used as the weight in the weighted least 

squares regression. In both types of regression, the biological variable had ξ significantly greater 

than 0 (estimate = 0.25 for unweighted, 0.16 for weighted), and each of the other variables types 

had significantly lower ξ than the biological category (all p ≤ 2.08*10-5 for all categories and 

regression types). The linear regression R2=0.28 (0.24 adjusted), and the weighted linear 

regression R2=0.64 (0.64 adjusted). Contrasts were set up to define the null hypotheses that each 

difference between the following pairs of variable types was equal to zero: chemical - biological, 
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physical - biological, meteorological - biological. To maintain a significance level of 0.05, p-

values for these multiple comparisons were corrected using the multcomp package in R, which 

we used to implement the Dunnett’s many-to-one test1. After correction, all variable types in 

both models maintained a mean ξ that was significantly less than the mean ξ of the biological 

variable type (across models and factor levels, all p ≤ 0.0057). 

 

Random Forests. We constructed random forest regression trees2 as a method for exploring 

relationships between ξ and other characteristics of the time series, as well as between ξ and the 

taxonomic classification of fish and zooplankton. Random forests used bootstrap aggregation 

(“bagging”, sampling the data set with replacement), and each forest consisted of 2,000 trees. 

Random forests differ from other regression tree algorithms in that at each branch in each of the 

trees, a random subset of the predictor variables is selected (square root of the number of 

predictors, rounded up). By selecting a random subset of predictors, the algorithm limits the 

potential for a few highly predictive variables to dominate the formation of trees, thereby 

reducing the correlation among trees in the forest. The algorithm for generating random forests 

also avoids the problem of over-fitting, and the trees do not require “pruning”. During forest 

fitting, out-of-bag error is calculated from the errors for predicting a given sample using only 

regression trees in the forest that did not include that sample (due to bootstrapping with 

replacement). The mean of these errors is the out-of-bag error for the sample. To determine 

variable importance, out-of-bag errors are calculated as above, except now observations of the 

predictor variable of interest are scrambled with respect to the observations of the response 

variable. The ratio of the out-of-bag error (which is measured per sample) before and after the 

scrambling of the predictor variable is a measure of the importance of the predictor variable to 
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estimating the sample. The mean of this ratio across all samples is a basic measure of the 

importance of the predictor variable. Because random forests are indeed random (due to bagging, 

randomizing subsets of predictors, and scrambling), results can vary between forests constructed 

using the same original data set. However, for a large number of trees, the results for the forest 

converge. 

 

A random forest was constructed for the full data set, as well as for two subsets corresponding to 

the zooplankton and fish data. Fish and zooplankton were analyzed separately from the rest of 

the data set because taxonomic information could not be used as a predictor for the other 

variables. The number of possible splits in a tree increases exponentially with the number of 

factor levels (and therefore predictor variables). Therefore, fish and zooplankton were analyzed 

separately from each other to reduce the number of unique taxa for each level of taxonomic 

classification (e.g., reduce the number of families). Genus was not used as a factor for 

zooplankton because of the larger number of zooplankton genera. 

 

All data sets included the following predictor variables: standard error of ξ, lake, sample size, µ 

(GEV location) of ARMA residuals, σ (GEV scale) of ARMA residuals, ξ of ARMA residuals, 

variance of ARMA residuals, variance of the MA component of the ARMA model (equal to 

residual variance when q=0), stationary variance of the ARMA process, MA order (q), AR order 

(p), eigenvalue of AR parameters, and the ratio of the stationary variance of the ARMA process 

to the variance of the MA component. Analysis of the full data set also included variable type 

(e.g., biological) as a predictor. Fish and zooplankton analyses also included taxonomic 

classification (order, family, and genus for fish; phylum, class, order, and family for 
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zooplankton). When constructing forests for the full data sets and the fish and zooplankton 

subsets, and missing values in response or predictor variables resulted in removal of that sample 

(i.e., row of data) from the analysis. Therefore, the full data set consisted of 587 samples (down 

from the 595 possible), the fish data set included 111 samples (no samples removed), and the 

zooplankton data set included 157 samples (165 possible). 

 

We constructed random forests using the randomForest3 in R. We checked the importance of 

predictor variables estimated by randomForest against those estimated from another package, 

party4, which implements additional algorithms to correct for a bias in variable importance that 

can favor correlated, continuous, or many-level categorical predictors. We report rank variables 

and report their importance according to the party method. Both packages consistently indicated 

that the standard error of ξ was the most important predictor of ξ in forests constructed for fish, 

zooplankton, and for the entire data set. 

 

For zooplankton, the two most important predictors were the standard error of ξ (importance = 

0.03), and sample size (importance = 0.003). Estimates of the marginal effects (computed using 

the partialPlot function in randomForest) of these predictors on the tailedness of zooplankton 

indicates that zooplankton ξ increases from 0.13 to 0.51 across the range of standard errors, but ξ 

only changes from 0.31 to 0.28 across the range of sample sizes (Extended Data Fig. 3). 

 

For fish, the two most important predictors were the standard error of ξ (importance = 0.023) and 

lake identification (importance = 0.0053). Across the range of standard errors, fish ξ increases 

from 0.09 to 0.34, and across lakes fish ξ ranged from 0.13 to 0.28 (Extended Data Fig. 4). 
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According to the random forest (produced by randomForest), the two lakes with the smallest fish 

ξ (conditional on values of all other predictor variables) were the two bog lakes in the data set 

(Extended Data Fig. 4). Sample size was the second most important predictor for zooplankton, 

and for fish it was the third most important predictor (importance of sample size to fish ξ = 

0.002). Although lake identification was the second most important predictor for fish, it was the 

least important predictor for zooplankton (importance of lake to zooplankton ξ = -0.0005; 

negative importance means that the average out-of-bag error slightly increased when this 

predictor variable was scrambled). 

 

The two most important variables for the full data set were the standard error of ξ (importance = 

0.026) and variable type (importance = 0.014). Across the range of the standard error of ξ, 

tailedness increased from -0.05 to 0.38. Across variable types, ξ ranged from 0.08 for physical to 

0.10 for biological (Extended Data Fig. 5). 
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