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abstract

Molecular simulation is an essential tool for interpreting and predicting the struc-
ture, thermodynamics, and dynamics of chemical and biochemical systems. The
fundamental inputs into these simulations are the intra- and intermolecular force
fields, which provide simple and computationally efficient descriptions of molec-
ular interactions. Consequently, the utility of molecular simulation ultimately
depends on the fidelity of the force field to the underlying (exact) potential energy
surface. This dissertation describes a number of novel advances designed to im-
prove the accuracy and predictive power of (specifically ab initio) intermolecular
force fields. By fitting ab initio force fields to first-principles-based functional forms
and chemically-meaningful parameters, and by taking frequent advantage of the
physically-motivated partitioning afforded by Symmetry-Adapted Perturbation
Theory (SAPT) and Iterated Stockholder Atoms (ISA) approaches, we demonstrate
how the resulting force fields can be applied to describe a broad range of molecular
systems in different chemical and physical environments. Our newly-developed
MASTIFF approach achieves quantitative accuracy with respect to both high-level
electronic structure theory and experiment, and is thus well suited for use in ‘next-
generation’ ab initio force field development and large-scale molecular simulation.
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1 introduction and background

1.1 Molecular Simulation: History and Importance

What are the functions of proteins in the body? How can we identify new and
better drugs for improved disease treatment, or optimal materials for designing
efficient solar cells? What are the microscopic mechanisms by which chemicals
interact, undergo phase transitions, or react to form entirely new species? Increas-
ingly, these and other essential chemical questions can be addressed with the aid
of computer simulation,18–22 enabling us to, for example, peer into the detailed
mechanisms of enzyme catalysis,23 watch proteins fold,24–27 virtually screen for
novel drug candidates,28 improve industrial materials,29–31 and directly simulate
hard-to-understand phase transformations at an atomistic level.32,33 The question,
of course, is: how?

To understand the manner in which computer simulation can be used to obtain
obervable experimental properties of interest,† we first summarize several funda-
mental physical principles that help define the fundemand inputs and important
techniques required for molecular simulation. The foundation for molecular simu-
lation comes from the field of statistical mechanics, where by the mid 19-th century it
was discovered that experimental observables, which we denote O, depend entirely
on a system’s temperature, T , and the energies available to that system,

〈O〉 =
∫
dpdxO(p, x) exp(−H(p, x)/kBT)∫

dpdx exp(−H(p, x)/kBT)
(1.1)

Here the angle brackets denote that we’re interested in some average value of the
observable, p and x denote, respectiely, the momentum and positions of the par-
ticles in the system, H defines the classical Hamiltonian describing the potential
and kinetic energy of that system, and kB is Boltzmann’s constant.34 Technically,
this expression only holds for classical systems at constant temperature, however
conceptually-similar expressions can be derived outside of these assumptions. Even
though atomic behavior is, in principle, quantum mechanical, subsequent research
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over the years has shown that very satisfactory molecular properties, particularly
for heavier atoms at higher temperatures,35 can be obtained by treating molecular
systems according to the above classical description. As a result of this highly
important insight (indeed, Karplus, Levitt, and Warshel won the Nobel prize in
2013 for these ideas and related work),35 it becomes possible to use Eq. (1.1) to
extract information regarding macroscropic properties of interest given knowledge
of the potential and kinetic energies available to a microscopic, classically-treated
molecular system.

In practice, most chemical systems contain large numbers of particles, and as the
number of degress of freedom in the system increase, so does the dimensionality
of the integral in Eq. (1.1). In most practical scenarios, analytical integration is
not possible, and for large systems it is computationally prohibitive to solve for
〈O〉 by standard numerical integration techniques.34 In 1953, however, a group of
researchers36 showed how Eq. (1.1) can be used to systematically estimate 〈O〉 via
appropriate random sampling of the integrand of Eq. (1.1) based on a probability
distribution ρ:34,37

〈O〉 = 〈O〉ens = lim
τobs→∞

1
τobs

τobs∑
τ=1

O(Γ(τ)) (1.2)

In contrast to Eq. (1.1), Eq. (1.2) is the average over a total number of sampled obser-
vations, τobs, taken of the system and its properties, and Γ(τ) denotes the collective
positions and momenta that define the state of the system at each sample point. The
key technique that defines the resulting Metropolis Monte Carlo (MC) algorithm is
known as ‘importance sampling’: provided we cleverly choose our probability dis-
tribution, ρ, to be identical to the Boltzmann distribution, ρ ∝ exp(−H(p, x)/kBT),
the right-hand side of Eq. (1.2) converges fairly rapidly as a function of τobs. The
interested reader is directed to Allen and Tildesley 34 for detailed information on

† We’ve been intentionally vague about what these ‘experimental properties of interest’ might
be, as the experimental properties one finds important vary considerably between applications.
To offer some concrete examples, drug discovery studies are often interested in the binding free
energies between proteins and prospective drug molecules,28,31 and the optimization of putative
solar cell materials often focuses on open circuit voltages and/or short-circuit currents.31
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the exact techniques, algorithms, and practical concerns involved in importance
sampling. In general, however, it is sufficient to know that MC is one of the main
algorithms used to evaluate average molecular properties, and that ultimately the
MC technique depends on the accuracy with which we can evaluate the potential
and kinetic energies of a given system.

As an alternative strategy to MC, at the turn of the 20th century Ludwig Boltz-
mann proposed his now-famous ‘ergodic’ hypothesis.38 This hypothesis states
that, over sufficiently long time periods, the ‘ensemble average’ defined in Eq. (1.1)
becomes identical to the ‘time-average’ that results from studying the system’s
dynamical behavior,

〈O〉 = 〈O〉time = 〈O(Γ(t)〉time = lim
tobs→∞

1
tobs

tobs∫
0

O(Γ(t))dt, (1.3)

where tobs indicates the length of time over which we average the system’s prop-
erties.34 The right-hand side of Eq. (1.3) shows that, so long as we know and can
solve for the equations of motion that govern a given system’s behavior, we can
simulate the time evolution of that system until the r.h.s. of Eq. (1.3) converges,
thereby obtaining a prediction for 〈O〉. Classical mechanics is governed simply by
Newton’s laws of motion,

−
dE(x)

dx
≡ F(x) = mẍ, (1.4)

withm a mass, and F the force acting on a particle. Thus as with MC, we need only
know the potential energy of the system (and by extension its constituent forces)
in order to solve for the time-dependent positions, momenta, and (ultimately)
properties of a system. The resulting integration of Newton’s equations of motion,
a process known as molecular dynamics (MD), has made it possible to study both
the kinetic and thermodynamic properties of a wide range of molecular systems,
historically beginning with monatomic liquids in 1964, and soon leading to the first
polymer and protein simulations in 1975 and 1977, respectively.18 Ever since these
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initial studies, both MC and MD simulations have become preeminent tools in the
investigation and prediction of chemical phenomena.

1.2 Molecular Simulation: Challenges and
Unanswered Questions

Recent successes in both MC and MD have shown great promise for using molecular
simulation in the understanding, interpretation, and even prediction of experimen-
tal results,18 making simulation a powerful complement to traditional experimental
tools.19–21,29–31,39,40 Nevertheless, accurate and insightful molecular simulation de-
pends on success in the following three critical aspects of any MD/MC simulation:25

1. We must be able to accurately and efficiently quantify the potential energy,
En, of any state n of the system that might get sampled by the MD/MC
simulation.41–44 Henceforth we will collectively refer to these energies, given
as a function of the system’s position x, as the potential energy surface (PES)
of a system. For clarity, me visual examples of representative PESs are shown
in Fig. 1.1.

2. We must be able to obtain a representative sample of all states of the sys-
tem over a sufficiently long timescale (commensurate with the timescale(s)
of the chemical phenomena of interest) so as to obtain converged property
predictions.45–47 This class of problems is often referred to simply as ‘sampling
issues’.

3. Especially when interested in interpreting chemical phenomena, we must
be able to analyze the results of a simulation in such a way as to garner
detailed, chemically-intuitive insight into the problem at hand.48–50 While this
task is relatively straightforward for homogeneous liquids and other ‘simple’
systems, it can become decidedly difficult for analyzing complex properties
and mechanisms, such as with using simulation to investigate protein folding
mechanisms.
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Though our focus in this dissertation will be on the first point (that of computing
potential energies for molecular simulation), all three aspects of molecular simula-
tion are challenging in their own right, and form highly active and important areas
of research.22 Moreover, there is significant interplay between these areas in terms
of research development. As an example, improvements in sampling methods
often lead to increased computational efficiency, thereby enabling use of more
accurate (but more costly) representations of the PES. Conversely, the next Section
will discuss how the development of cost-effective potential energy functions is
often necessary for running simulations over long enough time scales to ensure
representative sampling and robust interpretation of the simulation results. Clearly,
insofar as molecular simulation is concerned, both accuracy and computational
efficiency are of paramount importance.

In the pursuit of increasingly accurate, insightful, and predictive molecular
simulation, it is clear that we must be able to quantitatively represent the PES of any
molecular system, and, furthermore, that our mathematical representation of this
PES must be sufficiently accurate and cost-effective so as to enable simulation that is
chemically insightful (given the type of simulation analysis required for a particular
problem or application) and computationally affordable (in accordance with the
length of molecular simulation that will need to be run in order to appropriately
deal with any sampling issues). Bearing these stipulations in mind, we can now
broadly state the guiding question for this dissertation: in the pursuit of accurate
and insightful molecular simulation, how can we optimally obtain a mathematical
description of the PES?

1.3 Molecular Simulation: Cost Considerations

Calculations of a PES ultimately rely on finding approximate solutions to the time-
independent Schrödinger equation,

ĤΨ = EΨ (1.5)
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where Ĥ is a quantum-mechanical operator describing both the kinetic and potential
energies of the nuclei and electrons, Ψ is a wavefunction, and E is the energy of
the system as a function of the nuclear coordinates. A plethora of approximations
exist for solving Eq. (1.5), each with their own disadvantages and advantages, and
a full discussion of the accuracy of such electronic structure theories (ESTs) can
be found in Cramer 52 and other texts. These methods differ greatly into terms of
computational cost with respect to system size, and so we begin our discussion of
ESTs in terms of the cost-efficiency with which various methods might be used in
molecular simulation. At the high cost end of the spectrum, extremely accurate
‘gold-standard’ EST calculations can be run using a method known as CCSD(T),
whose cost scales asN7 with respect to the number of electrons in the system. More
approximate methods, such as MP2 and HF, scale as N5 and N4, respectively, and
Density Functional Theory (DFT) (frequenctly regarded as the ‘computationally-
affordable’ workhorse of EST) scales even more modestly asN3. To put these scalings
in context, however, Fig. 1.2 shows the largest system sizes (given as a number of
atoms) which a given EST is capable of computing using available computational
resources. Though these estimates are taken from the early 2000s (since which the
‘TeraFlops MPP’ supercomputer has been superseded in 2016 by various PetaFlops
supercomputers with 1000x the computer power), several of the conclusions are
still the same, namely that CCSD(T) and most other ESTs remain too expensive to
be employed in large-scale molecular simulation.

Compounding the above scaling problem, molecular simulation requires that
we compute, not just one snapshot of a molecular PES, but millions, billions, or
(for protein folding simulations) even trillions of such energy snapshots. Thus
depending on the lengths and timescales involved in the chemical processes under
study, even the cheapest DFT ESTs are typically too expensive for routine molecular
simulation. (For reference, in 2014 DFT-based simulations were reported on roughly
103-atom systems using state-of-the-art facilities,41 whereas 105 − 106 atoms can be
required for running representative simulations of proteins.21,25)

As computing power continues to increase, there is no doubt that advanced
and accurate ESTs will eventually be used in larger-scale molecular simulation to
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Figure 1.2: The relative computing power required for molecular computations at
four levels of theory. In the absence of screening techniques, the formal scaling for
configuration interaction, Hartree-Fock, density functional, and molecular dynam-
ics is: N6, N4 , N3 and N2 , respectively. Reprinted from Ref. 8 with permission.
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investigate problems of both chemical and biological import.41 In the meantime,
however, and for investigating problems on extremely large time- and length-scales,
lower-cost methods for calculating the PES are required. In order to achieve this
low-cost scaling, a popular strategy is to model the PES using simple mathematical
expressions which depend only on the positions of the nuclei in the system. Such
models are referred to as ‘force fields’, which are defined both by the choice of
functional forms (that is, mathematical formulae) and parameters that go into them.
The computational cost of force fields nominally scales as N2 (and usually scales as
N logN in practice) with respect to the number of atoms (rather than electrons) in
the system, thus representing significnat computational savings compared to the
ESTs described above. Fig. 1.2 shows the scaling of these methods in theN2 scaling
limit, from which it becomes clear that we can use force fields to study system sizes
2–3 orders of magnitude larger than what is possible with DFT. Indeed, in the early
1990s Chan and Dill 9 provided a useful estimation of the computing power needed
to simulate a variety of important chemical and biological processes (Fig. 1.3), and
showed that, using these cost-efficient force fields, we are not far off from the time
when atomistic simulations of protein folding and/or aggregation can be achieved.
Some of the first simulations of protein folding have already been reported, and
using computationally-efficient force fields we can expect this trend to continue
into the foreseeable future.25

1.4 Force Fields

Despite the advantages and opportunities afforded by their computational effi-
ciency, molecular simulation can also be limited by force fields in the sense that, in
the absence of fortuitous error cancellation, the predictive accuracy of molecular
simulation is inextricably tied to the accuracy of the force field used to run the sim-
ulation. For this reason, one of the central challenges facing molecular simulation
today is the development of new and more accurate force fields.41,53

To understand why the development of accurate force fields remains so chal-
lenging, it’s worthwhile to briefly discuss the development process itself, both in
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Figure 1.3: Time scales for various motions within biopolymers (upper) and nonbi-
ological polymers (lower). The year scale at the bottom shows estimates of when
each such process might be accessible to brute force molecular simulation on su-
percomputers, assuming that parallel processing capability on supercomputers
increases by about a factor of 1,000 every 10 years (i.e., one order of magnitude more
than Moore’s law) and neglecting new approaches or breakthroughs. Reprinted
with permission from H.S. Chan and K. A. Dill. Physics Today, 46, 2, 24, (1993).9

terms of the functional forms that get used in force fields as well as the manner in
which these functional forms are parameterized. Traditionally, force fields have
been crafted by an ‘empirical’ development proccess,54 in which the force field
functional form is parameterized so as to reproduce select experimental properties
of interest. The obvious advantage of such a strategy is that, so long as one param-
eterizes and investigates a limited scope of chemical, physical, and/or structural
conditions, there is a good chance that empirical force fields will be of good accu-
racy in providing a microscopic picture of the macroscopic experimental properties.
Thus, for instance, empirical force fields have proved extremely useful in simulating
the behavior of folded proteins in biologically-relevant environments.26,42,55

Despite these successes, empirical force field development also faces significant
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challenges. The first challenge is one of ‘transferability’: outside of the parameteri-
zation scope discussed above, there is little guarantee that empirical force fields
will retain the good accuracy that can be expected within the original parame-
terization conditions.53,56 To continue with our protein example, it has recently
been shown how many empirical force fields, all of which generally provide simi-
lar predictions regarding the properties of folded proteins, differ widely when it
comes to predicting a structurally-distinct class of partially unfolded, ‘intrinsically-
disorded’ proteins.26,57 Similarly, and despite much effort, it’s still difficult to find
an empirically-developed force field capable of correctly describing water across a
wide range of physical and chemical environments.58,59 Finally, and in addition to
the transferability problem, force field accuracy can sometimes be an issue even
within the limited range of experimental conditions over which the force field was
originally parameterized. In the event of such accuracy issues, time-consuming
re-parameterization methods must often be employed in order to correct for defi-
ciencies in the original force field parameters.53,56

Arguably, the underlying reason why empirical force field development is lim-
ited (both in terms of accuracy and transferability) is that the force fields themselves
are typical based on rather limited, or ‘effective’, physics.60–62 Explicit many-body
polarization, for instance, is not often accounted for in empirical force fields, despite
the fact that it is known to be an important factor in many important chemical phe-
nomenon.53,58,63 Similarly, accurate multipolar expansions of electrostatic energies
are often reduced to more approximate point charge models,64 charge penetration
effects are usually neglected,60,61 and exchange effects are described by an overly-
repulsive (but computationally convenient) 1/r12

ij functional form.60–62,65,66 In some
cases, these modeling choices are justified by increased gains in computational
efficiency; indeed, it is only within the past decade or so that explicit polarization
and higher-order multipolar electrostatic treatments have become computationally-
affordable.63,64,67–70 In other cases, however, empirical force field development is
limited by the significant complications involved in parameterization. With empiri-
cal force field development, each additional parameter must be optimized on the
basis of costly molecular simulations. Moreover, and because experiment typically
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probes only the average total energy of a given system, parameters in empirical
force fields must be fit simultaneously. Models with many parameters are usually
too time-consuming to optimize, and too prone to issues of overfitting,71 to warrant
the effort. For these reasons, it is likely that empirically-fit force fields will remain
restricted to parametrically simple, physically-approximate, models.

To circumvent the practical limitations of empirical force field development, an
alternate strategy is to fit force fields, not directly against experimental properties,
but rather to benchmark calculations of the underlying PES itself.54 The drawback
of such a first-principles, or ’ab initio’, methodology, is obvious: by not fitting to
experimental quantities, the resulting force fields ar not guaranteed to closely match
experiment unless we accurately and systematically account for all the relevant
physics for a given system. For this reason, comparisons between an ab initio force
fields and experiment (Chapter 3) are often complicated by factors such as the
accuracy of the underlying benchmark PES or the treatment of many-body and/or
quantum effects.72–74

Nevertheless, ab initio force field development has several clear advantages
over its empirical counterpart. First, and especially for systems where experimental
data is lacking, ab inito force fields can be fit to calcuated data in order to make
novel experimental predictions. Furthermore (and as discussed in Section 1.5.2),
ab initio force fields can be fit, not merely to the total energy of a system, but also
on a component-by-component basis to individually reproduce each physically-
meaningful contribution to the PES. This, along with the simplicitly afforded by
directly parameterizing the PES, means that ab initio force fields can be fit to more
complicated and more physically-motivated functional forms, thus enabling the
possibility of increased accuracy in molecular simulation. Furthermore, we show
in Section 1.5.2 how advanced ab initio parameterization methods can lead to de-
creased reliance on error cancellation and minimize overfitting, thus augmenting
both the accuracy and transferability of the resulting force fields. Finally, with ab
initio force fields we can easily assess the fit quality compared to an underlying
benchmark PES; as will be a theme of this dissertation, such an ability to directly
compare between putative model PESs enables us quickly evaluate new and im-
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proved functional forms and parameterization methods for ab initio force field
development.

1.5 Ab initio force field development with SAPT and
ISA

As implied throughout the preceding discussion, goals for ab initio force field
development are as follows:

1. Accuracy: Ab initio force fields should ideally be able to reproduce a ben-
chamrk PES (as calculated from high-quality EST) to within chemical accuracy
or better, with the knowledge that accuracy compared to the PES will be well-
correlated with accuracy compared to experiment

2. Transferability: The parameters and functional forms used in ab inito force
fields should be transferable between chemical and physical environments
without loss of accuracy

3. Cost-Efficiency: The computational cost of ab initio force fields should ideally
be comparable to that of empirically-derived models

4. Physicality: So as to minimize a reliance on error cancellation and promote
accuracy and transferability, functional forms and parameters for ab initio
force fields should be grounded in accurate and physically-meaningful first
principles theories

5. Simplicity: When possible, and where the accuracy and physicality of the
model is not compromised, the parameterization methodologies and func-
tional forms used in ab initio force field development should be kept as simple
as possible, particularly so as to avoid overfitting

A number of strategies for ab inito force field development are present in the
literature,41,54 however here we focus on the general approach used in our group75
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to generate optimal ab initio force fields. Additionally, as the intramolecular portion
of a force field is usually more straightforward to optimize, we limit our discussion
to the functional forms and parameters used in developing the intermolecular part
of the potential. In what follows, we describe three main strategies employed in
our group to guide ab inito force field development: separation of the N-body
potential into 2- and many-body contributions via the many-body expansion (MBE)
(Section 1.5.1), decomposition and subsequent component-by-component param-
eterization of the total two-body interaction energy using Symmetry-Adapted
Perturbation Theory (SAPT) (Section 1.5.2), and characterization of the atom-in-
molecule contributions to each energy component via Iterated Stockholder Atoms
(ISA) (Section 1.5.3).

1.5.1 The Many-Body Expansion

For an N-body system (here and throughout we use the terms ‘body’ and ‘atom’
synonymously), the molecular PES is given as a 3N − 6 dimensional function of
particle positions,4,54,63,76

VN(~r1,~r2, . . . ,~rN) =
N∑
i

V1(~ri) +

N∑
i<j

∆V2(~ri,~rj) +
N∑

i<j<k

∆V3(~ri,~rj,~rk) + . . . (1.6)

Here, and without loss of generality, we have expressed this roughly 3N-dimensional
surface as a ‘many-body’ expansion of n-body cluster interactions. Thus V1 de-
scribes one-body, or intramolecular, contributions to the overall PES.∆V2 is referred
to as the ‘pair potential’, and represents the difference in interaction energies be-
tween a two-body cluster, or ‘dimer’, and the individual monomers themselves. In
a similar fashion, ∆V3 corresponds to the non-additive contributions (energy not ac-
counted for in ∆V2) to the interaction energies of trimers, and ∆V4 and higher-order
terms are defined analagously.

The utility of the MBE comes from the fact that, aside from many-body po-
larization, for which the complete N-body effects can readily be calculated,54,77

the MBE is typically rapidly convergent, and often only ∆V2 and ∆V3 terms are
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required to completely and accurately describe VN.54,78 In fact, the combination
of ∆V2 and N-body polarization often account for upwards of 90–95% of the total
interaction energy,4,78 such that the accuracy of a given ab initio force field depends
primarily on the accuracy of the pair potential itself. When required, explicit terms
for ∆V3 can easily be added to an ab initio force field as an additive correction, and
accurate models for ∆V3 have been outline in previous work.4 Nevertheless, we
can usually restrict our focus to the development of accurate models for ∆V2, with
the knowledge that accuracy in describing ∆V2 will have a direct effect on accuracy
with respect to VN and/or experiment.

1.5.2 SAPT

Having limited our attention to modeling the pair potential,∆V2, a second technique
we can employ in the development of ab initio force fields is to fit our force field
parameters on a component-by-component basis to a physically-meaningful Energy
Decomposition Analysis (EDA) of dimer interaction energies. Force field fitting on
a component-by-component basis enables the following:

1. By increasing the amount of ab initio data used in the force field fits, we
reduce the possibility of overfitting the potential, which in turn enables trans-
ferability75

2. By enforcing a one-to-one correspondence between force field functional
forms and benchmark ab initio energies, we reduce reliance on error cancel-
lation and ensure that all fitted parameters describe the intended physical
feature

3. By evaluating the resulting fits on a component-by-component basis, we can
directly relate errors in the potential to errors in the individual energy comop-
nents, thus providing insight into how a current model might be improved

In most cases (with the work described in Chapter 4 being an exception), we use
Symmetry-Adapted Perturbation Theory (SAPT) as our EDA of choice. SAPT, and
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DFT-SAPT in particular (a variant of SAPT based on a DFT-based description of
monomers, which scales reasonably asN5 with respect to the number of electrons in
the system), serves as an accurate yet affordable approximation to the gold-standard
CCSD(T) calculations discussed earlier. Theories and formalisms for SAPT are
reviewed in Refs. 79–81, and a variety of examples of SAPT-based ab initio force
field development is given in Refs. 75, 82. Overall, ab inito force fields fit to DFT-
SAPT energies have been shown to lead to good accuracy in experimental property
predictions,82,83 thus justifying our approach. Furthermore, and as is especially
important in the development of transferable ab initio force fields, SAPT provides
a natural and physically-meaningful decomposition into energy components of
electrostatics, exchange, induction, and dispersion. By fitting these energy terms
on a component-by-component basis, the SAPT energy decomposition can be fully
taken advantage of to yield (as in Ref. 83) a library of accurate and transferable
force field parameters with broad applicability to a range of chemical and physical
environments.

1.5.3 ISA-DMA

Especially in the asymptotic regime (i.e. at large intermolecular separations), the
pair potential can be described solely in terms of properties that depend only on the
identities of the individual monomers.54,84 These ‘monomer’ properties range in
scope from the monomer electron density itself to the molecular polarizability, and
these monomer properties define in turn the electrostatic, induction, and disper-
sion interactions at long-range. (Monomer properties can also define interactions
at short-range, and we show in Chapter 2 how these quantities can help define
parameters for exchange and charge penetration effects.) Because we can describe
portions of the pair potential in terms of quantifiable ab initio monomer property
calculations, we should be able to considerably reduce the number of parameters
required to fit a force field, and thus increase the accuracy and transferability of
the resulting model.

Nevertheless, and although it is straightforward to calculate molecular monomer
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properties, it is usually advantageous54 to describe the pair potential in terms of
atom-in-molecule (AIM) quantities, thus necessitating that we partition the results of
each monomer property calculation so as to describe the contribution of each atom
in its molecular environment. AIM properties are not experimental observables,
and so it can be quite complicated to find an ideal and physically-meaningful par-
titioning method for the purposes of force field development.54,85–87 Historically
in our group, we have had reasonable success with using a Distributed Multi-
pole Analysis (DMA) partitioning scheme, and methods for obtaining distributed
multipolar electrostatic,88,89 polarization,90 and dispersion83,91,92 parameters from
Distributed Multipole Analysis (DMA) are well-documented.54,81

More recently, Misquitta et al. 86 has, in conjunction with important contribu-
tions from Lillestolen and Wheatley,93,94 built upon the existing class of Hirshfeld 95

atom-in-molecule charge partitioning schemes to develop an improved distribu-
tion scheme based on Iterated Stockholder Atoms (ISA), termed ISA-DMA. In
brief, ISA-DMA operates by partitioning a monomer electron density into atomic
contributions,

ρi(r) = ρI(r)
wi(r)∑

a∈I
wa(r)

, (1.7)

where ρ(r) is an electron density, wa(r) is a spherically-symmetric weight function
which is iteratively determined in the course of the ISA analysis, and lower- and
upper-case subscripts represent, respectively, AIM or molecular quantities.86 Using
these atom-in-molecule charge densities, recent work has shown how new and/or
improved parameters for multipolar electrostatics (Chapter 5 and Ref. 86), exchange-
repulsion (Chapter 2 and Ref. 96), and dispersion (Chapter 5) are now possible.
Notably, ours is not the only group to take advantage of the ISA-DMA or related
methods,97 and a number of ab intio force fields have been developed with the aid of
such distribution schemes.84,98–100 Regardless, the ISA-DMA parameters have shown
good promise for the development of accurate and transferable force fields, and
the manner in which we can include these parameters in force field development
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will be a main focus of this dissertation.

1.6 Outline

Having described the utility of molecular simulation and the important goals of
accuracy and transferabilty in force field development, the purpose of this disser-
tation is to describe new and better methods for obtaining functional forms and
parameters that will lead to improved ab initio force field development. To this
end, Chapter 2 describes an approach whereby the ISA partitioning scheme can be
used to develop new models for the SAPT exchange-repulsion energy and related
short-range energy contributions. The methods in Chapter 2 neglect important
effects due to the orientation dependence, or ‘atomic-level anisotropy’, of the ISA
charge densities, and Chapter 3 extends the original ISA-based method to account
for this atomic-level anisotropy in an accurate cost-efficient manner amenable to
large-scale molecular simulation. As a third investigation of methods development
for ab inito force fields, Chapter 4 explores the ways in which additional EDA meth-
ods (aside from SAPT) can be used to benchmark and parameterize ab initio force
fields in cases where SAPT itself is in error. Finally, in the course of our research
we have developed many automated tools and best practices for ab initio force field
development (SAPT-based or otherwise), and these practical considerations are the
subject of Chapters 5 and 6. Overall conclusions and avenues for future research
are the subject of Chapter 7.
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2 beyond born–mayer: improved models for
short-range repulsion in ab intio force fields

2.1 Introduction

Molecular simulation is an essential tool for interpreting and predicting the struc-
ture, thermodynamics, and dynamics of chemical and biochemical systems. The
fundamental inputs into these simulations are the intra- and intermolecular force
fields, which provide simple and computationally efficient descriptions of molecu-
lar interactions. Consequently, the predictive and explanatory power of molecular
simulations depends on the fidelity of the force field to the underlying (exact)
potential energy surface.

In the case of intermolecular interactions, the dominant contributions for non-
reactive systems can be decomposed into the following physically-meaningful en-
ergy components: electrostatic, exchange-repulsion, induction and dispersion.54,78,101–103

At large intermolecular distances, where monomer electron overlap can be ne-
glected, the physics of intermolecular interactions can be described entirely on the
basis of monomer properties (e.g. multipole moments, polarizabilities), all of which
can be calculated with high accuracy from first principles.104 In conjunction with as-
sociated distribution schemes that decompose molecular monomer properties into
atomic contributions,54,78,86,89–91,105 these monomer properties lead to an accurate
and computationally efficient model of ‘long-range’ intermolecular interactions as
a sum of atom-atom terms, which can be straightforwardly included in common
molecular simulation packages.

At shorter separations, where the molecular electron density overlap cannot be
neglected, the asymptotic description of intermolecular interactions breaks down
due to the influence of Pauli repulsion, charge penetration and charge transfer.
These effects can be quantitatively described using modern electronic structure
methods,79,80,102,106,107 but are far more challenging to model accurately using compu-
tationally inexpensive force fields. For efficiency and ease of parameterization, most
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simple force fields use a single ‘repulsive’ term to model the cumulative influence
of (chemically distinct) short-range interactions. These simple models have seen
comparatively little progress over the past eighty years, and the Lennard-Jones108

(A/r12) and Born-Mayer109,110 (A exp(−Br)) forms continue as popular descriptions
of short-range effects in standard force fields despite some well-known limitations
(vide infra).

Because the prediction of physical and chemical properties depends on the
choice of short-range interaction model,60–62,111–121 it is essential to develop suffi-
ciently accurate short-range force fields. This is particularly true in the case of ab
initio force field development. A principle goal of such a first-principles approach
is the reproduction of a calculated potential energy surface (PES), thus (ideally)
yielding accurate predictions of bulk properties.75 Substantial deviations between
a fitted and calculated PES lead to non-trivial challenges in the parameterization
process, which in turn can often degrade the quality of property predictions. The
challenge of reproducing an ab initio PES becomes particularly pronounced at short
inter-molecular separations, where many common force field functional forms are
insufficiently accurate. For example, the popular Lennard-Jones (A/r12) functional
form is well-known to be substantially too repulsive at short contacts as compared
to the exact potential.60–62,65,66 While the Born-Mayer (A exp(−Br)) functional form
is more physically-justified110 and fares better in this regard,65 substantial devi-
ations often persist.122 In addition, parameterization of the Born-Mayer form is
complicated by the strong coupling of the pre-exponential (A) and exponent (B)
parameters, hindering the transferability of the resulting force field. These consid-
erations, along with the observed sensitivity of structural and dynamic properties
to the treatment of short-range repulsion,111 highlight the need for new approaches
to model short-range repulsive interactions.

Our primary goal in this Chapter is to derive a simple and accurate description
of short-range interactions in molecular systems that improves upon both the stan-
dard Lennard-Jones and Born-Mayer potentials in terms of accuracy, transferability,
and ease of parameterization. Our focus is on ab initio force field development,
and thus we will use the fidelity of a given force field with respect to an accurate
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ab initio PES as a principle metric of force field quality. We note that other met-
rics may be more appropriate for the development of empirical potentials, where
Lennard-Jones or Born-Mayer forms may yield highly accurate ‘effective’ potentials
when parameterized against select bulk properties. Nonetheless, we anticipate
that the models proposed in this Chapter may prove useful for empirical force
field development in cases where a more physically-motivated functional form is
necessary.60–62

The outline of this Chapter is thus as follows: first, we derive a new functional
form capable of describing short-range repulsion from first principles, and show
how the standard Born-Mayer form follows as an approximation to this more
exact model. Our generalization of the Born-Mayer functional form allows for an
improved description of a variety of short-range effects, namely electrostatic charge
penetration, exchange-repulsion, and density overlap effects on induction and
dispersion. Crucially, we also demonstrate how the associated atomic exponents
can be extracted from first-principles monomer charge densities via an iterated
stockholder atoms (ISA) density partitioning scheme, thereby reducing the number
of required fitting parameters compared to the Born-Mayer model. Benchmarking
this ‘Slater-ISA’ methodology (functional form and atomic exponents) against high-
level ab initio calculations and experiment, we find that the approach exhibits
increased accuracy, transferability, and robustness as compared to a typical Lennard-
Jones or Born-Mayer potential. In addition, we show how the ISA-derived exponents
can be adapted for use within the standard Born-Mayer form (Born-Mayer-sISA),
while still retaining retaining many of the advantages of the Slater-ISA approach.
As such, our methodology also offers an opportunity to dramatically simplify the
development of both empirically-parameterized and ab initio simulation potentials
based upon the standard Born-Mayer form.

2.2 Theory

We begin with a formal treatment of the overlap model for the exchange-repulsion
between two isolated atoms, and then extend these results to develop a general-
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ized model for the short-range interactions in both atomic and molecular systems.
Finally, we show how the conventional Born-Mayer model can be derived as an
approximation to this more rigorous treatment.

2.2.1 Models for the exchange-repulsion between isolated atoms

It is well known that the exchange-repulsion interaction between two closed-shell
atoms i and j is proportional, or very nearly proportional, to the overlap of their
respective charge densities:123

Eexch
ij ≈ Vexch

ij = Kij(S
ij
ρ )
γ (2.1)

Sijρ =

∫
ρi(r)ρj(r)d3r. (2.2)

Here and throughout, we use E to denote quantum mechanical energies, and V
to denote the corresponding model/force field energies. Recently two of us have
provided a theoretical justification for this repulsion hypothesis (or overlap model),
and have shown that γ = 1 provided that asymptotically-correct densities are
used to compute both the atomic densities and Eexch

ij .54,124 As this is the case for the
calculations in this work, we assume γ = 1 throughout the Chapter.

The overlap model has frequently been utilized in the literature and has been
found to yield essentially quantitative accuracy for a wide variety of chemical sys-
tems.123,125,126 Prior work exploiting the overlap model has generally followed one
of two strategies. Striving for quantitative accuracy, several groups have devel-
oped approaches to evaluate Eq. (2.2) via either numerical integration or density
fitting of ab-initio molecular electron densities, ρi (e.g. SIBFA, GEM, effective frag-
ment potentials).127? –135 These force fields, while often extremely accurate, lack
the simple closed-form analytical expressions that define standard force fields
(such as the Lennard-Jones or Born-Mayer models) and thus are often much more
computationally expensive than conventional models.

In contrast, and similar to our objectives, the overlap model has also been used
in the development of standard force fields. In this case, the molecular electron
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density as well as the overlap itself is drastically simplified in order to yield a simple
closed-form expression that can be used within a conventional molecular simulation
package.123,125,126 As we show below, the Born-Mayer model can be ‘derived’ via such
an approach. At the expense of some accuracy, the resulting overlap-based force
fields exhibit high computational efficiency and employ well-known functional
forms.

Building on this prior work, our present goal is to derive rigorous analytical
expressions and improved approximations for both ρi and Eq. (2.2), facilitating
the construction of ab initio force fields that exhibit simplicity, high computational
efficiency, fidelity to the underlying PES, and (with only trivial modifications)
compatibility with standard simulation packages. We first start with the case of
isolated atoms, where it is well-known that the atomic electron density decays
asymptotically as

ρr→∞(r) ∝ r2βe−2αr (2.3)

where the exponent α =
√

2I is fixed by the vertical ionization potential I, β =

−1 + Q
α

, and Q = Z −N + 1 for an atom with nuclear charge +Z and electronic
charge −N.124,136–138 The exponential term dominates the asymptotic form of the
density, and the r-dependent prefactor may be neglected86,125,126,139. In this case, the
density takes the even simpler form

ρr→∞(r) ≈ De−Br, (2.4)

where D is a constant that effectively absorbs the missing r-dependent pre-factor
and B is an exponent that is now only approximately equal to 2α.

In the case of two identical atoms, substitution into Eq. (2.2) yields a simple
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expression for the density overlap, Sρ,11,12

Siiρ =
πD2

B3 P(Brii) exp(−Brii)

P(Brii) =
1
3(Brii)

2 + Brii + 1
(2.5)

as well as (via Eq. (2.1)) the exchange-repulsion energy126,140:

Vexch
ii = Aexch

ii P(Brii) exp(−Brii). (2.6)

Here, rii represents an interatomic distance, and Aexch
ii indicates a proportionality

constant that is typically fit to calculated values of the exchange-repulsion energy.
The only approximations thus far are the use of the overlap model and the simplified
asymptotic form of the atomic charge density.

For the general case of two hetero-atoms, substitution of Eq. (2.4) into Eq. (2.2)
yields the more complicated expression11,12

Sijρ =
16πDiDj exp(−{Bi + Bj}rij/2)

(B2
i − B

2
j)

3rij
×[(

Bi − Bj
2

)2(
exp

(
{Bi − Bj}

rij

2

)
− exp

(
−{Bi − Bj}

rij

2

))

×

((
Bi + Bj

2

)2

r2
ij + (Bi + Bj)rij + 2

)

−

(
Bi + Bj

2

)2

exp
(
{Bi − Bj}

rij

2

)
×

((
Bi − Bj

2

)2

r2
ij − (Bi − Bj)rij + 2

)

+

(
Bi + Bj

2

)2

exp
(
−{Bi − Bj}

rij

2

)
×

((
Bi − Bj

2

)2

r2
ij + (Bi − Bj)rij + 2

)]
,

(2.7)

which is too cumbersome to serve as a practical force field functional form. However,
since the above expression reduces to Eq. (2.5) in the limitBi = Bj, and because |Bi−
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Bj| is small for most atom pairs, we have found that Eq. (2.7) may be approximated
using Eq. (2.5) with an effective atomic exponent B. An expansion of Eq. (2.7) about
Bi = Bj suggests that this effective exponent should be given by the arithmetic
mean, Bij = 1

2(Bi +Bj). However, a Waldman-Hagler style analysis141 (Section 2.A)
suggests instead that a more suitable exponent is given by the geometric mean
combination rule,

B = Bij ≡
√
BiBj. (2.8)

As shown in the Supporting Information of Ref. 96, this approximate overlap
model (Eq. (2.5) and Eq. (2.8)) is of comparable accuracy to the exact overlap from
Eq. (2.7). Thus the density overlap and (force field) exchange energies of arbitrary
hetero-atoms take the simple forms

Sijρ = DijP(Bij, rij) exp(−Bijrij) (2.9)

Dij = πDiDjB
−3
ij (2.10)

P(Bij, rij) =
1
3(Bijrij)

2 + Bijrij + 1 (2.11)

and

Vexch
ij = Aexchij P(Bijrij) exp(−Bijrij). (2.12)

Due to the connection with the overlap between two s-type Slater orbitals, we refer
to Eq. (2.12) as the Slater functional form. Note that this expression reduces to the
standard Born-Mayer function by making the further approximation P(Bijrij) = 1,
although it is known126,142 that this is a poor approximation with the Bij as defined
above. Instead, as we shall demonstrate in Section 2.4, the exponents Bij need to be
scaled for accurate use with a Born-Mayer functional form.

Variants of the polynomial pre-factor from Eq. (2.9) have previously been rec-
ognized and used in intermolecular interaction models.110,140,142 Early work by
Buckingham 110 hypothesized that the functional form of Eq. (2.12) would be more
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accurate than the Born-Mayer form, though no attempt was made to provide a
closed-form expression for P. More recent potentials have incorporated a low-
order polynomial into the exchange repulsion term, either by direct parameter-
ization143–147 or indirectly by fitting the exchange to Sρ/r2 rather than to Sρ it-
self.125,126,148 Kita et al. have derived (but not tested) Eq. (2.6) for the homoatomic
case.148 Recently, and most similar to the spirit of the present Chapter, York and co-
workers have derived a model based upon the overlap of Slater-type orbitals for use
in QM/MM simulations, yielding an expression identical to Eq. (2.7).149–151 Those
authors treated Di and Dj as empirical fitting parameters and estimated atomic
exponents (Bi and Bj) via atomic-charge dependent functions. In contrast, we will
demonstrate that utilization of the far simpler functional form from Eq. (2.12), in
conjunction with exponents calculated from analysis of the first-principles molecu-
lar electron density, yields much higher computational efficiency and simplifies the
parameterization process without significant loss of accuracy.

For an arbitrary pair of interacting atoms, Aexch
ij can be obtained by fitting to

calculated exchange-repulsion energies. However, assuming that the overlap pro-
portionality factor Kij is a universal constant (or, alternatively, separable with
Kij = KiKj), then

Aexch
ij =

(
Ki

√
π

B3
i

Di

)(
Kj

√
π

B3
j

Dj

)
≡ Aexch

i Aexch
j , (2.13)

thus providing a combination rule for heteroatomic interaction in terms of purely
atomic quantities. The universality and separability of Kij are, at present, empiri-
cally rather than theoretically justified.54,152,153 The Aexch

i can then be obtained, for
example, by a straightforward fitting of calculated ab initio homoatomic exchange-
repulsion energies.
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2.2.2 Models for other short-range interactions between isolated
atoms

Beyond the exchange-repulsion, the density-overlap model may also be used to
model other short-range interaction components, such as the electrostatic charge
penetration energy and the short-range induction and dispersion energies (that is,
the portion modulated by charge overlap). Indeed, it has been demonstrated that
the electrostatic charge penetration energy is approximately proportional to the
exchange-repulsion energy, and consequently to the charge density overlap,54,86

which has provided a successful basis for modeling the electrostatic charge pene-
tration energy.83,154 While the relation between short-range induction and charge
overlap is less clear, recent results have demonstrated that the charge-transfer en-
ergy, which is the dominant short-range component of the induction energy,155 is
approximately proportional to the first-order exchange energy,124,156 and prior work
has successfully used the overlap hypothesis to describe the short-range induc-
tion.54,83,154 We therefore model the electrostatic charge penetration and short-range
induction interactions as

V
pen
ij = A

pen
ij P(Bij, rij) exp(−Bijrij) (2.14)

and

V ind,sr
ij = Aind

ij P(Bij, rij) exp(−Bijrij). (2.15)

Aside from the pre-factors Aij, these expressions are identical to that for the
exchange-repulsion term.

The behavior of the dispersion interaction at short distances poses a special
challenge. In order to model the short-range dispersion and to resolve the unphysi-
cal, mathematical divergence of the 1/rn terms as r→ 0, Tang and Toennies have
shown that the terms in the dispersion expansion should be damped using an
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appropriate incomplete gamma function

fn(x) = 1 − e−x
n∑
k=0

(x)k

k! (2.16)

x = −
d

dr

[
lnVexch(r)

]
r (2.17)

that accounts for both exchange and charge penetration effects.157,158 Note that the
form of this damping factor depends on the model used for exchange repulsion.
For the Slater functional form (Eq. (2.12)),

xSlater = Bijrij −
2B2
ijrij + 3Bij

B2
ijr

2
ij + 3Bijrij + 3

rij. (2.18)

Alternatively, if we replace the Slater functional form with the less accurate Born-
Mayer expression, x simplifies to the result originally given by Tang and Toennies:

xBorn-Mayer = Bijrij. (2.19)

2.2.3 Models for short-range interactions between molecules

The overlap repulsion hypothesis can be extended to molecules54,152,159–161 by writing
the molecular density ρI as a superposition of atomic densities

ρI(r) =
∑
i∈I

ρi(r) (2.20)

where i represents an atom in molecule I. In this case,

Vexch
IJ =

∑
i∈I

∑
j∈J

Vexch
ij (2.21)

Vexch
ij = KijS

ij
ρ =

∫
ρi(r)ρj(r)d3r. (2.22)
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Note that the form of Eq. (2.22) is identical to the corresponding expression between
isolated atoms, but requires partitioning of the molecular charge density into atom-
in-molecule densities, ρi, each decaying according to an effective atom-in-molecule
density decay exponent, Bi.

In principle, such atom-in-molecule exponents could be estimated from the
ionization potentials of the corresponding isolated atoms,83,140 but this approach
neglects the influence of the molecular environment. A more appealing possibility
is to directly evaluate the atom-in-molecule densities via partitioning of the cal-
culated monomer densities. Density partitioning has not yet (to our knowledge)
been applied in the context of the overlap model to solve for Eq. (2.22), however
several successful efforts in force field development have recently relied on an
atoms-in-molecule approach in order to obtain accurate scaling relationships for
intermolecular force field parameters.162–164 In particular, Cole et al. utilized a
density-derived electrostatic and chemical (DDEC) partitioning scheme165,166 to
generate Lennard-Jones dispersion and short-range repulsion parameters, though
the latter parameters were calculated implicitly by enforcing the coincidence of the
potential minimum and the calculated atomic radius.

While no unique atom-in-molecule density partitioning scheme exists, an ideal
approach should yield atom-in-molecule densities that strongly resemble those of
isolated atoms, e.g. maximally spherical and asymptotically exponential.86,167–169

The recently developed iterated stockholder partitioning of Lillestolen and Wheat-
ley obeys this first important constraint of sphericity.93,94 As a non-trivial extension
of the original Hirshfeld method,95 iterated stockholder atom (ISA) densities are
defined as

ρi(r) = ρI(r)
wi(r)∑

a∈I
wa(r)

(2.23)

where the converged shape functions wi(r) are spherical averages of the atomic
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densities ρi(r):

wi(r) = 〈ρi(r)〉sph. (2.24)

This formulation ensures, by construction, that the sum of atomic densities repro-
duces the overall molecular density. Furthermore, the maximally spherical nature
of the atom-in-molecule densities naturally facilitates a description of short-range
interactions via a simple isotropic site-site model.

Misquitta et al. have developed a rapidly convergent implementation of the ISA
procedure (BS-ISA86) using a basis set expansion which, in addition to exhibiting
good convergence with respect to basis set, also leads to asymptotically-exponential
atomic densities. Consequently, the BS-ISA method is our preferred density par-
titioning scheme. As an example, the spherically-averaged atomic densities for
acetone are shown in Fig. 2.1. For simplicity, and because a full treatment of
the anisotropy is beyond the scope of this Chapter, we subsequently refer to the
spherically-averaged atomic densities (i.e. the shape functions, wi(r)) as atomic or
atom-in-molecule densities.

From Fig. 2.1 we see that the ISA atomic shape functions (that is, the spherically-
averaged ISA atoms-in-molecule density) decay exponentially outside the core
region. However, note that the exponents governing the spherical density decay,
BISA
i , differ from those of the free atoms. The ISA densities have been observed

to account for electron movement in the molecule, and the consequent density
changes brought about by this movement tend to be manifested in the region of
the density tails.86 The ISA exponents can be obtained by a weighted least-squares
fit to the BS-ISA atomic density (see Section 2.3 for details), with the resulting fitted
atomic densities shown in Fig. 2.1. Note that even a single exponential is remarkably
successful in reproducing the entirety of the valence atomic density.

Given these fitted ISA exponents, we can now apply our short-range interaction



32

10-11

10-6

10-1

a) b) ISA Density
Basis-Corrected ISA Density
Slater Fit to ISA Density

0 1 2 3 4 5
10-11

10-6

10-1

c)

0 1 2 3 4 5

d)

Intermolecular Distance ( )

At
om

ic 
De

ns
ity

 (a
.u

.)

Figure 2.1: BS-ISA and fitted shape functions for each atom type in acetone: a)
carbonyl carbon, b) oxygen, c) methyl carbon, d) hydrogen. BS-ISA shape functions
(dotted line) for each atom type have been obtained at a PBE0/aug-cc-pVTZ level
of theory. A modified BS-ISA shape function (dashed line) corrects the tail-region
of the BS-ISA function to account for basis set deficiencies in the BS-ISA algorithm.
A single Slater orbital of the form DISA

i exp(−BISA
i r) (solid line) is fit to the basis-

corrected BS-ISA shape function, and the obtained BISA
i value is used as an atomic

exponent in the functional form of Aniso-Iso FF. Results for acetone are typical of
molecules studied in this Chapter.

formalism to polyatomics,

Vsr =
∑
ij

Asr
ijP(Bij, rij) exp(−Bijrij)

P(Bij, rij) =
1
3(Bijrij)

2 + Bijrij + 1

Asr
ij = A

sr
i A

sr
j

Bij =
√
BISA
i BISA

j

(2.25)

where the molecular short-range energy is now a sum of atom-atom contributions.
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In conjunction with appropriately damped atomic dispersion (Eqs. (2.16) and (2.18)),
Eq. (2.25) completely defines our new short-range force field. We refer to this new
functional form and set of atomic exponents as the Aniso-Iso FF.

2.3 Computational Methods

To evaluate the Slater-ISA FF against conventional Born-Mayer and/or Lennard-
Jones models, we compare the ability of each resulting short-range force field to
reproduce benchmark ab initio intermolecular interaction energies for a collection
of representative dimers. Such a metric is directly relevant for ab initio force field
development. Even for an empirically-parameterized force field, however, fidelity
to an accurate ab initio potential should be well correlated with the highest level of
accuracy and transferability achievable with a given short-range methodology.

We have developed the Slater-ISA FF, Born-Mayer, and Lennard-Jones force
fields using benchmark energies calculated using the symmetry-adapted perturba-
tion theory based on density-functional theory (DFT-SAPT or SAPT(DFT)170–178).
DFT-SAPT provides interaction energies that are comparable in accuracy to those
from CCSD(T) and which are rigorously free from basis set superposition error.102,179

Additionally, at second-order, DFT-SAPT also provides an explicit interaction en-
ergy decomposition into physically-meaningful contributions: the electrostatic,
exchange-repulsion, induction, and dispersion energies. This decomposition is vi-
tal to the development of models as it allows the development of separate terms for
each type of short-range interaction. Terms of third and higher order are estimated
using the δHF correction180 which contains mainly higher-order induction contri-
butions. Following prior work,83,167 and for the purposes of fitting to the DFT-SAPT
data, we keep the second-order induction term and the δHF term separate.

Since the Slater-ISA and Born-Mayer force fields describe only short-range
interactions (i.e. those terms which are modulated by the overlap of the monomer
electron densities), they must both be supplemented with additional long-range
terms that describe the electrostatic, polarization, and dispersion interactions. Here



34

we have chosen a long-range potential of the form

Vlr = Vmultipole + Vdispersion + Vpol (2.26)

where

Vmultipole =
∑
ij

∑
tu

QitTtuQ
j
u (2.27)

includes distributed multipole contributions from each atom up to quadrupoles,

Vdispersion = −
∑
ij

6∑
n=3

Cij,2n

r2n
ij

(2.28)

describes isotropic dispersion, and Vpol is the polarization energy modeled by
Drude oscillators181,182 as in Ref. 83. The accuracy of each of these terms is expected
to minimize errors in the long-range potential, simplifying the comparison between
short-range force field functional forms. Nonetheless, we expect that our results
will be qualitatively insensitive to the particular choice of long-range force field and
acknowledge that simpler alternatives may be preferred for the development of
highly efficient simulation potentials. In the case of the Lennard-Jones force field,
we replace Eq. (2.28) with the simple Cij,6/r6

ij dispersion term that is standard to
the Lennard-Jones model.

We used a test set consisting of one atom (argon) and 12 small organic molecules
(see Fig. 2.2) from which dimer potentials could be generated (we will use the term
‘dimer’ to mean two, potentially dissimilar, interacting molecules or atoms), yielding
91 dimer combinations (13 homo-monomeric, 78 hetero-monomeric). This wide
range of systems allowed us to evaluate both the accuracy and transferability of
the Slater-ISA model compared to conventional Born-Mayer and/or Lennard-Jones
models.

A detailed description of this overall methodology is provided below.
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Figure 2.2: The 13 small molecules included in the 91 dimer (13 homomonomeric,
78 heteromonomeric) test set. Cartesian geometries for all of these molecules are
given in Section A.1.

2.3.1 Construction of the 91 dimer test set

Monomer geometries for each of the 13 small molecules were taken from the exper-
imental NIST [CCCBDB] database183 and can be found in Section A.1. For acetone
and methyl amine, experimental geometries were unavailable, and thus the com-
putational NIST [CCCBDB] database was used to obtain geometries at a high level
of theory (B3LYP/aVTZ for acetone, CCSD(T)/6-311G* for methyl amine). For
each of the 91 dimers, a training set was constructed using DFT-SAPT (PBE0/AC)
interaction energies calculated at 1000 quasi-random dimer configurations. These
configurations were generated using Shoemake’s algorithm,184 subject to the con-
straint that the nearest atom pairs be separated by between 0.75 and 1.3 of the sum
of their van der Waals radii. This ensured adequate sampling of the potential energy
surface in the region of the repulsive wall. The DFT-SAPT interaction energies
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were evaluated using an asymptotically corrected PBE0 functional (PBE0/AC) with
monomer vertical (first) ionization potentials computed using the ∆-DFT approach
at a PBE0/aVTZ level of theory. Unless otherwise noted, all DFT-SAPT calculations
used an aVTZ basis set in the dimer-centered form with midbond functions (the so-
called DC+ form), and were performed using the MOLPRO2009 software suite.185

The midbond set consisted of a 5s3p1d1f even-tempered basis set with ratios of
2.5 and centered at ζ = 0.5, 0.5, 0.3, 0.3 for the s,p,d, and f shells, respectively. This
set was placed near the midpoint of the centers of mass of the two interacting
monomers.

A small fraction of DFT-SAPT calculations exhibited unphysical energies, which
were attributed to errors in generating the optimized effective potential used during
the DFT-SAPT (PBE0/AC) calculations; these points were removed from the test
set.

2.3.2 BS-ISA Calculations

BS-ISA atomic densities were obtained using CamCASP 5.885,186,187 following the
procedure of Misquitta et al. 86 For the BS-ISA calculations, an auxiliary basis was
constructed from an RI-MP2 aVTZ basis set with s-functions replaced by the ISA-
set2 supplied with the CamCASP program; CamCASP’s ISA-set2 basis was also
used for the ISA basis set.86 A custom ISA basis set for Ar was used (even tempered,
nmin = −2,nmax = 8)86 as no published basis was available. BS-ISA calculations
were performed with the A+DF algorithm, which allows the ISA functional to
be mixed with some fraction, ζ, of the density-fitting functional. Following the
recommendations of Misquitta et al. 86, we have used ζ = 0.1 for the multipole
moment calculations, and ζ = 0.9 for the density partitioning used to determine
the Bij coefficients.

2.3.3 Determination of BISA
i

The BS-ISA-derived atomic exponents, BISA
i , were obtained from a weighted least-

squares fit to the spherically averaged BS-ISA atomic densities (shape functions),
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wi(r). In some cases, numerical instabilities and basis-set limitations of the BS-ISA
procedure yielded densities that exhibited non-exponential asymptotic behavior.86

To correct for these unphysical densities, we extrapolated the exponential decay
of the valence region to describe the BS-ISA tails also. Details of this procedure
can be found in Section 5.B. The ISA atom-in-molecule exponents were then de-
rived via a log-weighted fit to the tail-corrected shape-functionswa(r) for densities
within the cutoff 10−2 > wa > 10−20 a.u. This region was chosen to reproduce the
charge density most accurately in the valence regimes most likely to be relevant to
intermolecular interactions.

2.3.4 Force Field Functional Forms and Parameterization

The general structure of the force fields VFF for both the Slater-ISA FF and the
Born-Mayer-type models are given by the following equations:

VFF =
∑
ij

Vexch
ij + Velst

ij + V ind
ij + Vδ

HF

ij + V
disp
ij

Vexch
ij = Aexch

ij P(Bij, rij) exp(−Bijrij)

Velst
ij = −Aelst

ij P(Bij, rij) exp(−Bijrij) +
∑
tu

QitTtuQ
j
u

V ind
ij = −Aind

ij P(Bij, rij) exp(−Bijrij) + V(2)
pol

Vδ
HF

ij = −Aδ
HF

ij P(Bij, rij) exp(−Bijrij) + V(3−∞)
pol

V
disp
ij = −

6∑
n=3

f2n(x)
Cij,2n

r2n
ij

Aij = AiAj

Cij,2n =
√
Ci,nCj,n

f2n(x) = 1 − e−x
2n∑
k=0

(x)k

k!

(2.29)
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For the Slater-ISA FF:

Bi = B
ISA
i

Bij =
√
BiBj

P(Bij, rij) =
1
3(Bijrij)

2 + Bijrij + 1

x = Bijrij −
2B2
ijrij + 3Bij

B2
ijr

2
ij + 3Bijrij + 3

rij

(2.30)

For all Born-Mayer type models:

P(Bij, rij) = 1

x = Bijrij
(2.31)

For the Born-Mayer-IP FF:

Bi ≡ BIP
i = 2

√
2Ii

Bij =
BiBj(Bi + Bj)

B2
i + B

2
j

(2.32)

For the Born-Mayer-sISA FF:

Bi = 0.84BISA
i

Bij =
√
BiBj

(2.33)

Of the parameters in these force fields, only the coefficients Ai were fit to repro-
duce DFT-SAPT dimer energies (details below). All other force field parameters
were derived from first-principles atom or atom-in-molecule properties. Exponents
for the Slater-ISA FF and the Born-Mayer-sISA FF were derived from BS-ISA calcu-
lations, while exponents for the Born-Mayer-IP FF were determined from vertical
ionization potentials of the isolated atoms. Dispersion coefficients (Cij,2n) were
either used directly from Ref. 83 or were parameterized using analogous methods
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in the case of argon. Distributed multipolesQit for each system were obtained from
the BS-ISA-based distributed multipoles scheme (ISA-DMA)86, with the expansion
truncated to rank 2 (quadrupole). Note that here, t = 00, 10, . . . , 22s denotes the
rank of the multipole in the compact notation of Stone 78. (In addition to rank 2 ISA-
DMA multipoles, we also tested the use of DMA4 multipoles89 as well as the use
of rank 0 charges obtained from the rank truncation or transformation188 of either
ISA-DMA or DMA4 multipoles; the effect of including a Tang-Toennies damping
factor83,157 was studied in all cases. Each of these alternative long-range electrostatic
models proved either comparably or less accurate for both the Slater-ISA FF and
the Born-Mayer-IP FF in terms of their ability to reproduce the DFT-SAPT elec-
trostatic energy, and are not discussed further.) Long-range polarization (Vshell)
was modeled using Drude oscillators in a manner identical to Ref. 83. As in our
prior work, during parameterization, the Drude energy was partitioned into 2nd

(V(2)
pol ) and higher order (V(3−∞)

pol ) contributions, where V(2)
pol is the Drude oscillator

energy due to static charges (excluding intra-molecular contributions), and V(3−∞)
pol

is the difference between the fully converged Drude energy, Vshell, and V(2)
pol . Force

field parameters for all homo-monomeric systems are located in the Supporting
Information of Ref. 96.

A weighted least-squares fitting procedure was used to fit Ai parameters to
the benchmark DFT-SAPT (PBE0/AC) interaction energies on a component-by-
component basis. That is, four separate optimizations83 were performed to directly
fit Vexch, Velst, V ind, and VδHF to, respectively, the following DFT-SAPT quantities
(notation as in Ref. 173):

Eexch ≡ E(1)
exch

Eelst ≡ E(1)
pol

Eind ≡ E(2)
ind + E

(2)
ind-exch

Eδ
HF ≡ δ(HF).

(2.34)
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For Vdisp, no parameters were directly fit to the DFT-SAPT dispersion,

Edisp ≡ E(2)
disp + E

(2)
disp-exch, (2.35)

but were instead obtained solely from monomer properties as described above.
Finally, note that no parameters were directly fit to the total DFT-SAPT energy,

Eint = E
exch + Eelst + Eind + Eδ

HF
+ Edisp, (2.36)

for either the Slater-ISA FF or the Born-Mayer-IP FF. Rather, VFF was calculated
according to Eq. (2.29).

Data points for each fit were weighted using a Fermi-Dirac functional form
given by

wi =
1

exp((−Ei − µeff)/kT) + 1, (2.37)

where Ei is the reference energy and µeff and kT were treated as adjustable parame-
ters. The parameter kT , which sets the energy scale for the weighting function, was
taken to be kT = λ|Emin|; here Emin is an estimate of the global minimum well depth.
Unless otherwise stated, we have used λ = 2.0 and µeff = 0.0. These defaults were
chosen to minimize overall average attractive RMSE for all 91 dimer sets. Increases
or decreases in the λ factor correspond to the weighting of more or fewer repulsive
configurations, respectively.

In the case of Lennard-Jones, the standard Lennard-Jones functional form was
used for the van der Waals terms, with Coulomb and polarization terms modeled
exactly as for the Slater-ISA FF:

VLJ
FF =

∑
ij

Aij

r12
ij

−
Cij,6

r6
ij

+ Vpol +
∑
tu

QitTtuQ
j
u (2.38)

Lorentz-Berthelot combination rules were used to obtain heteroatomic Aij and Cij
parameters. Unlike with the Slater-ISA FF and Born-Mayer models, VLJ

FF was fit to
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the total DFT-SAPT (PBE0/AC) energy, with Aij and Cij,6 as fitting parameters.
The weighting function from Eq. (2.37) was used in fitting.

2.3.5 Potential Energy Surface Scans

In order to visually assess fit quality, representative one-dimensional scans of the
potential energy surface were calculated for several dimer pairs along low-energy
dimer orientations. For each dimer pair, the minimum energy configuration of the
1000 random dimer points was selected as a starting configuration, and additional
dimer configurations (not necessarily included in the original 1000 points) were
generated by scanning along some bond vector. In the case of the ethane dimer,
two carbon atoms (one on each monomer) were used; for acetone, the carbonyl
carbon on each monomer defined the bond vector.

2.3.6 Molecular Simulations

All bulk simulations were run using OpenMM release version 7.0.189 Enthalpies of
vaporization were computed from

∆Hvap = (Epot(g) + RT) − Epot(l)

where Epot(g) and Epot(l) were determined from NVT simulations at the exper-
imental gas and liquid densities, respectively. Calculated liquid densities were
determined from NPT simulations. In all cases, the OPLS/AA force field was
used for the intramolecular potential.190 All simulations used a Langevin integrator
with a 0.5 fs time step and a 1 ps−1 friction coefficient; NPT simulations used a
Monte Carlo barostat with a trial volume step every 5th move. Periodic boundary
conditions, particle-mesh Ewald, and a non-bonding cutoff of 1.2nm with added
long-range corrections were used to simulate a unit cell of 222 molecules. After an
equilibration period of at least 600ps, simulation data was gathered from production
runs lasting at least 200ns.
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2.4 Results and Discussion

The Slater-ISA methodology for short-range intermolecular interactions has been
derived from a simple but rigorous physical model of overlapping monomer elec-
tron densities. In practice, this approach differs from the conventional Born-Mayer
approach in both the choice of the short-range functional form (with the latter
omitting the polynomial pre-factor) and the source of the exponents (with the
former derived from ISA analysis of the monomer density). Our principal goal is
to examine the influence of these modifications on the accuracy and transferability
of the resulting force fields.

We initially benchmark the Slater-ISA FF against a conventional Born-Mayer
potential, Born-Mayer-IP FF. The latter approach has been used extensively in
prior work,75,83 and both approaches use identical numbers of fitted parameters.
Following prior work, combination rules for the Born-Mayer-IP FF are as in Ref.
83. (We have tested the effect of using a geometric mean for the Born-Mayer-IP
FF; results do not differ qualitatively from those presented below.) Owing to its
popularity, we also compare the Slater-ISA FF to a Lennard-Jones functional form
(LJ FF).

We first assess the accuracy of the Slater-ISA FF, Born-Mayer-IP FF, and LJ FF
against benchmark ab initio intermolecular interaction energies and experimental
2nd virial coefficients, enthalpies of vaporization, and liquid densities. We next ex-
amine parameter transferability, assessing the extent to which parameters from pure
homo-monomeric systems can be re-used (without further optimization) to describe
mixed interactions. To assess parameter robustness, we also study the sensitivity
of each methodology to changes in the weighting function (Eq. (2.37)). Finally,
we explore the application of BS-ISA-derived exponents within the Born-Mayer
functional form as a straightforward method for simplifying the parameterization
(and potentially increasing the accuracy) of a wide variety of standard ab initio and
empirically-parameterized force fields.
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2.4.1 Accuracy: Comparison with DFT-SAPT

For each of the 91 molecule pairs described in the Computational Methods section,
parameters for the Slater-ISA FF, Born-Mayer-IP FF, and LJ FF were fit to reproduce
DFT-SAPT (PBE0/AC) interaction energies calculated for a set of 1000 dimer config-
urations. These 91,000 total configurations and corresponding DFT-SAPT energies
are collectively referred to as the ‘91 dimer test set’. As a primary indication of ac-
curacy, root-mean-square errors (RMSE) and mean signed errors (MSE), both with
respect to DFT-SAPT, were computed for each methodology and for each dimer pair.
Because these RMSE and MSE are dominated by repulsive contributions, and owing
to the thermodynamic importance of attractive configurations, so-called ‘attractive
RMSE/MSE’ were also computed by excluding net repulsive configurations (as
measured by the DFT-SAPT total energy). The overall RMSE/MSE for all 91 dimers
were then averaged to produce one ‘characteristic RMSE/MSE’ for the entire test
set. Since these errors varied considerably in magnitude depending on the dimer
in question, this overall average was taken in the geometric mean sense. (Results
with an arithmetic mean do not differ qualitatively). Note that when computing
the characteristic MSE, only the magnitude of each MSE, ‖MSE‖, was considered.

Characteristic RMSE and ‖MSE‖ across the 91 dimer test set are shown in Fig. 2.3
and Table 2.1. Overall, the Slater-ISA FF exhibits smaller errors compared to the
Born-Mayer-IP FF. On average, the characteristic total energy RMSE for the Slater-
ISA FF decrease by 33% relative to the Born-Mayer-IP FF. Even excluding repulsive
configurations (dominated by short-range interactions), errors for the Slater-ISA
FF are lower by 11% compared to the Born-Mayer-IP FF, demonstrating modest
gains in accuracy even over the most energetically-relevant regions of the potential.
A more detailed analysis of each of the 91 pairs of molecules shows that in an
overwhelming 93% of such cases, force fields derived from the Slater-ISA method
have smaller RMSEs compared to their Born-Mayer-IP counterparts (70% if only
attractive configurations are considered). Regardless of the metric used, the Slater-
ISA FF produces force fields with higher fidelity to the underlying benchmark
interaction energies.
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IP FF (orange) and the Slater-ISA FF (green) over the 91 dimer test set. The translu-
cent bars represent total RMSE for each energy component, while the smaller solid
bars represent ‘Attractive’ RMSE, in which repulsive points have been excluded.
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It is also instructive to consider each energy component individually. As might
be expected, improvements in the description of Eexch are pronounced, with the
characteristic RMSE from the Slater-ISA FF being 30% smaller than that from the
Born-Mayer-IP FF. Examining each dimer pair separately, we also find that, in
general, the Slater-ISA FF is far better at reproducing trends in the exchange energy
compared to the Born-Mayer-IP FF. This qualitative result is also reflected in the
smaller ‖MSE‖ values for the Slater-ISA FF as compared to the Born-Mayer-IP FF.
Nevertheless, there remains a fair amount of scatter in the exchange energies for
several dimer pairs, particularly for molecules with exposed lone pairs or delo-
calized π systems. We hypothesize that this scatter is due to a breakdown of the
isotropic approximation made in the Theory section, a conclusion supported by
observations on the pyridine dimer system recently made by some of us.156 It it
therefore quite possible that the observed 30% RMSE reduction underestimates the
true error reduction that might be observed if such anisotropy were accounted for.

From Fig. 2.3, we see that the dispersion energy model from the Slater-ISA FF is
also a substantial improvement; for dispersion, characteristic RMSE are 46% smaller
for the Slater-ISA FF compared to the Born-Mayer model. This should not be a
counter-intuitive result: while both potentials use identical dispersion coefficients,
they differ in the damping model used. In the Born-Mayer-IP FF, the standard
Tang–Toennies damping model is employed, and the damping parameters only
depend on free atom ionization potentials; in the Slater-ISA FF, on the other hand,
the damping parameters are obtained from the ISA shape functions, and thus take
molecular environment effects into account. Even when only considering attractive
dimer configurations (solid bar in Fig. 2.3), errors in the dispersion energy compo-
nent are reduced by 23%, demonstrating the importance of the damping function
across the potential surface. From these results, and in agreement with related
literature studies,191 we conclude that use of the standard Tang-Toennies damping
function based on atomic ionization potentials83,157,192–196 lacks quantitative predic-
tive power compared to the Slater-ISA model. Note that neither the Slater-ISA FF
nor the Born-Mayer-IP FF are directly fitted to the DFT-SAPT dispersion energies
(all parameters are determined from monomer properties), making this accuracy
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particularly striking. We hypothesize that the effect of the Slater-ISA approach is
greater for dispersion than for first-order exchange because here (in contrast to the
exchange energy) there are no fitted parameters to compensate for deficiencies in
the exponents or functional form of the Born-Mayer-IP FF.

In contrast to the exchange and dispersion energies, the Slater-ISA FF and the
Born-Mayer-IP FF show nearly identical errors for the electrostatic and the induction
(2nd order induction plus δHF) energies. In these cases, the two models differ
only in the parameters and functional form used to represent the exponentially-
dependent short-range terms of these energy components, namely the penetration
component for the electrostatic term and the penetration/charge-transfer term
for the induction. The lack of improvement between the Slater-ISA and Born-
Mayer-IP models may imply that we are not able to capture the physics of these
particular short-range interactions with either the Slater-functional of Born-Mayer
functional forms. Alternatively, the assumption that the short-range components of
the electrostatic and induction energies are proportional to the exchange-repulsion
may need to be re-examined. As discussed in Section 2.2.2, this proportionality is
known to be approximately valid, but as yet there does not seem to be a deeper
theoretical understanding of these short-range terms that may lead to a better
model. Nevertheless, absolute errors in the electrostatic and induction components
are relatively small for both models. Thus overall, the Slater-ISA FF functional form
is promising for treating a wide variety of short-range effects.

The comparison between the Slater-ISA FF and the LJ FF is slightly more com-
plicated, owing to the differences in long-range potential and fitting methodology
(see Section 2.3.4). As such, we compare the Slater-ISA FF to several versions of the
LJ FF (for which characteristic RMSE and ‖MSE‖ are shown in Table 2.2). Using
the same weighting function and constraining the Coulombic and polarization
terms to be identical to the Slater-ISA FF, we see that the resulting Lennard-Jones
force field (LJ FF, λ = 2.0) is significantly worse than the Slater-ISA FF, both in
terms of total RMSE and attractive RMSE. Furthermore, by comparing the ‖MSE‖
of both force fields, we see that errors in LJ FF are much more systematic than in the
Slater-ISA FF: in order to reproduce the repulsive wall correctly, the Lennard-Jones
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LJ FF Dimer-Specific Fits LJ FF Transferable Fits

λ = 2.0 λ = 0.1 λ = 2.0 λ = 0.1
(kJ mol−1) (kJ mol−1) (kJ mol−1) (kJ mol−1)

RMSE 1.984 (0.603) 6.058 (0.413) 2.054 (0.640) 5.760 (0.457)
‖MSE‖ 0.322 (0.345) 1.610 (0.041) 0.311 (0.368) 1.410 (0.060)

Table 2.2: Comparison of characteristic RMSE and ‖MSE‖ over the 91 dimer test set
for the various Lennard-Jones models. The LJ models are not parameterized on a
component-by-component basis, thus RMSE/‖MSE‖ values are only shown for the
total FF energies. ‘Attractive’ errors, representing the characteristic RMSE/‖MSE‖
for the subset of points whose energies are net attractive (Eint < 0), are shown in
parentheses to the right of the total errors. ‘Dimer-Specific Fits’ and ‘Transferable
Fits’ are as in Table 2.1.

potential generally underestimates the well-depth by a considerable fraction (see
the Supporting Information of Ref. 96 for ethane as a typical example).

Given the failure of the LJ FF (λ = 2.0) force field to reproduce the energetically
important region of the PES, we also compared the Slater-ISA FF to a ‘best-case’
scenario Lennard-Jones force field which correctly reproduces the minimum energy
region at the expense of the repulsive wall. These LJ FF (λ = 0.1) fits have total
RMSE errors nearly 4 times that of the Slater-ISA FF; indeed, the LJ FF (λ = 0.1)
reproduces the repulsive wall only qualitatively. Insofar as the repulsive wall is
concerned, the Slater-ISA FF is far superior to the Lennard-Jones short-range model.
Nevertheless (and much more importantly for molecular simulation), the attractive
region of the potential is reproduced surprisingly well by LJ FF. Characteristic
attractive RMSE for the LJ FF (λ = 0.1) are slightly lower than those for Slater-ISA
FF, although the former has one additional free parameter per atom type and is also
fit directly to reproduce the total energy. Likewise, attractive ‖MSE‖ between the
Slater-ISA FF and the LJ FF (λ = 0.1) are comparable. As we show in the Supporting
Information of Ref. 96, however, and as is well known in the literature, weighting
the Lennard-Jones potential in this manner does not necessarily capture important
information from the long-range attractive tail or repulsive wall of the PES, such
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that the LJ FF (λ = 0.1) is not always expected to yield good property predictions.
This latter point will be demonstrated in Section 2.4.2.

In order to compare the performance of the Slater-ISA FF against popular stan-
dard force fields, we also developed a ‘best case scenario’ non-polarizable point
charge Lennard-Jones model, results for which are shown in the Supporting Infor-
mation of Ref. 96. Unsurprisingly, this force field is worse (in an RMSE and ‖MSE‖
sense) than all other force fields studied in this Chapter, thus demonstrating how
important accurate models for long-range electrostatics and polarization are to the
overall accuracy of ab initio force fields.

Argon Dimer

We now turn to several specific case studies. The Ar dimer provides an interesting
test case to examine directly the impact of the polynomial pre-factor included in the
Slater-ISA FF functional form. Since Ar is an atomic species, we should have BISA

Ar =

BIP
Ar. For numerical reasons, the Slater-ISA FF and Born-Mayer-IP FF exponents

differ by 0.03 a.u.; however, this difference is insignificant, and the two FFs differ
mainly in the polynomial pre-factor. Fig. 2.4 shows the potential energy surface
(PES) for the argon dimer computed using the Slater-ISA FF and the Born-Mayer-
IP FF. Here the default weighting scheme has been used so as to best reproduce
the energetically attractive region. Note that, while both potentials reproduce
the minimum energy configurations correctly, the Born-Mayer-IP FF considerably
overestimates the exchange energy (and thus the total energy) along the repulsive
wall. The Slater-ISA FF, on the other hand, maintains excellent accuracy in this
region of the potential. This result is particularly notable because the repulsive wall
is not heavily weighted in the fit. (A point 10 kJ mol−1 along the repulsive wall,
for instance, is weighted only 3% as heavily as a point near the bottom of the well).
A similar, though smaller, increase in accuracy is seen in the fit to the DFT-SAPT
dispersion energies, where the Slater-ISA FF is better able to model the energies for
shorter interatomic separations. This increased accuracy is entirely attributable to
the functional form employed, as the dispersion parameters are identical between
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Figure 2.4: Potential energy surface for the argon dimer. Interaction energies for the
Slater-ISA FF (dashed curves) and the Born-Mayer-IP FF (dash-dotted curves) are
shown alongside benchmark DFT-SAPT (PBE0/AC) energies (solid curves). The
energy decomposition for DFT-SAPT and for each force field is shown for reference.

the two FFs.
Consistent with prior literature,126,142 these results suggest that neglect of the

polynomial pre-factor P (as in standard Born-Mayer potentials) is by itself a poor
approximation. However, as we show below, the Born-Mayer form can still be
used as an accurate model in conjunction with appropriately scaled atomic expo-
nents. Nonetheless, the more physically-motivated Slater form provides increased
accuracy over a wider range of separations without recourse to empirical scaling.

Results for LJ FF are shown in the Supporting Information of Ref. 96; consistent
with expectations for the Lennard-Jones model, the repulsive wall is overestimated
by the 1/r12

ij short-range functional form, and the magnitude of the attractive tail
region is similarly overestimated by the effective Cij,6 dispersion parameter. Note
that this Cij,6 coefficient has been fit to the total energy, and thus differs from the
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Figure 2.5: Force field fits for the ethane dimer using the Slater-ISA (green) and
Born-Mayer-IP (orange) FFs. Fits for each energy component are displayed along
with two views of the total interaction energy. The diagonal line (black) indicates
perfect agreement between reference energies and each force field, while shaded
grey areas represent points within ±10% agreement of the benchmark. To guide
the eye, a line of best fit (dotted line) has been computed for each force field and for
each energy component.

asymptotically-correct Cij,6 parameter used for both the Slater-ISA FF and the Born-
Mayer-IP FF. An alternative parameterization strategy would have been to use the
asymptotically-correct Cij,6 parameter in the LJ FF, but this would have worsened
predictions along both the repulsive wall and the minimum energy configurations.

Ethane Dimer

We next discuss the ethane dimer and show both a scatter plot of the 1000 dimer
interactions (Fig. 2.5) and a cut through the potential energy surface near the
minimum (Fig. 2.6) as indications of force field quality.

As with the argon dimer, for the ethane dimer the Slater-ISA FF produces more
accurate exchange and dispersion energies compared to the Born-Mayer-IP FF. Here,
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Figure 2.6: A representative potential energy scan near a local minimum for the
ethane dimer. Interaction energies for the Slater-ISA FF (dashed curves) and the
Born-Mayer-IP FF (dash-dotted curves) are shown alongside benchmark DFT-SAPT
(PBE0/AC) energies (solid curves). The energy decomposition for DFT-SAPT and
for each force field is shown for reference. The ethane dimer configuration in this
scan corresponds to the most energetically attractive dimer included in the training
set; other points along this scan are not included in the training set.

the effects of the Slater-ISA FF for dispersion are even more pronounced, likely
because the conventional damping of the Born-Mayer-IP FF is systematically in error
due to differences in both the form of the damping function and exponents. As for
the total interaction energy, we again find that the Born-Mayer-IP FF exhibits large
errors for repulsive contributions, while the Slater-ISA FF naturally reproduces
interactions for both attractive and strongly repulsive configurations. Even in
the attractive regime, the Born-Mayer-IP FF is systematically too attractive. These
systematic errors are the result of imperfect error cancellation between the exchange
and dispersion components of the fit, and are discussed in more detail in Section
2.4.4.
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Examining a specific cut across the ethane-ethane PES (Fig. 2.6) visually confirms
these results. Both potentials do an excellent job of reproducing the benchmark
DFT-SAPT energies in the minimum energy region, though the Born-Mayer-IP
FF is slightly too attractive. (Other cuts of the PES would show the Born-Mayer-
IP predictions to be significantly more in error, consistent with the scatter plots).
Along the repulsive wall, however, the Born-Mayer-IP FF predictions worsen in
comparison to those from the Slater-ISA FF. Finally, the PES shows an increased
reliance on error cancellation between the various energy components for the
Born-Mayer-IP FF compared to the Slater-ISA FF.

As shown in the Supporting Information of Ref. 96, the Lennard-Jones force
field models are incapable of reproducing the entirety of the ethane PES; depending
on the weighting function, either the repulsive wall or the attractive well can be
reproduced, however no set of parameters can predict both regions simultaneously.

Acetone Dimer

The acetone dimer provides a final interesting example involving a moderately
sized organic molecule. From both the scatter plots (Fig. 2.7) and the PES cross
section (Fig. 2.8), it is evident that both the Slater-ISA and Born-Mayer-IP force
fields do an excellent job of reproducing DFT-SAPT energies for the low energy
dimers. Along the repulsive wall, however, the Born-Mayer-IP FF shows larger
systematic errors in each energy component, and seems to rely on error cancellation
to achieve good agreement in the total energy. This reliance on error cancellation
has two negative effects: Firstly, the additional scatter in the total energy of the
Born-Mayer-IP FF fit, especially prominent for attractive configurations, indicates
that this error cancellation is imperfect in certain cases. MSE for the Slater-ISA FF
(−0.0115 kJ mol−1) are an order of magnitude lower than for the Born-Mayer-IP FF
(0.182 kJ mol−1) in the attractive region of the potential. Secondly, as we shall later
explore, reliance on error cancellation likely contributes to the somewhat decreased
transferability of the Born-Mayer-IP FF as compared to the Slater-ISA FF.

As shown in the Supporting Information of Ref. 96, the LJ FF predictions



54

60 40 20 0

60

40

20

0

y=0.983x−0.151
y=0.984x−0.052

Electrostatics

0 50 100 150 200
0

50

100

150

200

y=1.014x−0.502
y=1.032x−0.965

Exchange

60 45 30 15 0

60

45

30

15

0

y=1.064x+0.595
y=1.136x+0.948

Dispersion

Slater-ISA FF
Born-Mayer-IP FF

10.0 7.5 5.0 2.5 0.0

10.0

7.5

5.0

2.5

0.0

y=1.054x+0.119
y=1.054x+0.121

Induction

8 6 4 2 0

8

6

4

2

0

y=0.991x+0.007
y=0.996x+0.031

δ(HF)

15 0 15 30 45
15

0

15

30

45

y=0.954x−0.299
y=0.947x−0.735

Total Energy

16 12 8 4 0

16

12

8

4

0

y=0.954x−0.299
y=0.947x−0.735

Total Energy
 (Attractive Region)

SAPT Energy (kJ mol−1 )

FF
 E

ne
rg

y 
(k

J 
m

ol−
1
)

Figure 2.7: Force field fits for the acetone dimer using the Slater-ISA (green) and
Born-Mayer-IP (orange) FFs, as in Fig. 2.5.

for acetone are reasonably good in both the tail and minimum energy regions of
the potential, however the LJ FF grossly overpredicts the DFT-SAPT (PBE0/AC)
energies along the repulsive wall.

2.4.2 Accuracy: Comparison with experiment

We have benchmarked the above force fields against experimental second virial
coefficients and, in the case of ethane, enthalpies of vaporization and liquid densi-
ties. The classical 2nd virial coefficients were calculated for both argon and ethane
using rigid monomer geometries, following the procedure described in Ref. 83.
Enthalpies of vaporization and liquid densities were calculated using the OpenMM
molecular simulation package189 as described in Section 2.3. Higher-order multi-
pole moments — which were negligible for these molecules — were neglected, and
so only rank 0 terms were used in these calculations. Results are shown in Figures
2.9 and 2.10 as well as Table 2.4.
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Figure 2.8: A representative potential energy scan near a local minimum for the
acetone dimer. Interaction energies for the Slater-ISA FF (dashed curves) and the
Born-Mayer-IP FF (dash-dotted curves) are shown alongside benchmark DFT-SAPT
(PBE0/AC) energies (solid curves). The energy decomposition for DFT-SAPT and
for each force field is shown for reference. The intermolecular distance is taken
to be the internuclear distance between the two carbonyl carbons on each acetone
monomer. The configuration in this scan corresponds to the most attractive dimer
configuration included in the training set for the acetone dimer; other points along
this scan have not explicitly been included in the training set.

For argon, since both Slater-ISA FF and Born-Mayer-IP FF accurately reproduce
the energetics of low-energy configurations, it is unsurprising that both force fields
yield accurate virial coefficients over a wide range of temperatures. Errors in
computed B2 coefficients (for both potentials) are likely attributable to small errors
in the DFT-SAPT (PBE0/AC) potential itself,179 and, to a much lesser extent, the
neglect of nuclear quantum effects at lower temperatures.197 Despite the good (in
an RMSE sense) fit quality of the LJ FF (λ = 0.1), this force field overpredicts the
magnitude of the 2nd virial for argon, likely as a result of the effective dispersion
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Figure 2.9: Second virial coefficients for argon. The Slater-ISA and the Born-Mayer-
IP FFs are shown as green circles and orange squares, respectively; the black line
corresponds to experiments from Ref. 10.

coefficient, which overestimates the attraction in the tail region of the PES (see
Supporting Information of Ref. 96). Although it is certainly possible to parameterize
a Lennard-Jones model empirically for argon, such a force field would rely on a subtle
cancellation of errors between the minimum energy- and tail-regions of the PES.
As the proper balance is impossible to predict a priori, this result highlights one of
the difficulties of using the less physical LJ model in the development of ab-initio
force fields.

In the case of ethane, the Slater-ISA FF is in excellent agreement with experiment,
whereas the Born-Mayer-IP FF underpredicts B2 by as much as 20%. These results
are indicative, not only of the more accurate functional form and parameterization of
Slater-ISA FF, but also of the high accuracy of the underlying DFT-SAPT (PBE0/AC)
benchmark energies. In this case, LJ FF also correctly predicts the virial. Using
weighting functions for each model that are optimal for the 91 dimer test set as
a whole (λ = 2.0 for the Slater-ISA FF and the Born-Mayer-IP FF, λ = 0.1 for the
LJ FF), all force fields produce similar results for ∆Hvap and ρ (Table 2.4). These
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Figure 2.10: Second virial coefficients for ethane. The Slater-ISA and Born-Mayer-IP
FFs are shown as green circles and orange squares, respectively; the black line
corresponds to experiments from Ref. 10.

values are slightly overestimated by all force fields (especially in the case of the
Born-Mayer-IP FF), which is to be expected given our neglect of many-body effects.
McDaniel and Schmidt have calculated the 3-body correction for the Born-Mayer-IP
FF; using this value as a global 3-body correction for all force fields, we see that
both the Slater-ISA and the Lennard-Jones force fields compare very favorably to
experiment, with the Slater-ISA FF perhaps slightly more accurate.

2.4.3 Transferability

The transferability of interaction potentials is a crucial aspect of practical molecular
simulations. Here we examine ‘parameter transferability’, by which we mean the
extent to which parameters from two homo-monomeric systems can combined to
predict the intermolecular interactions of the resulting mixed hetero-monomeric
system. As a measure of parameter transferability, we compared characteristic
RMSE and ‖MSE‖ relative to the benchmark data for two different parameterization
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schemes. For the ‘Dimer-Specific Fits’, Aij parameters were obtained for each of
the 91 dimer pairs individually; these results are identical to those discussed in the
previous two subsections. In contrast, for the ‘Transferable Fits’, the Aij parameters
were fit to the 13 homonomeric dimer pairs and were re-used (without any further
optimization) to calculate energies for the 78 mixed systems using the combination
rules listed in Section 2.3.4. Results for each parameterization scheme are shown
in Table 2.1. From the RMSE and ‖MSE‖ from the competing schemes, we see
excellent parameter transferability for all force fields studied. For the Slater-ISA
FF, characteristic RMSE and ‖MSE‖ for each component increase by a very small
fraction upon constraining the fit; due to small error cancellation, errors in the total
energy actually decrease somewhat with these constraints. (This is possible since
the total energy is not directly fit.) The Born-Mayer-IP FF also displays a significant
degree of transferability, though errors in the total energy increase slightly upon
constraining the fit. As in prior work, the observed parameter transferability for
both force fields can be attributed to our use of a term-by-term parameterization
scheme (Section 2.3.4), which serves to minimize error cancellation between energy
components and generate a more physically-meaningful (and thus transferable)
set of parameters.83,198 Finally, note that for four of the five interaction energy
components the relative change in RMSE on constraining the fit is smaller for the
Slater-ISA FF than the Born-Mayer-IP FF. The δHF term is the exception, but even
here the relative change in errors from the two methods are comparable. This
suggests that the Slater-ISA FF may be the more transferable of the force fields
studied. Nevertheless, the Lennard-Jones model is surprisingly transferable, likely
in part due to the same accurate and transferable ‘long-range’ electrostatics and
polarization as the Slater-ISA FF. The non-polarizable, point-charge Lennard-Jones
model (results for which are shown in the Supporting Information of Ref. 96)
displays the least transferability (in both an RMSE and ‖MSE‖ sense) of all force
fields studied.

Although we do not examine it here, we expect that the previously demonstrated
success4,83,142,198 of the Born-Mayer-IP FF with respect to ‘environment transferabil-
ity’ — the extent to which a single set of parameters can model a variety of phases
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and molecular environments — and ‘atom type transferability’ — the extent to
which atoms in chemically similar environments can accurately be grouped together
into ‘types’ and treated using one parameter set — would also apply to, or even be
improved by, Slater-ISA FF. These issues are under investigation in our groups.

2.4.4 Robustness

One of the practical challenges of ab initio force field development is the robustness
of the resulting force field quality with respect to the choice of an appropriate
training set and/or weighting function. To this end, the default weighting function
(Eq. (2.37), λ = 2.0) was varied to produce unconstrained fits that were skewed either
towards attractive (λ = 0.5) or repulsive (λ = 5.0) configurations, and pairwise
differences in force field total energies were computed between each weighting
scheme. Characteristic root-mean-square pairwise differences (RMSD) between
each weighting function are shown in Table 2.3; as before, ‘attractive RMSD’ were
calculated by excluding repulsive points from consideration. Note that, on average,
the default λ = 2.0 weighting scheme is optimal (in an RMSE sense) for both the
Slater-ISA and Born-Mayer-IP FFs.

Overall, both the Born-Mayer-IP FF and the LJ FF display significant weighting
function sensitivity. This sensitivity is not surprising; as both force fields are unable
to reproduce the entirety of the potential energy surface, changing the weighting
scheme (or equivalently, the balance of configurations in the training set) alters
the parameters in the Born-Mayer-IP FF or the LJ FF models quite substantially.
Even excluding repulsive configurations, RMSD of ∼ 0.5 kJ mol−1 are typical for
the Born-Mayer-IP FF. RMSD are somewhat smaller for the LJ FF (∼ 0.3 kJ mol−1),
however qualitatively we see that differences in computed force field energies are
systematic: smaller weighting functions capture the minimum energy region of
the potential while overestimating the magnitudes of both the repulsive and tail
regions of the potential, whereas larger weighting functions tend to underestimate
the minimum energy region in order to correctly reproduce the repulsive wall.
Consequently, the Lennard-Jones model shows weighting-function sensitivity in
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Characteristic RMSD λ = 0.5 vs 2.0 λ = 0.5 vs 5.0 λ = 2.0 vs 5.0
(kJ mol−1) (kJ mol−1) (kJ mol−1)

Slater-ISA FF 0.742 (0.207) 0.990 (0.273) 0.306 (0.086)
Born-Mayer-IP FF 1.866 (0.409) 2.632 (0.550) 0.797 (0.153)

LJ FF 1.301 (0.216) 1.605 (0.309) 0.324 (0.099)
Born-Mayer-sISA FF 0.611 (0.178) 0.810 (0.236) 0.293 (0.081)

Table 2.3: Characteristic RMS pairwise differences (RMSD) in force field total
energies for different weighting functions with λ values as defined in Eq. (2.37);
values shown are the (arithmetic mean, rather than geometric) RMSD across the 91
dimer test set. Characteristic ‘Attractive’ RMSD (as defined in Table 2.1) are shown
in parentheses to the right of each overall RMSD.

a manner that is not entirely captured by the RMSD, but is instead reflected in
the greater sensitivity of the LJ FF (as compared to the Born-Mayer-IP FF) in the
prediction of experimental properties (vide infra).

Note that for practical force field development (as opposed to minimization of
overall RMSE), the default weighting scheme for the Born-Mayer-IP FF and the LJ
FF is suboptimal for many dimers in the test set. Because both the Born-Mayer-IP
FF and the LJ FF must inherently compromise between accuracy near the minimum
and along the repulsive wall, the weighting function requires system-specific fine-
tuning in order to achieve proper balance. This empiricism creates significant
challenges in the development of ab initio force fields.

By contrast, we find the Slater-ISA FF to be robust with respect to the choice of
weighting function due to its more balanced treatment of repulsive and attractive
regions of the potential energy surface. Average RMSD for the Slater-ISA FF are
between two to three times smaller compared to the Born-Mayer-IP FF, and the
Slater-ISA FF is relatively insensitive to the choice of weighting function. These
conclusions hold for both attractive and overall RMSD. As a result, the Slater-
ISA model largely eliminates the need for empirical fine-tuning of the weighting
function, which in turn greatly simplifies the parameterization process and allows
for a more robust prediction of chemical and physical properties.

For the ethane dimer, Fig. 2.11 shows overall force field energies for both the
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Weighting Function

Force Field λ = 0.1 λ = 0.5 λ = 2.0 λ = 5.0 Experiment

∆Hvap (kJ mol-1); ρ = 0.546 g L-1, T = 184 K
Slater-ISA FF 15.3 (14.7) 15.3 (14.6) 15.3 (14.7) 15.2 (14.6)

14.7Born-Mayer-IP FF 14.3 (13.7) 15.1 (14.5) 16.6 (15.9) 18.6 (18.0)
LJ FF 15.5 (14.9) 14.6 (13.9) 11.4 (10.7) 10.1 ( 9.5)

ρ (g L-1); P = 1 atm, T = 184 K
Slater-ISA FF 0.600 (0.566) 0.602 (0.568) 0.600 (0.566) 0.593 (0.559)

0.546Born-Mayer-IP FF 0.521 (0.487) 0.567 (0.533) 0.632 (0.598) 0.678 (0.644)
LJ FF 0.607 (0.573) 0.610 (0.576) 0.555 (0.521) 0.494 (0.460)

Table 2.4: Enthalpies of vaporization and liquid densities for ethane as a function
of force field and weighting function. Values in parentheses include an estimation
of the 3-body correction (0.628 kJ mol-1 and 0.034 g mL-1 for the enthalpy of vapor-
ization and liquid density, respectively) as computed in Ref. 4. Experimental data
taken from Ref. 5 and Ref. 6.

Slater-ISA and Born-Mayer-IP FFs for three weighting functions. Results for the
Lennard-Jones models are shown in the SI, and are qualitatively similar to the
Born-Mayer-IP FF results. The Born-Mayer-IP FF fits vary qualitatively with λ,
leading to a relatively large uncertainty in calculated B2 coefficients, enthalpies
of vaporization, and liquid densities (see Table 2.4). By skewing the fits towards
attractive configurations (λ = 0.5), the majority of attractive configurations are pre-
dicted without systematic error, though points along the repulsive wall (including
those with net negative energies) are systematically too repulsive. Using a scheme
which more heavily weights repulsive configurations, the Born-Mayer-IP FF regains
semi-quantitative accuracy for repulsive configurations, albeit at the expense of a
systematic increase in errors for the attractive dimer configurations. Finally, we
reiterate that the optimal weighting function for the ethane dimer (here λ = 0.5
best reproduces the 2nd virial for the Born-Mayer-IP FF) is by no means universal
for the molecules in the 91 dimer test set.

The Slater-ISA FF fits for the ethane dimer, on the other hand, are nearly com-
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Figure 2.11: Comparison of the Slater-ISA FF and the Born-Mayer-IP FF in terms
of sensitivity to the weighting function employed in parameter optimization for
the ethane dimer. Three weighting functions, λ = 0.5 (purple), λ = 2.0 (blue),
and λ = 5.0 (green) are shown, with higher λ values indicating more weighting of
repulsive configurations.
(top) Total interaction energies for the Slater-ISA FF (left) and the Born-Mayer-IP
FF (right) indicating the accuracy of each force field with respect to DFT-SAPT
(PBE0/AC) benchmark energies. The diagonal line (black) indicates perfect agree-
ment between reference energies and each force field, while shaded grey areas
represent points within ±10% agreement of the benchmark. To guide the eye, a
line of best fit (dotted line) has been computed for each force field and for each
weighting function.
(bottom) Computed 2nd virial coefficients for ethane. Data for the Slater-ISA FF
and the Born-Mayer-IP FF are depicted using shaded circles and open squares,
respectively; colors for the different weighting functions are as above. Experimental
data from Ref. 10 (black line) is also shown.
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pletely insensitive to the weighting function, leading to little intrinsic uncertainty in
the determination of parameters or in the computation of macroscopic properties.
Some other dimers, particularly those where atomic anisotropy would be antici-
pated (e.g., water), exhibited slightly larger sensitivity to the weighting function.
Nevertheless, the vast majority of dimers in the test set are qualitatively insensitive
to the choice of weighting function, and can be optimized with the default λ = 2.0
weighting function without yielding undue systematic error in the attractive region
of the potential, thus proving the enhanced robustness of the Slater-ISA FF model
relative to conventional force fields.

2.4.5 Next-Generation Born-Mayer Models: Born-Mayer-sISA
FF

We hypothesize that the increased accuracy, transferability, and robustness of the
Slater-ISA FF is a direct result of its more physically-motivated functional form and
its use of ISA-derived atomic exponents that directly account for the influence of the
molecular environment. Nonetheless, we recognize that the standard Born-Mayer
functional form remains extremely common, both in simulation software and in
existing force fields. It is therefore fruitful to explore the extent to which the BS-ISA
exponents themselves could be used in conjunction with a Born-Mayer functional
form. These results are shown in Table 2.5.
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As expected, direct insertion of the BS-ISA exponents into the Born-Mayer
functional form (Born-Mayer-ISA) does not yield promising results. Indeed, the
Born-Mayer-ISA FF has significantly worse RMSE and ‖MSE‖ than the Born-Mayer-
IP FF. We reiterate that the P = 1 approximation from Eq. (2.25), yielding the
conventional Born-Mayer form, is by itself a crude model. Rather, it becomes
necessary to accompany this approximation by a corresponding exponent scale
factor, ξ:

Bi = ξB
ISA
i . (2.39)

Following literature precedent,126,142 we hypothesized that ξ could be treated as
a universal constant. To test this conjecture, we computed reference density over-
laps for a variety of isolated atom pairs (details in the Supporting Information of
Ref. 96), and fitted each of these overlaps to a Born-Mayer function of the form
Sij ≈ Kij exp(−ξBISA

ij rij), where Kij = K
B3
ij

in line with Eq. (2.13). To very good
approximation, both K and ξ can be treated as universal constants; that is, neither K
nor ξ is sensitive to the value of BISA. However, fitted values of K and ξ do depend
strongly on the range of rij values used in the optimization, yielding estimates
ranging from 0.74 to 0.88.

As an alternative, we optimized ξ directly by minimizing RMSE against the 91
dimer test set. Results from various choices of ξ can be found in the Supporting
Information of Ref. 96. In agreement with prior literature and our ‘first-principles’
analysis of overlaps, we find ξ = 0.84 to be optimal for minimizing characteristic
overall and attractive RMSE, though in practice the errors are insensitive to ξ ∈
[0.82, 0.86]. We henceforth use ξ = 0.84 and refer to to this force field methodology
(Born-Mayer functional form, ISA-derived exponents with scale factor ξ = 0.84) as
the Born-Mayer-sISA FF. Parameters and homo-monomeric fits for the Born-Mayer-
sISA FF can be found in the Supporting Information of Ref. 96.

From Table 2.5 we see that the Born-Mayer-sISA FF is comparable in quality
to our original Slater-ISA FF methodology. For all attractive configurations, the
Born-Mayer-sISA FF is equally accurate and transferable (Table 2.5). Furthermore,
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as shown in Table 2.3, Born-Mayer-sISA FF displays similar parameter robustness
to Slater-ISA FF. These results suggest that many of the advantages of the Slater-ISA
FF procedure can be captured simply by using the (scaled) ISA exponents. Note,
however, that the optimal scale factor likely exhibits some system dependence, and
furthermore that the enhanced Slater functional form may be important where an
accurate description of highly repulsive configurations is crucial.

We also examined the Slater-ISA FF and the Born-Mayer-sISA FF against force
fields where Bi values were instead treated as soft constraints, rather than fixed
parameters. Using entirely unconstrained exponents yields unphysical parameters
and a severe degradation in force field transferability. Using exponents from the
Slater-ISA FF and the Born-Mayer-sISA FF as Bayesian priors (in the sense used
in Refs. 124, 156), we generated two new force fields with optimized exponents,
denoted Slater-OPT and Born-Mayer-OPT, respectively. Characteristic RMSE and
‖MSE‖ for these force fields can be found in the Supporting Information of Ref.
96. We find that both methods yield only very minimal improvement, suggesting
that the first-principles ISA exponents are already nearly optimal. Comparing the
Born-Mayer-OPT exponents to those from Slater-ISA, we find a nearly identical
average scale factor of γ = 0.83± 0.07. Given that these optimal exponents can now
be generated directly from first principles calculations of the molecular densities
via the BS-ISA approach of Misquitta et al., we anticipate that the BS-ISA densities
and resulting ISA exponents will be extremely useful in next-generation force field
development in order to greatly simplify force field parameterization.

2.5 Conclusions and Recommendations

We have presented a new methodology for describing short-range intermolecular in-
teractions based upon a simple model of atom-in-molecule electron density overlap.
The resulting Slater-ISA FF is a simple extension of the conventional Born-Mayer
functional form, supplemented with atomic exponents determined from an ISA
analysis of the molecular electron density. In contrast to simple Born-Mayer or
Lennard-Jones models, the Slater-ISA FF is capable of reproducing ab initio interac-
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tion energies over a wide range of inter-atomic distances, and displays extremely
low sensitivity to the details of parameterization. Furthermore, the Slater-ISA FF
exhibits excellent parameter transferability. We thus recommend Slater-ISA FF for
use in the development of future ab initio (and possibly empirically-parameterized)
potentials, particularly where accuracy across wide regions of the potential surface
is paramount.

More generally, we find that analysis of the ISA densities provides an excellent
first-principles procedure for the determination of atomic-density decay exponents.
This analysis improves upon existing approaches (which rely upon exponents de-
rived from atomic radii or ionization potentials)140,199–201 and explicitly incorporates
the influence of the molecular environment. These exponents can be used within
Slater-ISA FF without further parameterization. Alternatively, in conjunction with
an appropriate scale factor, the exponents can be used to enhance the accuracy of
standard Born-Mayer potentials and/or Tang-Toennies damping functions. The
resulting Born-Mayer-sISA FF retains many of the advantages of Slater-ISA FF, but
also maintains compatibility with existing force fields and simulations packages
that do not support the Slater functional form. Given that the BS-ISA exponents
appear to be essentially optimal with respect to additional empirical optimization,
we strongly recommend use of these first-principles exponents in order to simplify
(both ab initio and empirical) future force field development involving Born-Mayer
or related functional forms.113

Overall, Slater-ISA FF enables a significantly increase in force field accuracy,
particularly in describing short intermolecular contacts. Nevertheless, the ne-
glect of atomic anisotropy remains, in some cases, a severe approximation.202–204

Indeed, it has been shown by many authors78,152,159,194 that quantitatively accu-
rate Aij parameters (and to a lesser extent, Bij parameters) require incorporation
of angular dependence for the generation of highly-accurate force fields. This
anisotropy becomes crucial when describing systems containing lone pairs, hydro-
gen bonds, and/or π-interactions. Promisingly, BS-ISA densities naturally describe
such anisotropy,124,156,205 and a straightforward method for its inclusion (where
essential) in ab initio force fields is the subject of Chapter 3.
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2.A Waldman-Hagler Analysis of Bij Combination
Rule

The exact expressions for the overlap of two Slater densities ρi = Di exp(−Bir)
and ρj = Dj exp(−Bjr) are shown here, first in the limiting case where the two
exponents are equal (Bi = Bj = Bij):

SijBi=Bj = DijP(Bij, rij) exp(−Bijrij)

Dij = πDiDjB
−3
ij

P(Bij, rij) =
1
3(Bijrij)

2 + Bijrij + 1,

(2.40)

and second in the case where Bi 6= Bj:

SijBi 6=Bj =
16πDiDj exp(−{Bi + Bj}rij/2)

(B2
i − B

2
j)

3rij
×[(

Bi − Bj
2

)2(
exp

(
{Bi − Bj}

rij

2

)
− exp

(
−{Bi − Bj}

rij

2

))

×

((
Bi + Bj

2

)2

r2
ij + (Bi + Bj)rij + 2

)

−

(
Bi + Bj

2

)2

exp
(
{Bi − Bj}

rij

2

)
×

((
Bi − Bj

2

)2

r2
ij − (Bi − Bj)rij + 2

)

+

(
Bi + Bj

2

)2

exp
(
−{Bi − Bj}

rij

2

)
×

((
Bi − Bj

2

)2

r2
ij + (Bi − Bj)rij + 2

)]
.

(2.41)

Each overlap formula has been given a subscript to indicate limits on Bi and Bj.
Our goal is to ascertain the extent to which SijBi 6=Bj can be accurately modeled by

the functional form and variables of SijBi=Bj . Di andDj are pre-factors appearing in
both equations, and we set these variables to unity without loss of generality. To
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find values of Bij such that SijBi 6=Bj(Bi,Bj, rij) ≈ S
ij
Bi=Bj

(Bij, rij), we first treat Bij as
a completely adjustable parameter, and later test for the existence of some simple
combining function f such that Bij = f(Bi,Bj).

To optimize Bij, we first require a training set of relevant SijBi 6=Bj values. Bi, Bj,
and rij are the only variables appearing in SijBi 6=Bj , and we could in principle fit Bij
values over a grid of Bi, Bj and rij combinations. However, we are only interested
in the subset of points which are chemically relevant. Consequently, we developed
a library of Bi values by deriving exponents from the ionization potentials of the
first three rows of the periodic table (plus bromine and iodine). For each pair of
elements, B = 2

√
2IP,167 and a range of rij values corresponding to 0.8-1.2 times the

sum of the van der Waals radii of the two atoms was selected. Bij values in SijBi=Bj
were then optimized (in a least-squares sense) for each element pair separately;
Mean absolute percent errors (MAPE) for fitted overlaps are shown in Fig. 2.12.

Relative errors for fitting are acceptably small for all element pairs. Excluding
certain noble gases and alkali metals (He, Li, Ne, Na) from consideration, these
being the elements with the most disparate Bi values compared to other elements,
MAPE drops below 3% for all pairs, with the vast majority of MAPE below 1%.
Our focus in this work is primarily on organic compounds where |Bi − Bj| is small;
empirically, these errors always translate to very small errors in the exchange energy
itself. Use of an effective Bij may require further testing in cases with extremely
disparate Bi and Bj values.

We next tested whether the optimized Bij could instead be modeled by a com-
bination rule Bij = f(Bi,Bj). On the basis of symmetry and scaling considerations,
Waldman and Hagler demonstrate that if a combination rule f(Bi,Bj) exists, a plot
of Bij/Bi vs. Bj/Bi should lie on a single curve.141 Remarkably (see 2.13), a geometric
mean combination rule Bij =

√
BiBj models the fitted Bij values near quantita-

tively. This result allows the computation of Slater overlaps using the much simpler
form of SijBi=Bj (2.40) from individual atoms-in-molecule exponents Bi and Bj.
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Figure 2.12: Mean absolute percent error of fitted overlap values as a function of
the absolute difference between Bi and Bj values. Element pairs containing He,
Li, Ne and/or Na are shown as empty circles. Deviations below 1% are seen for
most element pairs, with noble gases and alkali metals posing a more significant
challenge. Scatter in the plot is due to small variations in the absolute values of rij
fit for each pair. As expected, SijBi 6=Bj and SijBi=Bj closely agree for |Bi − Bj| ≈ 0.

2.B Force Field Fits for Homomonomeric Systems

Scatter plots are shown for each homomonomeric system as an indication of force
field quality with respect to DFT-SAPT (PBE0/AC) benchmark energies (Fig. 3.7).
As in the main text, fits for each energy component are displayed along with two
views of the total interaction energy.
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Figure 2.13: Waldman-Hagler-style analsysis of possible Bij combination rules.
Exact Bij values are derived from fitting an approximate overlap density of the
form Sij = AijK2(rij) exp(−Bijrij) to the exact overlap density (as given by Rosen
and by Tai11,12) of two distinct Slater orbitals whose exponents correspond to atomic
exponents for the elements H-Ar, Cl, Br, and I. For each overlap pair, a range of rij
values was used from 0.8 to 1.2 times the sum of the pair’s van der Waals radii. The
geometric mean combination rule Bij =

√
BiBj models the exact Bij values with

near-perfect agreement, justifying our choice of combination rule.
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(b) Ar Dimer
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(c) Chloromethane Dimer
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(d) CO2 Dimer
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(e) Dimethyl Ether Dimer
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(f) Ethane Dimer
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(g) Ethanol Dimer
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(h) Ethene Dimer
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(i) H2O Dimer
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(j) Methane Dimer
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(k) Methanol Dimer
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(l) Methyl Amine Dimer
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(m) NH3 Dimer
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Figure 2.14: Force field fits for the homomoneric systems using the Slater-ISA FF
(green), Born-Mayer-IP FF (orange) and Born-Mayer-sISA FF (blue). Fits for each
energy component are displayed along with two views of the total interaction
energy. The y = x line (black) indicates perfect agreement between reference
energies and each force field, while shaded grey areas represent points within
±10% agreement of the benchmark. To guide the eye, a line of best fit (dotted line)
has been computed for each force field and for each energy component.
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3 mastiff: a general approach for incorporating
atomic-level anisotropy in ab initio force fields

3.1 Introduction

Classical molecular simulation is a standard tool for interpreting and predicting the
chemistry of an incredible host of systems ranging from simple liquids to complex
materials and biomolecules. Such simulations always require, as input, a mathe-
matical description of the system’s potential energy surface (PES). In principle, the
PES for most chemical systems can accurately be determined from one of several
high-level electronic structure methods;74,206,207 nevertheless, these calculations
are currently too expensive to use in simulations of large systems and/or long
timescales.208 Consequently, most routine molecular simulation today is performed
with the aid of force fields: computationally-inexpensive, parameterized math-
ematical expressions that approximate the exact PES. Because the accuracy and
predictive capabilities of molecular simulation are directly tied to the underlying
force field, one of the central challenges of molecular simulation is the development
of highly accurate force fields. For ab initio force field development, this accuracy
is principally defined by a force field’s fidelity to the underlying exact PES.

As of now, several common shortcomings62 inhibit the accuracy and predictive
capabilities of standard ab initio force fields, and these limitations must be sys-
tematically addressed in order to generate improved, ‘next-generation’ force fields.
One important shortcoming, which will be the focus of this Chapter, is the so-called
‘sum-of-spheres’ approximation,209 in which it is assumed that the non-bonding
interactions between molecules can be treated as a superposition of interactions
between pairs of spherically-symmetric atoms. Put differently, the sum-of-spheres,
or ‘isotropic atom-atom’, approximation assumes that the exact PES, Eint (which
depends both on the center of mass distance R and relative orientationΩ between
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molecules), can be modeled as

Eint(R,Ω) ≈
∑
ij

f(rij) ≡ VFF, (3.1)

where the above sum runs over all non-bonded pairs of atoms i and jwith inter-
atomic separation rij, and f(rij) is an arbitrary, distance-dependent function that
defines the pairwise interaction. Here and throughout, we use E to denote the true
PES, and V to denote the corresponding model/force field prediction. With some
exceptions (vida infra), nearly all standard intermolecular force fields — ranging
from the popular “Lennard-Jones plus point charges” model to more complex
functional forms75 — explicitly make use of the isotropic atom-atom model.

Notwithstanding the popularity of the model, there is good experimental and
theoretical evidence to suggest that the sum-of-spheres approximation does not
hold in practice.78,209,210 Importantly, and as we argue in Section 3.5, models which
include anisotropic (multipolar) electrostatics, but otherwise employ the sum-of-
spheres approximation, are an improved but still incomplete model for describing
the atomic-level anisotropy of intermolecular interactions. Experimentally, it has
long been known that atom-in-molecule charge densities, as determined from x-ray
diffraction, can exhibit significant non-spherical features, such as with lone pair or
π electron densities.211 Furthermore, statistical analyses of the Cambridge Struc-
tural Database have shown that the the van der Waals radii of atoms-in-molecules
(as measured from interatomic closest contact distances) are not isotropically dis-
tributed, but rather show strong orientation dependencies, particularly for halogens
and other heteroatoms.202,212–216 These experimental studies are corroborated by a
significant body of theoretical research on both the anisotropy of the atomic van der
Waals radii as well as the non-spherical features of the atomic charge densities them-
selves.204,205,216–219 These studies suggest that the sum-of-spheres approximation is
an insufficiently flexible model for the subset of intermolecular interactions that
arise from atomically non-spherical charge densities, and may help explain known
difficulties in generating accurate isotropic atom-atom force fields for such impor-
tant chemical interactions as π-interactions,61,220,221 σ-bonding,222–224 and hydrogen
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bonding,58 (see Ref. 64 and references therein).
Motivated by these observations, a small but important body of work has been

devoted to directly addressing the limitations of the isotropic atom-atom model in
the context of ‘next-generation’ force field development. As will be discussed in
detail below (see Section 3.2), the general conclusion from these studies is that many
components of intermolecular interactions (specifically electrostatics, exchange-
repulsion, induction, and dispersion) can be more accurately modeled by functional
forms that go beyond the sum-of-spheres approximation.210,225,226 While few inter-
molecular potentials (and virtually no standard force fields amenable to routine
molecular simulation) explicitly account for atomic-level anisotropy for each com-
ponent of intermolecular interactions, several recent standard force fields have
incorporated atomic-level anisotropy into their description of long-range electro-
statics.64 Some of these potentials (notably AMOEBA226–228 and some water po-
tentials58,64) are already employed in large-scale molecular simulation, often with
very encouraging success.64 Furthermore, others have shown that anisotropic po-
tentials (some of which additionally model the anisotropy of exchange-repulsion
and/or dispersion) lead to significant improvements in predicting molecular crystal
structures.64,100,152,192,229–231 These and other results strongly suggest that a complete
incorporation of atomic anistropy into next-generation force fields will lead to
increasingly accurate and predictive molecular simulations in a wider variety of
chemical interactions.225

Given the importance of atomic-level anisotropy in defining intermolecular in-
teractions, and the critical role that computationally-affordable standard force fields
play in enabling molecular simulation, our present goal is to develop a general
methodology for standard force field development that can both universally account
for atomic-level anisotropy in all components of intermolecular interactions and
that can be routinely employed in large-scale molecular simulation. Furthermore,
and in line with our usual goals for force field development,75 our aim is to develop
a first-principles-based model that is as accurate and transferable as possible, all
while maintaining a simple, computationally-tractable functional form that allows
for robust parameterization and avoids over-/under-fitting. Thus, building on
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prior work (both our own54,75,86,96 and from other groups210), we present here a gen-
eral ansatz for anisotropic force field development that, at minimal computational
overhead, incorporates atomic-level anisotropy into all aspects of intermolecular in-
teractions (electrostatics, exchange, induction, and dispersion) and that accounts for
this anisotropy, not only in the asymptotic limit of large intermolecular separations,
but also in the region of non-negligible electron density overlap. After motivating
and establishing the functional forms used in our anisotropic force fields, we next
demonstrate, using a large library of dimer interactions between organic molecules,
the excellent accuracy and transferability of these new force fields with respect
to the reproduction of high-quality ab initio potential energy surfaces. Lastly, we
showcase how these new force fields can be used in molecular simulation, and
benchmark the accuracy of our models with regards to a variety of experimental
properties. The theory and results presented in this Chapter should be of general
utility in improving the accuracy of (particularly ab initio generated) force fields,
such that the complex, inherently anisotropic details of intermolecular interactions
may eventually be routinely incorporated into increasingly rigorous and predictive
molecular simulation.

3.2 Background

Before presenting our development methodology for atomically-anisotropic poten-
tials, we provide the reader with a summary of prior approaches to ab initio force
field development and to models going beyond the sum-of-spheres approximation.
In discussing the effects of anisotropic charge distributions on intermolecular poten-
tials, here and throughout we employ the fairly standard232 decomposition of inter-
action energies into physically-meaningful components of electrostatics, exchange-
repulsion, induction (which includes both polarization and charge-transfer), and
dispersion. Many studies on atomically-anisotropic force field development have
focused on incorporating anisotropy on a component-by-component basis, and so
for clarity we discuss anisotropic modeling schemes for each energy component
individually. As in Chapter 2,96 we find it useful to separate and discuss in turn
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the so-called ‘long-range’ effects (multipolar electrostatics, polarization, and dis-
persion) from those ‘short-range’ effects that arise only at shorter intermolecular
separations due to the non-negligible overlap of monomer electron densities (e.g.
charge penetration and exchange-repulsion). Finally, we take advantage of the
many-body expansion54,76 to separately consider into two- and many-body con-
tributions, and primarily focus our discussion on improvements to the two-body
interaction energies themselves.

3.2.1 Prior Models for Long-Range Interactions

The importance of atomic-level anisotropy in modeling long-range interactions,
particularly as it pertains to electrostatics, is quite well studied. A number of groups
have found that using atomic multipoles (rather than simple point charges) greatly
improves both the electrostatic potential217,233 and the resulting electrostatic inter-
action energies.64,70,128,151,226,228,234,235 Though not without additional computational
cost, atomic multipoles are now routinely employed in a number of popular force
fields.58,226,228 As an alternate, and often more computationally-affordable approach,
other groups have used off-atom point charges to effectively account for anisotropic
charge densities.130,223,236,237 In line with chemical intuition, improvements from use
of atomic multipoles/off-site charges are often particularly important in describ-
ing the electric fields generated by heteroatoms and carbons in multiple bonding
environments.238,239

The induction and dispersion energies have also been shown to exhibit anisotropies
that go beyond the sum-of-spheres model. For instance, it has been suggested
that anisotropic polarizabilities (which effect both polarization and dispersion)
are required to avoid an artificial over-stabilization of base stacking energies in
biomolecules.221 In order to more accurately treat polarization, several molecular
mechanics potentials have made use of either off-site240 or explicitly anisotropic po-
larizabilities.237,241. Similarly, the importance of anisotropic dispersion interactions
has also been established,54,91,92,242,243 particularly for π-stacking interactions,62,221

and select potentials have incorporated directional dependence into the functional
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form for dispersion by expanding dispersion coefficients in terms of spherical
harmonics or, more generally, S̄-functions (discussed in Section 3.A).92,100

3.2.2 Prior Models for Short-Range Interactions

At closer intermolecular separations, where overlapping electron densities between
monomers leads to exchange-repulsion and charge-penetration effects, anisotropy
is also important. Exchange-repulsion has known orientation dependencies which
can play a quantitative role in halogen bonding222,244 and other chemical interac-
tions, and many authors have worked on developing different models for describing
the anisotropy of exchange-repulsion. Some potentials (albeit not those that are
amenable to large-scale molecular simulation) have numerically computed overlap
integrals that can be used in conjunction with he density-overlap model popularised
by Wheatley and Price 123,125,126,148,159 to quantify anisotropic exchange-repulsion,
charge transfer, and/or charge penetration interactions.128,234,235,245–247 Taking a more
analytical approach, many other potentials have extended the Born–Mayer func-
tional form109 to allow for orientation-dependent pre-factors,54,100,152,154,209,210,229,247,248

and model short-range effects using an anisotropic functional form originally pro-
posed by Stone and Price:

Vexch
ij = G exp[−αij(Rij − ρij(Ωij))]. (3.2)

Here G is not a parameter, but rather an energy unit,78 and α and ρ represent,
respectively, the hardness and shape of the potential. In principle, one might
also allow α to have orientation dependence, however this seems unnecessary in
practice, as the hardness of the potential has been empirically found to behave more
isotropically than its shape.78 Similar to treatments of anisotropic electrostatics,
this functional form typically expresses orientation dependence,Ωij, in terms of
spherical harmonics and/or S̄-functions.78

Finally, we note that, aside from exchange-repulsion, we are aware of relatively
little research on the development of simple analytical expressions for the anisotropy
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of other overlap effects, such as electrostatic/inductive charge penetration, charge-
transfer, or short-range dispersion.

3.3 Theory and Motivation

Building on the extensive prior work that has led to a better understanding of
atomic-level anisotropy and its effect(s) on intermolecular interactions, we now
outline a methodology whereby atomic-level anisotropy can be incorporated into
standard force fields amenable to large-scale molecular simulation. In particular,
we aim to present a general methodology that optimally incorporates atomically-
anisotropic effects given the following goals for ab initio force field development:

1. Chemical accuracy with respect to ab initio benchmarks: For systems that
can be directly parameterized against high quality ab initio PES, the force
field should exhibit chemical accuracy (average errors smaller than 1 kJ mol−1)
with respect to the ab initio benchmark; furthermore, any errors in the force
field should be random rather than systematic

2. Transferability across chemical environments: Given force fields for two
different pure systems, we should be able to accurately calculate (via simple
combination rules and without additional parameterization) the PES of any
system that is a mixture of the pure systems

3. Simplicity: The force field should be restricted to functional forms that are al-
ready compatible with, or could be easily implemented in, common molecular
simulation packages

4. Computational tractability: The force field should be of minimal computa-
tional cost relative to existing polarizable multipolar force fields228

Given these goals, we now outline a detailed methodology for incorporating
atomic-level anisotropy into each component (electrostatic, exchange-repulsion,
induction, and dispersion) of intermolecular interactions, beginning with a new
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model for short-range overlap effects and concluding with some new and/or revised
theories for treating long-range interactions.

3.3.1 Anisotropic Models for Short-Range Interactions

Exchange-Repulsion

We begin by considering the exchange-repulsion, Eexch
ij that arises from the overlap

of electron densities from two non-spherical atoms-in-molecules, i and j. Here and
throughout, we closely follow the notation and theory used by Stone.78 Without
loss of generality, we can express the exchange repulsion between these two atoms
as a function of their interatomic distance, rij, and relative orientation, Ωij. Fur-
thermore, we can mathematically describe this relative orientation by assigning
local coordinate axes to each i and j, such that the exchange energy is given by

Eexch
ij (rij,Ωij) ≡ Eexch

ij (rij, θi,φi, θj,φj), (3.3)

where θi and φi are the polar coordinates, expressed in the local coordinate system
of atom i, that describe the position of atom j. Correspondingly, θj and φj define
the position of i in terms of the local coordinate system of j. In principle the choice
of these local coordinate frames is arbitrary. However, for the models introduced
below, parameterization can be dramatically simplified by taking advantage of the
local symmetry of an atom in its molecular environment and aligning the local
coordinate frame with the principal axis of this local symmetry.78 Some examples
of these local axes are shown in Fig. 3.1.

We next make an ansatz that Eq. (3.3) is separable into radial- and angular-
dependent contributions,

Eexch
ij (rij, θi,φi, θj,φj) ≈ Vexch

ij (rij, θi,φi, θj,φj) = f(rij)g(θi,φi, θj,φj) (3.4)

thus subdividing the problem of finding a general functional form for Eexch
ij into two

more tractable tasks. First, we must find an ideal sum-of-spheres model to describe
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Figure 3.1: Local axis system, shown for select atoms in molecules.

the radial (isotropic) dependence of the force field, and second, we must find a way
to model the orientation dependence as a multiplicative pre-factor to f(rij).

Given that the only requirement for f(rij) is that it be isotropic, how should a
suitable model for f(rij) be chosen? Indeed, all standard isotropic force fields are of
this general form, and thus might serve as a suitable starting point for anisotropic
force field development. For reasons discussed below, in this Chapter we employ a
simple and accurate model (Slater-ISA FF) from Chapter 2 for f(rij). This model
can be derived from first-principles by approximating Eexch

ij as proportional to the
overlap between spherically-symmetric atom-in-molecule (AIM) electron densities,
each with density

ρi(r) = Di exp−Bir, (3.5)

where Di and Bi are both atom type-specific constants that can be parameterized
from molecular electron densities and that represent, respectively, the shape and
hardness of the AIM density. Using this approximation to the overlap model,54,123,125,126,152,159–161
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the exchange energy between two atoms is then modeled by

Eexch
ij ≈ Vexch

ij ∝ Sijρ

≈ Aexch
ij

(
(Bijrij)

2

3 + Bijrij + 1
)

exp(−Bijrij)
(3.6)

with combining rules

Aexch
ij ≡ Aexch

i Aexch
j ,

Bij ≡
√
BiBj.

(3.7)

Sijρ is the electron density overlap between atoms and Aij is a fitted proportionality
constant.

Here and throughout we use Eq. (3.6) as our model for f(rij). This choice is
primarily justified in Chapter 2 by the previously-demonstrated accuracy of the
Slater-ISA formalism as compared to other sum-of-spheres models for repulsion.96

Furthermore, and especially for simple test cases where one might expect the sum-
of-spheres approximation to hold (such as with argon, methane, or ethane), we
have shown (see Chapter 2) that the Slater-ISA FF correctly models intermolecular
potential energy surfaces for a sizable library of intermolecular interactions over
the asymptotic, attractive, and repulsive regions of the PES.

In addition to this empirical motivation for using the Slater-ISA formalism,
there are good theoretical grounds to utilize it as a model for f(rij). Specifically,
the AIM densities used to parameterize Slater-ISA FF are partitioned using an
iterated stockholder atoms (ISA) procedure, and the resulting density profiles are
guaranteed to be maximally spherical.86,93,94 This condition of ‘maximum sphericity’
has two consequences. First, it suggests that the resulting Slater-ISA FF should be
an optimal, or nearly optimal, isotropic atom-atom model. In other words, there is
good reason to hope that our model for f(rij) completely accounts for the radial
dependence of the potential, and consequently that models for g(θi,φi, θj,φj) will
truly represent the orientation dependence rather than simply over-fitting residual
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errors from the radial functional form, thus retaining high transferability. Second,
and relatedly, having maximally-spherical ISA densities suggests that anisotropic
effects should be a minimal perturbation to the PES. This means that, to a first-order
approximation, g(θi,φi, θj,φj) is simply equal to 1. Furthermore, the non-spherical
components of the ISA densities should provide us with guidance as to which atom
types might require anisotropic treatment.

With the functional form for f(rij) determined, we now describe our model
for g(θi,φi, θj,φj). As motivated in Appendix 3.A, and under the ansatz of radial
and angular separability, an approximate, transferable, and orientation-dependent
expression for Aexch

i can be obtained by expanding Aexch
i in a basis of renormalized

spherical harmonics,

Clm(θ,φ) =
√

4π
2l+ 1Ylm(θ,φ). (3.8)

thus yielding

Aexch
i (θi,φi) = Aexch

i,iso
(
1 + ξexch(θi,φi)

)
,

ξexch(θi,φi) ≡
∑
l>0,k

aexch
lk Clk(θi,φi)

(3.9)

for Aexch
i and subsequently

Vexch
ij = Aexch

ij (Ωij)

(
(Bijrij)

2

3 + Bijrij + 1
)

exp(−Bijrij) (3.10)

with

Aexch
ij (Ωij) = A

exch
i (θi,φi)Aexch

j (θj,φj) (3.11)

for the exchange-repulsion potential. Note that, with the exception of the now
orientation-dependent Aexch

i , the atomically-anisotropic model in Eq. (3.10) is iden-
tical to our previously-defined isotropic model (Eq. (3.6)).

In terms of parameterization for our newly-developed anisotropic model, note
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that the aexch
lk are free parameters which must be fit to ab initio data. Still, we and oth-

ers have found the expansion in Eq. (3.9) to be very quickly convergent,54,100,152,154,209,210,229,247,248

especially given a proper choice of coordinate system that eliminates many expan-
sion terms via symmetry. In practice, only symmetry-allowed terms up to l = 2
seem to be required for heteroatoms, carbons in multiple bonding environments,
and select hydrogens (see equations in Section 3.5), while many other atom types
require no anisotropic parameters whatsoever. Encouragingly, isotropic atom types
are easily modeled within this formalism simply by setting ξ(θi,φi) = 0.

Other Short-Range Effects

As in Chapter 2,96 we have found that other short-range effects, namely charge
penetration and short-range induction, can be modeled as proportional to exchange-
repulsion. We take the same approach in the present Chapter, and the functional
form for these two short-range effects is given by Eq. (3.10), with ‘exch’ superscripts
replaced by the appropriate short-range energy term (see Section 3.4). Additionally,
for induction, the long-range polarization must be damped, and for now this
damping is modeled isotropically as in the AMOEBA force field.228 Finally, to model
short-range dispersion, we take the same Tang-Toennies157,158 damping approach
as in Chapter 2.96 Because the argument to the damping function is given by

x = −
d

dr

[
lnVexch(r)

]
r,

and because anisotropy only enters into the functional form as a multiplicative
pre-factor, our functional form for damping remains unchanged compared to our
previously-derived isotropic model.96

3.3.2 Anisotropic Models for Long-Range Interactions

Electrostatics

Theories for including anisotropy in long-range electrostatics are well established,
and we refer the reader elsewhere for complete details on the required formalisms



91

for distributed multipole approaches.54,78 In the present Chapter,

V
multipole
ij =

∑
tu

QitTtuQ
j
u

with multipolar interaction tensor T and parameterized momentsQ for all multipole
moments tu up to (in the present Chapter) rank 2.

On the grounds of increased accuracy and ease of parameterization, here we
have chosen to use a multipolar approach to describe the anisotropy of long-range
electrostatics, However, for increased computational efficiency, off-site point charge
models64 could also be utilized.

Induction

Just as with electrostatics, long-range induction should properly be described by a
distributed multipole expansion of interacting atomic polarizabilities.54,100 Indeed,
it has been shown that inclusion of higher-order and/or anisotropic polarizabilities
greatly reduces errors in the two-body induction potential relative to commonly-
used isotropic dipole polarizability models.75,228,249–251 Because the model for the
two-body induction also determines the many-body polarization energy, the proper
treatment of induced multipoles becomes especially important in condensed phase
simulation.75,78,228

Owing to the increased computational cost of these higher-order and anisotropic
polarizability models, and because such functional forms are (as of now, and to our
knowledge) not fully implemented in common molecular simulation packages, we
neglect both higher-order and anisotropic contributions to the long-range induction
in the present Chapter. As we shall show, however, errors in the induction potential
limit the overall accuracy of our force fields for extremely polar molecules (notably
water), and further improvements will likely require us to generate improved
models for long-range induction.
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Dispersion

Past research78 has motivated an anisotropic atom-atom model for dispersion of
the form

V
disp
ij = −

∑
n=6

Cij,n(Ωij)

rnij
(3.12)

Note that, in this equation, both odd and even powers of n are allowed in the dis-
persion expansion. In order to make this model both computationally efficient and
maximally compatible with our previous isotropic model for dispersion, we choose
(as an ansatz) to model the dispersion anisotropy as an orientation-dependent
prefactor that effects all isotropic C6 − C12 dispersion coefficients equally:

V
disp
ij = −A

disp
i A

disp
j

6∑
n=3

Cij,2n

r2n
ij

(3.13)

with

A
disp
i = 1 + ξdisp(θi,φi) (3.14)

and ξdisp(θi,φi) as in Eq. (3.9). Once again, Eq. (3.13) reduces to the isotropic case by
setting ξdisp(θi,φi) = 0. We must note that, though the functional form in Eq. (3.13)
bears many similarities to Eq. (3.12), (unphysically) no odd powers of r show up
in our proposed model for dispersion. Furthermore, the model utilizes the same
anisotropic expansion for each dispersion coefficient. Nonetheless, we will show
in Section 3.5 that this model yields significant accuracy gains in the dispersion
energy with only minimal additional parameterization and model expense.
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3.4 Technical Details

3.4.1 The 91 Dimer Test Set

Our benchmarking procedures are the same as in Chapter 2,96 and we briefly
summarize the relevant technical details. A full discussion of results and example
calculations are presented in Section 3.5.

We have previously developed a large library of benchmark energies for in-
teractions between the following 13 atomic and organic species: acetone, argon,
ammonia, carbon dioxide, chloromethane, dimethyl ether, ethane, ethanol, ethene,
methane, methanol, methyl amine, and water. Using these 13 monomers, we have
generated a library of dimer interaction energies for each of the 91 possible unique
dimer combinations (13 homomonomeric, 78 heteromonomeric). For each of these
dimer combinations, interaction energies were computed at a DFT-SAPT170–178

level of theory for 1000 quasi-randomly chosen dimer configurations, representing
91,000 benchmark interaction energies in total. As described below, parameters for
a given force field methodology are then fit on a component-by-component basis to
reproduce the benchmark DFT-SAPT energies.

3.4.2 Parameter Determination

We will present three types of force field fitting methodologies in this Chapter,
termed Iso-Iso FF, Aniso-Iso FF, and Aniso-Aniso FF (alternately referred to as
MASTIFF, as discussed below). The nomenclature of each name refers to, first,
the isotropic/anisotropic treatment of multipolar electrostatics and, second, the
isotropic/anisotropic treatment of dispersion and short-range effects. All studied
force fields use the following general functional form:

VFF =
∑
ij

Vexch
ij + Velst

ij + V ind
ij + Vδ

HF

ij + V
disp
ij (3.15)
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where

Vexch
ij = Aexch

ij P(Bij, rij) exp(−Bijrij)

Velst
ij = −Aelst

ij P(Bij, rij) exp(−Bijrij) +
∑
tu

QitTtuQ
j
u

V ind
ij = −Aind

ij P(Bij, rij) exp(−Bijrij) + V(2)
pol

Vδ
HF

ij = −Aδ
HF

ij P(Bij, rij) exp(−Bijrij) + V(3−∞)
pol

V
disp
ij = −A

disp
ij

6∑
n=3

f2n(x)
Cij,2n

r2n
ij

P(Bij, rij) =
1
3(Bijrij)

2 + Bijrij + 1

Aij = AiAj

Bij =
√
BiBj

Cij,2n =
√
Ci,2nCj,2n

f2n(x) = 1 − e−x
2n∑
k=0

(x)k

k!

x = Bijrij −
2B2
ijrij + 3Bij

B2
ijr

2
ij + 3Bijrij + 3

rij

(3.16)

For both Iso-Iso FF and Aniso-Iso FF, Ai is a fit parameter, and Adisp
ij = 1. For

Iso-Iso FF (our completely isotropic model), the multipole expansion
∑
tu

QitTtuQ
j
u is

truncated to point charges, whereas Aniso-Iso FF and MASTIFF both use a multipole
expansion up to quadrupoles. Finally, for our anisotropic model, MASTIFF, eachAi
is treated as an orientation-dependent function, and is represented by the spherical
harmonic expansion

Ai(θi,φi) = Ai,iso
(
1 + ξ(θi,φi)

)
,

ξ(θi,φi) ≡
∑
l>0,k

ai,lkClk(θi,φi) (3.17)
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where Ai,iso and ai,lk are fitted parameters with the exception that Adisp
i,iso = 1.

Because DFT-SAPT provides a physically-meaningful energy decomposition
into electrostatic, exchange-repulsion, induction, and dispersion terms, parameters
for each term in Eq. (3.15) are directly fit to model the corresponding DFT-SAPT
energy (see Ref. 96 and references therein for details on the DFT-SAPT terminology):

Vexch ≈ Eexch ≡ E(1)
exch

Velst ≈ Eelst ≡ E(1)
pol

V ind ≈ Eind ≡ E(2)
ind + E

(2)
ind-exch

Vδ
HF ≈ EδHF ≡ δ(HF)

Vdisp ≈ Edisp ≡ E(2)
disp + E

(2)
disp-exch.

(3.18)

Fitting parameters on a component-by-component basis helps ensure parameter
transferability and minimizes reliance on error cancellation. Note that no parame-
ters are fit to reproduce the total energy and that, because the DFT-SAPT energy
decomposition is only calculated to second-order, third- and higher-order terms
(mostly consisting of higher-order induction) are estimated by EδHF .

Parameters Calculated from Monomer Properties

Of the parameters listed in Eq. (3.16), most do not need to be fit to the DFT-SAPT
energies, but can instead be calculated directly on the basis of monomer electron
densities. In particular, all multipolar coefficients, Q, polarizabilities (involved in
the calculation of Vpol), dispersion coefficients C, and atom-in-molecule exponents,
BISA, are calculated in a manner nearly identical to Ref. 96. Note that, for our atom-
in-molecule exponents, we tested the effects of treating BISA both as a hard- and as a
soft-constraint in the final force field fit. While the conclusions from this study are
rather insensitive to this choice of constraint methodology, we have found that the
overall force field quality is somewhat improved by relaxing the BISA coefficients
in the presence of a harmonic penalty function (technical details of which can be
found in the Supporting Information of Ref. 96). The optimized B coefficients
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in this Chapter are always within 5–10% of the calculated BISA coefficients from
Chapter 2, demonstrating the good accuracy of the BISA calculations themselves.

As a second distinction from our prior work, and for reasons of compatibility
with the OpenMM189 software we use for all molecular dynamics simulations, here
our molecular simulations use an induced dipole model to describe polarization
effects. Numerical differences between this model and the drude model used
previously are very minor. Additionally, the Thole-damping functions used in this
Chapter follow the same functional form used in the AMOEBA model,226 with a
damping parameter of 0.39.

Parameters Fit to Dimer Properties

In addition to the soft-constrained B parameters, all other free parameters (A and a
parameters from Eq. (3.15) and Eq. (3.17)) are fit to reproduce DFT-SAPT energies
from the 91 dimer test set described above. For each dimer pair, 4-5 separate
optimizations (for exchange, electrostatics, induction, δHF, and, for MASTIFF,
dispersion) were carried out to minimize a weighted least-squares error, with the
weighting function given by a Fermi-Dirac functional form,

wi =
1

exp(−Ei/kT) + 1, (3.19)

where Ei is the reference energy and the parameter kT , which sets the energy scale
for the weighting function, is calculated from an estimate of the global minimum
well depth, Emin, such that kT = 5.0|Emin|.

Local Axis Determination

Identically to AMOEBA and other force fields that incorporate some degree of
atomic-level anisotropy,152,154,226 we use a z-then-x convention to describe the relative
orientation of atomic species. By design, the z-axis is chosen to lie parallel to the
principal symmetry axis (or approximate local symmetry axis) of an atom in its
molecular environment, and the xz-plane is similarly chosen to correspond to a
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secondary symmetry axis or plane. Based on the assigned symmetry of the local
reference frame, many terms in the spherical expansion of Eq. (3.9) can then be set
to zero, minimizing the number of free parameters that need to be fit to a given
atom type. Representative local reference frames are shown for a few atom types in
Fig. 3.1, and a complete listing of anisotropic atom types (along with their respective
local reference frames and non-zero spherical harmonic expansion terms) are given
in the Section 3.B.

CCSD(T) Force Fields

DFT-SAPT is known to systematically underestimate the interaction energies of
hydrogen-bonding compounds, and can also exhibit small but important errors
for dispersion-dominated compounds.252 Consequently, for simulations involving
CO2, CHCl3, NH3, and H2O, we refit our SAPT-based force fields to reproduce
benchmark supermolecular, counterpoise-corrected CCSD(T)-F12a/aVTZ calcula-
tions on the respective dimers. All calculations were performed using the Molpro
2012 software.253 Fits were still performed on a component-by-component basis,
with the energy of most components matching the DFT-SAPT calculations used
in Chapter 2.96 However, so that the total benchmark energy corresponded to the
total interaction energy calculated by CCSD(T)-F12a/aVTZ, the difference between
coupled-cluster and SAPT energies was added to the SAPT dispersion energy,

Vexch ≈ Eexch ≡ E(1)
exch

Velst ≈ Eelst ≡ E(1)
pol

V ind ≈ Eind ≡ E(2)
ind + E

(2)
ind-exch

Vδ
HF ≈ EδHF ≡ δ(HF)

Vdisp ≈ Edisp ≡ E(2)
disp + E

(2)
disp-exch + δ(CC),

(3.20)

where δ(CC) ≡ ECCSD(T)-F12a
int − EDFT-SAPT

int .
In fitting these CCSD(T)-f12a-based force fields, and to account for small errors

in the original SAPT dispersion energy, we somewhat relaxed the constraint that
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Adisp = 1 for all atom types, and instead let 0.7 6 Adisp 6 1.3. This constraint
relaxation led, in some cases, to modest improvements in the fitted potential.

CO2 3-body potential

For the CO2 dimer, we developed a three-body model to account for three-body
dispersion effects. This three-body model is based on the three-body dispersion
Axilrod-Teller-Muto (ATM) type model developed by Oakley and Wheatley 254.
These authors fit the ATM term with the constraint that the total molecular C9

coefficient be 1970 a.u. Based on our own calculations using a CCSD/AVTZ level
of theory,255 we have obtained an isotropic molecular C9 coefficient of 2246 a.u.;
consequently, a 1.13 universal scale factor was introduced to the Oakley potential
so as to obtain dispersion energies in line with this new dispersion coefficient.

3.4.3 Simulation Protocols

∆Hsub for CO2

For CO2, the molar enthalphy of sublimation was determined according to

∆Hsub = Hg −Hcrys

= (Ug + PVg) − (Uel,crystal,0K + ∆Uel,crystal,0K→Tsub + PVcrys + Evib,crystal)

≈ (RT) −

(
Uel,crystal,0K +

∫Tsub

0K
CpdT + Evib,crystal

) (3.21)

which assumes ideal gas behavior and PVg >> PVcrys. For the crystal, an ex-
perimental measure of Cp was obtained from Ref. 256 and numerically inte-
grated to obtain a value ∆Uel,crystal,0K→Tsub = 6.70kJ mol−1. Theoretical measures of
Evib,crystal ≈ 2.24 − 2.6kJ mol−1 were obtained from (respectively) Ref. 257 and Ref.
258, andUel,crystal,0K was determined from the intermolecular force field using a unit
cell geometry taken from experiment.259
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Other CO2 Simulations

To determine the densities and enthalpies of vaporization used in this Chapter,
simulations were run in OpenMM using NPT and NVT ensembles, respectively.
After an equilibration period of at least 100ps, data was collected for a minimum
of 500ps, and uncertainties were calculated using the block averaging method.
Average densities were obtained directly from simulation, and the molar enthalpy
of vaporization for CO2 was determined from the following formula:

∆Hvap = Hg −Hliq

= Ug −Uliq + P(Vg − Vliq)
(3.22)

Note that, at the state points studied, the ideal gas approximation is insufficiently
accurate, and thus simulations were run for both the gas and liquid phases at
experimentally-determined densities and pressures.7

2nd Virial Calculations

Classical second virial coefficients were calculated for NH3, H2O, CO2, and CHCl3

using rigid monomer geometries and following the procedure described in Ref. 83.

3.5 Results and Discussion

3.5.1 Overview

We now turn to a discussion of the methods whereby we can compare our newly
developed anisotropic force field methodology to various sum-of-spheres models.
As is standard in ab initio force field development, we use a straightforward metric
to evaluate force field quality: the accuracy with which a given force field func-
tional form can reproduce high-quality ab initio benchmark energies. Furthermore,
and because the functional forms introduced in Section 3.3 directly affect only
the pairwise-additive portion of the intermolecular potential, we concentrate our
efforts on assessing force field with respect to benchmark calculations of dimer



100

interaction energies, which directly measure the two-body portion of a system’s
total intermolecular interaction energy. (When required, and as discussed in Sec-
tion 3.5.5, many-body effects can be accounted for separately and systematically
using known methods).4,260 In addition to this primary metric for force field quality,
we also evaluate our force fields for their ability to reproduce select experimental
properties. Importantly, however, experimental predictions from an ab initio force
field significantly depend, not only on the fit quality of the pair potential, but also
on the choice of benchmark electronic structure theory, treatment of many-body
and/or quantum effects, etc. Because these factors complicate comparisons to
experiment, here we treat experimental accuracy as an important, but secondary,
metric for evaluating force field accuracy.

So as to systematically evaluate the effects of anisotropy on the development
of intermolecular potentials, we compare three types of models. The first model,
which we call Iso-Iso FF, uses a completely isotropic description of all energy com-
ponents. Our second model, Aniso-Iso FF, accounts for long-range electrostatic
anisotropy by including multipolar contributions (up to quadrupoles), but uses
an isotropic model for all other terms in the intermolecular force field. Note that
this model is virtually identical to the Slater-ISA FF model developed in Chapter 2,
and that this manner of partially treating anisotropy is very similar in spirit to
the popular AMOEBA226,228 methodology. Finally, we develop Aniso-Aniso FF,
which selectively incorporates anisotropy into all energy components (aside from
long-range polarization) of the intermolecular potential. This model, which we
also refer to with the moniker MASTIFF (a Multipolar, Anisotropic, Slater-Type
Intermolecular Force Field), treats all electrostatic interactions via a multipole ex-
pansion with up to quadrupolar contributions, and includes anisotropic parameters
for other terms of the force field (short-range interactions plus dispersion) for het-
eroatoms, atoms in multiple bonding environments, and associated hydrogens. A
complete list of anisotropic atom types is given in the Section 3.B.
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3.5.2 Accuracy: Comparison with DFT-SAPT

For each of the 91 dimer combinations described in Section 3.4, parameters were
fit to reproduce Symmetry-Adapted Perturbation Theory (SAPT) energies calcu-
lated for 1000 different relative orientations of the constituent monomers. From
these ‘dimer-specific’ fits, and as in described in Chapter 2,96 we then averaged
the root-mean-squared (RMSE) and mean signed errors (‖MSE‖) from each of the
91 fits to produce so-called ‘characteristic RMSE/‖MSE‖’, metrics representative
of the errors associated with a given force field methodology. Typically, because
the absolute magnitudes of the various energy components become large in the
repulsive portion of the potential, these characteristic errors are dominated by re-
pulsive configurations. As such, we have also calculated ‘attractive RMSE/‖MSE‖’
(aRMSE/a‖MSE‖), defined as the characteristic errors for the subset of configu-
rations with net attractive total interaction energies. All computed characteristic
RMSE are shown in Fig. 3.2. Unless otherwise stated, results in this section re-
fer exclusively to the ‘Dimer-specific’ fits in Fig. 3.2, with an explanation and full
discussion of so-called ‘Transferable’ fits given in Section 3.5.3.

Based on the characteristic RMSE shown in Fig. 3.2, both Aniso-Iso FF and
MASTIFF offer substantial improvements over the completely isotropic model Iso-
Iso FF. Though unsurprising, given the well-studied importance of higher-order
electrostatic multipole moments, Aniso-Iso FF shows reduced RMSE/aRMSE that
are (depending on the exact error metric used) roughly 30% smaller than Iso-Iso
FF. Both RMSE and aRMSE measures showing similar gains in accuracy, indicat-
ing that inclusion of higher-order multipoles (henceforth ‘multipolar electrostatic
anisotropy’) is important in both attractive and repulsive regions of the potential.
Crucially, inclusion of additional ‘short-range anisotropies’ (anisotropic interactions
arising from overlap of monomer electron densities, namely exchange-repulsion and
electrostatic/inductive charge penetration) and long-range ‘dispersion anisotropy’
yields a further 40% reduction in RMSE/aRMSE for MASTIFF as compared to the
Aniso-Iso FF. This latter result is highly important, as it suggests that, for the gener-
ation of highly accurate ab initio potentials, the combination of short-range and
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Figure 3.2: Characteristic RMSE (as described in the main text) for the Iso-Iso FF
(purple), Aniso-Iso FF (orange), and MASTIFF (green) over the 91 dimer test set.
The semi-transparent bars represent total RMSE for each energy component, while
the smaller solid bars represent ‘Attractive’ RMSE, in which repulsive points have
been excluded. For each force field, two types of fits, dimer-specific (solid) and
transferable (hashed lines), are displayed; see Section 3.5.3 for details. Finally, note
that, for Iso-Iso FF and Aniso-Iso FF, only the electrostatic and total energy RMSE’s
differ.

dispersion anisotropies are just as important to include as multipolar electrostatic
anisotropy. Indeed, this substantial increase in force field accuracy, which arises
from a full treatment of anisotropic effects, and is independent of improvements
from multipolar electrostatic anisotropy, is one of the most important findings in
the present Chapter. In summary, and encouragingly, the combination of multipo-
lar electrostatic, short-range, and dispersion anisotropies result in an overall 60%
reduction in RMSE/aRMSE when comparing Iso-Iso FF to MASTIFF.

To see exactly how an inclusion of anisotropy impacts each component of the
potential, Fig. 3.2 also displays characteristic RMSE/aRMSE for each term in the
force field description as compared to DFT-SAPT. Immediately, one can see that
(aside from induction, discussed below), an inclusion of atomic-level anisotropy
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greatly improves the description of each energy component. Unless otherwise
stated, here we report results for aRMSE and dimer-specific fits, though similar
values are obtained for overall RMSE and for transferable fits. Compared to Iso-
Iso FF, exchange errors in MASTIFF are reduced by 47%. Electrostatic errors are
reduced by an even larger 60%. By evaluating the ratio of electrostatic errors
between different models, we find that aRMSE Aniso-Iso FF/aRMSE Iso-Iso FF = 0.64 and
aRMSE MASTIFF/aRMSE Aniso-Iso FF = 0.62, suggesting that both higher-order multipoles
and anisotropic charge penetration terms are necessarily to obtain an accurate
description of the DFT-SAPT electrostatic energy. Finally, via an inclusion of dis-
persion anisotropy, aRMSE for dispersion are reduced by a significant 65%.

Though the trends for exchange, electrostatics, and dispersion universally sug-
gest the importance of including atomic-level anisotropy, trends for terms describing
the physics of polarization and charge-transfer (represented in DFT-SAPT by induc-
tion and δHF) are less encouraging. On the one hand, including higher-order mul-
tipoles substantially lowers RMSE for induction, with RMSE Aniso-Iso FF/RMSE Iso-Iso FF =

0.70. Because both Iso-Iso FF and Aniso-Iso FF use isotropic polarizabilities, and
because the induction energy fundamentally depends only on the polarizabilities
and the static electric field, this result is clearly due to an improved treatment of
the static electric field via anisotropy of the multipolar electrostatics. Once again,
this suggests that an anisotropic treatment of long-range electrostatics is crucial
for accurate force field development. On the other hand, our functional form for
anisotropic short-range induction (Eq. (3.15) and Eq. (3.17)) leads to no improve-
ment in the induction RMSE, with RMSE Aniso-Iso FF/RMSE Iso-Iso FF = 0.97. This observed
lack of improvement is likely due to a combination of factors. First, and perhaps
most importantly, we have chosen in this Chapter to use isotropically-averaged
dipole polarizabilities, but as with electrostatics, anisotropy and higher-order terms
have been shown to be important in in the multipole expansion of atomic dipole
polarizabilities.54,100,237,249,261 Second, and though probably a smaller source of error,
it is also unclear how to optimally model the distance dependence of the induc-
tion energy at short intermolecular separations, where penetration and charge-
transfer effects become important and the long-range polarization terms must be
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damped.96,155,262,263 Given that the more elaborate short-range form of the MASTIFF
induction model does not result in a tangible improvement, it is quite possible that
alternative formulations are required for an accurate treatment of highly anisotropic
induction.

To further analyze the effects of anisotropy on a molecule-by-molecule basis,
we have calculated ‘improvement ratios’, defined as aRMSE Iso-Iso FF/aRMSE MASTIFF, for
each energy component and for each homomonomeric species in the test set, results
for which are shown in Table 3.1. (Improvement ratios for heteromnomeric species
are given in the Supporting Information of Ref. 264, and we additionally provide
scatter plots of each homomonomeric force field fit in Section 3.C.)

The most striking observation from the data presented in Table 3.1 is that the
improvement ratios vary considerably with molecule. For example, with water
the aRMSE is improved by an order of magnitude when anisotropy is included.
On the other hand, no improvement is seen for hydrocarbons such as ethane and
methane (also see the Section 3.C). Consequently, anisotropy in the short-range
expansions may be necessary for only some atoms types (see Section 3.6). For
the molecules studied in our test set, and in line with chemical intuition, we have
found anisotropy to be particularly important for heteroatoms, π-bonded atoms,
and all hydrogens bonded to anisotropic heavy atoms. Appealingly, this distinction
between anisotropic and isotropic atom types simplifies force field parameteriza-
tion and can enable more efficient molecular simulation (via a more cost-effective
treatment of multipolar electrostatics) without sacrificing force field accuracy. Note
that the current empirically-determined definitions of anisotropic atom types match
both chemical intuition and the more quantitative measures of atomic anisotropy
proposed by other groups.205,217

In general, the ordering of improvement ratios for exchange, electrostatics,
dispersion, and the total energies are reasonably correlated. (As stated above,
our model for anisotropic induction interactions is rather poor, and hence the
improvement ratios for induction and δHF are relatively uncorrelated with the
other components. A good model for anisotropic induction and δHF might easily
change this result). Physically speaking, all atomically-anisotropic interactions
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Exchange Electrostatics Induction δHF Dispersion Total Energy

H2 O (O,H) 4.96 13.12 1.69 1.88 8.20 11.54

CO2  (C,O) 3.83 9.13 0.99 0.64 4.91 8.62

NH3  (N,H) 3.15 5.36 0.90 2.86 2.45 5.78

Ethene (C,H) 1.44 1.46 1.00 1.00 7.59 4.16

Chloromethane (Cl) 3.17 4.03 1.36 1.04 4.20 4.08

Methyl Amine (N,H) 1.70 2.93 1.05 2.22 2.95 2.37

Methanol (O,H) 1.81 3.05 1.11 2.03 1.00 2.36

Dimethyl Ether (O) 1.30 2.07 1.38 1.19 1.85 2.30

Ethanol (O,H) 1.29 3.10 1.04 1.45 1.79 2.14

Acetone (O) 1.58 1.98 1.03 1.34 1.51 1.08

Ethane () 1.00 1.26 1.05 1.01 1.00 1.08

Ar () 1.00 1.00 1.00 1.00 1.00 1.00

Methane () 1.00 0.93 0.99 1.01 1.00 0.94

Table 3.1: ‘Improvement Ratios’ for each homomonomeric species in the 91 dimer
test set. For each dimer and energy component, the improvement ratio is calculated
as the ratio of aRMSE between Iso-Iso FF and MASTIFF; values greater than 1
indicate decreased errors in the anisotropic model. Entries have been ordered
according to the improvement ratio for the total energy.

arise from the same source (atomically-anisotropic electron densities), and so the
observed correlation might have been expected. Nevertheless, there are some
exceptions to this trend, such as with ethene and acetone. For ethene, relatively
modest improvement ratios (roughly 1.4) are seen for exchange and electrostatics,
whereas dispersion shows a much greater improvement ratio of 7.6. Since ethene
homomonomeric interactions are dispersion-dominated, the improvement ratio
for the total energy then roughly corresponds to that of dispersion. A larger test
set (particularly one which includes more non-polar aromatic species) would be
necessary to assess the generality of this result. For acetone, there is good correlation
between the improvement ratios for exchange, electrostatics, and dispersion, which
might lead one to suspect that the total energy improvement ratio would also
be around 1.5-2.0. Nevertheless, for this molecule, the isotropic model benefits
from error cancellation between energy components, and the total energy aRMSE
between isotropic and anisotropic models are rather similar.

Crucially, electrostatics is most definitely not the only intermolecular interaction
for which atomic-level anisotropy improves model quality. Indeed, for molecules
like ethene, multipolar anisotropy in the electrostatic model is relatively unim-
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portant, whereas dispersion anisotropy is essential for accurately modeling the π
interactions. Thus, for a given system, multipolar electrostatic, dispersion, and/or
short-range anisotropies may all be important, and all relevant anisotropies must
be accounted for in order to obtain good intermolecular models.

3.5.3 Transferability: Comparison to DFT-SAPT

From the above results it is clear that, when explicitly parameterized, an inclusion
of anisotropy can greatly enhance the accuracy of an intermolecular potential.
Nevertheless, for standard force field development, force field parameters must
be transferable in order to be useful in the accurate prediction of intermolecular
interactions in new chemical and/or physical environments. Indeed, in comparing
simpler models to ones that introduce additional complexity, there is an ever-present
danger that any accuracy gains from the more complex functional form are simply
due to over-fitting or error cancellation,71 ultimately resulting in an overly-complex
model with poor predictive ability and limited transferability.

We have previously shown how, with models similar to Iso-Iso FF75,83 or Aniso-
Iso FF,96 it is possible to generate transferable potentials with applicability to a
broad range of chemical and physical environments.75 This transferability has been
attributed to a combination of the physically-meaningful energy decomposition of
DFT-SAPT, our choice to parameterize on a component-by-component basis (rather
than to the total energy), our use of physically-motivated functional forms, and our
recourse to parameters calculated on the basis of monomer properties.75,83,96

MASTIFF largely shares this philosophy of force field development, and so we
might also expect it to be transferable to heteromonomeric dimers. However, this
transferability cannot be taken for granted because of the specific way in which we
have included the anisotropy. First, we have relied on several separability ansatzes
(Eq. (3.4) and Eq. (3.7)), and second, in doing so we have implicitly neglected
potentially important interaction functions that depend on the relative orientation
between monomers. Both of these assumptions may affect the transferability of the
resulting force field.
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To assess the transferability of the MASTIFF model, we analyze the extent
to which parameters developed for the homomonomeric systems can be used,
without modification, to describe the interactions of the mixed dimers. Such an
out-of-sample prediction, which is easily accomplished with out test set, is a di-
rect measure of the extent to which our pair potentials can be applied to new
chemical environments. For these transferable fits, parameters were fit to the 13
homomonomeric systems, and the combination rules shown in Eq. (3.15) were used
to generate force fields for the remaining heteromonomeric systems. Thus, with
these transferable fits we have essentially generated 78,000 predictions from fits
to 13,000 data points. RMSE and aRMSE for these fits are shown in Fig. 3.2, and
we treat relative differences between these quantities for the ‘dimer-specific’ and
‘transferable’ fits as a measure of the extent of transferability for each force field
methodology.

Remarkably, all three force fields — Iso-Iso, Aniso-Iso, and MASTIFF — per-
form similarly for the dimer-specific and transferable fits, both for the individual
interaction energy components and for the total interaction energy. The degree
of transferability of the MASTIFF model is very encouraging, and indicates that
the manner in which we have chosen to include the anisotropy is meaningful and
does not lead to overfitting, but rather increases the accuracy of the intermolecular
potentials for both in-sample and out-of-sample systems.

3.5.4 Comparison to Experiment: Second Virial Coefficients

In addition to comparisons with DFT-SAPT, we have also benchmarked our force
fields against experimental second virial coefficients, which offer a direct exper-
imental measure of the pair potential without the complication of many-body
effects. Still, such comparisons to experiment depend, not only on the quality
of the force field, but also on the accuracy of the benchmark electronic structure
theory used to fit the force field. As compared to gold-standard CCSD(T)/CBS
calculations, small (< 1 kJ mol−1) but systematic inaccuracies can be present in
DFT-SAPT/aVTZ+m96 calculations, and so in this section we refit our potentials
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to a CCSD(T)-F12a/aVTZ+m benchmark, which serves as a computationally af-
fordable yet accurate prediction of the CCSD(T)/CBS limit.17,265 We refer to these
coupled cluster-based models with a -CC suffix, e.g. MASTIFF-CC, and details
of the refitting procedure (which minimally affect the dispersion energies) can be
found earlier in Section 3.4. Thus, aside from quantum effects (which are negligible
for CO2

266 and well-benchmarked for H2O267), our second virial predictions should
offer a fairly clean comparison between different models and experiment.

Using the -CC potentials, we have calculated second virial coefficients for each
Iso-Iso FF-CC, Aniso-Iso FF-CC, and MASTIFF-CC and for the following systems:
H2O (Fig. 3.3), NH3 (Fig. 3.4), CHCl3 (Fig. 3.5), and CO2 (Fig. 3.6). First, we find
that the MASTIFF-CC methodology predicts virial coefficients which closely corre-
sponds to experimental data. Given the range of systems tested (CO2 dimer interac-
tions are dispersion dominated, while CHCl3, NH3, and H2O have relatively larger
electrostatic and polarization contributions), this suggests that, when benchmarked
against high-quality electronic structure theory, our anisotropic methodology of-
fers a general strategy for quantitatively accurate pairwise potential development.
Second, we note that the Iso-Iso FF-CC predictions are much worse than their
MASTIFF-CC or Aniso-Iso FF counterparts, suggesting that an accurate treatment
of long-range electrostatics is essential to obtain accurate virial coefficients. Finally,
though Aniso-Iso FF-CC gives equally good predictions for some systems (notably
CHCl3) compared to the MASTIFF-CC method, virial coefficients for other sys-
tems (especially H2O) are less accurate, suggesting that dispersion and short-range
anisotropies are also important in many systems for the accurate prediction of virial
coefficients. Consequently, and in summary, the minimal additional computational
overhead (compared to Aniso-Iso FF-CC) and excellent accuracy of MASTIFF-CC
permits us to recommend this fully anisotropic MASTIFF methodology for the
prediction of dimer interaction energies and second virial coefficients.
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3.5.5 Comparison to Experiment: Condensed Phase Properties
of CO2

To demonstrate the applicability of the MASTIFF methodology in condensed phase
simulation, we have developed a complete many-body potential for CO2, and
have run bulk simulations involving a variety of vapor, liquid, supercritical, and
solid phase points for preliminary comparisons to experiment. As above, we use
the MASTIFF-CC potential to describe the pairwise potential and the many-body
induction. As for other many-body effects, it is well-known16,254,260 that three-body
dispersion, and to a lesser extent, three-body exchange, are also important.268

Thus, we model three-body dispersion via a modified version of the three-body
dispersion potential developed by Oakley and Wheatley (see Section 3.4). Three-
body exchange effects are not accounted for in our model, however prior work
shows they are very small under the conditions studied here.260

Density predictions for the vapor, liquid, and supercritical phases of CO2 are
shown in Table 3.2, and enthalpies of sublimation and vaporization are shown in
Table 3.3. We find it notable and highly encouraging that MASTIFF-CC reproduces
all studied experimental properties to within a few percent. Of particular note is
our excellent reproduction of the sublimation enthalpy, which critically depends
on the lattice energy of the solid phase. Unlike with liquid or supercritical CO2,
where many dimer configurations are sampled, the solid consists of only four
symmetry-unique configurations. Consequently, whereas an isotropic potential
(which is in error for particular dimer configurations, but can take advantage of
error cancellation to be accurate in an average sense) might yield good property
predictions for the liquid phase, it would not be expected to correctly predict
the solid phase (where beneficial error cancellation is unlikely). Indeed, most
theories (including our previously developed SYM-3B model,260 nearly all popular
empirically-developed CO2 models,269 AMOEBA,258 and many electronic structure
theories258) struggle to correctly predict the solid phase properties of CO2! For
this reason, the enthalpy of sublimation is an extremely stringent test of force field
quality,269 and our accurate reproduction of this quantity is evidence for both the
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excellent quality of the MASTIFF-CC potential in specific and of the importance of
atomic-level anisotropy in general. Though more testing is needed to confirm the
accuracy of our anisotropic force field for other phase points, our results suggest
that, crucially, the MASTIFF-CC potential is transferable across the entire phase
diagram of molecular CO2, and is capable of describing the gas, liquid, supercritical,
and solid phases.

Despite the excellent success of the MASTIFF-CC model, it is also worthwhile
to address and understand its minor shortcomings. In particular, we have studied
representative two- and three-body energies taken from a snapshot of the liquid at
273.15 K and 100 bar. For the two-body energies, we have compared against the
extremely accurate Kalugina et al. 17 potential, while for three-body energies we
have benchmarked against the Hellmann 16 PES. From these results (Section 3.D), it
is clear that our pairwise MASTIFF potential is highly accurate for all configurations
present in the liquid, with very small RMSE and no systematic error in the potential,
such that the total two-body energy is accurate to within 0.05% compared to the
Kalugina et al. PES. Once again, this result argues strongly for the accuracy and
transferability of the MASTIFF methodology, and suggests that an inclusion of
anisotropy is essential, not only for gas-phase clusters, but also for simulations of
the bulk. By contrast, our three-body potential is systematically in error compared
to the Hellmann PES. Though some of this error may be due to inaccuracies in
the benchmark potential itself as compared to coupled-cluster,16 most of this error
is likely due to inaccuracies in our model for many-body CO2 interactions. The
atomically-isotropic treatment of three-body dispersion, neglect of higher-order
dispersion terms , and neglect of explicit three-body exchange may all contribute
to this error, and an improved model for many-body CO2 interactions will be the
subject of future research. Indeed, it is well-known that the density can be extremely
sensitive to the treatment of many-body effects,268 and it is highly probable that an
improved many-body model would reduce the already small errors observed in
our MASTIFF-CC predictions. Regardless, for now we conclude that, despite some
small residual errors arising from the simplified treatment of many-body effects,
our MASTIFF-CC methodology yields for an extremely accurate force field for CO2
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Phase T (K) P (bar) Density (g/ml) Exp. % Error

Gas 300 50 0.131 0.128 2.34
Supercritical 320 140 0.728 0.703 3.56
Liquid 300 100 0.825 0.802 2.87
Liquid 273.15 100 1.000 0.974 2.67

Table 3.2: Select densities for CO2 across a range of experimental conditions. Ex-
perimental data taken from the EOS of Ref. 7. Entries ordered by increasing
experimental density.

Phases T (K) ∆H ( kJ mol−1) Exp. % Error

s→ g 194.76 25.0± 0.15 25.2 -0.8
l→ g 288 7.92 7.80 -1.4

Table 3.3: Enthalpies of vaporization/sublimation for CO2 at several temperatures.
Experimental data taken from the EOS of Ref. 7. The uncertainty in the enthalpy of
sublimation is due to ambiguity in the theoretical zero-point energy for CO2 (see
Section 3.4.

with applicability across a range of experimentally-important phases.

3.6 Conclusions and Recommendations

We have developed a comprehensive methodology for modeling atomic-level
anisotropy in standard intermolecular force fields. By treating this anisotropy
through a simple extension of standard isotropic force fields,96 we have success-
fully demonstrated how this computationally-efficient treatment of atomic-level
anisotropy leads to significant improvements in models for intermolecular inter-
actions. Critically, and in contrast to popular assumption, we have shown how
the accurate treatment of multipolar electrostatics does not by itself account for all
energetically-important effects of atomic-level anisotropy. Rather, our results indi-
cate that anisotropy may need to be included in the each electrostatic, exchange and
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dispersion terms in order to obtain intermolecular force fields of the highest quality.
In the present study, and in agreement with the more quantitative metrics proposed
by others,205,217 we have found a comprehensive model of atomic-level anisotropy
to be particularly important for obtaining sub- kJ mol−1 accuracy for describing
molecules with heteroatoms (particularly ones with exposed lone pairs), carbons in
multiple bonding environments, and hydrogens bound to anisotropic heavy atoms.
Our new intermolecular ‘MASTIFF’ force fields show great promise, not only with
respect to high-quality electronic structure benchmark energies, but also with re-
spect to experimental property predictions. Importantly, MASTIFF maintains high
efficiency and transferability. and can easily be implemented in common software
packages such as OpenMM for use in condensed phase simulations.189

Despite the advances presented in this Chapter, several aspects of our force
field methodology require further improvement, and will be the subject of ongoing
research. In particular, an improved description of induction effects will become
essential for accurate bulk simulations of highly polarizable molecules such as water.
We are now actively working to develop improved models that can describe both
long-range anisotropic polarization and short-range polarization damping, as these
aspects of the force field critically affect both the two- and many-body induction
energies and can account for a sizable fraction of the total interaction energy in
condensed phases. We anticipate that these improved models for induction will, in
combination with an accurate description of three-body dispersion and exchange,
yield a general approach to force field development that captures both the two-
and many-body features of intermolecular interactions, in turn enabling highly
accurate, ‘next-generation’ force field development capable of simulating a wide
array of phases and chemical environments.

3.A Motivation for g(θi,φi, θj,φj)

As shown elsewhere,104,270 an exact (under the ansatz of radial and angular sep-
arability) model for g(θi,φi, θj,φj) is given by Stone’s S̄-functions, which form a
complete basis set for describing any scalar function which depends on the relative
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orientation between molecules, and are given (following Stone’s notation78) by the
formula

S̄k1k2
l1l2j

= il1−l2−j

(
l1 l2 j

0 0 0

)−1 ∑
m1m2m

[Dl1
m1k1

(Ω1)]
∗[Dl2

m2k2
(Ω2)]

∗Clm(θ,φ)
(
l1 l2 j

m1 m2 m

)
.

(3.23)

The general form of these S̄-functions can be quite complicated, and involve both the
Wigner D rotation matrices and Wigner 3j-symbols (quantities in parentheses) as
well as the degree (l1, l2, and j) and order (m1, m2, and m for the global coordinate
system, k1 and k2 for the various local coordinate systems) of the spherical harmonic
tensors. Here subscripts reference either molecule 1 or molecule 2, and subscriptless
quantities refer to the dimer as a whole.

In order to obtain a functional form for the exchange-repulsion that is amenable
to simple combination rules (a necessary prerequisite for transferable potentials),
we must somehow be able to separate g(θi,φi, θj,φj) into monomer contributions.
Unfortunately, many of the S̄-functions depend on the relative orientation of the
dimer itself, and thus must be excluded in the development of transferable potentials.
Thus as a second ansatz (empirically validated by us in Section 3.5 and by others271)
we neglect all contributions from S̄-functions that depend on both local coordinate
systems. This leaves us with two sets of S̄-functions, namely

S̄k0
l0l = Clk(θi,φi) (3.24)

and

S̄0k
0ll = Clk(θj,φj) (3.25)

which are simply the renormalized spherical harmonics (Eq. (3.8)) expressed in
each of the two local coordinate systems.

Given our truncated expressions for the S̄-functions, we now need only extend
our functional form for f(rij) to incorporate these anisotropic contributions. We
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choose, in a manner analogous to literature precedent,54,100,152,154,209,210,229,247,248 to
expand theAexch

i andAexch
j parameters of Eq. (3.7) in terms of a truncated expansion

of S̄-functions. (In principle, we could also account for anisotropy in the Bij param-
eters of our model for f(rij). However, previous literature suggests that in practice
this ‘hardness’ parameter can often be treated as constant, and we also neglect its
possible anisotropy in this Chapter.) Consequently, all short-range anisotropies are
modeled in this Chapter by the expressions given in Eq. (3.9) and Eq. (3.10).

3.B Local Axis Definitions

For each molecule in the 91 dimer test set, listed below are any atom types which
have been treated anisotropically. For each anisotropic atom type, the approxi-
mate symmetry and all terms included in the spherical harmonic expansion are
listed to the right of the atom type. Additionally, the local axis reference frame for
each anisotropic atom type is defined in the Axes subsection using the z-then-x
convention employed by AMOEBA and other potentials. The first column of the
axes subsection denotes the index of the anisotropic atom (atom ordering as in
Section A.1), and the second column denotes whether the z or x axis is being defined.
For certain local symmetries, the choice of x-axis is unimportant, and so not every
anisotropic atom type has a defined x-axis. The remaining columns define the
direction vector for the axis in terms of atomic indices. The first index (often the
anisotropic atom itself) lists the start of the vector, and the endpoint of the vector is
defined as the midpoint of all subsequently listed atoms.

To use water as an example, the oxygen atom is treated anisotropically using
a spherical harmonic expansion that includes y10, y20, and y22c terms (notation
as in Ref. 78). The z-axis points from the oxygen to the midpoint between the two
hydrogens, and the xz plane (and subsequently the x-axis) is defined by one of the
O–H bonds.
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3.B.1 Acetone

OC c2v y10 y20 y22c

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
1 z 1 0
1 x 0 2

3.B.2 Ar

Ar

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)

3.B.3 Chloromethane

Chloromethane
Cl c3v y10 y20

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
1 z 1 0

3.B.4 Carbon Dioxide

CO2
OCO cinfv y10 y20
CCO2 dinfh y20
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Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
0 z 0 1
1 z 1 0
2 z 2 0

3.B.5 Dimethyl Ether

Dimethyl Ether
O c2v y10 y20 y22c

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
0 z 0 1 2
0 x 0 1

3.B.6 Ethane

Ethane

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)

3.B.7 Ethanol

Ethanol
OH c2v y10 y20 y22c
HO cinfv y10 y20
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Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
2 z 2 1 3
2 x 2 1
3 z 3 2

3.B.8 Ethene

Ethene
CM c2v y22c
HM cinfv y10 y20

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
0 z 0 1
0 x 0 2
1 z 1 0
1 x 1 4
2 z 2 0
3 z 3 0
4 z 4 1
5 z 5 1

3.B.9 Water

H2O
OH2 c2v y10 y20 y22c
H2O cinfv y10 y20
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Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
0 z 0 1 2
0 x 0 1
1 z 1 0
2 z 2 0

3.B.10 Methane

Methane

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)

3.B.11 Methanol

Methanol
OH1 c2v y10 y20 y22c
HO1 cinfv y10 y20

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
1 z 1 0 5
1 x 1 0
5 z 5 1

3.B.12 Methyl Amine

Methyl Amine
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N1 c2v y10 y20 y22c
HN1 cinfv y10 y20

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
1 z 1 0 5 6
1 x 1 0
5 z 5 1
6 z 6 1

3.B.13 Ammonia

Ammonia
N c3v y10 y20
HN cinfv y10 y20

Axes
ATOM# AXIS (z or x) Atomic Indices defining vector (either 2 or more
integers)
0 z 0 1 2 3
0 x 0 1
1 z 1 0
2 z 2 0
3 z 3 0

3.C Homodimer Fits
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(a) Acetone Dimer
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(b) Ar Dimer
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(c) Chloromethane Dimer
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(d) CO2 Dimer
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(e) Dimethyl Ether Dimer
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(f) Ethane Dimer
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(g) Ethanol Dimer
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(h) Ethene Dimer
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(i) H2O Dimer
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(j) Methane Dimer
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(k) Methanol Dimer
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(m) NH3 Dimer
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Figure 3.7: Force field fits for each homomoneric systems using the Iso-Iso FF
(purple), Aniso-Iso FF (orange), and MASTIFF (purple). Two views of the fit to
the total energy are displayed along with corresponding RMSE (aRMSE for the
inset showing attractive configurations). The y = x line (black) indicates perfect
agreement between reference energies and each force field, while shaded grey areas
represent points within ±1 kJ/mol agreement of the benchmark.
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Figure 3.9: Force field quality for MASTIFF-CC in reproducing (left) two-body and
(right) three-body CO2 interaction energies. The y = x line (solid) and ±1 kJ/mol
boundaries (dashed lines) are shown for reference. All dimer/trimer configurations
were taken from a snapshot of CO2 liquid simulated using MASTIFF-CC at 273.15
K and 100 bar. Reference energies are taken from the Kalugina et al. 17 PES for the
two-body energies, and the Hellmann 16 PES for the three-body energies. A total of
62,583 dimer configurations and 43,784 trimer configurations are represented in
the two plots.



Part II

Unpublished Work

133



134

4 ab initio force fields using LMO-EDA

4.1 Preface

The preceding sections have been devoted to a development of various methodolo-
gies for ab initio intermolecular force field development, all generally assuming that
Symmetry-Adapted Perturbation Theory (SAPT) can be used as a benchmark elec-
tronic structure theory. Critically, and especially given the developments discussed
in Chapter 3, we can now usually expect our model force field energies to be within
~1 kJ/mol of the SAPT reference values! In spite of this success, this high precision
between the model and SAPT energies can only lead to experimentally-accurate
molecular simulation in the event that the SAPT energies themselves are accurate
with respect to the exact underlying potential energy surface (PES). Indeed, for
systems where SAPT and CCSD(T) (a gold-standard electronic structure theory
that closely matches the exact PES) disagree by several kJ/mol, there is little ad-
vantage in developing SAPT-based force fields with sub- kJ/mol precision. This
limitation raises to two fundamentally important questions. First, for what types of
systems might we expect SAPT to be inaccurate? Second, for the systems where
SAPT and the exact PES are in disagreement, how might we best modify our typical
methodology for ab-initio force field development?

The purpose of this Chapter is to partially address these two questions, all within
the specific context of force field development for Coordinatively-Unsaturated
(CUS) Metal-Organic Frameworks (MOFs). Vida infra, SAPT energy calculations
have been shown to be in error for select CUS-MOFs, and we investigate how
our SAPT-based force field development methodology can be extended to allow
for force field development based on generic Energy Decomposition Analyses
(EDAs),80,87,272–276 with a particular emphasis on the Localized Molecular Orbital
EDA (LMO-EDA).274,277 The work in this Chapter represents results gathered from
2012 – 2014, after which the project was discontinued, largely due to memory
limitations in the LMO-EDA implementation in GAMESS. Additionally, some
important advances (namely those presented in Chapters 2 and 3) were unavailable
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during this project, leading to additional fundamental challenges in the accuracy
and transferability of the resulting force fields. Should this project be continued
in the future, it will likely prove necessary to refit EDA-based force fields to the
functional forms and monomer-based parameters discussed in Chapter 3. In spite
of these challenges and limitations, the results presented in this Chapter provide a
valuable demonstration for the utility of using alternate EDA schemes as the basis
of ab initio force field development.

4.2 Introduction

Metal-Organic Frameworks (MOFs) are an increasingly important class of com-
pounds, and are defined as porous materials containing inorganic nodes connected
by organic linkers. Within this general motif, more than 20,000 compounds have
been reported and studied,278 and this vast diversity of MOF materials shows great
promise for chemical customization and optimization. Over the past two decades, a
huge body of research has been devoted to the design and study of MOFs, and cur-
rent applications range from gas separation and storage to catalysis and biomedical
imaging.278

Somewhat recently, it has been discovered that so-called CUS MOFs can be
created by activation of solvent-coordinated inorganic nodes to yield exposed (or
’open’) metal sites.279–281 These CUS-MOFs have been shown to exhibit exhibit
excellent uptakes and selectivities in a number of gas separation and storage prob-
lems,279,280,282 making this family of compounds an excellent target for future inves-
tigation and materials design. Owing to the vast scope of hypothetical CUS-MOF
materials, however, and the number of chemically-distinct targets for gas separa-
tion/storage, it is unlikely that experiment alone can be used to screen for new
and promising CUS-MOF materials.283 Rather, a combination of experiment and
computational modeling will be required to identify (or possibly even rationally
design) optimal CUS-MOFs.282–284

Despite the utility of computational studies, it remains challenging to develop
molecular models for CUS-MOFs.281,283,284 Because the strong binding between
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metal and adsorbate leads to chemical environments substantially different from
typical coordinatively-saturated MOFs, many standard force fields (such as UFF
and DREIDING) that yield good predictions for these CS-MOFs can frequently (and
substantially!) underpredict adsorption in CUS-MOFs.283–285 Importantly, these
underpredictions are especially prominent at low pressures, where metal-adsorbate
interactions dominate.283–285 While CUS-MOFs can sometimes be studied using
quantum mechanical means,284,286,287 clearly new and improved force fields will
be required to perform in-depth simulations and large-scale screenings of these
materials, and such studies are already being undertaken.288–291

The goal of the present chapter is two-fold: first, to present a general method-
ology for developing accurate and transferable force fields for CUS-MOFs, and
second, to showcase how generic EDAs can be used as the basis for force field
development. The current study is limited to a discussion of the MOF-74 series (a
prototypical and well-studied CUS-MOF) and LMO-EDA,274,277 however it is ex-
pected that the methods presented herein might also be applicable to other systems
and EDAs. After outlining the methodologies used in this Chapter (Sections 4.3
and 4.4), we next show how our force fields can be applied to accurately predict
CO2 adsorption isotherms in Mg-MOF-74. At the present time, we do not have
results for other compounds in the M-MOF-74 series (M = Co, Cr, Cu, Fe, Mn,
Ni, Ti, V, and Zn), largely as a result of techical challenges in the force field pa-
rameterization process. We discuss these technical limitations in some detail, and
conclude with our perspective on the challenges and opportunities associated with
developing transferable force fields for the M-MOF-74 series and other similar
CUS-MOF systems.

4.3 Background and Motivation

Prior work in our group has shown how, at least for coordinatively-saturated MOFs,
accurate and transferable force fields can be generated for a wide variety of systems
by fitting force field parameters on a component-by-component basis to reproduce
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an ab initio SAPT energy decomposition.142,198 ∗ Once parameterized, these SAPT-
based MOF force fields can be used for calculating individual adsorption isotherms
or even for high-throughput screening.292

In the generation of force fields for CUS-MOFs, we expect that many of the
advantages of the development methodology for coordinatively-saturated MOFs
(namely the component-by-component based parameterization) should also trans-
late well to CUS-MOF materials. Nevertheless, there are two reasons why a SAPT-
based methodology is non-ideal for generating CUS-MOF force fields. First, and
as shown in Fig. 4.1 for a representative Mg-MOF-74 cluster model, by comparing
to benchmark CCSD(T)-f12 calculations we have discovered SAPT to be in error
for CUS-MOF-like systems. DFT-SAPT is known to struggle with highly ionic
systems (relative to CCSD(T) or DFT methods),87,293 and so this error is perhaps not
surprising. (Possible sources of the discrepancy between SAPT and CCSD(T)-f12
will be discussed in Section 4.8.) Nevertheless, and in the absence of fortuitous
error cancellation, predictions from an ab initio force field can only be as good
as the level of theory that they are parameterized against. Consequently, because
SAPT underbinds CO2 by a full 6 kJ/mol compared to CCSD(T)-f12, we would not
expect to see good predictions for the CO2 adsorption isotherm with a SAPT-based

∗ While full details for this force field development workflow can be found in Refs. 198, 292, a
short example is given here for Mg-MOF-74:

1. Generate a representative cluster model from which interaction parameters can be determined
for each pairwise interaction. An example cluster, used to parameterize Mg–CO2 interactions
in Mg-MOF-74, is shown in Fig. 4.1.

2. Using DFT-SAPT (a variant of SAPT with monomer densities given by Density Functional
Theory (DFT)), compute a series of representative dimer interaction energies for the model
cluster. For the cluster model in Fig. 4.1, representative dimers were generated by varying
the position of CO2 with respect to the MOF cluster, and the corresponding DFT-SAPT total
interaction energies are shown for a subset of representative points.

3. To determine partial charges for the system, generate representative clusters (as described in
Section 4.5) for each the organic ligand and the inorganic node, and perform a Distributed
Multipole Analysis (DMA) analysis on each cluster to determine partial charges for the overall
system.

4. For each component of the DFT-SAPT interaction energy, parameterize the relevant functional
forms (as detailed in Ref. 198 and Section 4.4) to reproduce the DFT-SAPT component energy.
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Figure 4.1: Model PES for interactions between CO2 and Mg-MOF-74. (Left) Inter-
action energies between CO2 and a cluster model of Mg-MOF-74 (shown bottom
right), computed at a CCSD(T)-f12 (black), SAPT (orange), and/or PBE0-D2 (blue)
level of theory. Discrepancies between SAPT and CCSD(T)-f12 in the minimum-
energy region of the potential have been highlighted. (Top right) The structure of
CO2-bound Mg-MOF-74. (Bottom right) The structure of the cluster model used for
Mg-MOF-74, where the circled atom pair indicates the relevant Mg-O radius from
the x-axis in the leftmost figure.

methodology. For CUS-MOFs and other similar systems, a new strategy for force
field development is required.

As a second barrier to using a SAPT-based methodology, many of the com-
pounds in the M-MOF-74 series are open-shell. Though this poses no fundamental
issue, in practice most implementations of SAPT do not allow for computations of
open-shell systems, and indeed SAPT-based studies of open-shell compounds are
very rare.294 For these reasons, a new, open-shell-compatible electronic structure
benchmark is highly preferable.
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4.4 Parameterizing CUS-MOF force fields with
LMO-EDA

Based on the results for Mg-MOF-74, it is clear that, at least for CUS-MOFs, a new
methodology is required which simultaneously keeps the important advantages
of the old development strategy (especially the component-by-component based
parameterization, which is essential for generating transferable force fields) while
overcoming the limitations of SAPT itself. Put differently, for CUS-MOFs we should
seek a new electronic structure theory benchmark and associated EDA with the
following qualities:

1. High accuracy with respect to to CCSD(T)-f12 benchmark energies

2. Physically-meaningful energy decomposition into (at least) electrostatics, ex-
change, induction, and dispersion

3. Where compatibility with SAPT-based force fields is desirable, quantitative
correspondence between the energy decompositions of SAPT and the new
method (especially for systems where total energies from SAPT, CCSD(T)-f12,
and the new method agree)

Assuming these three qualites are met, we expect to be able to generate force
fields for CUS-MOFs that are both highly accurate and maximally-compatible with
previous force fields developed for coordinatively-saturated MOF systems.

A substantial number of EDAs exist in the literature, and the interested reader
is referred to Ref. 87 for a review and comparison of various popular methods.
Aside from SAPT, which is a perturbative method, most EDAs are ‘variational’,
meaning that the various energy components are calculated in stages from a series
of constrained relaxations of the monomer wavefunctions into the optimized dimer
wavefunction. For this reason, all variational EDAs are guaranteed to have total
energies that match the result from a supermolecular interaction energy calcula-
tion. Furthermore, these EDAs are often implemented for wavefunction and DFT
methods, thus allowing for significant flexibility (compared to the SAPT EDA) in
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terms of finding an EDA whose total energy closely matches CCSD(T)-f12. Indeed,
and as shown in Fig. 4.1, PBE0-D2 shows excellent agreement with CCSD(T)-f12
for a Mg-MOF-74 cluster model, and so any DFT-compatible EDA should meet our
first criteria from above.

Although all variational EDAs yield the same total interaction energy for a given
level of theory, many EDAs can differ substantially in terms of how this total energy
is decomposed into chemically-meaningful components. At the time this research
was completed, only a handful of variational EDAs distinguished each electrostatics,
exchange, induction, and dispersion. (Notably, the recent second-generation ALMO-
EDA272 now separates their ‘frozen’ energy term into electrostatic, exchange, and
dispersion components, and thus might be worth future investigation.) Of the
popular EDA methods available in 2014, we found that LMO-EDA,274,277 GKS-
EDA,273 and PIEDA275 decompose the total interaction in a manner philosophically
similar to SAPT, and include each electrostatic, exchange, induction, and dispersion
terms. These three methods thus meet our second criteria for an optimal energy
decomposition scheme for CUS-MOFs, and complete formalisms and details for
the methods can be found in Refs. 273–275, 277.

As for the last criterion, that of maximum correspondence between SAPT and a
variational EDA, we have performed component-by-component analyses to compare
SAPT to both LMO-EDA and GKS-EDA. PIEDA is known to overestimate the relative
magnitude of the polarization energy, compared to SAPT, and was not considered
in detail.87 As for LMO-EDA and GKS-EDA (both of which are based on very similar
theories, and tend to yield similar energy decompositions), we have in general found
semi-quantitative to quantitative agreement with the SAPT energy decomposition,
particularly for the electrostatic and exchange energies. Comparisons between
LMO-EDA and SAPT are shown for the CO2 dimer (Fig. 4.2) and for CO2 interacting
with a model Mg-MOF-74 compound (Fig. 4.3). GKS-EDA results are not shown,
as the LMO-EDA and GKS-EDA results tend to be very similar, with the GKS-EDA
results in slightly worse agreement with SAPT. For this reason, and because LMO-
EDA does the best job of meeting our three criteria above, we choose in this work
to use LMO-EDA as our new benchmark EDA for fitting CUS-MOF force fields.
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Figure 4.2: PES and associated energy decomposition for the slipped parallel geom-
etry of the CO2 dimer as a function of the C C interatomic distance. The PES has
been computed by both DFT-SAPT (PBE0) (solid lines) and LMO-EDA-PBE0-D2
(dashed lines), and each electrostatics (green), exchange (red), dispersion (blue),
induction (purple), and total energy (black) components are displayed. Note that,
for the DFT-SAPT energies, the δHF contribution has been incorporated into the
induction energy.

In addition to describing the advantages of the LMO-EDA method, it is worth-
while to overview some of its relevant shortcomings and limitations. As with most
variational EDA methods,87 and especially for DFT-based methods, it becomes dif-
ficult to precisely assign and separate out the true ‘dispersion’ energy for a system.
This limitation is also true of LMO-EDA, where the dispersion energy is defined as
the difference in correlation energy between the monomer and dimer wavefunc-
tions. (For density functionals employing Grimme’s –D dispersion correction, this
correction is also added to the LMO-EDA dispersion energy.) For functionals that



142

300

200

100

0

-100

En
er

gy
 (k

J/
m

ol
)

4.54.03.53.02.52.0

Mg-O Radius (Å)

Method:
 SAPT (PBE0/AVTZ+m)
 LMOEDA (PBE0-D2/AVTZ)

 
Energy Component:

 Total Interaction Energy
 Exchange
 Electrostatic
 Induction
 Dispersion

  Interaction of Mg-MOF-74 (Cluster Model) with CO2

Figure 4.3: PES and associated energy decomposition for a CO2 + MgO5 cluster,
as a function of the highlighted Mg O interatomic distance. The PES has been
computed by both DFT-SAPT (PBE0) (solid lines) and LMO-EDA-PBE0-D2 (dashed
lines), and colors and labels for the energy decomposition are as in Fig. 4.2.

have a well-defined and theoretically-grounded distinction between the exchange
and correlation functionals, the LMO-EDA energies tend to agree well with SAPT,
and we have found good agreement (for instance) between SAPT and LMO-EDA-
PBE0-D2. With other functionals, such as with our tests using the M06 functional,
there is no separation between the exchange and correlation functionals, and LMO-
EDA gives unphysical values for both the exchange and dispersion energies in this
case. (Notably, GKS-EDA attempts to rectify this issue by changing the LMO-EDA
formalism for dispersion. While this leads to qualitative agreement between SAPT
and GKS-EDA for a wider variety of functionals, the quantitative agreement for
the PBE0-D2 functional is somewhat worsened for the systems studied herein, and
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we instead use LMO-EDA-PBE0-D2 for all results in this work.)
A second, and purely practical, limitation of LMO-EDA is its memory-intensive

implementation in GAMESS. As will be discussed in detail later, calculations on a
large (43 heavy atom) cluster model of Mg-MOF-74 were infeasible for us (using
the Phoenix cluster in 2014) in all but the smallest VDZ basis set, and calculations
on an identical cluster model of Co-MOF-74 could not be completed at all. For this
reason, the LMO-EDA method is practically restricted to studies of smaller systems
and/or basis sets.

4.5 Computational Methods

4.5.1 Partial Charge Determination

Partial charges for Mg-MOF-74 were determined in a manner analagous to Ref.
292 using the QSBU method. Two cluster models, one a hydrogen-capped DOBDC
ligand environment, and one a capped MgO5 inorganic chain, were constructed
and analysed using a Distributed Multipole Analysis (DMA). The resulting DMA
charges were then used to obtain charge paramters for the ligand and inorganic
SBU, respectively. See Section 4.A for final charge parameters.

4.5.2 Force Field Fitting

Two types of force field functional forms were considered in this work. The first, a
‘single-exponential’ functional form, exactly matches that used in Ref. 83, with the
exception that δHF parameters were not fit to the Mg atomtype. This fitting choice
was due to the fact that LMO-EDA only provides a total induction term (rather
than splitting into 2nd- and higher-order induction energies, as with SAPT).

For the ‘double-exponential’ functional form used to fit the Mg-MOF-74-Yu
cluster model, the same functional form was used as in the single-exponential case,
with the exception that two sets of short-range interaction parameters (labeled Mg
and Du in Section 4.A) were assigned to the Mg atomic center. This effectively
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meant that Mg was described by two separate exponential decays, thus enabling
additional parameterization flexibility for the force fields discussed in Section 4.6.

In all cases, force fields were fit using the Fortran code described in the Appendix
of Ref. 81.

4.6 Results

4.6.1 Initial Force Field and Cluster Model Analysis

Originally, we attempted to fit Mg parameters on the basis of a small, 6 heavy atom
cluster (‘Mg-MOF-74-small’, see Fig. 4.4 for chemical structure), which we felt would
be representative of the Mg environment in Mg-MOF-74. Using the functional forms
discussed in Section 4.5, force field parameters were fit to reproduce LMO-EDA-
PBE0-D2 energies for a variety of CO2/Mg-MOF-74-small interactions, with results
shown in Fig. 4.4. Though select interaction energies disagree by several kJ/mol
between LMO-EDA-PBE0-D2 and the force field energies, overall the agreement
is reasonable, and the force field correctly reproduces trends in the interaction
energies without significant systematic error.

Based on the agreement between PBE0-D2 and the force field, as well as between
PBE0-D2 and CCSD(T)-f12, we expected to obtain good CO2 adsorption isotherm
predictions for the Mg-MOF-74 system itself. By contrast, our computed isotherm
substantially underpredicts the experimental adsorption at low pressures, where
Mg–CO2 interactions are known to dominate. This underprediction strongly sug-
gests that we had originally underestimated the magnitude of the Mg–CO2 binding,
a result which we were then able to attribute to our choice of cluster model (vida
infra).

Cluster models for the M-MOF-74 series have been investigated by several
groups, and it has been found in general that computed binding energies are sen-
sitive both to the size of the cluster model as well as the treatment of geometry
relaxation effects.296,297 Consequently, we calculated the CO2 binding energies and
geometries of both our original Mg-MOF-74-small cluster as well as for two larger
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Figure 4.4: Force field fitting quality for the Mg-MOF-74-small cluster. (Top left)
Various electronic structure benchmarks for Mg-MOF-74-small along with the clas-
sical potential. Each DFT-SAPT (orange dot-dashed), PBE0-D2 (blue dot-dashed),
CCSD(T)-f12 (black solid), and the LMO-EDA-based force field (green dashed) are
shown as a function of the Mg O interatomic distance (non-bonding pair high-
lighted at top right). (Bottom right) Force field fit quality, as benchmarked against
LMO-EDA-PBE0-D2, for a semi-random set of dimer configurations of the Mg-
MOF-74-small cluster model interacting with CO2. The black line establishes the
y = x benchmark, and the red line represents the line of best fit.
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(A) (B)

(C) (D)

Model CO2 Binding Energy Mg–O Interatomic Distance Mg–O–C Tilt Angle
(kJ/mol) (Å) (◦)

A286 -41.5 2.31 129
B -23.3 2.31 122
C -31.4 2.28 123
D -41.7 2.20 149

Figure 4.5: Various structures and cluster models for Mg-MOF-74 interacting with
CO2. (A) Full periodic Mg-MOF-74 structure with inset showing adsorbed CO2
positions. (B) Mg-MOF-74-small cluster, containing 6 heavy atoms (not including
CO2). (C) Yu et al. cluster model for Mg-MOF-74, denoted in text as Mg-MOF-74-Yu.
(D) Dzubak et al. cluster model for Mg-MOF-74, denoted in text as Mg-MOF-74-
Dzubak. All cluster models as shown with optimized CO2 positions, and bond
lengths and angles for adsorbed CO2 are given in the bottom table. Data for (A)
was taken from Valenzano et al. using a B3LYP-D level of theory,286 whereas data
for (B-D) was computed in this work using PBE0-D2. Finally, note that the binding
energy for (A) includes framework geometry relaxation effects, whereas (B-D) were
computed using semi-rigid cluster geometries and only optimizing the CO2 position
and exposed MgO5 pocket.
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clusters developed in Refs. 281, 295. These latter two clusters, respectively denoted
Mg-MOF-74-Yu and Mg-MOF-74-Dzubak, are the same size (each with 60 atoms),
but have distinct stoichiometries and geometries. To test the influence of model
cluster on the CO2 binding energy/geometry, we performed two sets of optimiza-
tions of the Mg-MOF-74-Yu and Mg-MOF-74-Dzubak clusters: one in which only
the CO2 position was optimized, and one in which the exposed MgO5 pocket was
additionally relaxed. Binding geometries were relatively insensitive to the geometry
relaxation, though binding energies varied by 2-5 kJ/mol, in agreement with other
studies that have tested geometry relaxation effects.296 Results for the CO2 + MgO5

relaxation are shown in Fig. 4.5.
Of the three studied cluster models, both Mg-MOF-74-small and Mg-MOF-74-Yu

correctly reproduce the Mg O interatomic distance and Mg O C tilt angle. These
geometrical parameters arise primarily from electrostatic interactions between
CO2 and the MgO5 pocket,286 suggesting that both of these models capture such
important interaction features. By contrast, the Mg-MOF-74-Dzubak model predicts
a substantially shorter binding distance and increased tilt angle, both in contrast
to results from the periodic system. In part, these deficiencies can be attributed to
spurious CO2 interactions with the exposed carbonyl capping groups in the Mg-
MOF-74-Dzubak model, as these exposed carbonyls are not present in the periodic
system or the other two cluster models. As a second distinction, a Mulliken charge
analysis of the Mg-MOF-74-Dzubak cluster yields larger partial charges for the
surrounding Mg atoms as compared to the Mg-MOF-74-Yu model, which may help
explain the increased binding and shortened Mg O contact in the Mg-MOF-74-
Dzubak model.

There are also substantial differences in binding energies between the various
cluster models. Importantly, Mg-MOF-74-small severely underbinds CO2 compared
to all other tested systems. These results for the Mg-MOF-74-small cluster indicate
the inadequacy of such a small model, and likely explain the underprediction of the
CO2 adsorption isotherm from above. The Mg-MOF-74-Dzubak model shows best
energetic agreement with the periodic system. Nevertheless, some of the Mg-MOF-
74-Dzubak binding energy arises from truncation effects (as described above), and
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the energetic agreement is thus due (at least in part) to error cancellation. Indeed,
some of the binding energy in the periodic system arises from (attractive) long-
range interactions, and thus we should expect to see a cluster model somewhat
underpredict the binding energy. Primarily for its good agreement in binding
geometries, and reasonable agreement in binding energy, we opt to use the Mg-
MOF-74-Yu cluster model for the remainder of this work.

4.6.2 Final Mg-MOF-74 CO2 Adsorption Isotherm

Using our new Mg-MOF-74-Yu cluster model, we next attempted to refit force
field paramters for Mg. As discussed earlier, and because of the size of this new
cluster (60 atoms), LMO-EDA-PBE0-D2 calculations became cost prohibitive in all
but the smallest VDZ basis set, and thus could only be carried out for a limited
set of points. Starting from the minimum energy configuration shown in Fig. 4.5,
we fit Mg parameters to a 12-point scan along the Mg-O bond vector, with fit
results shown in Fig. 4.6. Interestingly, though the functional form used in this
fit was sufficient to accurately paramterize the interaction energies in the Mg-
MOF-74-small cluster, the same force field methodology proved unsuccessful in
paramterizing Mg-MOF-74-Yu–CO2 interactions. We knew at the time that this
inaccuracy was probably a consequence of uncertainties in correctly parameterizing
the Mg short-range exponent. (See Chapter 2 for a full discussion of new methods
for parameterizing the short-range potential.) Nevertheless, because the Slater-ISA
methodology for short-range interactions had not yet been developed, we opted
instead to fit the Mg interactions to a double exponential functional form, with each
exponent corresponding to the ionization potential for either Mg+ or Mg2+ (the two
atomic environments most likely to correctly represent the Mg cation). As shown
in Fig. 4.6, this form could excellently reproduce the Mg-MOF-74-Yu model PES.

Using the double exponential functional form from above, we recomputed the
adsorption isotherm of CO2 in Mg-MOF-74. Before comparing to experiment, and
as recommended by others,298 we scaled the experimental isotherm in order to
account for the pore blocking effects that are common in the M-MOF-74 series.
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Figure 4.6: Force field fitting quality for the Mg-MOF-74-Yu cluster. A PBE0-
D2 benchmark (black solid) is displayed along with two force field fits: single-
exponential (red dashed) and double-exponential for Mg (blue dash-dotted). In
either case, a cut of the PES is shown along the interatomic distance between the
central Mg atom and the closest-contact oxygen atom in CO2.

Using this scaled isotherm, we then obtain excellent agreement between our model
potential and experiment (Fig. 4.7). Crucially, this accuracy is seen both at low- and
high-pressure ranges, indicating the accuracy of the force field in modeling both
the strong Mg CO2 binding as well as the weaker physisorption regime.

4.6.3 Transferability to Other Adsorption Isotherms

In addition to using our Mg paramters to compute the CO2 adsorption isotherm, we
also used our Mg force field in conjunction with the N2 parameters developed by
Yu et al. 167 to predict the N2 adsorption isotherm. These predictions were generally



150

B

Figure 4.7: Predicted CO2 adsorption isotherm for Mg-MOF-74. Two experimental
isotherms are shown, one as directly measured by experiment (dashed line) and
one scaled to account for pore block effects (solid line). Predictions from two force
fields are also shown, where Mg parameters for each force field were fit either to the
Mg-MOF-74-small cluster (gold triangles) or to the Mg-MOF-74-Yu cluster (purple
circles). Cluster geometries are given in Fig. 4.5.

poor, and results are not shown. Nevertheless, the poor N2 results suggest a lack of
transferability of our Mg parameters, possibly (and as discussed in the section on
Future Work) due to the unphysical double-exponential functional form used to
parameterize Mg.

4.6.4 Transferability to Other M-MOF-74 systems

As a second test of transferability, we also attempted to develop force fields for other
compounds in the M-MOF-74 series, starting with Co-MOF-74. Unfortunately, the
open-shell nature and increased electron count of Co-MOF-74 made LMO-EDA
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calculations computationally prohibitive for any reasonable basis set, and these
systems were not investigated further.

4.7 Conclusions

In this unpublished work, we have determined a new methodology for fitting force
fields to CUS-MOFs. While largely following our previous methodology for MOF
force field development, we have shown how an LMO-EDA Energy Decomposition
Analysis can be used in leiu of SAPT to generate accurate ab initio benchmark
energies in cases where SAPT itself is inaccurate. Using this new methodology, we
have successfully modeled CO2 interactions in Mg-MOF-74, and have simulated
the adsorption isotherm for CO2 in Mg-MOF-74 with good accuracy compared to
experiment.

Ultimately, the methods presented herein suffered from a number of practical
and fundamental issues (vida infra). Until these limitations can be fully addressed,
we do not anticipate that the LMO-EDA method can be broadly used to develop
transferable force fields for CUS-MOFs or other large systems where SAPT is in
error.

4.8 Future Work

Throughout this Chapter, we have attempted to highlight some of the key limitations
of our force field development methodology for CUS-MOFs. In summary, the
following issues would need to be resolved in order to expand the scope and utility
of the present research:

1. Memory Limitations with LMO-EDA in GAMESS: As evidenced in this
work, relatively large (60+ atom) cluster models are required to correctly
parameterize force fields for the M-MOF-74 system. While these cluster sizes
do not present difficulties for standard DFT calculations with reasonable basis
sets, the corresponding LMO-EDA calculations were, as implemented in the
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GAMESS software package, infeasible due to memory requirements. Some
time was spent attempting to address these memory issues, particularly for
the memory-intensive Edmiston-Ruedenberg localization subroutine that is
the source of the problem. However, due to our lack of familiarity with the
GAMESS software and the LMO-EDA source code, this pursuit was eventually
dropped.

2. Fundamental Issues with LMO-EDA: As discussed in Section 4.4, the LMO-
EDA method has several theoretical limitations. In particular, and especially
for functionals with no defined separation between exchange and correla-
tion functionals, LMO-EDA does not offer a clean separation between the
exchange and dispersion energies. Furthermore, and unlike some recent EDA
methods,155,272 LMO-EDA cannot separate induction into charge transfer and
polarization components.

3. Transferability of the Force Field Functional Form: While our final force
field for studying CO2 interactions in Mg-MOF-74 is highly accurate (both
with respect to ab initio theory and with respect to experiment), it does not
appear that this accuracy extends to models for the adsorption of other small
molecules, such as N2. This transferability limitation is almost certainly due to
the chosen double-exponential functional form and/or the parameterization
process used to obtain Mg parameters, and improvements to this methodology
will be essential to make our work on the CO2–Mg-MOF-74 system applicable
to general force field development for CUS-MOFs. In particular, future work
will require a better force field for describing short-range interactions, as the
functional forms and paramters used in this work struggled to both accurately
and transferably model the Mg-MOF-74 exchange energies.

While several of these issues (particularly practical limitations with the LMO-
EDA implementation) have yet to be addressed in a meaningful fashion, several
recent theoretical advances may pave the way for continued work on this project.
Thus for CUS-MOFs and other systems where DFT-SAPT might be in error, we
offer the following recommendations:
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1. Improved SAPT energies: Recently, it has been proposed that the commonly
used single-exchange (‘S2’) approximation can lead to errors in the descrip-
tion of the induction energy, particularly for ionic systems.293,299 While it is
difficult to attribute errors in SAPT to a particular energy component, it may
well be that SAPT poorly describes Mg-MOF-74 due to the S2 treatment of
the induction energy. In this case, eliminating the S2 approximation might
improve the DFT-SAPT total interaction energies, thus enabling SAPT to be
used for (at least) closed-shell CUS-MOFs.

2. New SAPT Correction Schemes: As discussed in Chapter 3, deviations be-
tween SAPT and CCSD(T) can be rectified by adding a δCCSD(T) correction
to the total SAPT energy. As discussed in Chapter 3, we have empirically had
good success modeling this δCCSD(T) correction as part of the dispersion
energy. Though this partitioning choice may require adjustment for treating
Mg-MOF-74, the results in Chapter 3 indicate that simply correcting (rather
than entirely ignoring) the DFT-SAPT energies is a promising strategy for
transferable force field development.

3. New EDA schemes: Since this work was completed, a second-generation
ALMO-EDA scheme has been implemented in the Q-Chem software pack-
age.272 Crucially, and unlike its predecessor, this ALMO-EDA scheme now
breaks up the interaction energy into electrostatic, exchange, polarization,
charge-transfer, and dispersion components. While there is no guarantee
that such an EDA could serve as the basis for CUS-MOF force field devel-
opment (see Section 4.4), these and other recently developed EDAs may be
worth investigation, and could eventually replace the (practically problematic)
LMO-EDA method.

4. Improved Force Field Functional Forms: Since 2014, we have made signifi-
cant progress in developing more accurate and transferable intermolecular
force fields (see Chapters 2 and 3), and many of these advances particularly
improve the description of the short-range potential itself. There is a good
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chance that either the Slater-ISA FF or MASTIFF methodologies would yield
high-quality force fields for Mg-MOF-74 and other systems. In this case, con-
tinued work on this project might be an exciting avenue for showcasing the
MASTIFF methodology in the context of accurate inorganic/organometallic
force field development.

4.A Force Field Parameters for CO2 and Mg-MOF-74

Final force field parameters, fit using the double-exponential functional form above
and the Mg-MOF-74-Yu cluster model, for CO2 and Mg-MOF-74. These parameters
should be read in as input into our group’s lattice simulation code, see http://
schmidt.chem.wisc.edu/montecarlosimulationcodes for details.

Listing 4.1: co2_mof74.pmt
lennard_jones_type 1 "1 f o r buckingham , 2 f o r lennard jones "

" parameters are l i s t e d as charge , A, B , C, p o l a r i z a b i l i t y
" u n i t s are A: kJ/mol , B :A^−1, C : KJ/mol∗A^6 eps i lon : KJ/mol , sigma :A,

p o l a r i z a b i l i t y : A^3 "
" p o l a r i z a b i l i t y i s defined as q^2/k , spring constant i s s e t to . 1∗1 . 8 8 9 7 ^ 3 e^2/A^3"

s o l u t e _ s p e c i e s
atom_type_parameters ( q , Aexch , Aelec , Aind , Adhf , Adisp , C6 , C8 , C10 , alpha )
2
C0 0.6573800 95510 .43 −27846.98 −13425.1 2065 .044

0 . 0 6 .891 E02 0 . 0 0 . 0 1 .1926153
O0 −0.328690 521902 .066 −163908.84 −4475.8095 −26042.04

0 . 0 1 .8341 E03 0 . 0 0 . 0 0 .9009290

s o l u t e parameters f o r framework c r o s s terms ( Aexch , Aelec , Aind , Adhf , Adisp , B , C6 , C8
, C10 , C12 )

C0 74376 .65 24130 .18 12513 .37 795 .36
0 . 0 3 .4384 1147 .41867 6329 .41038 29659 .50100 183546 .714

O0 354373 .13 108208 .5 2544 .89 −18178.7
0 . 0 3 .7795 867 .27598 4266 .54582 28761 .10636 132581 .301

s o l u t e dhf c r o s s terms ( check code f o r input format i f more than one c r o s s term )
−6124.0

http://schmidt.chem.wisc.edu/montecarlosimulationcodes
http://schmidt.chem.wisc.edu/montecarlosimulationcodes
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so lute−s o l u t e exponents ( B i i , B i j , B j j )
3 .5105206 3 .6993494 3 .9288490

framework_species
atom_type_parameters ( q , Aexch , Aelec , Aind , Adhf , Adisp , B , C6 , C8 , C10 , C12 , alpha )
9
C1 −0.1639350 612892 .611 229850 .679 −6511.529 −60036.930

0 .000 3 .438 1628 .820002 6821 .530007 44464.989999 193602.980000
0 . 0

H1 0.2637500 8538 .651 1678 .771 −612.739 −502.639
0 .000 3 .778 129 .439978 679 .640001 4995 .299998 0 .000000

0 . 0
C2 −0.3191850 612892 .611 229850 .679 −6511.529 −60036.930

0 .000 3 .438 1628 .820002 6821 .530007 44464.989999 193602.980000
0 . 0

C3 0.4964850 612892 .611 229850 .679 −6511.529 −60036.930
0 .000 3 .438 1628 .820002 6821 .530007 44464.989999 193602.980000

0 . 0
O3 −1.0339500 3398 .424 1965 .168 −182.412 −178.025

0 .000 2 .457 2237 .635879 29956.090890 561056.184030 7451461.601923
0 . 0

C4 0.9468300 263600 .161 112896 .479 −11.681 −2837.170
0 .000 3 .438 772 .870024 2349 .180008 27539.189998 102366.260000

0 . 0
O4 −0.8903225 656757 .170 174054 .351 −45410.640 −33954.271

0 .000 3 .779 1799 .560008 11576.089993 50164.639999 0 .000000
0 . 0

Mg 1.5906500 917 .037 2417 .463 −12542.799 0 .000
0 .000 2 .834 630 .723467 0 .000000 0 .000000 0 .000000

0 . 0
Du 0.0000000 29176 .333 0 .000 142260 .481 0 .000

0 .000 3 .973 0 .000000 0 .000000 0 .000000 0 .000000
0 . 0
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4.B Simulation Parameters CO2 Adsorption in
Mg-MOF-74

Lattice simulation parameters for CO2 adsorption in Mg-MOF-74. Of particular im-
portance is the ‘orientation_try’ keyword, which is necessary to sample the specific
binding geometries CO2 adopts when binding to the open-metal site. These simula-
tion parameters should be read in as input into our group’s lattice simulation code,
see http://schmidt.chem.wisc.edu/montecarlosimulationcodes for details.

Listing 4.2: simulation_parameters.pmt
Simulat ion Methodology
energy_decomposition yes ! yes f o r our f o r c e f i e l d s , no f o r UFF LJ , e t c

.
s o l u t e _ c r o s s _ p a r a m e t e r _ s e t yes ! t h i s should be s e t to yes i f using d i f f e r e n t

s o l u t e parameters
! f o r solute−s o l u t e and solute−framework i n t e r a c t i o n s as in our f o r c e f i e l d s ,

no otherwise
C8_10_dispersion_terms yes ! s e t to yes i f using C8 , C10 dispers ion terms

as in our f o r c e f i e l d s
C12_dispersion yes
e l e c t r o s t a t i c _ t y p e pme ! e i t h e r "pme" f o r p a r t i c l e−mesh ewald , "

c u t o f f " , or " none "
l j_comb_rule ZIFFF ! " opls " or " standard " f o r l j , " standard " or "

ZIFFF " f o r bkghm

Simulat ion Parameters
temperature 296 .0 ! temperature in Kelvin
t o o _ c l o s e 1 . 8 ! r e j e c t move i f molecules are within

t h i s separa t ion in Angstroms .
! h e l p f u l to avoid unnecessary energy c a l c u l a t i o n s and to prevent drude

o s c i l l a t o r c a t a s t r o p h e s
lj_bkghm 1 ! 1 f o r bkghm f o r c e f i e l d , 2 f o r l j
screen_type 1 ! screening f o r coulomb p o t e n t i a l : 0 = no

screening , 1 = Tang−Toennies type screening f o r our f o r c e f i e l d s
spr ingconstant 0 . 1 ! spring constant f o r drude o s c i l l a t o r s (

au ) . s e t to 0 . 1 f o r our CO2/N2 f o r c e f i e l d s
t h o l e 2 . 0 ! t h o l e parameter f o r i n t r a−molecular

drude o s c i l l a t o r screening . Set to 2 . 0 f o r our CO2/N2 f o r c e f i e l d s .
drude_simulation 1 ! s e t to 1 i f drude−o s c i l l a t o r s are being

used , 0 otherwise
pme_grid 100 ! s i z e of the pme grid
a lpha_sqr t 0 . 6 ! alpha s q r t f o r the e l e c t r o s t a t i c

http://schmidt.chem.wisc.edu/montecarlosimulationcodes
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i n t e r a c t i o n s
l j _ a s q r t 0 . 6 ! alpha s q r t f o r the pme dispers ion
l j _ c u t o f f 7 . 5 ! c u t o f f f o r long range LJ or C6 , C8 , C10

dispers ion i n t e r a c t i o n s
ewald_cutoff 5 . 0 ! c u t o f f f o r r e a l space pme
cav_grid_a 30
cav_grid_b 30
cav_grid_c 30
n a _ n s l i s t 30 ! neighbour l i s t searching grid
n b _ n s l i s t 30 ! neighbour l i s t searching grid
n c _ n s l i s t 30 ! neighbour l i s t searching grid
o r i e n t a t i o n _ t r y 2000 ! max number of o r i e n t a t i o n samplings
REL_THRSH 0 . 0 5 ! sampling threshold
ABS_THRSH 3 . 0
BZ_CUTOFF 100 .0



Part III

Practical Matters

158



159

5 applied force field development: electronic
structure benchmarks and monomer property
calculations

The challenge for current and future work on force-field development
is to improve the form of the potential energy function, to improve the
methodology used in determining the potential energy parameters, and
to use these advances to generate improved potential energy functions.
[…] That these force fields differ substantially in form and in manner of
derivation serves to emphasize that force field development is still as
much a matter of art as of science. Someday, consensus on the form and
manner of parameterization of molecular force fields may exist, but for
now much remains to be learned.

— TA Halgren, 1995, adapted from Ref. 300

More than twenty years later, Halgren’s perspective on biomolecular force field
development remains suprisingly prescient, and the same challenges felt by early
force field developers continue into the present day. The current scope of force field
development is vastly complex, and Halgren’s dream of ‘consensus’ in functional
form and parameterization methodologies has yet to be realized, especially in com-
paring the fundamentally different approaches used in parameterization of either
empirical or ab initio force fields. Despite these differences, real progress has been
made to improve and standardize force field development within certain categories
(empirical, ab initio, etc.) of development methodologies.54,75,225,301,302 With ab initio
force field development, for example, promising commonalities have emerged
in how scientists tend to formulate and parameterize new molecular models.82

Explicit polarization, originally a cost-inefficient and understudied model, is now
becoming commonplace in intermolecular force fields,63 and accurate, distributed
multipolar descriptions of electrostatics seem poised to become broadly employed
over the next decade.64,67,70,130,227,229,303 Systematic methods for obtaining distributed
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dispersion models have been developed within the past decade, and are constantly
being improved for general use in molecular simulation.4,83,91,92,210 Even with mod-
els for short-range interactions, where there is less consensus in terms of which
functional form(s) and parameterization schemes should be used, many have begun
the process of including physically-meaningful terms to describe charge penetra-
tion,60–62,100,131,245,304–307 exchange-repulsion,96,147 charge transfer,98,155,245,308,309 and
anisotropic effects.54,54,91,92,100,128,152,154,209,210,222,229,234,235,242–248,264

Building on the concepts from Chapters 2 and 3, our overarching goal in the
next two Chapters is to discuss the current state of ‘consensus’ regarding functional
forms, parameterization methods, and best practices within the limited scope of
SAPT-based force field development. Here the focus will be on both the ‘scientific’
and ‘artistic’ elements of this force field development methodology, particularly as
it pertains to MASTIFF (Chapter 3) and related models (Chapter 2). As discussed
below, and to use Halgren’s terminology, for some asepcts of the MASTIFF devel-
opment methodology there is good ‘consensus’ as to the required functional forms
and the manner in which these forms should be parameterized. In these cases of
general consensus, a somewhat black-box workflow is possible for developing new
MASTIFF models, and our first goal in these Chapters is to detail the ways in which
recently developed software tools can automate such tasks in the course of routine
force field development.

For other aspects of force field development, such as with models for multipolar
electrostatics (Sections 5.5.2 and 6.3.3), there can remain pratical limitations which,
depending on the specific application and molecular simulation package used,
may requite alternative, and potentially less accurate, strategies for force field
development. For these areas, a second goal in these Chapters is to outline, both
conceptually and in practice, guidelines for force field development restricted by
computational cost considerations and/or software limiations.

Lastly, there remain select elements of force field development (namely the
induction models discussed in Sections 5.5.5 and 6.3.4) for which there has not yet
been established a ‘consensus’ or set of best practices for force field development,
either in a theoretical or practical sense. Such aspects of force field development will
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need to be the subject of future work (see Chapter 7), both in our group and across
the scientific community. In the meantime, our third and final goal in the next
Chapters is to discuss the ambiguities involved in these ‘non-consensus’ aspects of
force field development, and we offer some practical modeling recommendations
and software tools to assist in both present and future ‘next-generation’ force field
development.

5.1 Overview of SAPT-based Force Field
Development

As discussed in Chapter 1, our SAPT-based force field methodology principally
relies on modeling two-body interactions for a given system of interest. These two-
body (i.e. dimer) interactions are completely defined by the positions and relative
orientation of the two constituent monomers, and in practice we parameterize the
two-body model based on benchmark SAPT energies for a series of gas-phase dimer
configurations.∗ We are usually interested in obtaining transferable parameters
for a new molecule or atomtype, in which case it is often easiest to model the
interactions between two identical monomers (a so-called homo-monomeric dimer
interaction).† Still, there are reasons why it can be advantageous to instead study
hetero-monomeric dimer interactions, and the development strategies described

∗ At first, it may seem counter-intuitive to focus so heavily on modeling the energetics of gas-
phase dimers. After all, aren’t we interested in simulating a wider variety of chemically-relevant
systems, including homogeneous and heterogeneous liquids, solids, and super-critical phases? This
apparent discrepancy can be resolved by looking at the many-body expansion (MBE) described
in Chapter 1. From this expansion, we see that any system can be modeled as a sum of two- and
many-body interactions, with the two-body interactions plus N-body polarization (an energy term
which we obtain automatically in Section 5.5.5) accounting for upwards of 90 − 95% of the total
N-body energy.4 Consequently, and regardless of whether we are ultimately interested in studying
a homogeneous liquid or a heterogeneous supercritical phase, for ab initio force field development
it’s critical that we develop and parameterize accurate models for all two-body interactions. Thus
in practice, our focus is often on developing new and improved force fields for gas-phase dimer
interactions, always with the goal of using the MBE to run simulations on any N-body system of
interest.
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herein apply equally to studying both homo-monomeric and hetero-monomeric
dimer interactions.

Regardless of the chosen dimer of study, modeling a two-body PES requires
us to address two major challenges. First, we must obtain benchmark two-body
energies for a series of well-chosen dimer configurations. Second, we must calculate
and/or fit all force field parameters so as to completely develop a force field for
the two-body interaction energies. For the SAPT-based force fields described in
Chapters 2 and 3, these challenges are treated according to the following Workflow:

†In general, force field development based on homo-monomeric interactions involves the fewest
atomtypes (and thus the fewest number of free parameters!), and is to be preferred. On the other
hand, hetero-monomeric-based force field development can yield the best accuracy for studying
specific systems where either transferability is difficult (see Chapter 4 for an example) or where
computational expense is an issue. (Running large-basis-set SAPT calculations on the napthalene
dimer, as an example, is currently infeasible, whereas benchmark calculations on napthalene-Ar
interactions are affordable.)
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I) Obtain benchmark two-body energies

1) Generate a series of well-chosen dimer configurations (see Section 5.2)

2) Calculate DFT-SAPT benchmark energies for all dimer configurations
from the previous step (see Section 5.3)

3) Optionally (depending on system size and the accuracy of DFT-SAPT
for the chosen system), calculate CCSD(T) or CCSD(T)-f12 benchmark
energies in order to correct the DFT-SAPT energies above (see Section 5.4)

II) Parameterize the two-body PES

1) For each unique monomer, obtain the following monomer-specific pa-
rameters:

i. Multipole moments, Q (see Section 5.5.2)
ii. ISA Exponents, B (see Section 5.5.3)

iii. Dispersion Coefficients, Cn (see Section 5.5.4)
iv. Induced Dipole Polarizabilities, α (see Section 5.5.5)

2) Obtain all remaining force field parameters by fitting a chosen force field
functional form to the two-body benchmark energies from Step I) (see
Chapter 6)

3) Validate the final force field by comparison to both ab initio theory and
experiment

The entire force field development process has been made reasonably ‘black-box’,
and can be carried out via a handful of input files and easy-to-use run scripts. This
semi-automated workflow for SAPT-based force field development is available for
download at https://github.com/mvanvleet/workflow-for-force-fields, and
should be sufficient for most routine force field development. Installation and
usage instructions are included on the website, and are also reprinted in Fig. A.1
for conveninece. The remainder of this Chapter is designed to give new users a

https://github.com/mvanvleet/workflow-for-force-fields
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sense of the theory and practice involved in using Steps I and II.1 of the Workflow,
whereas issues related to the final force field optimization and validation (Step II.2
– II.3) will be subject of Chapter 6.

5.2 Geometry Generation

5.2.1 Guiding Principles

For any given monomer(s) of interest, the first step in the force field development
process is to choose a series of optimal dimer configurations. This ‘optimal’ set is
highly dependent on the type of force field that is being fit, and indeed the recom-
mendations offered below are specific to the SAPT-based force fields described in
Chapters 2 and 3.

In general, and as shown in Fig. 5.1, a given PES will have (qualitatively) three
different regions: a repulsive wall, a minimum energy region, and an asymptotic
region. (Energies in the asymptotic region are usually attractive, but are sometimes
repulsive due to unfavorable electrostatic interactions). Based on the principles of
statistical mechanics and the Boltzmann distribution, we know that (for a system
at constant temperature T ) the probability Pi of observing a system in state i is
exponentially-dependent on the energy of that state:310

Pi ∝ exp(−Ei/kBT) (5.1)

where kB is the Boltzmann constant.
Due to the exponential relationship between the energetic stability of a given

state and the probability of experimentally observing said state, routine molecular
simulation will most frequently sample dimer configurations near the minimum energy
and asymptotic regions of the potential.∗ Consequently, these two portions of the PES
are the most important to accurately model with a force field. Nevertheless, and

∗ Although it’s straightforward to see why the minimum energy region gets sampled in molecular
simulation, the importance of the asymptotic region may be hard to understand simply by looking
at Eq. (5.1) and the 2-body PES shown in Fig. 5.1. We should recognize, however, that the two-
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Figure 5.1: Generalized form of a PES showing the repulsive wall, minimum energy,
and asymptotic regions of the argon dimer. Cutoffs between the different regions
should be taken qualitatively.

as discussed in Section 5.5, the asymptotic region of the PES primarily depends
on well-known functionals forms whose parameters are calculated from monomer
properties, making the dimer-based fits described in Chapter 6 relatively insen-
sitive to inclusion of configurations in this region.∗ By contrast, the force field
parameters we directly fit to the dimer PES are primarily sensitive to the shape and
body energy of an N-body system is determined both by nearest neighbor interactions (whose
configurations are typically in the minimum energy region of the 2-body PES) and by the more
distant, non-nearest neighbor interactions (whose configurations lie in the asymptotic region). The
number of non-nearest neighbor interactions outweigh the closer-contact interactions, which in
turn makes both the minimum energy and asymptotic regions of the potential important to correctly
model.

∗By contrast, other functional forms (e.g. Lennard-Jones) do have parameters that effect the
asymptotic region, and for these force fields it would be important to include this region in the
parameterization process.
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location of the repulsive wall and (to a lesser extent) the minimum energy regions.
Consequently, and based on the combination of their observation probability in
molecular simulation as well as their importance in the improving the force field
fitting process, dimer configurations along the repulsive wall and (even more importantly)
in the minimum energy region are the most important to parameterize in order to develop
highly-accurate force fields.∗

In practice, a standard procedure for optimally sampling across the PES has
been established for the Slater-ISA FF and MASTIFF force fields. Though use of
different functional forms might require a different relative sampling of the dimer
PES, the next sections completely outline the theory and practical calculations that
are involved in generating dimer configurations for the development of Slater-ISA
FF and MASTIFF force fields.

5.2.2 Theory

Assuming rigid monomer geometries, a dimer configuration can be completely
determined (without loss of generalization) by fixing the center of the first monomer
at the origin and by placing the second monomer according to six variables. r,
θ, and φ determine the position of the center of the second monomer, and the
three-dimensional variable Ω determines the relative orientation of this second
monomer about its center. In practice,Ω is most easily described by a quaternion,
and the interested reader is referred to Ref. 311 for details.

For both the Slater-ISA FF and MASTIFF fits, dimer configurations are sampled
psuedo-randomly using Shoemake’s algorithm,184 which ensures even sampling of
the dimer configurations. Additionally, and in order to achieve a proper balance of
sampling between the repulsive wall and minimum energy regions, and in order

∗Historical note: For force field functional forms which poorly model the repulsive wall (e.g.
Lennard-Jones force fields or the Born-Mayer-IP FF described in Chapter 2), the force field fit quality
strongly depends on the relative representation of repulsive and attractive dimer configurations,
and including either too few or too many repulsive configurations can be problematic. Only with
the advent of Slater-ISA FF and MASTIFF is the fit quality strictly improved by including repulsive
configurations.
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to largely prevent the asymptotic region from being sampled, the following dimer
configurations are excluded from sampling:

1. Configurations with any atom-atom contact distance rij 6 0.8× (rvdw
i + rvdw

j ),
where rij is the contact distance and rvdw is the tabulated van der Waals radius
for a given element

2. Configurations with all atom-atom contact distance rij > 1.3× (rvdw
i + rvdw

j ).

A working code for this sampling algorithm has been developed and is described
in the next Section. Given the large number (≈ 1000) of points we typically sample
for each new force field, this simple sampling algorithm is usually sufficient for
obtaining high-quality force fields. In the future, however, it may be worthwhile to
adopt more sophisticated and efficient sampling algorithms, as this might allow us
to substantially reduce the number of required dimer configurations.84

5.2.3 Practicals

Insofar as user input is concerned, generating dimer configurations is reasonably
straightforward. After downloading the Workflow from GitHub, the user will have
access to the following subdirectories:
$ l s
documentation input s c r i p t s templates

The three required input files for geometry generation – input/dimer_info.dat,
input/generate_grid_settings.inp, and input/<mona>_<monb>.inp – are listed
in Listings 5.1 to 5.3 using the pyridine dimer as an example. (Here and throughout,
we use angle brackets to indicate required arguments.) Each input file may need
to be modified for the specific dimer under consideration, and comments within
these input files explain any necessary system-specific changes.

Once all required input files have been created/modified, the geometry genera-
tion process can be carried out very simply from the main Workflow directory by
executing the command
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./ s c r i p t s /make_geometries . sh

5.3 SAPT Benchmarks

After geometry generation, the next step in the Workflow is to run benchmark
DFT-SAPT calculations on all dimer configurations. For a detailed analysis of
SAPT, and DFT-SAPT in particular, the reader is referred to Refs. 79–81. DFT-
SAPT calculations can be performed in a fairly black-box manner using the Molpro
software, though the following points are worth note:

1. For best accuracy, and as described in Ref. 167, monomer DFT calculations
need to be asymptotically-corrected (AC) in order to achieve best accuracy.
This asymptotic correction is computed as the difference between the HOMO
and the vertical ionization potential for each monomer, and can be calculated
automatically by running the command
./ s c r i p t s /submit_ ip_ca lcs . py

(The calculation takes only a few minutes for small molecules, but may take
longer for larger systems.) Importantly, the HOMO calculation should be
computed using the same basis set as the DFT-SAPT calculations themselves.

2. Accurate SAPT dispersion energies generally require use of midbond func-
tions, as described in Ref. 167. Locations for the midbond functions can be
specified in the dimer_info.dat file. For most small molecules (such as those
described in Chapter 2), it is often sufficient to place a single midbond at
the midpoint between each monomer’s center of mass. For larger molecules,
additional midbonds (especially ones near close-contact interaction sites) may
be required.

3. The included workflow assumes an aVTZ+m basis set (where the +m rep-
resents the midbond functions). This is generally of sufficient accuracy for
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most systems, though an aVQZ+m basis set should be used when possible to
ensure convergence of the DFT-SAPT dispersion energies.

Once the appropriate midbond functions have been added to the dimer_info.dat
input file, and the AC calculations have finished, the DFT-SAPT input files can be
generated by executing the command
./ s c r i p t s / m a k e _ s a p t _ i f i l e s . py

The resulting input files can then be run using the Molpro software, either in
serial or in parallel. Care should be taken to ensure that multiple calculations do not end
up on the same compute note, as this can often result in i/o caching issues and reduced
computational efficiency.

5.4 CCSD(T) Calculations

When affordable, CCSD(T) calculations should be run on (at least a subset of)
the dimer configurations, both in order to benchmark the DFT-SAPT energies
and to provide a δCCSD(T) correction for later force field fitting. Recently, an
explicitly-correlated CCSD(T)-f12 method has been proposed, which for practical
purposes is identical to CCSD(T) but with faster basis set convergence.265 Usually
CCSD(T)-f12a/aVTZ+m is an excellent approximation of the CCSD(T)/CBS limit.
The input files for CCSD(T)-f12/aVTZ+m calculations can be set up by executing
the command
./ s c r i p t s / m a k e _ c c s d t _ i f i l e s . py

and by running each input file using the Molpro software package.

5.5 Monomer-Based Parameterization

The next step in the Workflow (which in practice can be accomplished as the DFT-
SAPT calculations are running) is to compute the various force field parameters
which only depend on the identities of the individual monomers themselves. The
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following subsections describe the calculations of multipole moments (Section 5.5.2),
short-range exponents (Section 5.5.3), dispersion coefficients (Section 5.5.4), and
induced dipole polarizabilities (Section 5.5.5). First, however, we outline the scope
and useful features of the CamCASP software used to perform these monomer
property calculations.

5.5.1 Distributed Property Calculations using CamCASP

CamCASP is a collection of scripts and programs useful for (among other things) the
calculation of distributed multipoles and polarizabilities.85 Of particular importance
is the choice of distribution method, as this determines how the various molecular
properties of interest should be mapped onto corresponding atom-in-molecule
properties. Currently, two main distribution (or ‘charge partitioning’) schemes are
available in CamCASP: DMA89 and Iterated Stockholder Atoms (ISA).86 The theory
behind the ISA procedure has already been detailed in Chapter 1, and monomer
property calculations using DMA are described in Refs. 81, 89, 90. In general, and
where available, ISA-based properties are to be preferred, and we recommend an
ISA-based parameterization scheme for obtaining multipoles and atom-in-molecule
exponents. A DMA-based method is currently required for obtaining dispersion co-
efficients and static polarizabilities, though ISA-based strategies for these properties
are under active development and (in the case of dispersion) are discussed in Sec-
tion 5.5.4. A complete overview of available property calculations and distribution
schemes, along with relevant references, is given in Table 5.1.

5.5.2 Multipoles

Practicals

ISA-based multipoles are described in detail in Ref. 86, and can be calculated using
the CamCASP software. To set-up the ISA calculations, execute the command
./ s c r i p t s / m a k e _ i s a _ f i l e s . py
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Property Parameterization Scheme
ISA DMA

Multipoles Section 5.5.2 –
Ref. 86 Ref. 81, 89

Exponents Section 5.5.3 –Ref. 96

Dispersion Coefficients Section 5.5.4 Section 5.5.4
– Ref. 83

Dipole Polarizabilities – Section 5.5.5
Ref. 83

Table 5.1: Overview of ISA- and DMA-based methods for obtaining distributed
monomer properties. Details for each monomer parameterization are given in the
listed section and/or reference.

which creates the necessary ISA files for calculating both distributed multipoles
and exponents (see Section 5.5.3). After running these calculations (a process which
may require several hours, depending on the molecule), the multipole parameters
can be extracted by running
./ s c r i p t s /workup_isa_charges . py

This work-up script produces several output files,

<monomer>_ISA_L4.mom
<monomer>_ISA_L2.mom
<monomer>_ISA_L0.mom

which correspond to multipole moments for various long-range electrostatic models.
Using Stone’s notation,78 the Lx suffix refers to the highest order of multipole
moments (L0 = point charges, L1 = dipoles, L2 = quadrupoles, etc.) included in
the model. The L4 model is output by the CamCASP software package, and the
L2 and L0 models are generated by rank-truncation (that is, zeroing out) of the
higher-order multipole moments. For most routine force field development, the
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L2 model is to be preferred for its balance of accuracy and computational expense.
Next, however, we discuss situations in which different electrostatic models may
be desirable.

Advanced Multipole Parameterization Options

As stated above, for the purposes of obtaining sub- kJ/mol accuracy force fields it is
often important to model the long-range electrostatics using ISA-based multipoles
truncated to no farther than quadrupolar (i.e. ‘rank 2’ or L2)78 contributions. Due
to computational and/or software limitations, however, there exist practical cases
where it becomes advantageous to exclude all higher-order multipole moments.64

In such cases, two different types of long-range electrostatic models are useful.
First, for reasonably isotropic molecules a good option is to rank-truncate the
ISA multipoles to the L0 point charge contributions, thus yielding a so-called
‘atom-centered point charge model’. On the other hand, for more anisotropic
functional groups such as those described in Ref. 217, an atom-centered point
charge model can be insufficiently accurate, making it necessary to model the long-
range electrostatics by including additional ‘off-center/off-site’ point charges. Given
a well-chosen set of off-site charges, an off-center point charge model can reasonably
reproduce the effects of the neglected higher-order multipole moments.236 In the
past, locations for the off-center charges have usually been manually tuned or
optimized in a system-specific manner, though recent work suggests the possibility
of switching to non-empirical methods in order to more easily calculate/optimize
positions for the extra-atom sites.130,303

For atom-centered point charge models, the output of the workup_isa_charges.py
script automatically provides the required rank-truncated multipole file (listed as
<monomer>_ISA_L0.mom in the isa/ sub-directory). Note that, because the <monomer>_ISA_L0.mom
file is given as a simple rank-truncation of the more complete <monomer>_ISA_L2.mom
multipoles, the L0 moments (that is, point charges) are identical between the two
files.

For developing rank-transformed point charge models, Ferenczy et al. has de-
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veloped a method for calculating electrostatic potential-fitted charges, which can be
thought of as a ‘rank transformation’ procedure. The author’s MULFIT program can
be downloaded online at http://www-stone.ch.cam.ac.uk/pub/gdma/index.php,
and documentation for the program is found in the documentation/ sub-directory
of the Workflow. Assuming the mulfit executable is in your $PATH, a basic rank
transformation can be performed using the following steps:
cp templates/mul f i t . inp i s a /<monomer>/OUT/
cd i s a /<monomer>/OUT/
mul f i t < mul f i t . inp

Here the default mulfit.inp file is set to take in the L4 rank multipoles and rank-
transform them to an L0 model. In this case, note that the L0 moments between the
rank-transformed and rank-truncated moments will not be identical, and testing is
required to ascertain which moments yield optimal force field parameters.

The MULFIT program can additionally be used to develop off-site point charge
models. In this case, the input multipole file (default ISA_L4.mom) should be edited
to include the additional sites, and an example of the required syntax is given in
documentation/examples/ISA_L4_offsites.mom for a 4-site water model. Impor-
tantly, the MULFIT program does not help optimize the position(s) of the off-site
charge(s), and thus the task of choosing the number and position(s) of the off-site(s)
is left to the user.

After fitting multipole parameters with the MULFIT program, the program
output gives two indications of fit quality. First, the agreement between the total
reference and fitted multipoles moments is listed, and this should be taken as a
primary indication of multipole quality. Second, the program gives a ‘Goodness of
fit’ parameter, expressed as an energy. While difficult to interpret in an absolute
sense, in comparing different rank-transformed models we have generally found
that models with lower ‘Goodness of fit’ parameters yield better force field fits.

5.5.3 ISA Exponents

As described in Chapters 1 and 2, the ISA procedure produces a set of distributed
atom-in-molecule (AIM) electron densities. The orientational average of each of

http://www-stone.ch.cam.ac.uk/pub/gdma/index.php
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these AIM densities, or ‘shape-functions’, are spherically-symmetric quantities that
describe the radial decay of the AIM density.86 As described in Chapter 2, and using
the algorithm detailed in Section 5.B, the shape-functions can be fit to a Slater-type
function in order to yield an isotropic, exponentially-decaying model for the ISA
densities. Importantly, the Slater exponents in this density model directly yield the
exponents necessary to describe short-range effects (such as exchange-repulsion
and charge penetration) in the two-body force field (see Chapters 2 and 6 for details).

Assuming the ISA calculations have already been run to obtain multipole mo-
ments (see previous Section), the ISA exponents can be obtained very simply by
running the command
./ s c r i p t s /workup_isa_exponents . py

The resulting exponents are given in the file isa/<monomer>.exp, which uses a file
format recognized by the Parameter Optimizer for Inter-molecular Force Fields
(POInter) pre-prossessing scripts (see Chapter 6).

5.5.4 Dispersion Coefficients

Theory

Dispersion coefficients can also be determined from distributed molecular (that
is, AIM) property calculations, using either an ISA- or DMA-based approach. The
method for obtaining distributed dispersion coefficients has been described in
detail elsewhere for an assortment of DMA-based approaches,78,81,83,91,92,142 and
Ref. 81 in particular provides a useful summary of the different equations and
molecular properties that are needed to derive the types of dispersion models used
in Chapters 2 and 3. In brief, AIM dispersion energies can be obtained by integrating
over distributed frequency-dependent polarizabilities for each monomer, and the
interested reader is referred to Chapter 9 of Ref. 78 for complete details. Under the
simplifying assumption that we can treat these frequency-dependent polarizabilities
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as isotropic, the dispersion energy expression is given by

Eabdisp ≈ −
Cab6
r6
ab

−
Cab8
r8
ab

− . . . (5.2)

for each atom pair, where

Cab6 =
3
π

∞∫
0

ᾱa1 (iω)ᾱb1 (iω)dω, (5.3)

Cab8 =
15
2π

∞∫
0

ᾱa1 (iω)ᾱb2 (iω) + ᾱa2 (iω)ᾱb1 (iω)dω, (5.4)

and higher order terms are defined analagously. Here Cabn are the atom-atom
dispersion coefficients, and ᾱal are the rank l, isotropic, AIM frequency-dependent
polarizabilities. The formalisms involved in evaluating Eqs. (5.3) and (5.4) can be
somewhat involved, but for our purposes the important take-away is the under-
standing that the dispersion coefficients can be entirely determined by calculating
the frequency-dependent polarizabilities for each atom in its molecular environ-
ment.

Although it is straightforward to calculate molecular frequency-dependent polar-
izabilities, a central difficulty in obtaining transferable dispersion coefficients is that,
in order to evaluate Eqs. (5.3) and (5.4), we must have some physically-meaningful
method for calculating atom-in-molecule polarizabilities. Many distribution strate-
gies exist in the literature, and here we focus on two such techniques. First, and as
we have used in Chapters 2 and 3, one can utilize a DMA-based approach to parti-
tion the polarizabilities into AIM contributions. In this case, and due to deficiencies
in the DMA partitioning scheme, the resulting atomic polarizabilities are not al-
ways positive-definite and monotonically-decaying, and this unphysical behavior
can lead to a breakdown in transferable parameterization.91 To correct for this
undesirable behavior, McDaniel and Schmidt have proposed a constrained fitting
procedure whereby atomic polarizabilities can be optimized in an iterative fashion,
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thereby generating transferable atomic polarizabilities at the expense of requiring a
fairly large training set for each unparameterized atomtype (see Section 5.5.4 for
details).

As an alternative to the above iterative polarization partitioning scheme, re-
cently Misquitta has developed an ISA-based partitioning scheme to extract the
atomic frequency-dependent polarizabilities. While this approach requires further
testing, and is not yet published, the resulting ‘ISA-pol’ method appears to lead to
a more physically-meaningful partitioning of the molecular polarizabilities. For
practical purposes, this more physical partitioning enables us to determine trans-
ferable dispersion coefficients without resorting to large training sets. Formalisms
and technical details related to ISA-pol are the subject of Section 5.5.4, and a com-
parison between the two methods for obtaining dispersion coefficients is given in
Section 5.5.4. Finally, each method for obtaining dispersion coefficients requires a
small amount of post-processing, and this is also discussed in Section 5.5.4.

Iterative-DMA-pol

Theory As described in Ref. 81, the iterative-DMA-pol (iDMA-pol) method of
McDaniel and Schmidt performs a constrained optimization of atomtype-specific
frequency dependent polarizabilities by fitting all polarizabilities to reproduce the
so-called ‘point-to-point response’, αPQ. This point-to-point response is a molecular
quantity that describes the change in electrostatic potential at point P due to an
induced change in the electron density of a molecule caused by a point charge
perturbation qQ at point Q. For an isotropic polarizability model,

αPQ = −qQ
∑
a,lm

TPa0,lmᾱ
a
l T
aQ
lm,0 (5.5)

where the T are the spherical harmonic interaction functions described above and
in Ref. 78. Aside from the isotropic polarizabilities ᾱal , all quantities in Eq. (5.5)
are directly calculated in CamCASP, enabling us to fit the isotropic polarizabilities
on the basis of CamCASP property calculations (see Appendix A of Ref. 81 for
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details).

Practicals Using the iDMA-pol method in the Workflow has two software depen-
dencies:

1. The iDMA-pol fiting program itself, which can be downloaded at https://
github.com/mvanvleet/p2p-fitting. Three executables (main_dispersion,
main_drude, and localize.sh) need to be added to your bash $PATH for the
scripts listed in this section to work properly.

2. CamCASP, which can be downloaded from http://www-stone.ch.cam.ac.
uk/programs/camcasp.html. CamCASP also requires several environment
variables to be added to your bash $PATH, and some of these environment
variables are also used by the iDMA-pol fitting program.

and requires two additional input files:

1. input/<monomer>.atomtypes: The iDMA-pol fitting program performs a con-
strained optimization whereby the ᾱal are set to be identical for atoms with
the same atomtype. Consequently, the <monomer>.atomtypes input file is
required to specify the atomtypes in each monomer. This .atomtypes file has
the same format as an .xyz file, with the exception that the element names for
each atom are replaced with a user-defined atomtype. See Listing 5.4 for an
example with pyridine.

2. templates/dispersion_base_constraints.index: As described below, with
iDMA-pol it is usually advisable to only fit one or two atomtype polarizabili-
ties at a time, with the remaining atomtype polarizabilities read in as hard
constraints. The dispersion_base_constraints.index file lists these hard
constraints in a block format,

https://github.com/mvanvleet/p2p-fitting
https://github.com/mvanvleet/p2p-fitting
http://www-stone.ch.cam.ac.uk/programs/camcasp.html
http://www-stone.ch.cam.ac.uk/programs/camcasp.html
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CT
1

7.14483224 7 .11095841 6 .87452508 6 .19718464 4 .87589777
3 .17818610 1 .56461102 0 .51670933 0 .09175313 0 .00367230

2
20 .26394042 20.00584110 17.66562710 14.33668329 12.03179893
11 .49156262 7 .86254302 3 .10936998 0 .53746459 0 .01774391

3
77 .37303638 73.13014787 24.68682297 −13.48390193 0 .40172836
29 .76747226 34.31668916 17.88515654 3 .13260459 0 .10137127

which lists each constrained atomtype along with 10 frequency-dependent
polarizabilities for each polarizability rank (1-3). (CamCASP uses numerical
integration to solve Eq. (5.3), and the 10 polarizabilities per rank correspond
to the frequencies CamCASP needs to perform the numerical quadrature. See
the CamCASP user manual for details.) Each polarizability block should be
separated by a blank line, and the atomtypes listed in the .index file must match
those in the .atomtypes file for any hard constraints to be successfully applied.
Previously-fit atomtype polarizabilities from Ref. 83 are already included in
dispersion_base_constraints.index so as to minimize the number of hard
constraints that the user will need to add manually, and these hard constraints
should be used whenever possible.

Once all required input files have been created, and assuming the IP calculations
from Section 5.3 have already been performed, the CamCASP calculations necessary
to run the iDMA-pol program can be performed by executing the command
./ s c r i p t s /make_dmapol_files . py

and running the resulting input files through the CamCASP software (a process
which can take several hours). Once the CamCASP calculations finish, dispersion
coefficients can be obtained by running the following work-up script:
./ s c r i p t s /workup_dispers ion_f i les . sh

The resulting dispersion coefficients will be listed in the dispersion/<monomer>.cncoeffs
output file.

When generating dispersion coefficients using iDMA-pol, the following sanity-
checks should always be performed:

http://www-stone.ch.cam.ac.uk/programs/camcasp.html
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1. The <monomer>_fit_dispersion.out file lists the number and names of un-
constrained atomtypes. Ensure that the number and type of unconstrained
atomtypes match your expectations, and that the number of fit atomtypes is
kept relatively small (1-2 max). If you need to fit multiple atomtypes simul-
taneously, or you obtain unphysical disperion coefficients (see next point),
you’ll likely need to utilize the iterative fitting algorithm outlined in Ref. 83
or obtain dispersion coefficients from an ISA-based scheme (Section 5.5.4).

2. Dispersion coefficients should always be positive. Any negative dispersion
coefficients are likely a sign of unphysical atomic polarizabilities (see next
point).

3. Phsyically-speaking, the atomic polarizabilities at each rank should be positive
definite, and monotomically-decreasing.78,91 Unphysical behavior (especially
at rank 3) is sometimes unavoidable, but often indicates poor fit quality and
can lead to inaccurate and/or non-transferable dispersion coefficients. Always
check the output .casimir files for the physicality (positive-definiteness and
monatomic-decrease) of the frequency-dependent polarizabilities for each
atomtype and each rank.

Finally, given a set of physical atomic polarizabilities and dispersion coefficients,
dispersion coefficients from the iDMA-pol method can be worked-up using the
post-processing scripts described in Section 5.5.4.

ISA-pol

Theory Rather than iteratively fitting polarizabilities to reproduce the point-to-
point response, with ISA it is possible to compute the atomic polarizabilities directly.
First, note that the frequency-dependent, molecular polarizabilities are given by

αlm,l ′m ′(ω) =

∫ ∫
Q̂lm(r)α(r, r′|ω)Q̂l ′m ′(r

′)drdr′, (5.6)
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where Q̂ are the regular spherical harmonic operators (defined in Appendix A of
Ref. 78) of rank l and orderm, and α(r, r′|ω) is the frequency-dependent density
susceptibility (FDDS), or charge density susceptibility, which measures the change
in charge density at r′ that results from a delta-function change in the electric
potential at point r. From Eq. (1.7), we have that

1 =
∑
a

(
w̄a(r)∑
m w̄

m(r)

)
=

∑
a

p̄a(r), (5.7)

where the bars indicate that we have normalized the atom-in-molecule densities
and weight functions. Substituting this equation into Eq. (5.6), we arrive at an
ISA-based definition of the AIM polarizabilities:

αlm,l ′m ′(ω) =

∫ ∫
Q̂lm(r)α(r, r′|ω)Q̂l ′m ′(r

′)drdr′

=
∑
a

∑
b

∫ ∫
Q̂lm(r)pa(r)α(r, r′|ω)pb(r

′)Q̂l ′m ′(r
′)drdr′

≡
∑
a

∑
b

αablm,l ′m ′(ω)

(5.8)

While this formula bears similarity to DMA-based polarization approaches,91,92

the advantage of Eq. (5.8) is that the AIM polarizabilities are defined in a physically-
meaningful and transferable manner. Consequently, with little refinement these
ISA-based polarizabilities (ISA-pol) can be used to directly obtain transferable
dispersion coefficients for individual atom-in-molecule, all without recourse to the
iterative fitting process required in Section 5.5.4.

Practicals The ISA-pol method has been completely implemented as of CamCASP-
6.0, though the input scripts are (as of this writing) still in beta. Consult the Cam-
CASP user manual or contact Professor Alston Misquitta for up-to-date details and
required input files.

http://www-stone.ch.cam.ac.uk/programs/camcasp.html
http://www-stone.ch.cam.ac.uk/programs/camcasp.html
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Comparison between iDMA-pol and ISA-pol

Preliminary results for the ISA-pol method, tested on the 91 dimer test set from
Chapter 2, appear to be of similar accuracy compared to the iDMA-pol method,
though both methods appear to have their own strengths and weaknesses when it
comes to obtaining dispersion coefficients for different atomtypes. A comparison
between the two different methods is given in Table 5.2. Overall, ISA-pol appears
to give more physically-meaningful atomic polarizabilities, whereas an isotropic
iDMA-pol description is (for anisotropic systems) sometimes a better ‘effectively
anisotropic’ model.∗

Dispersion Coefficient Post-processing

Regardless of which distribution method is used, some post-processing is needed
to transform the ISA-pol/iDMA-pol coefficients into optimal dispersion force field
parameters. In particular, while the DFT-SAPT energies from Molpro and Cam-
CASP should agree, in practice the different software packages use different kernels
(ALDA+LHF and ALDA+CHF, respectively) to calculate the linear response func-
tions. Consequently, this means that the dispersion coefficients calculated in Cam-
CASP are intended to reproduce the CamCASP-calculated DFT-SAPT dispersion
energies, but may only be approximately accurate for Molpro-calculated DFT-SAPT
dispersion energies.† In practice, the CamCASP-calculated dispersion coefficients
slightly underestimate the Molpro dispersion energies, and the coefficients need
to be scaled (usually by a factor of 1.03 – 1.10, depending on the atomtype) to
reproduce the Molpro energies. This scaling can be carried out by executing the
command

∗ A main difference between the iDMA-pol and ISA-pol coefficients is that iDMA-pol fits more
strongly to the point-to-point (p2p) response function, whereas ISA-pol coefficients are set to the
values calculated as in Section 5.5.4. Consequently, iDMA-pol is able to perform better as an
‘effectively anisotropic’ model. In principle, changing the defaults in CamCASP to use weight type
4 (which uses dipole-dipole terms as anchors, but completely fits higher ranking terms and thus fits
the p2p better) or 3 (uses all terms as anchors) and a weight coefficient of 1e-5 (rather than 1e-3)
should yield dispersion coefficients more similar to iDMA-pol, though this idea requires further
testing.



182

iDMA-pol ISA-pol
Ease of Parameterization

• For systems with a single (or pos-
sibly two) unparameterized atom-
type(s), straightforward to param-
eterize new atomtypes

• For systems requiring dispersion
coefficients for several unparam-
eterized atomtypes, requires a li-
brary of systems containing these
atomtypes, and an iterative proce-
dure to fit the new atomtypes

• Straightforward for all molecules,
regardless of number of unparam-
eterized atomtypes

Physicality of the Distributed Polarizabilities

• Polarizabilities tend to be positive-
definite and monotonically-
decaying at low rank, but not
always for rank 3

• Physicality is highly-dependent
on the quality of previously pa-
rameterized atomtypes

• With few exceptions, polarizabil-
ities are positive-definite and
monotonically-decaying at all
ranks

Accuracy of the Dispersion Coefficients

• Good to excellent accuracy for
atomtypes which have been fit to
a reproduce large library of molec-
ular systems

• Fair accuracy for certain atom-
types (such as chlorine or
bromine) not parameterized to
an extensive library

• For anisotropic systems (such
as CO2), tends to give a better
isotropic description than ISA-pol
– we hypothesize that this is a re-
sult of directly fitting the point-
to-point response, leading to an
‘effectively-anisotropic’ model

• Good to very good accuracy for
all tested systems, regardless of
what atomtypes are represented

• Isotropic dispersion coefficients
tend to give worse accuracy for
anisotropic systems compared to
iDMA-pol, whereas anisotropic
dispersion models (see Chapter 3
based on ISA-pol are of similar ac-
curacy to the iDMA-pol method

Table 5.2: Comparison between the iDMA-pol and ISA-pol methods.
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./ s c r i p t s / g e t _ s c a l e d _ d i s p e r s i o n . py < s c a l e _ f a c t o r >

where <scale_factor> is chosen to reproduce the asymptotic Molpro DFT-SAPT
energies (see Chapter 6 for details). This choice may require some testing, but 1.10 is
usually a good default. The above script outputs files dispersion/<monomer>.disp,
which can be used as input to the POInter program discussed in Chapter 6.

5.5.5 Polarization Charges

Theory In addition to frequency-dependent polarizabilities, some of the same
techniques described in Section 5.5.4 can be applied to obtain the static polarizabil-
ities that get used in modeling the SAPT induction energy. Though in principle
ISA-based polarizabilities could be used, this technique has not yet been developed.
Instead, an iDMA-pol-type procedure can be used to extract the necessary polar-
ization parameters. The algorithms used to perform this procedure are described
in Appendix A of Ref. 81. Due to the reduced number of coefficients that need to
be fit, this optimization is generally more robust, and leads to more transferable
parameters than do the algorithms described in Section 5.5.4.

Practicals The drude oscillator fitting code has the same dependencies and input
files as iDMA-pol, with the exception that the dispersion_base_constraints.index
file is replaced with the following constraint file:

1. drude_base_constraints.index: As with iDMA-pol, it is usually advisable
to only fit a few atomtype static polarizabilities at a time, with the remaining

† Additional reasons for discrepancies between CamCASP and MOLPRO dispersion coefficients
include the following:

1. For PBE calculations, CamCASP uses ALDA with PW91c correlation, whereas Molpro uses
VWN

2. CamCASP writes kernels completely in the auxiliary basis set, whereas Molpro writes the
kernel in a variety of basis sets
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atomtype polarizabilities read in as hard constraints. The drude_base_constraints.index
file lists these hard constraints in a block format,
C
1
0 . 0

N
1
−11.7529643

H
1
−1.254

which lists each constrained atomtype along with the rank 1 static polar-
izabilities. Each block should be separated by a blank line. Unlike with
the generation of dispersion coefficients, an initial guess must be given for
all atomtypes in the <monomer>.atomtypes input file. The format for the
drude_base_constraints.index is such that positive polarizabilities corre-
spond to these initial guesses, whereas zero or negative entries for the polar-
izabilities indicate that the atomtype should be treated as a hard constraint.
Previously-fit atomtype polarizabilities from Ref. 83 are already included in
drude_base_constraints.index so as to minimize the number of hard con-
straints that the user will need to add manually, and these hard constraints
should be used whenever possible.

Assuming that the iDMA-pol calculations have already been run in CamCASP,
the drude oscillator coefficients can be obtained simply by executing
./ s c r i p t s /workup_drude_files . sh

As with the dispersion coefficients, care should be taken to ensure that the resulting
drude oscillator charges are physically-meaningful (i.e. negative).
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5.6 Dimer-Based Parameterization

After obtaining monomer parameters for a given system of interest, the final task is
to fit the remaining force field parameters to reproduce the DFT-SAPT calculations
performed earlier in the Workflow. Dimer-based parameterization is carried out by
the POInter program, which will be the subject of the next chapter. The Workflow
is useful for preparing input files for this dimer-based parameterization, as follows:
./ s c r i p t s /workup_sapt_energies . py
./ s c r i p t s / g a t h e r _ p o i n t e r _ i n p u t _ f i l e s . py

For modeling off-site point charges, the following additional steps are required
(assuming the offites .xyz file has already been added to the input directory):
cd geometries
mkdir xyz
mv ∗ xyz
cd . . /
./ s c r i p t s / g e t _ s a p t _ f i l e _ w i _ o f f s i t e s . py

The output of these scripts will generate a .sapt file (containing results from the DFT-
SAPT calculations, with atomtype labels taken from each input/<monomer>.atomtypes
file) and a new directory, ff_fitting, which automatically sets up all of the input
files and monomer parameters needed to easily run the POInter fitting code. The
theory and practice of the POInter fitting code is the subject of the next chapter,
however in practice the software can be run very simply by modifying the required
input files (see Section 6.2 for details) and running
cd f f _ f i t t i n g
( modify input s c r i p t s )
./ run_pointer . py

5.A Input Scripts

In total, the workflow for force field development requires four input files, as
follows:

Listing 5.1: generate_grid_settings.inp
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# Generate Grid S e t t i n g s f i l e . Version 0 4 . 2 8 . 1 5
#
# General Scan Parameters :
n_points 1000 # Number of grid points ( . xyz f i l e s ) to output
geometry_f i le pyr idine_pyr idine . inp #name of geometry f i l e
output_name pyridine_pyr idine # output f i l e base name

# Hard Sphere c u t o f f parameters :
#
# Parameters below are used to def ine minimum and maximum a c ce p t ab l e d i s t a n c e s
# f o r neighbor−neighbor i n t e r a c t i o n s . ’ cutof f_ type ’ can e i t h e r be s e t to
# ’ absolute ’ or ’vdw ’ . In the former case , the hard sphere c u t o f f w i l l be s e t
# to the absolute d i s t a n c e s ( in Angstroms ) given by cutoff_min and cutoff_max ,
# r e s p e c t i v e l y . In the l a t t e r case , the hard sphere c u t o f f w i l l be s e t to a
# f r a c t i o n of the Van der Waals d i s t a n c e between two atoms .
c u t o f f _ t y p e vdw # e i t h e r vdw or absolute
cutoff_min 0 . 8 # a p o s i t i v e f l o a t ( ex . 0 . 8 f o r vdw or 2 . 0 f o r abso lute )
cutoff_max 1 . 3 # a p o s i t i v e f l o a t ( ex . 1 . 2 f o r vdw or 6 . 0 f o r abso lute )

# The fol lowing are parameters def in ing the c e n t e r s of monomer ’ s a and b as well as the
scan

# vec tor .
#
# The ’ center ’ of each monomer i s defined by d e f a u l t to be each
# monomer ’ s c e n t e r of mass , but can a l s o be s e t to be e i t h e r the c e n t e r of an
# atom or a point in 3−space ( r e l a t i v e to monomer coordinates given in input
# geometry f i l e ) .
mona_origin_type 1 # choose 0 f o r c e n t e r of mass (COM) , 1 f o r atom # , and 2 f o r a

s p e c i f i c point
mona_origin 6 # ( e i t h e r ’COM’ , point x , y , z , or atom# in monomer ( indexing

s t a r t s a t 1 ) , depending on choice of mona_origin_type above )
monb_origin_type 1 # choose 0 f o r COM, 1 f o r atom # , and 2 f o r a s p e c i f i c point
monb_origin 6 # ( e i t h e r ’COM’ , point x , y , z , or atom# in monomer ( indexing

s t a r t s a t 1 ) , depending on choice of mona_origin_type above )

# The scan vec tor should be a vec tor ( given r e l a t i v e to the coordinates in
# monomer a ) t h a t de f ines the d i r e c t i o n of i n t e r n u c l e a r seper a t ion between the
# two monomers . I t can e i t h e r be given as a 3−membered l i s t or by l i s t i n g two
# monomer i n d i c e s ( scan vec tor w i l l point from atom1 to atom2 , indexing s t a r t s a t 1 ) .
scan_vector_type 0 # choose 0 f o r monomer indices , 1 f o r a s p e c i f i c point
scan_vector 9 ,6 # Give e i t h e r as a 2 ( i f scan_vector_type ==0) or a 3 ( i f

scan_vector_type ==1) membered ,
# comma seperated l i s t without spaces , i . e . ’ 1 . 0 , 2 . 7 , 4 . 2 ’ ( no

quotes )

# Set bounds on moving the c e n t e r of monomer b r e l a t i v e to the c e n t e r of
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# monomer a . min/max_r r e f e r s to the d i s t a n c e between the centers , while t h e t a
# and phi correspond to the azimuthal and polar angles , r e s p e c t i v e l y , of
# r o t a t i o n about the vec tor scan_vector ( given above ) .
#
# Give min/max angles as e i t h e r i n t e g e r s / f l o a t s in terms of pi ( i . e . s e t t i n g
# ’ max_theta 2 ’ ( no quotes ) w i l l y i e l d max_theta=2 pi ) .
min_r 2 . 0
max_r 8 . 0
min_theta 0
max_theta 2
min_phi 0
max_phi 1

Listing 5.2: dimer_info.dat
# #########################
# DIMER INFORMATION FILE #
# #########################

# S t r i n g names f o r monomers A and B :
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MonA_Name pyridine
MonB_Name pyridine

# Charges f o r monomers A and B :
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MonA_Charge 0
MonB_Charge 0

# Midbond p o s i t i o n ( s ) ; two i n t e g e r s i n d i c a t i n g atom i n d i c e s ( indexed from 1)
# on monomers A and B , r e s p e c t i v e l y , between which to place the midbond s i t e .
# In l i e u of an integer , COM can a l s o be used to i n d i c a t e the c e n t e r of mass
# of the monomer .
# Mult iple arguments can be given to produce mult ip le midbond f u n c t i o n s .
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

midbond com com

Listing 5.3: pyridine_pyridine.inp
Pyridine Dimer ; Optimzed with PBE0/cc−pVTZ Gaussian03 by AJ Misqui t ta
11
H −2.050322 1 .274414 0 .000000
H −2.147113 −1.203259 0 .000000
H 0.000000 −2.487558 0 .000000
H 2.147113 −1.203259 0 .000000
H 2.050322 1 .274414 0 .000000
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N 0.000000 1 .382844 0 .000000
C −1.134410 0 .690452 0 .000000
C −1.190513 −0.695795 0 .000000
C 0.000000 −1.403912 0 .000000
C 1.190513 −0.695795 0 .000000
C 1.134410 0 .690452 0 .000000

11
H −2.050322 1 .274414 0 .000000
H −2.147113 −1.203259 0 .000000
H 0.000000 −2.487558 0 .000000
H 2.147113 −1.203259 0 .000000
H 2.050322 1 .274414 0 .000000
N 0.000000 1 .382844 0 .000000
C −1.134410 0 .690452 0 .000000
C −1.190513 −0.695795 0 .000000
C 0.000000 −1.403912 0 .000000
C 1.190513 −0.695795 0 .000000
C 1.134410 0 .690452 0 .000000

Listing 5.4: pyridine.atomtypes
11
pyridine ; g loba l coordinates

HM −2.05032200 −0.00000000 −0.10843000
HM −2.14711300 −0.00000000 −2.58610300
HM 0.00000000 −0.00000000 −3.87040200
HM 2.14711300 −0.00000000 −2.58610300
HM 2.05032200 −0.00000000 −0.10843000
N 0.00000000 0 .00000000 0 .00000000
CM −1.13441000 −0.00000000 −0.69239200
CM −1.19051300 −0.00000000 −2.07863900
CM 0.00000000 −0.00000000 −2.78675600
CM 1.19051300 −0.00000000 −2.07863900
CM 1.13441000 −0.00000000 −0.69239200

5.B Algorithm for Obtaining ISA Exponents

Unphysical asymptotic charge density decays occasionally arise in the ISA proce-
dure due to basis set incompleteness and numerical instabilities. These unphysical
decays can skew optimization of ISA-based exponents, BISAi , and need to be cor-
rected. Generally speaking, there exists some range of distances in the valence
region that does exhibit the expected exponential decay; we extrapolate the decay
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from this intermediate region to describe the asymptotic region using the following
algorithm:

1. Take the log of each atomic density (henceforth logdens) to linearize the
asymptotic density.

2. Compute the 2nd derivative of logdens. This can be done analytically, as the
ISA procedure outputs an analytical expression (in terms of Gaussian basis
functions) for the atomic density.

3. Determine the ‘intermediate region’ of exponential decay by locating the
largest range where the 2nd derivative of logdens is zero to within a fixed
tolerance. Here we utilize a tolerance of 0.3 a.u. (absolute cutoff) or 190% of
the smallest exponent in the Gaussian basis set (relative cutoff), whichever
is smaller. The latter cutoff accounts for the eventual asymptotic Gaussian-
type decay dictated by the smallest ζ in the ISA basis. The endpoints of this
intermediate region are denoted r1 and r2, respectively.

4. Calculate the slopem and intercept b for the line defined by r1, r2, and their
respective values of logdens.

5. Replace all values of logdens after r2 with mr + b. The resulting atomic
density is labeled in the main text as ‘Asymptotically-corrected ISA densities’.

A visual of these steps is shown in 5.2.
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Figure 5.2: Linear extrapolation algorithm for the methyl carbon in acetone. De-
picted are (in legend order) Steps 1, 2, 4, and 5 in the extrapolation algorithm. Note
that some portions of the 2nd derivative extend off the graph; also note that most
of logdens is located underneath the asymptotically-corrected curve.
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6 force field development for two-body systems:
principles and practices

6.1 Parameterization Overview

6.1.1 Theory

For SAPT-based force fields with functional forms similar to those in Chapters 2
and 3 – MASTIFF being a prime example† – we have discussed in Chapter 5 a
number of practical approaches for beginning intermolecular force field devel-
opment. In particular, we have already described strategies for optimally obtain-
ing benchmark electronic structure theory data and for calculating some of the
monomer-property-based parameters that will (vida infra) be utilized in the final
force field. Nevertheless, we have not yet focused on the actual process of force
field fitting, nor on strategies for assessing the accuracy and transferability of the
resulting functional forms and parameters. It is to these two crucial topics that we
now turn.

In regards to the force field fitting process itself, we begin by asking the obvious
question: "What parameters actually need to be fit in order to obtain a final force
field?" To this end, we have highlighted in Fig. 6.1 all of the parameters required to
completely specify the MASTIFF force field, and have grouped these parameters
according to how these parameters are calculated/optimized in practice. Specifi-
cally, all force field parameters in MASTIFF can be thought of in terms of one of the
following three categories:

• Unconstrained parameters: These parameters have not been specified on the
basis of any monomer properties calculation, and so must be directly fit to

† As mentioned above, our focus in this Chapter is primarily on the MASTIFF force field.
Nevertheless, most of the principles and ideas presented below should pertain generally to other
force fields (Born-Mayer-IP FF, Slater-ISA FF, etc.) that are fit on a term-by-term basis to reproduce
a benchmark EDA, and this Chapter should also provide a helpful set of ‘best practices’ for fitting
and analyzing these types of force fields.
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Aij = AiAj
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√
BiBj
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√
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Figure 6.1: An overview of required force field parameters for the MASTIFF and/or
Slater-ISA FF force fields. All relevant equations are displayed in black, and the first
instance of each parameter is shown in color according to the following scheme:

• Unconstrained parameters, which must be directly fit by POInter

• Optionally-constrained parameters which, depending on user-specified set-
tings, are treated as either soft- or hard-constraints

• Hard-Constrained parameters read in by POInter which are always treated
as hard constraints

See main text for details.
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the two-body energy itself.

• Optionally-Constrained parameters: These parameters can be fit entirely on
the basis of monomer properties, however it is sometimes advantageous
to further refine these parameters with respect to the benchmark two-body
energies. In this case, soft constraints100 are often applied to the fitting process
to ensure that the parameters do not deviate strongly from their original values
as calculated from monomer properties.

• Hard-Constrained parameters: These parameters are calculated entirely from
monomer properties, and are not futher involved in the force field fitting
process except as hard constraints.

To use MASTIFF (see Chapter 3) as an example, an overview of the required
parameters, and the manner in which these parameters are fit, is as follows:

• Aexch
i , Aelst

i , Aind
i , AδHF

i : The force field energy depends linearly on a number of
short-range prefactors, and in practice it is fairly straightforward to directly
fit each of these prefactors to the corresponding benchmark SAPT component
energy. Note that, for anisotropic atomtypes, each A coefficient may in fact
involve several parameters, all of which must be directly fit:

Aexch
i (θi,φi) = Aexch

i,iso

(
1 +

∑
l>0,k

aexch
lk Clk(θi,φi)

)
(6.3)

(Though not entirely standard notation,78 for clarity in this Chapter we use
C to denote the set of renormalized spherical harmonics so as to make a
clear distinction between C, the spherical harmonics, and C, the dispersion
coefficients from Section 5.5.4).

• Bi: The force field energy depends non-linearly on the short-range exponents
Bij, making this parameter relatively difficult to optimize without constraints.
Fortunately, the Bij parameters can instead be calculated on the basis of
monomer properties (see Section 5.5.3), and for obtaining force fields with
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RMSE of ~1 kJ/mol it is often sufficient to use the ISA-obtainedBij parameters
without further fitting. For obtaining more accurate force fields, however, and
in order to account for small uncertainties in our method of obtaining ISA-
derivedBij parameters (see Section 5.B), we have had good success in allowing
the Bij parameter to vary slightly from its ISA-derived value. In practice, this
entails optimizing the Bij parameters with respect to the benchmark SAPT
exchange energy and subject to a harmonic penalty function.100

• A
disp
i : As with the other A pre-factors, a pre-factor can be fit to the benchmark

dispersion energy so as to enhance the force field accuracy with respect to
a given benchmark electronic structure theory. (Vida infra, this benchmark
energy can either by DFT-SAPT or CCSD(T)). Unlike with other pre-factors,
however, and because we generally have good accuracy in obtaining disper-
sion coefficients C (see Section 5.5.4), nominally Adisp

i ≈ 1 for most systems.
Still, parameters must sometimes be fit to the dispersion energy due to one or
both of the following reasons:

1. For anisotropic atoms, we must model the orientational dependence of
the dispersion energy, and this model requires parameters in addition to
the isotropic dispersion coefficients calculated in Section 5.5.4).

2. Uncertainties in the iDMA-pol and/or ISA-pol dispersion coefficients
can sometimes lead to inaccuracies in the isotropic dispersion coeffi-
cients, and these inaccuracies can sometimes be corrected by rescaling
the isotropic dispersion coefficients themselves

In practice, when calculating Adisp
ij we often treat the anisotropic dispersion

coefficients adisp
lk as free parameters, and sometimes additionally optimize

an isotropic scale factor subject to soft constraints.∗ In total, this leads to the
following set of parameters and equations for the dispersion energy pre-factor:

A
disp
i (θi,φi) = Adisp

i,iso

(
1 +

∑
l>0,k

a
disp
lk Clk(θi,φi)

)
(6.4)
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where the colors serve to indicate that both free and optionally-constrained
parameters are contained within the pre-factor.

• Qit: Multipole moments Qit can be directly calculated from monomer proper-
ties using the techniques discussed in Section 5.5.2. These ISA-based multi-
poles are generally quite accurate, however (vida infra) when using cheaper
point charge models some care must be taken to ensure that the effective
model does not lead to a deterioration in force field accuracy.

• Vpol: As with multipole moments, polarization parameters (Section 5.5.5) are
treated as hard constraints during the force field fitting process. Currently,
there is not a consensus on what functional forms and/or damping parameters
should be used to model the short-range polarization energy, and this topic
and its associated practical issues will be the subject of Section 6.3.4.

• Ci,2n: Dispersion coefficients are calculated via the approaches discussed in
Section 5.5.4, and are generally treated as hard constraints in the force field
fitting process. In some cases (vida supra), these dispersion coefficients are
scaled to reproduce the SAPT energies, however we discuss in Section 6.3.5
some practical concerns involved with such scaling.

6.2 The POInter Code

Having identified the required parameters that completely specify MASTIFF and
other similar force fields, we now turn to a discussion of the actual fitting process
itself. We begin in this section with an overview of the software used to optimize
each unconstrained/soft-constrained parameter, and next (in Section 6.3) discuss

∗ Currently, two constraints schemes are possible for Adisp
i,iso. First, we can treat this parameter as

a hard constraint, which sets Adisp
i,iso = 1. Second, we can apply boundary conditions to treat Adisp

i,iso as
a free parameter within the range 0.7 6 Adisp

i,iso 6 1.3. In future versions of the POInter code, we may
also include the option of fitting Adisp

i,iso subject to a harmonic penalty function.
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principles and practices related to fitting each component of the benchmark SAPT
energy.

As the name suggests, the Parameter Optimizer for Inter-molecular Force Fields
(POInter) is a Python package developed to aid in the fitting of (two-body +N-body
polarization) intermolecular force fields. POInter is open-source and is available
for download from https://git.chem.wisc.edu/schmidt/force_fields. Doc-
umentation and examples for using POInter are available through the wiki at
https://git.chem.wisc.edu/schmidt/force_fields/wikis/home, but for conve-
nience we include here a brief overview of the program input, output, usage, and
main capabilities:

6.2.1 Input

Owing to the large number of parameters that serve as hard constraints in fitting
the final MASTIFF force field (see Fig. 6.1), a number of input parameters files are
required in POInter. Fortunately, provided the user has already executed the scripts
and steps from Chapter 5, all required input scripts should have all been created
automatically and copied over to the force field fitting subdirectory (ff_fitting)
from which the POInter code is intended to be run. Thus in practice, POInter is
designed to be run in combination with the Workflow so as to minimize the amount
of required manual input.

In total, the following input files are required by the POInter program, where the
tag <monomer> indicates that a separate file is required for each unique monomer
being fit. Files highlighted in teal or red indicates that the input file sometimes
or always require manual modification before running POInter, whereas files in
black are created automatically from the various scripts used in the Workflow, and
usually don’t require further alteration.

• <monomer1>_<monomer2>.sapt: Summarizes the output SAPT energies for
each dimer configuration from Section 5.2, and specifies the atomtype for
each atom in each monomer

https://git.chem.wisc.edu/schmidt/force_fields
https://git.chem.wisc.edu/schmidt/force_fields/wikis/home


197

• <monomer>.disp: Contains dispersion parameters for each monomer

• <monomer>.drude: Contains drude oscillator charges for each monomer

• <monomer>.exp: Contains short-range exponents for each monomer

• <monomer>_<multipole_suffix>.mom: Contains multipole moments for
each monomer

• __init__.py: Empty file required to keep Python’s module structure happy

• <monomer>.constraints: Constraints file, used to include hard-constraints
for any Aij parameters for any previously-fit atomtypes. See Section 6.C for
details and Listing 6.4 for an example input file.

• <monomer>.axes: Axes file, used to specify the local axes and included spher-
ical harmonics for any anisotropic atomtypes. See Section 6.3 for details and
Listing 6.3 for an example input file.

• defaults.py: List of default settings for the POInter program; these defaults
rarely need to be changed for routine force field development. See Listing 6.2
for an example input file.

• settings.py: List of modular settings for the POInter program; many of these
settings can get changed in the course of routine force field development. See
Section 6.3 for details and Listing 6.1 for an example input file.

6.2.2 Usage and Output

Once the required input files have been created/modified, running the POInter
program is straightforward:
./ run_pointer . py

After a few minutes of runtime, POInter will generate the following important
output files (file prefixes and suffixes may differ slightly depending on the choice
of input variables file_prefix and file_suffix from settings.py):
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• coeffs.out: Output file containing fit parameters and error metrics

• exchange.dat: SAPT and force field exchange energies given in a two-column
format with ordering identical to the input .sapt file

• electrostatics.dat: SAPT and force field electrostatic energies

• multipoles.dat: SAPT electrostatic and force field multipolar energies

• induction.dat: SAPT and force field second-order induction energies

• dhf.dat: SAPT and force field δHF energies

• edrudes.dat: polarization energies, V(2)
pol and V(3−∞)

pol , given in two-column
format

• dispersion.dat: SAPT and force field dispersion energies

• total_energy.dat: SAPT and force field total energies

We now discuss specific details related to the fitting of each energy component.

6.3 Force Field Fitting: Principles and Practice

In conjunction with the POInter software, we can finally turn to the main topic
of interest in this Chapter: how can we accurately and systematically develop
intermolecular force fields? As discussed at the beginning of Chapter 5, with
MASTIFF some aspects of the force field development process remain an ‘art’, and
are thus usually guided by chemical intuition, whereas increasingly more aspects
of force field fitting now can be carried out in a systematic and reasonably black-box
manner. Here we offer an in-depth analysis of the force field development process
for MASTIFF and related force fields, paying specific attention to addressing both
the ‘artistic’ and ‘scientific’ choices that must be made when developing models for
new systems.
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N
H O H

Figure 6.2: Pyridine and water – molecular examples of challenges in force field
fitting

6.3.1 General

In general, a large number of development choices must be made prior to force field
fitting: which benchmark energies to use, how to sample the dimer PES, which
parameters to treat as hard constraints, etc. While some of these choices have been
discussed in Chapter 5, the following considerations also bear mention:

Atom-typing In developing force fields for new systems (specifically with regards
to the MASTIFF approach, though many of the principles below apply generally to
other ab initio force fields), an initial choice must be made as to how to categorize
each atom into ‘atomtypes’, where by definition all atoms within the same atomtype
share the same force field functional form and parameters. In some cases, such
as with water, atomtyping is a fairly obvious decision, and it is easy to see how
two unique types should be used to describe the system. With other molecules
such as pyridine (Fig. 6.2), however, this atomtyping process is difficult to treat
systematically and/or universally, and an iterative guess-and-check process may be
required to ascertain the number of atomtypes that are required to obtain a desired
level of force field accuracy (see Section 6.3.2 for details).

Note that substantially increasing the number of free atomtypes (i.e., those atom-
types whose parameters have not been pre-fit to a different system) can sometimes
lead to numerical instabilities in fitting process or to overfitting,71 and care must be
taken with large/complex systems to ensure good accuracy and transferability.

Anisotropy With the MASTIFF approach, each atomtype can be treated as either
isotropic or anisotropic, and for anisotropic atoms an arbitrary number of spherical
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harmonic terms can in principle be included in the functional form. These spherical
harmonic expansions are always calculated with respect to a user-defined local
atomic coordinate system, and this coordinate system should be chosen so as to
maximize the symmetry (or approximate symmetry) of the system (vida infra).

For anisotropic atomtypes, in addition to specifying a local coordinate system
it is necessary to specify the ranks and orders of included spherical harmonic
functions Clk that get included in Eq. (6.3). In practice, inclusion of spherical
harmonics beyond rank l = 2 does not typically lead to worthwhile accuracy
gains, and we suggest truncation at this order for most systems. Additionally,
naïve inclusion of all spherical harmonics up to rank 2 can lead to numerical
instabilities, and so only symmetry-allowed spherical harmonics (based on the local
coordinate system) should be included. With the POInter code, these specifications
for anisotropy are listed in the .axes file, with notation as in Listing 6.3.

For most atomtypes (see Chapter 3 for details), an isotropic description of the sys-
tem is sufficient, and so anisotropy should typically only be necessary for atomtypes
corresponding or spatially proximate to heteroatoms and/or multiple bonding
environments. Still, it is always worthwhile to explicitly test the effects of treating
different atoms anisotropically via comparison to the SAPT exchange energy (see
Section 6.3.2 for details).

Benchmark Energies and Correction Factors In Chapter 4, we have discussed
situations in which a SAPT-based energy decomposition may be insufficient for
force field development, and have suggested strategies for improvement in these
cases. For most systems, however, a SAPT-based decomposition will be of good
accuracy, and any deviations between SAPT and gold-standard CCSD(T) can be
accounted for using a δCCSD(T) correction term as in Chapter 3. Preliminary results
on CO2, CHCl3, H2O, and NH3 suggest that this δCCSD(T) term should be included
as part of the dispersion energy (see Section 6.3.5), however more systems should
be tested to see if this practice is appropriate for general force field development.
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6.3.2 Exchange

From Chapter 2, and as in Eq. (6.1), our exponentially-decaying model for the
exchange-repulsion energy requires two sets of parameters per atomtype,Aexch

i and
Bi:

Vexch
ij = Aexch

ij P(Bij, rij) exp(−Bijrij) (6.5)

Because the exchange-repulsion energy has no long-range contributions (unlike
with electrostatics, induction, and dispersion), when analyzing the final force field
it is often easiest to use the exchange energy (by itself) to compare between models
with differing numbers of atomtypes or treatments of anisotropy. Additionally,
when fitting the Bi parameters against a harmonic penalty function, POInter takes
advantage of the relative simplicity of the exchange-repulsion model and fits this
Bi parameter based solely on the exchange component.

Exponent Fitting To use POInter to relax the Bi parameters from their initial
ISA-based values, the following flag in settings.py can be set to True:
. . .
# Exchange S e t t i n g s : f i t _ b i i s e l e c t s whether or not to t r e a t the ISA
# short−range exponents are s o f t− ( f i t _ b i i =True ) or hard−c o n s t r a i n t s
# ( f i t _ b i i =Fa l se )
f i t _ b i i = True
. . .

In general, deviations from the input Bi parameters should be no larger than 5–10%.
Larger deviations may indicate problems with the calculated BS-ISA exponents or
with the fitting process itself.

6.3.3 Electrostatics

Unlike with the exchange energy, the model for electrostatics must account for both
the effects of multipolar interactions (at long-range) and charge penetration (at



202

short-range):

Velst
ij = −Aelst

ij P(Bij, rij) exp(−Bijrij) +
∑
tu

QitTtuQ
j
u (6.6)

Aelst
i parameters are fit in a similar manner to the exchange energy, though it is not

recommended to attempt to re-fit the Bi parameters to the electrostatic energy. As
for the multipole energy, in the simplest case (i.e. without off-sites) these parameters
can simply be read in using the settings.py file,
# E l e c t r o s t a t i c S e t t i n g s : choose which mult ipole f i l e s the program should use
m u l t i p o l e s _ s u f f i x = ’ _ISA−GRID_L2 .mom’

where the multipoles_suffix should point to some file <monomer><multipoles_suffix>
in the input/ subdirectory. In general, an L2 model is a good accuracy benchmark,
and it’s often useful to compare the energies obtained from point-charge models to
those achievable with the L2 model.

Off-site models As described in Chapter 5, practical software limitations and
issues of computational expense may sometimes require us to forego use of higher-
order multipole terms. When modeling the electrostatic energy via a point charge
model, best accuracy is often achieved by including off-site charges. Such off-site
point charge models can be treated using POInter, though the following modifica-
tions to the standard input scripts are required:

1. Add the off-site positions to the .sapt file. Scripts for doing this are discussed
in Section 5.6.

2. Modify the various monomer parameter files (located in the input/ subdirec-
tory to reflect the newly-added off-site positions:

a) Add dispersion coefficients (usually all zero) to each <monomer>.disp
file and for each atomtype

b) Add extra blocks to each <monomer>.exp corresponding to the off-site
positions. The .exp file(s) list exponents for each atom in the same order
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as the .sapt file, and the .exp and .sapt file orderings must match. Ad-
ditionally, the off-site Bi parameters must be set to a non-zero value to
avoid numerical errors.

c) Add extra drude parameters to each off-site in the <monomer>.drude file.
Atom ordering is as in the .sapt file, and (assuming you do not want the
off-sites to be polarizable) the drude charge parameters should be set to
zero.

d) Assuming you do not wish short-range parameters to be fit to your
off-site atoms, add the names of all off-site atomtypes to defaults.py:
l o n e _ p a i r _ f l a g s = [ ’Du ’ , ’ lp ’ ]

Energies between the off-site point charge model and the (more standard) L2/L0
models should always be compared as a sanity check: if the errors in the offsite
model are larger than the errors from the L0 model, this is usually a sign that
something has gone wrong. On the other hand, if the electrostatic energies are of a
similar accuracy to those obtained with the L2 model, this indicates that the point
charge model is a fairly optimal description of the system’s multipolar electrostatics,
and can be used without further modification in molecular simulation.

6.3.4 Induction

We turn now to a discussion of the SAPT induction energy, arguably the most
complicated energy component to understand and correctly model. Though there
is, as of yet, no one ‘best practice’ for modeling the SAPT induction energy, a good
induction model will need to account for all of the following physical phenomenon:

• Long-range polarization

• Polarization damping at short-range

• Charge penetration effects arising from polarization

• Charge transfer
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Aside from long-range polarization, for which asymptotically-exact formulas exist
and can be modeled in simulation,77,249,250,261 there is currently little literature con-
sensus as how best to separate out and model the various physically-meaningful
induction effects. Complicating matters further, even though the SAPT induction
energy is purely a 2-body effect, the polarization model we develop based on the
induction energy also implicitly defines the model for many-body polarization,
which accounts for a sizeable fraction of the total many-body energy discussed
in Section 6.3.6. Consequently, it is easily possible to obtain an induction model
which shows good accuracy for dimer computations, but which leads to substantial
inaccuracies in modeling larger clusters or bulk liquids.

Improved induction models will certainly need to be the subject of future work,
and are discussed further in Chapter 7. In the meantime, below we present a
summary of common induction models that can be used to fit SAPT-based force
fields.

Polarization For reasonably isotropic systems, long-range polarization effects
can be described either by a Drude oscillator model or via induced dipoles.77,312

In practice, these models tend to be numerically similar, and we use them both
during parameterization and simulation.∗ POInter uses a Drude oscillator model
for the purposes of computing the polarization energy, and the Drude charges
and associated spring constants are read in as input in the <monomer>.drude file(s).
These charges can be obtained using the methods described in Section 5.5.5, however
note that these charges are sensitive to the choice of polarization damping model
described below, and may need to be refit if either the functional form or parameters
for the damping model are changed.

For more anisotropic systems (such as water), higher-order polarizabilities have
been shown to be important, and need to be included for best accuracy.100,249,313,314

At present, however, higher-order polarizabilities have not been implemented in
most common software packages, and we are in the process of investigating how to
use off-site polarizabilities for modeling highly anisotropic systems.

∗In specific, Drude oscillator models have been used historically in our group for their simplicity
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Polarization Damping At short range, the induced dipole polarizabilities must
be damped in order to avoid the so-called ‘polarization catastrophe’, an effect in
which nearby polarization sites mutually polarize each other to infinite values.
While there is widespread consensus as to the importance and necessity of includ-
ing polarization damping, functional forms and parameters for the polarization
damping vary widely.63,263,307,312,315 Thole-type damping functions∗ are some of the
more commonly used, and some effort has been put forth to compare between
several similar damping functions and parameterization schemes.262,315,316

Historically,83 several members of our group have used an exponentially-decaying
Thole function with an associated damping parameter of 2.0.167 More recently, and
due to software limitations in OpenMM, we have taken to using the ‘Thole-tinker’
model with a universal Thole damping parameter a = 0.33, which is reasonably
similar to the damping parameter used by the AMOEBA force field.264 Various
Thole-type models can be specified in POInter via the settings.py file:
# Induct ion S e t t i n g s : Choose the type and parameters f o r the p o l a r i z a t i o n
# damping f u n c t i o n s . Options f o r thole_damping_type are ’ t h o l e _ t i n k e r ’ and
# ’ t h o l e _ e x p o n e n t i a l ’ , and good d e f a u l t s f o r thole_param are the 0 . 3 3 and 2 . 0 with
# r e s p e c t to the two d i f f e r e n t damping types
# r e s p e c t i v e l y
thole_damping_type = ’ t h o l e _ t i n k e r ’
thole_param = 0 . 3 3

Note that the choice of Thole damping parameter can be very important, as this
modifies the relative balance between energies ascribed to polarization vs. charge
transfer, in turn modifying the magnitude of the many-body polarization. In order
to achieve a model that achieves the correct balance between polarization and other
inductive effects, future work may need to involve some of the following advances:

1. Atomtype-specific Thole damping parameters

2. New functional forms for polarization damping
and ease of implementation. More recently, we have begun running our simulations with the
induced dipole model in order to maintain compatibility with OpenMM.
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3. Explicit separation between the SAPT charge-transfer and polarization ener-
gies. Several schemes have already been proposed to achieve this decomposi-
tion,155,272,317,318 and the various available schemes should be tested for their
utility in force field development.

Charge transfer and inductive charge penetration In addition to polarization
damping, charge transfer and inductive charge penetration can become important
at shorter intermolecular separations. Physically-motivated functional forms for
these effects are generally lacking, though Misquitta 155 has suggested a double
exponential decay, and work in our own group has empirically found a single
exponential decay (with ISA-derived exponents Bi) to be reasonably satisfactory.

Conclusions and Recommendations Our current approach to modeling induc-
tive effects include a sum over two contributions:

V ind
ij = −Aind

ij P(Bij, rij) exp(−Bijrij) + V(2)
pol (6.7)

Vδ
HF

ij = −Aδ
HF

ij P(Bij, rij) exp(−Bijrij) + V(3−∞)
pol (6.8)

The SAPT benchmark separates the induction energy into 2nd- and higher-order (i.e.
δHF) induction, and we fit both induction-like terms separately.∗ All parameters
for the polarization model Vpol are currently read in as hard constraints, and the
Aind
i and AδHF

i prefactors (which effectively accounts for both charge transfer and
charge penetration) are directly fit by POInter.

6.3.5 Dispersion

Dispersion is the last energy component that we must model in order to completely
describe the two-body force field. Asymptotically, the dispersion energy follows

∗Be advised, most papers in the literature will simply state that a ‘Thole damping function’ was
used, but will not make explicit which of several different Thole-type damping functions was meant.

∗ Note that this expansion is in orders of perturbation theory, not in orders of the many-body
expansion.
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a well-defined expansion in powers of 1/r2n, and at shorter distances the energy
expression is typically damped by a Tang-Toennies function,157,158

V
disp
ij = −A

disp
i A

disp
j

6∑
n=3

f2n(x)
Cij,2n

r2n
ij

(6.9)

A
disp
i (θi,φi) = Adisp

i,iso

(
1 +

∑
l>0,k

a
disp
lk Clk(θi,φi)

)
, (6.10)

where f(x) is the Tang-Toennies damping function from Eq. (6.1), and the various
colors highlight (as in Fig. 6.1) the different ways in which the dispersion parameters
are calculated/fit. Dispersion coefficientsCij,2n must always be read into POInter as
input, and methods for obtaining these coefficients are as described in Section 5.5.4.

In obtaining a final model for dispersion, it is important to ensure that any model
is quantitatively correct in the asymptotic regime, as the least-squares optimization
algorithm used by POInter will not explicitly ensure this physically-correct behav-
ior. Unless directly fitting atomtype-specific scale factors to the dispersion energy
(vida infra), a good strategy is to (using the methods in Section 5.5.4) manually
fit a universal scale factor to the dispersion coefficients in order to achieve correct
asymptotic behavior. Once these scaled dispersion coefficients are read into POInter,
additional anisotropic parameters can then be fit (or set to zero) by appropriate
modification of the settings.py file:
# Dispersion S e t t i n g s : Choose which parameters to f i t to the dispers ion
energ ies . F i t opt ions
# include ’ none ’ ( to f i t no parameters ) , ’ a n i s o t r o p i c ’ ( to j u s t f i t
# a n i s o t r o p i c d ispers ion parameters , but to leave i s o t r o p i c d ispers ion
# c o e f f i c i e n t s unscaled ) , and ’ a l l ’ ( to f i t both a n i s o t r o p i c and i s o t r o p i c
# dispers ion c o e f f i c i e n t s )
f i t _ d i s p e r s i o n = ’ a n i s o t r o p i c ’

In select cases, such as when a δCCSD(T) correction is added to the dispersion
energy, it can be worthwhile to scale the isotropic dispersion coefficients in an
atomtype-specific manner. (This strategy was used in Chapter 3 to obtain MASTIFF-
CC dispersion parameters for CO2, NH3, H2O, and CHCl3.) This behavior is also
allowed in POInter using the above flags, however care must be taken to ensure that
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this optimization does not degrade accuracy in the asymptotic regime. In general,
and in the absence of subsequent significant improvements to the overall force field
fit quality, it is usually advised not to fit isotropic scale factors to the dispersion
energy.

6.3.6 Many-Body Effects

As discussed above, some of the force field parameters that define the two-body
force field also contribute to the many-body energy. Polarization in particular is
inherently many-body, and (when possible) trimer energies should be computed to
ensure that the polarization model defined in Section 6.3.4 leads to good three-body
energies.

For less polar systems, three-body dispersion and exchange can also be impor-
tant to include, and McDaniel and Schmidt 4 have shown how these parameters
can be directly calculated and modeled in the many-body portion of the force field.
This explicit three-body force field follows the well-known Axilrod–Teller–Muto
triple dipole functional form, and Ref. 4 describes how to obtain the necessary
parameters.

6.4 Force Field Validation: Assessing Fit Quality

Having obtained a final force field, the resulting model should always be assessed
and validated before use in molecular simulation. We divide this topic into two
sections – sanity checks and validation – to distinguish between tests that can be
performed via visual inspection of the fits compared to those that require additional
computations.

6.4.1 Sanity Checks

Visualization Once the POInter code has been successfully run, the resulting
force fields should always be visualized, possibly with the aid of the included
visualization scripts,
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Figure 6.3: The pyridine dimer

plot_compare_sapt_components . py −p < f i l e _ p r e f i x > −s < f i l e _ s u f f i x > ’ . dat ’ −−display
plot_sapt_component_errors . py < f i l e _ p r e f i x > < f i l e _ s u f f i x > ’ . dat ’ −−display

where additional visualization options can be found by inserting the -h flag into
the function call for either script. Such visualizations are shown, using the pyridine
dimer as an example, in Figs. 6.3 and 6.4, and additional visuals for water and other
molecules are shown in Figs. 6.5 to 6.7 and Section 3.C, rspectively.

Error Analysis of the Minimum Energy Region As discussed in Section 5.2, the
mimimum energy region plays a highly important role in simulations, and thus it
is crucial that our force fields correctly predict these energies. Ideally, the energy
predictions should be within ±1 kJ/mol of the benchmark energy, though larger
errors are easily possible when developing isotropic force fields. Even more impor-
tant than this precision, we must ensure that on average the force field energies are
accurate in the minimum energy region. Any systematic errors in the force field
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Figure 6.4: The pyridine dimer errors

60 45 30 15 0 15
60

45

30

15

0

15

y=1.003x−0.021

Electrostatics

0 25 50 75 100 125
0

25

50

75

100

125

y=1.000x+0.037

Exchange

20 16 12 8 4

20

16

12

8

4

y=0.985x−0.137

Dispersion

fit_exp unconstrained

7.5 6.0 4.5 3.0 1.5 0.0

7.5

6.0

4.5

3.0

1.5

0.0

y=1.029x+0.003

Induction

5 4 3 2 1 0

5

4

3

2

1

0

y=0.978x−0.036

δHF

15 0 15 30 45 60

15

0

15

30

45

60

y=0.984x−0.081

Total Energy

16 12 8 4 0

16

12

8

4

0

y=0.984x−0.081

Total Energy (Attractive Region)

SAPT Energy (kJ/mol)

FF
 E

ne
rg

y 
(k

J/
m

ol)

Figure 6.5: The water dimer
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Figure 6.6: The water dimer
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Figure 6.7: The water dimer errors
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will have a pronounced effect on simulation quality, particularly for studying bulk
properties, as many properties depend only on the average of system energy.

Figs. 6.4 and 6.7 show errors in the minimum energy region for both pyridine
and water, and serve as illustrative examples. These examples have been chosen
because both force fields are relatively good quality, but also show errors that could
degrade simulation quality and be the focus of future improvement.

In the case of pyridine, the force field fit shows fairly little systematic error,
and could probably be used to simulate bulk properties without issue. Random
errors on the order of 0.5–1.0 kJ/mol are typical for this force field, which may
or may not be an issue depending on the desired accuracy level and types of
simulations one intends to run. (A few outliers show large errors compared to the
SAPT benchmark, however these points almost certainly reside along the repulsive
wall, judging by their exchange energies, and are thus not cause for great concern.)
If one desired to improve the precision of the pyridine force field, it is necessary to
assess errors in the force field on a component-by-component basis. Fig. 6.4 shows
how errors in the exchange component dominate the overall error, and should be
the first target for improvement. Since the exchange energy only depends on a
short-range exponential decay, this error could possibly be mitigated by increasing
the number of atomtypes (as shown, this force field only has three atomtypes).
Alternately, anisotropy could be included for additional atomtypes, especially since
the displayed potential only includes anisotropy on the nitrogen atom, and neglects
possibly-important anisotropies in the carbon atoms.

As for water, we see relatively little random error in the force field (especially
compared to the more isotropic models discussed in Chapter 3), although again
much of this random error can be attributed to the exchange energy. In contrast to
pyridine, however, we see some evidence for systematic error in the water potential
near the minimum energy configurations. (Indeed, after testing our water force
field against the larger CC-pol database,267 we continued to find evidence for overly-
repulsive predictions in the minimum energy region.) This systematic error, small
as it may seem, is exacerbated in modeling larger clusters (vida infra), and would
need to be fixed before we could expect good success with this force field in general
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simulations involving water. Looking at the errors on a component-by-component
basis, we can see that systematic errors in the potential are heavily correlated with
errors in the induction energy, making this induction energy the most important
target for improved modeling. As will be discussed in Chapter 7, improving our
polarization model (both in terms of the polarization damping and the long-range
polarizabilities themselves) will hopefully serve to reduce these systematic errors
and improve the overall quality of force fields for strongly polarizable molecules.

Error Analysis of the Asymptotic Region In addition to the minimum energy
region, it is important to ensure that the asymptotic region of the potential is
modeled correctly for each energy component. This asymptotic analysis is shown
for the water dimer in Fig. 6.6, where we have shown force field fits for each
component, but have excluded configurations with exchange energies above a
certain threshold. (In general, the magnitude of the SAPT exchange energy can be
used as a proxy for the ‘short-rangeness’ of a given configuration.)

Particularly for force fields that directly optimize the dispersion energy, it is
important to ensure that each energy component displays asymptotically-correct
behavior. This analysis can also be used to determine optimal scaling values for
the dispersion coefficients (see Section 5.5.4 for details).

6.4.2 Validation

Trimer and Other Cluster Interaction Energies Currently, it is hard to guarantee
that our polarization models will correctly describe both the two- and three-body
polarization energies. In order to validate the many-body portion of the poten-
tial, trimer interaction energies should be computed for a subset of energetically-
important configurations (preferably those taken from simulation) and compared to
an accurate electronic structure benchmark. These validation studies are especially
critical for highly-polar systems such as water, as in these cases the many-body
polarization energy can account for a non-negligable fraction of the total system
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energy. For highly polar systems, it can also be important to study the interactions
of larger clusters in order to probe four-body and higher interactions.313,319,320

Simulations As the ultimate goal for many potentials is to be able to perform
molecular simulations, it is useful to validate new force field parameters in relation
to ‘simple’ experimental properties. A reasonable starting point for such compar-
isons is with the temperature-dependent 2nd virial coefficient, as this quantity is a
direct measure of the underlying two-body potential. Methods for calculating the
2nd virial coefficient are discussed in Chapters 2 and 3 and in Refs. 83, 167.

In addition to the virial coefficient, a variety of other simulations form useful
comparisons to experiment (especially for studying bulk properties), and examples
of these can be found in Chapters 2 and 3 and in Refs. 4, 83, 167.

6.5 Summary and Outlook

Throughout the past two Chapters, we have outlined a force field fitting develop-
ment methodology which enables an increasingly systematic parameterization of in-
termolecular force fields. By fitting these force field on a component-by-component
basis, minimizing parameterization via frequent recourse to monomer property
calculations, and ensuring the physicality of the various functional forms that get
used in the final force field, we now can reliably generate accurate and transfer-
able force field parameters for a broad class of materials and molecular systems.
Though invariably “much remains to be learned” when it comes to intermolecular
force field development, it is hoped that the principles and practices outlined in
these Chapters will sufficiently guide new force field developers in extending the
applications of the MASTIFF methodology (or similar EDA-based force fields) to
tackle new and interesting problems in molecular simulation.

6.A POInter Input Files

In total, POInter requires modification of three input files, as follows:
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Listing 6.1: settings.py
# #########################################################################
# ######################## General S e t t i n g s ###############################
# #########################################################################
# Monomer Names ( should match ordering in . sapt f i l e )
mon1 = ’ chloromethane ’
mon2 = ’ chloromethane ’

# Constrained Atomtype s e t t i n g s : Make a l i s t of a l l atomtypes whose parameters
# should ∗ not ∗ be f i t , and include parameters f o r these atomtypes in the
# r e l e v a n t <monomer>. c o n s t r a i n t s f i l e
constrained_atomtypes = [ ]

# Names f o r output f i l e s
f i l e _ p r e f i x = ’ f i t _ e x p _ ’
f i l e _ s u f f i x = ’ _unconstrained ’

# #########################################################################
# #########################################################################

# #########################################################################
# #################### Component−S p e c i f i c S e t t i n g s ########################
# #########################################################################
# E l e c t r o s t a t i c S e t t i n g s : choose which mult ipole f i l e s the program should use
m u l t i p o l e s _ s u f f i x = ’ _ISA−GRID_L2 .mom’

# Exchange S e t t i n g s : f i t _ b i i s e l e c t s whether or not to t r e a t the ISA
# short−range exponents are s o f t− ( f i t _ b i i =True ) or hard−c o n s t r a i n t s
# ( f i t _ b i i =Fa l se )
f i t _ b i i = True

# Induct ion S e t t i n g s : Choose the type and parameters f o r the p o l a r i z a t i o n
# damping f u n c t i o n s . Options f o r thole_damping_type are ’ t h o l e _ t i n k e r ’ and
# ’ t h o l e _ l i n e a r ’ , and good d e f a u l t s f o r thole_param are the 0 . 3 3 and 2 . 0 with
# r e s p e c t to the two d i f f e r e n t damping types
# r e s p e c t i v e l y
thole_damping_type = ’ t h o l e _ t i n k e r ’
thole_param = 0 . 3 3

# Dispersion S e t t i n g s : Choose which parameters to f i t to the dispers ion energ ies . F i t
opt ions

# include ’ none ’ ( to f i t no parameters ) , ’ a n i s o t r o p i c ’ ( to j u s t f i t
# a n i s o t r o p i c d ispers ion parameters , but to leave i s o t r o p i c d ispers ion
# c o e f f i c i e n t s unscaled ) , and ’ a l l ’ ( to f i t both a n i s o t r o p i c and i s o t r o p i c
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# dispers ion c o e f f i c i e n t s )
f i t _ d i s p e r s i o n = ’ a n i s o t r o p i c ’

# Residual e r r o r S e t t i n g s : I f s e t to true , f i t s a f i n a l A parameter to e r r o r s in the
t o t a l

# energy in an e f f o r t to reduce sys temat i c e r r o r s in the t o t a l energy
f i t _ r e s i d u a l s = Fa l se

# #########################################################################
# #########################################################################

# #########################################################################
# #################### Funct ional Form S e t t i n g s ###########################
# #########################################################################
# Radial f u n c t i o n a l forms f ( r ) ; see Stone ’ s book f o r more d e t a i l s .
# Options are ’ s l a t e r ’ , ’ s tone ’ , ’ born−mayer ’ , ’ born−mayer−s i s a ’ , or ’ lennard−j ones ’
funct ional_form = ’ s l a t e r ’

# Combination r u l e s e t t i n g s : S e l e c t combination r u l e s f o r each A p r e f a c t o r s , B
# exponents , and C dispers ion c o e f f i c i e n t s . Options are as fo l lows :
# a i j : ’ s a p t f f ’ , ’waldman−hagler5 ’ , ’ geometric ’
# b i j : ’ s a p t f f ’ , ’waldman−hagler5 ’ , ’ geometric_mean ’ , ’ arithmetic_mean ’
# c i j : ’ geometric ’
a i j _ c o m b i n a t i o n _ r u l e = ’ geometric ’
b i j _combinat ion_ru le = ’ geometric_mean ’
c i j _ c o m b i n a t i o n _ r u l e = ’ geometric ’

# #########################################################################
# #########################################################################



217

Listing 6.2: defaults.py
# #########################################################################
# ####################### POInter Defaul ts ###############################
# #########################################################################
# The fol lowing d e f a u l t s should be used f o r most rout ine f o r c e f i e l d
# developement , however advanced users may wish to change some of the
# fol lowing s e t t i n g s :
exponent_source = ’ ISA ’
l o n e _ p a i r _ f l a g s = [ ’Du ’ , ’ lp ’ ]
scale_weight ing_temperature = 5 . 0
separate_induct ion_exponents = Fa l se
springcon = 0 . 1
weighted_rmse_cutoff = 0 . 0
e lec t ros ta t i c_damping_type = ’None ’
i n c l u d e _ s l a t e r _ c h a r g e _ p e n e t r a t i o n = Fa lse
induction_damping_type = ’ Thole ’

# Unless you know what you ’ re doing , the fol lowing s e t t i n g s should only be
# changed by developers :
__vers ion__ = ’ 1 . 1 . 0 ’

# #########################################################################
# #########################################################################
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Listing 6.3: pyridine.axes. For each anisotropic atomtype, the approximate symme-
try and all terms included in the spherical harmonic expansion are listed to the right
of the atomtype. Additionally, the local axis reference frame for each anisotropic
atomtype is defined in the Axes subsection using the z-then-x convention employed
by AMOEBA and other potentials (see Chapter 3 for details). The first column of
the axes subsection denotes the index of the anisotropic atom (atom ordering as
in the .sapt file), and the second column denotes whether the z or x axis is being
defined. For certain local symmetries, the choice of x-axis is unimportant, and so
not every anisotropic atomtype has a defined x-axis. The remaining columns define
the direction vector for the axis in terms of atomic indices. The first index (often the
anisotropic atom itself) lists the start of the vector, and the endpoint of the vector is
defined as the midpoint of all subsequently listed atoms.
Pyridine
N c2v y10 y20 y22c

Axes
ATOM# AXIS ( z or x ) Atomic I n d i c e s def in ing vec tor ( e i t h e r 2 or more i n t e g e r s )
5 z 5 6 10
5 x 5 6
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Listing 6.4: pyridine.constraints
3
EXCHANGE
H 0.424450
C 2.244624
N 1.541775 −1.000000 0 .612747 −0.839073
ELECTROSTATICS
H 0.182383
C 1.421735
N 1.007315 −1.000000 0 .715037 −0.778451
INDUCTION
H 0.032989
C 0.313818
N 0.000000 0 .546327 −0.232167 0 .184632
DHF
H 0.137793
C 0.568162
N 0.383885 −1.000000 0 .336640 −0.827635
DISPERSION
H 1.000000
C 1.000000
N 1.000000 −0.163375 0 .092436 −0.169124
RESIDUALS
H 0.000000
C 0.000000
N 0.000000 0 .000000 0 .000000 0 .000000

EXPONENTS
H 2.119818
C 1.939994
N 2.110311

6.B POInter Output Files
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Listing 6.5: coeffs.out
########################## FF F i t t i n g Summary ###########################
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Program Version : 1 . 1 . 0
Short−range Funct ional Form : s l a t e r−f f
Combination Rules : a i j = geometric

b i j = geometric_mean
c i j = geometric

E l e c t r o s t a t i c Damping Type : None
Thole Damping Type : thole−t i n k e r
Thole Param : 0 . 3 3
F i t t i n g weight : eff_mu = 0 . 0 Ha

e f f _ k t = 0 .0259 Ha
Weighted RMSE c u t o f f : 0 . 0 Ha
Anisotropic Atomtypes : N
−−−−−−−−−−−−

Exponents ( Optimized ) :
H( 0 ) 2 .119818
C( 0 ) 1 .939994
N( 0 ) 2 .110311
−−−−−−−−−−−−

Monomer 1 Multipole F i l e :
pyridine_ISA−GRID_L2 .mom
Monomer 2 Multipole F i l e :
pyridine_ISA−GRID_L2 .mom
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Exchange Parameters :
Funct ional Form =

E ( exch ) _ i j = A∗K2( r i j ) ∗ (1 + a_yml∗Y_ml ) ∗exp(− b i j ∗ r i j )
where the a c o e f f i c i e n t f o r each s p h e r i c a l harmonic term Y_ml
i s l i s t e d in the parameters below and

K2( r i j ) = 1/3∗( b i j ∗ r i j ) ∗∗2 + b i j ∗ r i j + 1
F i t t e d Atomtypes

A
H( 0 ) 0 .424450

A
C( 0 ) 2 .244624

A a_y10 a_y20 a_y22c
N( 0 ) 1 .541775 −1.000000 0 .612747 −0.839073
Constrained Atomtypes

None
−−−−−−−−−−−−

Exchange RMS Error : 6 .34645 e−04
Exchange Weighted RMS Error : 3 .78772 e−04
Exchange Weighted Mean Signed Error : 1 .15033 e−05
Exchange Weighted Least−Squares Error : 9 .61033 e−05
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E l e c t r o s t a t i c Parameters :
Funct ional Form =

E ( e l s t ) _ i j = f_damp∗ qi ∗ q j / r i j − A∗K2( r i j ) ∗ (1 + a_yml∗Y_ml ) ∗exp(− b i j ∗ r i j )
F i t t e d Atomtypes

A
H( 0 ) 0 .182383

A
C( 0 ) 1 .421735

A a_y10 a_y20 a_y22c
N( 0 ) 1 .007315 −1.000000 0 .715037 −0.778451
Constrained Atomtypes

None
−−−−−−−−−−−−

E l e c t r o s t a t i c s RMS Error : 2 .46881 e−04
E l e c t r o s t a t i c s Weighted RMS Error : 1 .75164 e−04
E l e c t r o s t a t i c s Weighted Mean Signed Error : 1 .66766 e−05
E l e c t r o s t a t i c s Weighted Least−Squares Error : 3 .47690 e−05
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Drude o s c i l l a t o r energy has been c a l c u l a t e d using the fol lowing method : multipole−
gradient

Induct ion Parameters :
Funct ional Form =

E ( ind ) _ i j = s h e l l _ c h a r g e − A∗K2( r i j ) ∗ (1 + a_yml∗Y_ml ) ∗exp(− b i j ∗ r i j )
F i t t e d Atomtypes

A
H( 0 ) 0 .032989

A
C( 0 ) 0 .313818

A a_y10 a_y20 a_y22c
N( 0 ) 0 .000000 0 .546327 −0.232167 0 .184632
Constrained Atomtypes

None
−−−−−−−−−−−−

Induct ion RMS Error : 1 .75440 e−04
Induct ion Weighted RMS Error : 1 .32125 e−04
Induct ion Weighted Mean Signed Error : 4 .84152 e−05
Induct ion Weighted Least−Squares Error : 1 .57535 e−05
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DHF Parameters :
Funct ional Form =

E ( dhf ) _ i j = − A∗K2( r i j ) ∗ (1 + a_yml∗Y_ml ) ∗exp(− b i j ∗ r i j )
F i t t e d Atomtypes

A
H( 0 ) 0 .137793

A
C( 0 ) 0 .568162
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A a_y10 a_y20 a_y22c
N( 0 ) 0 .383885 −1.000000 0 .336640 −0.827635
Constrained Atomtypes

None
−−−−−−−−−−−−

Dhf RMS Error : 1 .36805 e−04
Dhf Weighted RMS Error : 8 .45054 e−05
Dhf Weighted Mean Signed Error : −9.08316e−06
Dhf Weighted Least−Squares Error : 9 .71484 e−06
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Dispersion Parameters :
Funct ional Form =

E ( disp ) _ i j = sum_ ( n = 6 , 8 , 1 0 , 1 2 ) {A∗fdamp_n ∗ ( Ci j_n/ r _ i j ^n ) }
C6 C8 C10 C12

H 1.498365 6 .488286 33 .240633 143 .508377
C 5.315289 20 .555612 99 .173881 391 .059721
N 4.242425 20 .639587 150 .575182 765 .384698
F i t t e d Atomtypes

A
H( 0 ) 1 .000000

A
C( 0 ) 1 .000000

A a_y10 a_y20 a_y22c
N( 0 ) 1 .000000 −0.163375 0 .092436 −0.169124
Constrained Atomtypes

None
−−−−−−−−−−−−

Dispersion RMS Error : 1 .61515 e−04
Dispersion Weighted RMS Error : 1 .09295 e−04
Dispersion Weighted Mean Signed Error : −4.00563e−05
Dispersion Weighted Least−Squares Error : 1 .59366 e−05
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Tota l Energy :
−−−−−−−−−−−−

Tota l Energy RMS Error : 4 .50690 e−04
Tota l Energy Weighted RMS Error : 2 .30673 e−04
Tota l Energy Weighted Mean Signed Error : 2 .74556 e−05
Tota l Energy Weighted Least−Squares Error : 9 .22127 e−05
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#########################################################################

6.C Additional Fitting Options
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7 conclusions and future directions

In this dissertation, we have presented a systematic methodology for improved
ab initio force field development on the basis of Symmetry-Adapted Perturbation
Theory (SAPT) and Iterated Stockholder Atoms (ISA) calculations. Critically, the
strategies developed herein allow for accurate and physically-based modeling of
short-range effects in intermolecular force fields, and enable accurate, transferable,
and cost-effective treatment of the important atomic-level anisotropies commonly
found in organic compounds. These improved methodologies for ab initio force
field development have culminated in our MASTIFF model for intermolecular
interactions, and we are already approaching the stage where MASTIFF can be
used in the generation of broadly-applicable force fields for large-scale molecular
simulation.

Before such large-scale simulations can become a possibility for strongly polar-
izable systems, fundamental limitations in the induction model for MASTIFF will
be need to be adddressed. Future work on polar systems should focus on improved
and more accurate treatment of the long-range polarization, the development of new
models to more physically treat the polarization damping, and the decomposition
of the total induction energy into charge-transfer and polarization contributions.
Though much work is needed to outline specific strategies to tackle each of these
issues, it is hoped that regularized SAPT methods (Ref. 155), which can perform the
charge-transfer/polarization decomposition, and the ISA-pol method (Chapter 5),
which can naturally partition the long-range polarization energies and quantify
higher-order and/or anisotropic polarizabilities, might be of good service in this
endeavor.

Assuming challenges in modeling the induction energy can be met, a second
goal for future study should be the application of MASTIFF to the wide range of
chemical problems where atomic-level anisotropy is particularly important. These
applications can initially consist of ab initio force field development for specific
molecules, and we are already in the process of developing and testing models
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for industrially important compounds where isotropic force fields have known
accuracy issues, such as with benzene and ethene. Emphasis should also be placed
on generating transferable anisotropic ab initio force fields for general classes of
molecules, such that the MASTIFF model can ultimately be employed as a general,
all-purpose model for accurate molecular simulation. The development of these
general force fields will require us to address various challenges not yet considered
with the MASTIFF methodology, such as the treatment of flexible monomer geome-
tries and the generalization of atom-specific anisotropic parameters into transferable
and general atom type parameters. Nevertheless, and assuming these challenges
can be overcome, it is hoped that MASTIFF and other ‘next-generation’ ab initio
force fields will lead to increasingly accurate and robust models for molecular po-
tential energy surfaces (PESs), such that the complex, inherently anisotropic details
of intermolecular interactions may be routinely studied in large-scale molecular
simulation.
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a force field development workflow
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Purpose
Derive a first-principles, SAPT-based force field.

Relevant Literature
VanVleet2016: 10.1021/acs.jctc.6b00209●

VanVleet2017: TBA●

McDaniel2013: 10.1021/jp3108182●

Schmidt2015: 10.1021/ar500272n●

Yu2011: 10.1021/jp204563n●

Overview
To generate a SAPT-based force field, the following inputs are required: 1. Benchmark dimer
energies from SAPT, computed for a variety of dimer configurations 2. Long-range multipole
moments, induced dipoles, and dispersion parameters, computed from monomer properties (and
BS-ISA in particular) 3. Short-range exponents computed from monomer properties (and BS-ISA in
particular) 4. Short-range pre-factors fit to dimer energies

The following scripts are designed to simplify (as much as is possible) the workflow for force field
generation.

Method
Generate the necessary input files upon which the scripts in step #2 depend. The following files1.
must be manually created/edited, and can all be found in the templates subdirectory (with an
example set of input files given for the pyridine dimer):

dimer_info.dat1.
For each monomer, list the monomer's name and the charge on the■

monomer. The appropriate file format should be clear from the pyridine example.■

In the manner described in dimer_info.dat, list all midbonds that should be added between■

monomers. Midbonds are important for running accurate SAPT calcuations; see Yu2011 for
details.

generate_grid_settings.inp2.
This is the input file for GenerateGridPoints, which generates the dimer configurations for■

running SAPT calculations. The input file is commented so as to be self-explanatory; you will
need to change (at the very least) the 1st, 3rd, and 4th input sections based on the identities
of the two monomers

MONA_MONB.inp (where MONA and MONB are replaced by the monomer names listed in3.
dimer_info.dat)

This file contains a title line (line 1), and (for each monomer) the number of atoms followed■

by a list of coordinates in .xyz format. See pyridine_pyridine.inp for an example.
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MONA.atomtypes, MONB.atomtypes4.
Each .atomtypes file has the format of a .xyz file, where the element names have been■

replaced by atomtypes. This file will be used to generate the CamCASP input files needed for
ISA calculations, and is also necessary for pre-processing the input files for force field fitting.

2. To generate all files necessary to run force field calculations, run the following pre-processing
scripts (from this main directory).

./scripts/make_geometries.sh

./scripts/get_global_coordinates.py

./scripts/submit_ip_calcs.py

(wait until IP calculation is finished)

./scripts/make_sapt_ifiles.py

./scripts/make_isa_files.py

./scripts/make_dispersion_files.py

3. Submit all SAPT and ISA calculations to relevant locations. At the time of this writing, SAPT
calculations should preferably be run on HCTC (Condor). ISA and dispersion calculations should be
run on Phoenix using Camcasp 5.8. Copy all output files back to Pople.

4. Workup the results of the SAPT and ISA calculations by running the following post-processing
scripts:

./scripts/workup_sapt_energies.py

./scripts/workup_dispersion_files.sh

(Depending on the force field, dynamic polarizabilities may need to be added to
templates/dispersion_base_constraints.index before running this script. See Jesse McDaniel's thesis
and \cite{McDaniel2013} for a full description of the paramterization process for dispersion
coefficients.)

./scripts/workup_drude_files.sh

(Depending on the force field, static polarizabilities may need to be added to
templates/drude_base_constraints.index before running this script. See Jesse McDaniel's thesis and
\cite{McDaniel2013} for a full description of the paramterization process for drude oscillator
charges.)
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./scripts/workup_isa_charges.py

./scripts/workup_isa_exponents.py

After running these scripts, you should have the SAPT energies, long-range coefficients, and
short-range exponents required to run the force fitting code (which is needed to generate
short-range pre-factors, see \cite{VanVleet2016}). The proper running of this code is described in
the POInter documentation, see

https://git.chem.wisc.edu/schmidt/force_fields/wikis/home

Overview of Important Files
dimer_info.dat <- monomer names and midbond positions●

dispersion_template.clt <- CamCASP input file for getting induction and●

dispersion paramters●

generate_grid_settings.inp <- geometry configuration settings●

isa_template.clt <- CamCASP input file for getting ISA exponents●

pbe0_template.com <- DF-DFT-SAPT template for the PBE0 functional●

pyridine.atomtypes <- change elements to atomtypes; only matters for●

dispersion●

pyridine_pyridine.inp <- monomer geometries●

For most systems, only dimer_info.dat, the .inp files, and the .atomtypes file will need to be
changed. The examples provided for these files should hopefully make the format self-explanatory.

System Requirements
Python dependencies: * numpy * scipy * chemistry (mvanvleet package; not standard, so this needs
to be * downloaded and added to your $PYTHONPATH)

Figure A.1: An overview of the semi-automated force field development pro-
cess. The full workflow and required scripts can be found at https://github.
com/mvanvleet/workflow-for-force-fields.

https://github.com/mvanvleet/workflow-for-force-fields
https://github.com/mvanvleet/workflow-for-force-fields
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A.1 Monomer Geometries

Table A.1: Cartesian coordinates for each molecule in the 91 dimer test set. HOMO
and I.P. values, necessary for DFT-SAPT calculations, are also shown. All units are
in a.u.

Acetone

C 0.000000 0.000000 −2.280333
O 0.000000 0.000000 0.000000
C 0.000000 2.435101 −3.793814
C 0.000000 −2.435101 −3.793814
H 0.000000 4.050439 −2.525430
H 0.000000 −4.050439 −2.525430
H 1.657668 2.514281 −5.019869
H −1.657668 2.514281 −5.019869
H −1.657668 −2.514281 −5.019869
H 1.657668 −2.514281 −5.019869

HOMO: −0.266741
I.P.: 0.35386979

Ar

Ar 0.000000 0.000000 0.000000

HOMO: −0.440599
I.P.: 0.58049447

Chloromethane
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Table A.1 – continued from previous page

* C 0.000000 0.000000 −3.365602
Cl 0.000000 0.000000 0.000000
H 1.969851 0.000000 −4.102784
H −0.984925 1.705856 −4.102784
H −0.984925 −1.705856 −4.102784

HOMO: −0.313074
I.P.: 0.41507894

CO2

C 0.000000 0.000000 0.000000
O 0.000000 0.000000 2.196051
O 0.000000 0.000000 −2.196051

HOMO: −0.394037
I.P.: 0.51235857

Dimethyl Ether

O 0.000000 0.000000 0.000000
C 0.000000 2.205121 −1.495718
C 0.000000 −2.205121 −1.495718
H 0.000000 3.871860 −0.266451
H 0.000000 −3.871860 −0.266451
H 1.691305 2.227420 −2.690781
H −1.691305 2.227420 −2.690781
H −1.691305 −2.227420 −2.690781
H 1.691305 −2.227420 −2.690781

HOMO: −0.272835
I.P.: 0.36469012
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Table A.1 – continued from previous page

Ethane

C 0.000000 0.000000 0.000000
C 0.000000 0.000000 −2.902619
H −1.926009 0.000000 0.735670
H 0.963004 1.667872 0.735670
H 0.963004 −1.667872 0.735670
H 1.926009 0.000000 −3.638290
H −0.963004 −1.667872 −3.638290
H −0.963004 1.667872 −3.638290

HOMO: −0.353672
I.P.: 0.45125450

Ethanol

C 4.487344 −0.256436 0.000000
C 2.242538 1.511403 0.000000
O 0.000000 0.000000 0.000000
H −1.392728 1.194685 0.000000
H 6.208128 0.902911 0.000000
H 4.356008 −1.440160 1.675998
H 4.356008 −1.440160 −1.675998
H 2.199641 2.699285 1.672786
H 2.199641 2.699285 −1.672786

HOMO: −0.287342
I.P.: 0.38582676

Ethene
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Table A.1 – continued from previous page

C 0.000000 0.000000 0.000000
C 0.000000 0.000000 −2.530343
H 0.000000 1.755367 1.063160
H 0.000000 −1.755367 1.063160
H 0.000000 1.755367 −3.593503
H 0.000000 −1.755367 −3.593503

HOMO: −0.288580
I.P.: 0.38518748

H2O

O 0.000000 0.000000 0.000000
H 0.000000 1.430901 −1.108324
H 0.000000 −1.430901 −1.108324

HOMO: −0.333820
I.P.: 0.46592291

Methane

C 0.000000 0.000000 0.000000
H 1.185992 1.185992 1.185992
H 1.185992 −1.185992 −1.185992
H −1.185992 1.185992 −1.185992
H −1.185992 −1.185992 1.185992

HOMO: −0.403996
I.P.: 0.51955025

Methanol
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Table A.1 – continued from previous page

C 0.000000 2.696639 0.000000
O 0.000000 0.000000 0.000000
H −1.947174 3.401885 0.000000
H 0.973776 3.401885 1.686392
H 0.973776 3.401885 −1.686392
H 1.709635 −0.584303 0.000000

HOMO: −0.292049
I.P.: 0.39901686

Methyl Amine

C 0.000000 2.779976 0.000000
N 0.000000 0.000000 0.000000
H −1.887836 3.667203 0.000000
H 1.026877 3.452719 1.668817
H 1.026877 3.452719 −1.668817
H −0.960170 −0.632113 −1.537670
H −0.960170 −0.632113 1.537670

HOMO: −0.255840
I.P.: 0.35552078

NH3

N 0.000000 0.000000 0.000000
H 0.000000 −1.771996 −0.721119
H 1.534647 0.886093 −0.721119
H −1.534647 0.886093 −0.721119

HOMO: −0.284421
I.P.: 0.39987353
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