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ABSTRACT

As software permeates our world in every imaginable way, from health-
care to policing to autonomous vehicles, algorithms play an expanding
role in shaping our everyday lives. Indeed, automated decision-making,
particularly in the form of machine learning, has profound transformative
potential on our society; this power is accompanied by increasing concerns
about the safety and fairness of the machine-learned models involved.
We argue that such impactful or safety-critical settings necessitate exact
quarantees about the quality of the systems involved. Accordingly, this
dissertation tackles these problems using classic ideas from formal methods,
since the artifacts involved—the learning algorithms and the models—are
ultimately still programs.

First, we attend to the interface between humans and machine-learned
models: The means by which practitioners create models is to provide
curated training examples to a learning algorithm; however, it is often
unclear how subtleties in the training data translate into program behavior.
As a cursory step towards formally, automatically reasoning about the
relation between training data input and model output, we focus specif-
ically on data-poisoning attacks, a problem in adversarial machine learning.
We present Antidote, a tool that verifies if the composition of decision-tree
learning and classification is robust to small perturbations in the training
data. Antidote uses abstract interpretation to symbolically train all possible
trees for an intractably large space of possible datasets, and in turn, to
determine all possible classifications for a given input.

Next, we turn our attention to the notion of algorithmic fairness. The
research community has debated a wide variety of fairness definitions;
we propose to express such definitions formally as probabilistic program
properties. With the goal of enabling rigorous reasoning about fairness,

we design a novel technique for verifying probabilistic properties that



ix

admits a wide class of decision-making programs, implemented in a tool
we call FairSquare. FairSquare is the first verification tool for automatically
certifying that a program meets a given fairness property. Our evaluation
demonstrates FairSquare’s ability to verify fairness for a range of different
machine-learned programs.

Finally, in the event that a program is provably unfair (or more gener-
ally, that a program does not meet some probabilistic correctness property),
we turn our attention to the problem of program synthesis for probabilistic
programs: automatically constructing a program to meet a probabilis-
tic specification of its desired behavior. We propose distribution-guided
inductive synthesis (DIGITS), a novel technique that (i) iteratively calls a syn-
thesizer on finite sets of samples from a given distribution and (ii) verifies
that the resulting program is both correct and minimally different from
a target program (e.g. an unfair model to be repaired). picrts has strong
convergence guarantees rooted in computational learning theory; our evalu-
ation shows that picrts is indeed able to synthesize a range of programs,
including repairs to those that FairSquare verified were unfair.



1 INTRODUCTION

The modern era has instilled a great deal of responsibility in “algorithms.”
Particularly driven by advances in machine learning and big-data technol-
ogy, we are entrusting automated decision-making processes with tasks
that impact human lives in substantial ways, including criminal sentencing
(Angwin et al., 2016), health care (Mazurowski et al., 2019), controlling
autonomous vehicles (Grigorescu et al., 2020), and much more. We may
find it appealing to believe that automating these tasks provides efficiency,
objectivity, and uniformity exceeding that of manual human effort, but we
must nonetheless be careful when embracing this new wave of technology.

The problem stems from the fact that, frankly, many of these tasks
are hard. We delegate them to machine learning algorithms because the
traditional programming workflow does not work: instead of finding a
methodical solution and having developers engineer an implementation,
training data examples are handed to a learning algorithm which creates
some model of the training data. This model, in turn, can be used as a
program that operates on new, unseen inputs. The end result is that this
program may seem to make decisions well, but we do not necessarily
understand how it is doing so. How can we be sure it works correctly?
(What does “correctly” mean?)

Traditional “Software 1.0”* logic programming admits a common pat-
tern for correcting mistakes: users often file bug reports to the developers,
describing inputs to the system that result in unexpected outputs (or
crashes). The developers can fix this bug by manually tracing the input
through the program to identify some line of code whose logic is incor-

rect. Test cases can be added to ensure that the bug no longer occurs; an

IThis distinction of software paradigms appears to have been coined in a blog post
by Karpathy (2017): “Software 1.0 is code we write. Software 2.0 is code written by
the optimization based on an evaluation criterion (such as ‘classify this training data
correctly”’).”



ambitious development team could even go so far as to formally verify that
the code behaves exactly as according to some mathematical specification
(see Ringer et al. (2019); Klein et al. (2018) for overviews of real-world,
formally verified software and the techniques therein).

However, the development and use of “Software 2.0,” data program-
ming, is frequently uncooperative with this process. As an example, con-
sider the 2015 incident in which frustrated users reported that Google
Photos’s machine-learning-based search functionality was tagging images
of black people as “gorilla” (BBC, 2015). This bug is not easily fixable, and
for years, Google’s “solution” has been to avoid tagging images as “gorilla”
altogether (Hern, 2018). After all, one could feed the misclassified images
in question through the model to try to identify where things go wrong,
but the models in question are frequently incomprehensible to humans
(Knight, 2017), and it is not possible to isolate what “logic” should change.
It is likely the case that this Google Photos bug is due (at least in part) to
the under-representation of black people in the training dataset. But even
if we were to amend the dataset accordingly, would we know this racist
tagging behavior would be completely eliminated? Could we be certain?

Let us distill two takeaways from this example: First, in “Software 2.0,”
the only real mechanism by which developers create programs is through
feeding a large corpus of training data into a learning algorithm, and it
is not always obvious to practitioners how subtleties in the data translate
into model behavior. Second, while it is expected that machine-learned
models will not have 100% accuracy, they all-too-often disproportionately
mistreat minority and vulnerable groups; fixing this disparity is highly
non-trivial (Hao, 2019).

The work within this thesis takes modest steps towards equipping de-
velopers with the tools they need to automate responsibly; specifically, we
tackle problems related to algorithmic fairness and adversarial machine learn-

ing from a formal methods perspective. Software 2.0 practitioners should



become invested in certifying the reliability, safety, and fairness of their
systems, and accordingly, this thesis establishes prototypical techniques
to do so. Ideally, the development environments of the future will assist
not only with producing models, but also, e.g., with understanding the
relation between the training data and those models, or with guaranteeing
that those models do not exhibit undesirable behavior. Ultimately, this
thesis optimistically envisions a future in which our society pursues equity
while embracing new technologies.

1.1 Context and Challenges

While the goals we’ve just discussed are vast, in this thesis we examine only
a small number of specific problems, but to great depth, as cursory steps
towards that future. Here, we provide a brief overview of relevant back-
ground information on program verification and synthesis, on adversarial
machine learning, and on algorithmic fairness.

Program Verification and Synthesis. Our motivation is to analyze Soft-
ware 2.0 artifacts (models and learning algorithms) for correctness properties.
These artifacts are ultimately still programs; formal methods research has
developed a number of techniques to analyze programs, and we will apply
them here.

Throughout this thesis, we will occasionally borrow notation from
Hoare logic (Hoare, 1969), a classic formal system for analyzing the cor-
rectness of programs. Specifically, correctness is stated as a “Hoare triple”:

{P} C {Q}

where P and Q are logical statements (referred to as the “precondition”
and “postcondition,” respectively), and C is a code snippet. A Hoare

triple asserts that if P is true about the program state, and the code C is



evaluated, then Q will be true afterwards.
For example, the repeated application of bitwise-exclusive-or opera-
tions can be used somewhat non-intuitively to perform an in-place swap.

We would state the correctness of this operations as follows:
x=c/NAy=c) x=x"y, y=x"y;, x:=x"y {x=c2A\y=cq}

Hoare logic provides a proof system for establishing the validity of such
triples (though we elide those details here).

The field of program verification deals more generally with establish-
ing the correctness properites of programs; on the other hand, program
synthesis is concerned with the creation of programs that are correct by
construction. Together, verification and synthesis form the conceptual
core of the work within this thesis; however, we will be concerned with
novel notions of program correctness derived from the profound way
that software has begun to interact with society. Indeed, our correctness
properties will look something like:

{An attacker has bounded power}
I use machine learning
{The model is unaffected}

or

{Demographic information about society]}
Hiring decisions are made by machine-learning

{The decisions are fair}

which will require substantial conceptual and technical development to

formalize, certify, and enforce.

Adversarial Machine Learning. Artificial intelligence, in the form of ma-
chine learning, is rapidly transforming the world as we know it. Today,

machine learning is responsible for an ever-growing spectrum of sensitive



decisions—from loan decisions, to diagnosing diseases, to autonomous
driving. Many recent works have shown how machine learning models
are brittle (Szegedy et al., 2014; Wang et al., 2018b; Chen et al., 2017; Biggio
et al., 2012; Steinhardt et al., 2017), and with ML spreading across many
industries, the issue of robustness in ML models has taken center stage.

The research field that deals with studying robustness of ML models
is referred to as adversarial machine learning. In this field, researchers have
proposed many definitions that try to capture robustness to different
adversaries. The majority of these works have focused on verifying or
improving the model’s robustness to test-time attacks (Gehr et al., 2018;
Singh et al., 2019; Anderson et al., 2019; Katz et al., 2017; Wang et al., 2018a),
where an adversary can craft small perturbations to input examples that
fool the ML model into changing its prediction, e.g., making small changes
to the picture of a cat that causes the model to classify it as a zebra (Carlini
and Wagner, 2017).

Another important problem concerns a different threat model: In data-
poisoning attacks, an adversary can produce slight modifications of the
training set, e.g., by supplying a small amount of malicious training points,
to influence the produced model and its predictions. This attack model is
possible when data is curated, for example, via crowdsourcing or from
online repositories, where attackers can try to add malicious elements
to the training data. For instance, Xiao et al. (2015a) consider adding
malicious training points to affect a malware detection model; similarly,
Chen et al. (2017) consider adding a small number of images to bypass a
facial recognition model.

Data-poisoning robustness has been studied extensively (Biggio et al.,
2012; Xiao et al., 2012, 2015b; Newell et al., 2014; Mei and Zhu, 2015). This
body of work has demonstrated data-poisoning attacks—i.e., modifica-
tions to training sets—that can degrade classifier accuracy, sometimes

dramatically, or force certain predictions on specific inputs. While some



defenses have been proposed against specific attacks (Laishram and Phoha,
2016; Steinhardt et al., 2017), we are not aware of any technique that can
formally verify that a given learning algorithm is robust to perturbations
to a given training set. Verifying data-poisoning robustness of a given

learner requires solving a number of challenges:

* The datasets over which the learner operates are typically large (thou-
sands of elements). Even when considering simple poisoning attacks,
the number of modified training sets we need to consider can be in-

tractably large to represent and explore explicitly.

* Because learners are complicated programs that employ complex met-
rics (e.g., entropy and loss functions), their verification requires new
specialized techniques.

Algorithmic Fairness. Software has become a powerful arbitrator of a
range of significant decisions with far-reaching societal impact—hiring
(Miller, 2015; Kobie, 2016), welfare allocation (Eubanks, 2015), prison sen-
tencing (Angwin et al., 2016), policing (Berg, 2014; Perry, 2013), amongst
many others. With the range and sensitivity of algorithmic decisions ex-
panding by the day, the problem of understanding the nature of program
bias is a pressing one: Indeed, the notion of algorithmic fairness has recently
captured the attention of a broad spectrum of experts, within computer
science and without (Dwork et al., 2012; Zemel et al., 2013; Feldman et al.,
2015; Calders and Verwer, 2010; Datta et al., 2015; Angwin et al., 2016;
Valentino-Devries et al., 2012; Sweeney, 2013; Tutt, 2016; Ajunwa et al.,
2016; Barocas and Selbst, 2014; Rudin et al., 2020; Sanchez-Monedero et al.,
2020; Wieringa, 2020).

Fairness and justice have always been ripe topics for philosophical
debate (Rawls, 2009), and, of course, there are no established rigorous defi-

nitions. Nonetheless, the rise of automated decision-making has prompted



the introduction of a number of formal definitions of fairness, and their util-
ity within different contexts is being actively studied and contested (Rug-
gieri, 2014; Friedler et al., 2016; Kleinberg et al., 2017). To survey a few:

* Group Fairness dictates that, for some subset of the population A C X,
the outcomes given to A must, in an aggregate sense, match those given
to all of X (or X \ A). This is also referred to as “statistical parity” or
“disparate impact” (Feldman et al., 2015) and is a standard that has been
considered in United States legal guidelines (EEOC, 2014). There are
variants of group fairness that focus on false-positive rates, “equalized
odds,” etc. (Hardt et al., 2016)

¢ Often juxtaposed against group fairness, Individual Fairness instead as-
serts that similar individuals must be given similar outcomes. The classic
formalization (Dwork et al., 2012) assumes we are given some met-
ric space of individuals (X, dx) and some metric space of outcomes

(Y, dy): any two individuals x4, x, must have outcomes y;, Y, such that

dy(y1,Y2) < dx(x1,%2).

e Some definitions (Datta et al., 2016; Kilbertus et al., 2017; Kusner et al.,
2017) rooted in counterfactual reasoning, attempt to tease out a notion
of which features cause a decision to be made. Fairness is ensured when
the decision is caused by features that, a priori, we all agree are suitable

for making non-discriminatory decisions.

These definitions introduce a number of challenges: first, it has been
shown that the different definitions can be contradictory (Friedler et al.,
2016), which contributes, in part, to the ongoing search for good definitions
of fairness. Second, it is not sufficient to ensure fairness (whatever the exact
definition is) with respect to some sensitive feature by simply omitting
that feature from the inputs to the decision-making program—in practice,
there are often strong correlations with other “proxy” features to which



the program has access. In other words, checking that a program is fair
and creating programs guaranteed to be fair—either by hand or through

machine learning—are important, but very non-trivial problems.

1.2 Contributions and Organization

In Chapter 2 we foray into formally reasoning about learning algorithms
themselves to better understand the relation between the training data and
the model. We focus on decision-tree learning and present Antidote, a tool
that verifies whether test-time classifications are robust to data-poisoning
attacks. Antidote leverages the classic program analysis technique of
abstract interpretation, devising a specialized abstract domain to reason
about how a program (in this case, the decision—tree learner) manipulates
high—dimensional data tensors. Antidote is able to prove some cases where,
for example, adding additional training data would not change a particular
test instance classification. The content of this chapter is based off work
previously presented at PLDI (Drews et al., 2020).

The remainder focuses on algorithmic fairness, which we encode as
analysis problems for probabilistic programs. In Chapter 3 we formalize
a language for specifying decision-making programs and probabilistic
definitions of fairness. We then present FairSquare, a verifier for such prob-
abilistic properties, based upon work presented at OOPSLA (Albarghouthi
et al., 2017b). FairSquare evaluates probabilistic definitions of fairness
through a novel symbolic-volume-computation algorithm that monotonically
converges to the exact probabilities in the limit, Thus resulting in a sound
and complete fairness verification procedure. To our knowledge, this is the

2There has been an effort within the machine-learning community to adapt loss
functions with fairness regularizers, etc, as a means to enforce fairness; some recent
works include those by Sagawa et al. (2019); Goel et al. (2020); Mandal et al. (2020).
Interestingly, there is also evidence that learning algorithms that attempt to enforce
fairness may be more prone to data-poisoning attacks (Chang et al., 2020).



first probabilistic-inference algorithm for arithmetic smt theories with this
expressivity and guarantees.

Chapter 4 then focuses on the dual of this problem: probabilistic syn-
thesis. We present picits, which is able to synthesize a program that
satisfies some probabilistic postcondition while also satisfying a quanti-
tative objective: piciTs searches for a program that is minimally different
from some functional specification (e.g., a machine-learned program that
does not satisfy the postcondition). picirs reduces complicated reasoning
about how programs manipulate probability distributions over their in-
puts to reasoning about how programs behave on finite sets of sampled
inputs. Remarkably, picits provably converges to a near-optimal solution;
we provide an analysis of its complexity that draws strong connections
with computational learning theory. Our evaluation shows that picrrs is able
to automatically synthesize fairness repairs to machine-learned programs
that FairSquare verified were unfair, thus providing a mechanism for
practitioners to enforce fairness of their models through a general post-
processing step. This work is based on a pair of papers presented at CAV
(Albarghouthi et al., 2017a; Drews et al., 2019).

Finally, we conclude in Chapter 5 with some closing remarks and by

sketching a few directions for future work.
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2  VERIFYING DATA-POISONING ROBUSTNESS

In this chapter, we formally reason about the relation between training
sets and learned model behavior in the interest of verifying a particular
security property: We focus on the problem of verifying data-poisoning
robustness for decision-tree learners. We choose decision trees because
(i) they are widely used interpretable models; (ii) they are used in in-
dustrial models like random forests and XGBoost (Chen and Guestrin,
2016); (iif) decision-tree-learning has been shown to be unstable to training-
set perturbation (Dwyer and Holte, 2007; Turney, 1995; Li and Belford,
2002; Pérez et al., 2005); and (iv) decision-tree-learning algorithms are
typically deterministic—e.g., they do not employ stochastic optimization
techniques—making them amenable to verification.

The data-poisoning robustness property we consider in this chapter is
as follows: Let a perturbed set A(T) define a set of neighboring datasets the
adversary could have attacked to yield the training set T, which we ulti-
mately use during learning. To determine whether the training algorithm
L is robust, we need to measure how the model learned by L varies when
modifying the training set. Let us say we have an input example x—e.g.,
a test example—and its classification label is M(x) =y, where M = L(T)
is the model learned from the training set T. We say that x is robust to
poisoning if and only if for all T" € A(T), we have L(T’)(x) = y; in other
words, no matter what dataset T’ € A(T) we use to construct the model
M’ = L(T’), we want M’ to always return the same classification y on the
input x.

We present Antidote, a tool for verifying data-poisoning robustness of
decision-tree learners based on abstract interpretation (Cousot and Cousot,
1977). At a high level, Antidote takes as input a training set T and an input
x, symbolically constructs every tree built by a particular decision-tree

learner L on every possible variation of T in A(T), and applies all those
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Standard machine-learning pipeline

Training input x
dataset T
model Predicted
Learning ———* Inference —>
label of x
Our approach to proving data-poisoning robustness
Abstract dataset T input x
p N 77 N P Label of x
° (] o .. (] l P 8f f
[ ]
0% || 0% Abstract _— ;00 ©
. J J learning + robustness
o0 5
e®% || %° o imprecise
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Set of training sets that
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Figure 2.1: High-level overview of our approach (Antidote)

trees to x. If all the trees agree on the label of x, then we know that x is
robust to poisoning T. (See Figure 2.1 for an overview.) The layout of this
chapter is as follows:

* In Section 2.1 we provide a high-level overview of Antidote.

* In Section 2.2 we formally define the poisoning robustness problem
and describe a trace-based view of decision-tree learning as a stand-alone

algorithm (facilitating a simpler analysis).

¢ In Sections 2.3 and 2.4 we describe an abstract domain that concisely en-
codes sets of perturbed datasets and the abstract transformers necessary to

verify robustness of the decision-tree learner.
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¢ In Section 2.5 we present an evaluation of Antidote on various datasets,
including a fragment of MNIST (LeCun et al.), showing that Antidote
can prove poisoning robustness for all datasets in cases where an enu-

meration approach would be doomed to fail.

Proofs of theorems stated throughout this chapter can be found in Ap-
pendix B.1. This chapter is based on the work of Drews et al. (2020).

2.1 Overview

In this section, we give an overview of decision-tree learning, the poisoning-

robustness problem, and motivate our abstraction-based proof technique.

Decision-Tree Learning. Consider the dataset T, at the top of Figure 2.2.
It is comprised of 13 elements with a single numerical feature. Each
element is labeled as a white (empty) or black (solid) circle. We use x
to denote the feature value of each element. Our goal is to construct a
decision tree that classifies a given number into white or black.

For simplicity, we assume that we can only build trees of depth 1, like
the one shown at the bottom Figure 2.2. At each step of building a decision
tree, the learning algorithm is looking for a predicate ¢ with the best score,
with the goal of splitting the dataset into two pieces with least diversity,
i.e., most elements have the same class (formally defined usually using a
notion of entropy). This is what we see in our example: using the predicate
x < 10, we split the dataset into two sets, one that is mostly white (left)
and one that is completely black (right). This is the best split we can have
for our data, assuming we can only pick predicates of the form x < ¢, for

an integer c.!

! Note that, while the set of predicates x < c is infinite, for this dataset (and in general
for any dataset), there exists only finitely many inequivalent predicates—e.g., x < 4 and
x < 5 split the dataset into the same two sets.
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Training set

| _JONO
0o 1 2

QO
- @
~0O
QO
<O

Decision tree

st&>lO

| JONONOX o0
0000 oo

White with probability 7 /9 Black with probability 1

Figure 2.2: Illustrative decision-tree learning example

Given a new element for a classification, we check if it is < 10, in which
case we say it is white with probability 7/9—i.e., the fraction of white
elements such that < 10. Otherwise, if the element is > 10, we say it is
black with probability 1.

Data-Poisoning Robustness. Imagine we want to classify an input x but
want to make sure the classification would not have changed had the
training data been slightly different. For example, maybe some percentage
of the data was maliciously added by an attacker to sway the learning
algorithm, a problem known as data poisoning. Our goal is to check whether

the classification of x is robust to data poisoning.

A Naive Approach. Consider our running example and imagine we want
to classify the number 5. Additionally, we want to prove that removing up
to two elements from the training set would not change the classification of
5—i.e., we assume that up to ~15% (or 2/13) of the dataset is contributed
maliciously. The naive way to do this is to consider every possible training
dataset with up to two elements removed and retrain the decision tree.
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If all trees classify the input 5 as white, the classification is robust to this
level of poisoning.

Unfortunately, this approach is intractable. Even for our tiny example,
123) + (113 ) + 1). For a dataset of 1000 elements
and a poisoning of up to 10 elements, we have ~10% possibilities.

we have to train 92 trees ((

An Abstract Approach. Our approach to efficiently proving poisoning
robustness exploits a number of insights. First, we can perform decision-
tree learning abstractly on a symbolic set of training sets, without having to
deal with a combinatorial explosion. The idea is that the operations in
decision-tree learning, e.g., selecting a predicate and splitting the dataset,
do not need to look at every concrete element of a dataset, but at aggregate
statistics (counts).

Recall our running example in Figure 2.2. Let us say that up to two
elements have been removed. No matter what two elements you choose,
the predicate x < 10 remains one that gives a best split for the dataset. In
cases of ties between predicates, our algorithm abstractly represents all
possible splits. For each predicate, we can symbolically compute best- and
worst-case scores in the presence of poisoning as an interval. Similarly, we
can also compute an interval that overapproximates the set of possible
classification probabilities. For instance, in the left branch of the decision-
tree, the probability will be [0.71, 1] instead of 0.78 (or 7/9). The best case
probability of 1 is when we drop the black points 0 and 4; the worst-case
probability of 0.71 (or 5/7) is when we drop any two white points.

The next insight that enables our approach is that we do not need to
explicitly build the tree. Since our goal is to prove robustness of a single input
point, which effectively takes a single trace through the tree, we mainly
need to keep track of the abstract training sets as they propagate along
those traces. This insight drastically simplifies our approach; otherwise,
we would need to somehow abstractly represent sets of elements of a tree

data structure, a non-trivial problem in program analysis.
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Abstraction and Imprecision. We note that our approach is sound but
necessarily incomplete; that is, when our approach returns “robust” the
answer is correct, but there are robust instances for which our approach
will not be able to prove robustness. The are numerous sources of impre-
cision due to overapproximation, for example, we use the intervals domain
(or disjunctive intervals) to capture real-valued entropy calculations of

different training set splits, as well as the final probability of classification.

2.2 Poisoning and Decision Tree Learning

In this section, we begin by formally defining the data-poisoning-robustness
problem. Then, we present a trace-based view of decision-tree learning,

which will pave the way for a poisoning-robustness proof technique.

The Poisoning Robustness Problem

In a typical supervised learning setting, we are given a learning algorithm
L and a training set T C X x Y comprised of elements of some set X, each
with its classification label from a finite set of classes Y. Applying Lto T
results in a classifier (or model): M : X — Y. For now, we assume that
both the learning algorithm L and the models it learns are deterministic
functions.?

Aperturbed set A(T) C 2%*Y defines a set of possible neighboring datasets
of T. Our robustness definitions are relative to some given perturbation A.
(In Section 2.3, we define a specific perturbed set that captures a particular
form of data poisoning.)

Definition 2.1 (Poisoning Robustness). Fix a learning algorithm L, a training
set T, and let A(T) be a perturbed set. Given an element x € X, we say that x is

2Qur approach, however, needs to handle non-determinism in decision-tree learning,
which arises when breaking ties for choosing predicates with equal scores and choosing
labels for classes with equal probabilities.
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robust to poisoning T if and only if
VT e A(T). L(T)(x) =L(T)(x)

When T and A are clear from context, we will simply say that x is robust.

In other words, no matter what dataset T’ € A(T) we use to construct
the model M = L(T’), we want M always to return the same classification

for x.

Example 2.2. Imagine we suspect that an attacker has contributed 10 training
points to T, but we do not know which ones. We can define A(T) to be T as well
as every subset of T of size |T| — 10. If an input x is robust for this definition of
A(T), then no matter whether the attacker has contributed 10 training items or
not, the classification of x does not change.

Decision Trees: A Trace-Based View

We now formally define decision trees. We will formalize a tree as the set
of traces from the root to each of the leaves. As we will see, this trace-based
view will help enable our proof technique. The idea of representing an
already-learned decision tree as a set of traces is not new and has often
been explored in the context of extracting interpretable rules from decision
trees (Quinlan, 1987).

A decision tree R is a finite set of traces, where each trace is a tuple
(0,y) such that o is a sequence of Boolean predicates and y € Y is the
classification.

Semantically, a tree R is a function in X — Y. Given an input x € X,
applying R(x) results in a classification y from the trace (o,y) € R where
x satisfies all the predicates in the sequence o = [¢1,..., @], that is,
A1 x E @i is true. We say a tree R is well-formed if for every x € X there
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exists exactly one trace (o,y) € R such that x satisfies all predicates in o.

In the following we assume all trees are well-formed.

Example 2.3 (Decision tree traces). Consider the decision-tree in Figure 2.2.
It contains two traces, each with a sequence of predicates containing a single
predicate: ([x < 10], white) and ([x > 10], black).

Decision-Tree Learning: A Trace-Based View

We now present a simple decision-tree learning algorithm, DTrace. Then,
in Section 2.3, we abstractly interpret DTrace with the goal of proving
poisoning robustness.

One of our key insights is that we do not need to explicitly represent the
learned trees (i.e., the set of all traces), since our goal is to prove robustness
of a single input point, which effectively takes a single trace through the
tree. Therefore, in this section, we will define a trace-based decision-tree
learning algorithm. This is inspired by standard algorithms—Ilike CART
(Breiman, 2017), ID3 (Quinlan, 1986), and C4.5 (Quinlan, 1993)—but it
is input-directed, in the sense that it only builds the trace of the tree that a given

input x will actually traverse.

A Trace-Based Learner. Our trace-based learner DTrace is shown in Fig-
ure 2.3. It takes a training set T and an input x and computes the trace
traversed by x in the tree learned on T. Intuitively, if we compute the set
of all traces DTrace(T, x) for each x € T, we get the full tree, the one that
we would have traditionally learned for T.

The learner DTrace repeats two core operations: (i) selecting a predi-
cate ¢ with which to split the dataset (using bestSplit) and (ii) removing
elements of the training set based on whether they satisfy the predicate ¢
(depending on x, using filter).> The number of times the loop is repeated

*Note that (ii) is what distinguishes our trace-based learning from conventional
learning of a full tree. (i) selects predicates that would comprise the tree, while (ii) directs
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Input: training set T and inputx € X
Initialize: ¢ < ¢, 0 < empty trace

repeat d times
if ent(T) = 0 then return
@ < bestSplit(T)
if @ = o then return
T « filter(T, ¢, x)
if x = @ then o+ o else 0+ 0—¢@

Output: argmax;(, ; Pi, where cprob(T) = (py,...,px)
Figure 2.3: Trace-based decision-tree learner DTrace

(d) is the maximum depth of the trace that is constructed. Throughout,
we assume a fixed set of classes Y ={1,...,k}.
The mutable state of DTrace is the triple (T, ¢, 0):

* T is the training set, which will keep getting refined (by dropping ele-

ments) as the trace is constructed.

* @ is the most recent predicate along the trace, which is initially unde-
fined (denoted by ©).

* o is the sequence of predicates along the trace, which is initially empty.

Predicate Selection. We assume that DTrace is equipped with a finite set
of predicates ® with which it can construct a decision-tree classifier; each
predicate in @ is a Boolean function in X — B.

bestSplit(T) computes a predicate ¢* € @ that splits the current dataset
T—usually minimizing a notion of entropy. Ideally, the learning algorithm
would consider every possible sequence of predicates to partition a dataset
in order to arrive at an optimal classifier. For efficiency, a decision-tree-
learning algorithms does this greedily: it selects the best predicate it can

us to recurse only along the path that the specific x would take, as opposed to recursing
down both (and without affecting how predicates in the tree are selected).
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find for a single split and moves on to the next split. To perform this
greedy choice, it measures how diverse the two datasets resulting from
the split are. We formalize this below:

We use T, to denote the subset of T that satisfies o, i.e.,

Tle ={xy) €T[xF @}

Let @' be the set of all predicates that do not trivially split the dataset:
Q' ={p e ®|Tl, #0NT|, # T}. Finally, bestSplit(T) is defined as
follows:

bestSplit(T) = argmin score(T, @)
e’

where score(T, @) = [Tlol - ent(Tly,) + [Tl-ol - ent(Tl-y). Informally,
bestSplit(T) is the predicate that splits T into two sets with the lowest
entropy, as defined by the function ent shown in Figure 2.4. Formally,
ent computes Gini impurity, which is used, for instance, in the CART al-
gorithm (Breiman, 2017). Note that if ®" = (), we assume bestSplit(T) is
undefined (returns ¢). Further, if multiple predicates are possible values
of bestSplit(T), we assume one is returned nondeterministically. Later, in
Section 2.3, our abstract interpretation of DTrace will actually capture all

possible predicates in the case of a tie.

Example 2.4. Recall our example from Section 2.1 and Figure 2.2. For read-
ability, we use T instead of Tv.w, for the name of the dataset. Let us compute
score(T, @), where @ is x < 10. We have |T].,| = 9 and |T]-,| = 4. For the
classification probabilities, defined by cprob (Figure 2.4), we have cprob(T],) =
(7/9,2/9) and cprob(T|-,) = (0, 1) assuming the first element represents white
classification; e.g., in Tl there’s a 7 /9 chance of being classified as white. For
ent, we have ent(Tl,) ~ 0.35and ent(T|-,) = 0. Since T|, is solely composed
of black points, its Gini impurity is 0.

The score of x < 10 is therefore ~3.1. For the predicate x < 11, we get the
higher (worse) score of ~3.2, as it generates a more diverse split.
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k
ent(T) =} _pi(l—pi), where cprob(T) = (p1,..., Px)
i=1

{x,y) €eTly= i}|>
|T| ie[1,k]

cprob(T) = <

Figure 2.4: Auxiliary operator definitions. ent is Gini impurity; cprob
returns a vector of classification probabilities, one element for each class
ie[1,kl.

Filtering the Dataset. The operator filter removes elements of T that eval-

uate differently than x on ¢. Formally,

T, ifxEe

Tl-, otherwise

filter(T, @, x) =

Learner Result. When DTrace terminates in a state (T,, ¢, 0,.), we can read
the classification of x as the class i with the highest number of training
elements in T,.

Using cprob, in Figure 2.4, we compute the probability of each class i
for a training set T as a vector of probabilities. Finally, DTrace returns the
class with the highest probability:

argmax pi where cprob(T,) = (p1,...,Px)
i€[l,x]

As before, in case of a tie in probabilities, we assume a nondeterministic
choice.

Example 2.5. Following the computation from Example 2.4, DTrace(T, 18) ter-
minates in state (T],-10, x < 10, [x > 10]). Point 18 is associated with the
trace [x > 10] and is classified as black because cprob(T|y~10) = (0, 1).
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2.3 Abstractions of Poisoned Semantics

In this section, we begin by defining a data-poisoning model in which
an attacker contributes a number of malicious training items. Then, we
demonstrate how to apply the trace-based learner DTrace to abstract sets of

training sets, allowing us to efficiently prove poisoning-robustness.

The n-Poisoning Model

For our purposes, we will consider a poisoning model where the attacker
has contributed up to n elements of the training set—we call it n-poisoning.
Formally, given a training set T and a natural number n < [T, we define
the following perturbed set:

An(T)={T"CT : [T\T|<n}

In other words, A,,(T) captures every training set the attacker could have
possibly started from to arrive at T.

This definition of dataset poisoning matches many settings studied in
the literature (Chen et al., 2017; Steinhardt et al., 2017; Xiao et al., 2015a).
The idea is that an attacker has contributed a number of malicious data
points into the training set to influence the resulting classifier. For example,
Chen et al. (2017) consider poisoning a facial recognition model to enable
bypassing authentication, and Xiao et al. (2015a) consider poisoning a
malware detector to allow the attacker to install malware.

We do not know which n points in T are the malicious ones, or if there
are malicious points at all. Thus, the set A, (T) captures every possible
subset of T where we have removed up to n (potentially malicious) ele-
ments. Our goal is to prove that our classification is robust to up to n
possible poisoned points added by the attacker. So if we try every possible
dataset in A,,(T) and they all result in the same classification on x, then x
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is robust regardless of the attacker’s potential contribution.
Observe that A, (T)| =Y ", (‘Tl). So even for relatively small datasets

and number n, the set of possibilities is massive, e.g., for MNIST-1-7

dataset (Section 2.5), for n = 50, we have about 10'4!

in A (T).

possible training sets

Abstract Domains for Verifying n-Poisoning

Our goal is to efficiently evaluate DTrace on an input x for all possible
training datasets in A, (T). If all of them yield the same classification y,
then we know that x is a robust input. Our insight is that we can abstractly
interpret DTrace on a symbolic set of training sets without having to fully
expand it into all of its possible concrete instantiations. This allows us to
train on an enormous number of datasets, which would be impossible via
enumeration.

Recall that the state of DTrace is (T, @, 0); for our purposes, we do not
have to consider the sequence of predicates o, as we are only interested in
the final classification, which is a function of T. In this section, we present

the abstract domains for each component of the learner’s state.

Abstract Training Sets. Abstracting training sets is the main novelty of
our technique. We use the abstract element (T’,n’) to denote a set of
training sets and it captures the definition of A,,/(T’): For every training
set T and number n’, the concretization function is y((T’,n’)) = A,/ (T').
Therefore, we have that initially the abstraction function (A, (T)) = (T,n)
is precise. Note that an abstract element (T’, n’) succinctly captures a large
number of concrete sets, A,,/(T'). Further, all operations we perform on
(T',n’) will only modify T’ and n’, without resorting to concretization.
We can define an efficient join operation on two elements in the abstract

domain* as follows:

“Elements in the domain are ordered so that (T;,n;) C (T,,n,) if and only if T} C
T, Any < ny —[Tx \ Ti|. In the text, we define the concretization function, a special case
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Definition 2.6 (Joins). Given two training sets Ty, T andny,n, € N, (Ty, )L
(Ty,ny) = (T/,n") where T" = TIUT, andn’ = max(|Ty\ Ta|4+ny, [T\ Ty|+m4).

Notice that the join of two sets is an overapproximation of the union of
the two sets. The following proposition formalizes the soundness of this

operation:

Proposition 2.7. For any Ty, Ty, ny, ny, the following holds:

YT, 1)) Uy ((To,n2)) €y (T, na) U (To,ny)).

Example 2.8. For any training set Ty, if we consider the abstract sets (T;,2) and
(T, 3), because the second set represents strictly more concrete training sets, we
have

(Ty,2) U(Ty,3) = (Tq,3)

Now consider the training set T, = {x1,%,}. We have
(T2, 2) U(Tr U{x3},2) = (T, U{xs},3)

Notice how the join increased the poisoned elements from 2 to 3 to accommodate
for the additional element x3.

Abstract Predicates and Numeric Values. When abstractly interpreting
what predicates the learner might choose for different training sets, we
will need to abstractly represent sets of possible predicates. Simply, a set
of predicates is abstracted precisely as the corresponding set of predicates
Y—i.e., for every set ¥, we have «(¥) = ¥ and y(¥) = V. Moreover,

of the abstraction function, and the join operation; note that we do not require an explicit
meet operation for the purposes of this chapter—although one is well-defined:

<T1,TL1> M <T2,TL2> =if Ty \Tz‘ >n V[T \ T1| > n, then L
else (T N Tp, min(ng — [Ty \ Tal,n2 — T2\ Tal))
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YUYW, =Y, UY,. For certain operations, it will be handy for ¥ to contain
a special null predicate o.

When abstractly interpreting numerical operations, like cprob and
ent, we will need to abstract sets of numerical values. We do so us-
ing the standard intervals abstract domain (denoted [1, u]). For instance,
«({0.2,0.4,0.6}) = [0.2,0.6] and y([0.2,0.6]) = {x | 0.2 < x < 0.6}. The join
of two intervals is defined as [l;,u;] U [l, U] = [min(ly, ), max(rq, 12)].
Interval arithmetic follows the standard definitions and we thus elide it

here.”

Abstract Learner DTrace”

We are now ready to define an abstract interpretation of the semantics of

our decision-tree learner, denoted DTrace”.

Abstract Domain. Recall that the state of DTrace is (T, ¢, 0); for our pur-
poses, we do not have to consider the sequence of predicates o, as we are
only interested in the final classification, which is a function of T. Using
the domains described prior, at each point in the learner, our abstract
state is a pair ((T’,n’), ¥’) (i.e., in the product abstract domain) that tracks
the current set of training sets and the current set of possible most recent
predicates the algorithm has split on (for all considered training sets).
When verifying n-poisoning for a training set T, the initial abstract
state of the learner will be the pair ((T,n),{¢}). In the rest of the section,
we define the abstract semantics (i.e., our abstract transformers) for all
the operations performed by DTrace”. For operations that only affect one

element of the state, we assume that the other component is left unchanged.

SWhile we choose intervals as our numerical abstract domain in this chapter, any
numerical abstract domain could be used.
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Abstract Semantics of Auxiliary Operators

We will begin by defining the abstract semantics of the auxiliary opera-
tions in the algorithm before proceeding to the core operations, filter and
bestSplit. This is because the auxiliary operators are simpler and highlight
the nuances of our abstraction.
Let us begin by considering (T, n)|*, which is the abstract analog of
Tle-
(T, n)ﬁp = (Tlp, min(n, [Tlel)) (2.1)

Simply, it removes elements not satisfying ¢ from T; since the size of T|,,

can go below n, we take the minimum of the two.

Proposition 2.9. Let T" € y((T,n)). For any predicate ¢, we have T'|, €
YT, n)L%).

Now consider cprob(T), which returns a vector of probabilities for
different classes. Its abstract version returns an interval for each probability,
denoting the lower and upper bounds based on the training sets in the
abstract set:®

cprob® ((T,n)) = <

[max(0,c; —m), ¢yl >
[|T| —mn, |T|] ie1,k]

®Note that this transformer can be more precise: for example, the interval division as
written is not guaranteed to be a subset of [0, 1], despite the fact that all concrete values
would be. Throughout this section, many of the transformers are simply the “natural”
lifting of numerical arithmetic to interval arithmetic; while this may not be optimal, we
do so to make it easier to see the correctness of the approach (and to make proofs and
implementation straightforward).

In the case of cprob”, we can compute the optimal transformer inexpensively: it is
equivalent to write that cprob(T) computes, for each class i € [1, k], the average of the
multiset S; = [if y = ithen 1 else 0| (x,y) € T]. We can then have cprob®((T,n)) perform
a similar computation for each component: let L; denote the m-many least elements of
Si, and let U; denote the m-many greatest elements of S;, where m = [T| —n. These L;
and U; exhibit extremal behavior of averaging, so we can directly compute the endpoints
of the interval assigned to each class as [- Y oy b, = Y oy, bl

Note that our implementation used for the evaluation (Section 2.5) does employ this
optimal transformer for cprob”, while the other transformers match what is presented.
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where ¢; = |{(x,1) € T}|. In other words, for each class i, we need to con-
sider the best- and worst-case probability based on removing n elements
from the training set, as denoted by the denominator and the numera-

tor. Note that in the corner case where n = |T|, we set cprob#((T, ny) =
([0,1])iem,x-

Proposition 2.10. Let T’ € y((T,n)). Then,
cprob(T’) € y(cprob®((T,n)))

where y (cprob® ((T,n))) is the set of all possible probability vectors in the vector

of intervals.

Example 2.11. Consider the training set on the left side of the tree in Figure 2.2;
call it Ty. It has 7 white elements and 2 black elements. cprob(T,) = (7/9,2/9),
where the first element is the white probability. cprob®((Ty,2)) produces the vec-
tor ([5/9,11,10,2/71). Notice the loss of precision in the lower bound of the first
element. If we remove two white elements, we should get a probability of 5/7,
but the interval domain cannot capture the relation between the numerator and

denominator in the definition of cprob®.

The abstract version of the Gini impurity is identical to the concrete

one, except that it performs interval arithmetic:
Kk
ent’(T) = Z ti([1,1] — ), where cprob®(T) = (1, ..., u)
i=1
Each term (; denotes an interval.

Abstract Semantics of filter

We are now ready to define the abstract version of filter. Since we are
dealing with abstract training sets, as well as a set of predicates ¥, we need
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to consider for each ¢ € V¥ all cases where x = ¢ or x = —¢, and take the

join of all the resulting training sets (Definition 2.6). Let
Y.={peV¥[xFotand Y-, ={p € ¥ |x | —o}

Then,

filter®((T,n), ¥, x) = ( |_| (T,n)ffp) L ( |_| (T,n) i(p>

peYy eeY—

Proposition 2.12. Let T € y((T,n)) and @’ € V. Then,
filter(T’, @', x) € y(filter*((T, n), ¥,x))

Example 2.13. Consider the full dataset Ty, from Figure 2.2. For readability,
we write T instead of Ty in the example. Let x denote the input with numerical
feature 4, and let ¥ = {x < 10}. First, note that because Y-, is the empty set,
the right-hand side of the result of applying the filter” operator will be the bottom
element (0,0) (i.e., the identity element for LI). Then,

filter” ((T,2), ¥, x) = (T,2) % 1o U (0,0) (def. of filter")
= (Thc10,2) U (0,00 (def. of (T,m)f,)
= <T\1,X<10,2> (d(?f Of|_|).

Abstract Semantics of bestSplit

We are now ready to define the abstract version of bestSplit. We begin by
defining bestSplit* without handling trivial predicates, then we refine our

definition.

Minimal Intervals. Recall that in the concrete case, bestSplit returns a
predicate that minimizes the function score(T, ¢). To lift bestSplit to the

abstract semantics, we define score”, which returns an interval, and what
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it means to be a minimal interval—i.e., the interval corresponding to the
abstract minimal value of the objective function score®(T, ).

Lifting score(T, @) to score’ ((T,n), ) can be done using the sound trans-
formers for the intermediary computations:

score® (T, n), @) = (T, m) /%, - ent*((T, )1 )
+ T, |- ent* (T, n)IE )
where |(T,n)| = [[T| —n, [Tl
However, given a set of predicates @, bestSplit* must return the ones

with the minimal scores. Before providing the formal definition, we illus-
trate the idea with an example.

Example 2.14. Imagine a set of predicates ® = {@1, @2, @3, @4} with the fol-
lowing intervals for score® ((T,n), @1).

~— " lowest upper bound

score” ((T, n), ¢1) *——=e lubg
score* (T, n), @) o ¢

score” ((T,n), p3) @ ¢

score® (T, ), ¢s) o

Notice that @1 has the lowest upper bound for score (denoted in red and named
lubg). Therefore, we call score® ((T,n), @1) the minimal interval with respect
to @. bestSplit” returns all the predicates whose scores overlap with the minimal
interval score” ((T, 1), @1), which in this case are @1, ©,, and 3. This is because
there is a chance that @1, @, and @3 are indeed the predicates with the best score,
but our abstraction has lost too much precision for us to tell conclusively.

Let b /ub be functions that return the lower/upper bound of an inter-

val. First, we define the lowest upper bound among the abstract scores of
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the predicates in @ as

lubg = min ub(score” ((T,n), ))
PED

We can now define the set of predicates whose score overlaps with the

minimal interval as:

{@ € @ |Ib(score”((T,n), ®)) < lubg}

Dealing with Trivial Predicates. Our formulation above considers the
full set of predicates, ®. To be more faithful to the concrete semantics,
bestSplit” needs to eliminate trivial predicates from this set. In the concrete
case, we only considered ¢ as a possible best split if ¢ performed a non-
trivial split on T, which we denoted ¢ € ®’. (Recall that a trivial split of T
is one that returns () or T.)

This is a little tricky to lift to our abstract case, since a predicate ¢ could
non-trivially split some of the concrete datasets but not others. We lift the

set @’ in two ways:

* Universal predicates: the predicates that are non-trivial splits for all con-

crete training sets in y((T,n))’
Oy ={pe®@|0&y{T,ME)ADZy((T, )% )}

e Existential predicates: the predicates that are non-trivial splits for at least

one concrete training set in y((T, n))

O ={p e ®[(0)# (T, A W0,-) # (T, )%}
"Note that checking () ¢ v((T,n)) is equivalent to checking n # [T|.
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Finally, the definition of bestSplit* considers two cases:

bestSplit* ((T,n)) := if ®y = () then @5 U {0} else
{g € @3 :Ib(score”((T,n), ¢)) < lubo,}

The first case captures when no single predicate is non-trivial for all
sets: we then return all predicates that succeed on at least one training
set in (T, n), since we cannot be sure one is strictly better than another.
To be sound, we also assume the cause of @y being empty is a particular
concrete training set for which every predicate forms a trivial split, hence
we include ¢ as a possibility. The second case corresponds to returning

the predicates with minimal scores.

Lemma 2.15. Let T' € y((T,n)). Then,

bestSplit(T’) € y(bestSplit* ((T,n)))

Abstracting Conditionals

We abstractly interpret conditionals in DTrace, as is standard, by taking the
join of all abstract states from the feasible then and else paths. In DTrace,
there are two branching statements of interest for our purposes, one with
the condition ent(T) = 0 and one with ¢ = <.

Let us consider the condition ¢ = ¢. Given an abstract state ((T,n), V),
we simply set ¥ = {0} and propagate the state to the then branch (unless, of
course, ¢ ¢ ¥, in which case we omit this branch). For ¢ # ¢, we remove ¢
from ¥ and propagate the resulting state through the else branch.

Next, consider the conditional ent(T) = 0. For the then branch, we
need to restrict an abstract state ((T, n), V) to training sets with 0 entropy:
intuitively, this occurs when all elements have the same classification.
We ask: are there any concretizations composed of elements of the same class?,
and we proceed through the then branch with the following training set
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abstraction:

|_| pure((T,n),1)

ie(1,k]

where

pure((T,n),i) =LetT' ={(x,y) € T |y =1i}in
if [T\T|<nthen (T, n—[T\T'|)
else |

The idea is as follows: the set T’ defines a subset of T containing only
elements of class i. But if we have to remove more than n elements from T
to arrive at T’, then the conditional is not realizable by a concrete training
set of class 1, and so we return the empty abstract state.

In the case of ent(T) # 0 (the else branch), we soundly (imprecisely)
propagate the original state without restriction.

Soundness of Abstract Learner

Finally, DTrace” soundly overapproximates the results of DTrace and can
therefore be used to prove robustness to n-poisoning.

Theorem 2.16. Let T’ € y((T,n)), let (T{, -, -) be the final state of DTrace(T’,x),
and let ((T!,n¢), -) be the final abstract state of DTrace’ ((T,n),x). Then T} €

YT ).

It follows from the soundness of DTrace” that we can use it to prove
n-poisoning robustness. Let I = ([l;, uz], ..., [k, ux]) be a set of intervals.
We say that interval [l;, u;] dominates I if and only if l; > u; for every
j 71
Corollary 2.17. Let (T',n') be the final abstract state of DTrace" ((T,n),x). If

I = cprob® ((T’,n’))) and there exists an interval in 1 that dominates 1 (i.e., same
class is selected for every T € y(T,n)), then x is robust to n-poisoning of T.
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2.4 Extensions

In this section, we present two extensions that make our abstract inter-
pretation framework more practical. First, we show how our abstract
domain can be modified to accommodate real-valued features. Second,
we present a disjunctive abstract domain that is more precise than the one

we discussed, but more computationally inefficient.

Real-Valued Features

Thus far, we have assumed that DTrace and DTrace” operate on a finite set
of predicates @. In real-world decision-tree implementations, this is not
quite accurate: for real-valued features, there are infinitely many possible
predicates of the form Ax;.x; < T (where T € R), and the learner chooses
a finite set of possible T values dynamically, based on the training set T.
We will use the subscript R to denote the real-valued versions of existing

operations.

From DTrace to DTracer. The new learner DTracep is almost identical
to DTrace. However, each invocation of bestSplity first computes a finite
set of predicates ®r. Consider all of the values appearing in T for the ith
feature in X, sorted in ascending order. For each pair of adjacent values

(a,b) (i.e., such that there exists no ¢ in T such that a < ¢ < b), we include

a+b

in @ the predicate ¢ = Ax;. x; < 5

Example 2.18. In our running example from Figure 2.2, we have training set
elements in Ty, whose features take the numeric values {0,1,2,3,4,7,...,14}.

bestSplity (Tow) would pick a predicate from the set Op = Ax.x < T | T €
13571115 7y
4 2 .

2/2/2/2/ 2’ 2/"'
From DTrace” to DTrace};. To apply the abstract learner in the real-valued
setting, we can follow the idea above and construct a finite set @ . Because

our poisoning model assumes dropping up to n elements of the training
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set, this results in roughly (n + 1) - [T| predicates in the worst case—i.e.,
we need to account for every pair (a, b) of adjacent feature values or that

are adjacent after removing up to n elements between them.

Example 2.19. Continuing Example 2.18. Say we want to compute @y for
(Tow, 1). Then, for every pair of values that are 1 apart we will need to add a
predicate to accommodate the possibility that we drop the value between them.
E.g,in Ty ={...,3,4,7,...}, we will additionally need the predicate Ax.x <
(34 7)/2, for the case where we drop the element with value 4 from the dataset.

To avoid a potential explosion in the size of the predicate set and
maintain efficiency, we compactly represent sets of similar predicates
symbolically. We describe this detail in Appendix A.1.

Disjunctive Abstraction

The state abstraction used by DTrace” can be imprecise, mainly due to the
join operations that take place, e.g., during filter. The primary concern is
that we are forced to perform a very imprecise join between possibly quite
dissimilar training set fragments. Consider the following example:

Example 2.20. Let us return to Ty, from Figure 2.2, but imagine we have con-
tinued the computation after filtering using x < 10 and have selected some best
predicates. Specifically, consider a case in which we have x = 4 and

e (T,1), where T ={0,1,2,3,4,7,8,9,10}
o W ={x < 3,x < 4} (ignoring whether this is correct)

Let us evaluate filter#(<T, 1),¥,x). Following the definition of filter”, we will

compute
(T'n") = (Tes, 1) U(To5,1)



34

where

T§4 = {(4/ b)/ (3/W)/ (Z,W), (1/W)/ (Orb)}
T>3 = (4/ b)/ (7/W)/ (8,W), (9/W)/ (10/W)}

thus giving us T' = T (the set we began with) and n' = 5 (much larger than
what we began with). This is a large loss in precision.

To address this imprecision, we will consider a disjunctive version of
our abstract domain, consisting of unboundedly many disjuncts of this
previous domain, which we represent as a set {((T, )i, ¥i)}i. Our join

operation becomes very simple: it is the union of the two sets of disjuncts.

Definition 2.21 (Disjunctive Joins). Given two disjunctive abstractions D; =
{((T, n)1, Wi)hier and Dy = {((T, n);, ¥j)}je;, we define

DIL’D] Z:DIUD]

Adapting DTrace” to operate on this domain is immediate: each of the
transformers described in the previous section is applied to each disjunct.
Because our disjunctive domain eschews memory- and time-efficiency
for precision, we are able to prove more things, but at a cost (we explore this
in our evaluation, Section 2.5). Note that, by construction, the disjunctive

abstract domain is at least as precise as our standard abstract domain.

2.5 Implementation and Evaluation

We implemented our algorithms DTrace and DTrace” in C++ in a (single-
threaded) prototype we call Antidote. Our evaluation® aims to answer the

following research questions:

8We use a machine with a 2.3GHz processor and 160GB of RAM throughout.
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RQ1 Can Antidote prove data-poisoning robustness for real-world datasets?

RQ2 How does the performance of Antidote vary with respect to the scale
of the problem and the choice of abstract domain?

Benchmarks and Experimental Setup

We experiment on 5 datasets (Table 2.1). We obtained the first three
datasets from the UCI Machine Learning Repository (Dua and Graff,
2017). Iris is a small dataset that categorizes three related flower species;
Mammographic Masses and Wisconsin Diagnostic Breast Cancer are two
datasets of differing complexities related to classifying whether tumors
are cancerous. We also evaluate on the widely-studied MNIST dataset
of handwritten digits (LeCun et al.), which consists of 70,000 grayscale
images (60,000 training, 10,000 test) of the digits zero through nine. We
consider a form of MNIST that has been used in the poisoning literature
and create another variant for evaluation:

* We make the same simplification as in other work on data poisoning
(Biggio et al., 2012; Steinhardt et al., 2017) and restrict ourselves to
the classification of ones versus sevens (13,007 training instances and
2,163 test instances), which we denote MNIST-1-7-Real. Steinhardt et al.
(2017), for example, recently used this to study poisoning in support

vector machines.

¢ Each MNIST-1-7-Real image’s pixels are 8-bit integers (which we treat
as real-valued); to create a variant of the problem with reduced scale,
we also consider MNIST-1-7-Binary, a black-and-white version that uses

each pixel’s most significant bit (i.e. our predicates are Boolean).

For each dataset, we consider a decision-tree learner with a maximum

tree depth (i.e. number of calls to bestSplit) ranging from 1 to 4. Table 2.1
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Size DT Test-Set Accuracy (%)

Data Set —_— X 1Yl
Train Test d1 2 3 4
Iris 120 30 R* 3 20.0 90.0 90.0 90.0
Mammographic Masses 664 166 R 2 807 831 819 807
Wisconsin Diagnostic 456 113 R 2 912 920 929 947

Breast Cancer

MNIST-1-7-Binary 13,007 100* {0,1}%* 2 957 974 978 983
MNIST-1-7-Real 13,007 100* R78 2 956 976 983 987

* Test set accuracy for MNIST is computed on the full 2,163 instances; robustness
experiments are performed on 100 randomly chosen test set elements.

Table 2.1: Detailed metrics for the benchmark datasets considered in our
evaluation of Antidote.

shows that test set” accuracies of the decision trees learned by DTrace are
reasonably high—affirmation that when we prove the robustness of its

results, we are proving something worthwhile.

Experimental Setup. For each test element, we explore the amount of
poisoning (i.e. how large of a n from our A,, model) for which we can

prove the robustness property as follows.

1. For each combination of dataset T and tree depth d, we begin with a
poisoning amount n = 1, i.e. a single element could be missing from
the training set.

2. For each test set element x, we attempt to prove that x is robust to
poisoning T using any set in A, (T). Let S,, be the test subset for which
we do prove robustness for poisoning amount n. If S, is non-empty,
we double n and again attempt to verify the property for each element
in S,,.

9The UCI datasets come as a single training set. We selected a random 80%-20%
split of the data, saving the 20% as the test set to use in our experiments. The scale
of the MNIST dataset is large; for pragmatic reasons, we fix a random subset of 100
of the original 2,163 test set elements for robustness proving, and we run our DTrace”
experiments only on this subset.
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Figure 2.5: Fraction of test instances proven robust versus poisoning pa-
rameter n (log scale). The dotted line is a visual aid, indicating n is 1% of
the training set size.

3. If at a depth n all instances fail, we binary search between n and n/2 to
findann/2 < n’ < nat which some instances terminate. This approach

allows us to better illustrate the experiment trends in our plots.

Failure occurs due to any of three cases: (i) the computed over-approximation
does not conclusively prove robustness, (ii) the computation runs out of
memory, or (iif) the computation exceeds a one-hour timeout. We run the

entire procedure for the non-disjunctive and disjunctive abstract domains.

Effectiveness of Antidote

We evaluate how effective Antidote is at proving data-poisoning robust-

ness. In this experiment, we consider a run of the algorithm on a single
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test element successful if either the non-disjunctive or disjunctive abstract
domain succeeds at proving robustness (mimicking a setting in which two
instances of DTrace”, one for each abstract domain, are run in parallel)—we
will contrast the results for the different domains in the next subsection.
Figure 2.5 shows these results.

To exemplify the power of Antidote, draw your attention to the depth-2
instance of DTrace” invoked on MNIST-1-7-Real. For 38 of the 100 test
instances, we are able to verify that even if the training set had been poi-
soned by an attacker who contributed up to 64 poisoned elements (~ %),
the attacker would not have had any power to change the resulting clas-
sification. Conventional machine learning wisdom says that, in decision
tree learning, small changes to the training set can cause the model to
behave quite differently. Our results verify nuance—sometimes, there is
some stability.!® These 38 verified instances average ~800s run time. Agy(T)
consists of over 10'7* concrete training sets; This is staggeringly efficient
compared to a naive enumeration baseline, which would be unable to
verify robustness at this scale.

To answer RQ1, Antidote can verify robustness for real-world datasets with
extremely large perturbed sets and decision-tree learners with high accuracies.

Performance of Antidote

We evaluate how the performance of Antidote is affected by the complexity
of the problem, e.g., the size of the training set and its number of features,
the number of poisoned elements, and the depth of the learned decision
tree. Due to the large number of parameters involved in our evaluation, this

section only provides a number of representative statistics. In particular,

10 The Iris dataset has an interesting quirk—we’re unable to prove much at depth 1
because in the concrete case, one of the leaves is a 50/50 split between two classes, thus
changing one element could make the difference for any of the test set instances taking
that path. At depth 2, a predicate is allowed to split that leaf further, making decision-tree
learning more stable.
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although the reader can find plots describing all the metrics evaluated on
each dataset in Appendix C.1, most of our analysis will focus on MNIST-1-
7-Binary (see Figure 2.6), since it exhibits the most illustrative behavior.

Box vs Disjuncts. In this section we use Disjuncts to refer to the disjunc-
tive abstract domain and Box to refer to the non-disjunctive one. Disjuncts
is more precise than Box and, as expected, it can verify more instances.
However, Disjuncts is slower and more memory-intensive. Consider the
MNIST-1-7-Binary dataset (see Figure 2.6). For depth 3 and n = 64 (ap-
proximately 0.5% of the dataset), Disjuncts can verify roughly three times
as many instances as Box. However, on average, the amount of time and
memory required for analyses using Disjuncts to complete each are at least
an order of magnitude greater than those using Box. It is worth noting
that Box can verify certain instances that Disjunct cannot verify due to
timeouts. For example, at depth 4 and n = 128, Box is able to verify 1 prob-
lem instance,'! while Disjuncts always times out. To summarize, Disjuncts
can in general verify more instances than Box because it is more precise.
However, due to Box’s performance, there are instances that Box can verify
and Disjuncts cannot. An interesting direction for future research would
be to consider strategies that capitalize on the precision of tracking many

disjuncts while incorporating the efficiency of allowing some to be joined.

Number of Poisoned Elements. It is clear from the plots that the num-
ber of poisoned elements greatly affects the performance and efficacy of
Antidote. We do not focus on particular numbers, since the trends are
clear from the plots (including the ones in Appendix C.1): The memory
consumption and running times of Disjuncts grow exponentially with n,
but are still practical and Disjuncts is effective up to high depths. The
memory consumption and running times of Box grow more slowly: 95%

of all experiments we ran using Box finished within 20 seconds, and none

The other instances that succeeded at n = 64 terminated after a similar time period,
but their final state did not prove robustness.
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timed out (the longest took 232 seconds).!> However, Box is less effec-
tive than Disjuncts as the depths increase; this is expected, as the loss of

precision with more operations is more severe for Box.

Size of Dataset and Number of Features. We measure whether the size
of the dataset (which in our benchmarks is quite correlated with the num-
ber of features) affects the performance. Consider the case of verifying
a decision-tree learner of depth 3 using the disjunctive domain and a
perturbed set where 0.5% of the points'® are removed from the dataset
(similar trends are observed when varying these parameters). The average
running time of Antidote is 0.1s for Iris, 0.2s for Mammographic Masses,
26s for Wisconsin Diagnostic Breast Cancer, and 32s for MNIST-1-7-Binary.
For MNIST-1-7-Real, 100% of the benchmarks TO at 0.05% poisoning. As
expected, the size of the dataset and the number of features have an effect
on the verification time. However, it is hard to exactly quantify this effect,
given how differently each dataset behaves; an obvious comparison we can
make is the difference between MNIST-1-7-Binary and MNIST-1-7-Real.
These two datasets have identical sizes, but the former uses binary features
and the latter uses real features. As we can see, handling real features
results in a massive slowdown and in proving fewer instances robust. This
is not surprising since real features can result in more predicates, which
affect both running time and the discrimination power of individual nodes
in the decision tree.

Depth of the Tree. Consider the case of verifying a decision-tree learner
for MNIST-1-7-Binary using the disjunctive domain, and a perturbed set
where up to 64 of the points have been added maliciously to the dataset
(similar trends are observed when varying these parameters and for other

datasets). The average running time of Antidote as the depth varies, while

2This data must be taken with a grain of salt: Box is generally less effective than
Disjuncts; due to the incremental nature of our experiments, it did not attempt as many
of the “harder” problems as Disjuncts did.

13We round to the closest n for which the tool can verify at least one instance
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the poisoning n remains constant, increases exponentially: the running
time averages on the order of one second at depth 1, but increases to the
order of tens of minutes at depth 4. As expected, the depth of the tree is
an important factor in the performance of the disjunctive domain, as each
abstract operation expands the set of disjuncts.

We summarize the results presented in this section and answer RQ2: in
general, the disjunctive domain is more precise but slower than the non-disjunctive
domain, and the depth of the learned trees and the number of poisoned elements
in the dataset are the greatest factors affecting performance.

2.6 Related Work

Instability in Decision Trees. Decision-tree learning has a long and sto-
ried history. A particular thread of work that is relevant to ours is the
analysis of decision-tree instability (Dwyer and Holte, 2007; Turney, 1995;
Li and Belford, 2002; Pérez et al., 2005). These works show that decision-
tree learning algorithms are in general susceptible to small data-poisoning
attacks—although they do not phrase it in those terms. For the most part,
the works are motivated from the perspective that a decision tree repre-
sents a set of “rules,” and they are concerned with conditions under which
those rules will not change (either by quantifying forms of invariance
or providing novel learning algorithms). Our work is different in that
it proves that no poisoning attack exists on a formalization of very basic
decision-tree learning, and we can often precisely allow for the “rules” to
change so long as the ultimate classification does not.

Data Poisoning. Data-poisoning robustness has been studied extensively
from an attacker perspective (Biggio et al., 2012; Xiao et al., 2012, 2015b;
Newell et al., 2014; Mei and Zhu, 2015). This body of work has demon-
strated attacks that can degrade classifier accuracy, sometimes dramati-

cally. These works phrase the problem of identifying a poisoned set as



43

a constraint optimization problem. To make the problem tractable, they
typically focus on support vector machines (svms) and forms of regression
for which existing optimization techniques are readily available. Our ap-
proach differs from these works in multiple ways: (i) Our work focuses
on decision trees. The greedy, recursive nature of decision-tree learning is
fundamentally different from the optimization problem solved in learning
svms. (ii) While our technique is general, in this chapter we consider a
poisoning model in which training elements have been added (Xiao et al.,
2015a; Chen et al., 2017). Some works instead focuses on a model in which
elements of the training set can be modified (Alfeld et al., 2016). (ii7) Final
and most important, our work proves that no poisoning attack exists using
abstract interpretation, while existing techniques largely provide search
techniques for finding poisoned training sets.

Recently, techniques have been proposed to modify the training pro-
cesses of machine learning models to make them robust to various data-
poisoning attacks (while remaining computationally efficient). These tech-
niques (Laishram and Phoha, 2016; Steinhardt et al., 2017; Diakoniko-
las et al., 2019a,b) are often based on robust estimation, e.g. outlier re-
moval; see Diakonikolas and Kane (2019) for a survey. In general, these
approaches provide limited probabilistic guarantees about certain kinds of
attacks; the works are orthogonal to ours, though they raise an interesting
question for future work: Can one verify that, on a given training set, these
models actually make the training process resistant to data poisoning? Fi-
nally, some contemporary work utilizes randomized smoothing to certifiably
mitigate the power of a data-poisoning adversary, including works that
replace randomness with deterministic operations that then yield exact
guarantees (Rosenfeld et al., 2020; Weber et al., 2020).

Abstract Interpretation for Robustness. Abstract interpretation (Cousot
and Cousot, 1977) is one of the most popular models for static program
analysis. Our work is inspired by that of Gehr et al. (2018), where abstract
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interpretation is used to prove input-robustness for neural networks. (Re-
cently, Ranzato and Zanella (2020) have done similar work for decision
tree ensembles.) Many papers have followed improving on this problem
(Anderson et al., 2019; Singh et al., 2019). The main difference between
these works and ours is that we tackle the problem of verifying training-
time robustness, while existing works focus on test-time robustness. The
former problem requires abstracting sets of training sets, while the latter
only requires abstracting sets of individual inputs. In particular, Gehr et
al. rely on well-known abstract domains—e.g., intervals and zonotopes—
to represent sets of real vectors, while our work presents entirely new
abstract domains for reasoning about sets of training sets. To our knowl-
edge, our work is the first that even tries to tackle the problem of verifying
data-poisoning robustness.

Other works have focused on provable training of neural networks to
exhibit test-time robustness by construction (Wong and Kolter, 2018; Mir-
man et al., 2018): this is done by using abstract interpretation to over-
approximate the worst-case loss formed by any adversarial perturbation
to any element in the training set. One can think of these techniques as
performing a form of symbolic training, which is conceptually similar
to our core idea. Note, however, two important distinctions: (i) These
works address the problem of adversarial changes to test inputs, while we
address adversarial changes to the training set; (if) These works construct
a different, robust model, while we verify a property of an unchanged

model (or rather, the learner).
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3  FAIRSQUARE: PROBABILISTIC VERIFICATION OF

PROGRAM FAIRNESS

We now turn our attention to the problem of verifying the fairness of
a decision-making program, for example, a machine-learned model used
to make hiring decisions. We think of decision-making algorithms as
probabilistic programs, in the sense that they are invoked on inputs drawn
from a probability distribution, e.g., representing the demographics of
some population. Fairness properties are then formalized as probabilistic
specifications to which the decision-making program must adhere.
Consider a hiring program P that takes as input a vector of arguments
v representing a job applicant’s record and returns a Boolean value indicat-
ing whether the applicant is hired. One of the arguments v, in the vector
v states whether the person is a member of a protected minority or not,
and similarly v in v states whether the person is qualified or not for the
job. Our goal may be to prove a group fairness property that is augmented
with a notion of qualification—that the algorithm is just as likely to hire
a qualified minority applicant as it is for other qualified non-minority

applicants. Formally, we state this probabilistic condition as follows:

Pr[P(v) = true | vy = true N\ vq = true]
Pr[P(v) = true | v = false \vq = true]

>1—c¢€

Here, € is a small constant. In other words, the probability of hiring a
person v, conditioned on them being a qualified minority applicant, is very
close to (or greater than) the probability of hiring a person conditioned on
them being a qualified non-minority applicant. We note that, while most
recent concerns of fairness have focused on automation of bureaucratic
processes, e.g., employment and loan applications, our view of the problem
is broad. For instance, fairness properties can be extended to actions and

decisions of autonomous agents, like robots and self-driving cars, that
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interact with us and affect our environment.

We envision a future in which those who employ algorithmic decision-
making in sensitive domains are required to prove fairness of their pro-
cesses. Towards this vision, our goal in this chapter is to develop an
automated technique that can prove fairness properties of programs, like
the one shown above, as well as others. With that in mind, we have two key
criteria: First, we require a technique that can construct a proof of fairness
or unfairness of a given program with respect to a specified fairness prop-
erty. Second, we need to ensure that our technique can handle real-world
classes of decision-making programs.

Since our aim is to construct proofs of fairness or unfairness, we focus
our development on exact probabilistic verification techniques, in contrast
with approximate techniques that may provide probabilistic guarantees.
We first attempted to reason about fairness using a range of recent proba-
bilistic static analysis techniques that provide exact guarantees (Sankara-
narayanan et al., 2013; Gehr et al., 2016), but we observed that these existing
techniques are unable to handle the programs and properties we consider.
We therefore set out to design a new technique that is suited for our do-
main of verifying fairness of decision-making programs. The layout of

this chapter is as follows:

¢ In Section 3.1 we provide a high-level overview of our technique for

verifying the fairness of a simple (toy) program.

* In Section 3.2 we formalize a simple, but expressive, language for speci-
tying fairness verification problems, and we reduce the problem of
automating these verification problems to a set of weighted-volume-
computation problems.

¢ In Section 3.3 we present a novel weighted-volume-computation algo-
rithm for formulas over real closed fields and prove that it converges to

the exact volume (in the limit).
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¢ In Section 3.4 we implement our techniques in a tool, FairSquare, and
demonstrate its ability to outperform then-state-of-the-art probabilistic

program analyses on a broad spectrum of fairness benchmarks.

Proofs of theorems stated throughout this chapter can be found in Ap-
pendix B.2. This chapter is based on the work of Albarghouthi et al. (2017b).

3.1 Overview and Illustration

Our problem setting is as follows: First, we are given a decision-making pro-
gram Pge.. Second, we have a probabilistic precondition defining a probability
distribution over inputs of P4... We define the probability distribution op-
erationally as a probabilistic program P,,,, which we call the population
model. Intuitively, the population model provides a probabilistic picture
of the population from which the inputs of P4 are drawn. Third, we are
given a quantitative postcondition ¢, that correlates the probabilities
of various program outcomes. This postcondition can encode various

fairness properties. Intuitively, our goal is to prove the following triple:

{V ~ Ppop} T4 Pdec (V) {(Ppost}

In this section, we consider a specific fairness property. We will discuss
in Section 3.2 how several formulations of fairness can be captured by our

framework.

A Simple Verification Problem

Consider the two programs in Figure 3.1(a). The program popModel is a
probabilistic program describing a simple model of the population. Here,
a member of the population has three attributes, all of which are real-
valued: (i) ethnicity; (ii) colRank, the ranking of the college the person
attended (lower is better); and (iii) yExp, the years of work experience a



(@)

The population model defines a joint prob-
ability distribution on attributes of mem-
bers of a population: (i) the rank of the
college a person attended (colRank), (ii) the

1 define popModel()
2
3
years of work experience they have (yExp), 4 yExp ~ gauss(10,5)
5
6
7

ethnicity ~ gauss(0,10)
colRank ~ gauss(25,10)

and (iii) their ethnicity (ethnicity). Note if (ethnicity > 10)
that colRank is influenced by a persons’s colRank < colRank + 5
ethnicity. return colRank, yExp

define dec(colRank, yExp)
expRank <— yExp - colRank
if (colRank <= 5)
hire < true

1
The decision-making program takes an 2
applicant’s record and decides whether 3
to hire them. A person is hired if they 4
are from a top-5 college (colRank <= 5) )
or have lots of experience compared to 5 elif (expRank > -5)
their college rank (expRank > -5). Note 6 hire < true
that this program does not access an 7 else
applicant’s ethnicity. 8 hire « false
9

return hire

(b) Formula ¢ in R? () Underapproximation of ¢
(blue faces are unbounded) as a union of hyperrectangles

colRank

ethnicity °

() FairSquare ratio computation FairSquare ratio computation

. e . .
on dec and popModel (unfair) (e) on modified dec (fair)
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Figure 3.1: Simple illustrative example of FairSquare
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person has. We consider a person to be a member of a protected group
if ethnicity > 10; we call this the sensitive condition. The population model
can be viewed as a generative model of records of individuals—the more
likely a combination is to occur in the population, the more likely it will
be generated. For instance, the years of experience an individual has (line
4) follows a Gaussian (normal) distribution with mean 10 and standard
deviation 5. Observe that our model specifies that members of a protected
minority will probably attend a lower-ranked college, as encoded in lines
5-6.

The program dec is a decision-making program that takes a job ap-
plicant’s college ranking and years of experience and decides whether
they get hired. The program implements a simple decision tree, perhaps
one generated by a machine-learning algorithm or written by a person. A
person is hired if they attended a top-5 college (colRank <= 5) or have lots
of experience compared to their college’s ranking (expRank > -5). Observe
that dec does not access an applicant’s ethnicity.

Our goal is to establish whether the hiring algorithm dec discriminates
against members of the protected minority. Concretely, we attempt to
prove the following property:

Prlhire | min]

>1—¢€
Prlhire | ~min]
where min is shorthand for the sensitive condition ethnicity > 10, and € is
a small parameter set to 0.1 for purposes of illustration.
We can rewrite the above statement to eliminate conditional probabili-
ties as follows:

Pr[hire /\ min]/ Pr[min]
Pr[hire /\ —=min]/ Pr[—min]

>1—¢ (3.1)

Therefore, to prove the above statement, we need to compute a value for
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each of the probability terms: Prlhire /\ min], Pr[min], and Pr[hire /\ —min].
(Note that Pr[~min] = 1 — Pr[min].) Observe that, to prove or disprove
inequality 3.1, all we need are sufficiently precise bounds on probabilities—
not their exact values.

For the purposes of illustration, we shall focus our description on

computing Prlhire /\ —min].

Probabilistic Verification Conditions. To compute Prlhire /A —~min], we
need to reason about the composition of the two programs, dec o popModel.
That is, we want to compute the probability that (i) popModel generates
a non-minority applicant, and (i) dec hires that applicant. To do so, we
begin by encoding both programs as formulas in the linear-real-arithmetic
theory of first-order logic. The process is analogous to that of standard
verification-condition generation for loop-free program fragments.

First, we encode popModel as follows:

©pop = (ethnicity > 10 = colRank, = colRank + 5)
/\ (ethnicity < 10 = colRank; = colRank)

where subscripts are used to encode multiple occurrences of the same

variable (i.e., ssa form). Note that assignments drawn from probability

distributions do not appear in the encoding—we shall address them later.
Second, we encode dec as follows (after simplification):

Qaec = expRank = yExp* — colRank'
A (hire < (colRank' <5V expRank > —5))

where variables with the superscript i are the input arguments to dec.
Now, to encode the composition dec o popModel, we simply conjoin the two

formulas—,,, and ¢4..—and add equalities between returns of popModel
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and arguments of dec.
@p = Qpop /\ Pgec /\ yExp' = yExp /\ colRank" = colRank,

Our goal is to compute the probability that a non-minority applicant
gets hired. Formally, we are asking, what is the probability that the following

formula is satisfied?
@ = 3Vq. @p /\ hire N\ ethnicity < 10

Here, V4 denotes the set of variables that are not probabilistically assigned—
that is, all variables except V,, = {ethnicity, colRank, yExp}. Intuitively, by
projecting out all non-probabilistic variables with existential quantifiers,
we get a formula ¢ whose models are the set of all probabilistic samplings

that lead to a non-minority applicant being generated and hired.

Weighted Volume Computation. To compute the probability that ¢ is
satisfied, we begin by noting that ¢ is, geometrically, a region in R?, be-
cause it has three free, real-valued variables V,,. The region ¢ is partially
illustrated in Figure 3.1(b). Informally, the probability of satisfying ¢ is the
probability of drawing values for the variables in V,, that end up falling
in the region described by ¢. Therefore, the probability of satisfying ¢
is its volume in R3, weighted by the probability density of each of the three

variables. Formally:

Prlhire /A —min] = J PePyPc dV,p
(0]
where, e.g., p. is the probability density function of the distribution
gauss(0,10) (the distribution from which the value of ethnicity is drawn

in line 2 of popModel). Specifically, p. is a function of ethnicity, namely,
1 o etlmicity2

Pelethnicity) = —5=e™ 20 .
The primary challenge here is that the region of integration is spec-
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ified by an arbitrary smrt formula over an arithmetic theory. So, how do
we compute a numerical value for this integral? We make two interdepen-
dent observations: (i) if the formula represents a hyperrectangular region in
R™—i.e., a box—then integration is typically simple, due to the constant
upper /lower bounds of all dimensions; (ii) we can symbolically decompose
an smt formula into an (infinite) set of hyperrectangles.

Specifically, given our formula ¢, we construct a new formula, &7,
where each model m = &7, corresponds to a hyperrectangle that under-
approximates @. Therefore, by systematically finding disjoint hyperrect-
angles inside of ¢ and computing their weighted volume, we iteratively
improve a lower bound on the exact weighted volume of ¢. Figure 3.1(c)
shows a possible underapproximation of ¢ composed of four hyperrect-
angles. The hyperrectangles form a ladder shape that underapproximates
the slanted face of ¢. We can analogously compute an upper bound on the
weighted volume of ¢: we simply find a lower bound for —¢ and apply
the fact that Pr[¢@] = 1 — Pr[—@]. Section 3.3 formalizes this technique and

proves its convergence for decidable arithmetic theories.

Proofs of Group Fairness. We demonstrated how our technique reduces
the problem of computing probabilities to weighted volume computation.
Figure 3.1(d) illustrates a run of our tool, FairSquare, on this example.
FairSquare iteratively improves lower and upper bounds for the probabil-
ities in the ratio, and, therefore, the ratio itself. Observe how the upper
bound (red) of the ratio is decreasing and its lower bound (blue) is increas-
ing. This example is not group fair for ¢ = 0.1, because the upper bound
goes below 0.9.

Recall that applicants of a protected minority tend to attend lower-
ranked colleges, as defined by popModel. Looking at dec, we can point
out that the cause for unfairness is the importance of college ranking for
hiring. Let us attempt to fix this by modifying line 2 of dec to

expRank + 5*yExp - colRank
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In other words, we have made the algorithm value job experience far more
than college ranking. The run of FairSquare on the modified dec is shown
in Figure 3.1(e), where the lower bound on the ratio exceeds 0.9, thus

proving our group fairness property.

3.2 A Framework for Verifying Fairness

Properties

In this section, we formally define our program model, show how a number
of fairness properties can be modeled as probabilistic properties, and

present a general framework for specifying and verifying such properties.

Program Model and Semantics

Programs. A program P is a sequence of statements S:

S=V<«6LE assignment statement
| V ~ Dist probabilistic assignment
| if B then S else S conditional
|'S;S sequence of statements

where V is the set of real-valued variables that can appear in P, e € E is
an arithmetic expression over variables in V, and b € B is a Boolean
expression over variables in V. A probabilistic assignment is made by sam-
pling from a probability distribution p € Dist. A probability distribution
can be, for example, a Gaussian distribution, denoted by gauss(p, o), where
i, o € R are the mean and standard deviation of the Gaussian. Without
loss of generality, we shall restrict distributions to be univariate. We will
also assume distributions have only constant parameters, e.g., mean and

standard deviation of a Laplacian or Gaussian—that is, we assume inde-
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pendence of probabilistic assignments.! Given a probabilistic assignment
x ~ p, we shall treat p(x) as a probability density function (ppF) of the distri-
bution from which the value assigned to x is drawn. For instance, if the
distribution p is gauss(0,1), then p(x) = \/Lz—ne*%

We use v; to denote a vector of input variables of P, and v, to denote a
vector of output variables of P; these variables appear in V and denote the
arguments and returns of P. We say that a program is closed if it has no

inputs, i.e., v; is empty. We shall refer to the following subsets of V.

* V, C Vis the set of probabilistic variables: those that get assigned to in
probabilistic assignments.

* V4 = V\ 'V, is the set of deterministic variables: those that do not appear

in probabilistic assignments.

This simple language can be used to describe typical machine-learning
classifiers such as decision trees, support vector machines, Bayesian net-
works, neural networks, as well as loop-free probabilistic programs (loops
with constant bounds can be unrolled). As demonstrated in Section 3.1,

the same language is used to define population models programmatically.

Operational Semantics. The operational semantics of our program model
is standard, following those introduced by Kozen (1981) and used by other
recent papers on the topic (Sampson et al., 2014; Chistikov et al., 2015;
Sankaranarayanan et al., 2013). We refer the reader to these texts for an

account of the semantics.

Fairness as a Probabilistic Program Property

We now formalize probabilistic pre- and postconditions and use them to

define the probabilistic verification problem. We then show how many

! Gaussian distributions with non-constant parameters can be handled through
properties of Gaussians. E.g., y ~ gauss(x, o), where x € V and o € R, can be transformed
into an equivalent sequence of assignments y ~ gauss(0, 0);y <y + x.
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fairness definitions can be expressed in our verification framework.

Probabilistic Verification Problems. A verification problem is a triple
(Ppop/ Pdecr (ppost)/ where

* Py, called the population model, is a closed program over variables VPP

and output variables vi .

® Py, called the decision-making program, is an open program over vari-
ables V¥; its input arguments are v, with [v{*’| = [v5?|; and its output

variables are v&. (We assume that VPP N Vi = ().)

® Qpost is a probabilistic postcondition, which is a Boolean expression over
probabilities of program outcomes. Specifically, @, is defined as fol-

lows:

@post € BExp :=PExp > ¢ | BExp /A BExp | "BExp
PExp = Prl¢] | ¢ | PExp {+, —, +, x} PExp

where ¢ € R and ¢ is a linear arithmetic formula over input and output

variables of Pgc; €.g., @post might be of the form

Pr[x >0] >05APrly+z>7—Pr[t>5 >0

The goal of verification is to prove that @, is true for the program Pge.oPpop,
i.e., the composition of the two programs where we first run P, to generate
an input for Pg.. Since P, is closed, Pyec © Ppop is also closed. To avoid
division-by-zero problems, we assume that divisors never have value zero.
We will use the following definition when stating the meta-properties of

our algorithm:

.....

probability events occurring in @pos, and let a € R™ denote the exact values of
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these probabilities as induced by Pyec © Ppop. We say (Ppop, Pec, ©post) is “robust”
if there exists some € > O such that, for every b € R™ with each component sat-
isfying |bi — ai| < ¢, substituting each Pr[A;] with b; in Qo5 always evaluates
to the same Boolean value.

Intuitively, this definition excludes cases where the postcondition

“barely” is or is not satisfied, such as @po = Pr[A] > % when Pr[A] exactly
equals 1.
Fairness Properties. We now show how prominent fairness definitions
from the literature can be encoded as probabilistic postconditions. At a
high-level, all proposed fairness definitions aim to ensure fair decision
making, and while some focus on fairness at the granularity of groups,
others focus on fairness at the individual level.

We first consider group fairness formulations. Feldman et al. (2015)
introduced the following definition, inspired by Equality of Employment
Opportunity Commission’s recommendation in the US (EEOC, 2014):

Pr(r = true | min(v) = true]
Pr(r = true | min(v) = false]

>1—¢€

Assuming Pge. returns a Boolean value r—indicating whether an applicant
v is hired—this group fairness property states that the selection rate from
a protected minority group, min(v) = true, is as good as the selection
rate from the rest of the population. One can thus view this verification
problem as proving a probabilistic property involving two sets of program
traces: one set where the input min(v) is true, and another where it is false.
Alternatively, the above definition could be strengthened by conjoining
that the reciprocal of the ratio is also at least 1 — €, thus ensuring that
the selection rate of the two groups is nearly the same (demographic parity).
Further, we could additionally condition on qualified individuals, e.g., if
the job has some minimum qualification, we do not want to character-

ize group fairness for arbitrary applicants, but only within the qualified
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subpopulation. Various comparable notions of group fairness have been
proposed and used in the literature, e.g., Feldman et al. (2015); Zemel
et al. (2013); Datta et al. (2016).

While the above definition is concerned with fairness at the level of
subsets of the domain of the decision-making program, individual fair-
ness (Dwork et al., 2012) is concerned with similar outcomes for similar
elements of the domain. In our hiring example, one potential formulation
is as follows:

Priri=m|vi~v] >1—¢

In other words, for any two similar individuals (denoted v; ~ v,), we want
them to receive similar outcomes (r; = 1,) with a high probability. This is
a hyperproperty—as it considers two copies of Pg.—and can be encoded
through self-composition (Barthe et al., 2004). This property is close in
nature to differential privacy (Dwork, 2006) and robustness (Chaudhuri
et al., 2011; Bastani et al., 2016).

Of course, various definitions of fairness have their merits, shortcom-
ings, and application domains, and there is an ongoing discussion on this
subject (Friedler et al., 2016; Dwork et al., 2012; Hardt et al., 2016; Feldman
et al., 2015; Ajunwa et al., 2016). Our contribution is not to add to this
debate, but to cast fairness as a quantitative property of programs, and
therefore enable automated reasoning about fairness of decision-making

programs.

Probabilistic Inference through Volume Computation

Now that we have defined our program model and the properties we are
interested in verifying, we switch attention to constructing probabilistic
verification conditions.

Following Chistikov et al. (2015), we reduce the problem of computing
the probability that the program terminates in a state satisfying ¢ to
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weighted volume computation (wvc) over formulas describing regions in R™.

In what follows, we begin by formalizing the wvc problem.

Weighted Volume of a Formula. We will use £ to denote first-order formu-
las in linear real arithmetic and the strictly richer real closed fields—Boolean
combinations of polynomial inequalities. Given a formula ¢ € £, a model
m of @, (denoted m = ¢) is a point in R™ (where n is the number of free
variables of ¢). Thus, we view @ as a region in R", i.e., ¢ C R™. We use
Xe =1{x1,...,xn} to denote the free variables of ¢.

We now define the weighted volume of a formula. We assume we are
given a pair (¢,D), where ¢ € £L and D = {py,...,pn} is a set of prob-
ability density functions such that each variable x; € X,, is distributed
according to pi(x;). The weighted volume of ¢ with respect to D, denoted
by voL(¢, D), is defined as follows:

vou(eD)i= | T pile) X,

® XiEX(p

Example 3.2. Consider the formula ¢ = x1 +x, > 0, and let D = {p1,p2},
where py and p, are the PoF of the Gaussian distribution with mean 0 and stan-
dard deviation 1. Then,

voL(g,D) = J p1(x1)palx2) dxidx; = 0.5
x1+x220

Intuitively, if we are to randomly draw two values for x1 and x, from the Gaussian
distribution, we will land in the region xq 4+ x, > 0 with probability 0.5.

Probabilistic Verification Conditions. Recall that our goal is to compute
the probability of some predicate ¢ at the end of a program execution,
denoted Pr[p]. We now show how to encode this problem as weighted
volume computation. First, we encode program executions as a formula

@p. The process is similar to standard verification condition generation
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VC-ASN VC-PASN
(x="Te],0) >x <+ e (true,{pi}) > xi ~ pi

(p1,D1) > $1 (92,D2) > Sy
(@1 /\@2,D1 UDy) > S4; S,

VC-SEQ

(01, D1) >S4 (@2, D) > Sy
<Zt€([[b]], ©1, (92), D; U D2> > if b then Sl else 82

VC-COND

where ite(a,b,c) £ (a = b) A (—a = ¢)

Figure 3.2: Probabilistic verification condition generation

(as used by verification (Barnett and Leino, 2005) and bounded model
checking tools (Clarke et al., 2004)), with the difference that probabilistic
assignments populate a set D of probability density functions.

Figure 3.2 inductively defines the construction of a probabilistic veri-
fication condition for a program P, denoted by a function pvc(P), which
returns a pair (@p, D). Without loss of generality, to simplify our exposi-
tion, we assume programs are in static single assignment (ssa) form (Cytron
et al., 1991). Given a Boolean expression b, the denotation [b] is the same
expression interpreted as an £ formula. The same applies to arithmetic
expressions e. For example, [x +y > 0] = x +y > 0. Intuitively, the con-
struction generates (i) a formula @p that encodes program executions,
treating probabilistic assignments as non-deterministic, and (ii) a set D of
the ppFs of distributions in probabilistic assignments (rule vc-pasn).

Now, suppose we are given a closed program P and a Boolean formula

@ over its output variables. Then,
Prlp] = voL(3IVq. p A @, D)

That is, we project out all non-probabilistic variables V4 from @p A @
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1: function VERIFY(Ppop, Paec, @post)
2 {@pops Dpop) 4= PVC(Ppop)
3 <(pdecz Ddec> — PVC(Pdec)
4: {(@p, D) < (Ppop /\ Paec AV = VP, Dyop U Dyec)
5: Vg + VEP U V§e
6 m«

7 for each expression Pr[e] in @poy do

8 m < m[Pr[e] — voL(IV4. @p N\ @, D)]
9 return m = @poq

Figure 3.3: Abstract verification algorithm for FairSquare

and compute the weighted volume with respect to the densities p; € D.
Intuitively, each model m of 3V4. @p /\ @ corresponds to a sequence of
values drawn in probabilistic assignments in an execution of P. We note
that our construction is closely related to that of Chistikov et al. (2015), to
which we refer the reader for a measure-theoretic formalization.

Example 3.3. Consider the following closed program P:

x ~ gauss(0,2);

y ~ gauss(-1,1);

Z4—X+Yy
where z is the return variable. Using the encoding in Figure 3.2, we compute the
pair (@p, D) > P, where pp = z=x+yand D = {Px, Py), where py and py
are the PDFs of the two distributions from which values of x and y are drawn.

Suppose that we would like to compute the probability that z is positive when

the program terminates: Pr(z > 0]. Then, we can compute the following weighted
volume: voL(3z. op ANz > 0,D), which is ~ 0.327.

Verification Algorithm. We now describe an idealized verification algo-
rithm that assumes the existence of an oracle vor for measuring probability

expressions appearing in the postcondition.The algorithm veriry, shown
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in Figure 3.3, takes a verification problem and returns whether the proba-
bilistic postcondition holds.

VERIFY begins by encoding the composition of the two programs, Py o
Ppop, as the pair (@p, D) and adds the constraint v{** = v to connect the
outputs of Py, to the inputs of Py (recall the example from Section 3.1
for an illustration). For each term of the form Pr[¢p] appearing in @, the
algorithm computes its numerical value and maintains it in a map m. If
m satisfies the @p.—i.e., by replacing all terms Pr[¢] with their values in
m—then the postcondition holds.

3.3 Symbolic Probabilistic Inference

We now turn our attention to our probabilistic inference algorithm, which
reduces the problem to computing the weighted volume of a formula.
Recall that we are given (i) a formula ¢ over real arithmetic constraints,
encoding the semantics of a program, and (i7) a set D defining the pprs of
the distributions of free variables of ¢. Our goal is to evaluate the integral
f(p [L«.ex, Pilxi) dXy. We begin by describing limitations of existing
approaches.

Existing Techniques. In general, there is no systematic technique for com-
puting an exact value for such an integral. Moreover, even simpler linear
versions of the volume computation problem, not involving probability
distributions, are #P-hard (Dyer and Frieze, 1988). Existing techniques
suffer from one or more of the following: they (i) restrict ¢ to a con-
junction of linear inequalities (Sankaranarayanan et al., 2013; De Loera
et al., 2012), (ii) restrict integrands to polynomials or uniform distribu-
tions (De Loera et al., 2012; Belle et al., 2015b; Chistikov et al., 2015; Belle
et al., 2015a), (iii) compute approximate solutions with probabilistic guar-
antees (Chistikov et al., 2015; Vempala, 2005; Belle et al., 2015a), (iv) restrict
¢ to bounded regions of R™ (Chistikov et al., 2015), or (v) have no con-
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vergence guarantees, e.g., computer algebra tools that find closed-form
solutions, like Mathematica and psi (Gehr et al., 2016). (See Section 3.5 for
details.)

Symbolic Weighted Volume Computation. Our approach is novel in
its generality and its algorithmic core. The following are the high-level
properties of our algorithm:

1. It is guaranteed to converge to the exact value of the weighted volume
in the limit. This allows us to produce a sound and complete procedure for
verifying fairness properties.

2. It imposes no restrictions on ppFs, only that we can evaluate the cumu-
lative distribution functions (cprs) associated with the pors in D.? This
provides us with flexibility in defining population models.

3. It accepts formulas in the decidable yet rich theory of real closed fields:
Boolean combinations of polynomial inequalities. This provides a rich
language for encoding many decision-making programs, as we demonstrate
in Section 3.4.

At the algorithmic level, our approach makes the following contribu-
tions:

1. It exploits the power of smT solvers and uses them as a black box, allow-

ing it to directly benefit from future advances in solver technology.

2. It employs the idea of dividing the space into rectangular regions that
are easy to integrate over. While this idea has been employed in various

guises in verification (Bournez et al., 1999; Sankaranarayanan et al.,

2The cumulative distribution function of a real-valued random variable X is the function
f : R — R, such that f(x) = Pr[X <x]. In practice, evaluating a cpr means either
computing the value of the function exactly or approximating its value to specified high
degree of precision; see Section 3.4.
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2013; Asarin et al., 2000; Li et al., 2014), we utilize it in a new symbolic

way to enable volume computation over smt formulas.

3. It introduces a novel technique for approximately encoding ppFs as
formulas and using them to guide the smr solver towards making large
leaps to the exact solution. This technique is crucial when dealing
with decision-making programs comprised of halfspaces, as we show

experimentally in Section 3.4.

Weighted Volume Computation Algorithm

To compute the integral over the region ¢, we exploit the observation
that if ¢ is a hyperrectangular region, i.e., an n-dimensional rectangle in R™,
then we can evaluate the integral, because each dimension has constant
lower and upper bounds. For instance, consider the following formula

representing a rectangle in R*:
@ =0<%x <100N4 <x <10

The following holds:

100 10
J P1(x1)p2(x2) dx1dx, = <J p1(x1) dxl) (J Pa(x2) dXz)
P

0 4
= (F1(10) — F1(4))(F2(100) — F»(0))

where F; = J"foo pi(t) dt is the cor of pi(xi). That is, we independently
compute the integral along each dimension of the rectangle and take the
product. This holds since all variables are independently sampled.

Our algorithm is primarily composed of two steps: First, the hyper-
rectangular decomposition phase represents the formula ¢ as a set of hyper-
rectangles. Note that this set is likely to be infinite. Thus, we present a
technique for defining all hyperrectangles that lie in ¢ symbolically as a
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formula &0, where each model of 67, corresponds to a hyperrectangle
that lies inside the region ¢. Second, after characterizing the set &, of all
hyperrectangles in ¢, we can iteratively sample hyperrectangles in ¢, which
can be done using an off-the-shelf smt solver to find models of &J,,. For
each hyperrectangle we sample, we compute its weighted volume and
add it to our current solution. Therefore, the current solution maintained
by the algorithm is the weighted volume of an underapproximation of

¢—that is, a lower bound on the exact weighted volume of ¢.

Hyperrectangular Decomposition. We begin by defining hyperrectangles

as special formulas.

Definition 3.4 (Hyperrectangles and their weighted volume). A formula

!/
x/

H € £ is a hyperrectangle if it can be written in the form \ . cx < x < ¢
where cy, ¢, € R are the lower and upper bounds of dimension x. We use Hy(x)
and H,,(x) to denote the lower and upper bounds of x in H. The weighted volume
of H, given a set of distributions D, is as follows:

Hu(xi]

voL(H,D) = H J pilxi) dx;

xieXy © Hilxi)

Ideally, we would take a formula ¢ and rewrite it as a disjunction of
hyperrectangles \/ H, but this disjunction is most likely infinite. To see
why, consider the simple formula representing a triangular polytope in
Figure 3.4(a). Here, there is no finite number of rectangles whose union is
the full region in R? enclosed by the triangle.

While the number of hyperrectangles enclosed in ¢ is infinite, we can
characterize them symbolically using universal quantifiers, as shown by
Liet al. (2014). Specifically, we define the hyperrectangular decomposition

of ¢ as follows:

Definition 3.5 (Hyperrectangular decomposition). Given ¢, its hyperrect-
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angular decomposition &7, is:

@@z</\ 1X<ux>/\vx(p.(</\ 1X<x<ux):(p>

x€Xep x€Xep

where 1, uy are fresh free variables introduced for each x € X, and VX, is short
for ¥xi, ..., xn, for xi € Xe.

Given a model m |= 00, we say that H™ is the hyperrectangle induced
by m, as defined below:

H™ = A\ mil) <x < mluy)
XEXq

Intuitively, &, characterizes every possible hyperrectangle that is sub-
sumed by ¢. The idea is that the hyperrectangle H™ induced by each
model m of &, is subsumed by ¢, that is, H™ = ¢. The following exam-
ple illustrates this process.

Example 3.6. Consider the formula ¢ = x > y /Ay > 0, illustrated in Fig-
ure 3.4(c) as a gray, unbounded polygon. The formula G0, after eliminating the
universal quantifier, is:

L <u, Aly <uy Al 2 0A 1 >y

Figure 3.4(c) shows two models my, m, |= G0, and their graphical representation

as rectangles H™ , H™2 in R2. Observe that both rectangles are subsumed by .

The following theorem states the soundness and completeness of hyper-
rectangular decomposition: models of &7, characterize all hyperrectangles

in @ and no others.
Theorem 3.7 (Correctness of G0). Let ¢ € L.

* Soundness: Let m |=00,. Then, H™ = ¢ is valid.
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Figure 3.4: (a) R? view of hyperrectangular decomposition. (b) Hyperrect-
angle sampling, where density is concentrated in the top-left corner. (c)
lustration of models of &7,,.

* Completeness: Let H be a hyperrectangle such that H = @. Then, the fol-

lowing is satisfiable:

Do A\ (L = Hi(x) Ay = Hy(x))

x€Xgp

Hyperrectangle Sampling. Our symbolic weighted volume computation
algorithm, symvor, is shown in Figure 3.5 as two transition rules. Given
a pair (¢, D), the algorithm maintains a state consisting of two variables:
(i) vol, the current lower bound of the weighted volume, and (ii) ¥, a
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HDECOMP
vol <~ 0 VY« 0,

mgEVY
vol < vol + voL(H™,D) W <« W Ablock(H™)

HSAMPLE

where block(H™) = \/ Uy, < HM(x) V 1, > HTY(x)

x€Xep

Figure 3.5: symvoL: weighted volume computation algorithm

constraint that encodes the remaining rectangles in the hyperrectangular
decomposition of ¢.

The algorithm is presented as guarded rules. Initially, using the rule
HDECOMP, vol is set to 0 and V is set to &J,,. The algorithm then proceeds by
iteratively applying the rule rsampLE. Informally, the rule HsampLE is used
to find arbitrary hyperrectangles in ¢ and compute their weighted volume.
Specifically, HsampLE finds a model m of ¥, computes the weighted volume
of the hyperrectangle H™ induced by m, and adds the result to vol.

To maintain soundness, HsaMPLE ensures that it never samples two
overlapping hyperrectangles, as otherwise we would overapproximate
the volume. To do so, every time a hyperrectangle H™ is sampled, we
conjoin an additional constraint to Y—denoted block(H™) and defined
in Figure 3.5—that ensures that for all models m’ = V, H™' does not
overlap with H™, i.e,, H™ AH™ is unsatisfiable. Informally, the block(H™)
constraint specifies that any newly sampled hyperrectangle should be to
the left or right of H™ for at least one of the dimensions.

The following theorem states the correctness of block: it removes all
hyperrectangles that overlap with H™ (soundness), and it does not over-
constrain ¥ by removing hyperrectangles that do not overlap with H™

(completeness).
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Theorem 3.8 (Correctness of block). Given ¢, let ¥ = 00, and let my, m, =
v,

* Soundness: If H™ /\ H™2 is satisfiable, then m, = W A block(H™).

* Completeness: If H™ /\ H™2 is unsatisfiable, then m, = W A block(H™).

Lower and Upper Bounds. The following theorem states the soundness

of symvoL: it maintains a lower bound on the exact weighted volume.

Theorem 3.9 (Soundness of symvor). It is an invariant of symvoL(¢, D) that
vol < vor(g, D).

Proof. Atany point in the execution, vol = 5 |, Jiy, TTpi(xi) dXg, where 1
is the number of applications of HsampLE and H; is the hyperrectangle sam-
pled at step i. By definition, \/ H; = ¢. Since ppFs are positive functions,
vol < vor(@, D).

It follows from the above theorem that we can use symvoL to compute an
upper bound on the exact volume. Specifically, because we are integrating
over pDFs, we know that vor(¢, D) + voL(—@, D) = 1. Therefore, by using
symvoL to compute the weighted volume of —¢, we get an upper bound

on the exact volume of .

Corollary 3.10 (Upper bounds). It is an invariant of symvoL(—e, D) that
1 —wvol > vor(@, D)

Proof. By definition of pprs and integration,

Jo TTpitr0 ax = L [Tp:x) axo + Lp [Tritx) ax,

for any ¢ C R™. From Theorem 3.9, it follows that at any point in the

execution of symvoLr(—¢, D), we have 1 — vol > voL(@, D).



69

Density-Directed Sampling

While the symvor algorithm is sound, it provides no progress guarantees.
Consider, for example, that the algorithm might diverge by sampling
hyperrectangles in ¢ that appear in very low probability density regions,
as illustrated in Figure 3.4(b) on a triangular polytope in R?.

Ideally, the rule HsampLE would always find a model m yielding the
hyperrectangle H™ with the largest weighted volume. Finding such a model
amounts to solving the optimization problem:

HIF (x4)
arg max H J pilxi) dxg

From a practical perspective, there are no known tools or techniques
for finding models of first-order formulas that maximize such complex
objective functions—with integrals over probability density functions.
However, we make the key observation that if p(x) is a step function—
i.e., piecewise constant—then we can symbolically encode f p(x) dx in
linear arithmetic. As such, we propose to (i) approximate each density func-
tion p(x) with a step function step(x), (ii) encode the integrals [ step(x) dx
as linear arithmetic formulas, and (iii) direct sampling towards hyperrect-
angles that maximize these integrals, thus finding hyperrectangles of large

volume.

Approximate Density Functions. We begin by defining approximate den-

sity functions (ADFs).

Definition 3.11 (Approximate density functions). An approximate density
function step(x) is of the form:

ci, x€lay,bi) for 1<i<n
step(x) =
0, otherwise
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Figure 3.6: Three aprs (gray) of a Gaussian ppor (red) with mean 0 and
standard deviation 3: (a) fine-grained; (b) coarse; (c) uniform.

where ci, ai, by € R, ¢i > 0, and all [a;, by) are disjoint.

We now show how to encode a formula step® (x) over the free variables
dx, Ly, Uy, where for any model m = stepd’ (x), the value m(6,) is the area
under step(x) between m(1,) and m(u,), i.e.: m(8,) = Jﬁnn:&")) step(x) dx.
Intuitively, the value of this integral is the sum of the areas of each bar in

step(x), restricted to [m(1,), m(u,)].

Definition 3.12 (Encoding area under an aApF). Given an ADF step(x), we
define step® (x) as follows:

n

step®(x) = 6, = Z ci - |lag, bi) N [,y

i=1

The finite sum in step®(x) computes the size of the intersection of
[ly, uy] with each interval [a;, b;) in step(x), and multiplies the intersection
with c;, the value of the step in that interval. Note that the constraint
step® (x) is directly expressible in linear arithmetic, since

‘ [ai/ bl) N [17(/ ux] ‘ = max(min(bi/ ‘LLX) - max(ai/ lx)/ 0)

The following theorem states the correctness of the apr encoding:

Theorem 3.13 (Correctness of step®). Fix an apr step(x).
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* Soundness: For any model m |= step®, the following is true: m(5,) =
f::&x)) step(x) dx.

* Completeness: For any constants a,b,c € R such that c = J"Cbl step(x) dx,
the following formula is satisfiable: 5, = c A1, = a Au, = b Astep®(x).

ADpF-Directed Volume Computation. We now present the algorithm ape-
symvoL (Figure 3.7), an extension of our volume computation algorithm
symvoL that uses ADFs to steer the sampling process. The ADpFs are only
used for guiding the rule HsampLE towards dense hyperrectangles, and
thus do not affect soundness of the volume computation. For example,
Figure 3.6 shows three approximations of a Gaussian; all three are valid
approximations. In Section 3.4, we discuss the impact of different Aprs on
performance.

Formally, we create a set of aprs A = {step,,...,step, }, where, for each
variable x; € X,,, we associate the aDF step, (x;). The rule HsaAMPLE now
encodes step? (x;) and attempts to find a hyperrectangle such that for each
dimension x, 0 is greater than some lower bound [b, which is initialized
to 1. Of course, we need to reduce the value [b as we run out of hyperrect-
angles of a given volume. Therefore, the rule pecay is used to shrink /b
using a fixed decay rate A € (0,1) and can be applied when xHsampLE fails to

find a sufficiently large hyperrectangle.

Example 3.14. Suppose we want to find the weighted volume of a single-variable
formula
ep=0<x<1

where x is uniformly distributed over the interval [0,1]. Its hyperrectangular

decomposition is

Do =L < AV (L K x<uy = 0<x < 1)
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or equivalently, if we eliminate the quantifier,
o =L <u, NOKS L KTAO<S U <1

It's clear that an arbitrary model of G0, can be any single interval 1 C [0, 1], and
since x is uniformly distributed over [0, 1], the weighted volume of 1 is exactly its
size. Thus, we would like the models to be large intervals; to do so, we employ a
constraint based on the ADF of x.

Since x is uniformly distributed, we can use its actual distribution as its ADF.
We then have that

step®(x) = 8, =1-(0,1) N [l wy| = 8 = max(min(1,u,) — max(0,1,),0)

Here, 5« represents the weighted volume contribution of the variable x (which
happens to be the only variable in ), and so if we obtain a model not of &3, but
instead of the formula G, N\ 35,. (step® (x) A 8, > 1b), explicitly written as

L<u, N0, <1A0<u, <1
A 38y (8¢ = max(min(1,u,) — max(0,1,),0) A &5 > 1b)

then the weighted volume of the worst model approximately increases as a func-
tion of Ib. In fact, when 1b = 1, the only model is the whole unit interval (where
Ly = 0and u, = 1), which contains all of the probability mass of x.

Note that, ideally, we would look for a model m such that [ [, X, Oy is
maximized, thus, finding the hyperrectangle with the largest weighted
volume with respect to the aprs. However, this constraint is non-linear.
To lower the complexity of the problem to that of linear arithmetic, we
set a decaying lower bound and attempt to find a model where each &, is
greater than the lower bound.
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Figure 3.7: ADF-symvoL: aDpr-directed volume computation

Convergence of Algorithm

We now discuss the convergence properties of ADF-symvoL. Suppose we
are given a formula ¢, a set of pprs D, and a set of aprs A. Let R C R™
be the region where all the apFs in A are non-zero. We will show that
ADF-syMvoL monotonically converges, in the limit, to the exact weighted

volume restricted to R; that is, ADF-symvoL converges to

The fascinating part here is that we do not impose any restrictions on
the aprs: they do not have to have any correspondence with the pprs they
approximate; they need only be step functions. Of course, in practice, the
quality of the approximation dictates the rate of convergence, but we delay
this discussion to Section 3.4.

The following theorem states convergence of AbF-symvor; it assumes
that HsamPpLE is applied iteratively and pecay is only applied when HsaMPLE

cannot find a model.

Theorem 3.15 (Monotone convergence to R). Assume ADF-sYMVOL is run on
(@, D) and a set of ap¥s A that are non-zero for R C R™. Let vol,, be the value
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of vol after n applications of nsampLE. Then,

lim vol,, :J H pi(xi) dXy and  Vj =k = 1.voly > voly
n—oo ©NR

XiEXq;

Proof. The algorithm constructs two series in parallel: the actual volume
computation series )_ v, and the approximated series ) _ a,,, where each
v, and a,, correspond to the actual and approximate volume of the nth
sampled hyperrectangle (note that the latter is not explicitly maintained in

the algorithm). Each series corresponds to a sequence of partial sums: Let

Since {vXZ}, and {a%}, are non-decreasing sequences bounded from
above, they converge to some limit; call the limits vt and a?, respectively. It
does not matter what the value of a* is, but we would like to ensure that v>
isactually equal to EVolgn,. Since the a,, determine which hyperrectangles
we sample, the potential concern is that they negatively affect the limit v>;
we will prove below that this is not possible.

Suppose, for the sake of obtaining a contradiction, that our sequence of
samples to construct {vZ}, and {a%}, results in the limit v> being strictly
less than the actual weighted volume EVolgn,. Then there is some sub-
region R’ C R that is completely disjoint from the infinite set of hyper-
rectangles we sample and has non-zero weighted volume. In particular,
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there must exist some hyperrectangle H C R’ contained in this unsampled
region that also has non-zero weighted volume.

In the limit, a% approaches a*: by definition, for all € > 0, there exists
N such that foralln > N, a*> —a% < e. Let 5 = [, [ ] step(x) dX,: at some
point when we have fixed a threshold T < § and have run out of samples
in R\ R’ with a,, > 7 (guaranteed when a* — a% < T by letting ¢ = 1) we
reach a contradiction, since H C R’ would have satisfied the conditions to

apply usampLe. This property ensures that the limit v = EVolgn.

Note that the above theorem directly gives us a way to approach the
exact volume. Specifically, by performing runs of Apr-symvoL on subsets
in an infinite partition of R™ induced by the Aprs, we can ensure that the
sum over the ADF-symvoL processes approaches the exact volume.®> For
all i, let A; be a set of aADFs corresponding to an Abr-symvoL process P,
where R; C R™ is the non-zero region of A;. We require an infinite set of
P; to partition R™: (i) for all i #j, Ry N R; = 0, and (i) [ J;=; R = R™. The

following theorem formalizes the argument:

Theorem 3.16 (Monotone convergence). Let P, Py, ... be ADF-symvoL pro-
cesses that partition R™. Assume an execution where each P executes infinitely
often and each P; performs HsAMPLE infinitely often, and let vol,, be the total

computed volume across all P; after n successful calls to nsampLE. Then,

lim vol,, =voL(@,D) and Vj >k > 1.vol; > voly

n—oo

Proof. We require that apr-symvoL calls HsampLE on each P; (and its A; de-
fined over R;) infinitely often: we can refer to H,, as the nth hyperrectangle
obtained by HsamPLE in the serialized execution. Clearly the partial sums
{Z;;l voL(H;, D)}, form a non-decreasing series. It is bounded above

by its supremum, which is exactly vor(¢, D) since each individual P;

*Note that this odd dovetailing arises when the program includes primitive distribu-
tions with infinite support, such as Gaussians, as an ADF necessarily has finite support.
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converges to the weighted volume restricted to R;. This completes the
proof, since the limit of any non-decreasing sequence bounded above by

its supremum is identically its supremum.

Completeness in Verification. Given that we have established monotone
convergence of ADF-sYMVOL, we can use it to construct a verification pro-
cedure that is complete whenever the postcondition is robust (Section 3.2,
Definition 3.1). Without loss of generality, the definition gives us that for
any subformula Pr[¢] > c, we have that Pr[¢] # c. Using this property,
we can use ADF-syMvoL to iteratively improve a lower and an upper bound

for Pr[¢], one of which will prove or disprove the subformula Pr[¢] > c.

Theorem 3.17 (Convergence of FairSquare). When the verification problem
is robust, FairSquare eventually proves or disproves the postcondition.

3.4 Implementation and Evaluation

In this section, we describe our implementation of FairSquare (including
several optimizations) and evaluate its performance on a variety of fairness

verification problems.

Implementation

We implemented our algorithms in a new tool called FairSquare, which
employs Z3 (De Moura and Bjorner, 2008) for smT solving and Redlog (Dolz-
mann and Sturm, 1997) for quantifier elimination. FairSquare accepts as
input the population model and the decision-making program in a Python-
like syntax, where the definitions of predicates in the probability events
are provided as program annotations.

FairSquare computes upper and lower bounds for each probability

in the postcondition using weighted volume computation. A round of
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sampling involves (i) obtaining a sample (hyperrectangle) for each of the
quantities, (i7) computing these samples” weighted volumes, (iii) updating
the bounds on each quantity and (iv) checking if the bounds are precise
enough to determine the validity of the postcondition, i.e., to prove fairness
or unfairness. Rounds of sampling are performed until a proof is found or

a timeout is reached.

Sample Maximization. A key optimization implemented in FairSquare is
the maximization of hyperrectangles obtained during sampling. We use
Z3’s optimization capability to maximize and minimize the finite bounds
of all hyperrectangles, while still satisfying the formula ¥ (in Figures 3.5
and 3.7). This process is performed greedily by extending a hyperrect-
angle in one dimension at a time to find a maximal hyperrectangle. If a
dimension extends to infinity, then we drop that bound, thus resulting in
an unbounded hyperrectangle.

Numerical Precision. All of the arithmetic performed by FairSquare is
over arbitrary precision rationals, and therefore we do not encounter any
loss of precision. The only place where floating point numbers appear
is when we evaluate cprs with scipy. We truncate (underapproximate)
the result and convert it to a rational number. Truncating the results
ensures that our implementation is sound—that at any point in our volume
computation, the current volume is a lower bound—at the cost of a small
possibility of incompleteness.

Evaluation

Next, we evaluate the effectiveness and performance of FairSquare. Specif-
ically, we investigate the following questions:4

A1 experiments are performed on an Intel Core i7 4.00GHz CPU with 16 GB of
RAM.
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Q1 Can FairSquare verify fairness properties of real machine-learned
programs?

Q2 Do aprs and sample maximization improve the performance of
FairSquare?

Q3 Can FairSquare verify fairness properties other probabilistic analysis
tools cannot?

Q4 Can FairSquare verify the benchmarks solved by other probabilistic
analysis tools?

Benchmarks

Fairness Postconditions. In our experiments, we consider a group fairness
postcondition augmented with a notion of qualification. We ultimately
obtained our benchmarks by datamining a popular income dataset (UCI,
1996) used in related research on algorithmic fairness (Feldman et al., 2015;
Zemel et al., 2013; Calders and Verwer, 2010); accordingly, our postcondi-
tions are defined in terms of that dataset’s features. Specifically, they are
of the form:

Pr(high income | female /\ qual(v)]
Pr(high income | male /\ qual(v)]

>1—e (3.2)

Suppose, for example, machine-learned models inferred from the dataset
would be used to determine the salary of an employee: high (> $50,000) or
low. We consider qual(v) in two different scenarios—first, the case when
qual is tautologically true, and second, when individuals are qualified if
they are at least 18 years of age. In short, we would like to verify whether
salary decisions are fair to qualified female employees.

Throughout our evaluation, we refer to the left-hand side of inequal-
ity 3.2 as the fairness ratio. We fix e = 0.15, and thus FairSquare terminates
when either (i) its lower bound for the fairness ratio is at least 0.85, or
(ii) its upper bound for the fairness ratio is at most 0.85.
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Decision-Making Programs. We obtained our set of decision-making
programs by training a variety of machine-learning models on the income
dataset to classify high vs low income. Using the Weka machine learning
suite (Hall et al., 2009), we learned 11 different decision-making programs
(see, e.g., Bishop (2006) for background), which are listed in Figure 3.1:
(i) four decision trees, named pT,,, where n is the number of conditionals
in the program, and the number of variables and the depth of the tree
each varies from 2 to 3; (ii) four support vector machines with linear kernels,
named svM,,, where n is the number of variables in the linear separator;
(iif) three neural networks using rectified linear units (Nair and Hinton, 2010),
named NNy, Where n is the number of input variables, and m is the
number of nodes in the single hidden layer.

As we will show in the next section, some of these programs do not
satisfy the fairness property we consider. We introduced modifications of
DTy and svmy, called prf; and svmy', that implement rudimentary forms of
affirmative action for female applicants. For by, there is a 15% chance it
will flip a decision to give the low salary; for svmy, the linear separator is

moved to increase the likelihood of hiring.

Population Models. For our population models, we used three different
probabilistic programs that were inferred from the same dataset: (i) a set
of independently distributed variables (Ind), (ii) a Bayesian network using a
simple graph structure (BN1), and (iii) the same Bayesian network, but
with an integrity constraint in the form of an inequality between two of
the variables (BN2). Note that the first model is sometimes a trivial case:
since there is there is no dependence between variables, a program will
be fair if it does not access an individual’s sex; this simplicity serves well
as a baseline for our evaluation. The Bayesian models permit correlations
between the variables, allowing for more subtle sources of fairness or
unfairness. The benchmarks we use are derived from each combination of

population models with decision-making programs.
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Effectiveness of FairSquare

Figure 3.1 shows the results of applying FairSquare to 39 fairness ver-
ification problems, as described earlier. Only the instances using the
tautologically true notion of qualification are shown, since the qualitative
results are near-identical to the non-trivial qualification. FairSquare was
able to solve 32 of the 39 problems within a timeout period of 900 seconds
each, proving 21 fair and 11 unfair.

Consider the results for pry: FairSquare proved it fair with respect to
the independent population model after 0.5 seconds of an initial quantifier
elimination procedure and 1.3 seconds of the actual volume computa-
tion algorithm, which required 10 smT queries. The more sophisticated
Bayesian network models took longer for sampling, but due to the correla-
tions between variables, were proved unfair.

In contrast, consider the results for pry4 under the Bayes Net 1 popula-
tion model: FairSquare was unable to conclude fairness or unfairness after
900 seconds of volume computation (denoted by to in the Vol column).
The lower and upper bounds of the fairness ratio it had computed at that
time are listed in the Res column: in this case, the value of the fairness
ratio is within [0.70, 0.88], which is not precise enough for the ¢ = 0.15
requirement (but would be precise enough for e outside of [0.12,0.30]).

In general, all conclusive results using the independent population
model were proved to be fair, as expected, but many are unfair with
respect to the clusters and Bayes net models because of the correlations
those population models capture. This difference illustrates the sensitivity
of fairness to the population model; in particular, none of the decision
trees syntactically access sex, yet several are unfair.

Figure 3.1 shows that the affirmative action modifications in pr{ and
svmy are sufficient to make the programs fair with respect to every popu-
lation model without substantially impacting the training set accuracy.

In summary, the answer to Q1 is that FairSquare is powerful enough
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Figure 3.8: Fairness ratio vs. rounds of sampling for ptys and svmy (Ind
pop model) differing on aAprs and sample maximization. In (c) two runs
end at the exact value. Outside the visible range are: (a)(b) upper and
lower bounds of uniform and none; (d) upper bounds of none.

to reason about group fairness for many non-trivial machine-learned

programs.

Effect of Parameters

The experiments in Figure 3.1 were all performed using sample maxi-

mization (as described at the beginning of this section); additionally, to

guide volume computation, all Gaussian distributions with mean p and
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Figure 3.9: Effect of optimizations on FairSquare for pris and svmy (Ind
pop model). (a) and (b) show the average weighted volume per sample
(averaged across all probabilities). (c) and (d) show the average time (s)
per round of sampling.

variance o2 use ADFs (see Section 3.3) with 5 equal-width steps spanning
(n — 302, u 4 30%)—analogous to Figure 3.6(a). In this section, we ex-
plore the effects of the approximate density functions and of the sample
maximization optimizations. These results are captured in Figures 3.8
and 3.9.

There are three instances of Aprs in Figure 3.8 used to guide the sam-
pling to high-probability regions: (i) none indicates that no Apr is used,
i.e., we used symvoL instead of aAbr-symvor; (ii) uniform indicates that each
gauss(1, 02) is approximated by a uniform function spanning (1 — 30?, u+

0?) (similar to Figure 3.6(c)); and (iii) 5-step indicates that each Gaussian
is approximated by a step function of 5 equal-width regions spanning that
same domain (similar to Figure 3.6(a)). Another variable, max or nomax,
denotes whether the sample maximization optimization is enabled.

Each combination of these techniques is run on two of our benchmarks:
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DT16 and svmy under the independent population model. Figure 3.8(a) and
(b) show how convergence to the fairness ratio is improved by the choice
of Aprs when sample maximization is not employed: in particular, the
runs using uniform and none are not even visible, as the bounds never fall
within [0.01, 4.0]. Plots (c) and (d) show that when sample maximization
is employed, the choice between the uniform and 5-step aDFs is not as
substantial on these benchmarks, although (i) the better approximation
gets better bounds faster, and (i7) using none results in substantially worse
bounds.

Figure 3.9 plot (a) and (b) show that employing aprs and using sample
maximization each increases the average weighted volume per sample,
allowing volume computation to be done with fewer samples. Plots (c)
and (d) illustrate the trade-off: the average time per sampling round tends
to be greater for more complex optimizations.

We present these results for two particular problems and observe the
same results across our suite. In summary, the answer to Q2 is that ApFs
and sample maximization improve the performance of FairSquare, and

FairSquare requires both of these features to verify most benchmarks.

Comparison to Other Tools

We ran our benchmarks on the two other recent probabilistic program
analysis tools that accept the same class of problems and provide exact
guarantees on probabilities. First, we compare to the tool of Sankara-
narayanan et al. (2013) (which we denote vc),” which is algorithmically
similar to our tool: it finds bounds for probabilities on individual paths by
approximating convex polytopes with bounding and inscribed hyperrect-
angles. Second, we compare to ps1 (Gehr et al., 2016), which symbolically
computes representations of the posterior distributions of variables.

5Acquired directly from the authors.



85

12 OpTEHSVMENN

10lll n )

41 N
0

o]

s

2 Z Z z
m M

/@
FairSquare

BN1

Ind
BN2

5 BN1

o)
2]
—

Figure 3.10: Comparison of the number of benchmarks that FairSquare,
ps1, and vc were able to solve.

Figure 3.10 shows the number of benchmarks solved per category per
tool. Tools were deemed to have failed on a benchmark when they timed
out after a 900s period or returned an inconclusive solution (in the case
of ps1). For instance, in the case of the population model BN1, FairSquare
solved 11 benchmarks, while pst and vc only solved 3 (the decision trees).
For BN2, neither psi nor vc was able to complete any benchmark.

The figure illustrates some qualitative properties of the applicability of
the tools. In general, most of the decision trees are solvable because they
partition the decision space with inequalities between a single variable
and a constant. However, inequalities involving multiple variables can
result in (7) the lack of closed form posterior cprs, as reflected in the output
of ps1, and (ii) angled boundaries in the decision space that are hard to
approximate with hyperrectangles; these inequalities occur in the svwms,
neural networks, and the BN2 population model. Consequently, vc fails
to produce good bounds in these cases. Similarly, psr fails because the
integrals do not have closed forms or cannot be constructed within the
timeout period.

In summary, the answer to Q3 is that FairSquare can verify fairness
properties that other tools cannot and therefore extends the class of prob-
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lems that can be solved by state-of-the-art probabilistic analysis tools.

We now discuss the results of applying the weighted volume compu-
tation algorithm of FairSquare to the benchmarks from vc. (We omit a
comparison to the benchmarks from psi, since the output of ps1 is a pos-
terior distribution—which can be used to compute probabilities, but not
vice-versa.) We first focus on vc’s three loop-free benchmark programs,
which have thousands of paths; vc computes various probabilities within
two hours for each program. In FairSquare, however, the quantifier elimi-
nation procedure employed before beginning sampling does not terminate
within two hours.

Second, we consider two of vc’s programs, cart and invPend, which
have loops explicitly bounded by constants and could be encoded in our
framework using loop unrolling. The programs’ loops have maximum
depths of 5 and 10 iterations, respectively, (and the loop bodies contain
if statements and probabilistic assignments). The fully unrolled versions
of these programs are very large and cause FairSquare’s quantifier elimi-
nation to timeout; to better understand the limitations of FairSquare, we
tried unrolling the programs up to 4 and 7 iterations, respectively, which
were the largest unrollings for which the quantifier elimination procedure
would terminate within two hours. However, we found that the pro-
gram paths corresponding to these fewer number of loop iterations have
zero probability mass, so FairSquare was not able to compute non-trivial
bounds for any probabilities.

In summary, the answer to Q4 is that FairSquare currently cannot
solve the verification benchmarks solved by the tool vc.

Quantifier elimination is difficult on programs with this many paths.
vc is well-designed for these tasks because it performs weighted volume
computation only on the most important paths. Specifically, vc heuristically
picks a program path 7t through simulation, with the assumption that

traversed paths will likely have a larger probability mass for the event
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of interest. vc then computes the probability of executing 7t and a given
property being true at the end. By iteratively choosing more and more
paths through the program, it improves the computed bounds. Our ap-
proach considers the full set of paths symbolically by encoding them as a
formula. As described above, this methodology works well for decision-
making programs. Our evaluation indicates that our two techniques can
complement each other, providing an important direction for future work.
Specifically, we plan to investigate a lazily-evaluated quantifier elimination
procedure, where we heuristically sample disjuncts (i.e., program paths),
so that FairSquare can scale to benchmarks used by ve—where explicit

quantifier elimination is prohibitively expensive.

3.5 Discussion and Related Work

A number of very interesting applications of program analysis have been
explored in the probabilistic setting: reasoning about cyber-physical sys-
tems (Sankaranarayanan et al., 2013), proving differential privacy of com-
plex algorithms (Barthe et al., 2014), reasoning about approximate pro-
grams and hardware (Carbin et al., 2013), synthesizing control programs
(Chaudhuri et al., 2014), amongst many others. In this chapter, we turned

our attention to the problem of verifying fairness of decision-making programs.

Algorithmic Fairness. Our work is inspired by concern in the fairness
of modern decision-making programs (Zarsky, 2014; Barocas and Selbst,
2014). A number of works have explored algorithmic fairness (Zemel
et al., 2013; Feldman et al., 2015; Hardt et al., 2016; Dwork et al., 2012;
Calders and Verwer, 2010; Pedreshi et al., 2008; Datta et al., 2016, 2015).
Accordingly, we developed a general-purpose framework for verifying a
general class of probabilistic fairness properties. In contrast, for example,
recent work by John et al. (2020) formally verifies individual fairness for

programs using a global, deterministic definition.
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Most works are interested in fairness from a machine learning perspec-
tive: how does one learn a fair classifier from data? For example, Zemel
et al. (2013) and Feldman et al. (2015) aim to transform training data so as
to erase correlations between the sensitive attributes of individuals and the
rest of their features. Within this context, classification utility is important.
Hardt et al. (2016) recently proposed a new fairness definition—equality
of opportunity—that improves on demographic parity in terms of classifi-
cation utility. Recently, Celis et al. (2019) provide a mechanism to support
even non-convex fairness-related loss functions.

Discrimination in black-box systems has been studied through the lens
of statistical analysis (Sweeney, 2013; Datta et al., 2015, 2016). Notably,
Datta et al. (2015) created an automated tool that analyzes online advertis-
ing: it operates dynamically by surveying the ads produced by Google.
Since then, in white-box systems, Albarghouthi and Vinitsky (2019) have
proposed a framework where developers can specify fairness properties
through code annotations that are then dynamically checked at run-time.

Probabilistic Abstract Interpretation. We refer the reader to Gordon et al.
(2014) for a thorough survey on probabilistic program analysis. A num-
ber of works tackled analysis of probabilistic programs from an abstract
interpretation perspective (Monniaux, 2001b, 2000, 2001a; Mardziel et al.,
2011; Claret et al., 2013). The comparison between our solution through
volume computation and abstract interpretation is perhaps analogous to
sMmT solving and software model checking versus abstract interpretation.
For example, techniques proposed by Monniaux (2000) sacrifice precision
of the analysis (through joins, abstraction, etc.) for the benefit of efficiency.
Our approach, on the other hand, is aimed at eventually producing a
proof, or iteratively improving probability bounds while guaranteeing

convergence.

Sampling-Based Inference. In probabilistic verification, some techniques

perform probabilistic inference by compiling programs or program paths
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to Bayesian networks (Koller and Friedman, 2009) and applying hypothesis
testing (Sampson et al., 2014). The verification technique proposed by
Sampson et al. (2014) applies to properties of the form Pr[¢p] > c. The
approach relies on concentration inequalities to determine a number of
samples (executions) that would provide a result within an e additive
error with 1 — 8 probability. In the case of properties where we have a ratio
over two probabilities—like the ones considered here—we cannot a priori
determine the number of samples required to achieve (¢, ) guarantees.
Probabilistic programming languages often rely on sampling to approx-
imate the posterior distribution of a program. The Church programming
language (Goodman et al., 2008), for instance, employs the Metropolis—
Hastings algorithm (Chib and Greenberg, 1995), a Markov Chain Monte
Carlo (mcmc) technique. In McMmc techniques, there is usually no guarantee
on how different the Markov chain is from the actual distribution at any
point in execution, although the Markov chain is guaranteed to converge

in the limit.

Volume Computation. The computation of weighted volume is known
to be hard—even for a convex polytope, volume computation is #P-hard
(Khachiyan, 1993). Two general approaches exist: approximate and exact
solutions. Note that in general, any approximate technique at best can
prove facts with high probability.

Our volume computation algorithm is inspired by (i) the formula de-
composition procedure of Li et al. (2014), where quantifier elimination is
used to underapproximate an Lra constraint as a Boolean combination of
monadic predicates; and (ii) the technique for bounding the weighted vol-
ume of a polyhedron introduced by Sankaranarayanan et al. (2013), which
is the closest volume computation work to ours. (The general technique of
approximating complex regions with unions of orthogonal polyhedra is
well-studied in the hybrid systems literature (Bournez et al., 1999).)

A number of factors differentiate our work from Sankaranarayanan et al.
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(2013), which we compared with experimentally in Section 3.4. First, our
approach is more general, in that it can operate on Boolean formulas over
linear and polynomial inequalities, as opposed to just conjunctions of linear
inequalities. Second, our approach employs aAprs to guide the sampling
of hyperrectangles with large volume, which, as we have demonstrated
experimentally, is a crucial feature of our approach. Third, we provide
theoretical convergence guarantees.

FairSquare’s volume computation algorithm relies on smt encodings
of the program behavior that did not scale well for neural networks. Since
then, Converse et al. (2020) provide specialized techniques for probabilistic
inference of neural networks.

LattE is a tool that performs exact integration of polynomial functions
over polytopes (De Loera et al., 2012). Belle etal. (2015b, 2016) compute the
volume of a linear real arithmetic (Lra) formula by, effectively, decompos-
ing it into pNF—a set of polytopes—and using LattE to compute the volume
of each polyhedron with respect to piece-wise polynomial densities. Our
volume computation algorithm is more general in that it (/) handles formu-
las over real closed fields, which subsumes LrA, and (i7) handles probability
distributions for which we can evaluate the cpr. Our implementation also
supports polynomial approximations of the aprs. Polynomial approx-
imations provide better samples, but since the polynomials introduce
non-linear constraints, the actual smr calls become dramatically slower
due to the lack of scalable solvers for non-linear arithmetic. This includes
Z3’s non-linear solver (Jovanovi¢ and de Moura, 2013), which implements
a variant of cylindrical algebraic decomposition (cap) (Basu et al., 2006), a
technique for solving non-linear constraints implemented in tools such
as Mathematica and Maple. Although Z3 was shown to be faster than all
other non-linear solvers (Jovanovi¢ and de Moura, 2013), it still does not
scale to formulas of size we consider, making polynomial approximations

currently ineffective in practice. The same applies to Redlog (Dolzmann
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and Sturm, 1997), which we used for quantifier elimination, and other
state-of-the-art tools such as Qercap (Brown, 2003); they implement cap
and are comparable to Z3’s non-linear solver in performance.

Chistikov et al. (2015) present a framework for approximate counting
with probabilistic guarantees in smt theories, which they specialize for
bounded rra. In contrast, our technique (i) handles unbounded formulas
in LrA as well as real closed fields, (i7) handles arbitrary distributions, and
(iif) provides converging lower-bound guarantees. It is important to note
that there is a also a rich body of work investigating randomized polyno-
mial algorithms for approximating the volume of a polytope, beginning
with the seminal work of Dyer et al. (1991) (see Vempala (2005) for a

survey).

Probabilistic Verification with Model Counting. A number of works
have also addressed probabilistic analysis through symbolic execution (Fil-
ieri et al., 2013; Sankaranarayanan et al., 2013; Geldenhuys et al., 2012;
Sampson et al., 2014). Filieri et al. (2013) and Geldenhuys et al. (2012) at-
tempt to find the probability a safety invariant is preserved. Both methods
reduce to a weighted model counting approach and are thus effectively
restricted to variables over finite domains. Note that our technique is more
general than a model counting approach, as we can handle discrete cases
with a proper encoding of the variables into a continuous domain without
loss of precision.
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4  EFFICIENT SYNTHESIS WITH PROBABILISTIC

CONSTRAINTS: REPAIRING UNFAIR PROGRAMS

In Chapter 3 we detailed a method for verifying whether a program meets a
probabilistic correctness property; In this chapter, we will explore the dual
problem of synthesizing programs that meet these properties by construc-
tion. Our primary motivation for this work is repairing bias in decision-
making programs, e.g., programs that decide whether to hire a person, to
give them a loan, or other sensitive or potentially impactful decisions like
prison sentencing (Angwin et al., 2016) (as we’ve discussed prior). These
programs can be generated automatically as classifiers using machine
learning or can be written by hand using expert insight.

Program repair is the problem of modifying a program P to produce
a new program P’ that satisfies some desirable property. A majority of
the investigations in automatic program repair target deterministic pro-
grams and Boolean properties, e.g., assertion violations (Konighofer and
Bloem, 2011; Mechtaev et al., 2015; D’Antoni et al., 2016; Von Essen and
Jobstmann, 2015; Jobstmann et al., 2005). The world, however, is uncertain,
and program correctness is not always a Boolean, black-or-white prop-
erty. In particular, our goal is to synthesize programs that both (i) meet
the probabilistic notion of correctness and (ii) optimize some quantitative

objective, e.g. accuracy.

Technique: Distribution-guided inductive synthesis. We propose a novel
program synthesis technique that we call distribution-guided inductive syn-
thesis (p1ciTs). The overall flow of picrts is illustrated in Figure 4.1. Suppose
we have a program P such that {pre}P{post} does not hold. The goal of picITs
is to construct a new program P that is correct with respect to pre and post
and that is semantically close to P. To do so, picrts tightly integrates three
phases:
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Figure 4.1: Abstract, high-level view of distribution-guided inductive
synthesis (piGITs)

Sampling Since the precondition pre specifies that inputs to the program
are given by a probability distribution x ~ D, picits begins by sam-
pling a finite set S of program inputs from D—we call S the set of
samples. The set S is used to sidestep having to deal with probability
distributions directly in the synthesis process.

Synthesis The second step is a synthesis phase, where picits searches for
a set of candidate programs {P, ..., P,,} such that each P; classifies
the set of samples S differently.

Quantitative verification Every generated candidate program P is checked
for correctness and for close semantic distance with P. Specifically,
pIGITs employs an automated probabilistic inference technique, e.g.

the symbolic probabilistic inference described in Chapter 3.

Somewhat remarkably, piciTs posseses desirable convergence proper-
ties: under certain conditions, with high probability, picits is guaranteed
to synthesize near-optimal correct programs. Furthermore, a detailed anal-
ysis of the algorithm that draws from concepts in computational learning
theory (Kearns and Vazirani, 1994) reveals that picits performs its search
quite efficiently. The layout of this chapter is as follows:
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¢ In Section 4.1 we describe our probabilistic program synthesis problem that
combines a Boolean probabilistic correctness property with a quantita-

tive objective.

¢ In Section 4.2 we present distribution-guided inductive synthesis (DIGITS),
a novel synthesis methodology for our probabilistic synthesis problem,

and prove its (probable, near-)optimality.

* In Section 4.3 we describe an efficient, trie-based implementation strat-

egy for picts and analyze its complexity.

¢ In Section 4.4 we discuss an improved variant of picits, which we call

t-piGITs, that makes the optimality guarantees of picits more practical.

¢ In Sections 4.5 and 4.6 we describe our implementations of these al-
gorithms apply them to a range of benchmarks, including illustrative
examples that elucidate our theoretical analysis, probabilistic repair
problems of unfair programs, and probabilistic synthesis of controllers.

Proofs of theorems stated throughout this chapter can be found in Ap-
pendix B.3. This chapter is based on the work of Albarghouthi et al. (2017a)
and Drews et al. (2019)

4,1 Preliminaries

In this section, we present a variant of the program model used in Chapter 3

and define the probabilistic synthesis problem.

Program Model. We will consider sets of programs defined as program
sketches (Solar-Lezama, 2008) in a simple grammar (as before), where a
program is written in a loop-free language, and “holes” defining the
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sketch replace some constant terminals in expressions.! The syntax of the

language is defined below:
P= V<« E|if BthenPelse P|P P |return V

Here, P is a program, V is the set of variables appearing in P, E (resp. B)
is the set of linear arithmetic (resp. Boolean) expressions over V (where,
again, constants in E and B can be replaced with holes), and V +- Eis an
assignment. We assume a vector v; of variables in V that are inputs to the
program. We also assume there is a single Boolean variable v, € V that is
returned by the program.? All variables are real-valued or Boolean. Given
a vector of constant values x, where |x| = |v{|, we use P(x) to denote the
result of executing P on the input x.

In our setting, the inputs to a program are distributed according to
some joint probability distribution D over the variables v;. Semantically, a
program P is denoted by a distribution transformer [P], whose input is a
distribution over values of v; and whose output is a distribution over v;
and v,.

A program also has a probabilistic postcondition, post, defined as an in-
equality over terms of the form Pr[B], where B is a Boolean expression over
vi and v,. Specifically, a probabilistic postcondition consists of Boolean
combinations of the form e > ¢, where ¢ € R and e is an arithmetic
expression over terms of the form Pr(B], e.g., Pr[B,]/ Pr[B,] > 0.75.

Given a triple (D, P, post), we say that P is correct with respect to D and
post, denoted [P](ID) k= post, iff post is true on the distribution [P](D).

n the case of loop-free program sketches as considered in our program model, we
can convert the input-output relation into a real arithmetic formula that guaranteedly has
finite VC dimension (Goldberg and Jerrum, 1995). This is important for our convergence
and complexity guarantees, which we discuss in Sections 4.2 and 4.3.

2 Restricting the output to Boolean is required by the algorithm; other output types
can be turned into Boolean by rewriting. See, e.g., thermostat example in Section 4.6.
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Example 4.1. Consider the set of intervals of the form [0, a] C [0, 1] and inputs x
uniformly distributed over [0,1] (i.e. D = Uniforml[0, 1]). We can write inclusion
in the interval as a (C-style) program (left) and consider a postcondition stating
that the interval must include at least half the input probability mass (right):

if (0 <= X && X <= a) {

return 1; Pry, p[P(x) =1] > 0.5
}

return O;

Let P, denote the interval program where a is replaced by a constant ¢ € [0, 1].
Observe that [P.](ID) describes a joint distribution over (x,v.) pairs, where
[0, c] x{1} is assigned probability measure c and (c, 1] x{0} is assigned probability
measure 1 — c. Therefore, [P.] (D) |= post if and only if c € [0.5, 1].

Synthesis Problem. piciTs outputs a program that is approximately “sim-
ilar” to a given functional specification and that meets a postcondition.
This functional specification is some input-output relation which we quan-
titatively want to match as closely as possible; in general, our input dis-
tribution induces a notion of distance between programs that we wish to
minimize:

dp(P1, P2) == Pryp[Pi(x) # Pa(x)] (4.1)

Specifically, we want to minimize the error (distance) of the output program
P from the functional specification P, denoted as follows (when D and P

are clear from context):
Er(P) := dp(P,P) = Pr,p[P(x) # P(x)] (4.2)

(Note that we represent the functional specification as a program.) The
postcondition, on the other hand, is Boolean, and therefore we always
want it to be true.

Stated formally, given some set of programs P, a distribution over
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function picits(D, P, post, P, m)
S« {x~DJ|iel,...,ml}
progs < )
forall f:S — {0,1} do
P < Ogn({(x, f(x)) | x € §})
if P £ 1 then
progs < progs U {P}
res < {P € progs | Oye:(D, P, post)}
return argmin, _, {Oer (P)}

Figure 4.2: Naive picIts algorithm

program inputs D, a postcondition post, and a functional specification P,
our goal is to find an optimal correct program P* (assuming one exists):
let C ={P € P [ [P](D) k= post}in P* = argmin, . Er(P).

4.2 Distribution-Guided Inductive Synthesis

In this section, we describe the distribution-guided inductive synthesis
algorithm (picrts) for finding approximate solutions to the probabilistic
repair problem.

Figure 4.2 shows a simplified, naive version of picrrs, which employs
a synthesize-then-verify approach. The idea of picrrs is to utilize non-
probabilistic synthesis techniques to synthesize a set of programs, and
then apply a probabilistic verification step to check if any of the synthe-
sized programs is a solution. Throughout, we assume we have access to a
number of sound and complete oracles Osyns Over, and Oey.

Specifically, this “Naive picirs” begins by sampling an appropriate
number of inputs from the input distribution and stores them in the set S.
Second, it iteratively explores each possible function f that maps the input
samples to a Boolean and invokes a synthesis oracle Oy, to synthesize
a program P that implements f, i.e. that satisfies the set of input-output
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examples in which each input x € S is mapped to the output f(x). Naive
piGiTs then finds which of the synthesized programs satisfy the postcondi-
tion (the set res); we assume that we have access to a probabilistic verifier
Oyer to perform these computations. Finally, the algorithm outputs the
program in the set res that has the lowest error with respect to the func-
tional specification, once again assuming access to another oracle O, that
can measure the error.

Note that the number of such functions f : S — {0, 1} is exponential in
the size of |S|. In Section 4.3, we present an efficient search strategy that
considers asymptotically fewer functions f. The naive version described
here is, however, sufficient to discuss the convergence properties of the
full algorithm.

Convergence of DIGITS

In this section, we use classic concepts from computational learning theory
to show that, under certain assumptions, the picits algorithm quickly
converges to good repaired programs when increasing the size m of the
sample set.

Throughout this section we assume we are given a set of programs P,
a functional specification P, an input distribution D, and a postcondition
post, such that there exists an optimal solution P* € P to the correspond-
ing probabilistic synthesis problem. The relationship between P, P, the
programs which satisfy post, and P* is visualized in Figure 4.3(a).

To state our main theorem, we need to recall the concept of Vapnik-
Chervonenkis (VC) dimension from computational learning theory (Kearns
and Vazirani, 1994). Intuitively, the VC dimension captures the expressive-
ness of our set of ({0, 1}-valued) programs P. Given a set of inputs S, we
say that P shatters S iff, for every partition of S into sets S LI Sy, there exists
a program P € P such that (i) for every x € Sy, P(x) = 0, and (ii) for every
x €Sy, Plx)=1.
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Definition 4.2 (VC Dimension). The VC dimension of a set of programs P
is the largest integer d such that there exists a set of inputs S with cardinality d
that is shattered by P.

Example 4.3. Consider the class of linear separators in R?. For any collection
and classification of three non-colinear points in R?, it is possible to construct a
linear separator that is consistent with that classification; therefore, linear sepa-
rators shatter any set of size 3. However, no linear separator can shatter any set
of four points—for example, the points {(0,0), (1,1)} cannot be separated from
{(1,0),(0,1)}; Thus, the VC dimension of linear separators is 3.

Additionally, we define the function VCcost(¢, $,d) = %(4 logz(%) +
8d logZ(%)) (Blumer et al., 1989), which we will use in the following theo-

rems.

Lemma 4.4 (Error Bound of picrrs). Given a set of programs P with finite VC
dimension d, for any fixed program P € P and parameters ¢ > 0 and & > 0, if
S ~ D™ with m > VCcost(¢, 8, d), then with probability > 1 — & we have that
DIGITS enumerates some candidate program P’ such that dp (P, P’) < e.

Lemma 4.4 extends the classic notion of learnability of concept classes
with finite VC dimension (Blumer et al., 1989) to probabilistic program
repair. Intuitively, if a P has finite VC dimension, any function that correctly
synthesizes from finitely many samples in D will get arbitrarily close
to a target solution—including P*—with polynomially many samples.
Lemma 4.4, however, does not guarantee that the synthesis algorithm will
find a program consistent with the postcondition.

Intuitively, we need to ensure that there are enough programs close
to P* that satisfy post; to do so, we define a notion of robustness of the
postcondition.

Definition 4.5 (x-Robust Programs). Fix an input distribution D, a postcon-
dition post, and a set of programs P. For any P € P and any o« > 0, denote the
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Figure 4.3: Visualization of aspects of piairs: (a) Programs that satisfy post
are a subset of P. (b) Samples split P into 16 regions, each with a candidate
program. If P is a-robust, with high probability picrrs finds P’ close to P;
if P is close to P*, so is P’.

closed «-ball centered at P as B4(P) ={P’ € P | dp(P,P’) < «}. Wesay a
program P is o-robust if VP' € B (P). [P'](D) = post.

Figure 4.3(b) visualizes how the convergence of picirs follows from
o-robustness: if P is a-robust, then picrrs invoked on a sufficiently large set
of samples S will, with high probability, encounter a function f : S — {0, 1}
where every program consistent with f contained in B (P). Thus if P’ is
the result of Ogyn(f), then dp(P, P’) < «, and P’ satisfies post. We can now

give our main theorem, which formalizes this property.

Theorem 4.6 (Convergence of picrts). Assume there exists an o-robust pro-
gram P (for some o > 0). Let d be the VC dimension of P. For all bounds 0 <
e < oandd > 0,if m > VCcosr(e, 5, d), then with probability > 1— & we have
that picits enumerates a program P’ with dp(P, P’) < € and [P'](D) k= post.

Corollary 4.7 (Convergence to P*). In particular, if P* is «-robust, and e,
d, and m are constrained as above, and picrts(D, ls,post, P, m) = P, then with
probability > 1—0 we have that P # 1, Er(P) < Er(P*)+¢, and [P](D) = post.

Theorem 4.6 and Corollary 4.7 represent the heart of the convergence

result. However, there are two major technicalities.
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First, P* usually is not a-robust; in particular, if there exists P € B (P*)
with Er(P) < Er(P*), then P* is not actually optimal. In other words, we
can expect P* to lie on the boundary of the set of correct programs, as
in Figure 4.3(a). However, Theorem 4.6 still guarantees that with high
probability, bicrrs will find a solution arbitrarily close to any o-robust
program P € P; if there exist a-robust programs that are close to the
optimal solution, piarrts still converges to the optimal solution. We refine
this notion in the following Corollary.

Corollary 4.8 (Weak convergence to P*). For « > 0, let A C P be the set of
o-robust programs. Let A = minpca{dp(P*, P)}. If €, 5, and m are constrained
as above, and picrts(D, P, post, P, m) = P, then with probability > 1 — 6 we
have that P # L, Er(P) < Er(P*) + A + ¢, and [P](D) k= post.

Extensions of Corollary 4.8 still provide strong results on the conver-
gence of piarrs: for example, if P* is not a-robust, but there exists an
a-robust P with P* € B (P), then one can show lim,_,g A = 0; in this case,
running picITs for sufficiently large m preserves the desired convergence
result from Corollary 4.7.

Second, an optimal P* that satisfies post may not actually exist when
post consists of open conditions. Consider, for example, if our interval
programs from before (Section 4.1, Example 4.1) had a postcondition with
a strict inequality Pr,.p[P(x) = 1] > 0.5. Then every interval with a right
endpoint at 0.5 + ¢ satisfies post, yet the interval using 0.5 + 5 would have
smaller error; unfortunately, the value 0.5 itself does not satisfy post. In
such cases, we do consider P* to be the infimum with respect to Er of the
set {P € P | [P](D) k= post}. But since this P* does not satisfy post, it is
trivially not «-robust, and we rely on the result of Corollary 4.8.

The convergence of picrrs relies on the existence of o-robust programs.
Theorem 4.6—which follows directly from «-robustness—gives us a way
to check, with high probability, whether any «-robust programs exist: we
can run the algorithm for the number of iterations given by Theorem 4.6 for
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arbitrarily small 8 and just see whether any solution for the program repair
problem is found. If not, we can infer that with probability 1 — 8 no «-
robust programs exist. The success of picITs in our evaluation (Section 4.6)

suggests, as we might expect, that this would be a pathological case.

Understanding Convergence

The importance of finite VC dimension is due to the fact that the con-
vergence statement borrows directly from probably approximately correct
learning (pac learning). We will briefly discuss a core detail of efficient rac
learning that is relevant to understanding the convergence of picIrs (and,
in turn, our analysis of T-p1GITS in Section 4.4), and refer the interested
reader to Kearns and Vazirani (1994) for a complete overview. Specifically,
we consider the notion of an e-net, which establishes the approximate-
definability of a target program in terms of points in its input space.

Definition 4.9 (e-net). Suppose P € P is a target program, and points in its
input domain X are distributed x ~ D. For a fixed ¢ € [0,1], we say a set of
points S C X is an e-net for P (with respect to P and D) if for every P’ € P with
dp(P, P’) > ¢ there exists a witness x € S such that P(x) # P’(x).

In other words, if S is an e-net for P, and if P’ “agrees” with P on all of
S, then P and P’ can only differ by at most ¢ probability mass.

Observe the relevance of e-nets to the convergence of piairs: the syn-
thesis oracle is guaranteed not to “fail” by producing only programs ¢-far
from some e-robust P* if the sample set happens to be an e-net for P*.
In fact, this observation is exactly the core of the pac learning argument:
having an e-net exactly guarantees the approximate learnability.

A remarkable result of computational learning theory is that whenever
P has finite VC dimension, the probability that m random samples fail to
yield an e-net becomes diminishingly small as m increases. Indeed, the

given VCcosrt function used in Theorem 4.6 is a dual form of this latter
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result—that polynomially many samples are sufficient to form an e-net
with high probability.

4.3 Efficient Trie-Based Search

After providing details on the search strategy employed by picits, we
present our theoretical result on the polynomial bound on the number of

synthesis queries that piGits requires.

The Trie-Based Search Strategy of DIGITS

Naive piarrs, as presented in Figure 4.2, performs a very unstructured,
exponential search over the output labelings of the sampled inputs—i.e.,
the possible Boolean functions f in Figure 4.2. We can do better by in-
crementally exploring the set of possible output labelings using a trie
data structure. In this section, we study the complexity of this technique
through the lens of computational learning theory and discover the sur-
prising result that picits requires a polynomial number of calls to the
synthesizer in the size of the sample set! Our improved search algorithm
(Section 4.4) inherits these results.

For the remainder of this chapter, we use picrrs to refer to this incre-
mental version. A full description is necessary for our analysis: Figure 4.4
(non-framed rules only) consists of a collection of guarded rules describing
the construction of the trie used by picirs to incrementally explore the set
of possible output labelings. Our improved version, T-picITs (presented in
Section 4.4), corresponds to the addition of the framed parts, but without
them, the rules describe piGrTs.

Nodes in the trie represent partial output labelings—i.e., functions f
assigning Boolean values to only some of the samplesin S = {x4,...,xm}.
Each node is identified by a binary string o = b - - - by (k can be smaller
than m) denoting the path to the node from the root. The string o also
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Initialize

explored < {e} P. < P depth < 0 best < L

Vo € explored.Vb € {0,1}.
(P # L Alob| < depth’ Aunblocked(ob) ‘) = ob € explored

Deepen
sample oy, 1 ~ 1D depth < depth +1

o € explored Ps# L1 be{0,1}
ob & explored |ob| < depth ’unblocked(crb) ‘

Explore (Synthesis Query)
Pob ¢ Osyn({(sample; 1, 0b(1)) : 0 <1< |obl})

explored < explored U{cob}

o cexplored Ps# L be{0,1} ob &explored
|ob| < depth | unblocked(ob)| Po(sample,y, ) =b

Explore (Soln. Prop.)
Posv < Po  explored < explored U{ob}

0" = argmin {Oer(Po) | 0 € explored APy # L /A Oyer(Ps) = true}

best <+ P+

Best

where unblocked(o) =[{i:0 <i<|o]Ao(i) # ls(sample )M < T -depth

i+1

Figure 4.4: Full picits description and our new extension, t-bicirs, shown
in boxes.

describes the partial output-labeling function f corresponding to the node—
i.e., if the i-th bit b; is set to 1, then f(x;) = true. The set explored represents
the nodes in the trie built thus far; for each new node, the algorithm
synthesizes a program consistent with the corresponding partial output
function (“Explore” rules). The variable depth controls the incremental
aspect of the search and represents the maximum length of any o in
explored; it is incremented whenever all nodes up to that depth have been
explored (the “Deepen” rule). The crucial part of the algorithm is that, if
no program can be synthesized for the partial output function of a node
identified by o, the algorithm does not need to issue further synthesis
queries for the descendants of o.
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S =1{04,0.6}
S={0.4}

S=10 0 %1
0% 1 / \
0,0.3] ./ ] 0 /\1 0 /0\1
0,0.3] 0,1] d N
0,03]  [0,0.5][0,1]

Hollow circles denote calls to Oy, that yield new programs; the cross
denotes a call to Oy, that returns L.

Figure 4.5: Example execution of incremental picits on interval programs,
starting from [0, 0.3]

Figure 4.5 shows how picrrs builds a trie for an example run on the
interval programs from Example 4.1, where we suppose we begin with an
incorrect program describing the interval [0, 0.3]. Initially, we set the root
program to [0,0.3] (left figure). The “Deepen” rule applies, so a sample
is added to the set of samples—suppose it’s 0.4. “Explore” rules are then
applied twice to build the children of the root: the child following the
0 branch needs to map 0.4 — 0, which [0,0.3] already does, thus it is
propagated to that child without asking Oy, to perform a synthesis query.
For the child following 1, we instead make a synthesis query, using the
oracle Oy, for any value of a such that [0, a] maps 0.4 — 1—suppose
it returns the solution a = 1, and we associate [0, 1] with this node. At
this point we have exhausted depth 1 (middle figure), so “Deepen” once
again applies, perhaps adding 0.6 to the sample set. At this depth (right
figure), only two calls to Oy, are made: in the case of the call at 0 = 01,
there is no value of a that causes both 0.4 — 0 and 0.6 — 1, so Osyn
returns L, and we do not try to explore any children of this node in the
future. The algorithm continues in this manner until a stopping condition

is reached—e.g., enough samples are enumerated.
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Polynomial Bound on the Number of Synthesis Queries

The convergence analysis of picits relies on the finite VC dimension of
the program model, but VC dimension itself is just a summary of the
growth function, a function that describes a notion of complexity of the set
of programs in question. We will see that the growth function much more
precisely describes the behavior of the trie-based search; we will then use a
classic result from computational learning theory to derive better bounds
on the performance of the search. We define the growth function below,

adapting the presentation from Kearns and Vazirani (1994).

Definition 4.10 (Realizable Dichotomies). We are given a set P of programs
representing functions from X — {0, 1} and a (finite) set of inputs S C X. We
call any f : S — {0,1} a dichotomy of S; if there exists a program P € P that
extends f to its full domain X, we call f a realizable dichotomy in P. We denote

the set of realizable dichotomies as
Mp(S) ={f:S—{0,1} | IP € P.V¥x € S.P(x) = f(x)}.

Observe that for any (infinite) set P and any finite set S that 1 <
M»(S)| < 251, We define the growth function in terms of the realizable

dichotomies:

Definition 4.11 (Growth Function). The growth function is the maximal
number of realizable dichotomies as a function of the number of samples, denoted

A

TTp(m) = max{[TT»(S)}.
SCX:
[S|=m
Observe that P has VC dimension d if and only if d is the largest in-
teger satisfying ITp(d) = 2¢ (and infinite VC dimension when IT5(m) is
identically 2™)—in fact, VC dimension is often defined using this charac-

terization.
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Example 4.12. Consider the set of intervals of the form [0, a] as in Example 4.1
and Figure 4.5. For the set of two points S = {0.4, 0.6}, we have that |TTjg o1(S)| =
3, since, by example: a = 0.5 accepts 0.4 but not 0.6, a = 0.3 accepts neither,
and a = 1 accepts both, thus these three dichotomies are realizable; however, no
interval with O as a left endpoint can accept 0.6 and not 0.4, thus this dichotomy
is not realizable. In fact, for any (finite) set S C [0, 1], we have that [Ty q)(S)| =
|S| 4+ 1; we then have that ﬁ[O,a} (m)=m-+1.

When piarrs terminates having used a sample set S, it has considered
all the dichotomies of S: the programs it has enumerated exactly corre-
spond to extensions of the realizable dichotomies TT»(S). The trie-based
exploration is effectively trying to minimize the number of Oy, queries per-
formed on non-realizable ones, but doing so without explicit knowledge
of the full functional behavior of programs in P. In fact, it manages to stay

relatively close to performing queries only on the realizable dichotomies:

Lemma 4.13. piarrs performs at most |S|[T15(S)| synthesis oracle queries. More
precisely, let S = {x1, ..., xm} be indexed by the depth at which each sample was
added: the exact number of synthesis queries is Y ;- [T ({x1, ..., x¢—1})|.

Proof. Let Tq denote the total number of queries performed once depth
d is completed. We perform no queries for the root,® thus Ty = 0. Upon
completing depth d — 1, the realizable dichotomies of {x1, ..., x4_1} exactly
specify the nodes whose children will be explored at depth d. For each
such node, one child is skipped due to solution propagation, while an
oracle query is performed on the other, thus Tq = Ta_1+ITTp ({1, ..., xa-1})I.
Lastly, [TT»(S)| cannot decrease by adding elements to S, so we have that
T =2 g Mp({x1, .., xec1 ) < 22T (S) < ST (S)].

Connecting piarrs to the realizable dichotomies and, in turn, the growth

function allows us to employ a remarkable result from computational

3We assume the functional specification itself is some P € P and thus can be used—the
alternative is a trivial synthesis query on an empty set of constraints.
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learning theory, stating that the growth function for any set exhibits one of
two asymptotic behaviors: it is either identically 2™ (infinite VC dimension)
or dominated by a polynomial! This is commonly called the Sauer-Shelah
Lemma (Sauer, 1972; Shelah, 1972):

Lemma 4.14 (Sauer-Shelah). If P has finite VC dimension d, then for all m >

d, TTp(m) < (£2)% ie. Tlp(m) = O(m9).

Combining our lemma with this famous one yields a surprising result—
that for a fixed set of programs P with finite VC dimension, the number of
oracle queries performed by picrrs is guaranteedly polynomial in the depth
of the search, where the degree of the polynomial is determined by the

VC dimension:

Theorem 4.15. If P has VC dimension d, then picrrs performs O(ma+1)-many

synthesis-oracle queries.

In short, the reason an execution of DIGITS seems to enumerate a sub-
exponential number of programs (as a function of the depth of the search)
is because it literally must be polynomial. Furthermore, the algorithm
performs oracle queries on nearly only those polynomially-many realizable
dichotomies.

Example 4.16. A picrrs run on the [0, a] programs as in Figqure 4.5 using a
sample set of size m will perform O(m?) oracle queries, since the VC dimension
of these intervals is 1. (In fact, every run of the algorithm on these programs will

perform exactly 2m(m + 1) many queries.)

4.4 Property-Directed t-DIGITS

pIGITs has better convergence guarantees when it operates on larger sets
of sampled inputs. In this section, we describe a new optimization of

picits that reduces the number of synthesis queries performed by the
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algorithm so that it more quickly reaches higher depths in the trie, and
thus allows to scale to larger samples sets. This optimized piarrs, called
T-DIGITS, is shown in Figure 4.4 as the set of all the rules of piciTs plus
the framed elements. The high-level idea is to skip synthesis queries that
are (quantifiably) unlikely to result in optimal solutions. For example, if
the functional specification P maps every sampled input in S to 0, then
the synthesis query on the mapping of every element of S to 1 becomes
increasingly likely to result in programs that have maximal distance from
P as the size of S increases; hence the algorithm could probably avoid
performing that query. In the following, we make use of the concept of
Hamming distance between pairs of programs:

Definition 4.17 (Hamming Distance). For any finite set of inputs S and any
two programs Py, P,, we denote Hamming (P, Py) == {x € S | P1(x) # Pa2(x)}|
(we will also allow any {0, 1}-valued string to be an argument of Hammingy).

Algorithm Description

Fix the given functional specification P and suppose that there exists an
e-robust solution P* with (nearly) minimal error k = Er(P*). We would
be happy to find any program P in P*’s e-ball. Suppose we angelically
know k a priori, and we thus restrict our search (for each depth m) only
to constraint strings (i.e. 0 in Figure 4.4) that have Hamming distance not
much larger than km.

To be specific, we first fix some threshold T € (k,1]. Intuitively, the
optimization corresponds to modifying picits to consider only paths o
through the trie such that Hamming (P,o) < 1/S|. This is performed
using the unblocked function in Figure 4.4. Since we are ignoring certain
paths through the trie, we need to ask: How much does this decrease the
probability of the algorithm succeeding?—It depends on the tightness of the
threshold, which we will address next. Then, we will discuss how to



110

adaptively modify the threshold T as t-picITs is executing, which is useful

when a good T is unknown a priori.

Analyzing Failure Probability with Thresholding

Using 1-picrrs, the choice of T will affect both (i) how many synthesis
queries are performed, and (i) the likelihood that we miss optimal solu-
tions; in this section we explore the latter point.* Interestingly, we will
see that all of the analysis is dependent only on parameters directly re-
lated to the threshold; notably, none of this analysis is dependent on the
complexity of P (i.e. its VC dimension).

If we really want to learn (something close to) a program
P*, then we should use a value of the threshold T such that
Prs-pm[Hamming, (P, P*) < tm] is large—to do so requires knowledge
of the distribution of Hammings(ls, P*). Recall the binomial distribution:
for parameters (n, p), it describes the number of successes in n-many trials
of an experiment that has success probability p.

A

Claim 4.18. Fix P and let k = Er(P) = Pry-p[P(x) # P(x)]. If S ~ D™, then
Hamming (P,P)is binomially distributed with parameters (m, k).

Next, we will use our knowledge of this distribution to reason about
the failure probability, i.e. that T-piciTs does not preserve the convergence
result of piarts.

The simplest argument we can make is a union-bound argument: the
thresholded algorithm can “fail” by (i) failing to sample an e-net (Sec-
tion 4.2, Definition 4.9), or otherwise (ii) sampling a set on which the
optimal solution has a Hamming distance that is not representative of its
actual distance. We provide the quantification of this failure probability
in the following theorem:

The former point is a difficult combinatorial question that to our knowledge has no
precedent in the computational learning literature, and so we leave it as future work.
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Theorem 4.19. Let P* be a target e-robust program with k = Er(P*), and let &
be the probability that m samples do not form an e-net for P*. If we run t-pIiGITS
with © € (k, 1], then the failure probability is at most 6 + Pr[X > tm] where
X ~ Binomial(m, k).

In other words, we can use tail probabilities of the binomial distribution
to bound the probability that the threshold causes us to “miss” a desirable
program we otherwise would have enumerated. Explicitly, we have the

following corollary:

Corollary 4.20. t-p1GITs increases failure probability (relative to picits) by at
most Pr(X >Ttm] =Y (MK (1 —k)™

i=[Tm]+1

Informally, when m is not too small, k is not too large, and T is reason-
ably forgiving, these tail probabilities can be quite small. We can even
analyze the asymptotic behavior by using any existing upper bounds on
the binomial distribution’s tail probabilities—importantly, the additional
error diminishes exponentially as m increases, dependent on the size of t

relative to k.
Corollary 4.21. T-piGiTs increases failure probability by at most e~ 2m(T—¥)* 5

Example 4.22. Suppose m = 100, k = 0.1, and T = 0.2. Then the extra failure
probability term in Theorem 4.19 is less than 0.001.

As stated at the beginning of this subsection, the balancing act is to
choose 7 (i) small enough so that the algorithm is still fast for large m, yet
(if) large enough so that the algorithm is still likely to learn the desired
programs. The further challenge is to relax our initial strong assumption
that we know the optimal k a priori when determining t, which we address
in the following subsection.

m(thnh £+(1-1)In i:; )‘

> A more precise (though less convenient) bound is e~
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Adaptive Threshold

Of course, we do not have the angelic knowledge that lets us pick an ideal
threshold 7; the only absolutely sound choice we can make is the trivial
T = 1. Fortunately, we can begin with this choice of T and adaptively refine
it as the search progresses. Specifically, every time we encounter a correct
program P such that k = Er(P), we can refine 7 to reflect our newfound
knowledge that “the best solution has distance of at most k.”

We refer to this refinement as adaptive T-picrts. The modification in-

volves the addition of the following rule to Figure 4.4:

best # L
T < g(Oerr(best))

Refine Threshold (for some g : [0, 1] — [0, 1])

We can use any (non-decreasing) function g to update the threshold
T < ¢g(k). The simplest choice would be the identity function (which
we use in our experiments), although one could use a looser function
so as not to over-prune the search. If we choose functions of the form
g(k) =k + b, then Corollary 4.21 allows us to make (slightly weak) claims
of the following form:

Claim 4.23. Suppose the adaptive algorithm completes a search of up to depth
m yielding a best solution with error k (so we have the final threshold value
T = k + b). Suppose also that P* is an optimal e-robust program at distance
k —m. The optimization-added failure probability (as in Corollary 4.20) for a

run of (non-adaptive) T-picits completing depth m and using this T is at most
e—2m(b+‘r1)2'

4.5 Implementation

We implemented an instantiation of the picirts algorithm in Python. The
picITs algorithm is abstract and modular. Therefore, to implement it we

need to provide a number of components: a mechanism for specifying
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sets of programs P, a procedure for Oy, that produces programs in P
consistent with labeled examples, and a probabilistic inference algorithm
to (7)) check whether the synthesized program respects the postcondition
(Over), (if) compute the semantic difference dp between the synthesized
program P and the functional specification p (Oerr). In this section, we
describe the concrete choices of these components for our implementation.

Real-Paramterized Program Sketches. Since we are mostly interested in
repairing machine-learned classifiers, a natural design for sets of programs
is to allow modifications to real-valued constants appearing in some initial
program. These constants are essentially the weights of the classifier.
Formally, let P be a program we are trying to repair, and let ¢y, ..., cq,
be all of the constants appearing in P. For simplicity, assume all constants
are different. Given constants dy, ..., dy, we write Plc1/dy,...,cn/dn] to
denote the program in which each constant c; has been replaced with the

constant d;. Finally, the set of candidate programs is defined as
:P = {P[Cl/dl/--~/cn/dn] ’ dl/---/dn S R}

We only consider programs containing linear real arithmetic expressions.
As such, our set of programs can always be viewed as a set of unions
of polytopes with a bounded number of faces (bounded by the size of
the program). It can be shown such polytopes have finite VC dimension
(Sharma et al., 2014), and therefore, so will any sketch in our language.
The implementation of Oy, (f) (for some f : S — {0, 1}) follows a sketch-
like approach (Solar-Lezama, 2008), where we encode the program and
the samples as a formula whose solution instantiates the parameters of P.
Let P be a program we are trying to repair, and let cy, ..., c,, be all of the
constants appearing in P, as discussed above. We will first create a new
program Py = Plci/hy,...,cn/hal, where hy, ..., h, are fresh variables
that do not appear in P. We call h; holes. We now encode the program Py as
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a formula as follows, using the function pvc. To simplify the encoding, and
without loss of generality, we assume that Py is in static single assignment
(ssa) form.

pvc(v + E) £v = [E]
pvc(P; P,) £ pvc(Py) A pve(Ps)
pvc(if B then Py else Py) 2 ([B] = pvc(P1)) A (—[B] = pvc(P,))

where [B] is the denotation of an expression, which, in our setting, is
a direct translation to a logical statement. For example, [x +y>0] £
x+y>0.

Once we have encoded the program Py as a formula ¢, for each sample
x; € S, we will construct the formula

@i = IV. v /xi] Av, = f(xi)

where V is the set of variables of P, which do not include the intro-
duced holes hy, ..., h,,. Finally, a model to the formula A; ¢; is an as-
signment to the holes hy, ..., h,, that corresponds to a program in P that
correctly labels the positive and negative examples specified by f and S.
Specifically, Osyn(f) finds a model m = A; @; and returns the program
Pyplhi/m(hy),..., hn/m(h,)], where m(h;) is the value of h; in the model

m. If A; @; is unsatisfiable, then Oy, returns L.

Theorem 4.24 (Soundness and completeness of Ogyy). Suppose we are given
a set of programs P represented by the program sketch Py as defined above, along
with a labeling of samples f : § — {0,1}. Then, if Ogyn(f) returns a program
P, P must appear in P and classifies S exactly as f does. Otherwise, there is no
program in P consistent with f on S.

Conflict-driven pruning. We can also learn from the instances in which

Osyn returns L. In particular, when a failure occurs, we can identify a
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subset of the labelings that caused the failure and use it to reduce the set of
nodes in the trie for which we explicitly perform the smt query within Ogyn,.
In our implementation, we will use the unsatisfiable cores produced by the
sMT solver to compute the subsets of the samples that induce failures and

elide any future calls to Oy, on supersets of these cores.

Probabilistic inference. In our implementation, this component can be
instantiated with any probabilistic inference tool—e.g., ps1 (Gehr et al.,,
2016). We use FairSquare; unlike several other tools, the inference algo-
rithm used in FairSquare is sound and complete and therefore meets the
criteria of the piaIts algorithm.

To speed up the search, we use sampling to approximate the proba-
bilistic inference and quickly process obvious queries. At the end of the

algorithm we use FairSquare to verify the output of piaits.

4.6 Evaluation

In this section, we explore the ability of picrts to repair the unfair bench-
marks from Chapter 3; we then compare its performance to T-pIGITS tO
conclude that our improvements do improve the quality of solutions and
guarantees. Finally, we apply 1-picITs on a few other problems to test its
synthesis capabilities.

Benchmarks. We used an online dataset (UCI, 1996) comprised of 14
demographic features for over 30,000 individuals to generate a number of
classifiers and a probabilistic precondition. The precondition uses a graph
structure represented as a probabilistic program: at each node, there is an
inferred Gaussian distribution for a variable, and the edges of the graph
induce correlations between variables.

We generated support vector machines with linear kernels (svms) and de-
cision trees (DTs) to classify high- versus low-income individuals using the

Weka data mining software (Hall et al., 2009) until we obtained 3 svms and
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3 p1s that did not satisfy a probabilistic postcondition describing group

fairness.® In particular, we used the following postcondition:

Pr[high income | female] > 0.85

Pr[high income | male]

The learned models are small and employ at most three features. Most
of the generated models violated the postcondition because they were
strongly influenced by a particular feature, capital gain, which was highly
correlated with gender in the dataset.

The combined size of the precondition and decision-making program
ranges from 20 to 100 lines of code. Though this is a much smaller scale
than industrial applications of machine learning, the repair problems are

highly non-trivial.

Effectiveness of piGits. Table 4.1 details the performance of piciTs on
our suite of fairness benchmarks that were given 600 seconds to perform
repair. For example, on the pr labeled p1y¢, the table shows that within the
best-effort period, picits was able to enumerate all possible labelings for a
set of 50 samples (the depth of the trie), and found a solution P satisfying
the postcondition that differs from the original program with probability
Er(P) = 0.098. Despite the fact that there are 2°° ~ 10" such labelings, only
1,903 were realizable by a program in P. In fact, during the construction
of the trie, piciTs needed only to invoke calls to Osyn for 26,628 (2,967 +
23,661) of them: among these, 2,967 resulted in smt queries to construct a
consistent program in P, while 23,661 (88%) potential queries that would
have been unsatisfiable and return | were avoided using conflict-driven
pruning.

It is visibly apparent that the trie structure and conflict-driven prun-

ing save many synthesis and verification queries. However, savings from

These benchmarks did originate from the unfair verification instances in FairSquare’s
evaluation, Section 3.4.
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Name Holes Best Error |S| # Satisfiable # Queries # Unsat Pruned

DT16 5 0.098 50 1,903 2,967 23,661
DT44 3 0.030 91 1,741 2,159 31,867
DTy 2 0.140 79 1,746 2,453 44,914
4 0.067 16 1,000 1,338 2,170
SVMs 3 0.062 23 1,600 1,988 7,001
2 0.046 91 1,980 2,227 59,741
1 0.060 661 662 1,967 216,825
5 0.197 10 508 608 154
4 0.204 13 1,018 1,223 1,077
SVMy 3 0195 22 1,424 1,830 5,613
2 0.040 83 1,674 1,891 44,357
1 0.044 628 629 1,857 195,650
6 0131 8 240 251 3
5 0.122 10 632 696 151
sVMs 4 0.103 13 1,018 1,212 1,082
3 0.096 23 1,348 1,680 6,001
2 0.056 88 1,736 1,960 49,865
1 0.067 598 599 1,775 177,327

Table 4.1: Results of piGits on fairness benchmarks (600s time limit).

conflict-driven pruning are only possible once the depth of the search (the
number of constraints) is large enough that many labelings are inconsistent—
when the number of constraints exceeds the VC dimension of the set of
programs. Therefore, we expect the instances with a more expressive set
of programs to perform worse.

Accordingly, Table 4.1 includes multiple results for each of the svwms,
where the number of holes is varied: the svMs compare an expression
Co + c1x1 + X2 + ... to 0, where each c; is replaced with a hole. The
variants with fewer holes are generated by removing the holes for coef-
ficients of x; in increasing order of the mutual information between x;
and gender, as per the precondition. The last remaining hole allows only
for the constant offset ¢ to be changed. The table illustrates the trade-off
between expressivity and performance: though the instances with more
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holes represent a superset of programs and thus have the potential to
contain solutions with better error Er(-), the search is slow, and the trie
cannot enumerate as large a set of samples: the synthesis queries are over
more variables and are more complex; more solutions are satisfiable, so
conflict-driven pruning does not provide the same advantages. In general,
as the number of holes decreases, the best solution has improving error
minimality because the trie is explored deeper. This trend continues until
the only hole that remains is the constant offset, when the set of programs
is no longer expressive enough to capture solutions with such a minimal

difference.

Effectiveness of T-DIGITS

Next we evaluate our new algorithm t-p1cits (Figure 4.4) and its adaptive
variant (Section 4.4) against picrrs (i.e., T-picits with T = 1). Our evaluation

aims to answer the following questions:

RQ1 Is adaptive t-picits more effective /precise than t-picrrs?
RQ2 Is t-picits more effective/precise than picirs?

RQ3 Can t-pIaiTs solve challenging synthesis problems?

We experiment on three sets of benchmarks: (i) synthetic examples for
which the optimal solutions can be computed analytically, (ii) the afore-
mentioned fairness repair benchmarks, (iii) a variant of the thermostat-

controller synthesis problem presented in Chaudhuri et al. (2014).

Synthetic Benchmarks

We consider a class of synthetic programs for which we can compute the
optimal solution exactly; this lets us compare the results of our imple-
mentation to an ideal baseline. Here, the program model P is defined as
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Figure 4.6: Synthetic hyperrectangle problem instance with parameters
d=1,b=01

the set of axis-aligned hyperrectangles within [—1,1]4 (d € {1,2,3} and
the VC dimension is 2d), and the input distribution D is such that inputs
are distributed uniformly over [—1,1]¢. We fix some probability mass
b € {0.05,0.1,0.2} and define the benchmarks so that the best error for a
correct solution is exactly b (see Appendix C.2).

We run our implementation using thresholds T € {0.07,0.15,0.3,0.5, 1},
omitting those values for which T < b; additionally, we also consider an
adaptive run where 7 is initialized as the value 1, and whenever a new best
solution is enumerated with error k, we update T <— k. Each combination
of parameters was run for a period of 2 minutes. Figure 4.6 fixates on
d =1, b = 0.1 and shows each of the following as a function of time: (i) the
depth completed by the search (i.e. the current size of the sample set), and
(if) the best solution found by the search. (See Appendix C.2 for other
configurations of (d, b).)

By studying Figure 4.6 we see that the adaptive threshold search per-
forms at least as well as the tight thresholds fixed a priori because reason-
able solutions are found early. In fact, all search configurations find solu-
tions very close to the optimal error (indicated by the horizontal dashed
line). Regardless, they reach different depths, and the main advantage of
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Figure 4.7: Improvement of using adaptive T-piciTs on the fairness bench-
marks. Left: the dotted line marks the 2.4 x average increase in depth.

reaching large depths concerns the strength of the optimality guarantee. Note,
also, that small T values are necessary to see improvements in the com-
pleted depth of the search. Indeed, the discrepancy between the depth-
versus-time functions diminishes drastically for the problem instances
with larger values of b (see Appendix C.2); the gains of the optimization
are contingent on the existence of correct solutions close to the functional
specification.

Findings (RQ1): t-picits does tend to find reasonable solutions at early
depths and near-optimal solutions at later depths, thus adaptive T-piGITS
is more effective than t-picits, and we use it throughout our remaining

experiments.

Fairness Benchmarks

For each repair problem, we run both picits and adaptive T-picits (again,
with initial T = 1 and the identity refinement function). Each benchmark is
run for 10 minutes, where the same sample set is used for both algorithms.

Figure 4.7 shows, for each benchmark, (i) the largest sample set size
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completed by adaptive t-picits versus piarrs (left—above the diagonal line
indicates adaptive T-pIGiTs reaches further depths), and (if) the error of the
best solution found by adaptive t-picITs versus picits (right—below the
diagonal line indicates adaptive t-picITs finds better solutions). We see that
adaptive T-pIGITs reaches further depths on every problem instance, many
of which are substantial improvements, and that it finds better solutions
on 10 of the 18 problems. For those which did not improve, either the
search was already deep enough that picits was able to find near-optimal
solutions, or the complexity of the synthesis queries is such that the search
is still constrained to small depths.

Findings (RQ2): Adaptive T-p1cITs can find better solutions than those
found by piciTs and can reach greater search depths.

Thermostat Controller

We challenge adaptive t-picits with the task of synthesizing a thermostat
controller, borrowing the benchmark from Chaudhuri et al. (2014). The
input to the controller is the initial temperature of the environment; since
the world is uncertain, there is a specified probability distribution over the
temperatures. The controller itself is a program sketch consisting primarily
of a single main loop: iterations of the loop correspond to timesteps, during
which the synthesized parameters dictate an incremental update made
by the thermostat based on the current temperature. The loop runs for 40
iterations, then terminates, returning the absolute value of the difference
between its final actual temperature and the target temperature.

The postcondition is a Boolean probabilistic correctness property intu-
itively corresponding to controller safety, e.g. with high probability, the
temperature should never exceed certain thresholds. In Chaudhuri et al.
(2014), there is a quantitative objective in the form of minimizing the ex-
pected value Ellactual — target|]—our setting does not admit optimizing
with respect to expectations, so we must modify the problem. Instead,
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Figure 4.8: Thermostat controller results

we fix some value N (N € {2, 4, 8}) and have the program return 0 when
lactual — target| < N and 1 otherwise. Our quantitative objective is to mini-
mize the error from the constant-zero functional specification P(x) =0
(i.e. the actual temperature always gets close enough to the target).

We consider variants of the program where the thermostat runs for
fewer timesteps and try loop unrollings of size {5, 10,20, 40}. We run each
benchmark for 10 minutes: the final completed search depths and best
error of solutions are shown in Figure 4.8. For this particular experiment,
we use the smt solver CVC4 (Barrett et al., 2011) because it performs better
than Z3 on the occurring smr instances.

As we would expect, for larger values of N it is “easier” for the thermo-
stat to reach the target temperature threshold and thus the quality of the
best solution increases in N. However, with small unrollings (i.e. 5) the
synthesized controllers do not have enough iterations (time) to modify the
temperature enough for the probability mass of extremal temperatures
to reach the target: as we increase the number of unrollings to 10, we see
that better solutions can be found since the set of programs are capable of
stronger behavior.

On the other hand, the completed depth of the search plummets as
the unrolling increases due to the complexity of the Oy, queries. Con-
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sequently, for 20 and 40 unrollings, adaptive T-piGITS synthesizes worse
solutions because it cannot reach the necessary depths to obtain better
guarantees.

One final point of note is that for N = 8 and 10 unrollings, it seems that
there is a sharp spike in the completed depth. However, this is somewhat
artificial: because N = 8 creates a very lenient quantitative objective,
an early Osy, query happens to yield a program with an error less than
1073, Adaptive t-piGiTs then updates T <= 1072 and skips most synthesis
queries.

Findings (RQ3): Adaptive t-picITs can synthesize small variants of a
complex thermostat controller, but cannot solve variants with many loop

iterations.

4,7 Related Work

Over the past few years, progress in automatic program synthesis has
touched many application domains, including automating data wrangling
and data extraction tasks (Polozov and Gulwani, 2015; Raza and Gulwani,
2017; Wang et al., 2016; Gulwani, 2016; Barowy et al., 2015; Gulwani, 2011),
generating network configurations that meet user intents (Subramanian
et al., 2017; El-Hassany et al., 2017), optimizing low-level code (Srinivasan
and Reps, 2015; Schkufza et al., 2016), and more (Bastani et al., 2017; Gul-
wani, 2014).

Program repair and synthesis. Automated repair has been studied in the
non-probabilistic setting (Konighofer and Bloem, 2011; Mechtaev et al.,
2015; D’Antoni et al., 2016; Von Essen and Jobstmann, 2015; Jobstmann
etal.,2005). Closest to our work is the tool Qlose, which attempts to repair a
program to match a set of test cases while attempting to minimize a mixture
of syntactic and semantic distances between the original and repaired

versions (D’Antoni et al., 2016). The approach in Qlose itself cannot be
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directly lifted to probabilistic programs and postconditions because it
relies on a finite set of input-output examples—it finds candidates for
repairs by making calls to an smt solver with the hard constraint that the
examples should be classified correctly. In our setting, the output of the
optimal repair on the samples is not known a priori and our goal is to
ultimately find a program that satisfies a probabilistic postcondition over
an infinite set of inputs. Several of Qlose’s general principles do carry
over: namely, using a sketch-based approach (Solar-Lezama, 2008) to fix
portions of the code and minimizing semantic changes.

In probabilistic model checking, a number of works have addressed the
model repair problem, e.g., Bartocci et al. (2011); Chen et al. (2013). In this
work, the idea is to modify transition probabilities in finite-state Markov
Decision Processes to satisfy a probabilistic temporal property. Our setting
is quite different, in that we are modifying a program manipulating real-
valued variables to satisfy a probabilistic postcondition.

Our problem of repairing probabilistic programs is closely related to
the synthesis of probabilistic programs. The technique of smoothed proof
search (Chaudhuri et al., 2014) approximates a combination of functional
correctness and maximization of an expected value as a smooth, contin-
uous function. It then uses numerical methods to find a local optimum
of this function, which translates to a synthesized program that is likely
to be correct and locally maximal. Smoothed proof search can minimize
expectation; T-piGiTs minimizes probability only. However, unlike t-picirs,
smoothed proof search lacks formal convergence guarantees and cannot
support the rich probabilistic postconditions we support, e.g., as in the
fairness benchmarks.

Works on synthesis of probabilistic programs are aimed at a different
problem (Nori et al., 2015; Chasins and Phothilimthana, 2017; Saad et al.,
2019): that of synthesizing a generative model of data. For example, Nori
etal. (2015) use sketches of probabilistic programs and complete them with
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a stochastic search. Recently, Saad et al. (2019) synthesize an ensemble of
probabilistic programs for learning Gaussian processes and other models.

Kucera et al. (2017) present a technique for automatically synthesizing
program transformations that introduce uncertainty into a given program
with the goal of satisfying given privacy policies—e.g., preventing infor-
mation leaks. They leverage the specific structure of their problem to
reduce it to an smT constraint solving problem. The problem tackled in
Kucera et al. (2017) is orthogonal to the one targeted in this chapter and
the techniques are therefore very different.

Stochastic satisfiability. Our problem is closely related to, and subsumes,
the problem of e-majsar (Littman et al., 1998), a special case of stochastic
satisfiability (ssat) (Papadimitriou, 1985) and a means for formalizing prob-
abilistic planning problems. e-majsaT is of NP™" complexity. In E-mAJsarT,
a formula has two sets of propositional variables, a deterministic and a
probabilistic set. The goal is to find an assignment of deterministic vari-
ables such that the probability that the formula is satisfied is above a given
threshold. Our setting is similar, but we operate over formulas in linear
real arithmetic and have an additional optimization objective stipulating
semantic closeness. The deterministic variables in our setting are the holes

defining the repair; the probabilistic variables are program inputs.

Algorithmic fairness. Concerns of algorithmic fairness are recent, and
there are many competing fairness definitions (Dwork et al., 2012; Friedler
et al., 2016; Hardt et al., 2016; Feldman et al., 2015; Datta et al., 2016).
Approaches to enforcing fairness in machine-learned classifiers include
altering the data to remove correlations with protected attributes (Feldman
et al., 2015) and imposing a fairness definition as a requirement of the
learning algorithm (Hardt et al., 2016). However, the general problem
presented in this chapter of modifying an existing program (be it learned
or manually constructed) to meet a quantitative probabilistic property is

novel.
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5 CONCLUSION

Thus ends this dissertation’s cursory voyage into providing formal guaran-
tees within automated decision-making. To recapitulate, we first presented
Antidote, a tool to verify data-poisoning robustness in decision-tree learn-
ing, which served as an example of how we might formally reason about
the relation between changes in a training set and changes in model behav-
ior. Second, we presented FairSquare and piaiTs, a pair of techniques to
certify and enforce probabilistic properties of decision-making programs,

such as algorithmic fairness.

5.1 Future Work

Beyond Antidote. In our development of Antidote, we considered two
simple forms of abstract domains; these were initial ideas on how to
represent abstractions of large collections of training sets, but there is a lot
of room to explore other abstract domains for programs that manipulate
large data tensors. One immediate direction for future work is to look for
a version of our disjunctive domain that performs partial joins on similar
disjuncts in attempt to moderate the resource-precision tradeoff.

Our analysis was performed for a very specific formalization of decision-
tree learning. Ideally, a practical tool would support a more expressive
set of learner behaviors, e.g. pruning. (The simplest way to soundly han-
dle pruning would be to take the join of the possible outcomes if the
learner could stop recursing at each depth; being more precise would
require a proper abstraction over trees.) A natural extension would be to
lift our techniques from individual trees to decision-forest learning. The
key challenge here is assessing how best to handle the non-determinism
present in such ensemble methods while still providing a guarantee about
all possible executions of the learner. Moving beyond trees and forests,
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it would be exciting to see abstract transformers devised to prove the
poisoning-robustness of gradient descent.

Finally, devising the abstract transformers required careful, manual
effort to maintain precision, and it’s possible that slightly different ex-
pressions would have been more amenable to verification. It would be
interesting to see, in general, how insights into developing sound, pre-
cise abstract transformers could be applied for the purpose of designing
more robust learning algorithms. On a related note, Antidote focused on
verifying data-poisoning robustness; what ought to be the corresponding
synthesis problem? Can we synthesize, for example, greedy predicate
selection expressions that result in a provably robust learner? What about
other properties we would like the learner or model to posses by construc-

tion?

Extending picits. One potentially unsatisfying aspect of FairSquare is
that its proofs of unfairness take the form of a large collection of hyper-
rectangles whose weighted volumes witness that the postcondition does
not hold: this is not easily interpretable by humans, and does not give us
intuition into what was wrong. (Similarly, picits repairs unfairness while
completely agnostic to this information.) Is there some kind of explana-
tion we could synthesize from this artifact? In traditional verification,
a counterexample is a clear artifact that falsifies a postcondition. In the
probabilistic setting, however, there is no single execution trace that ex-
plains why a postcondition does not hold. Exploring debugging in the
probabilistic setting is an interesting problem for future work.

An immediate direction for future work is to extend the expressivity of
piGiTs. In particular, FairSquare is applicable for the probabilistic verifica-
tion of (loop-free, etc.) programs representing functions mapping X — Y
for (largely) arbitrary choices of X and Y; in its current form, picIrs can
only handle the case of X — {0, 1}. For learning multiclass (N-categorical)

functions, implementation is as simple as adapting the binary-trie search
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to N-ary, and for understanding convergence guarantees we look to the
Natarajan Dimension (Natarajan, 1989), which exactly generalizes VC Di-
mension to the multiclass setting. (It is unclear what the ramifications
will be on the complexity of the algorithm.) The further step of learning
real-valued outputs could be done by some process of iteratively refining
a partition over the reals and otherwise reducing to the categorical case;
we can look to the computational learning theory work on the learnability
of real-valued functions for inspiration (Bartlett et al., 1994).

The ultimate goal is for FairSquare and picirs to be a relatively complete
pair of procedures for probabilistic program analysis problems. Further
stretch goals include extending them beyond the current limitations of
their restricted grammars and reliance on SMT. For example, to handle
loops efficiently, there is room to explore the applicability of loop summa-
rization techniques; simpler SMT queries could likely be obtained through
appropriate uses of program slicing; SMT itself may not be necessary
in all cases, particularly as the synthesis oracle Oy, in DIGITS, where any
programming-by-examples framework would be applicable. Furthermore,
could we use unsound or incomplete, faster synthesis oracles to make
piGITs even more practical>—Could we still have relativized, weaker con-
vergence guarantees? More generally, can we combine the aspects of
machine learning that excel at fitting to large quantities of data with the
aspects of program synthesis that give us formal guarantees, achieving the
best of both worlds? Such explorations would build towards bridging the
gap between (i) what these tools can do in their current state, and (i7) what
these tools need to be able to do so that problems such as the certification

and enforcement of algorithmic fairness at scale can become a reality.
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5.2 Concluding Remarks

Computing and automated reasoning are already impacting society in
profound ways, a trend that is sure to continue in the years to come. The
need for societally responsible automated reasoning will only grow more
paramount as this frontier advances. I can only hope that the ideas in this
thesis contribute to satisfying this necessity. (Perhaps a modest goal is
for the machine learning suites used by practitioners of the future to be
equipped with formal guarantees, e.g. learners produce not just a model,
but also some certificate of fairness alongside it.) All of us who work
as STEM researchers should not shy from the potentially uncomfortable
intersection of our technologies with the Humanities; we must take an

interdisceplanary perspective when shaping the world of tomorrow.
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A EXTENSIONS

A.1 Real-Valued Features for DTrace

In this appendix, we provide a complete exposition of the technique used to
handle real-valued features in Antidote (filling the gap left in Section 2.4).
We repeat some of the arguments given in the main text to make this
appendix self-contained. For real-valued features, there are infinitely
many possible predicates of the form Ax;.x; < T (where T € R), and the
learner DTracer chooses a finite set of possible T values dynamically, based
on the values that occur in T. Throughout this section, we use the subscript

R to denote the real-valued versions of existing operations.

From DTrace to DTracep

The new learner DTracer is almost identical to DTrace. However, to for-
malize the aforementioned operation in the concrete semantics of DTracep,
we make a single modification in bestSplity, which maintains the original
definition of bestSplit, but it first computes a finite set of predicates Oy
used in the remainder of its computation: consider all of the values ap-
pearing in T for the ith feature in X, sorted in ascending order. For each
pair of adjacent values (a, b) (i.e., such that there exists no ¢ in T such that

a < ¢ < b), we include in O the predicate ¢ = Ax;.x; < %b.

Example A.1. In our running example from Figure 2.2, we have training set
elements in Ty, whose features take the numeric values {0,1,2,3,4,7,...,14}.
bestSplity (Tow) would thus enumerate over the predicates O = {Ax.x < T |

T€{3,3 35 5 5 3k
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From DTrace” to DTracel;

The formalization for the abstract case is more involved than the concrete
case: (i) we will similarly modify bestSplit*, but also (ii) we will change
our abstract domain over predicates. This change to the predicate domain
means we will have to make largely superficial adjustments to the many
of the other operations, as well.

bestSplitl;, the real-valued version of bestSplit*, is responsible for select-
ing a finite set of predicates that it will consider in its computation. This
motivates the second point, which we will discuss first: because we don’t
know which values could be missing from (T, n), we might naively consider
a value of T for every such possible combination of missing values. If we
did so, and if bestSplity T considers m predicates, then bestSplith ((T, 1))
might consider up to = mn predicates. For efficiency, we will instead cre-
ate a finite set of m-many symbolic predicates that overapproximates these

possibilities.

Definition A.2 (Symbolic Real-Valued Predicate). For a real-valued feature
at xi, a symbolic predicate p over x; takes the form Ax;.x; < [a,b) for real
values a and b. The semantics of a symbolic predicate is three-valued, which we
denote as follows:

true xi<a
p(x) = ¢ maybe a<x;<b
false b <x;

Each symbolic predicate p = Axi.xi < [a,b) has the concretization y(p) =
Mxixi <Tt|T€[ab)}

Without loss of generality, we focus on the single disjunct case. We
previously stated DTrace” operates over a state ((T,n), ¥) where ¥V is some
finite set of predicates; now we let the state of DTraceﬁ{ be ((T,n), ¥*) where
W* is represented as a finite set of symbolic predicates. The join remains a
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simple set union W W4 := W UW4. The concretization captures an infinite

set of (non-symbolic) predicates: y(W*) := (J, cy+ ¥(p).
Symbolic Predicates in Auxiliary Operators. The definition of (T,n)/*

changes slightly, since we must include the maybe case to be sound. This
complicates the computation of the poisoning amount n, since we have two
sources of uncertainty: we must account for elements that could be missing
because either (i) they are missing from some particular T" € y((T,n)),
or (ii) p evaluates to maybe. Fortunately, we will be able to succinctly
encompass these possibilities using our existing lower-level operations.

We define (T, n)ﬁé as follows: suppose p is of the form Ax;.x; < [a, b),
let o = Axi.x; < a and let @, = Ax;.x; < b. Because ¢, and ¢4, are
concrete predicates, we can use Equation 2.1 (Section 2.3) to compute their
abstract semantics. Then

(T, o= (T,md5, U(T, )G,
Proposition A.3. Let T € y((T,n)) and ¢’ € y(p). Then,

T'le € V(<T1n>¢ﬁ.)-

Proof. Denote (Sq, mq) = (T,n)l% and (Sp, mu) = (T,n)/% . We will
show that T’} ,» € Y((Sq, mq) U (Sp, mp)). This join has nice structure
since a < band thus S, C Sy,.

We break into two cases, since my, = min(n, [Sy|). First, suppose my, =
ISol. Then (Sq, mq) U (Sp, mp) = (Sv, [Sul), where y((Sv, [Sul)) = P(Tle,)-
Because ¢’ € y(p), we then have T'|,» C T'|,, € P(Tl,,), and we are
done.

Otherwise, we have m, = n. Here, (S, mq) U (Sp, mp) = (Sp, [Sp \
Sal +n) (unless m, = [Sql, in which case we immediately collapse to
the previous case). Again, because ¢’ € y(p), we immediately have that
T’} C Sp; it remains to show that Sy \ T’} /| < [Sp \ Saf + 1. Observe
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that (i) T] o \ T'lo, € T\ T"and thus [T}, \ T']y/| < m, and (if) since
Sa € Sy and @’ € y(p), we have that [Sy, \ Tl /| < [Sp \ Sal. Combined,
we know that Sy \ T'L /[ = |Sp \ Tle/| + [Tl \ T'Le/| <[Sp \ Sal +1.

Symbolic Predicates in filter},. In the original definition of filter" we sep-
arated ¥ into two sets W, and Y- because exclusively either ¢ = x or
—¢ = x. In this new three-valued symbolic predicate case, we appropri-
ately over-approximate the p(x) = maybe possibility.

Let us denote the following;:

W ={p € W*| p(x) € {true, maybe}}
Wt ={p € W*| p(x) € {maybe, false}}

and define

filter® ((T,n), W x) = <|_| <T,n>¢*§,) L ( | ] T ip)

pewt pew?

Proposition A.4. Let T € y((T,n)) and let ¢’ € y(V*). Then,
filterr (T', @', %) € v (filterk ((T,n), ¥¥,x))

Proof. Because @' € y(¥*), we know there is some p € W* such that
@’ € y(p). Once again, soundness now follows from the soundness of the
join and the soundness of |*.

Symbolic Predicates in bestSplit};. Finally, we discuss the treatment of our
favorite complicated instruction. Perhaps surprisingly, very little has to
change. Indeed, bestSplit}; ((T,n)) begins by creating a finite set of symbolic
predicates ®* and then proceeds exactly as its original definition.
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The construction of ®* is very simple. In the concrete case we consid-

a+b
2

occur in T; here, we will consider Ax;.x; < [a, b) for all such pairs.

ered Ax;.x; < for all adjacent pairs (a, b) of the feature values that

It should be surprising that this computation is sound. After all, it
involves (effectively) computing the argmin over a set of predicates; here,
we’re over-approximating that set, and we ought to be concerned that our
over-approximation could include extraneous predicates whose valuation
is so small that they occlude the feasible minimizing predicates. Serendip-
itously, the choice of ®* prevents this from happening.

Lemma A.5. Let T' € y((T,n)). Then,
bestSplity (T') € v (bestSplith ((T,n)))

Proof. Webegin by observing two facts about the ®* constructed in bestSplit};:
(i) For every ¢ € @ built during the non-symbolic bestSplitg (T’), there
exists some p € O such that ¢ € y(p). (ii) For every p € @, there exists
some T” € y((T,n)) and @” € ® from bestSplitg (T”) (¢” is not neces-
sarily returned as optimal, just constructed for consideration) such that
o" €v(p).

Let @’ = bestSplitg (T’). The rest of the proof is exactly the same as
the soundness proof for bestSplit” (the previous two observations ensure
that @ and ®% preserve the properties necessary for those arguments),
except for establishing that our target ¢’ is in the concretization of some p’
returned in the then-branch of the definition. Take any ¢* € y(p*) where

p* is the minimizer in lubg+. Observe the following for any p’ € y(®¥)
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such that ¢’ € y(p'):

Ib(score® ((T,n), ')
score(T', ')

Ib(score® ((T,n),p"))

score(T', @*)
ub(score” ((T,n), *))
ub(score” ((T,n), p*))

INCINCIN O IN N

lub o#

and thus ¢’ would be included.
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B PROOFS

This Appendix contains various proofs omitted from the main text.

B.1 Proofs for Antidote

Proof of Proposition 2.7. Suppose T € y((Ty, 1)) Uy ((T2, n2)). Without loss
of generality, assume T € y((T;, ny)). Certainly T C T, U T,; furthermore,
observe that T can be formed by first removing [T, \ T;|-many elements from
T;UT, torecover Ty and then removing < n; remaining elements: this gives
us [(TUT)N\TI = [T\ T)UMAT) < [T\ T+ [T\ T < T2\ Ti| 4+ 1.
This matches the definition of LI.

Proof of Proposition 2.9. Let (S, m) = y((T,n)¥) (so we will show T’|, €
Y((S,m))). Since T" C T, we have that T, C {(x,y) € T: x = ¢} =S,
thus T'], C S. Additionally, S\ T}, = S\ T’ C T\ T’; certainly, then,
IS\ T"] ol < [T\ T’| and thus < n. Recall there are two cases, m = n or
m = |S]: for the latter, we have trivially that [S\ T'|,| < [S| < m. Therefore
IS\ T"] ol < min(n, m).

Proof of Proposition 2.10. When n < [T|, this follows from the soundness
of interval arithmetic. In our corner case for n = |T|, the concrete cprob
is undefined behavior, so we encompass every well-formed categorical
probability distribution by allowing each component to take any [0, 1]

value.

Proof of Proposition 2.12. This is an immediate consequence of the sound-

ness of (T,n)|%, and the soundness of the join.

Proof of Lemma 2.15. First, observe that score” is sound since it involves
composing sound interval arithmetic with other sound operations. Let
@’ = bestSplit(T’).
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¢ Case @' = o: By definition of bestSplit, this occurs when T’ is such that
every predicate ¢ € @ results in trivial splits. Soundness of |* then
gives us that for each ¢ € @, either § € y((T,n)%)or 0 € y((T,n)|*,),
thus @y = (). We return using the then-branch, which includes <.

e Case @’ # ¢: By definition of bestSplit, (i) ¢’ non-trivially splits T’,
and furthermore, (ii) for all other 1 that non-trivially split T’, we have
that score(T’, @’) < score(T’,1). (i) gives us that ¢’ € @3, therefore if
®y = (), then ¢’ is included in the return value.

Otherwise, when @y # (), we return using the then-branch. Let {* mini-
mize lubg,: sincePp* € Dy, (ii) gives us thatscore(T’, @) < score(T’,1*),
and thus we have Ib(score® ((T, ), ¢’)) < ub(score®((T,n), V*)) = lubg,,.
Therefore ¢’ is included in the return.

Proof of Theorem 2.16. DTrace” applies a sequence of operations; through-
out the section, we state the soundness of each of these operations. The
soundness of DTrace” follows from taking their composition.

B.2 Proofs for FairSquare

Proof of Theorem 3.7. Soundness: Suppose m = 0J,. By definition of &7,
the following formula is valid

A ml) <x<my) = ¢
x€Xep

Therefore H™ = ¢, by definition of H™.

Completeness: Let H be a hyperrectangle such that H = ¢. By defini-
tion, H is of the form A .y cx < x < ¢f. It immediately follows that the
model where 1, = ¢, and u, = c], for every x € X,,, satisfies 0J,,, since
c, > cy (satisfying the first conjunct of &0, ), and VX,. H = ¢ (satisfying
the second conjunct of &,,).
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Proof of Theorem 3.8. Soundness: Suppose H™ /\ H™2 is satisfiable. By
definition of a hyperrectangle, this means that for all variables x € X,
we have that the intervals [H{™ (x), H" (x)] and [H{"(x), H{2(x)] overlap,
i.e., at least are equal on one of the extremes. Therefore, m, ¥ ¥ A
block(H™), since block does not admit any model m where, for all x € X,
(m(1ly), m(uy)] overlaps with [H™ (x), HIM (x)].

Completeness: Suppose H™ /A H™ is unsatisfiable. By definition
of a hyperrectangle, there is at least one x € X, where [H{™ (x), H" (x)]
and [H™(x), H?(x)] do not overlap. Therefore, if m, = ¥, then m,
W A block(H™1), since block explicitly states that for at least one variable x,
[m(1y), m(uy)] should not overlap with [H{™ (x), HM (x)].

Proof of Theorem 3.13. Soundness: Suppose m = step® (x). Then,
m(8,) =) _ci-|lay, bid N m(ly), mu)]|
i=1
By definition of the area under a positive step function, we have

m (i)

m(dy) =J step(x) dx
m(Lx)

Completeness: Completeness easily follows from correctness of the

encoding of integrals over step functions as sums.

B.3 Proofs for piGits

Proof of Lemma 4.4. We cite the seminal result from Blumer et al. (1989)
that if a well-behaved' concept class C has VC dimension k, then for any
0 < ¢,8 < 1 and sample size at least max{% log, %, % log, 13} drawn from
probability distribution D and labeled by their classification by the target

1See Blumer et al. (1989, Appendix 1) for a discussion of well-behaved concept classes.
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concept ¢* € C, any concept ¢ € C consistent with those samples has
errorp(c) < € with probability at least 1 — 8. Here, errory (c) is the prob-
ability that a sample drawn from D is classified differently by the two
concepts c¢* and c.

Our program model satisfies the benign measure-theoretic restriction
of well-behavior since it is equivalent to arbitrary collections of polytopeS'
therefore, for any P € P, some labeling of the > log, 2 + % log, 13
samples is consistent with P, and therefore the theorem from Blumer et al.
(1989) applies.

Proof of Theorem 4.6. By Lemma 4.4, we know that with probability >
1 — 9, one of the candidate programs P’ enumerated by picits will have
dp(P,P;) < e. Since P is a-robust and ¢ < «, then P’ € B,(P) and thus

[P'](D) k= post.

Proof of Corollary 4.7. This follows immediately from Theorem 4.6 by let-
ting P = P*.

Proof of Corollary 4.8. Observe that dp, respects the triangle inequality, i.e.
dp(P1, P2) < dp(P1, P3) 4+ dp(Ps, P2).

dp(P1, P2) = Pr[P; # P,

= Pr[P; # P, A Py # P3] + Pr[P; # P, A P3 = Py]
= Pr[P; # P, /A Py # P3] + Pr[P; # P, A P3 # Pyl
< Pr[P; # P3] + Pr[P; # P,

= dp(P1, P3) + dp(P3, P2)

Thus if P is a-robust and dp(P*,P) = A, we know P has dp(P,P’) < € by
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Theorem 4.6, and the triangle inequality gives us that

Proof of Theorem 4.15. Let S be the set of samples, with [S| = m. By
Lemma 4.13, the number of queries is at most |S||TT»(S)|, which is in turn at
most mITp(m). Applying Lemma 4.14 immediately gives us the O(md+1)
bound.

Proof of Theorem 4.24. By construction, pvc soundly converts the repair
model into a logical formula over hole-input-output tuples consistent with
the repair model; this is a standard encoding used in Sketch (Solar-Lezama,
2008), for example. Specifically, substituting concrete input-output pairs
for the appropriate variables results in a formula where satisfying assign-
ments are values of the holes that result in a program consistent with the
samples. Therefore, the soundness and completeness of our Oy, imple-
mentation follows from the soundness and completeness of smr solvers

for existentially quantified Lra formulae.
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C BENCHMARKS

C.1 Full Benchmarks for Antidote

Here we present figures analagous to Figure 2.6 for the remaining datasets
in Table 2.1, which were otherwise ommited from Section 2.5. Figures C.1,
C.2, C.3, and C.4 show these detailed performance metrics. (Note that Iris
is is the only benchmark for which we do not use log-log plots, since the

numbers are generally small.)
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Figure C.2: Mammographic Masses
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C.2 Full Synthetic Benchmarks for picits

In this section, we provide the complete description of the synthetic bench-
marks used in Section 4.6 and present the complete plots of our evaluation.

We consider a class of hyperrectangle programs for which we can com-
pute the optimal solution exactly; this lets us compare the results of our
implementation to an ideal baseline. Here, the concept class P (i.e., the set
of programs) is defined as the set of axis-aligned hyperrectangles within
[—1,1]9, and the input distribution D is such that inputs are distributed
uniformly over [—1,1] d, We fix some probability mass b and aim to syn-
thesize a program that is close to a functional specification of the form
0 <x1 <2bA Aicp.ay—1 < xi < 1, which only returns 1 for points
whose first coordinate is positive and at most 2b. We fix the following

postcondition:

Pr[P(x) =1 |x < 0] > Pr[P(x) =1|x; > 0] APr[P(x) = 1] > b.

WV

In other words, a correct hyperrectangle must include as much probability
mass of points whose first coordinate is negative as it does for those with a
positive first coordinate, and additionally it must include at least as much
probability mass as the original hyperrectangle. Observe that independent
of d, the best error for a correct solution is exactly b (and there exist dense
regions of a-robust programs that have error b + o).

We consider problem instances formed from combinations of d €
{1,2,3} and b € {0.05,0.1,0.2}. As d increases, the set of programs in-
creases in complexity (in fact, it has VC dimension 2d) and the synthesis
queries become more expensive. As b increases, the threshold used by
the optimization cannot be as small, so we expect the search to benefit
less from our optimizations. We run our implementation using thresholds
T €{0.07,0.15,0.3,0.5, 1}, omitting those values for which T < b; addition-
ally, we also consider an adaptive run where 7 is initialized as the value 1,
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and whenever a new best solution is enumerated with error k we update
T+ k.

Each combination of parameters was run for a period of 2 minutes.
Figure C.5 shows each of the following as a function of time: (i) the depth
completed by the search (i.e. the current size of the sample set), and (i) the
best solution found by the search.
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Plots of Completed Depth vs Time (s)
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Figure C.5: Performance of t-picrrs with T € {1,0.5,0.3,0.15,0.07} on
synthetic hyperrectangle examples with varying parameters
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