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Abstract

Title: Biochemical Reaction Networks: Network Structures and Dynamical

Properties

Reaction networks are commonly used to model a variety of physical systems ranging

from the microscopic world like cell biology and chemistry, to the macroscopic world like

epidemiology and evolution biology. At its core, a reaction network model consists of

two components: the network component, and its associated dynamics. The dynamical

systems associated with reaction networks usually come from one of two types: a de-

terministic model utilizing ordinary differential equations (ODEs) or a stochastic model

utilizing continuous-time Markov chains. Not surprisingly, there is a strong connection

between the network structure and the qualitative behavior of the associated dynamical

system, both in the deterministic and stochastic modeling regimes.

A major question in the theory of reaction networks concerns this connection: given

a reaction network model that has certain special structures, what are the qualitative

properties of its dynamical systems? Regarding this question, two main contributions

will be presented in this thesis. In the reaction network literature, many results es-

tablished qualitative behavior of reaction networks under the common assumption that

the dynamical system is governed by mass action kinetics. As many networks in prac-

tice do not follow the law of mass action, the first contribution relaxed this assumption

and extended three existing results to the setting of non-mass action kinetics. The sec-

ond contribution lies in the study of strongly endotactic networks. We utilized “tier

structure”-an analytical tool to study the dynamical properties of strongly endotactic
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networks in both the deterministic and stochastic models.

Another question arises naturally from a mathematical standpoint, and is also in-

spired by the recent emergence of network science and network biology: how prevalent

or common are these special network structures? To address this question quantitatively

for the structure deficiency zero, we first developed two random graph frameworks in-

cluding an Erdős Rényi framework and a stochastic block model framework to generate

random reaction networks. Under these two frameworks, we then studied the scaling

limit of the probability that a random network has deficiency zero as the number of

species goes to infinity.
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Chapter 1

Introduction

Reaction networks are used to model a variety of physical systems from microscopic

processes such as chemical reactions and protein interactions, to macroscopic phenomena

such as the spread of disease and the evolution of species. In reaction networks, the

interacting agents (such as biochemical molecules, animal species, human populations)

are referred to by a common term “species”. These networks take the form of directed

graphs in which the vertices, often termed complexes in the domains of interest, are

linear combinations of the species over the non-negative integers and the directed edges

are termed reactions. See Figure 1 for an example of a reaction network.

At its core, a reaction network model consists of two components: the network (or

graph) component, and the dynamics under such a graph. The dynamical systems asso-

ciated with reaction networks usually come from one of two types. When the abundances

of the constituent species in a system are low, randomness plays an important role in

the interaction between species, and thus the abundances are modeled stochastically as

a continuous-time Markov chain. However, when the abundances of the species are high,

such randomness is averaged out and the concentrations are instead modeled determin-

istically by a system of ordinary differential equations (ODEs). Not surprisingly, in both

models there is a strong connection between the network structure and the qualitative

behavior of the dynamical system. Certain network structures such as deficiency zero
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∅ S1 + S2

S2

2S1 2S2

Figure 1: A reaction network with two species: S1 and S2. The vertices are linear

combinations of the species over the integers, and are termed complexes. The directed

edges are termed reactions and determine the net change in the counts of the species

due to one instance of the reaction.

and strong endotacticity (which will be detailed in later sections) ensure many desirable

behaviors of the dynamical systems including existence and stability of equilibria.

Focusing on this, my work revolves around two objectives:

1. Establish the dynamical properties of reaction systems whose associated networks

have certain structures.

2. Examine how prevalent these structures are among random reaction networks.

Specifically, my work in [5] and [13] addressed the first objective. In the reaction

network literature, many results (see [1, 2, 6, 7, 8, 16, 18]) established qualitative be-

havior of reaction networks under the common assumption that the dynamical system

is governed by mass action kinetics. As many networks in practice do not follow the law

of mass action, in [13] we relaxed this assumption and extended three existing results

[6, 7, 16] to the setting of non-mass action kinetics. In [5], we utilized an analytical tool

to study the dynamical properties of strongly endotactic networks in both the deter-

ministic and stochastic models. My main contribution in this project was proving that
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strongly endotactic networks satisfy a Lyapunov-like condition that leads to a Large

Deviation Principle (LDP).

The second objective not only arises naturally from a mathematical standpoint, but

it is also inspired by the recent emergence of network science and network biology, where

many important network features are examined via randomized networks. In [12], we

developed an Erdős-Rényi framework to generate random reaction networks, and utilized

it to understand the prevalence of deficiency zero-the network structure most central to

reaction network theory. With this as a starting point, in [14] we considered a stochastic

block model framework which can be adapted to study deficiency zero in different settings

where reaction networks may have vastly different structures.

The remainder of this thesis is organized in chronological order of my work. In

Chapter 2, I will provide the necessary background on reaction networks including key

definitions, the associated dynamical systems, and several relevant classical results. In

Chapter 3, which corresponds to my work in [13], I will start with established results on

complex balanced reaction networks with mass action kinetics, then extend these results

to the setting of non-mass action kinetics. In Chapter 4, which follows my work in [5],

I will formally introduce strongly endotactic network, then explain the main analytic

tool-tier structures and use it to analyze strongly endotactic networks. In Chapter 5,

which follows my work in [12] and [14], I will set up two frameworks: Erdős-Rényi

and stochastic block model to generate random reaction networks, and use them to

quantify the prevalence of deficiency zero structure among random networks. Finally,

the Appendix includes several technical lemmas needed for the proofs of various theorems

presented in the thesis.
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Chapter 2

Background on reaction networks

2.1 Reaction networks and key definitions

Let {S1, . . . , Sn} be a set of n species undergoing a finite number of reaction types. We

denote a particular reaction by y → y′, where y and y′ are linear combinations of the

species on {0, 1, 2, . . . } representing the number of molecules of each species consumed

and created in one instance of that reaction, respectively. The linear combinations y and

y′ are often called complexes of the system. For a given reaction, y → y′, the complex

y is called the source complex and y′ is called the product complex. A complex can be

both a source complex and a product complex. We may associate each complex with

a vector in Zn≥0, whose coordinates give the number of molecules of the corresponding

species in the complex. As is common in the reaction network literature, both ways of

representing complexes will be used interchangeably throughout the paper. For example,

if the system has 2 species {S1, S2}, the reaction S1 +S2 → 2S2 has y = S1 +S2, which is

associated with the vector

1

1

, and y′ = 2S2, which is associated with the vector

0

2

.

Viewing the complexes as vectors, the reaction vector associated to the reaction y → y′

is simply y′ − y ∈ Zn, which gives the state update of the system due to one occurrence

of the reaction.
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Definition 2.1. For n ≥ 0, let S = {S1, ..., Sn}, C = ∪y→y′{y, y′}, and R = ∪y→y′{y →

y′} be the sets of species, complexes, and reactions respectively. The triple {S, C,R} is

called a reaction network. When n = 0, in which case S = C = R = ∅, the network is

termed the empty network. 4

Remark 2.2. It is common to assume, and we shall do so throughout, that each species

of a given reaction network appears with a positive coefficient in at least one complex,

and each complex takes part in at least one reaction (as either a source or a product

complex). Thus, a reaction network {S, C,R} is fully specified if we know R. In this

case, we call S and C the set of species and the set of complexes associated with R.

To each reaction network {S, C,R}, there is a unique directed graph constructed

in the obvious manner: the vertices of the graph are given by C and a directed edge

is placed from y to y′ if and only if y → y′ ∈ R. Each connected component of the

graph is called a linkage class. We denote by ` the number of linkage class. Note that

by definition the directed graph associated to a reaction network contains only vertices

corresponding to elements in C involved in some reaction, i.e., the degree of all vertices

is at least 1 and so isolated vertices are not present in the associated network.

Remark 2.3. Note that since each linkage class must consist of at least two complexes,

we have the bound ` ≤ |C|
2

.

Definition 2.4. A reaction network {S, C,R} is called weakly reversible if each con-

nected component of the associated directed graph is strongly connected.

Definition 2.5. The linear subspace S = span{y′ − y} generated by all reaction vectors

is called the stoichiometric subspace of the network. For c ∈ Rn
≥0 we say c + S = {x ∈
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Rn|x = c + s for some s ∈ S} is a stoichiometric compatibility class, (c + S) ∩ Rn
≥0

is a non-negative stoichiometric compatibility class, and (c + S) ∩ Rm
>0 is a positive

stoichiometric compatibility class. Denote dim(S) = s.

Definition 2.6. A vertex, y ∈ Zn≥0, is called binary if
∑n

i=1 yi = 2. A vertex is called

unary if
∑n

i=1 yi = 1. The vertex ~0 ∈ Zn is said to be of zeroth order.

Definition 2.7. A reaction network {S, C,R} is called binary if each vertex is binary,

unary, or of zeroth order.

The following type of network will play a key role in Chapter 5.

Definition 2.8. A reaction network is called paired if each of its connected components

contains precisely two vertices. A reaction network is called i-paired if it is paired and

contains i connected components.

2.2 Dynamical systems

The dynamical systems associated with reaction networks usually come from one of two

types. When the abundances of the constituent species in a system are low, randomness

plays an important role in the interaction between species, and thus the abundances are

modeled stochastically as a continuous-time Markov chain. However, when the abun-

dances of the species are high, such randomness is averaged out and the concentrations

are instead modelled deterministically by a system of ordinary differential equations

(ODEs).
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2.2.1 Stochastic model

The most common stochastic model for a reaction network {S, C,R} treats the system

as a continuous time Markov chain whose state at time t, X(t) ∈ Zn≥0, is a vector giving

the number of molecules of each species present with each reaction modeled as a possible

transition for the chain. The model for the reaction y → y′ is determined by the source

and product complexes of the reaction, and a function λy→y′ of the state that gives the

transition intensity, or rate, at which the reaction occurs. In the biological and chemical

literature, transition intensities are referred to as propensities.

Given that the reaction y → y′ happens at time t, the state is updated by the addition

of the reaction vector y′ − y,

X(t) = X(t−) + y′ − y.

A common choice for the intensity functions λy→y′ is to assume the system satisfies the

stochastic version of mass action kinetics. In this case, the functions have the form

λy→y′(x) = κy→y′
n∏
i=1

xi!

(xi − yi)!
1{xi≥yi} (2.1)

where κy→y′ > 0 is called the rate constant. Under the assumption of mass action

kinetics and a non-negative initial condition, it follows that the dynamics of the system

is confined to the particular non-negative stoichiometric compatibility class determined

by the initial value X(0), namely X(t) ∈ (X(0) + S) ∩ Rn
≥0.

Simple book-keeping implies that X(t) satisfies

X(t) = X(0) +
∑

y→y′∈R

Ry→y′(t)(y
′ − y),

where Ry→y′(t) gives the number of times reaction y → y′ has occurred by time t. Kurtz
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showed that X can be represented as the solution to the stochastic equation

X(t) = X(0) +
∑

y→y′∈R

Yy→y′

(∫ t

0

λy→y′(X(s))ds

)
(y′ − y), (2.2)

where the Yy→y′ are independent unit-rate Poisson process [32].

Another way to characterize the models of interest is via Kolmogorov’s forward equa-

tion, termed the chemical master equation in the biology and chemistry literature, which

describes how the distribution of the process changes in time. Letting pµ(x, t) give the

probability that X(t) = x assuming an initial distribution of µ, the forward equation is

d

dt
pµ(x, t) =

∑
y→y′∈R

λy→y′(x− (y′ − y))pµ(x− (y′ − y), t)−
∑

y→y′∈R

λy→y′(x)pµ(x, t).

Constant solutions to the forward equation, i.e. those satisfying

∑
y→y′∈R

π(x− y′ + y)λy→y′(x− y′ + y) = π(x)
∑

y→y′∈R

λy→y′(x)

are stationary measures for the process, and if they are summable they can be normal-

ized to give a stationary distribution. Assuming the associated stochastic model is non-

explosive, stationary distributions characterize the long-time behavior of the stochasti-

cally modeled system.

2.2.2 Deterministic model

Under the classical scaling (for more details, see [10, 11, 31]) the continuous time Markov

chain model of the previous section becomes

x(t) = x(0) +
∑

y→y′∈R

(∫ t

0

fy→y′(x(s))ds

)
(y′ − y) (2.3)

where

fy→y′(x) = κy→y′x
y (2.4)
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where κy→y′ > 0 is the rate constant, and where for two vectors u, v ∈ Rm
≥0 we denote

uv =
∏

i u
vi
i with the convention 00 = 1. Later, we will also utilize the notation uv for

the vector whose ith component is uivi.

We say that the deterministic system (2.3) has deterministic mass action kinetics if

the rate functions fy→y′ have the form (2.4). The system 2.3 is equivalent to the system

of ODEs

ẋ =
∑

y→y′∈R

κy→y′x
y(y′ − y). (2.5)

The trajectory with initial condition x0 is confined to the non-negative stoichiometric

compatibility class (x0 + S) ∩ Rn
≥0.

2.3 Special network structures and classical results

2.3.1 Complex balance reaction networks

Some mass action systems have complex balanced equilibria [26, 28], which has been

shown to play an important role in many biological mechanisms [17, 23, 29, 34]. An

equilibrium point c is said to be complex balanced if for all z ∈ C, we have

∑
y→y′∈R:y=z

κy→y′c
y =

∑
y→y′∈R:y′=z

κy→y′c
y, (2.6)

where the sum on the left is over reactions for which z is the product complex and the

sum on the right is over reactions for which z is the source complex.

In [28] it was shown that if there exists a complex balanced equilibrium c ∈ Rn
≥0 then

1. There is one, and only one, positive equilibrium point in each positive stoichio-

metric compatibility class.
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2. Each such equilibrium point is complex balanced.

3. Each such complex balanced equilibrium point is locally asymptotically stable

relative to its stoichiometric compatibility class.

In [19], a proof is presented showing global stability relative to the stoichiometric com-

patibility class. Because of the above, we say that a system is complex balanced if it

admits a complex balanced equilibrium.

Complex balanced systems are also of interest in the stochastic setting. In particular,

the following theorem in [8] provides an explicit form for the stationary distribution of

complex balanced systems.

Theorem 2.9. Let {S,R, C} be a reaction network. Suppose that when modeled deter-

ministically with mass action kinetics and rate constants {κy→y′} the system is complex

balanced with a complex balanced equilibrium c ∈ Rn
≥0. Then the stochastically modeled

system with intensities (2.1), with the same rate constants {κy→y′}, admits the stationary

distribution

π(x) =
n∏
i=1

cxii
xi!
e−ci , x ∈ Zn≥0. (2.7)

See also [6], which shows that these systems are non-explosive, implying π yields

the limiting distributions of the process. This stationary distribution will become the

starting point and the main inspiration for results in Chapter 3.

While complex balanced networks have many interesting properties, in practice it

is not an easy task to check if a network is complex balanced. Fortunately, there are

classical results in the field going all the way back to the seminal works of Horn, Jackson,

and Feinberg in 1972 [21, 26, 28] that give a condition to ensure a reaction network

is complex balanced for all choices of rate constants. The condition is based on a
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network quantity termed the deficiency, which can be easily computed from each reaction

network.

Theorem 2.10. If the reaction system is weakly reversible and has a deficiency of zero,

then for any choice of rate constants {κy→y′} the deterministically modeled system with

mass action kinetics is complex balanced.

The network structure deficiency zero will be the main focus for Chapter 5, and the

next section will provide more information on deficiency of a reaction network.

2.3.2 Deficiency of a reaction network

We start the section with a formal definition on deficiency of a reaction network.

Definition 2.11. The deficiency of a chemical reaction network {S, C,R} is δ = |C| −

`− s, where |C| is the number of complexes, ` is the number of linkage classes, and s is

the dimension of the stoichiometric subspace of the network.

For each j ≤ `, we let Cj denote the collection of complexes in the jth linkage class,

sj be the corresponding dimension of the span of the reaction vectors of that component,

and define δj = |Cj| − 1− sj to be the deficiency of that component.

Remark 2.12. From the definition of deficiency, the empty network has deficiency zero.

We collect a number of basic properties of deficiency in the following lemma.

Lemma 2.13. Let n ≥ 1 and let {S, C,R} be a reaction network with n species.

(a) δ does not depend upon the direction of the edges.

(b) sj ≤ |Cj| − 1, and so δj ≥ 0.
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(c) s ≤ |C| − `, and so δ ≥ 0.

(d) δ = 0 if and only if both the following conditions hold:

(i) sj = |Cj| − 1 for each j ≤ ` (equivalently, δj = 0 for each j ≤ `).

(ii)
∑`

j=1 sj = s.

(e) If δ = 0, then

|C| ≤ 2n.

(f) Suppose the reaction network is paired, and that ζj is a reaction vector from the jth

connected component. Then δ = 0 if and only if {ζj} are linearly independent.

(g) (Monotonicity of deficiency.) Let {Ŝ, Ĉ, R̂} and {S, C,R} be two reaction networks

with R̂ \ R = {y → y′}, a single reaction. Let δ̂ and δ be the deficiencies of the two

networks. Then

δ̂ ≥ δ.

(h) Suppose the complexes of {S, C,R} are either unary or of zeroth order, then δ = 0.

(i) Let R̃ be a subset of R in which precisely one reaction of each reversible pair is

removed. If R̃ consists of linearly independent reaction vectors, then δ = 0.

Proof. (a) This follows from the definition of deficiency.

(b) This follows from the observation that a cycle within a connected component implies

a dependency among the reaction vectors.

(c) This follows from (b) since C = ∪`j=1Cj and s ≤
∑`

j=1 sj.

(d) This follows in a straightforward manner from (b) and (c).
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(e) From the definition of deficiency δ = |C| − ` − s, the fact that s ≤ n, and ` ≤ |C|
2

(from Remark 2.3), we have

δ ≥ |C| − |C|
2
− n =

|C|
2
− n.

Since the reaction network has deficiency zero, we therefore have

0 ≥ |C|
2
− n, (2.8)

which implies |C| ≤ 2n.

(f) Since the reaction network is paired, we have sj = 1 and |Cj| = 2 for each j ≤ `.

Thus condition (i) in (d) is satisfied. Since sj = 1, condition (ii) in (d) holds if and

only if all ζj are linearly independent.

(g) Let `, s and ˆ̀, ŝ be the number of connected components and dimension of the

stoichiometric subspace of {S, C,R} and {Ŝ, Ĉ, R̂}, respectively.

• Case 1: y, y′ ∈ C and y and y′ are from the same connected component. In

this case, we have |Ĉ| = |C| and ˆ̀ = `. Since y and y′ are from the same

connected component, the reaction vector y′ − y can be written as the linear

combination of the remaining reaction vectors from its connected component.

Therefore adding y → y′ to {S, C,R} does not increase the dimension of its

stoichiometric subspace. Thus ŝ = s and δ̂ = δ.

• Case 2: y, y′ ∈ C and y and y′ are from different connected components. In

this case, we have |Ĉ| = |C| and ˆ̀= `− 1. Since we are adding one reaction to

{S, C,R} to obtain {Ŝ, Ĉ, R̂}, we add at most 1 dimension to the stoichiometric

subspace of {S, C,R}. Thus ŝ ≤ s+ 1 and

δ̂ = |Ĉ| − ˆ̀− ŝ ≥ |C| − (`− 1)− (s+ 1) = δ.
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• Case 3: y ∈ C and y′ /∈ C or vice versa. In this case, we have |Ĉ| = |C|+ 1, and

ˆ̀= `. Similar to the previous case, we must have ŝ ≤ s+ 1, and thus

δ̂ = |Ĉ| − ˆ̀− ŝ ≥ |C|+ 1− `− (s+ 1) = δ.

• Case 4: y, y′ /∈ C. In this case, we have |Ĉ| = |C|+ 2, and ˆ̀= `+ 1. Similar to

the previous cases, we still have ŝ ≤ s+ 1 and thus

δ̂ = |Ĉ| − ˆ̀− ŝ ≥ |C|+ 2− (`+ 1)− (s+ 1) = δ.

(h) The proof of this part is similar to the proof of Lemma 2.13(g), and thus it is omitted

for the sake of brevity. The result in this part is well-known.

(i) Again, the proof of this part is similar to the proof of Lemma 2.13(g), and thus it

is omitted for the sake of brevity.

Definition 2.14. Let R = {S, C,R} be a reaction network, and R̃ ⊂ R. Then we

denote by πR̃(R) the reaction network whose set of reactions is R̃, and whose species

and vertices are the subsets of S and C that are associated with R̃, according to Remark

2.2.

Note that in Definition 2.14, πR̃(R) can be thought of as a “sub-network”, or a

projection of R onto the subset of species, vertices, and reactions associated with R̃.

The following corollary is a direct consequence of Lemma 2.13(g).

Corollary 2.15. Let R = {S, C,R} be a reaction network, and R̃ ⊂ R. Then

δπR̃(R) ≤ δR.

In particular, if πR̃(R) has a positive deficiency, then R also has a positive deficiency.
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To end this section, we will illustrate the concept of deficiency via two examples.

Example 1 (Enzyme kinetics [8]). Consider a reaction network with species {S,E, SE, P}

and associated graph

S + E � SE � P + E

E � ∅� S.

In this example, the reaction network has |C| = 6 vertices, there are ` = 2 connected

components, and the dimension of the stochiometric subspace is s = 4. Thus the

deficiency is

δ = 6− 2− 4 = 0.

The following example demonstrates that it is sometimes most natural to use Lemma

2.13(f) to verify that a network has a deficiency of zero.

Example 2 (Binary, 3-paired). Consider a reaction network with species {S1, S2, . . . , S9}

and associated graph

S1 + S2 � S3 + S4

S1 + S3 � S5 + S6

S6 + S7 � S8 + S9.

This network is paired in the sense of Definition 2.8. Moreover, there is linear indepen-

dence among the connected components, which can be seen easily since each connected

component has a species not found in any other connected component. Hence, Lemma

2.13(f) implies that the deficiency of this network is zero.
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Chapter 3

Complex balanced reaction networks

with non-mass action kinetics

Recall from Chapter 2 that if a network is complex balanced when modeled determinis-

tically, the associated stochastic model under mass action kinetics admits a stationary

distribution which is a product of Poissons. Many subsequent work follows from this

result [6, 7, 16]. In [16], the converse was shown to be true: if the stationary distri-

bution of a stochastically modeled network is given by a product of Poissons, then the

network is complex balanced. In [6] it was shown that complex balanced networks are

non-explosive. Lastly, in [7] it was shown that the limit of this stationary distribution

under classical scaling (for more detail on the scaling see [10, 11, 31]) is a well known

Lyapunov function.

Motivated by the fact that not all networks in practice follow the law of mass action,

in this section we considered a more generalized setting in which the kinetics are not

necessarily mass action. Specifically, we assumed the stochastic intensity function is of

the form

λy→y′(x) = κy→y′
n∏
i=1

θi(xi)θi(xi − 1) . . . θi(xi − yi + 1)

where θi : Z→ R≥0. This is a more generalized version of mass action kinetics (2.1), since

we recover (2.1) with θi all being identity. It was proven in [8] that the stochastic model
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under this kinetics admits a product form stationary measure, albeit not of Poissons.

In this section, we will extend the three aforementioned results in [6, 7, 16] to stochas-

tically modelled networks under this non-mass action kinetics. Notably, the stationary

distribution in this setting does not converge under the classical scaling. Thus, we

will construct a modified scaling under which the stationary distribution converges to a

Lyapunov function of a related ODE system.

3.1 Stationary distribution of complex balanced re-

action networks with mass action kinetics and

related results

We start with the main theorem in [8], which provides an explicit form for the stationary

distribution of complex balanced systems.

Theorem 3.1. Let {S,R, C} be a reaction network. Suppose that when modeled deter-

ministically with mass action kinetics and rate constants {κy→y′} the system is complex

balanced with a complex balanced equilibrium c ∈ Rn
≥0. Then the stochastically modeled

system with intensities (2.1), with the same rate constants {κy→y′}, admits the stationary

distribution

π(x) =
n∏
i=1

cxii
xi!
e−ci , x ∈ Zn≥0. (3.1)

See also [6], which shows that these systems are non-explosive, implying π yields the

limiting distributions of the process.

In the case when the stochastic model does not have mass action kinetics, [8] also

provides an extended result. In particular, [8] considers generalized intensity functions
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as mentioned in several past papers [30, 35],

λy→y′(x) = κy→y′
n∏
i=1

θi(xi) · · · θi(xi − yi + 1), (3.2)

where κy→y′ are positive rate constants, θi : Z → R≥0, and θi(x) = 0 if x ≤ 0. The

functions θi should be thought of as the ”rate of association” of the ith species [30]. For

a system with intensity functions (3.2), the product form stationary distribution is quite

similar to the one in Theorem 2.9.

Theorem 3.2. Let {S,R, C} be a reaction network. Suppose that when modeled deter-

ministically with mass action kinetics and rate constants {κy→y′} the system is complex

balanced with a complex balanced equilibrium c ∈ Rn
≥0. Then the stochastically mod-

eled system with general intensity functions (3.2), with the same rate constants {κy→y′},

admits the stationary measure

π(x) =
n∏
i=1

cxii
θi(1) · · · θi(xi)

, x ∈ Zn≥0. (3.3)

In the next sections, we will show that π in (3.3) is summable under some mild

growth condition on θi, and thus it can be normalized to a stationary distribution.

Interestingly, it has been proven in [16] that the converse is also true.

Theorem 3.3. Let {S,R, C} be a reaction network and consider the stochastically mod-

eled system with rate constants {κy→y′} and mass action kinetics (2.1). Suppose that

for some c ∈ Rn
≥0 the stationary distribution for the stochastic model is (2.7). Then c is

a complex balanced equilibrium for the associated deterministic model with mass action

kinetics and rate constants {κy→y′}.

Another follow-up result comes from the scaling behavior of the stationary distribu-

tion for complex balanced system. We first provide a key definition.
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Definition 3.4. Let π be a probability distribution on a countable set Γ such that π(x) >

0 for all x ∈ Γ. The non-equilibrium potential of the distribution π is the function

φπ : Γ→ R, defined by

φπ(x) = − ln(π(x)).

In [7] it was shown that under an appropriate scaling, the limit of the non-equilibrium

potential of the stationary distribution of a complex balanced system converges to a

certain well-known Lyapunov function.

Definition 3.5. Let E ⊂ Rn
≥0 be an open subset of Rn

≥0 and let f : Rn
≥0 → R. A function

V : E → R is called a Lyapunov function for the system ẋ = f(x) at x0 ∈ E if x0 is an

equilibrium point for f , that is f(x0) = 0, and

1. V(x) > 0 for all x 6= x0, x ∈ E and V(x0) = 0.

2. ∇V(x) · f(x) ≤ 0, for all x ∈ E, with equality if and only if x = x0, where ∇V

denotes the gradient of V.

In particular, the non-equilibrium potential of the stationary distribution in (2.7)

converges to the usual Lyapunov function of Chemical Reaction Network Theory

V(x) =
n∑
i=1

xi(ln(xi)− ln(ci)− 1) + ci. (3.4)

Next, we briefly discuss the scaling in which the convergence happens. It is called the

classical scaling in the literature. For more detailed discussions, see [10, 11, 31].

Let |y| =
∑

i yi and let V be the volume of the system times Avogadro’s number.

Suppose {κy→y′} are the rate constants for the stochastic model. We defined the scaled

rate constants as follows

κVy→y′ =
κy→y′

V |y|−1
(3.5)
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and denote the scaled intensity function for the stochastic model by

λVy→y′(x) =
κy→y′

V |y|−1

n∏
i=1

xi!

(xi − yi)!
. (3.6)

Note that if x ∈ Zn≥0 gives the counts of the different species, then x̃ := V −1x gives the

concentrations in moles per unit volume. Then, by standard arguments

λVy→y′(x) ≈ V κy→y′
n∏
i=1

x̃yii = V λy→y′(x̃)

where the final equality defines λy→y′ and justifies the definition of deterministic mass

action kinetics.

Denote the stochastic process determining the counts by XV (t), then normalizing

the original process XV by V and defining X̄V := XV

V
gives us

X̄V (t) ≈ X̄V (0) +
∑

y→y′∈R

1

V
Yy→y′

(
V

∫ t

0

λy→y′(X̄
V (s))ds

)
(y′ − y),

where we are utilizing the representation (2.2). Since the law of large numbers for the

Poisson process implies V −1Y (V u) ≈ u, we may conclude that a good approximation to

the process X̄V is the function x = x(t) defined as the solution to the ODE

ẋ =
∑

y→y′∈R

κy→y′x
y(y′ − y),

which is exactly (2.5).

A corollary of Theorem 2.9 gives us the stationary distribution for the classically

scaled system.

Theorem 3.6. Let {S,R, C} be a reaction network. Suppose that when modeled deter-

ministically with mass action kinetics and rate constants {κy→y′} the system is complex

balanced with a complex balanced equilibrium c ∈ Rn
≥0. For V > 0, let {κVy→y′} satisfy
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(3.5). Then the stochastically modeled system on Zn≥0 with rate constants {κVy→y′} and

intensity functions (3.6) admits the stationary distribution

πV (x) =
n∏
i=1

(V ci)
xi

xi!
e−V ci , x ∈ Zn≥0. (3.7)

An immediate implication of Theorem 3.6 is that a stationary distribution for the

scaled model X̄V is

π̃V (x̃V ) = πV (V x̃V ), for x̃V ∈ 1

V
Zn≥0. (3.8)

The main finding in [7] is concerned with the scaling limit of the stationary distribution

π̃V of (3.8).

Theorem 3.7. Let {S,C,R} be a reaction network and let {κy→y′} be a choice of rate

constants. Suppose that, modeled deterministically, the system is complex balanced. For

V > 0, let {κVy→y′} be related to {κy→y′} via (3.5). Fix a sequence of points x̃V ∈

1
V
Zn≥0 for which limV→∞ x̃

V = x̃ ∈ Rn
>0. Further let c be the unique complex balanced

equilibrium within the positive stoichiometric compatibility class of x̃.

Let πV be given by (3.7) and let π̃V be as in (3.8), then

lim
V→∞

[
− 1

V
ln(π̃V(x̃V ))

]
= V(x̃),

where V is the Lyapunov function for the ODE model satisfying (3.4).

3.2 Main results for complex balanced networks with

non-mass action kinetics

In this section, we first show that for stochastically modeled reaction networks with non-

mass action kinetics defined via (3.2) whose associated mass action system is complex
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balanced, the stationary measure (3.3) can be normalized to yield a stationary distribu-

tion. We further show that these stochastic models are non-explosive. We then extend

Theorems 3.3 and 3.7 to the non-mass action case.

3.2.1 Existence of a stationary distribution and non-explosivity

We begin with a theorem proving that the stochastic models considered in Theorem 3.2

are positive recurrent when only mild growth conditions are placed on the functions θi.

Theorem 3.8. Let {S,C,R} be a reaction network with rate constants {κy→y′}. Sup-

pose that when modeled deterministically, the associated mass action system is complex

balanced with equilibrium c ∈ Rn
>0. Suppose that θi and λy→y′ satisfy the conditions in

and around (3.2). Moreover, suppose that for each i we have limx→∞ θi(x) =∞. Then,

1. the measure π given in (3.3) is summable over Zn≥0, and a stationary distribution

exists for the stochastically modeled process, and moreover

2. the stochastically modeled process is non-explosive.

Proof. We first show that π is summable over Zn≥0. We have

∑
x∈Zn≥0

π(x) =
∑
x∈Zn≥0

n∏
i=1

cxii
θi(1) · · · θi(xi)

=
n∏
i=1

 ∑
xi∈Z≥0

cxii
θi(1) · · · θi(xi)


so long as each sum in the final expression is finite. Thus it is sufficient to prove that∑

x∈Z≥0

cxi
θi(1)···θi(x)

is finite for each i. By the ratio test

lim
x→∞

cx+1
i

θi(1) · · · θi(x+ 1)
·
(

cxi
θi(1) · · · θi(x)

)−1

= lim
x→∞

ci
θi(x+ 1)

= 0 < 1

where the last equality is due to the assumption that limx→∞ θi(x) =∞. Hence the sum

is convergent.
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We turn to showing that the process is non-explosive. From [6], to show that the

process is non-explosive, it is sufficient to show∑
x∈Zn≥0

(
π(x)

∑
y→y′∈R

λy→y′(x)

)
<∞.

From (3.2) and (3.2), we need to show∑
x∈Zn≥0

(
n∏
i=1

cxii
θi(1) · · · θi(xi)

∑
y→y′∈R

κy→y′
n∏
i=1

θi(xi) · · · θi(xi − yi + 1)

)
<∞.

Let si = maxy→y′{yi} and κ = maxy→y′ κy→y′ , where the max is over all source com-

plexes, and let R be the number of reactions. Let ni > si be such that θi(xi) >

1, · · · , θi(xi − si + 1) > 1 for all xi > ni. Then∑
x∈Zn≥0;xi>ni

n∏
i=1

cxii
θi(1) · · · θi(xi)

∑
y→y′∈R

κy→y′
n∏
i=1

θi(xi) · · · θi(xi − yi + 1)

<
∑

x∈Zn≥0;xi>ni

n∏
i=1

cxii
θi(1) · · · θi(xi)

Rκ
n∏
i=1

θi(xi) · · · θi(xi − si + 1)

=
∑

x∈Zn≥0;xi>ni

n∏
i=1

Rκcxii
θi(1) · · · θi(xi − si)

< C
∑

x∈Zn≥0;xi>ni

n∏
i=1

cxi−sii

θi(1) · · · θi(xi − si)
<∞

where C = Rκmaxni=1{c
si
i }, and the last inequality follows from part 1. Thus the process

is non-explosive.

3.2.2 Generalization of Theorem 3.3

We are set to provide the next theorem, which is the converse statement of Theorem 3.2

and generalizes Theorem 3.3 from [16]. In the theorem below, we assume limx→∞ θi(x) =

∞ for each i. In Corollary 3.11, we generalize the result to allow limx→∞ θi(x) ∈ {0,∞}

for each i.
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Theorem 3.9. Let {S,R, C} be a reaction network and consider the stochastically mod-

eled system with rate constants {κy→y′} and intensity functions (3.2). Suppose that

limx→∞ θi(x) =∞ for each i = 1, . . . n and that for some c ∈ Rn
≥0 a stationary measure

for the stochastic model satisfies (3.3). Then c is a complex balanced equilibrium for the

associated deterministic model with mass action kinetics and rate constants {κy→y′}.

Proof. By assumption, we have that π satisfies∑
y→y′∈R

π(x+ y − y′)λy→y′(x+ y − y′) = π(x)
∑

y→y′∈R

λy→y′(x).

Plugging (3.2) and (3.3) into this equation yields∑
y→y′∈R

cx+y−y′∏n
i=1[θi(1) · · · θi(xi + yi − y′i)]

κy→y′
n∏
i=1

θi(xi + yi − y′i) · · · θi(xi − y′i + 1)

=
cx∏n

i=1[θi(1) · · · θi(xi)]
∑

y→y′∈R

κy→y′
n∏
i=1

θi(xi) · · · θi(xi − yi + 1).

Canceling and moving terms when necessary, we have∑
y→y′∈R

cy−y
′
κy→y′

n∏
i=1

θi(xi) · · · θi(xi − y′i + 1) =
∑

y→y′∈R

κy→y′
n∏
i=1

θi(xi) · · · θi(xi − yi + 1).

Enumerating the reaction on the right by their product complexes, and the reactions on

the left by their source complexes, the equation above becomes∑
z∈C

n∏
i=1

θi(xi) · · · θi(xi − zi + 1)
∑

y→y′:y′=z

cyk−y
′
kκy→y′ =

∑
z∈C

n∏
i=1

θi(xi) · · · θi(xi − zi + 1)
∑

y→y′:y=z

κy→y′ .

Since the above holds for all x ∈ Zn≥0, the two sides are equal as functions. Hence, if the

functions in the set {
n∏
i=1

θi(xi) · · · θi(xi − zi + 1)

}
z∈C

(3.9)

are linearly independent, then we must have∑
y→y′:y′=z

cy−y
′
κy→y′ =

∑
y→y′:y=z

κy→y′ ,
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which is the condition for the associated mass action system to be complex balanced.

Thus it remains to show that the functions in the set (3.9) are linearly independent.

We will prove that the functions are linearly independent by induction on the number

of species in the lemma below.

Lemma 3.10. For all n ∈ N>0 the functions in the set (3.9) are linearly independent.

Proof. We start with the case when there is one species, or when n = 1. Let C =

{z1, . . . , zR} ordered so that zi < zi+1 for each i = 1, . . . , R − 1. Suppose, in order to

find a contradiction, the functions in the set (3.9) are linearly dependent. Then there

exist α1, · · · , αr ∈ R with r ≤ R and αr 6= 0, such that

α1θ(x) · · · θ(x− z1 + 1) + · · ·+ αrθ(x) · · · θ(x− zr + 1) = 0, for all x ∈ R. (3.10)

Let M = |α1|
|αr| + · · ·+

|αr−1|
|αr| . Since θ(x)→∞, as x→∞, we can find an N > 0 such that

∀x > N , we have θ(x− zr + 1) > M and θ(x), . . . , θ(x− zr + 1) ≥ 1. In this case,

|αrθ(x) · · · θ(x− zr + 1)| > M |αr|θ(x) · · · θ(x− zr + 2)

=

(
|α1|
|αr|

+ · · ·+ |αr−1|
|αr|

)
|αr|θ(x) · · · θ(x− zr + 2)

= |α1|θ(x) · · · θ(x− zr + 2) + · · ·+ |αr−1|θ(x) · · · θ(x− zr + 2)

≥ |α1|θ(x) · · · θ(x− z1 + 1) + · · ·+ |αr−1|θ(x) · · · θ(x− zr−1 + 1).

This contradicts (3.10). Therefore, (3.9) must be linearly independent.

We turn to the inductive step. Thus, we now assume that functions of the form (3.9)

for distinct complexes z are linearly independent when there are n− 1 species. We must

show that this implies linear independence when there are n species.
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Enumerate the complexes as C = {z1, z2, . . . , zR}. Suppose that there are α1, . . . , αR

for which

α1

n∏
i=1

θi(xi) · · · θi(xi − z1
i + 1) + . . .+ αR

n∏
i=1

θi(xi) · · · θi(xi − zRi + 1) = 0, for all x ∈ Rn.

(3.11)

We will show that each αi = 0.

First note that we can not have z1
i = z2

i = . . . = zRi for each i = 1, . . . , n, for otherwise

all the complexes are the same. Thus, and without loss of generality, we assume that

not all of the zk1 are equal. In particular, we will assume that z1
1 , . . . , z

R
1 consists of p

distinct values with 2 ≤ p ≤ R. We will also assume that the complexes are ordered so

that the first r1 terms of zk1 are the same, the second r2 terms are the same, etc. That

is,

z1
1 = . . . = zr11 , zr1+1

1 = . . . = zr1+r2
1 , . . . , z

n−rp+1
1 = . . . = zR1 . (3.12)

We now consider the left hand side of (3.11) as a function of x1 alone. For j = 1, . . . , p,

we define

fj(x1) = θ1(x1) · · · θ1(x1 − z
r1+...+rj
1 + 1).

By Lemma 3.10, the functions fj, for j = 1, . . . , p, are linearly independent. Combining

similar terms in (3.11) we have

f1(x1)[α1

n∏
i=2

θi(xi) · · · θi(xi − z1
i + 1) + . . .+ αr1

n∏
i=2

θi(xi) · · · θi(xi − zr1i + 1)]+ (3.13)

f2(x1)[αr1+1

n∏
i=2

θi(xi) · · · θi(xi − zr1+1
i + 1) + . . .+ αr2

n∏
i=2

θi(xi) · · · θi(xi − zr1+r2
i + 1)]+

...

+ fp(x1)[αn−rp+1

n∏
i=2

θi(xi) · · · θi(xi − zn−rp+1
i + 1) + . . .+ αR

n∏
i=2

θi(xi) · · · θi(xi − zRi + 1)] = 0.
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From the independence of the fj, it must be the case that each bracketed term above is

zero.

Without loss of generality, we just consider the first bracketed term in (3.13):

α1

n∏
i=2

θi(xi) · · · θi(xi − z1
i + 1) + . . .+ αr1

n∏
i=2

θi(xi) · · · θi(xi − zr1i + 1), (3.14)

which we know is equal to zero. The goal now is to apply our inductive hypothesis to

conclude that each of α1, . . . , αr1 is equal to zero.

For each of k = 1, . . . , r1, we let z̃k = (zk2 , . . . , z
k
m). Then each term in the sum (3.14)

is a function on Rm−1 of the general form (3.9) with new complexes z̃k ∈ Rm−1. To use

the inductive hypothesis, we must argue that the z̃k are distinct. Consider, for example,

the first two terms: z̃1 and z̃2. By (3.12), we know that z1
1 = z2

1 ; that is, the coefficient

of species 1 for the two complexes are the same. If we also had z̃1 = z̃2, then all the

coefficients of the species would be the same for the two complexes, contradicting the fact

that they are distinct complexes (i.e. z1 6= z2). Hence, it must be that z̃1 6= z̃2. Thus, by

the inductive hypothesis, all the terms of the sum (3.14) are linearly independent, and

α1 = · · · = αr1 = 0. Repeating this argument for the other bracketed terms completes

the proof.

We have proven the independence of (3.9) in all cases, which completes the proof of

the lemma.

The following relaxes the condition in Theorem 3.9 that the limit of the functions θi

must be infinity.

Corollary 3.11. Let {S,R, C} be a reaction network and consider the stochastically

modeled system with rate constants {κy→y′} and intensity functions (3.2). Suppose that
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limx→∞ θi(x) ∈ {0,∞} for each i = 1, . . . ,m and that for some c ∈ Rn
≥0 a stationary

measure for the stochastic model satisfies (3.3). Suppose further that θi(x) > 0 for x

large enough. Then c is a complex balanced equilibrium for the associated deterministic

model with mass action kinetics and rate constants {κy→y′}.

Proof. Without loss of generality, assume limx→∞ θi(x) = 0 for i ≤ ` and limx→∞ θi(x) =

∞ for i ≥ ` + 1. The proof is the same as that of Theorem 3.9 in that we must prove

the linear independence of the functions in (3.9). Let

α1

n∏
i=1

θi(xi) · · · θi(xi − z1
i + 1) + . . .+ αR

n∏
i=1

θi(xi) · · · θi(xi − zRi + 1) = 0. (3.15)

For x large enough that θi(x) > 0, let φi(x) = 1
θi(x)

for each i ≤ `. Then we have

limx→∞ φi(x) =∞. Now (3.15) becomes

α1

∏n
i=`+1 θi(xi) · · · θi(xi − z1

i + 1)∏`
i=1 φi(xi) · · ·φi(xi − z1

i + 1)
+ . . .+

αR
∏n

i=`+1 θi(xi) · · · θi(xi − zRi + 1)∏`
i=1 φi(xi) · · ·φi(xi − zRi + 1)

= 0.

(3.16)

Let wk = max1≤j≤n{zjk}. Then from (3.16) we have

α1

∏̀
i=1

φi(xi − z1
i ) · · ·φi(xi − wi)

n∏
i=`+1

θi(xi) · · · θi(xi − z1
i + 1)+

. . .+ αR
∏̀
i=1

φi(xi − zni ) · · ·φi(xi − wi)
n∏

i=`+1

θi(xi) · · · θi(xi − zRi + 1) = 0.

This is similar to the set-up of Theorem 3.9 (since each φi(x)→∞, as x→∞) and we

can conclude α1 = . . . = αn = 0 and complete the proof.

3.2.3 Generalization of Theorem 3.7

This section is concerned with the convergence of the non-equilibrium potential of the

stationary distribution of systems with general kinetics, under some appropriate scaling.
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In particular, we would like to have a similar result as Theorem 3.7 for the case of

general kinetics. One difficulty that arises is that the classical scaling is not, in general,

appropriate for our purposes. This is illustrated by the example below.

Example 3. Consider the reaction network with one species A and reactions given by

∅� A

with the intensity function given by (3.2), where the rate constants are κ∅→A = κA→∅ = 1

and θ(x) = x2. Consider the process under the classical scaling. We obtain a stationary

distribution for the scaled model X̃V from Theorem 3.6 and (3.8):

π̃V (x̃V ) = πV (V x̃V ) =
1

M

(V c)V x̃
V

θ(1) · · · θ(V x̃V )
=

1

M

(V c)V x̃
V

((V x̃V )!)2
, x̃V ∈ 1

V
Z≥0.

We consider the limiting behavior of the non-equilibrium potential − 1
V

ln(π̃V (x̃V )), as

V →∞. Using Stirling’s approximation,

− 1

V
ln(π̃V (x̃V )) = − 1

V
ln

(
1

M

(V c)V x̃
V

((V x̃V )!)2

)

= − 1

V
(− lnM + V x̃V lnV + V x̃V ln c− 2 ln((V x̃V )!))

≈ − 1

V
(− lnM + V x̃V lnV + V x̃V ln c− 2V x̃V lnV x̃V + 2V x̃V )

= − 1

V
(− lnM + V x̃V ln c− 2V x̃V ln x̃V − V x̃V lnV + 2V x̃V ).

We need to estimate M when V →∞. From Lemma A.1 in the Appendix, we have

lnM = ln
∑
x∈Z≥0

(V c)x

(x!)2

≈ 2(V c)1/2 + a ln(V c) + b,
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for some constants a, b ∈ R. Thus

− 1

V
ln(π̃V (x̃V )) ≈ − 1

V
(−2(V c)1/2 − a ln(V c)− b+ V x̃V ln c− 2V x̃V ln x̃V − V x̃V lnV + 2V x̃V )

= 2
c1/2

V 1/2
+
a ln(V c)

V
+
b

V
− x̃V ln c+ 2x̃V ln x̃V + x̃V lnV − 2x̃V .

Clearly, limV→∞− 1
V

ln(π̃V (x̃V )) = ∞, and we do not have convergence of the non-

equilibrium potential under the classical scaling. �

With the above example in mind, we provide an alternative scaling.

The modified scaling

Define |y| =
∑

i yi and let V be a scaling parameter. For each reaction y → y′ let κy→y′

be a positive parameter. We now define the rate constant for y → y′ as

κVy→y′ =
κy→y′

V d·y−1
(3.17)

where the parameter d is a vector to be chosen (they will depend upon the limiting

values limx→∞ θi(x)). Note that the classical scaling is the case when d = (1, 1, . . . , 1).

Then we define the scaled intensity function

λVy→y′(x) =
κy→y′

V d·y−1

n∏
i=1

θi(xi) · · · θi(xi − yi + 1), (3.18)

where, as usual, θi : Z→ R≥0, and θi(x) = 0 if x ≤ 0.

Theorem 3.12. Let {S,C,R} be a reaction network with rate constants {κy→y′}. Sup-

pose that when modeled deterministically, the associated mass action system is complex

balance with equilibrium c ∈ Rn
>0. For some V, let {κVy→y′} be related to the {κy→y′} via

(3.17). Then the stochastically modeled system with scaled intensity function (3.18) has
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stationary measure

πV∗ (x) =
n∏
i=1

(V dici)
xi

θi(1) · · · θi(xi)
, where x ∈ Zn≥0. (3.19)

If (3.19) is summable, then a normalizing constant M can be found so that

πV (x) =
1

M

n∏
i=1

(V dici)
xi

θi(1) · · · θi(xi)
, where x ∈ Zn≥0, (3.20)

is a stationary distribution.

Proof. The proof is similar to that of Theorem 2.9, as found in [8], except care must be

taken to ensure that the terms associated with the scaling parameter V cancel appro-

priately.

Let XV be the process associated with the intensities (3.18) and let X̃V = V −1XV

be the scaled process. By Theorem 3.12, we have that for xV ∈ 1
V
Zn≥0

π̃V∗ (x̃V ) = πV∗ (V x̃V ), (3.21)

is a stationary measure for the scaled process. If (3.21) is summable, which is ensured

by Theorem 3.8 so long as θi(x)→∞ as x→∞, then

π̃V (x̃V ) = πV (V x̃V ), (3.22)

is a stationary distribution. In the next section, we consider the the limiting behavior

of − 1
V

ln(π̃V (x̃V )) as V →∞ for a class of θi.

Limiting behavior of − 1
V

ln(π̃V (x̃V ))

We make the following assumption on the functions θi.
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Assumption 1. We assume that (i) θi : Z → R≥0, (ii) θi(x) = 0 if x ≤ 0, and (iii)

there exists d,A ∈ Rn
>0 such that limxi→∞

θi(xi)

x
di
i

= Ai for each i.

Roughly speaking, this class of functions act like power functions when x is large. We

will utilize functions satisfying Assumption 1 to build intensity functions as in (3.18).

We will show that if the deterministic mass action system is complex balanced, then the

limiting behavior of the scaled non-equilibrium potential of the stochastically modeled

system with intensities (3.18) is a Lyapunov function for the ODE system

ẋ =
∑
y→y′

κy→y′(Ax
d)y(y′ − y), for x ∈ Rn

≥0. (3.23)

where we recall that Axd is the vector with ith component Aix
di
i . This result therefore

generalizes Theorem 3.7 (which is Theorem 8 in [7]).

Lemma 3.13. Let {S,C,R} be a reaction network with rate constants {κy→y′}. Sup-

pose that when modeled deterministically, the associated mass action system is complex

balanced with equilibrium c ∈ Rn
>0. Let d,A ∈ Rn

>0. Then the system (3.23) is complex

balanced with equilibrium vector c̃ satisfying

c̃i =

(
ci
Ai

)1/di

.

Proof. The proof consists of verifying that for each z ∈ C,

∑
y→y′:y=z

κy→y′(Ac̃
d)y =

∑
y→y′:y′=z

κy→y′(Ac̃
d)y,

where the sum on the left consists of those reactions with source complex z and the

sum on the right consists of those with product complex z. This is immediate from the

definition of c̃.
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We now turn to the scaled models, and prove that the properly scaled non-equilibrium

potential converges to a Lyapunov function for the ODE system (3.23).

Theorem 3.14. Let {S,C,R} be a reaction network with rate constants {κy→y′}. Sup-

pose that when modeled deterministically, the associated mass action system is complex

balanced with equilibrium c ∈ Rn
>0.

Fix d,A ∈ Rn
>0 and let θi be a choice of functions satisfying Assumption 1. For

V > 0 and the d > 0 already selected, let {κVy→y′} be related to {κy→y′} as in (3.17) and

let the intensity functions for the stochastically modeled system be (3.18).

Let π̃V be the stationary distribution for the scaled process guaranteed to exist by

Theorems 3.12 and 3.8 and given by (3.20).

Fix a sequence of points x̃V ∈ 1
V
Zn≥0 for which limV→∞ x̃

V = x̃ ∈ Zn>0. Then

lim
V→∞

[
− 1

V
ln(π̃V (x̃V ))

]
= V(x̃) =

n∑
i=1

[x̃i(di ln(x̃i)−ln(ci)−di+ln(Ai))]+
n∑
i=1

di(ci/Ai)
1/di ,

(3.24)

where V is defined by the final equality, and moreover V is a Lyapunov function for the

ODE system (3.23).

Note that by taking d = (1, .., 1) and A = (1, .., 1), the limit of the θi in Assumption

1 is simply mass action kinetics. Hence, the main result in [7] is contained within the

above theorem.
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Proof. Using (3.20) and (3.22) we have

− 1

V
ln(π̃V (x̃V )) = − 1

V
ln

(
1

M

n∏
i=1

(V dici)
V x̃Vi

θi(1) · · · θi(V x̃Vi )

)
= − 1

V

(
− lnM +

n∑
i=1

V x̃Vi ln(V dici)−
n∑
i=1

ln(θi(1) · · · θi(V x̃Vi ))

)
= − 1

V

(
− lnM +

n∑
i=1

V dix
V
i ln(V ) +

n∑
i=1

V x̃Vi ln(ci)−
n∑
i=1

ln(θi(1) · · · θi(V x̃Vi ))

)
= − 1

V

(
− lnM +

n∑
i=1

V dix̃
V
i ln(V ) +

n∑
i=1

V x̃Vi ln(ci)−
n∑
i=1

ln((V x̃Vi !)di)

+
n∑
i=1

ln((V x̃Vi !)di)−
n∑
i=1

ln(θi(1) · · · θi(V x̃Vi ))

)

We analyze the limiting behavior of the different pieces of the last expression.

1. We begin with the first term

1

V
lnM =

1

V
ln

(∑
x∈Zn

(V dc)x∏n
i=1 θi(1) · · · θi(xi)

)
,

where M is defined using (3.20). In Lemma A.2 in the appendix we show that as

V →∞

1

V
ln

(∑
x∈Zn

(V dc)x∏n
i=1 θi(1) · · · θi(xi)

)
∼ 1

V
ln

(∑
x∈Zn

(V dc)x∏n
i=1A

xi
i (xi!)di

)
=

1

V
ln

(∑
x∈Zn

(V dcA−1)x∏n
i=1(xi!)di

)
, (3.25)

where by aV ∼ bV , as V → ∞, we mean limV→∞(aV − bV ) = 0. We may then

apply Lemma A.1 to (3.25) to conclude there are constants a, b such that

1

V
ln

(∑
x∈Zn

(V dcA−1)x∏n
i=1(xi!)di

)
∼ 1

V

n∑
i=1

(di(V
diciA

−1
i )1/di + a ln(V diciA

−1
i ) + b).
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Taking the limit V →∞, we see that only the first term remains, which yields

lim
V→∞

1

V
lnM =

n∑
i=1

di(ci/Ai)
1/di .

2. We use Stirling’s approximation with the middle terms

− 1

V

( n∑
i=1

(V dix̃
V
i ln(V ) + V x̃Vi ln(ci))−

n∑
i=1

ln((V x̃Vi !)di)

)
∼ − 1

V

( n∑
i=1

V dix̃
V
i ln(V ) + V x̃Vi ln(ci)−

n∑
i=1

di((V x̃
V
i ) ln(V x̃Vi )− V x̃Vi )

)
= − 1

V

( n∑
i=1

V x̃Vi ln(ci)−
n∑
i=1

di(V x̃
V
i ) ln(x̃Vi ) +

n∑
i=1

diV x̃
V
i

)
=

n∑
i=1

dix̃
V
i ln(x̃Vi )−

n∑
i=1

x̃Vi ln(ci)−
n∑
i=1

dix̃
V
i .

Taking the limit V →∞, and noting that x̃V → x̃, we have

lim
V→∞

− 1

V

( n∑
i=1

(V dix̃
V
i ln(V ) + V x̃Vi ln(ci))−

n∑
i=1

ln((V x̃Vi !)di)

)
=

n∑
i=1

dix̃i ln(x̃i)−
n∑
i=1

x̃i ln(ci)−
n∑
i=1

dix̃i.

3. We turn to the final term. By using an argument similar to (3.25), there is a

constant C > 0 for which

−
n∑
i=1

1

V
[ln((V x̃Vi !)di)− ln(θi(1) · · · θi(V x̃Vi ))] = − 1

V
ln

(
(V x̃V !)d∏n

i=1 θi(1) · · · θi(V x̃Vi )

)
∼ − 1

V
ln

(
C

(A)V x̃V

)
(3.26)

= − 1

V

(
lnC −

n∑
i=1

V x̃Vi ln(Ai)

)
.

Taking the limit V →∞, and noting that x̃V → x̃, we have

lim
V→∞

−
n∑
i=1

1

V
[ln((V x̃Vi !)di)− ln(θi(1) · · · θi(V x̃Vi ))] =

n∑
i=1

x̃i ln(Ai).



36

Combining the three parts, we conclude (3.24) holds. The fact that the limit is a

Lyapunov function is proven in Lemma 3.15 below.

Lemma 3.15. The function given by (3.24),

V(x) =
n∑
i=1

[xi(di ln(xi)− ln(ci)− di + ln(Ai)) + di(ci/Ai)
1/di ], x ∈ Zn≥0,

is a Lyapunov function for the system (3.23).

Proof. We have

∇V(x) = (d1 ln(x1)− ln(c1) + ln(A1), . . . , dn ln(xn)− ln(cn) + ln(An)).

Let f be the right-hand side of (3.23) and recall that c is a complex balanced equilibrium

of the mass action model. We have

∇V(x) · f(x) =
∑

y→y′∈R

κy→y′(Ax
d)y
(

ln(xd)− ln
( c
A

))
· (y′ − y)

=
∑

y→y′∈R

κy→y′c
y (Axd)y

cy

(
ln

(
Axd

c

)y′
− ln

(
Axd

c

)y)

≤
∑

y→y′∈R

κy→y′c
yk

((
Axd

c

)y′
−
(
Axd

c

)y)

=
∑

y→y′∈R

(Axd)y
′
κy→y′c

y−y′ − (Axd)yκy→y′

=
∑
z∈C

[ ∑
y→y′:y′=z

(Axd)y
′
κy→y′c

y−y′ −
∑

y→y′:y=z

(Axd)yκy→y′

]

=
∑
z∈C

(Axd)z

[ ∑
y→y′:y′=z

κy→y′c
yk−y′k −

∑
y→y′:y=z

κy→y′

]
= 0,

where we used the inequality a(ln b− ln a) ≤ b− a and the last equation holds because

c is the complex balanced equilibrium for the mass-action system.
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Chapter 4

Strongly endotactic reaction

networks and tier structure

As introduced in Chapter 1, a central question in reaction network theory concerns the

connection between the graph or network structure and dynamical properties: given a

network with a certain graph structure, what can one say about the qualitative behavior

of the underlying dynamical system? Among many special network structures, strong

endotacticity has gained attention in recent studies (see [1, 2, 18, 24]). A strongly

endotactic network is essentially “inward pointing” in the sense that all reactions point

inside of the convex hull formed by the source complexes (the complexes being consumed

in reactions). Intuitively, this topological feature ensures that whenever the trajectory

of the species’ abundances tries to escape to infinity, there is a reaction that pulls it back

to a compact region.

In order to examine the dynamical properties of strongly endotactic reaction net-

works, we will introduce an analytical tool called tier structure, which originated from

[3] and [4]. The main idea around the concept of tiers is that along a trajectory towards

infinity, it is possible to infer a hierarchy of reactions: the most dominant (or most likely

to happen) reactions belong to tier 1, the second most dominant reactions belong to tier

2, and so on. We will also introduce the notion of a tier descending network to describe
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0

2A+B

3A+ 4B

A

A

B

Figure 2: A strongly endotactic reaction network with two species A and B. All three

reactions point inside the shaded region, which is the convex hull formed by the source

complexes.

the case where along all trajectories towards infinity, there is always a reaction from tier

1 to a less dominant tier. Then we draw an important connection between tier structure

and strong endotacticity: a reaction network is strongly endotactic if and only if it is

tier descending.

Using this characterization, we can provide the proofs for many qualitative behaviors

of strongly endotactic networks. In particular, strongly endotactic networks are persis-

tent (trajectories do not touch the boundary) and permanent (trajectories go towards

to a compact set) in the deterministic case, and they satisfy a Large Deviation Principle

(LDP) and are positively recurrent with some additional assumptions in the stochastic

case. While some of these results were proven before (see [1, 2, 24]) in a geometric and

algebraic manner, the alternative proofs we provide, which are analytical in nature, are
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more streamlined and straightforward.

This section will focus on my main contribution, the LDP result. Specifically, strongly

endotactic and asiphonic (an additional assumption to avoid extinction) networks satisfy

a Lyapunov-like condition which in turns ensures that the networks satisfy a LDP. The

main challenge in the proof came from the cases where trajectories are on the boundary.

To deal with this challenge, I construct perturbed trajectories that are slightly off the

boundary. I then prove the Lyapunov-like condition for these perturbed trajectories and

used that result to handle the boundary cases.

Note to the readers: since this chapter focuses on sequence of concentration or species

counts, we will use d to denote the number of species (instead of n in other chapters).

4.1 Strongly endotactic reaction networks

We give here the formal definition of strongly endotactic networks, that was first intro-

duced in [24].

Definition 4.1. Consider a reaction network G, and a vector w ∈ Rd that is not or-

thogonal to the stoichiometric subspace S. We say that a complex y ∈ C is w−maximal

if y is a source complex and for any other source complex y′ we have 〈w, y′ − y〉 ≤ 0.

Definition 4.2. A reaction network G is strongly endotactic if for all vectors w ∈ Rd

that are not orthogonal to the stoichiometric subspace S the following holds:

1. if y is a w−maximal complex, then for all reactions of the form y → y′ we have

〈w, y′ − y〉 ≤ 0;

2. there exists a w−maximal complex y and a reaction y → y′ ∈ R with 〈w, y′−y〉 < 0.
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Strongly endotactic networks are a generalization of weakly reversible single linkage

class networks studied in [4]: the following proposition, which was proved in [24], makes

the statement precise.

Proposition 4.1. Assume G is a reaction network such that for any two complexes y, y′

there exists a sequence of ` complexes, y = y1, y2, . . . , y` = y′, such that yj → yj+1 ∈ R

for all 1 ≤ j ≤ ` − 1 (this condition is equivalent to saying that G is weakly reversible

and consists of a single linkage class). Then, G is strongly endotactic.

Strongly endotactic network are not necessarily weakly reversible single linkage class

networks, an example is provided in Examples 4.

Example 4. Consider the reaction network

0→ 2A+B → 4A+ 4B → A.

The reaction network is strongly endotactic: to check that this statement is true, it is

convenient to draw the complexes considered as vectors on a Cartesian plane, and depict

the reactions as arrows among them. This is done in Figure 3. Now consider the shaded

regions of Figure 4: it can be checked that

• If w ∈ R1, then the w−maximal complex is 4A + 4B. The only reaction with

source complex 4A+ 4B is 4A+ 4B → A, and we have 〈w, (−3,−4)〉 < 0.

• If w ∈ R2, then the w−maximal complex is 0. The only reaction with source

complex 0 is 0→ 2A+B, and we have 〈w, (2, 1)〉 < 0.

• If w ∈ R3, then the w−maximal complex is 2A+B. The only reaction with source

complex 2A+B is 2A+B → 4A+ 4B, and we have 〈w, (2, 3)〉 < 0.
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0

2A+B

4A+ 4B

A

A

B

Figure 3: The reaction network of Example 4

• If w is a positive multiple of (−1, 1), then the w−maximal complexes are 0 and

4A + 4B, which are source complexes of 0 → 2A + B and 4A + 4B → A. In this

case, we have 〈w, (2, 1)〉 < 0 and 〈w, (−3,−4)〉 < 0.

• If w is a positive multiple of (1,−2), then the w−maximal complexes are 0 and

2A + B, which are source complexes of 0→ 2A + B and 2A + B → 4A + 4B. In

this case, we have 〈w, (2, 1)〉 = 0 and 〈w, (2, 3)〉 < 0.

• If w is a positive multiple of (1,−2/3), then the w−maximal complexes are 2A+B

and 4A+4B, which are source complexes of 2A+B → 4A+4B and 4A+4B → A.

In this case, we have 〈w, (2, 3)〉 = 0 and 〈w, (−3,−4)〉 < 0.

Hence, the network is strongly endotactic. A general strategy to recognize strongly

endotactic network, called the sweep test, and which we essentially carried out here in

detail, is discussed in [24].

Next, we provide an example that is not strongly endotactic.
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(-1,1)

(1,-2)

(1,-2/3)

R1

R2

R3

A

B

Figure 4: The space is divided into the open regions R1, R2, and R3, which correspond to

the loci of vectors w with different w−maximal complexes, and into the rays separating

them. The vectors w laying on the separating lines have two w−maximal complexes.

Example 5. The reaction network

A
 2B, A+ C 
 B + C

is not strongly endotactic. Indeed, consider the vector w = (1, 1, 10): it is not orthogonal

to the stoichiometric subspace since 〈w, (−1, 2, 0)〉 6= 0, (−1, 2, 0) being the reaction

vector of A → 2B. It can be checked that the w−maximal complexes are A + C and

B+C, but there is no reaction y → y′ ∈ R with y ∈ {A+C,B+C} and 〈w, y′−y〉 < 0.

It is interesting to note that within every stoichiometric compatibility class the

amount of molecules of C is kept constant, hence the above network equipped with

mass-action kinetics is equivalent to

B 
 A
 2B,

for a suitable choice of rate constants. Somewhat surprisingly, the latter is strongly
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endotactic by Proposition 4.1.

4.2 Tier structure-the main analytic tool

This section is broken into 3 subsections. In subsection 4.2.1, we introduce the relevant

definitions related to tiers. We also provide a few results related to these definitions.

In subsection 4.2.2, we provide Theorem 4.10, which is our main technical result and

characterizes strongly endotactic networks in terms of their tier structures. Finally,

in subsection 4.2.3, we collect results relating tier sequences with a commonly used

Lyapunov function that plays a role in each of the subsequent results of the present

paper.

4.2.1 Definitions

Definition 4.3. A sequence (xn)∞n=0 of positive vectors of Rd
>0 is called a tier sequence

if

lim
n→∞

‖ ln(xn)‖∞ =∞

and for all pairs of complexes y, y′ ∈ C the limit

lim
n→∞

xy
′−y
n

exists (it could be infinity). Moreover, we say that a tier sequence is transversal if there

exists at least one reaction y → y′ ∈ R such that

lim
n→∞

| ln(xy
′−y
n )| =∞.

Finally, a tier sequence is proper if for all n,m ∈ Z≥0 we have xn − xm ∈ S.
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Remark 4.4. Note that, given a sequence (xn)∞n=0 of positive vectors with limn→∞ ‖ ln(xn)‖∞ =

∞, it is always possible to extract a subsequence that is a tier sequence. This follows

from the fact that there are finitely many complexes.

Remark 4.5. The definition of tier sequence is tied to the choice of mass action kinetics

for the reaction network. Indeed, xyn is proportional to the deterministic mass action rate

function associated with a reaction whose source is y, and xy−y
′

n is nothing but the ratio

xyn/x
y′
n . Hence, a sequence is a tier sequence if a ranking of the reaction rates λD along

xn can be made, in the sense specified by the next definition.

Definition 4.6. Given a tier sequence (xn)∞n=0, we define tiers as subsets of C in the

following recursive manner:

1. we say that a complex y is in tier 1 (and write y ∈ T 1
(xn)) if for all complexes y′ ∈ C

lim
n→∞

xy−y
′

n > 0;

2. we say that a complex y is in tier i (and write y ∈ T i(xn)) if there exists y′ ∈ T i−1
(xn)

with

lim
n→∞

xy−y
′

n = 0

and for all complexes y′ /∈
⋃i−1
j=1 T

j
(xn) we have

lim
n→∞

xy−y
′

n > 0.

Given a tier sequence, tiers describe a partition of C. We further define an order

relation on C in the following way: we write y -(xn) y
′ if y ∈ T i(xn), y

′ ∈ T j(xn) and i ≥ j.

Similarly, we write y ≺(xn) y
′ if y ∈ T i(xn), y

′ ∈ T j(xn) and i > j. Note that the inequality

on the indexes of the tiers is reversed, and y ≺(xn) y
′ if and only if the ratio xyn/x

y′
n
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converges to 0 as n tends to infinity, meaning that xyn is much smaller than xy
′
n for large

n. Finally, we write y ∼(xn) y
′ if y and y′ are in the same tier. Note that by definition

for all complexes y ∈ C we have y ∼(xn) y.

Example 6. Consider the reaction network

A
 B 
 2C

and the sequences (xn)∞n=0 and (x̂n)∞n=0 defined by

xn =

(
1

n
, 5− 1

n
− 1

2
√
n
,

1√
n

)
and x̂n =

(
en, 2en,

1

n

)
.

Then, (xn)∞n=0 is a proper tier sequence, which we demonstrate now. The entries xn,1 and

xn,3 go to zero as n goes to infinity, which implies limn→∞ ‖ ln(xn)‖∞ =∞. Moreover,

lim
n→∞

x(−1,0,2)
n = 1 and lim

n→∞
x(−1,1,0)
n =∞,

which implies that (xn)∞n=0 is a tier sequence and A ∼(xn) 2C and A ≺(xn) B. Finally,

(xn)∞n=0 is proper because for any n ≥ 1

xn+1 − xn =

(
1

n+ 1
− 1

n

)
(1,−1, 0) +

(
1

2
√
n+ 1

− 1

2
√
n

)
(0,−1, 2) ∈ S.

For what concerns (x̂n)∞n=0, we still have limn→∞ ‖ ln(x̂n)‖∞ =∞. Moreover,

lim
n→∞

x̂(0,−1,2)
n = 0 and lim

n→∞
x(−1,1,0)
n = 2,

so (x̂n)∞n=0 is a tier sequence and A ∼(x̂n) B and 2C ≺(x̂n) A. Finally, (x̂n)∞n=0 is transver-

sal but not proper, indeed

lim
n→∞

| ln(x̂(0,−1,2)
n )| =∞

but for any n ≥ 1

〈x̂n+1 − x̂n, (2,−2, 1)〉 = −2(en+1 − en) +
1

n+ 1
− 1

n
6= 0,

and (2,−2, 1) is orthogonal to S (hence x̂n+1 − x̂n /∈ S).
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The following result connects proper and transversal tier sequences. As illustrated

in Example 6, the converse does not hold.

Lemma 4.7. A proper tier sequence is transversal.

Proof. Consider a proper tier sequence (xn)∞n=0. By definition,

lim
n→∞

‖ ln(xn)‖∞ =∞

and

lim
n→∞

| ln(xy
′−y
n )|

exists for any y → y′ ∈ R. After potentially considering a subsequence, we may assume

that for any n ≥ 0

xn+1,i ≥ xn,i if lim sup
n→∞

ln(xn,i) =∞;

xn+1,i ≤ xn,i if lim inf
n→∞

ln(xn,i) = −∞,

which implies that the above lim sup and lim inf are limits. It also follows that

lim
n→∞

| ln(xn,i)| =∞

for at least one index 1 ≤ i ≤ d. Hence, by [3, Theorem 3.9] there exists a vector w ∈ Rd

such that

wi > 0 if and only if lim
n→∞

ln(xn,i) =∞;

wi < 0 if and only if lim
n→∞

ln(xn,i) = −∞;

〈w, y′ − y〉 = 0 if y ∼(xn) y
′.
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In particular, it follows that

lim
n→∞
〈w, xn〉 =


∞ if limn→∞ ‖xn‖∞ =∞;

0 otherwise

.

We will show that there must be an n̂ ≥ 1 for which 〈w, xn̂〉 6= 0. First, if limn→∞〈w, xn〉 =

∞, the assertion is clear. If, on the other hand, limn→∞〈w, xn〉 = 0, then none of the

xn,i converge to infinity. Since all the vectors {xn}∞n=0 are positive, and at least one of

xn,i converges to zero, we may conclude that 〈w, xn〉 < 0 for all n.

If (xn)∞n=0 were not transversal, then we would have

lim
n→∞

| ln(xy
′−y
n )| <∞

for any reaction y → y′ ∈ R, which would imply that y ∼(xn) y
′ for any y → y′ ∈ R. It

would follow that 〈w, y′ − y〉 = 0 for any y → y′ ∈ R, which means w ∈ S⊥. Let n̂ ≥ 1

be such that 〈w, xn̂〉 6= 0. Since (xn)∞n=0 is proper, we have

lim
n→∞
〈w, xn〉 = 〈w, xn̂〉+ lim

n→∞
〈w, xn − xn̂〉 = 〈w, xn̂〉 /∈ {0,∞}.

This is a contradiction, and the proof is concluded.

For notational convenience, we give the following definition.

Definition 4.8. Define CS ⊆ C to be the set of source complexes. Given a tier sequence

(xn)∞n=0, we define source tier 1 to be the set

T 1,S
(xn) = {y ∈ CS : y′ -(xn) y for all y′ ∈ CS}.

The following is a key concept of this paper, and will provide a characterization of

strongly endotactic networks.



48

Definition 4.9. We say that a tier sequence (xn)∞n=0 is tier descending if both the

following statements hold:

1. for all y ∈ T 1,S
(xn) and all y → y′ ∈ R we have y′ -(xn) y;

2. there exist y ∈ T 1,S
(xn) and y → y′ ∈ R with y′ ≺(xn) y.

Moreover, we say that a reaction network G is tier descending if all transversal tier

sequences are tier descending.

4.2.2 Relation between strongly endotactic networks and its

tiers

We now state our first main result, which provides a characterization of strongly endo-

tactic networks in terms of tiers.

Theorem 4.10. A reaction network is strongly endotactic if and only if it is tier de-

scending.

Before proceeding with the proof of Theorem 4.10, we present an immediate corollary.

Corollary 4.11. If a reaction network is strongly endotactic, then every proper tier

sequence is tier descending. Moreover, if S = Rd then a reaction network is strongly

endotactic if and only if every proper tier sequence is tier descending.

Proof. The first part of the result follows from Lemma 4.7 and Theorem 4.10. Moreover,

if S = Rd then any transversal tier sequence is proper (since all sequences are proper in

this case), and the proof follows from Theorem 4.10.
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Remark 4.12. It is tempting to believe that if every proper tier sequence of a reaction

network is tier descending, then the network is strongly endotactic. By Corollary 4.11

we see that this is true in the case when S = Rd. However, this statement is false, in

general. As an example, consider the reaction network

A
 2B, A+ C 
 B + C.

The network is not strongly endotactic, as shown in Example 5. Nevertheless, ev-

ery proper tier sequence is tier descending: since no reaction changes the amount of

molecules of the species C, every proper tier sequence (xn)∞n=0 is of the form

xn = (xn,1, xn,2, c)

for a constant c ∈ R>0. It is then easy to check that (xn)∞n=0 is tier descending if and

only if (x̂n)∞n=0 defined by

x̂n = (xn,1, xn,2)

is tier descending for

B 
 A
 2B.

The latter is strongly endotactic by Proposition 4.1. Hence, each proper tier sequence

(such as (x̂n)∞n=0) is tier descending by Corollary 4.11, thus proving our claim.

We now proceed by providing a key lemma that will be used in the proof of Theorem

4.10.

Lemma 4.13. If (xn)∞n=0 is a tier sequence, then there exist ` ∈ Z with 0 < ` ≤ d,

sequences of positive real numbers (m1
n)∞n=0, (m2

n)∞n=0, . . . , (m`
n)∞n=0, a sequence of real

vectors (Cn)∞n=0, vectors α1, α2, . . . , α` ∈ Rd and a subsequence (xnk)
∞
k=0 such that:
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1. ln(xnk) =
∑`

i=1m
i
nk
αi + Cnk ;

2. lim supk→∞ ‖Cnk‖∞ <∞;

3. For all 1 ≤ i ≤ ` we have limk→∞m
i
nk

= ∞, and if 1 ≤ j < i ≤ ` then

limk→∞m
i
nk
/mj

nk
= 0;

4. if y′ ∼(xn) y then 〈y′ − y, αi〉 = 0 for all 1 ≤ i ≤ `;

5. if y′ ≺(xn) y then

iy,y′ = min{1 ≤ i ≤ ` : 〈αi, y′ − y〉 6= 0} (4.1)

exists and 〈αiy,y′ , y
′ − y〉 < 0.

Remark 4.14. Parts 1 and 2 of the lemma show that the logarithm of a tier sequence

can be substantially decomposed into fixed vectors, αi, apart from a bounded error term,

Cnk . Part 3 then shows that if i < j, then the influence of the vector αi is greater than

the influence of the vector αj. Finally, by parts 4 and 5 we see that the αi’s separate

complexes in a natural manner among the tiers.

As an example, consider the reaction network

A
 B 
 2C

and the tier sequence

xn =

(
1

n
, 5− 1

n
− 1

2
√
n
,

1√
n

)
,

introduced in Example 6. We have

ln(xnk) = ln(n)

(
−1, 0,−1

2

)
+ Cn,
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where

Cn =

(
0, ln

(
5− 1

n
− 1

2
√
n

)
, 0

)
.

Note that ‖Cn‖∞ < ln(5) for all n > 1. Moreover, recall that A ∼(xn) 2C and A ≺(xn) B,

which is implied also by parts 4 and 5 of the lemma, since〈
(1, 0,−2),

(
−1, 0,−1

2

)〉
= 0 and

〈
(1,−1, 0),

(
−1, 0,−1

2

)〉
< 0.

Proof of Lemma 4.13. Define m1
n = ‖ ln(xn)‖∞. Note that for any n ≥ 0 we have

‖ ln(xn)/m1
n‖∞ = 1. Hence, we can consider a subsequence of (xn)∞n=0 such that

α1 = lim
k→∞

ln(xnk)

m1
nk

(4.2)

exists. We further note that α1 cannot be zero since it is the limit of a sequence of points

in the ball of radius 1 with respect to ‖ · ‖∞ in Rd.

Since the dimension of the vectors xn is d <∞, we can further choose a subsequence

such that the maximal absolute values of the entries of ln(xnk) are always obtained in

the same position. This implies that at least one entry of ln(xnk) has absolute value

constantly equal to m1
nk

. Moreover, by (4.2) the sign of such entries will stabilize for k

large enough. Hence, the vectors

ln(xnk)−m1
nk
α1

have at least one component constantly equal to zero for k large enough.

We define mi
nk

and αi iteratively in the following way: for each j ≥ 2, if

lim sup
k→∞

‖ ln(xnk)−
j−1∑
i=1

mi
nk
αi‖∞ =∞,
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then define mj
nk

= ‖ ln(xnk)−
∑j−1

i=1 m
i
nk
αi‖∞. By potentially considering a subsequence

of (xnk)
∞
k=0, we can assume that

αj = lim
k→∞

ln(xnk)−
∑j−1

i=1 m
i
nk
αi

mj
nk

exists. As before, note that αj cannot be zero. Moreover, we can choose a subsequence

such that the maximal absolute values of the entries of ln(xnk)−
∑j−1

i=1 m
i
nk
αi are always

obtained in the same position, so by induction it follows that at least j − 1 components

of ln(xnk)−
∑j−1

i=1 m
i
nk
αi are equal to zero for k large enough (the argument is the same

as for j = 1, which serves as base case). In particular, it follows that there exists a

number ` ≤ d such that

lim sup
k→∞

∥∥∥∥∥ln(xnk)−
∑̀
i=1

mi
nk
αi

∥∥∥∥∥
∞

<∞.

We define

Cn = ln(xn)−
∑̀
i=1

mi
nαi.

Parts (1) and (2) trivially hold by the definition of Cn. For part (3), note that for all

2 ≤ j ≤ `

lim
k→∞

mj
nk

mj−1
nk

= lim
k→∞

∥∥∥∥∥ ln(xnk)−
∑j−1

i=1 m
i
nk
αi

mj−1
nk

∥∥∥∥∥
∞

= ‖αj−1 − αj−1‖∞ = 0.

For part (4), consider y ∼(xn) y
′. Then,

0 < lim
k→∞

xy
′−y
nk

<∞.

By taking the logarithm, it follows that

−∞ < lim
k→∞

ln(xy
′−y
nk

) <∞.
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Hence, since m1
nk

tends to infinity as k tends to infinity, we have

0 = lim
k→∞

ln(xy
′−y
nk

)

m1
nk

= 〈α1, y
′ − y〉.

We complete the proof of part (4) by induction: consider 1 < j ≤ ` and assume that

the statement holds for any 1 ≤ i ≤ j − 1. Then, by part (1) and since mj
nk

tends to

infinity as k tends to infinity, we have

0 = lim
k→∞

ln(xy
′−y
nk

)

mj
nk

= lim
k→∞

〈
∑`

i=1m
i
nk
αi + Cnk , y

′ − y〉
mj
nk

= lim
k→∞

〈
∑`

i=jm
i
nk
αi + Cnk , y

′ − y〉
mj
nk

= 〈αj, y′ − y〉.

Finally, for part (5) consider y′ ≺(xn) y. Then, we have

lim
k→∞

xy
′−y
nk

= 0,

which implies

−∞ = lim
k→∞

ln(xy
′−y
nk

) = lim
k→∞

(∑̀
i=1

mi
nk
〈αi, y′ − y〉+ 〈Cnk , y′ − y〉

)
. (4.3)

Since the values ‖Cnk‖∞ are bounded uniformly in k, we have

lim
k→∞

∑̀
i=1

mi
nk
〈αi, y′ − y〉 = −∞,

which implies that

iy,y′ = min{1 ≤ i ≤ ` : 〈αi, y′ − y〉 6= 0}

exists. Moreover, by part 3 we have

〈αiy,y′ , y
′ − y〉 = lim

k→∞

ln(xy
′−y
nk

)

m
iy,y′
nk

.

By construction, the term on the left is non-zero. Further, by (4.3) the right-hand size

is non-positive. Hence, 〈αiy,y′ , y
′ − y〉 < 0, which concludes the proof.
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Now we are able to prove Theorem 4.10.

Proof of Theorem 4.10. Assume that the network is tier descending. Consider a vector

w that is not orthogonal to the stoichiometric subspace S. Consider the sequence (xn)∞n=0

defined by

xn = enw.

We have

lim
n→∞

‖ ln(xn)‖∞ = lim
n→∞

n‖w‖∞ =∞

and for any two complexes y, y′ ∈ C

lim
n→∞

ln(xy
′−y
n ) = lim

n→∞
n〈w, y′ − y〉 =



−∞ if 〈w, y′ − y〉 < 0

0 if 〈w, y′ − y〉 = 0

∞ if 〈w, y′ − y〉 > 0

. (4.4)

Hence, (xn)∞n=0 is a tier sequence. Moreover, it is transversal: since w is not orthogonal to

S, there exists a reaction y → y′ with 〈w, y′−y〉 6= 0, which implies limn→∞ | ln(xy
′−y
n )| =

∞. It follows that (xn)∞n=0 is tier descending, which together with equation 4.4 concludes

the proof of one direction of the result.

For the other direction, we suppose that the network is strongly endotactic. Let

(xn)∞n=0 be a transversal tier sequence. In order to prove the result, it is sufficient to

construct a vector w such that

1. w /∈ S⊥;

2. 〈w, y′− y〉 = 0 if and only if y′ ∼(xn) y, and 〈w, y′− y〉 < 0 if and only if y′ ≺(xn) y.
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Indeed, if such a vector is constructed, then it follows that the set of w−maximal com-

plexes coincides with y ∈ T 1,S
(xn), and by Definition 4.2 the sequence (xn)∞n=0 is tier de-

scending.

Consider a subsequence (xnk)
∞
k=0 as in Lemma 4.13, such that there exist ` ∈ Z

with 0 < ` ≤ d, sequences of positive real numbers (m1
nk

)∞k=0, (m2
nk

)∞k=0, . . . , (m`
nk

)∞k=0,

(Cnk)
∞
k=0, and vectors α1, α2, . . . , α` ∈ Rd such that

ln(xnk) =
∑̀
i=1

mi
nk
αi + Cnk .

Note that (xnk)
∞
k=0 is still a transversal tier sequence, and the tier structures of (xn)∞n=0

and of its subsequence (xnk)
∞
k=0 are identical, meaning that for any i ≥ 1 we have

T i(xn) = T i(xnk ). Let

w =
∑̀
i=1

viαi,

with the positive constants vi defined recursively as follows: v` = 1 and

vi = 1 + max
y→y′∈R
〈αi,y′−y〉6=0

∣∣∣∣∣
∑`

j=i+1 vj〈αj, y′ − y〉
〈αi, y′ − y〉

∣∣∣∣∣ for 1 ≤ i ≤ `− 1.

We have the following:

1. Since (xnk)
∞
k=0 is transversal and since ‖Cnk‖∞ are bounded, there must exist a

reaction y → y′ and a vector αi such that 〈αi, y′ − y〉 6= 0. Let

ı̂ = min
1≤i≤` : 〈αi,y′−y〉6=0

.

By definition of the constants vi, we have

|vı̂〈αı̂, y′ − y〉| >

∣∣∣∣∣ ∑̀
j=ı̂+1

vj〈αj, y′ − y〉

∣∣∣∣∣ ,
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hence

〈w, y′ − y〉 =
∑̀
j=ı̂

vj〈αj, y′ − y〉 6= 0,

which is equivalent to say that w /∈ S⊥.

2. By Lemma 4.13(4)(5), y′ ∼(xn) y if and only if 〈αi, y′ − y〉 = 0 for all 1 ≤ i ≤ `.

By the definition of w the latter is in turn equivalent to 〈w, y′− y〉 = 0. Moreover,

y′ ≺(xn) y if and only if 〈αiy,y′ , y
′ − y〉 < 0, where iy,y′ is defined in (4.1), which by

definition of the constants vi is equivalent to

〈w, y′ − y〉 =
∑̀
j=iy,y′

vj〈αj, y′ − y〉 < 0.

The proof is then concluded.

4.2.3 Tier sequences and Lyapunov functions

Let u(x) : R→ R≥0 be the function

u(x) =


x(lnx− 1) + 1 if x > 0,

1 otherwise.

(4.5)

Then we define

U(x) = 1 +
d∑
i=1

u(xi). (4.6)

This function has been utilized often as a Lyapunov function in the context of reaction

network theory. In particular, it was utilized in the foundational papers of the field

in order prove local asympotic stability of complex balanced deterministic mass action

systems [21, 26]. Moreover, it (or slight modifications thereof) has notably been used

to derive the results of [4, 3, 24, 2], which are of direct interest for the present paper.
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More discussion on the role of Lyapunov functions for stochastic reaction networks can

be found in [7] and [9].

In the present section, we will unveil some important connections between tier se-

quences and the Lyapunov function (4.6) by extending the techniques of [4] to the setting

of tier descending networks. We will then use these connections to develop the results

presented in sections 4.3.

Lemma 4.15. Consider a tier descending reaction network G and let (xn)∞n=0 be a

transversal tier sequence. Then, for any y → y′ ∈ R with y -(xn) y
′ there exists y? ∈ C

and y? → y?? ∈ R such that y -(xn) y
?, y?? ≺(xn) y

? and for any choice of c1, c2 ∈ R>0

and c3, c4 ∈ R there exists N <∞ with

c1x
y?

n

(
ln(xy

??−y?
n ) + c3

)
+ c2x

y
n

(
ln(xy

′−y
n ) + c4

)
< 0 for all n ≥ N. (4.7)

Moreover, if xy
?

n ≥ c > 0 for all n, then for any choice of c1, c2 ∈ R>0 and c3, c4 ∈ R we

have

lim
n→∞

(
c1x

y?

n

(
ln(xy

??−y?
n ) + c3

)
+ c2x

y
n

(
ln(xy

′−y
n ) + c4

))
= −∞. (4.8)

Proof. Fix y → y′ ∈ R. We consider two cases separately: y ∼(xn) y
′ and y ≺(xn) y

′.

Case 1. Assume that y ∼(xn) y
′. Then

lim
n→∞

| ln(xy
′−y
n )| <∞.

By the definition of a descending reaction network there must be at least one reaction

y? → y?? with y? ∈ T 1,S
(xn) (implying y -(xn) y

?) and y?? ≺(xn) y
?. Hence, we have

lim
n→∞

xy−y
?

n <∞
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and

lim
n→∞

ln(xy
??−y?
n ) = −∞.

It follows that

c1x
y?

n

(
ln(xy

??−y?
n ) + c3

)
+c2x

y
n

(
ln(xy

′−y
n ) + c4

)
= xy

?

n

(
c1

(
ln(xy

??−y?
n ) + c3

)
+ c2x

y−y?
n

(
ln(xy

′−y
n ) + c4

))
is negative for n large enough, which proves (4.7). Moreover, if xy

?

n ≥ c > 0, then (4.8)

follows.

Case 2. Assume that y ≺(xn) y′. If (4.7) did not hold, then there would exist a

subsequence (xnk)
∞
k=0 such that for any y? → y?? ∈ R with y -(xn) y

? and y?? ≺(xn) y
?,

there exist c1, c2 ∈ R>0 and c3, c4 ∈ R with

c1x
y?

n

(
ln(xy

??−y?
n ) + c3

)
+ c2x

y
n

(
ln(xy

′−y
n ) + c4

)
≥ 0 for all k ∈ Z≥0. (4.9)

Our aim is to prove that such a subsequence does not exist.

Every subsequence of a descending tier sequence is still a descending tier sequence.

Hence, by potentially considering a further subsequence, we can assume that (xnk)
∞
k=0 is

as in Lemma 4.13.

Consider the sequence (x̃nk)
∞
k=0 defined by

ln(x̃nk) =

iy′,y∑
i=1

mi
nk
αi (4.10)

where iy′,y is as defined in (4.1), and exists by Lemma 4.13(5). We will first show that

(x̃nk)
∞
k=0 is also a transversal tier sequence, and is therefore tier descending. By Lemma

4.13(3), we have

lim
k→∞

‖ln(x̃nk)‖∞
m1
nk
‖α1‖∞

= 1,
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and so limk→∞ ‖ ln(x̃nk)‖∞ =∞. Furthermore, for any two complexes ỹ, ỹ′ ∈ C the limit

lim
k→∞

x̃ỹ
′−ỹ
nk

= lim
k→∞

e
∑iy′,y
i=1 mink

〈αi,ỹ′−ỹ〉

exists (it can potentially be infinity). Hence, (x̃nk)
∞
k=0 is a tier sequence. Moreover,

lim
k→∞
| ln(x̃y

′−y
nk

)| = lim
k→∞

∣∣∣∣∣∣
iy′,y∑
i=1

mi
nk
〈αi, y′ − y〉

∣∣∣∣∣∣ = lim
k→∞

m
iy′,y
nk |〈αiy′,y , y

′ − y〉| =∞.

Hence, (x̃nk)
∞
k=0 is a transversal tier sequence. Combining this with the fact that G is a

tier descending reaction network, we may conclude that (x̃nk)
∞
k=0 is tier descending. Since

(x̃nk)
∞
k=0 is tier sequence, Lemma 4.13 guarantees that it can be decomposed as detailed

therein. It is straightforward to prove that the vectors and coefficients as constructed in

the proof of the lemma coincide with the mi
nk

and αi in (4.10), for 1 ≤ i ≤ iy′,y.

By Lemma 4.13(3)(5) we have

lim
k→∞

ln(x̃y
′−y
nk

) = lim
k→∞

m
iy′,y
nk 〈αiy′,y , y

′ − y〉 = −∞,

allowing us to conclude that limk→∞ x̃
y′−y
nk

= 0. Thus, y ≺(x̃nk ) y
′. Since (x̃nk)

∞
k=0 is tier

descending, y cannot be in T 1,S
(x̃nk ). Hence, there must exist a complex y? with y ≺(x̃nk ) y

?

and a reaction y? → y?? ∈ R with y?? ≺(x̃nk ) y
?. Combining y ≺(x̃nk ) y

? with Lemma

4.13(5), it follows that iy?,y ≤ iy′,y. Hence, by Lemma 4.13(3) we may conclude

lim
k→∞

ln(x̃y−y
?

nk
) = lim

k→∞
ln(xy−y

?

nk
),

as they are both asymptotically equivalent to the same term. Therefore, the latter is

negative infinity and y ≺(xnk ) y
?.

Similarly as above, since y?? ≺(x̃nk ) y? we may conclude that iy??,y? ≤ iy′,y and

y?? ≺(xnk ) y
?. Hence, combining xy

?

nk
> 0 and y?? ≺(xnk ) y

? we know that for k large
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enough

xy
?

nk

(
ln(xy

??−y?
nk

) + c3

)
< 0. (4.11)

Moreover, combining y ≺(xnk ) y
?, iy?,y?? ≤ iy′,y, and Lemma 4.13(3)(5) we have

lim
k→∞

xy
?

nk

(
ln(xy

??−y?
nk

) + c3

)
xynk

(
ln(xy

′−y
nk ) + c4

) = lim
k→∞

xy
?−y
nk

m
iy??,y?
nk 〈αiy??,y? , y?? − y?〉

m
iy′,y
nk 〈αiy′,y , y′ − y〉

= −∞, (4.12)

where we use that 〈αiy??,y? , y?? − y?〉 < 0 and 〈αiy′,y , y
′ − y〉 > 0. By (4.11) and (4.12),

for any positive constants c1, c2 we have

lim sup
k→∞

(
c1x

y?

n

(
ln(xy

??−y?
n ) + c3

)
+ c2x

y
n

(
ln(xy

′−y
n ) + c4

))
< 0,

which is a contradiction of (4.9), hence (4.7) holds.

Now assume also that xy
?

n ≥ c > 0. Let d1, d2 ∈ R>0 and d3, d4 ∈ R. We must show

that for the particular choice of sequence (xn)∞n=0, and the particular choice of y? and

y?? we have that

lim
n→∞

(
d1x

y?

n

(
ln(xy

??−y?
n ) + d3

)
+ d2x

y
n

(
ln(xy

′−y
n ) + d4

))
= −∞. (4.13)

We may apply (4.7) with c1 = d1/2, c2 = d2, c3 = d3 and c4 = d4 to conclude that for n

large enough we have

d1x
y?

n

(
ln(xy

??−y?
n ) + d3

)
+ d2x

y
n

(
ln(xy

′−y
n ) + d4

)
< d1x

y?

n

(
ln(xy

??−y?
n ) + d3

)
+ d2

(
d1/2

d2

∣∣xy?n (ln(xy
??−y?
n ) + d3

)∣∣)
=
d1

2
xy

?

n

(
ln(xy

??−y?
n ) + d3

)
,

(4.14)

where we are using that xyn ln(xy
′−y
n ) > 0 and xy

?

n ln(xy
??−y?
n ) < 0. Then, since y?? ≺(xn)

y?, by Lemma 4.13(3)(5) we have

lim
n→∞

ln(xy
??−y?
n ) = lim

n→∞

∑̀
i=iy?,y??

mi
n〈αi, y?? − y?〉 = −∞.
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It follows that

lim
n→∞

d1

2
xy

?

n

(
ln(xy

??−y?
n ) + d3

)
≤ lim

n→∞

d1

2
c
(
ln(xy

??−y?
n ) + d3

)
= −∞. (4.15)

Combining (4.15) and (4.14) yields (4.13), and completes the proof.

Proposition 4.2. Consider a tier descending reaction network G. Then, for any transver-

sal tier sequence (xn)∞n=0 and any choice of positive constants κy→y′, there exists N <∞

such that ∑
y→y′∈R

κy→y′x
y
n ln(xy

′−y
n ) < 0 for all n ≥ N. (4.16)

Moreover, if the complex 0 is a source complex, then

lim
n→∞

∑
y→y′∈R

κy→y′x
y
n ln(xy

′−y
n ) = −∞. (4.17)

Proof. The result follows from noting that for any reaction y → y′ ∈ R either y′ ≺(xn) y

and

xyn ln(xy
′−y
nk

) < 0,

or y -(xn) y
′ and Lemma 4.15 holds. Hence, since there are finitely many reactions, for

any choice of positive constants κy→y′ there exists N <∞ such that (4.16) holds.

For the second part of the statement, assume that 0 is a source complex. Then, by

definition of T 1,S
(xn) we have 0 -(xn) y for all y ∈ T 1,S

(xn), which implies that for all y ∈ T 1,S
(xn)

lim
n→∞

xyn = lim
n→∞

xy−0
n > 0.

Since (xn)∞n=0 is transversal and G is tier descending, (xn)∞n=0 is tier descending. Hence,

there is a reaction y → y′ ∈ R with y ∈ T 1,S
(xn) and y′ ≺(xn) y. Hence

lim
n→∞

xyn ln(xy
′−y
n ) = −∞,
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and similarly as before (4.17) follows from Lemma 4.15.

4.3 Asiphonic strongly endotactic reaction networks

and large deviation principle

In this section, we consider large deviations of classically scaled reaction networks. In

particular, we utilize the findings of section 4.2 to recover the main results of [2, 1] in a

straightforward manner.

Following [31] we introduce the family of classically scaled process indexed by a real

number V > 0. In particular, we assume the process associated with V is a stochastic

mass action system with rate constant κy→y′/V
‖y‖1−1, where κy→y′ is a fixed positive

constant. Hence, for a particular choice of V > 0, the intensity function for y → y′ ∈ R

is

λVy→y′(x) =
κy→y′

V ‖y‖1−1
1{x≥y}

x!

(x− y)!
, for x ∈ Zd≥0.

We then denote the resulting stochastic process by XV . Next, we consider the scaled

process

X
V

(t) = V −1XV (t) ∈ V −1Zd≥0. (4.18)

The associated transition intensities for the process X
V

are

λS,Vy→y′(x) = λVy→y′(V x) =
κy→y′

V ‖y‖1−1

(V x)!

(V x− y)!
, x ∈ V −1Zd≥0, (4.19)

and the generator is

(LV f)(x) =
∑

y→y′∈R

λS,Vy→y′(x)

(
f

(
x+

y′ − y
V

)
− f(x)

)
, x ∈ V −1Zd≥0. (4.20)
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Following [2, 1], we are interested in finding conditions for a reaction network to

satisfy a large deviation principle (LDP). By standard arguments, we see that for a

fixed x ∈ Rd
>0 and V large

λS,Vy→y′

(
bV xc
V

)
=

κy→y′

V ‖y‖1−1

(bV xc)!
(bV xc − y)!

≈ κy→y′

V ‖y‖1−1
V ‖y‖1xy = V κy→y′x

y.

Hence, we also define the analogous “deterministic” intensity function

λD,Vy→y′(x) = V κy→y′x
y, for x ∈ Rd

≥0. (4.21)

For completeness, we provide the following definition for a LDP in the setting of

reaction networks.

Definition 4.16. Fix a positive T < ∞ and a lower semi-continuous mapping I :

D0,T (Rd
>0) → [0,∞] such that for any α ∈ R>0, the level set {z : I(z) ≤ α} is a

compact subset of D0,T (Rd
>0). The probability distribution of sample paths of the processes{

X
V }

V >0
with fixed initial condition X

V
(0) = x ∈ Rd

>0 obeys a LDP with good rate

function I(·) if for any measurable Γ ⊂ D0,T (Rd
>0) we have

− inf
z∈Γo

I(z) ≤ lim inf
V→∞

1

V
ln
(
P
(
X
V

(t) ∈ Γ
∣∣ XV

(0) = x
))

≤ lim sup
V→∞

1

V
ln
(
P
(
X
V

(t) ∈ Γ
∣∣ XV

(0) = x
))
≤ − inf

z∈Γ̄
I(z)

where Γo and Γ̄ denote the interior and closure of Γ respectively.

In [1], it is shown that under Assumption (2) below, the process X
V

satisfies a sample

path LDP in the supremum norm.

Assumption 2. Let X
V

be the process (4.18). We assume
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1. There exists b <∞ and a continuous, positive function U(·) with compact sublevel

sets, such that for some non-decreasing function v′ : R>0 → R>0,

(LVUV )(x) ≤ ebV ∀V > v′(‖x‖1), x ∈ V −1Zd≥0 (4.22)

where UV (·) denotes the V th power of U(·), and LV is defined as in (4.20).

2. With positive probability, starting at X
V

(0) = 0, the Markov process X
V

reaches

in finite time some state x+ in the strictly positive orthant V −1Zd>0.

Moreover, [1] and [2] show that Assumption 2 holds for reaction networks with a

certain structure. We require the following definition before stating their result.

Definition 4.17. A non-empty subset P ⊂ S = {S1, . . . , Sd} is called a siphon if for

every reaction y → y′ ∈ R the following condition holds: if y′i > 0 for some Si ∈ P, then

yj > 0 for some Sj ∈ P. A reaction network is called asiphonic if no such P exists.

In words, P is a siphon if every reaction whose product complex contains an element

of P also has an element of P in its source complex. Note that if a network is asiphonic,

then 0 ∈ CS (the set of source complexes) for otherwise S would be a siphon.

Theorem 4.18. If the network is asiphonic and strongly endotactic (ASE), then the

Markov process X
V

satisfies Assumption (2) with U defined as in (4.6) (which is the

usual Lyapunov function) and the function v′(x) = ex.

Note that there is a simple argument showing that asiphonic reaction networks au-

tomatically satisfy the second part of Assumption 2 (see Remark 1.11 in [1]). It is

significantly harder to show ASE reaction networks satisfy the first condition in As-

sumption 2. Here we will provide a proof showing that ASE reaction networks satisfy
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the first condition of Assumption 2, and will do so using a tier structure argument.

Specifically, we will prove Theorem 4.19 below, which implies Theorem 4.18, and is the

main result of this section.

Theorem 4.19. Suppose the reaction network (S, C,R) is ASE. Furthermore, let U be

defined as in (4.6) and let v′(x) = ex. Then there exists a compact set B ⊂ Rd such that

for all pairs (V, x) satisfying V > v′(‖x‖1) = e‖x‖1, x ∈ V −1Zd≥0, and x ∈ Bc, we have

(LVUV )(x) < 0. (4.23)

Before getting to the proof of the Theorem, we need a preliminary technical result

which we prove using the tier sequence technique.

Lemma 4.20. Suppose that there is a sequence (xn, Vn)∞n=0 such that:

• (xn)∞n=0 is a tier sequence (4.24)

• lim
n→∞

‖xn‖1 =∞ (4.25)

• Vn > e‖xn‖1 and xn ∈ V −1
n Zd>0. (4.26)

Let c1 ∈ R and c2 ∈ R>0 and let

H(xn, Vn) =
∑

y→y′∈R

κy→y′x
y
nU(xn)

(
exp

(
ln(xy

′−y
n ) + c1

c2U(xn)

)
− 1

)
. (4.27)

Then

lim inf
n→∞

H(xn, Vn) = −∞. (4.28)

Proof. Note that U(xn) grows like ‖xn‖1 ln(‖xn‖1), as n→∞, which itself converges to

∞ by (4.25). Thus it must be that lim supn→∞
ln(xn,i)

U(xn)
≤ 0 for each i ∈ {1, . . . , d}. Let
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us consider the set of indices

E =

{
i : lim inf

n→∞

ln(xn,i)

U(xn)
< 0

}
.

The set E can be non-empty, and consists of the indices of those species which are

relatively small. For example, we could have a two-dimensional system with xn =

(e−n
2
, n) and Vn = en

2
. In this case, ln(xn,1) = −n2 whereas U(xn) grows like n ln(n) as

n→∞. Thus, limn→∞
ln(xn,1)

U(xn)
= −∞ and 1 ∈ E.

By potentially considering another subsequence, we may replace all the lim inf and

lim sup by lim in the above. Using E, we can partition the set of reactions R into 3

mutually exclusive groups

1. R1 = {y → y′ : yi 6= 0 for some i ∈ E}.

2. R2 = {y → y′ : yi = 0 ∀i ∈ E and y′i 6= 0 for some i ∈ E}.

3. R3 = {y → y′ : yi = y′i = 0 ∀i ∈ E}.

Note that because the network is asiphonic, 0 ∈ CS. Hence,R1 6= R. We then decompose

H in the obvious manner as H(xn, Vn) = H1(xn, Vn) +H2(xn, Vn) +H3(xn, Vn), where

Hi(xn, Vn) =
∑

y→y′∈Ri

κy→y′x
y
nU(xn)

(
exp

(
ln(xy

′−y
n ) + c1

c2U(xn)

)
− 1

)
.

We will show that (i) limn→∞H1(xn, Vn) = 0, (ii) the terms in H2 are negative, and (iii)

the negative terms in H2 and H3 are sufficient to guarantee that (4.28) holds.

We turn to H1(xn, Vn). First note that for y → y′ ∈ R1, we have that

ln(xy
′−y
n ) = 〈y′, ln(xn)〉 − 〈y, ln(xn)〉 ≤ c3

∑
i∈E

| ln(xn,i)| = −c3

∑
i∈E

ln(xn,i),
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for some positive constant c3. Hence, there is a c4 > 0 so that for n large enough

xynU(xn) exp

(
ln(xy

′−y
n ) + c1

c2U(xn)

)
≤ xynU(xn) exp

(
−
c4

∑
i∈E ln(xn,i)

U(xn)

)
= exp

( d∑
i=1

yi ln(xn,i) + ln(U(xn))−
∑

i∈E c4 ln(xn,i)

U(xn)

)
= exp

(∑
i∈E

ln(xn,i)

(
yi −

c4

U(xn)

)
+
∑
j /∈E

yj ln(xn,j) + ln(U(xn))

)
.

(4.29)

Note that from the construction of E, for i ∈ E and j /∈ E, we must have | ln(xn,i)| �

ln(U(xn)) and | ln(xn,i)| � ln(xn,j). Since yi ≥ 1 for some i ∈ E, we must have

lim
n→∞

∑
i∈E

ln(xn,i)

(
yi −

c4

U(xn)

)
+
∑
j /∈E

yj ln(xn,j) + ln(U(xn)) = −∞.

Moreover, by a similar argument we see that for y → y′ ∈ R1

lim
n→∞

xynU(xn) = lim
n→∞

exp

(∑
i∈E

yi ln(xn,i) +
∑
j /∈E

yj ln(xn,j) + ln(U(xn))

)
= 0. (4.30)

Thus for each y → y′ ∈ R1

lim
n→∞

xynU(xn)

(
exp

(
ln(xy

′−y
n ) + c1

c2U(xn)

)
− 1

)
= 0

and limn→∞H1(xn, Vn) = 0.

Next, we consider H2(xn, Vn). Let y → y′ ∈ R2. We know that yj = 0 for all j ∈ E

and that there exist an i ∈ E with y′i > 0. Hence, using that limn→∞ U(xn) = ∞ and

the definition of E, we have

exp

(
ln(xy

′−y
n ) + c1

c2U(xn)

)
− 1 = exp

(∑
i∈E y

′
i ln(xn,i) +

∑
j /∈E(y′j − yj) ln(xn,j) + c1

c2U(xn)

)
− 1

< e−c5 − 1 < −c6 < 0
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for some positive constants c5 and c6 and n large enough. Thus

H2(xn, Vn) < −c6

∑
y→y′∈R2

κy→y′x
y
nU(xn). (4.31)

We turn to H3(xn, Vn). Let y → y′ ∈ R3. Since yi = y′i = 0 for all i ∈ E, we have by

the definition of E that

lim
n→∞

ln(xy
′−y
n ) + c1

c2U(xn)
= 0.

Note that we can choose a subsequence for which each term on the left above is either

non-negative or non-positive for each n and each y → y′ ∈ R3. If the terms are non-

positive, we may use that eρ − 1 ≤ 1
2
ρ for small ρ ≤ 0 to conclude that

κy→y′x
y
nU(xn)

(
exp

(
ln(xy

′−y
n ) + c1

c2U(xn)

)
− 1

)
≤ 1

2c2

κy→y′x
y
n(ln(xy

′−y
n ) + c1). (4.32)

Moreover, if the terms are non-negative, we use that eρ − 1 ≤ 2ρ for small ρ ≥ 0 to

conclude that

κy→y′x
y
nU(xn)

(
exp

(
ln(xy

′−y
n ) + c1

c2U(xn)

)
− 1

)
≤ 2

c2

κy→y′x
y
n(ln(xy

′−y
n ) + c1). (4.33)

Thus, there are positive constants cy→y′ for which

H3(xn, Vn) ≤
∑

y→y′∈R3

cy→y′κy→y′x
y
n(ln(xy

′−y
n ) + c1). (4.34)

Finally, we return to H(xn, Vn) = H1(xn, Vn) +H2(xn, Vn) +H3(xn, Vn). To conclude

that (4.28) holds, it is now sufficient to show two things. First, we will prove that there

is always a term in either (4.31) or (4.34) (i.e., terms associated with reactions in R2 or

R3) that goes to −∞, as n → ∞. Second, we will prove that any positive term in the

sum (4.27) is dominated, in the sense of Lemma 4.15, by a negative term.
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Since the network is asiphonic, there must be a reaction for which 0 is the source

complex. By definition of T 1,S we have 0 -(xn) y for all y ∈ T 1,S, which implies that for

all y ∈ T 1,S

lim
n→∞

xyn > 0. (4.35)

Since the network is strongly endotactic it must be tier descending by Theorem 4.10.

Hence there exists a reaction y → y′ ∈ R with y ∈ T 1,S and y′ ≺(xn) y. Recall that

(4.30) showed that xynU(xn)→ 0, as n→∞, if y → y′ ∈ R1. Hence, (4.35) shows that

y → y′ /∈ R1. If y → y′ ∈ R2, we consider the relevant term in (4.31) and conclude

lim
n→∞

−c6κy→y′x
y
nU(xn) = −∞

due to the fact that limn→∞ U(xn) =∞. Finally, if y → y′ ∈ R3, we have

lim
n→∞

cy→y′κy→y′x
y
n(ln(xy

′−y
n ) + c1) = −∞

since y′ ≺(xn) y. Thus, in either case, we have a term which converges to −∞ as n→∞.

Next, we will show that a positive term is necessarily dominated by a negative term.

Specifically, note that the only terms that could be positive and not tend to zero come

from the sum (4.34) and are associated with reactions y → y′ ∈ R3 with y -(xn) y
′. Fix

such a reaction y → y′ ∈ R3. We will now show that there is necessarily a term either

in the sum (4.31) or the sum (4.34) that is negative and dominates it.

Suppose first that there is a reaction ỹ → ỹ′ ∈ R2 for which y -(xn) ỹ. Because

y → y′ ∈ R3, we know

U(xn)� ln(xy
′−y
n ).

Hence, the term in (4.31) associated with ỹ → ỹ′ dominates the positive term.
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Now assume there is no such reaction ỹ → ỹ′ ∈ R2 with y -(xn) ỹ. Because our

network is strongly endotactic, we may apply Lemma 4.15 to conclude that there exists

y? ∈ C and y? → y?? ∈ R such that y -(xn) y
?, y?? ≺(xn) y

? and for any choice of

constants c′1, c
′
2 ∈ R>0 and c′3, c

′
4 ∈ R, the inequality (4.7) holds for n large enough.

Thus, if we can show that y? → y?? ∈ R3, then the term in (4.34) associated with

y? → y?? dominates the positive term.

Since y -(xn) y
?, we know from our assumption that y? → y?? /∈ R2. Moreover, since

y -(xn) y
?, the reaction y? → y?? cannot be in R1 (for otherwise the definition of E and

the fact that y → y′ ∈ R3 would imply y? ln(xn)− y ln(xn) → −∞, as n → ∞). Thus,

we must have y? → y?? ∈ R3, and this concludes the proof of the Lemma 4.20.

We now turn to the proof of Theorem 4.18

Proof of Theorem 4.18. We will prove the theorem by contradiction. We therefore sup-

pose that there is a sequence (xn, Vn)∞n=0 such that:

• lim
n→∞

‖xn‖1 =∞ (4.36)

• Vn > e‖xn‖1 and xn ∈ V −1
n Zd≥0 (4.37)

• (LVnUVn)(xn) ≥ 0. (4.38)

Note that, after potentially considering a subsequence, we may assume the following

(i) (xn)∞n=0 is a tier sequence (this follows from Remark 4.4),

(ii) there is an ` ∈ {0, . . . , d} for which xn,1 = · · · = xn,` = 0 and xn,j > 0 for all

j ≥ `+ 1 and all n (note that ` can be zero), and
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(iii) there is a subset of the reactions, P ⊆ R, for which

λS,Vny→y′(xn)


> 0 if y → y′ ∈ P

= 0 if y → y′ ∈ R \ P
(4.39)

for every n.

(iv) the sign of the terms UVn(xn) − UVn(xn + y′−y
Vn

) are constant in n, for each y →

y′ ∈ P .

We will prove that lim infn→∞(LVnUVn)(xn) = −∞, leading to a contradiction.

First, note that for any reaction y → y′ ∈ P we have

λS,Vny→y′(xn) = Vnκy→y′
d∏
i=1

xn,i

(
xn,i −

1

Vn

)
. . .

(
xn,i −

yi − 1

Vn

)
,

which is positive by assumption. Hence, xn,i ≥ yi
Vn
. Thus, for any 1 ≤ j ≤ yi − 1,

xn,i −
j

Vn
= xn,i −

j

yi

yi
Vn
≥ xn,i

(
1− j

yi

)
.

Thus, letting cy =
∏d

i=1

∏yi−1
j=1

(
1− j

yi

)
> 0, we have

Vnκy→y′x
y
n ≥ λS,Vny→y′(xn) ≥ cyVnκy→y′x

y
n. (4.40)

Combining (4.40) with the fact that the signs of the terms UVn(xn)−UVn(xn + y′−y
Vn

) are

constant over n, we may conclude that

(LVnUVn)(xn) ≤
∑

y→y′∈P

Vnκ̃y→y′x
y
n

(
UVn

(
x+

y′ − y
Vn

)
− UVn(x)

)
(4.41)

for all n and for some positive constants κ̃y→y′ , with y → y′ ∈ P . For notational

convenience, we define the operator

(L̃V f)(x) =
∑

y→y′∈P

Vnκ̃y→y′x
y
n

(
f

(
x+

y′ − y
V

)
− f(x)

)
, x ∈ V −1Zd≥0,
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and we point out that this operator is similar to the generator of the process X
V

for the

modified reaction rates κ̃y→y′ . In fact, we are simply exchanging the stochastic intensities

for the “deterministic” intensities for the reactions in P . By (4.41), it suffices to show

that

lim inf
n→∞

(L̃VnUVn)(xn) = −∞. (4.42)

We consider the terms of (L̃VnUVn)(xn) individually. Let y → y′ ∈ P and note that

we must have yi = 0 for each i ≤ `. Let

Cy→y′(Vn) =
∑̀
i=1

y′i

(
ln

(
y′i
Vn

)
− 1

)
. (4.43)

Note that |Cy→y′(Vn)| grows at most logarithmically in Vn, as n→∞. Utilizing a Taylor

expansion of the logarithm yields

U

(
xn +

y′ − y
Vn

)
= d+ 1 + V −1

n Cy→y′(Vn) +
d∑

i=`+1

(
xn,i +

y′i − yi
Vn

)(
ln

(
xn,i +

y′i − yi
Vn

)
− 1

)

= d+ 1 + V −1
n Cy→y′(Vn) +

d∑
i=`+1

(
xn,i +

y′i − yi
Vn

)(
ln(xn,i) +

y′i − yi
xn,iVn

+ ri(xn,i, Vn)− 1

)
= U(xn)+

1

Vn

(
Cy→y′(Vn) +

d∑
i=`+1

(y′i − yi) ln(xn,i) +
d∑

i=`+1

(
(y′i − yi)2

xn,iVn
+ (xn,iVn + y′i − yi)ri(xn,i, Vn)

))
,

where

|ri(xn,i, Vn)| ≤ c1

x2
n,iV

2
n

,

for some c1 > 0. We denote

Ri(xn,i, Vn) =
(y′i − yi)2

xn,iVn
+ (xn,iVn + y′i − yi)ri(xn,i, Vn).
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We have xn,iVn ≥ 1 for all i ≥ `+ 1, thus

|Ri(xn,i, Vn)| ≤ (y′i − yi)2

xn,iVn
+

c1

xn,iVn
+
c1|y′i − yi|
x2
n,iV

2
n

≤ c2

xn,iVn
≤ c2, (4.44)

for some positive constant c2. Combining the above, and utilizing the inequality

(1 + ε)n ≤ eεn,

which holds for all integers n when |ε| < 1, it follows that for n large enough

(L̃VnUVn)(xn)

=
∑

y→y′∈P

Vnκ̃y→y′x
y
nU(xn)Vn

((
1 +

1

Vn

Cy→y′(Vn) +
∑d

i=`+1(y′i − yi) ln(xn,i) +
∑d

i=`+1Ri(xn,i, Vn)

U(xn)

)Vn
− 1

)
≤ VnU(xn)Vn−1HP(xn, Vn)

(4.45)

where

HP(xn, Vn) =∑
y→y′∈P

κ̃y→y′x
y
nU(xn)

(
exp

(
Cy→y′(Vn) +

∑d
i=`+1(y′i − yi) ln(xn,i) +

∑d
i=`+1Ri(xn,i, Vn)

U(xn)

)
− 1

)
.

In order to justify the inequality above, we use that (i) limn→∞ U(xn) =∞, (ii) the terms

Ri(xn,i, Vn) are uniformly bounded by (4.44), and (iii) ln(xy
′−y
n ) is at most of order ln(Vn)

because of (4.37) and since xn,i ≥ V −1
n for i ≥ `+ 1.

We will now show that lim infn→∞HP(xn, Vn) = −∞. To do so, we consider a new

sequence x̃n, where

x̃n,1 = · · · = x̃n,` =
α

Vn
(4.46)

with α = maxz∈C,i∈{1,...,d} zi, and

x̃n,i = xn,i for i > `.



74

Because of (4.46) and since u defined in (4.5) is a decreasing function in a positive

neighborhood of zero, we have that U(x̃n) < U(xn) for all n. Also, since limn→∞ x̃n,i = 0

for i ≤ `, we have limn→∞
U(x̃n)
U(xn)

= 1. Recalling that y → y′ ∈ P implies yi = 0 for i ≤ `,

we have

xyn = x̃yn. (4.47)

From (4.43), and because in (4.46) we chose α ≥ y′i for all i,

Cy→y′(Vn) <
∑̀
i=1

y′i ln(x̃n,i). (4.48)

Combining (4.48), limn→∞
U(x̃n)
U(xn)

= 1, and the bound on Ri, we may conclude there exists

c3 ∈ R and c4 ∈ R>0 such that

Cy→y′(Vn) +
∑d

i=`+1(y′i − yi) ln(xn,i) +
∑d

i=`+1Ri(xn,i, Vn)

U(xn)
<

ln(x̃y
′−y
n ) + c3

U(xn)
<

ln(x̃y
′−y
n ) + c3

c4U(x̃n)

for n large enough. Therefore, utilizing (4.47) and the above yields

HP(xn, Vn) <
U(xn)

U(x̃n)

∑
y→y′∈P

κ̃y→y′x̃
y
nU(x̃n)

(
exp

(
ln(x̃y

′−y
n ) + c3

c4U(x̃n)

)
− 1

)
. (4.49)

By Lemma 4.20 we have

lim inf
n→∞

∑
y→y′∈R

κ̃y→y′x̃
y
nU(x̃n)

(
exp

(
ln(x̃y

′−y
n ) + c3

c4U(x̃n)

)
− 1

)
= −∞. (4.50)

Therefore, in order to conclude that lim infn→∞HP(xn, Vn) = −∞, it is sufficient to

show that

lim
n→∞

∑
y→y′∈R\P

κ̃y→y′x̃
y
nU(x̃n)

(
exp

(
ln(x̃y

′−y
n ) + c3

c4U(x̃n)

)
− 1

)
= 0. (4.51)

Let y → y′ ∈ R \ P . At least one of the following must be true
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1. there is a k with k > ` such that yk > 0 and xn,k <
yk
Vn

. In this case we also have

x̃n,k = xn,k <
yk
Vn

.

2. there is a k with k ≤ ` such that yk > 0. In this case we have x̃n,k = α
Vn

.

In either case we have 1
Vn
≤ x̃n,k ≤ α

Vn
. Using this, together with the fact that ln(‖xn‖1) <

ln(ln(Vn)), implies there is a c5 > 0 for which

exp

(
ln(x̃y

′−y
n ) + c3

c4U(x̃n)

)
≤ exp

(
c5 lnVn
U(x̃n)

)
= V c5/U(x̃n)

n .

Thus ∣∣∣∣x̃ynU(x̃n)

(
exp

(
ln(x̃y

′−y
n ) + c3

c4U(x̃n)

)
− 1

)∣∣∣∣
≤ U(x̃n)

(∏
i 6=k

x̃yin,i

)
αyk

V yk
n
V c/U(x̃n)
n + U(x̃n)

(∏
i 6=k

x̃yin,i

)
αyk

V yk
n

= U(x̃n)

(∏
i 6=k

x̃yin,i

)
αyk

V
yk−c/U(x̃n)
n

+ U(x̃n)

(∏
i 6=k

x̃yin,i

)
αyk

V yk
n
.

(4.52)

Since Vn ≥ e‖x̃n‖1 and U(x̃n) grows like ‖x̃n‖1 ln ‖x̃n‖1, as n → ∞, both terms go to 0,

showing (4.51). Combining (4.45), (4.49), (4.50), and (4.51), allows us to conclude that

(4.42) holds. Thus, the proof of the theorem is complete.
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Chapter 5

Deficiency zero reaction networks

and their prevalence

As introduced in Chapter 2, deficiency zero and weak reversibility ensure that a network

is complex balanced for any rate constants, which in turns leads to many stability

properties of the network in both the deterministic and the stochastic models. Given

the significant role of deficiency zero in reaction network theory, one may ask: are such

networks common? The earliest attempt to answer this question can be traced back to

some work by Horn in 1973 [27]. In that paper, Horn considered all reaction networks

with exactly 3 binary complexes, but no condition on the number of species. Horn found

43 isomorphism classes of such networks, and among these, 41 have deficiency zero.

We choose a different tack by considering networks with a fixed number of species, say

n, and then quantifying the prevalence of the deficiency zero property via limit theorems

(as n→∞) in two random graph frameworks that we utilize to generate random reaction

networks. In the first two sections, we consider random reaction networks generated via

an Erdős-Rényi framework, while in the next two sections, we consider random reaction

networks generated via a stochastic block model.

However, we are immediately confronted with a modeling problem: for any finite
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number of species there are an infinite number of possible graphs that can be con-

structed from them. For example, with just the single species S1, possible vertices

include S1, 2S1, 3S1, . . . . Hence, we must restrict ourselves in some manner so that for a

given number of species, only a finite number of vertices are possible. In this chapter,

we restrict ourselves to study binary reaction networks (see Definition 2.7), which are

by far the most common in the literature.

5.1 An Erdős-Rényi framework for random reaction

networks

In this section we will set up an Erdős-Rényi framework for generating random reaction

networks. Let the set of species be S = {S1, S2, . . . , Sn}. We consider binary reaction

networks with species in S. The set of all possible vertices is then

C0
n = {∅, Si, Si + Sj : for 1 ≤ i ≤ n and 1 ≤ j ≤ n.}

For a given n, we denote Nn = |C0
n|, the cardinality of C0

n. Thus, Nn is the total number

of possible unary, binary, and zeroth order vertices that can be generated from n distinct

species. A straightforward calculation gives

Nn = 1 + n+ n+
n(n− 1)

2
=
n2 + 3n+ 2

2
,

and so

n ∼
√

2Nn.

Here we use the notation ∼ in the standard way: for any two sequences of real numbers

{an} and {bn}, we write an ∼ bn if limn→∞
an
bn

= c for some constant c ∈ R.
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We consider an Erdős-Rényi random graph G(Nn, pn), which we will simply denote

Gn throughout, where the set of vertices is the set of all possible binary vertices C0
n, and

the probability that there is an edge between any 2 particular vertices is pn, indepen-

dently of all other edges. Each such random graph now corresponds to an associated

graph from a reaction network in the following way,

1. each vertex with positive degree in the random graph represents a vertex in the

reaction network graph, and

2. each edge in the random graph represents a reaction in the reaction network graph

(we can assume all reactions are reversible, i.e., that y → y′ ∈ R =⇒ y′ → y ∈ R,

since we do not need to worry about direction–see Lemma 2.13(a)).

We will denote the reaction network associated with the graph G(Nn, pn) by R(Nn, pn),

which we will often simplify to Rn. We will denote the deficiency of Rn by δRn .

Next, in order to build intuition for the calculations to come, we provide two simple

examples when the number of species is small, and thus we are able to explicitly com-

pute the probability that the reaction network associated with the randomly generated

network has a deficiency of zero.

Example 7 (The case with n = 1 species). Denote the only species by A. The set of

vertices, or equivalently the set of all possible complexes, is C0
1 = {∅, A, 2A}. Figure 5

shows one possible realization of the random graph when p ∈ (0, 1). The corresponding

reaction network for the particular graph shown in Figure 5 is ∅� A� 2A.

Returning to the general case when n = 1, let R1 = {S, C,R} be the reaction network

corresponding with the random graph, and let ` and s be defined as usual. Recall that
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∅

A2A

Figure 5: A realization of a random graph when n = 1 and p ∈ (0, 1).

the deficiency is given by δR1 = |C| − `− s. Since |C| ∈ {0, 2, 3}, there are three cases to

consider.

• If |C| = 0, then the reaction network is the empty network (recall Definition 2.1)

and has a deficiency of zero.

• If |C| = 2, then ` = 1 and s = 1, and the deficiency is zero.

• If |C| = 3, then ` = 1 and s = 2 and the deficiency is one.

Since having |C| = 2 corresponds to the case of having precisely one edge,

P (δR1 = 0) = P (|C| = 0) + P (|C| = 2) = (1− p)3 + 3p(1− p)2.

Example 8 (The case with n = 2 species). Denote the set of species by S = {A,B}.

The set of vertices is C0
2 = {∅, A,B, 2A, 2B,A + B}. Figure 6 illustrates a possible

realization of the random graph when p ∈ (0, 1). The corresponding reaction network

for the particular graph shown in Figure 6 is

∅� 2B

B � A+B.
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∅

A+B

B

2B

A

2A

Figure 6: A realization of a random graph when n = 2 and p ∈ (0, 1).

Returning to the general case when n = 2, we again let R2 = {S, C,R} be the

reaction network corresponding with the random graph, with ` and s defined as usual,

and δR2 = |C| − `− s. Since s ∈ {0, 1, 2}, there are three cases to consider.

• Case 1: δR2 = 0 and s = 0. In this case, the reaction network is the empty network

and its deficiency is zero. Note that

P(δR2 = 0, s = 0) = P(s = 0) = P(no edges) = (1− p)15,

since we have a total of
(

6
2

)
= 15 possible edges.

• Case 2: δR2 = 0 and s = 1. In this case, we must have |C| = ` + 1, and by

Remark 2.3 we have ` ≤ |C|
2

. Thus, we may conclude that |C| ≤ 2. As the network

cannot be empty with s = 1, we have |C| = 2. As in the previous example, this

corresponds to a graph with only one edge. Thus

P(δR2 = 0, s = 1) = 15p(1− p)14.

• Case 3: δR2 = 0 and s = 2. In this case we have |C| = `+ 2 and, again by Remark

2.3, ` ≤ |C|
2

. Combining these two facts yields |C| ≤ 4. In addition, the fact that
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s = 2 ensures |C| ≥ 3. If |C| = 3, then ` = 1 and the corresponding graph must

have either 2 or 3 edges. If |C| = 4, then ` = 2 and the corresponding graph must

have 2 edges. Thus

P(δR2 = 0, s = 2) = P(δR2 = 0, s = 2, 2 edges) + P(δR2 = 0, s = 2, 3 edges).

We handle each term separately.

Suppose there are 2 edges in the graph. There are
(

15
2

)
such configurations. Among

these, the associated reaction network has a positive deficiency if and only if the

2 reaction vectors are linearly dependent. This can only happen if the 2 edges

are from one of the three groups: {∅ � A,A � 2A, ∅ � 2A,B � A + B},

{∅ � B,B � 2B, ∅ � 2B,A � A + B}, and {A � B, 2A � 2B,A + B �

2A,A+B � 2B}. Excluding the configurations with positive deficiency, we have

P(δR2 = 0, s = 2, 2 edges) = p2(1− p)13

((
15

2

)
− 3

(
4

2

))
.

Suppose there are 3 edges in the graph. As argued above, we must additionally have

|C| = 3 and ` = 1, which implies the graph only contains a single triangle formed

by 3 vertices. There are
(

6
3

)
such configurations. Among these, the associated

reaction network has a positive deficiency if and only if all three reaction vectors

span only 1 dimension. Therefore, the only 3 configurations with positive deficiency

in this case are {∅ � A,A � 2A, ∅ � 2A}, {∅ � B,B � 2B, ∅ � 2B}, and

{A+B � 2A,A+B � 2B, 2A� 2B}. Excluding the configurations with positive

deficiency, we have

P(δR2 = 0, s = 2, 3 edges) = p3(1− p)12

((
6

3

)
− 3

)
.
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Combining the three cases above yields

P(δR2 = 0) = (1−p)15+15p(1−p)14+p2(1−p)13

((
15

2

)
−3

(
4

2

))
+p3(1−p)12

((
6

3

)
−3

)
.

As implied by the two previous examples, the computation of P (δRn = 0) gets more

complicated as more species are added to the model. As a result of this fact, when we

let the number of species go to infinity, it is more practical to consider the two extremes:

when the probability of being deficiency zero converges to 0 and when it converges to 1.

In particular, we want to find a threshold function r(n) such that

lim
n→∞

P(δRn = 0) =


0, if limn→∞

pn
r(n)

=∞

1 if limn→∞
pn
r(n)

= 0.

(5.1)

In the next section, we show r(n) = 1
n3 .

5.2 Prevalence of deficiency zero reaction networks

under an Erdős-Rényi framework

In Sections 5.2.1 and 5.2.2, we will show that the limits in (5.1) hold. Throughout this

section, we will make use of the standard notation of an � bn or bn � an to mean

limn→∞
an
bn

= 0, whenever {an} and {bn} are sequences of non-negative real numbers.

We also remind the reader that we write an ∼ bn to mean limn→∞
an
bn

= c for some

constant c ∈ R>0.

5.2.1 The case limn→∞
pn
r(n) =∞

Lemma 2.13(e) provides an upper bound on |C| for deficiency zero reaction network. We

will utilize this bound to show limn→∞ P(δRn = 0) = 0 when limn→∞
pn
r(n)

= ∞. Since
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|C| is the number of non-isolated vertices in Gn, we start with a lemma regarding the

number of isolated vertices in Gn.

Lemma 5.1. Suppose pn = 2n+αn
Nn(Nn−1)

with αn � n1/2. Let I be the set of isolated vertices

in Gn, that is I = {v ∈ C0
n : deg(v) = 0}. Then we have

lim
n→∞

P(|I| ≥ Nn − 2n) = 0.

Proof. We require both E(|I|) and Var(|I|). First, a straightforward calculation yields

E(|I|) = E

∑
v∈C0n

1{deg(v)=0}

 = NnP(deg(v) = 0) = Nn(1− pn)Nn−1.

Turning to the variance, we have

|I|2 =
∑
v,w∈C0n

1{deg(v)=deg(w)=0} =
∑
v∈C0n

1{deg(v)=0} +
∑

v,w∈C0n:v 6=w

1{deg(v)=deg(w)=0}.

Therefore, we have

Var(|I|) = E(|I|2)− (E(|I|))2

= E

∑
v∈C0n

1{deg(v)=0} +
∑

v,w∈C0n:v 6=w

1{deg(v)=deg(w)=0}

−N2
n(1− pn)2Nn−2

= Nn(1− pn)Nn−1 +Nn(Nn − 1)(1− pn)2Nn−3 −N2
n(1− pn)2Nn−2

= Nn(1− pn)Nn−1(1− (1− pn)Nn−2) +N2
n(1− pn)2Nn−3pn

≤ Nn(1− pn)Nn−1(Nn − 2)pn +N2
n(1− pn)2Nn−3pn

≤ Nn(Nn − 2)pn +N2
npn ≤ 2N2

npn,

where the first inequality follows from Bernoulli’s inequality.

We will utilize E(|I|) and Var(|I|) to show that

lim
n→∞

P(|I| ≥ Nn − 2n) = 0. (5.2)
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It suffices to prove (5.2) in the three cases below.

1. When αn � Nn, we have pn � 1
Nn

. Applying Markov’s inequality, we have

P(|I| > Nn − 2n) ≤ E(|I|)
Nn − 2n

=
Nn

Nn − 2n
(1− pn)Nn−1.

Since limn→∞(1 − pn)Nn−1 = limn→∞(1 − pn)
1
pn
pn(Nn−1) = limn→∞ e

−pn(Nn−1) = 0,

we have

lim
n→∞

P(|I| > Nn − 2n) = 0.

2. When αn ∼ Nn, we have pn ∼ 1
Nn

, and thus pn >
c
Nn

for some constant c > 0 and

n large enough. Therefore

E(|I|) = Nn(1− pn)Nn−1 ≤ Nn

(
1− c

Nn

)Nn−1

≤ Nne
−c.

Applying Chebyshev’s inequality yields

P(|I| > Nn−2n) ≤ Var(|I|)
(Nn − 2n− E[|I|])2

≤ 2N2
npn

(Nn − 2n−Nne−c)2
=

2pn
(1− 2n/Nn − e−c)2

.

Since pn ∼ 1
Nn

and Nn ∼ n2, we have

lim
n→∞

P(|I| > Nn − 2n) = 0.

3. The last case is when αn � Nn, or pn � 1
Nn

. Using Taylor’s expansion, we have

E(|I|) = Nn(1− pn)Nn−1 ≤ Nn

(
1− pn(Nn − 1) + p2

n

(Nn − 1)(Nn − 2)

2

)
.
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Again, we apply Chebyshev’s inequality:

P(|I| ≥ Nn − 2n) ≤ Var(|I|)
(Nn − 2n− E[|I|])2

≤ 2N2
npn(

Nn − 2n−Nn +Nn(Nn − 1)pn − Nn(Nn−1)(Nn−2)
2

p2
n

)2

=
2N2

npn(
− 2n+Nn(Nn − 1)pn − Nn(Nn−1)(Nn−2)

2
p2
n

)2

Now we plug in pn = 2n+αn
Nn(Nn−1)

and proceed:

P(|I| ≥ Nn − 2n) ≤
2Nn
Nn−1

(2n+ αn)(
− 2n+ 2n+ αn − Nn−2

2Nn(Nn−1)
(2n+ αn)2

)2

=
2Nn

Nn − 1

2n+ αn(
αn − Nn−2

2Nn(Nn−1)
(2n+ αn)2

)2 .

If αn � n or αn ∼ n, we have

2n+ αn(
αn − Nn−2

2Nn(Nn−1)
(2n+ αn)2

)2 ∼
n

α2
n

→ 0,

as n→∞, since αn � n1/2.

If αn � n, we have

2n+ αn(
αn − Nn−2

2Nn(Nn−1)
(2n+ αn)2

)2 ∼
αn
α2
n

=
1

αn
→ 0,

as n→∞, since αn � Nn. Thus, either way we must have

lim
n→∞

P(|I| > Nn − 2n) = 0.
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In all cases above, we have limn→∞ P(|I| ≥ Nn − 2n) = 0.

We are now ready to provide the first main theorem.

Theorem 5.2. For limn→∞
pn
r(n)

=∞, the following holds

lim
n→∞

P(δRn = 0) = 0.

Proof. Note that the vertices of the reaction network Rn correspond to the vertices in

Gn with positive degree. Thus, letting I denote the set of isolated vertices of Gn, Lemma

2.13(e) implies that if the network is deficiency zero, we must have

|I| ≥ Nn − 2n. (5.3)

From (5.3), we have

P(δRn = 0) ≤ P(|I| ≥ Nn − 2n). (5.4)

Since r(n) = 1
n3 ∼ n

N2
n

and pn � r(n), we have pn satisfies the condition in Lemma 5.1.

Hence, using Lemma 5.1 we have

lim
n→∞

P(δRn = 0) = lim
n→∞

P(|I| ≥ Nn − 2n) = 0.

5.2.2 The case limn→∞
pn
r(n) = 0

The previous section considered when limn→∞
pn
r(n)

= ∞. Here we focus on the latter

case, where limn→∞
pn
r(n)

= 0.

We will show in Lemma 5.3 that as n → ∞, a random reaction network with

limn→∞
pn
r(n)

= 0 almost surely contains only connected components that consist of 2

vertices. Thus in the corresponding reaction network each connected component has

exactly 2 vertices.
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Lemma 5.3. Suppose limn→∞
pn
r(n)

= 0. Then

lim
n→∞

P(Rn is not paired) = 0

Proof. We have

P(Rn is not paired) = P(Rn is not paired, Rn contains only trees)

+ P(Rn is not paired, Rn contains a cycle).

It is a well-known fact in random graph theory (for example, see [22]) that for pn �

1
n3 � 1

Nn
we have

lim
n→∞

P(Rn contains a cycle) = 0.

Thus it suffices to show

lim
n→∞

P(Rn is not paired, Rn contains only trees) = 0.

We follow the notation in [15] and for k ≥ 2 let Tk(n) be the number of trees in Rn with

k vertices. Using estimates similar to the ones in [15], we have

P(Rn is not paired, Rn contains only trees) ≤
Nn∑
k=3

P(Tk(n) > 0)

≤
Nn∑
k=3

(
Nn

k

)
kk−2pk−1

n

≤
Nn∑
k=3

Nk
ne

k

√
2πkk

kkpk−1
n

=
1√
2π
N3
ne

3p2
n

Nn−3∑
k=0

(Nnepn)k,

where the first inequality follows since {not paired, only trees} ⊂ ∪Nnk=3{Tk(n) > 0}, the

second follows by choosing the k vertices from the Nn choices and noting there are kk−2
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possible trees from these vertices (each with k − 1 edges), and the third follows from

Stirling. Since pn � 1
n3 ∼ N

−3/2
n , we have limn→∞N

3
ne

3p2
n = 0 and

∑Nn−3
k=0 (Nnepn)k is

bounded. Thus we have

lim
n→∞

P(Rn is not paired) = lim
n→∞

P(Rn is not paired, Rn contains only trees) = 0,

and the proof is complete

Remark 5.4. Note that for pn � 1
n3 , the expected number of edges is

pn

(
Nn

2

)
= pn

Nn(Nn − 1)

2
� n.

Thus for pn � 1
n3 , Rn is almost surely paired with the number of pairs kn � n.

Recall that we only consider binary reaction networks, thus each reaction can contain

at most 4 species (2 species in each vertex). The next Lemma shows that for our analysis

later, it suffices to only consider reactions that contain exactly 4 species.

Note that in the construction we are using, random graphs with the same number

of edges have the same probability. We use this fact heavily in the proofs of the next

two lemmas, where we condition on Rn being kn-paired and can therefore generate Rn

uniformly from the set of all kn-paired graphs.

Lemma 5.5. Suppose that kn � n. Let An be the event that all reactions in Rn have

exactly 4 distinct species. Then we have

lim
n→∞

P(An|Rn is kn-paired) = 1.

Proof. Let Rn be a kn-paired reaction network, where kn � n. Denote the kn reaction

vectors by {vin}kni=1 ∈ Zn. We denote by Ain the event that the vector vin has 4 non-zero
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elements, thus An = ∩kni=1A
i
n. The proof will proceed by using that

P(An|Rn is kn-paired) =
kn−1∏
j=0

P(Aj+1
n | ∩

j
i=1 A

i
n, Rn is kn-paired),

and showing the limit of the right-hand side, as n→∞, is 1.

First, note that the total number of vertices of the form Sk + Sm where k 6= m is(
n
2

)
. Suppose we have already picked j pairs of reversible reactions where each pair has

4 species. Then the number of unpicked vertices of the form Sk + Sm where k 6= m is(
n
2

)
− 2j. After picking one such Sk + Sm for the j + 1st pair, we need to pick another

vertex. The number of available vertices of the form Sp+Sq, where p, q,m, and k are all

different is at least
(
n−2

2

)
− 2j, where the minus 2 comes from the fact that we remove

the species Sk and Sm from the possibilities, and the 2j is the number of vertices we

have already chosen. Thus for n large enough, we have

P(Aj+1
n | ∩

j
i=1 A

i
n, Rn is kn-paired)

≥
1
2
(
(
n
2

)
− 2j)(

(
n−2

2

)
− 2j)(

Nn−2j
2

) (by considering our choices as detailed above)

≥
1
2
(
(
n
2

)
− 2n)(

(
n−2

2

)
− 2n)(

Nn
2

) (since j ≤ n)

=
(n2 − 5n)(n2 − 9n+ 6)

(n2 + 3n+ 2)(n2 + 3n)
≥ (n2 − 5n)(n2 − 9n)

(n2 + 4n)(n2 + 3n)

=
n2 − 14n+ 45

n2 + 7n+ 12
= 1− 21n− 33

n2 + 7n+ 12

≥ 1− 21

n
,

and where the 1/2 in the first term accounts for the symmetry between the selected

vertices.
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Therefore, for n large enough, we have

P(An|Rn is kn-paired) =
kn−1∏
j=0

P(Aj+1
n | ∩

j
i=1 A

i
n, Rn is kn-paired) ≥

(
1− 21

n

)kn
≥ 1− 21kn

n

(5.5)

where the last inequality is due to Bernoulli’s inequality. Using the assumption that

kn � n, we have

lim
n→∞

P(An|Rn is kn-paired) = 1,

and the proof is complete.

Lemma 5.5 showed that if kn � n and Rn is kn-paired, then with high proba-

bility each reaction vector will have precisely 4 non-zero components. The following

proposition, stated in terms of discrete random matrices, proves that with probability

approaching one, as n→∞, this set of reaction vectors will be linearly independent.

Proposition 5.1. For each n ≥ 1, let Dn ⊂ Rn be a set of vectors for which (i)

each vector in Dn has precisely four non-zero elements, and (ii) for each choice of four

distinct indices from {1, . . . , n} there is precisely one vector in Dn with those as its non-

zero components. Let kn � n and let Γn ∈ Rn×kn be a matrix whose columns are distinct

vectors chosen uniformly from Dn. Then, Γn will have full column rank with probability

converging to one, as n→∞.

Proof. Let In be the event that all column vectors of Γn are linearly independent. It

suffices to show

lim
n→∞

P(Icn) = 0.

We denote the kn column vectors of Γn by {vin}kni=1 ∈ Rn. We say a set of vectors is

minimally dependent if any of its proper subsets are linearly independent. For any set
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of indices of vectors T ⊆ {1, 2, . . . , kn} we denote V T
n = {vin : i ∈ T}. By noting that

Icn =
kn⋃
`=2

{∃ a minimally dependent set of size `},

we have

P(Icn) ≤
kn∑
`=2

∑
|T |=`

P(V T
n is minimaly dependent) =

kn∑
`=2

(
kn
l

)
P(B`) (5.6)

where B` is the event that V T
n is minimally dependent for a particular set T satisfying

|T | = `.

Now fix a set T with |T | = `. Without loss of generality, let T = {1, 2, . . . , `}.

Consider a matrix M` whose columns are the vectors in V T
n . Note that the set V T

n

being minimally dependent implies that M` has no row with only one non-zero entry

(for otherwise, the set of vectors without the column associated to that element would

be linearly dependent). This implies further that each non-zero row of M` has at least

2 entries. Since each column of M` has exactly 4 entries, M` has exactly 4` entries.

Therefore, the number of non-zero rows in M` must be at most 2` and the number of

zero rows in M` must be at least n−2`. Combining all of the arguments above, we must

have

P(B`) ≤ P(M` has at least n− 2` zero rows). (5.7)

We denote the row vectors of M` by {win}ni=1. For a subset of indices of species

R ⊆ {1, 2, . . . , n} we denote WR
n = {win : i ∈ R}. We say that WR

n = 0 if all the vectors

in the set are the zero vector. We have

P(M` has at least n− 2` zero rows) ≤
∑

|R|=n−2`

P(WR
n = 0) =

(
n

n− 2`

)
P(C`) (5.8)
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where C` is the event that WR
n = 0 for a particular R satisfying |R| = n− 2`.

Now fix a set R with |R| = n−2`. Without loss of generality, let R = {2`+1, . . . , n}.

Then the event C` involves picking ` column vectors: V T
n = {v1

n, . . . , v
`
n} where the last

n − 2` elements of each column vector are zero. Recall that each column vector has

exactly 4 non-zero elements. Suppose we have already picked j such column vectors.

The number of ways we can pick the j + 1-st vector is at least (
(
n
2

)
− 2j)(

(
n−2

2

)
− 2j)

(this follows from the same argument as in the proof of Lemma 5.5). Among these, the

number of ways we can pick the j + 1-st vector whose last n − 2` elements are zero is

less than
(

2`
2

)(
2`−2

2

)
. Thus we have

P(C`) ≤
`−1∏
j=0

(
2`
2

)(
2`−2

2

)
(
(
n
2

)
− 2j)(

(
n−2

2

)
− 2j)

≤
`−1∏
j=0

(
2`
2

)(
2`−2

2

)
1
4

(
n
2

)(
n−2

2

) ≤ 4

(
2`

n

)4

.

Plugging the above into (5.8), we see

P(M` has at least n− 2` zero rows) ≤
(

n

n− 2`

)
4

(
2`

n

)4`

≤ n2`

(2`)!
4

(
2`

n

)4`

≤ 4n2`

√
2π(2`/e)2`

(
2`

n

)4`

=
4√
2π

(
2`e

n

)2`

.

(5.9)

Now combining (5.6), (5.7), and (5.9), we have

P(Icn) ≤
kn∑
`=2

(
kn
`

)
4√
2π

(
2`e

n

)2`

≤
kn∑
`=2

k`n
`!

4√
2π

(
2`e

n

)2`

≤
kn∑
`=2

k`n√
2π(`/e)`

4√
2π

(
2`e

n

)2`

=
kn∑
`=2

2

π

(
4`e3kn
n2

)`
≤

∞∑
`=2

2

π

(
4e3k2

n

n2

)`
≤ c

k4
n

n4
.

(5.10)

for some constant c > 0, since kn � n. Thus we have

lim
n→∞

P(Icn) = 0

which concludes the proof.
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We return to the setting of reaction networks with our final key lemma.

Lemma 5.6. Suppose that kn � n. Then we have

lim
n→∞

P(δRn = 0|Rn is kn-paired) = 1. (5.11)

Proof. Let Rn be a kn-paired reaction network, where kn � n. From Lemma 2.13, Rn

has deficiency zero if and only if all kn reaction vectors are linearly independent. Let In

be the event that all kn reaction vectors are linearly independent.

Similar to Lemma 5.5, denote the kn reaction vectors by {vin}kni=1 ∈ Zn and denote

by An the event that all reactions have exactly 4 species. We have

P(δRn = 0|Rn is kn-paired) = P(In|Rn is kn-paired)

≥ P(In|An, Rn is kn-paired)P(An|Rn is kn-paired). (5.12)

Utilizing (5.10) in Proposition 5.1, we have

P(Icn|An, Rn is kn-paired) ≤ c
k4
n

n4
(5.13)

for some constant c > 0. Thus using (5.5), (5.12) and (5.13), we must have

P(δRn = 0|Rn is kn-paired) ≥
(

1− ck
4
n

n4

)(
1− 21kn

n

)
, (5.14)

Since kn � n, taking the limit of (5.14) concludes the proof of the lemma.

Combining Lemmas 5.3, 5.5, and 5.6, we are ready to state the main theorem for

this section.

Theorem 5.7. Suppose pn � 1
n3 , then

lim
n→∞

P(δRn = 0) = 1,
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Proof. We have

P(δRn = 0) = P(δRn = 0, Rn is paired) + P(δRn = 0, Rn is not paired).

Since

P(δRn = 0, Rn is not paired) ≤ P(Rn is not paired),

we must have

lim
n→∞

P(δRn = 0, Rn is not paired) = 0

due to Lemma 5.3. Therefore it suffices to show

lim
n→∞

P(δRn = 0, Rn is paired) = 1.

Noting that for deficiency zero models, the number of reversible reaction vectors is

bounded above by n, we have

P(δRn = 0, Rn is paired) =
n∑
i=1

P(δRn = 0, Gn is i-paired)

=
n∑
i=1

P(δRn = 0|Rn is i-paired)P(Rn is i-paired)

=
n∑
i=1

P(δRn = 0|Rn is i-paired)
Nn!

i!2i(Nn − 2i)!
pin(1− pn)Nn(Nn−1)/2−i

≥
n∑
i=1

P(δRn = 0|Rn is i-paired)
(Nn − 2i)2i

i!2i
pin(1− pn)Nn(Nn−1)/2−i

(5.15)

where the third equality uses that the number of i-paired graphs is
(
Nn
2

)(
Nn−2

2

)
. . .
(
Nn−2i+2

2

)
,

with the repetition of the graphs accounted for by division by i!.

Note that because pn � 1/n3 and Nn ∼ n2 we have that N2
npn � n. Now let kn

satisfy limn→∞ kn = ∞ and N2
npn � kn � n. Cutting off the last n − kn terms from
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(5.15), yields

P(δRn = 0, Rn is paired) ≥
kn∑
i=1

P(δRn = 0|Rn is i-paired)
(Nn − 2i)2i

i!2i
pin(1− pn)Nn(Nn−1)/2−i

≥
kn∑
i=1

(
1− c i

4

n4

)(
1− 21i

n

)
(Nn − 2i)2i

i!2i
pin(1− pn)Nn(Nn−1)/2−i

≥
(

1− ck
4
n

n4

)(
1− 21kn

n

)
(1− pn)N

2
n/2

kn∑
i=1

(Nn − 2i)2i

i!2i
pin

≥
(

1− ck
4
n

n4

)(
1− 21kn

n

)
(1− pn)N

2
n/2

kn∑
i=1

(Nn − 2kn)2i

i!2i
pin.

where the second inequality is obtained from (5.14) in Lemma 5.6.

Let λn = (Nn−2kn)2pn
2

, and note that λn � kn since we chose N2
npn � kn. Using

Taylor’s remainder theorem and Stirling’s approximation, we have

kn∑
i=1

λin
i!
≥ eλn−e

λnλkn+1
n

(kn + 1)!
≥ eλn

(
1− λkn+1

n√
2π(kn + 1)kn+1e−kn+1

)
= eλn

(
1− 1√

2π

(
λne

kn + 1

)kn+1)
.

Thus we have

P(δRn = 0, Rn is paired) ≥
(

1−ck
4
n

n4

)(
1−21kn

n

)
(1−pn)N

2
n/2eλn

(
1− 1√

2π

(
λne

kn + 1

)kn+1)
.

Since λn � kn � n, the first, second, and last terms converge to one. Hence, it suffices

to show

lim
n→∞

(1− pn)N
2
n/2eλn = 1,

or

lim
n→∞

N2
n

2
ln(1− pn) + λn = 0.

Since pn � 1, we have −pn − p2
n ≤ ln(1− pn) ≤ −pn. Thus

N2
n

2
ln(1− pn) + λn ≤ −

N2
n

2
pn + λn =

pn
2

((Nn − 2kn)2 −N2
n) =

pn
2

(−4knNn + 4k2
n).
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On the other hand, and using the equality above,

N2
n

2
ln(1− pn) + λn ≥ −

N2
n

2
(pn + p2

n) + λn =
pn
2

(−4knNn + 4k2
n)− N2

np
2
n

2
.

Since kn � n, Nn ∼ n2 and pn � 1
n3 , we have

lim
n→∞

pn
2

(−4knNn + 4k2
n) = 0, and, lim

n→∞

N2
np

2
n

2
= 0.

Thus

lim
n→∞

N2
n

2
ln(1− pn) + λn = 0,

which concludes the proof of the theorem.

5.3 A stochastic block model framework for random

reaction networks

While the basic Erdős-Rényi framework in Section 5.1 can serve as a good starting point

due to its simplicity, in practice one may want to use a more flexible framework that

can be easily adapted to different settings where reaction networks may have different

underlying structures. For example, one may want to study a closed system where inflow

and outflow reactions such as ∅ � Si are prohibited. On the other hand, one could

be interested in an open system where inflow and outflow reactions are abundant. In

another setting, perhaps one wants to only allow for reactions that preserve the number

of molecules such as Si � Sj or Si + Sj � Sh + Sk.

To properly generate random reaction networks in those situations, this section con-

siders a stochastic block model framework–a generalized Erdős-Rényi framework with

weighted edge probabilities [25].
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Let the set of species be S = {S1, S2, . . . , Sn}. We consider binary reaction networks

with species in S. The set of all possible vertices is then

C0
n = {∅, Si, Si + Sj : for 1 ≤ i ≤ n and 1 ≤ j ≤ n.}

Recall from Section 5.1 that we denote Nn = |C0
n|, the cardinality of C0

n. We also obtain

from Section 5.1 that

Nn =
n2 + 3n+ 2

2
,

and so

n ∼
√

2Nn.

Definition 5.8. We denote by E0,1
n , E0,2

n , E1,1
n , E1,2

n , E2,2
n the sets of edges, or reactions,

as follows:

E0,1
n = {∅� Si : 1 ≤ i ≤ n}

E0,2
n = {∅� Si + Sj : 1 ≤ i, j ≤ n}

E1,1
n = {Si � Sj : 1 ≤ i, j ≤ n; i 6= j}

E1,2
n = {Si � Sj + Sk : 1 ≤ i, j, k ≤ n}

E2,2
n = {Si + Sj � Sh + Sk : 1 ≤ i, j, k, h ≤ n; (i, j) 6= (k, h); (i, j) 6= (h, k)}.

Remark 5.9. E0,1
n , E0,2

n , E1,1
n , E1,2

n , E2,2
n completely partition the set of all possible edges.

Note that |E0,1
n | ∼ n, |E1,1

n | ∼ |E0,2
n | ∼ n2, |E1,2

n | ∼ n3 and |E2,2
n | ∼ n4. In fact,

we have |Ei,j
n | ∼ ni+j. Finally, note that the terms edges and reactions can be used

interchangeably in the present context.

We then consider a randomly generated network G(Nn, pn), which we will simply de-

note Gn throughout, where the set of vertices is the set of vertices C0
n, and the probability

that there is an edge between two vertices is given as follows



98

1. an edge in E0,1
n appears in the random graph with probability p0,1

n = nα0,1pn,

2. an edge in E0,2
n appears in the random graph with probability p0,2

n = nα0,2pn,

3. an edge in E1,1
n appears in the random graph with probability p1,1

n = nα1,1pn,

4. an edge in E1,2
n appears in the random graph with probability p1,2

n = nα1,2pn,

5. an edge in E2,2
n appears in the random graph with probability pn,

where α0,1, α0,2, α1,1, α1,2 are parameters that can be used to control the structure of

the random graph. Each random graph now corresponds to a reaction network in the

following way,

1. each vertex with positive degree in the random graph represents a vertex in the

reaction network graph, and

2. each edge in the random graph represents a reaction in the reaction network graph.

We can assume all reactions are reversible, i.e., that y → y′ ∈ R =⇒ y′ → y ∈ R,

since deficiency does not depend on the direction of the edges.

Similar to Section 5.1, we will denote the reaction network associated with the graph

G(Nn, pn) by R(Nn, pn), which we will often simplify to Rn. We will denote the deficiency

of Rn by δRn .

Remark 5.10. In the next section it will be more useful to work with the expected

and actual number of edges in each set Ei,j
n instead of pi,jn . Thus, for convenience we

denote by Mi,j(n) the number of realized edges from Ei,j
n and by Ki,j(n) = E[Mi,j(n)] the

expected number of realized edges from Ei,j
n . It is straightforward to see that Mi,j(n) has
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a binomial distribution, and from Remark 5.9 that

Ki,j(n) ∼ ni+jnαi,jpn

for (i, j) 6= (2, 2) and K2,2(n) = n4pn.

With the stochastic block model above, we can model a wide range of reaction net-

works by tweaking the parameters {αi,j}. Next, we provide a few examples to illustrate

this flexibility.

Example 9 (The case α0,1 = α0,2 = α1,1 = α1,2 = 0). In this case, we recover the

unweighted Erdős-Rényi framework in Section 5.1. From Section 5.2, the threshold

function for deficiency zero is r(n) = 1
n3 . In other words,

lim
n→∞

P (δRn = 0) =


0 when limn→∞

pn
r(n)

=∞

1 when limn→∞
pn
r(n)

= 0

.

Lemma 5.3 and Lemma 5.5 tell us that for limn→∞
pn
r(n)

= 0, the random reaction net-

works we observe only contain edges from E2,2
n with high probability. In other words,

with the unweighted framework, we only see deficiency zero in “closed systems” (reac-

tion networks with no inflow and outflow) of a very particular type. Reactions such as

inflow and outflow, unary-unary, and unary-binary are underrepresented in this case.

Example 10 (A closed system with α0,1 = α0,2 = 0, α1,1 = 2, α1,2 = 1). In this case, we

have the expected number of edges in E0,1
n is K0,1(n) ∼ npn and the expected number of

edges in E0,2
n is K0,2(n) ∼ n2pn. It is easy to check that the parameters αi,j are selected

such that

K1,1(n) ∼ K1,2(n) ∼ K2,2(n) ∼ n4pn and K0,1(n), K0,2(n)� n4pn.



100

Thus the random reaction networks we observe will have similar expected amount of

reactions in E1,1
n , E1,2

n , E2,2
n . We also have that the expected number of reactions in

E0,1
n and E0,2

n is significantly less. In particular, if pn � 1
n2 , the probability of seeing

any reaction in E0,1
n and E0,2

n goes to 0 as n → ∞. Hence, the random networks we

observe will not have inflow and outflow reactions with high probability. Thus, this

scheme is suitable to model closed systems without underrepresenting unary-unary and

unary-binary reactions, unlike the case in Example 3. From Theorem 5.23 below, the

threshold function for this case is r(n) = 1
n3

Example 11 (An open system with α0,1 = 3, α1,1 = α0,2 = 2, α1,2 = 1). In this case,

the expected number of realized edges Ki,j(n) ∼ n4pn for all (i, j). Thus, this scheme is

suitable to model an “open system” with inflow and outflow reactions, and with similar

amount of reactions from each type. See Figure 7 for a realization of this system with a

specific choice of parameters. From Theorem 5.23 below, the threshold function for this

case is r(n) = 1
n10/3 .

5.4 Prevalence of deficiency zero reaction networks

under a stochastic block model framework

In Section 5.4.1, we will provide a set of conditions onKi,j(n) that guarantee limn→∞ P(δRn =

0) = 0. In Section 5.4.2, we will also show that under the “converse” of these conditions,

limn→∞ P(δRn = 0) = 1. Then in Section 5.4.3, we will use these conditions to form

an algorithm to find the threshold function for deficiency zero. Specifically, given any

choice of {αi,j}, the algorithm provides a single threshold function r(n) for deficiency
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∅

S4

S5

S2

S6

S2 + S5

2S3

S4 + S6

S3

S2

S1 S1 + S4

2S1 2S5

Figure 7: A realization of the open system in Example 5 with n = 6 and p = 0.8
n3 . Note:

The figure only includes non-isolated vertices.
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zero.

5.4.1 Conditions on Ki,j(n) for limn→∞ P(δRn
= 0) = 0

We start this section by providing some examples which illustrate different ways to break

deficiency zero.

Example 12. Consider a reaction network with only 2 species S = {S1, S2}

S1 � S2

S1 + S2 � ∅.

The reaction network has deficiency

δ = |C| − `− s = 4− 2− 2 = 0.

However, since there are only 2 species, we must have s ≤ 2. Thus if we add more vertices

and reactions, it is easy to get a positive deficiency from the new reaction network. For

example, if we add 2S1 � S2, then the new network is

S1 � S2 � 2S1

S1 + S2 � ∅,

and the new deficiency is δ′ = |C ′| − `′ − s′ = 5− 2− 2 = 1. In this example, we break

deficiency zero by having too many vertices with respect to the number of species.

Example 13. Consider a reaction network with 10 species S = {S1, . . . , S10}, which is

given below

S1 � S2 � · · ·� S10.
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The reaction network has deficiency

δ = |C| − `− s = 10− 1− 9 = 0.

Note that all unary vertices are already in the network, and the dimension of the sto-

chiometric subspace, which is 9, is nearly at the maximum possible value of 10. If we

add one or two more reactions in E1,2
n , E0,2

n , or E2,2
n , then it is easy to break deficiency

zero since the dimension of the original network is almost at its maximum. For example,

if we add S1 + S2 → S3 + S4, then the new network is

S1 � S2 � · · ·� S10

S1 + S2 → S3 + S4

and the new deficiency is δ′ = |C ′| − `′ − s′ = 12 − 2 − 9 = 1. In this example, we

break deficiency zero by adding too many more reactions when the dimension of the

stoichiometric subspace is already nearly full from the unary reactions.

Example 14. Consider a reaction network with 10 species S = {S1, . . . , S10}, and a

high number of reactions in E0,1
n

∅� Si where i = 1, . . . , 8.

The reaction network has deficiency

δ = |C| − `− s = 9− 1− 8 = 0.

If we add a high enough number of reactions in E1,2
n , E0,2

n , or E2,2
n , then it is likely that

we add a reaction whose species are in {S1, . . . , S8}, which breaks deficiency zero. For
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example, consider the new network

∅� Si where i = 1, . . . , 8

S1 + S2 � S9

S3 + S4 � S7.

The new deficiency is δ′ = |C ′| − `′ − s′ = 12 − 2 − 9 = 1. In this example, we break

deficiency zero by having a high number of reaction in E0,1
n and a high enough number

of reaction in E1,2
n , E0,2

n , or E2,2
n .

It turns out that the three examples above are representative of all cases when we

have limn→∞ P(δRn = 0) = 0. We provide rigorous conditions in the following theorem.

Theorem 5.11. If one of the following conditions holds, then limn→∞ P(δRn = 0) = 0.

(C1.1) Either K0,2(n)� n, K1,2(n)� n, or K2,2(n)� n.

(C1.2) K1,1(n)� n and either K0,2(n)� 1, K1,2(n)� 1, or K2,2(n)� 1.

(C1.3) Either K0,1(n)2K0,2(n)� n2, K0,1(n)3K1,2(n)� n3, or K0,1(n)4K2,2(n)�

n4.

Remark 5.12. In Theorem 5.11, the three conditions are not purely technical; there

is intuition behind each condition as described in the examples at the beginning of this

section, and below.

1. Condition C1.1 refers to the case when there are too many vertices in the reaction

network, which makes its deficiency strictly positive (see Lemma 2.13(e)). Note

that K0,1(n) � n and K1,1(n) � n can not break deficiency zero in this regard.



105

Obviously, it is impossible to have K0,1(n) � n since |E0,1
n | = n. The condition

K1,1(n)� n by itself still results in the network being deficiency zero (see Lemma

2.13(h)). However, the condition K1,1(n)� n together with a non-trivial number

of reactions from E0,2
n , E1,2

n , E2,2
n can break deficiency zero. This is stated formally

in Condition C1.2.

2. Condition C1.2 refers to the case when the dimension of the stochiometric subspace

s is almost fully exhausted from reactions in E1,1
n . Recall that δ = |C|− `− s, so in

this case as we add more reactions in E0,2
n , E1,2

n , E2,2
n , |C| − ` increases but s does

not, making the deficiency positive.

3. Condition C1.3 refers to the case where there is a high probability of some inflow or

outflow reaction in E0,1
n and a reaction in another edge set being linearly dependent,

which in turn makes the deficiency positive. It will also be apparent later that

having a nontrivial number of inflow or outflow reactions in E0,1
n makes it more

difficult to have deficiency zero.

We prove the theorem via a series of lemmas. We begin by showing that if Condition

(C1.1) holds, then limn→∞ P(δRn = 0) = 0.

Lemma 5.13. If either K0,2(n)� n, K1,2(n)� n, or K2,2(n)� n, then we have

lim
n→∞

P(δRn = 0) = 0.

Proof. Recall from Lemma 2.13(e) that there cannot be too many vertices in a network

with deficiency zero. In particular, δRn = 0 implies |C| ≤ 2n. We will argue that in

each of the three cases the number of non-isolated vertices in Gn, which correspond with

the vertices of the associated reaction network Rn, is likely to be much higher than the
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bound 2n, implying the network has positive deficiency. The first case is straightforward,

and the remaining two cases follow the same technique as Lemma 5.1 and Theorem 5.2

in Section 5.2.

1. First, we assume that K0,2(n) � n. From Lemma 2.13(e), we have that δRn = 0

implies |C| ≤ 2n, which in turns implies M0,2(n) ≤ 2n− 1. Thus

P(δRn = 0) ≤ P(M0,2(n) ≤ 2n− 1)

= P(K0,2(n)−M0,2(n) ≥ K0,2(n)− (2n− 1))

≤ Var(M0,2(n))

(K0,2(n)− (2n− 1))2
.

Since M0,2(n) has a binomial distribution, Var(M0,2(n)) ≤ E[M0,2(n)] = K0,2(n).

Together with the fact that K0,2(n)� n, we have Var(M0,2(n))

(K0,2(n)−(2n−1))2
→ 0, as n→∞,

and thus limn→∞ P(δRn = 0) = 0.

2. Next, we assume K1,2(n) � n. We observe that based on Corollary 2.15, δRn =

0 must imply δπ
E
1,2
n

(Rn) = 0, where, recalling Definition 2.14, πE1,2
n

(Rn) is the

subnetwork of Rn with reactions in E1,2
n . Thus we have

P(δRn = 0) ≤ P(δπ
E
1,2
n

(Rn) = 0).

Again, we make use of the upper bound in Lemma 2.13(e). δπ
E
1,2
n

(Rn) = 0 must

imply the number of non-isolated vertices in πE1,2
n

(Rn) is bounded by 2n. Let I

be the set of isolated binary vertices in πE1,2
n

(Rn). Since there are n(n+1)
2

binary

vertices, we must then have

|I| > n(n+ 1)

2
− 2n,
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and as a result

P(δRn = 0) ≤ P
(
|I| > n(n+ 1)

2
− 2n

)
.

The probability that a binary vertex is isolated in πE1,2
n

(Rn) is (1− p1,2
n )n, because

there are precisely n unary vertices. Thus, summing over the binary vertices yields

E|I| = n(n+ 1)

2
(1− p1,2

n )n.

We can also derive Var(|I|) since |I| is binomially distributed. Using E|I| and

Var(|I|), a rigorous proof for

lim
n→∞

P
(
|I| > n(n+ 1)

2
− 2n

)
= 0

can be carried out by precisely the same argument as Lemma 5.1 in Section 5.2.

We omit it for the sake of brevity.

3. Finally, we assume K2,2(n)� n. We observe that based on Corollary 2.15, δRn = 0

must imply δπ
E
2,2
n

(Rn) = 0, where πE2,2
n

(Rn) is the subnetwork of Rn with reactions

in E2,2
n . Thus we have

P(δRn = 0) ≤ P(δπ
E
2,2
n

(Rn) = 0).

Note that K2,2(n) � n implies n4pn � n, and thus pn � 1
n3 . The remainder of

the proof follows along the same lines as the proof of Lemma 5.1 and Theorem 5.2

in Section 5.2.

The following proposition will be useful in the proof that Condition C1.2 implies

limn→∞ P(δRn = 0) = 0.

Proposition 5.2. Let R = {S, C,R} be a reaction network with S = {S1, S2, . . . , Sn}.

Assume that all vertices in R are unary, and R has only one connected component. Let
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i, j, p, q ∈ {1, . . . , n} be such that {i, j} 6= {p, q}, and let R̂ = R ∪ {∅ � Si + Sj, ∅ �

Sp + Sq} and R̂ be the reaction network associated with R̂. Then δR̂ = 1.

Note that in the above proposition we are allowing i = j and/or i = p.

Proof. Due to Lemma 2.13(h), the deficiency of R is necessarily zero (since it contains

only unary vertices). Starting from R, adding the pair of reversible reactions ∅ �

Si + Sj, ∅� Sp + Sq to form R̂ increases the number of vertices by three, and increases

the number of connected components by 1. It is straightforward to check that since the

vertices {Si, Sj, Sp, Sq} are contained within C, the addition of the reaction vectors for

∅� Si+Sj and ∅� Sp+Sq only increases the size of the dimension of the stoichiometric

subspace by 1. Hence, we have δR̂ = δR + 3− 1− 1 = 1.

We now show that Condition (C1.2) yields the desired result.

Lemma 5.14. If K1,1(n) � n and either K0,2(n) � 1, K1,2(n) � 1, or K2,2(n) � 1,

then we have

lim
n→∞

P(δRn = 0) = 0.

Proof. Suppose K0,2(n)� 1. The other two cases can be handled in a same manner.

M0,2(n) is binomially distributed with mean K0,2(n) � 1. Thus, standard methods

show

lim
n→∞

P(M0,2(n) ≥ 2) = 1.

Now it suffices to show

lim
n→∞

P(δRn = 0,M0,2(n) ≥ 2) = 0.

Let G1,1
n be the subgraph of Gn consisting of all vertices Si (even those that are isolated)

and all edges in E1,1
n that are realized in Gn. Let Bn be the largest component in G1,1

n
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and let |Bn| be its size (number of vertices). When M0,2(n) ≥ 2, we let B+
n be the union

of Bn with two edges chosen uniformly at random from E0,2
n that are realized in Gn. If

M0,2(n) ≤ 1 we choose the two reactions uniformly at random from E0,2
n . We denote the

chosen two edges by ∅� Si + Sj, ∅� Sp + Sq and note that {i, j} 6= {p, q}. Note that

by symmetry the distribution of the pair (∅� Si +Sj, ∅� Sp +Sq) is the same as if we

simply chose two reactions from E0,2
n uniformly at random. Since δB+

n
≤ δRn , we must

have

P(δRn = 0,M0,2(n) ≥ 2) ≤ P(δB+
n

= 0,M0,2(n) ≥ 2) ≤ P(δB+
n

= 0).

Thus it suffices to show

lim
n→∞

P(δB+
n

= 0) = 0.

Conditioning on the size of Bn, the largest component of G1,1
n , yields

P(δB+
n

= 0) =
n∑
k=1

P(δB+
n

= 0||Bn| = k)P(|Bn| = k). (5.16)

From Proposition 5.2, we know that if B+
n has a deficiency of zero, then not all of

Si, Sj, Sp, Sq are contained in Bn. Thus we have

P(δB+
n

= 0||Bn| = k) ≤ P(not all of Si, Sj, Sp, Sq are contained in Bn||Bn| = k)

= 1− P(Si, Sj, Sp, Sq ∈ Bn||Bn| = k).

(5.17)

We will compute the probability as follows

P(Si, Sj, Sp, Sq ∈ Bn||Bn| = k) = P(Sp, Sq ∈ Bn|Si, Sj ∈ Bn, |Bn| = k)P(Si, Sj ∈ Bn||Bn| = k).

(5.18)

We first consider the probability P(Si, Sj ∈ Bn||Bn| = k). Since |Bn| = k, there

are exactly
(
k
2

)
ways of choosing a reaction of the form ∅ � Si + Sj with i 6= j and

Si, Sj ∈ Bn. Similarly, for the case i = j, there are exactly k ways of choosing a reaction
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of the form ∅ � 2Si with Si ∈ Bn. Since there are a total of
(
n
2

)
+ n elements in E0,2

n

we have

P(Si, Sj ∈ Bn||Bn| = k) =

(
k
2

)
+ k(

n
2

)
+ n

=
k(k + 1)

n(n+ 1)
≥
(
k

n

)2

, (5.19)

where the inequality holds since k ≤ n. Similarly, we have

P(Sp, Sq ∈ Bn|Si, Sj ∈ Bn, |Bn| = k) =

(
k
2

)
+ k − 1(

n
2

)
+ n− 1

≥
(
k

n

)2

, (5.20)

where the inequality holds for k ≥ 4, which can be verified in a straightforward manner.

From (5.17), (5.18), (5.19), and (5.20) we have that for k ≥ 4

P(δB+
n

= 0||Bn| = k) ≤ 1−
(
k

n

)4

. (5.21)

Finally, combining (5.16) and (5.21), we have

lim
n→∞

P(δB+
n

= 0) ≤
n∑
k=4

(
1−

(
k

n

)4)
P(|Bn| = k) +

3∑
k=1

P(|Bn| = k)

= E
(

1−
(
|Bn|
n

)4)
+

3∑
k=1

(
k

n

)4

P(|Bn| = k)

≤ 1−
(
E
(
|Bn|
n

))4

+
98

n4
, (5.22)

where the last inequality is due to Jensen’s inequality. Since K1,1(n)� n, we have the

edge probability for the edges in E1,1
n satisfy

p1,1
n ∼

K1,1(n)

n2
� n

n2
=

1

n
.

From, [20], |Bn|
n
− f(cn)

P→ 0, where f(cn) = 1 − 1
cn

∑∞
k=1

kk−1

k!
(cne

−cn)k and cn = np1,1
n .

Since np1,1
n � 1, it is straightforward to verify that limn→∞ f(cn) = 1. Since both |Bn|

n

and f(cn) are bounded by 1, we have

lim
n→∞

E
(
|Bn|
n

)
= lim

n→∞
f(cn) = 1,

which completes the proof.
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Finally, we have the proof related to Condition C1.3.

Lemma 5.15. If either K0,1(n)2K0,2(n)� n2, K0,1(n)3K1,2(n)� n3 or K0,1(n)4K2,2(n)�

n4, then we have

lim
n→∞

P(δRn = 0) = 0.

Proof. It suffices to show K0,1(n)2K0,2(n) � n2 implies limn→∞ P(δRn = 0) = 0. The

other two cases follow the same argument. Recall that M0,1(n) has a binomial distri-

bution with |E0,1
n | = n trials and mean EM0,1(n) = K0,1(n), and M0,2(n) is a binomial

distribution with |E0,2
n | = n(n+1)/2 trials and mean EM0,2(n) = K0,2(n). Thus we have

P(δRn = 0) =
∑
i≤n

j≤n(n+1)/2

P(δRn = 0|M0,1(n) = i,M0,2(n) = j)P(M0,1(n) = i,M0,2(n) = j).

(5.23)

Consider the event δRn = 0 conditioned on M0,1(n) = i,M0,2(n) = j. Note that a

reaction network of the form ∅� Sp, ∅� Sq, ∅� Sp+Sq has positive deficiency, so

any network containing it also has positive deficiency according to Corollary 2.15. Thus

δRn = 0 implies there is no such subnetwork in Rn.

There are n(n+1)
2

reactions in E0,2
n , thus the probability that there is reaction of the

form ∅ � Sp + Sq (note that p and q can be the same) where ∅ � Sp and ∅ � Sq are

already present is (
i
2

)
+ i

n(n+1)
2

=
i(i+ 1)

n(n+ 1)
.

We may then us a sequential argument (on the j elements from E0,2
n that have been

realized) that is similar to the one used around (5.20) to conclude

P(δRn = 0|M0,1(n) = i,M0,2(n) = j) ≤
(

1− i(i+ 1)

n(n+ 1)

)j
. (5.24)
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Combining (5.23) and (5.24), we have

P(δRn = 0) ≤
∑
i≤n

j≤n(n+1)/2

(
1− i(i+ 1)

n(n+ 1)

)j
P(M0,1(n) = i,M0,2(n) = j)

= E
[(

1− M0,1(n)(M0,1(n) + 1)

n(n+ 1)

)M0,2(n)]
.

We have M0,1(n)(M0,1(n)+1)

n(n+1)
≥ M0,1(n)2

2n2 , thus

P(δRn = 0) ≤ E
[(

1− M0,1(n)2

2n2

)M0,2(n)]
≤ E

[
e−

M0,1(n)
2M0,2(n)

2n2

]
, (5.25)

where the second inequality follows the fact that 1 − x ≤ e−x. Notice further that

e−x ≤ 1
x+1

for x ≥ 0, hence we have

E
[
e−

M0,1(n)
2M0,2(n)

2n2

]
≤ E

[
2n2

M0,1(n)2M0,2(n) + 2n2

]
= 2n2E

[
1

M0,1(n)2M0,2(n) + 2n2

]
.

(5.26)

Since M0,1(n) ≤ n and M0,2(n) ≤ n(n+1)
2

, we have for n large enough

M0,1(n)2M0,2(n) + 2n2 ≥ (M0,1(n)2 + 1)(M0,2(n) + 1)

≥ 1

2
(M0,1(n) + 1)2(M0,2(n) + 1)

≥ 1

4
(M0,1(n) + 1)(M0,1(n) + 2)(M0,2(n) + 1), (5.27)

where the first inequality can be verified by expanding the right hand side and utiliz-

ing the inequalities on M0,1(n) and M0,2(n), the second inequality follows by the well

known 1
2
(a+ b)2 ≤ a2 + b2 inequality, and the last inequality comes from M0,1(n) + 1 ≥

1
2
(M0,1(n) + 2), which is true as long as M0,1(n) ≥ 0.

Combining (5.25), (5.26), (5.27), and noticing that M0,1(n) and M0,2(n) are indepen-

dent, we have

P(δRn = 0) ≤ 8n2E
[

1

(M0,1(n) + 1)(M0,1(n) + 2)

]
E
[

1

M0,2(n) + 1

]
. (5.28)
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Since M0,1(n) ∼ B(n,K0,1(n)/n), from Lemma A.3, we have

E
[

1

(M0,1(n) + 1)(M0,1(n) + 2)

]
≤ 1

K0,1(n)2
. (5.29)

We also have M0,2(n) ∼ B(n(n+1)/2, K0,2(n)

n(n+1)/2
). Repeating the same argument as above,

we have

E
[

1

M0,2(n) + 1

]
≤ 1

K0,2(n)
. (5.30)

Thus from (5.28), (5.29), (5.30) we have

P(δRn = 0) ≤ 8n2

K0,1(n)2K0,2(n)
.

Since K0,1(n)2K0,2(n)� n2 the proof is complete.

5.4.2 Conditions on Ki,j(n) for limn→∞ P(δRn
= 0) = 1

Note that the conditions below are essentially the converse of Theorem 5.11.

Theorem 5.16. If all of the following conditions hold, then limn→∞ P(δRn = 0) = 1.

(C2.1) K0,2(n)� n, K1,2(n)� n, and K2,2(n)� n.

(C2.2) One of the following conditions holds

(C2.2.1) K1,1(n)� n

(C2.2.2) K0,2(n)� 1, K1,2(n)� 1, and K2,2(n)� 1.

(C2.3) K0,1(n)2K0,2(n)� n2, K0,1(n)3K1,2(n)� n3, and K0,1(n)4K2,2(n)� n4.

We will begin by arguing that it is sufficient to prove that a slightly simplified set

of conditions implies that limn→∞ P(δRn = 0) = 1. First assume that conditions (C2.1),
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(C2.2.2), and (C2.3) hold. Condition (C2.2.2), combined with the fact that each Mi,j(n)

has a binomial distribution with mean Ki,j(n), yields

lim
n→∞

P(M0,2(n) = 0) = lim
n→∞

P(M1,2(n) = 0) = lim
n→∞

P(M2,2(n) = 0) = 1.

Hence, with probability approaching 1, the realized network only has edges in E0,1
n and

E1,1
n , and has a deficiency of zero by Lemma 2.13(h). Hence, the proof in this situation

is done, and we can now simply assume that the conditions (C2.1), (C2.2.1), and (C2.3)

are satisfied.

However, another slight simplification can take place. Note that K0,1(n) ≤ n (since

|E0,1
n | = n), and if K0,1(n) ∼ n, then from condition (C2.3), we would have that condition

(C2.2.2) is satisfies, which we already know implies the result. Hence, we only need

consider the case K0,1(n) � n. For the other cases where there exist a subsequence

along which K0,1(n) ∼ n and another subsequence along which K0,1(n) � n, we can

apply the two corresponding arguments for the two subsequences, both of which when

combined will still result in limn→∞ P(δRn = 0) = 1. Combining the above shows that

Theorem 5.16 will be proved by showing that limn→∞ P(δRn = 0) = 1 so long as the

following conditions are satisfied:

(C2.1*) All Ki,j(n)� n.

(C2.3) K0,1(n)2K0,2(n)� n2, K0,1(n)3K1,2(n)� n3, and K0,1(n)4K2,2(n)� n4.

Showing the above is the goal for the remainder of this section. In the first lemma,

we construct some “buffer” functions, Qi,j(n) that are, asymptotically, between Ki,j(n)

and n, and also satisfy a version of condition (C2.3).
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Lemma 5.17. If conditions (C2.1*) and (C2.3) hold, then there exists Q0,1(n), Q0,2(n),

Q1,1(n), Q1,2(n), Q2,2(n) such that

• limn→∞Qi,j(n) > 0 for all (i, j).

• Ki,j(n)� Qi,j(n)� n for all (i, j).

• Q0,1(n)2Q0,2(n)� n2, Q0,1(n)3Q1,2(n)� n3, and Q0,1(n)4Q2,2(n)� n4,

Proof. We begin with Q1,1(n), which will be straightforward. Set

Q1,1(n) = max{1,
√
nK1,1(n)}.

From K1,1(n)� n in (C2.1∗) we have that K1,1(n)� Q1,1(n)� n and limn→∞Q1,1(n) >

0.

We turn to constructingQ0,2. In order to eventually convert the conditionK0,1(n)2K0,2(n)�

n2 to the condition Q0,1(n)2Q0,2(n) � n2, we will first construct a function R0,1(n),

which satisfies R0,1(n)2K0,2(n) � n2. We will then use R0,1(n) to build Q0,2(n) sat-

isfying R0,1(n)2Q0,2(n) � n2. After producing the pair (R0,1(n), Q0,1(n)), we turn to

producing similar pairs (S0,1(n), Q1,2(n)) and (T0,1(n), Q2,2(n)), each satisfying similar

inequalities. We will then define Q0,1(n) via the functions R0,1(n), S0,1(n), T0,1(n), and

the proof will be complete.

Proceeding, we note that since K0,1(n)2K0,2 � n2, we have K0,1(n) � n√
K0,2(n)

. By

(C2.1∗), we have K0,1(n)� n as well. Let

R0,1(n) = min

{√
K0,1(n)

n√
K0,2(n)

,
√
nK0,1(n)

}
.

The asymptotic inequalities above yield K0,1(n)� R0,1(n)� n and R0,1(n)2K0,2(n)�

n2. The final inequality implies K0,2(n) � n2

R0,1(n)2
. We also have K0,2(n) � n from
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condition (C2.1∗). Finally, let

Q0,2(n) = max

{
1,min

{√
K0,2(n)

n2

R0,1(n)2
,
√
nK0,2(n)

}}
where the minimum is interpreted asymptotically as n→∞. Then we have K0,2(n)�

Q0,2(n)� n and R0,1(n)2Q0,2(n)� n2.

We mimic the above strategy and produce pairs of functions (S0,1(n), Q1,2(n)) and

(T0,1(n), Q2,2(n)) such that

• K0,1(n) � S0,1(n) � n, K1,2(n) � Q1,2(n) � n, limn→∞Q1,2(n) > 0 and

S0,1(n)3Q1,2(n)� n3.

• K0,1(n) � T0,1(n) � n, K2,2(n) � Q2,2(n) � n, limn→∞Q2,2(n) > 0 and

T0,1(n)4Q2,2(n)� n4.

Finally, let

Q0,1(n) = max{1,min{R0,1(n), S0,1(n), T0,1(n)}},

where the minimum is interpreted asymptotically as n → ∞. We now have all the

Qi,j(n), and all the desired properties are straightforward to confirm.

We turn to the main proof of Theorem 5.16. The main proof utilizes some technical

results, which will be proven in several lemmas after the main proof.

Proof of Theorem 5.16. Assume that conditions (C2.1∗) and (C2.3) hold. We have

P(δRn = 0) =P(δRn = 0,∩i,j{Mi,j(n) ≤ Qi,j(n)}) + P(δRn = 0,∪i,j{Mi,j(n) > Qi,j(n)})

(5.31)
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We will show that the second term goes to zero. Since each Mi,j(n) has a binomial

distribution, we have

P(Mi,j(n) > Qi,j(n)) = P(Mi,j(n)−Ki,j(n) > Qi,j(n)−Ki,j(n))

≤ Var(Mi,j(n))

(Qi,j(n)−Ki,j(n))2
≤ Ki,j(n)

(Qi,j(n)−Ki,j(n))2
.

Since Ki,j(n)� Qi,j(n) and limn→∞Qi,j(n) > 0, we have limn→∞ P(Mi,j(n) > Qi,j(n)) =

0 for all (i, j). Thus

lim
n→∞

P(∪i,j{Mi,j(n) > Qi,j(n)}) = 0, (5.32)

and consequently,

lim
n→∞

P(δRn = 0,∪i,j{Mi,j(n) > Qi,j(n)}) = 0. (5.33)

Now we consider the first term in (5.31). We have

P(δRn = 0,∩i,j{Mi,j(n) ≤ Qi,j(n)})

=

Qi,j(n)∑
ki,j(n)=0

P(δRn = 0| ∩i,j {Mi,j(n) = ki,j(n)})P(∩i,j{Mi,j(n) = ki,j(n)})

We will prove in Lemma 5.22 below that

P(δRn = 0| ∩i,j {Mi,j(n) = ki,j(n)}) ≥ 1− C3
Q(n)

n
, (5.34)

where Q(n) is a function satisfying Q(n)� n and C3 is independent from n and ki,j(n).

Thus

P(δRn = 0,∩i,j{Mi,j(n) ≤ Qi,j(n)}) ≥
(

1− C3
Q(n)

n

) Qi,j∑
ki,j(n)=0

P(∩i,j{Mi,j(n) = ki,j(n)})

=

(
1− C3

Q(n)

n

)
P(∩i,j{Mi,j(n) ≤ Qi,j(n)}).

(5.35)
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Equation (5.32) gives us limn→∞ P(∩i,j{Mi,j(n) ≤ Qi,j(n)}) = 1, thus from (5.35) we

have

lim
n→∞

P(δRn = 0,∩i,j{Mi,j(n) ≤ Qi,j(n)}) = 1. (5.36)

Combining (5.31), (5.33), and (5.36) we have

lim
n→∞

P(δRn = 0) = 1.

To complete this section, we will provide a series of lemmas, eventually leading to

Lemma 5.22, which yields the critical bound (5.34)

P(δRn = 0| ∩i,j {Mi,j(n) = ki,j(n)}) ≥ 1− C3
Q(n)

n
.

First we make an observation about the most probable number of species in realized

reactions from each set Ei,j
n . Note that a reaction in the set E0,2

n can have either one

or two distinct species appearing in it. For example, we could have ∅ � 2S1, in which

there is only one species, or we could have ∅� S1 + S2, in which there are two species.

Similarly, reactions from the set E1,2
n can have one, two, or three distinct species, and

reactions from the set E2,2
n can have two, three, or four distinct species. The following

lemma states that when the number of realized reactions in each set is not too large,

as quantified below, then, with probability approaching one as n → ∞, the realized

reactions from each set will consist of the maximal number of distinct species.

Lemma 5.18. Suppose conditions (C2.1*) and (C2.3) hold and that Qi,j(n) are defined

as in Lemma 5.17. Suppose further that ki,j(n) ≤ Qi,j(n). Let A0,2
n , A1,2

n , and A2,2
n be the

events that the realized reactions in E0,2
n , E1,2

n , E2,2
n all have precisely 2,3, and 4 distinct

species respectively. Let An = A0,2
n ∩ A1,2

n ∩ A2,2
n Then

lim
n→∞

P(An| ∩i,j {Mi,j(n) = ki,j(n)}) = 1.
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Moreover, we have the explicit bound

P(An| ∩i,j {Mi,j(n) = ki,j(n)}) ≥
(

1− 2Q0,2(n)

n

)(
1− 4Q1,2(n)

n

)(
1− 8Q2,2(n)

n

)
.

Proof. First, consider the reactions in E0,2
n , which have the form ∅ � Si + Sj. These

reactions have 2 species if and only if i 6= j. Recall that |E0,2
n | = n(n + 1)/2, and there

are n reactions of the form 2Si. Thus we have

P(A0,2
n |M0,2(n) = k0,2(n))

=

(
1− n

n(n+ 1)/2

)(
1− n

n(n+ 1)/2− 1

)
· · ·
(

1− n

n(n+ 1)/2− k0,2(n) + 1

)
=

(
1− 2

n+ 1

)(
1− 2

n+ 1− 2
n

)
· · ·
(

1− 2

n+ 1− 2(k0,2(n)−1)

n

)
≥
(

1− 2

n

)k0,2(n)

≥ 1− 2k0,2(n)

n
, (5.37)

where the last inequality is due to Bernoulli’s inequality.

Next, consider the reactions in E1,2
n . These reactions have less than 3 species if it

is either Si � Si + Sj (where i and j are not necessarily different) or Si → 2Sj (where

i 6= j). It is straightforward to check that there are n2 reactions of the former type,

and there are n(n − 1) reactions of the latter type, both of which add up to n(2n − 1)

reactions in E1,2
n with less than 3 species. Since |E1,2

n | =
n2(n+1)

2
we have

P(A1,2
n |M1,2(n) = k1,2(n))

=

(
1− n(2n− 1)

n2(n+ 1)/2

)(
1− n(2n− 1)

n2(n+ 1)/2− 1

)
· · ·
(

1− n(2n− 1)

n2(n+ 1)/2− k1,2(n) + 1

)
≥
(

1− 4

n

)k1,2(n)

≥ 1− 4k1,2(n)

n
, (5.38)
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where the first inequality here follows a similar argument to the first inequality in (5.37).

Finally, consider the reactions in E2,2
n . These reactions have less than 4 species if they

have the form 2Si � 2Sj, 2Si � Sj+Sk (where j 6= k), or Si+Sj � Si+Sk (where i, j, k

are pairwise different). It is straightforward to check that there are n(n−1)
2

reactions of

the first type, n(n(n+1)
2
−n) reactions of the second type, and (n(n+1)

2
−n)(n−2) reactions

of the third type. In total, there are n(n−1)(2n−1)
2

reactions in E2,2
n with less than 4 species.

Since |E2,2
n | =

(n(n+1)
2
2

)
= n(n+1)(n−1)(n+2)

8
, we have

P(A2,2
n |M2,2(n) = k2,2(n))

=

(
1−

n(n−1)(2n−1)
2

n(n+1)(n−1)(n+2)
8

)
· · ·
(

1−
n(n−1)(2n−1)

2
n(n+1)(n−1)(n+2)

8
− k2,2(n) + 1

)
≥
(

1− 8

n

)k2,2(n)

≥ 1− 8k2,2(n)

n
, (5.39)

where the first inequality here follows a similar argument as the first inequality in (5.37).

From (5.37),(5.38),(5.39), and independence, we have

P(An| ∩i,j {Mi,j(n) = ki,j(n)})]

≥
(

1− 2k0,2(n)

n

)(
1− 4k1,2(n)

n

)(
1− 8k2,2(n)

n

)
≥
(

1− 2Q0,2(n)

n

)(
1− 4Q1,2(n)

n

)(
1− 8Q2,2(n)

n

)
,

and the limit follows.

In our next major lemma, Lemma 5.21, we require the notion of a minimally depen-

dent set, which we define below.

Definition 5.19. We say a set of vectors is minimally dependent if it is linearly depen-

dent and any of its proper subsets are linearly independent.
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We make a quick observation on minimally dependent set.

Lemma 5.20. Let M be a matrix whose columns v1, v2, . . . , vm are minimally dependent.

Then M has no row with only one non-zero entry.

Proof. Since v1, . . . , vm are dependent, there exist constants α1, . . . , αm, not all of which

are zero, such that

α1v1 + · · ·+ αmvm = 0.

Suppose by contradiction that M has a row with only one non-zero entry, and suppose

that entry belongs to the ith column. Then this must imply αi = 0. However, this

implies that ∑
j 6=i

αjvj = 0,

with not all αj equaling zero. This contradicts the set {vi}mi=1 being minimally dependent.

An example related to minimal dependence in the context of reaction network is the

network ∅ � S1, ∅ � S2, ∅ � S3, ∅ � S1 + S2, whose reaction vectors are dependent,

but not minimally dependent because the proper subset containing ∅� S1, ∅� S2, ∅�

S1 + S2 is dependent. In the next lemma, we will show that for a set of reaction vectors

to be minimally dependent, there cannot be too many reactions from E0,1
n , relative to

the numbers from E0,2
n , E1,2

n , E2,2
n .

Lemma 5.21. Suppose a set V with i1, i2, i3, i4, i5 reaction vectors in E0,1
n , E1,1

n , E0,2
n , E1,2

n , E2,2
n ,

respectively, is minimally dependent. Assume further that each of the i3, i4, and i5

reactions from E0,2
n , E1,2

n , E2,2
n have precisely 2,3, and 4 species, respectively, and that
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i3 + i4 + i5 > 0. Then we must have

i1 ≤ 2i3 + 3i4 + 4i5.

Proof. Consider a matrix M whose first i1 columns are the reaction vectors from V ∩E0,1
n ,

the next i2 columns are the reaction vectors from V ∩E1,1
n , the next i3 columns are the

reaction vectors from E0,2
n , etc. Let P be the sub-matrix consisting of the first i1 + i2

columns of M (so it is constructed by the reaction vectors from V ∩E0,1
n followed by the

reaction vectors from V ∩ E1,1
n ).

Since V is minimally dependent, Lemma 5.20 tells us that M has no row with only

one non-zero entry. Let zi1+i2 be the number of rows of P with exactly one entry. By

construction, the final i3 + i4 + i5 columns of M have at most

2i3 + 3i4 + 4i5

non-zero elements. Therefore, we must have

zi1+i2 ≤ 2i3 + 3i4 + 4i5,

for otherwise there are not enough non-zero terms in the final i3 + i4 + i5 columns to

cover the rows of P with a single element. The remainder of the proof just consists of

showing that

i1 ≤ zi1+i2 . (5.40)

To show that the inequality (5.40) holds, we consider adding the column vectors sequen-

tially, and make the following observations.

1. The first i1 columns of M can, without loss of generality, be taken to be the

canonical vectors e1, . . . , ei1 . Note, therefore, that the sub-matrix consisting of the

first i1 columns of M has exactly i1 rows that have a single non-zero entry.
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2. The rank of the sub-matrix of P consisting of the first i1 + k columns must be

i1 + k for any 0 ≤ k ≤ i2, for otherwise there is a dependence and V would not be

minimally dependent (here we are explicitly using that i3 + i4 + i5 > 0).

3. Consider the action of going from a sub-matrix of P consisting of the first i1 + k

columns to one consisting of the first i1 +k+ 1 columns, for k ≤ i2− 1. Since each

such sub-matrix is full rank (by the point made above), the addition of the next

column vector in the construction must have at least one element in a row that

was previously all zeros.

4. Since each column vector being added has at most two elements, the number of

rows with a single entry can never decrease.

Hence, we have that the number of rows with precisely one non-zero entry at the end of

the construction, zi1+i2 must be at least as large as the number at the beginning of the

construction, i1, and we are done.

Finally, we present the main lemma, giving the bound needed for Theorem 5.16.

Note that a positive deficiency must imply the existence of a minimally independent set.

Thus the main approach of the proof revolves around summing over the probabilities

of each certain set of reaction vectors being minimally dependent. The constraint in

Lemma 5.21 will play a critical role in this approach.

Lemma 5.22. Suppose conditions (C2.1*) and (C2.3) hold and that Qi,j(n) are as in

Lemma 5.17. Suppose further that ki,j(n) ≤ Qi,j(n) for each relevant pair (i, j). Then

P(δRn = 0| ∩i,j {Mi,j(n) = ki,j(n)}) ≥ 1− C3
Q(n)

n
,

where Q(n) is a function satisfying Q(n)� n and C3 is independent from n and ki,j(n).
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Proof. We have

P(δRn = 0| ∩i,j {Mi,j(n) = ki,j(n)})

≥ P(δRn = 0|An,∩i,j{Mi,j(n) = ki,j(n)})P(An| ∩i,j {Mi,j(n) = ki,j(n)})

= (1− P(δRn > 0|An,∩i,j{Mi,j(n) = ki,j(n)}))P(An| ∩i,j {Mi,j(n) = ki,j(n)}).

(5.41)

From Lemma 2.13(h) and Lemma 2.13(i), the event δRn > 0 must imply there exists

a minimally dependent set which consists of at least one reaction from E0,2
n , E1,2

n , or E2,2
n .

Let I = (i1, i2, i3, i4, i5) be a multi-index. LetKn = (k0,1(n), k1,1(n), k0,2(n), k1,2(n), k2,2(n)).

For convenience, we write I ≤ Kn to represent i1 ≤ k0,1(n), . . . , i5 ≤ k2,2(n). Then we

have

P(δRn > 0|An,∩i,j{Mi,j(n) = ki,j(n)})

≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5

(
k0,1(n)

i1

)(
k1,1(n)

i2

)(
k0,2(n)

i3

)(
k1,2(n)

i4

)(
k2,2(n)

i5

)
P(BI |An,∩i,j{Mi,j(n) = ki,j(n)}),

(5.42)

where BI is the event that a set with i1, i2, i3, i4, i5 realized reactions from E0,1
n , E1,1

n ,

E0,2
n , E1,2

n , E2,2
n , which also satisfy An, is minimally dependent. Note that the constraint

i1 ≤ 2i3 + 3i4 + 4i5 comes from Lemma 5.21.

Now we fix an index I = (i1, i2, i3, i4, i5) and we fix a particular minimally dependent

reaction set VI with i1, i2, i3, i4, i5 reactions in E0,1
n , E1,1

n , E0,2
n , E1,2

n , E2,2
n . Let MI be the

matrix whose columns are reaction vectors in VI . Next, we notice that the total number

of non-zero entries in MI is i1 + 2i2 + 2i3 + 3i4 + 4i5. Since each non-zero row in

MI must have at least two non-zero entries, the number of non-zero rows is at most

` := b i1+2i2+2i3+3i4+4i5
2

c.
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There are
(
n
`

)
ways to choose ` non-zero rows from n rows. Fix a set of ` rows to be

non-zero rows. We have the probability that all i1 reaction vectors in E0,1
n have non-zero

entry among these ` rows is

`

n

`− 1

n− 1
· · · `− i1 + 1

n− i1 + 1
≤
(
`

n

)i1
.

The probability that all i2 reactions vectors in E1,1
n have non-zero entry among these `

rows is (
`
2

)(
n
2

) (`2)− 1(
n
2

)
− 1
· · ·
(
`
2

)
− i2 + 1(

n
2

)
− i2 + 1

≤
(
`

n

)2i2

.

Using similar arguments, we have

P(BI |An,∩i,j{Mi,j(n) = ki,j(n)}) ≤
(
n

`

)(
`

n

)i1+2i2+2i3+3i4+4i5

≤ n`

`!

(
`

n

)`+ i1+2i2+2i3+3i4+4i5
2

≤ n`

``e−`

(
`

n

)`+ i1+2i2+2i3+3i4+4i5
2

≤
(
e`

n

) i1+2i2+2i3+3i4+4i5
2

, (5.43)

where the third inequality is due to the inequality x! ≥ xxe−x. Combining (5.42) and
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(5.43), we have

P(δRn > 0|An,∩i,j{Mi,j(n) = ki,j(n)})

≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5

(
k0,1(n)

i1

)(
k1,1(n)

i2

)
· · ·
(
k2,2(n)

i5

)(
e`

n

) i1+2i2+2i3+3i4+4i5
2

≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5

(
ek0,1(n)

i1

)i1
· · ·
(
ek2,2(n)

i5

)i5(e`
n

) i1+2i2+2i3+3i4+4i5
2

≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5

(
(5ek0,1(n))i1 · · · (5ek2,2(n))i5

(i1 + i2 + i3 + i4 + i5)i1+i2+i3+i4+i5

)(
e`

n

) i1+2i2+2i3+3i4+4i5
2

≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5

(
(5eQ0,1(n))i1 · · · (5eQ2,2(n))i5

(i1 + i2 + i3 + i4 + i5)i1+i2+i3+i4+i5

)(
e`

n

) i1+2i2+2i3+3i4+4i5
2

,

where the second inequality is again due to x! ≥ xxe−x and the third inequality is due

to Corollary A.5. Since ` = b i1+2i2+2i3+3i4+4i5
2

c ≤ 2(i1 + i2 + i3 + i4 + i5), we have

P(δRn > 0|An,∩i,j{Mi,j(n) = ki,j(n)})

≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5

(5eQ0,1(n))i1 · · · (5eQ2,2(n))i5(i1 + i2 + i3 + i4 + i5)`−(i1+i2+i3+i4+i5)

((2e)−1n)
i1+2i2+2i3+3i4+4i5

2

≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5

(5eQ0,1(n))i1 · · · (5eQ2,2(n))i5(i1 + i2 + i3 + i4 + i5)−
i1
2

+
i4
2

+i5

((2e)−1n)
i1+2i2+2i3+3i4+4i5

2

= Sn + Tn, (5.44)

where

Sn =
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5
i1≤i4+2i5

(5eQ0,1(n))i1 · · · (5eQ2,2(n))i5(i1 + i2 + i3 + i4 + i5)−
i1
2

+
i4
2

+i5

((2e)−1n)
i1+2i2+2i3+3i4+4i5

2

,



127

consists of the terms with positive exponent for i1 + i2 + i3 + i4 + i5 and

Tn =
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5
i1>i4+2i5

(5eQ0,1(n))i1 · · · (5eQ2,2(n))i5(i1 + i2 + i3 + i4 + i5)−
i1
2

+
i4
2

+i5

((2e)−1n)
i1+2i2+2i3+3i4+4i5

2

consists of the terms with negative exponent for i1 + i2 + i3 + i4 + i5.

We first deal with Tn, which is the more difficult term to bound. Notice that the

exponent − i1
2

+ i4
2

+ i5 < 0. Therefore we have

Tn ≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5
i1>i4+2i5

(5eQ0,1(n))i1 · · · (5eQ2,2(n))i5

((2e)−1n)
i1+2i2+2i3+3i4+4i5

2

=
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5
i1>i4+2i5

Q0,1(n)i1 · · ·Q2,2(n)i5(5e)i1+i2+i3+i4+i5

((2e)−1n)
i1+2i2+2i3+3i4+4i5

2

≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5
i1>i4+2i5

Q0,1(n)i1 · · ·Q2,2(n)i5

((50e3)−1n)
i1+2i2+2i3+3i4+4i5

2

, (5.45)

where the last inequality is due to the fact that i1 + i2 + i3 + i4 + i5 ≤ 2 i1+2i2+2i3+3i4+4i5
2

.

Let

Q(n) = max{Qi,j(n), Q0,1(n)Q0,2(n)1/2, Q0,1(n)Q1,2(n)1/3, Q0,1(n)Q2,2(n)1/4}, (5.46)

where the maximum is interpreted asymptotically as n→∞. From the way we construct

Qi,j(n) in Lemma 5.17 we have Q(n) � n. Next, we split Q0,1(n)i1 into the product of

three terms and distribute them into Q0,2(n), Q1,2(n), and Q2,2(n). We have

Q0,1(n)
i1

2i3
2i3+3i4+4i5Q0,2(n)

i1
2

2i3
2i3+3i4+4i5 ≤ Q(n)

i1
2i3

2i3+3i4+4i5 ,

Q0,1(n)
i1

3i4
2i3+3i4+4i5Q1,2(n)

i1
3

3i4
2i3+3i4+4i5 ≤ Q(n)

i1
3i4

2i3+3i4+4i5 ,
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and

Q0,1(n)
i1

4i5
2i3+3i4+4i5Q2,2(n)

i1
4

4i5
2i3+3i4+4i5 ≤ Q(n)

i1
4i5

2i3+3i4+4i5 .

Multiplying these inequalities together, we have

Q0,1(n)i1Q0,2(n)
i1

i3
2i3+3i4+4i5Q1,2(n)

i1
i4

2i3+3i4+4i5Q2,2(n)
i1

i5
2i3+3i4+4i5 ≤ Q(n)i1 .

Note that in (5.45), Q0,2(n) has an exponent of i3. Notice further that i1
i3

2i3+3i4+4i5
≤ i3,

since i1 ≤ 2i3 + 3i4 + 4i5. Thus we have

Q0,2(n)
i3−i1 i3

2i3+3i4+4i5 ≤ Q(n)
i3−i1 i3

2i3+3i4+4i5 .

Similarly, we have

Q1,2(n)
i4−i1 i4

2i3+3i4+4i5 ≤ Q(n)
i4−i1 i4

2i3+3i4+4i5

and

Q2,2(n)
i5−i1 i5

2i3+3i4+4i5 ≤ Q(n)
i5−i1 i5

2i3+3i4+4i5 .

Therefore we have

Q0,1(n)i1 · · ·Q2,2(n)i5 ≤ Q(n)i1+i2Q(n)
i3+i4+i5−i1 i3+i4+i5

2i3+3i4+4i5

= Q(n)
i1+i2+i3+i4+i5−i1 i3+i4+i5

2i3+3i4+4i5 . (5.47)

Note that i1 ≤ 2i3 + 3i4 + 4i5, thus

i1 + i2 + i3 + i4 + i5 − i1
i3 + i4 + i5

2i3 + 3i4 + 4i5
≤ i1 + 2i2 + 2i3 + 3i4 + 4i5

2
, (5.48)

where the inequality above can be verified in a straightforward manner. Combining
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(5.45),(5.47), and (5.48), and noting that i3 + i4 + i5 > 0, we have

Tn ≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5
i1>i4+2i5

(
Q(n)

(50e3)−1n

) i1+2i2+2i3+3i4+4i5
2

≤ Q(n)

(50e3)−1n

∞∑
i1=0

(
Q(n)

(50e3)−1n

)i1/2
· · ·

∞∑
i5=0

(
Q(n)

(50e3)−1n

)2i5

≤ C1
Q(n)

n
, (5.49)

where the second inequality is due to the fact that i3 + i4 + i5 > 0. Since each sum on

the right hand side is bounded by 2 for n large enough, the constant C1 is independent

from n and ki,j(n).

Next we consider Sn. Recall that i1 ≤ k0,1(n) ≤ Q0,1(n), . . . , i5 ≤ k2,2(n) ≤ Q2,2(n),

implying i1, . . . , i5 ≤ Q(n). Therefore we have

Sn ≤
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5
i1≤i4+2i5

(5eQ(n))i1+i2+i3+i4+i5− i12 +
i4
2

+i5

((2e)−1n)
i1+2i2+2i3+3i4+4i5

2

=
∑
I≤Kn

i3+i4+i5>0
i1≤2i3+3i4+4i5
i1≤i4+2i5

(5eQ(n))
i1+2i2+2i3+3i4+4i5

2

((2e)−1n)
i1+2i2+2i3+3i4+4i5

2

≤ 5eQ(n)

(2e)−1n

∞∑
i1=0

(
5eQ(n)

(2e)−1n

)i1/2
· · ·

∞∑
i5=0

(
5eQ(n)

(2e)−1n

)2i5

≤ C2
Q(n)

n
, (5.50)

where C2 is independent from n and ki,j(n). From (5.44), (5.49), (5.50), we have

P(δRn > 0|An,∩i,j{Mi,j(n) = ki,j(n)}) ≤ C1
Q(n)

n
+ C2

Q(n)

n
. (5.51)
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From Lemma 5.18 and the fact that Qi,j(n) ≤ Q(n), we have

P(An| ∩i,j {Mi,j(n) = ki,j(n)}) ≥
(

1− 2Q(n)

n

)(
1− 4Q(n)

n

)(
1− 8Q(n)

n

)
. (5.52)

Plugging (5.51) and (5.52) into (5.41) yields

P(δRn = 0| ∩i,j {Mi,j(n) = ki,j(n)})

≥
(

1− C1
Q(n)

n
− C2

Q(n)

n

)(
1− 2Q(n)

n

)(
1− 4Q(n)

n

)(
1− 8Q(n)

n

)
≥ 1− C3

Q(n)

n
, (5.53)

where the last inequality is obtained from repeatedly applying (1− a)(1− b) ≥ 1− a− b

(where a, b ≥ 0). Clearly we must have C3 independent from n and ki,j(n).

5.4.3 The threshold function for deficiency zero

In this section, we provide an algorithm to find the threshold function r(n) for deficiency

zero for a given set of {αi,j}. Specifically, r(n) will satisfy

1. limn→∞ P(δRn = 0) = 0 for limn→∞
pn
r(n)

=∞, and

2. limn→∞ P(δRn = 0) = 1 for limn→∞
pn
r(n)

= 0.

From Remark 5.10, we have Ki,j(n) ∼ ni+jnαi,jpn = ni+j+αi,jpn. Moreover, from

Section 5.4.1 and 5.4.2, we have sets of conditions on the Ki,j(n) that determine when a

network does or does not have a deficiency of zero. Combining these yields the following

theorem. In the theorem below, note that the equations 1-3 correspond to condition

(C1.1) (and (C2.1)), the equations 4-7 correspond to condition (C1.2) (and (C2.2)), and

the equations 8-10 correspond to condition (C1.3) (and (C2.3)).
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Theorem 5.23. Given a set of parameters {αi,j}, consider the following systems where

we solve for {ri(n)}

1. n2+α0,2r1(n) = n.

2. n3+α1,2r2(n) = n.

3. n4r3(n) = n.

4. n2+α1,1r4(n) = n.

5. n2+α0,2r5(n) = 1.

6. n3+α1,2r6(n) = 1.

7. n4r7(n) = 1.

8. n4+2α0,1+α0,2r8(n)3 = n2.

9. n6+3α0,1+α1,2r9(n)4 = n3.

10. n8+4α0,1r10(n)5 = n4.

Then the threshold function is

r(n) = min{r1(n), r2(n), r3(n),max{r4(n),min{r5(n), r6(n), r7(n)}}, r8(n), r9(n), r10(n)},

where the maximum and minimum are interpreted asymptotically as n→∞.

Proof. If limn→∞
pn
r(n)

=∞, then it is easy to show that at least one condition in Theorem

5.11 is satisfied. Similarly, if limn→∞
pn
r(n)

= 0, then all conditions in Theorem 5.16 are

satisfied.
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Example 15 (A closed system with α0,1 = α0,2 = 0, α1,1 = 2, α1,2 = 1). In this case,

we have K0,1(n) ∼ npn, K0,2(n) ∼ n2pn, K1,1(n) ∼ K1,2(n) ∼ K2,2(n) ∼ n4pn. Using

Theorem 5.23 yields

r(n) =
1

n3
,

which is the same threshold as in the base case in Section 5.2.

Example 16 (An open system with α0,1 = 3, α1,1 = α0,2 = 2, α1,2 = 1). . In this case,

we have Ki,j(n) ∼ n4pn for all (i, j). Using Theorem 5.23 yields

r(n) =
1

n10/3
,

which is a lower threshold than the previous case with a closed system. Intuitively, the

inflow and outflow reactions make it easier to break deficiency zero of a reaction network.
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Appendix A

Appendix

The following lemmas have been used in the manuscript. Their proofs are added for

completeness.

Lemma A.1. Here we need to provide an asymptotic estimate as C →∞ of the form

ln
∑
x∈Zn≥0

Cx

(x!)d
∼
∑
n

(diC
1/di
i + a lnCi + b)

where a, b are constants that do not depend on C.

Proof. When n = 1, by Stirling estimation (and ignoring the factor of
√

2π), we have

(x!)d ∼
(√

x
xx

ex

)d
=
√
xd

(xd)xd

exddxd
x(d−1)/2 ∼ Γ(xd+ 1)

x(d−1)/2

dxd
∼ Γ(xd+ 1 + (d− 1)/2)

dxd
,

where the last estimation is due to the fact that limn→∞
Γ(n+α)
nαΓ(n)

= 1.

Thus

∑
x∈Z

Cx

(x!)d
∼
∑
x∈Z

(Cdd)x

Γ(xd+ (d+ 1)/2)
. (A.1)

The asymptotic behavior of the right hand side in (A.1) can be found in Example 2.3.1

of [33]. In particular, its asymptotic character is exponential since we are considering C

having real values only

∑
x∈Z

(Cdd)x

Γ(xd+ (d+ 1)/2)
∼ 1

d
(Cdd)(1−d)/2de(Cdd)1/d = cC(1−d)/2dedC

1/d
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where c is some constant depending on d. Thus, taking log we have

ln

(∑
x∈Z

Cx

(x!)d

)
∼ dC1/d + a lnC + b

where a, b are some constants depending on d.

When n > 1, we have

ln

(∑
x∈Zn

Cx

(x!)d

)
= ln

(∏
n

∑
x∈Z

Cxi
i

(xi!)di

)
∼
∑
n

(diC
1/di
i + a lnCi + b),

where we have applied the n = 1 case in the final step.

In the following lemma, for sequences aV and bV we write aV ∼ bV , as V →∞, for

lim
V→∞

(aV − bV ) = 0.

Lemma A.2. Let θi satisfy Assumption 1. Then for a fixed c ∈ Zn>0,

1

V
ln

(∑
x∈Zn

(V dc)x∏n
i=1 θi(1) · · · θi(xi)

)
∼ 1

V
ln

(∑
x∈Zn

(V dc)x∏n
i=1A

xi
i (xi!)di

)
=

1

V
ln

(∑
x∈Zn

(V dcA−1)x∏n
i=1(xi!)di

)
,

as V →∞.

Proof. Let first consider the case when n = 1.

Let α > 0. From Assumption 1 we have limx→∞
θ(x)
xd

= Ai. Therefore, there exists

an N > 0 such that if x > N , then

A− αA <
θ(x)

xd
< A+ αA

which is equivalent to

1− α < θ(x)

Axd
< 1 + α. (A.2)
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Consider

1

V
ln

(∑
x∈Z

(V dc)x

θ(1) · · · θ(x)

)
− 1

V
ln

(∑
x∈Z

(V dc)x

Ax(x!)d

)

=
1

V
ln

(∑
x≤N

(V dc)x

θ(1)···θ(x)
+
∑

x>N
(V dc)x

θ(1)···θ(x)∑
x∈Z

(V dc)x

Ax(x!)d

)
=

1

V
ln

(
R + S

T

)

where

R =
∑
x≤N

(V dc)x

θ(1) · · · θ(x)
= O(V dN)

T =
∑
x∈Z

(V dc)x

Ax(x!)d
= O(ed(V dc/A)1/d) = O(edV (c/A)1/d),

where the sum in R is over all x ∈ Z≥0 and the estimation of T is again based on Lemma

A.1.

We have

S =
∑
x>N

(V dc)x

θ(1) · · · θ(x)

=
∑
x>N

(V dc)x

Ax(x!)d
Ax(x!)d

θ(1) · · · θ(x)

=
AN(N !)d

θ(1) · · · θ(N)

∑
x>N

(V dc)x

Ax(x!)d
A(N + 1)di · · ·A(x)d

θ(N + 1) · · · θ(x)

= cN
∑
x>N

(V dc)x

Ax(x!)d
A(N + 1)d · · ·A(x)d

θ(N + 1) · · · θ(x)
.

Using (A.2), we have

cN
∑
x>N

(V dc)x

Ax(x!)d
1

(1 + α)x−N
< S < cN

∑
x>N

(V dc)x

Ax(x!)d
1

(1− α)x−N
.
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Thus

cN
∑
x>N

(V dc(1 + α)−1)x

Ax(x!)d
< S < cN

∑
x>N

(V dc(1− α)−1)x

Ax(x!)d

where LHS = O(edV (c/A(1+α))1/d) and RHS = O(edV (c/A(1−α))1/d) similar to how we

estimated T . This, together with the fact R� S for V large enough, gives us

1

V
ln

(
aN

edV (c/A)1/d

edV (c/A(1+α))1/d

)
<

1

V
ln

(
R + S

T

)
<

1

V
ln

(
bN

edV (c/A)1/d

edV (c/A(1−α))1/d

)
where aN , bN are some constants depending on N . Thus

ln aN
V

+ d((c/A)1/d − (c/A(1 + α))1/d) <
1

V
ln

(
R + S

T

)
<

ln bN
V

+ d((c/A)1/d − (c/A(1− α))1/d).

Now for an ε > 0, pick α such that

max{|d((c/A)1/d − (c/A(1 + α))1/d)|, |d((c/A)1/d − (c/A(1− α))1/d)|} < ε

2
.

Then we pick V large enough so that

max{|aN/V
∣∣, |bN/V |} < ε

2
,

then ∣∣∣∣ 1

V
ln

(
R + S

T

)∣∣∣∣ < ε

2
+
ε

2
= ε.

Thus 1
V

ln

(
R+S
T

)
→ 0 as V →∞ and we have finished the case n = 1.
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For n > 1, we have

1

V
ln

(∑
x∈Zn

(V dc)x∏n
i=1 θi(1) · · · θi(xi)

)
=

1

V
ln

( n∏
i=1

∑
xi∈Z

(V dici
i )xi

θi(1) · · · θi(xi)

)

=
1

V

n∑
i=1

ln

(∑
xi∈Z

(V dici
i )xi

θi(1) · · · θi(xi)

)

∼ 1

V

n∑
i=1

ln

(∑
xi∈Z

(V dici
i )x

Axii (xi!)di

)

=
1

V
ln

( n∏
i=1

∑
xi∈Z

(V dici
i )x

Axii (xi!)di

)
=

1

V
ln

(∑
x∈Zn

(V dc)x∏n
i=1 A

xi
i (xi!)di

)
.

Note that here the asymptotic analysis still holds after finite addition, since the asymp-

totic relation we prove for the case n = 1 is slightly stronger than the usual definition

of asymptotic.

Lemma A.3. Let X ∼ B(n, p). Then we have

E
[

1

X + 1

]
≤ 1

np
, and E

[
1

(X + 1)(X + 2)

]
≤ 1

(np)2
.

Proof. We have

E
[

1

X + 1

]
=

n∑
i=0

1

i+ 1

(
n

i

)
pi(1− p)n−i =

n∑
i=0

n!

(i+ 1)!(n− i)!
pi(1− p)n−i

=
1

n+ 1

1

p

n∑
i=0

(
n+ 1

i+ 1

)
pi+1(1− p)n−i ≤ 1

np
(p+ 1− p)n+1 ≤ 1

np
.

Similarly, we have

E
[

1

(X + 1)(X + 2)

]
=

n∑
i=0

1

(i+ 1)(i+ 2)

(
n

i

)
pi(1− p)n−i =

n∑
i=0

n!

(i+ 2)!(n− i)!
pi(1− p)n−i

=
1

(n+ 1)(n+ 2)

1

p2

n∑
i=0

(
n+ 2

i+ 2

)
pi+2(1− p)n−i

≤ 1

(np)2
(p+ 1− p)n+2 ≤ 1

(np)2
.
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Lemma A.4. Let x, y ∈ R≥0. Then we have

(2x)x(2y)y ≥ (x+ y)x+y

Proof. Clearly the inequality holds when either x = 0 or y = 0 or both. Suppose x > 0

and y > 0. We have

(2x)x(2y)y ≥ (x+ y)x+y ⇐⇒ 2x+y

(
x

y

)x
≥
(

1 +
x

y

)x+y

⇐⇒ 21+x
y

(
x

y

)x/y
≥
(

1 +
x

y

)1+x/y

.

Thus the inequality holds if we have 21+ttt ≥ (1 + t)1+t, or (1 + t) ln(2) + t ln(t) ≥

(1 + t) ln(1 + t) for t > 0. Let

f(t) = (1 + t) ln(2) + t ln(t)− (1 + t) ln(1 + t).

A quick calculation shows f ′(t) = ln(2t)− ln(1 + t), and f(t) has a global minimum at

t = 1. Thus f(t) ≥ f(1) = 0, which concludes the proof of the Lemma.

Corollary A.5. Let x1, x2, . . . , xn ∈ R≥0, then we have

n∏
i=1

(nxi)
xi ≥

( n∑
i=1

xi

)∑n
i=1 xi

. (A.3)

Proof. We will prove the corollary by induction. Clearly (A.3) holds for n = 1. Lemma

A.4 shows that (A.3) holds for n = 2. Suppose (A.3) holds for n = k. It suffices to show

that (A.3) holds for n = 2k and n = k − 1.

First, we will show that (A.3) holds for n = 2k. Applying the inductive hypothesis

for the n = k terms x1, . . . , xk and the n = k terms xk+1, . . . , x2k, and then applying

Lemma A.4 yields

2k∏
i=1

(2kxi)
2xi ≥

( k∑
i=1

2xi

)∑k
i=1 2xi( 2k∑

i=k+1

2xi

)∑2k
i=k+1 2xi

≥
( 2k∑

i=1

xi

)2
∑2k
i=1 xi

.
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Taking square root of the inequality above gives us the case n = 2k.

Next, we will show that (A.3) holds for n = k−1. Applying the induction hypothesis

for the n = k terms x1, . . . , xk−1,
1

k−1

∑k−1
i=1 xi, we have

k−1∏
i=1

(kxi)
xi

(
k

k − 1

k−1∑
i=1

xi

) 1
k−1

∑k−1
i=1 xi

≥
( k−1∑

i=1

xi +
1

k − 1

k−1∑
i=1

xi

)∑k−1
i=1 xi+

1
k−1

∑k−1
i=1 xi

⇒
k−1∏
i=1

(kxi)
xi

(
k

k − 1

k−1∑
i=1

xi

) 1
k−1

∑k−1
i=1 xi

≥
(

k

k − 1

k−1∑
i=1

xi

) k
k−1

∑k−1
i=1 xi

⇒
k−1∏
i=1

(kxi)
xi ≥

(
k

k − 1

k−1∑
i=1

xi

)∑k−1
i=1 xi

⇒
k−1∏
i=1

((k − 1)xi)
xi ≥

( k−1∑
i=1

xi

)∑k−1
i=1 xi

.

Thus we have show that (A.3) holds for n = k − 1, which concludes the proof of the

Corollary.
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