

Egg production and survival of progeny of trout reared on dry diets. No. 15 1965

Mason, John W., 1934-; Degurse, Paul E.; Brynildson, Oscar M. (Oscar Marius) 1916-

[Madison, Wis.]: Wisconsin Conservation Dept., Research and Planning Division, 1965

https://digital.library.wisc.edu/1711.dl/ZUBUKDBYOI4BX8T

http://rightsstatements.org/vocab/InC/1.0/

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

Wis Doc Nat. 3: R 4/ 15

Dept. of Natural Resources
Technical Library
3911 Fish Hatchery Road
Fitchburg, WI 53711-5397

LUAN COPY49
search Report No. 15

Research Report No. 15 (Fisheries)

EGG PRODUCTION AND SURVIVAL OF PROGENY OF TROUT REARED ON DRY DIETS

By

John W. Mason, Paul E. Degurse and Oscar M. Brynildson

WISCONSIN CONSERVATION DEPARTMENT
Research and Planning Division
July, 1965

Security of the second security of the second secon

THOM TO YELDOWS TO LIAVIYOUS ON MOSTIMORS THE

white the state of the secure of the state o

THE STEAMEN MULTER ASSETS VISION OF BUILDING SETS

Egg Production and Survival of Progeny of Trout Reared on Dry Diets

John W. Mason, Paul E. Degurse and Oscar M. Brynildson
Wisconsin Conservation Department

Introduction

AND POST

Phillips and co-workers reported in 1959 that brown trout could be maintained on a pelleted dry feed mixture without meat supplement over a 3-year period but that the condition of the fish was unsatisfactory at the conclusion of the feeding trials. Also, eggs taken from trout fed dry feed for 3 years did not develop. However, in recently completed experiments at Cortland, New York, brown trout raised on dry rations were in satisfactory condition and produced viable eggs at the end of 3 years. The eggs taken from brown trout fed a dry diet were equal in quality to those from fish fed a meat-meal mixture (Phillips, et al., 1964a). A similar test at the Westfield Research Station, Westfield, Wisconsin, with fall-hatched rainbow trout and brook trout demonstrated that these species can also be raised to maturity entirely on dry diets with no apparent adverse effects on production of eggs and fry.

Methods

Wisconsin Conservation Department C series dry diets shown in Table 1 are the most satisfactory rations for brook, brown, rainbow, and lake trout reared in Wisconsin hatcheries (Mason et al., 1965). These diets were fed to a group of fall-hatched rainbow and brook trout until they were mature. Initially the trout were reared in shallow tanks inside the hatchery building, but throughout most of the test period they were held in a deep outside raceway where the water temperature reached a maximum of 55°F. in the summer and a minimum of 45°F. in the winter.

Eggs were taken from 56 fall-hatched rainbow trout and 7 brook trout reared on dry diets, and eggs from 12 brook trout reared on dry diets plus fresh meat supplements. The eggs from each female were collected separately, measured, and placed on individual trays in the hatchery trough. They were incubated in water with a constant temperature of 50 F. Malachite green was used for fungus control. Dead eggs were hand-picked and counted. All other quantity measurements were made by the Von Bayer method.

The trout hatched from the eggs of the rainbow trout were reared on a complete dry diet. On September 24, 1964, 900 of these trout were released into Trout Creek, Iowa County. During April 12-19, 1965, an estimate of their over-winter survival in Trout Creek was made by electro-fishing a 5.2-mile section containing the stocking sites. The Peterson-type mark and recapture method was employed for the estimate.

All trout captured on the first and second run during the estimate were measured to the nearest O.1-inch. All trout captured on the first run were weighed, and on the second run trout not captured on the first run were weighed.

Results

The statistics on the egg and fry production of the various groups of trout are presented in Table 2.

Survival and growth of the fry and fingerlings in the hatchery was similar to survival and growth of the progeny of fall-hatched rainbow and brook trout brood stock reared on dry diets plus fresh meat supplements (Mason et al., 1965).

Over-winter survival of the trout released in Trout Creek was 60 percent of the original stock.

Length, weight and coefficient of condition of the trout before release into Trout Creek September 24, 1964, and when collected April 12-19, 1965 were as follows:

Date	Number Measured and Weighed	Total Length Range (Inches)	Average Length	Average Weight (Grams)	Average Coefficient of Conditions (R)
Sept. 24, 1964	100	6.7 - 10.4	8.8	125	1.81
Apr. 12-19, 1965	530	6.7 - 11.4	9.5	133	1.52

The trout grew some in length while in Trout Creek but very little in weight with an attendant decrease in the condition factor (R).

Discussion

The production and quality of eggs from the fall-hatched rainbow trout reared on dry diets at the Westfield Research Hatchery compared favorably with production and quality of eggs from this strain of trout reared on dry diets supplemented with fresh meat at Nevin State Trout Hatchery, Madison, Wisconsin. At Nevin Hatchery, the average hatch of fall-hatched rainbow trout eggs ranges from 75 to 80 percent. The 81 percent hatch of fall-hatched rainbow trout obtained at the Westfield Research Hatchery also compares favorably with results reported by Phillips et al. (1964b) when brown trout reared on dry diets produced eggs which had a combined total hatch of 86 percent.

During the 34-month period before the fall-hatched rainbow trout spawned, they appeared to be healthy, vigorous fish. Pathological examination of the trout several days after spawning revealed that approximately 20 percent had pin-point hepatoma of the liver. Twenty percent incidence of hepatoma is slightly higher than is normally present in Wisconsin rainbow trout brood stock fed a fresh meat supplement with their dry diets.

The 60 percent survival of the stocked rainbow trout over the winter of 1964-65 in Trout Creek was nearly as high as the 62 percent survival of a group of dry-diet fall-hatched rainbow trout in Trout Creek during the winter of 1961-62 (Mason, 1963).

Average growth in length of the trout from September, 1964 to April, 1965, was 0.7 inches while the 1961-62 trout grew 1.7 inches. The 1964-65 trout condition factor (R) dropped 0.29 while (R) of the 1961-62 trout dropped 0.19 during

the winter in Trout Creek. The 1961-62 trout gained an average of 46 grams over the winter while the 1964-65 trout gained only 8 grams. In April, 1962, the trout stock was 6 percent greater in weight than when stocked in September, 1964. In April, 1965, the trout stock was 37 percent less in weight than when stocked in September, 1965.

In the section of lower Trout Creek where the rainbow trout were released in September, 1961 and 1964, the stream is partly ice-covered in winter. The winter of 1964-65 was the coldest and one of the longest Wisconsin has experienced in decades. Lower Trout Creek had infrequent ice cover during the 1961-62 winter but was mainly ice-covered during the 1964-65 winter. Probably because of the colder environment during the 1964-65 winter the trout during that period grew relatively slower and could not maintain as high coefficients of condition as the trout could during the warmer winter of 1961-62.

Literature Cited

- Mason, John W.

 1963. Evaluation of trout produced on experimental diets (Job 1-B). Annual
 Prog. Rept., Cold Water Group, Res. and Plan. Div., Wis. Conserv. Dept.,
 15 p. (Ditto)
- Mason, John W., Paul E. Degurse, and Oscar M. Brynildson
 1965. Dry diets for trout: Successful diets to rear trout in the hatchery.
 Wis. Conserv. Dept., Research Report No. 13 (Fisheries), 6 p.
- Phillips, Arthur M., Jr., Glen L. Hammer, and Earl A. Pyle 1964a. Dry concentrates as complete trout foods. Prog. Fish-Cult. 26(1):21-24.
- Phillips, Arthur M., Jr., Glen L. Hammer, John P. Edwards, and Henry F. Hosking 1964b. Dry concentrates as complete trout foods for growth and egg production. Prog. Fish-Cult. 26(4):155-159.

and the species of the letter of the second

Table 1

Composition of Wisconsin Conservation Department Dry Trout Diets in Pounds per 1,000 Pounds of Feed

	Diet C	Diet C-1	Diet C-2
Fish meal (white fish)	325	250	200
Fish solubles, condensed	20	20	20
Skim milk, dried, spray process	200	100	50
Yeast, primary, 50-B	80		
Yeast, brewer's		8 0	80
Distiller's solubles, dried_/	100	100	50
Alfalfa meal	50	50	50
Blood flour	50	25	
Liver meal (beef liver nonextracted)	125	75	50
Wheat, red dog		100	200
Cotton seed meal (degossypolized)	aif aaf	100	200
Corn gluten meal	***	50	50
Feeding oil, 300 D and 2,250 A	40	40	40
Salt, trace, mineralized	10	10	10
Vitamin mixture added in grams			
Riboflavin Pantothenate Niacin Choline chloride Thiamin Ascorbic acid Vitamin E Vitamin B ₁₂	50 60 250 250 40 100 0.8 0.04	50 60 250 250 40 100 0.8 0.04	50 60 250 0 40 100 0.8

^{1/} Commercial Solvents Co. Soluferm

Table 2

Egg and Fry Production of Trout on Dry Diets and Dry Diets Plus Fresh Meat Supplements

	Fall-hatched rainbow trout (dry diet)	Brook trout (dry diet)	Brook trout (dry diet plus meat)
Age of trout (months)	34	21	51
Number of females	56	7	12
Ounces of eggs	366 467	21	20
Average egg size (No./oz.)	467	489	539
Number of eggs	171,012	10,270	10,787
Percentage eyed eggs	86	86	83
Percentage eggs hatched	81	86	83

* 41 ...

A service of the serv