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i 
i EVALUATION OF SURFACE EFFECTS AT THE CRANDON PROJECT 

| i Kingston, Ontario, Canada _ APRIL 28, 1982 | 

. 

i At a meeting in Kingston on October 26, 1978 with Ed May, , 

| Roger Rowe, Jim Grimes, Rusty Ford and Dave Mann, the subject of 

; possible surface effect due to the mining operations was discussed. 

i : At that time, a request was made to produce an estimate of the 

a potential problem areas, the data needed to predict and/or control 

the effects, and the cost of obtaining the data and doing the necessary 

I engineering studies to predict both short and long term surface effects. © 

. This proposal was presented in a letter dated November 2, 1978. Subsequent ~ 

i to this date, technical data was received in Kingston and authorization 

i to proceed was received in a letter from R. Ford dated July 23, 1979. . 

. In addition to the rock and ore physical property data obtained 

E from laboratory and point load testing done by this company and Exxon, 

, and the extensive backfill testing done by this company, the input 

i data provided by Exxon included the following reports and drawings: 

I Q) Investigation of Feasibility of Dewatering and Other Alternatives 

For Open Pit Mine Option Near Crandon, Wisconsin. Dames & Moore - 

I May 20, 1977. 

(2) Results of Geologic Geotechnical and Hydrological Investigations 

i of a Portion of the Proposed Exploration Ramp. Dames & Moore - 

i August 10, 1977. BM, 

(3) Engineering Siting Report for Tailings Disposal Sites - mah AS 

a Fe gy 
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i . APEO ff



! a : -2- OO 
| | 

| i ‘Dames & Moore - undated. 

| (4) Results of Permeability Tests and Analyses of Water Samples 

: i from Deep Exploration Holes - Crandon Orebody. Dames & Moore - 

| April 19, 1978. 

| | (5) Summary of Phase II Sub-Surface Investigations in the Crandon 

| Project Area, Forest and Langlade Counties, Wisconsin. Dames 

' ) & Moore - September 22, 1978. | 

I (6) Quaternary Glacial Tsopach - December 12, 1978. . 

, i | (7) Subcrop Contour Map - December 12, 1978. ° , : | 

: (8) Longitudinal Sections showing mining and backfilling sequence | 

| [I i by years - 1987-1991. | 

; Further rock mechanics testing and backfill testing performed | | 

Tq by this company included: — | 

J | | (1) “Rock Mechanics Testing and Engineering of Large | 

am : | Diameter Core" - September, 1981 (hereafter referred 

q _ | to as Report A), and 

7 (2) "Testing of Conventional, Pyrite Concentrate and | 

T | Pyrite Slimes Backfill Materials" - September, 1981 | 

{ | (hereafter referred to as Report B), both representing 

: major studies on rock and backfill properties. Data generated from these 

| reports include inherent stress levels, rock strengths, pillar strengths, 

| and all pertinent backfill properties. From Report B, the properties 

: i of 7 backfill materials were analyzed. Conventional backfill materials 

f included samples 4, 5 and 6. The anticipated recovery of each (reference An 

| personal communication November 3, 1981, J.D. Smith, J.E. Grimes) is SiR 
i | ONIN, a 
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i 
i 4,074, 2,919 and 1,756 metric tons per day, respectively. Because sample 

' 4 constitutes nearly one half of the backfill material available, its 

i properties were used in the assessment of surface effect. Subsequent 

i analyses may be performed using the techniques presented in this report , 

when exact backfill composition is verified. . 

i For the purposes of this report, "surface effect" can be one 

or all of the following: changes to the groundwater table and rates of 

i flow, as a result of the mining operation; elevation changes in the 

i . overburden as a result of dewatering these materials; and elevation 

changes in the overburden as a result of gross rock movement. This study | 

i assesses these possible types of surface effect with respect to postulated 

mechanisms and provides an order of magnitude measure of the expected 

i movements and flows. Wherever possible, means to prevent adverse reactions 

i are suggested. In addition, the important parameters are identified so - 

: that additional data can be obtained during development and early production 

i periods, in order to confirm or modify the predictions in this report. 

. Surface effect is discussed for three phases of the mining 

i operation. The primary mining stage is defined as when underground 

i development and exploration openings are created and production mining 

begins. Gross rock deformation at this stage is prevented by rib, sill 

i and crown pillars and backfill and‘only changes to groundwater table and 

' flow are considered possible. The secondary mining phase is where the 

rib and sill pillars are removed and replaced with backfill, leaving 

i the crown pillar and backfill to control surface effects. At this Ae OR 

any groundwater problems have been solved and are not expected to arr AS
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i . 

i The deformation of the H.W. and F.W. formations and crown pillar are 

controlled by the use of backfill and the proper mining sequence. 

i Negligible surface effect can be achieved by proper geometry for the crown 

pillar and the design of this pillar is discussed in this section. The 

f final mining stage is the recovery of the crown pillar. This is the stage 

i that has the greatest potential for surface effect. This section of the 

‘report discusses the mining method and geometry developed to minimize 

| such effects. At this stage of mining, mining experience and the 

i accumulation of engineering data will suggest any necessary nodifteavtons. 

Long term effects after the crown pillar has been removed are also 

A discussed in this section. . 

i PRIMARY MINING STAGE : . 

Alternate stope and pillar combinations will be removed 

5 during the primary mining stage, leaving the intermediate mining blocks 

(stopes and pillars) and backfill for ground control. Providing that 

i caving does not develop in the crown pillar above the primary mining . 

i blocks, there will be no noticeable surface effects during the primary 

mining stage due to mine rock distortion, (i.e. only very small elastic 

i deflections will occur in the rock). The design of a stable crown pillar 

is discussed in Section 3 of this report. 

i During primary mining, surface effects will then be restricted 

i to effects due to drawdown of groundwater resulting from the sink 

created by underground openings at atmospheric pressure. The quantities 

| of groundwater flow into the mine will depend largely on the permeabi ity 2, 

i of the crown pillar which forms the impervious barrier between the Li moe 

water-bearing overburden soils and the mine openings. Surface elev seit 

in the Mf fe Fei 
j Valio “as 1884
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j changes can occur as a result of dewatering of the overburden soils. 

_These potential surface effects are discussed below. 

| A 2.1 Drawdown of Groundwater , 

q This subject is currently being studied in considerable detail by the 

| company and their consultants. The results of the field work and subsequent 

q analysis will be available at a later date and can be used in a more rigorous 

| i assessment of soil deformation. Data available from earlier studies suggests 

that any water drawdown will produce only very small surface effects. 

| i 2.2 Subsidence Due to Overburden Consolidation | 

I Excepting the relatively thin deposits of recent origin (lacustrine | 

} and marsh), the overburden soils are not considered to be compressible - they 

| i are coarse-grained and have been preconsolidated (densified) by glacial action. 

i If the upper aquifer is preserved, there will be no subsidence due to compression ; 

| . jin the overburden. In the event that the upper aquifer is drained, the soil 

i compression would still be quite small. 

- From the soil identification and the data on Table 1 (underlined), it 

| I is estimated that the total surface subsidence could be less than 0.2 m. 

i In view of this estimate and the intent to preserve the aquifer level, we would 

| not consider further study of this problem necessary. If desired, however, 

i : consolidation testing of undisturbed samples of the overburden materials 

| would quantify the Srandienn-euietidenee relation more accurately. 

t 
| 2.3 Summary 

i With an adequate and stable crown pillar, surface effects during 

5 primary mining will be negligible or non-existent. Grouting will ikely wee nen outs 

be required in some locations, particularly towards the easterly 1] nivel cna ul 

| arte off | 
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i the orebody, to effectively isolate the groundwater from the mine openings 

i as mining progresses in the upper levels of the orebody. The extent of 

this grouting and the quantity of groundwater flow can only be accurately 

i known during the early development. If crown pillar stability can be 

o maintained during secondary mining, surface effects will, again, be 

i minimal during these operations. The design of the crown pillar and crown 

i eivier recovery are discussed in subsequent sections of this report. 

i . SECONDARY MINING STAGE i . 

In general, if gross rock distortions and failures develop, they do 

i so at this stage of mining. They can be avoided by proper mining sequence . 

and geometry followed by backfill. During the primary mining stage, the crown 

i : pillar is supported by rib pillars and backfill, but as secondary mining 

i proceeds, these pillars are mined leaving the crown pillar as the only solid 

! ore: Tight backfilling during stope and pillar mining supports the bottom 

f : of the crown pillar and thus prevents any surface effect - changes in elevation 

as well as in groundwater flows. It is only when pillars are removed and , 

i before fill can be placed that is considered to be the critical time. This 

i section of the report discusses the design of the crown pillar in order to 

achieve these results. If the crown pillar is structurally stable, there . 

i can be no surface effect due to stope and rib pillar mining. In all cases, 

a conservative approach to pillar design height has been taken, with priority 

i given to the factor of safety. 

i 3.1 Crown Pillar Design 

The geological assessment made by the Exxon geologists from von et 

5 of drill core-is that the top 50 to 100 feet of bedrock is generally modetere ye 
JOHN D SMITH a ‘8 
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: i to strongly supergene altered. The rock is strongly fractured with numerous 

i shear and gouge zones. Most of these effects are thought to be strictly a 

. product of surficial weathering and rapidly die out with depth, Recent analysis 

i of weathering intensity was performed by Exxon geologists using data from all . 

iy available drill holes. The degree of weathering was determined by such factors 

| i as oxidation, percentage of leached rock, development of clay and degree of 

| i fracturing. Four zones of different weathering intensity were defined, 

| including strong to weakly weathered material. Point load data measured 

i perpendicular to the rock foliation provides an estimate of the rock strength 

in the H.W. to F.W. direction and therefore can represent the strength of the 

I crown pillar in the expected loading direction. Point load tests were done 

| on a series of holes that intersected the orebody generally above the 140 m. 

| elevation, although the plan of the strength distribution of the 140 m. level 

i shows these data projected down to it. It was decided to correlate the 

i point load strengths with the four degrees of weathering intensity determined 7 

. by Exxon geologists. No correlation was found; the major reason being that 

| equal degrees of weathering in rocks of different strengths produce reduced, 

, yet dissimilar, strengths. For example, the ultimate strength of a moderately 

| weathered hanging wall chloritic rock may exhibit a strength below 3,000 

| psi. Because of this difference, it is not possible to relate crown pillar 

| strength to qualitative degrees of weathering. The basic strength criteria 

i is the point load strengths perpendicular to the rock foliations. 

| From point load strength data, the weakest zone was classified 

tI as anything that tested between 0 - 5,000 psi.* On the 140 m. level plot, 

J the average strength for this zone was 2945 psi in the H.W. - F.W. direction 

The method of estimating the transfer of inherent stress to the crown ay 

5 pillar must be empirical since the rock quality (hence stiffness) Jorn > re 

* inthe decal Hetil fuera 
i See Appendix "B" -"Creation of Rock-Strength Zones. by point Load S$ rengEhB bw av ese
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| a varies considerably with depth and degree of weathering. It is possible 

that the upper rock strata is badly fractured because, due to intense 

: i weathering of the weaker rocks, the inherent stresses have already exceeded | 

! ; the rock strength and some crushing has already taken place. For purposes 

| | of design, it can be considered that load transfer cannot take place 

| i within this material and there will be no "concentration factors"** as ore 

| is removed. To be conservative, it will be assumed that the strength of 

qf all material that lies in Zone 1 of the strength classification is zero, 

| i | and the minimum value of material lying in Zone 2 will be used, i.e. - | | 

| 5,000 psi. Subsequent testing during early development will verify the | 

| i operative rock strength. 

I The crown pillar cannot fail locally during stope mining or | 

! | pillar recovery or surface effect will result. This means that the roof 

| i beam (the bottom of the crown pillar) in the H.W. to F.W. direction must 

a be stable and this provides a basis for design. (Details of the theory 

i of this analysis are included in Appendix "B"). If one considers that 

| , the zero strength rock zone and the overburden soils provide the uniformly 

| applied load on the beam and the horizontal inherent stress provides the 

{ prestress, the height of the rock beam in more competent ground can be 

| calculated. | 

| 8 

| ** See Appendix "B" - "Theory of Stope Span Design”. SFA 
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i The following diagram illustrates the simply supported, 

5 * uniformly loaded beam column.* / 

—~—_-—S soe Seat | oS Oo : 

2 O,%s Coe fan = a 
oc of oO a Se o ola é | 7 

- «a 2 oe . © - °° i ee 

i a. dienes | 

ee 7 w7| Bre grenenh leo ooo 
| a Lydd | eo CROWN PILLAR 

” om : 1. rho | 
. i rns TE 

| i y MINED 

- AND 

, BACKFILLED 
: 

f . 

t | 2 | 
i * Refer to Appendix "A", Figure 2, for conceptual aid. 

The limit of stability for this beam is when the stress at the extreme 

| fibre at the centreline is zero and the rock is about to go into tension 

at this location. This is expressed by No, - oO, = 0. The inherent force 

1 _ 
eg field (o,) cannot be increased beyond the strength of the material by 

1 mining concentration factors. It was determined (refer to "Rock Mechanics 

Testing and Engineering of Large Diameter Core" September 1, 1981) that 

i the average inherent stress perpendicular to the foliations is 2122 psi 

{ with a standard deviation of 718 psi. Taking the statistical minimum 

{ 

of 2122 - 718 = 1404 psi, which is most conservative for design purposes, 

i and assuming a concentration factor of 3, 

no = (3) (1404) = 4212 psi. = 9m 

i : * : a : of 
But oy at the extreme fibre of a simply supported beam centreline is Sa, 

2 WS) A 

i Be i of KNE 
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i where W is the load per foot of beam, 2 is the span of the beam, 

5 and t is the height or thickness of the supporting beam. The weight 

per foot of beam is W = (d, + 1} Fag, where qd, is the depth of soil 

i cover, qd. is. the depth of zero strength rock plus the depth of the beam, 

| and Yavg. is the average bulk unit weight of the materials. 

I es 
BX ce = 4212 psi. 

i t 
| . ; 

' 2 = 4212 x 144 x 8 . 
| i Pa Wx 6 

zg = [4212 x 144 x4 . 
—————— xt 

i (d.+d)Yavg 2a ‘ 

i where & and t are in ft and W is in 1bs/ft of beam. This reduces to 

i / 4044 
| : 2 = (4s + ayy x 

{ 

= | where Yavg 200 1bs/cu. ft. 

| i Between 94,100E and 94,700E, (the eastern portion of the 
} ‘ 

crown pillar), the rocks and ore in the pillar run between 2 and 

i 6 in strength, as estimated for the 140 m. level from point load strength 

I data. This is a strength change of from 5 - 10,000 psi to over 40,000 psi 

! in a lateral direction perpendicular to the contacts. If no, = 4212 psi 

a is used, it can be seen that a considerable factor of safety will reat 

At this location, the bottom of the zero strength zone is above the ee 

i ‘ JOHN D. SMITH ff tog 
evgnaied Sf JALIS 
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i 
i 140 m level. As an example, if the qd. = 150 feet, the measured values of 

. qa. = 175 feet, and the variation in crown pillar span zg of 50 to 80 metres 

i can be used to calculate t. : 

i h = [ose t = 3.53¢ : 

i For 2 = 50m, t= 47 ft. (14.2 m) 

f i and for 2 = 80m, t= 75 ft. (22.7 m) 

| : To summarize, t is the depth of competent rock below the 

i zero strength zone required to support the overlying materials. - 

I In the region of 93920E to 94100E, the material on the 140m. — 

. level ranges from a strength classification of 1 to 5. Considering 

{ our-design assumption that zone 1 has zero strength, the bottom of the 

crown pillar must be below the 140 m. level. For example, if . 

q . qd. = 350 feet, qd. = 170 feet, the relationship becomes, 

t 2. PE ee art , 

| For a span of about 40 metres, t should be 47 feet or 14.3 m. 

t The next region to the west, located between 93780E to 93920E, 

| the rocks and ore are estimated on the 140 m. level to range between zone 

| 2 and 6 in strength. If qd. = 200 feet, and qd. = 190 feet, 

fi ve te t= 3.22 t. 

| For a span of 50 m, the required intact crown pillar thickness would 

be 51 feet or 15.5 m. and as the span increases to 70 m, the thickness 

q would increase to 71 feet or 21.7 m. ; . Sate 

From the western extremity of the orebody to section 93/0E pea 

I the material on the 140 m. level is predominantly of zone 1. eye 

i : , ye
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j load data on the 350 m. level indicates that the rock and ore strength 

on this level have improved to classification 4 or better. If it is j 

| i estimated that the bottom of the zero strength zone is near the 230 m. 

| i Jevel, qd. would be about 560 feet, d = 190 feet, and 

- v= [SS t= 2.32 t. 

| i 
For a span of 40 m., t must be equal to or greater than 57 feet (17.2 m) 

I and for a span of 70 m., t would need to be 99 feet or 30.2 m. 

' The dimensions of the crown pillar, by this. analysis, are ; 

‘ i dependent on the depth of overburden and rock, the depth of the zero 

i strength zone, the H.W. to F.W. distance at a given location, and the 

| magnitude of the lateral stress imposed by mining. The definition of the 

| | zero strength zone can be more accurately assessed with supplementary 

drilling and strength testing. The design basis presented in this 

| i section can be used again when further information is available to 

| i . produce what is considered to be a very conservative vertical height of 

crown pillar. Such a conservative design virtually assures, along with : 

| i the use of tight backfilling, that surface effect cannot take place 

: i during secondary mining. It should be kept in mind that much mining 

experience will have been gained before the more critical stages of 

| i secondary mining are begun and modifications to geometry and procedures 

can be implemented as the experience and engineering data become 

I available. 

i CROWN PILLAR RECOVERY . sat, 

The mining method and geometry outlined in this section shod") <2 

i | Be Seg ! Ea
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| i be treated as conceptual only. There has been no attempt to estimate 

| ’ mining costs or economics of this method but it is felt that it, or 

i a similar method, can effectively control surface effect while maximizing ~ 

i ore recovery. : , 

4.1 Mining Method and Geometry . 

| The bottom of the crown pillar will be located in reasonably 

| competent ground but the quality of the ore and abutment rocks wifl 

i deteriorate with increasing elevation as the surficial weathering and 

| i associated decrease in rock strength intensifies. This, along with the 

: need to control surface effect, suggests a mining method that does not 

| allow men and equipment to work beneath a stope back and at the same time . 

provides continuous support to the overburden soils. 

i Such a method is the sub-level V.C.R. cut and fill. This is 

5 a transverse mining method that has all development openings within . 

‘ the crown pillar itself, except for ore-pass cross-cuts. A slice, 

q about 15 feet long in the strike direction, full width in the H.W. - F.W. 

i direction, and possibly 130 feet high, would be mined by V.C.R. methods 

at each extremity of the orebody. Succeeding slices would be taken in 

i order, minimizing stress concentrations and maintenance on permanent 

openings. The general arrangement is shown in Figure 3.1 and 3.2 in the 

{ Appendix. As each.slice is blasted in 10 - 15 feet lifts by V.C.R. methods, 

I enough ore is mucked from the lower level to take care of the swell. In 

| this way, there is little or no void created and there is more or less 

‘{ continuous support on all sides by the broken ore. The V.C.R. method w \ 

chosen due to its excellent fragmentation, decreased vibration ves 

i potential for no void creation. When blasting reaches the next Deity ws Sati Fe 

in the Czcs ci Rete pps | a 2 | wea |
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i about 30 - 35% of the ore in the slice will have been removed from below 

and as the broken ore is drawn down, waste rock is added from the upper 

i level. The Radmark Stower could be used, in conjunction with scoop trams, 

i to keep the back supported with waste rock. Beyond the solid face some 

distance, tailings fill can be introduced from the upper level through 

, i blast-holes in order to "top-up" the waste rock and provide the maximum 

* support for the back. It should be noted the temporary and final backs 

I are blasted in a series of "V" patterns, with the drifts at the apex of. 

i the "V". This ensures that the fill can be placed tight to the back and 

when completed, access is still possible in the drifts, for mucking purposes. ; 

| i Model tests or simulation techniques should be conducted in 

order to establish the best spacing for drawpoint drifts, the angle of the 

| i blasting face, and the maximum vertical distance between drawpoint levels 

i with the purpose of maximizing ore recovery and minimizing éfiukion: 

It is possible that additional drawpoint elevations would be required. 

: i 7 At Avoca in Ireland, conventional rings using smal] diameter holes 

were drilled to produce a 75° inclined face. When a ring was blasted, . 

: i the blast energy compressed the fill, making a stronger, interlocked 

| j backfill that didn't dilute the ore and at the same time creating 

. enough void so that the desired fragmentation was achieved. 

i It is felt that the top drill and backfilling drifts can be 

placed about 30 feet below the overburden contact, thus allowing 

| i about 20 feet of rock cover. These will be in highly altered, weak 

i rocks and ground support will be needed. These drifts could be requir Boy 

before production mining begins for grouting purposes. If so, nO 

i Vahd a A 1984
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i 
i extended life suggests that grouted rock anchors, screening, and/or 

- shortcreting might not provide long term support. The use of Armco 

‘ i Mineway in the drifts plus tight backfilling to fill the void between the ~ 

i mineway and the rock should provide maintenance free access at this , 

elevation. Since this top elevation will only be a drilling, blasting 

| I and backfilling level for the crown pillar mining, the Armco sets never 

4 need to be removed. If ground conditions warrant, their use on mucking 

i levels might be required, as well, in which case, they must be designed 

| i for easy removal, as each succeeding slice is taken. 

There are several variations that can be used with the basic 

i mining method. Ground conditions on the lower level should be better 

due to increased rock strengths and it is possible that the stand-up time 

q for the wall rocks will be long enough for a slice to be completely mined 

| J out before backfill is needed. In this case, the previously placed waste . 

: rock must be stabilized with cemented tailings. This would delay the cycle 

| i time but less dilution from waste rock and stronger backfill would result. 

. The Radmark Stower need not be placed underground. The blower, power 

\ i pack and stower unit can be placed on surface where continuously feeding 

‘| the unit is more easily arranged. The pipe and nozzle are all that is 

required underground, so that stowing and conventional backfilling can be 

{ , carried on simultaneously. , 

The mining sequence separates the different operating functions 

i on the different levels. Only mucking is done on the bottom level of 

q a block. Loading and blasting is done on the next level up until ert 

through occurs and then only backfilling is done until the broken ore as 4 

i . ; Veng VE 1986
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i all been removed below. The third Jevel up would be used only for | 

| drilling, and if more intermediate levels are required to reach the 

| i grouting elevation, development would be underway on the 4th level. This | 

! i results in more efficient mining and a regular flow of broken ore to the 

7 | mill. Since mining is done on retreat towards the shaft, two mining faces 

| E are in production at any time. Depending on the width of the orebody at - 

- a given location, anywhere from 6 to 14 drawpoints would be available 

Tt Tor mucking. It is likely that the production rate of 14000 tons/day 

| | from underground would need revision downward during crown pillar mining. | 

| To illustrate, if the orebody is 165 feet in the H.W. to F.W. distance, . 

| | a 15 feet thick slice, one foot high, produces 280 tons/vertical foot of 

! hole in massive sulphide. This would require loading and blasting the 

| E equivalent of 25 feet of vertical height from each face per day. If the 

! ; tonnage factor for the stringer sulphide is used (10.67 cu.ft./ton), the 

| vertical height for each face would rise to 30 ft./day. To do this 

| i 7 amount. of work each day might not be possible. 

! By controlling the void space with this mining method, and | 

| | leaving a permanent remnant crown pillar to prevent even minor vertical | 

/ i movement of the overburden, surface effect should be minimal. However, 

| essentially the complete orebody has been removed and replaced with | | 

| i tailings and/or waste rock backfill... These materials are porous and | 

| i are therefore much more readily compressed into a smaller volume. This 

: characteristic presents the possibility of two potential long term 

: f mechanisms that can alter the ground surface and sub-surface ground: SPA 

water flow. These are discussed in the next section. Sh 1 7 
JOEN D. SNITH. Poh 
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i 4.2 Hanging Wall Stability 

Two possible cases of long term hanging wal] slumping (after 

I the removal of the crown pillar and backfilling) are envisaged. The . 

first would involve a rotational slump restricted to shallow depths in ‘ 

i the badly fractured upper rock strata identified towards the easterly , 

i end of the mine. The second would involve a wedge slump in the event 

that non-conformable planes of weakness daylight in the hanging wall. 

| i These cases are analyzed in the following sections. 

~ 4.2.1. Rotational Failure in the Hanging Wall 

i Figure 4 shows the geometry of a potential long term failure @ 

I in the weak upper strata of the hanging wall. The driving moments 

: causing the rock mass to rotate about the point C are given as 

| i Ny = (Wi, + Wo)?/2 where D is the failure depth, W. = 0.17502, is the 

. weight of the rotating rock sector and Wo = Dd Yo is the wale of . 

I overburden soil. The resisting moments are provided by shearing 

q resistance in the rock (Fr = =trAL) and pressure developed in the backfill 

(Fp = ZopAD). The resisting moments about the centre of rotation, C, 

| i are then, "R= FD + Fp, 2D. The forces, Wo» M.. F, and F, are 

shown as free body forces on Figure 4 and the appropriate values for 

| i Fo and io are developed below: 

| As noted on Figure 4, the rotational mechanism of failure is 

limited to badly fractured rock and could not extend below about 70 

| i metres in the hanging wall. The minimum strength that these badly 

| j fractured rocks could be assigned is a purely frictional resistance an 

| given by ¢ = 45°. To produce an estimate of the maximum possibre longi", 2 

i term subsidence due to rotational failure, a depth of 100 netred Wa» ifr ae
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| i 

| i be considered and » = 45° (tand = unity) will be assumed. The value 

, of Fr is obtained using the well known "method of slices", as outlined 

| i in detail on Figure 5. Since the length of the slip circle arc is 0.7D 

i (see Figure 4) the value of Fr gives an "equivalent average shear 

| strength" for the rock of 

tq Tavg. = 0.7D*%, = DY- = 3500 kPa 
. 0.7D 

f This value (3500 kPa) is approximately equal to 500 psi and is a very | 

i ; conservative value for the mass shearing strength of this upper rock 

strata. : 

| i The backfill pressure has two components. The pressure 

‘ existing in an at-rest position (no rock rotation) is estimated as , 

i "Py = Ko°v = K Zye , where Ko is the coefficient of ‘earth pressure at 

i rest, Z is the depth in the fill and ‘f is the bulk unit weight of the 

= backfill. This component of pressure has a triangular distribution, 

| i v8 from zero at point C to "bg = KyD’f at the depth of the failure arc. 

The second component is developed if the rock rotates into the backfill. 

{ i Again, the rotational displacement into the backfill will be zero at 

i point C and a maximum at the depth of the failure arc. If the backfill 

is considered to have an elastic response, the resistance to rotation 

'f will result in a similar triangular pressure distribution which can be 

; described by pressure at the depth of the failure arc in the form °pp = 

i Ké, where 6 is the rotational displacement of the rock (hence the 

i maximum surface subsidence) and K is called a sub-grade modulus and is RY 

the "spring constant" per unit area of backfill that is in contact whe 

i the rock. The method for obtaining a value for K is outlined o shag ene 

in the cless ch Of J. treet onics 

i cay a
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i Figure 6 and can be related to test data when a value for 6 is required. 

The total resisting force due to backfill is then given as 

| i D p 0 CG D i = = + = . Fp J p f Py * PP) KoPY + K6) /, 

| ; With all forces evaluated, an equilibrium subsidence can be obtained 

! ; by equating Mp = MR, giving | 

yd D 2, \K¥ = 2 2 L DA Yo + Q.175D Y-)3 0.7D y,)D + KD Ye + KsD)3 

| i which, by dividing by D@ # 0, and rearranging terms, yields the 

| f expression for ° as | 

_ 1 (34%) - —_ | | 6 = z A 0 0. 146Dy,. K Dre) | 

: i The value of 6 then predicts the maximum surface elevation change . 

| i occurring at a distance, D, from the backfilled mine (only positive | 

numbers are real since the direction of rotation is assumed; reverse | 

| i rotation (heave) would mobilize rock shear in the opposite direction | 

i and is not physically possible). | 

| | Results from recent backfill testing (refer to "Testing of | 

! i conventional, Pyrite Concentrate and Pyrite Slimes Backfill Materials - 

Crandon Project" September, 1981) may be used in this procedure. | 

i The major constituent of the backfill can be approximated by 

{ | sample 4 (the 10u split conventional tailings) and it's properties will be 

used in the assessment of surface effect presented in this section. . 

| i The bulk unit weight of the backfill would be 

a NT 
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. i 1.895 */45 x 9.81 x (1 + 0.25) = 23.2 KN/M® assuming Pd = 1.895 t, 
M 

: i and the retained moisture content at saturation equals 25%. The maximum | 

potential value of 6 is given with 

: e 3 q = J Yo 20 KN/M*, do 70 m 

: E Yr = 30 kN/M8, D = 100 m 

: | Y# = 23.2 KN/M3, K = 0.5 
/ . 0 
: E These values give 6 = eo metres. 

| | From test data on 15:1 T:C cemented tailings backfill sample 4, 

! ; | an average unconfined modulus of about 1.6 x 10° kPa was obtained (see ) 

: , Figure 7, for example). The approximate constrained modulus would be 

: given as E. = 1.6 x 105(1+v) / [04v) (1-2v)] where v = Poisson's ratio. 

| For this material, » would be about 0.35, giving ELF 2.6 x 10° kN/mé. | 

Constrained tests were carried out on cemented backfill sample 4, and 

i results are shown on Figure 8. Since the compression is non-linear, 

! E | a value for E. Should be obtained at an average value of the at rest | 

: pressure, *P = Dy , = 1000 kPa (see Figure 6). From Figure 8, it is 
| 2 | 

| ; seen that the average constrained compression index is .023/log cycle 

| at pressures above 600 kPa. The constrained modulus is given, from this 

| i data, as | | 
E = do | 

J " Fl 
: 0 ° 0 

= pp log Pot PP) 

i O 
: i 0.023 (1-n,) Po 

. i where no > initial porosity = 0.46 from Figure 8. n 

| i JOHN D, RT ee 
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i The above equation reflects the non-linear behaviour of cemented 

i , tailings and, since Spp is not known, an iterative solution would be 

necessary for an exacting calculation. It is noted, however, that Eo 

i increases as pp increases, and thus the lowest limit of Ee can be ; 

obtained by using a small nominal value of “pp = 500 kPa (just 

i sufficient to obtain the required decimal accuracy in the logarithmic 

| 5 calculation). For °p, = 1000 kPa and °pp = 500 kPa, E.=2.29 x 105 kPa. 

| _A value of Eo = 2.29 x 105 is assumed for the calculations of subsidence 

i (6) in this report. 

. Then from all the above, 6 = 502 = 502 d, (see Figure 6). ; 
| i K —— ; 

: c 

| a Thus, even for the largest value of de = 70 metres (maximum hanging 

wall to foot wall dimension), 6 = 3.5 x OME, or 6= 0.15 metres. 

a In our opinion, this calculation represents the worst possible condition. : 

‘ When weak fractured rocks are involved in rotational failures, there is 

i always an associated mass dilation (swelling or bulking) in the rock. 

i A rough estimate of this effect can be obtained from dilatancy factors 

used in earthemechanics. A minimal volume dilation would be 20% of the 

j rotational strain. Thus, volume increase would be AV = (0.26/p)V = 

i (0.03/p) (0.175D2) for the above case. This would be reflected, from 

the geometry of the circular section, in a reduction in subsidence of 

i - do 8AV pp giving the overall subsidence as 

6 = (3.5 x 10" - 0.04)m 

i Ee Se 
Be Ly 

Then, for the case in question, a more accurate estimate of the subsjdence:¢: 
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. effect in the event of a long term rotational failure in the weak upper 

J rock strata would be é= 0.15 - 0.04 = 0.11 metres (about 4.3 inches). 

No surface break would occur since this small subsidence would be | 

i moderated by the overburden. The ground distortion can be estimated as 

| 7 = 0-11 11 Q9 = 909° Figure 9 indicates that this distortion 

i would be allowable for all buildings, with essentially no noticeable 

i effect. 

—"—--4.2.2 Wedge Failure in the Hanging Wall , 

| i : If failure were to extend below the upper zone of fractured — | 

| rock, continuous planes of weakness such as faults, bedding planes 

| i | or fracture planes would have to exist. While these are not expected 

| i to occur in the Crandon Mine rocks, it 1s of interest to estimate the — | 

| effect of such weaknesses on long term subsidence. The maximum depth 

: i of mining, that is 600 metres, would be the most critical depth and 

oo | Figure 10 shows the free body forces acting on the sliding rock mass. 

| - The forces can be summed along the plane of failure to obtain an . 

| i equilibrium condition. | 7 

_ 
: Then (W. + Wo )sina - (F + F op + RC cos) = 0 | 

| i where: Wo = D(cotae + cot 80°) doy : 

! [ W. = D(cota + cot 80°) 

| if F = N tan ¢ 

: F ap = K (°/sina)D (considered constant, as shown). 

5 The normal force, N, is given as (W,. + Wo) cosa + De Sina and SE 

| : | Fe = K Der ¢/5 as previously calculated for the rotational sliding ee
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| i mechanism. Substituting into the equilibrium equation above, 

: , (W. + Wo)sina = (W. + Wo )cosa tang + K D@y_(sina tang + cosa )+6KD 
| = a . sing . \ 

| i Then, 6 = (W. + Wo) (sina -cosa tang) - KD*y-(sina tang + cosa) 

, KD/sina : 

i = (W. + Wo) (1 - tang/tana) - KD’, (tang + cota) 

KD/sin2a KD/sin2 o 

i It is apparent frem the above equation that no positive (downward) 

1 “movement is-possible unless a > ¢. The minimum value of ¢, even 

: for slickensided weak planes, would be # = 30°. Using this value, ‘ 

‘| together with the following values (introduced earlier): ; ‘ 

. = 3 = | Yo 20 kN/m>, qd, 70 m 

| [ y, = 30 kN/m?, D = 600m 

= 3 = : , | fi Ye. 23.2 kN/m°, Ky 0.5 . 

: K o= E/de = 2.29 x 105/70 coseca (due to inclination) 

i we obtain: 

a Bang! 0.577 
6 = sinta [3.18 (cota + 0.176)(1- ) -2.13(cota +0.577)] 

Y tana 

i For a = 45+ x = 60°, the calculated value of 6 is negative, thus 

indicating that the resisting forces due to rock friction (o = 30°) and 
a 
i the ‘at rest' lateral backfill pressure are sufficient to prevent any 

movement of rock wedges on weak planes. 

i 4.2.3 Summary 

} Calculations presented in the foregoing sections show that the 

potential for surface elevation change (subsidence) due to long terse ty 

i ZN RY 
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| f failure of the hanging wall is negligible (even if weak planes or 

fractured upper rock strata exist in the hanging wall), provided that 

| i the mine openings have been backfilled with either cemented or uncemented 

7 fill. | 

dt 
4 ELEVATION CHANGES DUE TO CROWN PILLAR RECOVERY 

- | The crown pillar mining method is designed to minimize the | 

| risk of caving during crown pillar recovery operations. In the 

_ Se Jong term, however, the remnant crown pillar cannot be expected to | 

| f | remain stable and back caving would be expected. The surface effect | | 

| due to caving can be minimized by backfilling tight to the back during | . 

: | crown pillar mining operations. The void space between the settled | | 

| | backfill surface and the rock back should certainly be less than 20% | 

_ of the thickness of the remnant crown pillar (i.e. less than 1 metre 

| i per 5 metres of rock remnant thickness) so that caving can be expected 

J | to be choked off before reaching the overburden soils. With the | 

: presence of overburden water, openings into the caved rock must be : 

if avoided to prevent possible piping and Joss of ground into the rock 

a. | voids. When the back caving is limited by tight filling, the overburden 

| i weight will be supported by arching in the overburden soils and backfill. 

| Low permeability cemented tailings should be used for backfilling the 

om crown pillar openings in areas where potentially high seepage could result | 

| i from remnant caving. This would eliminate the potential for loss of 

| ground and would reduce surface elevation changes. Where the maximum 

| i hanging wall to foot wall spans of about 70 metres exist in the PP SEL, 

| i levels of the orebody, elevation changes due to back caving would re, NA 

| JOHN D co the «Eng 

1 oY | 
, |



expected to be observed at the ground surface. With tight backfilling, 

: i surface elevation changes can be reduced to tolerable amounts associated 

| i with the elastic deflection in the rock surface above the initial caving 
ig | | . 

and the compression in the backfill due to imposed surcharge. The | 

: i maximum surface subsidence can be estimated by assuming that 50% of the . 

- overburden loading (700 kPa) will be directly supported by the backfill 

f _which compresses to a depth of 70 metres (span width) before the surcharge 

: i stress is transferred to the wall rocks. Then, 

- aH = HC, (1-n,) log Fig) : | 

i where AH = settlement (subsidence) 

| [ C, = 0.023 and n, = 0.46 from Figure 8 | | 

| a HH = 70 metres | 
| i | | f oH _ | 

Oo, = ( lo) 812 kPa 

| i oe = a, + (surcharge/2) = 812 + 406 = 1218 kPa. / 

, ' | These assumptions, which are believed conservative, give AH = 0.15 metres. 

ial Thus,:- surface Subsidence is not expected to exceed 0.15 metres (6 inches) | 

| i and may be substantially less than this value. | 

| : i CONCLUSIONS AND RECOMMENDATIONS | 

: 1. During primary mining, surface effects will be restricted to the 

7 small deformations caused by drawdown of ground water due to the 

| Sink created by underground openings at atmospheric pressure. | 

| i C. The till cover cannot be relied upon to isolate the upper 

| i aquifer from mining activities. sé 
: : mo 

: ee 

| i JOHN D. He | 
| Despneted JAECIAUS 
| | in the ciecs CUP gck Mechamcs | 

~ in the Kdfing reid 

y ° ; Vance unt! Apnl 1984 | 
. REED



I | a 

‘ - 26 7 = 

| i 3. From limited rock quality and permeability data available 

, for the rocks near the overburden contact, grouting may be | 

: i required to prevent upper aquifer drawdown. Any grouting done : 

: i should be near the top of the crown pillar. 

) 4, The overburden soils, except for the lacrustrine and marsh, 

| it are not considered compressible. If the upper aquifer 1s | 

. : drained, soil compression would still be quite small. | 

t 5. Ground water studies should be conducted during the early 

f | development program. | : | | 

. 6. The design basis used for crown pillar height calculations | 

| | is considered to be conservative and provides crown pillar 

» heights measured downward from the altered zone. (The oS 

! i altered zone 1S considered to have zero strength). 

i 7. The vertical height of the crown pillar is dependent on the 

| | depth of overburden and rock, the depth of the zero strength 

| j i | zone, the H.W. to F.W. distance, and the magnitude of the 

: | lateral stress in the crown pillar rock. | 

8. The exact extent of the zero strength zone can be better 

| ; defined during early development or supplementary drilling 

) and strength testing. 

i 9. Much mining experience and engineering data will have been 

| i obtained before the critical stages of secondary mining and 

. | if needed would be used to modify geometry and procedures to 

| i control surface effect. . D 

| 10. The conceptual mining method for the crown pillar is the SA4% 

| i transverse sub-level, V.C.R. cut and fill. Vertical oon b one 

: ~ !
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| transverse slices are mined using V.C.R. from the extremities 

7 : towards the shaft in such a way that ground support at all 

I times 1S provided by broken ore, a combination of broken ore : | 

| i | and waste rock, and waste rock. | 

i. Model tests or simulation techniques are suggested to optimize 

| i | a drawpoint drift spacing, horizontally and vertically, and the 

: angle of the blasted face. | 

: f 12. After all mining is completed, two potential H.W. failure 

§ 7 mechanisms could result in surface elevation changes. Taking | 

the worst conditions possible for a rotational failure mechanism, 

J the maximum surface subsidence is estimated to be about-0.11 | 

| 4 | meters (4:3inches). This would not create any surface damage. | 

| i | Backfilling will prevent any long term slumping of the hanging | 

{ . wall, even if continuous weak planes exist in this wall. - - 

7 13. The potential for noticeable surface elevation changes, due 

‘| to either hanging wall slump or crown remnant caving, 7s 

| _— negligible provided that the mined out openings have been | 

: i backfilled with either cemented or uncemented backfill. 

{ 14. Low permeability cemented tailings should be used for. 

. backfilling at the bottom of the remnant crown pillar in areas” 

| i where potentially high seepage could result from eventual 

| crushing and caving of this remnant. 

| i 15. In total, the maximum ground surface elevation change is not 

: | expected to exceed about 0.15 metres and could be substantially Q 
g [ . Sri? 

less than this value. | Seale 

i , | | JOHN OD suit fA Erig
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i The writers of this report look forward to discussing the 

design concepts and opinions expressed with the mine staff. The 

i writers are confident that a safe and viable mining operation can be 

J carried out at Crandon without causing any adverse or noticeable surface 

effect. The mining and engineering technology is available now and used 

| i in conjunction with the operational experience gained during mining, 

will produce the desired results. 

t oN . 
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TABLE 9-1 

Typical Properties of Compacted Materials 

° | | Seals Typical strength characteristics | 1 : 

Range Of | wings ot Tyrieal | phenee et 
G pmarimum | timum | AtLA | At 3.6 | coefficient of | Range of 1 7Cerede | 
rok Soil eype | dey unie Rr | Cohesion | _ | b(Eflective i at eel 8 | modulus | 

: | symbol | j weighs | moisture, wat tad. Gee | Cohesion | weds | permeebility | CBR values | ‘ i 

I mest | Pere (20 pad) 150 rs) pacsed) [rat | envelope) | vege | tenis. jIh/ewin. | 
\ | GH peal. | | degrees | | | ! 

* : 1 
GY | Well graded clean gravels, 1425-135) 11-8 0.3 0.6 9 0 >38 1 >0.79 3* 10-2 40-00 | 300- 500 | 

gtavel-sand mixtures. | | i 

| GP | Poorly graded clean gravels, WS- 125) W4-a 0.4 0.9 0 0 >37 >0.74 10°! 30 - © | 50 = 400 | 2 
gravel-sand mix. | . 

GM | Silty gravels, poorly graded 120-1351] 12-8 0.5 Md seunenees bexesssewss >34 >0.67 >10-6 20-60 |100- 400} 
geavel-sand-silt. : ' 

GC | Clayey gravels, poorly graded 13-130 | 14-9 0.7 1.6 gavewwonge: | cavemen > >0.60) >10-7 20-40 =| 100 - 300 | 
geavel-sand-clay. 

sv | Well geaded clean sands, gravelly | 110-130 | 16-9 0.6 1.2 0 0 38 0.79}  >10-3 20-40 =| 200- 300! 
sands. i 

SP | Poorly graded clean sands, 100-120 21-12 0.8 4 0 0 ” 0.74] = >10°9 10-4 =| 200- 300 ! 
j sand-gravel mix. i s 

SM | Silty sands, poorly graded sand- | 110-125] 16-11 0.8 1.6 1050 420 4 0.67 3 10-8 10-40 | 100.- 300 | 
silt mix, ' 

SM-SC | Sand-ailt clay mix with slightly | 110 - 130 | en 0.8 LA 1050 300 33 0.66] 210-8 | eeeeeeee ee | 
plastic fines. | ee | 

. sc Clayey sands, poorly graded 108-125! 19-11 Ly 2.2 1550 230 | TT 0.60 310-7 3-20 100 + 300 

sand-clay mix. | 
ML | Inotganic silte and clayey silee «| 95-120 | 24-12 0.9 1.7 1400 | 190 32 0.62 10-s 15 of less 10 = 200 | 

ML-CL | Mixture of inorganic silt and clay | 100-120 | 22-12 1.0 2.2 1350 460 32 0.62) S107 | o.cceeceee 
CL | Inorganic clays of low to med. 95 - 120 | 24-12 13 2.5 1800 270 2B 0.54 10-7 15 or leas | 50 - 200 ! 

plasticity. ' 

OL | Organic silts and silt-clays, low | 80-100] 33-21 | cceccvee [ecseceee | cveccceee | ceesceenee | sereeeeees | soese | seveeceveeee | Soetess | 50-100 
plasticity. | 

MH | Inorganic clayey silts, elastic 70-95 +14 2.0 3.8 1300 420 25 0.47] 3% 10-7 lOoctess | $0- 100 | 
silts. 

CH | Inorganic clays of high plasticity | 75-105] 36-19 2.6 3.9 2150 230 49 0.35 10-7 Is orlese | $0- 150 
ON | Organic clays and silty cleye... | 63-100 | 45-21 | secesece [eveeeeee | ceeeseveee [eeeeeeree Lecseeaens [evceed seeeeereeeee | Sorlese | 25-100 

Notes: 
REGISy 1. All properties are for condition of standard Proctor” maximum 3. Compression, values are for vertical loadiog with complete lateral 

‘ Ene density, except values of k aod CBR which are for “modified coafinement. 
oe Gh Proctor” maximum deasity. A (>) indicates that typical property is greater than the valve shown, | 

Fh\% \ : 2. Typical strength characteristics are for effective strength envelopes ~ (+) indicates insufficient data available for an eotimate. . 
7? pos . and are obtained from USBR data, : _ 
a > 
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i i (AL) Limitation on slope 

2 Type of constructioa Maximum slope® 

High continuous brick walle =005 to .001 

{ Brick dvellings +003 

Brick cladding betveen columns =001 : 

Reinforced concrete building frame -0025 to .004 

3 Reinforved concrete curtaln vall . -003 

. Simply supported steel frame 005 

{ i Similarly valuca are given by BJERRUM (1963), “tn Fig 6.25. 
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E APPENDIX "B" | 

| i | Creation of Rock-Strength Zones 

: f | by Point Load Strengths. | 

Theory of Stope Span Design. |



5 Creation of rock-strength zones by point load strengths : 

i Point Load Data . . Lo: 

i Point load data was analysed from holes: 143, 160, 169, 

i 170, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 

185, 188, 189, 190, 191, 193, 194, 197 and 198 to produce plans 

i and sections of the Crandon project illustrating strength variations 

in the rock. . 

i , Borehole 178 is taken as an example to illustrate the : 

i presentation of the data. (FIGURE 1). The hole extends from surface 

to just above the 130 level. Point load data were taken at recorded 

i footages along the hole. At each test point, a line perpendicular 

i to the hole was drawn. The length of the line was determined by 

_ the magnitude of the point load strength (and the 1" = 20,000 psi 

5 scale of the drawing). 

Strength contours were constructed parallel to the hole, 

i defining areas ] to 6. Each area represents a different strength 

i interval. 

j Area Strength Interval (psi) 

In some places, the 
i 1 G-5,000 sample core was split . 

2 5,000-10,000 prior to the strength 

3 10,000-15,000 test. These areas 
are represented on 

i 4 15,000-25,000 the drawings by "0". 

5 25 ,000-40,000 

i . “6 over 40,000 . 
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i THEORY OF STOPE SPAN DESIGN | 

5 | 

5 Stope Spans : 

| : | Roof beam span calculations can be done considering the 

: i 7 structural element to be a beam-column. This procedure has been 

| p used by the writer for over 17 years in the design of safe roof spans. 

: | Although it is not perfect, due to the inherent characteristics of 

| E rock masses and the difficulty in measuring them, it has always 

' provided a good base from which to make enaineering decisions. 

Basis for Design 

| i The following discussion has been taken from lecture notes 

: i prepared by the writer. __ 
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5 | a | | 

i | oe 
} The inherent stress component in the strike direction 

| i provides the prestress for the beam column and it is considered 

. i | that since the inherent stress in the HM. FW, direction is 

' | concentrated in the pillars, the beam loading comes largely From | 

| i —jts self-weight. The prestressed beam-column structural element | 

5 shown in the diagram allows for compression or tension in the bottom 

| E chord depending on the size of the beam considered, and the ratio 

! i | of vertical to horizontal loading. There are three possibilities 

| | for the condition of stress in the lower chord at the centre of the 

| i | uniformly loaced, simply supported prestressed beam-column. If the | 

| lateral stress has a horizontal component in compression less than . | 

: | - the tensile stress due to bending moment, the resultent extreme 

| i  €ibre stress at the centre will be tension. Somewhere along the | 

| | extreme fibre, however, will be compression. If the horizontal 

i stress is equal to the tensile stress, the bottom fibre at the : 

| i centre will be neutral, but at a short distance on either side of 

: os the centreline there will be compression. If the horizontal stress 

y is greater than the bending moment tensile stress, the bottom chord . 

| ~ will be in compression everywhere along its length. | 

: For design purposes, the worst condition would be to con- 

| ; cider the structural element as a simply supported, uniformly loaded . 

| beam with =dded horizontal prestress. Since, underground, the rock 

q in the back is not Simply supported, except in extreme cases of 

i failure, by using the elastic theory bending moment for a simply 

| | | , Gaot S$ S10v4) 
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| a ; 
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supported beam, a safety factor is built in because the bending 

i moment for a restrained-end beam is 1/3 times that for a simply 

i supported one. 

If one thinks of the roof as a slab of effective depth . 

i equal to the rock-bolt length or to the depth of some geological 

: contact in the roof and accept the worst possible condition, that 

I of simple beems one foot-wide placed side by side and supported 

i by the force field prestress, the result is the condition shown 

. below: ‘ 

rt | test tol 
a = eee Tt TE 

I ! : | | 1 
| a 

| * 
i | | 

| | 

I: jl Se 
~ (ee a an >| 

i 7 | j . 

o, = force ficid stress 

I n = multiplication factor cue io georetry ” 

i a, 7 unit fibre siress cue to bending ponent 

= depth of beem - inches . 

» : © r GOTT S Oa, 
Jf. = length of beem - ft. 2 & 

& 2 : maa 

j 
S py micas § 

multiplication factor and concentration factor are synonymous a 2) s 
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: From data obtained from an existing mine, the following 

i diagram was developed: 

I - 2000 +285 _ __ 

2ooe psi ———7 cm ee!) Se Sees) Gee - TTT ~7] 

l | i | 
| | _ 
Ft t=7 

i _——— 
bo NN 

12,000 P | 

| 2-4 
i ; 

l The average rock density was 190 1b/cu. ft., and n was determined 

i to be 6. For a simple beam, the unit fibre stress in the extreme - 

fibres will be 
i . . c . 

= a = i On +MX T 

i where M = W02 x 12 1b. - in. and I =pe@, W = 1330 1b/ft. 
. 8 C 6 

Then, o = 1330 x 452 x12 x 6 N eer 12 x 842 

i = + 285 p.s.i. (approx.) 

The isostress lines are almost horizontal with uniformly 

i large stress differences within short distences vertically. The 

i top fibre of beam would shorten by about 0.0077 inches and the bottom 

by ebout 0.64 inches. Such differences might be tolerated by rock 

i jf enough time is allowed. There would be a tendency to split along 
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horizontal shear planes which might be additive to the inherent 

i shear strains already in the rock. 

i To improve the condition, on must be increased such that 

at the centre of the beam the top and bottom extreme fibres shorten 

i the same amount. The following diagram shows such a condition. 

: 7.400 

i a a 

i == TT = 

i 12,980 ENN 
aS 

7 a ae 

| i Top fibre stress at midpoint jis oy + ny and the bottom fibre stress 

i at midpoint is no, - on with oy = 2000 p.s.i. and n= 6. For / 

equality, 2000 + a, = 6 x 2000 - oF ; 

| 

| i o,, = 5000 p.s.i., 

| but o. = WE2 x 12 x 6 fromo = Nc 
mn 2S a2 ie 

ll 
8 pi2 ] 

| i and from this, f = Gm, X & & BL ft. where b and d are in inches, 

: “Wx 12x6~ Wis in lbs/ft. of beam end 

i 
A = ft. 

: ff = 188 ft. approximately. 
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