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Abstract 

MECHANISMS OF ECOSYSTEM CARBON STORAGE AND STABILITY 

IN TEMPERATE BIOENERGY CROPPING SYSTEMS 

Adam C. von Haden 

Under the supervision of Professor Christopher J. Kucharik,  

Associate Professor Erika Marín-Spiotta, 

and Professor Randall D. Jackson 

at the University of Wisconsin-Madison 

Consumption of fossil fuels and conversion of native landscapes into agricultural systems 

has significantly increased atmospheric CO2 and caused a shift in the global climate, which 

threatens to harm humans and the ecosystems on which they rely. Current U.S. legislation 

requiring the production of biofuels from agricultural systems seeks to reduce net CO2 emissions 

by providing a carbon neutral fuel feedstock and by sequestering additional carbon (C) 

belowground in soils and plant biomass. Owing primarily to greater belowground C allocation, 

perennial, cellulosic-based bioenergy cropping systems are generally expected to provide greater 

C sequestration than annual, grain-based systems, but few direct comparisons exist. Moreover, C 

sequestration among cropping system types is likely to be context-dependent, and thus a deeper 

understanding of the mechanisms underlying major ecosystem C processes is necessary to make 

predictions of C storage potential across a wider range of conditions. Accurate predictions are 

needed to help inform land management and environmental policy decisions. 

The broad objective of this work was to gain a better understanding of the mechanisms 

that drive key ecosystem C process and therefore control ecosystem C storage and stability. In a 

comparison between no-till maize (annual) and switchgrass (perennial), maize had a slightly 

more favorable net ecosystem carbon balance (NECB) during the two study years. Autotrophic 
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respiration from roots (RA), heterotrophic respiration from soil and litter decomposition (RH), 

and residue retention rates all differed between the two cropping systems. RA was much greater 

in switchgrass than maize, owing both to greater respiratory growth demand and to more 

extensive root biomass stocks, which require continual maintenance respiration. Seasonal 

differences in soil temperature and soil moisture (soil microclimate) existed among cropping 

systems, and the differences were hypothetically large enough to moderately affect annual RH, 

but the soil microclimates could not explain the observed RH differences between the cropping 

systems. Changes in the aggregate and mineral-associated soil organic C fractions five years 

after cropping system establishment were more favorable on fine-textured soils, under high 

above- and belowground litter input rates, and with high quality (low C:N) litter. 

These results illustrate that greater belowground C allocation in perennial biofuel 

cropping systems may not translate into greater ecosystem C storage since the conversion of 

belowground C allocation into biomass is less efficient than in annual cropping systems. Site-

specific properties such as soil texture will most likely influence the short-term C storage 

potential of bioenergy cropping systems and thus must be explicitly considered when making 

predictions. In line with established views regarding the importance of residue return in 

traditional row crop systems, the quantity of aboveground biomass that is harvested from 

bioenergy cropping systems will likely have a strong influence on the NECB, and thus the 

benefits of high biomass harvest must be weighed against the potential costs of C loss from soils. 

Site- and crop-specific management practices will therefore have a considerable influence on the 

overall potential for belowground C storage in annual and perennial bioenergy cropping systems 

across the landscape.  



iii 

 

Acknowledgements 

This work would not have been possible without the dedication of many individuals who 

have contributed directly or indirectly throughout the years. I would first like to thank my co-

advisors, Chris Kucharik, Erika Marín-Spiotta, and Randy Jackson, who have all helped me 

become a better scientist and citizen. I am greatly indebted to them for giving me the opportunity 

to be a part of their research programs, and I look forward to continued collaborations. I also 

want to thank my other committee members, Matt Ruark and Mark Rickenbach, for challenging 

me to think less about carbon and more about the bigger picture (and sometimes nitrogen).  

Gary Oates coordinated many of the field measurements and ran many of the plant and 

soil samples for carbon and nitrogen. Gregg Sanford was always there to answer my never-

ending supply of questions was very accommodating of my field needs. Jimmy Sustachek was a 

dependable conduit between myself and the unpredictable world of Area 4.1. Thanks to the field 

crews for all their hard work and dedication: Casey Menick, James Tesmer, Alex Butz, Mark 

Walsh, Haley Melampey, Becca Fahney, Dylan Gawne, Alex Henkel, Alice D’orlando, and 

Bleuenn LeSauze. In addition, Cadan Cummings, Chris Cavadini, Brett Dvorak, Coleton King, 

and Claire Rebman provided tremendous assistance with field and lab measurements. 

Thanks to everyone past and present in the Kucharik, Marín-Spiotta, and Jackson lab 

groups for providing a constructive environment. I especially want to thank Mike Cruse, Laura 

Szymanski, and Emily Atkinson for their help with getting me started with various methods early 

on. Conversations with Anna Cates, David Duncan, and Laura Smith were always enjoyable. 

Finally, I want to thank my family for everything they have done for me. My parents, 

Chuck and Diane, and my sister, Mallory, have always been there for me. Erin has been very 

understanding and supportive of my needs during graduate school, and for that I am thankful. 



iv 

 

 Table of Contents 

  

Abstract ........................................................................................................................................... i 

Acknowledgements ...................................................................................................................... iii 

Table of Contents ......................................................................................................................... iv 

Chapter 1 Introduction................................................................................................................. 1 

1.1 Motivation ............................................................................................................................ 1 

1.2 Objectives............................................................................................................................. 4 

1.3 References ............................................................................................................................ 6 

1.4 Figures ................................................................................................................................ 10 

Chapter 2 Annual ecosystem carbon balances in long-term no-till maize and mature 

switchgrass bioenergy cropping systems: evaluating methods and processes ...................... 11 

Abstract .................................................................................................................................... 11 

2.1 Introduction ....................................................................................................................... 12 

2.2 Methods .............................................................................................................................. 15 

2.2.1 Study site ...................................................................................................................... 15 

2.2.2 Canopy net photosynthesis ........................................................................................... 16 

2.2.3 Soil respiration............................................................................................................. 17 

2.2.4 Biometric measurements .............................................................................................. 19 

2.2.5 Model fitting and computations ................................................................................... 22 

2.3 Results ................................................................................................................................ 22 

2.3.1 Leaf-level net photosynthesis models ........................................................................... 22 

2.3.2 Growing season conditions and plant canopy dynamics ............................................. 23 

2.3.3 Ecosystem C fluxes and C balance .............................................................................. 24 

2.3.4 Sensitivity analyses ...................................................................................................... 25 

2.4 Discussion........................................................................................................................... 25 

2.4.1 NEP and NECB ............................................................................................................ 25 

2.4.2 Ecosystem C fluxes ....................................................................................................... 28 

2.4.3 Methods considerations ............................................................................................... 30 

2.4.4 Implications for bioenergy crop production ................................................................ 32 

2.5 Conclusions ........................................................................................................................ 34 

2.6 Acknowledgements ........................................................................................................... 35 

2.7 References .......................................................................................................................... 35 

2.8 Tables and figures ............................................................................................................. 42 

2.9 Supplemental methods ..................................................................................................... 50 



v 

 

2.9.1 Canopy net photosynthesis ........................................................................................... 50 

2.9.2 Canopy net photosynthesis sensitivity analyses ........................................................... 59 

2.9.3 Heterotrophic respiration correction .......................................................................... 62 

2.10 Supplemental references ................................................................................................ 63 

2.11 Supplemental tables and figures .................................................................................... 66 

Chapter 3 Autotrophic soil respiration in maize and switchgrass bioenergy cropping 

systems: an assessment of the growth-maintenance respiration framework at the ecosystem 

level ............................................................................................................................................... 76 

Abstract .................................................................................................................................... 76 

3.1 Introduction ....................................................................................................................... 77 

3.2 Methods .............................................................................................................................. 79 

3.2.1 Study site ...................................................................................................................... 79 

3.2.2 Autotrophic soil respiration ......................................................................................... 80 

3.2.3 Belowground growth and biomass............................................................................... 81 

3.2.4 Soil temperature, moisture, and soil properties........................................................... 84 

3.2.5 CO2 diffusion time lag .................................................................................................. 85 

3.2.6 Photosynthesis.............................................................................................................. 87 

3.2.7 Autotrophic soil respiration model .............................................................................. 88 

3.3 Results ................................................................................................................................ 89 

3.3.1 Seasonal and diel patterns ........................................................................................... 89 

3.3.2 Diel RA models ............................................................................................................. 90 

3.3.3 Seasonal predictions .................................................................................................... 91 

3.4 Discussion........................................................................................................................... 92 

3.4.1 Growth and maintenance respiration differed between plant types ............................ 92 

3.4.2 Lag times between photosynthesis and RA were detectable in maize .......................... 95 

3.4.3 Root temperature affected RA ....................................................................................... 96 

3.4.4 Strengths and limitations of the approach ................................................................... 97 

3.5 Conclusions ...................................................................................................................... 100 

3.6 Acknowledgements ......................................................................................................... 101 

3.7 References ........................................................................................................................ 101 

3.8 Tables and figures ........................................................................................................... 106 

3.9 Supplemental tables and figures .................................................................................... 116 

Chapter 4 Soil microclimate in temperate bioenergy cropping systems: implications for C 

loss via heterotrophic soil respiration ..................................................................................... 118 

Abstract .................................................................................................................................. 118 



vi 

 

4.1 Introduction ..................................................................................................................... 119 

4.2 Methods ............................................................................................................................ 121 

4.2.1 Study site .................................................................................................................... 121 

4.2.2 Soil temperature and moisture ................................................................................... 122 

4.2.3 Heterotrophic soil respiration ................................................................................... 123 

4.2.4 Ancillary measurements ............................................................................................. 125 

4.3 Results .............................................................................................................................. 126 

4.3.1 Weather, leaf area index, and snow depth ................................................................. 126 

4.3.2 Soil temperature and moisture ................................................................................... 127 

4.3.3 Heterotrophic soil respiration ................................................................................... 129 

4.4 Discussion......................................................................................................................... 130 

4.4.1 Less extreme soil temperatures in perennial systems ................................................ 130 

4.4.2 Soil moisture microclimate varies with depth ............................................................ 132 

4.4.3 Soil microclimate affects modelled C loss ................................................................. 133 

4.5 Conclusions ...................................................................................................................... 135 

4.6 Acknowledgements ......................................................................................................... 136 

4.7 References ........................................................................................................................ 136 

4.8 Tables and figures ........................................................................................................... 140 

4.9 Supplemental figures ...................................................................................................... 151 

Chapter 5 Soil texture and litter inputs control changes in soil organic carbon fractions 

under bioenergy cropping systems of the North Central U.S. .............................................. 157 

Abstract .................................................................................................................................. 157 

5.1 Introduction ..................................................................................................................... 158 

5.2 Methods ............................................................................................................................ 160 

5.2.1 Sites and cropping systems ........................................................................................ 160 

5.2.2 Soil density fractionation ........................................................................................... 163 

5.2.3 Microbial biomass C .................................................................................................. 164 

5.2.4 Statistical analyses ..................................................................................................... 165 

5.3 Results .............................................................................................................................. 166 

5.3.1 Density fractions and MBC ........................................................................................ 166 

5.3.2 Litter inputs ................................................................................................................ 167 

5.3.3 SEM ............................................................................................................................ 168 

5.4 Discussion......................................................................................................................... 168 

5.4.1 Soil texture and litter influence SOC fraction changes ............................................. 168 

5.4.2 Short-term C:N trends were evident in all fractions .................................................. 170 



vii 

 

5.4.3 Implications for bioenergy production ...................................................................... 171 

5.5 Conclusions ...................................................................................................................... 173 

5.6 Acknowledgements ......................................................................................................... 174 

5.7 References ........................................................................................................................ 175 

5.8 Tables and figures ........................................................................................................... 179 

5.9 Supplemental tables and figures .................................................................................... 188 

Chapter 6 Implementation of the root regression approach for partitioning soil respiration: 

theoretical and methodological considerations ...................................................................... 190 

Abstract .................................................................................................................................. 190 

6.1 Introduction ..................................................................................................................... 191 

6.1.1 Theoretical framework and underlying assumptions ................................................. 191 

6.2 Methods ............................................................................................................................ 193 

6.2.1 Literature survey ........................................................................................................ 193 

6.2.2 Field study .................................................................................................................. 194 

6.3 Results and discussion .................................................................................................... 196 

6.3.1 Implementation considerations and strategies .......................................................... 196 

6.4 Conclusions ...................................................................................................................... 197 

6.5 Acknowledgements ......................................................................................................... 197 

6.6 References ........................................................................................................................ 198 

6.7 Tables and figures ........................................................................................................... 202 

Chapter 7 Conclusions .............................................................................................................. 208 

7.1 Summary .......................................................................................................................... 208 

7.2 Synthesis and future work ............................................................................................. 210 

7.3 Concluding remarks ....................................................................................................... 212 

7.4 References ........................................................................................................................ 212 

 



1 

 

 

 

Chapter 1 

Introduction 

1.1 Motivation 

Humans have significantly altered the Earth’s climate, causing shifts in temperature and 

precipitation regimes that threaten societies and the ecosystems on which they depend (IPCC 

2015; Lewis & Maslin 2015; Scheffers et al. 2016). Since the industrial revolution, global 

surface temperatures have risen 0.78 °C, polar ice sheets have melted at faster rates, and mean 

sea level has risen 0.19 m (IPCC 2015). Climate change has directly and indirectly increased 

human health risks, threatened food and water security, and exacerbated losses of crucial 

ecosystem services (IPCC 2015; Pecl et al. 2017; Tilman et al. 2017). Although the ramifications 

of climate change are felt globally, developing countries and disadvantaged people are 

disproportionally affected (Mora et al. 2013; Dennig et al. 2015; IPCC 2015). Without 

significant and timely intervention, global climate change will continue to accelerate, and the 

effects will become effectively irreversible (Solomon et al. 2009; Mora et al. 2013; Bahn et al. 

2014; IPCC 2015). 

The majority of climate change forcing is attributed to human alterations to the global 

carbon (C) cycle in the form of a 40% increase in atmospheric CO2 concentration since 1850 

(Keeling 1997; IPCC 2015). Approximately two-thirds of the historic increase in atmospheric 

CO2 stems from fossil fuel combustion, while the remaining one-third is a consequence of land 

use and land cover change (IPCC 2015). Most of the CO2 emissions associated with land use and 

land cover change have come from the expansion of agricultural lands, with losses from soils 

comprising a significant portion of those CO2 emissions (Houghton & Nassikas 2017; 



2 

 

 

 

Sanderman et al. 2017). A positive feedback between climate warming and soil organic carbon 

(SOC) loss threatens to exacerbate climate change (Crowther et al. 2016; Hicks Pries et al. 2017; 

Melillo et al. 2017). Thus, the response of soils to climate change and concurrent heightened 

agricultural demands will play a central part in future human well-being (Amundson et al. 2015; 

Smith et al. 2015). 

Biological sequestration of atmospheric CO2 in soils has been proposed as one part of the 

overall strategy to mitigate global climate change (Pacala & Socolow 2004; IPCC 2015; 

Minasny et al. 2017). Globally, soils store approximately three times as much C as the 

atmosphere (Schlesinger & Bernhardt 2013), and thus it is generally thought that soils can 

provide a substantial sink for atmospheric CO2 (Lal 2004). In addition, the economic cost of C 

sequestration in soils is low and the technological requirement is relatively small compared to 

other means (Smith 2012; IPCC 2015). For example, implementing no-till agricultural practices 

or converting degraded agricultural lands to perennial vegetation have generally been shown to 

build SOC stocks (Post & Kwon 2000; Angers & Eriksen-Hamel 2008; Kopittke et al. 2017). As 

an added benefit, when SOC sequestration occurs on agricultural soils, increased agricultural 

productivity, nutrient retention, and water holding capacity may also be realized (Lal 2004). 

Considering that the current annual fossil fuel C emission rate is three times larger than 

the annual rate of C uptake in terrestrial ecosystems (Le Quéré et al. 2016), reducing fossil fuel C 

emissions is a top priority for mitigating global climate change (IPCC 2015; Boysen et al. 2017; 

Walsh et al. 2017). In 2007, the United States Congress passed the Energy Independence and 

Security Act (EISA), which was aimed in part at reducing net fossil fuel emissions (Pub. L. No. 

110-140). The Renewable Fuel Standard created by EISA mandates the production of 136 billion 

liters per year of biofuel by 2022, of which 61 billion liters must be derived from cellulosic 
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feedstocks (Pub. L. No. 110-140). Compared to fossil fuels, biofuels can reduce net CO2 

emissions by providing a renewable energy source that effectively recycles atmospheric CO2 in 

lieu of adding fossil-derived CO2 to the atmosphere (Robertson et al. 2011). 

To fully assess the net C impact of bioenergy cropping systems on atmospheric CO2, it is 

necessary to consider the full biofuel life cycle including the effects on ecosystem C storage 

(Davis et al. 2009; Robertson et al. 2011). Perennial, cellulose-based biofuel systems are 

generally considered to provide greater C storage potential than annual, grain-based biofuel 

systems largely due to less soil disturbance and greater plant-derived belowground C allocation 

(Holland et al. 2015; Robertson et al. 2017). However, there is a high amount of uncertainty 

regarding the rate and even the direction of C change under different biofuel cropping systems 

(Qin et al. 2016). For example, the current SOC stock, previous land use, and rates of residue 

removal are important determinants of SOC change (Bellamy et al. 2005, Qin et al. 2016), and 

SOC storage potential varies as a function of climate and edaphic properties (Doetterl et al. 2015; 

Luo et al. 2017). Thus, generalizations regarding the efficacy of C storage for a given bioenergy 

cropping system are difficult (Robertson et al. 2017). 

To properly inform biofuel policy and land management decisions, ecosystem models 

must be used to make predictions of C storage under different scenarios and contexts (Campbell 

& Paustian 2015). Considering that many potential bioenergy crops have not been widely 

studied, many of the mechanisms required to adequately model ecosystem C dynamics have not 

been well quantified (Nair et al. 2012; Qin et al. 2015). Furthermore, belowground ecosystem C 

processes in general are much less understood than their aboveground counterparts (Norby & 

Jackson 2000), and thus belowground processes are more coarsely represented in many 

ecosystem models (Smithwick et al. 2014). Thus, improvements to belowground components of 
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ecosystem models are necessary to better predict C cycling in biofuel cropping systems and in 

other land use change scenarios (Nair et al. 2012; Campbell & Paustian 2015). 

 

1.2 Objectives 

The overarching objective of my research was to better understand the mechanisms 

contributing to belowground C storage in bioenergy cropping systems so that improved 

predictions of ecosystem C storage under land use change scenarios could be made. While all 

major ecosystem C processes were considered, my research largely focused on belowground 

processes including autotrophic soil respiration from roots (RA), heterotrophic soil respiration 

from decomposers (RH), and SOC stabilization (Fig. 1.1). 

In Chapter 2, I evaluated the annual ecosystem C balance in long-term no-till maize and 

post-establishment phase switchgrass bioenergy systems, and I determined the processes that 

were most important for ecosystem C storage. Since maize and switchgrass are annual and 

perennial biofuel systems, respectively, I expected that switchgrass would have a more favorable 

C balance due to increased belowground inputs. I used multiple in situ approaches to estimate 

annual C fluxes of net photosynthesis, aboveground net primary production, belowground net 

primary production, RA, and RH. 

In Chapter 3, I sought to better understand the physiological basis for differences in RA 

between maize and switchgrass to improve the representation of root respiration in ecosystem 

models. Considering that maize is a fast-growing annual plant and that switchgrass is a slower-

growing perennial, I hypothesized that maize and switchgrass would have differences in the 

quantity of C allocated to growth and maintenance root respiration. I used in situ diel and 
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seasonal soil respiration measurements to parametrize and validate a mechanistic root respiration 

model and subsequently elucidate physiological differences between species. 

In Chapter 4, I investigated whether differences in soil microclimate (i.e. soil temperature 

and soil moisture) among bioenergy cropping systems were sufficient to drive differences in 

annual ecosystem C losses from RH. I expected that less extreme soil temperature and moisture 

regimes would be found under perennial systems, and that the contrasting soil microclimates 

could cause seasonal differences in RH. I used six years of high-frequency soil temperature and 

moisture data to illustrate temporal differences in soil microclimate, and I parametrized a simple 

model to evaluate the direct effects of soil temperature and soil moisture on RH. 

In Chapter 5, I examined changes in SOC fractions five years after bioenergy cropping 

system establishment to better understand the mechanisms underpinning bulk SOC change. I 

expected that changes in SOC fractions would be related to crop- and site-specific differences in 

plant litter input quantity, litter quality (i.e. C:N), and soil texture (i.e. clay content). This study 

encompassed four bioenergy cropping systems and was performed at two sites with contrasting 

soil textures. I used a density-based fractionation method to isolate three SOC fractions from 

archived soil samples taken in 2008 and 2013, and I used measurements of above- and 

belowground litter inputs to better understand the changes within each fraction. 

In Chapter 6, I outlined the root regression method for separating RA and RH in situ. 

While the method has been suggested as an effective approach for separating the two sources of 

respiration, the assumptions, limitations, and logistical considerations have not been thoroughly 

elucidated. I used a literature survey and field-based measurements to evaluate the potential use 

of the root regression method under different circumstances. 
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1.4 Figures 

 

 

Figure 1.1 – Major ecosystem carbon fluxes within a hypothetical temperate bioenergy cropping 

system. The arrow widths are proportional to the flux sizes. 
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Chapter 2 

Annual ecosystem carbon balances in long-term no-till maize and mature switchgrass 

bioenergy cropping systems: evaluating methods and processes 

von Haden, A.C., Marín-Spiotta, E., Jackson, R.D., Kucharik, C.J. 

Target journal: Agriculture, Ecosystems & Environment 

Abstract 

As biofuel production continues to rise, feedstock selection decisions will have larger 

consequences for ecosystem carbon (C) storage. Although perennial cropping systems such as 

switchgrass are generally thought to sequester more C relative to annual systems such as maize, 

few direct comparisons have been made, particularly in long-term no-till maize and post-

establishment phase perennial systems. We used two methods based on net photosynthesis and 

biometric measurements, respectively, to estimate net ecosystem production (NEP) in 8- and 9-

year-old no-till maize and switchgrass bioenergy cropping systems on highly productive soils in 

south central Wisconsin. Both methods indicated that annual NEP was considerably greater in 

maize than switchgrass for both study years, but the methods showed better agreement for 

switchgrass. Differences in canopy net photosynthesis, autotrophic soil respiration, and 

heterotrophic soil respiration all contributed to divergent NEP estimates between crops. After 

accounting for harvested C, the average net ecosystem carbon balances (NECB) were -100 ± 22 

and 145 ± 74 for maize and -241 ± 85 and -267 ± 56 for switchgrass using the photosynthesis 

and biometric methods, respectively. The relatively favorable NECB of maize could stem from 

low residue harvest, no-till management, and low-stress growing conditions during the years of 

study, while the relatively unfavorable NECB of switchgrass could be a result of the older stand 
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age or switchgrass cultivar. Although there are many other important ecological and economic 

considerations with biofuel feedstock selection, mature switchgrass does not appear to enhance 

ecosystem C sequestration relative to no-till maize at our highly productive site. 

 

2.1 Introduction 

Between 2007 and 2016, U.S. consumption of biomass-based ethanol fuels more than 

doubled, with most of the ethanol being produced from maize (Zea mays L.) grain (U.S. EIA 

2017). As the U.S. transportation sector continues to rely more heavily on biofuels, feedstock 

selection and other land management decisions will have increasingly greater impacts on net 

carbon (C) emissions and ecosystem C storage (Robertson et al. 2011). Biofuel cropping systems 

have the potential to reduce net C emissions by providing a non-fossil renewable fuel source and 

through removal of atmospheric CO2 via enhanced C sequestration in soils (Adler et al. 2007; 

Follett et al. 2012). Annual biofuel cropping systems such as maize may only offer marginal net 

C reductions over conventional fuels (Hill et al. 2006), although improved management practices 

such as conservation tillage and cover cropping often improve C storage potential (Post et al. 

2004). Perennial, cellulosic biofuel feedstocks such as switchgrass (Panicum virgatum L.) are 

expected to offer greater net C reductions due to reduced external inputs and improved 

ecosystem C sequestration (Robertson et al. 2011). Yet, few empirical studies have directly 

compared ecosystem C changes between annual and perennial bioenergy cropping systems. 

Temporal changes in ecosystem C storage can be calculated as the change in soil organic 

carbon (SOC) stocks plus the change in above-and belowground plant biomass C stocks. 

However, due to high SOC spatial variability, short-term changes in SOC are notoriously 

difficult to detect, and more than a decade is required to detect typical management-induced 
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SOC changes with most soil sampling schemes (Necpálová et al. 2014). Eddy covariance 

systems can provide high-frequency estimates of net ecosystem C exchange, but they require 

large fetch areas in the range of 150 to 200 m for biofuel cropping systems (Bhardwaj et al. 

2011) and therefore are not practical for most replicated field trials. Importantly, neither method 

provides comprehensive estimates of detailed ecosystem C processes such as net canopy 

photosynthesis, autotrophic soil respiration, and heterotrophic soil respiration. Thus, while C 

stock and eddy covariance methods can provide estimates of ecosystem C change among 

different agronomic systems, the ecosystem-level processes underlying C change remain 

unresolved with these approaches. 

Two other approaches, the photosynthesis method (Arkebauer et al. 2009) and the 

biometric method (Cahill et al. 2009), can be used independently to estimate net ecosystem 

production (NEP), and when combined they may provide more detailed insight into ecosystem C 

processes. Each method uses an independent approach to estimate NEP. Net ecosystem 

production is equal to the difference between gross photosynthetic C uptake and ecosystem 

respiratory C loss (Woodwell and Whittaker 1968; Chapin et al. 2006): 

𝑁𝐸𝑃 =  Gross photosynthesis – (leaf respiration +  total soil respiration)  (2.1) 

Typically, gross photosynthesis and respiration are not measured separately but instead 

are integrated into net photosynthesis (i.e. gross photosynthesis minus leaf respiration). Thus, the 

photosynthesis (PS) method quantifies NEP as the difference between net photosynthesis and 

total soil respiration (Arkebauer et al. 2009): 

𝑁𝐸𝑃𝑃𝑆  =  Net photosynthesis –  total soil respiration     (2.2) 
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However, scaling leaf-level photosynthesis to the canopy-level can be challenging, due in 

part to the complex interactions between the plant canopy structure and light attenuation. 

Alternatively, the biometric (BM) approach estimates NEP as the difference between net primary 

production and heterotrophic soil respiration (Cahill et al. 2009):  

𝑁𝐸𝑃𝐵𝑀  =  Net primary production –  heterotrophic respiration    (2.3) 

Heterotrophic respiration is particularly difficult to measure, because it requires 

partitioning total soil respiration into root-derived (autotrophic) and microbial-derived 

(heterotrophic) respiration. While several approaches for partitioning total soil respiration into 

the source components exist, all approaches have inherent limitations (Subke et al. 2006). 

The net ecosystem carbon balance (NECB) represents the difference between NEP and 

other C fluxes such as methane, dissolved C leaching, and erosion (Chapin et al. 2006). In 

agronomic systems, the primary C flux is biomass harvest. Therefore, for the two methods: 

𝑁𝐸𝐶𝐵𝑃𝑆   =  Net photosynthesis –  total soil respiration – harvest   (2.4) 

𝑁𝐸𝐶𝐵𝐵𝑀  =  Net primary production –  heterotrophic respiration – harvest  (2.5)  

While both photosynthesis and biometric methods have inherent challenges, using both 

methods simultaneously generates two separate estimates of NEP and NECB, allowing an 

additional assessment of uncertainty. Our overall objective was to assess NEP and NECB in 

maize and switchgrass bioenergy cropping systems using both the PS and BM methods. In doing 

so, we explored the ecosystem C processes most responsible for divergences in NEP and NECB 

between cropping systems. 
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2.2 Methods 

2.2.1 Study site 

This study was undertaken within the DOE-Great Lakes Bioenergy Research Center’s 

Biofuel Cropping Systems Experiment (BCSE) at the Arlington Agricultural Research Station in 

southcentral Wisconsin, USA (43.296° N, 89.380° W). Soils at the site are dominated by Plano 

silt loam, which is classified as a Fine-silty, mixed, superactive, mesic Typic Argiudoll (Soil 

Survey Staff 2017). Thirty-year (1981-2010) site mean annual temperature and precipitation are 

6.9 °C and 869 mm, respectively (NOAA 2017). The BCSE was established in 2008 and 

consisted of a randomized complete block design with five replicates (Sanford et al. 2016). Each 

plot was 27.4 x 42.7 m wide with at least 12 m between any two plots. We conducted our 

experiments in continuous no-till maize (Zea mays L.) and “Cave-In-Rock” switchgrass 

(Panicum virgatum L.) bioenergy cropping systems within three of the five replicated blocks. 

Maize and alfalfa crops were grown for many years prior to the establishment of the BCSE 

experiment in 2008 (Sanford et al. 2016). Switchgrass was planted in June 2008 and maize was 

planted annually each spring beginning in 2008. In line with local best management practices, 

maize received an average of 167 kg N ha-1 yr-1 and P and K as necessary, whereas switchgrass 

received 56 kg N ha yr-1 (Sanford et al. 2016). Herbicides were applied to maintain near-

monoculture systems. Additional agronomic details were provided in Sanford et al. (2016). All 

measurements reported in our study were taken within the center 18.3 x 42.7 m section of each 

plot. 

 



16 

 

 

 

2.2.2 Canopy net photosynthesis 

Canopy net photosynthesis was estimated by integrating a two-layer (sunlit and shaded) 

light attenuation model with sunlit and shaded leaf-level net photosynthetic light responses (de 

Pury & Farquhar 1997; Arkebauer et al. 2009). Complete details of this procedure are provided 

in the supplemental methods (2.9.1). In summary, photosynthetic light response measurements 

were made throughout three growing seasons, and the light responses for each crop were fit to a 

saturating exponential function that also accounted for leaf temperature (Tleaf) and leaf vapor 

pressure deficit (VPDleaf). Model performance was assessed using a Monte Carlo cross-validation 

procedure. Above-canopy direct and diffuse photosynthetically active radiation (PAR) were 

measured throughout 2015 and 2016 using a shadowband apparatus as described in Cruse et al. 

(2015). Seasonal patterns of leaf area index (Lt), leaf zenith angle distribution (LAD), and 

apparent vegetation clumping (Ω) were estimated using an LAI-2000 plant canopy analyzer (LI-

COR Inc., Lincoln, Nebraska, USA) with 40 below-canopy measurements per plot per 

measurement date. Hourly weather dynamics were measured at a nearby weather station 

(AWON 2017). A canopy light attenuation model following Campbell & Norman (1998) was 

used to estimate hourly PAR in the sunlit and shaded fractions of the canopy. The light 

attenuation model was integrated with the photosynthetic light response model, and hourly air 

temperature, vapor pressure deficit, PAR, and canopy parameters were used to drive the model 

from the date of plant emergence through the date of complete plant senescence (hereafter 

defined as the growing season). 

Since it was not possible to directly validate the canopy-level net photosynthesis model at 

our site, we performed a series of sensitivity analyses to evaluate which model inputs and 

assumptions would cause the largest deviation in annual canopy net photosynthesis. First, we 
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compared our estimated LAD with six theoretical LADs that spanned from planophile to 

erectophile (de Wit 1965). Since maize may display non-uniform leaf azimuth distribution 

(Girardin & Tollenaar 1994), we also evaluated the maize model sensitivity to our assumption of 

uniform leaf azimuth distribution by assigning a bimodal leaf azimuth distribution (Teh et al. 

2000). We independently varied Lt, above canopy total PAR (Qt), and diffuse PAR (Qod) 

between -20% and +20% of measured values. Finally, we separately varied daytime and 

nighttime leaf temperatures (Tleaf,day and Tleaf,night) from -5 °C to +5 °C of measured temperatures. 

The changes in Tleaf,day and Tleaf,night also accounted for subsequent changes to VPDleaf. We 

converted the absolute deviation in annual net photosynthesis to percent change to standardize 

the sensitivity analyses among cropping systems and years. A complete description of the 

sensitivity analysis is given in the supplemental methods (2.9.2). 

 

2.2.3 Soil respiration 

Total soil respiration (RT) and heterotrophic-derived soil respiration (RH) were measured 

throughout 2015 and 2016 using an LI-6400XT portable photosynthesis system with an LI-6400-

09 soil CO2 flux chamber (LI-COR Inc., Lincoln, NE, USA). In each plot, six 5 cm tall, 10.2 cm 

inner-diameter polyvinyl chloride (PVC) collars were inserted approximately 2 cm into the soil 

for RT measurements. We attempted to capture RT spatial heterogeneity by stratifying the collar 

placement across zones likely to vary in root biomass and thus RT (Prolingheuer et al. 2014). For 

maize, two collars were placed within the rows, two were place in the interrow, and two were 

placed halfway between the row and interrow. For switchgrass, two collars were placed on a 

plant crown, two were placed in the center of the interstitial space, and two were places halfway 

between the crown and center interstitial space. To further reduce spatial autocorrelation, we 
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located half of the collars in the south end of the plot, and half of the collars in the north side of 

the plot such that the north and south collar locations were separated by approximately 33 m. 

Live aboveground plant biomass growing within the collars was clipped near the soil surface and 

removed prior to measuring RT, but all dead plant litter was left within the collars. Soil 

temperature measurements at were taken near each collar at 2 cm deep using a thermistor probe 

(Hanna Instruments, Woonsocket, RI, USA). The RT measurements were made approximately 

semi-weekly during the summer, weekly to semi-monthly during the spring and fall, and 

monthly during the winter. 

We estimated RH using the root exclusion approach, where the CO2 respiration of root-

free soil was assumed to represent RH (Vogel & Valentine 2005; Subke et al. 2006). In spring 

2014, 2015, and 2016, we used a 12.7 cm diameter bucket auger to make holes for two root 

exclusion collars per plot. The root exclusion collars were located near each set of RT collars so 

that the two root exclusion collars within each plot were separated by about 33 m. The soil was 

removed in 10 cm intervals and kept separate so that it could be backfilled into the root exclusion 

collars in the correct order. Each layer of soil was sieved in situ with a 5 mm mesh to remove 

living roots, but dead roots were left in the soil. The holes for the root exclusion collars were 

augured down to the C horizon, which typically occurred at 100 cm. A 10.2 cm inner diameter 

PVC tube was cut to extend from the bottom of the hole to 3 cm above the soil surface. The PVC 

tube was then placed into the hole and each soil layer was backfilled and packed to the original 

bulk density. After the final layer was added and packed, a 5 mm diameter hole was drilled in the 

PVC collar at the soil surface to allow water to drain from inside the collar. One Decagon 5TM 

soil moisture sensor (Decagon Devices Inc., Pullman, WA, USA) was inserted vertically into the 

soil in the center of each root exclusion collar (Msoil,in) and another sensor inserted vertically 
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approximately 10 cm from the outside of each RH collar (Msoil,out). When soils were not frozen, 

the soil moisture sensors were monitored concurrent with RH measurements using a Decagon 

ProCheck (Decagon Devices Inc., Pullman, WA, USA). Measurement timing and frequency for 

RH was the same as for RT except for one date in November 2015 when only RH was measured. 

The RH measurements were taken on the root exclusion collars that had most recently been 

installed (i.e. within the last year) to minimize the effect of substrate depletion on RH (Vogel & 

Valentine 2005). 

Measured RH values were corrected for differences in soil moisture between the inside 

and outside of the root exclusion collars based on data-fitted soil temperature and moisture 

models (Prolingheuer et al. 2014). Full details are given in the supplemental methods (2.9.3). 

Measured RT and moisture-corrected RH values were converted to g C m-2 day-1, linearly 

interpolated to daily intervals, and summed to estimate annual soil respiration fluxes (Gomez-

Casanovas et al. 2013). 

 

2.2.4 Biometric measurements 

Aboveground net primary productivity was estimated using the peak standing biomass 

method (Scurlock et al. 2002). For maize, aboveground biomass was clipped at the soil surface at 

crop physiological maturity in late September 2015 and 2016 using three 1.5 x 0.65 m quadrats 

per plot. This quadrat size was selected to accommodate the maize row spacing. For switchgrass, 

aboveground biomass was clipped at the soil surface in late August 2015 and 2016 using three 1 

x 1 m quadrats per plot. All aboveground biomass was bagged and placed into a 65 °C oven until 

dried to a constant weight. 
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Belowground net primary productivity was estimated with the root ingrowth method 

(Persson et al. 1979) using an approach similar to von Haden & Dornbush (2017b). Root 

ingrowth cores consisted of 50 cm long, 6.9 cm inner diameter, 7.4 cm outer diameter plastic 

mesh tubes (Industrial Netting Inc., Minneapolis, MN, USA) with a fiberglass mesh screen 

affixed to the bottom. Root ingrowth was measured in approximately monthly increments during 

the growing season of each crop. At the beginning of each ingrowth period, six 7.6 cm diameter 

holes per plot were bucket augured to 40 cm deep. The soil was removed in 10 cm layers, and 

each layer was kept separate so that the soil could be backfilled in the correct order. Each layer 

was sieved to 5 mm to remove root biomass, and the root biomass was washed with water over 

an 800 μm sieve and dried at 65 °C to a constant weight. Soil from each layer was dried 

overnight at 65 °C and weighed. Root ingrowth cores were inserted into the augured holes, the 

soil layers were serially backfilled into the cores, and each layer was packed to the original bulk 

density. After each layer was added and packed, 300 mL of water was added so that the soil 

structure and water content would return to near-field conditions. Following each ingrowth 

period, a machete was used to severe the roots around the outside the ingrowth cores, and the 

cores were then extracted. Soil from the ingrowth cores was serially sieved through a 5 mm mesh 

screen to remove roots, and the sieved soil was hand-picked free of any visible remaining root 

fragments. Ingrowth roots were washed with water over an 800 μm sieve until all visible soil was 

removed, and the clean roots were placed in a 65 °C oven until weight was constant. Corrections 

for belowground growth below 40 cm and rhizodeposition were made following von Haden & 

Dornbush (2017b). First, root biomass depth profiles were modelled as: 

𝑅𝐵(𝐷𝐶) = 𝑗[1 − exp(−𝑘𝐷𝐶)]        (2.6) 
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where RB is measured root biomass, DC is the measured cumulative depth below the soil surface, 

and j and k are fitted coefficients. A correction factor for biomass below 40 cm was calculated as 

RB(100 cm)/RB(40 cm) and multiplied by measured root ingrowth values to estimate root 

ingrowth to 100 cm. We chose a cutoff depth of 100 cm because this is the typical depth of the 

coarse-textured, gravelly C horizon at which root growth is likely to be limited. A correction 

factor of 1.06 was also applied to the switchgrass root growth to adjust for the deeper distribution 

of root growth compared to root biomass in perennial grasslands (von Haden & Dornbush 

2017a). A median rhizodeposition estimate of 163 ug C mg-1 belowground biomass production 

(Nguyen 2003) was applied to the depth-corrected root ingrowth values for maize and 

switchgrass. For each plot, corrected root ingrowth plus rhizodeposition was summed over all 

ingrowth periods to estimate annual BNPP to 100 cm. 

Aboveground biomass was harvested from the entire plots at the end of the growing 

season using large-scale farm equipment (Sanford et al. 2016). Maize grain was harvested using 

a six-row grain combine with grain wagon, while maize stover was harvested at approximately 5 

to 10 cm above the soil surface using a flail-chopper with forage wagon. Switchgrass was 

harvested after the first killing frost using a self-propelled forage harvester with dump wagon, 

leaving approximately 15 cm of stubble. All harvested biomass was weighed using load-cells 

within the wagons. Maize grain moisture was determined with a GAC 2100 AGRI grain 

moisture meter (Dickey-John Corp., Auburn, IL, USA) while subsamples of maize stover and 

switchgrass were dried at 65 °C to determine moisture content. All wet harvest values were then 

corrected to dry matter. 
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Subsamples of above- and belowground plant samples were pulverized prior to 

determination of carbon and nitrogen on a Flash EA 1112 elemental analyzer (Thermo Electron 

Corp., Milan, Italy). 

 

2.2.5 Model fitting and computations 

All non-linear models were fit using the ‘nlsLM’ non-linear least squares function 

(Elzhov et al. 2016) in R version 3.4.1 (R Core Team 2017). Integrals were numerically 

approximated by dividing the interval into 10° subintervals (i.e. 9 subintervals per 90°), 

calculating the area of a rectangle under each subinterval, and summing the areas. Light 

attenuation and photosynthesis models were coded and executed in R. NEP and NECB were 

calculated using equations 2.2 through 2.5.  

 

2.3 Results 

2.3.1 Leaf-level net photosynthesis models 

Leaf-level photosynthesis models explained 80% to 94% of the variability in measured 

leaf-level net photosynthesis (Anet,leaf) (Fig. 2.1). Maize models fit marginally better than 

switchgrass models, and upper canopy models fit slightly better than lower canopy models. The 

differences in model fit were likely due in part to the intrinsically greater range of Anet,leaf in 

maize than switchgrass and in the upper leaves compared to lower canopy leaves. Median 

absolute error ranged from 1.06 to 1.29 µmol CO2 m
-2 s-1 and was somewhat greater in maize 

than switchgrass and greater in the upper canopy than in the lower canopy (Table 2.S.3). 
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2.3.2 Growing season conditions and plant canopy dynamics  

Both 2015 and 2016 were warmer and wetter than normal, with the growing season in 

2016 being slightly warmer and wetter than in 2015 (Table 2.1). The switchgrass growing season 

was 22 and 42 days longer than the maize growing season in 2015 and 2016, respectively, owing 

both to an earlier start and a later end in switchgrass (Table 2.2). Mean Tleaf and VPDleaf were 

slightly greater in maize than in switchgrass and were greater in 2016 than 2015 (Table 2.2).  

Maize leaf area index (Lt) peaked at approximately 6.2 m2 m-2 in 2015 and 4.9 m2 m-2 in 

2016, whereas switchgrass peaked near 6.6 and 7.0 m2 m-2 in 2015 and 2016, respectively (Fig. 

2.2). Switchgrass Lt also tended to be more variable among plots than maize, likely reflecting 

true differences among the three switchgrass replicates. Canopy measurements from the LAI-

2000 indicated that maize and switchgrass approximated uniform leaf angle distributions with 

extremophile tendencies (Fig. 2.S.2b). Subsequently, seasonal mean tip angle was between 43.2° 

and 44.4° except for switchgrass in 2016 when seasonal mean tip angle was 35.1° (Table 2.2). 

Mean apparent vegetation clumping index was 0.96 for maize and 0.90 in switchgrass, thus 

indicating more non-randomness in switchgrass. Partitioning of Qod and Qob varied between 

years, with a greater proportion of Qod in 2015 than 2016 (Table 2.2). Mean total above canopy 

PAR (Qob + Qod) was also slightly greater in 2015 compared to 2016. In maize, mean Qsh and 

mean Qsl were nearly identical between years, but in switchgrass mean Qsh and mean Qsl both 

decreased from 2015 to 2016 (Table 2.2). 
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2.3.3 Ecosystem C fluxes and C balance 

Seasonal patterns of Anet,canopy largely reflected the combination of green Lt and leaf-level 

photosynthetic potential, with a longer but less intensive period of C uptake in switchgrass 

compared to maize (Fig 2.3). Despite a shorter growing season, annual Anet,canopy was 7% and 5% 

greater in maize compared to switchgrass in 2015 and 2016, respectively (Table 2.3). During the 

growing season, patterns of RT mostly mirrored those of Anet,canopy (Fig. 2.3). However, RT was 

nearly always higher in switchgrass than maize, particularly during the growing season (Fig. 

2.3). Consequently, annual RT was 74% and 65% greater in switchgrass compared to maize in 

2015 and 2016, respectively (Table 2.3). Similarly, RH was 43% and 55% greater in switchgrass 

than maize in 2015 and 2016, respectively. 

On average, maize ANPP was more than double that of switchgrass, and the differences 

between 2015 and 2016 were minor (Table 2.3). Conversely, BNPP was 30% greater in 

switchgrass than maize. Harvested C was 153% and 100% greater in maize than switchgrass in 

2015 and 2016, respectively. Harvested maize C was relatively consistent between years, but 

harvested C in switchgrass was 31% greater in 2016 than 2015. 

On average, NEP was 748 and 71 g C m-2 y-1 in maize and switchgrass, respectively 

(Table 2.3). The NEPBM method had greater NEP values than the NEPPS method for both crops 

and years except for switchgrass in 2015. The largest difference between NEPBM and NEPPS 

occurred in 2016 maize when NEPBM was 863 g C m-2 y-1 and NEPPS was 537 g C m-2 y-1. 

Average NECB was 22.5 g C m-2 y-1 and -254 g C m-2 y-1 in switchgrass and maize, respectively. 

However, the two methods showed much better agreement for switchgrass than maize, with two-

year NECB differences of 26 g C m-2 y-1 and 245 g C m-2 y-1, respectively. 
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2.3.4 Sensitivity analyses 

Leaf area index (Lt) had a relatively small effect on annual Anet,canopy, with a maximum 

response range of -2.6% to +1.3% over the -20% to +20% Lt range (Table 2.4; Fig. 2.S.4). 

Daytime Qod and Qot elicited a positive Anet,canopy response, while Tleaf day and Tleaf night induced 

negative Anet,canopy responses. Daytime Qot evoked the largest response of all tested 

environmental variables, with a nearly 1:1 response across the -20% to 20% range. On average, 

the bimodal leaf azimuth angle distribution reduced annual Anet,canopy by less than 1%. However, 

alternative leaf zenith angle distributions (LAD) had a significant effect on annual Anet,canopy, 

ranging from a -6% average difference for the planophile distribution to a +16% average 

difference for the erectophile distribution (Fig 2.4). The spherical distribution, which is a 

commonly used distribution when canopy architectural data is absent (Campbell 1986), evoked 

an average response of +12%. Extremophile, uniform, and plagiophile distributions elicited 

relatively small changes, but all distributions except for planophile caused positive changes 

relative to our remotely sensed distributions. The effect of differing LADs on Anet,canopy appeared  

to result largely from changes to the shaded canopy PAR (Qsh) (Fig. 2.4). 

 

2.4 Discussion 

2.4.1 NEP and NECB 

Estimated NEP was substantially greater in maize than switchgrass for both study years 

regardless of the method used. While average annual Anet,canopy was 6% greater in maize than 

switchgrass, average annual RT was 69% greater in maize, and therefore the majority of the 

estimated difference in NEPPS between maize and switchgrass was due to higher RT in 
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switchgrass. Root-derived soil respiration (RA = RT-RH) in switchgrass was more than double 

that of maize, and thus the conversion efficiency of Anet,canopy to NPP (ANPP + BNPP) was much 

lower in switchgrass, resulting in average NPP that was 46% lower in switchgrass relative to 

maize. Significantly greater NPP in maize, combined with lower RH in maize, led to dramatically 

higher NEPBM in maize compared to switchgrass. Although the absolute quantity of harvested 

biomass was greater in maize, a greater quantity of biomass was also left unharvested in maize. 

Thus, differences in Anet,canopy, RA, RH, and residue return all contributed significantly to the 

observed differences in NEP between maize and switchgrass in our study. 

Our maize NEP estimates were on the high end of those reported for other maize systems, 

which have been reported to peak around 800 g C m-2 yr-1 (West et al. 2010; Hernandez-Ramirez 

et al. 2011; Sulaiman et al. 2017). These relatively high maize NEP values could be due in part 

to the highly productive soils at our site, no-till management, or the ideal growing season 

conditions during our study. Relatively few switchgrass NEP estimates are available, and most 

estimates have been made in their 2-to 3-year establishment phase. For switchgrass stands 

between two and six years old, NEP has been reported in the range of -14 to 531 g C m-2 yr-1 

(Skinner & Adler 2010; Zeri et al. 2011; Zenone et al. 2013; Joo et al. 2016). Our switchgrass 

NEP estimates were on the lower end of this range, which could be due to differences in 

management practices, switchgrass cultivar, or older stand age (e,g, Parrish & Fike 2005; Fike et 

al. 2006; Kucharik 2007; Jungers et al. 2015). 

The absolute differences in NECB between systems were more nuanced than the 

differences in NEP. Nonetheless, maize NECB was more favorable than switchgrass in both 

years regardless of the method employed. While both methods placed switchgrass mean NECB 

near -250 g C m-2 yr-1, the NECBPS and NECBBM methods were less consistent, placing maize 
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NECB at -100 and 145 g C m-2 yr-1, respectively. Considering that the SOC stocks at a proximal 

agricultural site are on the order of 13 kg C m-2 to 90 cm (Sanford et al. 2012), the magnitude of 

the annual NECB estimates is significant. The variability between methods in maize may be due 

to an underestimation of Anet,canopy with the NECBPS method, as evidenced by the fact that NPP 

alone exceeded Anet,canopy during both years in maize. Of course this is not possible, and it 

indicates that either NPP was overestimated or Anet,canopy was underestimated. Since the methods 

we used to estimate ANPP and BNPP are generally regarded as conservative (Scurlock et al. 

2002; Milchunas 2009), it is more likely that Anet,canopy was underestimated than that NPP was 

overestimated in maize. 

The NECB of other maize systems has been reported to vary widely between positive and 

negative, with the proportion of harvested biomass having a considerable influence (Sulaiman et 

al. 2017). This finding is echoed by SOC studies that typically show SOC gains in maize 

bioenergy systems when less than 70% of residue is harvested (Qin et al. 2016). In our maize 

system, approximately 50% of residue was harvested (Sanford et al. 2016), which may have 

contributed to the relatively favorable NECB. To our knowledge, no studies have directly 

evaluated NECB in tilled versus no-till systems (e.g. Bernacchi et al. 2005), but SOC studies 

show on average a slight SOC increase under no-till (Angers & Eriksen-Hamel 2008). Therefore, 

it is plausible that the lack of tillage in our maize system may have positively affected NECB. 

Direct comparisons of NECB in maize and switchgrass systems are rare, but in contrast 

to our findings, several studies have reported switchgrass to generally have a more favorable C 

balance than maize (Zeri et al. 2011; Anderson-Teixeira et al. 2013; Joo et al. 2016). However, 

consistent with our findings, several other NECB studies have independently found maize to be 

C neutral or a slight C sink (Bernacchi et al. 2005; Verma et al. 2005) and switchgrass systems to 
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be a C source (Skinner & Adler 2010). In agreement, a meta-analysis of previous croplands that 

had been converted to bioenergy systems showed that the average percent SOC increase was 

slightly greater in maize than switchgrass (Qin et al. 2016). Some of the discrepancy between our 

study and other maize-to-switchgrass NECB comparisons could be due to the differences in 

management practices, soil type, site legacy, weather, stand age, and plant varieties. In addition, 

most NECB studies use the eddy covariance method, while our study combined models and 

measurements of individual C fluxes. Although the eddy covariance method provides high 

frequency C balance estimates, typically 30 to 40% of the data must be gap-filled, (Baldocchi 

2008), and measurements often are not spatially replicated (e.g. Zenone et al. 2013; Joo et al. 

2016). Thus, combining our NECB approaches with eddy covariance may further constrain 

ecosystem C balances while also offering insight into ecosystem C processes. 

 

2.4.2 Ecosystem C fluxes 

Our finding that annual Anet,canopy was always greater in maize than switchgrass is perhaps 

not surprising considering the long history of maize productivity breeding (Troyer 2004). 

Intrinsically greater leaf-level light use efficiency in maize was apparent from the light response 

curves and subsequent upper range of Anet,leaf . Lower Lt in maize also favored Anet,canopy, as 

maize Lt was at or only slightly below optimal Lt, whereas switchgrass was above optimal Lt. 

Canopy structure also played a role, as more vertically-oriented leaves in maize favored greater 

Anet,canopy. We also cannot rule out the possibility that differences in fertilization regime played a 

role in Anet,canopy, as maize received N, P, and K, but switchgrass only received N and it was at a 

lower rate than maize (Sanford et al. 2016). However, N, P and K have generally shown 
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inconsistent effects on switchgrass net primary productivity (Parrish & Fike 2005; Jach-Smith & 

Jackson 2015).  

Although soil respiration (RT) is often regarded as an ecosystem flux, it is really 

comprised of two independent fluxes, RH and RA. Fundamentally, RA is the product of the root 

quantity and the relative root respiration rate (i.e. respiration per unit of root). The respiration 

rate per unit root biomass tends to be greater in maize, but switchgrass has a much larger root 

system to maintain (von Haden 2017). In addition, maize RA is limited to the growing season 

whereas switchgrass RA must be continuous to maintain a perennial root system. Specific root 

respiration is also a function of soil temperature and photosynthate supply (Savage et al. 2013), 

which also may differ between maize and switchgrass systems. Thus, while it is difficult to 

assess the exact reason for higher annual RA in switchgrass, greater root biomass and continuous 

maintenance RA are the most likely causes. 

RH is the CO2 flux resulting from the microbial decomposition of organic matter, and 

therefore RH is controlled in part by organic matter availability and heterotrophic microbial 

activity (Moyano et al. 2013). More aboveground litter is left unharvested in maize, there are 

greater root litter inputs in switchgrass, but the overall quantity of litter inputs was much greater 

in maize. While we did not quantify differences in soil organic matter quality and protection 

within aggregates, differences between these parameters could also cause differences in RH 

(Mueller et al. 2012). Microbial biomass and microbial community structure are known to differ 

between maize and switchgrass in our study area (Liang et al. 2012; Herzberger et al. 2014), but 

it is not clear how these differences would alter RH. Considering the important effects of soil 

temperature and soil moisture on heterotrophic microbial activity (Moyano et al. 2013), 
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differences in the soil microclimate between maize and switchgrass could also lead to differences 

in RH. 

 

2.4.3 Methods considerations 

Overall, our two NECB approaches provided reasonable agreement with each other, 

particularly in switchgrass. Our study combined two commonly used NECB approaches, but 

integrating several methods within each approach creates compound error in the final C balance 

estimate. For the photosynthesis approach, the primary challenge is scaling leaf-level 

photosynthetic responses to the canopy-level. This requires a complex light attenuation model 

that relies upon knowledge or assumptions of the plant canopy structure and leaf-level 

conditions. Our analysis revelated that annual canopy photosynthesis was particularly sensitive 

to changes in the LAD. More sophisticated remote sensing instrumentation may provide more 

reliable LAD estimates (e.g. Bailey & Mahaffee 2017). Not surprisingly, alterations in daytime 

Qod and Qot also caused substantial changes in the annual net photosynthesis, thus illustrating the 

importance of accurately measuring and partitioning PAR. Finally, our analysis showed 

moderate sensitivity of net canopy photosynthesis to Tleaf. Using an energy balance approach 

would help to improve Tleaf predictions, although it would also add a substantial amount of 

model complexity (Campbell & Norman 1998). 

Estimating RH and BNPP are the primary methodological challenges associated with the 

biometric method. While there are several known limitations to the root exclusion method for 

RH, other approaches also have drawbacks (Subke et al. 2006). For example, lack of C inputs 

from living roots likely reduces substrate for heterotrophs and completely removes root-induced 

rhizosphere priming, both of which are likely to cause an underestimation of RH (Kuzyakov 
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2006). Similarly, all BNPP methods have biases, and the root ingrowth method used in our study 

is typically considered to be conservative (Milchunas 2009). While it is difficult to assess the 

overall uncertainty associated with these methods in our study, the fact that the photosynthesis 

and biometric approaches were reasonably consistent suggests that our RH and BNPP values 

were realistic. Using several methods for both RH and BNPP may help to further constrain the 

estimates, but the additional time and monetary requirements would probably preclude the use of 

multiple methods for most studies. 

Neither of our approaches accounted for other potentially important NECB fluxes 

including DOC leaching, methane fluxes, and erosion (Chapin et al. 2006). Prior to this study, 

DOC leaching had been measured at rates < 2.0 g C m-2 yr-1 (Anita Thompson, pers. comm.) and 

thus is not considered a significant NECB component. Trivial methane consumption rates in the 

range of 0.05 to 0.6 g C m-2 yr-1 have been measured in grain and forage-based cropping systems 

within 5 km of our study site (Osterholz et al. 2014). However, topsoil erosion has been reported 

to have occurred at a rate of 6 cm over 53 years at a maize cropping trial adjacent to our study 

site (Collier et al. 2017). Assuming erosion occurs consistently among years, and using mean 

bulk density (1.23 g cm-3) and SOC (2.28%) values for the 0-10 cm horizon for maize at our site, 

erosion would remove 32 g C m-2 yr-1. Presumably, erosion rates would be about an order of 

magnitude lower in switchgrass than maize (e.g. Helmers et al. 2012). However, it is important 

to note that SOC removal via erosion does not necessarily translate into C loss to the atmosphere, 

as C may be simply reallocated on the landscape or become buried sediment (Doetterl et al. 

2016). 
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2.4.4 Implications for bioenergy crop production 

Our study was undertaken at a highly productive site with high SOC Mollisols, and thus 

our results may not be representative of candidate bioenergy production sites which are marginal 

for row crop agriculture (Gelfand et al. 2013). In addition, our study took place during two years 

when growing conditions were near ideal for maize. Considering that switchgrass is generally 

more resistant to stressful growing conditions than maize (e.g. Joo et al. 2016; Sanford et al. 

2016), it is plausible that NECB would have been less favorable for maize under more stressful 

conditions. Nonetheless, at a site 5 km from ours on similar soils, direct measurements of SOC in 

grain and forage systems have indicated general trends toward SOC loss over 20 years (Sanford 

et al. 2012). In northeast Wisconsin, NEP in series of restored prairies was not different from 

zero (von Haden & Dornbush 2017b), and thus harvesting aboveground biomass would have 

likely caused a negative NECB in those systems. Therefore, it is perhaps not surprising that 

NECB was negative to near-neutral at our study site. In the Midwest U.S., changes in SOC have 

been observed to occur in proportion to baseline SOC levels such that soils with the highest 

initial SOC content lose the most C (or gain the least C), even in conservation tillage and 

perennial grassland systems (Senthilkumar et al. 2009). Thus, more favorable C balances are 

likely to be realized on marginal, low SOC soils (Gelfand et al. 2013), but more empirical work 

is necessary to validate this hypothesis within the context of bioenergy production. 

Fundamentally, a favorable C balance is achieved when Anet,canopy is relatively large while 

RA, RH, and harvest are relatively small. However, these components are not equally manageable 

nor independent, which makes agricultural C management challenging. Anet,canopy is largely 

determined by plant type, soil productivity, and weather, but for many crops is manageable to a 

certain extent by fertilization, pesticide application, and other practices. Plant RA is largely a 
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function of plant type and environmental conditions and therefore management options may be 

limited for a given plant type. Harvest is the most easily manageable parameter, but it is always 

constrained to less than NPP and in most cases to less than ANPP. Harvest may be linked to RH, 

as unharvested biomass is a primary substrate for RH. However, the relationship between 

unharvested biomass and an RH is not straightforward, as the quantity and quality of unharvested 

biomass may affect a suite of parameters including the microbial community structure, carbon 

use efficiency, soil aggregation, and priming of native SOC, which in turn may be site-dependent 

(Cotrufo et al. 2013). In addition, feedbacks between the amount of unharvested biomass and 

NPP are likely (Blanco-Canqui & Lal 2009). Thus, general recommendations for optimum 

harvest and residue return rates to produce a favorable C balance cannot be given, and instead 

must be evaluated with agroecosystem models that adequately capture complex plant and SOC 

dynamics. 

NECB is only one component of the overall ecological footprint of biofuel cropping 

systems (Robertson et al. 2017). For example, over three years, nitrous oxide (N2O) fluxes from 

maize were double that of switchgrass during the establishment phase at our study site (Oates et 

al. 2016), which thus dramatically influences the overall greenhouse gas balance (e.g. Gelfand et 

al. 2013). Moreover, other ecosystem services such as pest suppression and pollinator richness 

are enhanced in switchgrass relative to maize (Werling et al. 2014). Fossil fuel offset credits, 

which quantify the net amount of fossil fuel emissions replaced by the biofuel system, must also 

be considered (Gelfand et al. 2013). The economic favorability of bioenergy cropping systems is 

also likely to vary geographically (Jain et al. 2010). Thus, while it was beyond the scope of this 

study to provide a comprehensive analysis of the overall viability of our maize and switchgrass 
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systems, there are clearly many considerations in addition to ecosystem C balance that must be 

made when selecting a bioenergy cropping system (Robertson et al. 2017). 

 

2.5 Conclusions 

We used two methods to estimate NEP in maize and switchgrass. Both methods 

consistently showed greater NEP in maize than switchgrass, but there was better agreement 

between methods for switchgrass than for maize. While all components of the NEP estimates are 

subject to measurement error, the remotely-sensed leaf zenith angle distributions are the most 

likely source for the disagreement among NEP methods in maize. Refining and combining these 

two NEP methods with eddy covariance measurements would help to better constrain NECB and 

would provide additional insight into the underlying ecosystem C processes. 

At our site, no-till maize had a slightly more favorable NECB than switchgrass in 2015 

and 2016. When considering both of our methods averaged over both years, maize was near C-

neutral, while switchgrass was a C source in the range of 250 g C m-2 yr-1. However, we have 

lower confidence in our maize NECB estimate due to the relatively high variability between 

methods. The more favorable NECB in maize was a function of greater annual Anet,canopy and 

lower annual RA and RH in maize relative to switchgrass. Thus, a better understanding of the 

controls on these ecosystem C processes will improve our ability to predict ecosystem C storage 

in biofuel cropping systems. 
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2.8 Tables and figures  

Table 2.1 – Monthly mean temperature and total precipitation for the two study years and the 

1981-2010 normal. Deviations from the normal are given in parentheses. Data is from the 

Arlington University Farm weather station (NOAA 2017). 

----------------------------------------------------------------------------------------------------------------------------- --------- 
 2015  2016  30-year mean 
 ----------------------------------------- ----------------------------------------- ----------------------------------- 
 Temp (°C) Precip. (mm) Temp (°C) Precip. (mm) Temp (°C) Precip. (mm) 

----------------------------------------------------------------------------------------------------------------------------- --------- 
Jan -8.1   (+0.9) 9.4      (-19.6) -7.9    (+1.1) 20.1    (-8.9) -9.0 29.0 
Feb -12.6 (-6.1) 25.9    (-7.4) -3.8    (+2.7) 9.9      (-23.4) -6.5 33.3 
Mar 0.4    (+0.8) 9.9      (-37.8) 3.6     (+3.9) 108.7  (+61.0) -0.3 47.8 
Apr 8.3    (+1.3) 162.3  (+73.4) 7.1     (0.0) 37.3    (-51.6) 7.1 88.9 
May 14.8  (+1.7) 112.0  (+18.3) 14.3   (+1.2) 87.6    (-6.1) 13.2 93.7 
Jun 18.6  (-0.1) 79.8    (-39.1) 20.3   (+1.7) 104.1  (-14.7) 18.7 118.9 
Jul 20.3  (-0.4) 80.3    (-25.4) 21.8   (+1.1) 164.8  (+59.2) 20.8 105.7 
Aug 19.8  (+0.2) 110     (+10.9) 21.4   (+1.8) 138.7  (+39.6) 19.6 99.1 
Sep 18.9  (+3.8) 144.8  (+54.9) 17.9   (+2.8) 156.7  (+66.8) 15.2 89.9 
Oct 10.4  (+1.8) 49.8    (-15.0) 11.3   (+2.7) 85.6    (+20.8) 8.6 64.8 
Nov 4.9    (+3.9) 123.2  (+62.2) 6.3     (+5.3) 41.4    (-19.6) 0.9 61.0 
Dec 1.2    (+7.7) 86.4    (+49.0) -6.1    (+0.3) 33.0    (-4.3) -6.4 37.3 
 
Total 8.1    (+1.3) 993.6  (+124.5) 8.8     (+2.0) 988.1  (+118.9) 6.8 869.2 

----------------------------------------------------------------------------------------------------------------------------- --------- 
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Table 2.2 – Growing season properties for maize and switchgrass in 2015 and 2016 (plant 

emergence through complete senescence). Above- and within-canopy PAR (Qod, Qob, Qsh, and 

Qsl) are reported for daylight hours only. Values are mean with standard error, where applicable. 

-----------------------------------------------------------------------------------------   
Year  Maize Switchgrass 

--------- -------------------------------- ------------------ ------------------ 
2015    
 Start Date 5/13/2015 4/28/2015 
 End Date 10/26/2015 11/2/2015 
 Length (days) 166 188 
 Tleaf (°C) 17.2 16.5 
 VPDleaf (kPa) 0.486 0.473 
 Green leaf area (m2 m-2) 2.70 (0.06) 3.50 (0.17) 
 Mean Tip Angle (°) 44.4 (0.5) 43.2 (1.2) 
 Apparent clumping (Ω) 0.96 (0.0019) 0.92 (0.0072) 
 Qod (µmol quanta m-2 s-1) 218 218 
 Qob (µmol quanta m-2 s-1) 429 420 
 Qsh (µmol quanta m-2 s-1) 137 (1.1) 114 (3.7) 
 Qsl (µmol quanta m-2 s-1) 524 (1.7) 486 (2.0) 
2016    
 Start Date 5/18/2016 4/25/2016 
 End Date 10/19/2016 11/7/2016 
 Length (days) 154 196 
 Tleaf (°C) 18.9 16.9 
 VPDleaf (kPa) 0.568 0.525 
 Green leaf area (m2 m-2) 2.31 (0.03) 3.51 (0.17) 
 Mean Tip Angle (°) 43.5 (0.6) 35.1 (2.1) 
 Apparent clumping (Ω) 0.96 (0.0007) 0.88 (0.0008) 
 Qod (µmol quanta m-2 s-1) 188 190 
 Qob (µmol quanta m-2 s-1) 444 418 
 Qsh (µmol quanta m-2 s-1) 136 (1.4) 103 (4.3) 
 Qsl (µmol quanta m-2 s-1) 525 (1.2) 477 (2.1) 

-----------------------------------------------------------------------------------------  
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Table 2.3 – Annual ecosystem C fluxes, net ecosystem production (NEP), and net ecosystem 

carbon balance (NECB) for maize and switchgrass using the net photosynthesis (PS) and 

biometric (BM) approaches. All units are g C m-2 y-1. 

--------------------------------------------------------------------------  
Year  Maize Switchgrass 

--------- ---------- -------------- ------------------    
2015    
 Anet,canopy 1348 (5) 1256 (8) 
 RT 636 (38) 1105 (107) 
 NEPPS 712 (33) 152 (100) 
    
 ANPP 1273 (14) 553 (45) 
 BNPP 90 (7) 112 (10) 
 RH 486 (28) 695 (55) 
 NEPBM 877 (43) -30 (50) 
    
 Harvest 715 (7) 282 (3) 
 NECBPS -3 (40) -130 (99) 
 NECBBM 162 (44) -311 (53) 
    
2016    
 Anet,canopy 1240 (14) 1177 (23) 
 RT 703 (32) 1162 (55) 
 NEPPS 537 (23) 16 (78) 
    
 ANPP 1146 (103) 602 (20) 
 BNPP 100 (10) 135 (20) 
 RH 383 (6) 593 (45) 
 NEPBM 863 (117) 144 (63) 
    
 Harvest 735 (16) 368 (14) 
 NECBPS -197 (39) -352 (89) 
 NECBBM 128 (131) -223 (68) 
    
Mean    
 NEPPS 625 (17) 84 (82) 
 NEPBM 870 (68) 57 (50) 
 NECBPS -100 (22) -241 (85) 
 NECBBM 145 (74) -267 (56) 

--------------------------------------------------------------------------  
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Table 2.4 – Sensitivity analysis of mean annual net canopy photosynthesis (An,canopy) across a 

range of canopy and environmental conditions. Daytime Qod was varied without changing Qot 

and therefore represents differences in partitioning between Qod and Qob. Tleaf → VPDleaf 

indicates that VPDleaf was adjusted to the saturation vapor pressure at Tleaf. 

---------------------------------------------------------------------------------------------------------------------- -   
  Maize Switchgrass 
  ------------------------ ------------------------- 
Variable Sensitivity range Annual An,canopy response range 
-------------------------------- ----------------------- ------------------------------------------------------- 

Lt (Leaf area index) -20% to + 20% -2.6% to +0.2% +1.3% to -4.0% 

Daytime Qod -20% to + 20% -4.1% to +3.7% -6.2% to +5.7% 

Daytime Qot -20% to + 20% -21.8% to +19.7% -24.7% to +22.1% 

Daytime Tleaf → VPDleaf -5 °C to +5 °C +4.0% to -8.2% +5.4% to -11.1% 

Nighttime Tleaf → VPDleaf -5 °C to +5 °C +3.8% to -3.8% +6.6% to -6.7% 

Leaf azimuth (bimodal)  N/A -0.8% to -0.6%  N/A 

----------------------------------------------------------------------------------------------------------------------- 
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Figure 2.1 – Model predicted versus observed leaf-level net photosynthesis (Anet,leaf) for (a) 

maize upper canopy leaves, (b) maize lower canopy leaves, (c) switchgrass upper canopy leaves, 

and (d) switchgrass lower canopy leaves. The black line shows the linear regression between 

predicted and observed values, and the gray line is 1:1.  
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Figure 2.2 – Leaf area index (mean with standard error) for maize and switchgrass during the (a) 

2015 and (b) 2016 growing seasons. The color gradient reflects the estimated vegetation status 

ranging from fully photosynthetic (green) to fully non-photosynthetic (yellow).  
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Figure 2.3 – Seasonal patterns of canopy net photosynthesis (black dots), total soil respiration 

(grey dots), and cumulative NEPPS (dashed line) for (a) maize and (b) switchgrass.  
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Figure 2.4 – Relative changes in mean shaded canopy PAR (Qsh) and annual canopy net 

photosynthesis (Anet,canopy) for various theoretical leaf angle distributions. Replicates reflect the 

two study years (2015 and 2016).  
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2.9 Supplemental methods 

2.9.1 Canopy net photosynthesis  

Leaf photosynthesis, plant canopy, and environmental measurements 

Sunlit and shaded leaf light response curves were measured approximately weekly in 

both cropping systems throughout the 2010, 2011, and 2012 growing seasons, providing a 

minimum of 43 light response curves per crop and leaf type. Light response curves were 

measured using a LI-COR LI-6400XT portable photosynthesis system with a LI-6400-02B 

red/blue LED light source (LI-COR Inc., Lincoln, Nebraska, USA). For each light response 

curve, the CO2 concentration was set near ambient and net photosynthesis was measured at 2000, 

1500, 1000, 500, 200, 100, 50, 20 and 0 µmol photons m-2 s-1 photosynthetically active radiation 

(PAR). In 2010 the measurements were made near ambient leaf temperature, whereas in 2011 

and 2012 measurements were also made at 5 °C above and below ambient leaf temperature, and 

covered a range from 15-38ºC. The climatic conditions among the 2010-2012 growing seasons 

varied widely from extremely wet in 2010 to severe drought in 2012 (Sanford et al. 2016), 

thereby allowing for evaluation of photosynthetic light responses under varying levels of plant 

water stress. 

To generalize leaf-level net photosynthesis across varying environmental conditions, the 

light response photosynthesis data were fit to non-linear models. We first selected the most 

appropriate model by fitting the photosynthetic light response data from each crop type and 

canopy level to five candidate model types: rectangular hyperbola, hyperbolic tangent, 

nonrectangular hyperbola, exponential, and the Ye model (Ye 2007; Lobo et al. 2013). The 

exponential model resulted in the lowest Akaike information criterion (AIC) values for all crop 

types and canopy levels (Table 2.S.1) and thus was selected for further use: 
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𝐴net,leaf(𝑄) =  {𝐴g,max [1 − exp (
−𝜙(𝑄0)𝑄

𝐴g,max
)]} − 𝑅𝐷      (2.7a) 

where Anet,leaf is measured net leaf photosynthesis, Q is the measured PAR quantum flux, Ag,max is 

the estimated maximum gross leaf photosynthesis, ϕ(Q0) is the estimated quantum yield at zero Q, 

and RD is the estimated dark respiration rate. Next, the effects of leaf temperature (Tleaf, °C) and 

leaf vapor pressure deficit (VPDleaf, kPa) were added to the model by allowing each light 

response model coefficient to vary as a function of Tleaf and VPDleaf. We tested all combinations 

of Tleaf, VPDleaf, Tleaf + VPDleaf, and neither Tleaf nor VPDleaf for all model coefficients and 

selected the most appropriate combination based on lowest median AIC value among crops and 

canopy levels (Table 2.S.2). The final leaf-level photosynthetic model terms were:  

𝐴g,max (𝑇leaf, 𝑉𝑃𝐷leaf) = 𝑎𝑇leaf + 𝑏𝑉𝑃𝐷leaf       (2.7b) 

𝜙(𝑄0) = 𝑐           (2.7c)  

𝑅D(𝑇leaf) = 𝑑𝑇leaf          (2.7.d) 

where a, b, c, and d are coefficients fitted for each crop type and canopy level. We assessed the 

leaf-level net photosynthesis model performance using a Monte Carlo cross-validation 

procedure. For each crop type and canopy level, the original photosynthetic light response data 

were randomly split into training and testing subsets consisting of 70% and 30% of the light 

response curves, respectively. The leaf net photosynthesis model was fit using the training 

dataset, predictions were made based on the independent variables of the testing dataset, and the 

predicted values were then compared to the measured photosynthesis values of the testing 

dataset. This procedure was repeated 10,000 times, each time recording the median absolute 

error (MAE) of the linear-regression between the predicted and measured testing dataset values.  
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The effects of Tleaf and VPDleaf on leaf-level photosynthesis parameters were generally 

more prominent in maize than switchgrass and more pronounced in the upper canopy than the 

lower canopy (Table 2.S.3). The positive effect of temperature on Ag,max (a) was greater in maize 

than in switchgrass and greater in the upper canopy compared to the lower canopy (Table 2.S.3). 

VPDleaf had a negative effect on Ag,max (b), but the effect was more prominent in maize than 

switchgrass and greater in the upper canopy than the lower canopy. Quantum yield at 0 (ϕ(Q0) = 

c) was slightly greater in maize than switchgrass, but was consistent between upper and lower 

canopy layers. Similar to Ag,max (a), the effect of temperature on RD (d) was greater in maize than 

switchgrass and greater in the upper canopy than the lower canopy. 

Leaf-level model residuals showed no significant linear relationship with PAR nor 

VPDleaf (Table 2.S.4). However, Tleaf showed a marginally significant positive relationship with 

residuals from the maize lower leaf model (p = 0.065) and a negative relationship with residuals 

from the switchgrass upper leaf model (p = 0.042; Table 2.S.4). The magnitude of these residual 

relationships (0.094 and -0.067 µmol CO2 m
-2 s-1 °C-1 for maize lower and switchgrass upper, 

respectively) would result in an overall error of ±1.75 and ±1.25 µmol CO2 m
-2 s-1 at the 

measured seasonal temperature extremes for maize upper and switchgrass lower canopies, 

respectively. However, the inconsistency of the residual Tleaf effect among models (i.e. two 

models with no effect, one model with a positive effect, and one model with a negative effect) 

suggests that the marginal relationships could be statistical artifacts (i.e. type I errors). 

Irrespectively, the median absolute error was not inflated for the two models with the residual 

Tleaf relationships (Table 2.S.3), thereby indicating comparable overall predictive performance 

among crops and canopy layers. 
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Above-canopy beam and diffuse PAR were measured during the 2015 and 2016 growing 

seasons using a shadowband apparatus consisting of an LI-190 quantum sensor (LI-COR Inc., 

Lincoln, Nebraska, USA) and a rotating metal band that completely blocked beam PAR once 

every five minutes (Cruse et al. 2015). Flux densities of beam (Qob) and diffuse (Qod) PAR 

radiation above the plant canopy were partitioned with equations presented in Cruse et al. (2015). 

Total PAR (Qot i.e. Qob + Qod) was annually calibrated to an unblocked LI-190 quantum sensor 

using a linear model. The calibration coefficients were 0.99 and 1.04 in 2015 and 2016, 

respectively. Leaf area index (Lt), leaf zenith angle distribution (LAD), and apparent vegetation 

clumping (Ω) were measured approximately weekly during the growing season with an LAI-

2000 plant canopy analyzer (LI-COR Inc., Lincoln, Nebraska, USA). Plant canopy 

measurements were made in ten locations per plot with one above-canopy and four below-

canopy measurements per location. The four below-canopy measurements were stratified across 

local canopy heterogeneity (e.g. row and inter-row) to ensure adequate spatial representation. 

Percent green vegetation was visually estimated on the day of each plant canopy measurement. 

All plant canopy measurements were linearly interpolated to a one-hour frequency that was 

necessary for modeling canopy photosynthesis. Hourly air temperature and relative humidity 

were measured at weather station adjacent to our study site (AWON 2017), and occasional 

missing data were gap-filled using data from the Dane County Regional Airport located 18 km 

from the study site. 

Photosynthetic (green) and non-photosynthetic (brown, senesced) leaf reflectance and 

transmittance were measured on one occasion using an ASD integrating sphere with an ASD 

FieldSpec 4 spectroradiometer (ASD Inc., Longmont, CO, USA). Reflectance and transmittance 

were averaged from 400-700 nm, and absorptance was calculated as 1-(reflectance + 
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transmittance). Green leaf PAR absoprtance was 0.908 for maize and 0.866 for switchgrass. Raw 

spectral data is shown in Fig. 2.S.1 and a summary of all leaf optical properties is given in Table 

2.S.5. 

 

Light attenuation model 

The attenuation of direct radiation was described by a solar zenith angle-dependent beam 

radiation extinction coefficient, Kb(θS), which quantifies the area of foliage projected onto a 

horizontal surface (Anderson 1966; Campbell & Norman 1989): 

𝐾b(𝜃S) =
𝐺(𝜃S)

cos 𝜃S
          (2.8) 

where θS is the solar zenith angle in radians and G(θS) is the projection of foliage area 

perpendicular to beam radiation. Assuming that leaf azimuth angle is uniformly distributed, then 

G(θS) can be computed as (Warren Wilson 1960; Nilson 1971; Wang et al. 2007): 

𝐺(𝜃S) =  ∫ 𝐴(𝜃S, 𝜃L)
𝜋/2

0
 𝑓(𝜃L) 𝑑𝜃L         (2.9) 

where f(θL) is the LAD function at (θL) expressed in radians and A(θS, θL) is: 

𝐴(𝜃S, 𝜃L) = {
cos 𝜃S cos 𝜃L ,                                                                          cot 𝜃S cot 𝜃L ≥  1

cos 𝜃S cos 𝜃L {1 + [2/𝜋][tan 𝜓(𝜃S,𝜃L) − 𝜓(𝜃S,𝜃L)]},   cot 𝜃S cot 𝜃L <  1 
 (2.10a) 

𝜓(𝜃S,𝜃L) =  cos−1(cot 𝜃S cot 𝜃L)        (2.10b) 

Both beta (Goel & Strebel 1984) and ellipsoidal (Campbell 1986) LAD functions can be 

estimated based on the LAI-2000 plant canopy measurements. We chose to use the beta LAD 

function for our light attenuation model because the beta LAD function has shown better 
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agreement with true LADs compared to the ellipsoidal function (Wang et al. 2007). The 

probability density of a given leaf angle for the beta function is (Goel & Strebel 1984): 

𝑓(𝜃L) =  
1

𝛽(𝜇,𝜈)
 [1 − 𝑡(𝜃L)]𝜇−1 [𝑡(𝜃L)]𝜈−1       (2.11a) 

𝑡(𝜃L) =  2𝜃L 𝜋⁄           (2.11b) 

𝛽(𝜇, 𝜈) =
𝛤(𝜇) 𝛤(𝜈)

𝛤(𝜇+𝜈)
          (2.11c) 

where Γ is the gamma function, and μ and ν are derived from the LAI-2000 (Welles & Norman 

1991). Probability density functions were standardized so that the area was equal to unity. 

Vegetation clumping (i.e. non-random horizontal spatial distribution) affects light 

attenuation by decreasing the efficiency of radiation interception (Campbell & Norman 1998). 

As such, an apparent canopy clumping factor (Ω) for each LAI-2000 view angle (θ) was 

calculated as (Ryu et al. 2010, Pisek et al. 2011): 

𝛺(𝜃) =  
ln[𝑃(𝜃)]̅̅ ̅̅ ̅̅ ̅̅ ̅

ln[𝑃(𝜃)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅           (2.12) 

where P(θ) is the probability of beam radiation penetration at view angle θ. Following Kucharik 

et al. (1999), the dependency of Ω on solar zenith angle was fit to measured data with an 

exponential function: 

𝛺(𝜃S) = 𝑦0 + 𝑔[1 − exp(−ℎ 𝜃S)]        (2.13) 

where θS is the solar zenith angle in radians and y0, g, and h are coefficients fitted via non-linear 

least squares regression, and Ω(θS) is constrained to < 1. The probability of transmitted beam 

radiation through the canopy was calculated as (Monsi & Saeki 1953; Anderson 1966; Campbell 

& Norman 1998): 
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𝑃b(𝜃S) = exp[−𝐾b(𝜃S) 𝛺(𝜃S) 𝐿t]        (2.14) 

Similarly, the probability of transmitted beam plus scattered beam radiation was 

calculated as (Goudriaan 1977; Norman & Campbell 1998): 

𝑃b+sb(𝜃S) = exp[−√𝛼 𝐾b(𝜃S) 𝛺(𝜃S) 𝐿t]       (2.15) 

where α is the leaf PAR absorptivity. Effective leaf absorptivity was calculated as the average 

absorptivity of green and brown leaves weighted by the percentage of canopy greenness. 

Unlike beam radiation, diffuse radiation occurs from all directions. Assuming isotropic 

hemispherical diffuse radiation, the probability of transmitted diffuse radiation was calculated by 

(Monsi & Saeki 1953; Welles & Norman 1991): 

𝑃d =  
∫ 𝑃b+sb(𝜃S) sin 𝜃S cos 𝜃S 𝑑𝜃S

𝜋/2
0

∫  sin 𝜃S cos 𝜃S 𝑑𝜃S
𝜋/2

0

        (2.16) 

The sunlit leaf area (Lsl) was calculated as (Warren Wilson 1967; Campbell & Norman 

1998): 

𝐿sl(𝜃S) =  
[1−𝑃b(𝜃S)]

𝐾b(𝜃S)
          (2.17) 

By difference, the shaded leaf area (Lsh) was (Warren Wilson 1967): 

𝐿sh(𝜃S) = 𝐿t − 𝐿sl(𝜃S)         (2.18) 

To estimate downward scattered beam radiation (Qsb) and upward leaf reflected radiation 

(Qleaf refl), we first divided the canopy into ten equal layers, L1-L10, each of depth Lt/10. Qsb at 

each depth i was calculated as (Campbell & Norman 1998): 

𝑄sb,𝑖 = 𝑄𝑜𝑏[𝑃b+sb(𝜃S)𝑖 −  𝑃b(𝜃S)𝑖]        (2.19) 
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where transmittances probabilities are calculated to cumulative canopy depth i. The average 

downward scattered beam radiation was then calculated by averaging Qsb,i throughout all layers: 

𝑄sb ̅̅ ̅̅ ̅ =  
∑ 𝑄sb,𝑖

10
𝑖=1

10
          (2.20) 

Assuming isotropic PAR reflection from leaves, the flux of leaf-reflected PAR above 

each canopy layer resulting from the initial downward solar fluxes Qod and Qob was calculated 

following Flerchinger et al. (2009): 

𝑄leaf refl,𝑖 = 𝑃d,l𝑄leaf refl,𝑖+1 + 𝜌leaf[1 − 𝑃d,l]𝑄d,𝑖 + 𝜌leaf[1 − 𝑃b+sb,l(𝜃S)]𝑄b+sb,𝑖  (2.21) 

where ρleaf is leaf albedo, Pd,l and Pb+sb,l(θS) are transmittance probabilities for a single layer, and 

Qd,i and Qb+sb,i are downward diffuse and beam plus scattered radiation fluxes at canopy depth i. 

Leaf albedo was calculated as the average reflectance of green and brown leaves weighted by the 

canopy greenness. The canopy average upwards leaf reflected radiation resulting from the initial 

solar flux was calculated as: 

𝑄leaf refl
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =   

∑ 𝑄leaf refl,𝑖
10
𝑖=1

10
         (2.22) 

Total reflected PAR from the soil surface resulting from the initial downward Qob and Qod 

solar fluxes was calculated as: 

𝑄soil refl =  𝜌soil[𝑄ob𝑃b+sb(𝜃S) + 𝑄𝑜𝑑𝑃d]       (2.23) 

where ρsoil is the albedo of the soil surface, assumed to be 0.15 (e.g. Coulson & Reynolds 1971). 

The canopy average PAR flux resulting from soil-reflected radiation is: 

𝑄soil refl
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑄soil refl (1−𝑃d)

− ln(𝑃d)
         (2.24) 
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For simplicity, the mean canopy PAR resulting from additional reflections within the 

canopy was modelled as an exponential decrease of the canopy average initial reflected 

radiation: 

𝑄refl(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = {𝑄leaf refl
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  𝑄soil refl

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ } exp{ln[(1 − 𝑃d)𝜌leaf]𝑛}     (2.25) 

where n is the additional reflection number. After three additional reflections, the remaining 

reflected PAR is negligible. Therefore, the average total re-reflected radiation was calculated as: 

𝑄refl
̅̅ ̅̅ ̅̅ =  ∑ 𝑄refl(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅3

𝑛=1           (2.26) 

Diffuse radiation resulting from Qod averaged throughout the entire canopy is given by 

(Campbell & Norman 1998): 

𝑄d
̅̅̅̅ =

𝑄od(1− 𝑃d)

− ln(𝑃d)
          (2.27) 

Average beam radiation on the sunlit leaf fraction is given by: 

𝑄b
̅̅̅̅ =

𝑄ob[1− 𝑃b(𝜃S)]

𝐿sl
          (2.28) 

Occasional errors at high zenith angles due to the reciprocal cosine response of Kb(θS) to 

θS were addressed by setting maximum Qb  to 2000 µmol photons m-2 s-1. Average PAR in the 

shaded fraction was calculated as: 

𝑄sh
̅̅ ̅̅̅ = 𝑄d

̅̅̅̅ + 𝑄sb ̅̅ ̅̅ ̅ + 𝑄leaf refl
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑄soil refl

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑄refl
̅̅ ̅̅ ̅̅       (2.29) 

Average PAR in the sunlit fraction was calculated as (Campbell & Norman 1998): 

𝑄sl
̅̅ ̅̅ = 𝑄b

̅̅̅̅ + 𝑄sh
̅̅ ̅̅̅          (2.30) 
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Scaling net photosynthesis from leaf to canopy 

For each hour of the growing season, net canopy photosynthesis (Anet,canopy) was 

calculated as: 

𝐴net ,canopy = {
𝐴net,leaf,sl(𝑄sl

̅̅ ̅̅ , 𝑇air, 𝑉𝑃𝐷air)𝐿sl + 𝐴net,leaf,sh(𝑄sh,̅̅ ̅̅ ̅ 𝑇air, 𝑉𝑃𝐷air)𝐿sh, 𝜃S < 90 

𝐴net,leaf,sh(𝑇air, 𝑉𝑃𝐷air)𝐿t,                                                                          𝜃S ≥ 90
 (2.31) 

We thus assumed that Tair and VPDair were representative of leaf conditions. Night respiration 

was modelled using the response of shaded leaves to Tair and VPDair in the absence of light, as 

measured shaded leaves were typically exposed to low ambient PAR levels and thus were closer 

to nighttime conditions than sunlit leaves. Hourly Anet,canopy (µmol CO2 m
-2 hr-1) was converted to 

g C m-2 hr-1 and then summed to daily and annual timescales. 

 

2.9.2 Canopy net photosynthesis sensitivity analyses 

Leaf zenith angle distributions 

The beta distribution parameters given by the LAI-2000 are obtained from a series of 

idealized empirical relationships which have particularly high error for leaf angles < 25° and > 

65° (Lang et al. 1986; Welles and Norman 1991). As such, we evaluated the effect of leaf zenith 

angle distribution on annual canopy photosynthesis by substituting the measured distribution 

with several theoretical distributions. The theoretical leaf zenith angle distributions used were 

(de Wit 1965; Goel & Strebel 1984): 

𝑓(𝜃L) 𝐸𝑟𝑒𝑐𝑡𝑜𝑝ℎ𝑖𝑙𝑒 = [1 −  cos(2𝜃L) ] 2 𝜋⁄        (2.32) 

𝑓(𝜃L) 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = sin 𝜃L         (2.33) 
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𝑓(𝜃L) 𝑃𝑙𝑎𝑔𝑖𝑜𝑝ℎ𝑖𝑙𝑒 = [1 −  cos(4𝜃L) ] 2 𝜋⁄        (2.34) 

𝑓(𝜃L) 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 = 2 𝜋⁄           (2.35) 

𝑓(𝜃L) 𝐸𝑥𝑡𝑟𝑒𝑚𝑜𝑝ℎ𝑖𝑙𝑒 = [1 +  cos(4𝜃L) ] 2 𝜋⁄        (2.36) 

𝑓(𝜃L) 𝑃𝑙𝑎𝑛𝑜𝑝ℎ𝑖𝑙𝑒 = [1 + cos(2𝜃L) ] 2 𝜋⁄        (2.37) 

where θL is the leaf zenith angle. These distributions are shown in Fig. 2.S.2a. 

 

Non-uniform leaf azimuth distribution 

Since maize is known to exhibit non-uniform, bimodal azimuthal distribution of leaves 

(Girardin & Tollenaar 1994), we performed a sensitivity analysis to evaluate our assumption that 

leaf azimuth was uniformly distributed. When leaf azimuth is non-uniform, G becomes 

dependent on both zenith and azimuth (Nilson 1971; Kimes 1984): 

𝐺(𝜃S, 𝜙S) =  ∫ ∫ |cos 𝜓| 𝑔(𝜃L, 𝜙L)
𝜋/2

0
  

2𝜋

0
𝑑𝜃L𝑑𝜙L       (2.38a) 

cos 𝜓 =  cos 𝜃L cos 𝜃S + sin 𝜃L sin 𝜃S cos(𝜙L − 𝜙S)     (2.38b) 

where θL and θS are leaf and solar zenith, respectively, ϕL and ϕS are leaf and solar azimuth, 

respectively, and g(θL, ϕL) is the joint probability density function for leaf zenith and azimuth. If 

leaf zenith and azimuth are independently distributed, then: 

𝑔(𝜃L, 𝜙L) = 𝑓(𝜃L)𝑓(𝜙L)          (2.39) 

where f(θL) and f(ϕL) are the probability density functions for leaf zenith and leaf azimuth, 

respectively. We used the beta distribution values obtained from the LAI-2000 to determine 
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f(θL). For f(ϕL), we used the undistorted probability distribution function presented in Teh et al. 

(2000): 

𝑓(𝜙L) =  
1

2𝜋𝐼0(𝑇)
𝑒𝑥𝑝{𝑇 cos[𝑆(𝑅 − 𝜙L)]}       (2.40) 

where I0 is the modified Bessel function of the first kind and zero order, T is the elongation 

index, S is the shape index, and R is the rotation index. When leaf azimuth follows a uniform 

distribution, T = 0, S = 1, and R has no influence on the probability density (Fig. 2.S.3a). For 

maize growing in rows running southwest to northeast, Teh et al. (2000) found on average that T 

= 1.35, S = 2.15, and R = 2.4 (radians). We used these values of T and S and rotated the function 

(R = 1.66 radians) so that the maximum probability density occurred perpendicular to the maize 

rows (which ran south to north in our study; Fig. 2.S.3b). We standardized the area of the 

probability density functions to unity. 

 

Leaf area index and environmental variables 

Sensitivity analyses of Lt and above canopy PAR were performed by adjusting the 

measured values of each parameter from -20% to +20% of the measured value. We performed 

two sensitivity analyses for above canopy PAR: one for total PAR (Qot) and one for diffuse PAR 

(Qod). For the Qod analysis, Qot was maintained at the measured value so that the results only 

reflect differences in the partitioning of Qot between Qob and Qod. 

For the leaf temperature (Tleaf) sensitivity analysis, we adjusted the measured temperature 

value from -5 °C to +5 °C. This range corresponds to the approximate range of divergence 

between Tleaf and air temperature when air temperature is between 15 °C and 35 °C (Campbell & 

Norman 1998). We performed separate sensitivity analyses for daytime and nighttime Tleaf, as 
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the divergence between air temperature and leaf temperature likely varies between day and night. 

Since saturation vapor pressure deficit is temperature-dependent, we calculated the saturation 

vapor pressure deficit at each adjusted Tleaf and calculated the resulting VPDleaf. Thus, Tleaf 

sensitivity analysis reflects the combined response of Tleaf and VPDleaf. 

 

2.9.3 Heterotrophic respiration correction 

A correction was applied to measured values of heterotrophic soil respiration (RH), to 

account for soil moisture differences between inside and outside of the root exclusion collar 

(Prolingheuer et al. 2014). To isolate the effect of soil moisture on RH, we first fit measured RH 

values to non-linear model that considers the interactive effects of soil moisture and soil 

temperature: 

𝑅H(𝑇soil, 𝑀soil) = 𝑅10exp [𝐸0 (
1

283.15−𝑇0
−

1

𝑇soil−𝑇0
)] 𝐷(𝑀opt−𝑀soil,in)

2

   (2.41) 

where Tsoil is measured 2 cm soil temperature (°K), Msoil,in is measured soil volumetric water 

content inside of the collar (%), R10 is estimated RH at 10 °C, E0 is estimated activation energy 

coefficient in (°K), T0 is the estimated minimum temperature for RH (°K), Mopt is the estimated 

optimal volumetric soil moisture (%), and D is an estimated coefficient describing the relative 

intensity of the soil moisture response (Luo & Zhou 2006; Savage et al. 2009). The full model is 

thus a combination of a Lloyd-Taylor temperature response (Lloyd & Taylor 1994) and a 

parabolic soil moisture response (Savage et al. 2009). While the model is empirical in nature, it 

effectively captures the decreasing Q10 with increasing temperature (Davidson et al. 2006), the 

intermediate optimal soil moisture (Linn & Doran 1984), and the interactive effects of soil 

moisture and soil temperature (Lellei-Kovács et al. 2011). 
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Since we were not able to measure soil moisture when soils were frozen, the initial RH 

temperature and moisture response model was fitted using only the data which was collected 

when soils were not frozen. To better quantify the RH temperature response, we set the soil 

moisture for frozen soils to the model-estimated Mopt, then re-fitted the model using both frozen 

and non-frozen data. Setting the frozen soil moisture levels to optimal ensured that the frozen 

soil data points had minimal influence on the estimation of Mopt while also allowing for the 

temperature effect to be estimated across the full temperature range. Final model R2 for maize 

and switchgrass RH were 0.63 and 0.73, respectively. Moisture-corrected RH was then calculated 

as: 

𝑅Hcorrected
= 𝑅Hmeasured 

+ 𝑅H(𝑇soil, 𝑀soil,out) − 𝑅H(𝑇soil, 𝑀soil,in)    (2.42) 

where Msoil,out and Msoil,in are the volumetric soil moisture measurements inside and outside of the 

root exclusion collar, respectively.  

 

2.10 Supplemental references 

Anderson, M. C. 1966. Stand structure and light penetration. II. A theoretical analysis. Journal of 

Applied Ecology 3:41–54. 

Automated Weather Observation Network (AWON). 2017. University of Wisconsin-Extension. 

http://agwx.soils.wisc.edu.  

Campbell, G. 1986. Extinction coefficients for radiation in plant canopies calculated using an 

ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology 36:317–

321. 

Campbell, G., Norman, J. 1989. The description and measurement of plant canopy structure. In: 

Plant Canopies: Their Growth, Form and Function. Russel, G., Marshall, B., and Jarvis, 

P. G. (eds). Cambridge University Press, Cambridge, England. 

Campbell, G. S., Norman, J. M. 1998. An Introduction to Environmental Biophysics, 2nd ed. 

Springer, New York, USA.  



64 

 

 

 

Coulson, K. L., Reynolds, D. W. 1971. The spectral reflectance of natural surfaces. Journal of 

Applied Meteorology 10:1285–1295. 

Cruse, M. J., Kucharik, C. J., Norman, J. M. 2015. Using a simple apparatus to measure direct 

and diffuse photosynthetically active radiation at remote locations. PLoS ONE 

10:e0115633. 

Davidson, E. A., Janssens, I. A., Luo, Y. Q. 2006. On the variability of respiration in terrestrial 

ecosystems: moving beyond Q(10). Global Change Biology 12:154–164. 

de Wit, C. T. 1965. Photosynthesis of leaf canopies. Agricultural Research Report No. 663. 

Center for Agricultural Publications and Documentation, Wageningen, The Netherlands. 

Flerchinger, G. N., Xiao, W., Sauer, T. J., Yu, Q. 2009. Simulation of within-canopy radiation 

exchange. Wageningen Journal of Life Sciences 57:5–15. 

Girardin, P., Tollenaar, M. 1994. Effects of intraspecific interference on maize leaf azimuth. 

Crop Science 34:151–155. 

Goel, N. S., Strebel, D. E. 1984. Simple beta distribution representation of leaf orientation in 

vegetation canopies. Agronomy Journal 76:800–802. 

Goudriaan, J. 1977. Crop micrometeorology: a simulation study. Simulation Monographs. 

Pudoc, Center for Agricultural Publishing and Documentation, Wageningen, The 

Netherlands. 

Kimes, D. S. 1984. Modeling the directional reflectance from complete homogeneous vegetation 

canopies with various leaf-orientation distributions. Journal of the Optical Society of 

America A 1:725–737. 

Kucharik, C. J., Norman, J. M., Gower, S. T. 1999. Characterization of radiation regimes in 

nonrandom forest canopies: Theory, measurements, and a simplified modeling approach. 

Tree Physiology 19:695–706. 

Lellei-Kovács, E., Kovács-Láng, E., Botta-Dukát, Z., Kalapos, T., Emmett, B., Beier, C. 2011. 

Thresholds and interactive effects of soil moisture on the temperature response of soil 

respiration. European Journal of Soil Biology 47:247–255. 

Linn, D. M., Doran, J. W. 1984. Effect of water-filled pore space on carbon dioxide and nitrous 

oxide production in tilled and nontilled soils. Soil Science Society of America Journal 

48:1267–1272. 

Lloyd, J., Taylor, J. A. 1994. On the temperature dependence of soil respiration. Functional 

Ecology 8:315–323. 

Lobo, F. d. A., de Barros, M. P., Dalmagro, H. J., Dalmolin, Â. C., Pereira, W. E., de Souza, É. 

C., Vourlitis, G. L., Rodríguez Ortíz, C. E. 2013. Fitting net photosynthetic light-response 

curves with Microsoft Excel – a critical look at the models. Photosynthetica 51:445–456. 



65 

 

 

 

Luo, Y., Zhou, X. 2006. Soil Respiration and the Environment. Academic Press. Cambridge, 

MA, USA. 

Monsi, M., Saeki, T. 1953. Über den lichtfaktor in den pflanzengesellschaften und seine 

bedeutung für die stoffproduktion. Japanese Journal of Botany 14:22–52. 

Nilson, T. 1971. A theoretical analysis of the frequency of gaps in plant stands. Agricultural 

Meteorology 8:25–38. 

Pisek, J., Lang, M., Nilson, T., Korhonen, L., Karu, H. 2011. Comparison of methods for 

measuring gap size distribution and canopy nonrandomness at Järvselja RAMI 

(RAdiation transfer Model Intercomparison) test sites. Agricultural and Forest 

Meteorology 151:365–377. 

Prolingheuer, N., Scharnagl, B., Graf, A., Vereecken, H., Herbst, M. 2014. On the spatial 

variation of soil rhizospheric and heterotrophic respiration in a winter wheat stand. 

Agricultural and Forest Meteorology 195-196:24–31. 

Ryu, Y., Nilson, T., Kobayashi, H., Sonnentag, O., Law, B. E., Baldocchi, D. D. 2010. On the 

correct estimation of effective leaf area index: Does it reveal information on clumping 

effects? Agricultural and Forest Meteorology 150:463–472. 

Sanford, G. R., Oates, L. G., Jasrotia, P., Thelen, K. D., Robertson, G. P., Jackson, R. D. 2016. 

Comparative productivity of alternative cellulosic bioenergy cropping systems in the 

North Central USA. Agriculture, Ecosystems & Environment 216:344–355. 

Savage, K., Davidson, E. A., Richardson, A. D., Hollinger, D. Y. 2009. Three scales of temporal 

resolution from automated soil respiration measurements. Agricultural and Forest 

Meteorology 149:2012–2021. 

Teh, C. B. S., Simmonds, L. P., Wheeler, T. R. 2000. An equation for irregular distributions of 

leaf azimuth density. Agricultural and Forest Meteorology 102:223–234. 

Wang, W.-M., Li, Z.-L., Su, H.-B. 2007. Comparison of leaf angle distribution functions: Effects 

on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest 

Meteorology 143:106–122. 

Warren Wilson, J. 1960. Inclined point quadrats. New Phytologist 59:1–8. 

Warren Wilson, J. 1967. Stand structure and light penetration. III. Sunlit foliage area. Journal of 

Applied Ecology 4:159–165. 

Welles, J. M., Norman, J. M. 1991. Instrument for indirect measurement of canopy architecture. 

Agronomy Journal 83:818–825. 

Ye, Z.-P. 2007. A new model for relationship between irradiance and the rate of photosynthesis 

in Oryza sativa. Photosynthetica 45:637–640.  



66 

 

 

 

2.11 Supplemental tables and figures 

Table 2.S.1 –  Relative quality, as indicated by Akaike information criterion (AIC), of statistical 

models for the light response of leaf-level net photosynthesis. Bracketed numbers refer to the full 

model equations as presented in Lobo et al. (2013). 

------------------------------------------------------------------------------------------------------------------------  
  Akaike information criterion (AIC) 
 ---------------------------------------------------------------------------- 
 Maize   Switchgrass 
 -----------------------  -----------------------    
Model Name Upper Lower  Upper Lower  Median 

Exponential [8] 3336 2292   2924 2441   2683 

Ye (2007) [11] 3337 2293  2926 2443  2684 

Nonrectangular hyperbola [6] 3338 2294  2926 2444  2685 

Hyperbolic tangent [4] 3338 2293  2930 2443  2687 

Rectangular hyperbola [1] 3343 2297  2928 2446  2687 

------------------------------------------------------------------------------------------------------------------------ 
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Table 2.S.2 – Relative quality (AIC) of the leaf-level light exponential response model with all 

combinations of leaf temperature (Tleaf) and leaf vapor pressure deficit (VPDleaf) considered. 

------------------------------------------------------------------------------------------------------------------------------ ------------ 
Model variables   Akaike information criterion (AIC) 
-------------------------------------------------------------- ------------------------------------------------------------------------ 
    Maize   Switchgrass 
    ----------------------  ----------------------  
Ag,max (x) ϕ(Q0) (x) RD (x)  Upper Lower  Upper Lower   Median 
------------------ ------------------ ---------------------- -----------------------------------------------------  ----------- 
Tleaf + VPDleaf  Tleaf  2998 2166  2840 2317  2579 
Tleaf + VPDleaf  Tleaf + VPDleaf  2999 2168  2842 2319  2580 
Tleaf + VPDleaf  VPDleaf  3010 2167  2843 2317  2580 
Tleaf + VPDleaf    3004 2163  2855 2319  2587 
Tleaf + VPDleaf Tleaf + VPDleaf Tleaf  3065 2159  2885 2320  2603 
Tleaf + VPDleaf Tleaf + VPDleaf Tleaf + VPDleaf  3066 2160  2887 2322  2604 
Tleaf + VPDleaf Tleaf VPDleaf  3076 2165  2889 2320  2605 
Tleaf + VPDleaf Tleaf + VPDleaf VPDleaf  3074 2160  2890 2321  2605 
Tleaf + VPDleaf Tleaf Tleaf + VPDleaf  3075 2167  2890 2322  2606 
Tleaf + VPDleaf Tleaf Tleaf  3076 2166  2891 2323  2607 
Tleaf + VPDleaf Tleaf + VPDleaf   3100 2158  2911 2325  2618 
 Tleaf + VPDleaf VPDleaf  3158 2240  2866 2384  2625 
 Tleaf + VPDleaf Tleaf  3152 2241  2864 2386  2625 
 Tleaf + VPDleaf Tleaf + VPDleaf  3152 2242  2866 2385  2625 
Tleaf + VPDleaf Tleaf   3119 2169  2921 2330  2626 
 Tleaf + VPDleaf   3150 2239  2869 2384  2627 
 Tleaf Tleaf + VPDleaf  3245 2253  2882 2383  2632 
Tleaf + VPDleaf VPDleaf Tleaf + VPDleaf  3187 2208  2941 2340  2640 
Tleaf + VPDleaf VPDleaf VPDleaf  3196 2213  2945 2343  2644 
  Tleaf + VPDleaf  3299 2271  2895 2401  2648 
 Tleaf VPDleaf  3284 2276  2892 2415  2653 
 VPDleaf Tleaf + VPDleaf  3344 2274  2927 2382  2655 
Tleaf + VPDleaf VPDleaf Tleaf  3229 2223  2966 2353  2659 
Tleaf  Tleaf + VPDleaf  3246 2252  2931 2389  2660 
  VPDleaf  3313 2283  2898 2423  2661 
Tleaf Tleaf + VPDleaf Tleaf + VPDleaf  3139 2230  2938 2383  2661 
Tleaf Tleaf + VPDleaf VPDleaf  3149 2230  2937 2387  2662 
Tleaf Tleaf + VPDleaf Tleaf  3140 2233  2937 2391  2664 
Tleaf Tleaf + VPDleaf   3160 2234  2957 2395  2676 
Tleaf Tleaf Tleaf + VPDleaf  3324 2250  2971 2392  2682 
  Tleaf  3344 2294  2922 2442  2682 
    3336 2292  2924 2441  2683 
Tleaf + VPDleaf VPDleaf   3281 2229  3001 2365  2683 
 Tleaf Tleaf  3342 2292  2930 2440  2685 
Tleaf    3297 2287  2956 2437  2696 
Tleaf  VPDleaf  3297 2287  2956 2437  2696 
 Tleaf   3366 2294  2951 2445  2698 
Tleaf VPDleaf Tleaf + VPDleaf  3427 2270  3007 2398  2703 
 VPDleaf VPDleaf  3446 2320  2971 2441  2706 
Tleaf Tleaf VPDleaf  3402 2300  3005 2448  2726 
Tleaf  Tleaf  3354 2307  2996 2466  2731 
 VPDleaf Tleaf  3542 2347  3037 2480  2759 
Tleaf Tleaf Tleaf  3472 2324  3054 2482  2768 

------------------------------------------------------------------------------------------------------------------------------ ------------  
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Table 2.S.2 [continued] 

------------------------------------------------------------------------------------------------------------------------------------------ 
Model variables   Akaike information criterion (AIC) 
-------------------------------------------------------------- ------------------------------------------------------------------------ 
    Maize   Switchgrass 
    ----------------------  ----------------------  
Ag,max (x) ϕ(Q0) (x) RD (x)  Upper Lower  Upper Lower   Median 
------------------ ------------------ ---------------------- -----------------------------------------------------  ----------- 
VPDleaf Tleaf + VPDleaf Tleaf + VPDleaf  3304 2338  3072 2477  2775 
 VPDleaf   3575 2353  3065 2489  2777 
VPDleaf Tleaf + VPDleaf VPDleaf  3302 2346  3074 2490  2782 
VPD Tleaf + VPDleaf Tleaf  3302 2343  3077 2488  2783 
Tleaf VPDleaf VPDleaf  3575 2349  3083 2484  2783 
VPDleaf Tleaf + VPDleaf   3307 2342  3082 2486  2784 
Tleaf Tleaf   3506 2331  3085 2493  2789 
VPDleaf  Tleaf + VPDleaf  3490 2385  3107 2510  2808 
VPD Tleaf Tleaf + VPDleaf  3583 2394  3164 2518  2841 
Tleaf VPDleaf Tleaf  3678 2385  3155 2530  2842 
Tleaf VPDleaf   3718 2394  3190 2543  2866 
VPDleaf VPDleaf Tleaf + VPDleaf  3762 2418  3212 2523  2867 
VPDleaf    3597 2452  3185 2605  2895 
VPDleaf  Tleaf  3598 2454  3186 2609  2897 
VPDleaf  VPDleaf  3591 2463  3181 2617  2899 
VPDleaf Tleaf   3708 2483  3276 2638  2957 
VPDleaf Tleaf Tleaf  3719 2490  3281 2645  2963 
VPDleaf Tleaf VPDleaf  3722 2500  3277 2652  2964 
VPDleaf VPDleaf VPDleaf  4029 2577  3404 2698  3051 
VPDleaf VPDleaf   4035 2576  3431 2703  3067 
VPDleaf VPDleaf Tleaf   4046 2581   3432 2708   3070 

------------------------------------------------------------------------------------------------------------------------------ ------------ 
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Table 2.S.3 – Parameter estimates and median absolute error (MAE) for leaf level 

photosynthesis models fit using equations 2.7a-d. Parameter estimates are from non-linear least 

squares regressions, while MAE is from Monte Carlo cross-validation procedures. The p-value 

for all parameter estimates was < 0.00001.  

----------------------------------------------------------------------------------------------------------------------------------------------------------- 
  Parameter estimate (standard error)  Median absolute  
    error (± 95%) 
Crop, canopy layer a  b c d (µmol CO2 m-2 s-1) 
--------------------------- -------------------------------------------------------------------------------------------- ------------------------- 

Maize, upper 2.61 (0.072) -15.6 (0.74) 0.054 (0.0018) 0.099 (0.0086) 1.29 (1.02, 1.56) 

Maize, lower 1.77 (0.078) -9.83 (0.78) 0.055 (0.0037) 0.057 (0.013) 1.06 (0.73, 1.56) 

Switchgrass, upper 1.61 (0.067) -8.92 (0.70) 0.044 (0.0024) 0.084 (0.0094) 1.11 (0.85, 1.46) 

Switchgrass, lower 1.25 (0.058) -7.53 (0.59) 0.048 (0.0039) 0.056 (0.011) 1.08 (0.71, 1.56) 
----------------------------------------------------------------------------------------------------------------------------------------------------------- 
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Table 2.S.4 – Parameter estimates and p-values from linear regressions between final leaf-level 

net photosynthesis model residuals and the model independent variables (PAR, Tleaf, and 

VPDleaf). 

------------------------------------------------------------------------- 
Variable Crop, layer Estimate p 
------------ -------------------------- -------------- --------- 
PAR    

 Maize, upper -0.000017 0.934 
 Maize, lower -0.000006 0.985 
 Switchgrass, upper -0.000010 0.965 
 Switchgrass, lower  0.000011 0.966 
    

Tleaf    

 Maize, upper  0.0151 0.596 
 Maize, lower  0.0937 0.065 
 Switchgrass, upper -0.0673 0.042 
 Switchgrass, lower  0.0061 0.871 
    

VPDleaf    

 Maize, upper  0.081 0.629 
 Maize, lower  0.204 0.417 
 Switchgrass, upper -0.236 0.230 
 Switchgrass, lower -0.067 0.744 

------------------------------------------------------------------------- 
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Table 2.S.5 – Summary of optical properties for fully photosynthetic (green) and non-

photosynthetic (brown) leaves. 

--------------------------------------------------------------------------------- 
 Maize  Switchgrass 
 ----------------------- ----------------------- 
Leaf type Green Brown Green Brown 

Reflectance 0.071 0.231 0.097 0.188 

Transmittance 0.021 0.079 0.037 0.014 

Absorptance 0.908 0.689 0.866 0.798 

--------------------------------------------------------------------------------- 
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Figure 2.S.1 – Leaf PAR reflectance (red) and transmittance (blue) for (a) maize photosynthetic 

(green) leaves, (b) switchgrass photosynthetic (green) leaves, (c) maize non-photosynthetic 

(brown) leaves, and (d) switchgrass non-photosynthetic (brown) leaves.
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Figure 2.S.2 - Probability density functions for (a) theoretical and (b) LAI-2000 estimated leaf 

zenith angle distributions. Estimated leaf zenith angle distributions are based on seasonal median 

parameters for the beta distribution.  
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Figure 2.S.3 – Probability density functions for (a) uniform (b) non-uniform leaf azimuth angles 

in maize. North is 0° and east is 90°.  



75 

 

 

 

 

Figure 2.S.4 – Percent change in annual net canopy photosynthesis as a function of (a) daytime 

above-canopy diffuse PAR (Qod) with no change in total PAR, (b) daytime above-canopy total 

PAR (Qot), (c) daytime leaf temperature (Tleaf,day), (d) nighttime leaf temperature (Tleaf,night), and 

(e) leaf area index (Lt).  

  

  

  

 

 

 

           

                    

 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

     

   

 

  

  

           

                    

 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

    

                 

    

    

    

  

   

  

 

 

                 

                     

 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

  

  

  

 

 

 

                 

                       

 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

  

  

  

  

 

 

           

            

 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 



76 

 

 

 

Chapter 3 

Autotrophic soil respiration in maize and switchgrass bioenergy cropping systems: an 

assessment of the growth-maintenance respiration framework at the ecosystem level 

von Haden, A.C., Marín-Spiotta, E., Jackson, R.D., Kucharik, C.J. 

Target journal: Global Change Biology 

Abstract 

Root respiration consumes a substantial fraction of plant fixed C and thus has a 

significant effect on the net C balance of plants and ecosystems. Studies dividing root respiration 

into growth and maintenance components have revealed physiological differences among plant 

species and growth types, but these studies have rarely been scaled to ecosystems and validated. 

We used in situ diel autotrophic soil respiration (RA) measurements in maize and switchgrass to 

parameterize growth-maintenance models that also accounted for influence of temperature and 

photosynthesis. To account for the temperature effect on RA, we implemented a method to 

directly estimate root temperature throughout the soil profile and account for lags between root 

respiration and soil surface RA. We found that specific growth respiration, which likely included 

ion uptake costs, was about two times higher in switchgrass than maize. Contrarily, the specific 

maintenance respiration rates were about four times higher in maize than switchgrass, probably 

due to the greater concentrations of structural tissues in switchgrass roots and rhizomes. The diel 

influence of photosynthesis on maize RA was apparent at a lag time of 14 to 16 hours, but the 

signal was too weak to detect in switchgrass. The RA temperature sensitivity and temperature 

acclimation responses could not be statistically separated, and thus further work is needed to 

constrain those parameters. Predictions from the diel-based models simulated independently 
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measured seasonal trends of RA reasonably well. Thus, the growth-maintenance respiration 

framework provides insight into the physiology of root respiration that translates adequately to 

the ecosystem level. 

 

3.1 Introduction 

Net ecosystem carbon balance is largely determined by the difference between gross 

photosynthetic C fixation by plants and ecosystem respiration by plants and heterotrophs (Chapin 

et al. 2006). Whole plant respiration typically consumes about half of daily fixed C, with roots 

respiring approximately 10 to 50% (Lambers et al. 2008). Therefore, root respiration accounts 

for a substantial fraction of the gross C loss from terrestrial ecosystems. However, the proportion 

of plant-fixed C respired by roots can vary greatly by species and growing conditions (Poorter et 

al. 1990; Poorter et al. 1995). For example, von Haden (2017) found that the annual proportion 

of net photosynthesis consumed by root respiration was approximately 20% and 40% in two C4 

grasses, maize and switchgrass, respectively. A more mechanistic understanding of the 

underlying physiology of root respiration would therefore help to better predict plant and 

ecosystem C balances. 

The growth respiration-maintenance respiration paradigm provides a simple, pragmatic 

construct for modeling plant root respiration physiology (Lambers et al. 1983; Thornley & 

Cannell 2000). In its basic form, root respiration is divided into two primary components: a 

growth component accounting for the respiratory CO2 requirement of root growth and a 

maintenance component accounting for the respiratory CO2 requirement of root biomass 

maintenance (Amthor 2000). Growth respiration is therefore proportional to root growth and 

maintenance respiration is proportional to root biomass (Johnson 1990). In addition, a growth 
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respiration coefficient quantifies the total respiration per unit growth, and a maintenance 

respiration coefficient quantifies the respiration rate per unit root biomass (Amthor 2000). Since 

the respiration coefficient is a biological rate, it varies with temperature, but the growth 

respiration coefficient is effectively temperature independent (Amthor 2000). 

Growth and maintenance root respiration coefficients have been experimentally 

determined for a considerable number of species and growth conditions (Amthor 1984; Cannell 

& Thornley 2000). These studies have provided insight into the physiology of root respiration 

among functional groups, such as fast- and slow-growing species (Poorter et al. 1991). As a 

result, many ecosystem-level models have adapted the growth respiration-maintenance 

respiration framework (Thornley & Cannell 2000). However, few studies have attempted to 

directly scale root growth and maintenance respiration coefficients, as typically measured in a 

controlled setting, to the field. The few studies that have done so have either been unreliable 

without additional adjustments (Reekie & Redmann 1987) or have not been validated (Cannell & 

Thornley 2000; M'Bou et al. 2010). Thus, there is considerable uncertainty regarding the 

performance of the growth respiration-maintenance respiration framework at an ecosystem level. 

At a diel timescale, root respiration is coupled to photosynthesis through the transport of 

photosynthates in the phloem from leaves to roots (Mencuccini & Hölttä 2010). The transport of 

photosynthates from leaves to roots, combined with the transport of root-respired CO2 from the 

roots to the soil surface, creates a time lag between photosynthesis and realized autotrophic soil 

respiration (RA) at the soil surface (Kuzyakov & Gavrichkova 2010; Mencuccini & Hölttä 2010). 

Since temperature exerts a strong influence on diel root respiration (Amthor 2000), the influence 

of photosynthesis on diel root respiration may be difficult to detect in situ (Mencuccini & Hölttä 

2010). If the effect of temperature on RA is accounted for, then the effect of photosynthesis can 
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be assessed. However, in situ temperature is often measured at a single soil depth, which can 

create an artifactual hysteresis between respiration and measured temperature that may be 

misattributed to the photosynthesis influence on RA (Phillips et al. 2011). In addition, since there 

is a lag time between CO2 generation and soil surface efflux, the soil profile temperature 

measured at the time of surface RA efflux is unlikely to be representative of the temperatures 

when the CO2 was generated, particularly at greater soil depths. These issues require mitigation 

to control for the effect of temperature on RA and thus adequately determine the coupling of 

photosynthesis and RA. 

The primary objective of this study was to better understand the temporal patterns of root 

respiration in maize and switchgrass cropping systems. To meet this objective, we aimed to 

parameterize and validate root growth respiration-maintenance respiration models using in situ 

observations collected at diel and seasonal periods, respectively. As a secondary objective, we 

sought to assess the effect of photosynthesis on diel patterns of RA and determine the lag time 

between the two processes. A third objective, which was necessary to meet the first two 

objectives, was to devise and implement a method to estimate in situ root temperature at the time 

of root respiration. 

 

3.2 Methods 

3.2.1 Study site 

The study was conducted at the DOE-Great Lakes Bioenergy Research Center’s Biofuel 

Cropping Systems Experiment (BCSE) in Arlington, WI, USA (43.296° N, 89.380° W). The 

thirty-year normal temperature and precipitation are 6.9 °C and 869 mm, respectively (NOAA 
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2017). Soils at the site are primarily Plano silt loams: Fine-silty, mixed, superactive, mesic Typic 

Argiudolls (Soil Survey Staff 2017). The larger BCSE was initiated in 2008 and contains five 

completely randomized blocks of twelve treatments with individual plots of 27.4 x 42.7 m 

(Sanford et al. 2016). Our study was undertaken in continuous no-till maize and “Cave-In-Rock” 

variety switchgrass within three replicated blocks. Switchgrass stands were established in June 

2008, while maize was planted every Spring. On average, maize received 167 kg N ha-1 yr-1 and 

switchgrass received 56 kg N ha-1 yr-1 (Sanford et al. 2016). Further agronomic specifications are 

given in Sanford et al. (2016). 

 

3.2.2 Autotrophic soil respiration 

Soil respiration components were measured during the 2015 and 2016 using an LI-

6400XT portable photosynthesis system with an LI-6400-09 soil CO2 flux chamber (LI-COR 

Inc., Lincoln, NE, USA). Total soil respiration (RT) and heterotrophic soil respiration (RH) were 

measured, and autotrophic respiration (RA) was calculated as the difference between RT and RH. 

For RT, six 10.2 cm inner diameter, 5 cm tall PVC collars were inserted 2 cm into the soil within 

each plot. The RT collars were stratified among the plant spaces (e.g. row and interrow) to 

capture small-scale spatial variability. Two root exclusion collars per plot were used to measure 

RH (Vogel & Valentine 2005). A 12.7 cm diameter bucket auger was used to excavate 10 cm soil 

sections down to approximately 100 cm. The soil sections were kept separate and sieved on a 5 

mm mesh screen to remove live roots; dead roots were kept in the soil. A 10.2 cm PVC tube was 

cut to approximately 103 cm and placed into the hole made with the bucket auger. The sieved 

soil was then serially backfilled into the PVC tube and packed to approximate the original soil 



81 

 

 

 

bulk density. Decagon 5TM soil moisture sensors (Decagon Devices Inc., Pullman, WA, USA) 

were placed inside and outside of each root exclusion collar at the 0-5 cm depth. 

A soil moisture correction factor was applied to the measured RH values to account for 

differences between soil moisture inside (Msoil,in) the root exclusion collar and soil moisture 

outside (Msoil,out) the root exclusion collars (Prolingheuer et al. 2014). A complete description is 

given in von Haden (2017). In short, a non-linear empirical model containing 2 cm soil 

temperature and Msoil,in was fit to measured RH values. For each RH measurement timepoint, the 

model was used to estimate RH at Msoil,in and Msoil,out. The correction factor for each timepoint 

was the difference between predicted RH at Msoil,out and Msoil,in. The correction factor was applied 

to the corresponding RH measurement. 

Autotrophic soil respiration was measured at diel and seasonal timescales. The diel 

measurement campaigns occurred in late June, July, and August of 2015 and 2016 for a total of 

six diurnal cycles. During the diel campaigns, measurements were made in one set of plots, and 

each collar within the set of plots was measured once per hour for 24 contiguous hours. The 

seasonal survey measurements occurred approximately twice per week during the 2015 and 2016 

growing seasons. The seasonal survey measurements were targeted between the hours of 0900 

and 1300, and all collars within all three sets of plots were measured on each survey date. 

 

3.2.3 Belowground growth and biomass 

Belowground cumulative growth and growth phenology were estimated with the root 

ingrowth method (Persson et al. 1979). A complete description of the method is provided in von 

Haden (2017). In brief, six 50 cm long, 7.4 cm outer diameter plastic mesh ingrowth cores per 
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plot were used to estimate root growth at approximately monthly intervals during the two 

growing seasons. Prior to the insertion of the six ingrowth cores, soil was extracted in 10 cm 

depth increments to 40 cm deep using a 7.6 cm diameter bucket auger. The extracted soil was 

serially sieved over a 5 mm mesh screen, all belowground biomass that appeared live based on 

appearance was saved (Hayes & Seastedt 1987), and dead roots were discarded. The ingrowth 

cores were placed into the holes created by the bucket auger, the soil was serially backfilled into 

the holes, and each layer was packed to approximate the original bulk density. At the end of each 

ingrowth period, the ingrowth cores were removed and new ingrowth cores were inserted into 

new holes. The final set of ingrowth cores was removed when plants were near complete 

senescence. Belowground biomass and ingrowth biomass were washed with water over an 800 

μm sieve and dried at 65 °C. We did not observe any rhizomes in the ingrowth cores, but 

rhizomes were present in the switchgrass belowground biomass samples. For convenience, we 

hereafter refer to belowground growth as root growth and belowground biomass as root biomass. 

Model fitting was used to characterize root growth phenology and the vertical distribution 

of root biomass at smaller time and depth intervals, respectively. Cumulative seasonal root 

growth was fit to a logistic growth curve: 

𝑅𝐺(𝑡) =
𝑅𝐺𝑚𝑎𝑥

1+exp [−𝑘𝐺(𝑡−𝑡𝑚)]
         (3.1) 

where RG(t) is accumulated root growth (g m-2) at t days after plant emergence, RGmax is the 

maximum cumulative root growth (asymptote), tm is the day of maximum root growth rate, and 

kG affects the shape of the growth curve (Archontoulis & Miguez 2015). The first derivative is 

then: 

𝑅𝐺′(𝑡) =
𝑅𝐺𝑚𝑎𝑥 𝑘𝐺 exp [𝑘𝐺(𝑡𝑚+𝑡)]

[exp(𝑘𝐺𝑡𝑚)+exp(𝑘𝐺𝑡)]2         (3.2) 
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where RG’(t) is the root growth rate (g m-2 d-1) on day t. RG’(t) thus provides a daily estimate of 

root growth. 

The vertical distribution of root biomass was fitted to an exponential decay function: 

𝑅𝐵(𝑑) = 𝑅𝐵𝑚𝑎𝑥[1 − exp(−𝑘𝐵𝑑)]        (3.3) 

where RB(d) is cumulative root biomass at depth d (cm), RBmax is the maximum root biomass 

(asymptote), and kB adjusts the shape of the curve. The first derivative is then: 

𝑅𝐵′(𝑑) =  𝑅𝐵𝑚𝑎𝑥𝑘𝐵exp(−𝑘𝐵𝑑)        (3.4) 

where RB’(d) is the instantaneous root biomass (g m-2 cm-1) at depth d. To convert the absolute 

instantaneous root biomass [RB’(d)] to relative instantaneous root biomass [RBR’(d)], the area 

under the RB’(d) function from d=0 to 40 cm was standardized to unity. 

Since small temporal changes in root biomass are difficult to detect when the overall root 

biomass stock is large, we assumed that switchgrass root biomass was constant and equal to the 

measured average value for each plot. For maize, root biomass at time t was equal to the 

cumulative seasonal root growth at time t. Finally, we assumed that the vertical distribution of 

root biomass was temporally constant in switchgrass (equal to the plot average), but that the 

vertical distribution of root biomass in maize was temporally dynamic (equal to the plot 

measured values). It was therefore necessary to linearly interpolate maize root biomass quantity 

and vertical distributions to daily intervals. 
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3.2.4 Soil temperature, moisture, and soil properties 

Soil temperature was measured with thermocouples, and soil moisture was measured with 

Campbell CS616 and CS640 moisture probes (Campbell Scientific, Logan, UT, USA). Soil 

temperature was measured at 15 min intervals and stored as hourly averages, and soil moisture 

was measured at either 15 min or hourly intervals and stored at hourly intervals, both using 

Campbell CR10X and CR1000 dataloggers. In addition to the three replicated blocks used in the 

other portions of the study, soil temperature and moisture were measured in a fourth block. The 

systems for measuring soil temperature and moisture varied among blocks, but all plots included 

at a pair of soil temperature thermocouples at 2 cm, 10 cm, and 20/30 cm each and soil moisture 

probes at a minimum of two depths (2/15 cm and 20/30 cm). Two of the blocks contained soil 

temperature and moisture probes at seven depths from 2 cm to 125 cm deep. For the two blocks 

with limited measurement depths (i.e. 20 or 30 cm), deeper soil temperature and moisture were 

set to the treatment averages among the other blocks. Where possible, missing data were gap-

filled by using the treatment average of the other blocks. All volumetric water content 

measurements were standardized to a Delta-T SM150 TDR (Delta-T Devices Ltd., Cambridge, 

England) based on over 200 concurrent probe measurements spanning from 15 to 47% 

volumetric soil moisture. Hourly soil temperature [TSoil(d)] and soil moisture [MSoil(d)] depth 

profiles were estimated from 0.5 to 39.5 cm at 1 cm intervals using a natural cubic spline. 

Soil physical and chemical properties were measured as a part of routine inventories in 

2008 and 2013. A hydraulic probe was used to collect three 7.6 cm diameter, 100 cm deep soil 

cores per plot. The cores were split into 0-10, 10-25, 25-50, and 50-100 cm sections. Soil particle 

size analysis for soil texture was determined using the hydrometer method (Gee & Bauder 1986) 

on the 2008 soil samples. Bulk density and SOC were measured on the 2013 soil samples. 
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Percent C was determined using a Flash EA 1112 elemental analyzer (Thermo Electron Corp., 

Milan, Italy), and organic matter content was estimated by assuming that organic matter is 58% 

C by weight (Howard 1966). Soil properties were interpolated from 0.5 to 39.5 cm at 1 cm 

intervals using a natural cubic spline. 

 

3.2.5 CO2 diffusion time lag 

The time lag between CO2 production and diffusion to the soil surface was estimated 

using a 40-layer (0.5 to 39.5 cm) model based upon the soil properties of each layer. The one-

dimensional mean diffusion time at a given distance can be calculated as (Monteith & Unsworth 

2008): 

𝑡𝑑 =
𝑑2

2𝐷𝑠
           (3.5) 

where d is the one-dimensional distance (depth, cm) and Ds is the soil diffusion coefficient (cm2 

s-1). The soil diffusion coefficient was estimated using (Moldrup et al. 1999): 

𝐷𝑠 = 𝐷𝑎𝜙2 (
𝜀

𝜙
)

𝛽𝐹𝑐𝑝

          (3.6) 

where Da is CO2 diffusivity in free air, ϕ is the total porosity, ε is the volumetric soil air content, 

Fcp is the fraction of silt plus sand, and β is an empirically-derived parameter of 2.9 (Moldrup et 

al. 1999; Vargas & Allen 2008). To account for diffusion in water-saturated soil (ε = 0), the 

minimum Ds was set at four orders of magnitude below diffusivity in free air (Jähne et al. 1987). 

The CO2 diffusivity in free air was (Massman 1998; Monteith & Unsworth 2008): 

𝐷𝑎 = (
𝑃0

𝑃
) (

𝑇

𝑇0
)

1.81

0.1381 𝑐𝑚2𝑠−1        (3.7) 
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where P0 is 101.325 kPa, T0 is 273.15 °K, P is the time-specific air pressure (kPa), and T is the 

time- and depth-specific temperature (°K). The total porosity was calculated as (Brady & Weil 

1999): 

𝜙 = 1 − (
𝜌𝑏

𝜌𝑝
)           (3.8a) 

𝜌𝑝 = [(𝐹𝑆𝑂𝑀) 1.40 𝑔 𝑐𝑚−1] + [(1 − 𝐹𝑆𝑂𝑀) 2.65 𝑔 𝑐𝑚−1]     (3.8b) 

where ρd is the bulk density, FSOM is the fraction of soil organic matter, and 1.4 and 2.65 g cm-1 

are the assumed densities of organic matter and mineral soil, respectively (Brady & Weil 1999; 

Ruhlman et al. 2006). Volumetric soil air content was calculated as (Vargas & Allen 2008): 

𝜀 =  𝜙 − 𝜃           (3.9) 

where θ is the time-and depth-specific volumetric soil moisture content. Since each depth 

increment had different physical properties, a partial diffusion time (tp) was calculated for each 

depth increment, di: 

𝑡𝑝(𝑑𝑖) =
𝑑𝑖

2−𝑑𝑖−1
2

2𝐷𝑠𝑖

          (3.10) 

The total diffusion time to depth increment d was then: 

𝑡(𝑑) =  ∑ 𝑡𝑝(𝑑𝑖)
𝑑
𝑑𝑖=0.5          (3.11) 

The lagged soil temperature at each depth and hour was: 

 𝑇𝑆𝑜𝑖𝑙,𝑙𝑎𝑔[𝑑, ℎ + 𝑡(𝑑)] = 𝑇𝑆𝑜𝑖𝑙[𝑑, ℎ]        (3.12) 

where d is the depth, h is the current hour, and t(d) the diffusion time at depth d (hours). 

Considering the multiple sources of potential error in the diffusion time estimate (e.g. bulk 

density, volumetric soil water content, soil diffusivity model), we used the treatment median 
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diffusion times to calculate lagged temperature profiles in each plot (Fig. 3.S.1). The lagged soil 

temperature profiles were then combined with relative root biomass distributions to estimate the 

soil profile average root temperature: 

𝑇𝑅𝑜𝑜𝑡
̅̅ ̅̅ ̅̅ ̅ =  ∑ 𝑅𝐵𝑅′(𝑑) 𝑇𝑆𝑜𝑖𝑙,𝑙𝑎𝑔(𝑑)39.5

𝑑=0.5         (3.13) 

Thus, the average root temperature is the lagged soil temperature profile weighted by the relative 

depth-distribution of roots. 

 

3.2.6 Photosynthesis 

Net canopy photosynthesis (An) was estimated at hourly timescales by scaling leaf-level 

light response curves to the canopy-level with light attenuation models. A complete description 

is given in von Haden 2017. In summary, leaf-level photosynthetically active radiation (PAR) 

photosynthesis response curves were made at our study site on upper- and lower-level canopy 

leaves through the 2010-2012 growing seasons using a LI-6400XT portable photosynthesis 

system (LI-COR Inc., Lincoln, NE, USA). Crop and canopy-specific net photosynthesis 

responses were fit to non-linear models which accounted for the effects of PAR, air temperature, 

and vapor pressure deficit. A light attenuation model was assembled following Campbell & 

Norman (1998). The light attenuation model used leaf area index, leaf angle distribution, solar 

zenith angle, and direct/diffuse solar PAR to estimate mean canopy light levels in the sunlit and 

shaded canopy fractions. The full canopy-level photosynthesis model coupled the light-response 

models to the light attenuation models, and the model was run at hourly timesteps using locally-

collected input data from the 2015 and 2016 growing seasons. 
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3.2.7 Autotrophic soil respiration model 

Diurnal RA data was fit to a model which accounted for the effects of growth respiration, 

temperature sensitive maintenance respiration with temperature acclimation, and photosynthesis 

with time lag: 

𝑅𝐴 = 𝑅𝑚𝑎𝑖𝑛𝑡 + 𝑅𝑔𝑟𝑜𝑤𝑡ℎ + 𝑚𝐴→𝑅𝐴𝐴𝑛(ℎ)(𝑅𝑚𝑎𝑖𝑛𝑡 + 𝑅𝑔𝑟𝑜𝑤𝑡ℎ)    (3.14a) 

𝑅𝑔𝑟𝑜𝑤𝑡ℎ = 𝑅𝑠,𝑔𝑅𝐺′          (3.14b) 

𝑅𝑚𝑎𝑖𝑛𝑡 = (𝐴𝐶𝑏 − 𝐴𝐶𝑚𝑇𝑅𝑜𝑜𝑡,𝑎
̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑄𝑏 − 𝑄𝑚𝑇𝑅𝑜𝑜𝑡

̅̅ ̅̅ ̅̅ ̅)[(𝑇𝑅𝑜𝑜𝑡̅̅ ̅̅ ̅̅ ̅̅ −20) 10⁄ ]𝑅𝐵    (3.14c) 

where Rmaint is total root maintenance respiration, Rgrowth is total root growth respiration, mA→RA 

describes the relationship between diel net photosynthesis and RA, An(h) is net canopy 

photosynthesis at h hours of lag, Rs,g is the specific root growth respiration (i.e. the growth 

respiration coefficient), and TRoot,a is the average root temperature over the previous 24 hours, 

and TRoot is the current root temperature. The coefficients ACb and ACm describe the temperature 

acclimation response (Kattage & Knorr 2007) and the coefficients Qb and Qm describe the 

variable temperature sensitivity response (Tjoelker et al. 2001) of root maintenance respiration. 

The specific root maintenance respiration rate (i.e. the root maintenance coefficient; Rs,m) can 

thus be calculated as function of the temperature and acclimation responses. The photosynthetic 

lag time (h) was determined by fitting separate models with h ranging from 0 to 24 hours and 

selecting the lag time which produced all positive model coefficients and the lowest Akaike 

information criterion (AIC). For comparison to other studies, a growth efficiency (or yield) can 

be calculated from the specific root growth respiration (Thornley 1970; Reekie & Redman 

1987): 

𝑌𝑔 =
1

1+ 𝑅𝑠,𝑔
           (3.15) 
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where Rs,g is converted to C equivalents by assuming that root C content is 43%. With the final 

model parameters, RA predictions were made at hourly timesteps using data collected during the 

2015 and 2016 growing seasons. For our purposes, we define the growing season as the time 

between plant aboveground emergence and complete senescence (i.e. the time during which root 

growth and leaf area index data were collected). The temperature acclimation response was 

limited to the range of measured values from which the model was parameterized (Lombardozzi 

et al. 2015). The model RA output was then compared against field survey RA measurements 

made throughout the 2015 and 2016 growing seasons. 

Model fitting was performed with the ‘nlsLM’ non-linear least squares function (Elzhov 

et al. 2016) in R version 3.4.1 (R Core Team 2017). 

 

3.3 Results 

3.3.1 Seasonal and diel patterns 

Growing season temperature and precipitation during 2015 and 2016 were warmer and 

wetter than normal, with 2016 being more extreme than 2015 (Table 3.1). Annual cumulative 

root growth was greater in 2016 than 2015 in both maize and switchgrass (Fig. 3.1). Switchgrass 

root growth began several weeks earlier than maize, but peak daily root growth rate occurred 

several weeks earlier in maize than switchgrass. However, the peak daily root growth rate in 

maize was nearly twice that of switchgrass. Maize root growth effectively ceased in mid-August, 

whereas switchgrass root growth continued appreciably into mid-September. Mean growing 

season root biomass stocks were 115 g m-2 and 829 g m-2 in maize and switchgrass, respectively. 
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Switchgrass RA was greater than maize RA on nearly all survey measurement dates during 

the 2015 and 2016 growing seasons (Fig. 3.2). Maize RA peaked in early July in both years, and 

switchgrass RA peaked in mid-July in 2016. However, in 2015 switchgrass RA showed an early 

peak during May and then declined slightly into June and July. Root temperature (TRoot) showed 

similar seasonal patterns in both maize and switchgrass, with maize TRoot being slightly warmer 

than switchgrass for most of the growing season. The differences in TRoot between maize and 

switchgrass were more prominent in 2016 than 2015. Owing to an earlier plant emergence date, 

canopy net photosynthesis (An) began earlier in switchgrass compared to maize. Peak An also 

occurred earlier in switchgrass than maize, but the An peak values were greater in maize than 

switchgrass. 

Diurnal cycles of RA were moderately noisy, but temporal trends were nonetheless 

apparent, with RA often peaking during the evening hours (Fig. 3.3). Similar to the seasonal 

survey measurements, RA in switchgrass was typically greater than maize, although the 

difference was more prominent in 2015 than 2016. Diel patterns of TRoot tended to peak near or 

slightly before RA, whereas diel Anet peaked much earlier than diel RA. 

 

3.3.2 Diel RA models 

Maize RA models with peak net photosynthesis to peak RA lag times between 14 and 16 h 

showed the best overall fit based on the AIC (Table 3.2). For switchgrass, the four best fitting 

models had negative parameter estimates for mA→RA (Table 3.S.1), in which case the lag 

describes the time between peak photosynthesis and base (i.e. lowest) RA. For consistency and 

interpretability, we chose to use only models with positive mA→RA, where the lag thus describes 

the peak net photosynthesis to peak RA. Importantly, the parameters other than mA→RA were 
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similar in the best fitting models with positive and negative mA→RA (Table 3.S.1). The three best 

fitting switchgrass models with positive parameters indicated a lag time of 22 to 24 h between 

peak net photosynthesis and RA. The overall best fitting RA models for maize and switchgrass 

had peak-to-peak lag times of 16 and 23 h, respectively. The model estimated relationship 

between net canopy photosynthesis and RA was strong in maize, but the relationship was not 

statistically significant in switchgrass (Table 3.2). Full overall model fits were good, with R2 of 

0.89 and 0.71 for maize and switchgrass, respectively (Fig. 3.4). 

The specific growth respiration rate was 1.8 times greater in switchgrass than maize 

(Table 3.3). Contrarily, the calculated specific maintenance respiration rate at TRoot and TRoot,a of 

20 °C was more than 4 times greater in maize than switchgrass. The Qm parameters were not 

statistically significant for either crop model, which is likely attributable to the limited number of 

observations and the multicollinearity between TRoot and TRoot,a. While the combination of the 

acclimation and temperature sensitivity responses adequately describe the overall temperature 

response of RA in our data (Fig. 3.4), the multicollinearity prevents the interpretation of the 

individual acclimation and sensitivity coefficients. 

 

3.3.3 Seasonal predictions 

Modelled growth and maintenance RA showed markedly different seasonal patterns in 

maize and switchgrass (Fig. 3.5). Growth RA followed root growth phenology, with an earlier, 

shorter peak in maize. Despite the lower daily root growth rates in switchgrass than maize, the 

modelled peak growth RA rates were similar between crops due to the greater specific growth 

respiration in switchgrass. Over the course of the growing season, growth RA in switchgrass was 

more than double that of maize (Table 3.4). Seasonal patterns of maintenance RA were also 
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contrasting in maize and switchgrass, with maize maintenance respiration peaking in mid-to-late 

August and switchgrass maintenance respiration showing no clear peaking trend (Fig. 3.5). 

Despite lower specific maintenance respiration in switchgrass than maize, seasonal maintenance 

RA was approximately twice as high in switchgrass (Table 3.4) due to the much greater root 

biomass stock in switchgrass. Growth RA accounted for about one-third of total growing season 

RA for both crops (Table 3.4). The relatively greater RA in maize in 2016 compared to 2015 was 

reflected in both growth and maintenance respiration components, which likely resulted from a 

higher root growth rate, greater cumulative root production, and higher root temperatures (Fig. 

3.1; Fig. 3.3). There was reasonable agreement and minimal bias between seasonal survey RA 

measurements and model predicted RA, with R2 of 0.52 and 0.41 in maize and switchgrass, 

respectively (Fig. 3.6). 

 

3.4 Discussion 

3.4.1 Growth and maintenance respiration differed between plant types 

The estimated values of specific root growth respiration and subsequent root growth 

efficiency (Yg, 0.54 for maize and 0.39 for switchgrass) were within the range of values reported 

for grasses in other studies. Depending on the specific growth conditions and methodology, 

Hansen & Jensen (1977) reported Yg between 0.39 and 0.65 for Lolium multiflorum Lam. 

Similarly, Reekie & Redman (1987) reported Yg of 0.54 for Agropyron dasystachyum (Hook.) 

Scribn. The fact that our Yg estimates were in the low- to mid-range of reported values may stem 

from the fact that the root ingrowth method is thought to conservatively estimate root production 

(Milchunas 2009). If root growth was in fact slightly underestimated, the specific growth 

respiration rate would be overestimated, causing the growth efficiency parameter to be 
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underestimated. Nonetheless, given that both maize and switchgrass are C4 grasses, it was 

somewhat surprising that switchgrass growth efficiency was appreciably lower than maize. In 

addition, this finding contrasts a comparison of annual versus perennial grass species that 

showed no significant difference in root construction costs (Roumet et al. 2006). A potential 

explanation for the differences in growth efficiency observed in our study is that the cost of ion 

uptake by roots was implicitly included within the root growth respiration estimates (Lambers et 

al. 1983). The specific respiratory cost of ion uptake is inherently greater in species with lower 

specific root growth rates (Poorter et al. 1991), and thus switchgrass may allocate a greater 

proportion of total belowground carbon to ion (e.g. nitrate) uptake than maize. This phenomenon 

may have been exacerbated by the differences in fertilizer regimes between crops in our study 

(Poorter et al. 1995), with maize receiving three times more N than switchgrass each year. 

Estimated values of specific root maintenance respiration at 20 °C were lower than values 

reported for grass species in other root studies, which have reported minimum values of 37 [(mg 

C respiration day-1) (g C biomass)-1] (Reekie & Redman 1987). However, specific maintenance 

respiration rates as low as 12 [(mg C respiration day-1) (g C biomass)-1] have been reported for 

grass shoots (Hansen & Jensen 1977). One key difference between this study and other root 

maintenance respiration studies is that we measured RA in situ, whereas other studies have been 

performed in a controlled environment. Estimating live root biomass in situ is challenging, as 

senesced or non-functioning roots may appear intact and alive, particularly in perennial systems. 

If live root biomass was overestimated due to the inclusion of senesced roots, then we would 

expect the specific root maintenance rates to be underestimated.  Other grass root maintenance 

respiration studies have typically measured young plants in the range of several weeks to several 

months old (Hansen & Jensen 1977; Reekie & Redman 1987), but the switchgrass stands used in 
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our study were in their 8th and 9th growing seasons during this study. Considering that specific 

growth maintenance declines with grass plant age as a result of decreasing root tissue protein 

content (Stahl & McCree 1988), it is likely that the older switchgrass plants in our study had 

inherently lower specific root growth maintenance compared to younger plants. For example, 

Reekie and Redman (1987) found that scaling specific root maintenance respiration from young 

grass plants to an older, established grassland severely overestimated annual root respiration 

rates. However, when the specific root respiration rates were adjusted to the lower non-structural 

tissue content of the established grassland, the estimated annual root respiration rates decreased 

by approximately 75% and thus were much more reasonable (Reekie and Redman 1987). This 

same phenomenon may explain the higher specific root maintenance respiration rates observed in 

maize compared to switchgrass. Fast growing plant species typically have greater root protein 

content than slow growing plants (Poorter et al. 1991), and annual species typically have greater 

root N concentration (e.g. protein) than perennial species (Roumet et al. 2006). This is especially 

relevant considering that switchgrass “root” biomass also contained rhizomes, which are 

typically lower in protein content than roots (e.g. Gallagher et al. 1984). Thus, we may expect 

maize to have higher specific root maintenance respiration rates than switchgrass. 

When all belowground dynamics were considered, model estimated growing season RA 

was 2.2 times greater in switchgrass compared to maize. This agrees well with Buyanovsky et al. 

(1987) who reported that the annual contribution of root respiration was approximately twice as 

great in native prairie than winter wheat (Triticum aestivum L.). Similarly, Anderson-Teixeira et 

al. (2013) reported consistently greater RA in perennial compared to annual bioenergy cropping 

systems. Buyanovsky et al. (1987) speculated that higher RA in the perennial system was a result 

of greater root biomass and longer active growing season. While our results agree with this 
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assessment, the RA model provides additional physiological insight. For example, both greater 

annual root growth and greater specific root growth respiration (which likely includes ion uptake 

costs) contributed to the higher RA in switchgrass compared to maize. In other words, a greater 

total quantity of substrates was allocated to root growth in switchgrass, but the conversion of that 

substrate to growth was much less efficient. While average root biomass was much greater in 

switchgrass than maize, the specific root maintenance respiration rate was lower in switchgrass 

than maize. However, the difference in root biomass outweighed the difference in specific root 

maintenance respiration rate such that total root maintenance RA was 2.3 times greater in 

switchgrass than maize. These results highlight potential juxtapositions between the 

belowground carbon economies of annual versus perennial or fast-growing versus slow-growing 

species that may be more generalizable. 

 

3.4.2 Lag times between photosynthesis and RA were detectable in maize 

The lag time between photosynthesis and RA in maize was estimated at 14 to16 h based 

on the top three performing models. This estimate is in good agreement with other literature 

values that suggest a lag time of 12.5 ± 7.5 h for grasses (Kuzyakov & Gavrichkova 2010). In 

reality, the lag time from photosynthesis to CO2 production by the root is probably not constant, 

but rather varies as a function of phloem transport time, and thus is related the distance between 

leaves and roots (Kuzyakov & Gavrichkova 2010). The full lag time from photosynthesis to soil 

surface efflux includes transport from the roots through the soil, and therefore is also not 

constant, but depends on upon the soil CO2 diffusivity (Mencuccini & Hölttä 2010). Since both 

plant height and soil CO2 diffusivity varied among our diel RA measurement data, our estimated 

lag time for maize can be considered typical but not temporally constant. 
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For switchgrass, the model estimated lag time was not statistically significant and 

therefore cannot be regarded as reliable. The lack of a statistical relationship between 

switchgrass photosynthesis and RA does not necessarily mean that the relationship does not exist, 

but most likely indicates that the signal was too weak to detect. For example, at an extreme 

canopy net photosynthetic rate of 65 µmol CO2 m
-2 s-1 in maize, the increase in RA (compared to 

nil photosynthesis) is 30% over the baseline RA. In contrast, for switchgrass the model estimated 

increase over baseline RA is only 6% at the same photosynthetic rate. Thus, in switchgrass the 

photosynthesis signal appears very small compared to the baseline RA. Measuring RA in situ in 

switchgrass is also particularly challenging due to the irregular small-scale spatial variability (i.e. 

the plants are not equally spaced in rows). Increased spatial and temporal RA measurement 

resolution would likely be necessary to adequately estimate the photosynthetic RA lag in 

switchgrass. 

 

3.4.3 Root temperature affected RA 

Root temperature (TRoot) and ambient root temperature (TRoot,a) exerted a large influence 

on root maintenance respiration and thus largely shaped the temporal patterns of RA. However, 

Troot,a and Troot are inherently correlated at the seasonal scale, and therefore the model acclimation 

parameters are probably implicitly describing part of the temperature sensitivity response in 

addition to the acclimation response. This likely explains the lack of statistical significance of the 

temperature sensitivity response parameter Qm and the weak statistical significance of Qb. With 

such a small sample size (n = 144), the multicollinearity of Troot,a and Troot strips the biological 

meaning of the acclimation and sensitivity parameters. In addition, it likely creates more error in 

the predictions made from the model, which may explain the flashiness of modelled maintenance 
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RA. A larger sample size would reduce the influence of multicollinearity and improve the 

parameter estimation for both temperature sensitivity and temperature acclimation. In addition, 

the range of TRoot during the diel measurements was notably limited compared to the full 

growing season TRoot range, with an absence of diel TRoot below about 15 °C. Expanding the 

range of TRoot used to parameterize the diel RA models would also improve the temperature 

sensitivity estimates (Qb and Qm) and therefore provide better predictions of seasonal RA. In sum, 

proper estimation of the complex RA response to Troot and Troot,a will require substantially larger 

RA datasets such as those obtained by high-frequency automated soil respiration systems. 

 

3.4.4 Strengths and limitations of the approach 

The direct estimation of TRoot, in lieu of using an arbitrary soil temperature depth, is a key 

strength of our approach. Numerous studies have documented the inherent limitations of using 

temperature at an arbitrary soil depth as an explanatory variable for soil respiration (Pavelka et 

al. 2007; Graf et al. 2008; Phillips et al. 2011). Essentially, while soil temperature at a given 

depth may correlate with soil respiration, there is a lack of causation between the variables 

because the processes controlling soil respiration are not occurring solely at the measured depth. 

Instead, the processes controlling soil respiration (e.g. root respiration) are occurring along a 

vertical distribution gradient which typically declines non-linearly with depth (e.g. roots). 

Likewise, soil temperatures are not typically constant with depth, but vary throughout the soil 

profile. By accounting for the vertical distribution of both soil temperature and roots, we 

calculated a profile-average root temperature, which is thus causally linked to root respiration. A 

related but separate issue stems from the fact that diffusion of CO2 through the soil profile 

necessarily creates a lag time between root respiration and surface efflux, and temporal changes 
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in soil physical properties can alter the lag time (Phillips et al. 2011). If this lag is ignored, then 

the relationship between temperature and CO2 generation becomes temporally disconnected, 

with the separation becoming more prominent with depth (i.e. the CO2 diffusion time increases 

with depth). We addressed this issue by estimating the CO2 diffusion times throughout the soil 

profile and then adjusting the root temperature profiles to represent the temperature when CO2 

was generated. 

The mechanistic model, which partitioned RA into growth and maintenance components, 

can be viewed as both a strength and a limitation. On the positive side, we gained a better 

understanding of physiological differences in root processes between maize and switchgrass 

cropping systems. In turn, we predicted reasonably well the seasonal patterns of RA even outside 

of the conditions used to parameterize the model. The model also facilitated the estimation of the 

link between diel photosynthesis and RA. However, the model did not explicitly account for root 

respiration associated with ion uptake and other plant processes (Thornley & Cannell 2000), and 

thus may be more susceptible to errors than a more complex model (Lambers et al. 1983). Other 

environmental factors such as plant water availability were not considered, although it is 

important note that the plants were unlikely to be water stressed during our two study years. The 

model did not account for the potential for the growth and maintenance respiration coefficients to 

vary with respect to plant ontogeny and subsequent changes in root tissue types, which may be 

particularly important for annual species such as maize (Stahl & McCree 1988). The model is 

also unrealistic in that it assumes that substrates are always available for root respiration 

(Thornley & Cannell 2000), which likely leads to errors in model predictions particularly during 

aboveground plant senescence. Finally, the RA models were parametrized from six diel 

campaigns, and therefore the model parameter reliability is limited both by the number of 
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measurements and the range of measured values. This is especially true of the temperature 

acclimation and temperature sensitivity parameters. 

The model parameter estimates are subject to the errors and uncertainty associated with 

the measurements used to parameterize the models. In particular, RA itself is difficult to measure 

in situ, and all methods have drawbacks (Subke et al. 2006). The root exclusion method does not 

account for SOC priming in the RH measurement (Kuzyakov 2006), so the RA estimate likely 

includes SOC priming. However, other issues such as the diffusion of soil CO2 from below the 

RH collars causes an overestimate of RH and an underestimate of RA (Jassal & Black 2006). 

There is additional compounded error arising from the calculation of RA as the difference 

between RT and RH. Although the use of TRoot provides more realistic RA temperature responses 

and likely improves parameter estimation and model performance, there are several uncertainties 

associated with the TRoot calculation. Notably, the soil CO2 diffusion model which was used to 

estimate the lag time between root CO2 generation and surface efflux requires many input 

parameters which can be difficult to measure. For example, volumetric water content and bulk 

density are central for calculating the total pore space and volumetric soil air content, which in 

turn is necessary to estimate the soil CO2 diffusivity parameter. Considering that the model used 

to estimate the CO2 diffusivity parameter is a non-linear function, small errors in the input 

parameters could result in larger errors in the output parameter. Refining the input parameter 

estimates through greater measurement replication would likely help to improve the TRoot 

estimates and hence improve the model. 
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3.5 Conclusions 

We used in situ diel RA measurements to parameterize growth respiration-maintenance 

respiration models for maize and switchgrass cropping systems. The models indicated apparent 

physiological differences in root respiration between maize and switchgrass, with greater specific 

growth respiration in switchgrass and greater specific root maintenance respiration in maize. 

These differences are likely related to the relative root growth rates and root tissue types between 

the two species, and thus may be more generalizable. Seasonal RA model simulations matched 

the measured patterns of RA reasonably well, indicating that the growth respiration-maintenance 

respiration modelling approach is useful at the ecosystem level. However, the inability to 

independently characterize the temperature acclimation and sensitivity responses of maintenance 

respiration precludes the use of those model parameters estimates in other applications. Future in 

situ studies using the growth respiration-maintenance respiration framework will require 

significantly larger sample sizes to adequately estimate the temperature acclimation and 

temperature sensitivity responses. 

The in situ approach required a direct estimate of root temperature in order to 

characterize the response of RA to temperature and subsequently estimate the relationship 

between diel photosynthesis and RA. The method to estimate root temperature accounted for the 

vertical distribution of roots, the vertical distribution of soil temperature, and lag time between 

CO2 generation and soil surface efflux. While we believe that this approach mitigates the issues 

associated with single-depth soil temperature measurements, the method requires empirical 

validation. Nonetheless, the approach was seemingly successful as indicated by the estimated lag 

time of 14 to 16 h for maize, which agrees well with literature values. For switchgrass, the lag 

time could not be determined due to the apparently weak influence of photosynthesis on diel RA. 
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Additional studies will require more spatial and temporal measurements to accurately assess this 

coupling. 
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3.8 Tables and figures 

Table 3.1 – Growing season temperature and precipitation during the two study years compared 

to the 30-year mean (NOAA 2017). 

---------------------------------------------------------------------------------------------------------------------- 
 2015  2016  30-year mean 
 -------------------------------- -------------------------------- --------------------------------- 

 Temp (°C) Precip. (mm) Temp (°C) Precip. (mm) Temp (°C) Precip. (mm) 
 
May 14.8 112.0 14.3 87.6 13.2 93.7 

Jun 18.6 79.8 20.3 104.1 18.7 118.9 

Jul 20.3 80.3 21.8 164.8 20.8 105.7 

Aug 19.8 110.0 21.4 138.7 19.6 99.1 

Sep 18.9 144.8 17.9 156.7 15.2 89.9 

Oct 10.4 49.8 11.3 85.6 8.6 64.8 

 
Total 17.2 576.6 17.9 737.6 16.0 572.0 

---------------------------------------------------------------------------------------------------------------------- 
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Table 3.2 – Parameter estimates for the top three diel RA models (based on AIC), which also met 

the criteria of all positive parameters. P-values are denoted by *** < 0.0001, ** < 0.01, * < 0.05, 

and · < 0.1. 

---------------------------------------------------------------------------------------------------- --------------------------- 
 Lag (h) AIC mA→RA  Rr,g  ACb ACm Qb Qm 
-------------------------------------------------------------------------------------------------------------------------- -- 
Maize        

 16 23.2 4.65E-3*** 0.355*** 5.43E-2*** 2.26E-3*** 91.3* 2.48 
 15 23.8 4.15E-3*** 0.360*** 5.07E-2*** 2.08E-3*** 90.1* 2.88· 
 14 24.8 3.80E-3*** 0.363*** 4.69E-2*** 1.90E-3*** 83.5** 2.89* 
         

Switchgrass        

 23 128.1 8.56E-4 0.650*** 1.77E-2*** 7.79E-4*** 15.5* 0.520 
 24 128.3 7.89E-4 0.651*** 1.75E-2*** 7.73E04*** 16.1* 0.563 
 22 128.3 8.32E-4 0.649*** 1.78E-2*** 7.85E-4*** 14.9· 0.476 

-------------------------------------------------------------------------------------------------------------------------------  
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Table 3.3 – Specific growth respiration (Rs,g), growth efficiency (Yg), and the specific 

maintenance respiration rate at 20 °C (Rs,m). 

----------------------------------------------------------------------------------------------------------------------------- -- 
 Rs,g Yg Rs,m (20 °C) 
-----------------------------------------------------------------------------------------------------------------------------  
Units (g C respiration) (g C growth) (mg C respiration day-1) 
 (g C growth)-1 (g C growth + g C respiration)-1 (g C biomass)-1 

 
Maize 0.86 (0.02) 0.54 (0.01) 22.0 (0.40) 

Switchgrass 1.57 (0.11) 0.39 (0.02) 5.0 (0.05) 

----------------------------------------------------------------------------------------------------------------------------- -- 
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Table 3.4 – Growing season root growth (Rgrowth) and root maintenance (Rmaint) respiration as 

predicted by the RA model. 

---------------------------------------------------------------------------------------------------------------------  
  2015  2016    
 ----------- ------------------------------------ ------------------------------------ 
 Units Rgrowth Rmaint Rgrowth Rmaint 
      
Maize g C m-2 58.8 (5.2) 112.5 (9.6) 71.8 (7.3) 152.9 (14.7) 

 % of RA 34.3 (0.34) 65.7 (0.34) 31.9 (0.34) 68.1 (0.34) 

Switchgrass g C m-2 127.5 (11.7) 314.4 (20.5) 155.9 (21.3) 288.5 (24.0) 

 % of RA 28.9 (2.9) 71.1 (2.9) 35.1 (4.6) 64.9 (4.6) 

---------------------------------------------------------------------------------------------------------------------  
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Figure 3.1 – Cumulative and daily root growth (RG) for maize and switchgrass during the (a) 

2015 and (b) 2016 growing seasons. Measured cumulative root growth is shown as points with 

standard error, and the growth model curves are presented as dashed lines.  
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Figure 3.2 – Seasonal patterns of autotrophic root respiration (RA) from the survey 

measurements, daily average root temperature (TRoot), and net canopy photosynthesis (An).  
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Figure 3.3 – Diel patterns of hourly autotrophic root respiration (RA), root temperature (TRoot), 

and net canopy photosynthesis (An) during six campaigns in 2015 and 2016. Time 0 is midnight 

local standard time. Dates indicate the day on which respiration measurements began.  

 

 

 

 

 

 

 
 
  

 
 
  

 
 
 

 
 
 
 
 
 

     
           

                                                            

  

  

  

 
 
 
 
 
  
 
 

 

  

  

       

 
 
  

 
 
  

 
 
 

 
 
 
 
 
 

                                        

           



113 

 

 

 

 

Figure 3.4 – Predicted versus observed diel autotrophic root respiration (RA) for (a) maize and 

(b) switchgrass. The black line is the linear regression between the two variables, and the gray 

line shows 1:1.  
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Figure 3.5 – Modelled seasonal patterns of daily average maintenance and growth autotrophic 

root respiration (RA) in maize (a, b), and switchgrass (c, d). The RA types are stacked such that 

total RA is represented as the sum of maintenance and growth respiration.  
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Figure 3.6 – Model predicted hourly autotrophic root respiration (RA) versus observed RA from 

the seasonal survey measurements for (a) maize and (b) switchgrass. Each point is the mean of 

three plots. The black line is the regression between observed and modelled RA, and the gray line 

is 1:1.  
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3.9 Supplemental tables and figures 

Table 3.S.1 – Parameters for 0-24 h lags between net photosynthesis and autotrophic respiration. 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 Lag (h) AIC R2 mA→RA  Rr,g  ACb ACm Qb Qm 

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Maize          

 16 23.23 0.894 4.651E-03 0.355 5.426E-02 2.257E-03 91.3 2.48 
 15 23.78 0.893 4.155E-03 0.360 5.070E-02 2.085E-03 90.1 2.88 
 14 24.80 0.893 3.804E-03 0.363 4.689E-02 1.900E-03 83.5 2.89 
 13 26.12 0.892 3.613E-03 0.366 4.304E-02 1.714E-03 74.3 2.69 
 17 27.68 0.890 4.939E-03 0.352 5.702E-02 2.391E-03 86.2 1.77 
 12 28.78 0.889 3.512E-03 0.369 3.898E-02 1.519E-03 64.3 2.40 
 1 32.43 0.887 -2.960E-03 0.400 4.670E-02 1.852E-03 76.2 2.79 
 11 33.21 0.886 3.441E-03 0.371 3.486E-02 1.319E-03 54.2 2.07 
 2 33.26 0.886 -2.962E-03 0.397 5.098E-02 2.057E-03 86.0 3.03 
 3 34.47 0.885 -3.078E-03 0.395 5.519E-02 2.258E-03 94.1 3.13 
 0 34.87 0.885 -2.914E-03 0.402 4.206E-02 1.629E-03 65.0 2.44 
 24 37.52 0.883 -2.795E-03 0.396 4.237E-02 1.646E-03 66.9 2.49 
 18 39.29 0.881 4.364E-03 0.354 5.741E-02 2.405E-03 85.9 1.82 
 4 39.55 0.881 -3.039E-03 0.393 5.814E-02 2.399E-03 97.2 3.01 
 23 40.62 0.880 -2.791E-03 0.398 3.796E-02 1.433E-03 56.6 2.15 
 10 41.32 0.879 3.109E-03 0.374 3.222E-02 1.190E-03 47.5 1.83 
 5 45.19 0.876 -2.883E-03 0.391 5.948E-02 2.465E-03 95.6 2.79 
 22 47.31 0.874 -2.482E-03 0.399 3.529E-02 1.306E-03 50.2 1.92 
 9 48.69 0.873 2.575E-03 0.376 3.199E-02 1.176E-03 45.9 1.77 
 19 50.63 0.871 2.740E-03 0.365 5.415E-02 2.242E-03 87.1 2.54 
 6 52.91 0.869 -1.906E-03 0.388 5.518E-02 2.265E-03 88.1 2.79 
 21 53.86 0.868 -1.627E-03 0.395 3.740E-02 1.413E-03 53.5 2.03 
 8 54.81 0.867 1.392E-03 0.381 3.711E-02 1.417E-03 54.5 2.06 
 20 56.46 0.866 4.919E-04 0.381 4.673E-02 1.874E-03 73.5 2.59 
 7 56.54 0.866 -3.711E-04 0.385 4.679E-02 1.873E-03 73.0 2.59 

Switchgrass         

 14 125.61 0.717 -1.282E-03 0.684 1.745E-02 7.690E-04 17.9 0.679 
 13 125.63 0.717 -1.226E-03 0.682 1.766E-02 7.789E-04 17.6 0.649 
 12 126.83 0.714 -1.021E-03 0.677 1.784E-02 7.872E-04 17.0 0.602 
 15 127.56 0.713 -1.010E-03 0.678 1.735E-02 7.637E-04 17.7 0.674 
 23 128.07 0.712 8.559E-04 0.650 1.767E-02 7.791E-04 15.5 0.520 
 24 128.28 0.711 7.889E-04 0.651 1.753E-02 7.725E-04 16.1 0.563 
 22 128.34 0.711 8.321E-04 0.649 1.779E-02 7.850E-04 14.9 0.476 
 20 128.43 0.711 9.220E-04 0.645 1.799E-02 7.948E-04 13.7 0.385 
 21 128.48 0.711 8.482E-04 0.647 1.790E-02 7.902E-04 14.3 0.432 
 11 128.74 0.711 -6.284E-04 0.669 1.788E-02 7.889E-04 16.3 0.560 
 0 128.74 0.711 6.363E-04 0.651 1.750E-02 7.712E-04 15.8 0.546 
 7 128.96 0.710 7.921E-04 0.648 1.685E-02 7.390E-04 16.8 0.645 
 1 128.98 0.710 5.679E-04 0.652 1.741E-02 7.665E-04 16.1 0.571 
 6 129.03 0.710 7.951E-04 0.649 1.682E-02 7.376E-04 16.8 0.647 
 19 129.13 0.710 6.752E-04 0.647 1.793E-02 7.915E-04 14.3 0.430 
 16 129.20 0.710 -5.784E-04 0.670 1.741E-02 7.664E-04 17.3 0.642 
 5 129.29 0.709 6.328E-04 0.651 1.701E-02 7.470E-04 16.8 0.634 
 2 129.40 0.709 4.251E-04 0.654 1.738E-02 7.653E-04 16.3 0.587 
 3 129.53 0.709 3.907E-04 0.654 1.734E-02 7.631E-04 16.5 0.598 
 8 129.55 0.709 4.139E-04 0.653 1.727E-02 7.593E-04 16.6 0.611 
 4 129.57 0.709 4.034E-04 0.654 1.727E-02 7.599E-04 16.6 0.609 
 10 129.65 0.709 -2.746E-04 0.663 1.779E-02 7.846E-04 16.1 0.550 
 18 129.66 0.709 3.457E-04 0.653 1.779E-02 7.847E-04 15.4 0.502 
 17 129.79 0.708 -1.720E-04 0.662 1.755E-02 7.734E-04 16.6 0.593 
 9 129.84 0.708 5.380E-05 0.658 1.759E-02 7.751E-04 16.3 0.571 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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Figure 3.S.1 – Lag times [log (h + 1)] between CO2 generation and soil surface efflux 

throughout the 0-40 cm soil profile for maize (a, b) and switchgrass (c, d) in 2015 and 2016. 
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Chapter 4 

Soil microclimate in temperate bioenergy cropping systems: implications for C loss via 

heterotrophic soil respiration 

von Haden, A.C., Marín-Spiotta, E., Jackson, R.D., Kucharik, C.J. 

Target journal: Agricultural and Forest Meteorology 

Abstract 

Soil organic carbon (C) storage in biofuel cropping systems facilitates net C emissions 

reductions. Heterotrophic soil respiration (RH) is the primary pathway of C loss from litter and 

soil organic carbon and thus RH affects ecosystem C storage. Since RH is sensitive to soil 

temperature and moisture, soil microclimates resulting from plant and management factors may 

influence C loss via RH. We examined multiyear soil microclimate differences among no-till 

maize, switchgrass, and hybrid poplar bioenergy cropping systems in Wisconsin, USA. In 

addition, we measured RH in maize and switchgrass and parameterized models to predict the 

direct effects of altered soil microclimate on annual RH. Summertime soil temperatures were 

typically warmer in maize compared to poplar and switchgrass, likely caused in part by earlier 

leaf-out and greater peak LAI in the latter systems. Due to spatially-limited vertical plant stubble, 

snow depths were consistently shallow in maize, leading to the coldest wintertime soil 

temperatures among the systems. Differences in soil moisture, which was only available for 

maize and switchgrass, varied by depth. Maize was relatively drier near the surface, but 

switchgrass was relatively drier below 50 cm. Modelled scenarios indicated that annual maize RH 

would decrease by 3 to 6% under the cooler and wetter switchgrass soil microclimate, but annual 

switchgrass RH would increase by 8 to 17% under the warmer and drier maize soil microclimate. 
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Our simple model suggested that RH could be moderately influenced by management practices 

that alter the soil microclimate. However, soil microclimate effects on plant productivity, N 

mineralization, and other greenhouse gas emissions need to be weighed against the potential C 

storage benefit. 

 

4.1 Introduction 

As demand for bioenergy grows, further conversion of land to biofuel cropping systems 

will be necessary (Lark et al. 2015). For biofuels to provide the potential for immediate climate 

change mitigation, conversion of lands to biofuel cropping systems must preserve or enhance 

biogeochemical cycling relative to baseline conditions (Robertson et al. 2011) and ecosystem 

carbon (C) debts must be avoided (Gibbs et al. 2008; Gelfand et al. 2011). Therefore, the 

ecosystem C balance is a key component of the overall sustainability of biofuel cropping systems 

(Robertson et al 2011). Fundamentally, the ecosystem C balance is a function of the difference 

between C inputs and C outputs (Chapin et al. 2006; Lambers et al. 2008), and thus decreasing 

the rate of C loss from biofuel cropping system could provide a means for maintaining or storing 

additional C (Whitmore et al. 2015). 

Heterotrophic respiration (RH) resulting from the decomposition of organic C is the 

primary pathway of C loss from soil organic carbon (SOC) and litter (Chapin et al. 2006; 

Lambers et al. 2008). Although RH is facilitated by the decomposer community and depends 

upon the availability of C substrates, temperature and moisture strongly regulate the RH rate 

(Lambers et al. 2008). Owing to greater enzyme activity, enzyme affinity for the substrate, and 

substrate diffusion rates (Davidson et al. 2006), RH increases with greater temperatures within 

typical soil temperature ranges (Lloyd & Taylor 1994). At low soil moisture, RH is limited by 
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substrate transport and microbial physiology, whereas at high soil moisture, RH is limited 

through oxygen diffusion and availability (Moyano et al. 2013). Therefore, RH is typically 

highest at intermediate soil moisture levels (Linn & Doran 1984). 

At the landscape level, soil temperature and soil moisture are regulated by seasonal 

patterns of solar radiation intensity, albedo, air temperature, and precipitation. However, at 

smaller scales, the soil microclimate is influenced by localized conditions such as the spatial and 

temporal patterns of plant structure and phenology (Flerchinger & Pierson 1997; Chen et al. 

1999). For example, spatial differences in leaf area index or litter cover may facilitate differences 

in soil temperature or soil moisture among vegetation types (Hatfield & Prueger 1996; 

Wolkovich et al. 2009; Hardwick et al. 2015). Deep snow cover, which may be enhanced by tall, 

upright stubble which more effectively traps snow, can decouple the soil from air temperature 

fluctuations, leading to warmer soil temperatures during winter (Sharratt et al. 1998). Since 

management factors such as planting date, residue removal rates, and stubble properties are 

known to modify the soil microclimate (Hatfield & Prueger 1996; Flerchinger & Pierson 1997; 

Sharratt et al. 1998), it is plausible that management-induced soil microclimates affect RH. Given 

that C storage is a central focus of biofuel cropping systems, reducing RH by altering the soil 

microclimate may be viewed as a potential C management strategy (e.g. Whitmore et al. 2015). 

However, a better understanding of temporal dynamics of soil microclimates and the subsequent 

response of RH is necessary to assess whether such a strategy is viable. 

Our objectives were to evaluate soil microclimate differences among several candidate 

bioenergy cropping systems and to predict whether RH would be significantly modified under 

alternate soil microclimate scenarios. We hypothesized that annual cropping systems would 

exhibit more extreme soil temperatures than perennial systems due to lower leaf area index 
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during the summer and shallower snow depth during the winter. We also hypothesized that soil 

moisture would be lower in annual than perennial systems due primarily to greater evaporative 

loss. Finally, we expected that the differences in soil microclimate between annual and perennial 

systems would be sufficient to facilitate substantial differences in RH. 

 

4.2 Methods 

4.2.1 Study site 

The research was conducted at the DOE-Great Lakes Bioenergy Research Center’s 

Biofuel Cropping Systems Experiment (BCSE) in Arlington, WI, USA (43.296° N, 89.380° W). 

The thirty-year normal annual air temperature and precipitation are 6.9 °C and 869 mm, 

respectively (NOAA 2017). The site is dominated by Plano silt loam soils which are Fine-silty, 

mixed, superactive, mesic Typic Argiudolls (Soil Survey Staff 2017). The BCSE began in 2008 

and consists of five completely randomize blocks of twelve treatments with plots measuring 27.4 

m x 42.7 m each (Sanford et al. 2016). Our study was constrained to continuous no-till maize 

(Zea mays L.), ‘Cave-In-Rock’ switchgrass (Panicum virgatum L.), and hybrid poplar (Populus 

nigra × P. maximowiczii A. Henry ‘NM6’) cropping systems within four of the blocks.  

Maize was planted every spring, switchgrass was planted in June 2008, and hybrid poplar 

cuttings were planted in May 2008. Maize received an average of 167 kg N ha-1 annually, 

switchgrass received 56 kg N ha-1 annually, and poplar received 210 kg N ha-1 in 2010 only 

(Sanford et al. 2016). Maize grain plus approximately 50% of the maize stover was harvested 

annually, while approximately 55% of switchgrass aboveground biomass was harvested each 

year (Sanford et al. 2016). Unharvested maize stover laid prostrate on the soil and was most 
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concentrated in the rows where the plants had stood. The remaining maize stubble was typically 

about 5 cm tall. Switchgrass was harvested at approximately 15 cm above the soil, leaving a tall, 

ubiquitous layer of stubble. In addition, some of the unharvested biomass in switchgrass 

consisted of plants that had lodged during the growing season and were laying prostrate on the 

soil surface. Poplars were in a six-year coppice rotation beginning in 2008. In 2010 the poplars 

were stricken with Marssonina spp. leaf spot fungus which impaired growth until the trees were 

coppiced in 2013 (Sanford et al. 2016). Poplar regeneration following coppicing was poor, and 

the treatment was therefore discontinued after 2013. 

 

4.2.2 Soil temperature and moisture 

Soil temperature and volumetric moisture content were measured in three blocks from 

2011 through 2014 and in four blocks from 2015 through 2016. Details regarding the types of 

sensors and the depths at which they were installed are given in Table 4.1. At each depth, two 

temperature sensors and one soil moisture sensor were used, except in block C where two 

moisture sensors were used at each depth. Soil temperature data was collected at 15-minute 

intervals and averaged to hourly values, whereas soil moisture was collected either at hourly or 

15-minute intervals and averaged to hourly intervals. Due to improper measurement settings 

used for the soil moisture probes and mechanical failure of the multiplexers, much of the soil 

moisture data collected from 2011 through 2014 was erratic and therefore was not used. 

To account for potential differences between the responses of the two soil moisture probe 

types, the moisture measurements were standardized to a Delta-T SM150 TDR (Delta-T Devices 

Ltd., Cambridge, England) based on over 200 concurrent probe measurements from 15 to 47% 

volumetric moisture content. When possible, missing soil temperature and soil moisture data 
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were gap filled using the averages of the other blocks. Daily averages were then calculated for 

each plot and depth, and those values were interpolated from 0.5 to 99.5 cm at 1 cm intervals 

using a natural cubic spline. Cropping system averages were calculated at each depth and 

timepoint. To better illustrate differences among the cropping systems, an average was also 

calculated among crops for each depth and timepoint, and the deviation from that average was 

calculated for each crop. 

 

4.2.3 Heterotrophic soil respiration 

Heterotrophic soil respiration (RH) was estimated in maize and switchgrass using root 

exclusion collars that were installed within three blocks (Vogel & Valentine 2005). Two root 

exclusion collars were installed within each plot in the beginning of each measurement year. 

Prior to each installation, a 12.7 cm diameter hole was excavated in 10 cm increments to 100 cm 

using a bucket auger. Each soil increment was sieved to remove living roots. A 10.2 cm inner 

diameter PVC pipe was placed in the hole and the soil sections were backfilled and packed to 

initial bulk density. A small hole was drilled in the soil at ground level to allow water to drain 

from inside, and Decagon 5TM soil moisture sensors (Decagon Devices Inc., Pullman, WA, 

USA) were installed inside and outside of the collars at the 0 to 5 cm depth. 

Soil respiration measurements were made using a LI-COR 6400XT portable 

photosynthesis system with a LI-6400-09 soil CO2 flux chamber (LI-COR Inc., Lincoln, NE, 

USA). All root exclusion collars were measured on each sampling date except during the winter 

months when only one collar per plot was typically measured. Soil temperature and soil moisture 

inside and outside of the collars were measured concurrent with soil respiration measurements. A 

correction for differences between the soil moisture inside and outside of the root exclusion 
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collars was applied (Prolingheuer et al. 2014) using the procedure described in von Haden 

(2017a). 

Heterotrophic soil respiration data for each plot were fit to a model which accounted for 

the interactive effects of soil temperature and soil moisture (Savage et al. 2009): 

𝑅𝐻 = 𝑅𝐻,10𝑄10
[(𝑇𝑆𝑂𝐶−10)/10]𝐷(𝑀SOC,opt−𝑀𝑆𝑂𝐶,𝑚𝑒𝑎𝑠)

2

      (4.1) 

where RH,10 is the RH at 10 °C, Q10 is proportional increase of RH per 10 °C, TSOC is the soil 

temperature profile weighted by the vertical distribution of soil organic carbon (SOC), MSOC,opt is 

the soil moisture profile (as weighted by the vertical SOC distribution) at which the optimal RH 

occurs, MSOC,opt is the measured soil moisture as weighted by the SOC distribution, and D 

describes the shape of the soil moisture response curve. The soil temperature and moisture values 

used in the model replace the typical single-depth soil measurements with values that integrate 

the depth distributions of soil temperature and moisture with SOC (i.e. the primary substrate 

from which RH is derived). In addition, the TSOC and MSOC values account for the time lag 

between when CO2 is generated within the soil profile and when the flux is realized at the soil 

surface. These modifications are intended to avoid the parameter estimation errors associated 

with single-depth temperature/moisture measurements and CO2 diffusion lags (Phillips et al. 

2011). Details of this calculation are given in von Haden (2017b). Since approximately 80% of 

the 0 to 100 cm SOC occurs within the top 50 cm at our site, and because the uncertainty in the 

TSOC and MSOC calculations increases with depth, we chose to constraint TSOC and MSOC to 0-50 

cm. 

 The RH model fitting procedure required multiple steps to account for heteroscedasticity 

and to include measurements for which no soil moisture data were available. First, data collected 
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when soils were not frozen (i.e. when soil moisture data was available) were fit using ordinary 

least square (OLS) regression and residuals were calculated. The inverse square of the residuals 

were then used as weighting factors for a weighted least squares (WLS) regression using the 

same data (Savage et al. 2009). Soil moisture values that were missing due to frozen soils were 

then set to the model-estimated MSOC,opt. The resulting data were then fit first using OLS, 

residuals were calculated, and the data were then fit using WLS. While assigning missing 

(frozen) soil moisture data points to optimal moisture values likely overestimates RH at freezing 

temperatures (i.e. when RH is very low), the error is very small compared to the range of RH 

across all temperatures (Fig. 4.S.5) and thus is acceptable for the modelling exercise described 

below. 

 Since we did not directly manipulate the soil microclimate, we used simple model 

simulations to predict the direct effects of soil temperature and soil moisture on RH under four 

soil microclimate scenarios: 1) actual soil temperature and soil moisture; 2) altered soil 

temperature and actual soil moisture; 3) actual soil temperature and altered soil moisture; 4) 

altered soil temperature and altered soil moisture. To ensure that the altered soil microclimate 

scenarios were plausible, we used the microclimate of the opposing cropping system as the 

altered soil microclimate scenarios. The models were run at hourly timesteps using crop average 

values and then summed to estimate annual RH for each scenario. 

  

4.2.4 Ancillary measurements 

Leaf area index (LAI) was measured in three blocks using a LI-COR LI-2000/2200 plant 

canopy analyzer (LI-COR Inc., Lincoln, NE, USA) in 2011 through 2012 and 2014 through 

2016. During 2011 through 2012, the number of LAI measurements varied by date, but typically 
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consisted of 10 to 40 measurements per plot per date. During 2014 through 2016, 40 LAI 

measurements were made per plot per date. To illustrate typical LAI seasonal patterns, the LAI 

data were interpolated using a natural spline and predicted at daily intervals, and the daily LAI 

values were then averaged by day of year separately for the 2011 through 2012 and 2014 through 

2016 time periods. 

Snow depths were periodically measured in switchgrass and maize during the winters of 

2015 and 2016. During each measurement date, the snow depth was measured in six to eight 

locations per plot. Treatment differences in snow depth was assessed using a mixed model with 

cropping system as a fixed effect and block as a random effect in SAS 9.4 (SAS Institute, Cary, 

North Carolina, USA).  

 

4.3 Results 

4.3.1 Weather, leaf area index, and snow depth 

Monthly average air temperature ranged from -14.6 °C during the winter months to 24.3 

°C during the summer (Fig. 4.1a). Annual air temperatures were warmer than normal in 2012, 

2015, and 2016, and cooler than normal during 2013 and 2014 (Fig. 4.1b). The winter months of 

2013 and 2014 were much colder than normal, with February 2015 also being anomalously cold 

(Fig. 4.1b). Monthly precipitation was generally greatest in the summer and lowest in winter 

with an overall average of 72.5 mm month-1 (Fig 4.1c). Total annual precipitation was about 15% 

higher than normal in 2013, 2015, and 2016 and was approximately 15% and 35% lower than 

normal in 2011 and 2012, respectively (Fig. 4.1d). The 2012 growing season was notably dry, 
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with 7 mm of precipitation recorded in June of that year. The winter of 2013, early summer of 

2014, fall of 2015, and summer of 2016 were generally wetter than normal. 

In 2011 and 2012, poplar leaf area index (LAI) was greater than maize and switchgrass 

from April through June, with switchgrass LAI surpassing poplar in July (Fig 4.2a). Poplar LAI 

typically began to decrease by July, likely due to the fungal disease which caused premature leaf 

drop. Switchgrass emergence occurred prior to maize planting, and thus switchgrass LAI 

increased earlier in the growing season (Fig 4.2a, b). During the 2014 through 2016 growing 

seasons, the largest absolute differences between switchgrass and maize LAI occurred within 

June and July, with values becoming more similar later in season (Fig. 4.2b). Nonetheless, mean 

LAI was consistently greater in switchgrass than maize (Fig. 4.2b). 

Measured snow depths ranged from 1.9 to 23.6 cm (Table 4.2). The mean measured snow 

depth was consistently greater in switchgrass than maize, but the difference was statistically 

significant on only four of the eight measurement dates (ɑ = 0.05). 

 

4.3.2 Soil temperature and moisture 

During 2011 through 2013, soil temperature variation within the surface 25 cm was most 

moderate in poplar and most extreme in maize, with switchgrass typically intermediate (Fig. 

4.3). The most notable differences in soil temperatures within the surface 25 cm occurred during 

the summer and winter months when air temperatures were near the high and low extremes, 

respectively. For example, during the summer of 2012, soil surface temperatures were greater in 

maize than poplar, whereas during the winter of 2013, soil surface temperatures were greater in 

poplar than maize. From 2011 through 2013, mean daily maximum soil temperatures at 10 cm 
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were 11.21 °C, 10.68 °C, and 10.34 °C in maize, switchgrass, and poplar, respectively (Fig. 

4.S.1). During that same time period, mean daily minimum soil temperatures at 10 cm were 8.27 

°C, 8.35 °C, and 8.62 °C in maize, switchgrass, and poplar, respectively (Fig. 4.S.2). The 

resulting overall mean 10 cm soil temperatures from 2011-2013 were 9.64 °C, 9.45 °C, and 9.42 

°C for maize, switchgrass, and poplar, respectively (Fig. 4.3). 

Although the soil temperature regimes among the cropping systems were most variable 

near the soil surface, seasonal differences among cropping systems were apparent to 100 cm 

(Fig. 4.4). Soil profile temperatures during autumn and winter were warmest in poplar, during 

spring were warmest in switchgrass, and during summer were warmest in maize. Conversely, 

soil profile temperatures during autumn and winter were coolest in maize, during spring were 

coolest in poplar, and during summer were coolest in switchgrass. 

Surface soil temperatures during 2014-2016 showed similar patterns to those in 2011-

2013, with switchgrass temperatures being more moderated than maize (Fig. 4.S.3). Differences 

were most notable during the extremely frigid winter months of 2014 and 2015, when the cold 

temperatures propagated much deeper in maize than switchgrass. However, seasonal differences 

in soil temperature persisted throughout the soil profile, with warmer winter temperatures in 

switchgrass from mid-fall through spring and warmer temperatures in maize from summer to 

mid-fall (Fig. 4.S.4). 

Volumetric soil moisture content was typically lower near the soil surface compared to 

deeper in the soil profile (Fig. 4.5). The pattern of soil drying after rainfall events varied between 

maize and switchgrass, with maize soils drying out more quickly, particularly in 2015 when 

about 20% less precipitation fell from May through September compared to 2016. With a few 

exceptions, volumetric soil moisture within the top 50 cm was lower in maize than switchgrass 
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(Fig. 4.6). The exceptions to this usually occurred following rainfall events which led to brief 

periods where maize volumetric moisture content was greater than switchgrass near the soil 

surface. However, volumetric soil moisture was consistently lower in switchgrass than maize 

deeper in the horizon. The depth at which maize and switchgrass had equal soil moisture was 

typically shallowest during July, but was nearly always below 50 cm. 

 

4.3.3 Heterotrophic soil respiration 

Heterotrophic respiration (RH) showed clear seasonal oscillations, with peak rates 

occurring during summer and minimum rates during winter (Fig. 4.7a). Switchgrass RH was 

nearly always greater than maize, and the absolute differences were greatest during the summer. 

Temporal patterns of RH were closely related to TSOC (Fig. 4.7b). Consistent with the soil 

temperature profiles, TSOC was greater in switchgrass during the winter and greater in maize 

during the summer (Fig. 4.7b). The temporal variation in MSOC was greater in 2015 than 2016, 

with a large decrease in MSOC occurring during mid-summer in 2015 (Fig. 4.7c). In agreement 

with the soil moisture profiles, MSOC was usually greater in switchgrass than maize. 

 The RH models fit the data reasonably well, with R2 of 0.71 and 0.80 for maize and 

switchgrass, respectively (Fig. 4.S.5). The model parameters indicated greater RH,10, Q10, and 

Mopt in switchgrass compared to maize (Table 4.3). However, the model D parameter was lower 

in switchgrass than maize indicating a more pronounced soil moisture effect in switchgrass. Soil 

microclimate scenario simulations showed the greatest divergence during the summer months 

(Fig. 4.S.6). Independently altered soil temperature and soil moisture reduced modelled RH from 

1 to 4% in maize and increased modelled RH from 4 to 8% in switchgrass (Table 4.4). The 

combined modelled effects of altered soil temperature soil moisture decreased maize RH by 3 to 
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6% and increased switchgrass RH by 8-17%. The effects of altered soil moisture and temperature 

on RH were greater in 2016 than 2015. 

 

4.4 Discussion 

4.4.1 Less extreme soil temperatures in perennial systems 

Compared to the annual maize system, the perennial systems had several traits conferring 

less extreme soil temperature fluctuations near the soil surface. The earlier leaf-out in poplar and 

switchgrass compared to maize, and the generally higher LAI in switchgrass than maize, resulted 

in a relatively cool soil microclimate during spring and summer in the two perennial systems. 

Temporal differences between poplar and switchgrass were also apparent, with earlier leaf-out in 

poplar leading to cooler springtime soil temperatures than switchgrass, and higher peak LAI in 

switchgrass resulting in lower mid-summer soil temperatures than poplar. Greater LAI increases 

both the quantity of solar radiation reflected upwards and the amount of radiation absorbed by 

the plant canopy, thus leading to less radiation at the soil surface (Campbell & Norman 1998; 

Hardwick et al. 2015). In addition, greater LAI reduces the turbulent mixing of air from above 

the canopy, thereby reducing the influence of above canopy temperature on soil temperatures 

(Hardwick et al. 2015). In agreement with our results, several studies have reported the 

moderating effect of LAI on soil temperature in other ecosystems including temperate and 

tropical forests (Closa et al. 2010; Hardwick et al. 2015). 

During winter, a warmer soil microclimate in the perennial systems likely resulted in part 

from greater snow accumulation and subsequently greater insulation from the cold air 

temperatures. In line with the findings of Sharratt et al. (1998), the ubiquitous upright stubble in 
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switchgrass was more efficient at trapping snow and thus led to warmer wintertime soil 

temperatures than maize, which had primarily prostrate litter. The depth of the litter and stubble 

layer, combined with differences in residue thermal properties, likely also contributed to the 

greater insulation of soils under switchgrass (e.g. Kucharik et al. 2013). During fall and spring, 

when snow was not present, the standing stubble in switchgrass may have also reduced the 

turbulent mixing of air between the soil and air (Campbell & Norman 1998), therefore limiting 

the influence of changes in air temperatures on the soil. Although we did not measure snow 

depth within the poplar systems, we expect that the herbaceous understory created similar 

conditions to the switchgrass system. In addition, the poplar leaf litter layer may have provided 

insulation between the soil and air, thus buffering soil temperatures from air temperature 

fluctuations. Differences in SOC, bulk density, and soil water holding capacity among cropping 

systems may have also contributed to differences in soil microclimates through their influence on 

soil thermal properties (Haruna et al. 2017). 

While the management practices within a cropping system are constrained to an extent, 

there are certain choices that could cause changes to the soil temperature regime. For example, 

assuming similar plant growth dynamics, earlier maize planting would result in earlier peak LAI 

and thus would likely reduce the mid-summer soil temperatures. Contrarily, earlier harvest of 

maize or switchgrass (e.g. maize for silage or a double switchgrass harvest) would likely increase 

soil temperatures through the reduction of LAI. Increasing the upright stubble height in maize 

would likely increase the amount of snow trapped and therefore keep winter soil temperature 

warmer (Sharratt et al. 1998; Sharratt 2002). On the other hand, harvesting switchgrass closer to 

the soil surface would decrease the amount of snow trapped and permit colder soil temperatures. 

Similarly, harvesting the herbaceous understory or leaf litterfall in poplar would likely lead to a 
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more extreme soil temperature regime. Soil temperatures are also likely to be more extreme 

following poplar harvest when LAI and litterfall are reduced. 

 

4.4.2 Soil moisture microclimate varies with depth 

Unlike the soil temperature microclimate, which was generally consistent with depth, the 

soil moisture microclimate was generally drier in maize near the soil surface, but was drier in 

switchgrass deeper within the soil profile. Other studies have shown that perennial grasses 

deplete more deep soil moisture and less near-surface soil moisture when compared to annual 

grasses (Monti & Zatta 2009; Ferchaud et al. 2015). This effect is likely a result of the 

contrasting fine root distributions between perennial and annual rooting plant rooting systems, 

with fine roots typically extending deeper in perennial crops (Ferchaud et al. 2015). Species with 

deeper fine roots are known to extract more water from deeper horizons than shallowly rooted 

species (Craine et al. 2003), although the differences are most prominent when surface water 

becomes limiting (Nippert & Knapp 2007). The latter point is consistent with our finding that the 

largest difference in deep soil moisture between maize and switchgrass occurred during the 

summer months when water surface moisture was most depleted. 

While divergent fine root distributions likely contribute to the differences in soil moisture 

regimes between maize and switchgrass, other factors are also important. In the springtime, 

greater surface soil moisture in switchgrass than maize could result from the greater water 

recharge from snowmelt (Sharratt et al. 1998). During late spring and summer, the greater solar 

energy reaching the soil in the low LAI maize system likely enhanced water evaporation from 

the soil surface relative to switchgrass, thus causing drier soil conditions (Ferchaud et al. 2015). 

Reciprocally, greater surface soil moisture in switchgrass would lead to a higher soil volumetric 
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heat capacity (Hillel 2003) and thus reduce the temperature fluctuations in switchgrass. Variation 

in the distribution of litter may also be important (Hatfield & Prueger 1996; Ferchaud et al. 

2015), with the more ubiquitous stubble and litter layer in switchgrass reducing evaporation 

relative to maize. Overall, the soil moisture microclimate results from complex interactions 

among many factors (von Arx et al. 2013), and thus may not be easily predictable. 

 

4.4.3 Soil microclimate affects modelled C loss 

Considering that the altered microclimate scenarios represented extreme shifts in the soil 

microclimate (i.e. entirely different cropping systems), the predicted changes in RH under the 

scenarios likely represent an upper limit to what is achievable through management practices 

within a cropping system. On the other hand, larger differences in soil microclimates during 

more extreme years (such as 2012) would likely have more significant effects on RH than shown 

in our 2015 and 2016 model scenarios. The moderate changes in RH predicted under the 

modelled soil microclimate scenarios were driven about equally by the changes in soil moisture 

and soil temperature. As expected, increased soil temperatures in switchgrass led to greater RH, 

while decreased soil temperatures in maize resulted in lower RH. However, since the model Q10 

was greater in switchgrass than maize, the resulting soil temperature effect was greater in 

switchgrass. Due to the non-linear effect of soil temperature on RH, the most prominent 

differences in RH among the scenarios occurred during the summer months when soil 

temperature was highest. The effect of soil moisture was somewhat less predictable, owing to 

differences in the optimal soil moisture (Mopt parameter) and the strength of the moisture 

response (D parameter). Since the effect of soil moisture was interactive with temperature, the 

influence of soil moisture on RH was also most prominent when soil temperature was high. 
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While it was beyond the scope of this study, understanding why there were differences in the soil 

temperature and soil moisture response parameters among cropping systems would be required 

to make more generalizable predictions in other cropping systems and at different locations. 

In situations where C sequestration in soils is a management priority, reducing RH may be 

a potential strategy for land managers. For example, implementing management practices that 

keep soil relatively cool would likely reduce RH, although the indirect effects on soil moisture 

would also need to be considered. Due to the magnitude of summertime RH, practices that reduce 

the extreme summer soil temperatures are likely to induce the greatest reduction of annual RH. 

Management practices that alter soil moisture would be more difficult to implement, as they 

would require knowledge of the optimal soil moisture for RH of a given system and a 

comprehensive understanding of how management practices effect soil moisture. In addition, the 

indirect effects on other ecosystem processes would also need to be considered. Importantly, 

reducing RH would likely come at the cost of decreasing N mineralization (Rustad et al. 2001), 

which in turn could negatively affect plant productivity. Changes to the soil microclimate could 

also have implications for emissions of other greenhouse gases, such as N2O, which are 

stimulated under wetter conditions (del Prado et al. 2006). These unintended changes would need 

to be weighed against the potential increases in C storage resulting from decreased RH. 

While our modelled scenarios illustrate the potential for plant and management factors to 

directly alter RH through soil microclimate effects, there are several limitations to our modelling 

approach. First, our model does not explicitly represent substrate supply and therefore does not 

account for feedbacks between RH and substrates. For example, our model indicated that RH in 

switchgrass systems would be greater if the soils were relatively warmer. However, greater RH 

would also deplete C substrates more quickly, thus likely reducing the RH potential. Our model 
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also did not account for differences in the size and structure of the soil microbial community, 

both of which are known to differ between maize and switchgrass at this site (Jesus et al. 2015). 

It is possible, for example, that the microbial community could either enhance or decrease the 

temperature sensitivity of RH under the altered soil microclimate (Karhu et al. 2014). A more 

comprehensive understanding of the effects of soil microclimates on RH would require direct 

manipulation of the soil temperature and moisture under the existing cropping systems and 

would need to consider a range of potential mechanisms and feedbacks. 

 

4.5 Conclusions 

Seasonal differences in soil temperature among bioenergy cropping systems tracked 

patterns of leaf area index in the summer and differences in snow depth during the winter. 

Compared to annual systems, cooler summer soil temperatures and warmer winter soil 

temperatures in perennial systems were associated with higher leaf area index and deeper snow 

cover, respectively. Seasonal differences in soil moisture varied by depth, with drier surface soils 

in the annual maize system and drier deep soils in the perennial switchgrass system. Soil 

moisture differences between crops likely reflect multiple factors including fine root distribution 

and surface evaporation. Simple model simulations indicated that hypothetically altering the soil 

microclimates between maize and switchgrass systems could alter annual C losses from 

heterotrophic respiration by 3 to 17%. However, other mechanisms such as substrate depletion 

and soil microbial community responses need to be considered to provide a more comprehensive 

understanding of the effect of soil microclimate on heterotrophic respiration. Management for C 

sequestration via reduced heterotrophic soil respiration may be possible, but the resulting effects 

on plant productivity and non-CO2 greenhouse gas emissions must also be weighed. 
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4.8 Tables and figures 

Table 4.1 – Soil temperature and soil moisture equipment used within each experimental block. 

CS640 and CS616 are Campbell Scientific sensors (Campbell Scientific Inc., Logan, Utah, 

USA). 

------------------------------------------------------------------------------------------------------------------------------- ------------ 
Block Start year Temperature sensor and depths (cm) Moisture sensor and depths (cm) 
--------- --------------- ----------------------------------------------------- ------------------------------------------------ 

A 2011 Thermocouple 2, 10, 20, 35, CS640 2, 20, 35, 50,  
   65, 95, 125  65, 95, 125 

B 2011 Thermocouple 2, 10, 20, 35, CS640 2, 20, 35, 50,  
   65, 95, 125   65, 95, 125   

C 2011 Thermocouple 2, 10, 30, 95 CS616 15, 30 

D 2015 Thermocouple 2, 10, 20 CS616 2, 20 

------------------------------------------------------------------------------------------------------------------------ ------------------- 
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Table 4.2 – Snow depths measured throughout the winter of 2015 and 2016 in maize and 

switchgrass. Bolded p-values indicate significant differences between cropping systems (p < 

0.05). 

------------------------------------------------------------------------------------------------ 
Date Snow depth (cm) n F value p value 
----------------------------------------------------------------------------------------------  
 Maize Switchgrass 
 -------------- -----------------    

11/22/2015 9.4 (0.6) 11.3 (0.3) 4 6.93 0.078 

12/30/2015 7.3 (0.6) 23.6 (1.4) 4 114.16 0.002 

1/20/2016 5.5 (1.0) 16.5 (0.6) 4 102.91 0.002 

12/5/2016 8.9 (0.2) 9.8 (0.3) 4 6.76 0.080 

12/22/2016 12.3 (1.4) 19.5 (2.2) 4 7.5 0.071 

12/30/2016 4.9 (1.0) 10.9 (2.4) 3 6.7 0.122 

1/28/2017 10.1 (0.4) 12.4 (0.1) 3 34.31 0.028 

2/27/2017 1.9 (0.2) 5.3 (0.5) 3 40.67 0.024 

------------------------------------------------------------------------------------------------  
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Table 4.3 – Mean parameter estimates (with standard error among the plots) for heterotrophic 

respiration (RH) models. 

------------------------------------------------------------------- 
Parameter Maize Switchgrass 

 -------------------- -------------------- 

RH,10 1.237 (0.151) 1.667 (0.118) 

Q10 2.308 (0.038) 3.033 (0.092) 

Mopt 0.266 (0.029) 0.311 (0.014) 

D 0.999 (0.003) 0.993 (0.002) 

------------------------------------------------------------------- 
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Table 4.4 – Modelled annual heterotrophic soil respiration (RH) under actual and altered soil 

microclimate scenarios. The altered scenarios refer to modelled RH under the soil temperature 

and/or soil moisture regimes of the opposing cropping system. 

------------------------------------------------------------------------------------------------------------------------------------------- 
Crop Maize  Switchgrass  
 -------------------------------- -------------------------------------- 

Year 2015 2016 2015 2016 

 g C m-2 y-1 (% difference)   

Soil microclimate scenario --------------------------------------------------------------------------- 

Actual soil microclimate 527 567 709 687 

Altered soil temperature 517 (-2%) 542 (-4%) 738 (+4%) 742 (+8%) 

Altered soil moisture 520 (-1%) 557 (-2%) 740 (+4%) 744 (+8%) 

Altered soil temperature and moisture 509 (-3%) 533 (-6%) 768 (+8%) 803 (+17%) 

----------------------------------------------------------------------------------------------------------------------------- -------------- 
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Figure 4.1 – Mean monthly air temperature (a), deviation from 30-year normal air temperature 

(b), total monthly precipitation (c), and deviation from normal precipitation (d) at Arlington, WI, 

USA (NOAA 2017).  
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Figure 4.2 – Natural spline-interpolated mean leaf area index (LAI) during 2011-2012 (a) and 

2014-2016 (b). Shaded areas indicate the standard error among years.  
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Figure 4.3 – Daily mean soil temperatures with depth for maize (a), switchgrass (b), and poplar 

(c) during 2011-2013.  
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Figure 4.4 – Deviation from average daily mean soil temperature among the cropping systems 

for maize (a), switchgrass (b), and poplar (c) from 2011-2013.   
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Figure 4.5 – Daily volumetric soil moisture by depth for maize (a and b) and switchgrass (c and 

d) during 2015 and 2016.  
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Figure 4.6 – Deviation from daily average volumetric soil moisture between cropping systems in 

(a) 2015 and (b) 2016. Orange indicates that maize is drier than switchgrass, and blue indicates 

that maize is wetter than switchgrass.  
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Figure 4.7 – Measured heterotrophic respiration (RH) (a), soil profile SOC-weighted temperature 

(TSOC) (b), and soil profile SOC-weighted volumetric soil moisture (MSOC) (c).  
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4.9 Supplemental figures 

 

Fig 4.S.1 – Mean daily maximum soil temperatures from 2011 through 2013 in maize (a), 

switchgrass (b), and poplar (c).  
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Figure 4.S.2 – Mean daily minimum soil temperatures from 2011 through 2013 in maize (a), 

switchgrass (b), and poplar (c).   
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Figure 4.S.3 – Average daily soil temperature by depth during 2014-2016 for maize (a) and 

switchgrass (b).  
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Figure 4.S.4 – Deviation from average daily soil temperature between maize and switchgrass. 

Red indicates that temperatures are warmer in maize than switchgrass, and blue indicates that 

temperatures are cooler in maize than switchgrass. 
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Figure 4.S.5 – Model predicted versus observed heterotrophic soil respiration in maize (a) and 

switchgrass (b). The gray line indicates 1:1 and the black line is the linear regression between the 

variables.  
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Figure 4.S.6 – Modelled heterotrophic soil respiration under four soil microclimate scenarios for 

maize (a) and switchgrass (b). The altered microclimate scenarios refer to the soil temperature 

and/or soil moisture regimes of the other cropping system.  
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Chapter 5 

Soil texture and litter inputs control changes in soil organic carbon fractions under 

bioenergy cropping systems of the North Central U.S. 

von Haden, A.C., Kucharik, C.J., Jackson, R.D., Marín-Spiotta, E. 

Target journal: Soil Biology and Biochemistry 

Abstract 

Soil organic carbon (SOC) storage is a critical component of the overall sustainability of 

bioenergy cropping systems. Predicting the influence of cropping systems on SOC requires a 

mechanistic understanding of the underlying SOC formation processes. We used a density 

fractionation technique to isolate three SOC fractions that are thought to vary in SOC protection 

from decomposition. The free light fraction (FLF) is SOC that is not associated with aggregates 

or minerals, the occluded light fraction (OLF) is SOC released by the disruption of aggregates, 

and the heavy fraction (HF) is SOC recovered with minerals. We evaluated changes within each 

fraction in the 0 to 10 cm depth five years after biofuel cropping system establishment at two 

temperate sites with contrasting soil textures. The biofuel cropping systems included no-till 

maize, switchgrass, prairie, and hybrid poplar. The FLF C stock (g fraction C g bulk soil-1) did 

not change significantly from baseline levels under any of the cropping systems at either site. 

Except for poplar, OLF C stocks were reduced in all systems from the site with coarse-textured 

soils and maintained at the site with fine-textured soils. In poplar systems, OLF C stocks were 

maintained on coarse-textured soils and increased on fine-textured soils. The HF C stocks also 

increased under poplar on the coarse-textured soil. A structural equation model indicated that 

changes in the OLF C stocks were a function of soil texture and litter C:N, whereas changes in 



158 

 

 

 

the HF C stocks were driven by litter quantity and litter C:N. Thus, increasing litter quantity and 

promoting plant species with low C:N litter may improve SOC storage in aggregate and mineral-

associated soil fractions in bioenergy cropping systems. 

 

5.1 Introduction 

Bioenergy cropping systems are expected to play a significant role in meeting the future 

demand for sustainable energy (Robertson et al. 2017). In addition to providing a renewable 

energy feedstock, sustainable bioenergy cropping systems must also provide biogeochemical 

benefits including ecosystem carbon (C) storage (Robertson et al. 2011). Considering the large 

historical losses of soil organic carbon (SOC) induced by row crop agriculture (Sanderman et al. 

2017), mitigating additional SOC losses and sequestering C in soils is a critical component of the 

biofuel sustainability equation (Robertston et al. 2008). 

Compared to annual grain systems, perennial biofuel feedstocks are generally thought to 

enhance SOC sequestration, but the contrast between annual and perennial systems remains 

uncertain (Qin et al. 2016). Specific characteristics of the site, cropping system, and management 

practices may affect the rate or even direction of SOC change. For example, the proportion of 

stover harvested from maize bioenergy cropping systems affects the rate of SOC change 

(Anderson-Teixeira et al. 2009), with the potential for SOC losses under high stover removal or 

SOC gains under low stover removal (Qin et al. 2016). Differences in site-specific soil texture 

may influence the rate of SOC accrual through the effects of soil aggregation, with greater 

aggregate formation and stabilization occurring in finer-textured soils (Baer et al. 2010). Thus, 

broad generalizations regarding the efficacy of SOC storage of a particular bioenergy cropping 

system are difficult to make. 
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To predict the effects of a given cropping system across a wider range of management 

practices and soil types, a better mechanistic understanding of the underlying SOC processes is 

necessary. The soil density fraction scheme (Golchin et al. 1994) provides a theoretical 

framework of measurable SOC fractions that are related to plant and soil properties and 

processes (Fig. 5.1). In the model framework, plant inputs enter the SOC pool as the free-light 

fraction (FLF), which is primarily composed of identifiable plant material. Since the FLF is not 

physically protected, soil microbes may readily decompose it. Through the processes of 

comminution, aggregation, and microbial turnover, SOC becomes physically encapsulated within 

aggregates as the occluded light fraction (OLF) and thus is partially protected from 

decomposition (Oades 1988). Finally, the heavy fraction (HF) consists primarily of microbial-

processed SOC, which is thought to be largely protected from decomposition through mineral 

soil-associations (Kögel-Knabner et al. 2008; Miltner et al. 2012). 

Since each SOC fraction is theoretically distinct, the mechanisms controlling the 

dynamics of each fraction may also be unique. For example, the FLF fraction may decline when 

litter inputs are reduced (Lajtha et al. 2014) but does not change as a function of soil texture 

(Kölbl & Kögel-Knabner 2004). In contrast, the OLF fraction is dependent on texture, as fine-

textured soils aggregate more readily than coarse-textured soils (Kölbl & Kögel-Knabner 2004; 

Baer et al. 2010). Due to the influence of soil texture on mineral surface area, HF C storage is 

also affected by texture (Hassink 1997; Six et al. 2002). Litter quantity and quality (e.g. C:N) 

may influence HF C storage through their effects on microbial biomass and carbon use efficiency 

(Cotrufo et al. 2013; Castellano et al. 2015). Thus, soil texture, litter quantity, and litter quality 

are expected to be key determinants of change for the SOC fractions, but a more comprehensive 
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understanding of how each fraction responds to all three factors is needed to better predict 

overall SOC change. 

Our objective was to determine changes in SOC fractions following five years of 

bioenergy crop production to better understand the mechanisms controlling SOC storage. We 

hypothesized that soil texture (i.e. clay content), litter quantity, and litter quality (i.e. C:N) would 

have an overall influence on the SOC fractions. However, since the SOC fractions are proposed 

to be mechanistically distinct, we also expected that the changes among the fractions would not 

be controlled by the same factors. 

 

5.2 Methods 

5.2.1 Sites and cropping systems 

We conducted this study at the Arlington Agricultural Research Station (ARL) in 

Wisconsin, USA (43.296° N, 89.380° W) and the Kellogg Biological Station (KBS) in Michigan, 

USA (42.395° N, 85.373° W). Mean annual temperature and precipitation, respectively, are 6.9 

°C and 869 mm at ARL and 10.1 °C and 1005 mm at KBS (NOAA 2017). Soils at ARL are 

dominated by Plano silt loam, which are Fine-silty, mixed, superactive, mesic Typic Argiudolls 

(Soil Survey Staff 2017). KBS soils are Kalamazoo loams, classified as Fine-loamy, mixed, 

active, mesic Typic Hapludalfs (Soil Survey Staff 2017). Soil texture is strongly contrasted 

between sites, with ARL soils containing 9% sand and 25% clay and KBS soils containing 65% 

sand and 5% clay (Table 5.1). 

The overall Biofuel Cropping Systems Experiment (BCSE) was established at each site in 

2008. The BCSE is a randomized complete block design with five replicates with individual 
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plots measuring approximately 40 m x 30 m (Sanford et al. 2016). Prior to BCSE establishment 

in 2008, both sites had been in long-term agriculture. At ARL, three of the blocks had been in 

alfalfa for the three years prior to establishment and in maize-soy for the three years prior to that. 

The other two blocks at ARL had been in maize for the four years prior to the study and alfalfa 

for the two preceding years. All five KBS blocks had been in alfalfa for the six years prior to the 

study except for two blocks which had been planted to maize in 2006 only. Animal manure 

spreading was a typical management practice at ARL and KBS prior to the BCSE. 

We focused on four bioenergy cropping systems in our study: Continuous no-till maize 

(Zea mays L.), switchgrass (Panicum virgatum L.), prairie, and hybrid poplar (Populus nigra × 

P. maximowiczii A. Henry ‘NM6’). The prairie consisted of an 18 species mix of C4 grasses, C3 

grasses, non-leguminous forbs, and leguminous forbs. A full agronomic description of these 

systems is given in Sanford et al. (2016). Maize and switchgrass systems annually received an 

average of 167 and 56 kg N ha-1, respectively. Poplar received a single N application in 2010 at a 

rate of 210 and 155 kg N ha-1 at ARL and KBS, respectively. Prairie did not receive N fertilizer. 

Maize received P and K as needed, but perennials did not receive P or K. Maize grain plus about 

50% of maize stover was harvested annually following the growing season (Sanford et al. 2016). 

Switchgrass and prairie were harvested annually except during the establishment phase, which 

occurred in 2008 at ARL and 2008 plus 2009 at KBS. At ARL, poplar growth was strongly 

impaired by Marssonina spp. leaf spot fungus beginning in 2010 and extending through 2013 

(Sanford et al. 2016). Poplar was coppiced following the 2013 growing season at both sites, at 

which time standing woody biomass at KBS was more than double that of ARL (Sanford et al. 

2016). 
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Aboveground net primary productivity (ANPP) was estimated at peak standing biomass 

in maize, switchgrass, and prairie using three quadrats per plot as described in Sanford et al. 

(2016). These systems were harvested annually at the plot level, and aboveground potential soil 

inputs (i.e., unharvested ANPP) were estimated as the difference between ANPP and harvest. For 

poplar, herbaceous understory ANPP (i.e., primarily weedy biomass) was measured identically 

to total ANPP in the other systems, but since the understory biomass was not harvested, all 

understory ANPP was considered a potential soil input. At KBS, poplar understory ANPP was 

not collected in 2010 and 2011, so the trend from 2009 to 2012 was linearly interpolated within 

each plot to estimate understory ANPP in 2010 and 2011. Leaf litterfall ANPP in poplar was 

measured in two 0.475 m2 (KBS) or 0.375 m2 (ARL) litter traps per plot. Belowground net 

primary productivity was estimated in the perennial cropping systems using six 5 cm diameter, 

13 cm deep root ingrowth cores per plot per growing season (Sprunger et al. 2017). In maize, 

belowground biomass was excavated to approximately 50 cm deep following each growing 

season. We corrected the maize belowground biomass to a 13 cm depth based on observations at 

ARL that showed that approximately 60% of peak maize belowground biomass occurs within the 

surface 13 cm. Belowground biomass sampling (ingrowth and excavation) was largely 

incomplete in 2008, so the 2009 values were assumed to be representative of 2008. All biomass 

was oven dried and a subsample was used for combustion CN analysis. For belowground 

biomass (all systems), litterfall (poplar), and understory ANPP (poplar), biomass input C:N was 

equal to measured C:N. To account for plant N resorption during senescence, unharvested 

biomass C:N was equal to full plant C:N at harvest in switchgrass and prairie or C:N of 

harvested stover in maize (since nearly all grain was harvested). An overall C:N of biomass 

inputs was calculated as ratio of all carbon inputs to all nitrogen inputs. 
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5.2.2 Soil density fractionation 

Baseline soil samples were collected in June and November 2008 at KBS and ARL, 

respectively. Five-year soil samples were taken in November and December 2013 at KBS and in 

November 2013 at ARL. The soil samples were taken from three locations in each plot which 

were stratified among the southern, center, and northern thirds of the plot. A 7.6 cm diameter 

hydraulic probe was used to take soil cores to 100 cm, and the cores were sectioned into 0-10, 

10-25, 25-50, and 50-100 cm segments. Only the 0-10 cm section was used in this analysis. The 

soil was sieved to 4 mm at KBS and 2 mm at ARL and then dried. For consistency, all soils were 

re-sieved to 2 mm prior to density fractionation. 

A density-based separation procedure (Fig. 5.2) was used to divide the bulk soil into three 

fractions (Golchin 1994; Swanston 2005; Marín-Spiotta et al. 2008). Fractionation was 

performed on two lab replicates per field sample. Oven-dry weight (65 °C) was determined on a 

subsample for each lab replicate. Approximately 20 g of soil was placed into a 250 mL 

centrifuge tube, and sodium polytungstate (NaPT) with a specific gravity of 1.6 g cm-3 was 

added (Cerli et al. 2012). The sample was gently rotated to ensure complete mixing and then 

placed in a centrifuge for 1 h at 3500 ge (standard earth gravity). The floating FLF was aspirated 

and the remaining sample was stirred with a benchtop mixer at 1500 RPM for 1 min. The 

samples were then placed in an ice bath and sonicated using a QSonica Q500 sonicator (QSonica 

LLC., Newtown, CT, USA) with 475 J mL-1 (Schmidt et al. 1999). We verified the calibration of 

our sonicator following Schmidt et al. (1999) (Fig. 5.S.1). Following sonication, the samples 

were centrifuged for 1 h at 3500 ge and then allowed to settle for at least 12 h prior to aspirating 

the floating OLF. 
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The FLF and OLF were rinsed over a 0.4 µm polycarbonate filter a minimum of five 

times with 200 mL each of ultra-high purity deionized water. The HF was rinsed five times by 

adding 200 mL of ultra-high purity water to the centrifuge tube, vigorously shaking the tube, 

centrifuging for 1 to 2 h at 3500 ge, and aspirating the liquid from the HF pellet. All fractions 

were dried at 65 °C until weight was constant. The FLF and OLF were pulverized with stainless 

steel beads in a high-speed rocking shaker, and the HF was ground to a fine powder using a 

mortar and pestle. The HF was fumigated with 12 M HCl for 12 h to remove potential carbonates 

(Harris et al. 2001). Fractions were analyzed for CN on a Flash EA 1112 elemental analyzer 

(Thermo Electron Corp., Milan, Italy). 

Percent mass recovery of fractions averaged 99.7% (Table 5.S.1), and there was no 

statistical difference in percent recovery between sites (p = 0.92) or among treatments (p = 0.42). 

Therefore, it was not necessary to make corrections for differences in fraction mass recovery. 

We expressed the fraction C in two forms: the concentration of fraction C per unit of bulk 

soil (g C fraction g bulk soil-1) and the relative contribution of each fraction to the total SOC 

among all three density fractions (g C fraction g CDF
-1). We distinguish the SOC from the 

combined density fractions (CDF) from total SOC because the density fractions do not contain the 

soluble SOC fraction (Crow 2007). For convenience, we refer to these as stocks (g C fraction g 

bulk soil-1) and proportions (g C fraction g CDF
-1). 

 

5.2.3 Microbial biomass C 

Soil samples for microbial biomass C (MBC) analysis were collected during the late 

growing season (mid-September) 2014 at ARL only. Samples from 0-10 cm were collected using 
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a 2 cm diameter probe from six locations per plot along a north-south transect. Samples from 

each plot were combined, homogenized, and stored at 4 °C until further processing could occur. 

Microbial biomass assays were performed on two lab replicates per sample following the direct 

chloroform extraction method (Gregorich et al. 1990). Extracted organic C was determined with 

the non-purgeable organic carbon method on a Shimadzu TOC-V CSH (Shimadzu Corp., Kyoto, 

Japan). The microbial extracted organic C was converted to MBC using an assumed extraction 

efficiency of 0.17 (Gregorich et al. 1990). 

 

5.2.4 Statistical analyses 

Soil fraction and MBC data were checked for equal variance among treatments using 

Levene’s test. Datasets that failed Levene’s test (p < 0.05) were natural log transformed to 

reduce heteroscedasticity prior to mixed-model variance analyses. Mixed models with block as a 

random effect and cropping system as a fixed effect were run in SAS 9.4 (SAS Institute Inc., 

Cary, NC, USA). Since we were interested in the changes of the soil fractions from baseline, we 

used contrasts to assess statistical differences from baseline for each treatment. Resulting p-

values were adjusted for multiple comparisons using the step-down Bonferroni method. No 

baseline measurement was made for MBC, so treatment differences were directly assessed using 

least-squared mean differences with Bonferroni adjustments for multiple comparisons (p < 0.05). 

We used a structural equation model (SEM) to test the hypothesis that changes in the 

SOC density fractions are related to percent clay (a proxy for mineral surface area), litter 

quantity (above- plus belowground), and litter C:N (a proxy for litter quality). Within the same 

SEM, we also tested whether changes among the fractions were interdependent. The SEM was 
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coded in the ‘lavaan’ package (Rosseel 2012) using R version 3.4.1 (R Core Team 2017), and 

model performance was assessed using the chi-square test (p < 0.05). 

 

5.3 Results 

5.3.1 Density fractions and MBC 

The baseline (2008) FLF C stocks (g C fraction g bulk soil-1) and OLF C stocks did not 

differ between sites (p > 0.4; Fig. 5.3a, b). However, the baseline HF C stocks were 

approximately twice as high at ARL compared to KBS (p < 0.0001). Thus, at ARL a greater 

proportion (g C fraction g CDF
-1) of baseline C was stored in the HF (p = 0.038) and a smaller 

proportion of C was stored in the FLF (p = 0.027). On average 93% of baseline C was stored in 

the HF at ARL while only 86% was stored in the HF at KBS (Fig. 5.4a, b). 

There were no significant changes in the FLF C or HF C stocks in any of the cropping 

systems at ARL (Fig. 5.3a). However, there was a two-fold increase in the OLF C stock in the 

ARL poplar cropping system (p = 0.0047). This change translated to a 117% increase in the OLF 

C proportion and a 5% decrease in the HF C proportion (Fig. 5.4a). The other three ARL 

cropping systems showed no significant change in OLF C stocks or proportions.  

There were no significant changes in FLF C stocks at KBS (Fig. 5.3b). However, there 

were 62%-72% declines in OLF C stocks in all cropping systems (p < 0.03) except for poplar, 

and a 23% increase in HF C stocks in poplar (p = 0.044). Declines in the OLF C stocks resulted 

in 60-69% decreases in OLF C proportions (p < 0.008), but no significant changes in the FLF C 

or HF C proportions in any cropping systems (Fig. 5.4b). 
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Fraction C:N decreased in the order FLF > OLF > HF (Table 5.2). At ARL, the HF C:N 

increased significantly in all four systems (p < 0.02) from 2008 to 2013, with the maximum HF 

C:N change occurring in maize. At KBS, prairie FLF C:N increased from 18.3 to 23.0 (p = 

0.00025) and OLF C:N increased from 15.7 to 19.7 (p = 0.00072). Post hoc t-tests revealed that 

when the data were pooled between sites and among cropping systems, the mean FLF C:N 

increased by 1.96 (p < 0.0001), the mean OLF C:N increased by 1.25 (p < 0.0001), and the mean 

HF C:N increased by 0.71 (p < 0.00001). 

Soil microbial biomass carbon (MBC) at ARL ranged nearly three-fold among cropping 

systems (Fig. 5.5). Prairie MBC (588 mg C kg soil-1) was greater than maize (214 mg C kg soil-

1), and switchgrass and poplar MBC were intermediate to prairie and maize. 

 

5.3.2 Litter inputs 

Unharvested aboveground biomass contributed the most to total biomass inputs in all 

systems except for poplar, where leaf litterfall was the most abundant input source (Table 5.3). 

At both sites, maize had the highest quantity of unharvested biomass, poplar had the least, and 

switchgrass and prairie had intermediate amounts. Belowground inputs were lowest in maize and 

poplar, intermediate in switchgrass, and greatest in prairie. However, at ARL poplar 

belowground inputs were 38% lower than maize, and poplar leaf litterfall was 70% lower at ARL 

than at KBS. At ARL, total cumulative biomass inputs were in the order maize > switchgrass > 

prairie > poplar, whereas at KBS the order was poplar > maize > prairie > switchgrass. Overall 

biomass input C:N varied at both sites in the order maize > switchgrass > prairie > poplar. The 

C:N of maize was more than double that of poplar at both sites. 
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5.3.3 SEM 

Structural equation model fit was good, with χ2 (p = 0.69). Overall, 64% of the change in 

OLF C stocks was explained by the model (Fig. 5.6). Clay content was positively related (p < 

0.001) and litter C:N was negatively related to changes in the OLF C stock (p < 0.001). 

However, neither the change in FLF C stocks nor litter quantity were related to changes in the 

OLF C stocks. Litter quantity was positively related to HF stock changes (p < 0.05) and litter 

C:N was marginally negatively related to HF C stock changes (p = 0.063). Changes in the HF C 

stock were not related to FLF C changes, OLF C stock changes, or clay content. There was no 

effect of litter quantity or litter C:N on changes in FLF C stock. 

 

5.4 Discussion 

5.4.1 Soil texture and litter influence SOC fraction changes 

Consistent with other studies that implicate clay as a key determinant of soil 

macroaggregation (Kölbl & Kögel-Knabner 2004), clay content was positively related to changes 

in the OLF C stocks in our study. However, soil texture was largely confounded between our two 

study sites, so other unaccounted factors, such as climate-driven differences in soil temperature 

and moisture, may be implicitly included within the clay variable in our model. In addition to the 

effect of clay, litter C:N was negatively correlated with the changes in OLF C stocks, indicating 

that litter with high N concentration enhanced the OLF C. One possible explanation is that the 

lower litter C:N ratio promoted greater microbial carbon use efficiency of the litter-derived FLF 

C, which increased microbial biomass (Manzoni et al. 2012) and subsequently increased total C 
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inputs into the OLF. Our microbial biomass findings provide some support for this explanation. 

In agreement, Jesus et al. (2016) found greater bacterial and fungal biomass in perennial systems 

compared to maize in soil samples collected from the same sites as our study. 

The effects of litter quantity and litter C:N on HF C stocks may reflect dynamics of 

higher-order fractions, especially the FLF C. For example, if large quantities of low C:N litter 

enter the FLF C, they are likely to be efficiently converted into microbial biomass and 

decomposition byproducts (Cotrufo et al. 2013; Vogel et al. 2015), which then may enter the HF 

C stock directly (Cyle et al. 2016) or through the OLF C. Alternatively, if high C:N litter enters 

the FLF, then low microbial carbon use efficiency may reduce the amount of C available for 

other fractions. These dynamics might also be contingent upon the relative C saturation state of 

the HF (Castellano et al. 2015). That there was no relationship between clay content and HF C 

stock change does not imply that texture is not a key factor in determining HF C storage. On the 

contrary, the fine-textured soils in our study stored approximately twice as much C in the HF 

compared to the coarser textured soils. However, factors related to the litter inputs are apparently 

more important in determining short-term HF C stock changes in response to agricultural 

management. 

Despite the reported sensitivity of FLF C stocks to land management practices (Wander 

& Yang 2000; Sequeira & Alley 2011), we did not detect any change in FLF C stocks across a 

two-fold range of litter inputs. In a 20-year litter manipulation study, Lajtha et al. (2014) reported 

no response of FLF C to doubled litter inputs, whereas decreased litter inputs caused declines in 

the FLF C. The authors attributed the consistency of FLF C under increased inputs to enhanced 

decomposition due to priming. We speculate that in systems with high litter inputs, the excessive 

litter entering the FLF C stock may have either been rapidly mineralized or transferred to another 
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SOC fraction. It is important to note that both sites in our study had been planted mainly to 

alfalfa, a perennial legume, for several years prior to the establishment of biofuel cropping 

systems. Thus, our baseline FLF C stocks were likely greater than what we would have expected 

if the previous land use was dominated by typical annual, tilled row crop agriculture (e.g. Jia et 

al. 2006), and thus the baseline FLF C stock may have been saturated. 

That there were no significant relationships in C stock changes among the three SOC 

fractions indicates that the fractions can change independently. Thus, while the SOC fractions 

cannot be considered completely homogenous (Wagai et al. 2009; Schrumpf & Kaiser 2015), our 

results support the use of these fractions as measurable constructs for SOC modelling (Sohi et al. 

2005). Our approach was simplistic in that it did not account for the spatial and temporal 

dynamics of litter inputs. For example, our SEM model contained only one compartment of litter 

inputs, but differences in the partitioning of above- and belowground litter may affect SOC 

fractions (Austin et al. 2017; Ghafoor et al. 2017). Ignoring this complexity was necessary to fit 

our model, but it should be noted that some of the unexplained variability may be attributed to 

differences in the spatial and temporal dynamics of litter inputs. 

 

5.4.2 Short-term C:N trends were evident in all fractions 

All fractions trended toward higher C:N, but changes in fraction-specific C:N were 

greatest in the FLF, intermediate in the OLF, and smallest in the HF. Considering that the 

fraction C turnover time tends to decrease in the order HF > OLF > FLF (Schrumpf & Kaiser 

2015), our finding likely reflects the longer turnover and subsequent lower incorporation of new 

C inputs into lower order fractions. Given that the HF is often considered a stable SOC pool, 

with typical mean residence times on the order of hundreds of years (Crow et al. 2007; Schrumpf 
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& Kaiser 2015), it is somewhat surprising that changes in the HF C:N ratio were apparent after 

only five years. This could have resulted either from microbial mining of the HF N or from the 

replacement of older, low C:N stocks with newer, high C:N material. Irrespective of the 

mechanism, the rapid changes in HF C:N support the idea that a portion of the mineral-

associated C turns over on yearly timescales (Torn et al. 2013) and thus is sensitive to land 

management practices (Grandy & Robertson 2007). 

The low baseline C:N among the fractions was likely a result of the low C:N alfalfa 

biomass and manure inputs that had occurred for several years before the biofuel crops were 

established. For example, aboveground alfalfa biomass grown in 2016 at ARL had a C:N ratio of 

15:1 (unpublished data). While the four biofuel cropping systems varied widely in the C:N of 

biomass inputs, in all systems the biomass input C:N was much greater than 15:1. Fornara et al. 

(2011) found a positive correlation between plant C:N and FLF C:N in temperate grasslands, 

suggesting a link between litter input C:N and soil fraction C:N. Thus, the trends toward higher 

fraction C:N in our study at least partially reflect the increased C:N of litter inputs. 

 

5.4.3 Implications for bioenergy production 

Our results provided strong evidence that soil texture and litter input dynamics 

differentially affected the SOC fractions, and thus specific land management decisions will 

influence SOC storage potential differently in contrasting settings. Soil texture is a critical part of 

the equation for SOC stabilization in bioenergy cropping systems (Tiemann & Grandy 2015). At 

least in the short-term, SOC protection in aggregates appears to be much more favorable in fine-

textured soils than coarse-textured soils. However, the fact that our sites with contrasting soil 

texture had similar OLF C stocks prior to the study indicates that the coarse-textured soils may 
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continue to accrue OLF C and thus eventually reach levels similar to the fine-textured soil. 

Considering that bioenergy cropping systems likely will be targeted to marginally productive 

lands (Robertson et al. 2017), such as those with coarse-textured soils, future work will be 

necessary to evaluate this hypothesis. 

The choice of biofuel cropping system will also affect short-term SOC protection. Maize, 

switchgrass, and prairie systems all had similar effects on SOC fractions, but poplar increased 

aggregate protected OLF C on the fine-textured soil and increased mineral associated HF C on 

the coarse-textured soil. Other studies at these sites have also demonstrated divergent SOC 

properties in poplar compared to the other systems (Sprunger & Robertson 2017; Szymanski et 

al. 2017). Our results indicated that the contrasting responses of poplar SOC fractions resulted 

from the large quantity of low C:N poplar litter inputs. Thus, increasing the quantity of litter 

inputs by harvesting less biomass in the non-poplar systems may increase the C in protected 

SOC fractions. However, litter chemistry also appears to be an important aspect of SOC 

protection. Planting N-rich leguminous cover crops in maize, adding legumes to the switchgrass 

system (e.g. Jakubowski et al. 2017), and increasing the proportion of legumes in the prairie 

system may increase microbial carbon use efficiency and thereby enhance C in the protected 

fractions. However, since legumes are generally lower-productivity, increasing the proportion of 

legumes in higher-productivity grass-based systems may come at the cost of lower litter inputs 

(e.g. Lange et al. 2015). Thus, the balance between litter inputs and litter C:N is an important 

consideration for SOC storage. 

While we did not specifically address the effect of tillage, we found that no-till maize, 

switchgrass, and prairie all had similar SOC fraction responses within each site. Several studies 

have reported increases of FLF and OLF in no-till verses tilled annual systems (Wander & Yang 
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2000; Sequeira et al. 2011) and increases in the particulate organic fraction in untilled perennial 

systems relative to tilled annual systems (Dou et al. 2013; Kantola et al. 2017), but comparisons 

between no-till annual and perennial systems are scarce. Our results indicated that the no-till 

practice in maize was as effective as the switchgrass and prairie systems in terms of storing C in 

the OLF and HF at both sites. However, it is not known whether this trend would continue over 

longer time periods, and thus longer-term studies are necessary. 

The SOC legacy of the previous cropping system is also an important consideration. Our 

findings may have differed if typical row crops, rather than alfalfa, were planted prior to our 

study. For example, if the FLF C and OLF C stocks were smaller at the beginning of the 

experiment, as may have been expected in a tilled annual system, then we may have observed 

overall increases in those fractions (e.g. Dou et al. 2013). This implies that the SOC fraction 

responses to cropping systems observed in our study may not be directly applicable to other 

locations, and reiterates that the capacity of soils to accumulate SOC is largely dependent on 

previous land use history (Qin et al. 2016). Experiments with varied SOC fraction baselines will 

be required to better understand the mechanisms of how the soil legacy affects the trajectory of 

SOC fractions. 

 

5.5 Conclusions 

Five years after the establishment of bioenergy cropping systems, we found the most 

prominent SOC changes within the aggregate-protected OLF C fraction. The response of the 

OLF C stocks was predominantly a function of soil type, with OLF C losses occurring on coarse-

texture soils under most cropping systems. The poplar system stood out among the other 

cropping systems for its capacity to maintain or build OLF C stocks. The effect of cropping 
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system on the OLF C was driven by the apparent quality of litter inputs, with lower C:N litter 

promoting higher OLF C stocks. Increased HF C stocks were also detected under poplar at the 

site with coarse-textured soils and was attributable to high litter quantity and low litter C:N. No-

till maize, switchgrass, and prairie all had similar influences on SOC fractions, with OLF C 

losses on coarse-textured soils and no change in OLF C stocks on fine-textured soils. All three 

fractions trended toward higher C:N, indicating short-term sensitivity to land-use change. 

Increasing the quantity and quality (e.g. lower C:N) of litter inputs may enhance the amount of 

SOC stored in protected fractions, but achieving these two goals concurrently in annually 

harvested, grass-based perennial systems will be practically challenging. 
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5.8 Tables and figures 

Table 5.1 – Mean (standard error) soil particle size distribution, total carbon (TC), and total 

nitrogen (TN) for the 0-10 cm depth at Arlington, WI (ARL) and Kellogg Biological Station, MI 

(KBS). 

----------------------------------------------------------------------------------------------------- 
 Sand (%) Silt (%) Clay (%) TC (%) TN (%) 
 ------------------------------------------------------------------------------------ 
ARL 9 (0.98) 66 (0.92) 25 (0.59) 2.37 (0.07) 0.23 (0.009) 
KBS 65 (0.61) 30 (0.31) 5 (0.32) 1.47 (0.02) 0.14 (0.004) 

-----------------------------------------------------------------------------------------------------  
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Table 5.2 – Mean and standard error soil fraction C:N among cropping systems with baseline 

(2008) values at Arlington, WI (ARL) and Kellogg Biological Station, MI (KBS). Asterisks 

indicate statistically significant difference (p < 0.05 after adjustment for multiple comparisons) 

from the baseline value after five years of cropping system establishment.  

--------------------------------------------------------------------------------------------------- 
Site Treatment FLF C:N OLF C:N HF C:N 
------- ------------------ -------------------------------------------------------------- 
ARL Baseline 19.6 (0.79) 16.6 (0.51) 10.8 (0.19) 
 Maize 21.2 (1.00) 17.3 (0.18) 12.0 (0.36) * 
 Switchgrass 22.3 (1.19) 16.3 (0.34) 11.6 (0.28) * 
 Prairie 21.2 (1.98) 17.3 (0.37) 11.6 (0.27) * 
 Poplar 20.7 (0.86) 15.7 (0.36) 11.7 (0.30) * 
KBS Baseline 18.3 (0.48) 15.7 (0.69) 12.6 (0.20) 
 Maize 19.8 (0.52) 17.6 (0.59)  13.4 (0.68) 
 Switchgrass 20.1 (0.46) 17.6 (0.73)  12.9 (0.16) 
 Prairie 23.0 (0.94) * 19.7 (0.50) * 12.8 (0.19) 
 Poplar 19.1 (0.52) 17.5 (0.36)  12.8 (0.29) 

-------------------------------------------------------------------------------------------------- -- 
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Table 5.3 – Cumulative biomass inputs from 2008 to 2013 and C:N (mass-weighted by each 

group of biomass inputs) for all cropping systems at Arlington, WI (ARL) and Kellogg 

Biological Station, MI (KBS). For maize, switchgrass, and prairie, unharvested biomass is the 

difference between ANPP and yield, but in poplar it is the total herbaceous understory ANPP. 

Means are shown with standard errors in parentheses. 

----------------------------------------------------------------------------------------------------------------------------  
Site Treatment Belowground Unharvested Leaf litter Total Total 
  (g m-2) (g m-2) (g m-2) (g m-2) C:N 
------ ----------------- ----------------------------------------------------------------------------- ----------- 
ARL Maize 607 (17) 4061 (334)  4667 (342) 61 (1.0) 
 Switchgrass 776 (51) 3345 (162)  4121 (136) 57 (1.9) 
 Prairie 1027 (83) 2484 (203)  3511 (233) 48 (1.8) 
 Poplar 375 (27) 1264 (262) 1462 (138) 3101 (124) 23 (1.1) 
KBS Maize 736 (26) 5120 (286)  5856 (287) 66 (1.9) 
 Switchgrass 1007 (138) 2066 (110)  3073 (154) 49 (1.3) 
 Prairie 1488 (223) 3095 (202)  4583 (324) 48 (1.9) 
 Poplar 742 (47) 1379 (107) 4610 (400) 6731 (392) 29 (0.9) 

----------------------------------------------------------------------------------------------------------------------------  
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Figure 5.1 – A conceptual diagram illustrating the proposed mechanisms of soil organic carbon 

(SOC) protection during soil aggregate stabilization and destabilization in relation to soil 

fractions isolated from a density fractionation approach.  
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Figure 5.2 – A schematic overview of the soil density fraction method used in this study.  
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Figure 5.3 – Fraction C per unit bulk soil at (a) Arlington (ARL) and (b) Kellogg Biological 

Station (KBS). Asterisks indicate significant changes from baseline samples (p < 0.05 after 

multiple comparison correction), and error bars are standard errors. Note that the y-axis scales 

differ between panels and that both y-axes contain breaks.
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Figure 5.4 – Fraction C relative to the total C among all fractions (CDF) at (a) Arlington (ARL) 

and (b) Kellogg Biological Station (KBS). Asterisks identify significant changes from baseline 

samples (p < 0.05 with correction for multiple comparisons).  
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Figure 5.5 – Mean (with standard error) microbial biomass C (MBC) at Arlington, WI during 

late-summer 2014. Treatments with different letters are statistically different (p < 0.05).  

Treatment

Maize Switchgrass Prairie Poplar

M
ic

ro
b
ia

l 
b
io

m
a
s
s
 C

 (
m

g
 C

 k
g
 s

o
il

-1
)

0

100

200

300

400

500

600

700

 

B

AB AB

A



187 

 

 

 

 

Figure 5.6 – Fitted structural equation model showing potential relationships between exogenous 

variables and fraction C stock changes (g C fraction g bulk soil-1). Solid lines indicate 

statistically significant relationships (p < 0.05) except for the relationship denoted by the asterisk 

which indicates marginal significance (p = 0.063). Percentages indicate the R2 values for 

endogenous variables, and the values along each path are the completely standardized 

coefficients.  
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5.9 Supplemental tables and figures 

Table 5.S.1 – Total mass recovery of soil fractions expressed as a percent of the initial soil 

weight. Means are given with standard errors in parentheses. Sites are Arlington, WI, USA 

(ARL) and Kellogg Biological Station, MI, USA (KBS). 

------------------------------------------------------- 
Site Treatment Recovery (%) 
------ ------------------------------------------ 

ARL Baseline 99.98 (0.049) 
 Maize 99.73 (0.257) 
 Switchgrass 99.72 (0.178) 
 Prairie 99.58 (0.099) 
 Poplar 99.60 (0.109) 

KBS Baseline 99.71 (0.044) 
 Maize 99.67 (0.024) 
 Switchgrass 99.65 (0.019) 
 Prairie 99.84 (0.119) 
 Poplar 99.70 (0.079) 

------------------------------------------------------- 
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Figure 5.S.1 – Comparison of power output as indicated by the sonicator versus directly 

measured with a calorimetric method (Schmidt et al. 1999). The black circles are the means with 

standard errors for both variables (most errors are smaller than the symbols). The black line 

shows the linear regression between variables, and gray line is 1:1. 
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Chapter 6 

Implementation of the root regression approach for partitioning soil respiration: 

theoretical and methodological considerations 

von Haden, A.C., Kucharik, C.J. 

Target journal: Biogeochemistry 

Abstract 

 The root regression method, which uses the relationship between root biomass and soil 

respiration to separate autotropic- and heterotrophic-derived sources, has been described as a 

low-disturbance, in situ technique. However, the underlying assumptions, limitations, and 

methodological considerations have not been thoroughly discussed. Assumptions include 

consistent heterotrophic soil respiration among all measurement points, consistent autotrophic 

respiration per unit root biomass, and negligible lateral soil CO2 diffusion. While these 

assumptions are not likely to hold under all circumstances, some limitations can be addressed 

with additional measurements. We used a literature survey and a field study to provide further 

insight. In the literature survey, we found that 71% of 256 previously published root regressions 

were reported as statistically significant. In the field study, we observed that the efficacy of the 

root regression method varied between plant types and by time of day, with stronger linear 

regressions corresponding to high specific root respiration rates. Increasing the number of 

sampling points and depth of root sampling also improved linear regression strength, but such 

methodological details likely will depend upon specific ecosystem type and sampling time. Thus, 

researchers would benefit from performing pilot studies to determine the appropriate 

methodological details such as the number of samples required for their study system. 
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6.1 Introduction 

Total soil CO2 respiration (RS) is comprised of two primary components: autotrophic-

derived respiration (RA) from plant roots and heterotrophic-derived respiration (RH) from the 

decomposition of soil organic carbon (SOC) (Kuzyakov 2006). Since the two components 

typically occur simultaneously, partitioning RS is necessary to study the in situ dynamics of RA 

and RH independently. Thus, reliable separation of RA and RH is important for plant, soil, and 

ecosystem sciences (Baggs 2006). 

The most common partitioning methods include root exclusion (i.e. trenching), tree 

girdling, component integration, and isotopic techniques, but each method is subject to inherent 

limitations (Kuzyakov 2006; Subke et al. 2006). The root regression technique is less commonly 

used, but it has been suggested that the method has high potential because it produces relatively 

little disturbance (prior to root biomass sampling) and therefore minimizes bias (Kuzyakov 2006; 

Koerber et al. 2010). However, the underlying assumptions, potential limitations, and practical 

considerations of the technique have not been thoroughly articulated and discussed. Thus, our 

goal was to provide theoretical framework and methodological considerations for the root 

regression approach. 

 

6.1.1 Theoretical framework and underlying assumptions 

The root regression method operates on the principle that RA is proportional to live root 

biomass (Fig. 6.1a). A number of paired RS and root biomass samples are used to generate a 

linear regression model between root biomass and RS (Fig. 6.1b). The linear regression of RS 
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against root biomass yields a slope equal to the specific RA (i.e. RA per unit root; SRA). Non-

linear (exponential) regressions have also been used (Bao et al. 2010), but the biological basis of 

such a model remains unelucidated. In both cases, the y-intercept of the regression is the estimate 

of RS when root biomass is nil and therefore RS is equal to RH. Mean RA ( RA ) is estimated as 

mean RS ( RS  ) minus RH (Fig. 6.1a). 

Implicit in the linear root regression model is that contribution of RH is consistent across 

all measurements of RS (Fig. 6.1a), yet there are several reasons that this assumption may not 

always hold. First, differences in SOC among sampling points may drive differences in RH 

(Herbst et al. 2012). In addition, heterogeneity in plant canopy structure or microtopography may 

cause variability in soil microclimate among sampling points (Chapin 2003; Bennie et al. 2008), 

which could also affect RH. Finally, the differences in root biomass among sampling points could 

drive differences in rhizodeposition, which could also alter RH through the “priming effect” 

(Kuzyakov 2010). Differences in SOC content or soil microclimate can potentially be addressed 

by measuring these variables at each RS sampling point and including the terms in the regression 

model. For example, Rodeghiero, and Cescatti (2006) added an SOC term to their root regression 

models. The “priming effect” of root biomass on RH would be more difficult to address, and 

would likely require a separate intensive study (Kuzyakov et al. 2000). 

Another primary assumption of the root regression method is that SRA is consistent 

among all RS measurements. In polyculture ecosystems, plant species may have different root 

respiration rates (Poorter et al. 1990) and thus SRA may inherently vary spatially. Even in 

monocultures, realized SRA may be in inconsistent if the root size-class distributions vary among 

samples. For example, studies have found that individual soil cores contain highly variable root-
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class distributions (Taylor et al. 2013) and that < 0.5 mm diameter roots respire at higher rates 

than larger roots (Pregitzer et al. 1998). In some studies, researchers have disregarded certain 

root size-classes to improve the statistical fit of root regressions (Table 6.1). A more robust 

method would be to use a multiple linear regression with several root size-classes to estimate the 

SRA for each size-class. However, this approach would likely require a much larger sample size 

than typical root regression studies. 

A final major assumption of the root regression method is that lateral soil CO2 diffusion 

is negligible. Yet, when root biomass is heterogeneous on small spatial scales, there must be 

lateral diffusion from high root biomass, high CO2 spaces to low root biomass, low CO2 spaces. 

Lateral CO2 diffusion would exaggerate RS at the low root biomass sampling points and 

understate RS at the high root biomass sampling points. The slope of the regression would thus 

be reduced and the y-intercept elevated, thereby underestimating RA and overestimating RH. This 

may explain why comparative studies have generally found higher RH with the root regression 

technique than the more common root exclusion method (Wang et al. 2008; Koerber et al. 2010; 

Tomotsune et al. 2013). To our knowledge, there is no practical work-around for this limitation. 

 

6.2 Methods 

6.2.1 Literature survey 

We used Web of Science to conduct a literature survey of published studies that have 

used the linear root regression method explicitly to partition heterotrophic and autotrophic soil 

respiration. We report only in situ studies, as our discussion may be less relevant for greenhouse 
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studies. In total we identified 27 published studies containing 256 individual root regressions 

(Table 6.1).  

 

6.2.2 Field study 

We measured soil respiration and root biomass in maize (Zea mays L.) and switchgrass 

(Panicum virgatum L.) at the DOE-Great Lakes Bioenergy Research Center’s biological 

cropping systems experiment in Arlington, WI, USA (Sanford et al. 2016). The dominant soil 

series is Plano silt loam, a fine-silty, mixed, superactive, mesic Typic Argiudoll (Soil Survey 

Staff 2017). We installed eighteen 10.2 cm inner diameter PVC soil respiration collars in each 

cropping system. The collars were 5 cm tall and were inserted 2 cm into the soil. To capture the 

spatial variability of root biomass, we installed collars at intra-row, inter-row, and intermediate 

positions in maize. Similarly, in switchgrass we installed collars on plants, inter-plant, and 

intermediate positions. Aboveground plant biomass was clipped within each collar one day prior 

to initiating soil respiration measurements. We conducted 11 total rounds of soil respiration 

measurements on August 13 and August 14, 2014 using a LI-COR LI-6400XT portable 

photosynthesis system with a 6400-09 soil chamber (LI-COR Inc., Lincoln, Nebraska, USA). 

Each measurement round took about 90 mins to complete. Root biomass, defined here as all 

belowground plant biomass, was collected on August 20, 2014 from directly beneath the soil 

collars. We sampled soils in 10 cm increments to a depth of 30 cm using a 10.2 cm inner 

diameter bucket auger. Soils were sieved to 2 mm to extract roots, and the roots were shaken for 

30 mins in a 5% sodium hexametaphosphate solution. Roots were gently washed free of soil with 

deionized water on a 500 µm sieve (Dornbush et al. 2002), and live roots were separated based 

on the color, strength, and stele condition (Hayes and Seastedt 1987). Live roots were suspended 
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in deionized water in a 25 x 20 cm acrylic container and scanned at 600 DPI on an Epson V700 

scanner (Epson America Inc., Long Beach, CA, USA). IJ_Rhizo software (Pierret et al. 2013) 

was used to determine live root volume, surface area, and length. Live roots were then dried at 

65 °C for 48 h and weighed. Linear regressions were conducted between soil respiration and 

each combination of root metric (i.e. biomass, volume, surface area, and length) and sampling 

depth (i.e. 0-10 cm, 0-20 cm, and 0-30 cm) using the R ‘stats’ package (R Core Team 2017). 

We used a bootstrapping method to estimate the number of field samples required to 

obtain a statistically significant linear regression (p < 0.05). We chose to run the bootstrap on 

early- and late-day measurement rounds from August 14, which represented times when the 

regression R2 values were relatively weak and strong, respectively (Table 6.2). We also chose to 

bootstrap from 6 to 24 samples, as this range represents the number of samples commonly used 

among root regression studies (Table 6.1). For each measurement round, we randomly selected 

samples with replacement and ran regression analyses on 0-30 cm live root biomass and soil 

respiration for those samples. This procedure was repeated 10,000 times for each sample size, 

and we report the median p-value from each. Bootstrapping was conducted in R (R Core Team 

2017). 

We conducted statistical analyses to determine whether there were differences in linear 

regression R2 values between crops, among root metrics, and among sampling depths. We used a 

mixed model with repeated measures for each round number to determine differences between 

crops. For the crop analysis, we only considered 0-30 cm live root biomass. To determine 

whether there were differences among root metrics, we used a mixed model with repeated 

measures for each root metric and treated each observation (i.e. unique combination of crop and 

sampling round) as a random effect. For the root metric analysis, we only considered the 0-30 cm 
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depth increment. To determine whether there were differences among sampling depths, we used 

a mixed model with repeated measures for each depth and treated each observation as a random 

effect. For the depth analysis, we only considered the live root biomass metric. All mixed model 

analyses were performed in SAS 9.4 (SAS Institute Inc., Cary, NC, USA). 

 

6.3 Results and discussion 

6.3.1 Implementation considerations and strategies 

Overall, only 71% of 256 previously published root regressions were reported as 

statistically significant (typically p < 0.05), and model R2 ranged from 0.00 to 0.98 (Table 6.1). 

Regression models tended to be statistically stronger in grasslands and row crops than forests and 

orchards or plantations. However, the number of sampling points, root sampling depths, and root 

size-classes all varied widely among studies, thus making overall generalizations difficult. 

In our experimental study, all root regressions in maize were statistically significant (p < 

0.05), while only 73% of root regressions were significant in switchgrass (Table 6.2). R2 values 

were significantly greater in maize compared to switchgrass (Table 6.3). Linear regression model 

R2 increased with regression slope (Fig. 6.2), indicating that regressions were stronger when SRA 

was higher. Thus, greater R2 in maize compared to switchgrass likely results from the fact that 

average SRA was three times greater in maize. (Table 6.2). Regression model R2 values became 

slightly greater with deeper sampling (Table 6.3). Surprisingly, the root biomass metric produced 

weaker R2 than surface area, length, and volume metrics (Table 6.3). The number of sampling 

points required to produce statistically significant regressions was greater in switchgrass, but also 

varied by time of day (Fig. 6.3). 
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Even when linear regressions are statistically significant, there can be substantial 

uncertainty in the slope and intercept parameter estimates, which thus translate into uncertainty 

in the RH and RA values. From a logistical standpoint, while the root regression method causes 

little disturbance prior to RS measurement, the sampling required to measure root biomass after 

RS measurement is both destructive and labor intensive. These drawbacks may restrict 

temporally repeated applications of the root regression method, particularly if the study area is 

spatially limited.  

 

6.4 Conclusions 

The ideal implementation of the root regression method will likely vary as a function of 

ecosystem type and measurement timing. Ecosystems with high SRA are most likely to yield 

strong linear regressions between root biomass and RS. However, since RA varies both seasonally 

and diurnally (Savage et al. 2013), the performance of the root regression method will also vary 

temporally. Researchers will likely benefit from pilot studies to determine the number of 

sampling points and root sampling depths required to produce adequate root regressions under 

their specific study conditions. Even when strong linear regressions are realized, the method is 

subject to several assumptions and potential limitations that should be explicitly considered. 
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6.7 Tables and figures 

Table 6.1 – Literature survey of in situ studies using the root (linear) regression method to partition soil respiration. P is < 0.05 

except where noted. 

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Ecosystem Study    Sampling  Root size - Sample  Regressions Percent  R2  
      depths (cm) classes (mm) points   significant 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Forest Behera et al. 1990 0-50 0-1, > 1, All 20 3 100 0.67-0.79  
 Rodeghiero & Cescatti 2006 0-30 2-5 ≥ 6 51 37a NR  
 Tomotsune et al. 2013 0-30 All 10-12 16 13 0.00-0.45  
 Xu et al. 2001 0-50+ All (0-5) 18 1 100 0.52  
 
Grassland Bao et al. 2010 0-20 > 0.1  12 47 100b 0.25-0.97  
 Buyanovsky et al. 1987 0-50 All (NR) 10 NR NR NR  
 Cui et al. 2014 0-40 All (NR) 12 3 67 0.16-0.47 

 Fu et al. 2014 0-20 All (NR) 25 11 100 0.50-0.68 
 Gupta & Singh 1981 0-10 All (NR) 19 1 100 0.42  
 Kucera & Kirkham 1971 0-10 All (NR) NR 1 100b 0.52  
 Li et al. 2002 0-30 All (NR) 7-10 12 42b <0.10-0.53  
 Liu et al. 2016 0-10 All (NR) 72 1 100 0.12 
 Shi & Geng 2014 0-40 All (NR) 6 6 17 0.33-0.89 
 Unteregelsbacher et al. 2012 0-30 All (NR) 24 1 100 0.56  
 Upadhyaya & Singh 1981 0-30 All (NR) NR 1 100b 0.36 
 von Haden & Kucharik (this study) 0-30 All 18 11 73 0.10-0.51 
 Wang & Guo 2006 NR All (NR) 11-13 7 100 0.44-0.71  
 Wang et al. 2005 0-10 All (NR) 10 13 100 0.36-0.71  
 Wang et al. 2006 0-30 All (NR) 12 7 100 0.59-0.90  
 Wang et al. 2007 0-30 All (0-2) 12 14 100 0.44-0.94  
 Wang et al. 2009 0-50 All (NR) 12 6 100 0.35-0.62  
 Zhang et al. 2009 0-20 All (NR) 20 3 33 0.01-0.57 
 
Row crop Hao & Jiang 2014 0-30 All (NR) 6 6 100 0.69-0.94  
 Koerber et al. 2010 NR All (NR) 4-48 14 71 0.00-0.80  
 von Haden & Kucharik (this study) 0-30 All 18 11 100 0.48-0.69 
 Zhao 2016 NR All (NR) 45 4 100 0.43-0.68 
 
Orchard or Ceccon et al. 2011 0-40 0-2 20-40 4 25a 0.05-0.35  
plantation Franck et al. 2011 0-60 0-2, > 2 6 12 42 0.19-0.98 
 Wang et al. 2008 0-30 0-2 10-17 12 100 0.34-0.73 

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
ap < 0.10 
bp not given 

NR = not reported
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Table 6.2 – Results of linear regressions between 0 to 30 cm live root biomass (g DM m-2) and 

soil respiration (µmol CO2 m
-2 s-1). 

------------------------------------------------------------------------------------------------------------------------------------------------------------ 
  Maize    Switchgrass   
  --------------------------------------------------------- ------------------------------------------------------- 

Date Time Intercept Slope R2 P Intercept Slope R2 P 

8/13/2014 6:30 3.2 3.5E-03 0.48 < 0.01 3.9 3.2E-03 0.51 < 0.001 

8/13/2014 8:30 3.0 4.0E-03 0.53 < 0.001 4.2 1.8E-03 0.23 < 0.05 

8/13/2014 10:30 3.2 4.4E-03 0.57 < 0.001 4.4 1.4E-03 0.25 < 0.05 

8/13/2014 12:30 3.2 4.5E-03 0.55 < 0.001 4.6 1.0E-03 0.10 > 0.15 

8/14/2014 6:30 2.4 4.5E-03 0.58 < 0.001 3.4 1.6E-03 0.20 > 0.05 

8/14/2014 10:00 2.7 4.7E-03 0.59 < 0.001 3.8 1.8E-03 0.46 < 0.01 

8/14/2014 12:00 2.7 5.0E-03 0.59 < 0.001 3.8 1.3E-03 0.25 < 0.05 

8/14/2014 14:00 2.9 5.7E-03 0.58 < 0.001 4.0 1.8E-03 0.42 < 0.01 

8/14/2014 17:00 2.9 6.3E-03 0.63 < 0.0001 4.3 2.0E-03 0.38 < 0.01 

8/14/2014 18:30 2.8 6.8E-03 0.67 < 0.0001 3.9 1.9E-03 0.38 < 0.01 

8/14/2014 20:30 3.1 6.9E-03 0.69 < 0.0001 4.7 1.2E-03 0.20 > 0.05 

------------------------------------------------------------------------------------------------------------------------------------------------------------ 
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Table 6.3 – Comparison of linear root regression R2 values between crops and among depths and 

root metrics. Except for the root metric category, all other categories use root biomass as the 

independent variable. Mean and standard error are from mixed-model least squared means. 

--------------------------------------------------------------------------------------------------------------- 
Variable Categories Summary and comparative statistics    
------------------------------------------------------------------------------------------------------------  

  Mean R2 Std. Err. F p 
  -----------------------------------------------------------   

Crop Maize 0.59 0.03 42.65 <0.0001 

 Switchgrass 0.31 0.03        

Depth 0-10 cm 0.39 0.04 139.39 <0.0001 

 0-20 cm 0.43 0.04   

 0-30 cm 0.45 0.04       

Root metric Biomass 0.45 0.04 7.93 0.0001 

 Volume 0.49 0.04   

 Length 0.48 0.04   

 Surface area 0.50 0.04  

--------------------------------------------------------------------------------------------------------------- 
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Figure 6.1 – (a) Conceptual depiction of autotrophic (RA) and heterotrophic (RH) soil CO2 

respiration under varying live root biomass quantities; arrow widths are proportional to the CO2 

flux. (b) Idealized linear regression between live root biomass and soil CO2 respiration (RS); SRA 

is the specific root respiration rate.
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Figure 6.2 – Relationship between root regression slope and root regression R2. Spearman’s 

nonparametric rank correlation coefficient (ρ) shows the monotonic relationship.   
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Figure 6.3 – Median p-values from bootstrapped linear regressions with varying number of data 

points the regression. Each point represents the median of 10,000 bootstrapped samples.  
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Chapter 7 

Conclusions 

7.1 Summary 

I attempted to gain a better understanding of the mechanisms contributing to ecosystem 

carbon (C) storage by measuring ecosystem processes in bioenergy cropping systems. During the 

two years when the net ecosystem C balance (NECB) was studied, maize generally had a more 

favorable NECB than switchgrass, although there was high variability in the overall NECB 

estimates. While there were slight differences in net photosynthesis and belowground net 

primary productivity between maize and switchgrass systems, most of the NECB difference was 

attributable to higher residue retention, lower heterotrophic soil respiration (RH), and lower 

autotrophic soil respiration (RA) in maize compared to switchgrass. Although the lower residue 

removal in maize was a simple function of aboveground net primary production and harvest 

efficiency, the potential mechanisms causing the differences and heterotrophic and autotrophic 

soil respiration were not immediately apparent and thus were further investigated. This work 

suggests that contrary to our expectations, mature switchgrass stands may not have higher short-

term C storage potential than long-term no-till maize under certain conditions. 

Differences in RA between maize and switchgrass were assessed using the maintenance 

respiration-growth respiration framework. Both root growth and specific root growth respiration 

were greater in switchgrass than maize, and thus annual root growth respiration was higher in 

switchgrass. Although specific root maintenance respiration was greater in maize, average root 

biomass was much greater in switchgrass, and therefore annual root maintenance respiration was 

also higher in switchgrass than maize. I hypothesize that the greater specific root growth 

respiration rate in switchgrass was primarily due to the lower relative growth rate of switchgrass, 



209 

 

 

 

and that the lower specific root maintenance respiration rate in switchgrass resulted from a lower 

proportion of non-structural root tissues. Overall, this work demonstrates that the maintenance 

respiration-growth respiration framework is useful at the ecosystem level, and that physiological 

differences in RA may be more generalizable based on other well-known species traits. 

Soil microclimates among maize, switchgrass, and poplar bioenergy systems were 

identified from 2011-2016. In general, the poplar and switchgrass soil microclimates were better 

buffered from extreme air temperatures than maize, likely due to the higher summer leaf area 

index and greater winter soil insulation in the latter systems. Using a simple model that 

accounted for the direct effects of soil temperature and moisture, I found that altering the soil 

microclimates between maize and switchgrass could cause moderate changes in the annual C 

losses from RH. However, since switchgrass RH was found to be greater under the maize 

microclimate, the direct microclimate effect does not explain the greater RH measured in the 

NECB study. Nonetheless, the modeling exercise indicates that it may be possible to reduce C 

losses via RH by managing the soil microclimate, although indirect effects must also be 

considered. 

Soil organic carbon (SOC) fractions were isolated from samples collected at the time of 

biofuel cropping establishment and again after five years. The occluded light fraction (OLF), 

which represents SOC released from aggregates, showed the most change among all fractions, 

with poplar systems typically maintaining or accruing SOC in the OLF. Increases in the OLF 

were associated with higher litter quality (i.e. lower C:N) and soil clay content, whereas 

increases in the mineral-associated heavy fraction (HF) were related to litter input quantity and 

quality (i.e. C:N). Overall, these results indicate that clay-dominated soils may more quickly 
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accrue aggregate-protected SOC, and that adding more or higher quality litter may also increase 

SOC in protected fractions. 

The root regression method for partitioning soil respiration was evaluated using a 

literature survey and in situ measurements. An overview of the basic theory and assumptions of 

the method was also given. The literature survey revealed that the method produced statistically 

significant regressions about three-quarters of the time, indicating that the performance of the 

method is not always acceptable. Field results indicated that sampling roots deeper into the soil 

profile may marginally enhance the method, but the method performance was nearly always 

better in maize than switchgrass. Thus, the root regression method may be inherently better 

suited for some ecosystems than others. 

 

7.2 Synthesis and future work 

Perennial cropping systems are generally expected to have more favorable NECB 

primarily due to increased belowground C allocation (Crews & Rumsey 2017). However, at our 

site we found that the slightly greater belowground root C production in the perennial 

switchgrass system were outweighed by the greater soil respiration C outputs in that system. The 

large standing root stock in perennial systems must be continually maintained via respiration, 

even during the non-growing season, and thus a substantial proportion of plant fixed C must be 

expended and released as CO2. In contrast, the annual crop root system is relatively small and 

only needs to be maintained for about half of the year. Thus, greater belowground C allocation 

will not necessarily lead to more favorable NECB in perennial systems because a large 

proportion of belowground C must be used to maintain the expansive perennial root system. 
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Future work is still necessary to constrain the temperature response of autotrophic soil 

respiration and to further validate these results at other sites. 

Residue management in annual cropping systems has been a subject of interest for many 

years, with many authors concluding that residue removal must be limited to maintain SOC 

stocks (Liska et al. 2014). In this study, residue return was greater in maize than switchgrass, and 

maize had a more favorable NECB than switchgrass, reaffirming that residue return rates are an 

important consideration for both annual and perennial cropping system (Lal & Pimentel 2009). 

To some extent, this dynamic was also reflected in the SOC fraction study: At the site where 

poplar litter inputs were much greater than the other systems, the poplar system consistently 

maintained aggregate-protected SOC when other cropping systems did not. Considering that the 

NECB in many herbaceous perennial systems is near neutral or slightly negative even when 

aboveground biomass is not harvested (e.g. Oates & Jackson 2014; von Haden & Dornbush 

2017), it is perhaps not surprising that harvesting the majority of aboveground biomass would 

result in negative NECB. Perennial herbaceous systems with higher aboveground productivity, 

such as miscanthus (Miscanthus × giganteus), could provide similar or greater biomass yield 

while maintaining greater residue inputs (e.g. Sanford et al. 2016). Future residue removal 

experiments would be helpful to quantify the amount of residue needed to maintain or build SOC 

in perennial systems. Altering the soil microclimate may also provide the potential to decrease C 

losses from litter and SOC through reduced RH. Direct manipulative experiments would be 

necessary to determine the extent to which management practices within a given cropping 

system can be used create soil microclimates that are less conducive to RH.  
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7.3 Concluding remarks 

While NECB is just one of many environmental, economic, and social considerations of 

biofuels, it plays a key role in determining the overall ecological footprint – and hence the 

sustainability – of biofuel cropping systems (Rist et al. 2009; Tilman et al. 2009). Although it is 

generally thought that perennial, cellulosic biofuel cropping systems will sequester atmospheric 

C, achieving neutral NECB may be a more realistic goal depending on the environmental 

envelope. Practices that reduce soil disturbances and increase litter input quality (i.e. lower C:N) 

and quantity are likely to enhance the NECB in both annual and perennial biofuel cropping 

systems. Landscape-level scenario modelling will be necessary to comprehensively determine 

the most effective C storage and sequestration strategies. Continuing research to better 

understand the mechanisms of ecosystem C processes will therefore increase the overall potential 

to store C across the landscape. 
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