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Abstract

My dissertation develops a combination of combinatorial and statistical approaches
to extract dependencies in observed data and to model the most significant summary
of such dependencies in computational and statistical friendly terms. In non-
technical terms, it models dependencies in a complex system by tree topology.
Moreover, to define probability distributions on the observed data, the central
mathematical framework is stochastic processes on tree topology. The first part of
the dissertation addresses the detection of shifts in trait evolution and the second
part focuses on a novel variate of chain referral samplings for collecting samples
from hidden populations.

The detection of evolutionary shifts in trait evolution from extant taxa is mo-
tivated by the study of convergent evolution, or to correlate shifts in traits with
habitat changes or with changes in other phenotypes. My dissertation proposes
a phylogenetic lasso method to study trait evolution from comparative data and
detect past changes in the expected mean trait values. The new method uses the
Ornstein-Uhlenbeck process, which can model a changing adaptive landscape of
continuous traits on phylogenetic trees. The method is very fast, running in minutes
for hundreds of species, and can handle multiple continuous traits. Moreover, it
proposes a phylogenetic Bayesian information criterion that accounts for the phylo-
genetic correlation between species, as well as for the complexity of estimating an
unknown number of shifts at unknown locations in the phylogeny. This criterion
does not suffer model overfitting and has high precision, so it offers a conservative
alternative to other information criteria.

Respondent-driven sampling (RDS) is a type of chain referral sampling popular
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for sampling hidden populations. As such, even under the ideal sampling assump-
tions, the performance of RDS is restricted by the underlying social network: if
the network is divided into weakly connected communities, then RDS is likely to
oversample one of these communities. In order to diminish the referral bottlenecks
between communities, we propose anti-cluster RDS (AC-RDS), an adjustment to
the standard RDS implementation. Using a Markov process on the referral tree,
we construct and study the Markov transition matrix for AC-RDS. We show that if
the underlying network is generated from the Stochastic Blockmodel with equal
block size, then the transition matrix for AC-RDS has a smaller spectral gap and
consequently faster mixing properties than the standard random walk model for
RDS. In addition, it is shown that AC-RDS reduces the covariance of the samples
in the referral tree compared to the standard RDS and consequently leads to the
smaller variance and design effect.
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Chapter 1

Introduction

“Et ignotas animum dimittit in
artes. (And he turned his mind to
unknown arts.)”

Ovid, Epigraph to A Portrait of the Artist
as a Young Man
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Detection of evolutionary shifts in Ornstein-Uhlenbeck models

Is is possible to detect dramatic changes that occurred in the past from observed
data? Is it possible to have a statistical framework to assess and compare plausibility
of various hypotheses about the past given present day data?

A group of related species is expected to have similar inherited characteristics
(traits) due to their shared ancestors and evolutionary history. These evolutionary
relationships can be summarized by a tree T equipped with a length function,
“phylogenetic tree.” The leaves of the phylogenetic tree L(T) show the contemporary
species, the internal nodes represent the extinct shared ancestors and the length
function corresponds to time intervals. Let yi(t) : [0, T ]→ R be the trait of the ith

species from time 0 to T and Y be the trait values at the leaves where Yi = yi(T). A
significant change in the average trait values of a clade, the group of leaves below
an edge, from other species is a sign of adaptation of the clade.

The framework of a stochastic process on a tree can describe the evolution of
quantitative traits (e.g. morphology) over time. Data from fossil lineages validate
that the Ornstein-Uhlenbeck (OU) stochastic process, a generalization of the Brow-
nian motion is an accurate model of the trait evolution over time (Hunt et al., 2008;
Hopkins and Lidgard, 2012). The OU process takes into account both the variation
and adaptation aspects of the trait evolution. In addition, the phylogenetic tree can
be reconstructed from DNA sequences. The reconstruction is possible under certain
assumptions such as modeling gene evolution by a continues-time Markov chain.
This estimated phylogenetic tree is a similar mathematical object to hierarchical
clustering trees; semi-labeled rooted binary trees.

In this framework, the traits at the leaves have a multivariate Gaussian distribu-
tion. Adaptation to a new condition manifests through a change in the expected
trait values, EYi, of species i in a clade. Such changes may be due to a shift in
ecological niches on the corresponding edge and time.

Chapter 2 of this dissertation (Khabbazian, Kriebel, Rohe, and Ané, 2016b)
demonstrates that the problem suffers from identifiability issues. Accepting the
limitations and focusing on parsimonious solutions, Section 2.3 states the model
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selection problem as a linear regression model

Y = Xβ+ ε, ε ∼ N(0,Σ(T ,α,σ2)),

where the design matrix X encodes the topology of the tree and adaptation rate;
columns and rows correspond to the edges and leaves, respectively. The support
set of the coefficient vector β represents the position of the shifts on the tree. The
parsimonious restriction appears as an `0 constrain. I approximate the NP-hard
estimation problem as an `1 regularized convex optimization. In Section 2.4, I show
that non-parsimonious models correspond to sets of dependent columns of X. As a
result, the solution to the convex optimization satisfies the parsimony condition.
Furthermore, I provide the necessary and sufficient conditions under which the `1
regularized linear regression has a unique solution.

Moreover, this dissertation proposes a novel Bayesian information criterion
(pBIC) for detecting a statistically-justifiable number of shifts on the tree in Sec-
tion 2.5. It also brings to attention a linear time algorithm to compute the inverse of
the covariance matrix Σ−1

(T,α,σ2)
in Section 2.6. This work has been implemented as an

R package `1ou that is available open source at https://github.com/khabbazian/
l1ou.

Novel Sampling Design for Respondent-driven Sampling

Referral sampling approaches are popular for sampling populations for which
constructing a sampling frame is not possible, but the members are connected
through a social network. Denote the network byG = (V,E)whereV andE represent
the population and connections among members. Let function y : V→ R assign a
characteristic to each member. Referral sampling starts from a seed node that refers
a few members. As the procedure continues, participants refer more members.
This referral process forms a directed tree T with root(T) as the seed node. In the
tree, nodes represent the participants and edges show the referral relationship. The
referral process can be modeled by a “Markov chain indexed by a tree” (Benjamini
and Peres, 1994). The model takes into account the multiple referrals and the

https://github.com/khabbazian/l1ou
https://github.com/khabbazian/l1ou
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Markov property of the process. Under certain assumptions

Pr (v ∈ child(u)|u ∈ V(T)) = Puv,

where P is the transition matrix of for example random walk on the social network.
Chapter 3 of dissertation (Khabbazian, Hanlon, Russek, and Rohe, 2016a) ex-

presses the relationship between the structure of the underlying network and the
sampling process as a projection of the trait function y and the spectral decomposi-
tion of the transition matrix. Define the inner product 〈f,g〉π =

∑
u∈V f(u)g(u)π(u)

and let fj be the jth eigenvector of the transition matrix under the defined inner
product. Let Xi, i = 1, 2, · · · be a Markov chain with reversible transition matrix P.
Then

Cov(y(Xi),y(Xi+t)) =
|V |∑
j=2

〈y, fj〉2πλtj ,

where π is the stationary distribution.
In the spectral clustering literature, it is well known that the span of the lead-

ing non-trivial eigenvectors of Laplacian matrix corresponds to the community
structure of a network. Roughly speaking, the decomposition demonstrates that
if the trait of interest is correlated with the communities in the network, then the
consecutive samples are highly correlated. Chapter 3 proposes a novel sampling
procedure, “anti-cluster RDS” that incorporates triangles, 2-dimensional simplices,
as a local structure of the social network to reduce covariance of the samples. Anti-
cluster RDS is privacy preserving. I show that under certain conditions the AC-RDS
reduces the covariance of the samples. More formally, let (Xi)ni=1 and (Xaci )ni=1 be
the samples collected by the standard and AC-RDS procedure respectively. If the
network is generated from a certain class of stochastic blockmodels, then for all
i, i+ t ∈ {1, · · · ,n}, and t 6= 0,

Cov(y(Xaci ),y(Xaci+t)) < Cov(y(Xi),y(Xi+t)).

As a consequence, the proposed sampling procedure collects more representative
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samples from the population compared to the standard method. The proof uses
techniques from matrix concentration to show that the sampled network Laplacian
is close the expected Laplacian matrix under the spectral norm. Additionally, it uses
invariant subspace perturbation theorems to show that AC-RDS reduces samples
covariance.
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Chapter 2

Detection of Evolutionary Shifts in
Ornstein-Uhlenbeck Models

Contribution

• I conducted all the simulations and result visualizations expect
Figure A.6.

• I developed the theoretical basis presented in Section 2.4.

• I designed the 2-step lasso procedure to handle the whitening (de-
correlation) of the data dependent on the unknown correlation
level.

• I participated in the work/discussion to design the lasso procedure
to handle multivariate data.

• I designed the lasso procedure to detect convergent regimes.

• I wrote the first draft of the manuscript.

• I implemented l1ou R package (https://github.com/khabbazian/l1ou).
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Abstract

The detection of evolutionary shifts in trait evolution from extant taxa is motivated
by the study of convergent evolution, or to correlate shifts in traits with habitat
changes or with changes in other phenotypes. We propose here a phylogenetic lasso
method to study trait evolution from comparative data and detect past changes in
the expected mean trait values. We use the Ornstein-Uhlenbeck process, which can
model a changing adaptive landscape over time and over lineages. Our method is
very fast, running in minutes for hundreds of species, and can handle multiple traits.
We also propose a phylogenetic Bayesian information criterion (pBIC) that accounts
for the phylogenetic correlation between species, as well as for the complexity of
estimating an unknown number of shifts at unknown locations in the phylogeny.
This criterion does not suffer model overfitting and has high precision, so it offers
a conservative alternative to other information criteria. Our re-analysis of Anolis
lizard data suggests a more conservative scenario of morphological adaptation and
convergence than previously proposed. Software is available on GitHub.

Keywords: phylogenetic comparative method, adaptation, convergent evolution,
lasso, regularization, phylogenetic BIC, l1ou.
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2.1 Introduction

Recent advances in DNA sequencing technology and phylogenetic methods en-
abled accurate reconstructions of the evolutionary relationships among very large
groups of species, and opened new avenues to study phenotypic trait evolution.
The inference of evolutionary trees with thousands of taxa or thousands of genes
demands complex mathematical models and computational tools (see for instance
Bininda-Emonds et al., 2007; Wickett et al., 2014). Likewise, the inference of pheno-
typic trait evolution on very large trees demands complex models that are capable
of handling heterogeneity across a wide range of species. Hansen (1997) used an
Ornstein-Uhlenbeck (OU) process to model the macroevolution of a phenotype
subject to selection pressure towards an “optimal” value. This OU model was vali-
dated on a large number of fossil lineages (Hunt et al., 2008; Hopkins and Lidgard,
2012), as well as in cross-species comparative analyses (Harmon et al., 2010).

Hansen (1997) proposed to use heterogeneous OU models with different optimal
phenotype values on different branches of the tree. These models can then be used
to test various hypotheses about phenotypic adaptation (Butler and King, 2004).
For instance, Scales et al. (2009) evaluated a small set of predefined hypotheses to
place the various optima on the tree, to investigate whether fiber-type composition
of a leg muscle in lizards is adaptive to the species predator escape strategy, or
to its foraging strategy, or both. Mahler et al. (2013) also used OU models with
varying optima, but without a preselected set of hypotheses for the number and
placement of these optima (see also Ingram and Mahler, 2013; Ingram and Kai,
2014). To do so, they used a stepwise search among OU models to study how
natural selection shaped the morphology of Caribbean Anolis lizards (Losos, 2009),
and then correlated the phylogenetic placements of shifts in OU optima to habitat
changes. Repeated evolution of similar phenotypes in similar environments was
taken as evidence for a deterministic aspect of macroevolution.

Several methods were proposed for OU models with multiple optima on phylo-
genetic trees, to infer the number and the position of shifts in trait optimum without
predefined hypotheses. This task is difficult both computationally and theoretically,
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due to the very large number of models to be evaluated and compared statistically.
Uyeda and Harmon (2014) developed a Bayesian method, with a Monte-Carlo
Markov chain implementation in the R package bayou. This method quantifies
the uncertainty about the number of shifts and their phylogenetic placement. The
results can vary quite heavily, however, depending on the prior distribution that the
user needs to specify for the number of shifts. Ingram and Mahler (2013) developed
a maximum likelihood method and a stepwise search algorithm, “surface”, with
possibly convergent shifts to the same optimum (see also Mahler and Ingram, 2014).
Surface uses the Akaike information criterion (AIC) to select the number of shifts.
In this setting however, Ho and Ané (2014) showed that AIC is biased towards
model overfit and suggested using instead a modified Bayesian information crite-
rion (mBIC, Zhang and Siegmund, 2007) to reduce the detection of false shifts. In
addition to the theoretical difficulties of inferring the correct number of shifts, both
bayou and surface can become computationally heavy with large trees, handling a
maximum of a few hundred taxa.

We propose here a new method to detect shifts in phenotypic optima under
the OU model on trees. The method, `1ou, is based on the lasso (Tibshirani, 1996)
and can handle extremely large phylogenetic trees with thousands of taxa. For
example, analysis of sporangium shape from 886 moss (Bryophyta) species (Rose
et al., 2015) takes only 220 minutes with our method, whereas surface did not
complete after 6 weeks. As far as we know, it is the first time that a lasso-type
method is proposed for phylogenetically structured data. We present our lasso-
based methods in Section 2.2, along with choices to deal with identifiability issues
and with a new phylogenetic-aware information criterion (pBIC) to do model
selection. This section can be skipped at first and its technical details are presented
in Section 2.5. In Section 2.7, we show using simulations that our `1ou method is
also more accurate and can take advantage of multiple traits to infer a more robust
model. We then illustrate the method and its scalability on data from 100 Anolis
lizard species and 4 traits (Section 2.8). We implemented the method in R, available
at https://github.com/khabbazian/l1ou.

Although we focus on OU models with shifts in the optimal phenotype value, we

https://github.com/khabbazian/l1ou
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recognize that many other types of heterogeneity might affect real data, especially at
deep evolutionary scales. Changes in the rate of evolution was considered by others,
mostly for Brownian motion models that exclude adaptation, to test prespecified
hypotheses about where rate changes have taken place (Stack et al., 2011; O’Meara
et al., 2006), or to detect the phylogenetic position and number of these rate changes
(Eastman et al., 2011; Rabosky, 2014). Changes in the strength of selection towards
the optimum value have also been proposed by Beaulieu et al. (2012), although
simultaneously detecting shifts in several of these parameters was shown to be
difficult. We also caution against a literal interpretation of OU model parameters,
especially at deep phylogenetic scales. In particular, even if the “optimal value” is
estimated to be constant within a given clade, this value may only reflect a broad
adaptive zone, around which the true optimal value constantly fluctuates (Uyeda
and Harmon, 2014). In this case, it is prudent to interpret α as a parameter for
phylogenetic correlation, rather than a direct estimate of the selection strength.

2.2 Lasso-based Method for Shift Detection

The OU Model on a Phylogenetic Tree

We model the evolution of a continuous phenotypic trait y(t) over time twith an
Ornstein-Uhlenbeck (OU) process, defined by the following stochastic equation:

dy(t) = α
(
θ(t) − y(t)

)
dt+ σdB(t),

where B(t) is the Brownian motion (BM). This process considers trait adaptation
to the environment through the parameter θ(t), called the optimum value of the
trait, and which may vary over time. The parameter α > 0 is the rate of adaptation.
Equivalently, the phylogenetic half-life, log(2)/α, is the amount of time it takes
for the trait expected value to reach halfway to the optimum value. If α ≈ 0, or
log(2)/α is much larger than the time interval of interest (e.g. the tree height), then
the expected value of y(t) converges slowly to the optimum relative to the observed
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time period. In this case, y(t) mostly varies around the ancestral state and the OU
process reduces to a Brownian motion.

Throughout we assume a known phylogenetic tree for the species of interest.
We also assume that this tree is rooted, binary and ultrametric. The OU process
is assumed for the evolution of trait y along each branch of tree, independently
for the two daughter branches of each node conditional on the trait value at that
node. For simplicity and identifiability of the model parameters we assume that,
although unknown, α and σ2 are fixed across the tree but that the optimum value
θmay vary across time and across branches in the tree.

We make further assumptions on changes in θ(t) because its estimation suffers
from identifiability issues. Ho and Ané (2013); Ho and Ané (2014) showed that
a relatively small variation in θ(t) cannot be distinguished with certainty from
variation caused by the Brownian motion part of the process, even with an infinite
number of present-day species if the tree height is bounded (for trees of growing
height such as from the Yule process, see Ané et al., 2015; Adamczak and Miłoś,
2015; Bartoszek and Sagitov, 2015). Ho and Ané (2014) also showed that the exact
location and number of changes in the optimum value, also called shifts, cannot be
identified when these shifts are on the same branch. (see Figure 2.1, left). Given
these restrictions, we assume that θ(t) = θb is constant along branch b, so that θ is
a piecewise constant function from the root to any species (leaf). In other words,
we assume at most one shift on each branch, located at the beginning of the branch
if present. This parsimonious model can still describe the effect of many shifts on
each branch.

Even with this parsimonious assumption, the shift positions on a tree can still be
unidentifiable. For example, Figure 2.1 (right) shows different shift placements that
all correspond to the same grouping of taxa, and would all receive equal likelihoods.
We explain below (and prove in Section 2.4, Theorem 2.5) that our method deals
with this unidentifiability, and automatically returns a parsimonious model in
terms on number of shifts and shift magnitudes (in absolute values).
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Figure 2.1: The number and position of shifts on a given branch cannot be identified.
(a) On a single branch, one shift at age t1 or one shift at age t2 or two shifts at ages t1
and t2 lead to the exact same model with means m, 0, 0 at the leaves, provided that
the shift magnitudes∆θi (at ti) satisfy (1−exp(−αt1))∆θ1+(1−exp(−αt2))∆θ2 = m.
(b) These 4 shift configurations generate the same model, with 3 clusters of tips
sharing the same mean: {a}, {b}, and {c,d, e}. The top right configuration is not
parsimonious and cannot be returned by `1ou. The other 3 configurations are all
parsimonious and may be returned by `1ou depending on the data.

Method for One Trait (Univariate Case)

Shift Detection as a Linear Model Selection Problem

Under our assumption that there exists at most one shift at the beginning of any
given branch, the trait values at leaves follow this linear model (see Section 2.3 for
the full derivation):

Y = β01+ X(α)β+ ε (2.1)

where β0 is an overall mean (1 is a vector of ones). The β coefficients contain the
magnitude of the shifts in selection optimum, i.e. changes in θ values, one for each
branch b in the tree: βb = θb − θp(b) where p(b) is the parent of b. The non-zero
elements in β correspond to the set of branches where θ changes, that is, the shift
positions. Following Rabosky et al. (2014), we call this set of branches with shifts a
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“shift configuration”. The design matrix X(α) has n rows (number of taxa) and p
columns (number of branches), and depends on α. Define ab to be the age of b’s
parent node, that is, the distance from the parent node to its descendant species.
For taxon i and branch b,

X
(α)
ib =

{
1 − e−αab if b is on the path from the root to taxon i

0 if taxon i is not a descendant of b

(see Section 2.3 for details). Correlations due to shared evolutionary history are
captured in the error ε that follows a centered normal distribution with covariance
Σ(α) derived from the OU model:

Σ
(α)
ij =

{
σ2e−αdij (1 − e−2αtij)/(2α), if the root value is fixed
σ2e−αdij /(2α), if the root value has the stationary distribution

(2.2)

where tij is the evolutionary time shared between species i and j, and dij is their
tree distance.

The linear regression (2.1) cannot be solved with ordinary least squares for
several reasons. First, X(α) has more columns (branches with potential shifts) than
rows (species with observations). Second, the columns in X(α) are highly correlated,
in particular because one shift on a given branch is equivalent to two shifts of equal
magnitudes located on each of the two daughter branches. Finally, the predictors in
X(α) depend on the unknown adaptation rate, α. However, if we restrict the set of
hypothetical shifts and if we reduce X(α) to these branches accordingly, then (2.1)
may have a least-squares solution. We show that it is indeed the case if the shift
configuration is ‘identifiable’, that is, if every hypothesized shift is ‘visible’ from
at least one taxon (more formally, see Section 2.4). The main problem is then to
select the shift configuration that best fits the data, among all the identifiable shift
configurations.
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Regularization with Lasso

To tackle the challenges outlined above, which come from the high-dimension
nature of the problem, the typical assumption is that only a relatively small subset
of predictors (here, shifts) describes the response. In other words we assume that
β is sparse, or that most shift magnitudes are 0. A common way to achieve this is
to consider the lasso problem (Tibshirani, 1996) whose solution β̂minimizes the
following `1-penalized least square criterion:

1
2
‖Y − β̂01− Xβ̂‖2

2 + λ‖β̂‖1, (2.3)

where λ is a tuning parameter and the `1 norm of the shift magnitudes is simply
the sum of their absolute values: `1(β̂) =

∑
b |β̂b|. This penalty term causes many

estimated shifts in β̂ to be zero, which leads to selecting the most relevant features.
By varying the tuning parameter λ from zero to∞, we increase the weight of the
penalty and obtain β̂’s with support of size n shifts (no penalty) to zero shifts
(extreme penalty). Compared to an `2 penalty in ridge regression, for instance, the
`1 penalty has the advantage of sparsity: where the estimated shifts are β̂b = 0
exactly on many branches.

The theory of the lasso is well explored (for instance Bühlmann and Van De Geer,
2011; Eldar and Kutyniok, 2012). To guarantee statistical selection consistency, small
prediction error and uniqueness of the estimate, various sufficient conditions were
introduced on the sparsity of the coefficient vector and coherency of the design
matrix (e.g. Van De Geer et al., 2009). For instance, Zhao and Yu (2006) showed that
if (1) X satisfies the ‘irrepresentable condition’, (2) ε contains independent random
variables with finite variance, and (3) λ is chosen to have the appropriate scale,
then with high probability, the non-zero elements of β̂ are identical to the non-zero
elements of the trueβ. These results allow for p to grow asymptotically faster thann,
so long as the number of non-zeros inβ grows slower thann. Furthermore, different
methods based on convex optimization, combinatorial, and greedy algorithms were
proposed to compute the exact or approximate solution. Efron et al. (2004) showed
an intuitive connection between the lasso and stepwise selection solutions. They
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proposed the fast LARS algorithm to find the lasso estimates β̂ that minimize (2.3)
at every value of λ.

We now rewrite model (2.1) to derive an appropriate `1 penalty so as to estimate
a parsimonious shift configuration, and to account for phylogenetic correlation. If
this correlation were ignored, a straight `1 penalty would bias shift detection in
favor of large clades in the tree, for which similarity might otherwise be explained
by common ancestry. We first consider the case when α is known, which implies
that X := X(α) and the phylogenetic covariance Σ := Σ(α) are known. To remove
phylogenetic correlation we consider Σ−1/2Y, whose components are uncorrelated,
but whose mean is Σ−1/2(β01+ Xβ). Therefore, our lasso estimate is the solution β
that minimizes the following `1-penalized criterion:

1
2
‖Σ−1/2(Y − β01− Xβ)‖2

2 + λ‖β‖1. (2.4)

Throughout the document, this will be referred to as the phylogenetic lasso. We use
the R package lars to solve this optimization problem for all values of the tuning
parameter λ (see Figure 2.2 for an example) (Efron et al., 2004). An extra model
selection phase is then required to find the appropriate λ and the corresponding
estimated number of shifts.

Under some mild conditions and for every λ, we prove in Theorem 2.5 that there
is a unique solution β̂minimizing (2.4), and that the support of β̂ is an identifiable
shift configuration. Furthermore, in Section 2.6 we explain a linear algorithm to
calculate Σ−1/2 efficiently in linear time. This algorithm is based on the method
proposed by Stone (2011).

Model Selection for the Number of Shifts

In traditional models with uncorrelated errors, tuning the penalty weight λ is
typically done with tools such as cross-validation, minimum expected information
loss (AIC), or maximum model posterior probability (e.g. BIC, Schwarz, 1978). In
our problem, cross-validation is not appropriate since leaving out some taxa may
erode small clades with a shift, taking away part of the signal of interest. In surface
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Figure 2.2: Example of our lasso solution path. The number of estimated shifts
depends on the penalty parameter, with 0 to 5 estimated shifts as λ decreases pro-
gressively from infinity to λ = 3.07 (one estimated shift βb 6= 0), λ = 3.31, 2.64, 1.92
and 1.73 (5 estimated shifts). The shift configurations are shown from left to right.
Each estimated shift is indicated by a star and by its magnitude β̂b. Decreasing λ
further would further increase the number of estimated shifts (at λ = 1.09, 0.93 etc.)
The sample data are shown with the bar graph.

the following criterion is used:

AICc(Mk) = −2 log lik(Mk) + 2p+ 2p(p+ 1)
nm− p− 1

where Mk is the hypothesis that there are k shifts, lik(Mk) is the maximum like-
lihood of the best k-shift configuration, and m is number of traits, all assumed
to share the same shift configuration. Here p = k +m(k + 3) is the number of
parameters, counting the position of each shift as one parameter, and k + 3 pa-
rameters specific to each trait (shift magnitudes, β0, α and σ). Ho and Ané (2014)
showed that minimizing AIC leads to strong model overfitting, however. Therefore,
we adapt BIC to better estimate the model posterior probability in the situation
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when errors are phylogenetically correlated. The traditional BIC score of Mk can
be defined as

BIC(Mk) = −2 log lik(Mk) + (k+m(k+ 3)) log(n),

where again each shift location is counted as a parameter and k+ 3 parameters are
specific to each trait.

In Section 2.5, we show that a phylogenetic correction must be applied to better
approximate the marginal probability that the true model has k shifts, leading to
the following phylogenetic BIC form = 1 trait:

pBIC(Mk) = −2 log lik(Mk)+2k log(2n−3)+2 log(n)+log det
(
X
(α̂)
Mk

′
vΣ(α̂)−1

X
(α̂)
Mk

)
(2.5)

where X(α̂)
Mk

is the matrix X(α) reduced to the columns corresponding to the k
estimated branches with a shift but expanded with a column of ones to include
the intercept, and v is the observed trait variance. Informally, 2k log(2n − 3) is
the penalty term for the shift positions and comes from approximating twice the
log of the number of configurations with k shifts, when the tree grows (n→∞).
The penalty for the shift magnitudes and the intercept is captured by the last term,
which appears when these parameters are integrated out with a non-informative
flat prior. Interestingly, this penalty is not a simple function of the number of
parameters. The determinant term depends on α and more importantly, on the
location of the shifts through the structure of X(α)

Mk
. For instance, if α is infinite and if

the configuration has 2 shifts that separate the taxa into 3 distinct groups of sizes n1,
n2 and n3, then the last penalty term is proportional to log(n1) + log(n2) + log(n3),
just like in the modified BIC proposed by Ho and Ané (2014). These numbers of taxa
ni are the effective sample sizes for the intercept and shift values, i.e. the number
of observation that effectively provide information on these parameters (when
α =∞). This last penalty term generalizes the effective sample size proposed in
Ané (2008), to an OU phylogenetic model with any number of shifts.

While pBIC is written here specifically for an OU process, it can easily be applied
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to any process with k shifts in the mean and any phylogenetic correlation structure,
such as a BM process with jumps. To do so, X(α̂)

Mk
in (2.5) needs to be the design

matrix controlling how shift coefficients affect the species means, Σ(α̂) the estimated
phylogenetic covariance, and 2 log(n) needs to be replaced by p log(n) where p is
the number of parameters for the phylogenetic covariance structure, including σ2.

For multiple traits, 2k log(2n−3) appears only once to penalize the shift configu-
ration shared by all traits, but each trait contributes its own 2 log(n) and determinant
terms to penalize the trait-specific shift magnitudes, β0, α and σ.

In order to choose λ, we compute the information criterion (BIC or pBIC) for
each shift configuration found by the lasso solution path, and then we pick the few
top solutions (and their associated λ). While our phylogenetic lasso assumes a fixed
α in (2.4), α is then optimized during the likelihood and pBIC (or BIC) evaluation
of each shift configuration found by lasso. The columns of the design matrix in (2.4)
can be correlated, causing the lasso to pick groups with redundant shifts. To drop
these shifts, we add an extra “backward selection” step: any shift whose removal
improves the information criterion is dropped. This backward procedure is only
performed for the best few models in the solution path to obtain the final estimated
model.

Dealing with Unknown Phylogenetic Covariance

Our prior assumption that the adaptation rate α is known is not realistic. So we
repeat the procedure twice, once with a conservative starting value for α, and then
again with an estimate of α informed by the shift configuration found in the first
round (see the outline below with all steps).

We assume in the first round that α ≈ 0, which leads to the greatest level of
phylogenetic correlation, that of a Brownian motion. This is conservative because
similarity among all species of a clade might be explained by shared ancestry, rather
than a shift at the base of the clade. However, X(α) in (2.1) is degenerate when
α = 0 (absence of adaptation to the shifts), so we consider its linear approximation
when α is small. Its non-zero terms are 1 − e−αab ∼ αab and this approximation is
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most accurate for young branches (young age ab). Therefore, for our first round
with α ≈ 0 we rewrite (2.1) as follows:

Y = X̃β̃+ ε, (2.6)

where X̃ib = ab if taxon i is a descendant of b, X̃ib = 0 otherwise, and β̃ = αβ. The
phylogenetic covariance for ε is assumed to be Σ(0) from the BM. The phylogenetic
lasso (2.4) is solved in this first round using X̃ and Σ(0). As already noted by Hansen
(1997), this multipeaked OU process with α ≈ 0 corresponds to a BM model with
regime-specific trends, with the trend coefficients estimated by β̃ here.

Recall that α is estimated through maximum likelihood during the pBIC (or
BIC) evaluation, separately on each candidate configuration, when tuning the lasso
penalty λ to do model selection. This is performed with a linear time algorithm
in the R package phylolm v2.2 (Ho and Ané, 2014). We then use α̂ estimated from
the best shift configuration selected in the first round, as input to the phylogenetic
lasso (2.4) for a second round. Simulations show that this second round improves
the final estimates of the shift positions. We summarize below these various steps
of our method, which we call `1ou+IC, where IC is any information criterion (e.g.
pBIC).

1. Find the solution path of the phylogenetic lasso (2.4) forα = 0 (BM covariance),
using the linear approximation for X(α).

2. Calculate α̂, β̂ that maximize the likelihood then calculate IC for each candi-
date configuration on the path from step 1 (and some simpler configurations,
see previous section). Retain the configuration with the best IC.

3. Solve the phylogenetic lasso (2.4) using α = α̂ from the configuration found
in step 2.

4. Repeat step 2 but on the path of candidate configurations found in step 3.

5. Retain the shift locations, α̂ and β̂ from the configuration with the best IC
among those found in steps 2 and 4.
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Detecting Convergent Regimes

An adaptation of the phylogenetic lasso can determine if some shifts converge to the
same optimal value in multiple parts of the tree, as might be expected if different
clades share a similar environment. After shift locations have been estimated by
`1ou, convergent evolution can be detected by minimizing the following criterion

1
2
‖Σ−1/2(Y − β01− Xβ)‖2

2 + λ‖Mβ‖1. (2.7)

This differs from the phylogenetic lasso (2.4) because it penalizes linear combina-
tions of shift magnitudes, Mβ. M is built so that each row captures the difference
in optimal value between two regimes in the tree. To detect convergence among
the first two shifts for example, if the configuration estimated by `1ou was as in
the left tree of Figure 2.4, M would include a row with entries (1 − e−αab1 ) and
−(1 − e−αab2 ) in the columns corresponding shifts 1 and 2 respectively (ab is the
age of a shift on branch b), and 0 entries otherwise. In general, M has at most
k(k−1)/2 rows if k shifts were detected by `1ou, but could have fewer rows because
we do not need to test for a convergence that would remove a single shift. Tibshirani
and Taylor (2011) provide a fast solution path algorithm to solve the generalized
lasso for an arbitrary M, implemented in the R package genlasso. An information
criterion can then be used to select the best model (or λ) along the solution path. For
pBIC, the design matrix X(α)

Mk
is reduced to the convergent model with one column

per distinct optimal value. This pBIC formulation is heuristic here (like AICc or
BIC) as our derivation of (2.5) assumed independent shifts.

Method for Multiple Traits (Multivariate Case)

Using multiple traits should increase the power and increase the method’s robust-
ness to detect shifts. An easy way to analyze multiple traits is to reduce the data
to just a few dimensions, such as with principle component analysis (PCA), and
separately analyze the first few dimensions that explain most of the variance. Revell
(2009) demonstrated that PCA is misleading for phylogenetic data and proposed
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phylogenetic PCA (pPCA) instead, which assumes a BM covariance among taxa.
Recently, Uyeda et al. (2015) showed that both standard PCA and pPCA are biased,
in that the top principal components (PC) are most influenced by the traits varying
early in the tree. This bias suggests that false shifts might be detected near the root
of the tree if `1ou (or other shift detection methods) are used on the first few PC
axes. Indeed, this was confirmed in our simulations (see Section 2.7 and Figure 2.8).

To extend our `1ou method to multiple traits, we assume that traits shifted
at the same time in the past, on the same branches in the tree. In other words,
we group the shift magnitudes for all traits on a given branch together, and we
seek to estimate a model where either all shifts in a group are 0 (none of the traits
shifted on that branch) or most of the shifts in a group are not 0 (many of the traits
shifted on that branch). More formally, we assume (like in surface) that them traits
arose from independent OU processes, each with its own α and σ2 parameters, but
with shifts on a shared set of branches. We write the m observed traits in a long
vector Y of size nm by stacking each trait on top of one another, and we collect the
trait-specific adaptation and variance rates in vectors α and σ2. We also write the
shift magnitudes as a long vector β by stacking the coefficient of each trait (βjb for
trait j on branch b) on top of one another, and we similarly stack the intercepts for
all traits into a vector β0 of sizem. The multivariate response model becomes

Y = 1β0 + X(α)β+ ε

where X(α) is a block diagonal matrix of sizemn×mp with X(αj) for trait j on the
diagonal, and 1 is similarly block diagonal with 1 as diagonal terms. The errors
ε are assumed to be phylogenetically correlated with variance Σ(αj) for trait j, but
independent across traits. It means that, conditional on knowing the true shifts,
residual variation (ε) is uncorrelated between traits. If shifts are unknown however,
traits are correlated because they shift on the same branches. So in fact, we assume
that all the between-trait correlation (as could be estimated with straight Pearson
correlation coefficients) is due to correlation between shifts.

Yuan and Lin (2006) proposed the group lasso to generalize the lasso when there
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are predefined groups of coefficients. Here, each branch b in the tree corresponds
to a group of coefficients: (βjb)j6m across traits. To capture the trend that all
coefficients in a group are 0 (or not) together, the group lasso uses the `1 penalty
over groups, rather than over individual coefficients:∑

branch b

‖β·,b‖2 =
∑

branch b

(∑
trait j

β2
jb

)1/2 .

The ‖β·,b‖2 acts as an `1 penalty on the group of shifts on branch b. This group
contains all of the shifts on branch b, for every one of the traits. Because it acts as
an `1 penalty on the group, this penalty selects groups (here branches) to be either
entirely zero or entirely non-zero. In the special case when there is only one trait,
this penalty reduces to the earlier `1 penalty:

∑
b |βb|. Using this group penalty, we

consider the following multivariate phylogenetic lasso

min
β

1
2
‖Σ−1/2(Y − 1β0 − X(α)β)‖2

2 + λ
∑
b

‖β·,b‖2 , (2.8)

where Σ := Σ(α) is block diagonal withΣ(αj) on its diagonal. We used the R package
grplasso for solving this group lasso step. Unlike LARS, the search for the λ values
where the shift configuration changes is done using a grid search, which can be
slower. We then select λ and the associated shift configuration using the same `1ou
procedure as before, simply replacing (2.4) by (2.8) in the lasso steps 1 and 3.

Bootstrap Support for Shifts

To quantify uncertainty in the detected shifts, we use an adapted bootstrap proce-
dure, borrowing ideas from Freckleton and Harvey (2006) (see also Pennell et al.,
2015).

1. Use `1ou to estimate α̂ and β̂. For each trait j, compute Σ−1/2
j and Σ1/2

j in
linear time, where Σj = Σ

(α̂j)

j is the phylogenetic correlation for trait j. Then
compute the vector of residuals for trait j: Rj = Σ−1/2

j (Yj − X
(α̂j)β̂j·).
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2. Repeat a very large number of times (B times) the following. For each trait j,
sample from Rj with replacement to create a bootstrap sample of n residuals
R̃j. Use `1ou to estimate the shift configuration and shift magnitudes from
the bootstrap data with Ỹj = X(α̂j)β̂j· + Σ

1/2
j R̃j,

3. For each branch, calculate the bootstrap support for a shift on that branch
as the proportion of bootstrap iterations when a shift was detected on that
branch for one of more traits.

This procedure is expected to be conservative, because shifts that are undetected in
step 1 cannot receive high bootstrap support. An undetected shift would just con-
tribute one large residual, which would be re-sampled and ‘scattered’ throughout
the tree in the bootstrap resampling step 2. Note that the bootstrap results from step
2 could be summarized more thoroughly in step 3. For instance, on each branch
with a estimated shift, a bootstrap confidence could be obtained for the magnitude
of this shift.

2.3 The Regression Model

We prove here the linear model formulation (1) for an OU model with shifts in the
optimal value, given our assumptions that the tree is ultrametric (every path from
the root to any leaf has the same length T ), and that any shift occurs at the beginning
of a branch. With this assumption, any shift configuration corresponds exactly to a
subset of branches in the phylogenetic tree. Recall that θb denotes the optimum
value on branch b, and ab denotes the age of the branch, i.e. the age of its parent
node where a shift might occur. We will also denote p(b) the parent edge of b, so
that a shift on branch b corresponds to a case when βb = ∆θb = θp(b) − θb 6= 0.
We further denote ac(b) the age of the child node of b, so that ab − ac(b) = tb is
the length of branch b.

Let y0 be the trait at the root and Yi be the trait of taxon i. It follows from the
OU model that given y0, the values Yi at the leaves are normally distributed, with
variance given by (2) and with mean affected by θ values as follows (Hansen, 1997;
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Butler and King, 2004; Beaulieu et al., 2012):

E(Yi) = y0e
−αT +

∑
b∈path(root,i)

(e−αac(b) − e−αab) θb (2.9)

where, along the path from the root to taxon i, ab = T necessarily for the first
branch b connected to the root and ac(b) = 0 for the last branch on that path, the
external branch to taxon i.

To show equation how (2.9) leads to (1), we rewrite θb in terms of the ancestral
optimum value θ0 and of shifts that occurred on b and on earlier branches b ′:

θb = θp(b) + ∆θb = θ0 +
∑
b ′4b

∆θb ′

where b ′ 4 bmeans that b ′ is on the path from the root to b (or b ′ = b), or in other
words, that b is a descendant of or equal to b ′. We can now rewrite (2.9):

E(Yi) = y0e
−αT +

∑
b∈path(root,i)

(e−αac(b) − e−αab)θ0

+
∑

b∈path(root,i)

∑
b ′4b

(e−αac(b) − e−αab)∆θb ′

= y0e
−αT + (1 − e−αT )θ0 +

∑
b ′∈path(root,i)

∑
b;b ′4b4i

(e−αac(b) − e−αab)∆θb ′

= y0e
−αT + (1 − e−αT )θ0 +

∑
b ′∈path(root,i)

(1 − e−αab ′ )∆θb ′ (2.10)

Finally, (2.10) becomes (1) if we define βb = ∆θb and β0 = y0e
−αT + (1 − e−αT )θ0,

a weighted mean of the ancestral state and ancestral optimal value. This coefficient
β0 is shared by all species because we assumed an ultrametric tree, with a shared
time T from the root to all tips.

If the tree is not ultrametric and contains extinct species, then the intercept β01
in (1) needs to be replaced by a vector with entry β0,i = y0e

−αtii + (1 − e−αtii)θ0
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Figure 2.3: The set of bold branches is a minimal cut-set of this rooted tree.

for species i. In this case, the ancestral state y0 and the ancestral optimum θ0 are
identifiable from each other.

2.4 Identifiability and Uniqueness of Lasso
Estimation

We prove here that for every λ and under some mild conditions, the phylogenetic
lasso criterion (4) is minimized at a unique β̂, whose support is an identifiable shift
configuration. We first formalize the definition of an identifiable configuration,
loosely characterized by requiring that each shift is visible from the leaves.

Definition 2.1 (Cut-set and minimal cut-set). A subset B of branches in the phylogenetic
tree T is called a “cut-set” of T if all the paths from the root to the leaves have at least one
branch in B. In other words, removing the branches in B from T “cuts” all the leaves from
the root, which is then not visible from the leaves. B is a “minimal cut-set” if, for every
branch b in B, the set difference B\{b} is not a cut-set. If so, then the path from the root to
any leaf is cut by exactly one branch in B. Figure 2.3 gives an example of a cut-set, that is
minimal.

Definition 2.2 (Identifiable shift configuration). A set of shift branches B in tree T

is called an “identifiable shift configuration” if for every branch b with a shift, the other
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branches in B do not cut the subtree rooted at b. More formally, B is identifiable if for every
branch b ∈ B, the subset of branches B ′ = {b ′ ∈ B;b ≺ b ′} is not a cut-set of the subtree
rooted at the child node of b.

Remark 2.3. Definition 2.2 requires that the number of shifts, i.e. the number of branches
in B, be strictly less than the number of leaves.

The link between linear model (1) and our graph definition above is the follow-
ing.

Lemma 2.4. For a vector of shift magnitudes β, let B be its support, that is, the set of
branches b such that βb 6= 0. Then B is an identifiable shift configuration if and only if the
columns of X(α) corresponding the B are linearly independent.

To prove this lemma and the main theorem below, it is useful to decompose

X(α) = ZD(α)

where Z contains the topology information andD(α) contains all the dependence of
X(α) on α. Z is defined as the matrix of the same size as X(α) with one row per taxon
i and one column per branch b, with Zib = 1 if i is a descendant of b and Zib = 0
otherwise. To consider the intercept Z·0 = 1. D(α) is defined as the diagonal matrix
with one row and column per branch, with diagonal entry

D
(α)
b = 1 − e−αab

for branch b and D(α)
0 represents the intercept. For example, the tree in Figure 2.3
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corresponds to

Z =



b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

a 1 1 0 1 0 0 0 0 0 0 0
b 1 0 1 1 0 0 0 0 0 0 0
c 1 0 0 0 1 0 1 0 0 0 1
d 1 0 0 0 0 1 1 0 0 0 1
e 1 0 0 0 0 0 0 1 0 1 1
f 1 0 0 0 0 0 0 0 1 1 1


.

Proof of Lemma 2.4. We first note that the column of X(α) corresponding to a branch
b is just a rescaled version of the 0/1 column of Z corresponding to the same
branch b, rescaled by D(α)

b 6= 0. So the columns of X(α) corresponding to B are
linearly independent if and only if the columns of Z corresponding to B are linearly
independent.

First suppose that B is not identifiable. Then there exists a branch b0 in B and
descendant branches B′ in B such that B′ is a cut-set of the subtree rooted at the
child of b0. Without loss of generality, we can assume that B′ is a minimal such
cut-set. In other words, every path from b0 to a descendant taxon i goes through
exactly one branch in B′. Because of the definition of Z, we have that

Z·b0 =
∑
b∈B′

Z·b,

which implies that the columns Z·b for b ∈ B′ ∪ {b0} ⊂ B are linearly dependent.
Now, suppose that the columns of Z corresponding to branches in B are linearly

dependent. Let B0 be the set of minimal branches in B, that is, branches b0 that
have no ancestor b ∈ B. Let b0 be one such edge in B0 and let B′ be the set of
descendant of b0 in B: B′ = {b ∈ B;b0 ≺ b}. Then the columns of Z corresponding
to b0 and B′ must be linearly dependent, because any other edge in B has a disjoint
set of descendant taxa than b0 or any other edge in B′ does.

Hence, there exist non-zero scalars (δb)b∈{b0}∪B′ such that δb0Zib0+
∑
b∈B′ δbZib =
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0 for every taxon i. For a descendant i of b0 we have Zib0 = 1, so there must be an
edge b ∈ B′ such that Zib = 1, implying that b is an ancestor of i. Therefore B′ is
a cut-set of the subtree rooted at b0, so {b0} ∪B′ (and B) is an unidentifiable shift
placement.

We can now state our result about the uniqueness and identifiability of the lasso
solution, under some condition that depends on α.

Theorem 2.5. Let T be a rooted, ultrametric tree. For a branch b, denote Tb the induced
subtree rooted at the child node of b. Suppose that for every branch b0, every minimal
cut-set B of Tb0 , and every arbitrary signs sb ∈ {−1,+1} for b ∈ B, we have

∑
b∈B

sb
D

(α)
b0

D
(α)
b

=
∑
b∈B

sb
1 − e−αab0

1 − e−αab
6= 1. (2.11)

Then the lasso problem (3) and the phylogenetic lasso (4) each have a unique minimum,
which is an identifiable shift configuration.

Remark 2.6. Condition (2.11) depends on both α and the structure of the phylogeny. As
α tends to infinity, (2.11) reduces to

∑
b∈B sb 6= 1, which breaks down for any odd set of

branches B greater than 2. However, if we assume a bounded adaptation rate α, condition
(2.11) holds generically for all trees, that is, with probability 1 if we consider that branch
lengths are generated from some continuous distribution.

Remark 2.7. Condition (2.11) does not hold at the root of the tree, if we consider an extra
root edge b0 of length 0 (to represent the intercept) and B is composed of the two branches
bout and bin connected to the root, because ab0 = about = abin . Intuitively, a shift at the
base of the outgroup clade cannot be distinguised from a shift at the base of the ingroup
clade, without a further outgroup. To restore uniqueness of the solution, we consider that
bout and bin are in fact a single branch in the unrooted tree, and we remove one of them
arbitrarily, say bout, from the design matrix. However, any shift detected on the other branch
bin needs to be interpreted cautiously, because this shift could actually be located on bout and
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the data has no information to bear on its exact placement. If the intercept were penalized
like the shifts are, this problem would not occur, but the solution could vary with the data
measurement scale.

Proof of Theorem 2.5. In what follows, we will say that β is “`1-optimal” if it mini-
mizes (3) for the lasso problem or (4) for the phylogenetic lasso problem, for some
intercept value β0. We will then say that its shift configuration is an “`1-optimal
shift configuration”.

We first show that an unidentifiable shift configuration cannot be `1-optimal,
under condition (2.11). Consider an unidentifiable shift configuration S. So there
exists b0 ∈ S and B ⊂ S such that B is a cut-set of Tb0 . Without loss of generality
we can assume that B is a minimal cut-set of Tb0 , so that Z·b0 =

∑
b∈B Z·b. Let

B+ := B ∪ {b0}. Denote the corresponding shift values by βB+ . Necessarily, βb 6= 0
for all b ∈ B+.

We now construct β ′ with the same shift configuration as β and with the same
fit to the data but with a smaller lasso penalty, showing that β cannot be `1-optimal.
For any branch b not in B+, we define β ′b = βb. For branch b0, we let β ′b0

=

βb0 + ε where ε is a small value to be determined later. For b in B we define
β ′b = βb − εD

(α)
b0
/D

(α)
b . This choice ensures that ZD(α)β ′ = ZD(α)β, and so β ′

provides the same fit to the data whether we consider the original lasso (3) or the
phylogenetic lasso (4), because X(α)β ′ = X(α)β. We now need to choose ε in such a
way as to reduce the lasso penalty. Because β ′b = βb for b not in B+, we only need
to reduce the `1 penalty associated with branches in B+:

‖βB+‖1 =
∑
b∈B+

|βb| =
∑
b∈B+

sign(βb)βb.

Let us first assume that |ε| is small enough so that sign(β′b) = sign(βb) for all
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b ∈ B+. Then

‖β′B+‖1 =
∑
b∈B+

sign(β ′b)β ′b =
∑
b∈B+

sign(βb) (βb + (β ′b − βb))

= ‖βB+‖1 +

(
sign(βb0) −

∑
b∈B

sign(βb)
D

(α)
b0

D
(α)
b

)
ε.

Condition (2.11) implies that sign(βb0) −
∑
b∈B sign(βb)D(α)

b0
/D

(α)
b cannot be 0,

hence we can choose ε of the appropriate sign to obtain ‖β′B+‖1 < ‖βB+‖1, and
conclude that β is not `1-optimal.

We now turn to show that the solution β̂ is unique. Suppose there are two
solutions β(0) 6= β(1) with (phylogenetic) lasso criterion c∗. Suppose first that
X(α)β(0) 6= X(α)β(1) . For 0 < δ < 1, consider β(δ) = (1− δ)β(0) + δβ(1). Necessarily,
the lasso criterion (3) (or phylogenetic lasso (4)) evaluated at β(δ) is less than the
weighted mean of the criterion evaluated at β(0) and β(1), (1 − δ)c∗ + δc∗ = c∗,
because ‖a + δb‖2

2 is a strictly convex function of δ. We get a contradiction then,
because β(δ) would minimize the lasso criterion even further than either β(0) or
β(1). Therefore X(α)β(0) = X(α)β(1). By the same argument we get that ‖β(0)‖1 =

‖β(1)‖1 = ‖β(δ)‖1 for every 0 < δ < 1. In particular, β(δ) is another solution to the
(phylogenetic) lasso. We now choose any δ ∈ (0, 1) such that β(δ)

b 6= 0 for every
branch b that satisfiesβ(0)

b 6= β
(1)
b . SinceX(α)(β(0)−β(1)) = 0 and because of Lemma

2.4, the shift configuration corresponding to β(0) − β(1) is unidentifiable. Therefore
β(δ) also corresponds to an unidentifiable shift configuration, which contradicts
the `1-optimality of β(δ) and consequently contradicts β(0) 6= β(1).

2.5 Derivation of a Phylogenetic BIC

In this section, we seek to approximate the posterior probability of model Mk that
the true configuration has k shifts and prove the rationale for (5). For this, we
approximate the Bayes factor

P (Mk|Y)

P (M−1|Y)
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where M−1 is a model with no shifts and no intercept (β = 0 and β0 = 0). Equiva-
lently, under a uniform prior on k, we seek to approximate

P (Y|Mk)

P (Y|M−1)
.

Let B(k) denote the set of all configurations of k shifts, i.e. the set of all subsets B of
k branches. For sake of simplicity we assume here that α and σ2 are known. For the
time being, we fix a hypothesized configuration B ∈ B(k). To simplify notations,
we let X̃B be the design matrix X(α) reduced to the columns corresponding to B

and expanded with a first column of ones to include the intercept.
We also denote by β̃ the vector made by the intercept and the non-zero shifts

(βb)b∈B. Then we have
Y = X̃Bβ̃+ ε

where ε ∼ N(0,Σ(α)) with Σ(α) given in (2). Under model M−1, the log-likelihood
of data Y is

log lM−1 = −
1
2

log det(Σ) − 1
2
YTΣ−1Y.

Note that the proof below holds for any shift model where X̃B is the appropriate
design matrix relating the model coefficients β̃ (one per branch b ∈ B) to the species
means, and where Σ is the appropriate phylogenetic covariance matrix.

Under model Mk and configuration B, the log-likelihood becomes

log lB = log lM−1 −
1
2

(
Y − X̃Bβ̃

)T
Σ−1

(
Y − X̃Bβ̃

)
= log lM−1 −

1
2

{
YTΣ−1Y − 2β̃T X̃TBΣ−1Y + β̃T X̃TBΣ

−1X̃Bβ̃
}

.

We now choose a flat uniform (improper) prior on β0 and on each βb, b ∈ B. We
also choose a uniform prior probability on each B in B(k). With these choices, the
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marginal likelihood of model Mk is

lMk
=

1
|B(k)|

∑
B∈B(k)

∫
β̃∈Rk+1

exp
(

log lM−1 −
1
2

{
YTΣ−1Y − 2β̃T X̃TBΣ−1Y + β̃T X̃TBΣ

−1X̃Bβ̃
})

dβ̃ .

Based on Lemma 2.8 below, we can solve the integral exactly and we get

lMk
=

1
|B(k)|

∑
B∈B(k)

1√
|X̃TBΣ

−1X̃B|

exp
(

log lM−1 −
1
2
YTΣ−1Y +

1
2
YTΣ−1X̃B(X̃

T
BΣ

−1X̃B)
−1
X̃TBΣ

−1Y

)
.

For a given B, the maximum likelihood estimate of β̃ is β̂B = (X̃TBΣ
−1X̃B)

−1
X̃TBΣ

−1Y.
Hence we can simplify YTΣ−1X̃B(X̃

T
BΣ

−1X̃B)
−1X̃TBΣ

−1Y = β̂TBX̃
T
BΣ

−1X̃Bβ̂B = β̂TBX̃
T
BΣ

−1Y.
Therefore −YTΣ−1Y + β̂TBX̃

T
BΣ

−1X̃Bβ̂B = −(Y − X̃Bβ̂B)
TΣ−1(Y − X̃Bβ̂B) and the

maximum likelihood value appears in the marginal likelihood:

lMk
=

1
|B(k)|

∑
B∈B(k)

l̂B√
|X̃TBΣ

−1X̃B|

.

Let B̂ be the shift configuration in B(k) that maximizes the following penalized log
likelihood

pll
B
= log l̂B −

1
2

log |X̃TBΣ
−1X̃B|

To simplify notations, define X̂ = X̃B̂, and β̂ = β̂B̂. Therefore,

lMk
=

1
|B(k)|

exp
(
pll

B̂

) ∑
B∈B(k)

exp
(
pll

B
− pll

B̂

)
.

The first term |B(k)| =
(2n−3
k

)
because there are 2n−3 branches in an unrooted binary

tree. It can be approximated by log |B(k)| = log((2n−3) · · · (2n−2−k))− log(k!) ∼
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k log(2n− 3) as n goes to infinity and for any fixed k. The last term is a sum, where
one value is exactly 1 and all others are smaller. We assume that this sum remains
relatively small compared to the other terms. Zhang and Siegmund (2007) showed
this to be true in a similar situation for time series. We then get that

−2 log lMk
≈ −2 log lB̂ + 2k log(2n− 3) + log |X̂TΣ−1X̂|.

To cover the general case when α and σ2 are unknown, we add a penalty 2 log(n) for
these 2 parameters, which then gives (5). To make pBIC scale invariant (when σ2 is
unknown), we standardize Y to have variance 1 prior to applying (5). Equivalently
up to a constant, the estimated Σ matrix is divided by the observed variance of
Y. Also note that the term 2k log(2n − 3) comes from |B(k)|, that is, to penalize
the choice of the shift positions. The penalty for the shift magnitudes is all in the
determinant term.

Lemma 2.8. AssumeM be a symmetric, invertible n×nmatrix For all vectors β,a ∈ Rn∫
β∈Rn

exp
(
βTa−

1
2
βTMβ

)
dβ = (2π)n2 |M|−

1
2 exp

(
aTM−1a/2

)
.

Proof. Simply write 2βTa− βTMβ as aTM−1a− (β−M−1a)TM(β−M−1a), then
integrating β is straightforward.
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2.6 Fast Algorithm for the Square Root Covariance
and Its Inverse

Let Σ be the covariance matrix from a BM model on a tree with n tips. For taxon i
and jwe have

Σij = σ
2tij . (2.12)

Note that the OU covariance (2) can be written in this form, if the tree is ultrametric
(i.e. all the tips are at the same distance from the root) and provided that we use
transformed branch lengths. We further assume that any polytomy in the tree is
arbitrarily resolved with branches of length 0.

The recursive algorithm below produces matrices B = Σ1/2 and D = Σ−1/2 with
a interpretable mapping of rows and columns to internal nodes in the tree. More
formally, D and B satisfy

BBT = Σ, B = (D−1)T , DTΣD = In, and 1TD = (0, . . . , 0,a)

for some a. The first n−1 columns ofD are Felsenstein’s phylogenetic independent
contrasts (1985). Each one corresponds to an internal node in the tree, with non-zero
entries for taxa descending from that node only. If that node has 2 children, the
entries of all taxa descending from a given child share the same sign (one child
associated with positive entries and the other associated with negative entries). The
nth column of D is associated with the root branch above the root node, and the
precision of the estimated ancestral state at the root.

Similarly, the first n− 1 columns of B are each associated with a given internal
node in the tree, with zero entries for any taxa not descending from that node. All
entries at the taxa descendant of a given child of the node are equal (one child
associated with positive entries and the other child associated with negative entries).
The nth column of B is associated with the root branch above the root node, and all
its entries are equal.

The proof that the algorithm below satisfies all the claims above was sketched
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by Stone (2011). Our contribution here is to provide a general description of the
algorithm, in particular the inverse to Felsenstein’s algorithm to obtain B. We also
provide an implementation of this algorithm available at https://github.com/
khabbazian/l1ou.

Algorithm. Each step takes in a tree Tk with k leaves, F andGmatrices of size n×k,
andD and Bmatrices of size (n− k)× (n− k). The result of each step is a reduced
tree with k− 1 leaves, reduced matrices F and G of size n× (k− 1), and expanded
matricesD and B of size (n− k+ 1)× (n− k+ 1). The algorithm is initialized with
k = n, the original tree, empty matrices D and B and F = G = In. Each column in
F and G corresponds to a leaf in the current tree (that is, an leaf or internal node
in the original tree), and each row corresponds to a taxon in the original tree. We
will show recursively that for each k, Fji > 0 if taxon j is a descendant of node i,
Fji = 0 otherwise, that 1TF = (1, . . . , 1), and that Gji = 1 if j is a descendant of i
and Gji = 0 otherwise. These properties are obviously met at initialization. For
each k > 2, the following steps are followed.

1. Choose a cherry in Tk. Let i1 and i2 bet these 2 leaves, b1 and b2 the external
branches leading to i1 and i2, t1 and t2 the lengths of b1 and b2. Also, let b be
the branch that is parent to both b1 and b2, with length t in Tk. Define Tk−1

by removing branches b1 and b2 from Tk, grafting a new leaf inew to b, and
changing the length of b ′ to

tnew = t+ (t−1
1 + t−1

2 )
−1.

Without loss of generality, we can assume that i1 and i2 are the indices of the
columns in F and G that correspond to leaves i1 and i2.

2. The new matrix D is formed by adding to the current D the new column

D·inew =
1√
t1 + t2

(F·i1 − F·i2) .

https://github.com/khabbazian/l1ou
https://github.com/khabbazian/l1ou
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Because Fji > 0 if j is a descendant of i and 0 otherwise, D·inew has positive
entries equal to those in F·i1/

√
t1 + t2 for descendants of i1, negative entries

equal to those in −F·i2/
√
t1 + t2 for descendants of i2, and 0 entries for all

other taxa. Also, 1TD·inew = 0 necessarily because 1TF·i1 = 1TF·i2 = 1.

3. The new matrix B is formed by adding to the current B the new column

t1√
t1 + t2

G·i1 −
t2√
t1 + t2

G·i2 .

BecauseGji = a > 0 if j is a descendant of i and 0 otherwise, this new column
has positive and equal entries for all descendants of i1, and negative and equal
for all descendants of i2, and 0 entries for all other taxa.

4. The new matrix F is formed by replacing the columns F·i1 and F·i2 by a single
column F·inew defined as:

F·inew =
1/t1

1/t1 + 1/t2
F·i1 +

1/t2

1/t1 + 1/t2
F·i2 .

Because i1 and i2 are sister, the descendants of inew is the union of all descen-
dants of i1 and i2, so Fjinew = 0 if j is not descendant of inew, and Fjinew > 0
otherwise. Also, 1TF·inew = 1 because both 1TF·i1 = 1 and 1TF·i2 = 1.

5. The new matrixG is formed by replacing the columnsG·i1 andG·i2 by a single
column G·inew defined as:

G·inew = G·i1 +G·i2 .

By induction, Gjinew = 1 if taxon j is a descendant of inew and Gjinew = 0
otherwise.

At the end when k = 1, no cherry can be picked (step 1). T1 has a single leaf ilast

connected to a single branch of length tlast, and F and G both consist of a single
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column. At this stage, D is augmented by the column

1√
tlast

F·ilast

whose entries are all positive, and B is augmented by the column

√
tlastG·ilast =

√
tlast 1 .

The new tree, F and G are then left empty.

2.7 Simulations

Shifts in One Trait

We used simulations to compare the accuracy of different methods: `1ou combined
with either pBIC, BIC or the same AICc as used in surface (using its forward
phase only to focus on the shift configurations rather than the shift magnitudes),
bayou, and the stepwise selection method proposed by Ho and Ané (2014). This
stepwise method is capable of accepting various criteria, but we used here the
‘mBIC’ also proposed by Ho and Ané (2014). Bayou requires the user to choose a
prior distribution for each model parameter, and the results are sensitive to this
choice. We made choices based on the true parameters used to simulate the data:
the number of shifts was given a conditional Poisson prior distribution with mean
the true number of simulated shifts. A uniform prior was chosen for α and σ2 on
[α− 0.5,α+ 0.5] and [σ2 − 0.5,σ2 + 0.5]. An empirical Bayes approach was taken
for the shift magnitudes as in Uyeda and Harmon (2014), with a centered normal
prior distribution with standard deviation equal to twice that observed in the tip
data. Since bayou is a Bayesian method, it returns a posterior distribution on shift
configurations. To summarize this distribution, we took a liberal approach and
said that a branch was detected to have a shift if the posterior probability of a shift
on that branch was 0.10 or greater. For `1ou methods, we used the random root



38

2

*

−2

*

2

*

2

*

−2

*

2

*

3

*

−2.1

*

−2.5

*

2.5

*

4

*2

*

−4

*3

* −4

*
3

*
2

*

4.5

*
−3

* 4.51

*

−4.1

*3
*

3.1

*2.9

*
−3.5

*

−4

*
5.1

*

Figure 2.4: Tree with 60 taxa used in simulations to compare the accuracy of various
methods. Data were simulated under the OU model with no shifts or with multiple
shifts (left: 3, center: 7, right: 17 shifts). The shift positions are annotated with stars
and their simulated magnitudes.

covariance in (2.2). For all methods, we set the maximum number of shifts to half
the number of taxa in the tree.

We simulated datasets under OU models along 2 different phylogenies of flow-
ering plants in the family Melastomataceae, one with 60 taxa and one with 215 taxa
using the function rTraitCont in the R package ape (Paradis et al., 2004). The first
tree (Figure 2.4) is the consensus phylogeny from Kriebel et al. (2015) pruned to a
single accession per species. It was small enough for all methods to run reasonably
fast, and was used to compare the methods’ accuracies. The second tree was simply
used to sample subtrees and compare the methods’ running times as a function of
tree size.

On the “small” tree we simulated traits under 4 different configurations: either
no shift, or 3, 7 or 17 shifts as shown in Figure 2.4. We used α = 1, corresponding
to a moderate half-life (0.69) compared to the tree height, which was set to 1 by
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Figure 2.5: Number of false positives for different methods to detect shifts in the
OU process. One trait (left) or four independent traits (right) were simulated under
a homogeneous OU model with no shift.

rescaling all branch lengths. We set σ2 = 2 to fix the stationary variance σ2/(2α)
at 1. In the absence of shifts, we varied α while keeping σ2/(2α) = 1. In the
presence of shifts, we instead varied the shift magnitudes. They were first set to the
values shown in Figure 2.4. They correspond to moderate magnitudes, just large
enough to be detected individually (if their phylogenetic positions were known)
with non-negligible power (Ho and Ané, 2014), because means at the tips differ by
about 1 stationary standard deviation (βb(1 − e−αab) ≈ σ/

√
2α = 1). These shift

magnitudes were then all scaled by the same factor, varying from 1 to 4, to create
easier scenarios. For each condition, we generated 200 replicate data sets with 1
trait each, and estimated the shift configuration using each method.

To compare the methods’ accuracies, we first considered the scenario with no
shifts and calculated the number of false positives, i.e. the average number of
detected shifts, necessarily all false. Figure 2.5 (left) shows that `1ou+AICc and
surface (both using AICc) have many more false positives than the other methods.

Next, we considered scenarios with 3, 7 or 17 true shifts and calculated the recall
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rate of each method (average proportion of branches with a true shift that were
detected as having a shift) and precision (average proportion of detected shifts that
were true, i.e. located on a branch with a true shift). Figure 2.6 shows that surface
and `1ou with AICc are liberal methods: both enjoy high recall rates (they find
many of the true shifts) but tend to have low precision (they also find many false
positives). Given our liberal threshold to call a shift in bayou (PP> 0.1), it is not
surprising to find that bayou also has a tendency to be liberal, with high recall rates
and low precision. However, both performance measures tended to be lower for
bayou than for `1ou with AICc. On the other extreme, `1ou was conservative when
coupled with pBIC, enjoying the highest precision (the detected shifts were mostly
true) but a low recall rate (many true shifts were missed). When coupled with BIC
and on a single trait, `1ou provided an intermediate approach, which might provide
a good balance to reach a reasonable precision with a reasonable recall rate. The
phylolm stepwise method based on mBIC performed consistently more poorly than
other methods. Its recall rate was among the lowest, but its precision was always
comparable or lower than that or `1ou with pBIC, for instance. Figure 2.6 (right)
also shows that identifying 17 shifts on a 60-taxon tree is much more difficult than
detecting 3 or 7 shifts. The performance of all methods went down significantly
with 17 shifts. This is not surprising, because each shift was visible by an average
of 3.5 extant species, compared to 8.6 when there were only 7 shifts. Detecting the
exact position of each shift is likely to be much more difficult as the density of shifts
increases within the tree.

To compare the methods’ running time, we used a 215-taxon plant phylogeny
expanded from Kriebel et al. (2015) and randomly subsampled between 32 and 215
taxa to obtain a smaller tree. For each tree size, we generated 2 replicate data sets
with a single trait, using α = 1, σ2 = 2 and a true number of shifts that increased
with the tree size (from 4 shifts on 32 taxa to 26 shifts on 215 taxa). The maximum
number of estimated shifts was set for all methods to twice the true number of shifts.
We kept a constant number of 400,000 generations in bayou, because it is unclear
how this number should be set to obtain a comparable mixing convergence across
tree sizes. However good mixing is likely to require more generations on large
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Figure 2.6: Recall rate (first row) and precision (second row) of various methods to
detect the position of OU shifts on the tree with three, seven, and 17 true shifts (see
Figure 2.4). The magnitudes of all shifts were increased by the same scaling factor.

trees with large numbers of edges to evaluate. Hence the running time for bayou is
likely to be underestimated for large trees. All running times were obtained with a
2.7 GHz processor. Figure 2.7 displays the average elapsed time of each method,
showing that previously proposed methods do not scale well to trees with a few
hundred taxa. On the other hand, `1ou is between one to two orders of magnitude
faster than the other methods, with no loss of accuracy.

Shift Detection from Multiple Traits

We conducted 2 simulation experiments with multiple trait data. First, we explored
the effect of conducting standard PCA to reduce the problem dimension, before
detecting shifts on the first PC axis only. Second, we explored the performance of
`1ou and surface when applied to multiple traits.

We simulated data (100 replicates for each situation) under the same 60-taxon
tree as before (fig 2.4) except that each data set contained m = 20 independent
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Figure 2.7: Average running time of different methods for OU shift detection versus
the number of species in the tree, for data sets with a single trait (left) or four traits
(right). Time is displayed on a log scale.

continuous traits simulated under OU model. For our first experiment, the true
model had no shifts. We set α = 2, corresponding to a moderate half-life 0.34, and
σ2 = 4 to fix the stationary variance at 1. Figure 2.8 shows the systematic error
caused by using only the first PC, i.e. the axis with the largest variation in the data.
As expected, some branches near the root are consistently detected as having a shift.
Even though we used the most conservative method (`1ou + pBIC) to analyze the
first PC, at least one shift was detected near the root in 65% of the replicates, on one
of the branches marked by a star. When using `1ou + BIC or AICc, the occurrence
of these false positives increased to 82% and 89%.

Second, we considered the same tree as before with 0, 3, 7 or 17 true shifts
but with multiple traits (Figure 2.4). We used α = 1 and σ2 = 2 and generated
m = 4 independent traits under the OU model. We chose 4 traits because this is
representative of a number of applications, and because surface was too slow to
handle 20 traits for many replicates (about one hour per replicate). When no shifts
were simulated, we further varied α keeping the stationary variance σ2/(2α) = 1.
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Figure 2.8: Shifts detected by analyzing the first standard principal component
using `1ou + pBIC. Data were generated under the BM model (α = 0) with no shifts,
σ2 = 4 and 20 variables. Pie charts show the proportion of replicates for which
a shift was detected on a given branch (shaded area), on branches for which this
proportion was 5% or greater.

Figure 2.5 (right) shows that all methods except `1ou+pBIC had a few false positives.
In contrast to analyses with a single trait, `1ou+pBIC appeared as most conserva-
tive. We then repeated the same simulations except that the 4 traits had residual
correlation, either from correlated drift or from correlated selection. This caused
an increase in the number of falsely detected shifts, for all methods (Figure A.9).

In simulations with shifts, the magnitudes shown in Figure 2.4 were multiplied
by +1 or −1 randomly and independently for each trait. They were then all scaled
by a common factor as before, varying from 1 to 4. Bayou and the phylolm stepwise
method were not applied since they cannot handle multiple traits. As expected,
using multiple independent traits improved both the recall rate and the precision of
all methods, compared to using a single trait (Figure 2.9). Like before, surface and
`1ou + AICc were very similar and were the most liberal methods and pBIC tended
to be the most conservative With 4 traits `1ou + BIC was also very conservative.
However, there were situations when the most liberal methods kept detecting false
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Figure 2.9: Recall rate (first row) and precision (second row) of multivariate methods
to detect the position of OU shifts on the 60-taxon tree with three, seven, and 17
true shifts (see Figure 2.4), from 4 traits. The magnitudes of all shifts were increased
by the same scaling factor.

shifts (precision capped around 50% with 3 true shifts and 3 false shifts detected)
even when the signal-to-noise ratio increased (large shift magnitudes), while the
most conservative method reached both a recall rate of 100% and a precision of
100%.

We also evaluated the accuracy of shift detection when phylogenetic PCA is
first applied to reduce the dimension of the data, to detect shift positions by on
each pPC axis separately. For each data set generated above, we applied pPCA
(assuming a BM model as proposed by Revell, 2009) and applied various shift
detection methods on the first axis. The multivariate version of `1ou or surface on
the original multivariate data had a better or comparable recall rate and precision
than the same method applied to the single first pPC (Figure A.1).
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2.8 Illustrations with Data on Anolis Lizards

Anolis lizards on the Caribbean islands have independently evolved a similar set
of “ecomorphs”, such that species of the same ecomorph category from different
islands are similar morphologically (Losos et al., 1998). Mahler et al. (2013) studied
similarities among islands by considering 11 traits including body size, limb and
tail lengths, and adhesive toepad lamella number across 100 species. They applied
pPCA and retained the first 4 axes, which together explained 93% of variation.
Their data and tree are available in the supplementary material of Mahler et al.
(2013). We applied surface and `1ou + pBIC, BIC or AICc to their 4 pPC traits, using
the random root covariance in (2.2) and allowing for a maximum of 50 shifts. `1ou
+ pBIC detected 12 shifts (in 13.8 minutes). Figure 2.10 shows that each of these
shifts is supported by several of the 4 traits. Surface found 28 shifts (in 2 hours in 12
minutes), which include 11 of the 12 shifts detected here (Figure A.2). The one shift
not detected by surface had the lowest bootstrap support (39%). All other shifts
had support between 69% and 100%. The 28 shifts found by `1ou + AICc (in 13.2
minutes) included all 12 shifts found by `1ou + pBIC and were very similar to those
found by surface up to equivalent parsimonious configurations (Figure A.3). With
this many shifts, the one configuration returned by `1ou + AICc (or by surface) is
equivalent to many other configurations that define the same clustering of taxa.
Therefore, this one configuration is masking a lot of uncertainty about the shift
locations. Because pBIC is quite conservative, we can be more confident in its 12
shifts compared to the extra 16 shifts found by AICc or by surface. On these data,
`1ou + BIC was most conservative and did not detect any shift. Figure A.4 shows
the score profile plot of each method. For BIC, this profile shows a local optimum
in BIC at 9 shifts, 7 of which were found by pBIC (Figure A.5).

Of the 12 shifts detected by `1ou + pBIC, 4 occurred within Cuba (or as a dispersal
to Cuba), 5 within Hispaniola, 2 within Jamaica and only 1 with Puerto Rico (or
as a dispersal to Puerto Rico), based on a parsimonious geography reconstruction
(Figure A.6). Overall, our results suggest that ecomorphological convergence is not
as convincing as previously argued. First, over half of the shifts previously detected
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Figure 2.10: Shifts in Anolis lizard morphology. Re-analysis of the 4 traits from
Mahler et al. (2013) with `1ou and pBIC provided support for 12 evolutionary shifts
in optimum morphology under an OU process. Left: shift configuration. Edges
with a shift are annotated with a star and bootstrap support. Right: bar graphs
showing the 4 traits combined for analysis.

are suspected to be unreliable. Second, 2 of the 4 islands only have 1 or 2 confirmed
shifts, weakening the evidence for repeated convergence on separate islands.

When analyzing the first trait only (pPC1, which alone explained 40% of vari-
ation), fewer shifts were detected by all methods, showing the gain in detection
power from combining multiple traits. Four shifts were detected with `1ou + pBIC,
all of which were also detected by `1ou + AICc, which detected 16 shifts total.
Using the generalized lasso (2.7) + AICc on these 16 shifts, we detected a high
level of convergent evolution with a total of 8 regimes only. In comparison, surface
detected 12 shifts and 5 distinct optima, with some similarities but also marked
differences (Figure A.7). These 2 convergent evolution models had very similar
AICc scores however (−86.37 and −86.40), highlighting great uncertainty about the
exact phylogenetic placement of shifts and convergent evolution.
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2.9 Discussion

In this work we adapted the lasso, now widely used for standard statistical model
selection, to phylogenetic comparative data and the detection of shifts in the mean.
The lasso penalizes parameters by their absolute values, which leads to sparse
models with most parameters estimated at 0. The OU process that we used can
model the response to a changing adaptation landscape, to which the lasso provides
a parsimonious solution.

We also proposed a new phylogenetic criterion pBIC that explicitly accounts
both for phylogenetic correlation, and for the large number of configurations with
a given number of shifts k. This number of models grows extremely fast with k,
leading to overfitting issues and high rates of falsely detected shifts with AIC. On
the contrary, pBIC was shown to be conservative. Interestingly, the pBIC penalty
for a k-shift model is not a simple function of the number of parameters, and/or of
the number of configurations with k shifts (Massart, 2007). The penalty depends on
the best shift configuration, and generalizes the notion of a shift’s effective sample
size (Ané, 2008). In particular, shifts leading to small clades are penalized less than
shifts leading to large clades, especially if phylogenetic correlation is low, because
their effective sample size is smaller. Our `1ou method could be combined with
any further improvements to pBIC. Also, pBIC can be generalized to other models
with shifted means, making it applicable to models with jumps derived from the
BM process for instance (see below).

Bastide et al. (2015) recently considered the same problem and highlighted the
same identifiability issues on shift configurations. They derived the exact number
of non-equivalent (distinguishable) parsimonious configurations of k shifts, which
could depend on the tree topology. This number, necessarily smaller than the
number of ways to choose k edges, could be used to improve our pBIC derivation
(affecting the term 2k log(2n − 3)). To select k and for a single trait, Bastide et al.
(2015) used a criterion penalty based on the number of distinguishable configu-
rations, with guaranteed properties if α is known. For one trait, the maximum
likelihood configuration with k shifts is found with Expectation-Maximization
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(Dempster et al., 1977), which is probably more thorough but slower than our
approach.

A major strength of our phylogenetic lasso method is its speed, being one or
more orders of magnitudes faster than currently existing methods. Parallelization
of our implementation could further reduce its running time. This is because the set
of candidate models returned by the lasso can be evaluated for pBIC in parallel; this
second step is the computational bottleneck, consuming much more time than the
first lasso step. To achieve fast running times, we also implemented a linear-time
algorithm (Stone, 2011) to obtain the square-root and inverse square-root of the
covariance matrix, Σ(α). This fast algorithm facilitates both the noise-whitening
transformation for the phylogenetic lasso and the bootstrap procedure here, but
it could have broader benefits for other applications. The matrices Σ−1/2 and Σ1/2

are not unique (many matrices satisfy A ′A = Σ) and the matrices returned by the
last algorithm are not symmetric, but they have an advantage of interpretability:
each row corresponds to an edge in the tree, including a root edge. Therefore,
they provide phylogenetically corrected residuals that map onto the phylogenetic
tree. Their applications include model diagnostics and visualizations (Pennell et al.,
2015) with possible interpretation as to the cause of potential model violations.
Here, phylogenetically corrected residuals might be used to detect possible model
violations that might correlate with shift configurations.

Our bootstrap procedure, which uses both Σ−1/2 and Σ1/2, is comparable to
the fully parametric bootstrap method used by Ingram and Mahler (2013) for
surface. Our method is partially non-parametric, however, in that we resample the
phylogenetically corrected residuals instead of sampling from the OU process, to
gain some robustness to potential violation of the OU model assumptions. The
results from such bootstrap procedures should be interpreted with caution, however,
because they can depend heavily on the shifts simulated under the bootstrap model.
If this model only uses the shifts detected conservatively with pBIC, then any true
shift that went undetected will necessarily receive low bootstrap support. On the
lizard data for instance, adding an extra 2 shifts to the pBIC configuration increased
the pBIC score by 4.99 only, but resulted in greatly increased bootstrap support
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for the newly added shifts (from close to 0% to 63% and 62%, see Figure A.8). It
might also be advantageous to use the shifts detected with a more liberal criterion
(AICc) in the bootstrap simulation model, but analyze the bootstrap data sets with
a conservative criterion (pBIC). Hence these bootstrap values should be interpreted
with caution and more work is needed to improve parametric bootstrap methods
here, when model selection is involved.

For shifts located on neighboring edges, extra caution should be taken because
of identifiability issues. For instance, the data contains no information on whether
a shift is at the base on the ingroup clade versus the outgroup clades (i.e. on either
edge connecting to the root). Even if the bootstrap support for a shift is 100% at the
base of the ingroup clade, the user should keep in mind that there is still complete
uncertainty about the exact placement of this shift on either side of the root, or its
timing along either edge. Similarly, shifts detected on two sister clades should be
interpreted with caution, even if each one receives 100% bootstrap support. The
exact same data could be obtained with a shift on the edge ancestral to these 2
sister clades, and only 1 subsequent shift to one of the clades. Here again, the
100% bootstrap values ignore uncertainty due to a lack of identifiability. Bayesian
methods can deal with this issue much more elegantly (Uyeda and Harmon, 2014),
because one might place equal prior probabilities on all the non-distinguishable
shift configurations. Posterior probabilities would reflect uncertainty between all
these configurations, even uncertainty on the location of a shift along a given edge.
Non-identifiable shift configurations might also have different posterior proba-
bilities because their shared maximum likelihood might be achieved at different
shift magnitudes, which are not necessarily equally likely a priori. Therefore, a
Bayesian framework can distinguish between non-idenfiable shift configurations
using biologically reasonable priors on shift magnitudes. Also, even though the
posterior mean number of shifts depends on the prior number of shifts, Bayesian
posterior distributions might quantify uncertainty over the various configurations
with a fixed number of shifts better than bootstrap samples (see also visualization
tools in Rabosky et al., 2014). This is because bootstrap samples are generated under
a unique bootstrap simulation model, from the best estimated shift configuration
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only. More work could still be done to improve frequentist bootstrap procedures or
other ways to quantify uncertainty, for the detection of phylogenetic shifts.

The lack of identifiability between different shift configurations is because the
data truly bear on the clustering of taxa into groups. If there is evidence that two
sister clades and their outgroup taxa make 3 different clusters each with its own
adaptive optimum, then we might be able to estimate these 3 clusters with very high
confidence. However there will still remain complete uncertainty (without fossil
data) to know how many adaptive shifts occurred, at the base of which clade they
occurred, and at what time. Therefore, the proposed method should be treated as an
estimation of phylogenetically-consistent clusters, rather than exact shift positions.

In many applications, the underlying data are truly on a continuous scale but are
discretized to facilitate analysis or to provide a taxonomic description. For instance,
moss sporangium shape (Rose et al., 2015) might be described as either “round”
or “linear”, with some subjectivity involved when scoring intermediate species,
or training needed to achieve consistent scoring between different observers. For
the purpose of defining thresholds to categorize continuous measurements into
discrete values, our method would provide an objective and phylogenetically-aware
method. A liberal model selection criterion like AICc would be recommended, to
detect sufficiently many categories and to prioritize the influence of the trait data
over the species phylogenetic placement.

For the purpose of categorizing a continuous variable or for the study of adapta-
tion, an interesting next step is to detect convergence, when different shifts lead to
the same selective optimum value. For one variable, we used the generalized lasso
to penalize differences between pairs of optima (Tibshirani and Taylor, 2011). How-
ever, more work is needed to adapt pBIC, to correctly integrate out the constrained
shifts and to account for the number of convergent configurations with k shifts. For
multiple traits, the ideas of the generalized and group lasso could be combined in
an `1 penalty that favors convergent regimes shared by all traits. But further work
is needed because there is no fast algorithm for this form of penalty yet.

Extending our method to account for residual correlation between traits would
be desirable. Simulations showed that none of the available methods are robust to
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the presence of correlation among traits due to drift (Figure A.9), with a marked
increased of falsely detected shifts. Models for correlated traits could also combine
primary response variables with potential predictors into one multivariate variable,
to model variation in the response explained by shifts as well as predictors (Hansen
et al., 2008; Bartoszek et al., 2012). However, fitting phylogenetic multivariate OU
models with arbitrary selection and drift covariance matrices is difficult computa-
tionally (e.g. Clavel et al., 2015) and new theory would be needed for these models,
to select the appropriate number of shifts.

Another extension of our method would be to move away from the OU model
with discontinuous jumps in the adaptive optimum but continuous trait evolution.
For example, the OU model leads to the same trait distribution on present-day
taxa as a BM punctuated by jumps causing discontinuity in the process (at an
evolutionary time scale), provided that branch lengths in the tree are rescaled
depending on α (Ho and Ané, 2014). If the OU model leads to unreasonably large
shifts in optimal values, a BM model might provide jumps that are more reasonable
biologically, even though the two models are statistically equivalent. This is likely
to occur if phylogenetic correlation is high (low α, or slow adaptation), in which
case the OU model needs an unreasonably large shift in the adaptive optimum to
explain a moderate jump in the observed mean. While the OU model is statistically
equivalent to a process with jumps, our lasso and pBIC in (2.5) both penalize the
magnitude of shifts in the adaptive optima, rather than the magnitude of jumps
in the observed means. Hence, our model and implementation would need to
be adapted to BM evolution with jumps to penalize changes in observed means
rather than in adaptive shifts, through an adaptation of X(α) and of the phylogenetic
covariance. Further work could also extend this BM model with jumps to allow for
an unknown level of phylogenetic correlation, using an extra parameter like Pagel’s
λ (Lynch, 1991; Pagel, 1999) and a similar approach to vary λ (instead of α) across
different runs of the lasso.

Finally, extending our method to account for measurement error should be
easiest when multiple measurements are available per species, using the observed
standard errors of species means as in Ives et al. (2007). Doing so could be most



52

beneficial if two very closely sister species have quite different trait values, in the
range of measurement error. A spurious shift to one of the two sister species might
be needed to explain the trait difference if measurement error is ignored, with a
possibly overestimated α (underestimated phylogenetic correlation).

2.10 Data Accessibility

The R package `1ou is available open source at https://github.com/khabbazian/
l1ou.

https://github.com/khabbazian/l1ou
https://github.com/khabbazian/l1ou
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Chapter 3

Novel Sampling Design for
Respondent-driven Sampling

Contribution

• I conducted all the simulations and result visualizations expect
Figure 3.3.

• I implemented rdssim R package (https://github.com/khabbazian/rdssim).

• I developed all the theoretical results except Proposition 3.6.

• I wrote the first draft of the manuscript.
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Abstract

Respondent-driven sampling (RDS) is a type of chain referral sampling popular
for sampling hidden and/or marginalized populations. As such, even under the
ideal sampling assumptions, the performance of RDS is restricted by the underlying
social network: if the network is divided into weakly connected communities, then
RDS is likely to oversample one of these communities. In order to diminish the
“referral bottlenecks” between communities, we propose anti-cluster RDS (AC-RDS),
an adjustment to the standard RDS implementation. Using a standard model in the
RDS literature, namely, a Markov process on the social network that is indexed by
a tree, we construct and study the Markov transition matrix for AC-RDS. We show
that if the underlying network is generated from the Stochastic Blockmodel with
equal block size, then the transition matrix for AC-RDS has a smaller spectral gap
and consequently faster mixing properties than the standard random walk model
for RDS. In addition, we show that AC-RDS reduces the covariance of the samples
in the referral tree compared to the standard RDS and consequently leads to the
smaller variance and design effect. We confirm the effectiveness of the new design
using both the Add-Health networks and simulated networks.

Keywords: hard-to-reach population; social network; trees; Markov chains; upec-
tral representation; anti-cluster RDS
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3.1 Introduction

Public policy and public health programs depend on estimating characteristics
of hard-to-reach or hidden populations (e.g. HIV prevalence among people who
inject drugs). These hard-to-reach populations cannot be sampled with standard
techniques because there is no way to construct a sampling frame. Heckathorn
(1997, 2002) proposed respondent-driven sampling (RDS) as a variant of chain-
referral methods, similar to snowball sampling (Goodman, 1961; Handcock and
Gile, 2011), for collecting and analyzing data from hard-to-reach populations. Since
then, RDS has been employed in over 460 studies spanning more than 69 countries
(Malekinejad et al., 2008; White et al., 2015).

RDS encompasses a collection of methods to both sample a population and
infer population characteristics (Salganik, 2012), referred to as RDS sampling and
RDS inference. RDS sampling starts with a few “seed” participants chosen by a
convenience sample of the target population. Then, the initial participants are given
a few coupons to refer the second wave of respondents, the second wave refers the
third wave, and so on. The participants receive a dual incentive to (i) take part in the
study and (ii) successfully refer participants. The dual incentive helps RDS obtain
many waves of sampling. With many waves of sampling, RDS has the potential
to penetrate the broad target population and reduce its dependency on the initial
convenience sample.

Since Heckathorn’s original RDS paper, the statistical literature on RDS has
created several estimators that seek to reduce the bias and estimate confidence
intervals (Heckathorn, 2011). The most popular RDS estimators are generalized
Horwitz-Thompson type estimators where the inclusion probabilities are derived
from various models of the sampling procedure (Volz and Heckathorn, 2008; Gile,
2011; Gile and Handcock, 2011).

RDS performance has been evaluated through simulation studies (Goel and Sal-
ganik, 2010; Gile and Handcock, 2010), empirical studies (Wejnert, 2009; McCreesh
et al., 2012), and theoretical analyses (Goel and Salganik, 2009). The main message
of these studies is that (i) RDS can suffer from bias; (ii) in some cases, the current
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RDS estimators do not reduce bias; and most importantly, (iii) the estimators have
higher variance (and thus, design effect) than what was initially thought (Goel and
Salganik, 2009, 2010; White et al., 2012). To help bridge the gap between theory and
practice, Gile et al. (2015) suggests various diagnostics to examine the validity of
the modeling assumptions.

Goel and Salganik (2009) and Verdery et al. (2015) analytically study the effects of
the homophily or community structure on the variance of the estimator. Homophily,
a common property of social networks, is the tendency of people to establish social
ties with others who share common characteristics such as race, gender, and age.
Strong homophily creates community structure in the social network. This in turn
creates referral bottlenecks between different groups in the population; the RDS
referral chain can struggle to cross these bottlenecks, failing to quickly explore
the network. In such situations, RDS is sensitive to the initial convenience sample,
leading to biased estimators. Moreover, the bottlenecks make successive samples
dependent, leading to highly variable estimators. The results in Rohe (2015) show
that if the strength of this bottleneck crosses a critical threshold, then the variance
of the standard estimator decays slower than 1/n, where n is the sample size.

To diminish referral bottlenecks, this dissertation proposes an adjustment to
the current RDS implementation. Instead of asking participants to refer anyone
from the target population, this dissertation proposes three basic types of “anti-
cluster referral requests,” which are described in Figure 3.1. These referral requests
diminish referral bottlenecks by producing triples of participants that do not form
a triangle in the social network.

As compared to alternative methods, anti-cluster requests are more successful
in diminishing referral bottlenecks for three reasons. First, this approach preserves
privacy. Many previous approaches have required participants to list all of their
friends in the population. However, in sensitive populations, this is not allowed
by institutional review boards. Second, anti-cluster requests do not require a priori
knowledge about the nature of the bottleneck. For example, the most salient bottle-
neck could form on race, gender, neighborhood, or something else. If researchers
knew which of these was most restricting the sampling process, then perhaps spe-
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cific requests could be formed. However, in many populations, the bottlenecks
are not known in advance. The final advantage is that the proposed adjustment
is mathematically tractable; under certain assumptions, anti-cluster requests can
form a reversible Markov chain.

C) Please refer 
someone that does 
not know the person 
that referred you

A) Please refer 
two people that 
do not know 
each other

Anti-cluster referral requests

= person interviewed = referral direction = person in study = not friends

B) Please refer 
someone that could 
refer people whom 
you do not know

Figure 3.1: An illustration of the three anti-cluster referral requests considered. The
referral requests for anti-cluster sampling are privacy preserving because they do
not require participants to list all of their friends. Moreover, these requests do not
require any knowledge about the community structures in the social network.

The remainder of the chapter is organized as follows. Section 3.2 describes de-
signed RDS and presents our proposed design, anti-cluster RDS (AC-RDS). Section
3.3 sets the notation and provides the mathematical preliminaries. Section 3.4 gives
our theoretical results, distinguishing between population sample graph results.
Section 3.5 contains simulation experiments, which compare the performance of
AC-RDS with standard RDS. We summarize the chapter and offer a discussion in
Section 3.6. All of the proofs are provided in Appendix B.

3.2 Novel Sampling Designs

When preparing to sample a target population with RDS, some aspects can be
controlled by researchers (e.g. how many referral coupons to give each participant)
and others cannot. In particular, the social network is beyond the control of re-
searchers. Community structures are an intrinsic part of social networks (Girvan
and Newman, 2002) which, in RDS, lead to referral bottlenecks. To minimize these
bottlenecks, RDS can be altered to make some referrals more or less likely. This is
the essence of novel sampling designs for respondent-driven sampling.
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In standard RDS, researchers ask each participant to refer their contacts in
the target population, with no further instructions. In order to make statistical
inferences, it is necessary to presume that participants refer a random set of their
friends. The most common assumption is that each friend is equally likely to be
referred. To test this assumption, suppose that the population of interest is divided
into two communities, EAST and WEST. Furthermore, assume that people form
most of their friendships within their own community. Under this simple model,
referrals between communities are unlikely, creating a bottleneck.

As a thought experiment, suppose that these communities were known before
performing the sample. The researchers could then request referrals from specific
groups (e.g. flip a coin, if heads request WEST and if tails request EAST). This
does not change the underlying social network, but it does change the probability
of certain referrals. If participants followed this request, the referral bottleneck
between EAST and WEST would be diminished. If 90% of a participant’s friends
belonged to the same community as the participant, then the standard approach
would obtain a cross-community referral only 10% of the time. However, with the
coin flip implementation, such a referral happens 50% of the time.

Mouw and Verdery (2012) propose an alternative technique which will be
referred to as MW sampling. In MW sampling, researchers construct a sampling
frame by asking RDS participants to name all of their friends in the target population.
This list is combined with the friend lists from previous participants to form the
sampling frame for selecting the next individual. Notice that this data can be used to
construct partial information about the underlying social network. Based upon this
partial social network information, MW sampling computes sampling probabilities
for the individuals in the partial network who have not yet been sampled. The
next individual who is sampled is then asked to list their friends in the target
population. This process iterates on every additional sample. In computational
experiments, Mouw and Verdery (2012) report a decrease in the design effect of
this novel approach.

These two extensions of RDS (i.e. flipping a coin and MW) are both forms of
Designed RDS; through novel implementations they adjust the probability of certain
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referrals, thereby diminishing the referral bottlenecks. Unfortunately, these two
approaches have practical difficulties that prevent applications to hidden and/or
marginalized populations. The coin flipping example requires prior information
about the social network, which may unattainable given the hidden nature of the
target population. The MW approach requires participants to reveal a friend list; for
marginalized populations this is potentially unethical because it asks a participant to
reveal sensitive information about an individual that has not provided consent. For
example, if the target population is people who inject drugs, asking a participant to
reveal friends in this population could be perceived as “snitching.” Disclosing this
type of information is often prevented by institutional review boards. Traditional
forms of RDS do not require participants to reveal their friends to researchers
(without consent from the friends).

Anti-cluster RDS is a type of Designed RDS that complements and builds upon
both of these approaches. The implementation of anti-cluster RDS does not require a
priori information on the communities in the social network, nor does it require that
participants reveal sensitive information about individuals who have not consented.
Anti-cluster sampling is designed to place larger referral probabilities on edges that
belong to fewer triangles. There are at least two ways to consider why this strategy
circumvents bottlenecks.

1. Many empirical networks share three properties. First, the number of edges
is proportional to the number of nodes (i.e. the network is globally sparse).
Second, friends of friends are likely to be friends (i.e. the network is locally
dense). Third, shortest path lengths are small (i.e. the network has a small
diameter); this is also known as the small-world phenomenon. Watts and
Strogatz (1998) shows how a network can satisfy all three properties; take
a deterministic graph that satisfies the first two features (e.g. a triangular
tessellation), then select a few edges at random and randomly re-wire this
edge to a randomly chosen node. Notice that these “random edges” are
unlikely to be contained in a triangle. So, anti-cluster RDS is likely to make
referrals along these edges, which connect to a node that is chosen uniformly
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at random.

2. The Markov chain is a standard model for RDS. It presumes that people make
referrals by selecting uniformly from the set of friends. A similar assumption
could be made about anti-cluster referrals; the referral is drawn uniformly
from the set of referrals that satisfy the anti-cluster request. If the Markov
transition matrix for anti-cluster sampling can be shown to have a larger
spectral gap than the Markov transition matrix for the simple random walk,
then this suggests that anti-cluster sampling will obtain a more representative
sample.

Here, we pursue the second approach.

3.3 Preliminaries

Framework

This work models the referral process as a Markov chain indexed by a tree (Ben-
jamini and Peres, 1994). Markov chain indexed by a tree is a variant of branching
Markov chains in which a fixed deterministic tree indicates branching. This model
is a straightforward combination of the Markov models developed in the previ-
ous literature (e.g. Heckathorn (1997); Salganik and Heckathorn (2004); Volz and
Heckathorn (2008) and Goel and Salganik (2009)) which allows multiple partici-
pation of an individual in the target population. This necessitates the following
four mathematical pieces: an underlying social graph, a node feature which is
measured on each sampled node (e.g. HIV status), a Markov transition matrix
on this graph, and a referral tree to index the Markov process. Figure 3.2 gives a
graphical depiction of this process.

The social network. RDS is based on the assumption that there are social ties
among the individuals in the population and consequently there exists a social
network that connects them. We denote the underling social network by an undi-
rected graph G = (V,E) where V = {1, . . . ,N} is a set containing the individuals in
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the first part of this proposal studies novel ways of assigning sampling weights to the random
walk.

2) Estimation: The sampling mechanism induces dependence between samples (friends are
similar in many ways). Current estimators do not correct for this dependence. This proposal
shows that current estimators are inadmissible. Moreover, in certain regimes, new estimators
can obtain faster rates of convergence.

3) Diagnostics: One key limitation of network driven sampling is the dependence between sam-
ples. My preliminary theoretical research shows how this dependence manifests and suggests
diagnostic tools.

2 notation

Denote the population as a node set V with N elements. We obtain a sample of size n from V by
starting from some seed node(s) and following the edges in the graph G = (V, E). If every sample
refers exactly one additional sample, then we obtain a chain of random variables

X(0) ! X(1) ! · · · ! X(n � 1) 2 V.

In the chain sample, the nodes are indexed by the integers 0, 1, 2, . . . , n � 1. In many network
sampling applications it is sensible to allow for each sample to refer multiple additional samples.
Instead of a chain, this produces a tree–a rooted, directed, and cycle free graph–that will be denoted
by T. The root of this tree 0 2 T indexes the seed node.1 The decendents of the root node index
the nodes that the seed refers. Symbols ⌧ and � will be used to denote generic nodes in T. By
network driven sampling, we obtain the sample of nodes

{X(⌧) 2 V : ⌧ 2 T}.

In this notation, X(0) 2 V is the seed node.

The randomization for the sampling procedure is characterized by a Markov transition matrix
P 2 RN⇥N . Denote �0 2 T as the “parent” node of � 2 T. Under the Markov model studied in

1If there are multiple seed nodes, then T is a forest, or a collection of trees and there are multiple roots.
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Figure 1: In the left panel, only the seed node is sampled. In the next panel, the seed node refers
two friends that create wave 1 of the sample. This continues for two more waves. On the right, is
the sampling tree T.

2

Figure 3.2: A graphical depiction of the referral process, which is modeled as a
Markov chain indexed by a tree. This figure gives an example of a social network G

and a referral tree T.

the target population and E = {(u, v) : u and v are friends} is a set containing the
social ties. We reach a subset of V by starting from some “seed” node and then
tracing edges in E. Define

A(u, v) =

{
1 if (u, v) ∈ E;
0 o.w.

(3.1)

and deg(u) =
∑
vA(u, v).

Node features. After reaching an individual u ∈ V, we can measure their status
y(u), where y : V→ R is some node feature. For instance, y(u) could be a binary
variable which is one if node u is HIV+ and zero otherwise. The aim of RDS is to
estimate the population average of y over all nodes,

µ =
1
N

∑
u∈V

y(u).

Markov chain. By tracing the edges (social ties) in the network, RDS sampling
procedure collects dependent samples from the nodes to estimate the population
mean. If we assume that every participant recruits one individual and participants
can be recruited multiple times then the sampling procedure can be modeled as a
Markov chain (Gile and Handcock, 2010). These simplifying assumptions allow us
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to use the well-developed mathematical theory of Markov chains to gain insight
into the behavior of the sampling procedure and understand the impact of the
social network structure on the estimates.

Let (Xi)ni=1 be an irreducible Markov chain with the finite state space V of size
N and transition matrix P ∈ RN×N; for u, v ∈ V and for all i ∈ 1, . . . ,n− 1,

P(u, v) = Pr(Xi+1 = v|Xi = u).

Define PA as the Markov transition matrix of the simple random walk,

P(u, v) = A(u, v)
deg(u)

.

The standard Markov model for RDS presumes that Xi is a simple random walk.
Novel designs. Designed RDS is a way of assigning differing weights to the

edges. Define the W : E→ R+ as a weighting function on the edges (u, v) ∈ E. If
(u, v) ∈ E andW(u, v) > 0, then u can recruit v. For simplicity, defineW(u, v) = 0
if (u, v) 6∈ E. Then,W can be considered as a matrix. Define diagonal matrix T to
contain the row sums, Tuu =

∑
vW(u, v).

Through novel implementations, Designed RDS alters the edge weights. After
weighting the edges, the Markov transition matrix becomes

PW = T−1W. (3.2)

If Designed RDS increases an edge weight, it makes the edge more likely to be
traversed.

We restrict the analysis to symmetric weighting matrices. Because of this restric-
tion, PW is reversible and has a stationary distribution π : V → R+ that is easily
computable,

π(u) =
Tuu∑
v Tvv

.

Throughout, it will be presumed that X0 is initialized with π. A more thorough
treatment of Markov chains and their stationary distribution can be found in Levin
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et al. (2009).
Referral tree. In the Markov chain model, participant Xi refers participant Xi+1.

This presumes that each participant refers exactly one individual. In practice, RDS
participants usually refer between zero and three future participants. To allow
for this heterogeneity, it is necessary to index the Markov process with a tree, not
a chain. Let T denote a rooted tree with n nodes. See Figure 3.2 for a graphical
depiction.

To simplify notation, σ ∈ T is used synonymously with σ belonging to the
node set of T. For any node σ ∈ T and σ 6= root(T), denote parent(σ) ∈ T as the
parent node of σ. The Markov process indexed by T is a set of random variables
{Xσ ∈ V : σ ∈ T} such that Xroot(T) is initialized from π and

Pr(Xσ = v|Xparent(σ) = u) = P(u, v), for u, v ∈ V.

The distribution of Xσ is completely determined by the state of Xparent(σ). Up to
this, everything is independent. Benjamini and Peres (1994) called this process
a (T,P)-walk on G. In the social network G, an edge represents friendship. In the
referral tree, a directed edge (τ,σ) represents that random individual Xτ ∈ V refers
random individual Xσ ∈ V in the (T,P)-walk on G.

Statistical estimation. For any function on the nodes of the graph y : V → R,
denote

µπ,y := Eπy :=
∑
u∈V

y(u)π(u) and µy := Ey :=
1
N

∑
u∈V

y(u),

whereN := |V| is the number of nodes in the social network. By assumption, X0 ∼ π.
So, Xτ ∼ π and the sample mean 1/n

∑
τ∈T y(Xτ) estimates µπ,y, the population

mean computed under the stationary distribution π. Thus, it is not a consistent
estimate of the population mean, µy. In order to estimate µy, one can use inverse
probability weighting (IPW), using the stationary distribution π. It can be shown
that

µ̂IPW =
1
n

∑
τ∈T

1
N
· y(Xτ)
π(Xτ)
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is an unbiased and consistent estimator of µy. Typically, N is unknown. The Hajek
estimator circumvents this problem while remaining asymptotically unbiased,

1∑
τ∈T 1/π(Xτ)

∑
τ∈T

y(Xτ)

π(Xτ)
. (3.3)

The typical “simple random walk” assumption in the RDS literature is that
participants select uniformly from their contacts. This corresponds to Tuu = deg(u),
making π(u) ∝ deg(u) something that can be asked of participants. By these
assumptions, Equation (3.3) reduces to the RDS II estimator (Heckathorn, 2007):

µ̂y =
1∑

τ∈T 1/deg(Xτ)
∑
τ∈T

y(Xτ)

deg(Xτ)
.

The Variance and the Design Effect of RDS

Many empirical and social networks display community structures (Girvan and
Newman, 2002). This can lead to referral bottlenecks in the Markov chain. These
bottlenecks describe the fact that respondents are likely to refer people in their own
community who have similar characteristics. This section specifies how bottlenecks
makes successive samples dependent, increasing the variance of µ̂y and the design
effect of RDS; the spectral properties of the Markov transition matrix reveal the
strength of these bottlenecks and it controls the variance of estimators like µ̂IPW .
These results motivate the main results which show that anti-cluster sampling
improves the relevant spectral properties of the Markov transition matrix under
a certain class of Stochastic Blockmodels. As a result, anti-cluster sampling can
decrease the variance of estimators like µ̂IPW .

Let λ2(PA) be the second largest eigenvalue of the Markov transition matrix
for the simple random walk. The Cheeger bound demonstrates that the spectral
properties of PA can measure the strength of these communities. See Chung (1997)
(Chapter 2) and Levin et al. (2009) page 215 for more details. This relationship
between communities in G and the spectral properties of PA is exploited in the
literature on spectral clustering. In that literature, G is observed and the spec-
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tral clustering algorithm uses the leading eigenvectors of PA to partition V into
communities (Von Luxburg, 2007).

Intuitively, if there are strong communities in G and the node features y are
relatively homogeneous within communities, then successive samples Xi and Xi+t
will likely belong to the same community and have similar values y(Xi) and y(Xi+t).
This makes the samples highly dependent; the auto-covariance Cov(y(Xi),y(Xi+t))
will decay slowly. The next lemma decomposes the auto-covariance in the eigenbasis
of the Markov transition matrix. This proposition shows that the auto-covariance
decays like λt2.

The following results apply to any reversible Markov matrix with |λ2| < 1. In
particular, they apply to both PA (RDS) and PW (AC-RDS). The assumption |λ2| < 1
is equivalent to saying that the Markov chain is connected and aperiodic.

Proposition 3.1. LetXi, i = 1, 2, . . . be a Markov chain with reversible transition matrix P.
Suppose that X1 is initialized with π, the stationary distribution of P. For j = 1, 2, . . . ,N,
let (fj, λj) be the eigenpairs of P, ordered so that |λi| > |λi+1|. Because P is reversible,
fj and λj are real valued and the fj are orthonormal with respect to the inner product
〈f`, fj〉π =

∑
i∈V f`(i)fj(i)π(i). If |λ2| < 1, then

Cov(y(Xi),y(Xi+t)) =
|V|∑
j=2

〈y, fj〉2πλtj .

In previous research, Bassetti et al. (2006) and Verdery et al. (2015) used a similar
expression to compute the variance.

Design effect. The design effect of RDS is a measure of the quality of the
sampling mechanism. It is defined as

DE(µ̂) = VarRDS(µ̂)
Varπ(µ̂)

,

where the subscript RDS denotes that the sample was collected with a (T,P)-walk on G

and the subscript π denotes that that samples were drawn independently from the
stationary distribution.
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The results in Rohe (2015) show that the design effect has a critical threshold that
depends on λ2 andm, the branching rate of the tree. If λ2 > m

−1/2, then DE(µ̂IPW)

grows with n. Moreover, under certain additional assumptions, design effect has a
critical threshold,

DE(µ̂IPW) �

c if λ2 6 m−1/2

n1−α if λ2 > m
−1/2,

(3.4)

where c is some constant, α = logm λ
−2
2 , and � is equality up to (logn)2 terms.

This shows that if the referral bottleneck is too strong (i.e. λ2 > m
−1/2), then the

design effect grows polynomially with the sample size. Here, the standard error of
µ̂IPW does not decay like n−1/2, rather it converges at the slower rate of nlogm λ2 .

By redesigning the Markov transition matrix via novel referral requests, it is
shown that λ2 is partially malleable. We can diminish referral bottlenecks and λ2.

Anti-Cluster Random Walk; Constructing the WeightsW

This subsection describes a Markov model for AC-RDS. Section 3.4 then studies
the spectral properties of the resulting AC-RDS Markov transition matrix. To
describe the model we need the following notation. Let ·denote element-wise matrix
multiplication and let Jq×q denote a q×qmatrix containing all ones. Finally, define
the overbar operator for a q× qmatrix B as B̄ := Jq×q − B, so that Ā = JN×N −A.

The assumption that RDS can be modeled as a simple random walk is a common
working assumption in the RDS literature (Gile et al., 2015). It assumes that a
participant selects a single referral by choosing a friend uniformly at random. To
understand the theoretical properties of AC-RDS, we extend this idea of “uniformly
at random." We model a participant’s response to the request “please refer two
people that don’t know each other” in the following way: if i is friends with j, then
the probability that i refers j is proportional to the number of friends of i that are
not friends with j. This is equivalent to the participant making a list of all friend
pairs (j, `) for which the friends in a pair do not know each other (Aj,` = 0). Then,
the participant selects one pair from the list uniformly at random. Note that the



67

Markov transition matrix only allows a single referral. To maintain the Markov
property, the participant is then instructed to select one person from the chosen
pair with equal probability.

This model creates a Markov transition matrix which can be expressed with
matrix notation. Under the model, if i has one coupon, then the probability that
i refers j is proportional to the (i, j)th element of the matrix (AĀ) ·A. To see this,
note that the (i, j)th element of AĀ is the number of nodes ` that are friends with i
but not friends with j, that is

[AĀ]ij =
∑
`

Ai`(1 −Aj`).

Then, the element-wise multiplication ensures that i is friends with j, yielding the
weight matrix (AĀ) ·A.

Note that the weight matrix (AĀ) ·A is not symmetric and, thus, does not lead
to a reversible Markov chain. However, we can use a second referral request to
augment the first request to ensure reversibility. To this end, model the referral
request “Please refer someone that knows many people that you do not know” as
follows: if i is friends with j, then the probability that i refers j is proportional to
the number of people that j knows that i does not know. In a similar fashion as
above, this request produces the weight matrix (ĀA) ·A.

To implement AC-RDS, choose between (AĀ) · A and (ĀA) · A with equal
probability by flipping a coin. Consider the matrix W̃ given by

W̃ = (AĀ+ ĀA) ·A. (3.5)

The (i, j)th element of W̃ is proportional to the probability that i refers j in the pro-
cess described above. By design, W̃ is symmetric, making making PW̃ a reversible
Markov transition matrix.

These ideas for connecting implementation instructions for AC-RDS with the
Markov model are summarized in Table 3.1. The next section studies the spectral
properties of PW̃ under a statistical model for G.
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Implementation instructions compared to the Markov model
Flip a coin If heads, If tails,

Implementation
Instructions

Ask “Please refer two of your
contacts in the population
that don’t know each other.”

Ask “Please refer two of your
contacts in the population
that have many contacts you
don’t know.”

Markov model,
starting from

node i

List all pairs of nodes (i,k)
such that, (i, j) ∈ E, (i,k) ∈ E,
and (k, j) /∈ E. Then choose a
pair (j,k) uniformly and refer
j or k uniformly at random.

List all pairs of nodes (j,k)
such that (i, j) ∈ E and (i, j) /∈
E. Then choose a node pair
(i,k) uniformly at random
from the lit and refer j.

Table 3.1: The correspondence between AC-RDS implementation instructions and
the Markov model for the referral process. Referral requests A and B from Figure 3.1
correspond to the left and right columns of this table. The first row of this table is
the verbal request given to a participant. The second row of this table describes the
Markov model for this request, as described in Section 3.3.

Finally, we note that the transition matrix PW̃ does not use referral request C in
Figure 3.1, “Please refer someone that does not know the person that referred you."
Such a request cannot form a Markov chain on the nodes in the network because
it depends on the previous participant. This non-Markovian behavior should
not preclude the use of request C in practice; however, it does make establishing
theoretical results for request C more difficult. Here, we focus on requests A and B
and their Markov transition matrix PW̃ .

3.4 Theoretical Results

To study the spectral properties of PW̃ under a statistical model for the underlying
social network, we break the analysis into the “population results” and the “sam-
pling results.” The “sampling” referred to in this section introduces an additional
layer of randomness. In this section, “sampling” refers to the randomness in the
generation of the underlying social network. To refer to the randomness of the
Markov chain, this section will refer to “anti-cluster sampling,” “Markov sampling,”
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or “respondent-driven sampling.”
The “population results" in this section correspond to using the (weighted)

adjacency matrix A = EA, where the expectation is with respect to the statistical
model for generating the network. Then, define

W̃ = (AĀ+ ĀA) ·A. (3.6)

Define the Markov transition matrices PW̃ and PA as in Equation (3.2). In these def-
initions, PA corresponds to the population matrix for the standard simple random
walk and PW̃ corresponds to the population matrix for AC-RDS.

The population results will show that under various statistical models for the
underlying social network, the second eigenvalue of PW̃ is less than the second
eigenvalue of PA. To extend these population results to a network which is sampled
from the model, the sampling results use concentration of measure to show that A
and W̃ are close to A and W̃ under operator norm, respectively. Then, perturbation
theorems show that the eigenvalues of PA and PW̃ are close to the eigenvalues of
PA and PW̃ respectively. Theorem 3.9 combines these results with Proposition 3.1
to show that AC-RDS reduces the covariance between Markov samples.

Population Graph Results

Anti-cluster sampling is motivated by the need to readily escape communities in a
social network. The Stochastic Blockmodel (SBM) is a standard and popular model
that parameterizes communities in the social network (Holland et al., 1983). For
this reason, the analyses below use the SBM to study anti-cluster sampling.

Definition 3.2. To sample a network from the Stochastic Blockmodel, assign each node
i ∈ {1, 2, . . . ,N} to a class z(i) ∈ {1, 2, . . . ,K}, where the z(i) are independently gener-
ated from Multinomial(π1, . . . ,πK). Conditionally on z, edges are independent and the
probability of an edge between nodes i and j is Bz(i)z(j), for some matrix B ∈ [0, 1]K×K.

The results below condition on the partition z. Conditional on this partition,
E[A|z] has a convenient block structure. Define the partition matrix Z ∈ {0, 1}N×K
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such that Zij = 1 if z(i) = j, otherwise Zij = 0. Define A = E[A|z] and note that

A = ZBZT .

Let Ā := JN×N −A. Define the population weighting matrix as in Equation (3.6).
The following lemma shows that W̃ retains the block structure of A.

Lemma 3.3. Define B̄ := JK×K−B and Π ∈ RK×K as a diagonal matrix with Πii equal to
the expected number of nodes in the ith block. Then, W̃ = (AĀ+ ĀA) ·A can be expressed
as

W̃ = Z
(
(BΠB̄+ B̄ΠB) · B

)
ZT .

The following lemma shows that under a certain class of Stochastic Blockmodels,
anti-cluster sampling decreases the probability of an in-block referral.

Lemma 3.4. For 0 < r < p + r < 1, let B = pI + rJK×K. If Πjjr < Πii(p + r) for all
i 6= j, then for any two nodes u and v with z(u) = z(v),

PW̃(u, v) < PA(u, v).

Note that the assumption Πjjr < Πii(p+ r) is implied by the first assumption,
0 < r < p+ r < 1, when every block has an equal population. The next proposition
uses Lemma 3.4 to show that anti-cluster sampling reduces the second eigenvalue
of the population Markov transition matrix.

Proposition 3.5 (Spectral gap of the population graph). Under the SBM with K blocks,
let B = pI+ rJK×K for 0 < r < p+ r < 1. If the K blocks have equal size, then

0 < λ2(PW̃) + ε < λ2(PA) < 1, (3.7)

where ε > 0 depends on K,p, and r, but is independent of the number of nodes in the graph
N. Specifically, λ2(PA) = 1/(R+ 1), where R = Kr/p. In the asymptotic setting where K
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grows and r shrinks, while p and R stay fixed,

λ2(PW̃)→ 1
cR+ 1

, with c = R+ 1
R+ 1 − p

. (3.8)

For any single node, note that R is roughly the expected number of out-of-block
edges divided by the expected number of in-block edges. To see this, multiply the
numerator and denominator of Kr/p by the block population N/K. As such, it is
approximately the odds that a random walker will change blocks. When R is large,
the Markov chain mixes quickly and λ2(PA) is small to reflect that.

AC-RDS is most useful in social networks with tight communities, where the
walk is slow to mix; this corresponds to a larger value of p and a smaller value of
R. In this setting, c in Equation (3.8) is large, thus making λ2(PW̃) much smaller
than λ2(PA). In particular, if p is close to one, then c ≈ 1 + R−1 becomes very large
for small values of R. Notice that the second part of Proposition 3.5 makes no
assumption on N, the number of nodes in the network.

The next proposition shows that anti-cluster sampling continues to perform well,
even when the community structure is exceedingly strong and standard approaches
will fail to mix well. Here, the reduction of λ2 from anti-cluster sampling is dramatic.

Proposition 3.6. Under the SBM with 2 blocks of equal sizes, let ε > 0 and suppose that
Bii = (1 − ε) and Bij = ε for i 6= j. Then,

lim
ε↘0

λ2(PA) = 1

and
lim
ε↘0

λ2(PW̃) = 1/3.

For any Markov transition matrix P, λ2(P) 6 1. The graph is disconnected if and
only if λ2 = 1; this is the most extreme form of a bottleneck. In the above proposition,
if ε = 0, then the sampled graph will contain two disconnected cliques, one for
each block. Under this regime, both PA and PW̃ will have second eigenvalues equal
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to one. However, if ε converges to zero from above, then the above proposition
shows that λ2(PW̃) approaches 1/3, while λ2(PA) approaches 1.

Propositions 3.5 and 3.6 suppose balanced block sizes (i.e. an equal number
of nodes). To study unbalanced cases, the necessary algebra quickly becomes
uninterpretable. We explore the role of unbalanced block sizes with numerical
experiments in Section 3.5.

Sample Graph Results

Theorem 3.7 gives conditions which ensure that the population eigenvalues (i.e.
λ`(PW̃)) are close to the sampled eigenvalues (i.e λ`(PW̃)). As such, the population
results in the previous section appropriately represent the behavior of Markov
sampling (both AC-RDS and RDS) on a network sampled from the Stochastic
Blockmodel.

Theorem 3.7 (Concentration of the anti-cluster random walk). Let G = (V,E) be
a random graph with independent edges and A = EA be the expected adjacency matrix.
Let Di :=

∑
kAik, Fij :=

∑
kAik(1 − Akj), and Gij :=

∑
k(1 − Aik)Akj. Define

Fmin = mini,j=1,··· ,|V| Fij. If Fmin = ω (lnN) and there exits a constant c1 such that
Fij +Gij > c1Di for all i, j = 1, · · · , |V|, then with probability at least 1 − ε,

∥∥∥T− 1
2W̃T−

1
2 − T− 1

2W̃T− 1
2

∥∥∥2
6
c2 ln 10N

ε

Fmin
,

where c2 is a constant, ‖·‖ denotes the operator norm, T is a diagonal matrix with the row
sums of W̃ down its diagonal, and similarly for T and W̃. Moreover,

|λ`(PW̃) − λ`(PW̃)|2 = O

(
ln 10N

ε

Fmin

)
, for all ` ∈ 2, . . . ,N.

A similar result for |λ`(PA) − λ`(PA)| was shown in Chung and Radcliffe (2011).

Remark 3.8. Fij shows the number of friends of node i that are not in the friend list of
node j. So Fmin = ω (lnN) makes sure that the number of individuals that a node can



73

refer under AC-RDS adjustment grow with a rate faster than lnN. Roughly speaking, it is
similar to the sparsity condition required for the concentration results of any random graph
with independent edges. Since A is a symmetric matrix, Fij = Gji and consequently

min
i,j=1,··· ,|V|

Fij = min
i,j=1,··· ,|V|

Gij.

In the first condition of the theorem, c1 makes sure that the ratio Di

Fij+Gij
stays bounded

as it is needed to prove the results. These sampling results are sufficiently general to apply
to all of the models studied in the previous section.

Theorem 3.9 presents the asymptotic behavior of AC-RDS in reducing the correla-
tion among samples collected from a random graph under a Stochastic Blockmodel.
The theorem is an aggregation of all the previous results. The result is asymptotic
in the size of the population, not in the size of the sample.

Theorem 3.9 (Dependency reduction property of AC-RDS). Let G be a random graph
with N nodes sampled from a Stochastic Blockmodel with B = pIK×K + rJK×K for 0 <
r < p+ r < c < 1 and an equal number of nodes in each of the K blocks. Let (Xi)ni=1 and
(Xaci )ni=1 be two Markov chains with transition matrix PA and PW̃ respectively.

The parameters p, r and K can change with N. If ln(N)/(pN
K

+ rN) → 0, then
asymptotically almost surely, for all i, i+ t ∈ {1, . . . ,n}, and t 6= 0,

Cov(y(Xaci ),y(Xaci+t)) < Cov(y(Xi),y(Xi+t)),

where y : V → R is any bounded node feature.

Remark 3.10. The quantity pN
K
+rN isDmin, the minimum expected degree. The condition

ln(N)/(pN
K
+ rN)→ 0 is needed to use Theorem 3.7. Note that Fij +Gij > 2cDmin for

all i, j = 1, · · · , |V|.
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3.5 Simulation Study

We conduct three sets of simulations to compare the performance of AC-RDS
with standard RDS. The first set investigates the impact of unequal block sizes on
the results of Propositions 3.5 and 3.6. The second set investigates the impact of
community structures and homophily using the stochastic block model. In the third
set, we consider an empirical social network with unknown community structure.
Finally, we consider the difference of simulating the sample with and without
replacement from the underlying network.

The Role of Unequal Block Sizes

Propositions 3.5 and 3.6 assume that the blocks contain an equal number of nodes.
Here we explore the role of unequal block sizes on those results. As a measure of
unbalance, we use the ratio of the largest block size to the smallest block size. The
results of the study are displayed in Figure 3.3. The horizontal axis in both panels
gives this ratio of unbalance; when this value is large (farther to the right), the
blocks are exceedingly unbalanced. The vertical axis controls the expected number
of in-block versus out-of-block edges with a parameter ε. In the left panel, ε plays
the dual role as in Proposition 3.6. In the right panel, ε does not control the in-block
probabilities (i.e. the diagonal of B); here, the diagonal of B is set to .8 across all
experiments.

The spectral gap is given by 1 − λ2, we are interested in exploring the ratio

ratio of spectral gaps =
1 − λ2(PW̃)

1 − λ2(PA)
. (3.9)

For a range of unbalances and values of ε, Figure 3.3 plots the ratio of spectral
gaps. In all simulations, this value is greater than one, indicating that anti-cluster
sampling decreases λ2 relative to the random walk model of RDS. For example,
the contour at 5.3 represents the class of models such that anti-cluster sampling
increases the spectral gap by over five-fold.
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Anti-cluster sampling decreases the sampling dependence.

In−block probability is 1−epsilon
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Figure 3.3: Results for the simulation study described in Section 3.5, which examines
the impact of unequal block sizes on the results of Propositions 3.5 and 3.6. As a
measure of unbalance (the x-axis), we use the ratio of the largest block size to the
smallest block size. For a range of SBM parameterizations (as described in the text),
these two panels display the ratio of spectral gaps as given in (3.9). All values are
greater than one, indicating that anti-cluster sampling will increase the spectral
gap, thus decreasing the dependence between adjacent samples in the RDS. The
benefits of anti-cluster sampling are especially prominent when ε is small; this
corresponds to a model setting in which there are drastically fewer edges between
blocks.

Random Networks

Here we investigate the impact of community structures and homophily using
the stochastic block model. We use a SBM with 2000 nodes and 50 communities
of equal size to generate the underlying social network. To illustrate the impact
of community structures, we vary the ratio of expected in-block and out-of-block
node degree from 1/2 to 4. We fix the in-block probabilities to 0.9 and change
the out-of-block probabilities from 0.036 to 0.0045. This ratio also controls the
probability of generating an out-of-community referral. For example, with the ratio
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equal to one, the probability of an out-of-community referral is 1/2.
We simulate Markovian referral trees in which each participant refers exactly

three members with replacement. The three referrals are samples from the neigh-
bors of the participants. RDS uses uniform samples, whereas AC-RDS uses non-
uniform samples based on the weights described in 3.5. To show the effect of the
communities, we choose the binary node feature to be based on the community
membership. The value is set to zero if the node belongs to communities 1 through
25, otherwise, the value is to set one. For both designs, we use the RDS II estimator
to estimate the community proportion, where the inclusion probabilities are the
stationary distribution of the simple random walk.

The datasets are simulated in the following way. First we generate a realization
of an SBM and compute the stationary distribution of the simple random walk.
We simulate the referral procedure of RDS and AC-RDS starting from a uniformly
selected node and continuing until a certain number of samples are collected, either
1%, 5%, or 10% of the total nodes. We compute the RDS II estimates of the feature
from samples collected by both procedures.

This study is based on 5000 simulated datasets. Figure 3.4 displays boxplots for
the 5000 RDS II estimates of the proportion in different settings. Comparing RDS to
AC-RDS, we see that AC-RDS collects more representative samples. Additionally,
as we increase the degree of homophily, the performance of AC-RDS suffers less. In
(a) and (b), the chance that participants make referrals outside of their community is
relatively high, 2/3 and 1/2, respectively. In these cases, both designs perform simi-
larly. However, in (c) and (d), where there is a smaller chance of cross-community
referral, AC-RDS collects more representative samples by encouraging participants
to leave their communities more often. This is exactly the intended outcome of
AC-RDS. In fact, at the population level, this is the result proven in Lemma 3.4.

Add-Health Networks

This set of simulations is based on friendship networks from the National Longitu-
dinal Survey of Adolescent Health dataset (available at http://www.cpc.unc.edu/
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The estimates with samples from SBM collected by AC-RDS outperforms RDS.
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Figure 3.4: Simulation results for the random network study. Here we consider
RDS sampling of random graphs drawn from a SBM with balanced communities.
Under different settings, the figure compares RDS II estimates of the community
proportion from samples collected by standard RDS and AC-RDS. The boxplots
display the estimated proportions for the 5000 simulated datasets. The true value
is 0.5.
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addhealth), which we refer to as the Add-Health Study. In these networks, stu-
dents are represented by nodes and an edge between two students indicates any
type of friendship. To collect friendship data, the students were asked to list up
to five friends of each gender, and whether they had interaction within a certain
period of time. Here, we treat the friendship networks as undirected networks.
That is, an edge connecting two students means that either student, not necessarily
both, reported a friendship. For this study, we use the four largest networks in
the dataset. Table 3.2 contains summary information for the largest connected
component of these four networks. We use gender as the binary node feature and
focus on estimating the proportion of males in the population.

School id # Nodes # Edges CC covariance covarianceac
School 36 2152 7986 0.178 0.0260 0.0056
School 40 1996 8522 0.144 0.0265 0.0030
School 41 2064 8646 0.139 0.0243 0.0042
School 50 2539 10455 0.141 0.0276 0.0069

Table 3.2: Network characteristics for the four largest friendship networks in the
Add-Health study. This table provides characteristics for the largest connected
component of each network. An edge between student nodes indicates that either
student reported a friendship. The clustering coefficient (CC) is the ratio of the
number of triangles and connected triplets. The last two columns represent the
covariance of the samples collected under RDS and AC-RDS, respectively.

We simulate the referral procedure of RDS and AC-RDS starting from a uni-
formly selected node and continuing until a certain number of samples are collected,
either 1%, 5%, or 10% of the total nodes. In these simulations, each participant
refers exactly three members with replacement. We compute the RDS II estimate
of the male proportion using the node degree for the weights.

This study is based on 10, 000 simulated datasets. Figure 3.5 displays boxplots
for the 10, 000 RDS II estimates of the male proportion under different settings.
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The estimates with samples from Add-Health friendship networks collected
by AC-RDS outperforms RDS.
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Figure 3.5: Simulation results for the Add-Health study. Here we consider RDS
sampling of Add-Health friendship networks. Under different settings, the figure
compares RDS II estimates of the male proportion from samples collected by stan-
dard RDS and AC-RDS. The boxplots display the estimated proportions for the
10, 000 simulated datasets.
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Comparing Sampling With and Without Replacement

We consider the impact on AC-RDS when simulating the sample with and without
replacement from the underlying network. In the Random Networks simulation
model, there is only a small difference between the two sampling settings. This is
likely because the network is dense. In smaller networks, one expects there to be a
greater difference between with and without replacement sampling. In fact, in the
Add-Health simulation model, under a without replacement setting and a referral
rate of one or two, the trees die quickly and often do not collect enough samples to
attain 1% of the total nodes.

3.6 Discussion

By employing the social network to drive referrals, many RDS studies have suc-
cessfully attracted large sets of participants from a variety of marginalized and
hard-to-reach populations.

In the respondent-driven sampling, bottlenecks create dependencies between
the samples; successive samples are much more likely to belong to the same com-
munity. Because of these dependencies, bottlenecks increase the variability of the
resulting estimators. While researchers cannot alter the social network to diminish
bottlenecks, researchers can use novel implementations of RDS to implicitly encour-
age participants to refer friends in different communities. In comparison to other
such techniques in the literature, AC-RDS does not require participants to reveal
sensitive information, nor does it require a priori knowledge on what forms the
bottlenecks (e.g. race, gender, neighborhood, some combination of these factors, or
some entirely different factors).

We call this approach anti-cluster RDS. This terminology stems from two dis-
tinct, but related, definitions of “clustering” in networks. First, the classical use of
“clustering” in social networks is the clustering coefficient, a summary statistic of a
network which describes the propensity of nodes to form triangles. This idea of
“clustering” is a local measure. The second form of “clustering” is more global and
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is often used synonymously with community structure; the idea is that “clusters”
of individuals form communities. Both of these types of clusters emerge due to
homophily, the tendency of individuals to become friends with people who are
similar. As such, homophily produces a local-global duality in “clustering.” AC-
RDS requests are built upon local structures in the network (which of your friends
are friends) and immediately access the global network patterns, which could be
unknown to the researchers and/or participants.

Section 3.4 studies theoretical properties of AC-RDS. We first argue that AC-RDS
can be approximated by a reversible Markovian process. Propositions 3.5 and 3.6
show that AC-RDS can decrease λ2, the eigenvalues of the Markov transition matrix,
on the population graph. Theorem 3.7 shows that these gains from Propositions 3.5
and 3.6 will continue to hold if the graph is sampled with independent edges. In
addition, Theorem 3.9 shows that AC-RDS reduces the covariance of the samples
in the referral tree under the Stochastic Blockmodel with equal block size.
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Chapter 4

Future Work
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Phylogenetic data analysis: The model selection methods that detect occur-
rence of evolutionary shifts lack rigorous theoretical studies to guarantee closeness
of selected models to the optimum. The computational complexity of the problem
even under the standard criteria is unknown. In addition, it is necessary to have
a procedure to quantify the uncertainty in the estimated model. The procedure
essentially needs a well-defined metric to measure the distance between various
models and form the possible shift configuration space. It seems possible to adapt
the metric space introduced by Billera, Holmes and Vogtmann (BHV) to accomplish
that goal.

Tree-structured models for summarizing data: Hierarchical clustering (HC)
type techniques output the same mathematical objects as phylogenetic trees, a
variate of latent tree models. Dendrograms, the output of HC methods, provides
a summary and insight into the geometry and global structure of the data. In
contrast to flat clusters, dendrograms can reveal multiscale structure in datasets
that the standard methods fail to capture. Furthermore, they are popular methods
to display microarray data and study the co-expressions of the genes’ time series
under various conditions. Despite the popularity, there is a gap between the theory
and practice of the HC methods. For example, their stability and consistency are not
well studied. These properties can be studied under the mathematical framework
of a stochastic process on an unobserved tree. Furthermore, various computational
methods that are developed for phylogenetic trees such as metric spaces of the trees
(e.g. BHV distance) and ultrametric spaces can be used to study dendrograms.

Topologically inspired methods: Trees (as in graph theory) are special one-
dimensional topological structures. Their higher dimensional generalizations are
called “simplicial complexes” which have a fully developed theory and ubiquitous
applications in mathematical models of spaces and point clouds. There are powerful
algorithms that already use the geometry of simplicial complexes in data science. In
addition to the rich geometric dependencies in modeling data as higher-dimensional
topological structures, it seems plausible to adapt the theory of operators and their
spectrum that are quite useful for study of familiar statistical properties such
as clustering, hierarchical clustering, and nonlinear dependencies among data
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features.
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Appendix A

Appendix for Chapter 2
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Figure A.1: Recall rate (first row) and precision (second row) of first pPC from 4
traits. The magnitudes of all shifts were increased by the same scaling factor.
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Figure A.2: Left: phylogenetic placement of 28 shifts in the selection optimum in
Anolis lizards, as detected by surface (running time of the forward phase: 2 hours
and 12 minutes). Each shift is annotated with a symbol on the corresponding edge.
The same symbol is used for shifts inferred to have converged to the same selection
optimum. Right: bar graphs showing the 4 traits combined for analysis. The tree
and data are from Mahler et al. (2013), available in their supplementary material at
www.sciencemag.org/content/suppl/2013/07/18/341.6143.292.DC1/.

www.sciencemag.org/content/suppl/2013/07/18/341.6143.292.DC1/


88

ahli
allogus
rubribarbus
imias
sagrei
bremeri
quadriocellifer
ophiolepis
mestrei
jubar
homolechis
confusus
guafe
garmani
opalinus
grahami
valencienni
lineatopus
reconditus
evermanni
stratulus
krugi
pulchellus
gundlachi
poncensis
cooki
cristatellus
brevirostris
caudalis
marron
websteri
distichus
barbouri
alumina
semilineatus
olssoni
etheridgei
fowleri
insolitus
whitemani
haetianus
breslini
armouri
cybotes
shrevei
longitibialis
strahmi
marcanoi
baleatus
barahonae
ricordii
eugenegrahami
christophei
cuvieri
barbatus
porcus
chamaeleonides
guamuhaya
altitudinalis
oporinus
isolepis
allisoni
porcatus
argillaceus
centralis
pumilis
loysiana
guazuma
placidus
sheplani
alayoni
angusticeps
paternus
alutaceus
inexpectatus
clivicola
cupeyalensis
cyanopleurus
alfaroi
macilentus
vanidicus
argenteolus
lucius
bartschi
vermiculatus
baracoae
noblei
smallwoodi
luteogularis
equestris
monticola
bahorucoensis
dolichocephalus
hendersoni
darlingtoni
aliniger
singularis
chlorocyanus
coelestinus
occultus

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

99%

100%

77%

98%

12%

100%

99%

100%

97%
100%

100%

98%
57%
83%

100%

38%

19%

46%
100%

87%
43%

99%
86%

27%

58%

92%95%

93%

99%

99%
91%

99%
86%

−3.41 1.43pPC.1 −1.42 2.31pPC.2 −1.79 2.41pPC.3 −2.02 2.37pPC.4

Figure A.3: Left: phylogenetic placement of 28 shifts in the selection optimum in
Anolis lizards, as detected by `1ou+AICc (running time: 13.2 minutes). Each shift
is annotated with an asterisk and its bootstrap support. Right: bar graphs showing
the 4 traits combined for analysis, as in Figure A.2.
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Figure A.5: Left: phylogenetic placement of 9 shifts in the selection optimum in
Anolis lizards, corresponding to a local optimum at 9 found by `1ou+BIC (see
Figure A.4). Right: bar graphs showing the 4 traits combined for analysis, as in
Figure A.2.
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Figure A.6: Configurations selected by `1ou+ pBIC (left, 12 shifts) and by surface
(right, 28 shifts), with the traditional ecomorph designations present in Mahler
et al. (2013) (colored squares at the tips) and the geographic location of each species
(black shapes at the tips). Right: edge colors correspond to those in Mahler et al.
(2013). Shapes above edges with shifts correspond to the island where the shift
likely occurred.
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Figure A.7: Shifts in Anolis lizard morphology from the first pPC only, using
surface (left: 12 shifts, 5 unique optima, 3 having convergence: yellow, blue and
green) or using `1ou + AICc followed by detection of convergent evolution (right:
16 shifts, 8 unique optima, 5 having convergence: light blue, dark blue, red, light
green and pale green). The two configurations have marked differences, but similar
AICc scores (−86.37 and −86.68). Each shift is annotated with a symbol on the
corresponding edge. The same symbol is used for convergent shifts.
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Figure A.8: Sensitivity of bootstrap support to the configuration used to simulate
bootstrap replicates. Left: Scenario with 14 evolutionary shifts: the 12 found by
`1ou + pBIC plus 2 extra shifts. Right: bar graphs showing the 4 traits combined
for analysis (from Mahler et al., 2013). This 14-shift configuration has a pBIC score
of 770.97, close to that of the optimal 12-shift configuration, 765.98. When the
bootstrapping model uses all 14 evolutionary shifts, bootstrap support (shown
above edges) is strong for the extra 2 shifts, highlighting the sensitivity of bootstrap
values to the configuration used to simulate bootstrap data sets. One of the extra
shifts (leading to a single species, in beige) receives 62% support, compared to no
support when the bootstrapping model uses only 12 shifts (Figure 9). The other
extra shift (leading to 5 tips, in light brown) receives support that is split between 3
edges: the original edge (25%), its parent edge (24%), and one of its daughter edge
(14%), for a total support of 63%. Positioning the shift on the parent edge leads to
the same clustering of taxa, i.e. to an equivalent non-identifiable shift configuration.
The daughter edge separates only 1 of the 5 species in the cluster defined by the
shift.
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Figure A.9: Number of false positives (false shifts). Four traits were simulated with
no shifts as in Figure 4 (right) but with residual correlation, under a multivariate
OU process with either correlated drift (left) or correlated selection (right), in R
using mvSLOUCH v1.2.1 (Bartoszek et al., 2012). The drift covariance had diagonal
elements of σ2 = 2 and the selection matrix had diagonal elements of α = 1. To
simulate correlation due to drift, the off-diagonal elements of the drift covariance
were all set to 2r (left). To simulate correlation due to selection, the off-diagonal
elements of the selection matrix were all set to r (right). Correlation due to drift
had a large impact with an increased number of falsely detected shifts, for all of
the methods currently available to handle multiple traits. More work is needed to
develop shift detection methods that account for residual correlation among traits.
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Appendix for Chapter 3
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This appendix provides the proofs contained in the Chapter 3. We begin by
presenting some preliminary lemmas. We then provide the proofs for the results
given in Sections 3.3, 3.4, and 3.4.

B.1 Preliminary Lemmas

This section contains lemmas which are used to prove our main results. First we
state two standard results, given here for convenience.

Lemma B.1. Let A be a symmetric matrix and D a diagonal matrix. Then

‖DA‖ = ‖D 1
2AD

1
2‖

.

Lemma B.2 (Bernstein’s inequality). Let X1, · · · ,XN be independent random variables
and |Xi − EXi| 6 S for i = 1, · · · ,N. Let σ2 :=

∑N
i=1 E[Xi − EXi]2. Then for all t > 0,

Pr

(∣∣∣∣∣
N∑
i=1

Xi − EXi

∣∣∣∣∣ > t
)

6 2 exp

(
−

1
2t

2

σ2 + 1
3St

)
.

We use the following result from Rohe et al. (2011) in the proof of Proposition
3.5.

Lemma B.3. [Rohe et al. (2011)] Under the Stochastic Blockmodel, if B = pI + rJ and
there are an equal number of nodes in each block, then

λi(PA) =


1 i = 1

(Kr/p+ 1)−1 i = 2, . . . ,K
0 o.w.

For completeness we include the proof here.
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Proof. The matrix B ∈ Rk×k is the sum of two matrices,

B = pI+ rJk1Tk ,

where Ik ∈ Rk×k is the identity matrix, 1k ∈ Rk is a vector of ones, r ∈ (0, 1) and
p ∈ (0, 1 − r). Let Z ∈ {0, 1}N×K be such that ZT1N = s1K for some s ∈ R. This
guarantees that all K blocks have equal size s. The Stochastic Blockmodel has the
population adjacency matrix, A = ZBZT . Moreover, PA = ZBLZ

T for

BL =
1

Nr+ sp

(
pIK + r1K1TK

)
.

The eigenvalues are found by construction.

• The constant vector 1N is an eigenvector with eigenvalue 1;

ZBLZ
T1N =

s

Nr+ sp
Z
(
pIK + r1K1TK

)
1K

=
s

Nr+ sp
Z(p+ Kr)1K +

s(p+ Kr)

Nr+ sp
1N = 1N,

where the last line follows because N = sK.

• Let b2, . . . ,bK ∈ RK be a set of orthogonal vectors which are also orthogonal
to 1K. For any i, Zbi is an eigenvector with eigenvalue (Kr/p+ 1)−1,

ZBLZ
T (Zbi) = ZBLsIK×Kbi =

s

Nr+ sp
Z
(
pIK + r1K1TK

)
bi =

ps

Nr+ sp
(Zbi).

BecauseZbi andZbj are orthogonal for i 6= j, the multiplicity of the eigenvalue
(Kr/p+ 1)−1 is at least K− 1.

Because rank(PA) 6 min(rank(Z), rank(BL), rank(ZT )) 6 K, there are at most K
nonzero eigenvalues. The results follow.

The following result is used for the computation of the eigenvalues in the proof
of Proposition 3.6
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Lemma B.4. Let P be a block constant Markov transition matrix, with blocks of identical
sizes. Let P contain the block values

P =

(
p r

r p

)
,

then
λ2(P) =

p− r

p+ r
.

Proof. This follows from Lemma B.3 using K = 2.

Lemma B.5 (Operator norm of non-negative irreducible matrices). Let A ∈ RN×N
be a non-negative, irreducible matrix. Let ri(A) :=

∑N
j=1Aij. Then,

‖A‖ 6 max
i
ri(A).

Proof. By Perron-Frobenius theorem,A has a real leading eigenvalue and ifAy 6 µy

then λ1(A) 6 µ, where y ∈ RN, µ ∈ R, y > 0, and µ > 0. Take y = 1 and
µ = maxi ri(A). Therefore,

‖A‖ = λ1(A) 6 max
i
ri(A).

Lemma B.6. For any W ∈ RN×N, define diagonal matrix T to contain the row sums
down the diagonal, Tuu =

∑
vW(u, v). If Tuu > 0 for all u, then the eigenvalues of

PW = T−1W are equal to the eigenvalues of LW = T−1/2WT−1/2.

Proof. Let x, λ be an eigenpair of LW ,

T−1/2WT−1/2x = λx =⇒ T−1/2 (T−1/2W
(
T−1/2x

))
= λ

(
T−1/2x

)
,

where the left hand side is PW(T−1/2x). This implies that T−1/2x, λ is an eigenpair
of PW .
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B.2 Design Effect and Variance

Here we provide the proof of Proposition 3.1 from Section 3.3.

Proof of Proposition 3.1. Lemma 12.2 in Levin et al. (2009) shows that (i) fj and λj
are real valued and (ii) the fj are orthonormal with respect to 〈f`, fj〉π. Because
λ2 < 1, f1 is the constant vector. To decompose the covariance,

Cov (y(Xi),y(Xi+t)) = E [(y(Xi) − E[y(Xi)])(y(Xi+t) − E[y(Xi+t)])]

= E [y(Xi)y(Xi+t)] − E2[y(X1)]

= E [y(X1)y(X1+t)] − E2[y(X1)].

The first term

E[y(X1)y(X1+t)] =
∑
u,v∈V

y(u)y(v)Pr(X1 = u,X1+t = v)

=
∑
u,v∈V

y(u)y(v)πuP
t(u, v)

=
∑
u,v∈V

y(u)y(v)πuπv

|V|∑
j=1

fj(u)fj(v)λ
t
j

=
∑
u,v∈V

y(u)y(v)πuπv{1 +

|V|∑
j=2

fj(u)fj(v)λ
t
j }

=
∑
u,v∈V

y(u)y(v)πuπv +

|V|∑
j=2

λtj

∑
u,v∈V

y(u)y(v)πuπvfj(u)fj(v)

= E2[y(X1)] +

|V|∑
j=2

〈y, fj〉2πλtj .
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Hence,

Cov (y(Xi),y(Xi+t)) =
|V|∑
j=2

〈y, fj〉2πλtj .

B.3 Population Graph Results

Here we provide the proofs of Lemmas 3.3, 3.4 and Propositions 3.5, 3.6 which are
the results given in Section 3.4.

Proof of Lemma 3.3. From the definition of Z and Ā it follows that ZTZ = Π and
Ā = Jn×n − ZBZT = ZB̄ZT . Then,

AĀ = ZBZTZB̄ZT = ZBΠB̄ZT

and similarly,
ĀA = ZB̄ΠBZT .

Hence,

(AĀ+ ĀA) ·A =
(
Z(BΠB̄+ B̄ΠB)ZT

)
· (ZBZT )

= Z
(
(BΠB̄+ B̄ΠB) · B

)
ZT .

Proof of Lemma 3.4. We first show that

[(BΠB̄) · B]ij
[(BΠB̄) · B]ii

>
Bij

Bii
=

r

p+ r
. (B.1)
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We have

[(BΠB̄) · B]ij = r(Πii(p+ r)(1 − r) + Πjjr(1 − p− r) +
∑
l6=i,l 6=j

Πllr(1 − r))

[(BΠB̄) · B]ii = (p+ r)(Πii(p+ r)(1 − p− r) +
∑
l 6=i

Πllr(1 − r)).

We re-write (B.1) as follows:

r(Πii(p+ r)(1 − r) + Πjjr(1 − p− r) +
∑
l 6=i
l 6=j
Πllr(1 − r))

(p+ r)(Πii(p+ r)(1 − p− r) +
∑
l 6=iΠllr(1 − r))

>
r

p+ r
(B.2)

p(Πii(p+ r) − Πjjr) > 0, (B.3)

where (B.2) to (B.3) follows from some algebraic manipulation and (B.3) is always
true because of the lemma assumptions. In addition, by going through the same
procedure, it can be shown that

[(BΠB̄+ B̄ΠB) · B]ij
[(BΠB̄+ B̄ΠB) · B]ii

>
Bij

Bii
.

In terms of the expected adjacency matrices the above statement is equivalent to
the followings: Suppose that nodes i and l belong to the same block and j belongs
to a different block, then

W̃ij

W̃il

>
Aij

Ail
. (B.4)

Now, we show PW̃(u, v) < PA(u, v) when u and v belong to the same block. We
have ∑

w∈V

PW̃(u,w) =
∑
w∈V

PA(u,w) = 1∑
w∈V

[T−1W̃]uw =
∑
w∈V

[D−1A]uw.

Assume u and v belong to block C of size |C|. Factor out the transition probability
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between u and v. Then,

[T−1W̃]uv

(
|C|+

∑
w/∈C

[T−1W̃]uw

[T−1W̃]uv

)
= [D−1A]uv

(
|C|+

∑
w/∈C

[D−1A]uw
[D−1A]uv

)
,

and since the summations are along the rows,

[T−1W̃]uv

(
|C|+

∑
w/∈C

W̃uw

W̃uv

)
= [D−1A]uv

(
|C|+

∑
w/∈C

Auw

Auv

)
.

Therefore, based on inequality (B.4),

[T−1W̃]uv < [D−1A]uv.

Suppose the case where Πii = Πjj for all i and j, similarly, for w /∈ C

[T−1W̃]uw > [D−1A]uw. (B.5)

Proof of Proposition 3.5. The first part of this proof focuses on the inequality λ2(PW̃) <

λ2(PA).
Let BRW := D−1

k×kB, and BAC := T−1
k×k[(BΠB̄+ B̄ΠB) · B]. Since Πii = Πjj, then

BRW and BAC are symmetric matrices and have equal row sum. Hence,

λ2(PA) = λ2(D
−1A) = λ2(B

RW),

λ2(PW̃) = λ2(T
−1W̃) = λ2(B

AC).

Let f : {1, 2, · · · ,k}→ R and r be the row sum of BRW and BAC. Then I− 1
r
BAC
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and I− 1
r
BRW are Laplacian matrices. Therefore,

λ2(I−
1
r
BAC) = inf

f:
∑
u f(u)=0

f:
∑
u f

2(u)=1

1
2r
∑

u,v u6=v

BACuv (f(v) − f(u))
2

> inf
f:
∑
u f(u)=0

f:
∑
u f

2(u)=1

1
2r
∑

u,v u6=v

BRWuv (f(v) − f(u))2 = λ2(I−
1
r
BRW),

where the inequality follows from inequality (B.5) and the fact that BACuv > BRWuv

for u 6= v. So we conclude that

λ2(B
AC) < λ2(B

RW)

and, therefore proves the inequality in (3.7),

λ2(PW̃) < λ2(PA).

The fact that λ2(PA) = 1/(R+ 1) follows immediately from Lemma B.3.
The rest of the proof is dedicated to Equation (3.8). From Lemma 3.3, W̃ = ZB̃ZT

for B̃ = (BΠB̄+ B̄ΠB) · B. Define r ′ = 1 − r and note that Π = N/KI and so it can
be temporarily ignored as a constant. First,

BB̄ = (r ′J− pI)(rJ+ pI) = (r ′rK+ r ′p− pr)J− p2I.

Then, define u = (r ′rK+ r ′p− pr).

(BB̄) · B = (uJ− p2I) · (rJ+ pI) = p(u− rp− p2)I+ urJ

Reincorporating the constants from Π = N/KI and a 2 to account for B̄B, it follows
that B̃ = p̃I+ r̃J, for

p̃ = 2p(N/K)(u− rp− p2) and r̃ = 2(N/K)ur.
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Note that r̃ and p̃ depend on the block populations N/K and thus the number of
nodes in the graph N. However, this term cancels out in the ratio r̃/p̃. So, neither
λ2(PW̃) nor λ2(PA) depend on N. As such,

λ2(PW̃) + ε < λ2(PA)

for some ε > 0 that is independent of N.
As K grows and r shrinks, u→ p(R+ 1) and

p̃→ 2p(N/K)(p(R+ 1) − p2) and r̃→ 2rp(N/K)(R+ 1).

Using Lemma B.3 on B̃,

λ2(PW̃) =
1

K(r̃/p̃) + 1
.

Then,
Kr̃

p̃
→ Krp(R+ 1)
p(p(R+ 1) − p2)

=
Kr(R+ 1)
p(R+ 1 − p)

= R
R+ 1

R+ 1 − p
,

which concludes the proof.

Proof of Proposition 3.6. Both PA and PW̃ satisfy the conditions of Lemma B.4. It is
only necessary to compute the probabilities. For PA, p = 1 − ε and r = ε. So,

λ2(PA) =
1 − 2ε

1
→ 1.

To compute λ2(PW̃, notice that it is only necessary to determine p and r up to
proportionality. Under the assumed model, B̄11 = ε, B̄12 = 1 − ε, and Π ∝ I.
Moreover, the matrix (BΠB̄ + B̄ΠB) · B contains the elements p = 2(1 − ε)2 and
r = (1 − ε)2 + ε2 for PW̃. By Lemma B.4.

λ2(PW̃) =
2(1 − ε)2 − (1 − ε)2 + ε2

2(1 − ε)2 + (1 − ε)2 + ε2 =
(1 − ε)2 + ε2

3(1 − ε)2 + ε2 → 1/3.
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B.4 Sampled Graph Results

Here we provide the proofs of Theorems 3.7 and 3.9 from Section 3.4.

Proof of Theorem 3.7. By Lemma B.6, and Wyle’s inequality,

|λ`(PW̃) − λ`(PW̃)| = |λ`(T
− 1

2W̃T−
1
2 ) − λ`(T

− 1
2W̃T− 1

2 )| 6 ‖T− 1
2W̃T−

1
2 − T− 1

2W̃T− 1
2‖.

The rest of the proof studies the righthand side of this inequality.
In order to reduce the required notation, let N := |V|,

Ã := (AĀ+ ĀA),

Ã := (AĀ+ ĀA),

W̃ := (AĀ+ ĀA) ·A = Ã ·A,

W̃ := (AĀ+ ĀA) ·A = Ã ·A.

By the triangle inequality,

‖T− 1
2W̃T−

1
2 − T− 1

2W̃T− 1
2‖ 6 ‖T− 1

2 (W̃ − W̃)T− 1
2‖+ ‖T− 1

2W̃T−
1
2 − T− 1

2W̃T− 1
2‖.

Also,

‖T− 1
2 (W̃ − W̃)T− 1

2‖ = ‖T− 1
2 (Ã ·A− Ã ·A)T− 1

2‖
6 ‖T− 1

2 ((Ã− Ã) ·A)T− 1
2‖+ ‖T− 1

2 ((A−A) · Ã)T− 1
2‖.

The proof is divided into four parts. Part 1 bounds ‖T− 1
2 ((Ã − Ã) · A)T− 1

2‖. Part
2 bounds ‖T− 1

2 ((A−A) · Ã)T− 1
2‖. Part 3 bounds ‖T− 1

2W̃T−
1
2 − T− 1

2W̃T− 1
2‖. Part 4

combines these bounds
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Part 1- Matrix T is diagonal and matrices Ã and Ã are symmetric. Now, we
apply Lemma B.1.

‖T− 1
2 ((Ã− Ã) ·A)T− 1

2‖ = ‖T−1(Ã− Ã) ·A‖
6 ‖T−1(AĀ−AĀ) ·A‖+ ‖T−1(ĀA− ĀA) ·A‖.

At this step, we show an upper-bound for the first term and the result naturally
carries on to the second term.

‖T−1(AĀ−AĀ) ·A‖ 6 ‖T−1|AĀ−AĀ| ·A‖, (B.6)

where | · | is the element-wise absolute value operator and the inequality follows
from the fact that for any matrix M, ‖M‖ 6 ‖|M|‖ (e.g. Mathias, 1990, Theorem 2.5).
Now, we bound the row sum of |AĀ−AĀ| ·A by a concentration inequality and
then we use Lemma B.5 to bound the operator norm.

Denote the sum of the i-th row by ri(·). We have

ri
(
T−1|AĀ−AĀ| ·A

)
=

1
Tii

∑
j

Aij

∣∣∣∣∣∑
k

AikĀkj −AikĀkj

∣∣∣∣∣ . (B.7)

Define Fij =
∑
kAikĀkj and Gij =

∑
k ĀikAkj. For fixed i and j, random variables

AikĀkj are independent with the expected value E[AikĀkj] = AikĀkj and the
variance

σ2
ij =
∑
k

E(AikĀkj −AikĀkj)
2 6
∑
k

E(AikĀkj)2 + (AikĀkj)
2 6 2Fij.

Let ∆Fij :=
√

10Fij ln 2N2

δ
. By the Bernstein’s inequality (stated in Lemma B.2 for
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convenience) and union bound,

Pr

(∣∣∣∣∣∑
k

AikĀkj −AikĀkj

∣∣∣∣∣ > ∆Fij
)

6 2 exp

(
−

1
2∆

2
Fij

σ2
i +

1
3S∆Fij

)
(B.8)

= 2 exp

(
−

5Fij ln 2N2

δ

4Fij + 1
3S∆Fij

)
6
δ

N2 ,

where the last inequality follows from the assumption that Fmin � lnN. So with
high probability,

∑
j

Aij

∣∣∣∣∣∑
k

AikĀkj −AikĀkj

∣∣∣∣∣ 6∑
j

Aij∆Fij .

Now we bound |
∑
j(Aij − Aij)∆Fij | by using the Bernstein’s inequality again.

E[Aij∆Fij ] = Aij∆Fij and∑
j

E[Aij∆Fij −Aij∆Fij ]
2 6 2

∑
j

Aij∆
2
Fij

.

By Bernstein’s inequality, we obtain that with high probability

|
∑
j

(Aij −Aij)∆Fij | 6

√
2
∑
j

Aij∆
2
Fij

,
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and consequently

∑
j

Aij

∣∣∣∣∣∑
k

AikĀkj −AikĀkj

∣∣∣∣∣ 6∑
j

Aij∆Fij +

√
2
∑
j

Aij∆
2
Fij

(B.9)

6 2
∑
j

Aij

√
10Fij ln 2N2

δ

6 10
∑
j

Aij

√
Fij ln N

δ
.

Furthermore,

Tii =
∑
j

W̃ij =
∑
j

Aij
∑
k

AikĀkj + ĀikAkj =
∑
j

Aij(Fij +Gij). (B.10)

From (B.7), (B.9) and (B.10),

ri
(
T−1|AĀ−AĀ| ·A

)
6

10
∑
jAij

√
Fij ln N

δ∑
jAijFij

6
10
∑
jAijFij

√
ln Nδ
Fij∑

jAijFij
6 10

√
ln N

δ

Fmin
.

(B.11)

Following the same steps, we obtain

ri
(
T−1|ĀA− ĀA| ·A

)
6

10
∑
jAij

√
Gij ln N

δ∑
jAijGij

6 10

√
ln N

δ

Gmin
. (B.12)

Therefore,

‖T− 1
2 ((Ã− Ã) ·A)T− 1

2‖ 6 10 ln
1
2 N
δ

min{F
1
2
min,G

1
2
min}

. (B.13)

Part 2-

‖T− 1
2 ((A−A) · Ã)T− 1

2‖ 6 ‖T− 1
2 ((A−A) · (AĀ))T− 1

2‖+ ‖T− 1
2 ((A−A) · (ĀA))T− 1

2‖.
(B.14)
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It is sufficient to show an upper-bound for the first term and the result would be
true for the second term. Let J be the square matrix of order N with all entries one.

‖T− 1
2 ((A−A) ·AĀ)T− 1

2‖ = ‖T− 1
2 ((A−A) ·A(J−A))T− 1

2‖ (B.15)

= ‖T− 1
2 ((A−A) · (AJ) − (A−A) ·AA)T− 1

2‖
6 ‖T− 1

2D(A−A)T− 1
2‖+ ‖T− 1

2 ((A−A) ·AA)T− 1
2‖

= ‖T− 1
2D

1
2 (A−A)D

1
2T− 1

2‖+ ‖T− 1
2 ((A−A) ·AA)T− 1

2‖.

For i, j = 1, · · · ,N define Aij ∈ {0, 1}N×N to be the matrices with 1 at positions ij
and ji, and 0 everywhere else. We have,

T− 1
2D

1
2 (A−A)D

1
2T− 1

2 =

N∑
i=1

N∑
j>i

√
DiiDjj

TiiTjj
(Aij −Aij)A

ij.

The right hand side is a sum of independent symmetric matrices. So, we can apply
Theorem 5 of Chung and Radcliffe (2011) to bound it. Let

M := max
ij=1,··· ,N

∥∥∥∥∥
√

DiiDjj

TiiTjj
(Aij −Aij)A

ij

∥∥∥∥∥ 6 max
ij=1,··· ,N

√
DiiDjj

TiiTjj
, (B.16)

and

v2 :=

∥∥∥∥∥
N∑
i=1

N∑
j>i

Var

(√
DiiDjj

TiiTjj
(Aij −Aij)A

ij

)∥∥∥∥∥ (B.17)

=

∥∥∥∥∥
N∑
i=1

N∑
j>i

[
DiiDjj

TiiTjj
(Aij −A2

ij)A
ii

]∥∥∥∥∥
6 max
i=1,··· ,N

(
N∑
j=1

[
DiiDjj

TiiTjj
(Aij −A2

ij)

])

6 max
i=1,··· ,N

(
N∑
j=1

[
DiiDjj

TiiTjj
Aij

])
6 max
ij=1,··· ,N

D2
iiDjj

TiiTjj
.
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Take

∆ := max
ij=1,··· ,N

2

√
D2
iiDjj ln(2N/δ)

TiiTjj
. (B.18)

Note that

∆ = max
ij

√
DiiDjj

TiiTjj

√
D2
iiDjj ln(2N/δ)

TiiTjj

= max
ij

D2
iiDjj

TiiTjj

√
ln(2N/δ)

Dii
6 v2

√
ln(2N/δ)
Dmin

.

Therefore,

Pr

(∥∥∥∥∥
N∑
i=1

N∑
j>i

√
DiiDjj

TiiTjj
(Aij −Aij)A

ij

∥∥∥∥∥ > ∆

)
6 2N exp

(
−

∆2

2v2 + 2M∆/3

)
(B.19)

6 δ.

For the second term of (B.15), we obtain

T− 1
2 ((A−A) ·AA)T− 1

2 =

N∑
i=1

N∑
j>i

√
1

TiiTjj
(Aij −Aij)(

N∑
k=1

AikAkj)A
ij.

Because |
∑
kAikAkj| 6

√
DiiDjj, we obtain the same bound as (B.19).

Pr

(∥∥∥∥∥
N∑
i=1

N∑
j>i

√
1

TiiTjj
(Aij −Aij)(

N∑
k=1

AikAkj)A
ij

∥∥∥∥∥ > ∆

)
6 2N exp

(
−

∆2

2v2 + 2M∆/3

)
6 δ.
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In addition,

Tii =
∑
j

Aij
∑
k

AikĀkj + ĀikAkj

=
∑
j

Aij(Fij +Gij)

>
∑
j

Aijc1Dii > c1D
2
ii,

where the ineqaulity follows from the assumption that Fij + Gij > c1Dii for all i
and j ∈ 1, · · · ,N.

So

‖T− 1
2 ((A−A) ·AĀ)T− 1

2‖ 6 4

√
ln N

δ

c1Dmin
.

It follows from (B.14) that

‖T− 1
2 ((A−A) · Ã)T− 1

2‖ 6 8

√
ln N

δ

c1Dmin
(B.20)

Part 3- First we bound |Tii − Tii| and then ‖T− 1
2T+

1
2 − I‖.

|Tii − Tii| = |ri(Ã ·A) − ri(Ã ·A)|

6 |ri((AĀ) ·A) − ri((AĀ) ·A)|+ |ri((ĀA) ·A) − ri((ĀA) ·A)|

The first term

|ri((AĀ) ·A) − ri((AĀ) ·A)| = |
∑
j

Aij
∑
k

AikĀkj −
∑
j

Aij
∑
k

AikĀkj| (B.21)

6
∑
j

Aij|
∑
k

AikĀkj −AikĀkj|

+ |
∑
j

(Aij −Aij)
∑
k

AikĀkj|

To bound the first term of Inequality (B.21), we use (B.8) and (B.9). So with
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probability at least 1 − δ,

∑
j

Aij|
∑
k

AikĀkj −AikĀkj| 6 10
∑
j

Aij

√
Fij ln N

δ
. (B.22)

The second term

|
∑
j

(Aij −Aij)
∑
k

AikĀkj| = |
∑
k

∑
j

(Aij −Aij)AikĀkj|

6
∑
k

Aik|
∑
j

AijĀkj −AijĀkj|

=
∑
k

Aik|
∑
j

AijĀjk −AijĀjk|

=
∑
j

Aij|
∑
k

AikĀkj −AikĀkj|.

E[AikĀkj] = AikĀkj. In addition, we can obtain the same upper bound for variance
to use . So with probability at least 1 − δ,

∑
j

Aij|
∑
k

AikĀkj −AikĀkj| 6 10
∑
j

Aij

√
Fij ln N

δ
. (B.23)

From (B.22) and (B.23), we have

|ri((AĀ) ·A) − ri((AĀ) ·A)| 6 20
∑
j

Aij

√
Fij ln N

δ
. (B.24)

Following the same steps,

|ri((ĀA) ·A) − ri((ĀA) ·A)| 6 20
∑
j

Aij

√
Gij ln N

δ
. (B.25)



113

Therefore,

|Tii − Tii| 6 40
∑
j

Aij(

√
Fij ln N

δ
+

√
Gij ln N

δ
).

‖T− 1
2T+

1
2 − I‖ 6 max

i=1,··· ,N

∣∣∣∣∣
√
Tii

Tii
− 1

∣∣∣∣∣
6 max
i=1,··· ,N

∣∣∣∣TiiTii
− 1
∣∣∣∣

6 max
i=1,··· ,N

40
∑
jAij(

√
Fij ln N

δ
+
√
Gij ln N

δ
)∑

jAij(Fij +Gij)
6

40 ln
1
2 N
δ

min{G
1
2
min, F

1
2
min}

.

Furthermore,

‖T− 1
2T+

1
2‖ 6 1 +

40 ln
1
2 N
δ

min{G
1
2
min, F

1
2
min}

< 2, (B.26)

where the last inequality follows from the Theorem’s assumptions.
Let the Laplacian matrix Lac := T− 1

2W̃T−
1
2 . So

‖T− 1
2W̃T−

1
2 − T− 1

2W̃T− 1
2‖ = ‖T− 1

2W̃T−
1
2 − T− 1

2T+
1
2T−

1
2W̃T−

1
2T+

1
2T− 1

2‖
= ‖I− Lac − T− 1

2T+
1
2 {I− Lac}T+

1
2T−

1
2‖

= ‖{T− 1
2T+

1
2 − I}{I− Lac}T+

1
2T− 1

2 + {I− Lac}{I− T+
1
2T− 1

2 }‖
6 ‖T− 1

2T+
1
2 − I‖ · ‖T+ 1

2T− 1
2‖+ ‖I− T+ 1

2T− 1
2‖,

where the inequality follows from the fact that ‖I− Lac‖ 6 1. Now

‖T− 1
2W̃T−

1
2 − T− 1

2W̃T− 1
2‖ 6 120 ln

1
2 N
δ

min{G
1
2
min, F

1
2
min}
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Part 4- Let ε := 10δ. Hence, based on Part 1, 2, and 3 results,

‖T− 1
2W̃T−

1
2 − T− 1

2W̃T− 1
2‖ 6 10 ln

1
2 N
δ

min{G
1
2
min, F

1
2
min}

+
8 ln

1
2 N
δ

c
1
2
1D

1
2
min

+
120 ln

1
2 N
δ

min{G
1
2
min, F

1
2
min}

.

Note that Gmin = Fmin and Dmin > Fmin. So

‖T− 1
2W̃T−

1
2 − T− 1

2W̃T− 1
2‖ 6 138 ln

1
2 10N
ε

min{c
1
2
1D

1
2
min, F

1
2
min}

6
138 ln

1
2 10N
ε

c
1
2
1 F

1
2
min

,

with probability at least 1 − ε.

Proof of Theorem 3.9. Define fj and facj as the jth eigenvectors of PA and PW̃ with
respect to the inner product 〈·, ·〉π and 〈·, ·〉πac respectively. From Proposition 3.1, it
is enough to show that

|V|∑
j=2

〈y, facj 〉2πacλj(PW̃)t <

|V|∑
j=2

〈y, fj〉2πλj(PA)t.

Step 1 of the proof shows that the above holds true in the population, i.e. comparing
Markov chains on PW̃ and PA. Step 2 of the proof shows that the sample versions
converge to the population versions.

Part 1- From Lemma B.3, for i = 2, . . . ,K,

λi(PA) = λ2(PA) and λi(PW̃) = λ2(PW̃). (B.27)

Moreover, for i > K, λi(PA) = λi(PW̃) = 0. Under the theorem conditions, PW̃ and
PA have the same stationary distribution; refer to this as π̄ (in fact, this distribution
is uniform on the nodes). Define f̄j and f̄acj as the jth eigenvectors of PA and PW̃
with respect to 〈·, ·〉π̄ respectively.

So,
|V|∑
j=2

〈y, f̄j〉2π̄λj(PA)t = λ2(PA)
t

K∑
j=2

〈y, f̄j〉2π̄.
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Similarly,
|V|∑
j=2

〈y, f̄acj 〉2π̄λj(PW̃)t = λ2(PW̃)t
K∑
j=2

〈y, f̄acj 〉2π̄.

Proposition 3.5 shows that λ2(PW̃)t+ ε < λ2(PA)
t, where ε does not change asymp-

totically as |V| grows. So, part 1 of the proof will be finished after showing that∑K
j=2〈y, f̄acj 〉2π̄ =

∑K
j=2〈y, f̄j〉2π̄. To compare these terms, note that the construc-

tion of the eigenvalues in the proof of Lemma B.3 shows that the span of sets
{f̄acj · π̄

1
2 : j = 1, . . . ,K} and {f̄j · π̄

1
2 : j = 1, . . . ,K} are identical. Therefore, Parseval’s

Identity implies,
K∑
j=1

〈y, f̄acj 〉2π̄ =

K∑
j=1

〈y, f̄j〉2π̄.

Because these are the top eigenvectors of Markov transition matrices, f̄ac1 = f̄1 = 1.
Thus,

K∑
j=2

〈y, f̄acj 〉2π̄ =

K∑
j=2

〈y, f̄j〉2π̄.

This first part of the proof shows that

|V|∑
j=2

〈y, f̄acj 〉2π̄λj(PW̃)t + ε <

|V|∑
j=2

〈y, f̄j〉2π̄λj(PA)t.

Part 2- To ease notation, let λj := λj(PA) and λ̄j := λj(PA). This part of the proof
shows∣∣∣∣∣∣

|V|∑
j=2

〈y, f̄j〉2π̄λ̄tj − 〈y, fj〉2πλtj

∣∣∣∣∣∣→ 0, as the size of the graph |V| = N increases.
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The proof for the anti-cluster random walk follows the same steps.∣∣∣∣∣∣
|V|∑
j=2

〈y, f̄j〉2π̄λ̄tj − 〈y, fj〉2πλtj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
|V|∑
j=2

〈y, f̄j〉2π̄λ̄tj − 〈y, fj〉2π(λ̄tj + (λtj − λ̄
t
j))

∣∣∣∣∣∣ (B.28)

6

∣∣∣∣∣
K∑
j=2

λ̄tj
(
〈y, f̄j〉2π̄ − 〈y, fj〉2π

)∣∣∣∣∣+
∣∣∣∣∣∣
|V|∑
j=2

〈y, fj〉2π
∣∣λtj − λ̄tj ∣∣

∣∣∣∣∣∣
(B.29)

6 λ̄t2 ·
∣∣∣∣∣
K∑
j=2

〈y, fj〉2π − 〈y, f̄j〉2π̄

∣∣∣∣∣+ max
j

∣∣λtj − λ̄tj ∣∣ · 〈y,y〉2π.

(B.30)

Note that since y is a bounded function, 〈y,y〉2π is bounded. Hence, Theorem 1
with ε = 1/N2 and the Borel-Cantelli Theorem imply that the second term congress
to zero almost surely as N increases.

To show that the first term in (B.30) converges to zero, we must study the
convergence of the eigenspace. Let · denote element wise multiplication. Let π 1

2

be vector with the elements √πi. Let diag(π 1
2 ) be a diagonal matrix with π 1

2 down
the diagonal. For some constant c,

D− 1
2AD− 1

2 (f̄j · π̄
1
2 ) = D− 1

2AD− 1
2diag(π̄

1
2 )f̄j = D− 1

2AcIf̄j = cλ̄jfj.

Together with the fact that 〈f̄j · π̄
1
2 , f̄i · π̄

1
2 〉 ∈ {0, 1} is equal to one if and only if i = j,

this shows that f̄j · π̄
1
2 forms an orthonormal basis of the eigenspace of D− 1

2AD− 1
2 .

Similarly for fj · π
1
2 and D− 1

2AD− 1
2 .

Let V̄ ∈ RN×(K−1) and V ∈ RN×(K−1) be matrices with columns defined by
V̄·j := f̄j+1 · π̄

1
2 and V·j := fj+1 · π

1
2 for j = 1, · · · ,K − 1. Note that the columns

of V and V̄ are orthonormal. Furthermore, define the corresponding orthogonal
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projection matrices Q̄ = V̄V̄T ∈ RN×N and Q = VVT ∈ RN×N.∣∣∣∣∣
K∑
j=2

〈y, fj〉2π − 〈y, f̄j〉2π̄

∣∣∣∣∣ =
∣∣∣∣∣
K∑
j=2

〈y · π 1
2 , fj · π

1
2 〉2 − 〈y · π̄ 1

2 , f̄j · π̄
1
2 〉2
∣∣∣∣∣ (B.31)

=

∣∣∣∣∥∥∥VT (y · π 1
2

)∥∥∥2
−
∥∥∥V̄T (y · π̄ 1

2

)∥∥∥2
∣∣∣∣ (B.32)

=

∣∣∣∣∥∥∥Q(y · π 1
2

)∥∥∥2
−
∥∥∥Q̄(y · π̄ 1

2

)∥∥∥2
∣∣∣∣ (B.33)

6
∥∥∥Q(y · π 1

2

)
− Q̄

(
y · π̄ 1

2

)∥∥∥2
(B.34)

6
∥∥∥(Q− Q̄

) (
y · π 1

2

)∥∥∥2
+
∥∥∥Q̄(y · π 1

2 − y · π̄ 1
2

)∥∥∥2
(B.35)

6
∥∥Q− Q̄

∥∥2 · 〈y,y〉π +
∥∥∥Q̄(y · (π 1

2 − π̄
1
2

))∥∥∥2
(B.36)

First we show convergence of the first term. From Davis-Kahan Sin theorem (e.g.
Yu et al., 2015, Theorem 1), it follows that∥∥∥D− 1

2AD− 1
2 −D− 1

2AD− 1
2

∥∥∥
δ

>
∥∥sinΘ

(
V , V̄

)∥∥ =
∥∥Q− Q̄

∥∥ , (B.37)

where the equality follows from (Stewart, 1990, Theorem 5.5 pp. 43) and

δ = min
{
|λ̄K+1 − λK|, |λ̄1 − λ2|

}
.

λ̄K+1 = 0 and λ̄1 = 1. So δ = min {λK, 1 − λ2}. Furthermore, λK > |λ̄K − |λK − λ̄K||

and λ2 > |λ̄2 − |λ2 − λ̄2||. Recall λ̄2 = λ̄K. Then, Theorem 3.7 implies |λj − λ̄j| → 0
a.s., which is less than λ̄2. So, δ > 1

2 λ̄2. Theorem 3.7 also implies that the numerator
on the left hand side of Equation (B.37) coverages to zero a.s..

Now, we focus on the second term.∥∥∥Q̄T (y · (π 1
2 − π̄

1
2

))∥∥∥2
6
∥∥∥y · (π 1

2 − π̄
1
2

)∥∥∥2
6 ‖y‖2∞ ·

∥∥∥π 1
2 − π̄

1
2

∥∥∥2
. (B.38)

Based on the theorem assumptions ‖y‖∞ is bounded. So we just need to show the
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convergence of the second term. Note that
∥∥∥π 1

2

∥∥∥ =
∥∥∥π̄ 1

2

∥∥∥ = 1. So

∥∥∥π 1
2 − π̄

1
2

∥∥∥ = 2 sin Θ(π
1
2 , π̄ 1

2 )

2
.

Recall that π 1
2 and π̄ 1

2 are leading eigenvectors of the sample and population Lapla-
cian matrices respectively. Then, it follows from Davis-Kahan Sin theorem and
concentration of eigenvalues of the Laplacian matrices that

∣∣∣sinΘ
(
π

1
2 , π̄ 1

2

)∣∣∣ → 0.

Therefore, we conclude that
∥∥∥π 1

2 − π̄
1
2

∥∥∥→ 0 a.s..



119

references
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