

Minerals yearbook 1940. Year 1939 1940

Hughes, H. Herbert

Washington, D. C.: Bureau of Mines: United States Government Printing Office, 1940

https://digital.library.wisc.edu/1711.dl/PPYAWXJZXOESO8L

http://rightsstatements.org/vocab/NoC-US/1.0/

As a work of the United States government, this material is in the public domain.

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

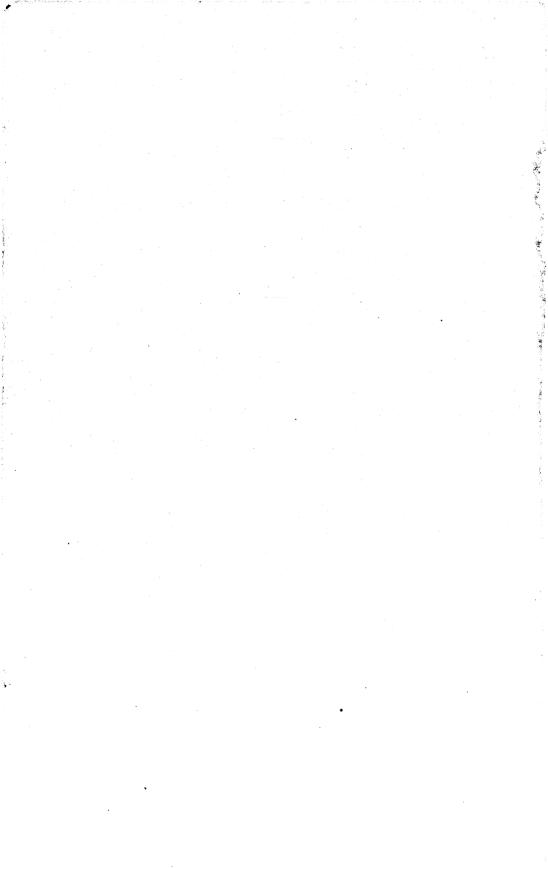
The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

UNITED STATES DEPARTMENT OF THE INTERIOR HAROLD L. ICKES, Secretary

DUDELLI OF MINES

BUREAU OF MINES


R. R. SAYERS, Director

MINERALS YEARBOOK 1940

Compiled under the supervision of H. HERBERT HUGHES Economics and Statistics Branch

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1940

491195

DEC 20 1940

MNK .HA 1939

FOREWORD

The record of developments and trends in the mineral industry of the United States in 1939 is set forth with statistical detail and analysis in the 1940 edition of Minerals Yearbook, presented by the Bureau of Mines herewith for the information and guidance of industry, Government, and the general public. The current volume is the latest product of a program of voluntary cooperation of industry with Government that was inaugurated more than 70 years ago and has been maintained upon an annual basis without interruption for 60 It includes the economic and statistical data essential for effective planning of future operations of the mineral industry and for the formation of Government policy with respect to the irreplaceable mineral resources of the country. The value to industry of maintaining comprehensive and cumulative economic data on production, consumption, sources, prices, and stocks of mineral commodities is a fact of common understanding and application. In pursuing its policy of supplying the mineral industries with useful and timely data, the Bureau of Mines during 1939 established a quarterly survey of consumption and dealer and consumer stocks of iron and steel scrap. Thus, for the first time industry has available reliable current information on inventories and rate of use of this important raw material.

The value of statistical and economic data for Government use was strikingly illustrated in 1939 when the Army and Navy Munitions Board called upon the Bureau to supplement its annual statistics with monthly reports on the strategic minerals required for industrial preparedness. Further expansion of its basic fact-finding activities is needed to provide necessary data for the national defense program.

The course of mineral production during the year under review represented an encouraging measure of recovery from the depressed levels of 1938. After the first quarter the rise in volume of production was steadily upward through September and was characterized by reaction thereafter as domestic production overtook demand and the impetus of the outbreak of war in Europe was not sustained. Although the effect upon domestic mineral markets of the existing military conflicts in Europe and the Far East is at present obscure, domestic demand contains encouraging elements sustained by prospective needs for a comprehensive program of national preparedness that promises to require some years for completion. In plans for the development of both foreign and domestic outlets for its products the mineral industry of the United States will find of major value the record of past performances preserved in the current Minerals Yearbook and its predecessors. The present emergency has emphasized the need for more detailed and, in some instances, more frequent statistical surveys. To meet this need the Bureau of Mines plans, should additional funds

be provided, to expand and expedite its surveys of the more important commercial minerals, thereby providing producers and consumers of mineral products with the means for following short-time changes in conditions of supply and demand of the leading mineral commodities. Thus, the Bureau of Mines would materially enhance its service of providing the earliest and most complete official data covering the fundamental economic phases of the mineral industry.

R. R. SAYERS, Director.

June 25, 1940.

CONTENTS

	P
Foreword, by R. R. Sayers	
Introduction, by H. Herbert Hughes	
Part I. Survey of the mineral industries:	
Statistical summary of mineral production, by Martha B. Clark	
Part II. Metals:	
Antimony and cadmium, by E. W. Pehrson and John B. Umhau	
Arsenic and bismuth, by Herbert A. Franke	•
Bauxite and aluminum, by Herbert A. Franke and M. E. Trought	1
Chromite, by Robert H. Ridgway	
Copper, by H. M. Meyer Gold and silver, by Chas. W. Henderson	
Gold and silver, by Chas. W. Henderson	
Cold gilver conner load and gine in—	
Alaska, by Chas. W. Henderson Arizona, by T. H. Miller and Paul Luff	
Arizona, by T. H. Miller and Paul Luff	
California, by Charles White Merrill and H. M. Gaylord	
Colorado, by Chas. W. Henderson and A. J. Martin	- 5
Eastern and Central States, by J. P. Dunlop and H. M. Meyer	- 5
Idaho, by T. H. Miller and Paul Luff	
Montana, by T. H. Miller and Paul Luff	
Nevada, by Charles White Merrill and H. M. Gaylord	
New Mexico, by Chas. W. Henderson and A. J. Martin	٠.
Oregon, by Charles White Merrill and H. M. Gaylord	
South Dakota, by Chas. W. Henderson and A. J. Martin	
Texas, by Chas. W. Henderson and A. J. MartinUtah, by T. H. Miller and Paul Luff	
Utah, by T. H. Miller and Paul Luff	٠.
Washington, by T. H. Miller and Paul Luff	
Wyoming, by Chas. W. Henderson and A. J. Martin	
Iron and steel scrap, by James S. Earle and Harold E. Carmony	
Iron ore, pig iron, ferro-alloys, and steel, by Robert H. Ridgway and	
H. W. Davis	
Lead, by E. W. Fenrson and H. M. Meyer	
Mitchell Mitchell	
Mitchell Magnesium, by Herbert A. Franke and M. E. Trought	-
Manganese and manganiferous ores, by Robert H. Ridgway and H. W.	
Mercury, by H. M. Meyer and A. W. Mitchell	
Minor metals by Paul M Tyler	
Minor metals, by Paul M. Tyler Molybdenum, tungsten, and vanadium, by Robert H. Ridgway and	
H W Davis	
Nickel and cobalt, by H. W. Davis	
Platinum and allied metals, by H. W. Davis	
Nickel and cobalt, by H. W. Davis	
Tin, by E. W. Pehrson and John B. Umhau	
Zinc, by E. W. Pehrson	
Part III. Nonmetals:	
Abrasive materials, by Robert W. Metcalf	1
Ashestos by Oliver Rowles and K. G. Warner	1
Asphalt and related bitumens, by A. H. Redfield Barite and barium products, by Bertrand L. Johnson and K. G.	1
Barite and barium products, by Bertrand L. Johnson and K. G.	
Warner	1
Carbon black, by G. R. Hopkins and H. Backus	1
Cement, by Oliver Bowles and E. V. Balser	1
Clays. Kaolin (china clay and paper clay), ball clay, fire clay, ben-	
tonite, fuller's earth (bleaching clays), and miscellaneous clay, by	
Paul M. Tyler and A. Linn	13

CONTENTS

Part III. Nonmetals—Continued.	Page
Bituminous coal, by M. E. McMillan, R. L. Anderson, and W. H.	
Young	773
Pennsylvania anthracite, by M. van Siclen, L. Mann, and J. R. Bradlev	835
Coke and byproducts, by M. van Siclen, M. M. Otero, and M. F. Cooke	867
Feldspar, by Robert W. Metcalf	1353
Fluorspar and cryolite, by H. W. Davis and M. E. Trought	1333
Fuel briquets and packaged fuel, by G. S. Goodman	923
Gem stones, by Sydney H. Ball	1453
Gypsum, by Forrest T. Mover	1227
Helium, by C. W. Seibel and H. S. Kennedy	1103
Lime, by Forrest T. Mover and A. T. Coons	1237
Magnesium compounds, bromine, calcium chloride, iodine, sodium sulfate, borates, and miscellaneous salines, by Paul M. Tyler and	
A. T. Coons	1435
Mica, by Paul M. Tyler and K. G. Warner	1403
Minor nonmetals: Carbon dioxide; graphite; greensand; kyanite, andalusite, and dumortierite; lithium minerals; meerschaum; mineral wool; monazite; olivine; pinite; serpentine; strontium minerals;	
topaz; and vermiculite, by Paul M. Tyler	1467
Natural gas, by F. S. Lott and G. R. Hopkins	1041
Natural gasoline and liquefied petroleum gases, by G. R. Hopkins	1079
Peat, by Joseph A. Corgan and A. L. Richardson	937
Crude petroleum and petroleum products, by A. G. White, G. R.	
Hopkins, and H. A. Breakey	941
Potash by I H Hadrag	1301
Potash, by J. H. Hedges Salt, by A. T. Coons and F. E. Harris	$\frac{1387}{1421}$
Sand and gravel, by H. Herbert Hughes and G. E. Tucker	1205
Slate, by Oliver Bowles and M. S. Jensen	1197
Stone, by Oliver Bowles and M. S. Jensen	1161
Sulfur and pyrites, by Robert H. Ridgway and A. W. Mitchell	1287
Talc, pyrophyllite, and ground soapstone, by Bertrand L. Johnson and	1201
K. G. Warner Part IV. Mine safety:	1321
Employment and accidents in the mineral industries, by W. W.	
Adams	1483
Index, by M. E. Winslow	1495

INTRODUCTION

Although the trend of business for the first 5 months of 1939 was downward, the year as a whole showed a marked improvement over 1938. The index of the volume of industrial production of the Federal Reserve Board, generally accepted as the most reliable business indicator, was 106 for 1939, an advance of 23 percent from 86 in 1938. This index, adjusted for seasonal variation, was 101 in January but dropped to 92 in April and May. Beginning in June it started a steady rise indicative of substantial improvement in virtually all lines of business. In the last quarter, under the impetus of actual and anticipated war orders, the index remained above 120 and actu-

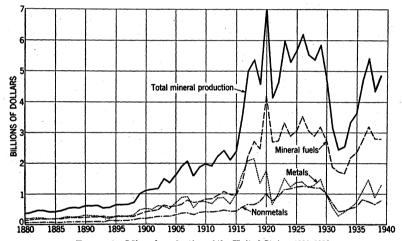


FIGURE 1.—Mineral production of the United States, 1880-1939.

ally reached an all-time peak of 128 in December. This spurt was short-lived, for the index slumped sharply for the first 4 months of 1940

before turning upward in May.

Mineral production did not advance as rapidly in 1939 as business in general, although the index for the year was 108, 2 points higher than that for all industrial activity. In 1938 the spread was quite pronounced—99 for minerals and 86 for industrial activity. The preliminary total value of mineral production in the United States in 1939, as reported to the Bureau of Mines by producers, was \$4,874,000,000, an increase of 12 percent from \$4,362,900,000 in 1938. Metals, as a group, led with a rise of 45 percent in value, followed by nonmetals (other than fuels) with 18 percent; fuels decreased 0.06 percent.

The steel industry paced the industrial advance of the closing months of 1939, with production rising to a peak of 94.4 percent of

capacity for the week ended December 2. Output of pig iron in 1939 was 84 percent above that in 1938. The greater activity in all phases of the iron and steel industry of course was reflected in sharply increased demand for iron ore, alloying metals, coke, fluorspar, fluxing stone, refractories, molding sand, and other lesser materials. The nonferrous metals—copper, lead, zinc, aluminum, and others—also were produced at a rate substantially above that for 1938. Gold output continued its steady advance of the past several years.

Production of the principal fuels—bituminous coal, anthracite, petroleum, and natural gas—was higher than in 1938, but the increases were relatively small compared to those of the metals. The building materials group—cement, sand and gravel, stone, clay products, gypsum, and lime—likewise achieved only moderate increases in 1939, quite in line with an 11-percent rise in construction contracts awarded.

Production of virtually all other nonmetals was higher than in 1938. Strategic minerals.—The Strategic Materials Act (Public, No. 117—76th Congress, chapter 190, 1st session) which was signed by the President on June 7, 1939, authorized the expenditure of \$100,000,000 over a 4-year period for the purchase of strategic materials. Only \$10,000,000 was appropriated in the Third Deficiency Bill, approved August 2, 1939 (Public, No. 361—76th Congress, chapter 633, 1st session), and purchases were restricted largely to the high-priority mineral commodities on the strategic list—manganese, chromium, tungsten, tin, and quartz crystals. The act also provided for the investigation of domestic sources of strategic minerals by the Bureau of Mines and the Geological Survey, and this work has been carried on actively since July 1, 1939. Information regarding progress in building stock piles, as well as the search for domestic sources, is supplied in the chapters on the various strategic minerals in this volume.

International production and trade statistics.—Anticipation of the conflict that began on September 1 influenced adoption earlier in 1939 of foreign trade control and domestic conservation measures by nearly all European countries and their colonies. However, soon after the outbreak of war, the belligerents and their overseas possessions as well as many European neutrals adopted more stringent systems of control over their foreign trade. In some instances these wartime measures comprised licensing regulations applicable to each prospective These controls of Great Britain and France have operated to curtail importations of many raw materials from sources outside their own dominions and to increase importations from elsewhere of commodities essential for the war economy. They also have hindered by delays in issuance of export licenses, reductions in export quotas, etc., the ability of neutrals as a group to purchase their requirements of certain minerals. Although Great Britain adopted the policy of purchasing raw materials from within the Empire whenever possible to conserve its foreign exchange, the United States as a neutral encountered relatively little difficulty, under trade regulations of the Emergency Powers (Defense) Act of August 1939 or later legislation, in acquiring essential materials, such as tin, chromite, and mica available in British Dominions. The French trade restrictions likewise failed to interfere seriously with purchases by American consumers. Despite unavoidable delays at first in obtaining licenses for export to the United States of graphite from Madagascar and mica from British India, owing to wartime restrictions, by the end of 1939 consumers in the United States were able to obtain from British, French, and nonbelligerent sources tonnages of strategic and critical

materials adequate to satisfy domestic requirements.

As the war advanced numerous revisions and additions to the control measures were adopted by the belligerents and neutrals and were made known promptly throughout the trading world. However, suppression by a large majority of European countries of all details regarding the importation and exportation of mineral commodities as well as production data, effective in September or October 1939, has made impossible any analysis of world mineral production and trade during the year. Consequently no chapter on the subject appears in this volume of the Yearbook.

Minerals Yearbook series.—Minerals Yearbook, 1940, carries the progress made in Minerals Yearbook, 1939, in presenting final data for the year under review one step farther by including complete final statistics for coke. In this volume only the chapters on bituminous coal, petroleum, natural gas, and natural gasoline are based upon

preliminary data for 1939.

The practice of issuing preprints of separate chapters in advance of the bound volume has met with widespread favor and is being continued this year; 46 chapters have been printed and distributed. This procedure was adopted with some misgiving because of its potential effect in lowering sales of the bound volume. This apprehension proved to be unfounded, for the sales edition of each of the past two volumes was exhausted long before the succeeding volume was available.

Acknowledgments.—By act of Congress the collection of production statistics of the bituminous-coal industry, previously conducted by the Bureau of Mines, was transferred to the National Bituminous Coal Commission July 1, 1937. Through the cooperation of this agency and its successor, the Bituminous Coal Division, United States Department of the Interior, the statistical record of the industry, maintained by the Geological Survey and the Bureau of Mines since 1880, remains unbroken. The cooperation of the Bituminous Coal Division in contributing the chapter on Bituminous Coal in this volume is gratefully acknowledged.

Presentation of data on imports and exports in Minerals Yearbook is made possible through the cooperation of the Bureau of Foreign

and Domestic Commerce.

The statistical program of the Bureau of Mines depends entirely on the good will and voluntary cooperation of those interested in mining. It is a pleasure to acknowledge the generous support of thousands of individual mine operators, distributors, and consumers, as well as the many public officials and agencies that have returned questionnaires or otherwise supplied information. In addition, the Bureau is indebted to a large number of trade associations for liberal contributions of data and advice.

In several States the Bureau of Mines receives the formal cooperation of the State geologist or comparable State official in collecting mineral statistics. This arrangement eliminates duplication of canvasses by the State and Federal Governments and, through field contacts of the State officials, tends to improve the accuracy and coverage of the production data. State agents cooperating in the 1939 canvass were: Stewart J. Lloyd, acting State geologist, Univer-

sity, Ala.; Herman Gunter, State geologist, Tallahassee, Fla.; Garland Peyton, director, division of mines, mining, and geology, Department of Natural Resources, Atlanta, Ga.; M. M. Leighton, chief, and Walter H. Voskuil, mineral economist, State geological survey division, Urbana, Ill.; A. C. Trowbridge, director, Iowa Geological Survey, Iowa City, Iowa; Raymond C. Moore, State geologist, Lawrence, Kans.; Edward B. Mathews, State geologist, Baltimore, Md.; R. A. Smith, State geologist, Lansing, Mich.; H. A. Buehler, State geologist, Rolla, Mo.; Meredith E. Johnson, State geologist, Trenton, N. J.; H. J. Bryson, State geologist, Raleigh, N. C.; Robert H. Dott, director, Oklahoma Geological Survey, Norman, Okla.; E. P. Rothrock, State geologist, Vermillion, S. Dak.; E. H. Sellards, director, bureau of economic geology, Austin, Tex.; Arthur Bevan, State geologist, and Linwood H. Warwick, chief clerk, Virginia Geological Survey, Charlottesville, Va.; Harold E. Culver, supervisor, division of geology, department of conservation and development, Pullman, Wash.; and E. F. Bean, State geologist, Madison, Wis. In addition, Walter W. Bradley, State mineralogist, San Francisco, Calif., assisted in the compilation of statistics for California.

In addition to preparing the statistical summary of mineral production each year Martha B. Clark has been largely responsible for the maintenance of continuity of data and uniformity of statistical

presentation throughout the Minerals Yearbook volumes.

Elva T. Shuey served as editorial associate in reviewing and checking chapters. Max Abel assisted in the administrative details of the Yearbook program, and Cecilia W. Justice helped in many phases of the work. The illustrations for the volume were prepared in the graphic section of the Bureau under the direction of Louis F. Perry. Mabel E. Winslow supplied helpful suggestions for improving individual contributions and, in collaboration with Eleanor C. Reid and Estelle R. Templeton, was responsible for the editing of the entire manuscript.

H. HERBERT HUGHES.

June 25, 1940.

PART I. SURVEY OF THE MINERAL INDUSTRIES

STATISTICAL SUMMARY OF MINERAL PRODUCTION

(GENERAL UNITED STATES SUMMARY AND DETAILED PRODUCTION BY STATES)

By MARTHA B. CLARK

SUMMARY OUTLINE

Page	Page
Unit of measurement 1	General tables 3 State tables 14
Elimination of duplication 1	

INTRODUCTION

This report continues the series of annual statistical summaries published in previous years as chapters of Mineral Resources and Minerals Yearbook.

UNIT OF MEASUREMENT

The unit of measurement used by the Bureau of Mines for each mineral product in reports on the mineral resources is that common to the industry concerned, and the variation in these units makes it impracticable, if not impossible, directly to combine and compare the different minerals except as to value. Although most of the products are measured by weight, some are measured by volume and some by number of "pieces," etc.; for some no total quantity figures are available.

ELIMINATION OF DUPLICATION

In the totals for the United States, shown in the following "general" tables, duplication has been eliminated wherever practicable, and in the State totals given in the State tables virtually all duplication has been eliminated. For instance, in both general and State tables the output of coke is shown but its value is not included in the totals, as the value of the coal used in its manufacture enters into the value of the coal production which is included in the totals. For asphalt, both native and oil are shown in the general tables, but the value of the oil asphalt is excluded from the totals as it duplicates that of the petroleum from which it is manufactured. For the clay industries, no figures are available for total clay produced. For years before 1936, the total value of clay products is included in both general and

State totals as representing the first marketable form of the greater part of the clay produced; the quantity and value of the clay mined and sold in the raw state by miners to users of clay are shown separately also, but the value is not included in the totals as it is duplicated largely in that for clay products. For years beginning with 1936, as the Bureau of Mines believes that a closer approach to the value of domestic clay in its first marketable form results from the inclusion of the value of clay sold by producers and of clay products other than pottery and refractories, the United States and State totals include such values for the clay industries. This change in practice should be borne in mind when comparing the values beginning 1936 with those for earlier years.

United States totals.—In the general tables both iron ore and pig iron are shown, but the value of the pig iron rather than the iron ore is included in the United States totals, as that is considered the better means of presenting the statistics for iron in its first marketable form. For gold, silver, copper, lead, and zinc the value of "smelter output" is included in the general totals, and to account more fully for the value of the ores treated these smelter figures are supplemented by the value of the byproduct sulfuric acid. The value of pigments (white lead, red lead, lithopone, litharge, and orange mineral) manufactured from metals is not included in the general tables, as the base from which they are made is included in the output of lead or zinc, whereas the value of sublimed blue lead, sublimed white lead, leaded zinc oxide, and zinc oxide is included, as these are made in large part direct from the ores and do not enter into the lead or zinc totals, which represent smelter output.

State totals.—In the State tables also iron ore and pig iron are both shown. As blast-furnace products cannot be traced to the States in which the ore is mined, the value of the ore is used in the State totals. For ores of gold, silver, copper, lead, and zinc no values are shown, and in fact none are recorded; instead, for each of these metals the recoverable content of the ores is used as the basis of valuation. of the zinc and lead pigments is not included in the State total, as the recoverable zinc and lead content of the ores from which the products were made is included under zinc or lead. The value of the sulfuric acid produced as a byproduct of copper and zinc smelting and zinc roasting is not included in the State total, as tracing this product back

to the State producing the ore has not been possible.

GENERAL TABLES

Mineral products of the United States, 1937-39 1

	193		19	20	19	20
Product	19:		19	38	18	39
Troduct	Quantity	Value	Quantity	Value	Quantity	Value
Aluminum METALLIC Antimonial lead short tons (2,000 pounds) Antimony:	292, 681, 000 2 27, 524	\$55, 609, 000 (2)	286, 882, 000 2 24, 123	\$56, 659, 000 (²)	327, 090, 000 ² 21, 995	\$64, 600, 000 (²)
Metal do Ore and concentrates do Ore and concentrates do Ore and concentrates do Ore and concentrates long tons (2,240 pounds). Cadmium pounds pounds Chromite long tons oppers sales value pounds. Ferro-alloys long tons oppers troy ounces. Iron:	4, 057 4, 250 420, 232 3, 995, 739 2, 321 1, 669, 322, 278 970, 651 4, 804, 540	(3 4) 137, 600 2, 444, 686 4, 555, 000 1, 4, 888 201, 988, 000 86, 140, 492 168, 158, 900	2, 730 311, 354 3, 753, 323 812 1, 124, 656, 539 464, 112 5, 089, 811	(3 4) 61, 500 1, 812, 545 2, 815, 000 10, 730 110, 216, 000 42, 459, 513 178, 143, 400	(³ ⁴) 3, 174 375, 301 4, 141, 242 3, 614 1, 425, 349, 488 841, 162 5, 611, 171	37, 200 2, 166, 236 2, 236, 000 46, 892 148, 236, 000 76, 156, 588 196, 391, 000
Ore * long tons Pig do Lead (refined), * sales value short tons Magnesium (new ingot) pounds Manganise ore (35 percent or more Mn) long tons Manganiferous ore (5 to 35 percent Mn) do Mercury: do	72, 347, 785 35, 224, 347 443, 142 4, 539, 980 40, 241 1, 340, 972	4 207, 828, 213 731, 139, 435 52, 291, 000 (7) 1, 062, 399 3, 857, 768	26, 430, 910 18, 202, 354 331, 964 4, 819, 617 25, 321 308, 860	4 74, 322, 405 356, 875, 369 30, 541, 000 (7) 681, 679 858, 356	54, 820, 589 32, 091, 485 420, 967 10, 650, 121 29, 307 709, 247	4 158, 511, 338 626, 824, 690 39, 571, 000 (7) 794, 746 2, 148, 321
Metal flasks (76 pounds net) Ore short tons Molybdenum pounds Nickel short tons Ores (crude), old tailings, etc.:	16, 508 (⁴) 30, 122, 000 219	1, 488, 691 (9) 20, 571, 000 (7)	17, 991 (8) 25, 727, 000 416	1, 357, 781 (⁰) 17, 977, 000 (⁷)	18, 633 (8) 32, 415, 000 394	1, 936, 714 (*) 22, 157, 000 (⁷)
Copper .do Dry and siliceous (gold and silver) .do Lead .do Lead-copper .do Zine .do Zine-copper .do	61, 640, 000 17, 355, 000 5, 670, 000 2, 000 12, 693, 000	(0) (0) (0) (0) (0)	37, 871, 000 18, 038, 000 4, 103, 000 1, 000 7, 873, 000 33, 000	<u>೦</u> ೦೦೦೦	(10) (10) (10) (10) (10) (10)	(e) (e) (e) (e)
Zinc-lead do Zinc-lead-copper do Zinc-lead-cop	10, 651, 000 45, 258 282, 598 71, 941, 794 16, 307 23, 365 189	(°) 2, 114, 000 (°) 55, 646, 978 13, 317 (°) 205, 300	8, 944, 000 36, 213 166, 494 62, 665, 335 36, 189 26, 944 106	(°) 1, 263, 000 (7) 40, 510, 924 35, 127 (7) 90, 000	(10) (10) 41, 441 345, 726 65, 119, 513 340 63, 431	(*) (*) 1, 566, 000 (1) 44, 202, 279 200 (7) 38, 000

See footnotes at end of table.

* 1	19	37	19	38	193	9
Product	Quantity	Value	Quantity	Value	Quantity	Value
METALLIC—continued						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(7) (7) 3, 500 131, 080 551, 165	(7) (7) \$4,094,000 (7) 71,651,000 852,105	(7) (7) 3, 044 251, 687 436, 007	(?) (?) \$3, 161, 498 898, 779 41, 857, 000 907, 612	(7) (7) 4, 287 279, 354 491, 058	(7) (7) \$\frac{1}{2}, 402, 182 1, 053, 660 51, 070, 000 1, 110, 817
Total value of metallic products (approximate)		1, 468, 200, 000		892, 400, 000		1, 291, 000, 000
Arsenious oxide	17, 636 12, 079 485, 384 3, 844, 326 355, 888	541, 555 344, 644 3, 019, 038 4 36, 670, 827 2, 240, 970	13, 160 10, 440 477, 741 4, 249, 226 309, 663	393, 022 247, 264 2, 874, 803 4 34, 572, 918 2, 004, 521	22, 439 15, 459 459, 848 4, 860, 540 383, 609	495, 500 512, 788 3, 066, 844 4 36, 038, 696 2, 344, 103
borate))short tons Brominepounds Calcium-magnesium chloride (75 percent NaCl2)short tons Cementbarrels (376 pounds net)	358, 898 26, 200, 256 97, 142 115, 678, 182	7, 232, 897 5, 180, 177 1, 295, 403 171, 414, 093	219, 513 33, 324, 116 96, 470 108, 192, 076	4, 570, 316 6, 610, 056 1, 218, 938 156, 703, 002	249, 976 37, 882, 005 108, 441 125, 056, 594	5, 882, 302 7, 611, 400 1, 307, 717 184, 254, 932
Clay: Products (other than pottery and refractories) 13. Raw (sold by producers)	4, 237, 386	109, 011, 641 15, 708, 064	2, 730, 861	88, 798, 513 11, 775, 572	3, 760, 694	(13) 15, 354, 918
Coal: do Bituminous 14 do Pennsylvania anthracite do Coke 4 do Diatomite do Emery do	18 445, 531, 449 51, 856, 433 52, 375, 469 (17) 320	16 864, 042, 000 197, 598, 849 4 261, 003, 903 (17) 2, 780	18 348, 544, 764 46, 099, 027 32, 495, 815 (17)	18 678, 653, 000 180, 600, 167 4 167, 181, 834 (17)	15 393, 065, 000 51, 487, 377 44, 326, 641 (17) 765.	16 732, 534, 000 187, 175, 000 4 212, 884, 050 (17) 6, 828
Feldspar (crude)	268, 532 181, 230 226, 165 4, 863	1, 383, 249 3, 666, 629 2, 296, 094 382, 535 (18)	196, 119 80, 403 170, 852 2, 669	895, 081 1, 599, 666 1, 707, 869 191, 658 (18)	253, 466 182, 771 167, 070 4, 056	1, 112, 857 3, 704, 959 1, 691, 855 278, 534
Graphite: Amorphous short tons Crystalline pounds Grindstones and pulpstones short tons Gypsum (crude) do	(17) (17) 14, 541 3, 058, 166	(17) (17) 572, 708 4, 782, 503	(17) (17) 6, 206 2, 684, 205	(17) (17) 240, 006 4, 271, 674	(17) (17) 10, 434 3, 226, 737	(17) (17) 426, 375 4, 431, 005

Helium cubic feet Iodine pounds Kyanite short tons Lime do Lithium minerals do Magnesite (crude) do Magnesium oxide (hydrated) (brucite) do	19 4, 809, 230 299, 286 (8) 4, 124, 165 1, 357 203, 437	19 59, 315 242, 422 (8) 30, 091, 168 36, 206 1, 483, 492	19 6, 099, 960 (17) (8) 3, 346, 954 892 97, 000	19 64, 259 (17) (8) 24, 137, 638 47, 088 725, 000	19 6, 281, 800 (17) 2, 950 4, 254, 348 1, 990 198, 980	19 75, 262 (17) 69, 000 30, 049, 394 97, 000 1, 465, 190
Magnesium salts (naturalpounds Marl:	(17) 129, 553, 918	(1 ⁷) 1, 578, 527		1, 588, 570	171, 508, 000	1, 907, 944
Calcareous short tons Greensand do Mica:	9, 734	59, 775 210, 974	23, 572 6, 576	40, 270 152, 000	22, 114 6, 466	38, 492 150, 500
Scrap	1, 694, 538	354, 737 285, 244 8, 305	20, 257 939, 507	256, 382 139, 333 3, 743	24, 672 813, 708	311, 895 138, 963 11, 084
Cadmium compounds 20 pounds Natural pigments 21 short tons 21 short tons 22 do	(8) (21) 163, 617	1, 441, 000 (²¹) 17, 088, 595	(8) (21) 123, 146	710, 000 (21) 13, 969, 840	(8) (21) 162, 774	1, 056, 000 (²¹) 19, 029, 802
Mineral waters gallons sold Natural gas M cubic feet Natural gasoline gallons Oilstones, etc short tons	2, 407, 620, 000 2, 065, 434, 000 810	528, 354, 000 97, 125, 000 112, 841	(18) 2, 295, 562, 000 2, 156, 574, 000 511	(18) 500, 698, 000 87, 266, 000 130, 277	2, 435, 000, 000 2, 095, 632, 000 620	(18) 539, 625, 000 94, 300, 000 115, 805
Olivine do Peat do Petroleum barrels (42 gallons)	(8) 51, 223 1, 279, 160, 000	(8) 305, 156 1, 513, 340, 000	(8) 45, 933 1, 214, 355, 000	(8) 286, 127 1, 373, 060, 000	3, 000 55, 483 1, 264, 256, 000	15, 000 362, 066 1, 265, 000, 000
Phosphate rock. long tons Potassium salts. short tons Pumice do Pyrites long tons	3, 956, 189 23 266, 938 71, 007 584, 166	12, 975, 268 9, 019, 534 301, 936 1, 777, 787	3, 739, 238 ²³ 286, 437 65, 742 555, 629	12, 952, 143 9, 748, 290 312, 886 1, 685, 766	3, 757, 067 ²³ 366, 287 89, 159 516, 408	12, 294, 042 12, 028, 195 424, 780 1, 550, 449
Salt (sodium chloride) short tons Sand and gravel: Glass sand do do	9, 241, 564	24, 131, 733 4, 746, 629	8, 025, 768 2, 109, 462	23, 242, 561 3, 601, 734	9, 277, 911 2, 468, 290	24, 509, 680 4, 280, 936
Sand (molding, building, etc.) and graveldo Sand-lime brick ¹³ thousands of brick Silica (quartz) short tons	186, 861, 193 138, 335 13, 012	92, 726, 368 1, 222, 273 66, 041 5, 605, 322	179, 210, 771 94, 978 18, 611 492, 690	82, 321, 113 938, 912 88, 197 5, 655, 313	192, 350, 243 (¹³) 34, 959 531, 380	90, 943, 111 (13) 153, 038 6, 682, 214
Slate	184, 764 133, 143, 240 2, 466, 512 833, 994	1, 790, 751 146, 213, 128 44, 300, 000	180, 220 124, 838, 940 1, 628, 847	1, 832, 140 139, 255, 046 27, 300, 000	232, 222 147, 447, 130 2, 233, 817	2, 556, 686 158, 461, 515 35, 500, 000
Sulturic acid (60° Baume) (byproduct) snort tons Tale, pyrophyllite, and ground soapstone 24. do Tripoli do Vermiculite do Other nonmetallic ²⁷	229, 999 34, 936 26, 556	6, 735, 194 2, 561, 753 450, 570 260, 664 2, 647, 381	687, 176 212, 775 22, 188 20, 700	5, 558, 926 2, 302, 560 329, 081 192, 000 1, 848, 890	(26) 253, 976 33, 474 21, 174	2, 700, 834 466, 380 174, 587 2, 308, 068
Total value of nonmetallic products (approximate)		3, 945, 200, 000		3, 470, 500, 000		3, 583, 000, 000

See footnotes at end of table.

Mineral products of the United States, 1937-39—Continued

Product	1937		1938		1939	
Frouger	Quantity	Value	Quantity	Value	Quantity	Value
Total value: Motallic: Nonmetallic:		\$1, 4 68, 200, 000		\$892, 400, 000		\$1, 291, 000, 000
Fuels. Other.		3, 200, 500, 000 744, 700, 000		2, 820, 300, 000 650, 200, 000		2, 818, 600, 000 764, 400, 000
Grand total approximate value of mineral products		5, 413, 400, 000		4, 362, 900, 000		4, 874, 000, 000

¹ In this general statement certain of the figures represent shipments rather than quantity mined, and some of the figures for 1939 are subject to revision. For details see following chapters of this volume.

Figures represent autimonial lead produced at primary refineries from both domestic and foreign primary and secondary sources; no figures for value of antimonial lead available. Estimate of value of primary antimony and lead contents of antimonial lead from domestic sources included in total value of metallic products.

² Largely from foreign ore: Bureau of Mines not at liberty to publish figures. 4 Value not included in total value. 5 Product from domestic ores only.

6 According to Bureau of the Mint. Valued at \$35 per ounce.

7 Value included in total value of metallic products; Bureau of Mines not at liberty to publish figures.

8 Figures not available. Figures showing values not available. 10 Figures for 1939 not yet available. 11 According to Bureau of the Mint.

12 Includes value of following products. Figures are shown wherever Bureau of Mines is at liberty to publish them.

1937: Bismuth, iron ore sold for magnets (2 long tons), and iron ore sold for paint (8,375 long tons, \$48,005).

1938: Bismuth, iron ore sold for magnets (2 long tons), and iron ore sold for paint (9,694 long tons, \$44,249).

1939: Bismuth and iron ore sold for paint (12.235 long tons, \$66.817).

18 Figures obtained through cooperation with Bureau of the Census. Figures for 1939 not yet available; estimate of value included in total value of nonmetallic products.

14 Includes brown coal and lignite, and anthracite mined elsewhere than in Pennsyl-

15 According to Bituminous Coal Division.

16 Value is estimated from various sources and includes selling expenses.

- 17 Value included in total value of nonmetallic products; Bureau of Mines not at liberty to publish figures. 18 No canvass. Estimate of value included in total value of nonmetallic products.
- 19 Figures cover fiscal year ended June 30 of year stated.
- 20 Largely for use in manufacture of pigments. Figures for quantity of pigment not available. 21 Canvass discontinued after 1915. Figures for iron ore sold for paint given in

footnote 12. 22 Sublimed blue lead, sublimed white lead, leaded zinc oxide, and zinc oxide.

28 Equivalent as K2O. 24 Figures for soapstone used as dimension stone included in figures for stone.

25 From copper and zinc smelters and zinc roasters and from roasting of high-sulfide gold and silver concentrates.

26 Figures not yet available: estimate of value included in total value of nonmetallic products.

27 Includes value of following products. Figures are shown wherever Bureau of Mines is at liberty to publish them.

1937: Natural sulfonated bitumen, chats (5,976,040 short tons, \$624,111), flint lining for tube mills, optical fluorspar (50 pounds, \$120), pebbles for grinding, silica sand and sandstone (ground) (328,156 short tons, \$1,996,528), and sulfur ore (221 long tons, \$2,296).

1938: Natural sulfonated bitumen, chats (2,836,700 short tons, \$414,300), flint lining for tube mills, optical fluorspar (5 ounces, \$5), peobles for grinding, and silica sand and sand-

stone (ground) (237,167 short tons, \$1,425,445).
1939: Aplite, natural sulfonated bitumen, chats (2,237,000 short tons, \$314,200), flint lining for tube mills, optical fluorspar (undetermined quantity, \$25), pebbles for grinding, silica sand and sandstone (ground) (310,512 short tons, \$1,930,301), and sulfur ore (79 long tons, \$743).

Value of mineral products of the United States, 1880-1939 1

	35.33		Nonmetallic		Crond total
Year	Metallic	Fuels ²	Other	Total	Grand total
880 1	\$190, 881, 000	\$120, 241, 000	\$56, 341, 000	\$176, 582, 000	\$367, 463, 000
881	192, 663, 000	149, 798, 000	60, 659, 000	210, 457, 000	403, 120, 000
882	219, 070, 000	170, 479, 000 185, 760, 000	63, 557, 000 61, 170, 000	234, 036, 000 246, 930, 000	453, 106, 000 448, 061, 000
883 884	201, 131, 000	165, 825, 000	58, 431, 000 61, 758, 000 66, 782, 000 77, 199, 000 79, 880, 000 83, 206, 000	240, 930, 000 224, 256, 000 244, 833, 000 251, 390, 000 294, 450, 000 311, 339, 000 291, 503, 000	446, 001, 000 407, 040, 000 419, 551, 000 456, 185, 000 535, 633, 000 553, 799, 000 542, 326, 000
885	182, 784, 000 174, 718, 000	100 075 000	61, 758, 000	244, 833, 000	419, 551, 000
999	904.705 (111)	184, 608, 000	66, 782, 000	251, 390, 000	456, 185, 000
887 888 889	241, 183, 000	217, 251, 000	77, 199, 000	311 339 000	553, 799, 000
889	250, 823, 000	208, 297, 000	83, 206, 000	291, 503, 000	542, 326, 000
890	241, 183, 000 242, 460, 000 250, 823, 000 303, 937, 000	184, 608, 000 217, 251, 000 231, 459, 000 208, 297, 000 230, 962, 000	80, 530, 000	311, 492, 000	615, 429, 000
891	280, 985, 000 284, 215, 000	237, 160, 000	82, 704, 000 89, 673, 000	319, 864, 000 338, 017, 000	600, 849, 00 622, 232, 00
892 893	223, 654, 000	248, 344, 000 251, 735, 000	1 70 104 000	321, 839, 000	545, 493, 00
894	187, 335, 000 248, 533, 000	235, 618, 000	127, 292, 000	362, 910, 000 394, 158, 000	545, 493, 000 550, 245, 000
895	248, 533, 000	268, 438, 000	125, 720, 000	394, 158, 000	642, 691, 00
896	252, 575, 000	268, 161, 000	120, 305, 000	388, 400, 000	651 612 000
898	270, 434, 000 308, 747, 000	267, 513, 000	150, 782, 000	418, 295, 000	727, 042, 00
899	484, 021, 000 514, 232, 000	268, 161, 000 253, 598, 000 267, 513, 000 340, 773, 000 406, 376, 000	127, 292, 000 125, 720, 000 125, 720, 000 120, 305, 000 127, 580, 000 150, 782, 000 185, 302, 000	388, 466, 000 381, 178, 000 418, 295, 000 526, 075, 000	530, 243, 000 642, 691, 000 641, 041, 000 6,51, 612, 000 727, 042, 000 1, 010, 096, 000
900		1	100, 520, 000	594, 704, 000	1, 108, 930, 000
901	493, 814, 000	442, 409, 000	218, 855, 000	661, 264, 000	1, 155, 078, 00
902	605, 017, 000 589, 253, 000	469, 079, 000 634, 226, 000	253, 855, 000 271, 902, 000	722, 934, 000 906, 128, 000	1,327,951,00 1,495,381,00
903	501, 314, 000	584, 043, 000	972 894 000	857, 867, 000	1, 359, 181, 00
904	702, 785, 000	602 258 000	318, 722, 000	857, 867, 000 920, 980, 000	1, 359, 181, 000 1, 623, 765, 000 1, 900, 880, 000
906	886, 280, 000	652, 398, 000 789, 128, 000	362, 202, 000	1,014,600,000	1,900,880,000
907	904, 151, 000 550, 890, 000	789, 128, 000	318, 722, 000 362, 202, 000 376, 291, 000 324, 849, 000	1, 165, 419, 000	1, 591, 773, 00
906 907 908	755, 092, 000	716, 034, 000 746, 204, 000 828, 213, 000	385, 811, 000 409, 604, 000	1, 132, 015, 000	2,069,570,000 1,591,773,000 1,887,107,000 1,987,844,000
910	750, 027, 000	828, 213, 000	409, 604, 000	1, 014, 600, 000 1, 165, 419, 000 1, 040, 883, 000 1, 132, 015, 000 1, 237, 817, 000	1, 987, 844, 00
911	681, 023, 000	835, 763, 000	407, 295, 000	1, 243, 058, 000	1,924,081,00
912	862, 191, 000 879, 058, 000	945, 541, 000	430, 062, 000	1,375,603,000	2, 237, 794, 00 2, 433, 545, 00
913	687, 101, 000	1, 087, 843, 000 992, 837, 000	466, 644, 000 431, 234, 000 428, 674, 000	1, 554, 487, 000 1, 424, 071, 000	
915	993, 353, 000	972, 617, 000 1, 332, 584, 000 2, 237, 837, 000	428, 674, 000	1, 401, 291, 000 1, 886, 310, 000	2, 394, 644, 00 3, 508, 439, 00
916	1, 622, 129, 000	1, 332, 584, 000	553, 726, 000	1, 886, 310, 000	3, 508, 439, 00
917 918	2, 088, 914, 000 2, 156, 588, 000	2, 237, 837, 000	553, 726, 000 665, 745, 000 647, 969, 000	2, 903, 582, 000 3, 384, 120, 000	5, 540, 708, 00
919	1, 361, 099, 000	2, 736, 151, 000 2, 510, 894, 000	751, 777, 000 1, 024, 755, 000	3, 262, 671, 000 5, 217, 665, 000	4, 992, 496, 000 5, 540, 708, 000 4, 623, 770, 000 6, 981, 340, 000
920	1, 763, 675, 000	4, 192, 910, 000	1, 024, 755, 000	5, 217, 665, 000	
921	654, 700, 000 988, 100, 000	2, 703, 470, 000 2, 737, 880, 000 3, 317, 100, 000	780, 330, 000 921, 310, 000	3, 483, 800, 000 3, 659, 190, 000	4, 138, 500, 00 4, 647, 290, 00
922 923	1, 511, 930, 000	3, 317, 100, 000	1, 157, 470, 000	4 474 570 000	5, 986, 500, 000
924	1, 233, 370, 000	2, 898, 630, 000	1, 173, 800, 000	4, 072, 430, 000	" nor one on
925	1, 382, 155, 000	3, 058, 680, 000	1 1, 236, 795, 000	4, 295, 475, 000	5, 677, 630, 000
926	1, 405, 345, 000 1, 220, 633, 000	3, 541, 916, 000 3, 060, 047, 000	1, 266, 339, 000	4,808,255,000	5 530 000 000
927 928	1, 288, 290, 000	2, 884, 962, 000	1, 249, 320, 000 1, 211, 948, 000	4, 096, 910, 000	5, 385, 200, 000
929	1, 480, 390, 000 985, 790, 000	2, 884, 962, 000 3, 190, 527, 000	1, 216, 683, 000	4, 407, 210, 000	5, 887, 600, 000
930		2, 764, 500, 000	1, 014, 510, 000	4, 474, 570, 000 4, 295, 475, 000 4, 295, 475, 000 4, 309, 367, 000 4, 096, 910, 000 4, 407, 210, 000 3, 779, 010, 000	5, 305, 800, 000 5, 677, 630, 000 6, 213, 600, 000 5, 530, 000, 000 5, 385, 200, 000 5, 887, 600, 000 4, 764, 800, 000
931	569, 790, 000 285, 875, 000 417, 065, 000	1, 892, 400, 000 1, 743, 400, 000	704, 410, 000	2, 596, 810, 000 2, 175, 825, 000	3, 166, 600, 000 2, 461, 700, 000
932 933	417, 065, 000	1, 683, 400, 000	432, 425, 000 454, 635, 000	2, 138, 035, 000	2, 555, 100, 000
933 934 935	548, 934, 000	1, 683, 400, 000 2, 233, 300, 000	543, 166, 000	2, 776, 466, 000	3, 325, 400, 000
935	733, 130, 000	2, 330, 000, 000	586, 870, 000	2 916 870 000	3, 650, 000, 000
936	1, 081, 600, 000 1, 468, 200, 000	2, 759, 200, 000 3, 200, 500, 000	716, 000, 000 744, 700, 000	3, 475, 200, 000 3, 945, 200, 000	4, 556, 800, 000 5, 413, 400, 000
937 938	892, 400, 000	2, 820, 300, 000	650, 200, 000	3, 470, 500, 000	4, 362, 900, 000
939 3	1, 291, 000, 000	2, 818, 600, 000	764, 400, 000	3, 583, 000, 000	5, 413, 400, 000 4, 362, 900, 000 4, 874, 000, 000
Grand total	44, 731, 627, 000	80, 773, 252, 000	27, 846, 410, 000	108, 619, 662, 000	153, 351, 289, 000

Figures for earlier years not available.
 Subject to revision.

² Coal, natural gas, natural gasoline, petroleum.

The sum of the following State totals does not reach the total for the United States given in the preceding table partly because figures for certain of the products included in the United States total are not available by States of origin. This fact is brought out in the opening

text of this chapter and in the second table following.

In addition, there are many factors (the more important discussed in the opening text) that account for the disagreement between the sum of the State totals and the grand total for the United States, by products. Chief among these are: (1) The use of iron ore values in State totals and pig iron values in United States total; (2) the use of mine figures for gold, silver, copper, lead, and zinc in the State totals and mint and smelter figures (supplemented by the value of byproduct sulfuric acid from copper and zinc smelting and zinc roasting and the value of zinc and lead pigments made in large part direct from ores) in the United States total; and (3) the inclusion of estimates in the United States total for a few products for which no canvass has been conducted for many years and for which no estimate by States is made.

Many other less important differences are involved, but both State and United States totals are as complete and definite as seems possible with the data available. The practice is consistent from year to year, and it is believed that the reader can determine readily just what minerals are covered by the total concerned.

In every table each mineral produced is listed, and all figures are shown except those that the Bureau of Mines is not at liberty to

publish.

STATISTICAL SUMMARY OF MINERAL PRODUCTION

Value of mineral products of the United States, 1936-38, by States 1

State	1936	1937	1938
labama	\$44, 752, 688	\$53, 518, 993	\$46, 296, 29
laska	23, 737, 714	27, 927, 958	27, 664, 14
Arizona	60, 532, 996	94, 564, 494	60, 756, 25
rkansas	21, 296, 783	25, 578, 393	29, 395, 08
alifornia	437, 565, 809	476, 880, 603	489, 948, 80
Colorado	56, 214, 827	67, 338, 548	60, 369, 44
Connecticut.	3, 317, 494	3, 689, 554	3, 059, 68
Delaware	444, 093	397, 362	320, 6
District of Columbia	547, 576	522, 687	568, 7
Plorida	12, 973, 243	13, 811, 958	12, 866, 9
deorgia	11, 756, 592	12, 584, 060	11, 598, 4
daho	29, 965, 964	40, 633, 119	31, 738, 6
	117, 916, 128	133, 437, 554	130, 155, 0
llinois	52, 281, 539	54, 886, 756	47, 892, 30
ndiana	28, 359, 140	26, 941, 350	24, 794, 0
0W8			129, 675, 4
Xansas	121, 689, 562 113, 435, 307	154, 376, 403 127, 423, 680	106, 654, 9
Centucky			
ouisiana	153, 358, 397	182, 118, 905	172, 306, 7
Maine	3, 423, 353	4, 129, 391	3, 548, 6
Maryland	11, 157, 550	10, 634, 854	9, 407, 7
Aassachusetts	7, 559, 253	7, 813, 345	6, 666, 2
Aichigan	100, 646, 492	119, 167, 573	81, 380, 6
Minnesota	94, 568, 991	152, 107, 070	51, 425, 2
Mississippi	3, 846, 104	4, 821, 950	5, 209, 5
Missouri	41, 350, 860	52, 446, 272	39, 560, 7
Montana	65, 569, 150	82, 086, 815	48, 602, 5
Vebraska	3, 843, 562	4, 837, 809	4, 028, 7
Nevada	32, 693, 129	38, 871, 816	27, 031, 2
New Hampshire	1, 182, 055	1, 219, 869	1, 146, 6
New Jersey	24, 421, 046	31, 467, 931	24, 408, 5
New Mexico	45, 942, 006	72, 855, 745	63, 568, 9
New York	71, 647, 775	77, 665, 874	73, 217, 4
North Carolina	9, 955, 519	11, 160, 444	14, 959, 2
North Dakota	2, 902, 453	2, 873, 011	2, 653, 4
Ohio	122, 684, 043	131, 025, 104	104, 812, 5
Oklahoma	305, 191, 649	367, 444, 222	272, 860, 0
Oregon	7, 080, 975	6, 609, 710	7, 536, 0
Pennsylvania	599, 457, 486	599, 817, 364	472, 773, 3
Rhode Island	929, 103	862, 710	911, 5
outh Carolina	3, 432, 662	4, 022, 325	4, 364, 0
outh Dakota	23, 221, 620	23, 472, 873	23, 583, 3
ennessee	31, 121, 865	34, 893, 847	32, 428, 5
'exas	638, 643, 488	813, 290, 605	740, 147, 4
Jtah	61, 209, 302	105, 652, 422	59, 236, 3
	6, 225, 396	7, 042, 547	6, 439, 5
Termont	37, 295, 168	46, 019, 085	42, 370, 1
Irginia		26, 658, 257	21, 167, 0
Vashington	22, 921, 456		21, 167, 0 254, 995, 3
Vest Virginia	271, 501, 941	306, 590, 947	
Visconsin	13, 277, 983	15, 239, 524	10, 636, 7
Vyoming	34, 498, 261	41, 087, 908	37, 364, 3

¹ In this table iron ore, not pig iron, is taken as the basis of iron valuation, and for other metals mine production (recoverable content of metals) is the basis. State totals for 1939 not yet available.

nk	Dun dan sh	Principal producing States ¹			
ue	Product	In order of quantity	In order of value		
14	Aluminum	New York, Tennessee, North Carolina	Rank same as for quantity.		
0	Antimonial lead	Not separable by States	Not separable by States.		
	Antimony ore	Idaho, Alaska, Čalifornia, Nevada	Alaska, Idaho, California, Nevada.		
61	Arsenious oxide	Montana, Utah, Idaho	Rank same as for quantity.		
69	Asbestos	Vermont, Arizona, Maryland	Do.		
	Asphalt:	Total only and a second of the			
35	Native	Kentucky, Texas, Alabama, Oklahoma	Kentucky, Utah, Texas, Oklahoma.		
18	Oil	Not separable by States	Not separable by States.		
	Barite (crude)	Missouri, Georgia, California, Tennessee	Rank same as for quantity.		
	Bauxite	Arkansas, Alabama, Georgia	Do		
	Bismuth	Not separable by States.	Not separable by States.		
90	Bitumen (natural sulfonated)	Utah	Rank same as for quantity.		
	Borates.	California	Do.		
28	Bromine.	North Carolina, Michigan, California, West Virginia	To The		
	Cadmium	Not separable by States.			
	Cadmium compounds	dodo	Do.		
48	Calcium-magnesium chloride	Michigan, West Virginia, Ohio	Rank same as for quantity.		
	Cement	Pennsylvania California Michigan Texas	Pennsylvania, California, Texas, Michigan.		
	Chats	Pennsylvania, California, Michigan, Texas Oklahoma, Missouri, Kansas	Rank same as for quantity.		
	Chromite	California	Do.		
	Clay:	V WIII VIII WILLIAM TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL	D0.		
10	Products (other than pottery and re-		Ohio, Pennsylvania, California, Illinois.		
-0	fractories).		omo, i omojivana, odmorna, imios.		
26	Raw (sold by producers)	Georgia, Pennsylvania, California, Ohio	Georgia, Pennsylvania, California, Missouri.		
2	Coal:	Goodbay 1 oming 1 variety outstand, omio	Goorgia, I omisjivama, Camornia, Friesodii.		
- 1	Bituminous	West Virginia, Pennsylvania, Illinois, Kentucky	Rank same as for quantity.		
- 1	Pennsylvania anthracite	Ponnsylvania	Do.		
6	Coke	Pennsylvania, New York, Ohio, Alahama	Pennsylvania, New York, Ohio, Indiana.		
	Copper	Arizona, Utah, Montana, Michigan	Rank same as for quantity.		
47	Diatomite	Pennsylvania, New York, Ohio, Alabama Arizona, Utah, Montana, Michigan California, Oregon, Washington, Nevada.	California, Oregon, Washington, New York.		
52	Feldspar (crude)	North Carolina, South Dakota, Colorado, New Hampshire Pennsylvania, New York, Ohio, West Virginia	North Carolina, New Hampshire, South Dakota, Colorad		
15	Ferro-alloys	Pennsylvania, New York, Ohio, West, Virginia	Pennsylvania, New York, West Virginia, Ohio.		
88	Flint lining for tube mills	Minnesota.	Rank same as for quantity.		
42	Fluorspar	Illinois, Kentucky, New Mexico, Nevada			
	Fuller's earth	Georgia, Texas, Illinois, Florida	Georgia, Texas, Florida, Illinois,		
	Garnet (abrasive)	New York, North Carolina, New Hampshire	Do. Georgia, Texas, Florida, Illinois, New York, New Hampshire, North Carolina		
	Gems and precious stones	No canvass for 1938	No canvass for 1938.		
	Gold	California, Alaska, South Dakota, Colorado	Rank same as for quantity.		
	Graphite:	Cultiviation interest pour pour pour contract co	Taurin parity an lot demitting.		
-	Amorphous	Nevada	Do.		
- 1	Crystallina	New York, Georgia	Do.		
70	OI JOURNAL VIII	Ohio, West Virginia, Washington	Do.		

33	Gypsum (crude)	New York, Michigan, Iowa, Texas	New York, Michigan, Iowa, Nevada.
77	Helium.	TexasCalifornia	Rank same as for quantity.
67	Iodine (natural)	California	Do.
	Iron:	351 4 433 - 35131 - 30 3	ner
13	Ore	Minnesota, Alabama, Michigan, Pennsylvania	Minnesota, Michigan, Alabama, Pennsylvania.
4	Pig		Pennsylvania, Ohio, Indiana, Illinois.
55	Sinter	Tennessee	Rank same as for quantity.
(4)	Kyanite	No figures available	No figures available.
`19	Lead	Missouri, Idaho, Utah, Oklahoma	Rank same as for quantity.
21	Lime	Ohio, Pennsylvania, Missouri, West Virginia	Ohio, Pennsylvania, Missouri, Virginia.
81	Lithium minerals	South Dakota, California	California, South Dakota.
56	Magnesite (crude)	Washington, California	Rank same as for quantity.
49	Magnesium	Michigan	Do.
43	Magnesium salts (natural)	Michigan, Nevada, California, Washington	Michigan, California, Nevada, Washington.
58	Manganese ore	Montana, Tennessee, Georgia, Arkansas Minnesota, Michigan, New Mexico, Arkansas	Montana, Tennessee, Arkansas, Georgia.
54	Manganiferous ore	Minnesota, Michigan, New Mexico, Arkansas	Rank same as for quantity.
78	Manganiferous zinc residuum	New Jersey	Do.
	Marl:	3374 3711-1- 3711-1- 373- 37711-	T D-
82	Calcareous	West Virginia, Virginia, Nevada, Wisconsin	Do.
73	Greensand	New Jersey	Do.
45 60	Mercury	California, Oregon, Texas, Nevada North Carolina, Virginia, California, South Dakota	Do.
60	Mica	North Carolina, Virginia, Calliornia, South Dakota	North Carolina, Connecticut, Virginia, New Hampshire.
	Scrap	North Carolina, Connecticut, New Hampshire, Georgia	North Carolina, Virginia, Connecticut, South Dakota. Rank same as for quantity.
-00	Millstones		Virginia, New York.
89 24	Millstones Mineral paints (zinc and lead pigments)	Pennsylvania, Kansas, Illinois, Indiana	Pennsylvania, Illinois, Kansas, Indiana.
24	Mineral paints (zinc and lead pigments)	No common for 1000	No canvass for 1938.
(8)	Mineral waters	No canvass for 1938	Rank same as for quantity.
25	Molybdenum Natural gas	Colorado, Utah, Arizona, New Mexico	Rank same as for quantity.
.3	Natural gasoline	Texas, California, Oklahoma, Louisiana.	Texas, California, West Virginia, Louisiana. California, Texas, Oklahoma, Louisiana.
11 66	Nickel	Not separable by States.	Not separable by States.
74	Oilstones, etc	Ohio Now Hampshire Indiana Arkanga	Ohio, Arkansas, New Hampshire, Indiana.
	Olivine	Ohio, New Hampshire, Indiana, Arkansas No figures available	No figures available.
(1)	Onen (omade) etc.	I NO ligures available	140 ligures avaliable.
19	Ores (crude), etc.:	Arizona, Utah, Nevada, Michigan	Value not eveilable
	Dry and siliceous (gold and silver)	Alegha Colifornia Navada South Dalzata	Do.
	Lead	Alaska, California, Nevada, South Dakota	Do. Do.
	Lead-copper	New Mexico, Arizona, Colorado	Do. Do.
	Zinc		Do.
	Zing-gonnov	Arizona.	
	Zinc-copper Zinc-lead	Oklahoma Kansas Idaha Virginia	Do.
65	Peat.	Oklahoma, Kansas, Idaho, Virginia New York, New Jersey, Michigan, California	Rank same as for quantity.
87	Pebbles for grinding	California. Minnesota	Minnesota, California.
1	Petroleum		Rank same as for quantity.
25	Phoenhata rock	Florida Tennessee Montana Idaho	Florida, Tennessee, Idaho, Montana.
46	Platinum and allied metals	Florida, Tennessee, Montana, Idaho	Rank same as for quantity.
27	Potessium salts	New Mexico, California, Maryland, Utah	Do.
63	Pumica	Kansas, California, Nebraska, Oklahoma	Kansas, California, New Mexico, Nebraska,
41	Puritag	New Mexico, California, Maryland, Utah Kansas, California, Nebraska, Oklahoma Tennessee, Virginia, New York, California	Tennessee, Virginia, California, New York.
110	ank of States in metal production (except al	uminum ferro-alloys, and nig iron) arranged according to mine	renorts, not smalter output.

Rank of States in metal production (except aluminum, ferro-alloys, and pig iron) arranged according to mine reports, not smelter output.

Separate figures for antimonial lead from primary sources not available.

No canvass for 1938.

No figures available.

nk	Product	Principal producing States				
ue	Tiodass	In order of quantity	In order of value			
22	Salt	Michigan, New York, Ohio, Louisiana	Michigan, New York, Louisiana, Kansas.			
12	Sand and gravel	New York, Illinois, California, Michigan	California, New York, Pennsylvania, Illinois.			
50	Sand-lime brick	New York, Massachusetts, Minnesota, Michigan	New York, Massachusetts, Michigan, Minnesota.			
68 l	Selenium	Not separable by States	Not separable by States.			
77	Silica (quartz)	Wisconsin, Ohio, California, Tennessee	Wisconsin, California, Ohio, North Carolina.			
14	Silica sand and sandstone (ground)	Illinois, New Jersey, Pennsylvania, Ohio	Illinois, New Jersey, West Virginia, Ohio.			
17	Silver	Idaho, Utah, Colorado, Arizona	Rank same as for quantity.			
30	Slate	L	Pennsylvania, Vermont, New York, Virginia.			
29	Sodium salts (other than NaCl) (natural)	California, Texas, Wyoming, Utah	Rank same as for quantity			
8	Stone.	Pennsylvania, New York, Ohio, Illinois	Do.			
20	Sulfur	Texas, Louisiana, California, Utah	Do.			
31	Sulfuric acid from copper and zinc smelters	Pennsylvania, New York, Öhio, Illinois. Texas, Louisiana, California, Utah Pennsylvania, Illinois, Tennessee, Arizona	Do.			
- 1	and roasters and from roasting of high-					
	_sulfide gold and silver concentrates.					
37	Talc and ground soapstone 6	New York, Vermont, California, North Carolina	New York, California, Vermont, North Carolina.			
84	Tantalum ore	South Dakota, New Mexico, Wyoming	Rank same as for quantity.			
33	Tellurium	Not separable by States	. Not separable by States.			
76	Tin	Alaska, South Dakota	Rank same as for quantity.			
ا ہے	Titanium ore:	Virginia				
75	Ilmenite	Virginia	. <u>D</u> o.			
64	Rutile	Virginia, Arkansas	. Do.			
62	Tripoli	Illinois, Missouri, Oklahoma, Arkansas	Missouri, Illinois, Oklahoma, Arkansas.			
34	Tungsten ore Uranium and vanadium ores	Nevada, California, Washington, Colorado	Rank same as for quantity.			
51	Vermiculite	Arizona, Colorado, Utah, Nevada	Colorado, Utah, Arizona, Nevada.			
16	Vermiculite	Montana, Colorado, Wyoming, North Carolina	Rank same as for quantity.			
10	Zinc	Oklahoma, New Jersey, Kansas, Idaho	New Jersey, Oklahoma, Kansas, Idaho.			

⁶ Exclusive of soapstone used as dimension stone (all from Virginia), which is included in figures for stone.

States and their principal mineral products in 1938 1

State	Rank	Principal mineral products in order of value
labama	20	Coal, iron ore, cement, stone.
laska	27	Gold, copper, coal, silver.
rizona	14	Copper, gold, silver, lead.
rkansas	26	Petroleum, coal, natural gas, bauxite.
California	2	Petroleum, natural gas, gold, natural gasoline.
Colorado	15	Coal, molybdenum, gold, silver.
Connecticut	45	Stone, clay products, sand and gravel, lime.
Delaware	50	Clay products, stone, sand and gravel, raw clay.
District of Columbia	49	Clay products, stone.
lorida	34	Phosphate rock, cement, stone, sand and gravel.
lorida	35	Stone, raw clay, clay products, cement.
	25	Silver, lead, zinc, gold.
daho	7	Coal, petroleum, stone, cement.
llinois	19	Coal, cement, stone, clay products.
ndiana	29	Do.
owa		
Cansas	8	Petroleum, natural gas, zinc, coal.
Centucky	9	Coal, natural gas, petroleum, stone.
ouisiana	6	Petroleum, natural gas, sulfur, natural gasoline.
Iaine	44	Stone, sand and gravel, cement, lime.
Iaryland	37	Coal, sand and gravel, cement, clay products.
Iassachusetts	39	Stone, sand and gravel, lime, clay products.
lichigan	11	Petroleum, iron ore, copper, cement.
Ainnesota	17	Iron ore, stone, sand and gravel, cement.
Aississippi	41	Natural gas, sand and gravel, clay products, raw clay.
Aissouri	22	Lead, cement, coal, stone.
Montana	18	Copper, gold, natural gas, petroleum.
Vebraska	43	Cement, sand and gravel, stone, clay products.
Vevada	28	Gold, copper, silver, tungsten ore.
New Hampshire	47	Stone, clay products, sand and gravel, feldspar.
lew Jersey	30	Zinc, clay products, stone, sand and gravel.
New Mexico	13	Petroleum, natural gas, potassium salts, copper.
New York	12	Natural gas, stone, petroleum, cement.
North Carolina	33	Stone, bromine, clay products, sand and gravel.
North Dakota	46	Coal, sand and gravel, clay products, natural gas.
Ohio	10	Coal, clay products, natural gas, stone.
klahoma	4	Petroleum, natural gas, natural gasoline, zinc.
Oregon	38	Gold, stone, cement, sand and gravel.
Pennsylvania	. 3	Coal, petroleum, natural gas, cement.
Rhode Island	48	Stone, sand and gravel, clay products, lime.
South Carolina	42	Stone, clay products, raw clay, gold.
outh Dakota	31	Gold, stone, cement, sand and gravel.
Cennessee		Coal, cement, stone, phosphate rock.
Texas	1	Petroleum, natural gas, sulfur, natural gasoline.
		Copper, gold, coal, silver.
Utah		Stone, slate, sand and gravel, lime.
Vermont	21	Coal, stone, cement, zinc.
Virginia		Coal, stone, cement, zinc. Coal, cement, sand and gravel, gold.
Washington		Coal, natural gas, petroleum, stone.
West Virginia	5	Chang and and ground iron ore coment
Wisconsin.	36	Stone, sand and gravel, iron ore, cement.
Wyoming	23	Petroleum, coal, natural gas, natural gasoline.

¹ In this table iron ore, not pig iron, is taken as the basis of iron valuation, and for other metals mine production (recoverable content of metals) is the basis.

Prices of gold, silver, copper, lead, and zinc, 1932-39 1

Yaer	Gold 2	Silver 3	Copper 4	Lead 4	Zine 4
1932 1933 1934 1935 1936 1936 1937 1938	Per fine ounce \$ \$20.67+ 25.56 34.95 35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0. 282 . 350 6. 346+ . 71875 . 7745 . 7735 6. 646+ 7. 678+	Per pound \$0.063 .064 .080 .083 .092 .121 .098 .104	Per pound \$0.030 .037 .037 .040 .046 .059 .046 .047	Per pound \$0.030 .042 .043 .044 .050 .065 .048

¹ Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ per fine ounce. For table of prices for silver, copper, lead, and zinc from 1850 to 1931, by years, see Mineral Resources, 1931, pt. 1, p. A.115.

¹ 1932: Legal coinage value; 1933-34: Yearly average weighted Government price; 1935-39: Price under authority of Gold Reserve Act of Jan. 31, 1934.

¹ 1932-33: Average New York price for bar silver; 1934 and 1938-39: Treasury buying price for newly mined silver; 1935-37: Yearly average weighted Treasury buying price for newly mined silver.

¹ Yearly average weighted price of all grades of primary metal sold by producers.

¹ \$0.67878787.

STATE TABLES

Mineral production of Alabama, 1937-38

	19	037	1938	
Product	Quantity	Value	Quantity	Value
Asphalt (native) short tons Bauxite long tons. Cement barrels Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons. Coal do Coke do Copper pounds. Ferro-alloys long tons. Gold troy ounces. Iron: Ore long tons. Pig do Lime short tons. Manganiferous ore do Mineral waters gallons sold Ore (dry and siliceous) (gold and silver) short tons. Sand and gravel Stone short tons. Miscellaneous 10	2 4, 403, 459 76, 584 4 12, 440, 322 4, 259, 771 7, 000 20, 470 2, 460 6, 350, 316 2, 528, 785 176, 085 428 (7) 20, 173 1, 489, 131 1, 489, 131	\$ 42, 188, 993 964, 400 8, 448 2, 884 (7) (8)	11, 061, 493 3, 378, 044 19, 446 41 4, 281, 332 1, 990, 342 151, 937 202	(1) (1) (2) (1) (1) (2) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
Total value, eliminating duplications		53, 518, 993		46, 296, 293

1 Value included under "Miscellaneous."
2 Exclusive of puzzolan, value for which is included under "Miscellaneous."
3 Figures obtained through cooperation with Bureau of the Census.
4 According to Bituminous Coal Division.
5 Value is estimated from various sources and includes selling expenses.
6 Value not included in total value for State.
7 No canvass.
8 Not valued as ore; value of recoverable metal content included under the metals.
6 Exclusive of dimension limestone, value for which is included under "Miscellaneous."
10 Includes minerals indicated by "1", "2", and "9" above.

Mineral production of Alaska, 1937-38

	19	37	1938	
Product	Quantity	Value	Quantity	Value
Antimony ore (concentrates)short tons_	(1)	(1)	(1)	(1) (2)
Arsenic do	⁽²⁾ 3 131, 600	³ \$552, 700	³ 159, 230	* \$620, 900
Copperpounds_	34, 672, 000	4, 195, 312	29, 098, 000	2, 851, 604
Copperpounds Goldtroy ounces	627, 940	21, 977, 900	664, 973	23, 274, 055
Leadshort tons	823	97, 114	994	91, 448
Mercuryflasks (76 pounds)			8	604
Ores (crude), etc.: Coppershort tons_	120 070		00 174	(4)
Dry and siliceous (gold and silver)do	139, 279 4, 580, 923	(4) (4)	89, 174 4, 767, 545	(4) (4)
Platinum and allied metalstroy ounces.	5, 431	313, 367	2, 390	96, 693
Sand and gravelshort tons_	(1)	(1)	(1)	(1)
Silvertroy ounces	494, 340	382, 372	479, 853	310. 208
Stoneshort tons	5 38, 450	5 59, 845	189, 090	204, 232
Fin (metallic equivalent)do	186	202, 300	105	89, 100
Miscellaneous 6		147, 048		125, 302
Total value, eliminating duplications		27, 927, 958		27, 664, 146

1 Value included under "Miscellaneous."
2 Figures not available.
3 According to the Alaskan Branch of the Geological Survey.
4 Not valued as ore; value of recoverable metal content included under the metals.
5 Exclusive of dimension unclassified stone, value for which is included under "Miscellaneous."
6 Includes mineral indicated by "1" and "6" above.

Mineral production of Arizona, 1937-38

	, 1	1937	1	938
Product	Quantity	Value	Quantity	Value
Asbestos short tons abort tons do do do	648	\$7 6, 059	942 (¹)	\$31, 063 (1)
Clay: Products (other than pottery and refractories) Raw (sold by producers)short tons	(1) (1 3)	² 209, 631	(1) (1 8)	2 180, 305 (1)
Coal do do Copper pounds long tons l	576, 956, 000	69, 811, 676 (1) (1)	421, 594, 000	41, 316, 212
Fluorspar short tons Short	332, 694	(8) 11, 644, 290	1, 093 305, 043	(5) 10, 676, 505
Gypsum (crude)snort tons_ Leaddo	12, 354 54, 789	(1) 1, 457, 772 466, 098	10, 571 39, 568	972, 532 353, 224
Mercury flasks (76 pounds) Mica, scrap short tons Molybdenum pounds	1, 173, 942	3, 337 (1) (1)	(¹) 1, 061, 995	(1) (1)
Ores (crude), etc.: Coppershort tons_ Dry and siliceous (gold and silver)do	804, 949	(6) (6) (6)	13, 047, 356 928, 707	(6) (6)
Leaddodo Lead-copperdodo Zincdo	59 91	(6)	6, 072 201 160	(6) (6) (6) (6) (6)
Zine-copper do Zine-lead do Sand and gravel do Sand-lime brick thousands of brick	212, 467	(6) 632, 354	32, 974 187, 694 1, 184, 965	(6) 549, 294 (1 2)
Silver slove tons tons troy ounces.	9, 422, 552	(1 2) (1) 7, 288, 344	(1 2) (1) 7, 479, 153	(1) 4, 835, 00
Stoneshort tons Sulfuric acid 7do Tungsten ore (60-percent concentrates)do	(1 8) 349	983, 073 (1 8) (1)	431, 310 (1 8) 37	337, 078 (1 8) 30, 86
Vanadium oresdodo Zincdo Miscellaneous ⁶	1 (1)	653, 380 1, 878, 418		(1) 558, 14 1, 406, 99
Total value, eliminating duplications		94, 564, 494		60, 756, 25

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 No canvass.
6 Not valued as ore; value of recoverable metal content included under the metals.
7 From copper smelting.
8 Value not included in total value for State.
9 Includes minerals indicated by "1" above.

Mineral production of Arkansas, 1937-38

Product	193	37	1938	
Troduce	Quantity	Value	Quantity	Value
Bauxite long tons Cement barrels Clay:	(1)	\$2, 322, 861 (¹)	293, 280 (¹)	\$1, 679, 663 (¹)
Products (other than pottery and refractories) Raw (sold by producers) short tons. Coal do Gems and precious stones.	(1)	² 729, 920 (1) ⁴ 5, 333, 000	(1) 3 1, 197, 047	² 656, 637 (1) 4 4, 013, 000
Iron ore sold for magnetslong tons Leadshort tonsshort tons	(1) 40	(1)	(1) 2 7	(1) (1) (1)
Manganese ore long tons Manganiferous ore do Mercury flasks (76 pounds) Mineral waters gallons sold	7 500	(1) (1) (1) (5)	2, 987 3, 477 (1) (5)	(1) (1) (1) (5)
Natural gasM cubic feetM cubic feet	9, 690, 000 11, 285, 000 47	1, 984, 000	11, 301, 000 25, 648, 000 41	2, 168, 000 905, 000 43, 77
Lead do Zinc do harrels	(6) 11, 764, 000	(7) (7) 11, 400, 000	(6) (6) 18, 180, 000	(7) (7) 16, 900, 000
Sand and gravel	3, 370, 634 476, 370	757, 162 (¹) 485, 685	1, 697, 600 8 308, 760	779, 219 (1) 8 293, 497 (1)
Fripoli dodo	(1)	(1) 31, 330 1, 908, 250	(1) (1) 152	(1) 14, 59 1, 941, 05
Total value, eliminating duplications		25, 578, 393		29, 395, 08

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 No canvass.
5 Figures not available.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Exclusive of unclassified stone, value for which is included under "Miscellaneous."
9 Includes minerals indicated by "!" and "9" above.

Mineral production of California, 1937-38

	19	37	1938		
Product	Quantity	Value	Quantity	Value	
Antimony ore (concentrates)short tons	15	(1)	(1) (1)	(1)	
	(1) (1)	8		(1)	
Baritedo	358, 898	\$7, 232, 897	219, 513	\$4,570,316	
Asphalt (native)	(1)	(1)	(1)	(1)	
Coment	11, 877, 642	17, 900, 739	10, 539, 010	15, 689, 210	
Chromite long tons	2,033	14,008	812	10, 730	
Ulav:				2 6, 636, 860	
Products (other than pottery and refractories)	382, 224	² 7, 925, 875 918, 974	307, 122	966, 438	
Raw (sold by producers)short tons	(1 3)	(14)	301, 122	200, 100	
Coaldo	10, 502, 000	1, 270, 742	1, 612, 000	157, 976	
Cost pounds. Copper pounds. Diatomite short tons. Feldspar (crude) long tons. Fuller's earth short tons. Gems and precious stones	(1)	(1)	(1)	(1) 7, 675	
Feldspar (crude)long tons	1,836	9,660	1,396	7, 675	
Fuller's earthshort tons	(1)	(1)	(1)	(1) (5)	
Gems and precious stones	1 174 570	(5)	1, 311, 129	45, 889, 518	
	1, 174, 578 186, 158	41, 110, 230 355, 834	162, 056	334, 208	
Gypsum (crude) short tons. Iodine pounds.	299, 286	242, 422	(1)	(1)	
Iron ore—	200, 200	,	``		
G-1-1 4- forme and	97	808	28, 378	(1)	
Sold for paintdo	(1) (8)	(1) (6)	(1) (6)	(1)	
Kyaniteshort tons_	(8)	(°) 139, 948	(8)	45, 540	
Lead00	1, 186 71, 965	737, 387	71, 596	712, 388	
Sold for paint	71, 900	101,001	(1)	(1)	
Magnesite do	(1)	(1) (1)	(1)	(1)	
Magnesium salts (natural) pounds.	(1) (1)		(1)	(1)	
Marl, calcareousshort tons_	(1)	(1)	(1)	(1)	
Mercuryflasks (76 pounds)	9, 743	878, 624 (1)	12, 277	926, 548 (1)	
Mica, scrap snort tons do	(1)	(F)	(1) (1 7)	(17)	
Mineral paints (zinc and lead pigments)do	(5)	(5)	(5)	(5)	
Natural gas M cubic feet.	329, 769, 000	91, 089, 000	315, 168, 000	88, 225, 000	
Natural gasoline gallons gallons	623, 894, 000	37, 719, 000	660, 890, 000	41,085,000	
Lithium minerals do Magnesite do Magnesite do Magnesite do Magnesium salts (natural) pounds Marl, calcareous short tons Mercury flasks (76 pounds) Mica, scrap short tons Mineral paints (zinc and lead pigments) do Mineral waters gallons sold Natural gas M cubic feet Natural gas M cubic feet Cores (crude), etc.: Copper short tons Dry and siliceous (gold and silver) do Lead do Zinc-lead do Peat do .		(0)	00.040	/8)	
Coppershort tons_	447, 248 4, 472, 637	(8) (8)	66, 943 4, 580, 462	8	
Dry and siliceous (gold and silver)	5,009	8	844	(8)	
Zina laad do	120	(8)			
Pest do	4,057	23, 131	4, 385	25, 193	
Pebbles for grindingdo	l		(1)	(1)	
Petroleumbarrels	238, 521, 000	242, 100, 000	249, 749, 000	257, 250, 000 38, 349	
Peat	(1) 568	32, 773	944	(1)	
Purnico do	24, 206	124, 970	18, 584	106, 72	
Potassium salts snort tons Pumice do Pyrites long tons Salt (sodium chloride) short tons Sand and gravel do Sand and sandstone (ground) do Silica (quartz) do Silver troy ounces	(1)	(1)	(1)	(1)	
Salt (sodium chloride)short tons_	370, 911	1, 817, 830	349, 856	1, 940, 449	
Sand and graveldo	12, 575, 937	6, 749, 768	11, 895, 272	7, 577, 58	
Sand and sandstone (ground)do	(1) 746	6,072	(1) 1, 494	⁽¹⁾ 20, 809	
Silica (quartz)	2, 888, 265	2, 234, 073	2, 590, 804	1, 674, 86	
Slote	2, 000, 200	39, 694	2,000,001	27, 87	
Ordinar relat (combonates and sulfates) (natural)		00,002		1	
Stone do short tons. Stone long tons Sulfur long tons Sulfuric acid long tons Sulfuric acid long tons Tale and ground soapstone do Tripoli do Tungsten ore (60-percent concentrates) do Jane	182, 609	1,777,266	149,060	1, 514, 400	
Stonedo	8, 356, 260	7, 007, 329	7, 634, 260	6, 632, 719	
Sulfurlong tons	(1) (1 7)	(1) (1 7)	(1)	(17)	
Tole and ground searctone	32, 495	427, 031	30,059	391, 45	
Tripoli do	313	3,756	(1)	(1)	
Tungsten ore (60-percent concentrates) do	577	(1)	839	878, 07	
Zincdodo	20	2,600			
Tingsten ore (60-percent concentrates)		7, 026, 348		6, 743, 47	
Total value, eliminating duplications		476, 880, 603		489, 948, 80	

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 No canvass.
6 Figures not available.
7 Value not included in total value for State.
8 Not valued as ore; value of recoverable metal content included under the metals.
9 From roasting of high-sulfide gold and silver concentrates.
10 Includes minerals indicated by "" above.

Mineral production of Colorado, 1937-38

	19	1937		1938	
Product		r			
	Quantity	Value	Quantity	Value	
Cement barrels	(1)	(1)	(1)	(1)	
Clay: Products (other than pottery and refractories)					
Raw (sold by producers)short tons_		2 \$1, 446, 433		2 \$1, 170, 87	
Coal do producers)	125, 018 3 7, 187, 211	152, 503	102, 817	114, 92	
Coke do	551, 167	4 18, 327, 000	³ 5, 663, 144	4 14, 828, 00	
Conner	21, 868, 000	2, 646, 028	241, 526	(1.5)	
Copper pounds Feldspar (crude) long tons	42, 221	2, 040, 028 178, 148	28, 342, 000	2, 777, 5	
Ferro-alloysdo	(1 5)	(15)	27, 452	104, 6	
Fluorsparshort tons_	7, 883	98, 493	(1.5)	(1.5)	
Fuller's earthdo	(1)	(1)	1,704	(1)	
Gems and precious stones	(-)		(1)	(1)	
Goldtroy ounces	368, 905	12, 911, 675	907 400	10 (0)	
Gypsum (crude)short tons	28, 586	50. 034	367, 468	12, 861, 38	
Iron, piglong tons	(1 5)	(1.5)	21, 591	41, 08	
Leadshort tons	9, 786	1, 154, 748		(1 5)	
Limedo	7, 163	72, 831	9, 455	869, 86	
Manganiferous ore long tons	11, 577	59, 385	9, 564	95, 20	
Mica:	11,077	09, 383	655	(1)	
Scrapshort tons	(1)	(1)	870		
Sheet pounds	8	\mathbb{R}	870	9, 84	
Mineral waters gellone sold	8	6			
Molybdenum pounds Natural gas M cubic feet	23, 566, 481	R	(6) 20, 763, 884	(6) (1)	
Natural gas M cubic feet	3, 186, 000	673, 000			
Natural gasoline gallons	404, 000	16,000	1, 904, 000 386, 000	464, 00	
Ores (crude), etc.:	101,000	10,000	000,000	10, 00	
Coppershort tons_ Dry and siliceous (gold and silver)do	261, 658	(7)	333, 103	(7)	
Dry and siliceous (gold and silver) do	1, 681, 183	Θ	1, 528, 658	X	
Lead do	30, 235	$\langle \gamma \rangle$	19, 646	· X	
Lead-copperdo	537	α	37	\mathcal{X}	
Zinedo	135	(i) (i)	145	\aleph	
Zinc-leaddo	94, 871	70	114, 506	X	
Peatdo	(1)	'n	(1)	Ж	
Petroleumbarrels	1, 605, 000	1, 800, 000	1, 412, 000	1, 540, 00	
Pyriteslong tons	5, 890	(1)	(1)	1, 040, 00	
short tons	0,000	(7)	K	(1)	
and and graveldo	4, 287, 491	1, 986, 015	3, 841, 759	1, 432, 97	
Silvertroy ounces	6, 260, 693	4, 842, 646	7, 932, 095	5, 127, 81	
Stoneshort tons	8 1, 018, 100	4, 842, 646 8 814, 930	897, 270	1, 051, 33	
Sulfur orelong tons	11	(1)	001, 210	1, 001, 00	
l'antalum ore (columbo-tantalite)	(1)	71			
l'ungsten ore (60-percent concentrates) short tons	219	71	240	(1)	
Jranium and vanadium ores do	(1)	(1)	(1)	63	
Vermiculitedo	(1)	71	63	\aleph	
cine do	4, 247	552, 110	4, 553	437, 08	
Miscellaneous 9		28, 139, 619	1,000	21, 266, 79	
M. 4.1					
Total value, eliminating duplications		67, 338, 548		60, 369, 440	

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 Value not included in total value for State.
6 No canvass.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Exclusive of marble and dimension limestone, value for which is included under "Miscellaneous."
9 Includes minerals indicated by "1" and "9" above.

Mineral production of Connecticut, 1937-38

	19	37	1938	
Product	Quantity	Value	Quantity	Value
Clay: Products (other than pottery and refractories) Raw (sold by producers) Short tons. Coke	3, 156 (1 3) (2) (2) (3) (401, 811 (1) 1, 293, 617 5 1, 661, 630	1 \$992, 528 3, 944 (2) (2) (2) 8, 616 43, 288 (4) 573, 643 51, 859, 648 3, 438, 300 -3, 689, 554	3, 381 (2 s) 7, 461 (2) (2) (4) (4) 1, 376, 963 1, 529, 730	(1 2) \$6, 199 (2 3) 45, 153 (2) (2) (4) (4) (4) (7) (7) (7) (8) (8) (9) (1) (1) (1) (1) (1) (1) (2) (4) (3) (4) (4) (5) (7) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9

Figures obtained through cooperation with Bureau of the Census.
 Value included under "Miscellaneous."
 Value not included in total value for State.

- Value for included in rotate the state.
 4 No canvass.
 5 Exclusive of sandstone, value for which is included under "Miscellaneous."
 6 Includes minerals indicated by "2" and "5" above.

Mineral production of Delaware, 1937-38

	193	7	1938	
Product	Quantity	Value	Quantity	Value
Clay: Products (other than pottery and refractories) Raw (sold by producers) Sand and gravel Stone Miscellaneous Total value, eliminating duplications	(1) 83, 994 (1)	(1 2) (1) \$47, 468 (1) 349, 894 397, 362	(1) 108, 875 (1)	2 \$128, 295 (1) 63, 366 (1) 128, 960 320, 621

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 Includes minerals indicated by "1" above.

Mineral production of the District of Columbia, 1937-38

	19	37	1938	
Product	Quantity	Value	Quantity	Value
Clay products (other than pottery and refractories). Stone	(1)	(1 2) (1) \$522,687	(1)	(1 2) (1) \$568, 717
Total value, eliminating duplications		522, 687		568, 717

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 Includes minerals indicated by "!" above.

Mineral production of Florida, 1937-38

Product	19	937	1938	
	Quantity	Value	Quantity	Value
Cement barrels Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons. Diatomite do Fuller's earth do Lime do Mineral waters gallons sold. Peat short tons. Phosphate rock long tons. Sand and gravel short tons. Sand-lime brick thousands of brick stone. Miscellaneous 5	(1) (1) (1) (2) (1) (2) (3) (4) (2) (965, 820 (12) (12) (13) (14) (15) (16) (16) (17) (17) (18) (18) (19) (19) (19) (19) (19) (19) (19) (19	(1) 2 \$132, 898 (1) (1) (1) (17, 929 (8) (1) 9, 142, 985 751, 523 (1 2) 1, 408, 749 2, 197, 874	(1) (1) (1) (1) (1) 19, 638 (3) (1) 2, 707, 335 996, 681	(1) (1 2) (1) (1) (1) (1) (1) (1) (1) (1
Total value, eliminating duplications		13, 811, 958		12, 866, 981

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 No canvass.
 Exclusive of dimension unclassified stone, value for which is included under "Miscellaneous."
 Includes minerals indicated by "1" and "4" above.

Mineral production of Georgia, 1937-38

Product	1937		1938	
Product	Quantity	Value	Quantity	Value
Barite short tons Bauxite long tons Cement barrels Clay:	71, 944 (¹) (¹)	\$400, 687 (1) (1)	64, 304 (1) (1)	\$315, 329 (¹) (¹)
Products (other than pottery and refractories) Raw (sold by producers) short tons. Coal do Dopper pounds	506, 232	² 2, 118, 952 3, 548, 559 (¹ ⁴)	434, 632 (1 3) 70	² 1, 980, 943 3, 339, 918 (¹ ⁴) 7
Fuller's earth short tons. Gems and precious stones Gold troy ounces. Graphite, crystalline pounds.	743	(1) (5) 25, 995	(1) 872 (1)	(1) (5) 30, 520 (1)
Iron ore long tons Kyanite short tons Lime do Manganese ore long tons Manganiferous ore do	(6) 7, 964 689	19, 130 (6) 62, 196 11, 423	9, 221 (6) 7, 046 3, 058	11, 375 (6) 54, 150 46, 443
Mica: d0 Mica: Scrap short tons. Sheet pounds Mineral waters gallons sold Ore (dry and siliceous) (gold and silver) short tons.	9, 537 (1) (1) (5) 1, 406	28, 459 (1) (1) (5) (7)	2,807 (1) (1) (5) (5) 841	(1) (1) (5) (7)
Sand and gravel do Silver troy ounces Slate short tons Talc do Miscellaneous ⁸ do	429, 122 49 1, 737, 760	211, 026 38 (1) 3, 597, 039 148, 177	395, 758 71 1, 465, 680 15, 117	207, 048 46 (1) 3, 581, 319 130, 595
Miscellaneous 8		2, 412, 379		1, 888, 671

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 No canvass.
6 Figures not available.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Includes minerals indicated by "i" above.

STATISTICAL SUMMARY OF MINERAL PRODUCTION

Mineral production of Idaho, 1937-38

	1937		1938	
Product	Quantity	Value	Quantity	Value
Antimony ore (concentrates)	3, 295 (¹) (¹)	(1) (1) (1)	(1) (1) (1)	(1) (1) (1)
Products (other than pottery and refractories) Raw (sold by producers) short tons do do Copper pounds Diatomite short tons Gens and precious stones	(1) (1 8) 4, 464, 000 50	(5)	(1) (1 3) 4, 278, 000 (1)	2 \$127, 516 (1) (1 4) 419, 244 (1) (5)
Gold troy ounces Gypsum (crude) short tons Lead do Lime do Ores (crude), etc.:	(1)	12, 237, 898 (1)	103, 513 (1) 92, 177 (1)	3, 622, 955 (1) 8, 480, 284 (1)
Copper do Dry and siliceous (gold and silver) do Lead do Zinc-lead do Phosphate rock long tons Sand and gravel short tons Silver troy ounces Stone short tons	1, 130, 660 83, 436 1, 722, 201 19, 587, 766 891, 270	(6) (6) 356, 037 728, 988	743, 332 272, 904 982, 746 66, 014 1, 968, 068	(6) (6) (6) 296, 595 721, 357 12, 278, 740 795, 896
Tungsten ore (60-percent concentrates) do	54, 199	7, 045, 870 867, 729 40, 633, 119		4, 226, 880 769, 139 31, 738, 606

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 According to Bituminous Coal Division.
 Value is estimated from various sources and includes selling expenses.
 No canvass.
 No talued as ore; value of recoverable metal content included under the metals.
 Includes minerals indicated by "!" above.

Mineral production of Illinois, 1937-38

· · · · · · · · · · · · · · · · · · ·				
Product	19	937	1938	
Froduct	Quantity	Value	Quantity	Value
Cement barrels	i	1 \$6, 756, 747	1 4, 357, 119	1 \$5, 993, 644
Products (other than pottery and refractories) Raw (sold by producers) Short tons Coal do	161, 537	² 6, 545, 686 339, 706 4 89, 271, 000	94, 770 8 41, 912, 085	3 5, 491, 268 226, 617 4 71, 837, 000
Coke do Fluorspar do Fluorspar, optical ounces	2, 998, 663	5 20, 213, 129 1 730 585	1, 734, 511 35, 368	5 11, 706, 788 751, 227
Fuller's earth. short tons Iron, pig long tons Lead short tons	(6)	⁵ 70, 893, 278	(6) 1, 519, 572	⁽⁶⁾ 5 30, 899, 012
Limedodododododo	142, 122 22, 171	21, 948 1, 039, 087 5 2, 406, 423	175 135, 256 (5 6) (7)	16, 100 965, 836 (⁵ ⁶)
Mineral waters gallons sold Natural gas M cubic feet Natural gasoline gallons Ore (lead and zine) short tons	1, 040, 000 2, 567, 000		1, 169, 000 2, 436, 000	(7) 616, 000 124, 000
Petroleum barrels	7, 499, 000	(8)	24, 075, 000 (6)	30, 100, 000 (6)
Pyrites long tons Sand and gravel short tons Sand and sandstone (ground) do Sliver troy ourses	96, 329	7, 486, 610 575, 251 686	12, 538, 469 66, 583 576	5, 648, 601 418, 881 372
Silver troy ounces Stone short tons Sulfuric acid (60° Baumé) 10 do	142, 206	9 8, 383, 931 5 1, 326, 782	9 8, 528, 440 143, 343	9 7, 335, 844 5 1, 305, 855
Tripolidods.			8, 141	117, 107 2, 754, 664
Total value, eliminating duplications.		133, 437, 554		130, 155, 083

Exclusive of natural cement, value for which is included under "Miscellaneous."

Figures obtained through cooperation with Bureau of the Census.

According to Bituminous Coal Division.

Value is estimated from various sources and includes selling expenses.

Value not included in total value for State.

Value included under "Miscellaneous."

No carvass.

No ore milled in Northern Illinois; lead output of Southern Illinois is byproduct of fluorspar milling.

Exclusive of sandstone, value for which is included under "Miscellaneous."

From zinc smelting.

Il Includes minerals indicated by """, "6", and "9" above.

Mineral production of Indiana, 1937-38

	1937		1938	
Product	Quantity	Value	Quantity	Value
Cement barrels Clay:	(1)	(1)	(1)	(1)
Products (other than pottery and refractories)	41, 369 3 17, 764, 774 5, 467, 061 3, 694, 360 94, 053 (1) (1 551, 000 844, 000 11, 551, 000 844, 000 115 6, 598, 723 (1 3) 7 3, 504, 530	2 \$4, 670, 619 65, 017 4 28, 601, 005 5 32, 655, 355 5 77, 990, 597 552, 243 (1) (9) (9) (9) (9) (9) (140, 000 1, 140, 000 18, 288 3, 227, 514 (179, 362 (199, 397, 891 10, 769, 362		2 \$4, 088, 658 31, 864 4 23, 968, 000 5 18, 278, 201 5 37, 025, 981, 922 (1 5) (9) 734, 000 1, 260, 000 9, 007 2, 958, 473 (1 2) 7 6, 486, 996 9, 304, 405

1 Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 Value not included in total value for State.
6 No canvass.
7 Exclusive of dimension sandstone, value for which is included under "Miscellaneous."
8 Includes minerals indicated by "!" and "!" above.

Mineral production of Iowa, 1937-38

	193	37	193	1938	
Product	Quantity	Value	Quantity	Value	
Cement	4, 598, 453 4, 600 2 3, 637, 054 (4 5) 387, 255 (4 5) (9) (4) 6, 397, 154 4, 294, 310	\$7, 046, 021 1 3, 250, 677 50, 871 3 9, 529, 000 (4 5) 533, 162 (4 5) (9) (2, 225, 103 4, 276, 891 2, 163, 370 26, 941, 350	4, 759, 390 6, 828 2 3, 103, 187 (4 5) 364, 920 (4 5) (6) (6) 6, 994, 246 3, 369, 750	\$7, 327, 048 1 2, 865, 758 3 7, 963, 000 4 95, 856 (4 5) (9) (2, 299, 682 3, 782, 486 1, 142, 004 24, 794, 058	

Figures obtained through cooperation with Bureau of the Census.
 According to Bituminous Coal Division.
 Value is estimated from various sources and includes selling expenses.
 Value included under "Miscellaneous."
 Value not included in total value for State.
 No canvass.
 Includes minarels indicated by "" share.

⁷ Includes minerals indicated by "1" above.

Mineral production of Kansas, 1937-38

Product	1937		1938	
Troduct	Quantity	Value	Quantity	Value
Asphalt (native)	2 3, 506, 684 (3) 5 2, 892, 560 (1) 16, 008 (17) (83, 890, 000 57, 026, 000 3, 526, 600 2, 081, 300 70, 761, 000 38, 438 15, 843 654, 089 2, 495, 196	2 \$5, 482, 851 (3) 4 1, 408, 376 6 5, 612, 000 (1) 1, 888, 944 (2) 30, 376, 000 2, 192, 000 (9) (9) (9) (9) (9) (9) (1) 2, 759, 062 1, 017, 515 10, 4, 763, 980 10, 439, 000 2, 788, 921	(1 7) (8) 75, 203, 000 55, 988, 000 1, 706, 800 2, 044, 500 60, 664, 000 38, 136 17, 757 597, 909 2, 962, 831 10 3, 676, 230 73, 3024	(1) 2 \$4, 949, 018 4 \$79, 595 6 5, 263, 000 (1) 1, 401, 988 (1 7) (27, 485, 000 1, 603, 000 (9) (72, 100, 000 112, 823 (1) 2, 565, 447 1, 117, 053 10 4, 958, 723 7, 010, 304 7, 010, 304 7, 010, 304 7, 010, 407 1,
Total value, eliminating duplications		154, 376, 403		129, 675, 438

1 Value included under "Miscellaneous."

1 Value included under "Miscellaneous."

2 Exclusive of natural cement, value for which is included under "Miscellaneous."

3 Figures not available.

4 Figures obtained through cooperation with Bureau of the Census.

5 According to Bituminous Coal Division.

6 Value is estimated from various sources and includes selling expenses.

7 Value not included in total value for State.

9 Not valued as ore; value of recoverable metal content included under the metals.

10 Exclusive of unclassified stone in 1937 and of dimension sandstone in 1938, value for which is included under "Miscellaneous."

11 Includes minerals indicated by "" "" "" and "" there.

11 Includes minerals indicated by "1", "2", and "10" above.

Mineral production of Kentucky, 1937–38

Product	1937		1938	
110000	Quantity	Value	Quantity	Value
Asphalt (native) short tons Cement barrels Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Coal do Coke do Fluorspar do Fluorspar, optical pounds Iron, pig long tons Lead short tons Lime do Marl, calcareous do Marl, calcareous gallons sold Natural gas M cubic feet Natural gas M cubic feet Natural gasoline gallons Ores (lead and zinc) short tons Stone do Miscellaneous do Miscellaneous do Miscellaneous barrels Stone do Miscellaneous for do Miscellane	(1) 340, 325 3 47, 086, 444 (1 s) 87, 296 50 243, 010 (1) (1) (55, 719, 000 7, 344, 000 (7) 5, 488, 000 1, 100, 682 8 3, 433, 190		148, 330 3 8, 545, 218 (1°) 34, 803 126, 102 101 (1) (9) 46, 163, 000 7, 040, 000 (7) 5, 821, 000 1, 222, 658 8 3, 361, 600 322	(1) (1) (2) 2 \$1, 266, 284 666, 560 4 70, 094, 000 (18) 678, 094 (19) 9, 292 (1) (19) 19, 539, 000 364, 000 (7) 7, 570, 000 962, 508 8 2, 987, 494 30, 912 6, 573, 722

¹ Value included under "Miscellaneous."

1 Value included under "Miscellaneous."

2 Figures obtained through cooperation with Bureau of the Census.

3 According to Bituminous Coal Division.

4 Value is estimated from various sources and includes selling expenses.

5 Value not included in total value for State.

6 No canvass.

7 Figures not available.

8 Exclusive of unclassified stone in 1937 and of sandstone in 1938, value for which is included under Miscellaneous."

9 Includes minerals indicated by "1" and "3" above.

Mineral production of Louisiana, 1937-38

Product	19	37	1938	
Product	Quantity	Value	Quantity	Value
Cement barrels Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Mineral waters gallons sold Natural gas M cubic feet Natural gasoline gallons Petroleum barrels Salt short tons Sand and gravel do Stone do Sulfur long tons Miscellaneous 4	(3) 315, 301, 000 106, 415, 000 90, 924, 000 974, 403 2, 065, 447	(1) 2 \$489, 255 (3) 53, 908, 000 4, 300, 000 110, 300, 000 2, 898, 826 1, 250, 439 (1) 7, 705, 448 1, 266, 937	(1) (3) (283, 899, 000 95, 634, 000 95, 208, 000 958, 186 2, 248, 657 (1) 294, 235	(1) 2 \$547, 478 (1) 47, 991, 000 3, 026, 000 110, 100, 000 2, 775, 384 1, 241, 455 (1) (1) 6, 625, 444
Total value, eliminating duplications		182, 118, 905		172, 306, 761

Mineral production of Maine, 1937-38

Product	1937		1938	
Product	Quantity	Value	Quantity	Value
Cement barrels Clay:	(1)	(1)	(1)	(1)
Products (other than pottery and refractories) Raw (sold by producers) short tons. Feldspar (crude) long tons. Gems and precious stones.	(¹) 20, 191	² \$358, 589 (1) 110, 928	13, 764	2 \$210, 814 68, 047
Mineral waters gallons sold	(1) (1) (3)	8	(1)	(1) (1)
Peat short tons Sand and gravel do Silica (quartz) do	(1) 2, 742, 489 67	(1) 706, 856	(1) 3, 802, 704	(1) 968, 76
Stateshort tons_ Miscellaneous 5short	4 265, 340	388, 521 4 1, 546, 037	91 192, 250	(1) 1, 161, 53
Total value, eliminating duplications		1, 018, 292		1, 139, 199 3, 548, 63

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 No canvass.
 Includes minerals indicated by "1" above.

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 No canvass.
 Exclusive of unclassified stone, value for which is included under "Miscellaneous."
 Includes minerals indicated by "i" and ""above.

Mineral production of Maryland, 1937-38

Product	19	937 1938		
Product	Quantity.	Value	Quantity	Value
Asbestos. Short tons Cement barrels Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Cosle do Coke do Feldspar (crude) long tons Gold troy ounces Iron, pig long tons Lime short tons Mineral waters gallons sold Ore (dry and siliceous) (gold and silver) short tons Potassium salts do Sand and gravel do Silica (quartz) do Silver troy ounces Slate Stone short tons	33, 311 3 1, 548, 980 1, 513, 651 (1) 1, 040 1, 514, 372 59, 575 (9) 2, 000 (1) 2, 441, 612 410 40	(1) (1) (2) \$1, 313, 811 125, 947 4 3, 315, 000 (1) 36, 400 (1, 5) 404, 562 (9) (7) (1) 2, 236, 132 5, 850 (1) 31		(1) (1) 2 \$1, 210, 947 86, 243 4 2, 705, 000 (1) 29, 925 (1 f) 446, 013 (9) (7) (1) 1, 848, 211 6, 000 (1) 16
Total value, eliminating duplications Total value, siminating duplications	(1)	1, 139, 767 (1) 41, 790, 766 10, 634, 854	(1)	28, 491, 24 9, 407, 72

1 Value included under "Miscellaneous."

Figures obtained through cooperation with Bureau of the Census.

According to Bituminous Coal Division.

Value is estimated from various sources and includes selling expenses.

Value not included in total value for State.

6 No canvass.

7 Not valued as ore; value of recoverable metal content included under the metals.
8 Exclusive of marble in 1937 and of crushed sandstone in 1938, value for which is included under "Misallaneous" cellaneous

Includes minerals indicated by "1" and "8" above.

Mineral production of Massachusetts, 1937-38

Deadurat	19	37 193		38	
Product	Quantity	Value	Quantity	Value	
Clay: Products (other than pottery and refractories) Raw (sold by producers) Coke. do Diatomite. do Iron, pig. long tons. Lime. short tons Manganiferous ore. long tons Mineral waters. gallons sold Peat. short tons Sand and gravel. Sand and gravel. do Sand-lime brick. short tons Stilica (quartz) Stone. do Miscellaneous 6 Total value, eliminating duplications.	2, 125 1, 130, 620 (2) (2) (3) 101, 247 (4) (2) 2, 884, 784 2, 613 1 18, 741	1 \$804, 895 17, 868 (2 3) (2) (2 3) 897, 356 (4) (2) 1, 421, 390 12, 448 1 168, 672 5 4, 408, 297 9, 083, 198 7, 813, 345	(1) 864 1, 019, 302 (2) 91, 453 (3) (2) 3, 464, 045 1 15, 047 1 15, 047	1 \$622, 719 12, 150 (2 *) 741, 975 (4) (5) 1, 228, 385 24, 102 1 143, 764 5 3, 865, 042 7, 056, 024 6, 666, 281	

Figures obtained through cooperation with Bureau of the Census.
 Value included under "Miscellaneous."
 Value not included in total value for State.
 No canvass.
 Exclusive of marble in 1937 and of sandstone in 1938, value for which is included under "Miscellaneous."
 Includes minerals indicated by "?" and "3" above.

Mineral production of Michigan, 1937-38

	19	37	1938	i
Product	Quantity	Value	Quantity	Value
Brominepounds_	13, 494, 677	\$2,697,666	12, 430, 679	\$2, 490, 607
Calcium chlorideshort tons_ Cementbarrels_	85, 780 7, 831, 880	1, 213, 985 9, 836, 999	84, 022 7, 192, 511	1, 137, 257 8, 767, 859
Clay: Products (other than pottery and refractories)		1 1, 838, 709	(2)	1 1, 444, 472 (2)
Raw (sold by producers)short tons_ Coaldo	3 562, 262	4 2, 047, 000	3 494, 481	4 1, 860, 000
Cokedo	1 94 928 000	⁵ 13, 816, 401 11, 486, 288	1, 742, 787 93, 486, 000	5 10, 135, 722 9, 161, 628
Gold troy ounces	51	(6) 1,800		(0)
Graphite, amorphous short tons. Gypsum (crude) do	(2)	(2) 896, 947	483, 324	775, 908
Iron:				
Sold to furnaces long tons Sold for paint do	12, 626, 935 1, 118	41, 136, 202	4, 092, 902 147	13, 139, 823 (²)
Pig dodo	886, 602	5 15, 064, 083 351, 681	558, 782 45, 848	5 9, 806, 994 339, 324
Magnesium Dounds		(2)	4, 819, 617	(2)
Magnesium salts (natural): Carbonatedo	(2)	(2) (2)	(2) (2)	(2) (2)
Chloride do Sulfate do Go	(2)	(2) 32, 442	(2)	(2) (3) (2) (2)
Manganiferous ore long tons Marl, calcareous short tons	1,270	553	(2) (6)	(2)
Mineral waters gallons sold M cubic feet M cubic feet	9,080,000	5, 640, 000	10, 165, 000	6,387,000
Natural gasolineganons	2,408,000	103,000	3, 581, 000	107, 000
Coppershort tons	4, 197, 881	(7)	3, 757, 705	(7)
Peat do Detroleum barrels	0,270	28, 832 21, 950, 000	5, 117 18, 745, 000	26, 838 19, 300, 000
Saltshort tons	10, 987, 148	6, 506, 120 4, 430, 584	2, 078, 612 9, 821, 298	6, 151, 154 3, 734, 012
Sand-lime brick troy ounces	1 16, 107 25, 454	1 144, 597 19, 689	1 10, 222 93, 634	1 118, 464 60, 531
Store short tons Miscellaneous 9	8 12, 347, 790	8 6, 553, 610 2, 250, 869	8 7, 900, 370	8 4, 059, 590 2, 319, 135
Total value, eliminating duplications				

¹ Figures obtained through cooperation with Bureau of the Census.
2 Value included under "Miscellaneous."
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 Value not included in total value for State.
6 No canvass.
7 Not valued as ore; value of recoverable metal content included under the metals.
5 Exclusive of sandstone in 1937 and of dimension limestone in 1938, value for which is included under "Miscellaneous."
9 Includes minerals indicated by "9" and "9" above.

MINERALS YEARBOOK, 1940

Mineral production of Minnesota, 1937-38

Product	19	937 1938		38
	Quantity	Value	Quantity	Value
Cement barrels Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Coke do Flint lining for tube mills do Gems and precious stones Iron: Ore long tons Pig do long tons Manganiferous ore long tons Marl, calcareous short tons Mineral waters gallons sold Peat short tons Pebbles for grinding do Sand and gravel do Sand and gravel short tons Miscellaneous 6 Total value, eliminating duplications	3, 116 704, 631 (1) 47, 878, 042 248, 363 (1) 1, 257, 900 340 (1) (1) (1) 7, 781, 830 216, 880	(1) 2 \$962, 572 6, 250 6, 250 7, 5, 611, 287 (1) (1) 141, 542, 594 (1) 3, 451, 795 (290 (1) (1) 1, 905, 441 2 127, 829 5 1, 991, 199 7, 503, 912 152, 107, 070	(1) 540, 447 (1) 14, 535, 744 135, 931 (1) 276, 607 (2) (3) (4) (1) (1) 8, 486, 147 (1.7) 941, 050	(1) 2 \$1, 003, 631 3 4, 495, 555 (1) (4) 44, 361, 534 (1) 726, 449 (1) 1, 586, 836 (1) 1, 914, 056 4, 601, 225 51, 425, 289

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 Value not included in total value for State.
 No canvass.
 Exclusive of marble, value for which is included under "Miscellaneous."
 Includes minerals indicated by "1" and "9" above.

Mineral production of Mississippi, 1937-38

Product	1937		1938	
	Quantity	Value	Quantity	Value
Clay: Products (other than pottery and refractories) Raw (sold by producers)short tons. Fuller's earthdo. Iron orelong tons. Mineral watersgallons sold. Natural gasM cubic feet. Sand and gravelshort tons. Stonedo. Miscellaneous 4do. Total value, eliminating duplications	(2) (2) 97 (3) 13, 348, 000 2, 814, 696 (2)	1 \$623, 023 (2) (2) (2) (2) (3) 3, 041, 000 1, 008, 722 (2) 149, 205 4, 821, 950	(2) (2) (3) 13, 656, 000 3, 236, 675	1 \$605, 311 (2) (2) (2) (3) 3, 210, 000 1, 246, 974 147, 262 5, 209, 547

Figures obtained through cooperation with Bureau of the Census.
 Value included under "Miscellaneous."
 No canvass.
 Includes minerals indicated by "2" above.

Mineral production of Missouri, 1937-38

Dulant	19	37	193	38
Product	Quantity	Value	Quantity	Value
Asphalt (native) short tons. Barite do. Cement barrels. Chats short tons. Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons. Coal do. Coke do. Copper pounds. Iron ore Sold to furnaces long tons. Sold to furnaces short tons. Lime do. Lime do. Mineral paints (zinc and lead pigments) do. Mineral waters gallons sold. Natural gas M cubic feet. Ores (crude), etc.: Lead short tons. Zinc do. Zinc do. Zinc do. Zinc do. Short tons. Sand and gravel short tons. Sand and sandstone (ground) do. Sand-lime brick thousands of brick silver troy ounces short tons. Tripoli do. Tungsten ore (60-percent concentrates) do.	519, 561 3 4, 091, 394 (1 s) 538, 000 19, 897 1, 500 187, 631 426, 514 (1 s) 614 (1 s) 614 (2 s) 614 (3 s) 614 (4 s) 614 (4 s) 614 (5 s) 614 (6 s) 614 (7 s) 615 (8 s) 615 (9 s) 616 (1 s) 617 (1 s) 617	(1) 18,600,458 2,326,928 (1 5) (226,000 (7) (7) (7) (42,000 (1) 2,481,464 (1) (1 2) 138,999 8 4,742,459 (1) 2,678,000	258, 718 2, 436, 118 (19) 20, 671 6, 500 122, 027 298, 151 (19) 1, 369, 000 3, 668, 400 126, 600 353, 000 (1) 28, 828 3, 289, 856 (1) (19) 202, 000 3, 324, 480 (1) (19) 202, 000 3, 61, 200 3, 61, 200 3, 62, 400 1, 200 1, 200 1, 300 1, 200 1,	(1) \$1, 150, 630 6, 871, 120 196, 000 2 1, 910, 630 904, 766 4 6, 814, 000 (1 s) 31, 514 11, 226, 484 1, 724, 140 (1) 819, 000 (7) (7) (7) (7) (1) (1) 1, 126, 484 1, 724, 140 (1) 1, 191, 146 (1) (1) 1, 191, 191, 191, 191, 191, 191, 191, 1
Miscellaneous ⁹		<u> </u>		39, 560, 739

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 Value not included in total value for State.
6 No canvass.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Exclusive of sanstone, value for which is included under "Miscellaneous."
9 Includes minerals indicated by "" and "9" above.

Mineral production of Montana, 1937-38

Deaduct	19	937	19	38
Product	Quantity	Value	Quantity	Value
Arsenious oxideshort tons_	(1)	(1)	(1)	(1)
Asbestosdo	(1)	(1)	1	
Cementbarrels_	(1)	(1)	(1)	(1)
Clay:				1
Products (other than pottery and refractories)		² \$151, 529		2 \$15 4, 684
Raw (sold by producers)short tons_	8, 645	7, 111	(1)	(1)
Coaldo	3 2, 965, 193	4 4, 423, 000	3 2, 732, 050	4 4, 106, 000
Copperpounds Gems and precious stones	289, 056, 000	34, 975, 776	154, 426, 000	15, 133, 748
Told trown our own one	000 070	7, 078, 820		(5)
Graphita arretallina	202, 252	7, 078, 820	203, 313	7, 115, 955
Gold troy ounces Graphite, crystalline pounds Gypsum (crude) short tons		1 8	(1)	(1) •
Leaddodo	17, 957	2, 118, 926	(1) 9, 327	(1)
Limedo		79, 201	(1)	858, 084
Manganese orelong tons		785,129	11,936	(1) 451, 396
Manganiferous ore do	19, 660	114, 692	452	1, 971
Manganiferous ore do	(5)	(5)	(5)	(5)
Natural gas M cubic feet	24, 765, 000	6, 667, 000	21, 216, 000	6, 132, 000
Natural gasoline gallons	2, 296, 000	161,000	1, 768, 000	113, 000
Ores (crude), etc.:	,,	-01,000	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110,000
Coppershort tons_ Dry and siliceous (gold and silver)do	3, 426, 395	(6)	1,607 713	(6)
Dry and siliceous (gold and silver)do	904, 489	(6)	914, 601	(6)
Leaddo	13, 867	(6)	10, 574	(6)
Zincdo	125, 395	(6)	76, 809	(6)
Zinc-leaddodo	427, 863	(6)	114, 769	(6)
Petroleumbarrels	5, 805, 000	7, 300, 000	4, 946, 000	5, 190, 000
Phosphate rocklong tons	50, 834	133, 138	66, 491	155, 917
Pyritesdo	(1)	(1)	(1)	(1)
Sand and gravelshort tons_	4, 601, 999	1, 590, 403	2, 946, 572	1, 064, 274
Silvertroy ounces	11, 812, 093	9, 136, 654	6, 403, 962	4, 139, 935
Stone short tons Γ ungsten ore (60-percent concentrates) do do	7 340, 450	7 439, 785	1, 364,680	1, 717, 417
Vermiculitedodo	14	(1)		
Zincdo	(1) 39, 168		(1) 8, 844	(1)
Miscellaneous 8	39, 108	1 999 911	8,844	849, 024
ALIOOHAHOOUS		1, 002, 811		1, 419, 142
Total value eliminating duplications		82 086 815		48, 602, 547
Total value, eliminating duplications		82, 086, 815		48, 60

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 According to Bituminous Coal Division.
 Value is estimated from various sources and includes selling expenses.

Value is estimated from various sources and includes stating of process.
No canvass.
Not valued as ore; value of recoverable metal content included under the metals.
Exclusive of marble, value for which is included under "Miscellaneous."
Includes minerals indicated by "i" and "" above.

Mineral production of Nebraska, 1937-38

Product	19	37	1938	
Froduct	Quantity	Value	Quantity	Value
Cement barrels Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Mineral waters gallons sold Pumice short tons Sand and gravel do Stone do Miscellaneous	(1) 6, 904 (3) 5, 777 2, 850, 963 763, 710	(1) 2 \$473, 227 8, 371 (3) 38, 130 1, 061, 589 1, 146, 335 2, 110, 157	(1) 16, 019 (3) (1) 2, 928, 904 4 510, 240	(1) 2 \$327, 482 7, 782 (3) (1) 1, 020, 806 4 780, 664 1, 891, 978
Total value, eliminating duplications		4, 837, 809		4, 028, 712

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 No canvass.
 Exclusive of dimension limestone, value for which is included under "Miscellaneous."

Mineral production of Nevada, 1937-38

Antimony ore (concentrates) short tons Barite do Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Copper Doubles Short tons Copper Gode Short tons Platomite short tons Platomite short tons Platomite tons Platomite tons Codems and precious stones Gold troy ounces Graphite, amorphous short tons Gypsum (crude) do Iron ore long tons Kyanite short tons Lead do	(1)	Value	Quantity	Value
Barite	(1)	8000	Value Quantity	1
Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Copperpounds Diatomiteshort tons Fluorspar do. Fuller's earth. do. Gems and precious stones Gold. troy ounces Graphite, amorphous short tons Gypsum (crude) do. Iron ore. long tons Kyanite. short tons	- ' '	\$300	31	\$1,400
Products (other than pottery and refractories) Raw (sold by producers) Short tons Copper pounds Diatomite short tons Fluorspar do Gruller's earth do Gems and precious stones Gold troy ounces Graphite, amorphous short tons Gypsum (crude) do Iron ore long tons Kyanite short tons Lead do	1	(1)	(1)	(1)
Raw (sold by producers) short tons Copper	1	(1 2)		(1.0)
Copper pounds Diatomite short tons Fluorspar do Gems and precious stones do Gold troy ounces Graphite, amorphous short tons Gypsum (crude) do Iron ore long tons Kyanite short tons Lead do	(1)	(1)		(1 2)
Diatomite short tons Fluorspar do . Fuller's earth do . Gems and precious stones Gold troy ounces Graphite, amorphous short tons Gypsum (crude) do . Iron ore long tons Kyanite short tons Lead do .	149, 206, 000	18, 053, 926	92, 338, 000	9, 049, 124
Fluorspar do Fuller's earth do do do do do do do d	275	8, 180	(1)	
Fuller's earth. do. Gems and precious stones Gold. Gold. troy ounces Graphite, amorphous short tons Gypsum (crude) do. Iron ore long tons Kyanite short tons Lead do		(1)	2,909	(1)
Gems and precious stones troy ounces Gold short tons Graphite, amorphous short tons Gypsum (crude) do Iron ore long tons Kyanite short tons Lead do	4, 485	51, 718	5, 984	57, 499
Graphite, amorphous short tons Gypsum (crude) do Iron ore long tons Kyanite short tons Lead do		(8)	0,001	(3)
Gypsum (crude) do Iron ore long tons Kyanite short tons Lead do	281, 332	9, 846, 620	296, 434	10, 375, 190
Iron ore long tons Kyanite short tons Lead do	(1)	(1)	(1)	(1)
Kyaniteshort tons Leaddo	160, 347	268, 638	168, 515	366, 869
Lead		(1)		
		(4)	(4)	(4)
T image		1, 102, 946	4,679	430, 468
Limedo Magnesium oxide (hydrated) (brueite)do	(1)	(1)	(1)	(1)
Manganese ore long tons	(1)	(1)	(1)	
Manganiferous oredo	533	3, 167	43	416
Marl, calcareous short tons	(1)	(1)	(1)	
Mercury flasks (76 pounds)	198	17, 855	336	(1) 25, 358
Mineral watersgallons sold	(3)	(3)	(3)	(3)
			(5)	(6)
Coppershort tons	5, 669, 388	(5)	4, 043, 892	(5)
Dry and siliceous (gold and silver)do	1, 729, 048	(5)	1, 745, 060	(5)
Leaddo	11, 218	(5)	28, 325	(5)
Lead-copperdo		(5)		
Zincdo		(5) (5) (6) (5) (5)		
Zinc-leaddo		(5)	62, 744	(5)
Pumicedo			(1)	(1)
Sand and graveldo	1, 710, 819	785, 947	1, 995, 562	684, 254
Silvertroy ounces. Stoneshort tons.	4,864,750	3, 762, 884	4, 355, 471	2, 815, 658
Sulfur ore long tons		6 66, 217	344, 760	246, 319
Tungsten ore (60-percent concentrates) short tone	2, 153	(1)	1 401	
Tungsten ore (60-percent concentrates) short tons Vanadium ores do	2, 100	(0)	1, 461 7	(1)
Zinc	14, 236	1,850,680	8, 944	858, 624
Miscellaneous 7	-1 11,200			
	1			9 190 100
Total value, eliminating duplications	-	3, 052, 738	0, 311	2, 120, 102
,				2, 120, 102

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 No canvass.
4 Figures not available.
5 Not valued as ore; value of recoverable metal content included under the metals.
6 Exclusive of limestone, value for which is included under "Miscellaneous."
7 Includes minerals indicated by "1" and "6" above.

Mineral production of New Hampshire, 1937-38

Product	19	937	1938	
	Quantity	Value	Quantity	Value
Clay products (other than pottery and refractories)short tonsshort tons	. (0)	1 \$300, 219 (2)		1 \$278, 206
Feldspar (crude) long tons Fluorspar short tons Garnet, abrasive do Gems and precious stones	90 021	155, 925 (2) (2) (3)	25, 555 90 (²)	135, 760 (2) (2) (3)
Mica: Scrap short tons Sheet pounds Mineral waters gallons sold	306 235, 055 (³)	4, 397 20, 119	(2) (2) (3)	(2) (2)
Peat short tons. Sand and gravel do Scythestones do. Silica (quartz) do.	2, 207, 922 (²)	(2) 252, 784 (2)	(2) 2, 495, 207 (2)	(3) (2) 243, 040 (2)
Stone do	71, 090	75 442, 772 43, 578	(2) 53, 790	(²) 444, 537 45, 063
Total value, eliminating duplications		1, 219, 869		1, 146, 606

Figures obtained through cooperation with Bureau of the Census.
 Value included under "Miscellaneous."
 No canvass.

Mineral production of New Jersey, 1937-38

Product -	0	1		1938	
Cement berrels	Quantity	Value	Quantity	Value	
Cement barrels. Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons. Coke do Diatomite do Ferro-alloys. Lime short tons. Manganiferous residuum long tons. Marl, greensand short tons. Mineral waters gallons sold. Ore-(zine) short tons. Ore-(zine) short tons. Marl greensand short tons. Mineral waters gallons sold. Ore-(zine) short tons. Sold. Ore-(zine) short tons. Moreat waters short tons. Moreat waters short tons. Moreat waters short tons. Moreat short tons. Moreat short tons. Moreat short tons. Short tons. Moreat short tons. Short tons. Short tons. Moreat short tons. Short tons. Short tons. Moreat short tons. Morea	97, 978 1, 015, 073 (1) (13) 544, 635 20, 029 115, 998 9, 734 (4) 590, 900 13, 175 4, 187, 492 82, 398 (12) 62, 379, 590 101, 408	(1) 2 \$6, 395, 790 514, 840 (1 3) (1) (1) 2, 474, 087 151, 350 (1) 210, 974 (4) (5) 72, 768 3, 347, 390 430, 743 (1 2) 6 2, 621, 038 13, 461, 309 8, 393, 235		(1) 2 \$5, 210, 105 383, 648 (1 3) 760, 929 145, 076 (1) 152, 000 (4) (5) 67, 550 2, 519, 575 338, 195 (1 2) 2, 678, 766 10, 891, 683 7, 892, 232	

⁴ Includes minerals indicated by "2" above.

¹ Value included under "Miscellaneous."

2 Figures obtained through cooperation with Bureau of the Census.

3 Value not included in total value for State.

4 No canvass.

5 Not valued as ore; value of recoverable metal content included under the metal.

6 Exclusive of sandstone, value for which is included under "Miscellaneous."

7 Value reported for zinc in New Jersey is estimated smelting value of recoverable zinc content of ore after freight, hanlage, smelting, and manufacturing charges are added.

8 Includes minerals indicated by "1" and """ above.

Mineral production of New Mexico, 1937-38

Product	19	37	193	38
roduct	Quantity	Value	Quantity	Value
Asphalt (native)short tons	(1)	(1)	(1)	(1)
Products (other than pottery and refractories)		(1 2)		² \$117, 409
Raw (sold by producers)short tons	23, 571	\$114, 914	13, 908	37, 786
Coaldo	3 1, 714, 955	4 4, 973, 000	8 1, 239, 037	4 3, 406, 000
Copperpounds_ Fluorsparshort tons_	64, 106, 000	7, 756, 826	40, 878, 000	4,006,044
Fluorsparshort tons_	3,324	(1)	4,066	(1)
Gems and precious stones.		(5)		(5)
Goldtroy ounces_	41, 171	1, 440, 985	43, 050	1, 506, 750
Iron orelong tons_	10, 497	(1)	1,826	(1)
Leadshort tons_	6, 512	768, 416	4, 949	455, 308
Limedo	902	8, 900	(1)	(1)
Manganese orelong tons_	878	(1)	560	(1)
Manganiferous oredo	18, 581	(1)	6, 093	(1)
Mica:				,,
Scrapshort tons	(1)	(1)	770	7, 998
Sheetpounds	(1)	(1)	(1)	(1)
Mineral waters gallons sold gallons	(5)	(5)	(5)	(5)
Molybdenum pounds Natural gas M cubic feet	(1)	(1)	(1)	(1)
Natural gas	46, 337, 000	7, 699, 000	50, 706, 000	7, 715, 000
Natural gasolinegallons	38, 253, 000	1, 493, 000	49, 596, 000	1,415,000
Ores (crude), etc.:		, ,		
Copper short tons Dry and siliceous (gold and silver) do	3, 631, 454	(6)	1,904,374	(6)
Dry and siliceous (gold and silver)do	134, 253	(6)	103, 689	(6)
Lead do	1,853	(6) (6)	962	(6)
Lead-copperdo	396	(6)	303	(6)
Zincdo	170, 510	(6)	182, 822	(6)
Zinc-leaddo	252, 626	(6)	217, 707	(8)
Petroleumbarrels_	38, 854, 000	36, 600, 000	35, 759, 000	33, 250, 000
Potassium saltsshort tons_	(1)	(1)	(1)	(1)
Pumicedo	(1)	(1)	(1)	(1)
Saltdo	(1)	(1)	(1)	(1)
Sand and graveldo	1, 686, 727	974, 763	(1)	(1)
Silvertroy ounces_	1, 243, 766	962, 053	1, 229, 860	795, 061
Stoneshort tons_	713, 500	302, 723	7 698, 350	⁷ 438, 284
Tantalum ore (columbo-tantalite)pounds_	(1)	(1)	(1)	(1)
Tin (metallic equivalent)do	(1)	(1)		
Tungsten ore (60-percent concentrates)short tons	(1)	(1)	2	(1)
Zinedo	23, 927	3, 110, 510	28, 236	2, 710, 656
Miscellaneous 8		6, 650, 655		7, 707, 657
Total value, eliminating duplications		72, 855, 745		63, 568, 953

1 Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 No canvass.
6 Not valued as ore; value of recoverable metal content included under the metals.
7 Exclusive of sandstone, value for which is included under "Miscellaneous."
8 Includes minerals indicated by "1" and "1" above.

Mineral production of New York, 1937-38

Dudud	19	937	1938	
Product	Quantity	Value	Quantity	Value
Aluminum pounds Cement barrels	(1 ³) ³ 6, 106, 083	(1 2) 8 \$8, 825, 785	(1 2) 3 5, 720, 922	(1 2) 3 \$7, 893, 270
Clay: Products (other than pottery and refractories) Raw (sold by producers) Short tons Cokedo	6, 465 4, 946, 964	4 5, 435, 096 41, 020 2 29, 853, 516	(¹) 3, 945, 358	4 4, 434, 918 (1) 2 23, 529, 138
Diatomite do Emery do long tons long tons	(1) 320	2, 780	(1)	(1)
Ferro-alloys do Garnet, abrasive short tons Short tons	166, 137 (¹)	² 18, 079, 832 (¹)	(1) 72, 174 (1)	² 7, 699, 520
Artificial pounds Crystalline do Gypsum (crude) short tons	(1 2) 700, 357	1, 107, 175	(1 2) (1) 601, 394	(1 2) (1) 941, 744
Iron: Ore— Sold to furnaceslong tons	(1)	(i)	(1)	(1)
Sold for paint do Pig do Lead short tons Lime do	2, 702, 072 (1) 55, 947	² 55, 789, 609 (1) 438, 151	1, 222, 832 (1) 39, 439	² 25, 450, 764 (1) 302, 360
Millstones gallons sold. Natural gas M cubic feet.	(5) 21, 325, 000	(1) (5) 12, 388, 000	(5) 39, 402, 000	(1) (5) 19, 419, 000
Natural gasolinegallons Ores (crude), etc.: Zincshort tons	33, 000 112, 478	2,000 (6)	27, 000 105, 000	2, 000 (6)
Zinc-lead do Petroleum barrels	352, 392 10, 928 5, 478, 000	(6) 23, 788 14, 140, 000	280, 600 14, 131 5, 045, 000	(%) 79, 297 9 , 550, 000
Pyrites long tons Salt short tons Sand and gravel do Sand-lime brick thousands of brick	74, 834 2, 084, 867 12, 501, 388	(1) 5, 795, 551 6, 487, 234	63, 772 1, 717, 064 13, 566, 370	5, 467, 077 6, 493, 099
Silica (quartz) short tons silver troy ounces	(1 4) (1) 41, 500	(1 4) (1) 32, 100 360, 064	(1 4) (1) 37, 200	(1 4) (1) 24, 048 445, 331
Slate short tons Tale do Zinc do	10, 882, 980 96, 140 32, 690	11, 244, 495 1, 215, 834 4, 249, 700	10, 061, 250 86, 423 29, 896	10, 527, 452 1, 110, 024 2, 870, 016
Miscellaneous 7		33, 773, 381	20,000	73, 217, 430

¹ Value included under "Miscellaneous."
2 Value not included in total value for State.
3 Exclusive of natural cement, value for which is included under "Miscellaneous."
4 Figures obtained through cooperation with Bureau of the Census.
5 No canvass.
6 No tvalued as ore; value of recoverable metal content included under the metals.
7 Includes minerals indicated by "1" and "3" above.

Mineral production of North Carolina, 1937-38

	1937		198	38
Product	Quantity	Value	Quantity	Value
Aluminum pounds Asbestos	(1 2) (1) (1)	(1 2) (1) (1) (1) 3 \$3, 263, 898 144, 639	(1 2)	(1 2) (1) 3 \$3, 324, 461
Raw (sold by producers) short tons. Copper pounds. Feldspar (crude) long tons. Garnet, abrasive short tons. Gems and precious stones	9, 832 (1) 94, 595 (1)	(1) 538, 567 (1) (4) 33, 203	(1) (1) 56, 795 (1) 1, 878	(1) (1) 295, 800 (1) (4) 65, 730
Troy ounces	(5) (1) (1)	(5) (1) (1)	(3) 4 (1)	(5) 368 (1)
Mica: do Scrap do Sheet pounds Mineral waters gallons sold Olivine short tons Ores (crude):	12, 988 1, 044, 328 (4) (5)	209, 212 218, 176 (4) (5)	11, 959 632, 646 (4) (5)	161, 598 87, 879 (4) (5)
Copper do Dry and siliceous (gold and silver) do Zinc-lead do Sand and gravel do Sand and sandstone (ground) do	1,824,082	(6) (6) 539, 501		(6) (6) (6) 762, 827
Sailta (quartz)	5, 538 2, 624, 770 28, 250	6, 261 4, 284 3, 314, 634 271, 013	(1) 5, 500 7 4, 552, 120 27, 460	(1) 3, 556 7 5, 789, 486 241, 337
Vermiculiteshort tons Miscellaneous ⁸ Total value, eliminating duplications			(1)	11, 988, 186 14, 959, 228

1 Value included under "Miscellaneous."
2 Value not included in total value for State.
3 Figures obtained through cooperation with Bureau of the Census.
4 No canvass.
5 Figures not available.
6 Not valued as ore; value of recoverable metal content included under the metals.
7 Exclusive of marble, value for which is included under "Miscellaneous."
8 Includes minerals indicated by "i" and "" above.

Mineral production of North Dakota, 1937-38

Product	1937		1938	
	Quantity	Value	Quantity	Value
Clay: Products (other than pottery and refractories) Raw (sold by producers) Coal. Mineral waters Sand and gravel Stone Miscellaneous Total value, eliminating duplications	(1) 2, 250, 837 (2) 1, 864, 038 44, 570	(1 2) (1) \$2, 639, 000 (3) 127, 799 15, 012 91, 200 2, 873, 011	2, 050, 099 (3) 71, 000 2, 581, 765 20, 090	(1 2) \$2,380,000 (27,000 151,824 5,395 89,254 2,653,473

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 No canvass.

Mineral production of Ohio, 1937-38

Product	1937		1938	
	Quantity	Value	Quantity	Value
Bromine	(1) 2 5, 501, 769 4 52, 258 4 25, 177, 867 6, 737, 881 156, 653 11, 046 (1) 7, 724, 882 1, 069, 374 (1) 42, 783, 000 7, 704, 000 3, 160 3, 559, 000 1, 733, 875 9, 198, 577 37, 935 (1) 10, 306, 140 (1) 6)	3 23, 327, 740 1, 001, 343 5 44, 313, 000 6 32, 185, 945 6 6, 229, 723 340, 348 (17) 6167, 076, 855 8, 653, 571 (16) (27) 19, 967, 000 26, 900 5, 820, 000 33, 706 2, 625, 644 6, 607, 136 296, 649 (19, 426, 808 4, 426, 808 2, 618, 287	(1) (1) (2) (1) (2) (1) (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(1) (1) (2) \$77,094,745 (3) 17,679,691 (5) 595,190 (6) 18,413,808 (6) 2,793,90 (1) (1) (6) 85,186,824 (6,658,853 (1) (16) (17) (17,550,000 (377,000 (18,758 (3,860,000 (4,396 (2,562,620 (5,635,217 (177,876 (1,6) (1,78,876 (1,6) (1,78,876 (1,78,876 (1,6) (1,78,876 (1,6) (1,78,876 (1,6) (1,78,876 (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,78,876 (1,6) (1,6) (1,78,876 (1,6) (1,78,876 (1,6) (1,78,876 (1,
Total value, eliminating duplications		131, 025, 104		104, 812, 531

1 Value included under "Miscellaneous."

2 Exclusive of natural cement, value for which is included under "Miscellaneous."

3 Figures obtained through cooperation with Bureau of the Census.

4 According to Bituminous Coal Division.

5 Value is estimated from various sources and includes selling expenses.

6 Value not included in total value for State.

7 No canvass.

8 Exclusive of unclassified stone, value for which is included under "Miscellaneous."

9 From zinc-roasting operation.

10 Includes minerals indicated by "1", "2", and "5" above.

Mineral production of Oklahoma, 1937-38

Product	1937		1938	
Froduct	Quantity	Value	Quantity	Value
Asphalt (native) short tons. Cement barrels. Chats short tons. Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons. Coal do. Gypsum (crude) do. Lead do. Lime do. Mineral waters gallons sold Natural gas M cubic feet Natural gasoline gallons Ores (crude), etc.: Zinc short tons. Zinc-lead do. Petroleum barrels Pumice short tons Salt do. Sand and gravel do. Stone do. Stone do. Tripoli do. Tipoli do. Zinc do.	(1) 3 1,600,295 159,639 29,840	(1) (2) (3) (4) (4) (4) (4) (4) (4) (5) (5) (6) (6) (6) (6) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	7 1, 101, 320 (1 9) (1)	(1) (1) (2) (1) (2) (2) (2) (2) (2) (3) (4) (4) (2) (4) (5) (6) (7) (8) (9) (9) (10) (10) (11) (11) (12) (13) (14) (15) (16) (16) (17) (17) (18) (18) (18) (18) (18) (18) (18) (18
Miscellaneous 10		4, 338, 213		3, 636, 013 272, 860, 078

⁵ No canvass.

1 Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 No ce
6 Not valued as ore: value of recoverable metal content included under the metals.
7 Exclusive of dimension limestone, value for which is included under "Miscellaneous."
8 From zinc smelting.
9 Value not included in total value for State.
10 Includes minerals indicated by "i" and "" above.

Mineral production of Oregon, 1937-38

interest production of crogon, 100.					
The land	19	37	193	38	
Product	Quantity	Value	Quantity	Value	
Cement barrels Chromite long tons	(1)	(¹) \$880	(1)	(1)	
Clay: Products (other than pottery and refractories) Raw (sold by producers) Short tons Coal do	(1)	² 430, 884 (1) (1 4)	(1) (1 8)	² \$226, 312 (1) (1 4)	
Copper pounds Diatomite short tons Gems and precious stones	820,000	99, 220 (1) (5)	76, 000 (1)	7, 448 (1) (5)	
Gold troy ounces. Lead short tons Lime do	52, 662 109	1, 843, 170 12, 862 (¹)	81, 729 23 (¹)	2, 860, 515 2, 116 (¹)	
Mercury flasks (76 pounds) Mineral waters gallons sold Ores (crude), etc.:	(⁵)	384, 527 (⁵)	(5) 4, 610	347, 917 (*)	
Copper short tons Dry and siliceous (gold and silver) do Lead do	2, 796 74, 401	(6) (6) (6) (6)	74, 925 2	(6) (6) (6)	
Lead-copperdotroy ounces_	30 43 (1)	(6) 2, 452	18	783	
Pumiceshort tonssand and graveldosllica (quartz)do		1, 074, 907 46, 846	2, 079, 026 (1) 100, 507	926, 661 (1) 64, 974	
Silver troy ounces Stone short tons Zinc do	7 2, 010, 490	7 1, 442, 916 3, 120	⁷ 2, 355, 970	7 2, 025, 335	
Miscellaneous 8 Total value, eliminating duplications		1, 267, 926 6, 609, 710		1, 074, 030 7, 536, 091	

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 Not valued as ore; value of recoverable metal content included under the metals.
7 Exclusive of granite, value for which is included under "Miscellaneous."
8 Includes minerals indicated by "1" and "1" above. No canvass.

Mineral production of Pennsylvania, 1937-38

Product	1937		1938	
riodici	Quantity	Value	Quantity	Value
Centent barrels Day:	1 22, 952, 603	1 \$31, 917, 831	1 21, 082, 966	1 \$28, 242, 913
Products (other than pottery and refractories)	 	2 11, 713, 891		2 8, 844, 28
Raw (sold by producers)short tons	875, 869	2, 245, 001	422, 372	1, 096, 79
Coal: Anthracitedodo	F1 0F0 400	105 500 040		
Bituminous do do	51, 856, 433	197, 598, 849	46, 099, 027	180, 600, 16
Cokedo	16, 260, 310	⁴ 228, 665, 000 ⁵ 65, 841, 452	³ 77, 704, 537 7, 601, 433	4 160, 965, 00 5 32, 016, 49
Conner 6 nounds	(7)	(7)	7, 001, 455 (7)	32,016,49
Feldspar (crude)long tons	(A)	1 8	8	8
Ferro-allovs do	428 582	5 42, 548, 365		5 19, 624, 17
Jems and precious stones		(8)	200, 001	(8)
doldtroy ounces	1,348	47, 180	1, 422	49,77
ron:		1		
Ore—	-			
Sold to furnaces long tons Sold for paint do	(2)	Ω	(7)	l O
Pigdo		5000 000 040	(7)	(7)
ima short tons	11, 036, 467 692, 935	5 239, 838, 942 5, 117, 733	4, 684, 017 532, 066	5 101, 266, 84
Mineral paints (zinc and lead pigments)do	(57)	(5 7)	(5 7)	3, 784, 46
Mineral waters gallons sold	(8)	(8)	(8)	(8)
Natural gas M cubic feet	115, 928, 000	41, 842, 000	76, 547, 000	29, 544, 00
Natural gasoline gallons	13, 940, 000	701, 000	10, 734, 000	526, 00
Peatshort tons	(7)	(7)	(7)	(7)
Petroleumbarrels_	19, 189, 000	49, 300, 000	17, 426, 000	32, 760, 00
and and gravelshort tons	7, 715, 962	7, 587, 013	5, 721, 011	5, 759, 99
Sand and sandstone (ground)do	(7)	(7)	(7)	(7)
Sand-lime brick thousands of brick troy ounces	(21)	(2,7)	(2 ¹)	(27)
Slatetroy ounces	9, 497	7, 346	9, 360	6, 05
Soapstone short tons	(7)	2, 735, 744	(7)	2, 501, 47
Stonedo		17, 251, 160	12, 134, 290	(7) 13, 045, 42
Sulfuric acid (60° Baumé)	263, 341	5 2, 456, 972	221, 563	5 2, 018, 43
Cripoli (rottenstone)dododo	200	4, 800	164	3, 60
Miscellaneous 10		11, 502, 727		11, 465, 20
		<u>-</u>		
Total value, eliminating duplications		599, 817, 364		472, 773, 32

Exclusive of natural cement, value for which is included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 According to Bituminous Coal Division.
 Value is estimated from various sources and includes selling expenses.
 Value not included in total value for State.
 Copper, gold, and silver were recovered from pyritiferous magnetite, which is included as iron ore produced. Bureau of Mines not at liberty to publish figures.
 Value included under "Miscellaneous."
 No canvass.
 From zinc smelting.
 Includes minerals indicated by "i" and "i" above.

Mineral production of Rhode Island, 1937-38

Product _.	. 1937		1938	
	Quantity	Value	Quantity	Value
Clay products (other than pottery and refractories). Coke	(1 3) (1) (4) 370, 614 5 113, 990	(1 2) (1 3) (1) (4) \$296, 535 5 477, 729 1, 492, 693	(1 3) (1) (4) 285, 336 5 262, 910	(1 2) (1 3) (1) (4) \$193, 172 5 601, 355 1, 343, 598
Total value, eliminating duplications		862, 710		911, 599

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of Census.
 Value not included in total value for State.

4 No canvass.
5 Exclusive of limestone, value for which is included under "Miscellaneous."
6 Includes minerals indicated by "" and "" above.

Mineral production of South Carolina, 1937-38

The direct	19	37	1938	
Product	Quantity	Value	Quantity	Value
Bariteshort tons_			(1)	(1)
Products (other than pottery and refractories) Raw (sold by producers) short tons. Copper	129, 405 1, 500 2, 483 (3) (1)	2 \$1, 185, 606 1, 056, 696 182 86, 890 (3) (1)	99, 376 (1) 11, 681 (3)	2 \$1, 289, 975 869, 693 (1) 408, 835 (3)
Mica: Scrapdo Sheetpounds. Mineral watersgallons sold. Ore (dry and siliceous) (gold and silver), short tons.	(1) (1) (4) 21, 585	(1) (1) (4) (5)	(1) (1) (4) 59, 930 100	(1) (1) (4) (5) 350
Phosphate rock long tons Sand and gravel short tons Silver troy ounces Stone short tons Tin (metallic equivalent) pounds Miscellaneous 7	381, 185 624 936, 880 90	213, 488 483 1, 462, 738 (1) 16, 242	464, 312 3, 951 6 987, 280	305, 299 2, 554 6 1, 315, 999 171, 329
Total value, eliminating duplications		4, 022, 325		4, 364, 034

Mineral production of South Dakota, 1937-38

	19	37	1938	
Product				
	Quantity	Value	Quantity	Value
Cementbarrels_	(1)	(1)	(1)	(1)
Clay: Products (other than pottery and refractories)		(1 2)		(1 2)
Raw (sold by producers)short tons	(1)	(1)	20, 565	\$155, 821
Cool do	46, 979	\$63,000	48, 058	65, 000
Feldspar (ernde) long tons	41, 392	158, 976	42, 297	122, 467
Coal do do Feldspar (crude) long tons Gems and precious stones troy ounces	,	(3)		(3)
Gold troy ounces Sypsum (crude) short tons	581, 544	20, 354, 040	594, 847	20, 819, 645
Gypsum (crude)short tons	(1) (1)	(1)	(1)	(1)
Limed0l	(1)	(1)	(1)	(1)
Lithium mineralsdodo	1, 357	36, 206	(1)	(1)
Mica, scrapdo	(1)	(1)	(1)	(1)
Mineral watersgailons soid	(3)	(3)	(3)	(3)
Natural gasM cubic feet	10,000	3, 000	10, 000	3, 000
Ores (crude), etc.:	1, 597, 178	(4)	1, 586, 181	(4)
Dry and siliceous (gold and silver)_short tons	3, 845, 432	612, 552	4, 677, 593	627, 344
Sand and gravel do do Sand-lime brick thousands of brick	(1 2)	(1 2)	(1 2)	(1 2)
Silver troy onnes	139, 638	108, 010	162, 295	104, 918
Silvertroy ounces_ Stoneshort tons	5 407, 270	5 982, 906	320, 740	899, 190
Tantalum ore (columbo-tantalite)pounds	13, 376	11, 307	33, 922	33, 406
Tin (metallic equivalent)short tons	1	1,000	1	900
Miscellaneous 6		1, 141, 876		751, 668
Total value, eliminating duplications		23, 472, 873		23, 583, 359

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 Figures not available.

No carvass.

No carvass.

Not valued as ore; value of recoverable metal content included under the metals.

Exclusive of limestone, value for which is included under "Miscellaneous."

Includes minerals indicated by "!" and "6" above.

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 No canvass.
4 Not valued as ore; value of recoverable metal content included under the metals.
5 Exclusive of dimension sandstone, value for which is included under "Miscellaneous."
6 Includes minerals indicated by "1" and "5" above.

Mineral production of Tennessee, 1937-38

Product	1937		19	1938	
Flound	Quantity	Value	Quantity	Value	
Aluminumpounds_	(1 2)	(1 2)	(1 2)	(1 2)	
Barite short tons Cement barrels	(1)	(1)	(1)	(1)	
Cementbarrels	3, 013, 817	\$4, 683, 717	3, 390, 871	\$5,063,628	
Clav:	0, 010, 011	42,000,121	0,000,011	ψο, σοσ, σεσ	
Products (other than pottery and refractories)		3 1, 873, 644	i	3 1, 499, 108	
Raw (sold by producers)short tons	68, 499	437, 345	52, 356	347.035	
Coal do	4 5, 212, 471	5 10, 373, 000	4 4, 472, 403	5 9, 007, 000	
Coke do	104, 433	² 519, 077	81, 623		
Copper pounds	(1)	(1)		² 508, 771	
Ferro-alloys long tons	24, 068	2 1, 669, 779	10, 818	⁽¹⁾ ² 779, 913	
Fuller's earth short tons					
Gold troy ounces	(1) 263	(1)	(1)	(1)	
Iron:	203	9, 205	236	8, 260	
Orelong tons	00.050	00 -01			
	28, 359	89, 761	(1)	(1)	
Pigdo	(1 2)	(1 2)		(ì 2)	
Sinter from copper sulfide oredo	(1)	(1)	(1)	(1)	
Leadshort tons	(1)	(1)	(1)	(1)	
Limedo	157, 440	909, 839	162, 661	901, 460	
Manganese orelong tons	3, 575	99,055	4, 130	77, 806	
Manganiferous oredo	902	6, 475	456	3, 228	
Mineral waters gallons sold	(6)	(6)	(6)	(6)	
Natural gas M cubic feet	17,000	6,000	6,000	2,000	
Ores (crude), etc.:			,	,	
Coppershort tons_	705,000	(7)	597, 620	(7)	
Zincdo	975, 956	(7)	896, 700	(7)	
Zinc-leaddo	11, 300	(7)	13,000	(7)	
Petroleum barrels	35,000	35,000	(1)	71	
Phosphate rocklong tons	(1)	(1)	115	'n	
Pyritesdo	ì í	ì	16	(1)	
Sand and gravelshort tons.	2, 366, 646	1, 458, 543	2, 442, 950	1,605,049	
Silica (quartz)do	(1)		2, 112, 300	(1)	
Silvertroy ounces_	49, 057	(1) 37, 946	38, 333	24, 781	
Slate	10,001	(1)	00, 000	(1)	
Stone short tons	8 2, 720, 750	8 3, 979, 159	8 2, 599, 840	8 4, 237, 351	
Sulfuric acid 9do	(1 2)	(1 2)	(1 2)	(1 2)	
Tripoli do do	(1)	(1)	(7)	(1)	
Zinedo	(1)	\mathbb{R}	(1)	183	
Miscellaneous 10	(-)	29, 805, 470	(*)	20 064 704	
		20,000,470		32, 864, 794	
Total value, eliminating duplications		34, 893, 847	1	32, 428, 512	

¹ Value included under "Miscellaneous."
2 Value not included in total value for State.
3 Figures obtained through cooperation with Bureau of the Census.
4 According to Bituminous Coal Division.
5 Value is estimated from various sources and includes selling expenses.
6 No canvass
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Exclusive of crushed sandstone in 1937 and of dimension limestone in 1938, value for which is included under "Miscellaneous."
9 From copper smelting.
10 Includes minerals indicated by "1" and "8" above.

Mineral production of Texas, 1937-38

	19	37	193	88
Product	Quantity	Value	Quantity	Value
Asphalt (native) short tons	96, 671	\$300, 531	123, 382 450	\$366, 030 1, 148
Baritedo	6, 687, 719	(1) 11, 488, 866	7, 116, 545	11, 885, 494
Clay: Products (other than pottery and refractories) Raw (sold by producers)short tons	51, 486	² 3, 242, 832 347, 244	43, 857	² 2, 549, 979 410, 498
Coal: Bituminous do Lignite do	³ 44, 060 866, 292	4 122, 000 683, 000	³ 32, 466 846, 219	4 76, 000 679, 000
Copper pounds Fuller's earth short tons	320, 000 49, 500	38, 720 473, 408	32, 000 37, 998	3, 136 358, 980
Gems and precious stones troy ounces.	562	(5) 19, 670	439	(5) 15, 365
Graphite, crystalline pounds. Gypsum (crude) short tons. Helium cubic feet.	280, 807 6 4, 809, 230	(1) 313, 563 6 59, 315	246, 990 6 6, 099, 960	260, 094 6 64, 259
Leadshort tons	395 49, 135	46, 610 440, 069	342 49, 352	31, 464 429, 664
Manganese ore long tons Mercury flasks (76 pounds) -	(1)	(1)	(1) (5)	(1) (5)
Mineral waters gallons sold Natural gas M cubic feet Natural gasoline gallons	854, 561, 000 615, 281, 000	132, 166, 000 24, 329, 000	882, 473, 000 685, 920, 000	133, 486, 000 19, 781, 000
Ores (crude), etc.:	3,949	· '	70	(7)
Dry and siliceous (gold and silver)do	116, 153	(7)	130, 923 9	(7)
Lead-copper do	510, 318, 000	594, 500, 000 623, 037	475, 850, 000 324, 449	539, 150, 000 624, 096
Salt (sodium chloride) snort tons Sand and gravel do Sand-lime brick thousands of brick	364, 780 7, 186, 717	4, 058, 566 (1 2)	7, 647, 981	3, 966, 148 (1 2)
Salver thousands of bright Silver troy ounges. Sodium sulfate (natural) short tons.	1, 325, 660	1, 025, 398	1, 433, 008	926, 389 (1)
Stone do Sulfur long tons Miscellaneous •	8 2, 149, 320	8 2, 218, 643 36, 545, 670 248, 243	3, 256, 240 1, 331, 014	2, 625, 281 (1) 22, 457, 440
Total value, eliminating duplications				740, 147, 465
•	1 -	1 .	i .	t .

¹ Value included under "Miscellaneous."

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 According to Bituminous Coal Division.
 Value is estimated from various sources and includes selling expenses.
 No canvass.
 Figures cover fiscal year ended June 30 of year stated.
 Not valued as ore; value of recoverable metal content included under the metals.
 Exclusive of marble, value for which is included under "Miscellaneous."
 Includes minerals indicated by "1" and "8" above.

Mineral production of Utah, 1937-38

Product	19	937	19	38
110000	Quantity	Value	Quantity	Value
Arsenious oxideshort tons_	(1)	(1)	(1)	(1)
Asphalt (native)do	38, 171	\$983, 628	28, 650	\$655, 64
Asphalt (native)do Bitumen, natural sulfonateddo	(1)		(1)	(1)
Cement barrels	(1)	(1)	(1)	8
Clay:	()			(-)
Products (other than pottery and refractories)		² 619, 950	1	2 610, 883
Raw (sold by producers)short tons	(1)	(1)	21, 419	90, 790
Coal do	³ 3, 809, 476	4 8, 648, 000	3 2, 946, 951	4 6, 875, 000
Cokedo	156, 316	(1 5)	140, 181	(1 5)
Copperpounds	411, 988, 000	49, 850, 548	216, 252, 000	21, 192, 696
Diatomiteshort tons	150	1, 500	220, 202, 000	21, 102, 000
Fluorspardo	431	(1)	370	(1)
Gems and precious stones		(6)	0.0	6
Goldtroy ounces	322, 759	11, 296, 565	200, 630	7, 022, 050
Gypsum (crude)short tons	46, 197	46, 197	43, 144	45, 823
iron:	,	10, 10.	10, 111	20,020
Orelong tons	188, 794	(1)	169, 947	(1)
Pigdo	(1 5)	(1 5)	(1 5)	(1 5)
Leadshort tons	89, 458	10, 556, 044	65, 657	6, 040, 444
Limedo	46, 670	319, 517	25, 748	184, 390
Manganese orelong tons	32	297	20, 110	
Manganiferous oredo	3, 436	25, 771		
Mica, scrap short tons	(1)	(1)		
Molybdenum	4, 804, 002	(i)	3, 256, 053	(1)
Natural gas M cubic feet	2, 366, 000	471,000	4, 277, 000	937, 000
Naturai gasolinegallons	367, 000	19, 000	623, 000	28, 000
Ores (crude), etc.:	,	20,000	020, 000	20,000
Copper short tons Dry and siliceous (gold and silver) do	23, 197, 017	(7)	12, 032, 385	(7)
Dry and siliceous (gold and silver)do	485, 152	(7)	560, 361	75
Lead do	152, 691	(7)	94, 883	\sim
Zincdodo	173	(7)	83	7
Zinc-leaddo	743, 242	ζή	560, 948	7
retroleum harrels	2,000	3,000	(1)	λí
Otassium salts short tons	(1)	(1)	λί	λí
Salt (Sodium chloride) do	69, 696	205, 328	61, 959	192, 495
and and graveldodo	2, 345, 451	1, 158, 387	2, 775, 005	1, 263, 722
Silvertroy ounces	12, 869, 117	9, 954, 262	9, 682, 732	6, 259, 544
Sodium sulfate (natural) short tons		-,,	(1)	(1)
tonedo	453, 540	315, 985	8 709, 430	8 390, 249
ulfur long tone	(1)	(1)	(1)	(1)
sulfuric acid 9 short tons	(ì 5)	(ì s)	(1 5)	(1 5)
ungsten ore (60-percent concentrates)	24	(1)	` ′ 7	(I)
ranium and vanadium ores do	(1)	(1)	1,300	88, 764
ine do	48,001	6, 240, 130	33, 658	3, 231, 168
Miscellaneous 10				7, 046, 700
		., ,		., 020, 100
Total value, eliminating duplications				

1 Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 Value not included in total value for State.
7 Not valued as ore; value of recoverable metal content included under the metals.
8 Exclusive of granite, value for which is included under "Miscellaneous."
9 From copper smelting.
10 Includes minerals indicated by "1" and "8" above.

Mineral production of Vermont, 1937-38

Product	19	937	1938	
	Quantity	Value	Quantity	Value
Asbestos short tons Clay products (other than pottery and refractories) Lime short tons Mineral waters gallons sold Sand and gravel short tons Slate stone short tons Talc do	(1) 56, 585 (3) 636, 710 4 194, 770 41, 118	(1) (1 2) \$388, 885 (3) 306, 892 1, 431, 798 4 4, 215, 766 384, 474 314, 732	9, 348 58, 149 (3) 1, 103, 395 264, 480 35, 126	\$211, 971 (1 2) 415, 846 (3) 530, 686 1, 729, 655 3, 148, 950 329, 084 73, 360
Total value, eliminating duplications		7, 042, 547		6, 439, 552

Value included under "Miscellaneous."
 Figures obtained through cooperation with Bureau of the Census.
 Exclusive of sandstone, value for which is included under "Miscellaneous."

3 No canvass.

Mineral production of Virginia, 1937-38

Decident	19	37	1938		
$\operatorname{Product}$	Quantity	Value	Quantity	Value	
Bariteshort tons- Cementbarrels-	(1)	(1)	(1)	(1)	
Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons Coal do Coke do Copper pounds Feldspar (crude) long tons Ferro-alloys do Gold troy ounces Gypsum (crude) short tons Iron: long tons Pig do	3 13, 795, 239 240, 425 1, 000 22, 175 (1 5) 1, 396 (1) 518	2 \$2, 544, 596 (1) 4 27, 177, 000 5 1, 180, 800 121 125, 396 (1 5) 48, 863 (1) (1)	\$ 12, 283, 036 133, 905 (1) 9, 766 (1 5) 2, 943 (1) (1) (1 5)	2 \$1, 885, 876 (1) 4 24, 054, 000 5 645, 630 (1) 52, 037 (1 5) 103, 005 (1) (1) (1) (1 5)	
Kyanite short tons Lead do Lime do Manganese ore long tons Manganiferous ore do Marl, calcareous short tons	(1) 192, 493 2, 265 1, 170 (1)	(6) (1) 1, 248, 479 38, 561 9, 663 (1)	(6) (1) 161, 687 2, 242 1, 670 7, 456	(6) (1) 1,014,607 37,815 15,502 7,667	
Mica: Scrap	(1) (1) (7)	(1) (1) (1) (7)	2, 174 (1)	22, 758 (1) (1) (7)	
Copper short tons Copper do Copper d	10, 169 577, 300 (1) (1) (2) (2, 398, 462 (1) 369 111	(\$) (1) (1) (1) (1, 753, 865 (1) 1, 063 86 355, 467	145 17, 680 631, 611 (1) (1) 2, 796, 569 (1) (1) 502	(8) (8) (1) (1) (1) (2, 186, 111 (1) (1) (1) 325 369, 060	
Stone short tons Tale and ground soapstone do Titanium minerals: Ilmenite do Rutile do Zinc do Miscellaneous st	10 5, 061, 660 (1) (1) (1) (1) (1)	10 5, 399, 137 (1) (1) (1) (1) (1) (1) 11, 137, 832	5, 474, 690 (1) (1) (1) (1) (1)	5, 606, 470 (1) (1) (1) (1) (1) (1) 9, 264, 842	
Total value, eliminating duplications		46, 019, 085		42, 370, 169	

1 Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 Value not included in total value for State.
6 Figures not available.
7 No canvass.
8 Not valued as ore; value of recoverable metal content included under the metals.
9 Soapstone used as dimension stone included in figures for stone.
10 Exclusive of marble, value for which is included under "Miscellaneous."
11 Includes minerals indicated by "1" and "10" above.

Mineral production of Washington, 1937-38

The Area d	19	37	193	1938	
Product	Quantity	Value	Quantity	Value	
Antimony ore short tons Cement barrels Clay:	(1) (1)	(1) (1)	(1)	(1)	
Products (other than pottery and refractories) Raw (sold by producers) Short tons Coal do	49, 858 3 2, 001, 449	2 \$1, 028, 804 91, 279 4 6, 325, 000	38, 993 3 1, 566, 973	2 \$955, 294 62, 274 4 4, 939, 000	
Cokedo Copperpounds_ Diatomineshort tons Gems and precious stones	14, 656 128, 000 1, 932	5 87, 936 15, 488 32, 803	12, 034, 000 1, 072	1, 179, 332 16, 684	
Gold troy ounces. Iron ore long tons. Lead short tons.	36, 310 10, 010 2, 830	1, 270, 850 32, 859 333, 940	74, 175 3, 333 4, 284	2, 596, 125 (1) 394, 128	
Lime do Magnesite do Magnesite pounds Magnesite sife (natural) pounds Mercury flasks (76 pounds)	65, 272 (1) (1)	647, 692 (1) (1) (1)	34, 025 (1) (1) (1)	348, 332 (1) (1)	
Mineral waters gallons sold Molybdenum pounds Natural gas M cubic feet	(1) (6) 143,000	100, 000	4, 380 117, 000	(1) (6) (1) 91,000	
Olivineshort tons_ Ores (crude), etc.: Copperdo Dry and siliceous (gold and silver)do	6, 631 181, 604	(7) (8)	373, 120	(1)	
Lead do Zinc-lead do Peat do do	445 106, 146	(8) (8) (1)	278, 847 538 249, 184 543	(8) (8) (8) (8) 7, 630	
Pulpstones do	(1) (1) 9, 376, 644 (1 2)	6, 818, 154 (1 2)	6, 015, 812 (1 2)	2, 861, 309	
Silver troy ounces Stone short tons Tale do Tungsten ore (60-percent concentrates) do	126, 304 2, 027, 420 406 64	97, 696 1, 909, 604 6, 754	380, 938 9 2, 321, 210 174 303	246, 263 9 1, 849, 051 894	
ZincdoMiscellaneous 10do	4,116	535, 080 7, 412, 254	11, 402	1, 094, 592 4, 525, 096	
Total value, eliminating duplications		26, 658, 257		21, 167, 004	

1 Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 Value not included in total value for State.
6 No canvass.
7 Ficures not available.
8 Not valued as ore; value of recoverable metal content included under the metals.
6 Exclusive of marble, value for which is included under "Miscellaneous"
10 Includes minerals indicated by "" and "" above.

Mineral production of West Virginia, 1937-38

Product	19	1937 1938		38
Froduct	Quantity	Value	Quantity	Value
Bromine pounds Calcium chloride short tons. Cement barrels. Clay: Products (other than pottery and refractories) Raw (sold by producers) short tons. Coal do Coke do Goke do Grindstones and pulpstones short tons. Iron, pig long tons. Iron, pig long tons. Magnesium salts (natural) pounds Manganese ore long tons Marl, calcareous short tons Marl, calcareous short tons Mineral waters gallons sold Natural gasoline gallons Petroleum barrels Salt short tons Sand and gravel do Sand and sandstone (ground) do Stone do Sulfurie acid § do	11, 023 (1) 3118, 646, 343 2, 097, 341 885, 086 250, 205 (1) 1, 800 (9) 149, 084, 000 50, 379, 000 3, 845, 000 128, 715 2, 407, 911 7 3, 510, 040	78, 754 (1) 2 2, 675, 183 94, 413 4223, 055, 000 5 7, 054, 186 (1) 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	11, 803 (2) 31, 658 3 93, 288, 172 1, 500, 247 (1 s) 1, 460 496, 905 163, 064 (1) (6) 134, 342, 000 50, 388, 000 3, 684, 000 129, 568	77, 268 (1) 2, 114, 974 68, 687 4179, 356, 000 4, 820, 199 (18) 82, 879 (19) 1, 003, 559 2, 470 (1) (9) 55, 910, 000 2, 063, 000 721, 490 1, 803, 474 (1) 74, 391, 563 (1)
Miscellaneous ⁹		23, 041, 891 306, 590, 947		15, 504, 037 254, 995, 309

Value included under "Miscellaneous."

Value included under "Miscellaneous"
 Figures obtained through cooperation with Bureau of the Census.
 According to Bituminous Coal Division.
 Value is estimated from various sources and includes selling expenses.
 Value not included in total value for State.
 Exclusive of dimension sandstone in 1937 and of unclassified stone in 1938, value for which is included under "Miscellaneous."
 From zinc smelting.
 Includes minerals indicated by "1" and "?" above.

Mineral production of Wisconsin, 1937-38

	19	37	1938	
Product	Quantity	Value	Quantity	Value
Cement barrels. Clay products (other than pottery and refractories). Coke short tons.	(1) (1 8)	(1) 2 \$557, 152 (1 8)	(1) (1 8)	(1) 2 \$406, 811 (1 3)
Iron ore— Sold to furnaceslong tons Sold for paintdo	1, 419, 810 500	4, 473, 942	625, 378	1, 886. 477
Lead	1, 091 59, 536 9, 460 (4)	128, 738 508, 536 2, 914 (4)	320 55, 993 (1) (4)	29, 440 483, 111 (¹)
Ores (crude), etc.: Zinc	5, 000 280, 000	(5) (5)	58, 700	(5)
Pyrites long tons Sand and gravel short tons Sand and sandstone (ground) do	7, 531, 031 (¹)	3, 291, 944 (1)	6, 273, 424 (1) (1 a)	2, 799, 926 (1) (1 2)
Sand-lime brickthousands of brick _ Silica (quartz)short tons Stonedo	3, 331, 670	(i i) 4, 284, 003	3, 097, 230	(1) 3, 880, 935
Sulfuric acid 6dodo Zinedodo Miscellaneous 7do	(1 8) 6, 938	901, 940 6, 201, 127	2,073	(1 3) 199, 008 5, 111, 565
Total value, eliminating duplications		15, 239, 524		10, 636, 741

¹ Value included under "Miscellaneous."

<sup>v aue included under "MISCHIARCOUS."
Figures obtained through cooperation with Bureau of the Census.
Value not included in total value for State.
Not valued as ore; value of recoverable metal content included under the metals.
From zinc-roasting operation.
Includes minerals indicated by "1" above.</sup>

Mineral production of Wyoming, 1937-38

Product	19	1938		
Froduct	Quantity	Value	Quantity	Value
Cement barrels Clay:	· · ·	(1)	. (1)	(1)
Products (other than pottery and refractories) Raw (sold by producers) short tons. Coal do Feldspar (crude) long tons. Game and presions stones	67 958	\$659, 111 4 11, 600, 000	58, 911 3 5, 203, 877	(1 2) \$530, 834 4 9, 851, 000
Feidspar (crude)	1, 776	(5) 62, 160	798	4, 343 (⁵) 27, 930
Gypstin (crude) Short tons Iron ore long tons Mica, scrap short tons Mineral waters gallons sold	707, 907	(1)	(1) 275, 995 (1) (5)	(1) (1) (1) (5)
Natural gas M cubic feet. Natural gasoline gallons Ores (crude), etc.:	31, 023, 000 33, 548, 000	4, 997, 000 1, 718, 000	26, 678, 000 30, 024, 000	4, 853, 000 1, 364, 000
Dry and siliceous (gold and silver) short tons. Petroleum barrels Potassium salts short tons.	19, 166, 000 (1)	18, 860, 000 (1)	581 19, 022, 000	18, 000, 000 (1)
Sand and gravel	2, 438, 367 203 (1)	886, 901 157 (1)	1, 893, 612 328 (1)	781, 283 212 (¹)
Stone	⁷ 342, 710	⁷ 287, 957	252, 170 (¹)	346, 018 (¹)
Vermiculitedo		2, 014, 622	(1)	1, 605, 743
Total value, eliminating duplications		41, 087, 908		37, 364, 363

¹ Value included under "Miscellaneous."
2 Figures obtained through cooperation with Bureau of the Census.
3 According to Bituminous Coal Division.
4 Value is estimated from various sources and includes selling expenses.
5 No canvass.
6 Not valued as ore; value of recoverable metal content included under the metals.
7 Exclusive of basalt, value for which is included under "Miscellaneous."
8 Includes minerals indicated by "!" and "" above.

PART II. METALS

GOLD AND SILVER

By Chas. W. Henderson

SUMMARY OUTLINE

Summary Domestic refinery production. Prices of gold and silver United States and world monetary stocks Imports and exports Domestic supply World production of gold and silver Method of collecting statistics Units of measurement Wines producing	47 48 49 51 52 52 53 56 56 57	Mine report—Continued. Mines producing—Continued. Leading silver producers. Number of mines Mine production. Summary Ore production, classification, metal yield, and methods of recovery. Placers. Dredging. Other placer-mining methods. Production in Philippine Islands.	59 60 60 62 67 67 70
Mines producing	57 57	Production in Philippine Islands	71

The steadily increasing gold production of the world is of especial significance to the United States in view of the large accumulation of that metal in this country, amounting, according to the Federal Reserve Bulletin (May 1940) to 61 percent of the total known world monetary supply at the end of 1939 and to 64 percent by April 24, 1940. Countries at war in Europe continued to ship large quantities of gold to the United States in May 1940, and by June 1 stocks had risen to approximately 66 percent of the world total. On May 3, 1940, the Secretary of the Treasury in a public address told the National Institute of Government that the continued acceptance of gold by the United States Treasury is "the only sound course of action

open to us."

The mine production of recoverable gold in the United States (Territories included) in 1939 totaled 5,672,485 fine ounces, a 10-percent increase over the previous record high annual output in 1938. Although final figures on the total output of gold in the world in 1939 are not yet available, preliminary data indicate that the world output increased 6 percent over 1938 to approximately 39,818,000 fine ounces, the highest in history. The principal gold-producing countries in 1939 were, in order, the Union of South Africa, United States (including Territories), U. S. S. R. and Canada; these four countries produced approximately 72 percent of the total world output of gold. Silver production in the United States in 1939 was 65,565,024 fine ounces, a 4-percent increase over 1938. Approximately 69 percent of the total world output of silver in 1939—estimated at 265,977,000 ounces—came from Mexico, United States, Canada, and Peru, listed in order of quantity produced.

DOMESTIC REFINERY PRODUCTION

The figures in the following table were obtained through cooperation between the United States Bureau of the Mint and the Bureau of Mines and were agreed upon after conference and adjustment between the two Bureaus.

The State totals are based upon bullion deposits in the United States mints and assay offices and upon returns to the Bureau of the Mint from smelting and refining companies. The State distribution is adjusted further by the Bureau of Mines from its geographical records of sources and production, both historical and current, from the producing mines and is tabulated for the mine reports discussed later. The data for the total production and in part for the distribution are obtained from records of (1) the unrefined domestic gold and silver deposited in the United States mints and assay offices; (2) the domestic gold and silver in fine bars reported by private refineries, supplemented by data of content of unrefined mattes, blister copper, copper anodes, and lead bullion; and (3) the unrefined domestic gold and silver contained in ore and matte exported for reduction. The last item is small.

Gold and silver produced in the United States, 1935-39, and approximate distribution of source, by States and Territories, in 1939

[Refinery figures supplied by U. S. Bureau of the Mintl

State or Territory	Go	ld 1	Silver 2		
State of Territory	Fine ounces	Value	Fine ounces	Value	
935	3, 609, 283	\$126, 324, 900	45, 924, 454	\$33, 008, 203	
936	4, 357, 394	152, 508, 800	63, 812, 176	49, 422, 530	
937	4, 804, 540	168, 158, 900	71, 941, 794	55, 646, 978	
938	5, 089, 811	178, 143, 400	62, 665, 335	40, 510, 92	
939:					
Alabama	28	1,000	54	36	
Alaska	671, 157	23, 490, 500	298, 146	202, 37	
Arizona	314, 572	11, 010, 000	7, 436, 417	5, 047, 742	
California	1, 424, 719	49, 865, 200	2, 604, 191	1, 767, 69	
Colorado	370, 934	12, 982, 700	8, 205, 703	5, 569, 93	
Georgia	643	22, 500	225	15	
Idaho	115, 183	4, 031, 400	17, 239, 334	11, 701, 83	
Illinois	110, 100	1, 001, 100	17, 209, 304		
Indiana	3	100	104	10	
Maryland	72	2, 500	2		
Michigan	14	2, 300	102, 187	en ne	
			244, 074	69, 363 165, 674	
Montana	256, 437	8, 975, 300	8, 927, 157	6, 059, 63	
Nevada	351, 306	12, 295, 700	4, 516, 605		
New Mexico	36, 348	1, 272, 200		3, 065, 813	
New York	30, 343	1, 212, 200	1, 262, 420 44, 232	856, 914	
North Carolina	520	18, 200	3, 639	30, 02 2, 47	
Oregon	91, 346	3, 197, 100	110, 956		
Pennsylvania	1, 911	66, 900		75, 31	
Philippine Islands	990, 569	34, 669, 900	14, 349	9, 740	
Puerto Rico	35		1, 247, 541	846, 81	
South Carolina.	13, 834	1, 200		0.50	
South Dakota		484, 200	5, 454	3, 70	
Tennessee.	617, 634 166	21, 617, 200	171, 277	116, 260	
Texas	340	5, 800	32, 170	21, 836	
Utah		11, 900	1, 380, 329	936, 949	
Virginia	266, 634 363	9, 332, 200	10, 843, 772	7, 360, 611	
Washington		12, 700	1, 460	991	
Wyoming	85, 820	3, 003, 700	427, 519	290, 194	
w youring	597	20, 900	142	96	
	5, 611, 171	196, 391, 000	65, 119, 513	44, 202, 279	

Gold valued at \$35 per fine ounce.
 Silver valued as follows: 1934, \$0.646+ per fine ounce; 1935, \$0.71875; 1936, \$0.7745; 1937, \$0.7735; 1938, \$0.646+; 1939, \$0.678787+.

The quantity of gold reclaimed in 1938 from old jewelry, dental waste, scrap, and other material received at private refineries and the United States mints and assay offices was 870,881 ounces and that sold for industrial use 861,622 ounces, the difference (9,259 ounces) representing the net return from the arts and industries during the year. From 1932 to 1936, inclusive, the quantity of gold returned from industrial to monetary use exceeded that issued for industrial use by 3,367,400 ounces; in 1937, however, the quantity absorbed by the industries was 91,840 ounces more than that returned to monetary use. Secondary silver recovered in 1938 from silverware, photographic film, and other sources totaled 18,438,847 ounces and that issued for the industrial arts 38,620,473 ounces, indicating that 20,181,626 fine ounces of new silver were required for industry.

Gold and silver produced in the United States, 1792-1939

[From Report of the Director of the Mint. The estimate for 1792-1873 is by R. W. Raymond, commissioner of mining statistics, and since then by the Director of the Mint]

	Period	Go	ıld	Silv	er
	Teriou	Fine ounces	Value 1	Fine ounces	Value 3
1792-1847 1848-72 1873-1939		1, 187, 170 58, 279, 778 195, 978, 705	\$24, 537, 000 1, 204, 750, 000 4, 431, 842, 000	309, 500 118, 568, 200 3, 468, 509, 931	\$404, 500 157, 749, 900 2, 614, 401, 705
		255, 445, 653	5, 661, 129, 000	3, 587, 387, 631	2, 772, 556, 105

¹ Gold valued in 1934 and thereafter at \$35 per fine ounce; prior thereto at \$20.67+ per fine ounce. Dollar figures are rounded.
2 Silver valued in 1934 and thereafter at Government's average buying price for domestic product: In 1934 and 1938 at \$0.64+ per fine ounce, in 1935 at \$0.71875, in 1936 at \$0.7745, in 1937 at \$0.7735, and in 1939 at \$0.678787+.

The average commercial value per fine ounce of silver for the total recorded domestic production is \$0.773.

PRICES OF GOLD AND SILVER

Gold.—Under the Gold Reserve Act of 1934 the value of gold was fixed by Presidential proclamation on January 31, 1934, at \$35 per fine troy ounce and has remained at that figure through 1939. From January 18, 1837, through 1932, the price was \$20.67 + per ounce, and in 1933 the legal coinage value was continued at \$20.67 +. The average weighted price per fine ounce in 1933, as computed by the Bureau of Mines, was \$25.56 and in 1934, \$34.95. A complete account of regulations pertaining to gold and silver in 1933–34 is given in the chapter on Gold and Silver in Minerals Yearbook, 1934 (pp. 25-46), issued by the Bureau of Mines.

Silver.—The Government price for newly mined domestic silver was maintained throughout 1938 and to June 30, 1939, at \$0.64646464 per fine ounce. The act of Congress approved July 6, 1939, fixed the price of domestic silver mined after July 1, 1939, at \$0.711+ per ounce. The annual average prices 2 used for domestic silver from

¹ For Congressional acts with reference to coinage from Apr. 2, 1792, to Jan. 31, 1934, see Minerals Yearbook, 1937, p. 113; for gold prices in London, 1931–36, p. 114.

² For highest, lowest, and average price of silver in New York, 1874–1935, see Minerals Yearbook, 1937, p. 115; for ratio of silver to gold, 1687–1935, p. 121.

1932 to 1939 are as follows: 1932, \$0.282; 1933, \$0.350; 1934, \$0.646464644; 1935, \$0.71875; 1936, \$0.7745; 1937, \$0.7735; 1938, \$0.646464644; 1939, \$0.67878787.

The following table, copied from the Annual Report of the Director of the Mint for the Fiscal Year Ended June 30, 1939, shows the price of silver in London and in New York in 1938 and the first half of 1939.

Price of silver in London and in New York, 1938-39

[From the Report of the Director of the Mint]

Month	London	London price per ounce, m 0.925 fine cl		Average monthly ex- change, New York on	United States equivalent, per fine ounce, of London price, at current rate of	Average monthly New York price of fine bar silver, per ounce (mean of bid
	Highest	Lowest	Average	London	exchange	and asked quotations)
1938	Pence	Pence	Pence	Dollars	Dollar	Dollar
January	2036	1914	19, 8950	4. 9998	0.44807	Donur 0, 4506:
February	2036	1915/16	20. 1588	5. 0180	. 45567	. 4506
Marcn	209/a	1836	20. 0879	4. 9845	. 45103	. 4475
April	1916	18916	18, 8804	4. 9812	. 42338	. 4306
1VL8 y	1815/16	1856	18, 7307	4. 9673	. 41898	. 4306
June	191/16	1811/16	18, 9450	4, 9580	42315	. 4306
July	1913/16	1815/16	19. 3557	4. 9291	42995	. 4306
August	1994	191/8	19, 3894	4.8808	. 42617	. 4306
September	1911/a	1834	19, 3005	4.8038	.41779	. 4306
October	1913/16	195/16	19, 6130	4. 7685	. 42115	. 4306
November	201/4	1914	19, 8341	4. 7075	. 42082	. 4306
December	201/4	1915/16	20. 0825	4. 6703	. 42251	. 4306
1939					.	
January	211/8	1915/16	20, 3050	4, 6694	. 42706	. 4306
February	2034	1915/16	20. 3698	4. 6857	42963	. 4306
March	2056	1978	20, 2801	4. 6854	. 42802	. 4306
April	203/16	1915/16	20. 0312	4. 6805	. 42233	. 4306
May	203/8	1915/16	20. 1226	4. 6813	42442	. 4306
June	20	18	19. 5048	4. 6824	. 41140	. 4226
Average, calendar year 1938 Average, fiscal year 1938–39			19. 5256	4, 8894	42989	. 43537
Average, fiscal year 1938-39			19. 8491	4. 7371	. 42344	. 42996

UNITED STATES AND WORLD MONETARY STOCKS

The following tables show, respectively, the value of the gold and silver held by the United States Treasury as of June 1, 1940, and of the gold reserves of the central banks and governments as of March 31, 1940.

Daily statement of current assets and liabilities of the United States Treasury, June 1, 1940

GOLD

Assets	Liabilities	
Gold (oz. 548,825,961.7) \$19, 208, 908, 661. 06	Gold certificates: Outstanding (outside of Treasury) Gold certificate fund—Board of Governors, Federal Reserve System Redemption fund—Federal Reserve notes Gold reserve NOTE.—Reserve against \$346,681,016 of United States notes and \$1,163,022 of Treasury notes of 1890 outstanding. Treasury notes of 1890 are also secured by silver dollars in the Treasury. Exchange stabilization fund	14, 168, 032, 390. 77 11, 019, 001. 14 156, 039, 430. 93
	Gold in general fund: Balance of increment resulting from re- duction in the weight of the gold dollar\$142,756,207.64 In working balance\$48,538,161.58	19, 017, 614, 291. 84 191, 294, 369. 22
Total	Total	19, 208, 908, 661. 06
	SILVER	
Silver (oz. 1,041,985,993.2) \$1,347,214,213.51 Silver dollars (oz. 385,418,- 083.3) 498,318,330.00	Silver certificates outstanding. Treasury notes of 1890 outstanding	1, 163, 022. 00
Total	Total	1, 845, 532, 543. 51

Gold reserves of central banks and governments as of March 31, 1940 1

Country	Millions of dollars	Country	Millions of dollars
United States 1 United Kingdom 2 France 2 Netherlands Belgium 2 Switzerland 3 Spain Argentine British India South Africa Sweden Canada	2,000 690 609 529	Japan Rumania Italy Turkey Java Norway Portugal. Uruguay Total (20 countries) Other, countries (32)	92 90 84

¹ Data from Federal Reserve Board. Figures for some countries are preliminary.
² Stabilization funds and central reserves in some countries not reported. The following are reported at infrequent intervals or on delayed basis: United Kingdom, Exchange Equilization Account (reported September 1939) held \$2,690,000,000; France, Exchange Stabilization Fund and Rentes Fund (May 1939), \$477,000,000; United States, Exchange Stabilization Fund (December 1939), \$156,000,000; and Belgium, Treasury (December 1939), \$17,000,000.
² National Bank \$519,000,000; B. I. S. \$10,000,000.
⁴ Stabilization funds upon basis of last reports raise total reserves of the 52 countries to approximately \$29,073,000,000.

\$29,073,000,000.

IMPORTS AND EXPORTS 3

Value of gold and silver imported into and exported from the United States, 1938–39, by classes

	Imports	Exports	Excess of imports over exports
1938			
Gold: Contained in ore and base bullion Bullion refined United States coin	\$77, 627, 999 1, 885, 628, 425 291	\$882, 874 5, 006, 017	\$76, 745, 125 1, 880, 622, 408 291
Foreign coin	16, 200, 804	13	16, 200, 791
	1, 979, 457, 519	5, 888, 904	1, 973, 568, 615
Silver: Contained in ore and base bullion Bullion refined United States coin Foreign coin	23, 560, 515 82, 711, 006 337, 549 123, 922, 067 230, 531, 137	680, 726 790, 293 55 5, 611, 079 7, 082, 153	22, 879, 789 81, 920, 713 337, 494 118, 310, 988 223, 448, 984
Gold: Contained in ore and base bullion Bullion refined. United States coin Foreign coin	92, 763, 736 3, 476, 102, 792 752 5, 791, 560 3, 574, 658, 840	340, 957 167, 106 508, 063	92, 422, 779 3, 475, 935, 686 752 5, 791, 560 3, 574, 150, 777
Silver: Contained in ore and base bullion Bullion refined United States coin. Foreign coin	23, 311, 788 54, 598, 730 294, 328 7, 102, 249 85, 307, 095	185, 996 8, 312, 856 66, 738 6, 064, 202 14, 629, 792	23, 125, 792 46, 285, 874 227, 590 1, 038, 047 70, 677, 303

DOMESTIC SUPPLY

The domestic supply of new gold comes chiefly from dry and siliceous ore and from placer gravel. These two sources yielded 90 percent of the domestic gold (excluding Philippine Islands and Puerto Rico) in 1915, 80 percent in 1930, 87 percent in 1931, 93 percent in 1932, 1933, and 1934, 91 percent in 1935, 88 percent in 1936, 85 percent in 1937, 90 percent in 1938, and 88 percent in 1939. The proportionate output of gold from copper ore was 7 percent in 1915, 16 percent in 1930, 10 percent in 1931, 4 percent in 1932, 5 percent in 1933 and 1934, 7 percent in 1935, 10 percent in 1936, 12 percent in 1937, 8 percent in 1938, and 10 percent in 1939. These sources represented 96 to 98 percent of the gold supply in 1915 and 1930–39.

In 1915 dry and siliceous ore yielded 36 percent of the total silver; copper ore, 26 percent; lead ore, 27 percent; and zinc-lead ore, 9 percent. In 1938 dry and siliceous ores yielded 52 percent and in 1939, 47 percent; copper ore, 26 and 29 percent; lead ore, 5 and 5 percent; and zinc-lead ore, 17 and 19 percent. The rounded percentage figures for both 1938 and 1939 include some silver (less than 0.8 percent in each instance) from zinc ore, mixed base-metal ores, and placer gravel.

³ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

WORLD PRODUCTION OF GOLD AND SILVER

According to the Bureau of the Mint the world output of gold and silver from 1493 to 1938 is 1,294,974,282 fine ounces of gold valued at \$29,103,425,879 and 16,714,819,121 fine ounces of silver valued at \$15,254,018,861.

The following tables show the world output of gold and silver from

1935 to 1939.

World production of gold, 1935-39, by countries, in fine ounces 1

[Compiled by R. B. Miller]

Country	1935	1936	1937	1938	1939
North America:					
United States:		0 ==0 045	4 110 100	4 045 000	4, 620, 567
Continental 2	3, 163, 166 63	3, 759, 645 483	4, 112, 160 17	4, 245, 368	4, 020, 307
Puerto Rico	3, 284, 890	3, 748, 028	4, 096, 213	4, 725, 117	5, 095, 176
Canada	0, 201, 000	0, 110, 020	1,000,210	2, 120, 221	•, •••,
Costa Rica	10, 311	12, 625	16, 920	17, 994	13, 261
Cuba Dominican Republic (exports)	(3)	4 2, 140	3, 707	3, 889	3, 851
Dominican Republic (exports)	7, 553	8, 901 1, 824	7, 102 4, 180	5, 275 5, 466	6, 304 3, 82
Guatemala Honduras	4, 221 13, 286	20, 966	24, 170	21, 879	4 27, 00
Nicaragua	16, 193	23, 077	24, 242	44, 301	100, 18
Panama	5, 705	12, 651	5, 098	4,867	2, 73
Salvador 5	11, 837	15, 071	15, 310	12,065	16, 42
Other countries 4	48, 700	42, 700	39, 300	48, 300 923, 819	41, 40 944, 13
Mexico	682, 335 12, 728	753, 967 16, 114	846, 400 22, 470	24, 246	20, 00
Newfoundland	i			i	
	7, 278, 000	8, 418, 000	9, 217, 000	10, 083, 000	10, 895, 00
South America:					(0)
Argentina	9, 902	12, 217	10, 449	8, 423 9, 255	(3) 7, 88 290, 09
Bolivia 6	18, 158 262, 414	13, 833 223, 351	14, 251 203, 643	216, 630	290, 09
Brazil ⁶ Chile	265, 944	248, 799	272, 704	294, 001	302, 66
Colombia	328, 999	389, 495	442, 222	520, 717	570, 01
Ecuador	71, 512	78, 685	59, 500	74,042	85, 35
Guiana:			0, 000	00,400	00.47
British	30, 488	32, 234 14, 258	35, 993 12, 756	38, 482 14, 154	38, 47 14, 81
Dutch (Surinam)	11, 349 47, 390	45, 558	47, 422	40, 638	37, 60
FrenchPeru	110, 962	152, 409	205, 350	260, 326	272, 36
Uruguay				657	1, 60
Venezuela	112, 390	109, 996	116, 519	114, 985	146, 60
	1, 269, 508	1, 320, 835	1, 420, 809	1, 592, 310	1, 776, 00
Europe:		ĺ			(0)
Bulgaria	17		50	200	(3) (3)
Czechoslovakia	16, 575 4, 630	16, 248 4, 919	9, 930 4, 822	10, 000 3, 858	8
Finland France	91, 598	85, 682	66, 423	87, 354	(3)
Germany		7, 584	8, 028	8,650	(3)
Austria			140	()	
Hungary	1,479	836	5, 159	5, 655	(3)
Italy	2,894	3, 697	3, 103 96	5, 016 55	
Norway	231	3, 282	4, 366	6, 186	(3) (3) (3)
Portugal	150, 176	160, 014	277, 043	160, 882	211, 49
Spain	4,823	4, 019	(3)	(3)	(3) (3)
Sweden	180, 559	158, 342	193, 226	234, 122	(3)
Switzerland	804	965	964	1, 125 5, 236, 000	(3)
U. S. S. R.4	4, 547, 000	5, 327, 000	5, 359, 000 60	2, 428	8
United KingdomYugoslavia	72, 950	84, 106	87, 578	78, 318	92,00
-	5, 080, 000	5, 857, 000	6, 024, 000	5, 844, 000	5, 922, 00
	5, 080, 000	5, 857, 000	6, 024, 000	5, 844, 000	5, 922

See footnotes at end of table.

World production of gold, 1935-39, by countries, in fine ounces-Continued

Country	1935	1936	1937	1938	1939
Asia:	1 400	1 400	1		
Burma	1,483	1, 439	1,004	1, 209	(3) (3) (3)
China Manchuria ⁶	. 3	119, 150	118, 829	(3)	(3)
Chosen	. 472 948	562, 316	734, 585	948, 447	8
Cyprus (exports) India, British	6,872	20, 991	23, 650	29, 245	(3)
India, British	326, 170	331, 946	330, 744	321, 138	318, 00
Indochina	9 774	9,002	9,870	8, 745	8, 07
Japan	588, 161	713, 685	723, 375	8, 745 4 740, 000	(3)
Malay States:					1
Federated Straits Settlements	29, 771	37, 779	33, 828	40, 209	40, 28
Unfederated	276	761	519	5	
Netherland India	68, 256	71, 664	55, 621	581 76, 302	85
Philippine Islands	451, 814	597, 266	716, 967	903, 265	(3)
Sarawak	28, 549	23, 372	19, 214	18, 520	999, 40 17, 26
Siam	10.337	11,470	13, 768	13, 804	(3)
Taiwan	37, 217	41,608	123, 073	145, 000	3
Turkey				514	(3)
	2, 187, 000	2, 697, 000	3, 006, 000	3, 347, 000	
frica:	=	2,001,000	0,000,000	0,011,000	3, 545, 00
Bechuanaland	11, 419	16, 746	17 577	19, 111	17 01
Belgian Congo		389, 281	17, 577 419, 664	455, 264	17, 21
Camerouns, French	2 820	11, 027	14, 211	15, 542	494, 64
Egypt Eritrea	58	278	1, 226	2, 162	(3)
Eritrea	4, 286	1,608	(3)	(3)	(3)
Ethionia	13 736	25, 700	(3)	(3)	(3)
French Equatorial Africa	27, 971	22, 088	21, 490	40,028	(3)
French Equatorial Africa French West Africa (exports)	125, 677	114, 424	128, 346	127, 220	(3)
Gold Coast	1 358 835.	428, 144	559, 212	674, 927	782, 27
Kenya Colony Liberia	23, 009	38, 463	54, 774	70, 500	77, 00
Liberia	965	7 1, 567	2, 457	1, 902	6, 53
Madagascar Morocco, French	15, 465	15, 111	13, 471	13, 770	(3)
Morocco, French	780	1,500	4, 630	1, 410	(3)
Nigeria.	38, 962	33, 364	26, 466	24, 815	25, 79
Nyasaland Portuguese East Africa	127	30	11 100	0.000	(3)
Rhodesia:	6, 379	8, 223	11, 129	9, 609	11,06
Northern	1, 647	4, 452	4, 228	1 110	
Southern	726, 281	797, 061	804, 219	1, 113 814, 078	4, 64
Sierra Leone	30, 753	37, 966	35, 717	30, 012	795, 61
Sierra Leone South-West Africa	3, 206	4, 065	2, 804	1,796	33, 65 1, 61
Sudan	8, 550	7, 659	7, 388	8,866	7, 51
Swaziland	314	276	2, 410	1, 246	98
Tanganyika	52, 182	69, 675	75, 281	81, 857	4 150, 00
Uganda	5, 651	13, 231	16, 947	20, 502	15, 11
Union of South Africa	10, 773, 991	11, 336, 214	11, 734, 575	12, 161, 392	12, 821, 50
	12, 603, 000	13, 378, 000	13, 972, 000	14, 609, 000	15, 483, 00
ceania:					
Australia:	FO 100	00 700	40 40-	00 =0=	
New South Wales	50, 102	60, 739	68, 607	88, 707	87, 18
Northern Territory	9, 272 102, 990	7, 705	11, 563	12, 378	16, 58 147, 24
QueenslandSouth Australia		121, 174 7, 681	127, 281	151, 432	147, 24
Victoria	7, 333 87, 609	113, 940	6, 962 145, 799	5, 292 144, 243	3, 93
Victoria Western Australia	646, 150	852, 422	1, 000, 647	1, 167, 791	156, 52
Fiji	6, 728	16, 955	24, 917	92, 362	1, 214, 23 110, 00
New Guinea	184, 009	220, 974	217, 152	236, 133	241, 29
New Guinea New Zealand	165, 277	164, 575	168, 487	152, 050	172, 06
Papua	17, 012	20, 719	22, 153	33, 249	28, 16
Tasmania	8, 343	17, 600	20, 276	22, 200	19, 98
	1, 284, 825	1, 604, 484	1, 813, 844	2, 105, 837	2, 197, 00
	29, 702, 000	33, 275, 000	35, 454, 000	37, 581, 000	
	20, 102, 000	00, 210, 000	aa, 404, UUU	91, 901, 000	39, 818, 0

¹ Prepared with the cooperation of the Office of the Director of the Mint. All figures for 1939 preliminary and subject to revision. No official statistics are issued by the Government of U. S. S. R., consequently figures released by the various authorities vary widely and are irreconcilable. This table records only official production and export figures. In some countries accurate figures are not possible to obtain, due to clandestine trade in gold.
² Refinery production.
³ Data not available. Estimate included in total.
⁴ Approximate production.
⁵ Imports into the United States,
⁶ Purchases by the State Central Bank.
² Exports.

World production of silver, 1935–39, by countries, in fine ounces $^{\rm 1}$

Country	1935	1936	1937	1938	1939
North America: United States 2 Canada	45, 612, 926 16, 618, 558	63, 350, 774 18, 334, 487	71, 298, 930 22, 977, 751	61, 688, 834 22, 219, 195	63, 871, 972 23, 116, 861
Canada Central America and West Indies: Honduras Other countries 3 Mexico	2, 641, 346 859, 000 75, 589, 199 1, 123, 997	3, 104, 507 495, 000 77, 463, 901 1, 249, 472	3, 210, 337 390, 000 84, 680, 875 1, 447, 637	3, 335, 070 965, 000 81, 018, 809	4, 118, 864 681, 000 75, 870, 575
Newfoundland	1, 123, 997 142, 445, 000	1, 249, 472 163, 998, 000	1, 447, 637 184, 006, 000	1, 645, 590 170, 872, 000	1, 421, 060
South America: Argentina Bolivia	49, 994	512, 322	2, 122, 000 9, 454, 022	9 696 961	(4) 7, 241, 312
Brazil Chile Chile Colombia Ecuador Guiana, British Peru	20, 833 1, 298, 755 132, 965 80, 658 4, 010 17, 104, 300	10, 723, 333 23, 887 1, 431, 383 151, 501 96, 310 4, 240 19, 915, 101	25, 238 1, 854, 649 167, 971 98, 500 4, 740 17, 453, 331	2, 535, 560 25, 585 1, 414, 086 192, 880 89, 111 5, 060 20, 552, 816	27, 075 1, 327, 422 242, 625 103, 331 (4)
	26, 643, 000	32, 858, 000	31, 180, 000	31, 290, 000	18, 802, 075 30, 749, 000
Europe: Bulgaria (estimated) Czechoslovakia Finland France	(4) 1, 329, 734 (4) 569, 615 6, 257, 788	2, 200 1, 088, 718 (4) 476, 860 6, 541, 551	6, 500 1, 103, 444 57, 900 563, 860	13,000 1,190,326 57,900 3 565,000	(4) (4) (4)
Finland France Germany Austria Greece 3 Hungary	0, 20,, 100	29, 061 310, 000	9,774	335, 000 46, 632	(4)
Austria. Greece 4 Hungary Italy Norway Poland Portugal Rumania Spain	6,783 453, 283 266, 851 32, 311	3, 783 616, 000 228, 270 60, 557 12, 905	50, 965 715, 000 282, 904 64, 237 11, 337	812, 481 250, 776 62, 244 16, 742	SEE
Rumania Spain Sweden U. S. R. 3	471, 876 861, 640 835, 791 4, 850, 000	12, 905 594, 757 5 900, 000 939, 541 6, 590, 000	11, 337 615, 944 5 600, 000 946, 261 7, 230, 000	819, 876 (4)	() () () () () () () () () ()
Sweden U. S. S. R.³ United Kingdom Yugoslavia	4, 850, 000 92, 851 1, 753, 534	76, 872 1, 948, 174	71, 439 2, 242, 546	8, 022, 000 108, 985 2, 524, 123	2, 570, 000
Asia:	18, 068, 000	20, 474, 000	21, 721, 000	23, 459, 000	23, 430, 000
Burma. China ⁶ . Chosen. Cyprus (exports). Federated Malay States. Hong Kong	5, 825, 913 150, 000 1, 264, 986 44, 536 (4)	5, 952, 000 150, 000 1, 891, 137 125, 704 3, 300	6, 180, 000 201, 000 2, 672, 978 132, 968 3, 000	5, 920, 000 (4) (4) 199, 719 3, 500 111, 070	6, 175, 000 (4) (4) (5) (6)
Chosen Cyprus (exports) Federated Malay States Hong Kong India, British Indochina Japan Netherland India Philippine Islands	24, 493 3, 633 8, 230, 751 701, 722 322, 022	25, 345 5, 594 9, 765, 572 662, 654 491, 701	24, 642 3, 537 9, 902, 000 500, 095 719, 771	22, 295 2, 411 10, 100, 000 579, 144	(4) (4) (4) (4) 1, 247, 541
Netherland India Netherland India Philippine Islands Sarawak Taiwan Turkey ⁵	10, 584 200, 000	12, 936 300, 000	(4) 380, 000	1, 660 (4) 350, 000	100 (4) 575, 000
46.5	16, 782, 000	19, 386, 000	20, 735, 000	21, 322, 000	21, 843, 000
Africa: Algeria Bechuanaland Belgian Congo Gold Coast 6 Kenya Colony Morocco, French Nigeria Portuguese East Africa Rhodesia:	46, 522 1, 758 3, 793, 980 12, 000 3, 744 2, 733 139, 200 725	45, 236 1, 378 2, 781, 521 14, 000 5, 721 88, 254 153, 000 1, 337	72, 177 1, 499 2, 961, 855 19, 000 7, 549 241, 549 102, 120 1, 474	90, 000 1, 127 3, 117, 014 23, 000 11, 200 280, 000 (1) 1, 808	85, 000 813 (4) (4) (4) (4) (4) (4) 2, 319
Northern Southern Sierra Leone South-West Africa Tanganyika	151 132, 087 1, 673	229, 151 145, 072 1, 537 135, 000	83, 861 152, 038 1, 568 385, 500	88, 237 166, 417 (4) 673, 500	61, 217 173, 556 (4) 587, 000
Tanganyika Tunisia Uganda Union of South Africa	6, 134 17, 008 346 1, 042, 203	9, 254 44, 979 924 1, 075, 626	385, 500 11, 696 58, 354 1, 379 1, 100, 641	16, 473 61, 149 1, 981 1, 135, 374	(4) (4) 1, 376 1, 182, 516
	5, 200, 000	4, 732, 000	5, 202, 000	5, 719, 000	5, 409, 000

See footnotes at end of table. 244615-40-5

World production of silver, 1935-39, by countries, in fine ounces—Continued

Country	1935	1936	1937	1938	1939
Oceania: Australia: New South Wales Queensland. South Australia Victoria. Western Australia. Fiji New Guinea 6. New Zealand Tasmania	9, 091, 946 2, 409, 165 3, 948 50, 516 634 83, 000 487, 967 323, 901 12, 401, 000 221, 539, 000	8, 557, 803 3, 084, 008 1, 560 7, 964 1, 185 97, 000 432, 973 906, 458 13, 166, 000 254, 614, 000	9, 780, 499 3, 264, 994 955 5, 443 180, 562 3, 463 96, 000 443, 981 1, 060, 785 14, 837, 000 277, 681, 000	9, 558, 550 3, 533, 490 5, 593 271, 346 12, 380 104, 000 357, 709 1, 219, 550 15, 063, 000 267, 725, 000	3 9, 500, 000 3, 885, 963 541 6, 225 287, 439 (4) 389, 492 1, 278, 116 15, 466, 000 265, 977, 000

¹ Preliminary world silver production table prepared with revisions and adjustments by R. B. Miller, Foreign Minerals Division, Bureau of Mines, in cooperation with the Office of the Director of the Mint. No official statistics are issued by the Government of U. S. S. R., consequently figures released by the various authorities vary widely and are irreconcilable.

² Philippine Islands excluded.

MINE REPORT

METHOD OF COLLECTING STATISTICS

The first table in this report presents the official refinery figures for production of gold and silver in the United States from 1935 to 1939. as agreed upon by the Bureau of the Mint and the Bureau of Mines. These figures record the output of gold and silver bullion from domestic ore in marketable form as metals, either refined or unrefined.

To trace the gold and silver produced back to its source by States, counties, and mining districts, the Bureau of Mines systematically investigates the "mine production" of ores containing gold and silver and the output of the placer mines, the total being classified by methods of production and by kinds of ore, as well as by mining districts. The resulting figures form the basis of the mine reports.

Of the two systems for ascertaining the production of gold and silver, one is a measure of the metallurgic industry and the other of the mining industry; one reports the metal actually recovered in marketable form and the other the mine output and its recoverable The two methods will not produce identical results, but data for a period of years long enough to compensate for overlap or lag should agree within allowable limits of error.

Gold and silver produced in the United States, 1905-39, in fine ounces, according to mint and mine returns, in terms of recovered metals

37	Mi	int	Mine		
Year	Gold	Silver	Gold	Silver	
1905-34 1935 1936 1937 1937 1938	101, 453, 517 3, 609, 283 4, 357, 394 4, 804, 540 5, 089, 811 5, 611, 171 124, 925, 716	1, 716, 350, 359 45, 924, 454 63, 812, 176 71, 941, 794 62, 665, 335 65, 119, 513 2, 025, 813, 631	101, 096, 635 3, 688, 832 4, 405, 118 4, 834, 062 5, 170, 743 5, 672, 485	1, 705, 292, 736 48, 840, 669 61, 647, 455 72, 128, 397 62, 873, 450 65, 565, 024 2, 016, 347, 731	

Compared with the mine reports, the mint reports for the 35 years show a total excess of gold of 57,841 ounces (a difference of 0.05 percent) and a total excess of silver of 9,465,900 ounces (a difference of 0.47 percent).

Approximate production.
Approximate production.
Data not available. Estimate included in total.
American Bureau of Metal Statistics (New York), Annual Issue.
Imperial Institute (London), Statistical Summary.

UNITS OF MEASUREMENT

All tonnage figures are short tons of 2,000 pounds "dry weight"; that is, they do not include moisture. The weight unit for gold and silver is the troy ounce (480 grains). The totals are calculated upon the basis of recovered and recoverable fine gold and silver shown by assays to be contained in ore, bullion, and other material produced. Prices of gold and silver are discussed in a preceding section of this report.

MINES PRODUCING

LEADING GOLD PRODUCERS

The output of the 30 largest gold producers in the United States (Philippine Islands and Puerto Rico excluded) in 1939, none of which produced less than 19,900 ounces, was 2,346,407 fine ounces (50 percent of the total). Five of the companies, working placer mines with floating connected-bucket dredges, recovered 440,285 ounces of gold; the rest of the output of the largest producers came from lode mines. The total output of lode mines and placers producing less than 19,900 ounces each was 2,326,635 ounces.

Largest producers of gold in the United States in 1939, in order of output 1.

			T	
Rank	Operator	State	Mining district	Source of gold
$egin{smallmatrix} 1 \ 2 \end{smallmatrix}$	Homestake Mining Co United States Smelting, Refining & Mining Co.	South Dakota Alaska	Whitewood Fairbanks and Nome	Dry and siliceous ore. Dredging gravel.
. 3	Utah Copper Co	Utah	West Mountain	Copper ore.
4	Golden Cycle Corporation 2	Colorado	Cripple Creek, etc	Dry and siliceous ore.
5	Ajaska Juneau Mining Co	Alaska	Juneau	Do.
6	Phelps Dodge Corporation	Arizona	Aio, Copper Mountain,	Copper ore.
7	Empire Star Mines Co., Ltd.	California	Verde, Warren. Grass Valley - Nevada City, Bear Valley, Browns Valley.	Dry and siliceous ore.
8	Idaho Maryland Mines Corporation.		Grass Valley - Nevada City.	Do.
9	Yuba Consolidated Gold Fields.		Constitue Weeks Dimen	Dredging gravel.
10	Rields. Natomas Co Getchell Mine, Inc Howe Sound Co	do	Folsom	Do.
11	Getchell Mine, Inc	Nevada	Potosi	Dry and siliceous ore.
12	Howe Sound Co	Washington	Chelan	Copper ore.
13	Consolidated Coppermines Corporation.	Nevada	Robinson	Do.
14	Central Eureka Mining Co	California	Mother Lode	Dry and siliceous ore.
15	Lava Cap Gold Mining Cor- poration.	do	Grass Valley-Nevada City.	Do.
16	Black Mammoth Consoli- dated Mining Co.	Nevada	Silver Peak	Gold ore.
17	Capital Dredging Co.	California	Folsom	Dredging gravel.
18	Bald Mountain Mining Co	California South Dakota Arizona	Trojan	Dry and siliceous ore.
19	Mammoth - St. Anthony, Ltd.	Arizona	Old Hat	Do.
20	United States Smelting, Re- fining & Mining Co.	Utah	West Mountain and	Zinc-lead ore, lead ore,
21	Carson Hill Gold Mining Cor- poration.	California		-
22	Alaska-Pacific Consolidated Mining Co.	Alaska	Willow Creek	Do.
23	Nevada Consolidated Copper Corporation.	Nevada	Robinson	Copper ore.
24	United States Smelting, Refining & Mining Co. (Gold Road).	Arizona	San Francisco	Dry and siliceous ore.
25	London Mines & Milling Co	Colorado	Mosquito	Do.
26	New Jersey Zinc Co., Empire	do	Battle Mountain	Copper ore.
27	Zinc Division. Veta Mines, Inc. Golden Queen Mining Co Argonaut Mining Co., Ltd.	do	Upper San Miguel	Dry and siliceous ore.
28	Golden Queen Mining Co	California	Mojave	Do.
29	Argonaut Mining Co., Ltd	do	Mother Lode	Do.
30	Manhattan Gold Dredging Co.	Nevada	Mother Lode Manhattan	Dredging gravel.
	33		1	l

Philippine Islands excluded.
 Custom mill. Includes mainly ore from Cresson, Portland, Ajax, Vindicator, and other mines in Cripple Creek district, Colo., but also from other districts in Colorado.

The Benguet Consolidated Mining Co. (including the Balatoc mine, controlled by Benguet stockholders) in the Philippine Islands ranked between the Homestake Mining Co. and the United States Smelting, Refining & Mining Co. Alaska operations.

LEADING SILVER PRODUCERS

The output of silver from the 43 leading silver-producing companies in 1939, none of which produced less than 200,000 ounces, was 50,552,212 ounces—79 percent of the total mine output of the United States (Philippine Islands and Puerto Rico excluded); the remaining 13,643,634 ounces (placer production excluded) came from 5,316 lode mines, many of which derive a substantial net income from the silver content.

Largest producers of silver in the United States in 1939, in order of output

- I				
Rank	Operator	State	Mining district	Source of silver
1	Sunshine Mining Co	Idaho	Evolution	Dry and siliceous ore,
$\hat{2}$	New Jersey Zinc Co., Empire Zinc Division.	Colorado	Battle Mountain	Copper ore.
3	Anaconda Copper Mining Co.	Montana	Butte	Copper ore, zinc-lead ore.
4	Phelps Dodge Corporation	Arizona	Ajo, Copper Moun- tain, Verde, Warren. West Mountain, Tin-	Copper ore.
5	United States Smelting, Re-	Utah	West Mountain, Tin-	Zinc-lead ore, lead ore,
6	fining & Mining Co. Tintic Standard Mining Co	do	tic. Tintic	dry and siliceous ore. Dry and siliceous ore, lead ore.
7	Bunker Hill & Sullivan Mining & Concentrating Co.	Idaho	Yreka	lead ore. Zinc-lead ore, dry and siliceous ore.
8	Utah Copper Co	Utah	West Mountain	Copper ore.
9	Federal Mining & Smelting Co.	Idaho	Hunter, Lelande, Yreka.	Zinc-lead ore.
10	American Metal Co. (Presidio mine).	Texas	Shafter	Dry and siliceous ore.
11	Snyder Mines, Inc	Idaho		Zinc-lead ore, dry and siliceous ore.
12	Polaris Mining Co	do	Evolution	Dry and siliceous ore.
13 14	Hecla Mining Co	Utah	Lelande Uintah	Zinc-lead ore, lead ore. Do.
	Co.	NT	0:1 D1-	D
15 16	Desert Silver, Inc. Park City Consolidated Mines	Nevada Utah		Dry and siliceous ore. Zinc-lead ore.
17	Co. Magma Copper Co	Arizona	Pioneer	
18	Cactus Mines Co	California	Mojave	ore. Dry and siliceous ore.
19	Eagle-Picher Mining & Smelting Co.	Arizona	Mojave Oro Blanco	Zinc-lead ore.
20	International Smelting & Refining Co.	Utah		tailings.
21	Anaconda Copper Mining Co. (Flathead mine).	Montana	Hog Heaven	Dry and siliceous ore, lead ore.
22 23	Emperius Mining Co Lessees of the Tonopah Min- ing Co. of Nevada.	Colorado Nevada	Creede Tonopah	Dry and siliceous ore.
24	Blackhawk Consolidated Mines Co.	New Mexico	Mogollon	Do.
25	Basin Montana Tunnel Co Chief Consolidated Mining	Montana		Zinc-lead ore.
26	Co	Utah		load are zinc-load are
27 28	Philipsburg Mining Co. Ground Hog Unit, American Smelting & Refining Co.	Montana New Mexico	Flint Creek	Dry and siliceous ore.
29	Veta Mines, Inc	Colorado	Upper San Miguel	Dry and siliceous ore.
30	Golden Queen Mining Co	California	Mojave	Do.
31	Combined Metals Reduction Co. (Park-Bingham group).	Utah	West Mountain	Dry and siliceous ore,
32	Graham Loftus Oil Corpora- tion.	California		Dry and siliceous ore.
33	Veta Mines, Inc	Arizona	Ash Peak Montana (Neihart)	Do.
34	ing Co.	Montana		
35	Lava Cap Gold Mining Corporation.	California	Grass Valley-Nevada City.	Do.
36	Shattuck Denn Mining Corporation.	Arizona	Warren	Copper ore.

Largest producers of silver in the United States in 1939, in order of output—Con.

Rank	Operator	State	Mining district	Source of silver
37	Combined Metals Reduction Co.	Nevada	Pioche	Zinc-lead ore.
38 39	Iron King Mining Co Coeur d'Alene Mines Corpo- ration.	ArizonaIdaho	Big Bug Evolution	Dry and siliceous ore. Do.
40 41	Shenandoah-Dives Mining Co. East Camp Exploration Syndicate.	Colorado New Mexico	Animas Steeple Rock	Do. Do.
42	Contact Mines Corporation	Montana	Flint Creek	Dry and siliceous ore, zinc-lead ore.
43	New Park Mining Co	Utah	Blue Ledge	Zinc-lead ore.

NUMBER OF MINES

The following table indicates the number of mines that produced gold and silver in 1938 and 1939. The placers are those in which gold and silver in natural alloy and, in a few placers, platinum are recovered from gravel and sand, whether by hand washing, sluicing, hydraulicking, drifting (in frozen ground or ancient buried river channels), or dredging. The lode mines are those yielding gold and silver from ore as distinguished from gravel, mainly from underground workings, and include those that yield ore mined chiefly for copper, lead, or zinc but that contribute the precious metals as byproducts. In addition to the producing mines enumerated here many properties were being prospected and developed, and many other mining claims were being held by assessment work only.

The enumeration of placer mines is less satisfactory than that of lode mines, because some are operated only temporarily and are individually small. As far as possible the unit, as for lode mines, is

not the operator but the mining claim or group of claims.

Number of mines in the United States producing gold and silver, 1938-39, by States 1

	Lo	Lode		cer	Total	
State	1938	1939	1938	1939	1938	1939
Alabama Alaska ² Arizona California Colorado Georgia Idaho Illinois ³ Indiana Maryland Michigan ³ Missouri Montana New Mexico New York ² North Carolina Oregon Pennsylvania South Carolina South Carolina South Dakota Tennessee Texas Utah Virginia Washington Wyoming	2 2 1 482 795 166 14 84 1 10 111 3 7 183 3 77 8	1 73 976 1,028 8 8 362 2 1 594 891 214 2 13 116 1 5 18 8 8 8 8 8 9	2 1, 164 329 676 592 15 463 	1, 114 142 749 583 17 465 1 	3 1, 234 1, 214 1, 603 1, 261 22 768 2 2 2 2 2 1 1 747 925 330 241 1 12 82 82 3 7 205 4 157 34	1 1, 187 1, 118 1, 777 1, 341 25 827 2 1 1 3 3 2 2 1 1 876 995 382 2 17 317 16 6 98 8 8 7 7
	4, 716	5, 359	4, 165	4, 036	8, 881	9, 395

Philippine Islands and Puerto Rico excluded.
 Number of mines contributing to production of gold or silver.

² Estimated.

MINE PRODUCTION

SUMMARY

The following table gives the mine production of gold and silver in 1938 and 1939, by States, in terms of recovered metals, as calculated by the Bureau of Mines from reports from the producing mines. The annual percentage gains in gold production in the years following the 69-percent increase in the price of gold are as follows: 1934 over 1933, 19 percent; 1935 over 1934, 18 percent; 1936 over 1935, 19 percent; 1937 over 1936, 9 percent; 1938 over 1937, 7 percent; and 1939 over 1938, 10 percent. The total gain in 1939 over 1933 was 116 percent. The output of silver increased 4 percent in 1939 over 1938 and was 181 percent above that in 1933.

			Gold				Silver			
Region and State	Fine	Fine ounces Increase		Value (at \$3	5 per ounce)	Fine ounces		Increase	Value	
	1938	1939	decrease (percent)	1938	1939	1938	1939	or decrease (percent)	1938 (at \$0.64646+ per ounce)	1939 (at \$0.67878+ per ounce)
Western States and Alaska: Alaska Arlzona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Texas Utah Washington Wyoming	305, 043 1, 311, 129 367, 468 103, 513 203, 313 296, 434 43, 050 81, 729 594, 847 439 200, 630 74, 175 798	676, 737 316, 453 1, 435, 264 366, 852 116, 662 284, 173 361, 518 36, 979 93, 372 618, 536 277, 751 90, 420	+2 +4 +9 (1) +13 +30 +22 -14 +14 +4 -26 +38 +22 -27	\$23, 274, 055 10, 676, 505 45, 889, 515 12, 861, 380 3, 622, 955 7, 116, 955 10, 375, 190 1, 506, 750 2, 860, 515 20, 819, 645 7, 022, 050 2, 596, 125 27, 930	\$23, 685, 795 11, 075, 855 50, 234, 240 12, 839, 820 4, 083, 170 9, 246, 055 12, 653, 130 1, 294, 265 3, 268, 020 21, 648, 760 9, 721, 285 3, 164, 700 20, 405	479, 853 7, 479, 153 2, 590, 804 7, 932, 095 18, 993, 676 6, 403, 962 4, 355, 471 1, 229, 860 100, 507 162, 295 1, 433, 008 9, 682, 732 380, 938	201, 054 7, 824, 004 2, 599, 139 8, 496, 488 17, 222, 370 9, 087, 571 4, 316, 029 1, 400, 878 105, 388 167, 584 1, 341, 945 10, 758, 657 442, 063	-58 +5 (1) +7 -9 +42 -1 +14 +5 +3 -6 +11 +16 -77	\$310, 208 4, 835, 674, 863 5, 127, 819 12, 278, 740 4, 139, 935 2, 815, 658 795, 061 64, 974 104, 918 926, 389 6, 259, 544 246, 263	\$136, 473 5, 310, 839 1, 764, 264 5, 767, 313 11, 690, 336 6, 168, 533 2, 929, 668 950, 899 71, 536 113, 764 910, 300, 667 7, 302, 846 300, 667 51
Eastern States:	4, 247, 541	4, 655, 624	+10	148, 663, 935	162, 946, 840	61, 224, 682	63, 963, 245	+4	39, 579, 592	43, 417, 475
Alabama Georgia Maryland New York	872 855	670 71	-93 -23 -92	1, 435 30, 520 29, 925	105 23, 450 2, 485	4 71 24 37, 200	58 2 37, 250	-100 -18 -92	3 46 16 24,048	39 1 25, 285
North Carolina Pennsylvania South Carolina Tennessee Virginia	1, 422 11, 681	495 1, 815 13, 833 163 364	-74 +28 +18 -31 -88	65, 730 49, 770 408, 835 8, 260 103, 005	17, 325 63, 525 484, 155 5, 705 12, 740	5, 500 9, 360 3, 951 38, 333 502	3, 961 13, 558 5, 480 31, 994 1, 780	-28 +45 +39 -17 +255	3, 556 6, 051 2, 554 24, 781	25, 285 2, 689 9, 203 3, 720 21, 717 1, 208
Central States:	19, 928	17, 414	-13	697, 480	609, 490	94, 945	94, 083	-1	61, 380	63,862
IllinoisIndiana	1		, ,		140	576	675	+17	372	458
Michigan Missouri						93, 634 292, 000	101, 878 213, 400	$^{+9}_{-27}$	60, 531 188, 768	69, 154 144, 853
		4			140	386, 210	315, 953	-18	249, 671	214, 465
Puerto Rico	² 903, 265 9	³ 999, 408 ³ 35	+11 +289	31, 614, 275 315	34, 979, 280 1, 225	1, 167, 612 1	³ 1, 191, 739	+2 +300	754, 820 1	808, 938
	903, 274	999, 443	+11	31, 614, 590	34, 980, 505	1, 167, 613	1, 191, 743	+2	754, 821	808, 941
	5, 170, 743	5, 672, 485	+10	180, 976, 005	198, 536, 975	62, 873, 450	65, 565, 024	+4	40, 645, 464	44, 504, 743

¹ Less than 0.5 percent.

² Division of Statistics, Department of Agriculture and Commerce, Manila.

³ Refinery receipts.

Gold and silver produced in the Western States of the United States, 1848–1939, and in Alaska, 1880–1939, in terms of recovered metals

[Original research, 1848-1903, by Chas. W. Henderson; 1904-1939, by western offices]

		G	old	Silver (fine
State	Period	Fine ounces	Value ¹	ounces)
Arizona California Colorado Idaho Montana Nevada New Mexico Oregon South Dakota Texas Utah Washington Wyoming	1862-1939 1859-1939 1848-1939 1852-1939 1876-1939 1885-1939 1864-1939 1860-1939	9, 564, 090 97, 398, 295 37, 549, 390 7, 332, 862 16, 161, 441 24, 025, 110 2, 084, 992 5, 410, 821 18, 850, 644 7, 423 8, 346, 234 1, 715, 413 76, 673	\$222, 238, 305 2, 111, 043, 977 808, 105, 614 159, 789, 573 350, 103, 647 519, 440, 526 46, 308, 913 117, 341, 778 441, 369, 749 193, 750 192, 343, 230 38, 794, 778 1, 791, 883	254, 114, 563 98, 518, 224 700, 938, 158 435, 350, 307 688, 454, 935 569, 700, 164 4, 594, 512 8, 999, 991 30, 091, 579 657, 732, 367 10, 455, 685 74, 372
Total, Western StatesAlaska	1848-1939 1880-1939	228, 523, 388 23, 700, 593	5, 008, 865, 723 542, 535, 357	3, 521, 565, 277 19, 179, 467
Total, Western States and Alaska	1848-1939	252, 223, 981	5, 551, 401, 080	3, 540, 744, 744

¹ Gold valued per fine ounce as follows: Prior to 1933, \$20.67; 1933, \$25.56; 1934, \$34.95; 1935-39, \$35.

ORE PRODUCTION, CLASSIFICATION, METAL YIELD, AND METHODS OF RECOVERY

The best index of lode mining is the quantity and metallic content of ore mined rather than the number of mines or operators. The following tables give details of classes of ore, metal yield in fine ounces of gold and silver to the ton, and gold and silver output by classes of ore and by methods of recovery, embracing all ores that produced gold and silver in the United States (excluding the Philippine Islands and Puerto Rico) in 1939. The individual State chapters from which these tables were compiled contain additional tables and text on the

subject and may be found elsewhere in this volume.

The classification originally adopted in 1905 on the basis of smelter terminology, smelter settlement contracts, and smelter recovery has been used continuously in succeeding years, except for modifications necessitated by the improvement in recovery of metals and the lowering of grade of complex ores treated, accomplished by improved mill concentration processes. A "dry" ore is one that carries so little lead or copper that by itself in quantity it would not satisfy the requirements for the smelter charge in lead smelting or copper smelting, respectively. The copper ores include those smelting ores that contain 2.5 percent dry assay or more of copper (or less than this percentage if no other metal is present), or those ores concentrated chiefly for their copper content. The lead ores are those that contain 5 percent dry assay (minimum lead smelting charge requires 7.5 to 8.5 percent wet assay) or more of lead, irrespective of precious-metal content; an ore that carries any grade of lead exclusively is called a lead ore. Zinc smelting ores (chiefly oxides) range from 16 to 45 percent zinc; zinc concentrating ores include any grade of zinc ore that makes marketable zinc concentrate, irrespective of precious-metal content. The mixed ores are combinations of those enumerated. The

smelter classification applies to concentrates.

Siliceous (silica 4 in excess of iron) gold, gold-silver, and silver ores containing too little copper, lead, or zinc to be classified as copper, lead, zinc, or mixed ores are called "dry" ores regardless of the ratio of concentration, except low-grade ore milled chiefly for its copper content and having very little or no precious-metal content (chiefly the "porphyry coppers") and ores from which separate products of lead concentrates and zinc concentrates are made. The crude ore into the mill in these two exceptional instances thus takes its name from its products—a name that is also justified by the mineralogical content and final recovery of metals. The "dry and siliceous ores" thus, by elimination, include both dry siliceous and irony, but chiefly siliceous, ores valuable for their gold and silver content, regardless of method of treatment, and dry fluxing ores carrying considerable quantities of iron and manganese oxides, or iron sulfide, and very small quantities of gold and silver. Dry and siliceous gold ores are those that by inspection are overwhelmingly of gold content; a similar qualification applies to silver ores; decision as to "gold-silver" ore is made arbitrarily on a basis of value, using the rule that the metal of lower value is not used in the bimetal classification unless its value is equal to or over one-quarter of the combined value of gold and silver.

The lead, zinc, and zinc-lead ores in most districts in the Eastern and Central States carry no appreciable quantity of gold or silver;

such ores are excluded from this report.

Ore produced in the United States and average recovery in fine ounces of gold and silver per ton in 1939 1

	Gold ore			Gold-	silver	re	Silver ore			
State	Short	ounc	erage es per on	Short tons	ounc	erage es per on	Short tons	Average ounces po ton		
		Gold	Silver		Gold	Silver		Gold	Silver	
Vestern States: Arizona. California. Colorado. Idaho. Montana. New Mexico. Oregon. South Dakota. Texas. Utah. Washington. Wyoming. Total, Western States.	5, 048, 051 1, 224, 849 245, 049 11, 494, 996 33, 278 68, 938 1, 632, 778 385, 500 261, 651 57	0. 169 .151 .245 .199 .220 .147 .171 .472 .378 .165 .153 .544	0. 32 .24 .60 .65 .55 .32 .48 1. 35 .10 1. 09 .64 .23 .35 .03	153, 289 157, 171 242, 178 88, 044 55, 620 305, 793 77, 455 87 133, 029 68	0. 135 . 143 . 079 . 151 . 099 . 114 . 157 . 862 	5. 85 6. 91 2. 13 8. 21 5. 17 5. 66 8. 31 17. 54 	84, 899 4, 415 75, 208 451, 381 177, 892 106, 262 469 	0. 020 . 005 . 011 . 001 . 031 . 042 . 021 . 002 . 014 . 013	9. 33 9. 55 9. 77 24. 99 9. 00 12. 66 17. 00 	
Castern States	120, 274	. 124	. 05						14.	

See footnotes at end of table.

⁴ Except where mineralization approaches a matte, ores in their natural state generally contain more silica than iron and usually are highly siliceous.

Ore produced in the United States and average recovery in fine ounces of gold and silver per ton in 1939—Continued

	G	old ore		Gold	-silver	ore	Si	lver or	•
State	Short tons	oun	erage ces per ton	Short tons	oun	erage ces per ton	Short tons	oun	erage ces per
		Gold	Silver		Gold	Silver		Gold	Silver
Western States:									
Arizona		0.008	0. 28	9,778	0. 127	8.61	30	0. 200	54.47
California Colorado	367, 477 342, 499	.035	17.85	706 14, 700	. 210	11. 19 21. 81	1, 464	. 304	18. 22
Idaho	1.416	. 424	31. 27	125, 964	.005	6.55	1, 101	.001	10. 22
Montana Nevada	2, 253, 270	.003	2.08	23, 096 6, 730	.099	9. 28			
New Mexico	4, 517, 429	.002	.08	1, 431	. 188	33. 58 5. 21	219 1, 102	.014	9. 67 7. 72
Oregon									
South Dakota	657		3.36	6		21. 17			
TexasUtah	19, 602, 472	.008	.08	77,072	.065	13. 61	4, 951	.008	16. 46
Washington Wyoming	597, 957	.080	. 32	400	. 045	8. 20			
w yoming									
Total, Western States	50, 088, 104	. 009	. 36	259, 883	. 057	10. 53	7, 766	. 065	15. 51
Alaska Eastern States	23 246 344	1.915	. 44						
24500111 506005									
	53, 334, 613	.009	. 34	259, 883	. 057	10. 53	7,766	.065	15. 51
State	Ziı	ne ore	-	Zinc-lead and zin ores 5			То	tal ore	
Western States:									
Arizona	670	0. 221	6.01	271, 852	0.039	3, 58	18, 793, 260	0.016	0.42
California				33	.061	7.88	5, 577, 853	. 143	. 46
ColoradoIdaho	344 144	.047	23. 48 12. 18	13, 351 1, 196, 495	.021	2.81 3.52	1. 914, 593	. 181	4.44
Idaho Montana	3 146, 705	(4)	. 26	320, 248	.004	5. 56	2, 108, 445 3, 792, 780	.032	8. 16 2. 39
Nevada	150		.08	44, 848	.020	5, 53	6, 894, 999	.048	. 62
New Mexico	217, 517	(4)	. 13	128, 694	. 045	2.39	4, 977, 375	.007	. 28
Oregon South Dakota							69, 025	.472	1.37
Texas							1, 632, 778 141, 795	.378	. 10 9. 46
Utah		1		570, 705	. 048	8. 27	21, 094, 097	.002	.51
Washington	l 			259, 350	(4)	. 05	1, 124, 564	.078	. 39
Wyoming							57	. 544	. 23
Total, Western States	365, 530	. 001	. 22	2, 805, 576	. 021	4.38	68, 121, 621	. 046	. 93
Alaska Eastern States	(6)			7.070.005			4, 751, 657	.044	. 03
Manori Dianes	(%)			⁷ 973, 231		.04	4, 339, 849	.004	. 02
	365, 530	.001	. 22	3, 778, 807	. 015	3. 26	77, 213, 127	. 043	.83
		1			1				

¹ Illinois, Michigan, Missouri, Philippine Islands, and Puerto Rico excluded.
2 Includes magnetite-pyrite-chalcopyrite ore from Pennsylvania yielding copper concentrates carrying gold and silver.
3 Includes 145,638 tons of slag fumed.
4 Less than 0.001 per ton.
4 Includes zinc-lead-copper ore from 1 mine in Utah. Bureau of Mines not at liberty to publish figures.
2 Zinc-opper ore from Arizons.
6 Zinc ore yielded no gold or silver.
7 Figures cover New York and Virginia.

Mine production of gold in the United States in 1939, by States and sources, in fine ounces, in terms of recovered metals 1

State	Placers	Dry and siliceous ore	Copper ore	Lead ore	Lead- copper ore	Zinc ore	Zinc-lead, zinc-cop- per, and zinc-lead- copper ores ²	Total
Alabama Alaska Arizona California Colorado Georgia Idaho Indiana Maryland Montana Nevada New Mexico North Carolina Oregon Pennsylvania South Carolina South Carolina South Carolina Tennessee Texas Utah Virginia Washington Wyoming	145 5 2, 261 552	3 208, 850 158, 398 786, 107 319, 931 277 62, 540 190, 578 258, 753 17, 885 412 32, 593 13, 825 617, 914 22 32, 493 40, 076 31	316 139, 527 12, 962 22, 653 600 7, 636 68, 028 9, 426 76 31, 815 161 159, 653 48, 064	5, 0,43	41		2 10, 725 2 276 4, 192 8, 648 910 5, 809	3 676, 737 31, 435, 264 366, 852 4 71, 264, 173 361, 518 36, 979 495, 583 618, 536 13, 833 618, 536 277, 751 90, 420 583
	1, 334, 314	2, 794, 423	470, 917	14, 703	506	241	57, 938	4, 673, 042

Philippine Islands and Puerto Rico excluded.
 Includes zinc-lead-copper ore from 1 mine in Utah; zinc-copper ore from Arizona.
 From copper concentrates from magnetite-pyrite-chalcopyrite ore.

Mine production of silver in the United States in 1939, by States and sources, in fine ounces, in terms of recovered metals ¹

	• • •	,						
State	Placers	Dry and siliceous ore	Copper ore	Lead ore	Lead- copper ore	Zinc ore	Zinc-lead, zinc-cop- per, and zinc-lead- copper ores ²	Total
Alaska Arizona California Colorado Georgia Idaho Illinois Maryland Michigan Missouri Montana New Mexico New York North Carolina Oregon Pennsylvania South Carolina South Carolina South Carolina Tennessee Texas Utah Virginia Washington Wyoming	68, 506 691 56, 131 4, 125 14, 875 11, 634 10, 143 209 10, 594 47 25	132, 475 1, 939, 317 2, 338, 874 1, 985, 174 23 12, 123, 773 2 2, 343, 037 3, 549, 110 667, 579 134 94, 794 5, 480 167, 537 1, 339, 609 3, 395, 656 3, 395, 656 3, 395, 656 234, 509 13	4, 820, 469 195, 972 6, 114, 224 44, 278 101, 878 4, 697, 920 280, 654 381, 875 3, 827 413, 558 31, 994 2, 209 1, 514, 899	84, 208 7, 902 320, 657 824, 618 3 675 213, 400 214, 368 225, 992 7, 461 217 1, 048, 887	1, 634 28, 670 2, 118 8, 503 81, 490		1, 396 11, 680	201, 054 7, 824, 004 2, 599, 139 8, 496, 488 17, 222, 370 101, 878 213, 400 9, 887, 571 4, 316, 029 1, 400, 878 37, 250 3, 961 105, 388 13, 558 5, 430 167, 584 31, 944 1, 341, 945 10, 758, 657 1, 780 442, 063
	177, 435	30, 317, 480	18, 396, 067	2, 951, 574	120, 415	79, 654	12, 330, 656	64, 373, 281

Philippine Island and Puerto Rico excluded.
 Includes zinc lead-copper ore from 1 mine in Utah; zinc-copper ore from Arizona.
 From galena concentrates containing silver, a byproduct of fluorspar ores.
 Magnetite-pyrite-chalcopyrite ore.

Gold and silver produced in the United States from ore, old tailings, etc., in 1939, by States and by methods of recovery, in terms of recovered metals 1

State	Total ore, old tailings, etc.,	Ore, old and cy covered	tailings, et anidation i	c., to amal mills and b	gamation ullion re-	Ore and old tailings to concen-	amalga dation	mation a	ted (from nd cyani- centrating	Crude	e ore to sn	nelters	Ore leach slag	ed, old tai smelted,	lings and etc.
	treated (short tons)	Ore (short tons)	Old tail- ings, etc. (short tons)	Gold (fine ounces)	Silver (fine ounces)	trating mills (short tons)	Short tons	Gold (fine ounces)	Silver (fine ounces)	Short tons	Gold (fine ounces)	Silver (fine ounces)	Short tons	Gold (fine ounces)	Silver (fine ounces)
	18, 793, 260 5, 577, 853 1, 914, 593 2, 108, 445 3, 792, 780 6, 894, 999 4, 977, 375 69, 025 1, 632, 778 114, 795 21, 094, 097 1, 124, 564 57 24, 339, 849	738, 943 4, 435, 311 1, 054, 840 121, 898 572, 788 1, 121, 956 88, 453 18, 441 1, 632, 696 138, 934 230, 224 167, 972	615, 708 3, 764 1, 411	207, 908 19, 567 77, 632 196, 036 8, 305 5, 135 616, 315 298 15, 651 16, 442 2 14, 656	998, 619 105, 865 12, 892 128, 057 1, 670, 507 377, 995 916 167, 027 1, 099, 261 1, 967 56, 422	14, 017, 765 493, 693 458, 443 1, 919, 136 2, 836, 478 4, 964, 600 4, 801, 902 38, 760	101 636 774, 106 64, 105 580, 004	109, 671 190, 732 102, 600 33, 159 44, 614 81, 388 16, 614 20, 809 348 25 186, 725 49, 442	3, 028, 737 1, 338, 426 1, 690, 469 7, 177, 059 730, 332 519, 616 83, 040 67 204, 487 6, 712, 712 257, 345	1, 922, 003 11, 078 401, 310 67, 411 237, 876 187, 087 87, 020 8, 060 82 2, 861 470, 385 92, 441 54 93, 642	121, 463 7, 987 36, 525 15, 273 86, 928 51, 103 8, 586 6, 649 1, 251 175, 159 22, 275 29 196	4, 649, 538 205, 963 6, 696, 029 1, 299, 434 1, 747, 220 1, 865, 584 503, 058 10, 838 443 38, 197 4, 043, 953 127, 938	145, 638 5, 648	433	23, 601

Illinois, Michigan, Missouri, Philippine Islands, and Puerto Rico excluded.
 Includes magnetite-pyrite-chalcopyrite ore from Pennsylvania; excludes ore containing no gold or silver.

Gold and silver produced at amalgamation and cyanidation mills in the United States and percentage of gold and silver recovered from all sources, 1935-39 1

	Bullion	and pred (fine	cipitates re ounces)	covered	P	ercent	of gold	and si	lver fro	om all s	ources	i
Year	Amalga	mation	Cyan	idation		lgam- ion		nida- on	Smel	ting 2	Pla	cers
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
1935 1936 1937 1938 1939	928, 949 1, 025, 040 1, 040, 593 984, 620 985, 717	433, 446 437, 091 368, 394 223, 058 243, 786	610, 144 711, 396 793, 204 962, 788 1, 043, 675	1, 731, 622 2, 518, 288 3, 039, 172 4, 275, 154 4, 556, 336	28. 7 27. 1 25. 3 23. 1 21. 1	0.9 .7 .5 .4 .4	18.8 18.8 19.3 22.6 22.3	3.6 4.1 4.3 7.0 7.1	28. 7 30. 2 30. 8 26. 4 28. 0	95. 3 95. 0 95. 0 92. 4 92. 2	23. 7 23. 9 24. 6 27. 9 28. 6	0. 2 . 2 . 2 . 2 . 3

Philippine Islands and Puerto Rico excluded.
 Both crude ores and concentrates.

Gold and silver produced at amalgamation and cyanidation mills in the United States in 1939, by States 1

	Amal	lgamatio	o n	c	yanidatio	n	Perce	nt of go all sou	ld and rces in	silve r State
State	Ore, old tailings, concen-	Bullio cove (fine o	ered	Ore, old tailings, concen- trates,	Bullion cipita	tes re-	Amal tio	gama- on	Cyar tio	
50000	trates, etc., treated (short tons)	Gold	Silver	sands, slimes, etc., treated (short tons)	Gold	Silver	Gold	Silver	Gold	Silver
Alaska Arizona California Colorado Idaho Montana Newada New Mexico Oregon South Dakota Texas Utah Washington W yoming Eastern States	111, 480 82, 359 307, 959 24, 703 4, 747 1, 461, 283 	1, 087 342, 296 72, 095 18, 008 9, 354 33, 050 658 2, 048 336, 425	308 63, 720 27, 684 9, 821 2, 042 44, 458 179 516 64, 710	733, 943 2, 139, 243 636, 969 10, 418 490, 429 1, 507, 366 63, 750 17, 468 1, 613, 879 138, 298 230, 224 161, 551	77, 823 258, 204 135, 813 1, 559 68, 278 162, 986 7, 647 3. 087 279, 890 15, 651 15, 481	144, 713 934, 899 78, 181 3, 071 126, 015 1, 626, 049 377, 816 102, 317 1, 099, 261 1, 967 56, 078	23. 85 19. 65 15. 44 3. 54 9. 14 1. 78 2. 19 54. 39 1. 06 . 34 5. 43	(2) 2. 45 . 33 . 06 . 02 1. 03 . 01 . 49 38. 61	24. 59 17. 99 37. 02 1. 34 25. 85 45. 08 20. 68 3. 31 45. 25 91. 98 5. 63 17. 12	1. 85 35. 97 . 92 . 02 1. 39 37. 67 26. 97 . 38 61. 05 81. 92 . 02 12. 69
	10, 417, 982	985, 717	243, 786	7, 862, 973	1, 043, 675	4, 556, 336	21.09	.38	22. 33	7.11

Philippine Islands and Puerto Rico excluded.
 Less than 0.005 percent.

PLACERS

Dredging.—Placer gold is obtained largely from gravels handled by connected-bucket floating dredges, which recovered approximately 59 percent of the total output from placers in the United States (Philippine Islands and Puerto Rico excluded) in 1939 and 62 percent The quantity of gold recovered by dredges from the inception of the industry as a commercial factor in 1896 to the end of 1939 is recorded as 16,610,669 ounces, originating by States as follows: California, 10,419,552 ounces; Alaska 4,246,303 (including some gold

by hydraulicking); Montana, 586,944; Idaho, 482,040; Colorado, 425,075; Oregon, 396,323; and other States, 54,432. The output in 1939 was 787,731 ounces from 114 dredges, of which California produced 370,264 ounces from 47 dredges; Alaska, 304,995 from 44 dredges; Idaho, 28,973 from 8 dredges; Montana, 33,815 from 7 dredges; Oregon, 25,028 from 5 dredges; and Colorado 4,688 from 2 dredges.

Connected-bucket floating gold dredges operated in the United States, 1938–39, by companies and districts

ALASKA

Company	Address	District		ber of dges
			1938	1939
Triple X Placers Co.1	Ferry	Bonnifield		
Alluvial Golds Inc	Fairbanka	Circledo	1	1 1
C. J. Berry Dredging Co.	Miller House	do	1	1 1
C. J. Berry Dredging Co. Deadwood Mining Co. (in 1939 dredge operated by Nome Creek Mining Co.).	Fairbanks	do	1	
by Nome Creek Mining Co.).	_		i	1.
Gold Placers, Inc. Nome Creek Mining Co. (formerly Deadwood Mining Co.)	do	do	1]]
Mining Co.).	do	do		. 1
Alaska Placer Co. (formerly North Star Dredg-				
ing Co.).	Council	Council	1	1
Comp Crook Drodging Co	đo	do.		,
Council Dredging Co	do	do	1	1
Camp Creek Dredging Co. Council Dredging Co. Glass Dredging Co.	do	do	1	1 1
Inland Dredging Co	do	do	l i	
Inland Dredging Co	Fairbanks	Fairbanks	6	Ι έ
Co., Fairbanks Department.				`
Arctic Circle Exploration, Inc.	Candle	Fairhaven	2	1 2
Forsgren Dredging Co	Deering	do Fortymile	ī	1
Boundary Dredging Co	Canyon Creek	Fortymile	1	1
North American Mines, Inc., Jack Wade Op-	Fairbanks	do	- 1	1
erations.			ļ	1
Bristol Bay Mining Co.	San Francisco	Goodnews Bay Hot Springs	1	1
American Creek Operating Co., Inc	Fairbanks	Hot Springs		1
North American Dredging Co	Flat	Iditarod	1	1
J. E. Riley Investment Co	do	do	1	1
	Takotna	Innoko	1	1
& Matheson).	ao	do	1	1
W. F. Puntila	do	a a		١.
Nels J. Vibe	do	do		1 1
For Bor Drodging Co	NT	77	1 1	
Kongarok Consolidated Placers Inc	do	do.	1	1 1
Dime Creek Dredging Co. (Wallace Porter)	Haveock	Kovuk	1	1 1
Kougarok Consolidated Placers, Inc. Dime Creek Dredging Co. (Wallace Porter) Shaw & Cook Ungalik Syndicate	Golovin	do	1	,
Ungalik Syndicate	Nome	do	1	
Snaw & Cook Ungalik Syndicate Alaska Sunset Mines, Inc Casa de Paga Gold Co.² Dry Creek Dredging Co Osborn Creek Dredging Co Tolbert Scott (formerly Spruce Creek Dredging Co.)	do	Nome	i	i
Casa de Paga Gold Co.2	do	do	î	ĺ
Dry Creek Dredging Co	do	do	ī	1 1
Osborn Creek Dredging Co	do	do	ī	1
Tolbert Scott (formerly Spruce Creek Dredging	do	do		1
United States Smelting, Refining & Mining	do	do	3	3
Co., Nome Department.	_			
Dartholomae Oli Corporation	do	Port Clarence	1	1
I so Prothora Dredging Co	Teller	do	1	
Slock & Mohan	Nome	Solomon	1	1
Now York Alaska Gold Dradging Co.	do	do		1
Co., Nome Department. Bartholomae Oil Corporation N. B. Tweet & Son Lee Brothers Dredging Co. Slack & Mahan New York Alaska Gold Dredging Co.	Nyac	Tuluksak-Anlak	2	2
			44	44
			44	44

¹ Single-dipper dredge.

² Solomon district in 1938.

Connected-bucket floating gold dredges operated in the United States, 1938-39, by companies and districts—Continued

CALIFORNIA

Company	Address	District	Num drec	ber of iges
			1938	1939
Etna Gold Dredging Co Yuba Consolidated Gold Fields	Callahan	Callahan]
Yuba Consolidated Gold Fields	San Francisco	Camanche	1 1	1
Camanche Placers, Ltd	Camanene	Camanene	1	:
Lancha Plana Gold Dredging Co.	Camanche	do	i	
Wallace Dredging Co	San Francisco	do	1	
Wallace Dredging Co Cosumnes Gold Dredging Co	do	Cosumnes River	1	
Canital Dredging Co	do	Folsom	3	:
Natomas Co. Cal Oro Gold Dredging Co Yreka Gold Dredging Co	Sacramento	do	7	1
Cal Oro Gold Dredging Co	San Francisco	Greenhorn	1	
Yreka Gold Dredging Co	Yreka Merced Falls	Hunter Valley Igo	1	İ
Callahan & Bates Roaring River Gold Dredging Co Arroyo Seco Gold Dredging Co	San Francisco	Too	1	
Arroyo Saco Gold Dredging Co	do	Tone		1
Lancha Plana Gold Dredging Co	Camanche	do	2	
California Gold Dredging Co	San Francisco	Jenny Lind	1	
O I Thompson 4	Linden San Francisco	do	1	
Unction City Mining Co La Grange Gold Dredging Co Loudinne Gold Dredging Corporation Lewiston Gold Dredging Co	San Francisco	Junction City La Grange	1	
La Grange Gold Dredging Co	do	La Grange	1	
Cuolumne Gold Dredging Corporation	La Grange	do	1	
Lewiston Gold Dredging Co	Lewiston	Lewiston	1 1	
r. D. & C. R. Harris 5	San Francisco	Ophir	1	
antelope Creek Dreuging Co	do	do	1 1	
F. D. & C. R. Harris * Antelope Creek Dredging Co. Fold Hill Dredging Co. Fold Fold Fields	Rerkeley	do	î	
Proville Gold Dredging Co	Berkeley Oroville	Oroville	1	
Fold Hill Dredging Co	San Francisco	do	1	
Yuba Consolidated Gold Fields	do	Smartville	2	
Williams Bar Dredging Co	do	Smartville	1	
Merced Dredging Co	do	· Snelling	1	
San Joaquin Mining Co Snelling Gold Dredging Co Yuba Gonsolidated Gold Fields		do	1 2	
Snelling Gold Dredging Co.	Snelling San Francisco	do	2	
Carryille Gold Co	Duluth, Minn	Trinity Center		
Yuba Consolidated Gold Fields	San Francisco	Yuba River	5	
	·		48	47
	OLORADO			
Timberline Dredging Co	Breckenridge	Beaver Creek Breckenridge	1 1]
Blue River Co	do	do		
ı			2	:
			-	}
	IDAH0			
Fisher-Baumhoff Co		Boise Basin	2	
Fisher-Baumhoff Co	Centerville	do	2	1
Fisher-Baumhoff Co	Centerville		2	1
The Grimes Codaho-Canadian Dredging Co. (formerly Moores Creek Dredging Co.)	Centerville Pioneerville Idaho City	do	2 1 1	
The Grimes Codaho-Canadian Dredging Co. (formerly Moores Creek Dredging Co.)	Centerville Pioneerville Idaho City De Lamar	do do	2 1 1	
Che Grimes Co. Moores Creek Dredging Co. (formerly Moores Creek Dredging Co.) ordan Creek Placers. Augustoff Fischer Co. (formerly Little Smoky	Centerville Pioneerville Idaho City	do	2 1 1	ĺ
Phe Grimes Co. daho-Canadian Dredging Co. (formerly Moores Creek Dredging Co.) fordan Creek Placers. Roumhoff, Fisher Co. (formarly Little Smoky	Centerville	dodo do Carson Little Smoky	2 1 1 1	
Phe Grimes Co. daho-Canadian Dredging Co. (formerly Moores Creek Dredging Co.) ordan Creek Placers. Author Fisher Co. (formarly Little Smoky	Centerville	dodo	2 1 1 1 1	
Fisher-Baumhoff Co	Centerville	dodo	2 1 1 1 1	
The Grimes Co	Centerville Pioneerville Idaho City De Lamar	dodo do Carson Little Smoky	2 1 1 1 1	

Comanche Gold Dredging Co. consolidated with Gold Hill Dredging Co. and continued operation under latter name from Oct. 13, 1939.
 J. Thompson changed to dragline dredge from connected-bucket dredge Nov. 1, 1939.
 Operated in 1938 by Trinity Gold Dredging Co.

Connected-bucket floating gold dredges operated in the United States, 1938–39, by companies and districts—Continued

MONTANA

Company	Address	Diistrict		ber of dges
			1938	1939
Winston Bros. Co Star Pointer Exploration Co Porter Bros. Corporation Perry-Schroeder Mining Co Homer Wilson Pioneer Placer Dredging Co Gold Creek Mining Co	HelenadoHarrisonGold Creek	First Chance Helena Missouri River Norris	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	NEVADA			
Manhattan Gold Dredging Co	Manhattan	Manhattan	1	
	OREGON			
Western Dredging Co_ Pleasant Creek Mining Corporation Porter & Co_ Rogue River Gold Co_ The Sumpter Valley Dredging Co Timms Gold Dredging Co	Grants Pass Helena Rogue River Portland	Gold Hill	<u>-</u> -	1 1 1 1 1

Gold produced in the United States by connected-bucket floating dredges, 1935-39, in fine ounces

Year	Dredges	California	Alaska	Other States 1	Total
1935	91	236, 404	216, 560	53, 324	506, 288
1936	103	276, 324	255, 803	63, 993	596, 120
1937	105	322, 961	255, 568	65, 614	644, 143
1937	115	375, 296	278, 442	82, 686	736, 424
1938	114	370, 264	304, 995	112, 472	787, 731

¹ Colorado, Idaho, Montana, Oregon, and Nevada.

Other placer-mining methods.—From 1932 through 1939 dragline and power-shovel excavators operated in connection with dry-land and floating amalgamating and sluicing plants have been widely used in placer mining. In 1939 approximately 30 percent of the total output of placer gold, including that of Alaska and excluding that of the Philippine Islands, was recovered at these plants, and 11 percent was produced by old-established mining methods, such as hydraulicking, drift mining, sluicing, and rocking.

Additional information on placer-mining methods may be found in the State reviews in the Minerals Yearbook and Mineral Resources series.

PRODUCTION IN PHILIPPINE ISLANDS

The value of the gold produced in the Philippine Islands from 1907 to 1939, inclusive, is computed at \$190,584,406. The gold production in 1939 was 999,408 ounces valued at \$34,979,280 compared with 903,265 ounces valued at \$31,614,275 in 1938, an increase of 11 per-The annual value of the output from 1930 to 1939 was as follows:

Mine production of gold in the Philippine Islands, 1930-39

Year	Gold (fine ounces)	Value ¹ Year		Gold (fine ounces)	Value 1
1930 1931 1932 1933 1934	179, 220 182, 008 244, 298 325, 039 340, 314	\$3, 704, 800 3, 762, 433 5, 050, 084 8, 308, 009 11, 893, 975	1935 1936 ²	451, 818 621, 968 716, 967 903, 265 999, 408	\$15, 813, 630 21, 768, 880 25, 093, 845 31, 614, 275 34, 979, 280

Gold valued per fine ounce as follows: Prior to 1933, \$20.67; 1933, \$25.56; 1934, \$34.95; 1935–39, \$35.
 Division of Statistics, Department of Agriculture and Commerce, Manila.
 Refinery receipts.

The largest producers of gold, in approximate order of output in 1939, included: Benguet Consolidated Mining Co., Balatoc Mining Co., Itogon Mining Co., Philippine Smelting Co. (custom smelter), Masbate Consolidated Mining Co., Antamok Goldfields Mining Co., I. X. L. Mining Co., Coco Grove, Inc., Baguio Gold Mining Co., Suyoc Consolidated Mining Co., Atok Gold Mining Co., and Demonstration Gold Mines, Ltd., each of which produced over 20,000 ounces of gold; in all, they produced about 820,000 ounces; two floating connected-bucket dredges, each equipped with approximately 110 buckets of 8-cubic-foot capacity, were operated at Paracale, Camarines Norte, by Coco Grove, Inc.; and one 7-cubic-foot connected-bucket dredge by Tambis Gold Dredging Co., Inc., at Lianga, Surigao.

The output of silver from the Philippine Islands in 1939 was

1,191,739 ounces, all produced as a byproduct of gold mining.

By H. M. MEYER

SUMMARY OUTLINE

Pa	age	P	'age
General summary Self-sufficiency of European belligerents Market dislocations Domestic changes since World War Salient statistics Proposed trade agreement with Chile T. N. E. C. investigation Domestic production Primary copper Smelter production Mine production Production by States and districts Quantity and estimated recoverable content of copper-bearing ores Refinery production.	73 74 75 76 77 78 78 79 80 80 81 81	Domestic production—Continued. Secondary copper Consumption and uses New supply Industrial use of copper Stocks Prices Foreign trade Imports Exports	87 87 87 88 89 90 92 93 94 97 97
Connergulfate			

The world copper industry was geared to high speed in the latter part of 1939; and the threat of hostilities in Europe, which had been the principal spur to record-breaking consumption in foreign countries for a number of years, terminated in declaration of war on Germany

by Great Britain and France in September.

The recent records for world consumption have been made in contradistinction to a depressed state of consumption in the United States. Indications point to a new record in 1939 resulting from a maintained high rate of consumption abroad in preparation for war and to improved consumption in the United States, owing to greater industrial requirements during the year and to exaggerated demands in the latter months because of fears of a shortage of supplies in consequence of the war. Domestic withdrawals were the largest since the period of industrial overexpansion in the late twenties and were surpassed only in 1916, 1918, 1926, 1928, and 1929. Consumption outside of the United States is believed to have been at approximately the record level of 1938.

World production in 1939, with the exception of that in 1937, was the highest on record. Outside of the United States output was slightly above that in 1938 and was exceeded only in 1937. Production in the United States, although 27 percent higher than in 1938, had been surpassed in 1937, in every year from 1923 to 1929,

and in 1916, 1917, and 1918.

Monthly data released by the Copper Institute indicate that domestic deliveries of copper in the United States from January to July 1939 averaged 27 percent above the monthly average for 1938. This increase was due largely to improvement in industrial demand. The publication of monthly data was discontinued after July, but 5-month

totals were released early in 1940. The average of monthly deliveries of copper for August to December was 79 percent over that for the first 7 months and substantially more than double the average for 1938. Undoubtedly, the main part of gains in the latter part of 1939 can be attributed to purchases because of the war, owing partly to actual increased needs, partly to fears that heavy world demands such as accompanied the World War would create a shortage of metal, and partly to speculative buying.

Monthly statistics covering world deliveries, production, and stocks were discontinued with the July statement, because it became impossible to obtain the necessary data. Statistics for the first 7 months reveal that only in June were deliveries as much or more than the average for 1938. It appears likely that deliveries in the last months

more than made up for this deficiency.

Producers' stocks of refined copper in the United States fell 47 percent in 1939 and were the smallest since the end of 1928. The inroads into stocks took place in the last months of the year, for at the end of July they were 9 percent higher than at the beginning of the year. The foreign stock position at the end of 1939 is not known. At the end of July stocks were slightly higher than at the beginning of the

year.

Self-sufficiency of European belligerents.—Not long after the declaration of war on Germany it became apparent that the experiences of the World War would be of little use as a guide to developments in the new war. As pointed out in Minerals Yearbook, 1939, page 93, one of the salient features of recent copper history has been the remarkable growth of the British Empire in production to a point where it now has an exportable surplus. Examination of the statistics reveals that possibly the surplus is large enough to supply a large part of the needs of its ally, France. In 1913 the British Empire produced 98,000 short tons and its consumption approximated 170,000 tons. In 1925 the Empire produced only 83,000 tons, but the rapid development of deposits in Northern Rhodesia and Canada was responsible for the jump in production to 587,000 tons in 1937 and 611,000 tons in 1938. Copper Cartel production restrictions kept output of copper in Rhodesia in 1938, while record breaking, far below actual production capacity. It is reported that all production restrictions were discontinued at the outset of the present The British Empire was reported to have consumed 422,000 short tons in 1937 and 366,000 in 1938, and this consumption rate obviously includes large tonnages for war preparation. Adequate copper for all emergencies seems available to the British Empire, and the problems in connection with supplies appear to revolve principally around ocean transportation and electrolytic refining capacity. The British Government made far-reaching agreements with the Dominions at the beginning of the war for its wartime supplies.

France, on the other hand, must depend for its copper requirements on supplies from outside its political confines. In 1913 it required 113,000 short tons of copper, in 1937 took 132,000 tons, and in 1938 about 120,000 tons. The recent statistical record of France appears to allow less leeway for the building of a war reserve than do those of other important contestants. Developments in 1939 and 1940, when

France entered the market on more than one occasion for substantial quantities of metal, add weight to the belief that it may not have been

adequately supplied with metal at the outbreak of the war.

The available statistical record of Germany gives evidence that an apparent reserve, probably of large proportions, was being built during the several years preceding the present war. Germany, too, must obtain the principal part of its copper needs from beyond its political boundaries. In 1913 Germany and Austria-Hungary produced 34,000 short tons of copper and consumed 329,000 tons between them. In 1937 and 1938 Germany produced 30,000 and 33,000 tons and with Austria and Czechoslovakia consumed 306,000 and 439,000 tons.

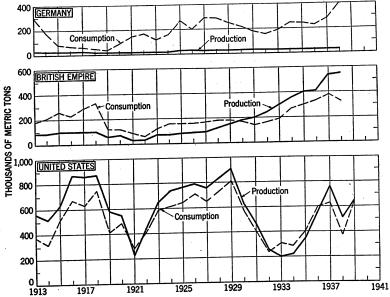


FIGURE 1.—Production and consumption of copper in Germany, the British Empire, and the United States for 1913–38 and in the United States for 1939. Germany includes Austria-Hungary for 1913–14 and Austria for 1919–38; no output was reported for Austria for 1915–18. Consumption and available production data for Czechoslovakia also are included under Germany. The British Empire, as shown here, includes Canada, Great Britain, India, Northern Rhodesia, Union of South Africa, and Australia.

The average consumption for this group for the 5-year period 1934-38 amounted to 308,000 short tons compared with 219,000 in 1929-33 and 266,000 in 1924-28.

Figure 1 shows the relationship of production to consumption in

Germany, the British Empire, and the United States.

Market dislocations.—British and French attempts to blockade Germany have extended to rationing of the quantities of copper permitted through the blockade to such countries as Belgium and Netherlands, to prevent the excess over domestic requirements in those nations from reaching Germany. The blockade measures have caused considerable hindrance to the ordinary flow of copper to consuming nations, noncontestants as well as contestants. Chile normally disposes of most of its output in Europe. Because of the blockade and of the contracts between the British Government and Empire producers for

its war requirements for copper, Chile was cut off from most of its principal markets when war developed. Thus, production from the largest, lowest-cost mines in the world was temporarily without adequate outlet. This situation was eased by large orders placed by the French Government in November 1939 for copper, principally from Chile and Belgian Congo, with the Cerro de Pasco Copper Corporation and the International Nickel Co. participating. These orders were purported to be on the basis of an annual total of 300,000 tons, and the copper was to be shipped from United States ports. The failure of France to draw on the British Empire for needed metal doubtless was a precautionary measure to safeguard Allied supplies and probably was due also to the deficient Empire production of electrolytic copper.

Large exports of copper from the United States to U. S. S. R., beginning November 1939, drew attention of the Allies because of the possibility that this copper might find its way to Germany. As indicated in Minerals Yearbook, 1939, page 114, U. S. S. R. has been unsuccessful thus far in its attempts to increase output to the point where it can supply its own needs; at present, therefore, the alliance with that country fails to help Germany solve its problems with regard to future supplies. Other available copper output in Europe, could Germany seize it all, would be inadequate to fill the Reich's war demands.

Transactions on the London Metal Exchange were discontinued at the outbreak of war, and this move naturally diverted business formerly handled there to New York. This business is exclusive of Empire needs, however; as already stated, wartime needs of the Empire were cared for by contracts between the Government and

Dominion producers.

Domestic changes since World War.—From a domestic standpoint, as well as from that of the British Empire, conditions have changed greatly since the World War of 1914-18, although in a different In 1913 the United States produced 57 percent of total world output compared with 25 percent in 1938 and 30 percent in Production from domestic ores totaled 612,000 short tons in 1939. 1913, rose to an average of 954,000 tons for 1916-18, then declined to 562,000 in 1938 and 713,000 in 1939. Domestic consumption was 33 percent of the world total in 1913, 54 percent in 1929, and 24 About 406,000 short tons were consumed in 1913, percent in 1938. an average of 756,000 tons for 1916-18, 407,000 in 1938, and 715,000 in 1939. With domestic mines producing more than half of the world supply at the beginning of the World War, huge demands for copper resulted in record domestic production tonnages. ords achieved in 1916-18 were surpassed only once since then—in 1929—when industrial activity was at an abnormally high level.

Mines in Northern Rhodesia and Canada were developed chiefly at the expense of production in the United States. The threat of invasion of domestic markets by this new copper led to demands for protection, and in 1932 a tariff of 4 cents a pound was placed on imports. Exportation of larger quantities of domestic copper in 1938 and 1939 is believed to have been due partly to conditions brought about by the cartel group, which restricted production outside the United States, and in periods of sharp buying pressure, common to the copper industry and accentuated by war fears and the war itself,

foreign producers were unable to increase output quickly enough to accommodate demands. The principal increase in use of United States copper abroad as a result of the war probably will be in products manufactured in the United States from domestic copper.

Salient statistics of the copper industry in the United States, 1925-29 (average) and 1936-39, in short tons

	Average (1925-29)	1936	1937	1938	1939
New copper produced					
From domestic ores, as reported by-					
Mines	885, 826	614, 516	841, 998	557, 763	728, 320
Ore produced:	59, 505, 871	1 38, 514, 245	1 2 61, 513, 148	1237,794,938	(3)
CopperoreAverage yield of copper,	59, 505, 871	1 38, 314, 243	1 2 01, 515, 148	1 31,194,956	(3)
percent	1. 44	1, 54	1, 29	1. 34	(3)
Smelters	892, 730	611, 410		562, 328	712,675
Percent of world total	51	32	32	25	30
Refineries	890, 767	645, 462	822, 253	552, 574	704, 873
From foreign ores, matte, etc., re-					
finery reports	317, 287	177, 027	244, 561	239, 842	304, 642
Total new refined, domestic and	1 000 054	000 400	1 000 014	700 410	1 000 515
foreign Secondary copper recovered from old	1, 208, 054	822, 489	1,066,814	792, 416	1, 009, 515
gomon only	347, 512	382, 700	408, 900	267, 300	(3)
Copper content of copper sulfate pro-	011, 012	502, 100	100,000	201,000	. ()
duced by reliners	4,601	4,642	5, 855	4,978	4,868
Total production, new and old and do-	, ,,,,,,	,	-,	-,	
mestic and foreign	1, 560, 167	1, 209, 831	1, 481, 569	1, 064, 694	(3)
mports (unmanufactured) 4	391, 212	190, 339	279, 875	252, 164	336, 297
Refined 4	59, 236	4, 782	7, 487	1,802	16, 264
Exports of metallic copper 5	522, 616	259, 032	346, 229	421, 012	427, 517
Refined (ingots, bars, rods, etc.)	482, 868	236, 091	310, 396	385, 223	396, 406
Stocks at end of year	307, 200	305, 500	393, 000	414,000	355, 500
Refined copper	86, 100	110,000	179,000	181,000	95, 500
Blister and materials in solution	221, 100	195, 500	214, 000	233, 000	260, 00 0
Withdrawals from total supply on					
domestic account:	778, 123	656, 179	694, 906	406, 994	714, 873
Total new copper Total new and old copper	1, 288, 700	1, 141, 000	1, 227, 000	767, 000	(3)
Price, averagecents per pound	1, 200, 700	9.2	1, 221, 000	9.8	10.4
World smelter production, new copper-	1, 761, 000	1, 895, 000	2, 585, 000	2, 247, 000	6 2, 414, 000

¹ Includes old tailings.

⁵ Total exports of copper, exclusive of ore, concentrates, composition metal, and unrefined copper. Exclusive also of "Other manufactures of copper," for which figures of quantity are not recorded.

⁶ Approximate.

Domestic demand in 1939 was sporadic, and sales were concentrated in short periods of heavy buying. Domestic sales were only 15.500 tons in January; rose almost continuously to 66,400 tons in June and jumped to new high record mentally sales of 183,200 tons in July; declined to 38,300 tons in August; and, spurred by the advent of war in September, reached another new record of 183,700 tons in Realization of the effect of changes in world sources of that month. supply since the World War of 1914-18 evidently contributed to

the drastic drop in sales to 29,600 tons in December. In June the 4-cent excise tax on copper imported into the United States was extended to July 1941. The domestic producers have received little benefit from the duty in respect to price advantage over world markets. Undoubtedly, however, the tariff has been responsible for preventing large quantities of foreign copper from entering consumption channels in the United States.

<sup>Includes out tailings.
Exclusive of Alaska, figures for which the Bureau of Mines is not at liberty to publish.
Figures not yet available.
Data include copper imported for immediate consumption plus material entering the country under</sup> bond.

Proposed trade agreement with Chile.—Reduction in the copper tax to Chile was one of the principal factors considered when the possibilities of a trade agreement with that country were being examined late in the year. Companies that have domestic mines only and one whose foreign holdings are proportionately slight filed vigorous briefs against the reduction, and Michigan and western Congressmen strongly opposed the move, some claiming that the Reciprocal Trade Act gave the President authority to cut tariffs only, whereas the tax on copper was an excise tax imposed originally under a provision of the Revenue Act of 1932. Although claiming full authority to decrease the tax to 2 cents a pound, if found desirable, the Government decided against the cut, and negotiations for a trade agreement with Chile were discontinued later.

T. N. E. C. investigation.—During the latter part of January 1940 the copper industry was questioned by the Temporary National Economic Committee (T. N. E. C.), under the chairmanship of Senator O'Mahoney, in its study of monopolies. The investigation was principally concerned with cooperative group action and called only upon those domestic mine producers that have large foreign interests and were members of the Copper Cartel.

First, Dr. Theodore J. Kreps, economic consultant of the committee, testified at length on cartels, tracing the development of these organi-

zations abroad.

Charts prepared by T. N. E. C. showed that the Anaconda Copper Mining Co., Phelps Dodge Corporation, and Kennecott Copper Corporation produced about 26 percent of domestic mine output in 1915 and that the proportion supplied by them had grown to nearly 80 percent by 1937. The most phenomenal gain among these companies was made by Kennecott, whose share rose from less than 1 to

36 percent of the total during that period.

Cornelius F. Kelly, president of Anaconda Copper Mining Co., stated that both the Copper Export Association, Inc., 1919–23, and Copper Exporters, Inc., 1927–32—the latter including foreign as well as domestic members—were formed under the Webb-Pomerene Act permitting combinations of domestic producers to fix prices, for export trade only, to meet concentration of foreign buying power abroad effectively. Copper Export Association aided in the orderly liquidation after the World War of a copper pool of 200,000 tons against which a loan of \$40,000,000 was obtained, secured by debentures that were retired as the copper was sold. The purpose of Copper Exporters, Inc., was to try to eliminate speculation in copper abroad. Kelly estimated that 70 percent of primary fabrication is controlled by producing companies.

E. T. Stannard, president of Kennecott Copper Corporation, testified that the copper industry had been unable to agree on a code under N. R. A. and that it was dissatisfied with the one imposed upon it. His testimony indicated that the International Cartel Agreement of 1935 was between subsidiaries of Anaconda and Kennecott in South America and Mexico; Mufulira, Roan Antelope, and Rhokana in Rhodesia; Rio Tinto in Spain; Katanga in Belgian Congo; and Bor in Yugoslavia. All told, these companies controlled about 50 percent of foreign copper production. The purpose of the agreement was to help stabilize production, distribution, and marketing of copper outside of

the United States. A quota system allotted production curtailment based upon standard tonnages for each producer which did not represent production capacity. There was no price fixing, he stated, and no allocation of markets. In pointing out the harm done by speculators, Stannard stated that his company had sold almost no copper on the London Metal Exchange in a number of years, except about 5,000 tons on the rising market in 1937 in an attempt to discourage the exaggerated movement. He understood that during the boom of 1937 speculators on the exchange bought 100,000 to 150,000 tons of copper.

Both Kelly and Stannard suggested that the Government afford the copper industry some sort of cooperation, under Government supervision, such as that accorded agriculture under the Capper-

Volstead law.

Francis H. Brownell, chairman of the board of the American Smelting & Refining Co., represented custom smelters. He stated that the problems of his organization differed greatly from those of the mining companies, particularly those that operated fabricating subsidiaries. In general, a custom smelter must sell each day an amount equivalent to its intake of metal. Differences between the lead and copper industries which, he thought, caused wider fluctuations in prices of copper were that it is sold 4 months ahead compared with 1 month for lead and that mining-company ownership of fabricating subsidiaries, prevalent in the copper industry, is not common in the lead industry.

Arthur Notman, consulting mining engineer, testified on economic phases of the copper industry. He pointed out that differentials between prices for electrolytic copper and certain fabricated products had increased considerably from 1909–12 to 1935–38. His figures showed that the difference between electrolytic copper, f. o. b. refinery, and copper wire was 1.38 cents a pound in 1909–12 and 3.5 cents in 1935–38; between electrolytic copper and sheet copper it was 4.73 and 7.85 cents; and between electrolytic copper and high brass sheets it was 0.4 cent and 5.95 cents. The later higher-differential period coincided with the ownership of fabricating subsidiaries by copper producers. Notman expressed the view that integration of production and fabricating facilities was unwise for all concerned and that cooperative undertakings to stabilize the industry had always resulted in higher prices for copper.

A résumé of the hearings is published in the Engineering and Mining

Journal of February 1940.

DOMESTIC PRODUCTION

Statistics on copper production may be compiled on a mine, smelter, or refinery basis. Mine data are most accurate for showing the geographic distribution of production; smelter figures are better for showing the actual recovery of metal and are fairly accurate for showing the source of production; and refinery statistics give precise information regarding metal recovery but indicate only in a general way the source of crude materials treated. The chapter on Copper in Mineral Resources of the United States, 1930, contains a discussion of the differences among the three sets of figures.

¹ Engineering and Mining Journal, vol. 141, No. 2, February 1940, pp. 110 and 118.

Copper produced from domestic ores, as reported by mines, smelters, and refineries, 1935-39, in pounds

Year	Mine	Smelter	Refinery
1935	760, 979, 802	762, 587, 340	676, 642, 866
	1, 229, 030, 719	1, 222, 819, 396	1, 290, 924, 195
	1, 683, 996, 000	1, 669, 322, 278	1, 644, 505, 128
	1, 115, 525, 160	1, 124, 656, 539	1, 105, 148, 323
	1, 456, 639, 000	1, 425, 349, 488	1, 409, 745, 816

PRIMARY COPPER

Smelter production.—The recovery of copper by United States smelters from ores of domestic origin totaled 1,425,349,488 pounds in 1939, a 27-percent increase over 1938. Smelter domestic output constituted 51 percent of world production from 1925–29. The proportion dropped sharply in the succeeding years until 1934, when it represented only 17 percent. From then it increased until it reached 32 percent in 1936 and 1937, declined to 25 percent in 1938, and rose again to 30 percent in 1939.

The figures for smelter production in 1939 are based upon confidential returns from all smelters handling copper-bearing materials produced in the United States. For Michigan the sum of furnace-refined copper and copper cast into anodes for electrolytic refining is included. The figures for blister represent the fine-copper content. Some casting and electrolytic copper produced direct from ore or matte is included in the smelter production. Metallic and cement copper recovered by leaching is included in smelter production.

The precise quantity, in pounds, of copper produced by smelters in the United States and its value are shown by years for 1845–1930 in the Copper chapter of Mineral Resources of the United States, 1930.

Copper produced in the United States from domestic ores, 1935-39

[Smelter output, in pounds fine]

[Smerter output, in pounds me]							
State	1935	1936	1937	1938	1939		
Alabama Alaska Arizona California Colorado Idaho Michigan Missouri Montana Newada New Mexico North Carolina Oregon Pennsylvania South Carolina Tennessee Texas Utah Virginia Washington Wyoming Undistributed	14, 601, 603 278, 519, 397 1, 629, 735 14, 340, 744 2, 124, 725 73, 811, 562 72, 818, 792 4, 559, 874 (1) 372, 093 (1) 7, 796 (1) 17, 995 120, 972, 668	14, 293 30, 421, 557 414, 144, 129 10, 327, 582 19, 181, 339 2, 924, 763 91, 105, 431 91, 105, 431 215, 433, 377 146, 154, 075 (1) 566, 388 (1) (1) (1) 555, 336 261, 202, 190 201, 944 42 23, 647, 827 1, 222, 819, 396	18, 820 42, 215, 119 580, 493, 036 10, 615, 215 21, 826, 209 4, 804, 162 84, 751, 478 695, 569 280, 662, 270 149, 963, 847 63, 573, 985 (1) 870, 102 (1) 136, 102 404, 168, 742 404, 168, 742 24, 222, 036 1, 669, 322, 278	33, 492, 746 420, 361, 310 1, 680, 754 30, 563, 654 5, 611, 392 75, 281, 469 625, 844 43, 913, 133 (1) 88, 670 (1) 7, 893 (1), 7, 893 (1), 7, 893 (229, 876, 860 43, 279 12, 494, 297 12, 494, 297 12, 494, 297 11, 124, 656, 539	304, 000 469, 712, 905 8, 490, 872 25, 548, 762 4, 632, 415 89, 402, 464 1, 020, 000 203, 512, 107 184, 542, 525 74, 083, 586 (1) 95, 557 (1) 66, 000 326, 117, 467 16, 756, 007 21, 064, 014 1, 425, 349, 488		

¹ Included under "Undistributed"; Bureau of Mines not at liberty to publish figures.

Copper produced (smelter output) in the United States, 1935-39, and total, 1845-1939

[values rounded]	
	1
	Sh

Year	Short tons	Value
1935.	381, 294	\$63, 295, 000
1936.	611, 410	112, 499, 000
1937.	834, 661	201, 988, 000
1938.	562, 328	110, 216, 000
1939.	712, 675	148, 236, 000
Total, 1845–1939.	26, 589, 394	8, 046, 567, 000

Mine production.—The figures for mine production are based upon reports supplied to the Bureau of Mines by all domestic mines that produce copper. Details of the method of collecting the statistics and reasons for the discrepancy between mine-, smelter-, and refineryproduction figures are given in the Copper chapter of Mineral Resources of the United States, 1930.

Mine production is more accurate than either refinery or smelter production for showing the distribution of domestic production by States and districts. It also indicates the production by calendar years more exactly, because additional time is required for smelting and refining. Mine production in 1939 was 1,456,639,000 pounds, an increase of 31 percent over that in 1938 but 18 percent below the

average for 1925-29.

Production by States and districts.—The following tables show mine and smelter production by States for 1938 and 1939 and by districts for 1935-39. In 1939 Arizona, Utah, and Montana led in production, with 70 percent of the smelter total compared with 72 percent in 1938. If the output of Nevada and Michigan is added to the above, 89 percent of the output of the country is represented compared with 87 percent in 1938. Arizona's proportion of the total dropped from 37 percent in 1938 to 33 in 1939. Utah's rose from 20 to 23 percent, and Montana's remained unchanged at 14 percent. Nevada's proportion of the total increased from 8 to 13 percent while Michigan's share dropped nearly 1 point to 6 percent. Of the most important copperproducing States, Arizona supplied the same percentage for 1939 as for 1845-1939. Utah and Nevada made excellent showings with 23 and 13 percent in 1939 compared with 12 and 5 percent, respectively, in 1845-1939. On the other hand, Montana and Michigan supplied only 14 and 6 percent of the total for 1939 compared with 22 and 17 percent, respectively, for 1845–1939.

Copper produced in the United States, according to smelter and mine returns, by States, 1938-39, and 1845-1939, in short tons

	1938		1939			1845-1	1845–1939.	
	Smelter Mine		Smelter returns		Mine	Smelter		
	returns	returns	Percent of total	Quan- tity	returns	Total quantity	Percent of total	
Alaska Arizona California California Colorado Idaho Michigan Missouri Montana Nevada New Mexico North Carolina Oregon Pennsylvania South Carolina Tennessee Texas Utah Virginia Washington Wyoming Undistributed	16, 746 210, 176 840 15, 282 2, 806 37, 641 7, 641 7, 842 21, 956 (2) 44 (2) 4 (2) 18 114, 938 22 6, 247	14, 549 210, 797 806 14, 171 2, 139 46, 743 77, 213 46, 169 20, 439 (2) (3) (2) (2) (3) (4) (5) (6) (10, 126 (6) (6) (10, 10, 10, 10) (7) (8) (10, 10, 10) (8) (9) (10, 10, 10) (10, 10, 10	0. 02 32. 95 60 1. 79 . 32 6. 27 . 07 14. 28 12. 95 5. 20 (2) (2) (2) (2) (2) (2) (2) (3) (4) (2) (5) (6) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	152 234, 857 4, 246 12, 774 2, 316 44, 701 101, 756 92, 271 37, 042 (²) 48 (²) (²) (²) (²) (²) (²) (²) (²) (²) (²)	128 262, 112 4, 180 13, 215 2, 516 43, 985 97, 827 66, 597 46, 142 (2) 48 (2) (2) (2) (2) (2) (3) (171, 890 8, 998	676, 624 8, 770, 822 563, 907 251, 846 84, 250 4, 544, 890 (f) 5, 824, 974 1, 322, 187 865, 971 (i) 11, 350 (i) 4 259, 508 (i) 3, 148, 359 (ii) 29, 098 15, 863 219, 745	2. 5-6 32. 99 2. 11 9. 33 17. 06 (1) 21. 99 4. 97 3. 26 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	562, 328	557, 763	100.00	712, 675	728, 320	26, 589, 394	100.0	

¹ Included under "Undistributed"; figures not separately recorded. ² Included under "Undistributed"; Bureau of Mines not at liberty to publish figures.

⁵ Less than 0.01 percent. ⁶ Includes Tennessee for 1929–39.

The Bingham (Utah) district again produced more copper than any other in 1939, followed, as in 1938, by Butte, Mont. The Globe-Miami (Ariz.) district stood third in 1939, having replaced Bisbee, Ariz., which held that position in 1938.

Details of mine production, by districts and companies, in 1939 are available in other chapters of this volume dealing with the production of gold, silver, copper, lead, and zinc in the various States.

³ Less than 1 ton.

4 Approximate production through 1928. Figures for 1929-39 are confidential and are included under "Undistributed."

Mine production of copper in the principal districts, 1935-39, in terms of recovered copper, in short tons

District or region	State	1935	1936	1937	1938	1939
Bingham	Utah	63, 060	124, 453	203, 421	106, 049	167, 856
Butte	Montana	76, 964	109, 004	143, 879	76,855	97, 266
Globe-Miami	Arizona	18,680	55, 668	88, 509	44, 528	62, 400
Bisbee (Warren)	do	32, 281	39,842	55, 991	47, 518	54, 617
Ely (Robinson)	Nevada	32,815	57, 580	56, 706	38, 501	51, 590
Aio	Arizona	33, 560	48, 020	55, 375	43, 180	49, 871
AjoLake Superior	Michigan	32, 054	47, 984	47, 464	46, 743	43, 985
Central (including Santa Rita)	New Mexico	1,547	2, 213	29, 464	16, 557	42, 344
Yavapai County (mostly Je-	Arizona	38, 086	50, 327	43, 403	29, 437	38, 203
rome district)				,	,	,
Ray (Mineral Creek)	do	1	7	17, 308	15, 029	21, 583
Ray (Mineral Creek)	do	15, 874	16, 224	17, 104	17, 167	17, 952
Copper Mountain (Morenci-	do	1	6	6, 822	11, 148	15, 878
Metcali). Cope Red Cliff (Battle Mountain)	Nevada	3,973	12, 557	16, 588	6, 563	14,065
Red Cliff (Battle Mountain)	Colorado	6, 592	7, 966	9,458	12, 013	11, 921
Chelan Lake	Washington				5, 931	8,786
Plumas County	California	827	4, 239	4, 939	602	4,029
LordsburgOphir	New Mexico		408	1, 904	3, 173	3, 184
Onhir	Utah	268	407	1, 904 391	437	2,070
Coeur d'Alene region	Idaho		1, 315	1,944	1,883	2,068
Tintic	l Utah		856	1, 331	1, 177	1,413
San Juan Mountains	Colorado		721	1, 142	1,819	981
Bunker Hill	Arizona		623	1, 396	1,626	246
Copper River 2	Alaska		3 18, 850	3 17, 336	3 14, 549	(4)
Swain County 2	North Carolina	(5)		(5)	(5)	(4) (5) (5) (5)
Lebanon (Cornwall mine)2	Pennsylvania	(5) (5) (5)	(5) (5)	(5)	(5) (5) (5)	(5)
Ducktown 2	Tennessee	1 755	(5)	(5) (5)	(3)	(5)

Districts producing 1,000 short tons or more in any year of the period, 1935-39.
 Not listed in order of output.
 Includes a small quantity produced elsewhere in Alaska.

Quantity and estimated recoverable content of copper-bearing ores. The following tables list the quantity and estimated recoverable copper content of the ore produced by United States mines in 1938; figures for 1939 are not yet available. Of the total copper produced from copper ores in the United States in 1938, 79 percent was obtained from ores concentrated before smelting and 18 percent from direct-smelting ore. Included in ore concentrated in 1938 were 3,443,247 tons treated by combined leaching and flotation. In addition to the above, 1,380,212 tons of copper ore were treated by straight leaching. The percentages for 1938 are to be compared with 85 percent obtained from concentrated ore and 15 percent from direct-smelting ores in 1937.

⁴ Negligible.
5 Bureau of Mines not at liberty to publish figures.

Close agreement between the output as reported by smelters and the recoverable quantity as reported by mines indicates that the estimated recoverable tenor is close to the actual recovery. Classification of some of the complex western ores is difficult and more or less arbitrary. "Copper ores" include not only those that contain 2.5 percent or more copper but also those that contain less than this percentage if they are valuable chiefly for copper. Mines report considerable copper from ores mined primarily for other metals. These include siliceous gold and silver ores, lead and zinc ores, and pyritic sulfur ores.

Copper ore, old tailings, etc., sold or treated in the United States 1 in 1938, with copper, gold, and silver content in terms of recovered metals

Otato	Ore, old tail- ings, etc., sold	Copper pro	duced	Gold pro- duced	Silver pro- duced (fine	Value of gold and
State	or treated (short tons)	Pounds	Percent	(fine) ounces)	ounces)	silver per ton of ore
Arizona California Colorado Idaho Michigan Montana Nevada New Mexico Oregon Texas Utah Washington Eastern States	13, 047, 356 66, 943 333, 103 165 3, 757, 705 1, 607, 713 4, 043, 892 1, 904, 374 9 9 12, 032, 385 2, 335 12, 032, 385 12, 032, 385 12, 032, 385 12, 032, 385 12, 032, 385	2 388, 594, 482 1, 209, 600 24, 750, 110 34, 361 93, 486, 000 2 148, 141, 493 90, 940, 400 39, 434, 566 6, 326 2 196, 793, 479 11, 983, 694 21, 062, 590	1. 49 . 90 3. 72 10. 41 1. 24 4. 61 1. 12 1. 04 3. 67 4. 52 . 82 1. 61 1. 68	133, 409 2, 295 17, 131 58 4, 965 47, 024 5, 388 10 98, 100 30, 650 1, 797	4, 525, 435 47, 016 5, 421, 143 1, 339 93, 634 3, 859, 576 437, 970 150, 094 4 1, 235 919, 224 124, 307 51, 830	\$0. 58 1. 65 12. 32 17. 55 3. 46 1. 66 48 . 15 39. 22 11. 40 . 33 3. 09

¹ Exclusive of Alaska, figures for which the Bureau of Mines is not at liberty to publish

² Excludes copper recovered from mine-water precipitates as follows: Arizona, 30,142,472 pounds; Montana, 5,563,800 pounds; and Utah, 10,220,878 pounds.

³ Calculated only on ore that yielded silver.

4 Includes copper concentrates from pyritiferous magnetite ore from Pennsylvania.

Copper ore, old tailings, etc., concentrated 1 in the United States 2 in 1938, with content in terms of recovered copper 3

State	Ore, old tailings, etc., concentrated (short tons)	Concentrates produced (short tons)	Copper pro- duced (pounds)	Percent of copper from ore, etc.
Arizona California Michigan Montana Nevada New Mexico Utah Washington Eastern States	1 10, 118, 757 66, 822 3, 757, 705 1, 561, 804 4, 029, 302 1, 902, 991 12, 031, 615 2373, 000 4 532, 030	485, 771 2, 463 72, 482 314, 167 182, 469 72, 264 303, 952 25, 778 42, 274	3 211, 103, 892 1, 195, 200 93, 486, 000 144, 949, 179 86, 861, 500 39, 277, 000 196, 641, 452 11, 948, 337 17, 239, 970	1. 04 . 89 1. 24 4. 64 1. 08 1. 03 . 82 1. 60 5 1. 58

¹ Includes 3,443,247 tons of copper ore treated by combined leaching and flotation but excludes 1,380,212 tons of copper ore treated by straight leaching.

2 Exclusive of Alaska, figures for which the Bureau of Mines is not at liberty to publish.

3 Includes copper from copper ore treated by combined leaching and flotation but excludes 31,597,202 pounds of electrolytic copper from copper ore treated by straight leaching.

4 Pyritiferous magnetite yielding copper concentrates not included with copper ore.

5 Obtained by including copper concentrates for Pennsylvania and copper ore for other Fastern States.

Obtained by including copper concentrates for Pennsylvania and copper ore for other Eastern States.

Copper ore, old tailings, etc., smelted in the United States 1 in 1938, with content in terms of recovered copper and copper produced from all sources, in terms of recovered copper

	Ore, old t	Copper from all sources,		
State	Short tons	Copper pro- duced (pounds)	Percent of copper	including old slags, smelter cleanings, and precipitates (pounds)
A laska Arizona California Colorado Idaho Michigan Montana Nevada Nevada New Mexico Oregon Texas Utah Washington Eastern States	45, 909 14, 590 1, 383 9 70 770	(2) 145, 893, 388 20, 400 24, 750, 110 34, 361	(2) 4. 71 8. 43 3. 72 10. 41 3. 48 13. 98 5. 70 3. 67 4. 52 9. 87 14. 73 2. 29	29, 098, 000 3 421, 594, 000 1, 612, 000 28, 342, 000 4 4, 278, 000 93, 486, 000 91, 348, 000 40, 878, 000 76, 000 3 22, 000 12, 034, 000 11, 115, 525, 160

Copper ores produced in the United States, 1934-38, and average yield in copper, gold, and silver

	Smelting	ores	Concentrating ores 1			Total				
Year	Short tons	Yield in cop- per (per- cent)	Short tons	Yield in cop- per (per- cent)	Short tons 1	Yield in cop- per (per- cent)		Yield per ton in silver (ounce)		
1934 1935 1936 1937 1938	977, 096 1 1, 612, 200 1 2, 388, 635 1 3 2, 763, 184 1 3 2, 028, 000	6. 21 5. 42 5. 05 4. 30 4. 49	10, 681, 967 2 17, 065, 419 36, 116, 692 3 58, 737, 922 3 34, 374, 026	1. 53 1. 57 1. 31 1. 15 1. 17	11, 723, 638 19, 112, 054 38, 514, 245 3 61, 513, 148 3 37, 794, 938	1. 92 1. 89 1. 54 1. 29 1. 34	0.0124 .0119 .0099 .0081 .0090	0.661 .664 .453 .327 .414	\$0.86 .93 .70 .53	

¹ Includes old tailings, etc.
² Exclusive of a small quantity from California, which the Bureau of Mines is not at liberty to publish.
³ Exclusive of Alaska, figures for which the Bureau of Mines is not at liberty to publish.

REFINERY PRODUCTION

The refinery output of copper in the United States in 1939 was made by 10 plants; 8 of these employed the electrolytic method and 2 the furnace process on Lake Superior copper.

There are five large electrolytic refineries on the Atlantic seaboard, three lake refineries on the Great Lakes, and three refineries west of the Great Lakes—one at Great Falls, Mont.; one at Tacoma, Wash.; and one at El Paso, Tex. Of the above plants, the lake refinery of the Quincy Mining Co. has been idle since 1933.

In addition to the plants mentioned above that at Inspiration, Ariz., is equipped to make electrolytically refined copper direct from

 ¹ Exclusive of Alaska, figures for which the Bureau of Mines is not at liberty to publish.
 2 Bureau of Mines not at liberty to publish figures.
 3 Considerable copper was recovered from mine-water precipitates.
 4 Mostly recovered from ores classed as dry and siliceous silver ores.
 5 Considerable copper was recovered from mine-water precipitates and from ores classed as zinc-lead and dry and siliceous ores

the liquors obtained from leaching operations; this copper is shipped as cathodes to other refineries, where it is melted and cast into merchant The Inspiration plant was idle during 1933 and 1934, but

operations were resumed during the latter part of 1935.

The above 12 plants constitute what commonly are termed "regular Of these plants, 9 employ the electrolytic process and 3 The electrolytic plants have a rated capacity of the furnace process. 1.572,000 tons of refined copper per annum. As they produced but 1,084,000 tons in 1939, only 69 percent of the electrolytic refining capacity was utilized.

The following tables show the production of refined copper at regular refining plants, classified according to source, grade, and form

in which it is cast.

Primary and secondary copper produced by regular refining plants in the United States and imported, 1935-39, in pounds

	1	935		1936		1937		1938			1939			
Primary:														
Domestic: 1 Electrolytic	2 602	926	051	1 100	199	177	9 1 240	057	007	9 1 000	050 05			
Lake	2 73	605.	212	91	105	431	2 9/	, 007,	3U / 190	² 1,032,	976, 65	1 21,32	4,817, 1, 928,	, 430
Casting	,		603			587		, 640,			150, 32		. 920,	, 200
Foreign: 1	·			1, 290,	924,	195	1,644	, 505,	129	1, 105,	148, 32	3 1, 409	9, 745,	, 816
Electrolytic Casting and best select	500,	, 878, 88,	984 947			802 413		, 285, , 837,			635, 73 47, 67		9, 284,	, 939
Refinery production, new cop- perImports, refined copper 3	1, 177, 36,	610, 142,	797 671	1, 644, 9,		410 232		, 627, 8 , 974, 8			831, 72 603, 02		9, 030, 2, 527,	
Total new refined copper made available	1, 213,	753,	468	1, 654,	540,	642	2, 148	, 602, 6	318	1, 588,	434, 75	2, 051	, 558,	228
Secondary: Electrolytic Casting	296,	028, 927,			437, 392,		4 312	, 831, 1 380, 0	103	4 185,	084, 60	1 4 233	3, 225,	695
	296,	955,	765	265,	829,	723	313	, 211, 1	103	185,	084, 60	233	, 225,	695
Grand total	1, 510,	709,	233	1, 920,	370,	365	2, 461	, 813, 7	721	1, 773,	519, 35	2 284	. 783.	923

¹ The separation of refined copper into metal of domestic and foreign origin is only approximate, as an accurate separation at this stage of manufacture is not possible.

² Some copper from Michigan was electrolytically refined at an eastern refinery and is included as electrolytically refined at an eastern refinery.

4 Includes some secondary lake copper.

Copper cast in forms in the United States, 1938-39

Form -	1938		1939		
FORM	Pounds	Percent	Pounds	Percent	
Wire bars. Cathodes Cakes Ingots Other forms	825, 000, 000 522, 000, 000 215, 000, 000 88, 000, 000 120, 000, 000	46. 61 29. 49 12. 15 4. 97 6. 78	1, 077, 000, 000 532, 000, 000 330, 000, 000 137, 000, 000 176, 000, 000	47. 83 23. 62 14. 65 6. 08 7. 82	

lytic copper.

3 Data include copper imported for immediate consumption plus material entering the country under

In addition to the regular refineries, numerous plants throughout the country operate on scrap exclusively, producing metallic copper and a great variety of alloys. The output of these plants is not included in the statements of refined-copper production in the preceding tables but is included in the following statement of secondary-copper production.

Copper sulfate.—The production of hydrous copper sulfate or bluestone by copper refineries in the United States was 38,219,447 pounds having a copper content of 9,735,000 pounds in 1939 compared with 39,081,407 pounds having a copper content of 9,955,000 pounds in

1938.

The output of copper sulfate by plants other than the regular primary refineries was 48,312,400 pounds with a reported copper content of 12,290,000 pounds in 1939 compared with 49,819,375 pounds containing 12,565,000 pounds in 1938.

SECONDARY COPPER

Secondary copper includes material recovered from remelting old copper and copper scrap and from the treatment of copper alloys or alloys treated without separation of the copper. The following table summarizes the production of secondary copper during 1934–38. The scope of Bureau of Mines work on secondary nonferrous metals was broadened considerably in 1939, and completion of data for that year was necessarily delayed. Statistics for 1939 were not available when this report was written. Further details appear in the chapter on Secondary Metals—Nonferrous.

Secondary copper	produced in the	United States,	1934-38, in short tons
------------------	-----------------	----------------	------------------------

	1934	1935	1936	1937	1938
Copper as metal	220, 400	270, 000	260, 000	285, 600	192, 400
	157, 000	178, 900	224, 600	246, 500	167, 400
Total secondary copper	377, 400	448, 900	484, 600	532, 100	359, 800
From new scrap	66, 500	87, 200	101, 900	123, 200	92, 500
From old scrap	310, 900	361, 700	382, 700	408, 900	267, 300
Percent of domestic mine output	159	118	79	63	65

CONSUMPTION AND USES

New supply.—The total available supply of new copper consists of the total output of primary copper by refineries plus the imports of refined copper; in 1939 it was 2,051,558,000 pounds, a 29-percent increase from 1938. If this figure is reduced by the quantity of refined copper exported and adjusted for changes in stocks at refineries the quantity of new copper made available for domestic consumption may be estimated. This computation is made in the table that follows. It should be noted, however, that exports and stocks include some refined secondary copper that cannot be determined separately and that actual consumption of new copper would differ from the figures shown in the table by the changes in consumers' stocks, on which data are not available.

New refined copper withdrawn from total year's supply on domestic account, 1935-39, in pounds

	1935 1936		1937	1938	1939
Total supply of new copper_Stock at beginning of year	1, 213, 753, 468 569, 000, 000	1, 654, 540, 642 350, 000, 000	2, 148, 602, 618 220, 000, 000	1, 588, 434, 754 358, 000, 000	2, 051, 558, 228 362, 000, 000
Total available supply.	1, 782, 753, 468	2, 004, 540, 642	2, 368, 602, 618	1, 946, 434, 754	2, 413, 558, 228
Copper exported ¹ Stock at end of year	550, 012, 320 350, 000, 000	472, 182, 922 220, 000, 000	620, 791, 029 358, 000, 000	770, 446, 945 362, 000, 000	792, 812, 995 191, 000, 000
	900, 012, 320	692, 182, 922	978, 791, 029	1, 132, 446, 945	983, 812, 995
Withdrawn on domestic account	882, 741, 148	1, 312, 357, 720	1, 389, 811, 589	813, 987, 809	1, 429, 745, 233

¹ Includes refined copper in ingots, bars, rods, or other forms.

As shown in the foregoing table, the quantity of new copper withdrawn on domestic account in 1939 was 76 percent larger than in 1938 but 20 percent less than in the record year 1929.

Industrial use of copper.—The American Bureau of Metal Statistics estimates the actual consumption of new and old copper in the United Data for the past 5 years are shown in the accom-States by uses. panying table.

Estimated use of copper in the United States, 1935-39, in short tons

Use	1935	1936	1937	1938	1939
Electrical manufactures ¹ Telephones and telegraphs Light and power lines ² Wire cloth Other rod and wire ³ Ammunition Automobiles ⁴ Buildings ⁸ Castings, n. e. s. ⁶ Clocks and watches Copper-bearing steel Radiators, heating Radio receiving sets Railway equipment ⁷ Refrigerators ⁸ Shipbuilding ⁸ Air conditioning ⁸ Manufactures for export	1,800 15,400	164, 000 26, 000 72, 000 6, 500 90, 000 11, 900 108, 000 71, 000 3, 900 2, 000 4, 000 15, 000 6, 400 65, 300 31, 600	212, 000 40, 000 83, 000 6, 800 102, 000 14, 100 112, 000 70, 500 40, 000 4, 600 2, 100 23, 100 7, 100 13, 500 6, 400 7, 200 66, 600 45, 000	150, 000 30, 000 62, 000 6, 000 60, 000 12, 500 55, 000 67, 500 31, 000 2, 600 2, 600 21, 000 11, 700 6, 700 6, 000 6, 000 46, 200 38, 800	185, 000 39, 000 67, 000 8, 000 95, 000 14, 500 89, 000 33, 000 3, 600 27, 000 27, 000 10, 000 6, 000 68, 000 51, 900

¹ Generators, motors, electric locomotives, switchboards, light bulbs, etc.
2 Transmission and distribution wire and busbars, accounting only for the public-utility companies.
3 Includes industrial wire and cable, wire in buildings, railway cars and ships, radio broadcasting, railway and municipal signaling, railway electrification, trolley wire, rod and wire for Government projects, blasting wire, flexible cord, and sundries.
4 Does not include starter, generator, and ignition equipment.
5 Excludes electrical work.

⁵ Excludes electrical work.

Bearings, bushings, lubricators, valves, and fittings.
Includes air conditioning.
Excludes electrical equipment.

⁹ Other than railway.

[&]quot;Other than railway.

10 Includes condenser tubes, oil-burner tubing, welding rod, screw-machine products, nickel-silver and phosphor bronze products, rivets and burrs, toilet pins, eyelets and grommets, electrotyping and engraving sheet, spark plugs, inner-tube valve stems, jar tops and rouge boxes, flashlight tubes, kerosene lamps, kitchen utensils, kitchen-range boilers, linotype matrices, safety razors, blasting caps, asbestos textiles, water meters, thermostats, soldering coppers, yacht fittings, coinage, washing machines, household water heaters, fire extinguishers, pumps, engines, and sundry machinery, etc., all reckoned in terms of copper content.

The foregoing table shows that the estimated quantity of copper going into use in 1939 was 32 percent larger than in 1938, but in comparison with consumption in 1929 a decline of 31 percent was Of the more important uses, light and power lines gained indicated. only 8 percent in 1939, while other rod and wire rose 58 percent, the largest percentage increase; other rod and wire made one of the best showings compared with 1929, having decreased only 11 percent from Automobiles took 55 percent more copper in 1939 than in 1938, but dropped 38 percent from 1929; refrigerators rose 49 percent in 1939 but were 42 percent below 1929; telephones and telegraphs gained 30 percent over 1938 but made the poorest showing in relation to 1929, having fallen 76 percent from that year. The most important use of copper is for electrical manufactures, which took 23 percent more than in 1938 and 29 percent less than in 1929. Castings gained only 6 percent over 1938 and were 58 percent below 1929. The only important uses that improved over both 1938 and 1929 were buildings, with increases of 32 and 51 percent, respectively; radio, with 29 and 74 percent; and ammunition, with 16 and 110 percent. The consumption of copper in manufactures for export rose 34 percent over 1938 but was 31 percent lower than 1929. The use of copper as measured in pounds per person was 12.21 in 1939, 9.34 in 1938, and 19.08 in 1929.

STOCKS

The following table gives domestic stocks of copper as reported by primary smelting and refining plants. Stocks of blister copper in transit from smelters to refineries are included under blister copper.

Stocks of copper in the United States, Jan. 1, 1936-40, in pounds

Year	Refined copper	Blister and materials in process of refining	Year	Refined copper	Blister and materials in process of refining
1936 1937 1938	350, 000, 000 220, 000, 000 358, 000, 000	472, 000, 000 391, 000, 000 428, 000, 000	19391940	362, 000, 000 191, 000, 000	466, 000, 000 520, 000, 000

At the end of 1939 inventories of refined copper were 47 percent lower than at the close of 1938. The drop, as will be shown in the subsequent paragraph, was due to acceleration of demand in the latter part of the year, particularly in the final quarter. On the other hand, stocks of blister and anode copper at smelters, in transit to refineries, and blister and unfinished materials in process of refining at refineries increased 12 percent so that total stocks at smelters and refineries were only 14 percent less than at the end of 1938.

Figures compiled by the Copper Institute and published in the press show that domestic stocks of refined, duty-free copper were 289,755 tons at the end of 1938 and rose monthly until the end of May, when they reached the highest level of 1939—337,155 tons. There was a sharp gain in deliveries beginning in July, and notable inroads were

made in inventories. Statistics for August to December were published as totals for the period only, so that the month-to-month movements are not clear. Year-end refined-copper stocks stood at only 159,485 tons, so the trend during those months was steeply downward, although, with rapidly advancing domestic production, it probably was arrested in December. During the latter part of the year expanded exports contributed to the downtrend of metal on hand. The Copper Institute reported that blister stocks gained 18,082 tons in 1939. The trend of refined stocks abroad was similar to that in the United States. They were 167,413 tons at the end of 1938 and advanced to reach the highest level of 1939—190,209 tons—in April. They then declined monthly until they were 173,876 tons at the end of July. Foreign data were discontinued after July owing to inability of the Copper Institute to obtain the necessary information.

Copper Institute figures for the United States presumably include some metal held by consumers or at some secondary plants, as reports to the Bureau of Mines from primary refineries indicate that stocks of refined copper at refineries, shown in the foregoing table, were 95,500 tons at the end of 1939 and 181,000 at the end of 1938 (com-

pared with 159,485 and 289,755 tons).

Data for consumers' stocks are not available.

PRICES

Reports to the Bureau of Mines from copper-selling agencies indicate that 910,000 short tons of copper were delivered to domestic and foreign purchasers in 1939 at an average price (f. o. b. refinery) of 10.4 cents a pound compared with 9.8 cents in 1938 and 12.1 in 1937.

Fluctuations in copper prices were relatively narrow in 1939, particularly in view of the startling world events. The small changes were noteworthy also because sales of copper were highly concentrated into short periods during the year. The tendency to concentrate purchases, however, is rather characteristic of the copper-consuming

industry.

In the first 2 months of the year sales continued at the abnormally low rate of November and December 1938, and the domestic price stood at 11.025 cents a pound for electrolytic copper, f. o. b. refinery. This price, incidentally, was the highest level attained in 1938, and was due to the momentum from activity early in the final quarter of that year. A high rate of production continued into the first months of 1939 and with lowered demand resulted in a period of rising inventories. Nevertheless, the price held at 11.025 cents until early April, when the pressure of increasing stocks caused a break of ½-cent a pound. Stocks gained until they reached the highest point of the year at the end of May; the price trended downward until late in April and held at that level, with virtually no change, until it reached 9.775 cents early in July. Meanwhile, consumption in the United

States began to improve, export demand picked up, and stocks turned downward in June. As conditions improved it soon became evident that consumers had again refrained from purchasing their needs at declining prices, and they rushed into the market in midyear. Monthly domestic sales in the first half of 1939 ranged from 15,507 tons in January to 60,004 in April and 66,381 in June. Sales aggregated 182,576 tons in July, fell to 38,276 tons in August and reached a new all-time high record of 183,626 tons in September. War rumors contributed to the rush of buying in July, when purchases by France were reported to have touched off the buying movement. declaration of war by Great Britain early in September, accompanied by the memory of the World War of 1914-18, was responsible for the enormous sales in that month. Realization of changes in conditions of supply since the previous war, however, was followed by a drop in sales to 51,591 tons in November and to 29,592 tons in December. The major price changes of the year were the jump of 1 cent a pound on September 6, following the spectacular purchases made just after the outbreak of the war, and the further increase of 1/2 cent on October These gains brought the price to 12.275 cents, the highest level of the year, where it continued throughout the remainder of the year.

Transactions on the London Metal Exchange were suspended at the outbreak of the war, and this action had the effect of increasing activity on the New York market. From January through April the domestic price, f. o. b. refinery, was higher than the London price, and for the next 4 months the London price exceeded the domestic one. Coincident with the price advantage on the London market, exports of copper rose. For the first 8 months of the year the domestic price averaged 10.398 cents and the London price 10.066 cents. price differential is to be compared with the tariff of 4 cents a pound

on copper imported into the United States.

When war was declared the British Government made contracts with Dominion producers for its copper requirements for the war Maximum prices fixed by the British authorities in September on the various forms of copper were:

Refined copper unwrought, £46, ex warehouse.

Refined copper, unwrought, in ingots, bars, etc., £49 10s., c. i. f. Electrolytic copper, unwrought, wire bars, ingot bars, or in any other form,

Copper billets, £55, c. i. f. Copper cakes, £51 12s. 6d., c. i. f., English ports. Copper cathodes, £50 10s., c. i. f., English ports.

Copper-wire rods, £55, delivered.

During December the British Ministry of Supply increased the maximum buyers' prices on copper-mainly, it is understood, to offset increased freight and insurance charges—and at the end of the year the price for electrolytic copper delivered was £62 and for firerefined copper was £61 10s.

Average monthly quoted prices of electrolytic copper for domestic and export shipments, f. o. b. refineries, United States, and for spot copper at London, 1938-39, in cents per pound

		19	38			1939				
Month	Domestic f. o. b. refinery ¹	Domestic f. o. b. refinery ²	Export f. o. b. refinery ²	London spot 2 3	Domestic f. o. b. refinery ¹	Domestic f. o. b. refinery ²	Export f. o. b. refinery ²	London spot 2 3		
January February March April May June July August September October November December	10. 30 9. 87 9. 87 9. 87 9. 47 8. 87 9. 68 10. 00 10. 13 10. 86 11. 12	10. 198 9. 775 9. 775 9. 775 9. 375 8. 775 9. 585 9. 900 10. 028 10. 760 11. 025 11. 025	9. 908 9. 525 9. 496 9. 443 8. 801 8. 500 9. 573 9. 844 9. 943 10. 713 10. 569 10. 023	10. 131 9. 759 9. 698 9. 653 9. 059 8. 725 9. 771 10. 003 10. 111 10. 897 10. 735	11. 12 11. 12 11. 12 10. 34 9. 93 9. 87 10.09 10. 37 11. 80 12. 32 12. 37	11. 025 11. 025 11. 025 10. 265 9. 833 9. 775 9. 976 10. 261 11. 635 12. 215 12. 275	9. 912 9. 735 9. 888 9. 820 9. 738 9. 738 9. 944 10. 211 11. 685 12. 491 12. 929 12. 631	10. 099 9. 910 10. 063 9. 999 9. 933 10. 213 10. 370 (4) (4) (4)		
Average for year	10. 10	10.000	9. 695	9. 912	11.07	10.965	10. 727	5 10.06		

As reported by the American Metal Market Co. ² As reported by the Engineering and Mining Journal. ³ Conversion of English quotations into American money based on average rates of exchange recorded by the Federal Reserve Board of the Treasury.

⁴ London Metal Exchange dealings suspended for duration of the war. ⁵ Average for 8 months; comparable average for "Domestic, f. o. b. refinery," was 10.398 cents.

Average yearly quoted prices of electrolytic copper for domestic and export shipment, f. o. b. refineries, United States, and for spot copper at London, 1930-39, in cents per pound

	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939
Domestic f. o. b. refinery ¹ Domestic f. o. b. refinery ² Export f. o. b. refinery ² London spot ² ⁴	13. 11 12. 982 (³) 13. 355	(3)	5. 67 5. 555 (³) 5. 629	6.713		7. 538	9. 230	13. 27 13. 167 13. 018 13. 097	9.695	10.965

FOREIGN TRADE 2

United States imports and exports of copper constitute a well-balanced trade through which the smelting, refining, and manufacturing facilities of this country are utilized to treat foreign raw materials and to return refined copper and manufactures of copper abroad. Ninetyfour percent by weight of the copper imported in 1939 was contained in ore, concentrates, and unrefined furnace products, 5 percent was refined copper, and the remainder consisted of ingots to be remelted and recast in the United States. Increased receipts of refined metal in 1939 were due to disruption of ocean transportation caused by the European war in September. By contrast, 96 percent of the exports comprised refined copper and primary manufactures therefrom.

As reported by the American Metal Market Co.
 As reported by Engineering and Mining Journal.
 Not available. Export quotation was established after imposition of tariff in 1932.
 Conversion of English quotations into American money based on average rates of exchange recorded by the Federal Reserve Board of the Treasury.
 Average for 8 months.

² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce

The United States has long had an exportable surplus of copper and for many years exported more copper than it imported. In 1930–32 imports exceeded exports, and a tariff of 4 cents a pound was placed on copper in 1932. Exports have exceeded imports since that time, and the principal part of imports has been for smelting, refining, and

export.

Separation of total exports to show the quantity of domestic copper shipped from the United States is not possible. Data at hand, however, indicate that exports of domestic copper declined from the quantities shipped in 1938. Excess of total exports over imports of unmanufactured copper fell from 340,000,000 pounds in 1938 to 183,000,000 in 1939. In addition to the copper shown in the accompanying tables, an unrecorded quantity of metal is exported in manufactures, such as electrical machinery, automobiles, and similar equipment.

Imports.—The principal changes were increases in refined imports from 3,603,025 pounds in 1938 to 32,527,473 in 1939, and in imports of unrefined blister and converter copper from 353,596,562 pounds to 490,260,671. Imports of ore were mainly from Chile and Cyprus, those from the former declining while those from the latter rose. Canada, Newfoundland and Labrador, Cuba, and Mexico were the sources of the principal part of receipts of concentrates. Of this group a large decrease was indicated in receipts from Cuba; Mexico also was lower, while there were increases for the other two countries. Large increases were noted in imports of unrefined copper from Chile, British Africa, Mexico, and Turkey. Imports from Peru, Canada, and Yugoslavia, other large sources of unrefined copper, slumped somewhat in 1939. Virtually all refined copper entered is from Chile, and this class increased sharply in 1939.

Copper (unmanufactured) imported into the United States in 1939, in pounds 1

Country	Ore (copper content)	Concentrates (copper content)	Regulus, black or coarse copper, and cement copper (copper content)	Unrefined black blis- ter and converter copper in pigs or con- verter bars	Refined in ingots, plates, or bars	Old and scrap copper, fit only for remanufac- ture, and scale and clippings
Africa: British: Union of South Other South Australia. Bolivia. Canada. Chile. Cuba. Matta, Gozo, and Cyprus Islands. Mexico. Ne wfoundland and Labrador. Peru Peru Priukey. Yugoslavia. Other countries.	828, 200 23, 833 203, 844 5, 967, 129 356, 144 3, 250, 240 702, 603	382, 941 873, 853 4, 614, 665 4, 202, 327 53, 645, 268 4, 491, 438 19, 369, 860 10, 972, 865 20, 283, 641 3, 035, 336 642, 145 1, 341, 326	8, 129 579, 000 53, 806 2, 538, 950 5, 101 22, 787 403, 365	33, 609, 821 29, 031, 657 32, 337, 051 197, 686, 306 93, 341, 911 75, 128, 805 10, 069, 885 19, 054, 672	840, 198 31, 686, 924	120, 749 37, 839 5, 117, 163 68, 316 37, 996 31, 256 118, 835
	12, 336, 730	124, 321, 400	5, 655, 920	490, 260, 671	32, 527, 473	7, 491, 928

¹ Data include copper imported for immediate consumption plus material entering the country under bond.

Copper (unmanufactured) imported 1 into the United States, 1935-39

Year	Pounds	Year	Pounds
1935 1936 1937	514, 364, 526 380, 677, 700 559, 749, 133	1938	504, 327, 779 672, 594, 122

¹ Data include copper imported for immediate consumption plus material entering the country under bond.

Exports.—Exports of all classes of copper totaled 855,157,653 pounds in 1939—a 1-percent increase over 1938—and were the largest since 1929. The principal class—refined, bars, ingots, or other forms—was virtually unchanged from 1938, while rods, the second-ranking class in 1939, made a substantial gain. Exports of scrap copper declined in 1939. It is noteworthy that France increased its share of exports of refined ingots, etc., by 137 percent, while Sweden gained 34 percent, Italy 28 percent, and Japan 14 percent; U. S. S. R., which took only 110,359 pounds of this class in 1938, received 45,496,194 pounds in 1939. Exports of ingots, bars, etc., to Germany were 71 percent lower than in 1938. Actually, the decrease was more severe, for data covering parts of Czechoslovakia were included under Germany after March 18 or 19, 1939.

Copper exported from the United States in 1939,1 in pounds

	Ore, concentrates, com-	Refi	ned						
Country	position metal, and unrefined copper (cop- per content)	Bars, ingots, or other forms	Rods	Old and scrap	Pipes and tubes	Plates and sheets	Wire (except insulated)	Insulated wire and cable	Other copper manufactures
Argentina Belgium Brazil China Czechoslovakia 2	838	3, 191, 895 11, 607, 307 7, 538, 813 2, 079, 573 2, 096, 989	2, 018, 698 263, 225 711	151, 129 6, 702 44, 607 27, 498	100, 063 2, 648 125, 858 125, 270	25, 364 27, 505 17, 708	117, 007 149 131, 610 326, 528	235, 742 32, 946 220, 950 331, 747 1, 426	
Denmark Finland France Germany Hong Kong	52, 675	3, 469, 723	4, 041, 128 6, 877, 764 561, 428	414, 046 11, 049, 580	152 376 123 333 3, 603	58, 829 1, 478	310 395 32, 881 33, 397	23, 663 31, 461 16, 062 1, 052 61, 162	
Hungary 2 India, British Indochina, French Italy Japan		3, 179, 372 10, 527, 998 56, 028, 758 249, 276, 881	6, 511, 215 7, 121	2, 648, 645 11, 608 3, 986, 127 9, 882, 258 622, 903	252, 111 1, 931 2, 956 13, 897	466, 511 341 25, 068 32, 504	196, 055 57, 227 224, 000 88, 868 33, 246 24, 957	20, 230 159, 552 1, 505 185 34, 719 2, 795	(8)
Kwantung. Mexico. Netherlands Norway Poland and Danzig ²	6, 720	2, 657, 401 10, 844, 493 3, 381, 178 25, 519, 771	12, 945, 834 11, 075 3, 827, 516 8, 574, 642	10, 962 856, 028 13, 440	238, 449 131, 153 14, 621 48, 543	170, 155 7, 305 16, 126 58, 123	105, 270 15, 873 70, 829	789, 176 39, 991 5, 399 130 50, 221	
Sweden. Switzerland U. S. S. R.² United Kingdom. Other countries.	38, 552	6, 505, 861	112,000 144,318 1,031,669	224, 449 2, 745, 082 729, 770 1, 760, 045	218, 280 13, 801 1, 845, 681	24, 000 45, 843 708, 358	149, 931 30, 685 5, 587, 015	372 2, 051 115, 605 12, 672, 145	
Total value	123, 839 \$24, 644	745, 554, 651 \$82, 232, 831	47, 258, 344 \$5, 489, 481	35, 285, 656 \$3, 375, 608	3, 139, 888 \$746, 833	1, 685, 218 \$353, 280	7, 259, 770 \$997, 698	14, 850, 287 \$3, 100, 990	(3) \$863, 561

¹ Changes in table in Minerals Yearbook, 1939, p. 111, are as follows: Old and scrap exported to British India should read, 210,088 pounds; Other countries, 140,465 pounds. Insulated wire and cable exported to Brazil should read 522,297 pounds; Sweden, 18,492 pounds; U. S. S. R., 188 pounds; Other countries, 7,123,960 pounds.

2 For statistical purposes trade with the Sudeten area, as far as ascertainable, is included with Germany, while trade with the other Czechoslovak provinces occupied by Germany, Hungary, and Poland has been included with these countries since March 18 or 19, 1939. After November 16, 1939, trade with Danzig and that part of Poland occupied by Germany has been included with Germany, and trade with that part of Poland occupied by U. S. S. R. has been included with U. S. S. R.

Copper 1 exported from the United States, 1935-39

Year	Pounds		Total	37	Pou	Total	
	Metallic ²	Total	value	Year	Metallic ²	Total	value
1935 1936 1937	590, 396, 106 518, 064, 333 692, 458, 087	605, 746, 050 524, 833, 536 700, 633, 261	\$48, 363, 303 50, 077, 631 92, 774, 770	1938 1939	842, 023, 197 855, 033, 814	844, 027, 426 855, 157, 653	\$86, 119, 848 96, 321, 365

¹ Exclusive of "other copper manufactures" valued at \$570,061 in 1935, \$585,568 in 1936, \$851,697 in 1937, \$689,003 in 1938, and \$863,561 in 1939; quantity not recorded.
² Exclusive of ore, concentrates, and composition metal. Exclusive also of unrefined copper, figures for which are not separable from those for ore and concentrates.

Copper sulfate (blue vitriol) exported from the United States, 1935-39

Year	Pounds	Value	Year	Pounds	Value
1935 1936 1937	4, 508, 271 10, 734, 408 23, 528, 240	\$142, 467 342, 847 1, 212, 430	1938 1939	31, 249, 735 29, 239, 575	\$1, 229, 317 1, 157, 498

Brass and bronze exported from the United States, 1938-39

	19	38	1939	
	Pounds	Value	Pounds	Value
Ingots Scrap and old Bars and rods Plates and sheets Pipes and tubes Pipe fittings and valves Plumbers' brass goods Wire of brass or bronze Brass wood screws Hinges and butts of brass or bronze Other bardware of brass or bronze. Other brass and bronze manufactures	31, 976, 834 2, 311, 072 1, 098, 504 1, 385, 065 1, 971, 222 997, 044 367, 305	\$24, 186 2, 295, 074 411, 417 242, 206 310, 903 1, 256, 571 575, 691 103, 831 23, 742 57, 883 248, 932 2, 394, 411	1, 626, 469 10, 676, 747 9, 091, 621 2, 233, 802 2, 237, 718 2, 540, 930 1, 444, 486 1, 355, 583 (1) (1) (1)	\$229, 75; 743, 425 1, 182, 53; 534, 296 500, 49; 1, 572, 466 801, 63] 335, 826 43, 584 74, 906 276, 725 2, 622, 271
		7, 944, 847		8, 917, 90

¹ Weight not recorded.

Unmanufactured brass exported from the United States, 1935-39

[Ingots, bars and rods, and plates and sheets]

Year	Pounds	Value	Year	Pounds	Value
1935 1936 1937	2, 329, 353 2, 712, 758 17, 373, 035	\$382, 681 462, 535 2, 573, 245	1938 1939	3, 645, 637 12, 951, 892	\$677, 809 1, 946, 578

WORLD ASPECTS OF COPPER INDUSTRY

International cooperation.—At the beginning of 1939 foreign producers who are members of the Copper Cartel were operating at 100 percent of their agreed production capacities—far below actual capacities. The rate was cut to 95 percent effective March 1, but owing to increased demands in anticipation of war it was raised to 105 percent effective August 16. It is stated that all restrictions were

removed at the outbreak of the war. World production.—Mining and smelting of copper in the world are concentrated in the United States, Chile, Canada, Northern Rhodesia, Belgian Congo, U. S. S. R., and Japan. The United States predominates in copper refining by a much wider margin than in mining or smelting and is followed in importance by Chile, Germany, Canada, Belgium, and Great Britain. World smelter production increased 7 percent in 1939 and except for 1937 was the highest ever recorded. Outside United States production was at its highest levels except for 1937, while output in the United States for 1939 (although 27 percent above 1938), had been exceeded in 1937, in every year from 1923 to 1929, and in the World War years, 1916-18. Of the important copper-producing nations in 1939, Canada again surpassed previous mine and Northern Rhodesia may also have made a new mine smelter records. record in 1939, although totals for the year are not yet available. Its smelter output lagged slightly behind the previous record established in 1938. Chile's mine and smelter totals declined 3 and 4 percent, respectively, from production in 1938, while smelter output in Belgian Congo dropped by 2 percent. Production data strongly favor the Allies from the point of view of available supplies. British Empire is considerably more than self-sufficient in regard to copper and can help to supply France from its surplus. on the other hand, must import the principal part of its requirements. The countries recently annexed by Germany—that is, Austria, Czechoslovakia, and Poland—add to Germany's problems in regard to copper supplies. U. S. S. R. and Italy, which cooperate with Germany, at present must import copper to meet their requirements, U. S. S. R. to supplement output from its own mines and reduction plants. U. S. S. R. has been making strenuous efforts to raise production to the point where it will not only fill home needs but supply a substantial exportable surplus, and the prospects are that this plan will be accomplished some time in the future. Italy's efforts have been directed toward reducing its consumption of copper.

World mine and smelter production of copper, 1937-39, in metric tons [Compiled by M. T. Latus]

Country		Mine			Smelter	
Country	1937	1938	1939	1937	1938	1939
North America:						
CanadaCuba	240, 416 13, 191	259, 113	275, 829	1 210, 024	1 215, 732	1 229, 370
Mexico	46, 077	14, 431 41, 851	9, 964 44, 380	45, 755	37, 100	44, 300
Mexico Newfoundland	8, 463	8, 056	10, 341	20, 100	57, 100	44, 500
Panama United States	763, 844	505, 991	660, 717	2 820, 333	² 570, 773	2 698, 323
~	1, 071, 994	829, 442	1, 001, 231	1, 076, 112	823, 605	971, 993
South America: Bolivia	³ 3, 699	³ 2, 885	³ 4, 056			
Brazil Chile	412 989	251 442	339, 170	200 444	007 700	
Peru	413, 282 35, 702	351, 443 37, 750	36, 087	396, 444 35, 439	337, 508 35, 969	324, 591 35, 001
Europe:	452, 683	392, 093	379, 327	431, 883	373, 477	359, 592
Belgium	16	64	(b)	4 90, 260	4 81, 460	(5)
Bulgaria Czechoslovakia	(5)	(5)	(5)	2,013	(5)	(5)
Finland France	12, 227 591	12, 232 6 600	(5) (5) (5) (6)	10, 545 1, 043	ìi, 824 (⁵)	`13, 246 (5)
Germany Austria	27, 129 12	30,000	(5)	⁷ 68, 000	7 70, 000	7 66, 000
Greece Hungary	300 309	336	(5) (5)			
Italy	1, 143 20, 075	6 1, 000 21, 619	<u>(5)</u>	1, 465 8, 302	2, 963	(5)
Norway Portugal	5,607	4, 884 8 580	(5)	l	10, 547	10, 515
Rumania Spain	8 1, 361 6 28, 000	6 30, 000	(8)	1, 361 6 10, 200	580 6 11,000	(5) 6 10, 000
Sweden	7, 174	9, 289	8	9, 093	10 668	11 337
U. S. S. R.9	10 94, 250	10 114, 552	10 108, 000	94, 250	114, 552	11, 337 108, 000
Sweden U. S. S. R. 9 United Kingdom Yugoslavia	37	37	(5)	7, 519	10, 668 114, 552 7, 200 41, 993	(5) 41,658
i ugosiavia	42, 300	49, 500	63, 000	39, 410	41,993	41, 658
Asia:	241, 000	275, 000	(5)	344, 000	363, 000	(5)
Burma	6 3, 800	6 3, 600	(5)			
China II	(12)	240	1	(12)	240	1
Cyprus India, British Japan:	27, 461 6 7, 200	29, 780 6 5, 600	(5) (5)	6, 940	5, 416	6, 800
Japan Proper	10 87, 600 10 5, 122	10 102, 000	10 104, 000	87, 600	102,000	104,000
Chosen	10 5, 122	(5)	(5) 6 4, 000	5, 122	(5)	(5)
Taiwan Netherland India	6 4, 000 49	6 4, 000 89	6 4, 000 (5)			
Philippine Islands	2, 038	3, 528	(5) 5, 486			
Turkey U. S. S. R	10 400 (9)	3, 528 10 2, 488 (9)	10 5, 917 (9)	(º)	2, 488 (9)	5, 917 (9)
	⁹ 138, 000	9 151, 000	(5)	9 100, 062	9 110, 000	(5)
Africa: Algeria		00	(5)			
Belgian Congo Rhodesia:	¹⁰ 150, 588	10 123, 943	⁽⁵⁾ 10 121, 498	150, 588	123, 943	121, 498
Northern Southern	249, 835	254, 904	(5) (5)	211, 513	216, 450	215, 065
South-West Africa	1, 575	4, 828	3, 530			
Union of South Africa	11, 389	11, 305	11, 077	13, 302	10, 570	14, 287
	413, 387	395, 007	(5)	375, 403	350, 963	350, 850
Oceania: Australia	19, 434	19, 758	19, 800	17, 679	17, 372	20, 219
	2, 336, 000	2, 062, 000	(5)	2, 345, 000	2, 038, 000	13 2, 190, 000

¹ Copper content of blister produced.
² Smelter output from domestic and foreign ores, exclusive of scrap. The production from domestic ores only, exclusive of scrap, was as follows: 1937, 757,188 tons; 1938, 510,133 tons; 1939, 646,524 tons.
² Copper content of exports.
⁴ Figures represent blister copper only. In addition to blister copper, Belgium reports a large output of refined copper which is not included above as it is believed produced principally from crude copper from the Belgian Congo and would therefore duplicate output reported under the latter country.
⁶ Data not yet available. ⁶ Approximate production. ⁷ Exclusive of material from scrap.
⁶ Smelter output from ores. ఄ ⁰ Output from U.S.S.R. in Asia included under U.S. S. R. in Europe.
¹¹ Smelter product. ¹¹ Exports of ingots and slabs. ¹¹ Less than ¹ ton.
¹¹ Approximate production based on the output of the countries shown, which in 1938 contributed about 95 percent of the total world output.

COPPER 99

World consumption.—Inability to obtain statistics for many countries covering imports and exports in the latter part of 1939 has made it impossible to calculate world consumption, so that the usual discussion of American Bureau of Metal Statistics data cannot be presented. Indications are that a new high record was attained in 1939, in consequence of a maintained high rate of use abroad in preparation for war and of improved consumption in the United States, owing to greater industrial requirements and to exaggerated demands in the latter part of the year because of fears of a shortage of supplies as a result of the war.

Data for the first 6 months of 1939 indicate that apparent consumption of copper in Great Britian and Italy was at rates approximately 5 and 30 percent, respectively, over the annual rate for 1938, while that in France and Germany was about 5-10 and 30 percent,

respectively, below.

REVIEW BY COUNTRIES

Belgian Congo.—Production of copper in Belgian Congo amounted to 121,498 metric tons compared with 123,943 in 1938 and 150,588 During the first 8 months of 1939 production was regulated by the Copper Cartel and ranged from 95 to 105 percent of nominal capacity (considerably below actual capacity), but after the opening of hositilities between the Allies and Germany in September, apportionment of production was abandoned temporarily. After war started the Allies began to ration quantities of copper permitted through their blockade to neutrals, to prevent Germany from receiving the excess over consumption in such countries. This practice interfered with the free movement of copper from Belgian Congo to Belgium. In November it was announced in the press that copper for Belgian consumption would continue to be refined at the Hoboken plants at Oolen near Antwerp and that the remainder of Belgian Congo copper would be treated on the spot at the Panda works or shipped to North America for refining. A Belgian news letter, quoted in the Metal Bulletin, London, of January 16, 1940, stated that the Allies had liberalized embargo restrictions on copper for Belgium, that Union Minière du Haut Katanga probably would produce 80,000 tons in the first half of 1940, and that raising the output to a basis of 250,000 tons a year was prevented only by a hesitancy to make the necessary capital expenditure in the face of uncertain conditions. This company has opened offices in New York, Johannesburg, Cape Town, and It shared in large purchases of the French Government late in 1939 and early in 1940, which eased the situation caused by the Allied blockade.

Development work at the new Ruwe and Kolwezi copper deposits is reported to have been promising, and Union Minière is building a 1,500-ton concentrator at Kolwezi. The concentrates will be transported by rail to other works of the company for further treatment.

Canada.—The breaking of copper-production records is beginning to be an annual accomplishment in Canada, and 1939 marked another forward step. Mine output totaled 304,051 short tons compared with 285,625 in 1938, the previous record year, and smelter production amounted to 252,838 tons compared with 237,806 in 1938, the previous record year.

An outstanding feature of the year was the agreement between the Imperial Government and large base-metal producers by which

the producers were to supply the Imperial Government with copper, lead, and zinc at prices that prevailed shortly before the outbreak of As in past years, more than half of the copper produced-54 percent in 1939—came from the nickel-copper mines of the Sudbury district, Ontario. The principal producer is the International Nickel Co. of Canada, Ltd., which refines the major part of the copper it produces in the company refinery at Copper Cliff and exports the remainder as matte. At the Copper Cliff smelter 185,578 tons of bessemer matte and 165,129 tons of converter copper were produced. Some plant expansion is planned to provide smelter capacity for increased output at the concentrator. The refinery received 165,129 tons of molten converter copper from the Copper Cliff smelter and produced 150,541 tons of refined copper. A second electric furnace was brought into operation in January 1939, and the year's operation was featured by increased electric furnace activity and decreased use of reverberatory furnaces for producing refined shapes. The Falconbridge Nickel Mines, Ltd., exports its matte to Norway for refining. The Noranda Mines, Ltd., with a smelter at Noranda, Quebec, is the largest producer in Quebec; this Province supplied 19 percent of the Noranda blister is shipped to the Canadian Copper country's total. Refiners, Ltd., at Montreal East, in which it owns the principal An article 3 on smelting practice at Noranda was published Late in the year it was reported that the Waite-Amulet mill in 1939. was handling more than 600 tons of ore daily and planned further plant increases to an eventual total of 1,000 tons by the spring of 1940. Noranda has a controlling interest in this company and smelts its concentrates. The Normetal Mining Corporation, Ltd., operated throughout the year and shipped its concentrates to Noranda. Concentrates produced by the Aldermac Mines, Ltd., were exported to the United States for smelting. The Eustis mine of the Consolidated Copper & Sulphur Co. in Quebec, reported to have produced for 74 years, was closed in midyear owing to exhaustion of ore reserves. The output of Manitoba and Saskatchewan Provinces was from the Flin Flon mine of Hudson Bay Mining & Smelting Co., Ltd., and the Sherritt Gordon mine of the Sherritt Gordon Mines Co., Ltd. Hudson Bay smelter treats ore from both properties. The two principal copper-producing mines in British Columbia are the Britannia mine at Howe Sound and the Copper Mountain mine of Granby Consolidated Mining, Smelting & Power Co. Concentrates from these two properties are exported. Early in 1940 it was reported that Granby had extended for 3 years the contract for the shipment of all its concentrates to Japan. The new contract can be canceled by either party as of June 30, 1941.

Copper produced (mine output) in Canada, 1938-39, by Provinces, in pounds

Province	1938	1939	Province	1938	1939
British Columbia Manitoba Northwest Territories Nova Scotia	65, 759, 265 65, 582, 772 75, 567	72, 530, 552 70, 458, 890 42, 382 1, 269, 179	Quebec Saskatchewan	112, 645, 797 18, 156, 157 571, 249, 664	117, 238, 897 18, 133, 149 608, 101, 714
Ontario	309, 030, 106	328, 428, 665		011, 210, 004	000, 101, 714

³ The Mining Journal, London, Recent Smelting Practice at Noranda: August 26, 1939, vol. 206, No. 5427, pp. 793-4.

COPPER 101

Canada exports most of its copper and in 1939 shipped 60,750 tons of copper in ore, matte, regulus, etc.; 15,556 tons of blister; 165,819 tons of ingots, bars, etc.; 29,370 tons of rods, strips, etc.; and 3,465 tons of old and scrap copper to foreign countries. Of the ore exported 31,973 tons went to the United States and 17,022 tons to Japan. The United Kingdom was the destination of 125,917 tons of the refined

ingots and bars exported.

Chile.—In 1939 smelter production of copper in Chile amounted to 324,591 metric tons compared with 337,508 in 1938 and 396,444 in the record year 1937. Mine production totaled 339,170 tons compared with 351,443 in 1938 and 413,282 in 1937. Chile normally disposes of most of her copper in Europe. When war was declared between Great Britain and France and Germany considerable disruption to Chilean export copper trade was caused owing to contracts entered into between Great Britain and its dominions for its copper requirements for the war period and to attempts of the Allies to throw an economic blockade around Germany, which included rationing of quantities permitted through the blockade to neutrals in order that there would be no excess commodities for reshipment to Germany. Large orders from France late in 1939 and early in 1940 for Chilean and Belgian Congo metal eased the situation.

The Chilean Government raised the income-tax rate from 18 to 33

percent as of January 1, 1939.

Exports of electrolytic copper totaled 156,852 metric tons in 1939 compared with 184,200 in 1938. Of the 1939 total, 47,586 tons were shipped to the United States, 26,417 to Belgium, 23,148 to Sweden, 21,148 to Great Britain, 18,870 to France, and 15,740 to Italy. Blister exports totaled 155,393 tons in 1939 compared with 165,120 tons in 1938. The United States was the principal destination of the exports of blister in 1939; 85,218 tons went to that country while 39,367 went to Great Britain, 7,682 to France, and 7,011 to Italy. Exports of ore and concentrates rose from 6,088 tons in 1938 to 12,867 in 1939.

The Chile Copper Co. produced 139,300 metric tons of copper in 1939 compared with 148,100 in 1938, and Andes Copper 55,100 tons compared with 55,200. These two companies are subsidiaries of Anaconda Copper Mining Co. Braden Copper Co. (subsidiary of Kennecott Copper Corporation) produced 118,400 tons of copper in 1939 compared with 119,800 in 1938. During 1939, 6,962,687 short (6,316,410 metric) tons, assaying 2.15 percent copper, were mined and treated.

An extensive report on the mining industries of Chile, by Charles Will Wright, was recently published by the Bureau of Mines. This report describes the principal copper-mining and reduction operations in Chile and contains general information regarding labor organizations, marketing of ores and concentrates, and other matters. According to this report, the erection of a smelter for copper and gold ores and concentrates, which would be financed by the Government, is being considered. The purpose of this action would be not only to encourage increased output from the small mines but to obtain additional foreign exchange, estimated at \$1,000,000. The annual output of the proposed plant probably would be only about 10,000 tons of

⁴ Wright, Charles Will, The Mining Industries of Chile, Their Production and Future Possibilities: Bureau of Mines Foreign Minerals Quart., vol. 3, No. 2, April 1940, 80 pp.

copper, which is small in comparison with Chile's total. The problems connected with carrying out such a project, principally concerned with an adequate supply of ores and fluxes to assure continuous operation, are being studied by Government engineers. The technical difficulties include the high silica and aluminum content and the deficiency in iron and sulfur in Chilean ores; the latter characteristics contribute to their salability in the United States, where they are mixed with ores

high in iron and sulfur.

Wright states that copper companies operating in Chile and controlled by United States capital supply 57.4 percent of the mineral exports and furnish 45.7 percent of the total exports from Chile, and that these companies have invested about \$350,000,000 in mine plants and in the development of low-grade copper deposits. Besides paying a profits tax of 33 percent, the companies are obliged to convert their dollars for pay rolls and purchases in Chile at 19.37 pesos to the dollar instead of at the export rate of 25 pesos. They also pay the workmen the highest wages and supply them with better living conditions than

any of the other industries.

Germany.—For many years the output of copper from domestic ores has averaged less than 30,000 metric tons. During these years Germany has taken turns with the United Kingdom as the second-largest consuming nation in the world, with an average annual apparent consumption of 162,000 tons for 1913–38; for 1934–38 the average was 237,000 tons. These figures exclude consumption in Austria and Czechoslovakia, which increase Germany's dependence on outside sources for copper. The difference between mine output and consumption has been filled by imports of ore, metal, and scrap material. During the past few years apparent consumption is believed to have been considerably above real consumption, and large stocks of copper probably were accumulated in preparation for war. Strenuous efforts to increase mine output and to decrease consumption in order to become more nearly self-sufficient as regards this commodity have failed to make Germany independent, except for a period during which available stocks could be used.

The following tables indicate the principal sources of crude and refined imports of copper during the past 5 years. It is notable that the largest quantities of ore are credited to France, British possessions in the Mediterranean, Netherlands, Belgium, Denmark, and the United Kingdom; and of ingots, bars, etc., to Rhodesia, Chile, the United States, and Belgian Congo. Obviously, the outbreak of hostilities between Germany and the United Kingdom and France in September, and the attempted placing of a blockade around Germany, had the effect of cutting off most of the copper from these sources. Prospects for Germany obtaining her requirements from European sources appear to be entirely out of the question, for it would take almost the combined continental output; even U. S. S. R., the largest producer, at present must import metal to meet its own requirements. Other smaller producers dispose of the principal part of their production but sell to various countries. Increased receipts of copper from European producers, such as Yugoslavia, Spain, Norway, and Finland. however, would tend to increase the life of Germany's stock pile. The fact that the Bor mine in Yugoslavia and the Rio Tinto mine in Spain.

principal producers in those countries, are owned by French and British capital complicates the task of obtaining larger supplies from those sources, but does not present an insuperable problem.

Imports of copper into Germany in ingots, bars, etc., 1935-39, by countries, in metric tons

Country	1935	1936	1937	1938	1939 (7 months)
Rhodesia Chile United States Belgian Congo Finland Sweden Yugoslavia Canada Belgium-Luxemburg British South Africa Other countries	35, 173	39, 124	52, 001	76, 500	28, 668
	16, 588	18, 994	19, 920	40, 007	19, 728
	24, 991	6, 568	22, 395	62, 330	18, 580
	4	27, 807	29, 608	39, 931	17, 376
	3, 292	5, 787	11, 224	13, 030	7, 587
	11, 671	5, 564	4, 534	6, 244	4, 201
	2, 067	13, 000	11, 527	7, 011	3, 538
	4, 576	1, 524	6, 414	18, 995	1, 638
	47, 624	3, 395	5, 314	5, 932	819
	7, 379	5, 786	5, 983	2, 420	

Imports of copper ore (including burnt cupreous pyrite), into Germany, 1935-39, by countries, in metric tons

Country	1935	1936	1937	1938	1939 (7 months)
France British possessions in the Mediterranean Netherlands. Belgium Denmark United Kingdom Eire (Irish Free State) Norway Finland Lithuania Other countries	34, 154	65, 404	86, 228	155, 869	109, 676
	3, 048	28, 204	79, 710	141, 481	82, 804
	76, 067	115, 865	131, 236	114, 287	54, 531
	68, 085	62, 903	66, 752	53, 711	38, 083
	59, 150	63, 269	48, 805	50, 289	34, 824
	50, 985	57, 876	60, 082	32, 055	30, 648
	4, 361	19, 303	11, 711	11, 403	20, 363
	15, 485	14, 861	31, 324	36, 077	18, 398
	56, 448	26, 412	4, 642	9, 688	(1)
	10, 085	9, 354	10, 975	49, 071	(1)
	22, 670	19, 020	24, 113	653, 931	23, 886

¹ Not separately reported so some ore from these countries may be included under "Other countries."

Imports of copper scrap for the first 7 months of 1939 were 12,107 tons compared with 27,308 tons in all of 1938 and 32,703 tons in 1937. Exports of ore totaled 4,773 tons in the first 7 months of 1939 compared with 5,625 in all of 1938 and 4,559 in 1937, while exports of bars were 182, 355, and 7,157 tons, respectively; those of rods, sheets, etc., were 9,884, 11,795, and 16,555 tons; of wire were 3,487, 4,572, and 4,961 tons; and of tubes were 3,409, 4,976, and 4,928 tons, respectively.

According to a report from Consul Sydney B. Redecker, Frankfort on the Main, June 7, 1939, exploratory work was in progress at what were purported to be extensive copper deposits in Lower Silesia. When fully developed, it was reported, these deposits will yield 2,500 to 3,000 metric tons of copper annually. They are reported to resemble the copper ore deposits of the Mansfeld district in many respects but to be more extensive and of considerably lower grade. As in the case of the Mansfeld deposits, production is expected to be possible only as a result of substantial Government subsidies.

Mexico.—Smelter and mine outputs of copper were virtually the same in 1939—44,300 and 44,380 metric tons—compared with 37,100

and 41,851 metric tons, respectively, in 1938.

Difficulties in connection with operations in Mexico are shown by the following items. In midyear the Mazapil Copper Co. petitioned the Mexican Government for permission to suspend operations temporarily, owing to the fact that the company was operating at a heavy loss. It is reported that the petition was refused. the year, however, the property was turned over to approximately 600 employees to conduct on a cooperative basis under a 10-year lease; during the first year the company was to recover 5-percent royalty and during the remaining years 8 percent. Early in 1940 it was reported that Asarco had started a court presentation in Mexico City to prove that it cannot comply with the orders of the Federal Board of Conciliation and Arbitration that it must continue to operate its copper smelter at Matehuala, San Luis Potosi. The company presented proofs of its contention that this plant cannot continue operation owing to a lack of crude material. In its annual report the American Smelting & Refining Co. states that on account of existing conditions in Mexico the company is pursuing the policy of making no new investments there and is avoiding expenditure upon its plants for more than the amount necessary to keep them in efficient operating condition. In the year ended June 30, 1939, the smelter of Compagnie du Boleo produced 7,695 metric tons of copper compared with 8,285 tons in the previous year.

Northern Rhodesia.—Smelter output totaled 215,065 metric tons and was slightly below the record production of 216,450 tons in 1938. A new record may have been established for mine production in 1939,

but statistics thereon are not yet available.

In the fiscal year ended June 30, 1939, Roan Antelope Copper Mines, Ltd., extracted and milled 2,816,000 short (2,514,000 long) tons of ore, averaging 3.25 percent copper compared with 3,126,100 short (2,791,000 long) tons in the year immediately preceding. Blister production was 68,262 long tons in the year ended June 30, 1939, and 75,253 long tons in the earlier year; and the average cost, not including reserve for depreciation, was £21.322 per long ton of blister compared with £22.151. Total costs, including all but taxation, amounted to £24.252 in the year ended June 30, 1939, and £24.809 in the year immediately preceding. Revenue from copper amounted to £44.129 and £45.469, respectively, in the 2 years. Revenue from copper sales reserves were reported as 110,426,774 short (98,595,000 long) tons, containing 3.428 percent copper, at the end of June 1939, an increase of 26,988,102 short (24,097,000 long) tons over the reserve previously The increase was due to the finding by drilling and underground exploration of additional ore in the eastern section of the Roan Antelope Extension area and by the addition of the pillar of ore under the Luansbya River for which a method of mining has been devised. Progress was reported in construction and in other work necessary to permit a monthly output of over 11,000 short tons when required.

The Rhokana Corporation, Ltd., produced 50,810 long tons of blister copper and 31,691 tons of electrolytic copper, a total of 82,501 tons, in the fiscal year ended June 30, 1939, compared with 76,275 tons in the year immediately preceding. The average cost of blister production was £22 17s. 3d. and of electrolytic copper was £25 16s. 8d. In the previous year costs were £22 7s. 5d. and £24 4s. 3d., respectively. A total of 2,817,500 short (2,516,000 long) tons of ore was

COPPER 105

mined from the Nkana and Mindola sections and 2,830,000 short (2,527,000 long) tons containing 3.625 percent copper were concentrated. Corresponding figures for the previous year were 2,801,500 short (2,501,000 long) tons and 2,796,500 short (2,497,000 long) tons, respectively. The differential flotation of copper and cobalt was practiced until the end of May 1939, when it was stopped to conduct a new segregation experiment in the smelter. Ore reserves at the end of June 1939 were reported as follows: Nkana North Ore Body, 22,755,250 short tons containing 3.55 percent copper; Mindola Ore Body, 76,070,542 tons containing 3.52 percent; and Nkana South Ore Body, 15,181,000 tons containing 2.79 percent—a total of 114,006,792 tons averaging 3.43 percent copper. The company owns a 32.303-percent interest in Mufulira Copper Mines, Ltd.

Considerable work was reported done toward equipping and opening the Nchanga Consolidated Copper mine and draining the syncline. As a result of development work it has been estimated provisionally that the ore available for mining above the 470-foot level amounts to approximately 3,000,000 short tons averaging 6.86 percent copper, of which 2.29 percent is sulfide and 4.57 percent oxide. The pilot plant for experimental treatment of the ore was reported to have given encouraging results. In April 1940 it was reported that the plant at the Nchanga mine was to be extended to produce concen-

trates equivalent to 5,000 tons of copper a month.

The Mufulira Copper Mines, Ltd., produced 59,616 long tons of blister copper in the fiscal year ended June 30, 1939, compared with 52,436 tons in the previous year. The production cost, including reserve for replacements but excluding taxation, was £25.707 per long ton compared with £28.608 per ton in the year ended June 30, 1938.

Peru.—In 1939 the Cerro de Pasco Copper Corporation produced 74,878,473 pounds (33,965 metric tons) of copper, 12,168,901 ounces of silver, 79,557 ounces of gold, 52,896,176 pounds of lead, and 21,087 short tons of zinc concentrates. Production of this company in 1938 totaled 78,458,979 pounds (35,588 metric tons) of copper, 12,396,991 ounces of silver, 74,063 ounces of gold, 57,329,999 pounds of lead, and 21,379 short tons of zinc concentrates. Descriptions of the Cerro de Pasco district, its history, and ore reserves and of the Northern Peru Mining & Smelting Co. and other copper mines are given in a report by Wright.⁵

U. S. S. R.—Brief notes on the copper deposits and plants in U. S. S. R. are included in the chapter on copper in Minerals Yearbook,

1939.

The Mining Journal (London) of August 19, 1939, in a report from an occasional correspondent, states that a powerful nonferrous-metal industry has been built in U. S. S. R.; that during the Second 5-year Plan (1933–37) the Soviet Union doubled its output of copper and that by 1942 output of copper would be three times that for 1937. Mine data are not available for 1937, but smelters produced 94,250 metric tons, which was increased to 114,552 tons in 1938 but fell to 108,000 tons in 1939.

As previously stated in Minerals Yearbook reports, efforts of the Government not only to become self-sufficient in regard to copper but to produce a large exportable surplus have thus far fallen far short of

⁵ Wright, Charles Will, Mineral Resources, Production, and Trade of Peru: Bureau of Mines Foreign Minerals Quart., vol. 3, No. 1, January 1940, pp. 24-33.

plans. Numerous reports are to the effect that mine development and plant construction lack the desired efficiency. In any event, the U. S. S. R. still must import large quantities of copper to supply home requirements. A development of possible significance was the sudden shipment of large quantities of refined copper from the United States to the U.S.S.R. In the first 10 months of 1939 no such exports were reported, but in November 5,200 metric tons of refined copper were shipped there, December 15,500 tons, January (1940) 24,100 tons, February 5,800 tons, March 5,100 tons, and April none. Rumor stated that much of this copper was ultimately for German consumption, and in the early months of 1940 the Allies are reported to have interrupted shipments destined for Vladivostok. Further rumors claimed that the U. S. S. R. later had copper up for resale in the United States market.

A recent report 6 states that the Moscow "Pravda" of November 17, 1939, contains an article describing the construction of the Sreduralmedzavod (Central Ural copper-refining plant), near Sverdlovsk.

The following quotation is of possible interest:

The ore, ground first coarse then fine in crushers and ball mills, passes into the flotation baths, from which it comes in a moist mass, where the copper is mixed only with pyrites tailings. Here the drier takes up the task of eliminating the 10 to 12 percent of moisture, which at present increases the weight of concentrates shipped to the refineries. The drier conveyors and drums are now installed and ready to operate; a start is scheduled for January next.

The complete working of the recovery process is still, it is felt, hampered by the lack of facilities to recover the sulfur gases released in roasting. At the present a chimney 150 meters high is supposed to release these gases so high up as to prevent injury to vegetation in the vicinity. But it would be much more profitable if the authorities erected a chemical factory to recover and utilize the sulfur, estimated at 100 metric tons daily under full operation of the refinery, instead of wasting them.

The output of concentrate has been steadily rising, and for 10 months of this year was 61 percent higher than for all of 1938; the proportion of metal recovered

from the ore has also risen, from about 75 percent to 82 to 84 percent.

The present management of this plant is weak, and much engaged in futile paper work. In 10 months of 1939 a total of 729 orders were issued by the chief engineer's office, ranging from the purchase of a pair of pliers to some important production process. The engineers attempt to limit their efforts to actual production, but are constantly assigned to other work. There must be a change of every here to seem of the production when the plant is in full expertion. system here, to secure greater efficiency when the plant is in full operation.

Yugoslavia.—This country has been successful in sharply increasing its mine output in recent years. For 1939 a record production of 63,000 metric tons was reported compared with 49,500 in 1938, 42,300 in 1937, and an annual average of 35,000 metric tons for 1932-36. Smelter production totaled 41,658 tons in 1939, 41,993 in 1938, and 39,410 in 1937; the average annual smelter output for 1932-36 was 38,700 tons. The Mines de Bor, operated under French control, is responsible for virtually the entire production. In January 1940 it was reported ⁷ that this company had arranged with the Government to sell part of its output to the State and to have the remainder available for its free disposal. Naturally, efforts were being made to prevent shipments of any Bor copper to Germany. An electrolytic refinery was completed and opened on July 2, 1938. Exports of crude copper began to fall when the new refinery was assured. Imports into the United States of unrefined copper from Yugoslavia fell from 17,300 tons in 1936 to 14,600 in 1937, 9,600 in 1938, and 8,600 in 1939.

⁶ Russian Economic Notes, vol. 2, No. 3, February 15, 1940, pp. 6-7.

⁷ The Metal Bulletin (London), No. 2454, January 9, 1940, p. 4.

By E. W. Pehrson and H. M. Meyer

SUMMARY OUTLINE

	Page		Page
General summary	107	Domestic consumption	114
Salient statistics		New supply	114
Domestic production	109	Consumption by uses	
Total production	109	Prices	116
Primary lead	109	Foreign trade	
Refinery production	109	Imports	
Source of primary lead	110	Exports	119
Antimonial lead	110	World aspects of lead industry	120
Secondary lead	111	International cooperation	120
Lead pigments	111	World production	120
Mine production	111	World consumption	121
Stocks		Review by countries	121

Conditions that affected the lead industry were considerably improved in 1939; production and consumption increased, prices were higher, and stocks were reduced. Production of refined primary lead from domestic ores increased 27 percent in 1939 and was, except for that in 1937, the highest on record since 1930. Production from foreign ores and base bullion increased 22 percent in 1939. Imports of lead ore decreased, but there was a marked increase in imports of base bullion. Exports of refined pig lead were the highest since 1928. Production exceeded demand during the first half of 1939 and stocks increased slightly, but domestic shipments increased rapidly after July and by the end of the year stocks had declined to the lowest year-end inventory since 1929. Prices remained fairly constant near 4.80 cents per pound at New York from January to July, but increases during the third quarter of the year raised the price to 5.50 cents a pound, which held for the remainder of the year. The average for the year was 5.05 cents a pound compared with 4.74 cents in 1938. Quotations on the London Metal Exchange were discontinued in September; for the first 8 months of 1939 the average differential between New York and London prices was 1.74 cents a pound.

¹ This report deals primarily with the smelting, refining, and consuming phases of the industry. For full details of mining operations see separate reports issued for the various States.

Salient statistics of the lead industry in the United States, 1925-29 (average) and 1935-39, in short tons

	1925–29 (average)	1935	1936	1937	1938	1939
Production of refined primary lead: From domestic ores. From foreign ores and base bullion	660, 525 123, 104	310, 505 14, 055	387, 698 11, 458	443, 142 24, 175	331, 964 51, 705	420, 967 63, 068
December of grown down loads	783, 629	324, 560	399, 156	467, 317	383, 669	484, 035
Recovery of secondary lead: As pig lead In alloys	126, 600 153, 400	156, 800 113, 600	137, 500 125, 400	154, 500 120, 600	119, 400 105, 500	(1)
	280, 000	270, 400	262, 900	275, 100	224, 900	(1)
Total production of pig lead (primary and secondary)lmports: 2	910, 229	481, 360	536, 656	621, 817	503, 069	(1)
Lead in base bullion	95, 747 40, 096 98, 048	2, 692 20, 025 6, 982	312 20, 713 18, 313	1, 800 34, 103 20, 091	15, 296 45, 370 45, 866	48, 902 30, 842 74, 392
sumption	690, 916	318, 900	383, 433	449, 464	339, 708	415, 031
secondary lead	900, 250	538, 900	633, 550	678, 700	546, 000	667, 000
New York: Average for year	-					
cents per pound. Quotation at end of year do London average	5.87 664,230	4. 06 4. 50 3. 12 331, 103 1, 524, 000	6. 03 3. 91 372, 919	6. 01 4. 75 5. 15 464, 892 1, 851, 000	4. 74 4. 85 3. 33 369, 726 1, 874, 000	5. 05 5. 50 3 3. 09 413, 979 1, 874, 000

Figure 1 shows trends in the domestic lead industry since 1900.

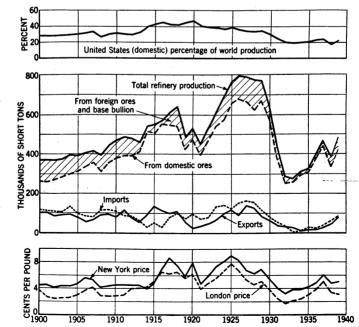


Figure 1.—Trends in the lead industry in the United States, 1900-1939. Imports include lead in ore, base bullion, pig lead, and scrap; exports include pigs, bars, and scrap lead exported in manufactures with benefit of draw-back.

Data not yet available.
 Data include lead imported for immediate consumption plus material entering the country under bond.
 Average for 8 months; London Metal Exchange dealings suspended in September.

World smelter production of lead was approximately the same in 1939 as in 1938. Production outside the United States declined 5 percent in contrast to the 22-percent increase in the United States. Output decreased in Mexico, Canada, Belgium, Burma, Italy, and Spain. Australia increased its output, and German production was virtually unchanged. Data on world consumption in 1939 are not available. Some foreign producers operated part of the year under the 10-percent reduction program agreed upon in 1938. After the outbreak of war in September lead prices in the United Kingdom were fixed by the British Ministry of Supply, and the British Government contracted for Empire supplies.

DOMESTIC PRODUCTION

Refined pig lead produced in the United States is derived from three main sources—domestic ore, foreign ore and base bullion, and secondary materials. The following table lists the production from each of these sources from 1935 to 1939:

Total pia lead	mandaged	in the	United Stat	oc 1935 <u>–</u> 39	in short tons
I DIGG DIG GCGG	DIOGUCCU	UIU UIUC	Chibboa Stab	00, 1000 00	0110 0110010 10100

Year	From do- mestic ores and base bullion	From for- eign ores and base bullion	From secondary materials	Total
1935. 1936. 1937. 1938.	310, 505 387, 698 443, 142 331, 964 420, 967	14, 055 11, 458 24, 175 51, 705 63, 068	156, 800 137, 500 154, 500 119, 400	481, 360 536, 656 621, 817 503, 069

¹ Data not yet available.

PRIMARY LEAD

Refinery production.—Production of refined primary lead in 1939 increased 26 percent but was only 62 percent of the 1925–29 average. Production from domestic ores increased 27 percent in 1939, whereas that from foreign ores and base bullion increased 22 percent. Production from foreign materials was the largest since 1930 but represented only 51 percent of the 1925–29 average; it comprised only 13 percent of the total output of refined primary lead.

Refined primary lead produced in the United States, 1935-39

	Production by—								Value	
!		Classes (short tons)	Sources (short tons)			Value			
Year	Desilver-	Soft	lead ³	Total	From domestic	From	From foreign	Aver-	(Deta)	
	ized lead ¹²	prod	produc- tion 1	ores and base bul- lion	foreign ores	base bullion	age per pound	Total		
1935 1936 1937 1938 1939	192, 544 239, 944 272, 051 243, 891 280, 356	35, 233 47, 462 55, 317 31, 986 65, 349	96, 783 111, 750 139, 949 107, 792 138, 330	324, 560 399, 156 467, 317 383, 669 484, 035	310, 505 387, 698 443, 142 331, 964 420, 967	13, 659 11, 401 23, 393 32, 862 24, 652	396 57 782 18, 843 38, 416	\$0. 040 . 046 . 059 . 046 . 047	\$25, 965, 000 36, 722, 000 55, 143, 000 35, 298, 000 45, 499, 000	

¹The lead content of antimonial lead is excluded.

² Desilverized soft lead is excluded.

³ Includes lead derived from Missouri ores and other nonargentiferous ores.

Source of primary lead.—Of the total refined lead produced in 1939, 87 percent was derived from domestic ores and 13 percent from foreign ores and base bullion, the same proportion as in 1938. Production from foreign ores decreased 25 percent in 1939. Refining of foreign bullion was resumed on a large scale in 1938, chiefly because of the closing of one Mexican refinery during the latter part of the year, which diverted bullion to domestic plants. Output of lead from this source more than doubled in 1939, amounting to 38,416 tons, or the largest quantity since 1929. Details of the sources of lead from domestic ores are given in the section on Mine Production.

Refined primary lead produced in the United States, 1935-39, by sources, in short tons

Source	1935	1936	1937	1938	1939
Domestic ore	310, 505	387, 698	443, 142	331, 964	420, 967
Foreign ore: Australia. Canada. Europe. Mexico. South America. Other foreign	1, 039 1, 086 5, 809 2, 872 2, 853	172 2, 277 1, 133 1, 486 3, 883 2, 450	3, 088 5, 343 388 3, 836 8, 497 2, 241 23, 393	7, 320 3, 562 14 9, 745 9, 887 2, 334 32, 862	7, 580 4, 763 188 227 8, 869 3, 025
Foreign base bullion: Mexico	396	. 57	782	18, 268	37, 463 9
omer foreign	396	57	782	18, 843	38, 416
Total foreign	14, 055	11, 458	24, 175	51, 705	63, 068
Grand total	324, 560	399, 156	467, 317	383, 669	484, 035

Antimonial lead.—Antimonial or hard lead is an important byproduct of the refining of base bullion, but the quantity derived from this source is only a small part of the country's yearly production. The major part is obtained from the smelting of antimonial-lead scrap, and some is produced by mixing metallic antimony with refined soft lead.

Several lead-smelting plants handle scrap materials exclusively. A large quantity of hard-lead scrap also is treated at primary smelters and refineries, and the production of antimonial lead at these plants is shown in the table that follows. Further information in secondary antimonial lead in 1939 is given in the chapter in this volume on Secondary Metals—Nonferrous.

Antimonial lead produced at primary lead refineries, 1935-39

	Produc-	Antimon	y content	Lead content by difference (short tons)			
Year	tion (short tons)	Short tons	Porgant domestic foreign	From foreign ore	From scrap	Total	
1935 1936 1937 1938 1939	16, 384 23, 230 27, 524 24, 123 21, 995	1, 729 2, 162 2, 579 2, 809 2, 031	10. 6 9. 3 9. 4 11. 6 9. 2	4, 685 7, 442 7, 833 6, 759 4, 117	491 696 1, 721 3, 385 3, 189	9, 479 12, 930 15, 391 11, 170 12, 658	14, 655 21, 068 24, 945 21, 314 19, 964

SECONDARY LEAD

A large number of plants operate exclusively on scrap and other secondary materials. The following table summarizes production of secondary lead at such plants during the years 1934–38. The scope of Bureau of Mines work on secondary metals was broadened considerably in 1939; as a result, completion of data for that year was necessarily delayed. Statistics for 1939 were not available at the time this report was written. Further details on secondary lead appear in the chapter on Secondary Metals—Nonferrous.

Secondary lead recovered in the United States, 1934-38

[Compiled by J. P. Dunlop]

	Pig l	ead (short	tons)		То	tal recovered le	ead	
Year	At pri- mary plants	At sec- ondary plants	Total	83, 900 113, 600 120, 600 105, 500	Short tons	Value	Ratio to domestic refined pri- mary lead (percent)	
1934 1935 1936 1937 1938	33, 557 44, 748 34, 556 29, 986 24, 800	90, 943 112, 052 102, 944 124, 514 94, 600	124, 500 156, 800 137, 500 154, 500 119, 400	125, 400 120, 600	208, 400 270, 400 262, 900 275, 100 224, 900	\$15, 421, 600 21, 632, 000 24, 186, 800 32, 461, 800 20, 690, 800	70 87 68 62 68	

LEAD PIGMENTS

Lead pigments manufactured in 1939 contained 215,561 tons of lead, a 23-percent increase from 1938. Of this total, 200,390 tons were derived from refined pig lead; litharge comprised 42 percent, white lead 39 percent, red lead 18 percent, and sublimed lead and orange mineral 1 percent. Leaded zinc oxide and sublimed lead are the principal pigments in which the lead content is derived from ores. Details of production and consumption of lead pigments are given in the chapter in this volume on Lead and Zinc Pigments and Zinc Salts.

Lead in pigments, 1935-39, by sources, in short tons 1

Year	Lead in pigments from—					Lead in pigments from—			
	Domestic ore 2	Metal	Scrap	Total	Year	Domestic ore 2	Metal	Scrap	Total
1935 1936 1937	12, 109 15, 062 17, 363	185, 151 204, 997 204, 961	144 37 127	197, 404 220, 096 222, 451	1938 1939	12, 025 15, 171	* 163, 815 200, 390		3 175,840 215, 561

Includes also lead recovered in zinc oxide and leaded zinc oxide.
 No pigments from foreign ore.
 Revised figures.

MINE PRODUCTION

The output of recoverable lead from domestic mines in 1939 increased 12 percent over that in 1938 but was 11 percent less than in 1937. Lead from the Central States increased nearly 40,000 tons in 1939 and that from the Western States 6,261 tons, but lead from the Eastern States decreased 1,616 tons. Lead from Southeastern Missouri rose 34,652 tons (29 percent) in 1939, as output was increased

during the last quarter of the year. Lead from Oklahoma also was greater than in 1938, but that from Kansas declined. Idaho was again the leading lead producer in the Western States group, followed in 1939 by Utah and Montana. Lead from Idaho decreased slightly in 1939, as there were decreases in output in both the Coeur d'Alene region in Shoshone County and in the Warm Springs district in Blaine County. Lead from Utah increased about 2,000 tons as gains in the Park City region (owing to reopening in May of the Silver King Coalition and Park Utah Consolidated mines) and in the Ophir district more than offset losses in the Bingham and Tintic districts. Lead from Montana increased 7,228 tons in 1939. Most of the gain was in the Butte district and was due to reopening of the zinc-lead properties of the Anaconda Copper Mining Co., but gains also were reported at the slag-burning plant at East Helena, at the Flathead mine in the Hog Heaven district, and at the Comet mine in Jefferson County. Lead in Arizona was about the same as in 1938, but that from Colorado decreased, as the Sunnyside property in San Juan County was idle throughout 1939. Lead from New Mexico increased slightly, as gains in Grant County more than offset the loss in San Miguel County owing to the closing of the Pecos mine in May 1939. Decreases in lead were also noted in the Pioche district, Nevada, and in the Metaline district, Washington. Additional details of production by mines, districts, and States can be found in the State chapters in this volume.

Mine production of recoverable lead in the United States, 1925-29 (average) and 1935-39, in short tons

State	1925-29 (average)	1935	1936	1937	1938	1939
Western States and Alaska: Alaska Arizona	982 9, 743	670 7, 783	941 10, 688	82 3 12, 354	994 10, 571	937
California Colorado	2,070 30,112	567 5, 673	482 7, 267	1, 186 9, 786	495 9, 455	526 8, 222
Idaho	141, 610 18, 871	79, 020 15, 589	91, 339 19, 059	103, 711 17, 957	92, 177 9, 327	90, 981
New Mexico	9, 807 6, 730	12, 676 7, 289	10, 712 6, 626	9, 347 6, 512	4, 679 4, 949	16, 558 4, 236 5, 392
Oregon South Dakota	6 21	30	79	109	23	18
Texas Utah Washington	213 149, 509 1, 323	522 63, 510 103	468 69, 886 840	395 89, 458 2, 830	342 65, 657 4, 284	227 67, 634 3, 718
Wyoming		3				
	370, 997	193, 439	218, 387	254, 468	202, 953	209, 214
Central States:						
ArkansasIllinois	38 552	38 436	24 294	186	175	308
Kansas Kentucky	26, 121 135	10, 892 132	11, 409 50	16, 008 89	15, 239 101	13, 697
Missouri	202, 240	97, 493	110, 428	157, 631	122, 027	156, 281
Oklahoma Wisconsin	58, 306 1, 745	23, 405 286	25, 427 904	29, 840 1, 091	21, 004 320	27, 720 388
	289, 137	132, 682	148, 536	204, 885	158, 873	198, 481
Eastern States: New York		1)	ſ		
Tennessee Virginia North Carolina	4, 096	4, 982	5, 996	5, 539	7, 896	6, 284
TOTAL Carolina			ļ <u> </u>		4	
	4,096	4, 982	5, 996	5, 539	7, 900	6, 284
	664, 230	331, 103	372, 919	464, 892	369, 726	413, 979

Mine production of recoverable lead in the principal lead-producing districts of the United States, 1935–39, in short tons

District	State	1935	1936	1937	1938	1939
Southeastern Missouri region	Missouri	96, 941	108, 422	153, 205	118, 870	153, 522
Coeur d'Alene region		78, 290	86, 634	96, 505	82, 274	81, 699
Joplin region		34, 849	38, 842	50, 274	39, 400	44, 176
	homo	′	1			. ,
Bingham	Utah	36, 293	32, 451	45, 233	41, 334	36, 842
Park City region	do	13, 180	17, 421	22, 417	7, 258	11,631
Tintie	l do	5, 833	7,063	10, 198	9,605	8,618
Ophir Warm Springs	do	2,392	3,862	3, 307	2,013	6,050
Warm Springs	Idaho	32	2,757	4,004	7, 370	5, 565
Butte	Montana	10, 302	10, 527	5,780	204	4,708
San Juan Mountains	Colorado		3, 279	4, 998	5, 885	4, 402
Oro Blanco			4, 426	3,864	4, 150	3, 568
Metaline			770	2,644	4,009	3, 509
Rush Valley	Utah	4, 907	8, 191	6, 410	4, 619	3, 422
Eagle			3, 113	4,812	4, 301	3, 252
Discha			4, 706	4, 759	3, 214	2, 964
Pioche Central	New Mexico		2,689	2, 281	340	2, 941
Hog Housen	Montana		2,000	808	1, 214	2, 767
Hog Heaven			1.049	984	149	2, 287
Old Hat	Arizona		463	794	1. 919	1, 861
Willow Creek	New Mexico		3,746	3,852	4, 277	1,800
Cataract			1,704	1, 946	1, 326	1,672
Smelter			945	1, 178	710	1, 256
Smelter		1,239 155	491	580	933	1, 230
Red Cliff	Colorado	155	72	519	291	1, 137
Port Hill						
Leadville			1,550	2, 100	1, 222	1,088
Wallapai	Arizona	70	841	2, 489	4,004	703 388
Upper Mississippi Valley	l concin	286	904	1,091	320	388
Tombstone	Arizona	1.081	417	315	315	290
Flint Creek	Montana	988	1, 496	1, 511	113	218
Bisbee (Warren)		200	1, 154	1,018	14	120
Tybo	Nevada		3, 818	2, 439		14
Banner.			1, 541	1, 205	302	- 3
Austinville 1	Virginia	(2)	(2)	(2)		
St. Lawrence County 1	New York	(2)	(2)	(2)	(2) (2)	(2) (2)
Bu. Dawlence County	T40M TOTE	(-)	1 5	()		``

¹ Not listed according to rank.

STOCKS

Lead stocks, as reported by the American Bureau of Metal Statistics, are shown in the following table. Stocks of refined and antimonial lead include metal held by all primary refiners and by most refiners of secondary material who produce common lead. Foreign lead refined in the United States and entered for domestic consumption is included.

Lead stocks at end of year at smelters and refineries in the United States, 1935-39, in short tons

	1935	1936	1937	1938	1929
Refined pig lead	215, 595 6, 711	165, 159 6, 697	119, 837 9, 294	102, 489 13, 413	52, 783 5, 994
•	222, 306	171, 856	129, 131	115, 902	58, 777
Lead in base bullion: At smelters and refineries. In transit to refineries. In process at refineries.	15, 072 1, 860 16, 233	9, 187 1, 070 14, 100	10, 959 2, 219 14, 413	18, 693 2, 339 16, 690	10, 337 3, 521 15, 958
Lead in ore and matte and in process at smelters	33, 165 58, 562	24, 357 50, 098	27, 591 52, 081	37, 722 56, 332	29, 816 59, 486
-	314, 033	246, 311	208, 803	209, 956	148, 079

² Bureau of Mines not at liberty to publish figures.

In the first half of 1939 the excess of output over shipments for virtually every month resulted in increasing inventories. Stocks of refined and antimonial lead at refineries totaled 115,900 tons at the end of 1938 and had reached 129,600 tons by the end of June. Accelerated demand as a result of industrial improvement, in anticipation of war, and more largely because of actual opening of hostilities in September, caused a reversal of early conditions in the latter half of the year, and stocks declined monthly from June until they reached the lowest level of the year at the end of November, when they stood at 58,100 tons. A slight excess of production in December carried stocks to 58,800 tons at the end of the year. These were the smallest vear-end inventories on hand since the end of 1929 and only a little more than half the amount on hand as the year began. Stocks of lead in ore and matte and in process at smelters, and base bullion at smelters and refineries, in transit to refineries, and in process at refineries, were 5 percent lower at the end than at the beginning of the year.

DOMESTIC CONSUMPTION

New supply.—The following table shows the refined primary lead available for consumption from 1935 to 1939. The figures do not consider variations in producers' stocks, and as these have changed considerably during the past 5 years the quantities stated do not indicate the true trend in actual consumption of new lead. The supply available for consumption in 1939 was 22 percent higher than in 1938 but was equivalent to only 60 percent of the 1925-29 average. total consumption of lead, as indicated by the second table following, also rose 22 percent in 1939.

Refined primary pig lead available for consumption in the United States, 1935-39, in short tons

	1935	1936	1937	1938	1939
Supply: Imports Production	1 1, 322 324, 560	1 2, 590 399, 156	2, 238 467, 317	1, 905 383, 669	5, 388 484, 035
	325, 882	401, 746	469, 555	385, 574	489, 423
Withdrawn: Exports	2 6, 982	18, 313	20, 091	³ 45, 866	74, 392
Supply available for consumption	318, 900	383, 433	449, 464	339, 708	415, 031

Includes small quantities of old, reclaimed, and scrap lead.
 Includes small quantities of foreign lead reexported.
 Includes a small quantity, not separable, of "sheets."

Consumption by uses.—Owing to the return of large quantities of secondary lead in discarded and obsolete articles and from the leadconsuming industries, the total consumption of pig lead greatly exceeds the supply of new lead available. The following table gives the American Bureau of Metal Statistics estimate of the total consumption of lead by industries, 1935–39.

Lead consumed in the United States, 1935-39, in short tons 1

Purpose	1935	1936	1937	1938	1939
White lead	80, 000	85, 500	86, 000	71, 000	75, 000
	47, 500	54, 000	57, 000	43, 000	57, 200
	175, 000	191, 000	192, 000	167, 000	198, 000
Cable covering	38, 900	61, 400	90, 000	60, 000	74, 400
	32, 000	40, 000	45, 000	36, 000	50, 000
	10, 000	11, 100	12, 000	6, 000	8, 900
	29, 200	32, 500	39, 500	31, 200	42, 300
TerneplateFoil	4, 700	6, 200	6, 400	4, 300	5, 400
	15, 900	28, 500	21, 700	22, 000	21, 800
	13, 000	16, 500	15, 000	9, 000	12, 800
	20, 000	22, 000	22, 000	15, 000	20, 000
Type metal Calking Castings Other uses	15, 000	17, 000	17, 000	12, 000	14, 000
	12, 000	13, 500	15, 000	12, 000	16, 000
	5, 000	5, 750	6, 000	6, 000	7, 500
	40, 700	48, 600	54, 100	51, 500	63, 700
Ond wo	538, 900	633, 550	678, 700	546, 000	667, 000

¹ American Bureau of Metal Statistics. These estimates are for the total consumption of lead irrespective of whether its origin is primary or secondary. Antimonial lead is included.

The principal use of lead is in the manufacture of storage batteries, and in most recent years 30 percent or more of the total lead requirements have been for that purpose. Consumption in storage batteries during 1939 was 19 percent higher than in 1938 and made a good showing in relation to the record year, having declined only 6 percent from 1929. As pointed out in Minerals Yearbook, 1939, lead used in storage batteries returns quickly to the trade in the form of scrap and therefore noticeably curtails the need for newly mined metal. White lead is regularly the second-largest use for lead. Consumption for this purpose is welcomed by producers because it is dissipative. The amount of lead consumed in the manufacture of white lead increased 6 percent over 1938 but lagged 37 percent behind 1929. 1929, the year of record consumption, and again in 1930 cable covering ranked as the largest use for lead. Since 1929 the tonnage sold for that purpose has dropped 66 percent, although in 1939 it was 24 percent above 1938. It required 23 percent of the total lead used in 1929 and 27 percent in 1930 but fell to 11 percent in 1938 and 1939. The failure of the utility industry to purchase its proportionate share of total lead requirements of the country has been a depressing influence on the lead industry. The building industry has also lagged behind most others in respect to lead consumption. This industry has been on the upgrade in recent years and used 39 percent more lead in 1939 than in 1938, but it was 48 percent below 1929. Red lead and litharge—exclusive of quantities used in storage batteriestook nearly 9 percent of the total lead used in 1939, which is nearly three times the proportion for that purpose in 1929. This use consumed 33 percent more lead than in 1938 and 91 percent more than Among the smaller uses for lead, ammunition took 36 percent more in 1939 than in 1938. It was one of the three uses indicated by the foregoing table to have been higher than in 1929, having been 3 percent larger than in that year.

PRICES

The two major markets for lead in the United States are New York and St. Louis; much of the lead produced in the United States is sold at prices based upon quotations in these markets. The New York quotations are influenced to some extent by the lower prices usually prevailing on the London market, so that the New York price seldom exceeds the St. Louis price by as much as the freight differ-

ential, which normally is 0.35 cent a pound.

In view of the startling world events in 1939, prices for lead were remarkably steady, fluctuating less than those for other common nonferrous metals. The average monthly quoted price for pig lead at New York, outside market, was 4.83 cents a pound in January. In the first half of the year the monthly average varied only 0.1 cent The average for July was 4.85 cents. In the first half of the year monthly refined production exceeded shipments, except in March, when a virtual balance was temporarily established. June, however, the situation was reversed and, as a result of improving demand, shipments began to rise while output held at former levels. The declaration of war between Germany and France and Great Britain in September was the signal for sharply increased demands. Shipments, which averaged 40,000 tons for the first 8 months of the year, rose to 60,000 tons in September and 66,000 in October, then declined slightly to 64,000 in November and 45,000 in December. Weekly domestic sales of lead reached a new high record in the week ended September 9, when they amounted to more than 42,000 tons. In all of September transactions aggregated 104,000 tons, the largest monthly total on record. In an endeavor to discourage excessive purchases, producers assured consumers that no shortage was likely. but with little apparent success. They maintained a conservative price policy in the face of spectacular sales during the latter part of the year, and price advances were proportionately far less than requirement gains. Production trended upward in the final quarter but failed to equal shipments until an approximate balance was attained in December. The average price at New York for August was 5.04 cents; it rose to 5.45 cents in September and was at the highest levels of the year—5.50 cents a pound—throughout the final quarter.

Average monthly and yearly quoted prices of lead at St. Louis, New York, and London, 1937-39, in cents per pound 1

•	1937			1938			1939		
Month	St. Louis	New York	Lon- don	St. Louis	New York	Lon- don	St. Louis	New York	Lon- don
January February March April May June July August September October November December	5. 85 6. 09 7. 05 6. 03 5. 85 5. 85 6. 30 6. 23 5. 56 4. 88 4. 72	6. 03 6. 26 7. 20 6. 18 6. 00 6. 00 6. 46 6. 39 5. 71 5. 03 4. 86	5. 97 6. 19 7. 20 5. 71 5. 28 5. 03 5. 02 4. 63 4. 03 3. 72 3. 54	4. 72 4. 48 4. 35 4. 35 4. 25 4. 00 4. 73 4. 75 4. 85 4. 94 4. 69	4. 89 4. 63 4. 50 4. 40 4. 15 4. 88 4. 90 5. 01 5. 09 4. 84	3. 60 3. 45 3. 56 3. 46 3. 15 3. 09 3. 28 3. 13 3. 27 3. 44 3. 38 3. 15	4. 68 4. 65 4. 63 4. 60 4. 65 4. 70 4. 89 5. 35 5. 35	4. 83 4. 80 4. 82 4. 75 4. 80 4. 85 5. 04 5. 50 5. 50 5. 50	3. 03 3. 20 3. 07 3. 00 3. 03 3. 04 3. 08 3. 30 (2) (2) (2) (3)
Average	5. 86	6.01	3 5. 15	4. 59	4.74	3 3. 33	4. 90	5. 05	3 4 3.09

1 St. Louis: Metal Statistics, 1940, p. 455. Average daily quotations of soft Missouri lead, f. o. b. St. Louis (open market), as reported daily in the American Metal Market.

New York: American Metal Market, daily issues. Pig lead, New York (outside market), prompt shipment from West.

London: Metal Statistics, 1940, p. 459. Average price of foreign lead. Price per long ton, as published in Metal Statistics, converted to cents per pound at average exchange rate reported by the Federal Reserve

Board. 2 London Metal Exchange dealings suspended for duration of the war.

3 London quotations in pounds sterling per long ton, as follows: 1937, £23.3250; 1938, £15.2667; 1939 (8 months), £14.7083.

4 Average for 8 months: Comparable average for New York was 4.83 cents.

There were narrow movements in the London market also in 1939. In January the average price (United States exchange basis) was 3.03 cents; it rose to 3.20 cents in February and then declined in April to the low point for the year-3.00 cents. A slow rise carried the price to 3.30 cents in August. Quotations on the London Metal Exchange were discontinued at the outbreak of war in September. The differential between selling prices in New York and London was notably higher in 1939 than in 1938, continuing the gains indicated for that year. The differential in 1939 ranged from 1.60 to 1.80 cents, the low point occurring in February and the high in January; the average for 8 months was 1.74 cents. In 1938 New York monthly prices ranged from 0.94 cent to 1.77 cents higher than those for London, and the average for the year was 1.41 cents higher. In 1937 the average difference was 0.86 cent, and in 1936 was 0.80 cent.

In September 1939 it was announced that the British Ministry of Supply had established the maximum price of Empire lead at £17 per long ton ex ship and of foreign lead at £16 12s. 6d. ex ship. In December control prices for Empire and foreign lead were raised to

£25 per long ton, duty paid, delivered.

FOREIGN TRADE 2

Although imports of lead in ore, matte, and bullion increased 31 percent in 1939 compared with 1938 and exports of pig lead showed a 62-percent increase for the same period, the total of pig lead exported in 1939 approximated the lead in ore, matte, and bullion imported; domestic exports of pig lead for some years have comprised principally crude material imported for smelting and refining in bond and

earmarked for export.

Imports.—Aside from the significant increase in total imports of unrefined lead in 1939, a noticeable feature was the 84-percent decrease in imports from Mexico of lead in ore and matte and a compensating 232-percent increase in imports of lead bullion from the same country. Although Mexico, for years the principal source of unrefined lead imports, contributed 65 percent of the total tonnage imported in 1939, Canada's imports of ore and matte increased 77 percent in 1939 compared with 1938; however, Chile and Peru supplied less unrefined lead in 1939 than in 1938, the total decrease for both countries being 22 percent.

Total lead imported into the United States, 1935-39, by classes, in short tons 1

Year	Lead in ore and matte	Lead in base bul- lion	Pigs, bars, and old	Total lead content
1935	20, 025	2, 692	1, 322	24, 039
1936	20, 713	312	2, 590	23, 615
1937	34, 103	1, 800	4, 903	40, 806
1938	45, 370	15, 296	3, 235	63, 901
1939	30, 842	48, 902	7, 139	86, 883

¹ Data include lead imported for immediate consumption plus material entering the country under bond.

Total lead imported into the United States, in ore, base bullion, and refined, 1935-39, by countries, in short tons 1

Year	Canada	Mexico	New- found- land	South America	Europe	Other countries	Total
1935	236 1, 692 5, 749 3, 174 5, 641	9, 786 10, 501 17, 068 38, 467 52, 059	6, 837 3, 955	6, 643 6, 861 13, 229 13, 426 16, 527	512 341 535 680 1, 971	25 265 4, 225 8, 154 10, 684	24, 039 23, 615 40, 806 63, 901 86, 883

¹ Data include lead imported for immediate consumption plus material entering the country under bond.

Total lead imported into the United States in ore, matte, and base bullion, 1935-39, by countries, in short tons ¹

Country	1935	1936	1937	1938	1939
In ore and matte: Canada. Chile. Mexico Newfoundland. Peru. Other countries. In base bullion: Mexico Peru. Other countries.	1, 102 7, 986 6, 818 3, 716 345 20, 025 1, 746 784 162 2, 692	1, 419 574 10, 462 3, 955 4, 007 296 20, 713 39 52 221 312	5, 211 15, 970 10, 132 2, 316 34, 103 1, 067 239 494 1, 800	3, 173 2, 107 24, 023 9, 317 6, 750 45, 370 14, 444 198 654 15, 296	5, 624 1, 844 3, 846 7, 174 12, 354 30, 842 47, 915 84 903 48, 902

¹ Data include lead imported for immediate consumption plus material entering the country under bond.

² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Lead remaining in warehouses in the United States, Dec. 31, 1935-39, in short tons
[Stated in the form in which the material was entered for warehouse]

Year	Lead in ore and matte	Lead in base bul- lion ¹	Year	Lead in ore and matte	Lead in base bul- lion ¹
1935 1936 1937	22, 598 33, 401 57, 509	2, 173 1, 930 2, 622	1938 1939	76, 287 72, 737	11, 524 6, 478

¹ Pigs, bars, sheets, and old lead included with base bullion.

Lead 1 imported for consumption in the United States, 1935-39, by classes

Year	dust, ar	ores, flue ad mattes, s. p. f.		in base llion	Pigs a	nd bars	Sheet: and	s, pipe, shot	Not other-wise	Total
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	speci- fied	value
1935 1936 1937 1938 1939	8, 273 5, 836 5, 613 6, 722 12, 317	\$258, 954 225, 568 507, 945 543, 164 1, 063, 512	1, 154 763 188 304 1, 764	\$66, 559 45, 340 12, 788 31, 147 166, 298	1, 368 1, 979 2, 355 2, 001 4, 772	\$83, 841 97, 614 174, 077 84, 109 176, 437	404 304 376 166 170	\$51, 979 38, 546 54, 649 30, 906 28, 296	\$12, 484 12, 729 13, 527 23, 381 11, 611	\$489, 775 443, 331 793, 796 733, 081 1, 449, 541

¹ In addition 285 tons valued at \$10,678 of "reclaimed, scrap, etc." were imported in 1934; 223 tons, \$15,958 in 1935; 342 tons, \$23,534 in 1936; 349 tons, \$30,810 in 1937; 189 tons, \$20,374 in 1938, and 36 tons, \$3,387 in 1938; value included in total values.

Miscellaneous products containing lead imported for consumption in the United States, 1935-39

Voor		tal, solder, wh combination		Type metal and antimonial lead		
Year	Gross weight (short tons)	Lead content (short tons)	Value	Gross weight (short tons)	Lead content (short tons)	Value
1935 1936 1937 1937 1938	128 334 618 390 136	24 67 178 77 45	\$44, 269 112, 205 213, 734 126, 660 96, 492	534 456 132 433 380	445 400 115 374 321	\$36, 453 34, 694 13, 572 38, 708 38, 491

Exports.—Most significant during 1939 was the 1600-percent increase in pig-lead exports to Europe, which rose from 1,950 short tons in 1938 to 33,152 in 1939. There was a sharp 663-percent increase in purchases by Germany, but of note also is the fact that the combined exportations to Belgium, Denmark, Hungary, Netherlands, Norway, and Sweden jumped from 51 tons in 1938 to 13,249 in 1939. Although there was a fourfold increase in exports to Japan in 1938 compared with 1937, purchases by that country in 1939 increased only 15 percent over those in the preceding year. Exports to the United Kingdom increased noticeably from 78 short tons to 9,411. The only decrease of importance during the year was in exports to Mexico, due possibly to refining of bullion in that country rather than shipment of the material to the United States for refining and reexport.

Lead exported from the United States, 1935-39

	Pigs, bars	s, and old	Foreign lead exported in		Pigs, bar	Foreign lead exported in	
Year	Short tons	Value	manufactures with benefit	Year	Short tons	Value	manufactures with benefit of draw-back (short tons)
1935 1936 1937	1 6, 982 18, 313 20, 091	1 \$472, 017 1, 390, 454 1, 838, 262	8, 995 8, 312 8, 679	1938 1939	² 45, 866 74, 392	² \$3, 354, 616 4, 547, 219	9, 061 10, 359

¹ Includes small quantities of foreign lead reexported. ² Contains sheets and pipes; figures not separable.

Pig lead exported from the United States, 1935-39, by destinations, in short tons

Destination	1935 1	1936	1937	1938 2	1939	
Countries:			43	28	588	
Belgium Brazil Canada	338 45	795 45	652	111 101	647 5	
Denmark Finland France				560 (3)	1, 569 616 540	
Germany Hungary	11	2	568	1,092	8, 333 560	
Japan Kwangtung	5,324	8, 629	7, 320 56	30, 203 314	34, 790 99	
Mexico Netherlands	38	8,049	8, 122	11, 403	2, 922 2, 101	
Norway Philippine Islands	217	223	112 569	1, 037 23	1, 091 974 7, 340	
Sweden United Kingdom Other countries	8 813	123 442	2, 226 416	78 916	9, 411 2, 806	
	6, 982	18, 313	20, 091	45, 866	74, 392	
Continents:						
North AmericaSouth America		8, 282 1, 021	8, 337 784	12,002 303	3, 345 1, 317 33, 152	
EuropeAsiaAfrica and Oceania		133 8, 865 12	2, 949 7, 989 32	1, 950 31, 606 5	36, 152 36, 122 456	
•	1			1,		

1 Includes small quantities of foreign lead reexported.

² Includes sheets and pipes; figures not separable.

3 Less than 1 ton.

WORLD ASPECTS OF LEAD INDUSTRY

International cooperation.—The Lead Producers Association, representing 60 to 75 percent of the lead produced outside the United States, agreed on November 1, 1938, to a 10-percent reduction in output; this action represents the first positive step toward control of the lead market since 1932. The output of lead during the first 6 months of 1939, however, was higher than for the same period of 1938.

Early in September, after the outbreak of hostilities in Europe, dealings on the London Metal Exchange were suspended, and metal supplies and prices were placed under supervision of the Nonferrous

Metals Control created under the Defense Act.

World production.—Lack of adequate production data precludes any reliable estimate of world lead output during 1939. According to the American Bureau of Metal Statistics, lead in ore production in 1938 was 1,772,012 metric tons. Of this total North America produced 836,702 tons (47 percent); in 1939 the American Bureau of

Metal Statistics reported North American production at 792,368 metric tons. In 1938 South American output was 95,569 metric tons -5 percent of the total; in 1939 it was reported as 88,019 metric tons. The mine production of lead in the Western Hemisphere, which in 1938 was slightly over half of the total world output, decreased in 1939 and may indicate a lower world production in 1939.

Smelter production of lead in 1939 is estimated at 1,700,000 metric Output of the United States increased from 330,963 tons in 1938 to 404,257 tons in 1939, representing 24 percent of the world production for the latter year. Australian production increased con-

siderably, whereas Mexican output showed a marked decline.

World production of lead, 1935-39, in metric tons 1 [Compiled by R. B. Miller]

Country	1935	1936	1937	1938	1939
Argentina	4, 112	10, 700	9, 900	10, 200	(3)
Australia	221, 431	196, 051	232, 198	226, 155	(3) 252, 383
Belgium	68, 980	67, 000	93, 310	94, 170	82,000
Burma	73, 217	74, 329	77, 728	80, 166	77, 220
Canada	148, 558	164, 857	181, 162	181, 783	172, 880
China	3 1, 600	3 1, 600	3 1, 500	(3)	(2)
Chosen	1, 728	2, 738	5, 850	(2)	(2)
Czechoslovakia	3, 986	4, 126	4, 300	(2)	(2)
France	14, 575	15, 127	37, 168	41, 753	(2)
Germany 4	122, 300	139, 000	162, 400	171, 700	, (°)
Austria	8, 048	8, 732	10, 836	9, 280	181, 440
Greece	4, 679	4, 172	5, 890	6,050	J (%)
Hungary	14,079	26	147	0,000	(2)
Indochina.	18	120	8	(2)	
Italy	35, 803	36, 307	38, 938	10	
Japan	7. 442	8, 883	10, 200	43, 287	38, 102
Mexico	178, 923	214, 376		(2)	(2)
Northern Rhodesia	170, 925	305	214, 653 568	273, 529 277	219, 300
Norway		227	236	323	2,778
Peru	6. 452	8, 899	19,053		(3)
Poland	18, 819	15, 021		28, 478	24, 310
Rumania	4, 557	4, 783	17, 587	19, 973	(3)
South-West Africa	4,007	4, 100	6, 725	5, 655	5, 100
Spain	62, 742	46, 600	1, 355	3, 214	4, 283
l'unisia	25, 390	21, 497	30, 000 24, 758	36,000	27, 000
Union of South Africa	20, 090	21, 497	24, 708	23, 916	23, 421
U. S. S. R	44, 853	50, 800	9 55 000	19	
United Kingdom	22, 350		² 55, 000	(2)	(3)
United States (refined) 5	294, 075	13, 800	10, 313	10,000	(3)
Yugoslavia	7,554	362, 055 5, 804	423, 232 4, 038	330, 963	404, 257
L UBOSIA VIA	1,004	0, 804	4,038	78, 646	10, 624
	1, 383, 000	1, 478, 000	1, 679, 000	1, 700, 000	3 1, 700, 000

World consumption.—Owing to disturbed world conditions the total consumption of lead in 1939 cannot be estimated. The American Bureau of Metal Statistics reported world consumption of lead in 1938 as 1,638,100 metric tons.

REVIEW BY COUNTRIES

Argentina.—The Compania Minera Aguilar S. A., a subsidiary of the St. Joseph Lead Co., supplied 94 percent of the Argentine output During 1938 the flotation plant at Tres Cruces of lead in 1938. treated 174,445 metric tons of ore containing an average of 14.07 percent lead, 11.94 percent zinc, and 325 grams of silver per ton. In 1938, 29,836 tons of concentrates were produced, and in 1939 the output of concentrates amounted to 36,728 tons.

By countries where smelted but not necessarily refined.
Data not yet available. Estimate included in total.
Estimate included in total.
Approximate production.
Exclusive of secondary material (Metallgesellschaft, Frankfort on the Main).
Figures cover lead refined from domestic and foreign ore; refined lead produced from foreign base bullion

The Pumahuasi mines, operated by a subsidiary of the National Lead Co., produced 1,418 tons of concentrates in 1938. The National Lead Co. operates a smelter at Puerto Vilelas with a capacity of 15,000 tons of refined lead a year. In 1938 this smelter produced 9,051 tons of lead, of which 7,025 tons was derived from domestic concentrates and 2,026 tons from imported Bolivian concentrates.

Australia.—Smelter production in Australia increased from 226,155 metric tons in 1938 to 252,383 in 1939. Output of the Mount Isa Mines, Ltd., during 1939 amounted to 44,659 metric tons, representing a slight increase compared with 1938. Production at the Port Pirie smelter was not reported for 1939. During the year mining and milling problems were overcome by the Lake George Mining Corporation, and by the end of 1939 production was at the rate of 500 tons of ore per day. The equipment at this plant is reported to have cost about £1,000,000 and the company employs approximately 300 miners.

Effective February 11, 1939, an agreement with affiliated unions that will continue in force until June 30, 1942, was entered into at Broken Hill. Wages were advanced slightly, and provisions were made for further advances if living costs in the Broken Hill area The 40-hour-week aboveground and 35-hour-week underground provisions were continued. In the 1939 agreement the bonus provision of the previous agreement was altered somewhat but does not advance the limitation of combined basic wage and lead bonus.

To assist in prosecution of the war Broken Hill mining companies entered into contracts with the British Government, and prices were fixed approximately at those prevailing on the London Metal Exchange at the outbreak of the war. These prices were made subject to adjustment in accordance with rises or declines in the costs of pro-On December 19, 1939, the maximum price for Australian lead was advanced to £A20 17s. 3d. On February 8, 1940, the maximum price was established at £22, which was £9 5s. less than the London rates expressed in Australian currency.

Belgium.—Production of electrolytic lead in Belgium at the rate of about 100 to 200 tons per month began at the Dumont plant, Sclaigneaux, early in 1939. The process enables impure ores not Sclaigneaux, early in 1939.

otherwise usable to be employed.

Imports by Belgium of 109,302 metric tons of lead ore represent only a slight increase over the preceding year. The Belgian Congo supplied only 605 metric tons in 1939 compared with 6,364 in 1938. Pig-lead imports of 13,131 metric tons in 1939 represent a decrease of over 50 percent compared with 1938. The decline in imports of pig lead from Mexico was notable, amounting to 11,061 metric tons in 1939 compared with 22,849 in 1938. Exports of crude or pig lead in 1939 increased to 70,270 metric tons as compared with 67,097 in 1938.

Bolivia.—Present production of lead in Bolivia gives no indication of potentialities, as there are large known deposits that, under favorable conditions, unquestionably will be developed. At present most of Bolivia's output is derived from small mines in the La Quiaca region. The concentrates are exported to smelters in Argentina.

Brazil.—Lead deposits are distributed throughout Brazil, but the

principal deposits are in the States of São Paulo and Paraná. Present

production is negligible.

Bulgaria.—Active development of Bulgarian resources by foreign capital was reported in 1939. Early in the year an agreement was reached whereby the Bulgarian concern Granitoid and a German group comprised of the Cologne concerns Felten & Guilleaume Carlswerk A. G. and Otto Wolff were to take over 50 percent of the shares of the Bergwerks A. G. Pirin in Sofia from the Bulgarian firm. Lead and zinc deposits of the Rhodope Mountains are to be exploited. Another group comprising the "Metallochemia" Hutten—Chemische Industrie & Metallhandels A. G. of Budapest organized the Rodopsky Metall A. G. in Sofia for the purpose of operating mines in southern Bulgaria and shipping ore to Hungary for smelting. It is reported that lead-zinc deposits near the city of Kirdschalü, southern Bulgaria, will be in production by the close of 1940.

Burma.—The Burma Corporation, Ltd., produced 76,000 long tons of refined lead and 1,180 of antimonial lead in 1939 compared with 78,900 and 1,200 tons, respectively, in 1938. In 1939, 6,175,000 ounces of refined silver were recovered compared with 5,920,000 in 1938. Monthly data covering the quantities of lead concentrates

produced were not released after July.

Canada.—Mine production in Canada in 1939 totaled 176,165 metric tons compared with 190,021 in 1938. The Sullivan silver-lead-zinc mine in British Columbia furnished 97 percent of the total Canadian output. The Mayo district, Yukon Territory, produced 3,422 metric tons, the Stirling mine in Nova Scotia 1,154 metric tons, and the Algoma district of Ontario 18 metric tons. Considerable development work on Calumet Island in the Ottawa River, Ontario, by Calumet Mines, Ltd., is reported to indicate reserves of 1 million tons of ore averaging 2.15 percent lead, 8.6 percent zinc, and 5.76 ounces of silver per ton.

Refined lead output during 1939 at Trail, B. C., was less than the 1938 production figure owing to the 10-percent reduction agreement of

the Lead Producers Association.

After the outbreak of war in Europe in September 1939 Canadian producers negotiated contracts with the British Government for the delivery of lead at fixed prices. At the beginning of 1939 unsold stocks of lead were larger than average, but by the end of the year no stocks were unsold.

In 1939 exports of lead in ore totaling 3,721 metric tons represent a slight increase over the preceding year. Pig-lead exports in 1939 likewise advanced to 163,960 metric tons from 140,551 in 1938. Shipments to Japan increased greatly, amounting to 43,018 metric tons in 1939 compared with 15,768 in 1938. However, shipments to Great Britain decreased somewhat, amounting in 1939 to 100,286 metric tons compared with 108,481 in 1938.

China.—The National Resources Commission, the Yunnan Provincial Government, and the Fu Tseng Bank are reported to have organized the Southwest Lead Export Corporation to increase the lead output of China. It is reported that a lead refinery will be built

at Kunming, the provincial capital of Yunnan.

France.—France depends almost entirely on imports for its large consumption of lead. A total of 86,100 metric tons was reported used in 1938 compared with an annual average of 129,000 tons for 1929–33 and of 99,000 tons for 1934–38. Data for 6 months of 1939 indicate that 36,200 tons were used during that period.

Lead ore imported into France during the first 7 months of 1939 totaled 43,756 tons, of which 50 percent was from Morocco, 24 percent from Yugoslavia, and 8 percent from Peru. Imports of pig lead in the same period totaled 24,800 tons, of which Tunis supplied 52 and Belgium 32 percent. Exports of ore totaled 4,400 tons and of pig lead

8.100 tons in the first 7 months of 1939.

Germany.—Germany ranks as the third largest lead-consuming nation in the world, following the United States and the United Kingdom. Production of lead from mines in Germany is inadequate for home needs, as the total for 1932–38 amounted to 449,600 metric tons or only a little more than one-third of apparent total requirements for that period—1,281,600 tons. Doubtless, however, part of apparent consumption in recent years has gone toward the building of a stockpile. In this connection it is noteworthy that the average annual apparent consumption was 175,000 metric tons in 1924–28, 155,000 in 1929–33, and 204,000 in 1934–38; the total for 1938 was 246,500 tons. Figures for all of 1939 are not available, but totals for 6 months amounted to about half of the quantity for all of 1938.

Smelter output of lead in Germany, including Austria, was 181,440 metric tons in 1939, about the same as in the preceding year. Imports of pig lead amounted to 42,511 tons in the first 7 months of 1939 compared with 75,327 tons in all of 1938. Mexico supplied 23 percent of the amount shown for 1939, Belgium 21 percent, and the United States 20 percent Lead ore imported in the first 7 months of 1939 totaled 78,424 tons compared with 141,288 in all of 1938. Yugoslavia supplied 31 percent of the quantity shown for 1939, and Newfoundland furnished 22 percent. Germany exported 730 tons of pig lead and 556 tons of lead sheets during the first 7 months of 1939.

The drive for expansion of domestic production and restriction of

home use continued in 1939.

Hong Kong.—The Lin Ma Hang mine, situated about 30 miles north of Hong Kong and managed by the Hong Kong Mines, Ltd., produced 3,765 metric tons of lead in ore during 1939, silver content unknown, compared with 4,336 tons in 1938 having a silver content of 111,070 ounces. It was expected that a smelter would be in

operation by February 1940.

Italy.—Under Government stimulus mine output of lead in Italy has been increasing; it amounted to 39,500 metric tons in 1938 compared with 35,200 tons in 1937 and 30,200 in 1936. Although consumption totaled 51,900 tons in 1938, 50,400 in 1937, and 45,200 in 1936, indicating that the country must rely on imports to supplement domestic output, Italy is more nearly self-sufficient with regard to lead than most other metals. Available statistics for 1939 indicate that Italian consumption during the first 6 months was 9 percent below the monthly rate for all of 1938. Imports of 4,638 tons of pig lead in the first 7 months of 1939 were largely from Canada and Germany.

Mexico.—Mine production in Mexico during 1939 amounted to 219,506 metric tons of lead in ore, representing a notable decrease from the 282,369 tons produced in 1938. Exports of lead in all forms in 1939 totaled 207,199 metric tons compared with 250,868 tons in 1938. The destination of approximately 50 percent of the exports in 1939 was the United States; most of the European countries purchased the remainder in tonnages not exceeding 13,000 tons in any

instance.

On August 31, 1939, the export duty was raised. In November 1939 it was reported that the then-existing export tax on lead ore was abolished, and the arbitrary value placed for tax purposes on concentrates, bullion, and refined lead was reduced about 29 percent because of export difficulties traceable to the European war and consequent accumulation of stocks.

In October 1939 the major mining organizations and most of the important independent miners whose ores were treated at the smelter in Chihuahua pooled their sales through the New York office of the American Smelting & Refining Co. This arrangement provided for payments to pool members at regular intervals, and the plan appears

to be encouraging operation of small mines.

Newfoundland.—In Newfoundland about 425,167 metric tons of ore were milled during 1939, providing 37,332 metric tons of lead concentrates containing 21,223 metric tons of lead. In 1938, 416,396 metric tons of ore were milled furnishing 42.745 tons of concentrates

with a lead content of 24,817 tons.

Peru.—The principal lead and zinc deposits are situated in central During the last few years large reserves have been developed in the Cerro de Pasco district. About half the total lead ore produced is refined at the Oroya smelter and the remainder exported as ores and The Cerro de Pasco Copper Corconcentrates to foreign smelters. poration operates the only lead smelter in Peru. In 1939, the lead mines produced 26,098 metric tons of lead concentrates containing 60 percent lead and 8,997 tons of ore carrying 45.60 percent lead. Antimonial lead production during the year was 18 metric tons containing 86 percent lead; bismuth-lead bullion amounted to about 41 metric tons containing approximately 8 tons of lead.

Spain.—Little information is available regarding reconstruction of the Spanish lead industry following conclusion of the Spanish civil war in April 1939. Spanish lead production, which reached a total of 175,000 tons in 1914, declined to 66,000 tons in 1935 and is estimated

at 27,000 tons in 1939.

After civil strife ended in 1939 the Government established an agency (Rama del Plomo) in the Ministry of Industry in which lead producers, consumers, and dealers are represented. The purpose of this agency is to rehabilitate and develop the lead industry within The damage to the mines during the civil war was severe, but mines and plants gradually have been repaired and output in-It is reported that no stocks of lead were on hand at the creased. end of 1939.

U. S. S. R.—Official statistical information concerning the lead industry, as of all metallic industries, in the U.S.S.R. is meager. It is estimated that about 25 percent of the country's requirements of pig lead is imported. The estimated production of pig lead in 1938 totaled 80,000 metric tons, and the planned annual output by 1942, as established by the third Five-year Plan, was set at 134,000 met-

Yugoslavia.—Mine production in Yugoslavia in 1939 was reported to be 775,000 metric tons of ore containing 69,000 metric tons of lead compared with a total of 878,000 tons in 1938 with a lead content of 77,700 tons. However, smelter production in 1939 is reported as

10.624 metric tons compared with 8.646 in 1938.

ZINC 1

By E. W. PEHRSON

SUMMARY OUTLINE

Page	P	age
General summary 127	Domestic consumption	136
Salient statistics 128	New supply	136
Reduction in tariff 129	Industrial use of slab zinc	137
Domestic production 131	Prices	
Production of primary and secondary slab zinc. 131	Zinc-reduction plants	140
Distilled and electrolytic zinc 131		
Production of primary slab zinc by States 132		140
Secondary zinc 132	Foreign trade	140
Byproduct sulfuric acid 132	World aspects of zinc industry	142
Rolled zinc 133	Cartel activities	
Zine dust 133	World smelter production	142
Zinc pigments and salts 134	World consumption	143
Mine production 134	Review by countries	143
Stocks 136		

The zinc industry experienced a more favorable year in 1939 than Domestic production and consumption increased, prices were higher, and stocks were reduced. However, producers did not reap the full benefit of the larger domestic market, owing to a sharp increase in receipts of foreign zinc. Net imports were the highest on record, exceeding the previous peak established in 1937. Imports of zinc ore and slab zinc rose sharply in 1939 as a consequence of the 20-percent reduction in the tariff on zinc, which became effective at the beginning of the year, and the dislocation of shipping and foreign markets caused by the outbreak of war in Europe. Ore and metal, chiefly from the Western Hemisphere, that ordinarily would have gone elsewhere, were diverted to the United States, particularly during the latter part of the year. Exports of slab and rolled zinc also were higher in 1939 than in 1938 but gained in smaller proportion than imports. Increased receipts of ore came largely from Mexico, although there were sharp gains in receipts from Argentina and Canada. Mexico also was responsible for the greater part of the tonnage increase in imports of slab zinc, but shipments from Canada nearly trebled.

During the first quarter of the year, production and shipments were at virtually the same level; but shipments dropped in the second quarter, and the decline was not offset by a reduction in output. Hence, producers' stocks rose and at the end of June were at the highest level of the year—about 7 percent above inventories on January 1. Shipments increased sharply in the latter part of the year while production advanced more slowly, with the result that stocks were little more than half as large at the end as at the beginning

of the year.

¹ This report deals primarily with the smelting branch of the industry. Full details of zinc mining are given in the various State reports. Some zinc ore is used directly in the manufacture of zinc pigments. (See chapter on Lead and Zinc Pigments and Zinc Salts.)

127

The apparent consumption of primary slab zinc in 1939 was 62 percent above that of 1938 and the highest ever recorded. This rise is considerably above that in general industrial activity and that in output of many zinc products. The use of zinc in galvanizing, for instance, advanced 39 percent, and rolled-zinc production increased only 35 percent. Although brass-making used 72 percent more zinc in 1939 than in 1938, this industry normally consumes less than 30 percent of the total. The disparity between the rates of increase in actual use and apparent consumption in 1939 indicates that consumers' stocks increased substantially during the year.

Salient statistics of the zinc industry in the United States, 1925–29 (average) and 1935-39

	1925–29 (average)	1935	1936	1937	1938	1939
Production of primary slab zine:						
By sources:	F00 040	410 104	101 000		400 000	401.05
From domestic oresshort tons From foreign oresdo	589, 648	412, 184	491, 803	551, 165	436, 007 10, 334	491, 058
From foreign ores	12, 734	8, 450	529	5, 739	10, 554	16, 178
	602, 382	420, 634	492, 132	556, 904	446, 341	507, 230
By methods:		=====		000,002		001,201
Electrolyticpercent of total	21	28	26	21	21	2.
Distilleddo	79	72	74	79	79	7.
Production of redistilled secondary slab	40					
zinc short tons short tons	43, 756	28, 650	42, 209	51, 554	31, 613	50, 42
Stocks on hand at primary smelters Dec.	45, 575	90, 539	55, 500	79, 144	157, 511	83, 728
Primary zinc available for consumption	10,010	00,000	00,000	10, 111	101, 011	00, 120
short tons.	548, 472	457, 705	538, 794	570, 219	375, 004	607, 464
Price—Prime Western at St. Louis:		1	1 333,102	0.0,220	1010,002	551,25
Average for yearcents per pound	6. 76	4. 33	4.90	6. 52	4.61	5. 13
Highest quotationdo	8.90	4.95	5. 45	7.50	5.05	6. 50
Lowest quotationdo	5.40	3.70	4.75	5.00	4.00	4.50
Price—yearly average at Londondo	6.46	3.08	3.31	4.91	3.05	1 2.89
Mine production of recoverable zinc short tons	724, 720	E17 002	E7E E74	606 969	E16 600	E09 00
Tri-State district (Joplin)	124, 120	517, 903	575, 574	626, 362	516, 699	583, 807
percent of total.	49	37	39	38	38	38
Western Statesdo	30	31	31	31	28	2
Otherdo	21	32	30	31	34	3
World smelter production of zinc	1					
short tons	1, 435, 000	1, 468, 000	1, 614, 000	1, 792, 000	1, 728, 000	1, 813, 000

¹ Average for 8 months; London Metal Exchange dealings suspended in September.

The quoted price for Prime Western zinc at St. Louis remained at 4.50 cents a pound from January 1 until July 27, 1939, when it advanced to 4.60. As industrial activity advanced and the European crisis approached the price continued upward and late in September reached 6.50 cents, where it held through December 1. In December the quotation fell, reaching 5.75 cents as the year ended. The average quoted price for 1939 was 5.12 cents compared with 4.61 cents in 1938 and 6.52 in 1937. London quotations for the first 8 months of 1939 ranged from a low monthly average of 2.8 cents a pound in April to a high of 3.0 cents in August. After war was declared London Metal Exchange quotations were suspended on September 3, and subsequently the British Metal Control established fixed prices. The maximum price for foreign zinc was fixed at £15 a long ton, ex-ship, duty for buyers' account, in September, but in December was increased to £25 15s., delivered, duty paid.

Figure 1 shows trends in the domestic zinc industry since 1900. Statistical data on the zinc industry abroad during 1939 are incomplete because publication of official figures ceased in many countries. World smelter production outside the United States is estimated to

zinc 129

have increased only 2 percent. The Allied blockade diverted shipments of ore from Belgium, the Netherlands, and Norway, which rely almost entirely on imported ores, and these countries reported reduced smelter activity. Acquisition of Polish smelters and mines placed Germany far in the lead among European countries and made it more than self-sufficient in zinc. As mine production exceeded smelter output there were large accumulations of zinc ore stocks during 1939. World consumption of zinc probably advanced, but the extent of the increase cannot be estimated owing to lack of data. An attempt was made to revive the International Zinc Cartel during

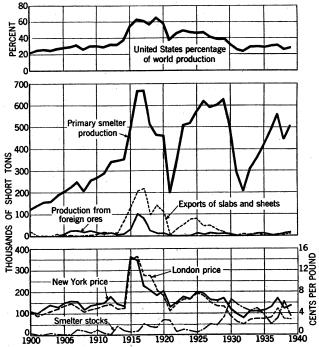


FIGURE 1.—Trends in the zinc industry in the United States, 1900-1939. Imports of slab and sheet zinc are not shown. Before 1936 they seldom exceeded 500 tons annually, but in recent years they have increased, amounting to 37,439 tons in 1937, 7,456 tons in 1938, and 31,138 tons in 1939.

the year, but owing to the tense political situation in Europe no success was achieved.

Reduction in tariff.—On January 1, 1939, the 20-percent reduction in import duties on zinc, established by the Canadian Trade Agreement signed November 17, 1938, became effective. Under the revised schedules the tariff on slab zinc was reduced from 1.75 to 1.40 cents a pound and that on zinc contained in ore from 1.50 to 1.20 cents a pound.

As stated in Minerals Yearbook, 1939, this reduction aggravated the already unfavorable competitive position of the domestic zinc industry that has resulted from overproduction of zinc in foreign countries during recent years. The depressed state of the foreign market is illustrated by the decline in London prices from 5.40 cents in 1929 to 3.05 cents in 1938 and 2.89 cents during the first 8 months of 1939, despite large increases in consumption abroad. Because of

this decline, the domestic tariff on zinc has been virtually 100 percent effective since 1935 so that any reduction in the import duty under normal conditions would affect domestic prices adversely. After announcement of the terms of the Canadian Trade Agreement the latter part of November 1938, the St. Louis quotation for prime western zinc dropped from 5.05 to 4.50 cents and was maintained at this level until late July 1939, when markets moved upward owing to improved industrial activity in the United States and accelerated buying in

anticipation of the outbreak of war in Europe.

Complications arising from the war make it difficult to appraise the net result of the tariff reduction on the domestic zinc industry during 1939. In the first half of the year the trade was in a depressed state because of the low price and low rate of consumption. Some plants were closed, and there were rumors of wage cuts or shut-downs The condition was reversed, however, the latter part of the year, as the price rose to 6.50 cents from September to Novem-The high rate of demand coupled with the higher price brought a measure of prosperity to the industry, although from the long-range view this situation could be considered only temporary. While the war was playing an important role in stimulating demand and forcing prices upward it was also creating other conditions that ultimately may have unfavorable effects on markets. The Allied blockade of Germany greatly reduced the flow of zinc and zinc ores to Europe; consequently, producers sought other outlets. Because of its enormous demand for zinc the United States was the logical market for these products, and their sale to domestic consumers has been facilitated to a considerable extent by the lower import duties now preva-This situation is reflected in the figures for net imports of zinc into the United States in 1939, which were the highest on record. Significant also was the announcement by an official of a large producer in Mexico in March 1940, that, owing to scarcity and high cost of freight to Belgium, zinc ores were being diverted to the United States, "where there is surplus smelting capacity and a deficiency between domestic production and consumption of zinc." 2

The war has brought about large increases in world stocks of zinc not only in various forms of metal stored for military purposes but also as ore accumulated in producing countries. For the past few years zinc concentrate inventories abroad have increased rapidly, notwithstanding successive new records in foreign zinc consumption. Mine output persistently has exceeded demand. According to the American Bureau of Metal Statistics stocks of concentrates held by the Electrolytic Zinc Co. of Australasia were 236,000 short tons on June 30, 1939, and at the end of the year there were 220,000 tons on hand in North and South America, making a total of 456,000 tons. With inventories of this magnitude hanging over the market it is evident that the present price level under which the domestic industry is operating profitably involves considerable hazard and that eventually the excessive stocks will be liquidated, possibly at distress prices.

During 1939 the zinc-producing industry requested the United States Government to take action toward restoring the former import duties under procedures provided in the Canadian Trade Agreement. The State Department was studying the problem carefully, but no decision helds are the contractions of the contraction of

decision had been announced by the end of the year.

¹Pott, C. T., Report of Ordinary General Meeting of Shareholders, 1940: San Francisco Mines of Mexico, Ltd., March 15, 1940.

ZINC 131

DOMESTIC PRODUCTION

Production of primary and secondary slab zinc.—Production of primary slab zinc from both domestic and foreign ores in 1939 was 14 percent greater than in 1938 and was equivalent to 84 percent of the average yearly output in the 5 years 1925–29. Both domestic and foreign ores contributed to the increase, as production from the former advanced by 13 percent and that from the latter by 57 percent.

A substantial increase in the production of secondary slab zinc is

A substantial increase in the production of secondary slab zinc is indicated by the 60-percent gain in the output of redistilled metal. Figures for the output of remelted secondary zinc are not yet available.

Primary and secondary slab zinc produced in the United States, 1935-39, in short tons

Year	Primary			Secondary			Grand
	Domestic	Foreign ¹	Total	Redis- tilled	Remelt- ed	Total	total
1935 1936 1937 1938 1939	412, 184 491, 803 551, 165 436, 007 491, 058	8,450 329 5,739 10,334 16,178	420, 634 492, 132 556, 904 446, 341 507, 236	28, 650 42, 209 51, 554 31, 613 50, 428	(2) (2) 12, 986 10, 657 (3)	(2) (2) 64, 540 42, 270 (3)	(2) (2) 621, 444 488, 611 (3)

All foreign zinc smelted in the United States in 1935-36 was derived from Mexican ores; in 1937-38, most of it originated in Peru; in 1939, it came from Mexico, Peru, and Argentina.
 Figures in process of revision.
 Data not yet available.

Distilled and electrolytic zinc.—Of the primary zinc produced in 1939, 75 percent was distilled and 25 percent electrolytic. For 1938 the corresponding figures were 79 percent and 21 percent, respectively. The substantial gain in production of redistilled secondary zinc virtually recouped the loss in 1938 and restored the 1937 level of output.

Distilled and electrolytic zinc, primary and secondary, produced in the United States, 1935-39, in short tons

APPORTIONED ACCORDING TO METHOD OF REDUCTION

	Electro- lytic pri- mary	Distilled	Redistilled		
Year		primary		At second- ary smelters	Total
1935 1936 1937 1938 1939	118, 476 127, 175 117, 511 93, 272 127, 056	302, 158 364, 957 439, 393 353, 069 380, 180	13, 439 22, 142 24, 131 14, 003 23, 471	15, 211 20, 067 27, 423 17, 610 26, 957	449, 284 534, 341 608, 458 477, 954 557, 664

APPORTIONED ACCORDING TO GRADE

Year	Grade A (High Grade)	Grade B (Intermediate)	Grades C and D (Brass Special and Selected)	Grade E (Prime Western)	Total
1935	155, 516	49, 118	49, 909	194, 741	449, 284
	183, 841	59, 879	65, 728	224, 893	534, 341
	196, 052	67, 132	72, 993	272, 281	608, 458
	140, 256	58, 128	73, 724	205, 846	477, 954
	162, 345	66, 591	86, 274	242, 454	557, 664

¹ For total production of secondary zinc see chapter on Secondary Metals—Nonferrous.

Production of primary slab zinc by States.—Pennsylvania continued to be the leading zinc producer in the United States, a distinction held without interruption since 1934. Next in order of importance as producers were Montana, Oklahoma, and Illinois, retaining respectively their relative positions of 1938. All producing States made substantial gains, except Arkansas and the West Virginia-Texas group. As in the preceding year, Montana and Idaho produced electrolytic zinc only in 1939, and the other States shown produced distilled zinc only.

Primary slab zinc produced in the United States, by States, 1935-39, in short tons

•				Man Obla		Danmard	nnsyl- Other	Total		
Year		Pennsyl- vania	States 1	Short tons	Value					
1935 1936 1937 1938 1939	10, 147 18, 005 25, 799 20, 476 19, 892	12, 448 21, 223 22, 831 15, 634 18, 427	67, 348 81, 174 73, 151 68, 167 79, 480	106, 028 105, 952 94, 680 77, 638 108, 629	58, 612 62, 963 96, 153 68, 224 84, 551	119, 452 150, 425 175, 275 139, 897 155, 598	46, 599 52, 390 69, 015 56, 305 40, 659	420, 634 492, 132 556, 904 446, 341 507, 236	\$37, 016, 000 49, 213, 000 72, 398, 000 42, 849, 000 52, 753, 000	

¹ Texas and West Virginia.

Secondary zinc.—In addition to the redistilled and remelted secondary slab zinc (unalloyed) already reported herein, a large quantity of secondary zinc is recovered each year in the form of alloys, zinc dust, zinc pigments, and zinc salts. Additional information on secondary zinc is given in the chapter of this volume on Secondary Metals— Nonferrous.

Byproduct sulfuric acid.—Sulfuric acid made from the sulfur dioxide gases produced in the roasting of zinc blende is an important byproduct of zinc smelting. To utilize a larger proportion of their acidproducing capacity, some plants also consume large quantities of sulfur in addition. The production of sulfuric acid at zinc blende roasting plants from 1934 to 1938, inclusive, is shown in the following Data for 1939 are not yet available.

Sulfuric acid (60° B. basis) made at zinc blende roasting plants in the United States, 1934-381

	Made from zinc blende		Made fro	om sulfur	Total		
Year Short tons	Short					Value ²	
	tons	Value 2	Short tons	Value ³	Short tons	Total	Average per ton
1934 1935 1936 1937 1938	3 406, 984 3 443, 476 505, 882 3 542, 356 3 466, 879	\$3, 215, 173 3, 756, 242 4, 497, 291 5, 060, 181 4, 253, 268	89, 162 90, 884 161, 169 151, 090 30, 996	\$704, 380 769, 787 1, 432, 792 1, 409, 670 282, 373	496, 146 534, 360 667, 051 693, 446 497, 875	\$3, 919, 553 4, 526, 029 5, 930, 083 6, 469, 851 4, 535, 641	\$7. 90 8. 47 8. 89 9. 33 9. 11

Figures for 1939 not yet available.
 At average of sales of 60° acid.
 Includes acid from small quantity of foreign blende.

ZINC 133

Rolled zinc.—The output of rolled zinc in 1939 was 35 percent greater than in 1938. The average value remained the same, at \$0.086 a pound. Some mills that manufacture their rolled zinc into various products, other than those shown in the accompanying table, remelt and reroll the resulting scrap. The scrap thus treated in 1939 was 12,916 tons, a 38-percent increase over the 1938 figure. The zinc lost in such waste products as skimmings, drosses, and pot losses totaled 1,644 tons in 1939—equivalent to about 3 percent of the net production of rolled zinc. Zinc purchased for rolling in 1939 consisted of 39 percent Brass Special, 24 percent Prime Western, 19 percent Selected, 14 percent High Grade, and 4 percent Electrolytic and Intermediate grades. Stocks of slab zinc on hand at zinc rolling-mills were about 6,600 tons (revised figure) at the beginning and 7,800 tons at the end of the year.

Rolled zinc produced and quantity available for consumption in the United States, 1938-39

	1938			1939			
		Valu	10		Value		
e de la companya de La companya de la co	Short tons	Total	Average per pound	Short tons	Total	Average per pound	
Production: Sheet zinc not over 0.1 inch thick. Boiler plate and sheets over 0.1 inch thick. Strip and ribbon zinc1	12, 219 829 32, 827	\$2,503,000 145,000 5,278,000	\$0.102 .087 .080	15, 599 1, 098 45, 185	\$3, 282, 000 184, 000 7, 148, 000	\$0. 105 . 084 . 079	
Total zinc rolled 1	45, 875	7, 926, 000	. 086	61, 882	10, 614, 000	. 086	
Imports Exports Available for consumption Value of slab zinc (all grades) Value added by rolling	226 2 5, 736 40, 365	26, 000 2 908, 000	. 079	178 6, 449 55, 611	21, 000 1, 052, 000	. 082	

¹ Figures represent net production. In addition, 9,392 tons of strip and ribbon zinc in 1938 and 12,916 tons of strip and ribbon zinc in 1939 were rerolled from scrap originating in fabricating plants operated in connection with zinc rolling-mills.

2 Includes some slab zinc; not separately recorded.

Zinc dust.—Production of zinc dust in 1939 increased 45 percent over 1938 and was the largest on record. The zinc content of dust produced ranged from 94.0 to 98.5 percent and averaged 97.0 percent. Almost all of the zinc dust produced since 1931 has been from redistillation of zinc drosses and slab zinc.

Zinc dust 1 produced in the United States, 1935-39

Year	Short tons	Value				Value	
		Total	Average per pound	Year	Short tons	Total	Average per pound
1935 1936 1937	12, 453 14, 425 15, 242	\$1, 574, 259 1, 957, 300 2, 587, 577	\$0.063 .068 .085	1938 1939	11, 609 16, 835	\$1, 542, 511 2, 367, 861	\$0.066 .070

¹ All produced by distillation.

Zinc pigments and salts.—The principal zinc pigments are zinc oxide, leaded zinc oxide, and lithopone, and the principal salts are the chloride and sulfate. These products are manufactured from various zinciferous materials—ores, metal, and secondary substances. Details of the production of zinc pigments and salts are given in the chapter

on Lead and Zinc Pigments and Zinc Salts.

Mine production.—Mine production increased 13 percent in 1939 owing to gains in output of 18 percent in the Western States, 17 percent in the Central States, and 5 percent in the Eastern States. Tonnage advances were largest in the Central States, followed by the western and eastern groups. New Jersey leads in production in the Eastern States and ranks second in importance in the country. Output in New Jersey gained 3 percent and in New York 20 percent in 1939. Tennessee's output also rose, but that in Virginia declined.

In the Western States the most spectacular gain was that for Montana, where output rose from 8,844 tons in 1938 to 34,799 in 1939. Reopening early in the year of the Orphan Girl mine and other zinclead properties owned by the Anaconda Copper Mining Co. resulted in large gains in output from Butte, and production from the slag fuming plant at East Helena was expanded. Idaho, the largest zincproducing State in the western group, increased 8 percent in production in 1939, while Utah, third in importance, gained 3 percent. The output from the Bingham and Tintic districts was less in 1939 than in 1938, but production from the Park City area increased following reopening of the Silver King Coalition and Park Utah Consolidated properties. New Mexico's total increased 4 percent in 1939, although the State's largest producer—the Pecos mine—was closed permanently May 31, 1939, because ore was exhausted. Output in Nevada fell 30 percent and in Colorado 60 percent. Colorado's drop was due largely to the idleness throughout 1939 of the Sunnyside mine, San Juan County.

Zinc produced in the Central States represented 40 percent of the country's total in 1939. Production was stimulated late in the year by increased prices for zinc, and many of the mines and mills of the area were running at capacity at that time. Oklahoma is the principal zinc-producing State in the region and in the country, with an output that represented 24 percent of the country's total in 1939. Production in Oklahoma rose 24 percent in 1939 and that in Missouri 48 percent,

while output in Kansas dropped 6 percent.

Further details of zinc mining will be found in the various State reports in this volume.

Mine production of recoverable zinc in the United States, 1925–29 (average) and 1935–39, in short tons

State	1925-29 (average)	1935	1936	1937	1938	1939
Western States:						
Arizona	2,628	3, 337	3, 589	5,026	5, 814	6,711
California	3,999	161	8	20		6
Colorado	32, 868	1, 202	1, 172	4, 247	4, 553	1,830
Idaho	29, 128	31,053	49, 100	54, 199	44,030	47, 549
Montana	72, 519	54, 781	49, 717	39, 168	8,844	34, 799
Nevada	5, 570	15, 536	13, 477	14, 236	8,944	6, 228
New Mexico	23, 351	22, 126	20,668	23, 927	28, 236	29, 356
Oregon			61	24		
Utah	44, 385	31, 107	36, 192	48,001	33, 658	34, 526
Washington	575	1	4, 403	4, 116	11, 402	10, 131
	215, 023	159, 304	178, 387	192, 964	145, 481	171, 136
Central States:						
Arkansas	71	153	182	241	152	123
Illinois	1, 174					334
Kansas	114, 323	54, 110	79, 017	80, 300	73, 024	68, 971
Kentucky	644	127	238	270	322	909
Missouri	16, 708	7, 263	18, 709	20,600	10, 226	15, 096
Oklahoma	226, 969	129, 763	129, 175	135, 696	112, 924	140, 379
Wisconsin	23,055	8, 923	8, 126	6, 938	2,073	5, 904
	382, 944	200, 339	235, 447	244, 045	198, 721	231, 716
Eastern States:						
New Jersey	93, 839	85, 708	89, 883	101, 408	85, 839	88, 716
New York	7, 091	23, 720	26, 941	32,690	29, 896	36,014
Tennessee and Virginia 1	25, 823	48, 832	44, 916	55, 255	56, 766	56, 225
Tennessee and Virginia	20,020	10,002	11,010	00, 200	30, 100	
	126, 753	158, 260	161, 740	189, 353	172, 501	180, 955
	724, 720	517, 903	575, 574	626, 362	516, 703	583, 807

¹ Bureau of Mines not at liberty to publish figures for Tennessee and Virginia separately.

Mine production of recoverable zinc in the principal zinc-producing districts of the United States, 1935–39, in short tons

District	State	1935	1936	1937	1938	1939
Joplin region	Kansas, Missouri, Oklahoma	191, 136		236, 585	196, 174	224, 446
New Jersey	New Jersey	85,708	89,883	101, 408	85, 839	88, 716
Eastern Tennessee	Tennessee	348, 832	44, 916	55, 255	56, 766	56, 225
Austinville			, ,	1	i .	,
Coeur d'Alene region	Idaho	31,009		47,070	31, 937	40,065
St. Lawrence County	New York	23, 720	26, 941	32, 690	29, 896	36, 014
Central	New Mexico	8,404	10, 706	11, 887	16,695	23, 677
Bingham	Utah	17, 996	17, 422	20, 570	23,096	20, 861
Summit Valley (Butte)	Montana	37, 646	34, 940	22,033	942	20,016
Smelter	do	11,078	7, 986	10, 330		12, 639
Metaline	Washington			4, 095	11, 402	10, 130
Park City region	Utah	9,659	13, 579	19, 342	5,678	9,054
Warm Springs	Idaho	39	4,771	6, 959	12,070	7, 463
Upper Mississippi Valley		8,923	8, 126	6, 938	2,073	5, 904
Discourse of the second of the	consin.	10 100	10.045	10 450	0.444	
Pioche	Nevada	12, 183	12,047	12, 472	8, 414	5, 737
Willow Creek	New Mexico		9,667	10,882	11, 291	4,925
Oro Blanco	Arizona	3, 270	3,065	2,700	3, 265	2, 377
Rush Valley	Utah	981	1, 366	2, 205	1,955	2, 370
Pioneer	Arizona				825	2,000
San Juan Mountains	Colorado		140	2,092	4, 308	1,465
Ophir	Utah	2, 167	3, 563	4,023	1, 893	1, 268
Kentucky-Southern Illinois	Kentucky-Southern Illinois	127	238	270	322	1, 243
Harshaw	Arizona			l		1,075
Cataract	Montana		1, 354		605	1,070
Fintic	Utah	15	177	1, 259	921	851
Wallapai	Arizona	67	524	1,714	1,660	770
Flint Creek	Montana	4,746	4, 307	4,641	426	663
	Colorado	924	871	1,676	97	172
Γybo	Nevada	(1)	(1)	1,417	1	1

¹ Bureau of Mines not at liberty to publish figures.

STOCKS

Stocks of zinc at primary reduction plants fell 47 percent during 1939 from the unusually high stocks carried over from the preceding year. Stocks at secondary distilling plants increased 33 percent. Total stocks declined 46 percent. Of the total stocks on hand at the end of the year, 34,334 tons were of the higher grades of zinc (A and B) and 51,949 tons of the lower grades (C, D, and E) compared with 75,864 and 83,562 tons, respectively, at the end of 1938.

According to the American Zinc Institute, stocks of slab zinc declined moderately in the first quarter, increased materially in the second quarter, and reached the peak for the year at the end of June, declining steadily thereafter to the end of November as shipments to consumers increased. During December zinc stocks increased slightly, but the year-end figure was little more than half that at the beginning of the year.

Stocks of zinc on hand at zinc-reduction plants in the United States at end of year, 1935-39, in short tons

	1935	1936	1937	1938	1939
At primary reduction plants	90, 539 1, 151	55, 500 626	79, 144 1, 969	157, 511 1, 915	83, 728 2, 555
	91, 690	56, 126	81, 113	159, 426	86, 283

Stocks of zinc ore (60 percent concentrates) in the Tri-State district at the beginning of 1939 totaled 8,400 tons. In January 1940 production exceeded shipments, and early in February stocks increased to 12,100 tons. A reduction to 5,500 tons on July 1 was followed by an advance to over 10,000 tons early in September. Sharp increases in shipments from September 16 through October reduced stocks to 5,100 tons on November 4, but a subsequent increase in output and a decline in demand reversed the trend, and by December 23 stocks had risen to 13,200 tons—the peak for the year. At the close of the year 12,000 tons of ore were on hand.

Data on stocks of zinc outside the United States are not available, but some authorities estimate that there was little change in the stock situation during 1939. Estimates of world stocks of slab zinc at the end of 1938 ranged from 425,000 to 470,000 tons. The disruption of international trade in zinc ore caused by the war has increased inventories of ore at producing centers. The Electrolytic Zinc Co. of Australasia reports that its stock of ore as of June 30 has increased from 117,000 short tons in 1936 to 203,000 in 1938 and 236,000 in 1939. The American Bureau of Metal Statistics states that stocks in North and South America at the end of the year rose from 118,000 tons in 1936 to 190,000 in 1938 and 220,000 in 1939.

DOMESTIC CONSUMPTION

New supply.—The supply of new slab zinc available for consumption in 1939 increased 62 percent over 1938 and established a record, exceeding the previous one of 1928 (578,060 tons) by 5 percent and the 1925-29 average (548,472 tons) by 11 percent. By comparison supplies of copper, lead, and pig iron increased 76, 22, and 70 percent

 $_{\rm ZINC}$ 137

over 1938, respectively. Larger production from both domestic and foreign ores and a substantial reduction in producers' stocks during the year explained the record supply of zinc available in 1939. However, it is believed that consumers' stocks increased appreciably, particularly during the latter part of the year. The American. Bureau of Metal Statistics estimates the industrial consumption of primary and redistilled secondary zinc at 626,000 tons, which is nearly 32,000 tons below the supply of new zinc available plus the production of redistilled secondary zinc as reported by the Bureau of Mines. Domestic shipments during the last third of 1939 averaged 65,157 tons a month compared with 42,293 tons during the first 8 months, according to the American Zinc Institute. This 54-percent increase in deliveries to consumers probably is far above the rise in actual consumption, supporting the assumption that consumers were accumulating stocks during the latter part of the year. Sheet galvanizing operations, for instance, were only about 30 percent higher in the last 4 months of 1939 than in the preceding 8 months; and automobile production, where large quantities of zinc die castings are used, increased only 15 percent.

Primary slab zinc available for consumption in the United States, 1935-39, in short tons

	1935	1936	1937	1938	1939
Supply: Stock at smelters Jan. 1 Production Imports	124, 783 420, 634 4, 444	90, 539 492, 132 11, 660	55, 500 556, 904 37, 208	79, 144 446, 341 7, 230	157, 511 507, 236 30, 960
Total available	549, 861	594, 331	649, 612	532, 715	695, 707
Withdrawn:	1 017	37	249	1 200	4, 515
Stock at smelters Dec. 31	1,617 90,539	55, 500	79, 144	157, 511	4, 515 83, 728
Total withdrawn	92, 156	55, 537	79, 393	157, 711	88, 243
Available for consumption	457, 705	538, 794	570, 219	375, 004	607, 464

¹ Not separately recorded; estimated.

Industrial use of slab zinc.—In addition to the new supply of zinc shown in the preceding table, a large supply of secondary zinc is available for consumption each year. The estimated industrial use of both primary and secondary zinc, as calculated by the American Bureau of Metal Statistics, is shown in the following table:

Estimated industrial use of zinc in the United States, 1935-39, in short tons 1

Purpose	1935	1936	1937	1938	1939
Galvanizing: Sheets	110, 000 25, 000 25, 000 5, 600 30, 000 195, 000 124, 000 56, 500 42, 000 473, 000	132, 000 36, 000 30, 000 6, 000 38, 000 242, 000 165, 000 55, 000 72, 000 48, 000	139, 000 37, 000 33, 000 7, 000 40, 000 256, 000 169, 000 58, 000 88, 000 39, 000	108, 500 29, 300 22, 600 5, 600 31, 000 198, 000 46, 000 48, 000 27, 000	147, 500 43, 000 30, 900 7, 000 46, 600 275, 000 62, 000 84, 000 30, 000

¹ Year Book, American Bureau of Metal Statistics, 1939.
² Includes pole-line hardware, hollow ware, chains, and all articles not elsewhere mentioned.
³ Includes slab zinc used for manufacture of French oxide, zinc for wet batteries, slush castings, the desilverization of lead, wire for metalizing, etc., and sundries.

The quantity of zinc used by industry in 1939 was 49 percent higher than in 1938 and totaled 99 percent of the record amount consumed All four of the principal uses increased in 1939—galvanizing 39 percent, brass making 72 percent, rolled zinc 35 percent, and die castings 75 percent. The largest use—galvanizing—took 44 percent of the total tonnage in 1939 compared with 47 percent in 1938. This item includes zinc used in electrogalvanizing and that used in The former increased from 3,978 tons in 1938 to 5,740 in 1939 and the latter from 264 tons to 511.

Zinc used in rolled products in 1939 (1938 figures in parentheses) included 21,670 tons (15,300) in battery cans, 20,000 (15,000) in glass jar tops, 1,000 (2,000) in automobile manufacture, 5,000 (4,000) in photoengraving sheet, 1,100 (830) in boiler plate, 340 (270) in brake lining, and 250 (300) in electric refrigerators. The remaining tonnage was used in miscellaneous other uses or exported. The chief item in "Other uses" is the slab zinc employed in making French-process zinc oxide, which totaled about 17,000 tons in 1939 compared with

16,000 in 1938.

PRICES

The spot price of zinc did not change during the first half of 1939 but advanced consistently throughout the greater part of the latter At the beginning of the year the St. Louis price of Prime Western zinc stood at the 4.50-cent level in effect since November 29, 1938. This quotation held throughout the first half of the year and until July 26, when it reached 4.55 cents. As demand improved, production of slab zinc was accelerated but failed to meet the rapidly expanding market. As a result, stocks trended downward, and prices responded with a consistent rise to 4.60 cents on July 27 and 4.75 cents on August 7, and a rapid advance from then through September. The outbreak of war in Europe added a stimulus to normal demand. After reaching the year's peak of 6.50 cents on September 27 apparently this figure reflected an overestimate of demand for the near future—the price fell to 6.00 cents on December 4 and was 5.75 cents at the end of the year, with an average of 5.12 cents for the year compared with 4.61 cents in 1938, an 11-percent increase.

London Metal Exchange dealings were suspended at the outbreak of the war, and zinc market quotations in London are available only for the first 8 months of 1939. The monthly average price fluctuated from 2.85 cents in January to a low of 2.81 cents in April, from which it advanced steadily to 3.01 cents in August-about 3 percent above the average price for August 1938. For the 8-month period the 1939 average price was 2.89 cents—about 6 percent below the January-August average of 1938. For the first 8 months of the year the New York price averaged 2.03 cents higher than the London price, the monthly differential ranging from 2.04 cents in January to a low of

1.94 cents in July and a high of 2.10 cents in August.

On September 8 the Nonferrous Metal Control for the United Kingdom fixed the price of zinc at £15 ex-ship and £15 12s. 6d. ex-warehouse, duty for buyers' account for foreign metal, and £17 5s. ex-ship and £17 17s. 6d. ex-warehouse for domestic and Empire metal. On December 18 prices were raised sharply to £25 15s., delivered consumers, duty paid for foreign zinc and £26 10s. for domestic metal.

Price of zinc and zinc concentrates, 1935-39

	1935	1936	1937	1938	1939
Average price of common zinc at— St. Louis (spot)	1.62	4. 90 5. 28 3. 31 1. 97 31. 95 2. 66 2. 24	6. 52 6. 87 4. 91 1. 96 39. 87 3. 32 3. 20	4. 61 4. 99 3. 05 1. 94 27. 83 2. 32 2. 29	5. 12 5. 51 1 2. 89 2 2. 03 34. 15 2. 85 2. 27
Price indexes (1925-29 average=100): Zinc (New York). Lead (New York). Copper (New York). Nonferrous metals ³ . All commodities ³ .	66 54 59 69 81	74 63 65 72 82	97 80 90 91 88	70 63 68 74 80	77 68 75 79 79

Average for 8 months; London Metal Exchange dealings suspended in September.
 Difference based upon 8-month averages.
 Based upon price indexes of the U.S. Department of Labor.

Average monthly quoted prices of common zinc (prompt delivery or spot) at St. Louis and London, and of 60-percent zinc concentrates at Joplin, 1938-39 1

		1938		1939			
Month	zinc concen- per pound) zi		60-percent zinc concentrates in the				
	Joplin region (dollars per ton)	St. Louis	London	Joplin region (dollars per ton)	St. Louis	London	
January February March April May June July August September October November	27. 28 26. 04 25. 43 25. 43 27. 75 27. 75 27. 75 29. 47	5. 00 4. 82 4. 41 4. 15 4. 04 4. 14 4. 75 4. 75 4. 85 5. 01 4. 91 4. 50	3. 34 3. 23 3. 20 3. 05 2. 81 2. 85 3. 11 2. 93 3. 01 3. 21 3. 02 2. 86	29. 00 29. 00 30. 00 30. 00 30. 00 31. 27 37. 96 44. 00 44. 00	4. 50 4. 50 4. 50 4. 50 4. 50 4. 50 4. 52 4. 72 6. 15 6. 50 6. 50 6. 01	2. 85 2. 83 2. 87 2. 81 2. 87 2. 93 2. 97 3. 01 (2) (2) (2) (2)	
Average for year	27. 83	4. 61	3. 05	34. 15	5. 12	3 2.89	

 ¹ All quotations from Metal Statistics, 1940, Conversion of English quotations into American money based upon average rates of exchange recorded by the Federal Reserve Board of the Treasury.
 2 London Metal Exchange dealings suspended for duration of war.
 3 Average for 8 months; comparable average for St. Louis was 4.53 cents.

Average price of zinc received by producers, 1935-39, by grades, in cents per pound

	1935	1936	1937	1938	1939
Grade A (High Grade) 1 Grade B (Intermediate) Grades C and D (Select and Brass Special) 1 Grade E (Prime Western) All grades Prime Western; spot quotation at St. Louis	4. 55	5. 15	6. 65	5. 03	5. 34
	4. 31	4. 91	6. 47	4. 73	5. 00
	4. 32	4. 89	6. 44	4. 71	5. 08
	4. 4	5. 0	6. 5	4. 8	5. 2
	4. 3	4. 9	6. 5	4. 6	5. 1

¹ American Metal Market quotes average prices of High Grade and Brass Special as follows: High Grade (f. o. b. New York), 1935, 5.33 cents; 1936, 5.90 cents; 1937, 7.76 cents; 1938, 5.74 cents; 1939, 6.16 cents; Brass Special (f. o. b. East St. Louis), 1935, 4.41 cents; 1936, 4.98 cents; 1937, 6.62 cents; 1938, 4.71 cents; 1939, 5.22

ZINC-REDUCTION PLANTS

Zinc smelters.—There were no changes during 1939 in the number of active and idle zinc smelters; as in the previous year, there were 17 active and 2 idle plants. Of the active plants, 13 operated exclusively with horizontal retorts, 1 with both horizontal and vertical retorts, 2 with large vertical retorts exclusively, and 1 with electrothermic furnaces. At the active plants, 69,180 horizontal retorts were available, the same as in 1938, but the number in use at the end of the year increased from 33,949 in 1938 to 49,151 in 1939. In addition, 50 of the 52 installed vertical retorts were in operation at the close of 1939.

Many primary smelters treat scrap as well as ore. Horizontal-retort plants at Beckemeyer and Sandoval, Ill., and large graphite-retort plants at Trenton, N. J., Philadelphia, and Bristol, Pa., Wheeling, W. Va., Tottenville, N. Y., and Fairfield, Ala., handle scrap exclusively. The Torrance (Calif.) plant of the Pacific Smelting Co., Ltd., contains small clay retorts as well as large graphite retorts for treating secondary

materials.

Electrolytic plants.—Three electrolytic zinc plants were in operation during 1939. The enlarged Kellogg (Idaho) plant of the Sullivan Mining Co. was operating at capacity at the end of 1939, as was the Great Falls (Mont.) plant of the Anaconda Copper Mining Co., but the plant of the latter company at Anaconda was operating only at half capacity at the end of the year. The plant of the Evans-Wallower Zinc Co. at East St. Louis remained idle during 1939. At the 3 active plants, 1,904 cells out of a total of 2,192 were in use at the end of 1939, compared with 1,460 at the end of 1938.

FOREIGN TRADE 3

Imports.—The following tables give zinc imports into the United States, 1935–39, inclusive, and a record of bonded-warehouse inventories.

Zinc ores (zinc content) imported into	the United States,	1935-39, in short tons 1
--	--------------------	--------------------------

Year	Canada	Mexico	Other coun- tries	Total	Year	Canada	Mexico	Other countries	Total
1935 1936 1937	84	10, 520 172 338	2 8, 390	10, 520 172 8, 812	19381939	1, 613	7, 253 23, 221	² 11, 330 ² 11, 266	18, 583 36, 100

¹ Data include ore imported for immediate consumption plus material entering the country under bond. ² Includes 8,373 tons imported from Peru in 1937, all from Peru in 1938, and 9,722 tons from Peru in 1939.

Zinc 1 remaining in warehouse in the United States, December 31, 1935-39

	Pounds		Pounds
1935	13, 840, 586	1938	51, 058, 373
1930	10, 690, 832	1939	20, 295, 817
1937	24, 904, 405		, -,

¹ Includes zinc ore (zinc content), zinc blocks, pigs, old, and sheets.

 $^{^3}$ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Imports of zinc ore in 1939 advanced 94 percent over 1938 owing to continued large increases in shipments from Mexico. More than 64 percent of the ore imported in 1939 came from Mexico and 27 percent from Peru; most of the remainder came from Canada and Argentina. Imports of slab zinc increased from 7,230 tons in 1938 to 30,960 in 1939. Imports of slab zinc in 1939 (1938 figures in parentheses) included 16,506 tons (3,346) from Mexico, 6,402 tons (2,332) from Canada, 4,790 tons (286) from Belgium, 1,456 tons (none) from Norway, and 806 tons (1,210) from Poland and Danzig.

Zinc imported for consumption in the United States, 1935-39

		s, pigs, or labs	She	eets	Old, dr skimn	oss, and nings 1	Zine	Zinc dust		Total
Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	manu- factures	value
1935 1936 1937 1938 1939	4, 444 11, 660 37, 208 7, 230 30, 960	\$270, 350 770, 496 3, 852, 884 480, 169 1, 890, 236	112 242 231 226 178	\$9, 423 23, 077 30, 398 25, 989 21, 166	29 16 678 96 203	\$979 769 70, 460 8, 944 14, 067	40 57 69 64 41	\$2, 486 3, 647 6, 169 5, 074 3, 388	\$1, 149 540 828 463 1, 545	\$284, 387 798, 529 3, 960, 739 520, 639 1, 930, 402

¹ Includes dross and skimmings: 29 tons valued at \$974 in 1935; 15 tons valued at \$721 in 1936; 560 tons valued at \$59,635 in 1937; and 30 tons valued at \$1,918 in 1939. None reported in 1938.

Exports.—The total value of the 1939 exports of zinc ore and manufactured articles containing zinc of foreign and domestic origin (excluding galvanized products, alloys, and pigments) was \$2,075,000, an increase from \$1,271,000 in 1938. Most of the increase in exports was in plates, sheets, pigs, and slabs; there were slight increases in zinc dust and zinc ore. In addition to the items shown in the accompanying tables, considerable zinc is exported each year in brass, pigments, chemicals, and galvanized iron and steel. The American Bureau of Metal Statistics estimates that 14,900 tons of zinc were exported in galvanized products in 1939. Export data on zinc pigments and chemicals are given in the chapter in this volume on Lead and Zinc Pigments and Zinc Salts. Much of the zinc used in the manufacture of these products is of foreign origin, and when it is exported a draw-back of 99 percent of the import duty is paid. In 1939 draw-back was paid on 16,213 tons of zinc, of which 10,625 tons had been imported as slabs and 5,588 tons as ore. The totals for previous years were: 1938, 11,550 tons; 1937, 9,253 tons; 1936, 8,909 tons; 1935, 7,297 tons; and 1934, 4,139 tons.

Zinc ore and manufactures of zinc exported from the United States, 1935-39

Year		concen- and dross entent)	Slabs, plates, or blocks			strips or forms, n.	Zine dust		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1935 1936 1937 1938 1939	461 245 314 135 303	\$10, 818 5, 902 10, 145 6, 404 11, 253	1, 617 37 249 (1) 4, 515	\$83, 925 4, 962 25, 706 (1) 479, 338	4, 813 4, 483 5, 813 1 5, 736 2 6, 708	\$755, 033 723, 142 1, 103, 533 1 908, 381 21,116,485	1, 613 1, 793 2, 145 2, 253 2, 834	\$238, 158 273, 813 418, 376 355, 856 468, 516	

¹ Pigs and slabs not shown separately; included with sheets, strips, or other forms, n. e. s. ¹ Includes 259 tons valued at \$64,434 of "Other forms, n. e. s. (including scrap)" not separately classified before 1939.

Slab and sheet zinc exported from the United States, 1936-39, by destinations, in short tons

Destination	Sla	bs, plates	and b	locks	Sheets	Sheets, strips, or other forms n. e. s			
	1936	1937	1938	1939	1936	1937	1938	1939	
Country: Argentina Australia Brazil Canada Chile China India, British Japan United Kingdom Other countries Total Continent: North America South America Europe	5 7 1 1 24 37 19 10	2 1 65 6 	000000000000000000000000000000000000000	56 526 5 298 201 3,025 404 4,515	183 245 7 1, 999 6 223 3 199 1, 048 570 4, 483	344 977 (2) 2, 251 1 331 90 194 849 776 5, 813	471 841 9 2, 317 9 11 110 232 775 961 5, 736 2, 527 643 914	404 1, 052 50 2, 902 20 00 148 122 5 841 1, 164 6, 708	
Asia Africa Oceania		19	(1) (1)	3, 488	678 1 245	1, 010 82 977	673 107 872	741 159 1, 134	

¹ Slabs, blocks, or pigs not shown separately; included with sheets, strips, or other forms, n. e. s.

WORLD ASPECTS OF ZINC INDUSTRY

Cartel activities.—Political conditions in Europe in 1939 were not conducive to international cooperation in economic matters. Consequently no progress was made toward reconstituting the International Zinc Cartel, which collapsed in 1934. A meeting of British, Belgian, and French interests was reported to have been held in Paris in June to discuss the possibilities of an agreement but achieved no success.

World smelter production.—There were no material changes in output of zinc in the principal producing countries of the world during Exclusive of the United States, where production of slab zinc during the year increased 14 percent, total world production increased only 2 percent above the figure for 1938. Such countries as Belgium, Norway, and the Netherlands, in which the customs smelters depend on imported concentrates, reported reductions in output for 1939. condition may be attributed in part to the depreciated franc and pound sterling.

Dislocation of the zinc industry throughout Europe followed the outbreak of war in September. Acquisition of the Polish smelters, which were in operating condition when confiscated, placed Germany far in the lead among European producers and renders the nation self-

sufficient in this nonferrous metal.

World smelter production of zinc, 1935-39, by countries where smelted, in metric tons ¹
[Compiled by R. B. Miller]

•					
Country	1935	1936	1937	1938	1939
AustraliaBelgium ²	68, 752 183, 540	71, 641 201, 686	70, 869 225, 580	70, 941 210, 400	72, 363 185, 700
Canada	135, 645	137, 078	143, 826	156, 008	159, 372
CzechoslovakiaFrance		7, 670 51, 694	7, 336 60, 427	8, 876 60, 560	(³) 60, 262
Germany 4	123, 198	133, 427	163, 814	194, 370	212, 285
IndochinaItaly		4, 112 27, 025	4, 204 37, 982	4, 470 33, 637	5, 439 33, 566
Japan	34, 191	39, 066	45, 500	(3)	(3) 38, 167
Mexico Netherlands		31, 913 15, 428	36, 587 24, 645	35, 881 25, 300	20, 534
Northern Rhodesia		21, 063 45, 028	14, 256 41, 276	10, 379 46, 523	12, 899 45, 000
Norway Poland	84, 606	92, 580	107, 174	108, 071	117, 936
SpainU, S, S, R	7, 648 47, 910	7, 803 \$65, 000	5, 279 565, 000	7, 652	11, 340 (³)
United Kingdom 4	61, 433	61, 768	63, 138	56, 190	`50, 44 0
United StatesYugoslavia	381, 591 3, 356	446, 452 3, 599	505, 212 4, 259	404, 912 3, 956	460, 154 4, 182
	1, 332, 000	1, 464, 000	1, 626, 000	1, 568, 000	1, 645, 000
	2, 002, 000	1, 101, 000	2, 020, 000	2, 000, 000	_, 510, 600

Statistical data derived in part from the Yearbook of the American Bureau of Metal Statistics.
 Includes the following tonnages of electrolytic zinc: 1935, 1,800 tons; 1936, 6,366 tons; 1937, 7,830 tons; and 1938, 8,670 tons. Data not available for 1939. Production of electrolytic zinc began in August 1935.
 Estimate included in total. 4 Some secondary material included. 8 Approximate production.

World consumption.—World consumption of slab zinc during 1939 cannot be estimated accurately, as all belligerent countries suspended publication of certain essential data immediately after outbreak of the European war. It is reasonable to assume that there was some increase in consumption above the 1,489,800 metric tons reported for 1938 by the American Bureau of Metal Statistics. According to this authority, consumption in the United States increased 59 percent. Larger consumption also was indicated in Canada and other American countries and India, but data for other foreign countries are not complete enough for comparisons.

REVIEW BY COUNTRIES

Argentina.—Argentina produced 41,300 metric tons of zinc concentrates in 1939. The St. Joseph Lead Co. shipped lead and zinc concentrates to Europe from the Aguilar mine, Province of Jujuy.

Australia.—The Electrolytic Zinc Co. of Australasia, Ltd., received zinc concentrates at its Risdon electrolytic plant from mines at Broken Hill and Roseberry in excess of its requirements and during the first part of 1939 shipped 55,000 long tons of concentrates to the United Kingdom for emergency use. Subsequently, the concentrates were sold to the Imperial Smelting Corporation, Ltd.

sold to the Imperial Smelting Corporation, Ltd.

The Zinc Corporation, Ltd., completed the new main shaft which is to serve its mine and that of the adjoining New Broken Hill Consolidated, Ltd. The flotation mill, which has a capacity of 10,000 tons of ore weekly, also was completed. The two companies will equip and operate their adjoining properties together in order to

reduce the cost and time required in bringing the New Broken Hill mine into production. Estimated ore reserves in the North Broken Hill mine were increased to 5,084,000 tons as of June 30, 1939. Cessation of operations at the Central mine, Broken Hill, belonging to the Sulfide Corporation, Ltd., again was postponed during the year. For the year ended June 30, 1939, Mt. Isa made a profit of £18,798

For the year ended June 30, 1939, Mt. Isa made a profit of £18,798 compared with £19,742 in the previous year. Ore treated during the last fiscal year totaled 575,884 tons containing 9.0 percent zinc, 9.2 percent lead, and 7.4 ounces silver per ton. The zinc concentrate output (44,700 tons) was 10,500 tons less than that in the preceding year and was caused by a 2-month stoppage of production following a coal strike. Milling equipment added in February 1940 increased capacity 20 percent and permitted 15,000 tons of ore to be treated weekly. Estimated ore reserves totaled 10,167,100 tons.

Australia produced about 410,000 tons of zinc concentrates in 1939 (392,000 in 1938). On February 8, 1940, the National Security (Prices) Regulations increased the maximum lead and zinc prices to £22 a long ton, which was considerably less than the London rates

expressed in Australian currency.

Belgium.—Zinc ore imports into Belgium totaled 402,700 metric tons in 1939, 25 percent less than that in 1938. Mexico supplied 26 percent of the total. Receipts decreased from all the principal sources, including Australia, Canada, and Newfoundland, Sweden, Burma, Yugoslavia, and Italy. Slab zinc exports continued to decline—from 129,850 to 117,100 tons. Zinc sheet and wire exports dropped from 37,600 to 36,200 tons. The depreciation of sterling and the franc and the suspension of zinc quotations on the London market in September made it difficult for the Belgian, as well as the Dutch and Norwegian custom smelters, to compete in the world market, thus reducing exports. Slab zinc imports remained the same as in 1938, at 14,000 tons. Vieille Montagne zinc production was 110,500 tons in 1939, or about the same as in 1938. The company also produced 35,048 tons of rolled zinc and 15,496 tons of zinc white. The war affected its regular supply of ore during the last 4 months of 1939 as limited shipping facilities caused freight rates to advance five times over pre-war levels and war-insurance premium rates often were prohibitive. At the end of 1939 a number of furnaces were shut down. The Société Anonyme de Rothem produced 18,000 tons of zinc ingots in 1939.

Burma.—The production of zinc concentrates in Burma totaled 59,500 long tons in 1939 compared with 60,700 tons in 1938. Exports of zinc, chiefly concentrates, totaled 44,831 long tons (64,651 in 1938). Of these exports, 13,900 tons went to Belgium. The Burma Corporation, Ltd., produced 59,300 long tons of zinc concentrates averaging less than 58 percent zinc in 1939. The British Government officially requested the corporation to discontinue publication of production figures early in 1940. On June 30, 1939, ore reserves totaled 3,608,000 tons. During the fiscal year 1938–39 the company mined 485,115 tons of ore, the second largest output in the history of Bawdwin mines, but the grade was the lowest produced in any year and contained approximately 5 percent less lead and zinc and 8 percent less silver than in the previous year. In 1939 British India imported 23,000 tons of slab zinc (21,200 in 1938).

145 ZINC

Brazil.—Zinc ores are found at the Morro do Bule mine, Ouro Preto, and at Januaria, State of Minas Geraes, and at Iporanga, State of São Paulo.

Bulgaria.—German and Bulgarian interests plan to complete development by the end of 1940 of an ore deposit in the Rhodope Mountains containing 15 to 23 percent Pb, 6 to 9 percent Zn, and 0.4

to 0.7 percent Cu, and 100 to 230 grams of silver per ton.

Canada.—In 1939 Trail and Flin Flon supplied three-fourths and one-fourth, respectively, of Canada's production of metallic zinc. The latter milled 1,721,783 short tons of ore (a new record), which averaged 4 percent zinc, 2 percent copper, 1.6 ounces silver, and 0.1 ounce gold per ton. The creation of an electrolytic zinc custom plant in Canada is still under consideration. In 1939 zinc concentrates were exported from Canada by the Normetal, Waite Amulet, Stirling (mine idle), and Consolidated mining companies. The Waite Amulet mines shipped 19,258 tons of zinc concentrates averaging 54 percent zinc produced in 1937 and 1938 but made no recovery of zinc concentrates in 1939. The company placed a new mine surface plant and mill in operation, and at the end of 1939 its total zinc ore reserves were estimated at 3,727,100 tons. In Ontario a large, low-grade zinc deposit was discovered 4 miles from Renfrew, and over 1,000,000 tons of ore averaging 8 percent zinc, 2 percent lead, and some gold and silver were indicated by diamond drilling on Calumet Island. Canadian zinc ore exports decreased from 22,900 to 20,600 short tons, most of which continued to go to Belgium. Slab zinc exports in 1939 aggregated 156,000 tons (132,000 in 1938), of which the United Kingdom took 121,700 and British India 22,600 tons, 1.2 and almost 4 times as much, respectively, as in 1938.

France.—During the first 7 months of 1939 France imported 90,800

metric tons of zinc ore compared with 116,200 tons during the same period in 1938; the 1939 imports included 27,700 tons from Mexico, 15,800 from Turkey, 12,200 from Australia, 11,200 from Sweden, 9,000 from Yugoslavia, and 7,500 from Italy. Zinc ore exports during the period, chiefly to Norway, totaled only 10,300 tons (25,700 in previous period). Slab-zinc imports, chiefly from Belgium and

Norway, totaled 16,800 tons (15,500 in the previous period).

Germany.—The capture of the Polish zinc mines and smelters in good working order early in the fall of 1939 made Germany largely self-sufficient in zinc. Germany now should be able to produce more than 300,000 tons of zinc annually without importing foreign ore, which is adequate to cover all reasonable demands unless the substitution of zinc for copper and other imported metals should be increased further. The use of zinc has been promoted for all purposes where other more abundant material could not suitably be employed, but at the same time there have been certain restrictions upon its use. Many new zinc alloys have been placed on the market, chiefly with additions of copper and aluminum. German consumption of zinc totaled almost 270,000 metric tons in 1938, in which year it produced 192,000 tons and Poland 108,000 tons. Zinc output in Germany has been greatly expanded by extension of the Magdeburg electrolytic zinc plant which serves the Upper Silesia zinc-mining district and by rehabilitation of the Oker and other works. Lead-zinc production probably increased in 1939 from the Bleiberger Bergwerks Union properties in Kärnten, Austria, and those recently acquired in the Inn Valley of the Northern Tyrol. During the first 7 months of 1939 German zinc ore imports totaled 91,341 metric tons (123,966 in 7 months of 1938), exports 34,045 tons (32,155). Spelter imports totaled 41,684 tons (43,853) and exports 6,844 tons (4,263).

Indochina.—The Compagnie Minière et Métallurgique de l'Indo-Chine produced 12,500 metric tons of zinc concentrates averaging 45 percent zinc in 1939 (11,300 in 1938) which were shipped to the smelter

at Quang Yen, Tonkin.

Italy.—Lead and zinc ores usually are found together in Italy, and to increase the lead output and compensate the producer for the overproduction of zinc (exported at a loss with the low prices prevailing earlier in 1939) the Government granted a bonus of 350 lire per ton on excess quantities produced in 1939. The three largest zinc plants—at Porto Marghera, Vado Ligure, and Crotone—have an annual capacity of nearly 50,000 metric tons. Italy expects to use zinc alloys in place of copper, as is done in Germany. The plant at Porto Marghera is now producing zinc alloys.

Japan.—The Nippon K. K. expected to complete the construction of an electrolytic zinc plant of 1,000 metric tons monthly capacity by

the end of 1939.

Mexico.—Mine production of zinc in Mexico totaled 134,000 metric tons in 1939 compared with 172,000 in 1938. Smelter output aggregated only 38,000 tons in 1939, leaving about 93,000 tons (186,000 tons of 50-percent concentrates) available for export after allowance for smelter losses on ores treated in Mexico. Mexican export figures do not report shipments of zinc ore or concentrates separately. However, reported receipts of Mexican ore in 1939 were: Belgium, 105,800 tons, the United States approximately 46,000, France (7 months) 27,700, the Netherlands 13,300, and Germany (7 months) 2,700. The European war and the Government-controlled metal market and legislation seriously affected mining, and until the spring of 1940 substantial quantities of zinc concentrates formerly refined in Europe were stored by the larger companies. The San Francisco Mines of Mexico temporarily terminated its contract for shipping zinc concentrates to the Belgian Société Genérale des Minerais and diverted them to smelters in the United States.

Netherlands.—Zinc ore imports into the Netherlands totaled 45,200 metric tons in 1939 (45,400 in 1938) of which 13,300 tons were from Mexico, 9,300 from Canada, and 8,500 from Belgium. Zinc ingots and sheets imported totaled 11,600 tons. Exports included 15,400

tons of ingots.

Newfoundland.—Zinc concentrates produced in Newfoundland totaled 105,600 short tons in 1939 (122,000 in 1938). The 1939 product contained 54,600 tons of zinc and 397,700 ounces of silver. Lead and copper concentrates contained an additional 11,000 tons of zinc. Exports of zinc concentrates dropped from 121,000 to 61,000 tons, indicating a substantial increase in producers' stocks during 1939.

Peru.—The Cerro de Pasco Copper Corporation produced 19,000 metric tons of zinc concentrates in Peru in 1939. Zinc concentrates

exported in 1939 totaled 29,000 tons (25,000 in 1938).

ZINC 147

Poland.—The Polish zinc mines and smelters fell into German hands early in the fall of 1939. Further details are given in the discussion under Germany.

Turkey.—Zinc ore and concentrates exported from Turkey in 1939 totaled 20,500 metric tons. The producers of lead and zinc concentrates include the Balya-Karaaydin mine, the operation of which

apparently is subsidized by the Government.

United Kingdom.—On May 26, 1939, the Import Duties Advisory Committee of the United Kingdom approved the increased tariff protection proposed by the Imperial Smelting Corporation, Ltd., whereby the import duty paid by Empire zinc producers (chiefly in Australia and Canada) was raised from 12s. 6d. to 30s. per long ton. The producers also agreed to pay the corporation on behalf of the National Smelting Co., Ltd., a subvention of 10s. for every ton of zinc they import and sell. The corporation agreed to restrict its zinc output to 60,000 long tons, although its annual capacity is 85,000 tons. Another part of the arrangement grants a rebate to British manufacturers on the increased duty paid on zinc imported for export. The United Kingdom agreed to purchase all the export surplus of refined zinc in Australia. According to the British Metal Corporation, Ltd., the United Kingdom imported 96,500 tons and produced 23,000 tons of slab zinc during the first half of 1939. Exports, including reexports. totaled 3,400 tons. Stocks of zinc in official warehouses at the end of June 1939 totaled 21,500 tons. Of the 109,000 tons consumed during the half-year period, 46,500 were used for galvanizing (24,500 for sheet and 22,000 for other galvanizing), 27,500 for brass, 15,000 for oxide, 10,000 for rolled products, 6,000 for die casting, and 4,000 for miscellaneous uses. Of the total consumption of slab zinc, 89 percent was imported. The "Anderson" air-raid shelter program caused a heavy demand for heavy-gage galvanized steel until August, when other uses probably found more urgent requirements for steel.

Yugoslavia.—For the year ended September 30, 1939, Trepca Mines, Ltd., treated 616,073 metric tons of ores from the Stantrg mine (655,892 tons the year before), which resulted in the production and sale of 65,561 tons of lead concentrates, 53,182 tons of zinc concentrates, and 77,117 tons of pyrite. A strike of workmen at the mine suspended operations from July 19 to September 3. Development work, but no production, was carried on at the company Kopaonik or Vojetin mine during the year. At the Zletovo or Dobrevo mine underground work was suspended July 15, and the mill treated experimentally 5.082 tons of lead-silver ore. Revaluation of ore reserves at the Stantrg mine was delayed by the strike, but the estimated reserves of Kopaonik totaled 750,000 tons averaging 9 percent lead, 6.5 percent zinc, and 3.7 ounces silver, and those of Zletovo totaled 948,000 tons, averaging 11.5 percent lead, 1.7 percent zinc, and 3.5 ounces silver per ton. Preparations of Topionica Cinka A. D., a subsidiary, for construction of an electrolytic zinc plant at Sabac were delayed by the European war. The war also caused difficulties in connection with the exportation of concentrates from Yugoslavia and the remittance of funds to that country. The final settlement resulted in Trepca's suspension of its former arrangement with the Government until June 30, 1940, during which time a proportion of production will be sold on the basis of whatever may be considered

the world price of metals to the Yugoslav State or on its behalf for payment in dinars. The geology, development, and history of the Mezica lead-zinc mines in the Karawanken Alps of northern Yugoslavia, now operated by the Central European Mines, Ltd. (British), are well-described by Loch. The run-of-mine ore averages about 13.5 percent lead and 5 percent zinc, and the zinc content appears to be increasing in depth at the Moreing shaft. The flotation plant produces about 16 tons of zinc concentrates averaging 50 percent zinc in 8 hours.

⁴ Loch, Charles W., A Lead-zinc Enterprise in Yugoslavia: Mining Mag. (London), vol. 61, No. 4, October 1939, pp. 201-215.

LEAD AND ZINC PIGMENTS AND ZINC SALTS

By H. M. MEYER AND A. W. MITCHELL

SUMMARY OUTLINE

	į.	Page		Page
General summary		. 149	Consumption by industries—Continued.	
Salient statistics		150	Leaded zinc oxide	. 155
Production		150	Lithopone	155
Lead pigments		150	Zinc sulfide	. 156
Zinc pigments and salts		151	Zinc chloride	. 156
Consumption by industries		152	Zinc sulfate	. 156
White lead		152	Raw materials used in manufacture	150
Basic lead sulfate		153	Prices	
Red lead		153	Foreign trade	159
Orange mineral		154	Lead pigments and salts	160
Litharge		154	Zinc pigments and salts	
Zine oxide		154		

Lead and zinc pigment manufacturers reported some improvement in 1939 over 1938, owing to gains by industries that are the principal consumers of pigments, namely the paint, automobile, rubber, floor

covering, paper, and other trades.

In general, activity in pigments, as measured by monthly sales, increased until it reached the highest levels of the year in the third quarter, then receded somewhat in the final months of the year. Quoted prices for white lead were higher than in 1938 but remained unchanged from the levels established in November 1938. Producers reported that they received 12 and 25 percent higher average values for the two grades of white lead than in 1938. In general, quotations for the other lead pigments rose with those for pig metal, but producers apparently did not receive the full benefits of the increases indicated. Prices for various grades of zinc oxide and zinc sulfate were stationary throughout the year, but those for lithopone and zinc sulfide showed a declining tendency. These prices reflected producers' values but seemed to be influenced little by the movements of the metal.

Although sales of lead pigments increased only 14 percent in total quantity whereas those of zinc pigments increased 23 percent, lead pigments fared better inasmuch as they gained 25 percent in total value compared with 24 percent for zinc pigments. In relation to 1925–29 averages, however, zinc pigments made the best showing, as their total value in 1939 represented 70 percent of the average for 1925–29, while that for lead pigments was only 59 percent. The popularity of leaded grades of zinc oxide continued to grow in 1939, and sales for the year established a new high record. Sales of leaded zinc oxide in 1939 were 60 percent above the 1925–29 average, whereas those of the lead-free grades were 26 percent below the average for that period. It is noteworthy that owing to recently improved technique white lead paints are now available in colors.

The total value of imports of lead and zinc pigments and zinc salts changed little from 1938 to 1939, but the value of exports virtually

doubled in 1939.

Salient statistics of the lead and zinc pigments industry of the United States, 1925-29 (average) and 1935-39

	1925-29 (average)	1935	1936	1937	1938	1939
Production (sales) of principal pigments:						
White lead (dry and in oil)						
short tons	154, 483	96, 831	118, 407	98, 213	1 100, 213	98, 429
Lithargedo	84, 845	79, 930	86, 246	83, 902	68, 711	89, 518
Red leaddo	41, 362	28, 776	34, 896	33, 931	30, 183	39, 976
Zinc oxidedo	154, 208	99, 697	126, 800	114,652	79, 129	114, 552
Leaded zinc oxide_do	26,609	29, 976	40, 512	40, 343	38, 216	42,684
Lithoponedo	177, 745	159, 486	158, 319	154, 771	125, 746	142, 759
Value of products:						
	\$60, 092, 000	\$28,064,000	\$34, 206, 000	\$35, 676, 000	1\$28,351,000	\$35, 485, 000
All zinc pigments	41, 314, 000	26, 500, 000	27, 862, 000	28, 038, 000	23, 301, 000	28, 794, 000
(Deta)	101 400 000					
Total	101, 406, 000	54, 564, 000	62, 068, 000	63, 714, 000	1 51,652,000	64, 279, 000
Value per ton received by pro-		· .	f			
ducers:						
White lead (dry)	178	124	126	140	1 123	138
Litharge	176	104	116	143	122	123
Red lead	193	121	133	160	137	140
Zinc oxide Leaded zinc oxide	133	103	90	103	117	117
Leaded zinc oxide	124	93	87	104	107	. 114
Lithopone	98	84	82	78	79	73
Foreign trade:						
Lead pigments:						
Value of exports	1, 346, 000	512,000	546, 000	586, 000	510,000	715 000
Value of imports	30,000	2,000	12,000	17,000	10,000	715,000
Zinc pigments:	00,000	_, 000	12,000	11,000	10,000	10,000
Value of exports	2, 150, 000	392,000	420,000	610,000	339,000	925, 000
Value of imports	931,000	468,000	375, 000	414,000	285, 000	280, 000
Them and balance	0.505.000	404.000				
Export balance	2, 535, 000	434, 000	579,000	765, 000	554,000	1, 350, 000

¹ Revised figures.

Titanium pigments again absorbed a larger share of the market for white pigments than in previous years. It was estimated 'that production of titanium pigments approached 165,000 tons in 1939. According to this report, one of the largest paint manufacturers completed and put into successful operation a pilot plant using a recently developed process.

PRODUCTION

In this chapter sales are used as being more significant than production, for no account is taken of stocks on hand at the beginning and end of the year. The quantities consumed by the producers in manufacturing products at their own plants are included under sales. Production figures are used only in calculating the metal content of pigments and salts in the section of this report on Raw Materials Used in the Manufacture of Lead and Zinc Pigments and Zinc Salts.

The total value of sales of lead and zinc pigments rose from \$51,652,-000 in 1938 to \$64,279,000 in 1939, which was 63 percent of the average for 1925-29. The increase in 1939 was caused by greater sales of lead oxide pigments and all zinc pigments and by higher average values received by producers for several items.

Lead pigments.—Increased quantities of red lead, orange mineral, and litharge were sold in 1939. Sales of white lead (dry) were slightly higher, and sales of white lead in oil and basic lead sulfate declined. Changes in sales from 1938 to 1939 ranged from a decline of 5 percent for basic lead sulfate to increases of 30–32 percent for litharge and red lead. The average values received by producers for all lead pigments

¹ Chemical and Metallurgical Engineering, vol. 47, No. 2, February 1940, p. 76.

except orange mineral were higher in 1939 than in 1938. Quotations for red lead, litharge, and orange mineral advanced during the year, but those for white lead were stationary at the level established in November 1938. The figures given in this report for basic lead sulfate are exclusive of the amounts used in the manufacture of leaded zinc oxide. For statistical purposes and to avoid duplication of tonnages, basic sulfate so used is reported under leaded zinc oxide only. This use of basic lead sulfate has expanded rapidly in recent years and totaled about 7,700 tons in 1939. Litharge was the only lead pigment of which a higher tonnage was sold in 1939 than the average for 1925–29, the advance being 6 percent.

Lead pigments sold by domestic manufacturers in the United States, 1938-39

		1938		1939			
Pigment	Short tons	Value (at clusive of c	plant, ex- ontainer)	Short tons	Value (at pelusive of c	ontainer)	
·		Total	Average		Total	Average	
Basic lead sulfate or sublimed lead: White Blue Red lead Orange mineral Litharge White lead: Dry In oil 2	5, 030 771 30, 183 127 68, 711 1 29, 813 70, 400	\$555, 203 88, 873 4, 121, 428 27, 547 8, 359, 629 13, 681, 052 11, 517, 656	\$110 115 137 217 122 1 123 164	4, 688 850 39, 976 131 89, 518 30, 509 67, 920	\$585, 616 111, 272 5, 615, 838 28, 010 11, 050, 843 4, 196, 462 13, 896, 464	\$125 131 140 214 123 138 205	

¹ Revised figures.

Lead pigments sold by domestic manufacturers in the United States, 1935-39, in

Year	White lead		Basic lea or sublir	d sulfate ned lead	Red lead	Orange mineral	Litharge
	Dry	In oil	White	Blue			
1935. 1936. 1937. 1938.	27, 972 34, 775 32, 661 1 29, 813 30, 509	68, 859 83, 632 65, 552 70, 400 67, 920	7, 572 7, 531 7, 514 5, 030 4, 688	727 891 1, 108 771 850	28, 776 34, 896 33, 931 30, 183 39, 976	252 248 206 127 131	79, 930 86, 246 83, 902 68, 711 89, 518

¹ Revised figures.

Zinc pigments and salts.—Sales of leaded zinc oxide established a new high record in 1939, being 6 percent above the previous record tonnages of 1936 and 1937 and 60 percent above the annual average for 1925–29. Sales of zinc oxide and lithopone were 45 and 14 percent higher than in 1938, but amounted to only 74 and 80 percent of the 1925–29 averages. Average quoted prices for the various grades of lead-free zinc oxide were unchanged throughout 1938 and 1939, and the average values reported by producers were identical for the 2 years. Prices of leaded zinc oxide were somewhat higher in 1939 than in 1938, and producers reported an advance of 7 percent in the average value they received. On the other hand, lithopone quotations were lower in 1939, the top of the price range for 1939 coinciding with the bottom of the range for 1938.

² Weight of white lead only but value of paste.

Large quantities of basic lead sulfate now used in making leaded zinc oxide are included as part of the leaded zinc oxide total and, to avoid duplication, are not shown as basic lead sulfate.

Complete data covering the production of zinc chloride in recent years are not available owing to the refusal of one large producer to

supply an accurate report.

Sales of zinc sulfate in 1939 almost equaled the high record established in 1937.

Zinc pigments and salis sold by domestic manufacturers in the United States, 1938-39

		1938		-	1939			
Pigment or salt	Short tons	Value (at p	plant, ex- container)	Short	Value (at plant, ex- clusive of container)			
	tons	Total	Average	tons	Total	Average		
Zinc oxide ¹	79, 129 38, 216 125, 746 (2) 7, 757	\$9, 253, 342 4, 072, 422 9, 975, 012 (2) 439, 479	\$117 107 79 (²) 57	114, 552 42, 684 142, 759 (²) 10, 157	\$13, 446, 443 4, 886, 471 10, 461, 102 (2) 582, 831	\$117 114 73 (2) 57		

¹ Zinc oxide containing 5 percent or more lead is classed as leaded zinc oxide. ² Data not available.

Zinc pigments and salts sold by domestic manufacturers in the United States, 1935-39, in short tons

Year	Zinc oxide	Leaded zinc oxide	Lithopone	Zinc chlo- ride (50° B.)	Zinc sulfate
1935	99, 697	29, 976	159, 486	0000	7, 892
1936	126, 800	40, 512	158, 319		9, 721
1937	114, 652	40, 343	154, 771		10, 521
1938	79, 129	38, 216	125, 746		7, 757
1939	114, 552	42, 684	142, 759		10, 157

¹ Data not available

CONSUMPTION BY INDUSTRIES

White lead.—Prices received by producers for white lead were higher in 1939 than in 1938, and the increased values per ton were responsible for the improvement in this industry for the year. Tonnage data showed relatively little change in sales of dry white lead and a drop of 4 percent in sales of white lead in oil. Normally 95 percent of the white lead made is used in the manufacture of paint. As stated in Minerals Yearbook, 1939, the Lead Industries Association began a 3-year promotion campaign in 1939 designed to increase the use of white-lead paint. Early in 1940 it was announced that white-lead paints were now available in colors. Previously white lead was generally available only in paste form, and it was mixed with linseed oil on the job and tinted to taste or specification.

Late in 1939 a Canadian article called attention of the lead industry to the thousands of gallons of white paint being used on the roads and curbs of England in preparation for "black-outs." A market summary on page 7 of the Metal Bulletin, London, January 16, 1940, pointed out that paint makers—at any rate, those of the lead-paint section—had suffered a sharp decline in business. The summary stated that it might have been expected that Government construction

work and camouflaging would have offset the slack in building but

that most camouflage and road paints contain no lead.

In March it was stated that the Federal specification on white lead would be revised, and a preliminary draft was issued. Later in the year, however, the Technical Committee on Paint decided that no change should be made. The specification for white lead, TT-W-251A-White Lead, Basic Carbonate, Dry, Paste-in-Oil and Semi-paste containing Turpentine, was dated November 6, 1934, and the latest amendment (Amendment 2) was made June 25, 1938.

Distribution of white-lead (dry and in oil) sales, 1935-39, by industries, in short tons

Industry	1935	1936	1937	1938	1939
Paint Ceramics Other	91, 297 1, 834 3, 700	113, 363 2, 653 2, 391	93, 580 2, 506 2, 127	1 95, 018 1, 918 3, 277	92, 380 1, 767 4, 282
	96, 831	118, 407	98, 213	1 100, 213	98, 429

¹ Revised figures.

Basic lead sulfate.—The outstanding use of basic lead sulfate is in the manufacture of paint, 93 percent of the sales reported for 1939 being for that purpose. Increasing quantities of this pigment are being used annually in making leaded zinc oxide. The amounts so used are included in the totals for leaded zinc oxide and excluded from the totals for basic lead sulfate to avoid duplication in reporting lead tonnages. In 1939, 7,700 tons of basic lead sulfate were used in making leaded zinc oxide compared with 7,000 tons in 1938 and 5,500 in 1937.

Distribution of basic lead sulfate sales, 1935-39, by industries, in short tons

Industry	1935	1936	1937	1938	1939
Paints	7, 770 155 374	8, 124 126 28 144	8, 255 213 6 148	5, 024 91 3 683	5, 170 140 4 224
	8, 200	8, 422	8, 622	5, 801	5, 538

Red lead.—Total sales of red lead gained 32 percent over 1938, faring better in relation to that year than sales of other lead pigments. The principal use of red lead is in the manufacture of storage batteries, and 62 percent of the 1939 total was sold for that purpose. Paints consume the second largest quantity of red lead, and sales for this outlet gained in the same proportion as those for storage batteries.

Distribution of red lead sales, 1935-39, by industries, in short tons

Industry	1935	1936	1937	1938	1939
Storage batterics	17, 657 8, 721 867 1, 531 28, 776	20, 323 11, 786 807 1, 990 34, 896	20, 275 10, 440 854 2, 362	19, 057 8, 698 655 1, 773 30, 183	24, 709 11, 421 1, 123 2, 723 39, 976

Orange mineral.—Ink manufacture and color pigments have alternated as leading consumers of orange mineral. Ink manufacture led in 1939 and used 49 percent of the total sales reported.

Distribution of orange mineral sales, 1935-39, by industries, in short tons

Industry	1935	1936	1937	1938	1939
Ink manufacture	85 125 42	71 77 100	76 51 79	20 94 13	64 40 27
	252	248	206	127	131

Litharge.—Sales of litharge made a good showing in 1939; they were 30 percent higher than in 1938 and 6 percent higher than the annual average for 1925-29. Leaded zinc oxide was the only other pigment covered in this report that exceeded its 1925-29 average in 1939. uses of litharge showed noteworthy increases in 1939 except varnish and linoleum, which remained virtually stationary. Storage batteries, the principal use, took 44 percent of the total in 1939. Black oxide or suboxide of lead used by battery manufacturers reached a new peak of 45,000 tons compared with the previous record of 42,000 tons Sales of black oxide are not included in Bureau of Mines The preparation of lead oxide for use in storage totals for litharge. batteries was the subject of a new patent issued in December (U. S. Patent 2,182,479). Since 1931 insecticides have been the second most important use of litharge. Sales for this purpose rose 40 percent in 1939 but were 10 percent below the record tonnage in 1937. ceramics industry attained third place as a consumer of litharge in 1939, having displaced the oil-refining industry.

Distribution of litharge sales, 1935-39, by industries, in short tons

Industry	1935	1936	1937	1938	1939
Storage batteries. Insecticides Ceramics. Chrome pigments Oil refining. Varnish Rubber. Linoleum Other	36, 067 14, 665 6, 751 6, 617 7, 869 1, 610 3, 171 220 2, 960	38, 700 14, 662 7, 762 6, 662 7, 259 4, 247 2, 147 254 4, 553	32, 228 18, 242 7, 577 7, 330 8, 311 3, 366 1, 659 264 4, 925	32, 514 11, 736 5, 889 4, 590 6, 411 2, 449 880 231 4, 011	39, 754 16, 435 8, 679 7, 816 7, 619 2, 428 1, 404 226 5, 158
	79, 930	86, 246	83, 902	68, 711	89, 518

Zinc oxide.—Sales of zinc oxide advanced 45 percent in 1939—the greatest percentage gain of any of the lead and zinc pigments. Sales of this product, however, were only 74 percent of the annual average for 1925–29. The rubber industry takes most of the zinc oxide sold, and this use comprised 61 percent of the total in 1939. Consumption of zinc oxide in rubber rose 52 percent compared with increases of 21 and 34 percent, respectively, in paints and ceramics. Floor coverings and textiles regained part of the ground lost in 1938, when sales fell 66 percent, as consumption advanced 86 percent in 1939. Of the zinc oxide produced in 1939, 59 percent was made by the American process and 41 percent by the French process compared with 62 and 38 percent, respectively, in 1938. The proportion of French-process

oxide made from scrap zinc rose sharply in 1939 to 49 percent of the total compared with 32 percent in 1938 and 25 percent in 1937. A large quantity of zinc oxide is used in the manufacture of leaded zinc oxide. This tonnage is included in the totals for leaded zinc oxide and is excluded from zinc oxide totals to avoid duplication in reporting zinc tonnages. The rubber and ceramic industries were introduced to a new pelleted type of zinc oxide during the year.²

Distribution of zinc oxide sales, 1935-39, by industries, in short tons

Industry	1935	1936	1937	1938	1939
Rubber	57, 734 25, 289 4, 028 7, 179 5, 467	72, 885 33, 149 6, 102 7, 178 7, 486	67, 061 27, 987 5, 216 9, 019 5, 369	46, 266 20, 884 4, 908 3, 030 4, 041 79, 129	70, 187 25, 334 6, 572 5, 641 6, 818

Leaded zinc oxide.—The manufacture of paint uses virtually all (97 or more percent) of the leaded zinc oxide made. This pigment has become increasingly popular in recent years, and sales were at a record high level in 1939, exceeding the previous records established in 1936 and 1937 by 6 percent. The total for 1939 includes about 7,700 tons of basic lead sulfate used to increase the lead content of this product; this tonnage is excluded from basic lead sulfate totals to avoid duplication in reporting metal tonnages.

Distribution of leaded zinc oxide sales, 1935-39, by industries, in short tons

Industry	1935	1936	1937	1938	1939
Paints Rubber Other	29, 632 36 308	40, 156 32 324	39, 584 97 662	37, 348 868	41, 519 1 1, 164
	29, 976	40, 512	40, 343	38, 216	42,684

Lithopone.—Lithopone statistics are reported on the basis of the regular lithopone content of high-strength lithopone plus normal lithopone sold as such. Before 1936 the figures were on the basis of standard-strength plus high-strength product. The manufacture of paint, varnish, and lacquer has consumed about 80 percent of the total lithopone sold in recent years. Sales of lithopone gained 14 percent in 1939, but the quantities employed for paint and for floor coverings and textiles, the two largest uses, advanced proportionally less than the total. On the basis of somewhat incomplete information, separation of the quantities shown in the following table for floor coverings and textiles indicates that 14,000 tons were for linoleum and felt-base floor coverings and the rest for coated fabrics and textiles (oilcloth, shade cloth, artificial leather, and similar products). Other uses in 1939 included 2,407 tons for paper and 712 tons for printing ink. It was reported in midyear that a new lithopone plant of 12,000 tons capacity had been completed recently at Kutais, U.S. S. R., the second plant of the type in the country.

² Chemical and Metallurgical Engineering, vol. 47, No. 2, February 1940, p. 76.

Industry	1935	1936	1937	1938	1939
Paints, etc	124, 615 19, 440 4, 435 10, 996	122, 461 23, 085 4, 908 7, 865	122, 915 20, 194 4, 383 7, 279	101, 924 15, 400 3, 148 5, 274	113, 995 17, 429 3, 189 8, 146
	159, 486	158, 319	154, 771	125, 746	142, 759

The use of ordinary-strength lithopone in the manufacture of titanated lithopone, which usually contains 15 percent TiO₂, has increased rapidly since the output of this product was begun. It declined, however, in 1938 and fell rather sharply in 1939, when 13,700 tons were used for this purpose compared with 17,000 tons in 1938 and 19,400 in 1937. These figures are included in Bureau of

Mines totals for lithopone.

Zinc sulfide.—Production of zinc sulfide was reported by four plants in 1939, as in 1938, but since one producer dominates the industry, the Bureau of Mines cannot publish representative statistics. Most of the zinc sulfide is mixed with regular lithopone to make high-strength lithopone. Two patents on zinc sulfide were issued recently: United States Patent 2,175,273, purported to be an improved process for production of zinc sulfide, and United States Patent 2,187,130, which claims that zinc sulfide-containing pigments are rendered stain resistant by incorporating in them a minor quantity of relatively insoluble metallic thiosalt, such as thiocyanate, thiosulfate, and xanthate.

Zinc chloride.—Complete data on sales of zinc chloride are not reported to the Bureau of Mines, but returns from producers responsible for more than two-thirds of the output indicate the following distribution of sales by uses in 1939:

Percent	
Soldering flux33	Oil refining 4
Dry-cell batteries 22	Others9
Wood preserving19	
Vulcanized fiber 13	100

Zinc sulfate.—The trend in sales of zinc sulfate was upward from 1932 to 1937, and a new high record was established in 1937. Sales fell in 1938 but in 1939 virtually equaled the record of 1937. Of the total sales in 1939 (10,157 tons), 3,897 tons were reported as sold to the rayon industry, 2,168 tons for agricultural purposes, 1,309 tons for chemical manufacture (including the medicinal trade), 583 tons to paint and varnish manufacturers, 556 tons to electrogalvanizers, and 172 tons for glue manufacture; 1,472 tons were undistributed. A break-down of the 1,472 tons under "undistributed" undoubtedly would increase the tonnages under some or all of the uses itemized.

RAW MATERIALS USED IN MANUFACTURE OF LEAD AND ZINC PIGMENTS AND SALTS

Lead pigments and zinc pigments and salts are manufactured from a variety of materials, including ore, refined metal, and such miscellaneous secondary materials as scrap and waste from various industrial

processes. In 1939, 93 percent of the lead in lead pigments was derived from pig lead and 7 percent from ore. The proportions for zinc pigments in 1939 were 64 percent from ore, 13 percent from slab zinc, and 23 percent from secondary materials.

Metal content of lead and zinc pigments produced by domestic manufacturers, 1938-39, by sources, in short tons

	19	938	1939		
Source	Lead in pigments 1	Zinc in pigments	Lead in pigments 1	Zinc in pigments	
Domestic ore	12, 025 163, 815	68, 168 15, 760 18, 718	15, 171 200, 390	83, 829 17, 169 30, 138	
	2 175, 840	102, 646	215, 561	131, 136	

¹ Includes also lead recovered in zinc oxide and leaded zinc oxide.

The following tables give the source of the metal used in the manufacture of each pigment and salt. Pig lead is employed exclusively, either directly or indirectly, in the manufacture of white lead, litharge, red lead, and orange mineral and is used also in the manufacture of basic lead sulfate. Zinc oxide is the only pigment in which considerable slab zinc is used. Ore is employed in the manufacture of zinc oxide, leaded zinc oxide, lithopone, zinc sulfate, and basic lead sulfate. A substantial proportion of the zinc in lithopone and zinc chloride made in the United States is derived from secondary material. There has been a decided increase in the quantity of secondary zinc consumed in the manufacture of zinc oxide since 1933. This material has displaced slab zinc in the manufacture of French process oxide.

Lead content of lead and zinc pigments produced by domestic manufacturers, 1938-39, by sources, in short tons

*.	1938			1939				
Pigment	Lead in pigments pro duced from—		ced from— Total		Lead in pigments pro- duced from—			Total
	Domes- tic ore	Pig lead	Second- ary ma- terial	lead in pig- ments	Domes- tic ore	Pig lead	Second- ary ma- terial	lead in pig- ments
White lead Red lead Litharge Orange mineral Basic lead sulfate Leaded zinc oxide	2, 830 9, 195 12, 025	1 75, 115 26, 608 60, 509 91 739 753 1 163, 815		1 75, 115 26, 608 60, 509 91 3, 569 9, 948 1 175,840	2, 868 12, 303 15, 171	78, 593 35, 977 83, 935 120 979 786		78, 593 35, 977 83, 935 120 3, 847 13, 089

¹Revised figures.

<sup>Revised figures.
Zinc ashes, skimmings, drosses, and old metal.</sup>

Zinc content of zinc pigments and salts produced by domestic manufacturers, 1938–39, by sources, in short tons

1938				1939					
Pigment or salt	Zinc in pigments and salts produced from—				Total zinc in	Zinc in pigments and s produced from—			Total zinc in
	Domes- tic ore	Slab zinc	Second- ary ma- terial	pig- ments and salts	Domes- tic ore	Slab zinc	Second- ary ma- terial	pig- ments and salts	
Zinc oxide	37, 069 18, 502 12, 597 (1) (1) 931	15, 713 	7, 456 11, 262 (1) (1) 1, 395	60, 238 18, 502 23, 906 (1) (1) 2, 326	49, 125 21, 050 13, 654 (1) (1) 1, 157	17, 117 5 47 (1)	16, 429 13, 709 (1) (1) (1) 1, 674	82, 671 21, 055 27, 410 (1) (1) 2, 831	

¹ Data not available.

PRICES

The total values reported by producers for lead and zinc pigments and zinc salts are given in the tables in the first part of this report. The average values received for all important lead pigments increased from 1 percent for litharge to 25 percent for white lead in oil. the other hand, while the average value for leaded zinc oxide rose 7 percent, that for zinc oxide remained unchanged and that for lithopone dropped 8 percent. The range of market quotations, as reported by the Oil, Paint and Drug Reporter, appears in the following table. Quoted prices for white lead were unchanged from November 1938 throughout 1939. Quotations for other lead pigments in general followed price changes in pig lead, moving upward after the middle of the year and standing at their highest levels at the end of the year. Prices for zinc pigments apparently were not influenced by price changes for the metal. Quotations for lead-free zinc oxide were stationary throughout 1938 and 1939; those for the 5-35 percent leaded grade ranged from 6.25 to 6.38 cents in 1939 compared with 5.90 to 6.38 cents in 1938. Quotations for lithopone and zinc sulfide showed a downward trend in the latter part of the year against the trend for most commodities. The average value reported by producers for zinc sulfate in 1939 was unchanged from 1938, but quotations for this product had a narrower range in 1939, both the low and high quotations coming between the extremes reported for 1938.

Range of quotations on lead pigments and zinc pigments and salts at New York (or delivered in the East), 1936–39, in cents per pound

Product	1936	1937	1938	1939
Basic lead sulfate, or sublimed lead, less than car-				
lots, barrels	6. 25- 6. 75	6.50- 8.75	5. 50- 6. 50	6. 25- 6. 50
barrels	6. 50- 7. 25	6.75- 9.00	6.00- 7.00	7.00
Litharge, commercial, powdered, barrels	6.00- 8.50	6. 25-10.00	5.50- 7.50	6. 25- 7. 75
Red lead, dry, 95 percent or less, less than carlots,			7.00 0.50	
barrels.	7.50-9.50	7. 75–11. 00	7.00- 8.50	7. 75- 9. 00
Orange mineral, American, small lots, barrels: Ex-white lead	b			
Ex-red lead	10. 50-11. 25	10. 25-13. 50	9. 50-11. 00	10. 25-11. 25
Zinc oxide:	1			
American process, lead-free, bags, carlots	5.00- 5.25	5. 25- 7. 50	6. 25- 7. 50	6. 25- 7. 50
American process, 5 to 35 percent lead, barrels, carlots	5, 13- 5, 38	5, 38- 6, 88	5, 90- 6, 38	6, 25- 6, 38
French process, red seal, bags, carlots			7.50	7. 50
French process, green seal, bags, carlots	6.00- 6.25	6. 25- 8. 00		
French process, white seal, barrels, carlots	6. 50- 6. 75			8.75
Lithopone, domestic, 5-ton lots, bags	4. 25- 4. 50		4.38-4.63	
Zinc sulfide, less than carlots, bags, barrels	9. 25–11. 75	9. 25- 9. 50	8. 63- 9. 50	7.75- 8.88
Zinc chloride, works: Solution, tanks	2.00	2,00-2,25	2, 25	2. 2
Fused, drums				
Zinc sulfate, crystals, barrels	2.65- 3.95	2.80- 4.05	2.65-4.05	2.90- 3.64

FOREIGN TRADE 3

Imports of lead and zinc pigments remained virtually stationary, and exports almost doubled in value in 1939. The excess value of exports over imports amounted to \$1,351,508 and was a little more than half the annual average for 1925–29. The value of imports of lead and zinc salts gained 16 percent in 1939, while the value of exports of lead arsenate, the only salt reported separately, increased 68 percent.

The following table shows the value of various pigments and salts imported and exported in 1938 and 1939.

Value of foreign trade of the United States in lead and zinc pigments and salts, 1938-39

	. 1938		193	39
	Imports	Exports	Imports	Exports
Lead pigments: White lead Red lead Litharge Orange mineral Other lead pigments	\$3, 979 79 123 271 5, 533	\$190, 795 115, 474 203, 610 (1) (1)	\$2, 108 300 143 7, 310	\$275, 311 186, 396 253, 731 (1) (1)
Zinc pigments: Zinc oxide	9, 985 73, 487 207, 121 4, 798	185, 848 153, 567 (¹)	9, 861 145, 916 130, 893 2, 728	532, 670 392, 798 (¹)
Lead and zinc salts: Lead arsenate. Other lead compounds. Zinc chloride. Zinc sulfate.	12, 659 19, 718 16, 321	95, 196 (1) (1) (1)	3, 316 15, 071 25, 661 12, 521	925, 468 159, 797 (1) (1) (1)
	48, 698	95, 196	56, 569	159, 79
Grand total	344, 089	944, 490	345, 967	1, 800, 70

¹ Data not available.

³ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Lead pigments and salts.—Imports of these commodities are insignificant. The most important item is the group of lead compounds, which include lead acetate, lead nitrate, and others, and imports of these compounds rose from 85 short tons in 1938 to 104 in 1939. Imports of suboxide of lead increased from 16 tons in 1938 to 20 in 1939.

Lead pigments and salts imported for consumption in the United States, 1935-39

Year	Basic carbonate white lead	Red lead	Litharge	Orange mineral	Lead compounds	Total value
1935	6 32 34 20 11	1 2 1 1 2	(3)	2 5 5 2 1	302 185 213 85 104	1 \$38, 228 1 37, 878 1 53, 984 1 22, 644 1 28, 248

¹ Includes also—1935: Lead pigments, n. s. p. f., \$478 (4,405 pounds); 1936: Lead pigments, n. s. p. f., \$19 (33 pounds), sublimed lead (basic sulfate) \$9 (15 pounds), and suboxide of lead, n. s. p. f., \$5,264 (39,010 pounds); 1937: Lead pigments, n. s. p. f., \$8 (100 pounds), sublimed lead (basic sulfate), \$2 (10 pounds), and suboxide of lead, n. s. p. f., \$9,396 (55,455 pounds); 1938: Lead pigments, n. s. p. f., \$198 (2,330 pounds), and suboxide of lead, n. s. p. f., \$5,335 (31, 834 pounds); 1939: Lead pigments, n. s. p. f., \$690 (5,270 pounds), and suboxide of lead, n. s. p. f., \$6,620 (40,445 pounds).
² Leas than 1 ton.

The principal exports are white lead and litharge, and these two items made proportionately large gains in 1939. Exports of red lead and lead arsenate also rose in 1939. The total value for exports of the items listed was \$875,235 in 1939 compared with \$605,075 in 1938. Exports of white lead, red lead, and litharge comprised 3 percent or less of domestic sales of these pigments.

White lead was exported principally to the Netherlands, Philippine Islands, and Canada, whereas the principal recipients of red lead and litharge were Canada, the Philippine Islands, and Argentina.

Lead pigments and salts exported from the United States, 1935-39

Year		Mada)			
	White lead	Red lead	Litharge	Lead arsenate	Total value
1935 1936 1937 1938 1939	2, 337 1, 862 1, 236 1, 411 2, 024	750 810 934 806 1,324	1, 280 1, 386 1, 452 1, 694 2, 077	578 414 521 511 856	\$606, 734 609, 890 677, 815 605, 075 875, 235

White lead, red lead, and litharge exported from the United States, 1936-39, by destinations, in short tons

Destination		White	lead		Red lead and litharge			
Destination	1936	1937	1938	1939	1936	1937	1938	1939
Countries: Argentina Brazil Canada Mexico Netherlands Netherlands West Indies Panama Philippine Islands Others	126 12 74 151 387 3 453 170 486	89 28 126 44 83 5 206 272 383	97 72 220 71 2222 5 108 385 231	87 166 256 117 491 5 113 428 361	139 96 544 108 43 273 53 342 598	204 44 703 112 287 76 353 607	359 47 542 103 400 78 406 565	282 48 688 186 103 144 26 515 1,409
Continents: North America South America Europe Asia Africa Oceania	754 218 707 174 9	1, 236 479 170 232 336 18 1	1, 411 448 221 279 450 13 (1)	541 360 622 478 23 (1)	2, 196 1, 140 344 220 407 61 24	2, 386 1, 379 374 157 413 63 (1)	2, 500 1, 275 494 105 494 131	1, 216 514 460 948 261

¹ Less than 1 ton.

Zinc pigments and salts.—Imports of zinc oxide and zinc chloride increased in 1939, while those of lithopone and zinc sulfate fell. Lithopone ranks as the most important zinc pigment imported, although imports of this commodity represented only 2 percent of domestic sales in 1939. Imports of zinc oxide (dry and in oil) totaled 1,551 tons, a gain over the 645 tons received in 1938.

Zinc pigments and salts imported for consumption in the United States, 1935-39

			Short t	ons			
Year	Zinc oxide		Litho-	Zine	Zine	Zine	Total value
	Dry	In oil	pone	sulfide	chloride	sulfate	
1935 1936 1937 1938 1938	1, 932 694 680 579 1, 485	59 96 95 66 66	4, 603 4, 781 5, 601 3, 932 2, 641	16 30 113 12 7	564 520 667 272 399	135 385 593 392 325	\$508, 476 425, 493 488, 116 321, 445 317, 719

Exports of zinc oxide trebled in 1939 and were 3 percent of sales of lead-free zinc oxide by domestic producers. Shipments went principally to Canada, Brazil, and the Philippine Islands. Exports of lithopone jumped from 1,734 tons in 1938 to 4,845 tons in 1939 and amounted to 3 percent of sales of domestic manufacturers. More than half the total was shipped to Canada and smaller amounts to Mexico, Cuba, Chile, and other scattered nations.

Zinc pigments and salts 1 exported from the United States, 1935-39

Van	Short tons		-		Short	(Deta)		
Year	Zinc oxide	Litho- pone	Total value	Year	Zinc oxide	Litho- pone	Total value	
1935 1936 1937	1, 140 1, 330 2, 953	2, 372 2, 538 2, 671	\$392, 368 419, 987 609, 954	1938 1939	1, 163 3, 485	1, 734 4, 845	\$339, 415 925, 468	

¹ Zinc salts not separately recorded.

Zinc oxide and lithopone exported from the United States, 1936-39, by destinations, in short tons

Destination		Zine	oxide			Lithop	one	
Destination	1936	1937	1938	1939	1936	1937	1938	1939
Countries: Argentina Brazil Canada Chile Cuba Mexico Philippine Islands Others	55 39 704 20 80 14 15 403	48 32 1, 583 12 207 57 415 599 2, 953	86 6 514 13 48 9 141 346	104 285 898 69 84 105 281 1,659	35 1,812 (1) 186 103 16 386 2,538	63 (1) 1,740 (1) 258 185 5 420 2,671	28 	89 55 2,775 189 244 361 20 1,112
Continents: North America South America Europe. Asia Africa Oceania	882 130 99 52 6 161	1, 972 149 148 467 57 160	659 117 85 159 3 140	1, 168 514 593 844 175 191	2, 104 57 218 25 4 130	2, 184 90 217 24 1 155	1, 483 41 132 13 1 64	3, 405 359 153 287 25 616

¹ Less than 1 ton.

GOLD, SILVER, COPPER, AND LEAD IN ALASKA

(MINE REPORT)

By Chas. W. Henderson

SUMMARY OUTLINE

	age		Page
Summary	163	Markets and metallurgy	. 165
Calculation of value of metal production	163	Review by regions	. 166

Gold recovered from Alaska ores and gravels in 1939 totaled 676,737 fine ounces valued at \$23,685,795, an increase of 2 percent over the 664,973 ounces valued at \$23,274,055 in 1938, due to increased output from placer mines. The value of the gold in 1939 was 99 percent of the total gross value of the gold, silver, copper, and lead produced. Copper was produced in 1939 only as a byproduct of gold mining, and the output of recovered metal fell to 256,000 pounds from 29,098,000 pounds in 1938, when it came mostly from copper mines.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1 Silver 2 (Copper 3	Lead ³	Zinc 3
1935 1936 1937 1938 1939	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0.71875 . 7745 . 7735 4.646+ 5.678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046	Per pound \$0.044 .050 .065 .048 .052

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.

² 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.

³ Yearly average weighted price of all grades of primary metal sold by producers.

⁴ \$0.6464644.

The following tables show the mine production of gold, silver, copper, and lead in Alaska in 1935-39 and 1880-1939 in terms of recovered metals; the output of gold and silver in 1939, by types of operation; and the output of gold, silver, copper, and lead from amalgamation and evanidation mills (with or without concentration equipment) in 1939, by regions.

Mine production of gold, silver, copper, and lead in Alaska, 1935-39, and total, 1880-1939, in terms of recovered metals

Year		Gold (lode	and placer)	Silver (lode and placer)		
•	1 ear	Fine ounces	Value	Fine ounces	Value	
1936 1937 1938		540, 580 627, 940 664, 973	\$16, 432, 325 18, 920, 300 21, 977, 900 23, 274, 055 23, 685, 795	286, 848 484, 306 494, 340 479, 853 201, 054	\$206, 172 375, 095 382, 372 310, 208 136, 473	
1880-1939		23, 700, 593	542, 535, 357	19, 179, 467	13, 643, 173	

Year	Co	pper	Le	/D-4-11-		
Tear	Pounds	Value	Pounds	Value	Total value	
1935	15, 500, 000 37, 700, 000 34, 672, 000 29, 098, 000 256, 000	\$1, 286, 500 3, 468, 400 4, 195, 312 2, 851, 604 26, 624	1, 340, 000 1, 882, 000 1, 646, 000 1, 988, 000 1, 874, 000	\$53, 600 86, 572 97, 114 91, 448 88, 078	\$17, 978, 597 22, 850, 367 26, 652, 698 26, 527, 315 23, 936, 970	
1880-1939	1 685, 681	226, 519, 560	1 22, 700	2, 501, 653	785, 199, 743	

¹ Short tons.

Mine production of gold and silver in Alaska in 1939, by types of operation, in terms of recovered metals

		Material treated	(Gold			Silver		
Type of operation	Mines pro- ducing		Fine	Percent of total		Fine	Percent of total		Total value
	ducing		ounces	1939	1938	ounces	1939	1938	
Lode mines Floating connected-bucket	73	1 4, 751, 657	209, 166	31	35	132, 548	66	87	\$7, 410, 782
dredges Placers (dragline and dry- land dredges, hydraulic,		³ 19, 799, 526	304, 995	45	42	42, 371	21	8	10, 703, 586
drift mining, and sluicing).	4 1,070	(5)	162, 576	24	23	26, 135	13	5	5, 707, 900
Total, 1938	1, 187 1, 234		676, 737 664, 973	100	100	201, 054 479, 853	100	100	23, 822, 268 23, 584, 263

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Alaska in 1939, by regions, in terms of recovered metals

		Recovered in bullion		Concentrates smelted and recovered metal					
Region	Ore treated	Gold	Silver	Concen- trates pro- duced	Gold	Silver	Copper	Lead	
Cook Inlet-Susitna	Short tons 45, 666 927	Fine ounces 33, 682 140	Fine ounces 1,761 40	Short tons 1,076	Fine ounces 5, 645	Fine ounces 473	Pounds 3, 800	Pounds 200	
Kenai Peninsula Kuskokwim Seward Peninsula	830 1, 500 50	787 759 36	247 159	5	22	8			
Southeastern Alaska Yukon River Basin	4, 663, 056 17, 028	117, 750 18, 881	23, 864 3, 803	2,859 106	26, 025 565	91, 862 1, 686	58, 862 300	1, 836, 150 3, 100	
Total, 1938	4, 729, 057 4, 733, 174	172, 035 185, 208	29, 877 33, 126	4, 046 3, 583	32, 257 32, 567	94, 029 104, 922	62, 962 (1)	1, 839, 450 1, 935, 174	

¹ Bureau of Mines not at liberty to publish details of copper production.

Short tons of ore.
 Number of dredges, including 1 single-dipper dredge. In addition, there was a floating dredge that produced platinum only.
 Unbic yards of gravel (average recovered per yard, \$0.54).
 Includes all types and sizes of placer operations excluding floating connected-bucket dredges.
 Cubic yards of gravel; figures not available.

Gold.—The value of the gold output of Alaska in 1939 was 99 percent of the total gross value of the gold, silver, copper, and lead produced. The source of gold has been divided in this report into only three types of operations-placers using floating connected-bucket dredges; other placer operations, large and small; and lode mines. The output from dredges was by far the largest, followed in order by lode mines and by other placer mines. The increased output from floating connectedbucket dredges was due directly to the higher tenor of the gravel washed in 1939; gold recovered per cubic yard increased from 49 cents in 1938 to 54 cents in 1939. The yardage handled was virtually the same in both years. The output of gold from lode mines was 24,852 ounces less than in 1938; although three more mines were producing, the decline in output from three of the largest producers was great enough to effect a decrease in total production of lode gold. The steady increase in use of mechanical equipment—such as draglines, slackline scrapers, bulldozers, portable washing plants, pumps, and hydraulic machinery—caused the output from placer mines other than bucket dredges to increase 10,063 ounces over 1938. The wider use of mechanical moving equipment has lengthened the operating season for hydraulic miners by allowing them to prepare ground in advance by removing overburden formerly hydraulicked, by transferring some of the gold-bearing gravel into position for hydraulicking, and by removing tailings. Thus they can make more efficient use of available water, whether seasonal rain or run-off.

Silver.—All the silver produced in Alaska in 1939 was a byproduct

of gold mining.

Copper.—The output of recoverable copper in Alaska in 1939 was negligible compared with that in 1938; the decline is attributable to abandonment in 1938 of the copper mines at Kennecott by the Kennecott Copper Corporation, owing to exhaustion of the ore bodies. The copper produced in 1939 was a byproduct of production at the gold lode mines.

Lead.—The bulk of the recovered lead output of Alaska in 1939 came from lead concentrates produced at the flotation mill of the

Alaska Juneau Gold Mining Co. at Juneau.

MARKETS AND METALLURGY

More than 94 percent of the gold and nearly 50 percent of the silver produced from Alaska ores and gravels in 1939 were obtained in the form of gold-silver bullion, which was sold finally to the Seattle Assay Office and the San Francisco Mint. As there are no smelters or refineries in Alaska, all the remaining gold and silver produced and all the lead and copper were obtained from high-grade ore and concentrates shipped to smelters and refineries in the States, largely to the Tacoma (Wash) and Selby (Calif.) smelters.

to the Tacoma (Wash.) and Selby (Calif.) smelters.

More than 175,000 ounces of fine gold were handled in 1939 by banks and bullion buyers throughout the Territory. The gold-silver bullion was either sent direct to the mints or cast into bars for shipping; in many instances the banks acted merely as agents for the lode and placer operators. The six largest purchasers (or agents) of bullion (handling over 165,000 fine ounces of gold) were: The First National Bank of Fairbanks, Fairbanks; the Miners and Merchants Bank of

Alaska, Nome; the Miners and Merchants Bank of Iditarod, Flat; the First National Bank, Anchorage; and the Northern Commercial

Co. and the Seattle First National Bank, Seattle, Wash.

Sixty-three mines in Alaska in 1939 were equipped with amalgamation or cyanidation plants, ranging in daily capacity from 1 ton to 12,000 tons; of these, 22 were equipped also with flotation, table, or jig concentrators. Seven properties were equipped with straight concentration mills, chiefly flotation. Virtually all the lead concentrates produced in 1939 were obtained from concentration by flotation of the dry gold ore of the Alaska Juneau Gold Mining Co. property at Juneau. Most of the copper came from copper concentrates produced by the Alaska Gold and Metals Co. in Southeastern Alaska. Concentrates obtained from the amalgamation-concentration and cyanidation-concentration mills averaged 8 ounces of gold and 23 ounces of silver to the ton and were shipped chiefly to the Tacoma (Wash.) plant; concentrates from the straight concentration mills averaged 7 ounces of gold and 14 ounces of silver to the ton. Dry gold ore shipped direct to smelters averaged 6 ounces of gold and 1 ounce of silver to the ton. Mill heads averaging more than 1 ounce of gold to the ton were not uncommon.

The United States Assay Office at Seattle, Wash., reports the fol-

lowing receipts from Alaska in 1939.

Bullion of Alaskan origin deposited at United States Assay Office, Seattle, Wash., during year ended December 31, 1939, in fine ounces

District	Gold	Silver	District	Gold	Silver
Circle	17, 652, 677 50, 255, 140 5, 140, 968 6, 243, 471 53, 504, 835 1, 600, 159	1, 764. 97 5, 273. 77 684. 69 1, 177. 67 7, 879. 63 179. 02		26, 139. 579 96, 702. 422 119, 597. 820 228, 437. 485 605, 274. 556	3, 110. 06 10, 741. 95 24, 180. 40 36, 658. 44 91, 650. 60

¹ Includes mainly Bonnifield, Fairbanks, Hot Springs, Kantishna, and Tolovana districts in the Yukon Basin region.

REVIEW BY REGIONS

Cook Inlet-Susitna region.—The Cook Inlet-Susitna region—comprising the Prince William Sound, Valdez Creek, Willow Creek, and Yentna-Cache Creek districts—produced 19 percent of the total gold

output from Alaska lode mines in 1939.

Again, in 1939, the Alaska-Pacific Consolidated Mining Co. at Wasilla, operating the Independence and Martin mines, was the largest producer of lode gold in the Cook Inlet region and second-largest in Alaska. The company 100-ton amalgamation-flotation mill has been operated continuously since its completion in 1937. The mill and 110-hp. Diesel power plant are on the west branch of Fish-Hook Creek 26 miles west of Wasilla. The ore is brought to the mill from the mine by a ¼-mile aerial tram; 23,808 tons of crude ore averaging 1.12 ounces of gold to the ton were milled in 1939. Of the total gold produced during the year, 86 percent was obtained in the form of gold amalgam, which was retorted and sent to the Seattle Assay Office; the remainder was contained in 485 tons of gold concentrates averaging 7.05 ounces of gold to the ton. The over-all recovery in the mill

was 95.44 percent. Development work consisted of 7,500 feet of drifts, 2,000 feet of tunnel, 400 feet of shaft, and 1,961 feet of diamond drilling. A 1,000-cubic foot compressor, a 100-kw. generator and motor, a 40-ton ball mill, and two Diesel power units were installed in 1939, bringing the total power available at the operation to 335 hp.

The Conwest Exploration Co., operating the Willow Creek mines in the Willow Creek district, was the second-largest producer of lode gold in the Cook Inlet-Susitna region in 1939. A ½-mile aerial tram brings the crude ore (carrying free gold, pyrite, and arsenopyrite) from the mine to the 40-ton amalgamation-flotation-cyanidation mill. During the year 10,526 tons of ore averaging 0.71 ounce of gold to the ton were separated into jig and flotation concentrates; the jig concentrates were amalgamated, and the flotation concentrates were cyanided. The tailings (averaging 1.25 ounces of gold to the ton) from the cyanide operation were shipped to the Tacoma (Wash.) smelter. Much development work was done. A new level, called the 725th, was opened up; several new shoots of ore were opened on the strike of the vein.

Rapp & Till continued in 1939 to re-treat impounded tails from the old Gold Bullion mine of the Willow Creek Mines Co. in the 35-ton cyanide plant erected on the property in 1938. The precipitates were refined at the mill, and bullion was shipped to the Seattle Assay

Office.

Among the other leading lode producers in the Cook Inlet-Susitna region making notable output in 1939 were: The Fern Gold Leasing Co., the Gold Cord Development Co., Mabelle Mines, Inc., and Donan

Mines, Inc., all operating in the Willow Creek district.

There were no floating connected-bucket dredges operating in the Cook Inlet-Susitna region during 1939. Several operators using hydraulic giants, dragline excavators, and portable washing plants made sizable production. Gravels from streams and benches in the Yentna-Cache Creek district yielded most of the placer gold output. One of the leading operators using mechanical equipment in the mining of placer gravels was the Spokane Peters Creek Co., placering on Peters Creek in the Yentna-Cache Creek district. A Bucyrus dragline equipped with a 1½-cubic yard bucket was used as the prime mover of the prethawed gold-bearing gravel. About 100,000 cubic yards of gravel were washed during the 60 days of active operation, and the gold was concentrated in a portable washing plant. Other placer operators using mechanical equipment and making production worthy of note were: The Dutch Creek Mining Co., hydraulicking stream gravels on Dutch Creek in the Yentna-Cache Creek district; and C. A. Devault, placering on Pass Creek in the Fairview district.

Copper River region.—The value of the gold, silver, copper, and lead produced in the Copper River region—including the Chistochina, Nabesna, Nelchina, and Nizina districts—showed the largest decrease in any region of Alaska in 1939. The value of copper production was negligible compared with 1938, owing to abandonment of the copper properties of the Kennecott Copper Corporation at Kennecott and the greatly curtailed output of the Nabesna Mining Corporation properties at Nabesna. In 1938 the tonnage of copper concentrates shipped from the Nabesna mine to Tacoma for treatment contained nearly half of the gold production of the region, but in 1939 such

output was less than half of that in 1938. The Yellow Band Gold Mines, operating the Yellow Band group of lode claims in the Nizina district, carried on development and test milling work during the year; roads, a transmission line, and a cable tramline from the mine

to the mill were among the improvements.

There were no floating connected-bucket dredges operating in the Copper River region in 1939. Gold recovered from placer gravels came from hydraulic, sluicing, and dragline operations throughout the region. One of the leading producers of gold from gravels was Joshua Green Associates, operating a hydraulic plant on Dan Creek about 20 miles south of McCarthy in the Nizina district; between May 19 and September 20 six hydraulic giants sluiced 172,000 cubic yards of gravel and recovered 1,365 ounces of gold about 0.903 fine. Among other principal producers were: The Slate Creek Placers, Inc., working on Slate Creek in the Chistochina district; Chititu Mines, hydraulicking on Chititu Creek in the Nizina district; and A. C. Baldwin, lessee of claims on Rex Creek in the Nizina district.

Kenai Peninsula region.—In the Kenai Peninsula region—including the Girdwood, Moose Pass-Hope, and Nuka Bay districts—lode mines contributed the bulk of the gold and silver output in 1939. Gold recovered from lode operations was chiefly in the form of gold-silver bullion shipped to the Seattle Assay Office; some high-grade dry gold concentrates were shipped to the Tacoma smelter from the amalgamation-concentration mills. The leading producers from lode mines were: The Crown Point Mining Co., operating the Crown Point mine; United Mining & Development Co., operating the Gilpatrick lode; and R. B. McEachern, operating the Alaska Oracle—all in the Moose Pass-Hope district; and the Crow Creek Gold Corporation,

operating the Monarch mine in the Girdwood district.

There were no floating connected-bucket dredges in the region in 1939. The placer output came from small placers throughout the region; production was slightly less than the lode output.

Kodiak Island region.—The output of metals from Kodiak Island during 1939 came almost entirely from small placer operations on

beaches and streams.

Kuskokwim region.—Placer gravels handled by three floating connected-bucket dredges yielded most of the gold and silver produced in 1939 in the Kuskokwim region, which includes the Goodnews Bay, Nixon Fork, and Tuluksak-Aniak districts. Operations began about

June 1 and ended about November 15.

The dredge operated by the Bristol Bay Mining Co. on Watamuse Creek in the Goodnews Bay district made the largest output of gold in the region in 1939; the W. W. Johnson Co. manufactured the dredge, which is fuel oil-powered and equipped with sixty-four 2½-cubic foot buckets. Dredging operations began June 2 and ended November 11; during this period 331,000 cubic yards of gravel averaging \$1.23 per cubic yard in recovered gold were washed.

In the Tuluksak-Aniak district the New York Alaska Gold Dredging Co., second-largest producer of gold in the region in 1939, operated its two floating connected-bucket dredges (one 2-cubic foot and one 4-cubic foot), handling approximately 882,000 cubic yards of gravel.

4-cubic foot), handling approximately 882,000 cubic yards of gravel. Nearly 1,000,000 cubic yards of platinum-bearing gravel were dredged by the Goodnews Bay Mining Co. in 1939. The dredge, with

ninety-two 8-cubic foot buckets and powered by a Diesel electric plant, has been in operation two full seasons. The platinum output from the dredge and from a 1½-cubic yard Bucyrus dragline owned and operated by the same company was slightly less than in 1938.

The recovery of gold from placer operations using mechanical equipment other than floating connected-bucket dredges was maintained in 1939 at virtually the same level as in 1938. Three of the largest operations in the region recovered approximately 6,860 fine ounces of gold from about 400,000 cubic yards of gravel. The season

began May 15 and terminated about October 15.

Among other large placer operators making notable output in 1939 were: The Marvel Creek Mining Co., on Marvel Creek and Solomon River in the Tuluksak-Aniak district, which used a Bucyrus 1½-cubic yard dragline, a D-8 caterpillar bulldozer, and six hydraulic giants as excavators and washed 150,000 cubic yards of gravel; the Goodnews Bay Mining Co., on a stream and bench deposit in Snow Gulch, tributary of the Arolic River, which was equipped with a portable washing plant and excavated with a 1½-yard Bucyrus Diesel-powered dragline and bulldozer; and the Kow Kow Mining Co., which recovered gold from a stream deposit on Kow Kow Creek 35 miles north of Goodnews Bay with a washing plant, supplied with goldbearing gravel by a 1½-yard P & H dragline.

Gold production from lodes was less in 1939 than in 1938 and was small compared with that from placers. The leading producer from lode deposits was Mespelt & Co., operating the Nixon Fork mine in

the Nixon Fork district.

Northwestern Alaska region.—Mining in the Northwestern Alaska region—comprising the Kiana and Shungnak districts and covering the area of the Kobuk River Valley—was confined almost entirely to

small placer operations in 1939.

Seward Peninsula region.—In the Seward Peninsula region, comprising all the area of the Seward Peninsula, floating connected-bucket dredges were the leading producers of gold and silver in 1939; of the total output of gold from dredges in Alaska during the year, the 21 dredges in the Seward Peninsula produced 26 percent and increased their output by 2,617 fine ounces over 1938. The average tenor of the gold-bearing gravel handled in 1939 increased 5 cents per cubic yard to an average of 47 cents in value of recovered gold. One less dredge was active than in 1938, but the higher tenor of the gravel resulted in a slightly increased output of gold. The active dredging season started during the latter part of May and, in rare instances, lasted until November 15. Preparation of the ground for active dredging was carried on by most of the operators well in advance of the dredges; in some instances this preparatory work was continuous throughout the year.

The United States Smelting, Refining & Mining Co. in the Nome district, operating three electrically powered Yuba dredges (one with 112, one with 103, and one with 78 9-cubic foot buckets) was the largest producer in 1939 in the Seward Peninsula region. The open dredging season began May 28 and lasted through November 16, during which time more than 3,100,000 cubic yards of gravel were washed. The gold output from these three dredges was slightly greater than in 1938, owing to the higher grade of the gravel handled,

as the total quantity of gravel was about 400,000 yards less than in 1938. Preparatory work on additional tracts of land was carried on in advance of actual dredging. The Thirty-fourth Annual Report of the United States Smelting, Refining & Mining Co. for the year ended December 31, 1939 (dated March 14, 1940), says—

At Nome, Alaska, dredge No. 2 started on May 28, 1939, and all three dredges were in operation by June 17, continuing until about the middle of November, an aggregate of 483 dredging days compared with 468 in 1938. Yardage dredged was a little less than in 1938 but value per yard slightly more, the net result being a small increase in the amount of gold recovered. Plans for the installation of a fourth deep-digging dredge are completed, and this dredge will be ordered in 1940 for operation in 1941.

On Candle Creek in the Fairhaven district the Arctic Circle Exploration, Inc., operated two dredges, each with seventy 4-cubic foot buckets (one dredge electrically powered and one Diesel-powered) and was the second most important producer of placer gold in 1939. Active dredging began June 19 and continued through October 6, during which time 733,030 cubic yards of gravel were washed and 13,509 crude ounces of gold about 0.856 fine were recovered. The total output of gold was 1,648 fine ounces more than in 1938. Preparatory work on the 5,000 acres of placer ground owned or controlled by the company was kept well in advance of actual dredging operations.

In the Kougarok district of the Seward Peninsula two dredges were active during the 1939 season. The more productive was the Diesel-powered Yuba dredge equipped with fifty-four 3-cubic foot buckets, owned by the Fox Bar Dredging Co., which dredged 302,540 cubic yards of gravel averaging 40 cents per cubic yard in recovered gold between June 28 and October 11. The Kougarok Consolidated Placers, Inc., operated a Washington Iron Works Diesel-powered dredge equipped with eighty 2½-cubic foot buckets from June 20 to September 1.

In the Koyuk (Saint Michael) district the Ungalik Syndicate, using a Diesel-powered dredge equipped with seventy-five 3½-cubic foot buckets, handled 200,000 cubic yards of gravel in 1939 during the open dredging season of approximately 100 days; this dredge was the most productive in the district. The Dime Creek Dredging Co., operating a gasoline-powered flume dredge equipped with twenty-nine 1½-cubic foot buckets, washed about 10,000 cubic yards of gravel averaging \$1.26 in recovered gold per cubic yard; the dredge was active only 45 days.

Among the other operators of floating connected-bucket dredges in 1939, the following made production worthy of note: The Alaska Placer Dredging Co. (formerly the North Star Dredging Co.), operating in the Council district; Alaska Sunset Mines, Inc., in the Nome district; Casa de Paga Gold Co., operating a fuel oil-powered dredge equipped with fifty-two 1½-cubic foot buckets, in the Nome district; Bartholomae Oil Corporation, operating with thirty-one 2¾-cubic foot buckets, in the Port Clarence district; and Lee Brothers Dredging Co., operating on Solomon River in the Solomon district.

General increases in 1939 in gold output by placer operators using equipment other than floating connected-bucket dredges were noted throughout most of the districts in the Seward Peninsula region. Rainfall was about normal, thus permitting regularity in hydraulic

operations; owing to the steadily increasing use of draglines and bull-dozers the seasonal rainfalls are losing their importance as a major factor in determining the length of the mining season. In most operations using draglines, bulldozers, and slackline scrapers the season is from break-up to freeze-up. The average length of the season for operators not using floating connected-bucket dredges was about 120 days for all mines mechanically equipped, except for hydraulic miners, whose average was from 10 to, in some instances, 30 days less.

The Arctic Circle Exploration, Inc., operating in the Fairhaven district, hydraulicked 178,000 cubic yards of gravel between June 1 and October 1 and recovered 43 cents in gold per yard; 100,000 yards of tailings were removed during the same period by a 1½-yard Diesel-

powered Northwest dragline.

In the Kougarok district three hydraulic plants sluiced 351,496 cubic yards of gravel in 1939, recovering 84 cents per yard in gold; draglines were used to remove the tailings from the sluicing operation.

In the Nome district operators of two drift mines received \$27,428 in 1939 for gold obtained from sluicing approximately 8,250 cubic

yards of gravel.

Lode mining in the Seward Peninsula region in 1939 yielded less than

1,500 ounces of fine gold.

Southeastern Alaska region.—Southeastern Alaska—covering the Admiralty Island, Chichagof Island, Hyder, Juneau, Ketchikan, and Windham Bay districts—produced 70 percent of the total output of lode gold from Alaska in 1939 and most of the silver, copper, and lead. During the year there were 21 active or developing mines in operation; by far the largest producer of gold, silver, and lead was the Alaska Juneau Gold Mining Co. at Juneau. The Twenty-fifth Annual Report of this company for the year ended December 31, 1939 (dated February 29, 1940), says—

The gold assay value of the ore mined in the year 1939 was less by 16 cents per ton than the corresponding figure for the preceding year. This falling off in gold content reduced the operating profit before deduction for depreciation and depletion to \$1,565,169.22. The first 6 months of the year made the poorest showing, for during this time operations in the Perseverance section were being tied in and coordinated with the operations as a whole. While the temporary dislocation in the smoothness of operation was being overcome, and passed, each succeeding quarter of the year showed improvement over the preceding quarter. The Perseverance section is now producing about 50 percent of the total tonnage output, and the expectations are for an improvement in the gold content of the total ore mined and milled during the coming year.

During the past 4 years, the exploratory, development, and preparatory mining work in the Perseverance section has brought the production from that section up from 1.37 percent in 1936 to 43.67 percent of the total mine output in 1939. At present six stopes in the Perseverance are producing, and preparatory work for six additional stopes is under way or programmed. Exploratory work is also planned for the easterly portion of the area of which there is little knowledge at this time.

Work done in the deep levels was routine, no change of importance occurring there. Work for bringing in three additional stopes is well under way and exploratory work continues for delimiting the ore laterally and in depth; however, there is now little evidence that further work below the present bottom level is justified

In the annual report for the year 1932 there appeared a statement showing developed ore reserves sufficient for about 13 years' operations at the present rate of production. After 7 years have elapsed there are still about 10 years of developed reserves in those portions of the mine where development and exploration work is more or less complete.

Development work and stope preparation were carried on during the year at the same rate as in the previous year; 4,648,060 tons were trammed from mine to mill in the year 1939, of which 2,029,920 tons or 44 percent came from the Perseverance section.

Four days regular operating time were lost on account of a rock and mud slide, caused by continued wet weather and heavy rains. This slide took out some track and snowshed between the mine and the mill and necessitated stopping tramming and milling until the slide was cleared away and the track was repaired. amount of damage done, other than lost time, was not large.

Development and preparatory work in the Perseverance section was continued at about the same rate as in the previous year. A compressor of 1,500-cubic-foot capacity was installed at the bottom of the Perseverance Shaft to supplement the

compressed-air supply in this part of the mine.

Owing to the fact that the ore zone is not as wide in the Perseverance section as in the Alaska Juneau South Orebody, the cost of development and preparatory work per ton mined will be more; and the production per unit of development and

preparatory work will be somewhat less.

The first half of the year was spent in further outlining the ore on the Nos. 11, 12, and 13 levels in the vicinity of 53 winze. In the last half of the year a pilot drift was driven on No. 13 level to a point under the Main Shaft, and raising to connect with the Main Shaft was begun. When this raise is connected to the Main Shaft, the shaft will be enlarged to its full size to a point below the No. 13 level, which is 1,500 feet vertically below the Gold Creek Tunnel level. While the While the Main Shaft is being constructed, preparatory work in the orebody between No. 12 level and No. 10 level in the vicinity of 53 winze will be carried on from 53 winze so that when the shaft and haulageway on No. 13 are completed a stope will be ready for production.

During the year 440,450 pounds of powder were used in blasting powder drifts, 28,300 pounds were used in blasting long hole drill stations, making a total of 468,750 pounds of powder for primary breaking, or 0.10 pound per ton trammed. Total powder consumption for mining was 0.32 pound per ton trammed as against

0.36 pound in 1938 and 0.40 pound in 1937.

Mill.—Experimental work on flotation of rougher table tailings, mentioned in last year's report, was carried to a point where it was demonstrated that it was not practicable to treat the coarser portion of the tailings without regrinding. tional tube mills have been installed so that the rougher middlings may be re-At the present time the mill is so equipped that approximately one-half of the ore milled will be treated by flotation, either as slimes or reground middlings.

During the year 634,419 tons of slimes and 275,975 tons of reground middlings were treated by flotation, while 286,590 tons of slimes were discarded as thickener The installation of the regrinding mills was not completed until shortly overflow.

after the end of the year.

The fine tailings pumping plant installed in 1937 continues to work satisfactorily. During the current year some money was spent in relocating the public road so that the full use of this plant and its accompanying flume may be had.

As during the past few years, there was an abundance of unskilled labor avail-The number of skilled miners applying for work was, however, limited. able.

Last year's adjustment of wages to conform with the Wage-Hour law continued in effect until October of this year, when an adjustment was again made. average wage per day was \$6.63 in 1939 as against \$6.55 in 1938.

Except in a few cases of isolated power-plant operators and hoistmen, where it is not practical to continually change, the men worked 6 days per week, overtime being paid in accordance with the Wage-Hour law. The men who work 7 days per week are also paid overtime for all time in excess of 42 hours per week.

The over-all cost per man per day was \$11.22, which is the same figure as for

the previous year.

Power plants.—Maintenance of plants and transmission lines together with some minor improvements continued as usual. Owing to the lateness of the summer season, progress on moving the Annex Creek line was not as great as had been expected. Material progress was made on this item, however. The work will be continued in the summer of 1940.

While no large items of improvement are contemplated at this time, the six hydroelectric plants and the connecting power lines have been installed for 25 years or more, and the cost of repairs and renewals from now on will be greater

than in the years following their installation.

Gold content of ore from Alaska Juneau mine, 1935-39, and total, 1893-1939

	Rock to mi	ll from mine	Gold (ounce)						
Year		ns)		ry per ton milled	Losses per ton of tailings		Content		
	Ore fine- milled	Coarse tailings rejected	In bul- lion	In galena concen- trates	Fine	Coarse	of rock from mine to mill		
1935 1936 1937 1938 1938	2, 091, 475 2, 462, 046 2, 251, 079 2, 478, 928 2, 377, 718	1, 638, 185 1, 904, 754 2, 191, 681 2, 184, 952 2, 270, 342	0.0533 .0544 .0594 .0515 .0454	0.0035 .0061 .0080 .0081 .0088	0.0108 .0089 .0116 .0090 .0083	0.0078 .0069 .0082 .0071 .0066	0.0413 .0422 .0441 .0398 .0352		
Total and average, 1893-1939	39, 908, 636	34, 857, 062	. 0514	.0116	. 0124	.0087	. 0443		

Gold, silver, and lead recoveries from Alaska Juneau mine, 1893-1939

	G	old	Sil	ver	L	ead	Total value
Year	Fine ounces	Value	Fine ounces	Value	Pounds	Value	recovered
1893-1913 1914-34 1935- 1936 1937- 1938- 1939- Total	118, 997. 83 149, 235. 23 151, 670. 64 148, 103. 14 129, 011. 74	39, 415, 350, 08 4, 165, 784, 05 5, 223, 231, 16 5, 308, 471, 55 5, 183, 542, 98	1, 112, 319, 44 77, 787, 17 101, 590, 59 120, 691, 21 121, 473, 25 111, 494, 24	56, 265. 16 78, 794. 94 91, 528. 49 78, 999. 04 75, 165. 90	1, 455, 167 2, 102, 594 1, 980, 405 2, 152, 714 2, 040, 280	59, 061. 05 98, 594. 68 116, 414. 16 101, 945. 80 104, 961. 22	5, 364, 487. 82

¹ Lost in tailings.

The Hirst-Chichagof Mining Co., operating the Hirst-Chichagof mine in the Chichagof Island district, was the second-largest producer of gold and silver in the region in 1939. About two-thirds of its output was in the form of gold-silver bars shipped to the Seattle Assay Office; the remainder came from dry gold concentrates (of which it was the largest producer in the region) shipped to Tacoma.

Copper concentrates from gold-palladium ore mined by the Alaska Gold and Metals Co. yielded most of the copper output of Alaska in

1939; the concentrates were shipped to the Tacoma smelter.

Other important producers from lode mines in the region in 1939 were: The Chichagof Mining Co., shipping dry gold concentrates from ores of the Chichagof mine in the Chichagof Island district; Nelson & Tift, working the N & T mine in the Ketchikan district; the Flagstaff Mining Co., operating the Treasurer group in the Ketchikan district; and the Alaska Empire Gold Mining Co., working the Williams mine in the Admiralty Island district.

Yukon River Basin region.—The Yukon River Basin—comprising the Bonnifield, Chandalar, Chisana, Circle, Eagle, Fairbanks, Fort Gibbon, Fortymile, Hot Springs, Iditarod, Innoko, Kantishna, Koyukuk, Marshall, Rampart, Richardson, Ruby, and Tolovana districts—yielded 66 percent of the total output from connected-bucket dredges in Alaska during 1939. It ranked second in gold recovered from other placers and third in that from lode mines.

Nineteen floating connected-bucket dredges were active in the region in 1939. During the open season, which began about March 15 and terminated December 1, approximately 12,851,000 cubic yards of gold-bearing gravels were washed, with an average recovery in gold of 55 cents per cubic yard, an increase of 3 cents over 1938. Preparatory work was done in some instances throughout the entire

vear.

The United States Smelting, Refining & Mining Co., operating six floating connected-bucket dredges in 1939 in the Fairbanks district two 10-cubic foot electrically driven Bethlehem dredges (with 111 and 93 buckets, respectively), three 6-cubic foot electrically driven Bethlehem dredges (with 78, 78, and 68 buckets, respectively), and one shallow-digging 3-cubic foot Yuba dredge (with 68 buckets)—was by far the largest producer of gold and silver in the Yukon Basin region. These six dredges handled a slightly greater yardage of gravel than in 1938 and of approximately the same grade, resulting in a slight increase in recovered gold in 1939. Especially worthy of note are the new installations brought into use during the 1939 season for clearing large tracts of land for future dredging. The principal items of this installation include an enormous walking dragline of the Bucyrus type; a belt-conveyor system 1 mile or more long; and a large movable and self-propelling loading plant that receives material from the 8- and 12-cubic yard buckets of the dragline and delivers it in a steady stream to the belt-conveyor system. This installation is being used at the company open pit on Cripple Creek. The Thirty-fourth Annual Report of the United States Smelting, Refining & Mining Co. for the year ended December 31, 1939 (dated March 14, 1940), says-

At Fairbanks, Alaska, dredging operations started for the season on March 15, 1939, and continued until about the first of December. The six dredges aggregated 1,462 dredging days, compared with 1,453 in 1938, and handled a slightly greater yardage of gravel of approximately the same grade. On the new area mentioned in previous reports the installation of the dragline and conveyor was completed and the removal of the upper barren gravels commenced during the latter part of the season. A new dredge is being erected and should be ready to start work on the underlying pay gravels in this area about the middle of the 1940 season. Another newly acquired small dredge will start work on an outlying area during 1940.

At both the Fairbanks and Nome fields preparation of ground has been actively carried on with the result that at the present there is a greater yardage of thawed ground ahead of the dredges than has been the case in any previous year. Acquisition and development of additional dredging ground has been going on steadily, and the known gold reserves at the end of 1939 are greater than at any

time in the past.

In the Circle district more than 1,000,000 cubic yards of gravel were washed by three floating connected-bucket dredges, making this district second in importance in the region in recovery of placer gold in 1939. Gold Placers, Inc., recovered the largest quantity of gold in the district, using a W. W. Johnson Co. type of Diesel-powered dredge equipped with sixty 4-cubic foot buckets; 393,700 cubic yards of gravel were handled between May 30 and October 15. The second-largest quantity of recovered gold came from operations of the steam-driven flume-type dredge equipped with sixty 3-cubic foot buckets and operated by the C. J. Berry Dredging Co. on its Mammoth Creek properties; during the open season (May 15 to October 18) 271,000 cubic yards of gravel were dredged. Dredging was carried on at Woodchopper Creek by Alluvial Golds, Inc., which used a W. W. Johnson

Co. type of Diesel-powered dredge equipped with seventy-two 4-cubic

foot buckets.

The American Creek Operating Co., Inc., mining on American Creek, operated the only dredge active in the Hot Springs district Dredging began June 10 and ended October 1; during this period the Diesel-powered Yuba dredge, equipped with 2½-cubic foot buckets, handled 187,038 cubic yards of gravel from which 4,002 ounces of fine gold were recovered.

In the Iditarod district the North American Dredging Co., operating a fuel oil-powered dredge equipped with sixty-one 31/2-cubic foot buckets, and the J. E. Riley Investment Co., using a Diesel-powered dredge of Union type, equipped with fifty-eight 31/2-cubic foot buckets, washed more than 550,000 cubic yards of gravel during the 5 months

of open season beginning about June 1.

A new type of floating dredge was installed by the Triple X Placers Co. and was engaged actively during the 1939 season in recovery of gold in the Bonnifield district near Ferry. Instead of the conventional bucket line, a single dipper similar in type to that of a power shovel is employed for excavating. The dipper is mounted on a steel framework at the digging end of the dredge in such a manner as to permit it to be elevated to an angle that allows the gold-bearing gravel to be discharged into a trommel screen on the floating washing plant. The washing plant and stacker unit are similar to those used on lightweight dredges. The output of recovered gold during 1939 compared favorably with recoveries by floating connected-bucket dredges using up to 3½-cubic foot buckets.

Among other floating connected-bucket dredges in the region recovering quantities of gold in 1939 worthy of note were: The Holkv Dredging Co. and Nels J. Vibe, both in the Innoko district; the Nome Creek Mining Co., in the Circle district; the Boundary Dredging Co., operating on Canyon Creek, in the Fortymile district; and North American Mines, Inc., dredging on Jack Wade Creek, also in the

Fortymile district.

The second most productive source of gold in the Yukon Basin region in 1939 was the many placer mines—other than floating connected-bucket dredges—throughout the area. In most of the region water supplies in the early part of the open season were inadequate to insure continuous work for all operators; later, seasonal rains relieved this situation. Additional draglines, hydraulic giants, bulldozers, slackline scrapers, and water pumps were installed in most of the districts of the region, especially in the Fortymile, Fairbanks, Innoko, Koyukuk, Ruby, and Tolovana districts. The open season, beginning about May 1 to 15 and lasting in some rare instances to December 1, was about normal. Most of the gold recovered from small placer operations in the region was shipped by bullion buyers, principally the First National Bank of Fairbanks, either as agents or purchasers.

In the Bonnifield district three hydraulic operators washed about 60,000 cubic yards of gravel in 1939 with an average recovery of 34 cents in gold per cubic yard; hydraulicking began about May 2 and continued intermittently until about September 15.

In the Chisana district two hydraulic plants, beginning work about May 15 and ending about September 1, washed about 26,000 cubic yards of gravel, with an average in recovered gold of 55 cents per cubic yard.

Among the principal producers in the Circle district in 1939 was the Mastodon Mining Co., which operated a hydraulic plant, with a Bucyrus Diesel-powered 1½-cubic yard dragline and two RD-8 tractors as auxiliary equipment; 259,960 cubic yards of gravel were hydraulicked during the open season, May 29 to September 29. Johnston, Blondo & Co., using a Diesel-powered dragline and an overhead sluice, washed approximately 84,000 cubic yards of gravel which netted \$76,284 in gold-silver bullion during 84 days of operation; two hydraulic giants also were employed in this operation.

In the Fairbanks district three operators, using hydraulic, dragline, and bulldozing equipment in 1939, washed approximately 100,000 cubic yards of gold-bearing gravel which netted \$88,656 in recovered gold. The Deadwood Mining Co., sluicing gravels on Deadwood Creek near Circle Springs, employed two N. W. fuel oil-powered

draglines with 1½- and 2¼-yard buckets.

L. McGee, owner of 1,600 acres of placer ground 21 miles east of Hughes on Utopia Creek in the Fort Gibbon district, used a 1½-cubic yard dragline and three caterpillar bulldozers, all Diesel-powered, in recovering 1,383 fine ounces of gold from about 142,000 cubic yards

of gravel in 1939.

The Central Development Syndicate, working in 1939 on Jack Wade Creek in the Fortymile district, removed 97,000 cubic yards of muck, sluiced 73,200 cubic yards of gold-bearing gravel during the open season, and recovered gold which netted \$65,777. Prime movers of the gold-bearing gravel and the muck were two Diesel-powered caterpillar bulldozers; the gravel was treated in a washing plant.

In the Hot Springs district three operators sluiced 45,333 cubic yards of material in 1939, recovering gold for which \$29,026 was received; hydraulic giants, bulldozers, and draglines were used in

moving the gravel.

In the Innoko district 3 draglines (two 1½-cubic yard and one 1-cubic yard), a slackline scraper (one 1-cubic yard bucket), 6 bulldozers (Diesel-powered caterpillar tractors), and 17 hydraulic giants, owned and operated by four different partnerships, removed overburden and allowed sluicing in 1939 of 342,730 cubic yards of gold-bearing gravel averaging 57 cents per cubic yard in recovered gold. Three Miners, Inc., controlling 440 acres of placer ground on the Innoko River, recovered 1,361 ounces of fine gold from 112,730 yards of gravel from May 21 to October 23; equipment comprised a Bucyrus-Erie Diesel-powered dragline, a fuel oil-powered caterpillar tractor bulldozer, a fabricated hydraulic giant, and a washing plant.

The operation of N. R. Hudson on Olive Creek in the Tolovana district is typical of the wide use to which bulldozing tractors and draglines are put in the recovery of gold from placer gravels. During the 1939 season (May 1 to the latter part of September) approximately 76,000 cubic yards of gravel averaging about \$1 per cubic yard in recovered gold were handled by two bulldozers (International-40), a ½-yard gasoline-powered dragline, and four 3-inch hydraulic giants; the bulldozers were used for general utility work, and the dragline was used to dispose of the tailings from the sluice boxes. An International pumping unit run by a 100-hp. motor supplied or added to the necessary head or water pressure on the giants.

the necessary head or water pressure on the giants.

Other placer operators in the region recovering quantities of gold in 1939 worthy of note were: The Berry Holding Co., hydraulicking on

Eagle Creek in the Circle district; Alder Creek Mining Co., operating on Alder Creek in the Fairbanks district; Cleary Hill Mines Co., operating on Tofty Creek in the Hot Springs district; Northland Development Co., working on Willow Creek in the Iditarod district; Olson & Co., operating on Happy Creek in the Iditarod district; Eric Hard and partners, on Ophir Creek in the Innoko district; Awe Mining Co., Peter Miscovich, and the Moore Creek Mining Co., all with headquarters at Flat; Long Creek Mining Co., working on Long Creek in the Ruby district; and Wilbur Mines, operating on Wilbur

Creek in the Tolovana district.

The Yukon Basin region ranked third in importance in Alaska in 1939 in output of lode gold; it produced 19,572 fine ounces of gold and 5,514 fine ounces of silver, principally in the form of gold-silver bullion shipped finally to the Seattle Assay Office; some high-grade dry gold concentrates were shipped to the Tacoma smelter. The leading producers from lode mines in the region were: The Cleary Hill Mines Co., operating the Cleary Hill mine; the Hi Yu Mining Co., with a 50-ton amalgamation-flotation mill at the Hi Yu mine; and the United States Smelting, Refining & Mining Co., operating the old McCarty property—all in the Fairbanks district; and the Red Top Mining Co., operating the Red Top mine in the Kantishna district.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN ARIZONA

(MINE REPORT)

By T. H. MILLER AND PAUL LUFF

SUMMARY OUTLINE

Page	
Summary 179	Mining industry 184
Calculation of value of metal production 179	Ore classification 185
Mine production by counties 183	Metallurgic industry 185
	Review by counties and districts 189

The total value of the recoverable metal output from mines in Arizona was \$72,616,408 in 1939 compared with \$58,358,401 in 1938, an increase of more than 24 percent. The value for 1939 has been exceeded in only two years during the past decade — in 1930 (\$81,042,416) and in 1937 (\$90,855,462). Both quantity and total value of each metal in 1939 increased; the total value of the gold was \$399,350 greater than in 1938, silver \$475,831, copper \$13,203,084, lead \$39,942, and zinc \$139,800. The several metals recovered from copper ore were valued at \$62,227,585 in 1939, or 86 percent of the State total. Copper has long been the most important metal resource and mineral product of Arizona, hence the increase in 1939 in the average sales price of the metal to 10.4 cents a pound caused increased output of copper ore in all the copper-producing districts. The rise in the average sales price of silver, lead, and zinc resulted likewise in stimulating activity in the silver-lead-zinc districts.

All tonnage figures are short tons and "dry weight"; that is, they do

not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zine 3	
1935 1936 1937 1938 1939	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0. 71875 . 7745 . 7735 4 . 646+ 5 . 678+	Per pound \$0.083 .092 .121 .098	Per pound \$0.040 .046 .059 .046 .047	Per pound \$0.044 .050 .065 .048	

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.
2 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.
3 Yearly average weighted price of all grades of primary metal sold by producers.
4 \$0.64646464.

Mine production of gold, silver, copper, lead, and zinc in Arizona, 1935-39, and total, 1860-1939, in terms of recovered metals

							4.			
Yea	ar .		produc- ng	Ore (short	Gold (lode	e and placer)	Silver (loc	Silver (lode and placer)		
		Lode	Placer	tons)	Fine ounce	s Value	Fine ounce	value		
1935 1936 1937 1938 1939		904 847 888 885 976	1, 197 787 376 329 142	6, 770, 050 13, 819, 838 20, 976, 359 14, 203, 164 18, 793, 260	241, 754. 6 322, 408. 2 332, 694. 0 305, 043. 0 316, 453. 0	0 11, 284, 28 0 11, 644, 29 0 10, 676, 50	7 8, 386, 043 9, 422, 552 5 7, 479, 153	6, 494, 990 7, 288, 344 4, 835, 008		
1860-1939				(1)	9, 564, 090. 00 222, 238, 30		254, 114, 563	189, 518, 409		
	C	opper		Lead		Zi	ne			
Year	Pounds	v	alue	Pounds	Value	Pounds	Value	Total value		
1935 1936 1937 1938 1939	278, 029, 289 422, 550, 000 576, 956, 000 421, 594, 000 524, 224, 000	38, 69, 41,	076, 431 874, 600 811, 676 316, 212 519, 296	15, 566, 100 21, 376, 000 24, 708, 000 21, 142, 000 21, 542, 000	\$622, 644 983, 296 1, 457, 772 972, 532 1, 012, 474	6, 673, 932 7, 178, 000 10, 052, 000 11, 628, 000 13, 422, 000	\$293, 653 358, 900 653, 380 558, 144 697, 944	\$37, 198, 809 57, 996, 073 90, 855, 462 58, 358, 401 72, 616, 408		
1860-1939	² 8, 839, 310	2,700,	700, 210	² 253, 150	29, 390, 318	2 94, 354	14, 721, 395	3, 156, 568, 637		

¹ Figures not available.

Gold and silver produced at placer mines in Arizona, 1935-39, in fine ounces, in terms of recovered metals

Year	Sluicing ¹		Drift mining		Dry-land and floating dragline dredges ²		Total	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
1935	⁸ 2, 561. 47 ³ 2, 083. 69 1, 275. 00 1, 624. 00 1, 919. 00	3 494 3 286 212 213 227	(3) (3) 258, 00 328, 00 1,850,00	(3) (3) 34 35 125	2, 595. 53 4, 403. 91 2, 866. 00 3, 033. 00 2, 640. 00	338 604 403 380 339	5, 157, 00 6, 487, 60 4, 399, 00 4, 985, 00 6, 409, 00	832 890 649 628 691

Gold.—The output of recoverable gold in Arizona in 1939 was 316,453 fine ounces, a gain of 4 percent over 1938. Gold from siliceous ores (chiefly dry and siliceous gold ore) increased 8,027 ounces owing to marked increases in gold ore treated by concentration followed by cyanidation in the Old Hat district and in gold ore treated by direct cyanidation in the Weaver district and the Katherine section of the San Francisco district. Gold from copper ore increased 6,118 ounces, but gold from zinc-lead ore declined 4,741 ounces owing to the large decrease in output of zinc-lead ore from the Tennessee mine at Chloride. Gold from placers increased 1,424 ounces; 64 percent of the total placer gold was recovered by dragline dredging at a property on Lynx Creek in Yavapai County and by drift mining at a property near Quartzsite in Yuma County. The Copper Queen (Bisbee) branch of the Phelps Dodge Corporation was, as usual, the leading gold

² Short tons.

¹ Includes placer sands treated by dry concentration plants.
2 A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."

³ Figures for sluicing include those for drift mining.

producer in Arizona, and the United Verde (Jerome) and New Cornelia (Ajo) branches of the company ranked second and third, respectively; there was a marked increase in gold output from the New Cornelia, but a decrease from the United Verde; and the total output of gold from these three properties represented 38 percent of the State total. Other large gold producers in 1939 were the Mammoth-St.

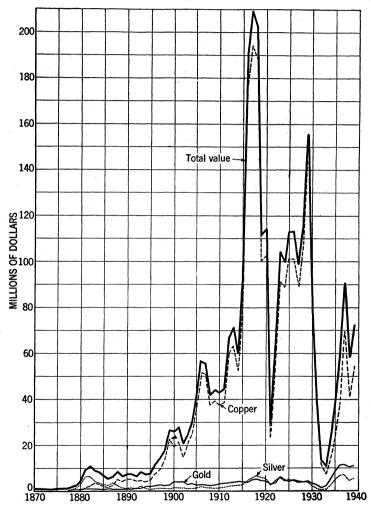


FIGURE 1.—Value of mine production of gold, silver, and copper and total value of gold, silver, copper, lead, and zinc in Arizona, 1870-1939. The value of lead and zinc has been less than \$2,000,000 annually, except in a few years.

Anthony Limited property in Pinal County, the Goldroad mine (United States Smelting, Refining & Mining Co.) in Mohave County, the Octave mine (American Smelting & Refining Co.) in Yavapai County, the Iron King mine in Yavapai County, the Gold Standard Mines Corporation in Mohave County, and the Montana mine (Eagle-Picher Mining & Smelting Co.) in Santa Cruz County. Siliceous ore

vielded 50 percent of the State total gold, copper ore 44 percent, and zinc-lead ore 3 percent. The chief gold-producing districts in Arizona were the Warren (mostly copper ore), San Francisco (mostly gold ore), Verde (mostly copper ore), Ajo (copper ore), Old Hat (gold ore), and Weaver (Yavapai County) (gold ore).

Silver.—The output of recoverable silver in Arizona in 1939 was 7,824,004 fine ounces, a gain of 5 percent over 1938. Silver from copper ore increased 295,034 ounces, that from zinc-lead ore 139,891 ounces, and that from zinc-copper ore 118,955 ounces, but silver from siliceous ores declined 207,816 ounces and that from lead ore decreased slightly. Copper ore yielded nearly 62 percent of the State total silver, siliceous ores 25 percent, zinc-lead ore 10 percent, zinc-copper ore 2 percent, and lead ore 1 percent. The Phelps Dodge Corporation continued as the chief silver producer in Arizona, although its output was 2 percent less than in 1938; the company's three properties (Copper Queen, United Verde, and New Cornelia) produced 51 percent of the State total. Other large silver producers in 1939 were the Magma, Montana, Ash Peak, Shattuck Denn, and Iron King mines. Silver output decreased substantially in the Ash Peak (Duncan), Wallapai (Chloride), and Eureka (Hillside) districts but increased sharply in the Verde (Jerome), Harshaw (Patagonia), Big Bug (Humboldt), Pioneer (Superior), Black Canyon (Cleator), and Ajo districts.

Copper.—The output of recoverable copper in Arizona in 1939 was 524,224,000 pounds, a gain of 24 percent over 1938; there was a general increase in each of the seven chief copper-producing districts, as follows: Globe-Miami district increased 35,745,031 pounds; Warren (Bisbee) district, 14,197,289 pounds; Verde (Jerome) district, 17,566,496 pounds; Ajo (New Cornelia) district, 13,382,587 pounds; Mineral Creek (Ray) district, 13,107,102 pounds; Copper Mountain (Morenci) district, 9,459,464 pounds; and Pioneer (Superior) district, 1,572,510 pounds. These seven districts contributed 99 percent of the State total copper, and the Globe-Miami district was the leading producer. Copper ore and its products yielded 519,923,639 pounds of copper, as follows: 13,542,200 tons of copper ore treated by concentration yielded 51 percent, 1,812,177 tons of copper ore shipped crude to smelters 32 percent, and 2,114,407 tons of copper ore leached and 21,330 tons of cement copper (from mine-water precipitates and underground leaching operations) 17 percent. The New Cornelia property continued to be the largest copper producer in Arizona; its output was 15 percent greater than in 1938, and it was followed in order by the Copper Queen, United Verde, Miami, Inspiration, Ray (Nevada Consolidated Copper Corporation), Magma, and Morenci (Phelps Dodge Corporation).

Lead and zinc.—The output of recoverable lead in Arizona in 1939 was 21,542,000 pounds, an increase of 2 percent over 1938; the output of recoverable zinc was 13,422,000 pounds, an increase of 15 percent. About 55 percent of the State total lead and 51 percent of the zinc came from Santa Cruz County, 19 percent of the lead and 30 percent of the zinc from Pinal County, and 12 percent of the lead and 7 percent of the zinc from Yavapai County; the remainder of the lead came chiefly from Mohave and Cochise Counties, and nearly all the rest of the zinc from Mohave County. More than 60 percent of the total lead and nearly 68 percent of the total zinc came from zinc-lead ore; nearly all the rest of the lead came from siliceous ores and lead ore, and nearly all the rest of the zinc from zinc-copper ore. The Montana mine of the Eagle-Picher Mining & Smelting Co. at Ruby in Santa Cruz County continued to be the chief producer of both lead and zinc in the State; the Magma mine at Superior ranked second in zinc and was followed by the Trench, Tennessee, and Hillside mines. Other large producers of lead were the Trench, Mammoth-St. Anthony, Iron King, Hillside, Tennessee, and Golden Turkey properties. The marked increase in output of lead and zinc from the Trench mine more than offset decreases from the Montana and Tennessee mines.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Arizona in 1939, by counties, in terms of recovered metals

County		Mines produc- ing		Gold (lo	de a	nd pla	cer)	Silver (lode and placer)		
		Lode	Placer	Fine oun	ces	Val	lue	Fine	ounces	Value
Cochise Coconino Gila Graham Greenlee Maricopa Mohave Pima Pinal Santa Cruz Yavapai Yuma Total, 1938		44 4 74 6 11 51 190 70 83 65 320 58	7 8 4 9 15 7 3 1 61 27	6, 1, 3, 69, 32, 41, 5, 92, 4,	4 117 8 592 076 988 692 465 708 225 257 453	3, 22 11, 14, 14, 15, 19 3, 22, 14, 14, 15, 19	140 4, 095 280 5, 720 7, 660 9, 580 4, 220 1, 275 9, 780 7, 875 8, 995 5, 855	1,	695, 001 828 141, 866 2, 696 313, 892 42, 906 542, 171 385, 543 958, 756 755, 205 977, 270 7, 870	\$1, 829, 334 562 96, 297 1, 330 213, 066 29, 124 368, 019 261, 702 650, 792 512, 624 1, 342, 147 5, 342
Total, 1938		885	329	305,	043	10, 67	5, 505	7,	479, 153	4, 835, 008
County	Pound	Copper	value	Le Pounds	ad	alue	Pou	Zir	Value	Total value
Coconino Gila Graham Greenlee Maricopa Mohave Pima Pinal Santa Cruz Yavapai Yuma	31, 763, 5 408, 1 185, 5 99, 867, 6 79, 664, 8 545, 2 76, 406, 2 64, 0 524, 224, 0	94 21 13, 39 3, 15 29 16 10, 84 8, 69 7, 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	365, 390 11, 741 095, 339 680 303, 404 42, 444 19, 295 386, 232 285, 148 56, 708 946, 251 6, 664	1, 124, 659 51, 341 151, 723 33, 042 617 1, 459, 107 83, 724 4, 134, 170 11, 772, 085 2, 685, 638 45, 894 21, 542, 000	19 54 19		4,000 6,90 894	0,000 4,211 4,346 2,000	80, 064 208, 000 359, 019 46, 506 697, 944	\$15, 325, 779 12, 443 13, 408, 144 9, 921 3, 576, 137 179, 257 2, 985, 536 11, 786, 089 10, 789, 531 1, 681, 541 12, 689, 004 163, 158
Total, 1938	421, 594, 0	00 41,	316, 212	21, 142, 000	9	72, 532	11, 62	3,000	558, 144	58, 358, 401

Gold and silver produced at lode mines in Arizona in 1939, by counties, in terms of recovered metals

County	Ore sold or treated	Gold	Silver
Cochise	573 7, 172, 500 1, 282 489, 239 27, 594	Fine ounces 59, 277 4 6, 090 8 1, 571 2, 966 69, 891	Fine ounces 2, 694, 998 828 141, 866 2, 696 313, 892 42, 897 542, 163
Pima Pinal Santa Cruz Yavapai	6, 111, 215 2, 023, 555 175, 701	32, 626 41, 456 5, 706 88, 443	385, 52 958, 75 755, 20 1, 976, 78
Yuma	9, 308	2, 006 310, 044 300, 058	7, 823, 313 7, 478, 528

Gold and silver produced at placer mines in Arizona in 1939, by counties, in fine ounces, in terms of recovered metals

County	Sluicing ¹		Drift mining		Dry-land and floating drag- line dredges ²		Total	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
Cochise Gila Greenlee. Maricopa. Mohave Pima. Pinal Santa Cruz Yavapai. Yuma.	26 27 21 110 97 66 9 2 1,156 405	1 9 9 19 19	1, 846	125	2, 622	337	44 27 21 110 97 66 9 2 3,782 2,251	9 9 19 19
Total, 1938	1, 919 1, 624	227 213	1,850 328	125 35	2, 640 3, 033	339 380	6, 409 4, 985	691 628

MINING INDUSTRY

The increase in sales price of copper, silver, lead, and zinc in 1939 resulted in substantial improvement in the mining industry of Arizona, especially in the mining of copper ore. Arizona has seven large copper-producing districts—Ajo, Globe-Miami, Verde (Jerome), Warren (Bisbee), Mineral Creek (Ray), Pioneer (Superior), and Copper Mountain (Morenci)—and the output of copper ore from each was much greater than in 1938. The 20,000-ton concentrator at Ajo, the 9,000-ton ferric sulfate leaching plant at Inspiration, the 18,000-ton concentrator and 3,000-ton leaching plant at Miami, the 1,600-ton concentrator at Clarkdale, the 12,000-ton concentrator at Hayden, the 850-ton concentrator at Superior, and the 1,500-ton test concentrator at Morenci were operated continuously on copper ore in 1939 at an increased rate over 1938. Copper-smelting plants at Douglas (5,000-ton), Clarkdale (5,000-ton), Hayden (1,000-ton), Miami (1,500-ton), and Superior (500-ton) were operated throughout the year. Nearly half of the total gold and more than half of the total silver produced in Arizona are recovered usually from copper ore:

¹ Includes placer sands treated by dry concentration plants.

² A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a 'dry-land dredge."

consequently, when the price of copper rises or falls it affects the State production of gold and silver. Maintaining the price of gold at \$35 an ounce continued to stimulate operations at gold properties, as evidenced by the large increase in number of gold producers in 1939 and the marked increase in output of gold ore. The output of zinclead-silver ore also increased owing to the gain from mines in the Harshaw district, Santa Cruz County.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Arizona in 1939, with content in terms of recovered metals

Source	Mines produc- ing	Ore	Gold	Silver	Copper	Lead	Zinc
Dry and siliceous gold ore	619 63 86	Short tons 803, 816 153, 289 84, 899		896, 106	731, 385	2, 127, 224	220, 500
Copper ore Lead ore Zinc ore Zinc-copper ore Zinc-lead ore	109 5 4	17, 468, 926	139, 527 1, 240 6 148 661	84, 208 1, 634 4, 030 182, 800	2519, 923, 639 61, 616 2, 329 2, 553 2, 252, 500	116 2, 073, 050 8, 601 10, 354	103, 173 4, 000, 000
Total, lode mines	1 976 142	18, 793, 260	310, 044 6, 409	7, 823, 313 691	² 524,224.000	21, 542, 000	13, 422, 000
Total, 1938		18, 793, 260 14, 203, 164	316, 453 305, 043	7, 824, 004 7, 479, 153	² 524,224,000 ³ 421,594,000	21, 542, 000 21, 142, 000	13, 422, 000 11, 628, 000

A mine producing more than 1 class of ore is counted but once in arriving at total for all classes.
 Includes 86,058,553 pounds recovered from ore leached and mine-water precipitates.
 Includes 61,739,674 pounds recovered from ore leached and mine-water precipitates.

METALLURGIC INDUSTRY

The output of ore of all classes treated in Arizona increased from 14,203,164 tons in 1938 to 18,793,260 tons in 1939, and that of copper ore from 13,047,356 to 17,468,926 tons. Nearly 93 percent of the total in 1939 was copper ore, 4 percent gold ore, and the rest principally

zinc-lead ore, gold-silver ore, silver ore, and zinc-copper ore.

Gold ore treated at amalgamation mills decreased from 11,177 tons in 1938 to 5,000 tons in 1939, but siliceous material treated at cyanidation plants increased from 605,367 to 733,943 tons. Cyanidation plants were operated continuously in 1939 at the Goldroad, Tom Reed, Gold Standard, Producers Mines, Inc., Vivian, Congress, Octave, Mammoth-St. Anthony, and Alvarado properties. Cyanidation plants used 207,920 pounds of sodium cyanide, 590,998 pounds of "Aero Brand" calcium cyanide, 100,000 pounds of zinc dust, 3,050,000 pounds of lime, 331 pounds of ferric sulfate, and 200 pounds of lead acetate.

Ore treated at concentration plants increased from 10,546,807 tons in 1938 to 14,017,765 tons in 1939; the ore concentrated in 1939 comprised 24,271 tons of gold ore, 119,058 tons of gold-silver ore, 58,593 tons of silver ore, 13,542,200 tons of copper ore (compared with 10,118,757 tons in 1938), 1,351 tons of lead ore, 628 tons of zinc ore. 67,074 tons of zinc-copper ore, and 204,590 tons of zinc-lead ore.

Copper ore from the Miami property (4,870,684 tons) was treated by a combination of leaching and concentration, and this tonnage is included in figures for ore treated at straight concentration plants. Ore from the Inspiration mine in 1939 was treated by straight leaching, but 147,693 tons of slimes discarded from the leaching-plant feed were concentrated.

The following tables give details of the treatment of all ores produced in Arizona in 1939.

Mine production of metals in Arizona in 1939, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zinc
Ore and old tailings amalgamated	Short tons 5, 000	1,087	Fine ounces	Pounds	Pounds	Pounds
Ore and old tailings cyanided Concentrates smelted Ore smelted Copper precipitates smelted.	733, 943 668, 141 1, 922, 003 21, 330	77, 823 109, 671 121, 463	144, 713 3, 028, 737 4, 649, 538	269, 134, 268 169, 031, 179 1 35, 357, 650	19, 282, 374 2, 259, 626	13, 338, 249 83, 751
Copper ore leachedPlacer	² 2, 114, 407	6, 409	691	50, 700, 903		
Total, 1938		316, 453 305, 043	7, 824, 004 7, 479, 153	524, 224, 000 421, 594, 000	21, 542, 000 21, 142, 000	13, 422, 000 11, 628, 000

¹ Distributed as follows: Cochise County, 1,758,050 pounds; Gila County, 116,800 pounds; Greenlee County, 23,000,000 pounds; Pinal County, 9,713,400 pounds; and Yavapai County, 769,400 pounds.

² Treated by straight leaching at 1 plant in Gila County.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Arizona in 1939, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

•	Material	Recovered in bul- lion		Concentrates smelted and recovered metal						
County	treated	Gold	Silver	Concen- trates produced	Gold	Silver	Copper	Lead		
Gila	Short tons 75	Fine ounces 34	Fine ounces	Short tons	Fine ounces	Fine ounces	Pounds	Pounds		
Maricopa	1,883	110	28 3	42	129	89	193	30		
Mohave Pima Pinal	22 716 25	17 181 77	96 16	13	40	80	177	2, 426		
Santa CruzYavapai	18 653	7 213	5 102	28	30	90				
Yuma	1,608	448	49	6	7	175	85			
Total, 1938	5, 000 11, 177	1, 087 1, 796	308 575	89 243	206 672	434 497	455 1, 510	2, 456 2, 000		
		CY	ANIDAT	ION MIL	LS		•			
Cochise	70 100 10, 888 360, 207 192, 392 165, 260 5, 026	8 16 456 59, 876 3, 791 13, 266 410	19 2 403 101, 011 8, 628 34, 550 100	4, 471 619	24, 413 8, 637	27, 767 8, 551	8, 000 10, 320	3, 700, 000 57, 000		
Total, 1938	733, 943 605, 367	77, 823 73, 856	144, 713 134, 682	5, 090 4, 775	33, 050 27, 311	36, 318 35, 510	18, 320 7, 013	3, 757, 000 3, 861, 391		
Grand total: 1939 1938	738, 943 616, 544	78, 910 75, 652	145, 021 135, 257	5, 179 5, 018	33, 256 27, 983	36, 752 36, 007	18, 775 8, 523	3, 759, 456 3, 863, 391		

Mine production of metals from concentrating mills in Arizona in 1939, by counties, in terms of recovered metals

		Concentrates smelted and recovered metal											
County	Material treated	Concentrates produced	Gold	Silver	Copper	Lead	Zinc						
Cochise	Short tons 163 5, 018, 385 1, 200 488, 562 1, 200 61, 727 6, 109, 236 1, 734, 153 171, 288 431, 806	Short tons 31 96, 264 119 22, 465 203 9, 078 164, 610 181, 800 18, 945 169, 438	Fine ounces 25 1, 463 2 1, 354 4 6, 528 32, 069 6, 438 5, 252 23, 275 5	Fine ounces 798 61, 251 2, 386 311, 200 19, 273 316, 568 366, 982 473, 698 674, 608 765, 188 33	Pounds 73, 769, 923 6, 000 8, 758, 456 62, 143 145, 959 99, 835, 064 59, 254, 380 473, 151 26, 810, 217 200	Pounds 10, 215 659 104, 728 4, 200 1, 277, 957 2, 406 2, 548 11, 546, 890 2, 591 3, 724	Pounds 1, 539, 692 4, 000, 000 6, 904, 211 894, 346						
Total, 1938	14, 017, 765 10, 546, 807	662, 962 542, 501	76, 415 78, 522	2, 991, 985 2, 781, 817	269, 115, 493 213, 188, 561	15, 522, 918 14, 026, 089	13, 338, 249 11, 628, 000						

Gross metal content of concentrates produced from ores mined in Arizona in 1939, by classes of concentrates smelted

Class of concentrates	Concentrates		nt			
Class of concentrates	produced	Gold	Silver	Copper	Lead	Zinc
Dry gold	Short tons 1, 194 26, 939 2, 464 597, 428 25, 604 14, 512	Fine ounces 10, 149 10, 320 1, 307 46, 768 40, 236 891	Fine ounces 23, 450 376, 216 391, 125 1, 178, 181 943, 217 116, 548	Pounds 14, 546 265, 620 66, 600 276, 491, 738 675, 614 298, 343	Pounds 80, 245 1, 421, 053 140, 730 3, 000 18, 266, 743 738, 529	Pounds
Total, 1938	668, 141 547, 519	109, 671 106, 505	3, 028, 737 2, 817, 824	277, 812, 461 220, 304, 713	20, 650, 300 18, 873, 836	20, 273, 064 17, 604, 947

Mine production of metals from Arizona concentrates shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	Zine
Cochise. Gila. Graham Greenlee. Maricopa. Mohave Pima. Pinal Santa Cruz Yavapai Yuma	Short tons 31 96, 264 119 22, 465 245 9, 078 164, 623 186, 271 18, 945 170, 085	Fine ounces 25 1, 463 2, 1, 354 133 6, 528 32, 109 30, 851 5, 252 31, 942 12	Fine ounces 798 61, 251 2, 386 311, 200 19, 362 316, 568 367, 062 501, 465 674, 608 773, 829	Pounds 73, 769, 923 6,000 8, 758, 456 62, 336 145, 959 99, 835, 241 59, 262, 380 473, 151 26, 820, 537 285	Pounds 10, 215 659 104, 728 4, 200 30 1, 277, 957 4, 832 3, 702, 548 11, 546, 890 2, 626, 591 3, 724	Pounds 1, 539, 69: 4, 000, 00 6, 904, 21: 894, 346
Total, 1938	668, 141 547, 519	109, 671 106, 505	3, 028, 737 2, 817, 824	269, 134, 268 213, 197, 084	19, 282, 374 17, 889, 480	13, 338, 249 11, 628, 00

Copper	28 46,768	1. 178, 181	268, 069, 515	2, 200	
Lead. 25, 6 Zinc. 14, 5 668, 1	891	943, 217 116, 548 3, 028, 737	536, 322 208, 478 269, 134, 268	17, 389, 281 584, 756 19, 282, 374	13, 338, 249

Gross metal content of Arizona crude ore shipped to smelters in 1939, by classes of ore

G)	0	Gross metal content									
Class of ore	Ore	Gold	Silver	Copper	Lead	Zinc					
Dry and siliceous gold	Short tons 44, 768 30, 568 25, 803 1, 812, 177 8, 427 30 42 188	Fine ounces 19, 357 7, 071 361 93, 440 1, 228 6	Fine ounces 69, 144 304, 266 379, 397 3, 813, 733 81, 364 1, 634	Pounds 534, 502 412, 317 98, 716 178, 441, 982 73, 584 2, 982	Pounds 24, 220 262, 403 69, 522 166 2, 045, 921 9, 045 2, 540 31, 646	Pounds 27,000 69,269					
Total, 1938	1, 922, 003 1, 659, 601	121, 463 117, 901	4, 649, 538 4, 525, 444	179, 564, 083 156, 575, 773	2, 445, 463 3, 603, 044	96, 269					

Mine production of metals from Arizona crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

Occonino Gila Graham Greenlee Maricopa Mohave Pima	39, 391 82 677 13, 623 6, 042 1, 263	4, 577 6 217 2, 267 3, 470 336	828 80, 587 310 2, 692 23, 104 124, 580 18, 366	107, 524, 546 112, 894 1, 329, 095 5, 044 345, 779 39, 570 32, 375	1, 114, 444 50, 682 46, 995 28, 842 587 181, 150 78, 892	37, 71
Yuma 1,5	4, 395 722, 763 2, 629 922, 003 359, 601	447 43, 022 1, 136 121, 463 117, 901		72, 118 48, 816, 323 63, 792 169, 031, 179 146, 557, 242	225, 195 59, 047 42, 170 2, 259, 626 3, 252, 520	83, 75

Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper Lead Lead-copper Zinc Zinc-lead	44, 768 30, 568 25, 803 1, 812, 177 8, 427 30 42 188	19, 357 7, 071 361 93, 440 1, 228 6	69, 144 304, 266 379, 397 3, 813, 733 81, 364 1, 634	515, 440 396, 249 94, 149 167, 967, 623 55, 389 2, 329	18, 911 204, 829 52, 786 116 1, 948, 955 8, 601 1, 778 23, 650	23, 481 60, 270
	1, 922, 003	121, 463	4, 649, 538	169, 031, 179	2, 259, 626	83, 751

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Arizona in 1939, by counties and districts, in terms of recovered metals

County and district	Mine due	s pro-	Ore sold or treated		Gold			Silver		Copper	Lead	Zine	Total value
	Lode	Placer	treated	Lode	Placer	Total	Lode	Placer	Total				varue
Cochise County: California. Cochise (Dragoon) Dos Cabezas and Tevis. Hartford (Huachuca Mountains) Swisshelm. Tombstone. Turquoise	1 8 3 4 11	4 2	Short tons 231 18 100 5 54 8,007 1,614	Fine ounces 7 66 16 3 1,501 94	Fine ounces	Fine ounces 7 99 23 3 1,501	Fine ounces 1, 560 3 106 31 196 92, 509 10, 258	Fine ounces	Fine ounces 1, 560 3 109 31 196 92, 509 10, 258	Pounds 731 3, 077 202 106	Pounds 70, 978 4, 276 362 11, 383 579, 085 218, 447		\$4,716 322 3,761 854 773 145,727 23,191
Warren. Coconino County: Francis. Jacob Canyon. Ryan (Warm Springs). White Mesa. Gila County:	3 1 1 1 1	1	1, 023, 784 2 462 9 100	57, 590	4	3	2, 590, 335 3 243 9 573		2, 590, 335 3 243 9 573	109, 233, 952 528 93, 202 2, 606 16, 558	240, 128	14, 231	9, 963 277 2, 146
Banner and Dripping Springs Globe-Miami Green Valley Ploneer (Pinal Mountains) Roosevelt Rye Creek Summit Graham County: Aravaipa	35 13 8 1 1 4	5 3	28, 202 7, 142, 998 354 157 491 38 260 1, 282	2, 624 3, 093 163 19 189 2	13 14	2, 624 3, 106 177 19 189 2	9, 514 127, 190 84 3, 627 137 931 383 2, 696		9, 514 127, 190 84 3, 627 137 931 383 2, 696	1, 077, 462 124, 800, 154 1, 452 12, 240 125 1, 019 24, 269 6, 539	45, 107 659		4,400 6,721
Greenlee County: Ash Peak Copper Mountain Granville Mayflower Metcalf (Greenlee) San Francisco	1 1 2	1 3	50, 465 438, 477 53 16 228	793 713 32 33	19	793 715 32 33 19	279, 653 33, 638 56 78 467		279, 653 33, 638 56 78 467	3, 808 31, 755, 933 125 3, 067 567	4,085	46, 039	218, 182 3, 350, 667 1, 472 372 4, 779 665
Maricopa County: Beardsley Big Horn Cave Creek and Camp Creek Ellsworth (Harqua Hala) Hassayampa River	10 5	4 1	11 416 5,545 37	$\begin{array}{c} 1\\ 32\\ 703\\ 26 \end{array}$	32 2 2	1 64 705 26 2	3 9 31, 294 9	3	3 12 31, 294 9	215, 644 3, 567			45 2, 248 68, 347 1, 287 70

¹ Ellsworth district lies in both Maricopa and Yuma Counties.

Mine production of gold, silver, copper, lead, and zinc in Arizona in 1939, by counties and districts, in terms of recovered metals—Continued

County and district		s pro-	Ore sold or treated		Gold			Silver		Copper	Lead	Zine	Total value
	Lode	Placer	product	Lode	Placer	Total	Lode	Placer	Total				,
Maricopa County—Continued. New River	2		Short tons	Fine ounces 10	Fine ounces	Fine ounces 10	Fine ounces 168	Fine ounces	Fine ounces 168	Pounds 44, 288	Pounds	Pounds	\$5,070
Osborn Pikes Peak (Morgan City)	1	1	6, 661	630 2	2	630 4	10, 305		10, 305	141, 164			43, 726 140
Sant River Mountains		1	1,909	713	63	713 63	489	6	489 6	202			25, 308 2, 209
Sunflower Vulture Webb (Gila Bend Mountains)	12	1	9, 392 7	76 531 5	9	76 540 5	47 411 3		47 411 3	2, 904	553		2, 692 19, 507 177
White Tanks Winifred Mohave County:	6		2, 403	236		236	159		159	269			8, 396
Cedar Valley Chemehuevis Cottonwood	10	5	633 72 21	100 42 7	28	100 70 7	573 19 34	3	573 22 34	13, 538 202 58	127		5, 322 2, 492 274
Gold BasinGreenwood	3	5	3, 658 10	953 8	44	997	361	3	364	366			35, 496 280
Hacks Canyon Indian Secret (White Hills)	5		1, 188	91		91 91	22, 001	3	22,001	96			18, 119 877
Lost Basin Maynard and McConnico Minnesota	7	5	1, 105 3, 560	287 1, 663	25	25 287 1, 663	3, 362 3, 801		3, 362 3, 801	1, 404 452			12, 473 60, 832
Music Mountain	10 19		724 612	643 323		643 323	3, 045 2, 173		3, 045 2, 173	1, 221 22, 115	7, 299 37, 213		25, 042 16, 829
San Francisco (Oatman, Goldroad, Katherine, Vivian) Wallapai Weaver	48 47 16		284, 370 68, 716 63, 328	44, 757 9, 301 11, 715		44, 757 9, 301 11, 715	42, 486 451, 325 12, 979		42, 486 451, 325 12,979	146, 077	1, 406, 553 660	1, 539, 692	1, 595, 334 793, 253 418, 866
Pima County: Agua Dulce	1		1	1		1	9		9	221			64
Ajo Arivaca Baboquivari	1 26 4	2	6, 107, 206 623 303	32, 063 274 100	12	32, 063 286 100	365, 500 5, 137 2, 005		365, 500 5, 137 2, 005	99, 742, 587 4, 029 1, 260	17, 320		11, 743, 531 14, 730 5, 018
Cababi (Comobabi) Cerro Colorado Cimarron Mountains	4		430	115		115	2, 864 215 3		2, 864 215	6, 289 86	5, 595		6, 886 184 247
Empire Greaterville	1 2	1	9 2 79	21	20	41	271 794		271 794	538	28, 320		253 3, 361
Growler	1 5		18 69	3		3	174 439		174 439	8, 875	7, 233 213		458 1, 336

Marian	0 1	1	0.1	8 1	1	Q 1	6 1	1	6.1	!	42		286
Old Hat 2	2		2, 035	6		6	1, 494		1, 494	95, 683			11, 175
Pima (Sierritas, Papago, Twin Buttes)	6		2, 035	18		18	2, 631		2, 631	4, 029	21, 086		3,826
	0		4	2	34	36	78	19	97	106	1, 277		1, 397
Quijotoa	2	*	152	1	04	1	0 100		3, 493	3, 048			2, 723
Roskruge and Waterman	2		40	6		6	411		411	865			579
Santa Rosa	3			9 1		Ÿ	411		711	300			35
Silver Bell	1		1	1		1							
Pinal County:	_	1	00	10	1	13	90		90	5, 000			1,036
Astraya	1		39	13		85	2,796		2, 796	492, 510			56, 094
Bunker Hill	1		3, 977	85			2, 790		2,715	4, 558	3, 319		11. 573
Casa Grande	14		794	260		260	2, 715 221		2, 713	740	. 9, 918		4, 077
Cottonwood and Black Mountain	5		250	110		110			168	740			884
Goldfields	1		500	22		22	168			567			422
Hackberry	1		18	7		7	174		174				3, 081
Martinez Canyon	1		107				1,815		1,815	673	37, 851		4 504 7700
Mineral Creek	7		1, 428, 639	1,685		1,685	28, 153		28, 153	43, 165, 663	371, 362		4, 584, 768
Mineral Hill	4		406	160		160	380		380	5, 461			6, 426
Old Hat 2	17	2	192, 724	28, 467	6	28, 473	37, 299		37, 299	47, 779	3, 721, 255		1, 201, 741
Owl Head.	1		6							404			42
Picacho	2		147	26		26	78		78	2, 885			1, 263
Pioneer	13	1	393, 096	10, 168	3	10, 171	868, 513		868, 513	35, 904, 673		4, 000, 000	4, 887, 607
Ripsey	2		2, 394	369		369	15, 669		15, 669	32, 596			26, 941
Riverside	3		20	4		4	19		19	202			174
Sacaton Mountains and Blackwater	2		13	2		2	47		47	77	383		128
Saddle Mountain	7		410	78		78	557		557	529			3, 163
Steamboat	l i		15				62		62	567			101
Santa Cruz County:	_												ł
Harshaw	13	ł	37, 740	61		61	233, 232		233, 232	50, 567	4, 574, 320	2, 149, 769	492, 490
Nogales (Gold Hill)	l ii		129	49		49	940		940	529	7, 935	l	2,781
Oro Blanco	23		137, 303	5, 584		5, 584	515, 566		515, 566	444, 942	7, 136, 617	4, 754, 442	1, 174, 326
Palmetto	3		294	6,002		6	333		333	28, 163	3, 341	1	3, 522
Patagonia	1 4	1	37	. 3	2	, š	112		112	231	8, 361		668
Redrock	1		36	i	_	Ĭ	2, 914		2, 914	19. 548	894		4.088
Tvndall	1 4		30	1 1		l î	741		741	866	2,532		747
Wrightson	1 2		153	1 1		ī	1, 367		1, 367	423	38, 085		2, 797
	١ ،		100	1 1		1	1,001		2,00.	1	00,000		1 7
Yavapai County: Ash Creek	2	i .	38	18		18	75	l	75	269			709
	21	9	71, 043	9. 142	448	9. 590	250, 059	47	250, 106	266, 548	1, 083, 489	220, 500	595, 530
Big Bug	15	1 9	27, 778	4. 237	35	4, 272	179, 156	3	179, 159	18, 183			306, 145
Black Canyon	1 1	1 1	21,110	3	30	3	3	, ,	175, 103	29			110
Black Hills	11	3	289	290	17	307	420		420	7, 798			11, 841
Black Rock	11 2	3	104	10	1 11	10	6		420	1,100			354
Blue Tank	2			834		834	1. 161		1, 161	125, 452			43, 025
Bullard (Pierce)	0		3,730	58	12	70	1, 101		1, 101	5, 760			3, 062
Castle Creek	8	1	139		12		1, 594		1, 594	7, 807			27, 514
Cherry Creek	24		980	732		732			212	2, 904			4, 856
Copper Basin	. 5	6	73	62	64	126	193	19			000 700	673, 846	315, 981
Eureka	21	1	36, 439	4, 154	8	4, 162	93, 714		93, 714	327, 173	800, 702	070,840	
Granite Creek		.] 1			11	11		·	10.000	10.00		· 	385 73, 150
Hassayampa	76	2	1, 983	1,670	102	1,772	13, 010	19	13, 029	18, 635	7, 403		
Humbug	6		457	437	63	500	1, 379	9	1, 388	1, 087	2, 448		18,670
Kirkland	. 4	1	13	22	3	25	6	1	1 6	1	.	.l 	879

Old Hat district lies in both Pima and Pinal Counties.

Mine production of gold, silver, copper, lead, and zinc in Arizona in 1939, by counties and districts, in terms of recovered metals—Continued

County and district	Mine due	es pro- cing	Ore sold or treated		Gold			Silver		Copper	Lead	Zine	Total
	Lode	Placer		Lode	Placer	Total	Lode	Placer	Total				value
Yavapai County—Continued. Lynx Creek		8	Short tons	Fine ounces	Fine ounces 2, 631	Fine ounces 2, 631	Fine ounces	Fine ounces 352	Fine ounces 352	Pounds	Pounds	Pounds	\$92, 324
Martinez Mineral Point Oak Creek	13	2	105, 023 225	5, 415 74	6	5, 415 74 6	23, 903 165		23, 903 165	2, 558 490	724		206, 050 2, 753 210
Peck Pine Grove Seal Mountain	1 1		6, 458 8	2, 127 3		2, 127 3	31, 048		81 31, 048	91, 481	4, 914		160 105, 265 105
Silver Mountain Squaw Creek Thumb Butte	1 2	2	85 2 52	13 1 17	11	24 1 18	6, 152		6, 152		6, 192		5, 307 35
Tiger Tip Top Turkey Creek	5 5 8	3 1	148 50 232	96 3 132	17	96 20 136	280 7, 699 1, 239		7, 699 1, 239	240 125 356 692	638		659 3, 563 5, 993 5, 673
Verde Wagoner (Hassayampa River) Walker	4	1 4	999, 023 2, 316	40, 312 741	7 38	40, 312 7 779	1, 327, 472 14, 542	6	1, 327, 472 14, 548	75, 430, 241 82, 904	6, 915		10, 156, 737 245 46, 087
Walnut Grove	9 24 . 4	7	63, 394 293	93 17, 598 146	55 249	148 17, 847 146	81 20, 485 2, 836	6 25	20, 510 2, 836	365 11, 615 3, 548	808		5, 315 642, 461 7, 851
Castle Dome Cienega Dome (Gila City)	1 2	2	221 34	124 30	 42	124 30 42	2, 195 3	3	2, 195 3	702 365			7, 885 1, 090 1, 472
Ellsworth (Harqua Hala)¹ Fortuna Kofa	28 2 2	2 2	1, 116 2, 227 513	466 528 257	4	466 532 262	1, 345 62 3, 487		1,345 62 3,487	19, 481			19, 249 18, 662
Laguna La Paz and Middle Camp La Posa (Copper Mountains)	1 3 2	1 10	27 3, 861 73	11 216 14	45 166	56 382 14	137	6 19	5, 487 6 156 78	1,654 1,692			11, 563 1, 964 13, 648 719
Muggins Plomosa and La Cholla San Pablo	8	1 8 1	737	256	15 1, 968 6	15 2, 224 6	333	137	470	38, 471			525 82, 160
Santa Maria (Planet, Bill Williams) Welton Hills Yuma	1 1 1		72 60 367	9 15 80		9 15 80	50 6 9		50 6 9	1, 462	3,724		210 676 529 2, 806
Total Arizona	976	142	18, 793, 260	310, 044	6, 409	316, 453	7, 823, 313	691	7, 824, 004	524, 224, 000	21, 542, 000	13, 422, 000	

[.] 1 Ellsworth district lies in both Maricopa and Yuma Counties.

COCHISE COUNTY

California district (Hilltop).—Nearly all the output of the California district in 1939 was first-class lead ore from the Hilltop, Blackwell, and Columbia mines; the Hilltop was the chief producer.

Cochise (Dragoon) district.—In 1939 a little copper ore from the

Centurion mine at Dragoon was shipped to a smelter.

Dos Cabezas and Tevis district.—Production of gold from the Dos Cabezas and Tevis district declined in 1939 owing to suspension late in 1938 of operations at the Dives mine and to decrease in output of placer gold from Inspiration Placers. Most of the output was gold ore shipped to smelters from the Golden Eagle, Good Luck, and Busenbach properties and lead-gold ore from the Cowboy mine. The most important placer operation in the district was the dry-land four-bowl washing dredge of Gould & Cross at Inspiration Placers.

Hartford (Huachuca Mountains) district.—A little ore was marketed in 1939 from the Comet, Dewey, and Western claims, and placer gold

was recovered chiefly from the Gold Nugget property.

Swisshelm district (Webb, Elfrida).—Nearly all the output of the Swisshelm district in 1939 was lead ore (concentrated) from the

Scribner mine.

Tombstone district.—The Tombstone (Bunker Hill) property was in 1939, as usual, the most important producer in the Tombstone district, but its output of gold-silver-lead ore was 27 percent less than in 1938. Lessees operated the property throughout the year and shipped 6,530 tons of ore to the smelter at El Paso, Tex. Lessees also operated the Tombstone Extension mine and shipped about 850 tons of lead ore. The remainder of the district output was principally silver ore from the Bonanza (Mellgren) and San Pedro mines.

Turquoise district (Courtland, Pearce, Gleeson).—Lessees operated the Silver Bill-Mona-Dragoon group in 1939 and shipped about 1,500 tons of silver-lead ore to a smelter. The rest of the Turquoise district output was chiefly zinc ore from the McLendon property and silver

ore from the Elsicor mine.

Warren district (Bisbee, Warren).—The value of the metal output of the Warren district was \$15,146,435 in 1939, a gain of 18 percent over 1938. The chief producer was, as usual, the Copper Queen branch of the Phelps Dodge Corporation; more than 900,000 tons of copper ore were shipped to a smelter, or 7 percent more than in 1938. The property also yielded several hundred tons of lead ore and a little zinc-lead ore, continued as the largest producer of gold and silver in the State, and again ranked second in copper. The Shattuck Denn Mining Corporation worked its property continuously and shipped 117,547 tons of copper ore to the smelter at El Paso, Tex., an increase of 45,517 tons over 1938. The McKenna Lease operated the Czar property of the Phelps Dodge Corporation in 1939 and shipped 6,995 tons of copper ore.

Jacob Canyon district.—The Mackin property owned by the Los Angeles Exploration & Metals Corporation was operated by lessees in 1939, and 462 tons of carbonate copper ore were shipped to a smelter in Utah.

Ryan (Warm Springs) district.—In 1939 a small lot of rich copper

ore was marketed from the Black Beauty claim,

White Mesa district.—The Coconino Copper & Chemical Co. operated its property in 1939, shipped several lots of carbonate copper ore to a smelter, and manufactured and sold copper sulfate to various consumers.

GILA COUNTY

Banner and Dripping Springs district.—The large gain (about 1,700 ounces) in output of gold in the Banner and Dripping Springs district in 1939 resulted from increased shipments of gold ore from the Columbia and Gold Queen-Gold Nugget properties, and the increase (736,646 pounds) in copper was due to resumption of operations at the Christmas copper property. Lessees reopened the Christmas mine in January and during the year shipped 24,790 tons of copper ore to the smelter at Hayden. The rest of the district output was principally gold ore from the Arizona-Apex, Standard, Gold Slope, and Gold Stone properties; the output of lead was small in 1939, as the "79" mine was idle.

Globe-Miami district.—In 1939 the Globe-Miami district was the chief copper-producing area in Arizona owing to increased output of copper ore from the Miami and Inspiration properties. The Miami Copper Co. treated 4,870,684 tons of copper ore—a gain of 46 percent over 1938—by leaching and concentration and recovered 72,894,493 net pounds of copper. The Inspiration Consolidated Copper Co. treated 2,262,100 tons of copper ore—a gain of 52 percent—chiefly by straight leaching and recovered 51,576,333 net pounds of copper. According to the printed annual report of the Miami Copper Co. for the year ended December 31, 1939, 431,652 pounds of molybdenite were recovered from the copper sulfide concentrates. Mine development comprised 31,139 feet of drifting, 22,770 feet of raising, and 473 feet of shaft sinking; in addition, 34,941 feet of drifts and raises were driven. Ore reserves as of January 1, 1940, were estimated to be 2,306,877 tons of mixed ore containing an average of 1.614 percent copper and 67,520,231 tons of sulfide ore containing an average of 0.887 percent copper. Lessees operated the Old Dominion mine in 1939 and shipped 8,934 tons of gold-silver ore. The rest of the dis-The rest of the district output was principally gold ore from the Gibbons, Golden Eagle, Camp Bird, and Ralston mines; silver ore from the Silver Plume, Rescue, and New Dominion mines; copper ore from the Porphyry Reserve, September Morn, and Schulze mines; and lead ore from the Albert Lee and Ireland mines.

Green Valley district (Payson).—The output of the Green Valley district in 1939 was chiefly gold ore from the Gowan (Verde Falls), Rodeo, Squatter, Blue Goose, Tornado, and Packard properties.

Pioneer (Pinal Mountains) district.—Copper ore was produced from the Marland (Stigall) and Bolder mines in 1939, silver ore chiefly from the Pioneer mine, and gold ore from the Little Four mine.

Roosevelt district.—In 1939, as in 1938, all the output of the Roosevelt district was gold ore from the Christmas Gift & Good Luck property.

Rye Creek district.—A little silver-copper ore from the Silver Crown

mine was sold in 1939.

Summit district.—The entire output of the Summit district in 1939 was copper ore from the Arizona-Globe, Chatryn, Gibson, and Ritchard properties.

GRAHAM COUNTY

Virtually all the output of Graham County in 1939 was lead ore from mines near Klondyke in the Aravaipa district. Of the total ore, 94 percent was lead ore (concentrated) from the Grand Reef property; the remainder was chiefly lead ore shipped to a smelter from the Head Center mine.

GREENLEE COUNTY

Ash Peak district (Duncan).—Production of gold and silver in the Ash Peak district in 1939 was much less than in 1938 owing to the decline in output of silver ore from the Ash Peak property of Veta Mines, Inc.; about 50,400 tons of silver ore were concentrated in 1939 compared with a total output of 70,269 tons in 1938. The

property was closed November 15 and the lease surrendered.

Copper Mountain district (Morenci).—The chief output of the Copper Mountain district in 1939 was copper concentrates and copper precipitates from the Morenci branch of the Phelps Dodge Corporation; the production of copper increased 42 percent in 1939 owing chiefly to treatment of 438,169 tons of copper ore in the test mill (no ore was treated by concentration in 1938). However, most of the copper produced in 1939 was recovered from leaching old caved stopes in place. The principal work at the Morenci branch was stripping overburden material in developing a large open pit. stripping proceeds at the rate of 25,000 tons a day, and the minimum required to uncover the ore body and develop the pit will be 43,000,000 The estimated ore reserve is 230,000,000 tons, averaging 1.06 percent copper. The company plans to construct in 1940 a new 25,000-ton concentration plant and smelter at the mouth of Morenci Canyon 2 miles from the open pit. The rest of the district output was chiefly gold ore shipped to a smelter from the Keating and Gold Belt properties.

Granville district.—Gold-lead ore from the Lady Mary and Rozell

mines was sold in 1939.

Mayflower district.—A little copper ore from the Providencia claim

was shipped in 1939 to the smelter at Miami.

Metcalf (Greenlee) district.—The output of the Metcalf district in 1939 comprised 80 tons of gold ore from the Gray Mare mine and 148 tons of zinc-lead ore from the Lime Cap group.

San Francisco district.—A little placer gold was recovered in 1939 by sluicing at various claims along the San Francisco River near

Clifton.

MARICOPA COUNTY

Big Horn district.—The chief output of the Big Horn district in 1939 was old tailings (gold) cyanided from the Tiger property, gold ore from the Alice (Pump) mine, and placer gold principally from the

Sweeney and Tiger claims.

Cave Creek and Camp Creek district.—Lessees operated the Blue Bird mine on Camp Creek in 1939 and shipped 3,412 tons of gold ore to the smelter at Miami. About 1,200 tons of copper-silver ore from the Red Rover mine, also on Camp Creek, were concentrated, and 353 tons of similar ore were shipped to a smelter. The rest of the district output was largely gold ore from the Maricopa, Portmanteau, and King-Virginia property on Cave Creek.

Ellsworth (Harqua Hala) district.—A little copper ore was produced in 1939 from the Copper Belt, Copper Prince, and Crystal claims and

gold ore from the Golden and Golden Relief properties.

New River district.—All the output from the New River district in 1939 was copper ore, chiefly from the Orizaba mine on Moors Gulch; the Allied Mining & Smelting Corporation operated the mine and constructed a small copper smelter, which ran a short time.

Osborn district.—The output from the Osborn district in 1939 comprised 5,970 tons of old tailings (gold) and 641 tons of gold ore from the Belmont-McNeil property and 50 tons of copper ore from

the Morning Star mine.

Salt River Mountains district.—The Delta mine continued to be the chief producer in the Salt River Mountains district, and about 1,800 tons of gold ore were shipped from the mine in 1939. ducers of gold ore were the North Delta and Josephine properties.

San Domingo district.—In 1939, as in 1938, the entire output of the San Domingo district was placer gold and silver recovered by several

small-scale operators along San Domingo Wash.

Sunflower district.—The Golden Rule Mining Co. operated the Little Daisy mine in 1939 and treated about 700 tons of gold ore by

amalgamation and concentration.

Vulture district.—The Vulture mine was in 1939, as usual, the most important producer in the Vulture district. In January about 700 tons of gold ore from the property were treated by amalgamation and concentration; it was nonproductive from February to October 16, when construction of a new 150-ton cyanide plant was completed; and during the remainder of the year 5,068 tons of gold ore and 3,020 tons of old tailings were treated in the new plant. The rest of the district output was mostly old tailings (treated by cyanidation) from the Last Chance property and gold ore from the Sunrise mine.

Webb (Gila Bend Mountains) district.—A little gold ore was produced

in 1939 at two prospects near Arlington.

Winifred district.—About 2,000 tons of old tailings (gold) from the Hartman (Jack White) mill dump were treated by cyanidation in 1939, and gold ore from the Oro Fino, Union, and Red Dog properties was shipped to a smelter.

MOHAVE COUNTY

Cedar Valley district.—The chief output from the Cedar Valley district in 1939 was tungsten ore from the Boriana mine and gold ore from the San Francisco mine, all treated by concentration. few tons of copper concentrates were recovered at the Boriana mill and shipped to the smelter at Superior.

Chemehuevis district.—Small lots of gold ore were produced in 1939 from various claims in the Chemehuevis district; placer gold was recovered chiefly from the "49," Chief, and Prentice Gulch properties.

Cottonwood district.—The only production in the Cottonwood district in 1939 was a little gold ore from the North Star claim.

Gold Basin district.—Approximately 2,930 tons of gold ore from the O. K.-Excelsior group were treated by concentration in 1939; the property and 25-ton flotation plant were operated by the Malco Gold Mining Co. Other fairly important gold producers were the Gold Hill, M. O., Narrow Gauge (Fry), Bear Cat, and Golden Link properties.

Greenwood district.—Small lots of gold ore were produced in 1939

from the Burro, Lucky Strike, and Waldey claims.

Indian Secret (White Hills) district.—All the ore (1,188 tons) produced in the Indian Secret district in 1939 was treated in the custom cyanide mill of Producers Mines, Inc. The output comprised 703 tons of gold-silver ore from the Accident, G. A. R., Silver Hills, and White Hills properties and 485 tons of silver ore from the Hulda mine.

Maynard and McConnico district.—Lessees continued to operate the Bimetal (McGuire) mine and in 1939 shipped 791 tons of gold ore to various custom mills. The remainder of the district output was

principally gold-silver ore from the Democrat mine.

Minnesota district.—In 1939, as in 1938, the chief output of the Minnesota district was gold ore from the Pope mine 40 miles north of Chloride; 3,219 tons of ore were treated in the custom cyanide mill of Producers Mines, Inc. Other producers included the Blue Rock, Horn Silver, Van Diemon, and Yellow Aster properties.

Music Mountain district.—Production of gold in the Music Mountain district was greater in 1939 than in 1938 owing to increased output of gold ore from the Roosevelt and North Star mines. Gold ore was produced also from the Newell, Neilson, and Butler properties

and from various small prospects.

Owens (McCracken and Potts Mountain) district.—Most of the output in the Owens district in 1939 was gold-copper ore from the New England, North Star, and Cleopatra mines; gold ore from the Gold

Leaf mine; and lead ore from the Lead Pill claim.

San Francisco (Oatman, Goldroad, Katherine, Vivian) district.—Production of gold in the San Francisco district in 1939 was 44,757 fine ounces, or 6 percent less than in 1938. The largest decrease was in output of gold ore from the Tom Reed mine at Oatman. The Goldroad mine of the United States Smelting, Refining & Mining Co. again was the largest producer of gold in Mohave County; the company operated its 300-ton cyanide plant continuously and treated

121,574 tons of gold ore and 20,044 tons of old tailings.

The output of gold ore and old tailings from 36 properties at Oatman and Goldroad was 224,499 tons in 1939, which yielded 37,403 ounces of gold and 26,525 ounces of silver, compared with 203,706 tons in 1938, which yielded 42,457 ounces of gold and 32,438 ounces of silver. The Tom Reed Gold Mines Co. operated its 300-ton cyanide plant at Oatman on company and custom ores until November 8, when the mill was closed. The output of gold ore from the Tom Reed mine declined from 25,171 tons in 1938 to 3,900 tons in 1939, but 29,563 tons of old tailings were treated. The Tom Reed Gold Mines Co. and Johnston & Witcher Mines continued leasing operations at the Big Jim mine, and a total of 17,946 tons of gold ore was treated in the Tom Reed mill. Lessees also continued to operate the Pioneer group and trucked 4,768 tons of gold ore to various custom mills. About 19,350 tons of gold ore from the United Western mine were treated by concentration and cyanidation; the mine was operated throughout the year by the Vivian Mining Co. Various lessees worked in the Vivian-Lelande group in 1939, and 1,630 tons of gold ore were treated in the Vivian custom mill. Other large producers of gold ore at Oatman were the Gold Dust, Telluride, Carter, and Crown City properties.

The output of gold ore from 12 properties in the Katherine section of the San Francisco district was 59,871 tons in 1939, which yielded 7,354 ounces of gold and 15,961 ounces of silver, compared with 36,715 tons in 1938, which yielded 4,975 ounces of gold and 45,888 ounces of silver. The gain in output of ore and gold was due chiefly to the large increase in output of gold ore from the Tyro mine, and the decline in silver resulted from the decrease in output of gold-silver ore from the Arabian mine. The Gold Standard Mines Corporation operated the Tyro and Katherine mines continuously and treated 48,959 tons of ore from the Tyro and 9,555 tons from the Katherine in the 300-ton cyanidation plant at Katherine. Other important producers of gold ore were the Frisco, Philadelphia, Burt, Minnie, and Escondido

properties.

Wallapai district (Cerbat, Chloride, Mineral Park, Stockton Hill).— The output of ore and each of the five metals in the Wallapai district decreased from 1938, owing chiefly to the closing of the Tennessee mine at Chloride in January 1939; however, the mine was reopened in October and 11,588 tons of zinc-lead ore were treated by concentration during the year, compared with 54,092 tons in 1938. Production of gold-silver ore was maintained at the Diana group by the Arizona Magma Mining Co.; about 21,000 tons of ore were treated by The Alpha-Keystone Mines, Inc., operated the Keyconcentration. stone and Summit groups most of the year and treated 8,190 tons of silver ore from the Keystone and 2,679 tons of gold-silver ore from the Various lessees worked in the White Eagle mine and shipped a total of 3,539 tons of rich gold-silver ore to the smelter at El Paso, Tex. From the Oro Plata group about 2,800 tons of gold ore were concentrated, 1,055 tons of similar ore were cyanided, and 400 tons of zinc ore were concentrated. The Grand View Mining Co. operated the Rainbow property the first 5 months of the year and treated 3,600 tons of gold ore by concentration. Old tailings (5,058 tons), containing chiefly gold and lead, from the Elkhart dump were treated by concentration. Other fairly important producers in the district in 1939 were the Golden Eagle-Bobtail, Golden Gem, O'Brien-Blunket, Juno, Ark-San Antonio, Golconda, Congress & Home, Mohawk, Rico, Minnesota-Connor, Nighthawk, and Tintic mines.

Weaver (Mocking Bird, Pilgrim, Portland) district.—Production of both gold and silver from the Weaver district in 1939 was less than in 1938, owing chiefly to the large decline in output of gold ore from the Portland mine; 8,636 tons were treated by cyanidation in 1939 compared with 25,419 tons in 1938. The mine was operated by the Gold Standard Mines Corporation until August 15, when it was closed. There was substantial increase in output of gold ore from the Pilgrim and Klondyke mines, both operated by Producers Mines, Inc.; 25,221 tons of gold ore and 4,634 tons of old tailings from the Pilgrim property and 20,822 tons of gold ore from the Klondyke mine were treated by cyanidation. Other large producers of gold ore were the Dixie Gold, Dixie Queen, Pershing, and Scout properties. Most of the ore in the district was treated in the 300-ton cyanide

plant of Producers Mines, Inc., near Chloride.

PIMA COUNTY

Ajo district.—Production of gold, silver, and copper from the Ajo district in 1939 was considerably greater than in 1938 owing to the large increase in output of copper ore from the New Cornelia mine. The mine and 20,000-ton concentrator were operated continuously by the Phelps Dodge Corporation; about 6,107,200 tons of copper ore were treated, a gain of 23 percent over 1938.

Arivaca district.—The chief output of the Arivaca district in 1939 was gold ore from the Cotton Tail mine and gold-silver ore and silverlead ore from the Tunquepata mine. Numerous small lots of gold ore and silver ore from prospects in the district were sold to an ore

buyer in Nogales.

Baboquivari district.—Lessees operated the Allison mine in 1939 and treated about 150 tons of gold ore by amalgamation and shipped 136 tons of gold-silver ore to a smelter. The rest of the district output was chiefly silver-copper ore and lead-copper ore from the Papago Chief claim.

Cababi (Comobabi) district.—Nearly all the output of the Cababi district in 1939 was gold ore from the Jaeger group and silver-copper

ore from the Picacho mine.

Cimarron Mountains district.—A little gold ore was produced in

1939 from the Monte Cristo claim.

Empire district.—Small lots of silver-lead ore were sold in 1939 from

the Total Wreck and State of Maine properties.

Greaterville district.—The output of the Greaterville district in 1939 was principally lead ore from the Arizona Comstock group and placer gold recovered by various small-scale operators.

Helvetia (Rosemont) district.—Copper ore was produced in 1939 from the Narragansett Bay, Old Dick, Half Moon, and Silver Dollar properties and silver ore from the Blue Jay mine.

Meyer district.—Small lots of gold ore were marketed in 1939 from

the Hadsell & O'Brien and Sunset properties.

Old Hat district (Oracle).—All the output from the Old Hat district in Pima County in 1939 was copper ore, chiefly from the Leatherwood

(Geesaman) mine operated by Control Mines, Inc.

Pima (Sierritas, Papago, Twin Buttes) district.—Gold-copper ore was produced in 1939 from the Cat's Paw mine, gold-silver ore from the High Hill group, and silver-lead ore from the Paymaster, Schell, and Vivienne properties.

Quijotoa district.—The output of the Quijotoa district in 1939 was chiefly placer gold from the Mariposa, Right Spot, New Deal. and

Sunshine claims.

Roskruge and Waterman district.—Virtually all the output from the Roskruge and Waterman district in 1939 was silver ore from the

St. Jude mine.

Santa Rosa district.—Gold ore was produced in 1939 from the Ludlam claim, silver ore from the Grubstake mine, and silver-copper ore from the Little Horn claim.

PINAL COUNTY

Astraya district.—Lessees operated the Astraya mine a short time in

1939 and shipped copper ore to a smelter.

Bunker Hill district (Copper Creek).—The output of gold, silver, and copper in the Bunker Hill district was much less in 1939 than in 1938 owing to suspension of operations at the Childs mine late in 1938 by the Arizona Molybdenum Corporation. Lessees operated the mine in 1939, treated 3,900 tons of copper ore by concentration, and shipped 77 tons of similar ore to a smelter; the output in 1938 was 44,203 tons of ore and 35,130 tons of old tailings.

Casa Grande district.—Most of the output from the Casa Grande district in 1939 was gold ore shipped to smelters from the Greenback, Turning Point, Hillside, and Mammon properties and silver ore from

the Orizaba and Reward mines.

Cottonwood and Black Mountain district.—Nearly all the output from the Cottonwood and Black Mountain district in 1939 was first-class gold ore from the Betty Jane, Hot Boy, and Bulldog mines.

Goldfields district.—The entire output of the Goldfields district in

1939 was old tailings (cyanided) from the Bulldog property.

Hackberry district.—A little copper ore and gold ore were produced in 1939 from the Last Chance claim.

Martinez Canyon district.—Lessees operated the Silver Bell mine in 1939 and shipped 2 cars of silver-lead ore to a smelter.

Mineral Creek district (Ray).—The value of the metal output of the Mineral Creek district was \$4,584,768 in 1939, a gain of 53 percent over 1938; the chief output was copper ore from the Ray mine. The Nevada Consolidated Copper Corporation operated the mine and 12,000-ton concentrator throughout the year and treated 1,425,228 tons of copper ore yielding 77,174 tons of copper concentrates; it also shipped 5,555 tons of copper precipitates to a smelter; and the output of copper increased 43 percent over 1938. Lessees operated the Broken Hill mine in 1939 and shipped 2,364 tons of gold ore to a smelter. The remainder of the district output was mostly lead ore from the Ray Silver-Lead property.

Mineral Hill district.—Gold ore was produced in 1939 from the

Sunset, Little May, Troxel, and Hornet mines.

Old Hat district (Oracle, Mammoth).—Mammoth-St. Anthony, Ltd., continued in 1939 to be a large producer of gold-molybdenum-lead ore; its output was 38 percent greater than in 1938, and it was the largest producer of gold and lead in Pinal County. During the year the company treated 191,892 tons of ore, including 13,697 tons from the adjoining New Year-Mohawk group, which was purchased by Mammoth-St. Anthony, Ltd., in May. Lead concentrates (4,471 tons) containing considerable gold were smelted in the company 20-ton lead furnace; lead bullion, gold bullion, molybdenum, and vanadium were shipped to eastern markets. The rest of the district output was principally gold ore shipped from the Old Gold Camp and Golden Slipper properties.

Picacho district.—Low-grade gold ore was shipped in 1939 from

the Better Pay property and a prospect near Wymola.

Pioneer district (Superior).—The value of the metal output of the Pioneer district was \$4,887,607 in 1939, a gain of 12 percent over 1938. The Magma Copper Co. was, as usual, the most important

producer in Pinal County; the company treated 236,991 tons of copper ore and 67,074 tons of zinc-copper ore in the concentrator and in addition produced 60,829 tons of copper ore sent direct to the smelter. According to the company printed annual report the metal output of the Magma mine, after deduction of all losses including refining, was 11,610 ounces of gold, 599,588 ounces of silver, 34,065,869 pounds of copper, and 4,261,616 pounds of zinc. The average net cost of producing copper after deduction of gold, silver, and zinc values was 7.5 cents a pound. Mine development in 1939 comprised 10,017 feet of drifting, 4,349 feet of raising, 2,826 feet of crosscutting, and 816 feet of sinking. The 850-ton copper concentrator and 450-ton copper smelter were operated continuously, except for the usual summer shut-down (July 1 to August 16). Lessees continued to work the Superior & Arizona group of the Magma Copper Co. and shipped 6,112 tons of gold ore to the Magma smelter. J. Forbach continued operations at the Reymert mine and shipped 19,766 tons of silver ore to smelters. The rest of the district output was principally gold-silver ore from the Belmont mine and silver ore from the Magma Chief and Magma Apex mines.

Ripsey district.—The output of the Ripsey district in 1939 comprised 2,000 tons of gold-silver ore from the Norman group (Old Ripsey) and 394 tons of silver ore from waste dumps of the Florence

Lead & Silver property.

Riverside district.—A little gold ore was sold in 1939 from the Arizona Gold and Lucky Strike claims and copper ore from the Buckeye claim.

Sacaton Mountains and Blackwater district.—Gold ore was produced in 1939 from the Lucky Strike claim and lead-silver ore from the

Santa Rosa claim.

Saddle Mountain district.—Most of the output from the Saddle Mountain district in 1939 was gold ore from the Hoosier and Columbia mines and gold-silver ore from the Adjust property.

SANTA CRUZ COUNTY

Harshaw district.—The value of the metal output of the Harshaw district was \$492,490 in 1939 compared with \$49,977 in 1938. large gain resulted chiefly from the increase in output of zinc-leadsilver ore from the Trench mine. The American Smelting & Refining Co. completed construction of a new 200-ton flotation plant at the mine in May 1939 and treated a total of 33,660 tons of zinc-leadsilver ore during the last 7 months of the year; the property ranked second in production of lead in Arizona in 1939 and third in zinc. Lessees operated the American mine and shipped 1,880 tons of silver The rest of the district output was mostly zinc-lead ore to a smelter. ore and silver-lead ore from the Flux mine and silver ore from the World's Fair, Salvador, and Black Eagle mines.

Nogales (Gold Hill) district.—The chief output of the Nogales district in 1939 was gold ore and gold-lead ore from the Uncle Sam mine and

gold ore from the Clyne claim.

Oro Blanco district (Ruby).—Production of zinc-lead-silver-gold-copper ore from the Montana mine at Ruby was maintained throughout 1939, but the yield of gold, silver, copper, lead, and zinc was less than in 1938; about 136,600 dry tons of ore were concentrated, or 3

percent more than in 1938. The mine again was the largest producer of lead and zinc in the State. The rest of the district output was chiefly gold ore from the Old Glory & Sargent, Margarita, Austerlitz, Grubstake, Oro Fino, and Golden Pen mines; silver ore from the Brick mine; and gold-silver ore from the Pitchburg mine.

Palmetto district.—Nearly all the output from the Palmetto district in 1939 was copper ore from the Three R property shipped to a smelter.

Patagonia (Washington, Duquesne) district.—One car of lead ore was shipped by a lessee from the Mowry mine in 1939, and small lots of ore from prospects were sold to an ore buyer in Nogales.

Redrock district.—The chief output of the Redrock district in 1939 was silver-copper ore from the Copper and Silver Ridge-Silver Queen

groups

Wrightson district.—Nearly all the output from the Wrightson district in 1939 was silver-lead ore from the Blabon property.

YAVAPAI COUNTY

Ash Creek district.—The Gold Coin mine was operated a short time in 1939, and 1 car of gold ore was shipped to a smelter. A small lot of

gold ore was marketed from the Golden Crown claim.

Big Bug district.—The output of each of the five metals in the Big Bug district increased decidedly in 1939, owing chiefly to the gain in output of gold-silver-lead ore from the Iron King mine at Humboldt. The Iron King Mining Co. operated the mine continuously, treated 69,620 tons of gold-silver-lead ore by concentration, and shipped 603 tons of gold-silver ore to a smelter; in addition to gold-silver-lead concentrates, the mill produced a few cars of zinc concentrates. Gold-copper ore and gold-lead ore were produced from the Hackberry mine. The chief producers of gold ore were the Union-Jessie, Boggs, Belcher, and Four Boys properties. The output of placer gold in the district dropped to 448 ounces in 1939, owing to suspension late in 1938 of dry-land dredge operations at the Lawson group by the Hassayampa River Mining Co.; most of the placer gold was recovered by dry-land dredging at the Savoy & Shanks property and by sluicing operations at the Hill, Johnson, and Caywood properties.

Black Canyon district.—The value of the metal output of the Black Canyon district increased to \$306,145 in 1939, owing chiefly to resumption of operations at the Golden Belt mine near Cleator. The mine and 50-ton flotation plant were taken over in June 1939 by the Golden Turkey Mining Co., and during the rest of the year about 5,500 tons of gold ore were treated by concentration. The Golden Turkey mine, adjoining the Golden Belt, continued to be the most important producer in the district; it was operated throughout the year, and about 21,500 tons of gold-silver-lead ore were treated in the Golden Turkey flotation mill. The rest of the district output was chiefly

gold ore concentrated from the Richinbar property.

Black Rock district.—Nearly all the output from the Black Rock district in 1939 was crude gold ore shipped to a smelter from the Unida and Turtle mines.

Blue Tank district.—Lessees operated the Orogrande mine a short time in 1939 and treated 100 tons of gold ore by amalgamation. A little gold ore was produced from the Quartz mine.

Bullard (Pierce) district.—There was a substantial increase in output of gold and copper in the Bullard district in 1939, resulting chiefly from the shipments of gold-copper ore from the Bullard mine near The Bullard Gold Mines, Inc., was organized late in 1938 to operate the mine, and during 1939 the company shipped 2,758 tons of gold-copper ore to various smelters. The rest of the district output was mostly old tailings (gold) from the Gold Leaf (Rush) property treated by cyanidation.

Castle Creek district.—The output of the Castle Creek district in 1939 comprised gold ore from the Jack Pot, Bennet, and Swallow properties; small lots of copper ore from various claims; and placer

gold from a claim on Buckhorn Creek.

Cherry Creek district.—Virtually all the output in the Cherry Creek district in 1939 was crude gold ore shipped to smelters; the chief producers were the Sitting Bull, Gold Pick, Gold Eagle, Gold Bullion, Dove, Etta, Little Dora, and Sugar Bowl properties.

Copper Basin district.—Small lots of rich gold ore were marketed in 1939 from the McNary and Flower Gold claims, and a little goldcopper ore was produced from the Plymouth mine. Most of the placer gold recovered came from the Smith & Roby, Queen of Sheba,

and Stupe properties.

Eureka district.—There was a sharp decline in output of gold, silver, and lead in the Eureka district in 1939, owing chiefly to the drop in output of ore from the Hillside mine, the most important producer in the district; the decline in output of copper resulted from decreased production of copper ore from the Bagdad mine. There was, however, a substantial increase in production of zinc, as the mill at the Hillside mine produced more zinc concentrate than in Hillside Mines, Inc., operated its mine and concentrator until October 13, when both were closed temporarily; it concentrated 21,744 tons of gold-silver-zinc-lead ore compared with 38,850 tons The Bagdad Copper Corporation resumed operations November 1 and during the last 2 months of the year treated 14,196 tons of copper ore in its 275-ton flotation plant. The rest of the district output was principally crude gold ore shipped to smelters from the Belle, Mammoth, Crosby, and Dunlap mines. Comstock-Dexter Mines, Inc., and the Santa Maria Mining Corporation, both fairly large producers of gold ore in 1938, were idle in 1939.

Hassayampa (Groom Creek, Hassayampa River, Senator, Prescott) district.—Production of gold from the Hassayampa district totaled 1,772 ounces in 1939, or 34 percent more than in 1938; however, there was no individual large producer. Most of the output was gold ore from the Oro Flame, Alma, Home Run, Forest & Forlorn Hope, Nevada, Infanta, Sacramento, Empire, Big Chief, Great Divide, Railroad, Jim Crow, and Evergreen properties; gold-silver ore from the White Spar and Davis-Dunkirk mines; and gold-copper ore from the Porphyry mine. Numerous small lots of ore and placer gold from various prospects in the district were sold to buyers of ore

and placer gold in Prescott.

Humbug district.—The chief output from the Humbug district in 1939 was gold ore from the Little Joseph and Humbug Gold Mines properties and placer gold recovered by various small-scale operators working on Cow, French, and Humbug Creeks.

Lynx Creek district.—The output of the Lynx Creek district in 1939 was, as usual, placer gold and silver recovered chiefly from property operated by the Lynx Creek Placer Mine Co. The company worked its two draglines and its floating washing plant continuously from February 15 to December 31 and treated 542,815 cubic yards of gravel; it remained the largest producer of placer gold in Arizona, and its output was 20 percent greater than in 1938. Castle Placer Mines was organized in September 1939 to work bench gravel above the ground being dredged by the Lynx Creek Placer Mine Co.; during the last quarter of the year about 12,000 cubic yards of gravel were handled by a dry-land dredge equipped with four bowl-amalgamators. Other placer producers included the Federal, Flynn, and Granite Fraction claims.

Martinez (Congress) district.—Production of gold in the Martinez district increased to 5,415 ounces in 1939, owing chiefly to the increase in treatment of old tailings and waste-dump ore from the Congress property; 99,645 tons of old tailings and 3,337 tons of waste-dump ore were treated by cyanidation by The Congress Mining Corporation. The rest of the district output was principally crude gold ore of smelting grade from the Golden Key and Blue Bird

 \min es.

Mineral Point district.—Gold ore was produced in 1939 from the Buster, Golden Daisy, and Golden Chance properties.

Oak Creek district.—A little placer gold was marketed in 1939 from

the Gotcher and Trimplex claims.

Peck district.—The output of the Peck district was small in 1939. as the Swastika mine, a producer of rich silver ore in 1937 and 1938, was idle.

Pine Grove district (Crown King).—Production of gold ore from the Gladiator-War Eagle group was maintained throughout 1939, and the property again was by far the most important producer in the Pine Grove district; about 4,200 tons of gold ore containing some silver and copper were shipped to a smelter. The Golden Crown Mining Co. operated its 75-ton flotation plant a few months and treated 1,680 tons of gold-silver-copper ore. The rest of the district output was mostly gold-silver ore from the Union & Eagle group and gold ore and gold-lead ore from the Del Pasco mine.

Silver Mountain district (Wagoner).—The output of the Silver Mountain district in 1939 comprised silver-lead ore and silver ore from the Little Joker mine, gold ore from the Silver Dollar mine, and

placer gold from the C. B. C. and Silver Mountain claims.

Thumb Butte district.—Nearly all the output from the Thumb Butte district in 1939 was crude gold ore shipped to a smelter from the Last Chance Extension mine.

Tiger district.—Gold ore was produced in 1939 from the Fortuna, Oro Belle, Southern Belle, Violet & Snowdrift, and Wink properties.

Tip Top district.—Lessees operated the "76" mine in 1939 and shipped 19 tons of rich silver ore to a smelter; other producers of rich silver ore were the La Fortuna and Humming Bird properties. Placer gold was recovered chiefly from the Badger Springs and Rock Springs claims.

Turkey Creek district.—Most of the output from the Turkey Creek district in 1939 was old tailings (gold-silver) and gold ore of smelting

grade from the Parker property near Cordes.

Verde district (Jerome).—The value of the metal output of the Verde district was \$10,156,737 in 1939, a gain of 27 percent over 1938. The United Verde mine was, as usual, the chief producer in the district, and its output of copper ore was 26 percent greater than in 1938. The property ranked second in the State in production of gold and silver and third in copper. The open-pit and underground sections of the mine and the 1,600-ton concentrator were operated continuously by the Phelps Dodge Corporation; 694,716 tons of copper ore and 491 tons of copper precipitates were smelted, and 294,933 tons of copper ore were concentrated. A. B. Peach continued to operate the Iron King-Equator group and shipped 6,729 tons of gold-silver ore to the smelter at Clarkdale. The remainder of the district output comprised 1,126 tons of copper ore from the Daisy (United Verde Extension) mine dump and 1,519 tons of copper cleanings from the United Verde Extension smelter dump.

Walker district.—There was a substantial increase in output of gold, silver, and copper in the Walker district in 1939 owing to the larger output of gold-silver-copper ore from the Sheldon mine and to the gain in output of gold ore from several properties; about 2,000 tons of crude ore from the Sheldon mine were shipped to a smelter. The chief producers of gold ore were the Alturas Extension, Virgin Mary, Mohawk, Last Chance, Chance, and Alturas properties. Placer gold and silver were recovered by various small-scale operators working on

Lynx Creek near Walker.

Walnut Grove district.—Nearly all the output of the Walnut Grove district in 1939 was gold ore from the Big Rebel, Portland, and Moyer mines and placer gold, chiefly from the Maggie Moyer property. The Gallup Gold Mining Co., a fairly large producer of gold ore in

1938, was idle.

Weaver district (Octave).—Production of gold in the Weaver district was 17,847 ounces in 1939, a gain of 3,369 ounces over 1938; more than 95 percent of the total was produced from two properties—the Octave and the Alvarado. The Octave mine, operated throughout the year by the American Smelting & Refining Co., continued to be the most important producer in the district; 29,334 tons of gold ore were treated by concentration and cyanidation. The Alvarado mine was operated continuously by Liberty Hill Gold Mines, Ltd., and 31,652 tons of gold ore were cyanided, or more than double the tonnage in 1938. The Yarnell mine was operated a short time in 1939, and 1,200 tons of gold ore were treated by concentration; the 50-ton flotation plant was removed during the year, and a new cyanidation plant was built in its place. Other producers of gold ore included the Hosford, Dora, Laurella, May Queen, Leviathan, Hayden, and Sunny Slope proper-Production of placer gold in the district was less than in 1938 owing to suspension late in 1938 of operations at the Thunder Bird claim; the chief producers were the Longerot, Johns, Lucero, McIntosh, and Merrill properties.

White Picacho district.—In 1939, 204 tons of crude gold ore were shipped from the Young mine; the rest of the district output was

mostly silver-lead ore from the Independence claim.

YUMA COUNTY

Castle Dome district.—Nearly all the output from the Castle Dome district in 1939 was gold ore of smelting grade from the Big Eye and Southern Extension mines and silver-lead ore from the Haack property.

Cienega district.—A little gold ore was produced in 1939 from the

Baker and Sue claims and copper ore from the Black Hill mine.

Ellsworth district (Salome).—The chief output of the Ellsworth district in 1939 was gold ore from the Hercules, Desert, Blue Eagle, Alaskan, Why Not, Fieldness, Red Bird, and Red Rose properties and gold-copper ore from the Critic and Centroid mines. Numerous small lots of gold ore from prospects were sold to an ore buyer in Wickenburg.

Fortuna district.—Production of gold in the Fortuna district was much greater in 1939 than in 1938, owing to operation of the Fortuna mine, which had been idle for several years. H. C. & C. F. Burton operated the mine throughout 1939 and treated 1,427 tons of gold ore by amalgamation and 450 tons of old tailings by cyanidation. A few hundred tons of old tailings (gold) from the Graham property were treated by cyanidation.

Kofa district.—Virtually all the output of the Kofa district in 1939 was gold ore from the Sheep Tanks mine shipped to various smelters.

Laguna district.—A little gold ore from the Las Flores mine was cyanided in 1939, and placer gold and silver were recovered by various small-scale operators working in the Laguna Dam and Las Flores areas.

La Paz and Middle Camp district.—The output of the La Paz and Middle Camp district in 1939 comprised 3,800 tons of old tailings (gold) from the Goodman property, which were cyanided; 44 tons of low-grade gold-copper ore from the Copper Bottom mine; 17 tons of rich gold ore from the Ah-Ve-Aha claim; and placer gold and silver recovered chiefly by drift mining at the Golden Anchor (Jones), Middle Camp & Oro Fino, Gold Buckle, Cave Creek, and Ferrar Gulch properties.

La Posa (Copper Mountains) district.—A little gold-copper ore was

produced in 1939 from the Betty Lee and Frisco mines.

Muggins district.—The output of the Muggins district in 1939 was

placer gold recovered by various small-scale operators.

Plomosa and La Cholla district.—Production of gold in the Plomosa and La Cholla district was much greater in 1939 than in 1938, owing to the large increase in output of placer gold from the La Cholla Placers (Arizona Drift). The property was operated continuously by drift mining by the La Posa Development Co.; 15,033 cubic yards of gravel were handled, and the company became a large producer of gold. Other producers of placer gold included the Can Do & Crown, N. R. A., Sore Thumb, and Virginia properties. Most of the lode output of the district was gold-copper ore from the Little Butte mine and gold ore from the Julius mine.

Santa Maria (Planet, Bill Williams) district.—The Townsend mine was the only producer in the Santa Maria district in 1939; 1 car of copper ore was shipped to a smelter, and about 45 tons of lead ore

were concentrated.

Welton Hills district.—The Poorman mine was operated a short time

in 1939, and 2 cars of gold ore were shipped to a smelter.

Yuma district.—In 1939, 367 tons of gold ore from the Jude-Silver-fields group were cyanided in the Burton custom mill near Yuma.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN CALIFORNIA

(MINE REPORT)

By Charles White Merrill and H. M. Gaylord

SUMMARY OUTLINE

	Page		Page
SummaryCalculation of value of metal production Mine production by counties	208 212	Mining industry Ore classification Metallurgic industry Review by counties and districts	$\frac{215}{216}$

The total value of the gold, silver, copper, lead, and zinc recovered from ores, old tailings, and gravels in California in 1939—\$52,918,012—was greater than in any year since 1856; it exceeded that in 1938 by more than 5 million dollars, or nearly 11 percent. Although most of the increase may be ascribed to the advance in gold production, the output of each of the other four metals was larger in both quantity and value than in 1938.

Gold increased 9 percent in both quantity and value, silver increased slightly in quantity and 5 percent in value, copper 419 percent in quantity and 450 percent in value, and lead 6 percent in quantity and 9 percent in value; 12,000 pounds of zinc were produced in 1939, but none was reported recovered in 1938. Of the total value of the five metals in 1939, gold represented 95 percent, silver 3 percent, copper almost 2 percent, and lead and zinc combined less than 0.1 percent.

Nevada County, despite a 2-percent decline in total value of production in 1939, continued to be the largest contributor to the metalmining output of California; it supplied 22 percent of the State total value of the five metals, 22 percent of the total gold, and 37 percent of the lode gold. Sacramento County (largely from gold dredging) contributed 10 percent of the total value of the five metals; Amador County (about 70 percent from gold ore and 30 percent from placer gravels), 8 percent; Kern County (largely from gold and gold-silver ores), 7 percent; Calaveras County (about equally from gold ore and placer gravels), 7 percent; Yuba County (largely from gold dredging), 6 percent; Eldorado County (about 80 percent from gold ore and 20 percent from placer gravels), 5 percent; Plumas County (largely from gold and copper ores), 4 percent; Butte County (largely from placer gravels), 4 percent; and Merced County (all from placer gravels), Thus, the foregoing 10 of the 43 counties producing the metals in California in 1939 supplied over 75 percent of the State total value.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

Yardage figures used in measuring material treated in placer operations are "bank measure"; that is, the material is measured in the ground before treatment.

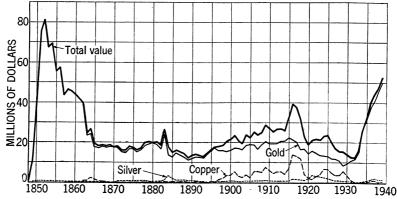
The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold ¹	Silver 2	Copper 3	Lead 3	Zinc 3
1935	Perfine ounce \$35, 00 35, 00 35, 00 35, 00 35, 00	Per fine ounce \$0. 71875 . 7745 . 7735 4. 646+ 5. 678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046	Per pound \$0.044 .050 .065 .048 .052

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.

² 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver; 1938-39: Treasury


5 \$0.67878787.

Mine production of gold, silver, copper, lead, and zinc in California, 1935–39, and total, 1848–1939, in terms of recovered metals

Year		es pro-	Ore, old tailings, etc. (short	Gold (lode	and placer)	Silver (lode	and placer)
	Lode Placer etc. (short tons)	Fine ounces	Value	Fine ounces	Value		
1935 1936 1937 1938 1939	1, 112 903 913 927 1, 028	1, 487 639 838 676 749	3, 337, 773 4, 635, 691 4, 925, 014 4, 648, 249 5, 577, 853	890, 430 1, 077, 442 1, 174, 578 1, 311, 129 1, 435, 264	\$31, 165, 050 37, 710, 470 41, 110, 230 45, 889, 515 50, 234, 240	1, 191, 112 2, 103, 799 2, 888, 265 2, 590, 804 2, 599, 139	\$856, 112 1, 629, 392 2, 234, 073 1, 674, 863 1, 764, 264
1848-1939			(2)	97, 398, 295	2, 111, 043, 977	98, 518, 224	80, 125, 973

Year	Co	pper	Le	ad	2	line	m	
	Pounds	Value	Pounds	. Value	Pounds	Value	Total value	
1935	1, 954, 000 8, 762, 000 10, 502, 000 1, 612, 000 8, 360, 000 3 582, 189	\$162, 182 806, 104 1, 270, 742 157, 976 869, 440 189, 818, 032	1, 134, 000 964, 000 2, 372, 000 990, 000 1, 052, 000 3 120, 616	\$45, 360 44, 344 139, 948 45, 540 49, 444 14, 192, 825	322, 000 16, 000 40, 000 12, 000 3 51, 964	\$14, 168 800 2, 600 	\$32, 242, 872 40, 191, 110 44, 757, 593 47, 767, 894 52, 918, 012 2, 404, 560, 317	

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.
² Figures not available. ³ Short tons.

IGURE 1.—Value of mine production of gold, silver, and copper and total value of gold, silver, copper, lead, and zinc in California, 1848–1939. The value of lead and zinc has exceeded \$1,000,000 in only a few

buying price for newly mined silver.

3 Yearly average weighted price of all grades of primary metal sold by producers.

Gold.—Since 1929, when the value of the California gold output reached a low of \$8,526,703, the value of production has expanded almost sixfold; the gain in 1939 over 1938 was equivalent to more than half the total value of the output in 1929. In quantity the 1939 gold output was greater than in any year since 1862, and in value it was greater than in any year since 1856. During the last 3 years there have been the following gains over the immediately preceding years: 1939, 9 percent; 1938, 12 percent; and 1937, 9 percent. the yearly increase has averaged 10 percent over the period.

Although data for gold production in California before 1901 do not segregate placer and lode gold, it appears certain that the output of lode gold was larger in 1939 in both quantity and value than in any year in the history of the State. The quantity and value of placer gold produced are known to have been higher in 1939 than in any year since 1900. Moreover, the value of the output of placer gold in 1939 exceeded that of lode and placer gold combined in any year from 1865

to 1882 and from 1884 to 1900.

The 25 leading gold-producing mines in California in 1939, listed in the following table, yielded 54 percent of the total gold output of

Twenty-five leading gold-producing mines in California in 1939, in order of output

Rank	Mine	District	County	Rank in 1938	Operator	Source of gold
1	Idaho Maryland	Morrodo City	Nevada	1	Idaho Maryland Mines Corporation.	Gold ore.
2	Empire Star mines.	do	do	1	Empire Star Mines Co., Ltd.	Do.
3 4	Natomas Co Yuba Unit	FolsomYuba River	Sacramento_ Yuba	3 4	Natomas Co Yuba Consolidated Gold Fields.	Dredge. Do.
- 5	Central Eureka	Mother Lode	Amador	7	Central Eureka Mining	Gold ore.
6	Lava Cap	Grass Valley- Nevada City.	Nevada	6	Lava Cap Gold Mining Corporation.	Do.
7 8	Capital dredges Carson Hill	Folsom Mother Lode	Sacramento_ Calaveras		Capital Dredging Co Carson Hill Gold Mining Corporation.	Dredge. Gold ore.
9 10	Golden Queen Argonaut	Mojave Mother Lode	Kern Amador	9 17	Golden Queen Mining Co. Argonaut Mining Co., Ltd.	Do. Do.
11	Butte Unit	Oroville	Butte	22	Yuba Consolidated Gold Fields.	Dredge.
12	Alhambra-Shum- way.	Mother Lode	Eldorado	(1)	Alhambra-Shumway Mines. Inc.	Gold ore.
13	Yellow Aster	Randsburg	Kern	15	Anglo American Mining Corporation, Ltd.	Do.
14	Snelling	Snelling	Merced	12	Snelling Gold Dredging Co.	Dredge.
15	Iron Mountain	Iron Mountain	Shasta	13	The Mountain Copper Co., Ltd.	Gold ore.
16	Merced Unit	Snelling	Merced	10	Yuba Consolidated Gold Fields.	Dredge.
17	Ohio Point	Rich Bar	Plumas	32	Virgilia Mining Corpora-	Gold ore.
18 19	Sheepranch Sliger	East Belt Mother Lode	Calaveras Eldorado	16 66	St. Joseph Lead Co Middle Fork Gold Mining Co.	Do. Do.
20	Alabama	Ophir	Placer	30	Alabama California Gold Mines Co.	Do.
21	Cactus Queen	Mojave	Kern	11	Cactus Mines Co.	Gold-silver
22	Walker	Genesee	Plumas	100	Walker Mining Co	ore. Copper
23 24	Starlight Cargo Muchacho	MojaveCargo Muchacho	Kern Imperial	21 134	Lodestar Mining Co Holmes & Nicholson Min- ing & Milling Co.	ore. Gold ore. Do.
25	San Joaquin dredge.	Snelling	Merced	23	San Joaquin Mining Co	Dredge.

¹ Production began Mar. 14, 1939.

the State in that year. Newcomers to the list in 1939 were six lode mines, which displaced four connected-bucket dredges and two lode mines; all of them had substantial output in 1938 except the Alhambra-Shumway, which began production March 14, 1939, after a long exploration campaign. Of the leading mines, 16 yielded gold from gold ore, 7 from dredging gravel, and 1 each from gold-silver ore and copper ore. The mines ranking first, second, and sixth are in the Grass Valley-Nevada City district of Nevada County.

Silver.—Most of the silver output of California in 1939 was more centralized than that of the gold; the 10 leading silver-producing mines, listed in the following table, yielded 83 percent of the State total recoverable silver in that year. Newcomers to the list in 1939 were the Walker mine in the Genesee district, Plumas County, and the Alabama mine in the Ophir district, Placer County, which displaced the Silverado-Kentuck in the Mount Patterson district, Mono County, and the Idaho Maryland mine in the Grass Valley-Nevada City district, Nevada County. The two newcomers were substantial producers in 1938; the Idaho Maryland ranked eleventh in 1939, but the Silverado-Kentuck, leading silver producer for several years before 1938, was idle in 1939. Of the 10 leading mines in 1939, 5 yielded silver from gold ore, 4 from gold-silver ore, and 1 from copper ore. Only 42,132 ounces of silver came from straight silver ores in 1939. In addition to the mines listed, some silver was reported recovered from almost every lode and placer mine operating in the State in 1939.

Ten leading silver-producing mines in California in 1939, in order of output

Rank	Mine	District	County	Rank in 1938	Operator	Source of silver
1	Cactus Queen	Mojave	Kern	1	Cactus Mines Co	Gold-silver
3	Golden Queen Grigsby (Palisade).		do Napa	5 6	Golden Queen Mining Co- Graham Loftus Oil Cor- poration.	ore. Gold ore. Gold-silver
4	Lava Cap	Grass Valley- Nevada City.	Nevada	2	Lava Cap Gold Mining Corporation.	ore. Gold ore.
5 6	Starlight Walker	MojaveGenesee	Kern Plumas	3 11	Lodestar Mining Co Walker Mining Co	Copper
7	Kelly	Randsburg	San Bernar- dino.	4	F. Royer and lessees	ore. Gold-silver
8	Empire Star mines_	Grass Valley- Nevada City.	Nevada	8	Empire Star Mines Co., Ltd.	ore. Gold ore.
9	Standard	Bodie	Mono	9	Roseklip Mines Co	Gold-silver
10	Alabama	Ophir	Placer	13	Alabama California Gold Mines Co.	ore. Gold ore.

Copper.—The discontinuance of a production-curtailment program at the Walker mine in the Genesee district, Plumas County, was the outstanding feature of the California copper-mining industry in 1939; this mine produced over 96 percent of the copper output of the State.

Lead.—Almost two-thirds of the small production of lead in California in 1939 came from Riverside County; Inyo County was the

second-largest producer.

Zinc.—Production of zinc in California in 1939 was valued at only \$624.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN CALIFORNIA 211

Gold produced at placer mines in California, 1935-39, by classes of mines and by methods of recovery

	7.51		G	old recovered	
Class and method	Mines produc- ing ¹	Material treated (cubic yards)	Fine ounces	Value	Average per cubic yard
Surface placers: Gravel mechanically handled:			•		
Connected-bucket dredges: 2					
1935	20	75, 014, 000	236, 403. 70	\$8, 274, 130	\$0.110
1936	26	78, 855, 000	276, 324, 21	9, 671, 347	. 123
1937	33	94, 809, 000	322, 961. 00	11, 303, 635	. 119
1938	33 34	117, 080, 000 121, 655, 000	375, 296. 00 370, 264. 00	13, 135, 360 12, 959, 240	.112
1909		121, 055, 000	370, 204. 00	12, 808, 240	.107
Dragline dredges: 3					
1935	24	3, 906, 000	22, 191. 47	776, 701	.199
1936	30	10, 016, 000	49, 967. 54	1,748,864	.175
1937	51	19, 364, 000	94, 142, 00	3, 294, 970	.170
1938	77	24, 560, 000	118, 108. 00	4, 133, 780	. 168
1939	142	31, 618, 000	172, 519.00	6, 038, 165	. 191
Nonfloating washing plants: 4					
1935	54	1, 466, 000 1, 433, 000	11, 892. 57 12, 059. 39	416, 240	. 284
1936	50	1, 433, 000	12, 059. 39	422, 079	. 295
1937	58	2, 338, 000	17, 079. 00	597, 765	. 256
1938	74 114	3, 538, 000 5, 512, 000	23, 046. 00 41, 694. 00	806, 610 1, 459, 290	. 265
1939 Gravel hydraulically handled: Hydraulic:		0, 012, 000	41, 094, 00	1, 409, 290	. 200
1935	93	3 013 000	13 623 10	476 800	. 158
1936	84	3, 013, 000 1, 878, 000	13, 623. 10 7, 670. 01	268, 450	.142
1937	82.	1, 324, 000	4, 628. 00	476, 809 268, 450 161, 980 247, 135	. 122
1938	86	1, 719, 000	7, 061. 00	247, 135	. 144
1939	74	921,000	6, 059. 00	212, 065	. 230
Small-scale hand methods: 5					
Wet:					
1935	1, 132	2, 895, 500	44, 147. 24	1, 545, 153	. 534
1936	326	2, 895, 500 2, 523, 600 2, 209, 000	39, 132, 00	1, 545, 153 1, 369, 620 896, 420	. 543
1937	463	2, 209, 000	25, 612, 00	896, 420	. 406
1938	292	2,863,500	41, 686. 00	1, 459, 010	. 510
1939	267	2, 534, 100	38, 815. 00	1, 358, 525	. 536
Dry:					
1935	21	6, 500	128.40	4, 494	. 691
1936	10	4, 400	337. 90	11, 827	2.688
1937	30	14,000	486.00	17, 010	1.215
1938	15	6, 500	172.00	6,020	. 926
1939	25	11, 900	169. 00	5, 915	. 497
Underground placers:					
Drift:				***	
1935	143	141,000	17, 139. 52	599, 883	4. 254
1936	113	129, 000	23, 931. 95	837, 618	6. 493
1937	121 99	98, 000 97, 000	7, 398. 00 7, 144, 00	258, 930 250, 040	2. 642 2. 578
1938 1939	99 94	83, 000	6, 525. 00	228, 375	2. 752
Grand total placer:					
1935	1, 487	86, 442, 000 94, 839, 000	345, 526. 00 409, 423. 00	12, 093, 410 14, 329, 805 16, 530, 710	. 140
1936	639	94, 839, 000	409, 423. 00	14, 329, 805	. 151
1937	838	120, 156, 000	472, 306. 00	16, 530, 710	. 138
1938 1939	676 6 749	149, 864, 000 162, 335, 000	572, 513. 00 636, 045, 00	20, 037, 955 22, 261, 575	. 134 . 137

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to

property.

In 1935 there were 36 connected-bucket dredges in operation; in 1936, 40; in 1937, 46; in 1938, 48; and in

¹ In 1625 there were 36 connected-bucket dredges in operation, in 1600, 10, in 16

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in California in 1939, by counties, in terms of recovered metals

	Mine	s pro-			Ge	old		
County	duc		Lo	ode	Pla	cer	То	otal
	Lode	Placer	Fine ounces	Value	Fine ounces	Value	Fine ounces	Value
Alpine	4		49	\$1,715			49	\$1,715
Amador	22	34	84, 434	2, 955, 190	34, 624	\$1, 211, 840	119,058	4, 167, 030
Butte	18	41	7, 601	266, 035	51, 810	1, 813, 350	59, 411	2,079,385
Calaveras	37	68	56, 079	1, 962, 765	49, 918	1, 747, 130	105, 997	
Colusa	1		1	35		, ,	1	35
Del Norte		4	l		126	4, 410	126	4, 410
Eldorado	62	31	58, 874	2, 060, 590	13, 129	459, 515	72,003	
Fresno	3	3	13		447	15, 645	460	
Humboldt	ĭ	ğ	3		1,310	45, 850		45, 955
Imperial	16	3	19, 380		277	9, 695	19, 657	687, 995
Inyo	85	10	12, 585		80	2,800	12, 665	
Kern	141	9			357	12, 495	90, 029	
Lassen	7		95			12, 100	95	3, 325
Los Angeles	11	8	4, 423		161	5, 635	4, 584	160, 440
Madera	14	19	477	16, 695	384	13, 440	861	30, 135
Mariposa	85	21	31, 364			198, 415	37, 033	1, 296, 155
Merced		6			50, 895		50, 895	1, 781, 325
Modoc	1		7	245	,	_, ,	7	245
Mono	24	2	6, 335		2	70	6, 337	221, 795
Monterey, Orange, and Ventura 2			-, -, -	,	_		0,00.	,
Ventura 2	3	2	122	. 4, 270	5	175	127	4, 445
Napa	1		3, 306				3, 306	115, 710
Nevada	42	35		10, 266, 410	25, 407	889, 245		11, 155, 655
Placer	28	75	22, 230		21, 597	755, 895	43,827	1, 533, 945
Plumas	25	44	33, 016		3, 165	110, 775	36, 181	1, 266, 335
Riverside	44	5	2, 653	92, 855	44	1, 540	2,697	94, 395
Sacramento	2	15	41		154, 100	5, 393, 500	154, 141	5, 394, 935
San Bernardino	135	18	10,077		575	20, 125	10, 652	372, 820
San Diego	8		418				418	14, 630
San Francisco		(3)			224	7, 840	224	7,840
San Joaquin		4			1,891	66, 185	1,891	66, 185
San Luis Obispo		2			14	490	14	490
Santa Cruz		1			2	70	2	70
Shasta	26	42		770, 875	22, 741	795, 935	44, 766	1, 566, 810
Sierra	21	42	21,889	766, 115	2, 809	98, 315	24, 698	864, 430
Siskiyou	63	76	5, 309	185, 815	43, 515	1, 523, 025	48, 824	1, 708, 840
Stanislaus		9			21, 791	762, 685	21, 791	762, 685
Tehama		2			905	31, 675	905	31, 675
Trinity	27	70	1, 257	43, 995	41, 273	1, 444, 555	42, 530	
Tulare	3	2	79	2,765	14	490	93	3, 255
Tuolumne	57	15	5, 820	203, 700	6, 244	218, 540	12,064	422, 240
Yuba	11	22	6, 259		80, 540	2, 818, 900	86, 799	3, 037, 965
	1, 028	749		27, 972, 665		22, 261, 575	1, 435, 264	50, 234, 240
Total, 1938	927	676	738, 616	25, 851, 560	572, 513	20, 037, 955	1, 311, 129	45, 889, 515

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.

² Combined to avoid disclosure of individual output.

³ Output from property not classed as a "mine."

GOLD, SILVER, COPPER, LEAD, AND ZINC IN CALIFORNIA 213

Mine production of gold, silver, copper, lead, and zinc in California in 1939, by counties, in terms of recovered metals—Continued

			Silv	ver		
County	Lo	de	Pla	cer	To	tal
	Fine ounces	Value	Fine ounces	Value	Fine ounces	Value
Alpine	4, 489	\$3,047			4, 489	\$3, 04
Amador	18, 412	12, 498	4, 291	\$2,913	22, 703	15, 41
Butte	12, 981	8,811	4, 125	2,800	17, 106	11, 61
Calaveras	19, 518	13, 249	4, 146	2,814	23, 664	16, 06
Colusa	10,010	20, 22	-,			
Del Norte			22	15	22	1.
Eldorado	10, 880	7, 385	1,830	1, 242	12,710	8, 62
Fresno	10,880	1,003	81	55	85	5,02
	1	ı	165	112	166	11
Humboldt	8, 916	6,052	35	24	8, 951	6, 07
Imperial		20, 430	6	4	30, 104	20. 43
Inyo	30,098	767, 581	76	52	1, 130, 888	767, 63
Kern			. 10	32	355	24
Lassen	355	241	22	15	967	65
Los Angeles	945	641				
Madera	155	105	112	76	267	18
Mariposa	18, 527	12, 576	891	605	19, 418	13, 18
Merced			4,743	3, 219	4, 743	3, 21
Modoc	4	3			4	
Mono	87, 279	59, 243			87, 279	59, 24
Monterey, Orange, and Ventura 2	4, 253	2,887	1	1	4, 254	2,88
Napa	291, 248	197, 696			291, 248	197, 69
Nevada	407, 102	276, 336	3,724	2, 528	410, 826	278, 86
Placer	50, 957	34, 589	3, 278	2, 225	54, 235	36, 81
Plumas	194, 274	131, 871	304	206	194, 578	132, 07
Riverside	17, 088	11, 599	7	5	17, 095	11, 60
Sacramento	7	5	7, 512	5,099	7, 519	5, 10
San Bernardino	189, 331	128, 516	46	31	189, 377	128, 54
San Diego	245	166			245	16
San Francisco	1		18	12	18	1
			212	144	212	14
San Joaquin						
San Luis Obispo						
Santa Cruz		22, 045	2,096	1, 423	34, 573	23, 46
Shasta	32, 477	2, 979	2,090	1, 420	4, 680	3, 17
Sierra	4, 388		5, 955	4,042	7, 615	5, 16
Siskiyou	1,660	1, 127	1,748	1, 187	1,748	1, 18
Stanislaus				1, 107	1, 740	1, 10
Tehama			68		4,679	3, 17
Trinity	384	261	4, 295	2, 915		3, 17
Tulare	40	27	4	3	44	
Tuolumne	2,067	1,403	967	656	3, 034	2,05
Yuba	4, 111	2, 790	5, 059	3, 434	9, 170	6, 22
	2, 543, 008	1, 726, 163	56, 131	38, 101	2, 599, 139	1, 764, 26
m.+-1 1000	0 541 010		49,788	32, 186	2, 590, 804	1, 674, 86
Total, 1938	2, 541, 016	1, 642, 677	49, 100	02,100	4,000,004	1,017,00

² Combined to avoid disclosure of individual output.

Mine production of gold, silver, copper, lead, and zinc in California in 1939, by counties, in terms of recovered metals—Continued

County	Co	pper	Le	ad	Zi	nc	Total
County	Pounds	Value	Pounds	Value	Pounds	Value	value
Alpine			6,000	\$282			\$5,0
Amador		\$208					4, 182, 6
Butte		416	2,000	94			2, 091, 5
Calaveras							3, 725, 9
Colusa	-						
Del Norte Eldorado							4,4
resno		624	4,000	188			2, 529, 5
Humboldt							16, 1
mperial		7,072	2,000	94			46, 0 701, 2
nyo	76,000	7, 904	180, 000	8, 460	6,000	\$312	480.3
Kern	2,000	208	16,000	752	0,000		3, 919, 6
assen			10,000	.02			3, 5
Los Angeles							161, 0
Madera							30, 3
Mariposa Merced	4,000	416	50,000	2, 350			1, 312, 1
Merced	.						
Modoc							2
Mono	2,000	208	12,000	564			281, 8
Monterey, Orange, and Ven-	1						
tura 2			10,000	470	6, 000	312	8, 1
Napa Nevada	10,000 26,000	1,040					314, 4
Nevaua Planor	20,000	2, 704 416	40,000	1, 880			11, 439, 10
Placer Plumas	9 058 000	838, 032	26, 000 10, 000	1, 222 470			1, 572, 39
Riverside	60,000	6, 240	650,000	30, 550			2, 236, 9
Riverside Sacramento San Bernardino	00,000	0, 240	000,000	30, 330			142, 73 5, 400, 03
an Bernardino	38,000	3, 952	38, 000	1, 786			507, 10
an Diego	00,000	0,002	1,0,000	1, 100			14, 7
an Francisco							7, 8
San Joaquin							66, 3
San Luis Obispo	.		II				49
Santa Cruz			[-
hasta			4,000	188			1, 590, 46
Sierra			2,000	94			867, 70
siskiyou							1, 714, 00
tanislaus							763, 8
Cehama							31, 7
CrinityCulare							1, 491, 72
Tuolumne							3, 28
uba							424, 29
							3, 044, 1
	8, 360, 000	869, 440	1, 052, 000	49, 444	12,000	624	52, 918, 0
rotal, 1938	1 610 000	157, 976	990,000	45, 540	14,000	024	47, 767, 89

² Combined to avoid disclosure of individual output.

MINING INDUSTRY

The tonnage of material treated from lode mines in California in 1939, compared with 1938, increased 20 percent and the yardage at placer mines 8 percent; the output of lode gold rose 8 percent and that of placer gold 11 percent. Thus, the average grade of lode material declined, whereas the average gold content of gravels rose. Of the State total gold in 1939, 56 percent was from lode mines and 44 percent from placers.

Dredges of the connected-bucket type handled 75 percent of the gravel mined, and they recovered 58 percent of the State total placer gold in 1939; the quantity of gravel handled by such dredges increased, but the total value of the gold recovered decreased compared with

the preceding year for the first time since 1930.

The second most important method of placer mining—dragline dredging—continued in 1939 its spectacular rise as a means of recovering gold. The first dragline dredge production in the United States was reported in California in 1933, when two outfits began

work late in the year and recovered less than 100 ounces of gold. In 1939, 142 properties were worked by 109 dragline dredges. It will be noted that the average gold recovery by dragline dredges reversed a downward trend and rose to 19.1 cents a cubic yard in 1939. Many dragline operators appear to find that moving to smaller and smaller bodies of gravel is profitable, provided the recoverable gold content is substantially higher than the material available in larger bodies. During 1939 dragline dredges treated 19 percent of the State total placer gravels and recovered 27 percent of the total placer gold.

Nonfloating washing plants to which gravel was delivered by mechanical means showed a very large gain over 1938 in yardage handled and gold recovered, and the average gold recovery per cubic yard of gravel treated rose from 22.8 to 26.5 cents. Equipment was moved from one property to another, as was the practice with dragline dredges, and 114 mines were worked by 101 plants. Some of these nonfloating washing plants are stationary; others are built to move on skids, wheels, or tracks, or by other means. Dragline excavators, power shovels, slackline excavators, trucks, bulldozers, and other machines were used to deliver gravel to these washing plants.

Gold production by hydraulicking, small-scale hand methods, and

drift mining was lower in 1939 than in 1938.

Consumption of quicksilver at California placer mines was 19,617 pounds in 1939. The following quantities of gold were recovered per pound of quicksilver used: Connected-bucket dredging, 41 ounces; dragline dredging, 29 ounces; nonfloating washing plants with mechanical gravel handling, 31 ounces; hydraulicking, 21 ounces; small-scale hand operation, 13 ounces; and drift mining, 26 ounces.

ORE CLASSIFICATION

Of the 5,577,853 tons of ore (including 637,891 tons of old tailings) sold or treated in 1939, 91 percent was dry gold ore and old tailings, 7 percent copper ore, and most of the remainder dry gold-silver ore.

Details of ore classification are given in the chapter of this volume

on Gold and Silver.

Ore and old tailings sold or treated in California in 1939, with content in terms of recovered metals

~		Ore and old tailings treated		Silver	Copper	Lead	Zinc	
Source	Ore	Old tail- ings	Gold	Silver	Copper	Dead	Zinc	
Dry and siliceous gold ore Dry and siliceous gold-silver ore. Dry and siliceous silver ore	Short tons 4, 414, 435 156, 841 470	Short tons 633, 616 330 3, 945	Fine ounces 763, 666 22, 421 20	Fine ounces 1, 209, 975 1, 086, 767 42, 132	Pounds 185, 400 21, 700 4, 500	Pounds 830, 600 1, 600 14, 400	Pounds 6,000	
Copper oreLead oreZine-lead ore	4, 571, 746 367, 477 706 33	637, 891	786, 107 12, 962 148 2	2, 338, 874 195, 972 7, 902 260	211, 600 8, 145, 000 3, 400	846, 600 200 199, 200 6, 000	6, 000	
Total, lode mines	4, 939, 962	637, 891	799, 219 636, 045	2, 543, 008 56, 131	8, 360, 000	1, 052, 000	12,000	
Total, 1938	4, 939, 962 3, 659, 919	637, 891 988, 330			8, 360, 000 1, 612, 000	1, 052, 000 990, 000	12, 000	

METALLURGIC INDUSTRY

During 1939, as in former years, most of the ore and virtually all the old tailings were treated at amalgamation and cyanidation mills (with or without concentrating equipment); 91 percent of the total ore and old tailings was treated at such mills in 1939. Almost all the remaining ore and all the rest of the old tailings were treated at Only 11,078 tons of crude ore were shipped for concentrating mills. direct smelting. Smelters received 53,340 tons of flotation concentrates and 2,672 tons of gravity concentrates from California mine operators in 1939. Comparing 1939 with 1938, there was an increase of 36 percent in ore and a decrease of 35 percent in old tailings treated at amalgamation and cyanidation mills; ore and old tailings combined increased 20 percent. The quantity of material treated at concentrating mills rose 29 percent, and the quantity of crude ore smelted The increase in quantity of concentrates shipped declined 13 percent. in 1939 for smelting was due largely to expanded production at the Walker mine in Plumas County, which made very large shipments of copper concentrates.

Quicksilver consumption at California amalgamation mills was 13,125 pounds in the treatment of 2,902,583 tons of material to recover 342,296 ounces of gold and 63,720 ounces of silver in 1939. In the treatment of 1,409,777 tons of ore, 262,445 tons of old tailings, and 10,648 tons of concentrates to recover 175,086 ounces of gold and 838,056 ounces of silver, cyanide consumption was 778,579 pounds of 91-percent sodium cyanide and 775,426 pounds of commercial calcium cyanide (50-percent NaCN equivalent); in terms of 98-percent NaCN the consumption was 1,118,592 pounds, or 0.66 pound per ton. A substantial part of the cyanide was consumed

at custom mills.

Companies producing most of California's lode gold in 1939 owned and operated their own metallurgical plants, but a number of custom mills were active and served small-scale miners principally. The leading operators of metallurgical plants receiving custom material were: Burton Bros., Inc., Rosamond, Kern County; Golden Queen Mining Co., Mojave, Kern County; Mineral Reduction Co., Benton, Mono County; Gold Crown Mining Co., Ltd., east of Twentynine Palms, San Bernardino County; and Keeler Gold Mines, Inc., Keeler, Inyo County. All these mills were cyanidation plants and accepted ore and old tailings. The Idaho Maryland Mines Corporation, Grass Valley, Nevada County, discontinued custom work on ore and concentrates during 1939, except for a few lots. The largest metallurgical custom plant in California continued to be the State's only smelter—the Selby lead plant of the American Smelting & Refining Co., at Selby, Contra Costa County.

Mine production of metals in California in 1939, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zine
Ore, old tailings, and concentrates amalgamated. Ore, old tailings, sands, slimes, and	Short tons 2, 902, 583	Fine ounces 342, 296	Fine ounces 63, 720	Pounds	Pounds	Pounds
concentrates cyanided	2, 139, 243	258, 204	934, 899			
Concentrates smelted: Flotation Gravity Ore smelted	53, 340 2, 672 11, 078	181, 861 8, 871 7, 987	1, 311, 989 26, 437 205, 963	8, 204, 100 37, 900 118, 000	348, 200 486, 400 217, 400	12,000
Total, lode mines Total, placers		799, 219 636, 045	2, 543, 008 56, 131	8, 360, 000	1, 052, 000	12, 000
Total, 1938		1, 435, 264 1, 311, 129		8, 360, 000 1, 612, 000	1, 052, 000 990, 000	12,000

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in California in 1939, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

•	Material	treated		ered in lion	Concentrates smelted and recovered metal					
County	Ore 1	Old tail- ings	Gold	Silver	Con- cen- trates pro- duced	Gold	Silver	Copper	Lead	
Amador	Short tons 273, 332 1, 483 545, 938 6	Short tons	Fine ounces 49, 024 176 24, 753	Fine ounces 9,742 46 3,246	Short tons 5, 274 60 4, 126	Fine ounces 20, 894 121 17, 495	Fine ounces 3, 515 141 9, 309	Pounds 2,000 100	Pounds	
Eldorado Fresno Humboldt Imperial Inyo Kern	82, 104 25 15 172 1, 137 323, 358	200 220 1, 350	27, 939 10 3 379 436 11, 391	3, 593 3 1 231 476 3, 651	7,750 	21, 127 	164 7,849	5, 800 	4,000 200 16,000	
Lassen Los Angeles, Monterey, and Ventura ² Madera Mariposa Mono Nevada	19, 260	470	4, 284 304 15, 731 2, 210 151, 341	873 99 4, 253 694 23, 915	2 2, 257 7, 663	14 15, 129 39, 294	13 13, 775 273, 308	3,700	50,000	
Placer Plumas Riverside Sacramento San Bernardino	120, 405 34, 852 1, 425 2 33, 735	182	16, 809 3, 320 647 41 2, 391	5, 010 739 169 7 852	7, 663 861 174 889	3, 895 2, 863 1, 102	42, 027 1, 061 16, 460	3, 900 1, 900 57, 700	26, 000 9, 100 649, 800	
San Diego Shasta Sierra Siskiyou Trinity Tulare	681 12,074 64,604 75,681 3,778	26 550	237 3, 605 18, 113 4, 934 1, 111	57 750 3,582 944 208 2	430 477 60 18	2, 530 1, 633 331 91	842 556 673 74			
Tuolumne_Yuba Total, 1938	43, 886 4, 339 2, 898, 985 2, 533, 649	3, 598 14, 510	2, 508 543 342, 296 337, 514	431 106 63, 720 63, 930	1, 214 8 31, 951 17, 969	2, 921 10 136, 394 84, 111	1, 440 3 379, 235 362, 639	100, 800 68, 600	801, 800 96, 200	

Figures under "Ore" include both raw ore and concentrates amalgamated or cyanided, but not raw ore concentrated before amalgamation or cyanidation of concentrates.
 Combined to avoid disclosure of individual output.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in California in 1939, by types of mills and by counties, in terms of recovered metals—Continued

CYANIDATION MILLS

	Material	treated	Recove		Con	centrates	smelted a metal	nd recov	ered
County	Ore 1	Old tail- ings	Gold	Silver	Con- cen- trates pro- duced	Gold	Silver	Copper	Lead
Amador	Short tons 25, 588	Short tons 448, 882	Fine ounces 13, 198	Fine ounces 4,812	Short tons 214	Fine ounces 1, 271	Fine ounces 321		Pounds
ButteCalaveras	22, 170 396, 116		1, 365 13, 751	1, 266 6, 611	297	5, 801	11, 481	3,900	1, 800
Eldorado Imperial	45, 476 32, 134	982 470	9, 624 13, 849	2, 656 6, 288	10	139	184	200	
Inyo Kern Lassen	34, 894 493, 980 12	758 166, 522	11, 309	13, 642 668, 381 35	184	9 10, 110	7 450, 923		
Los Angeles Madera	325	4, 102 3, 350	186 159 185	80 43 159					
Mariposa Mono Nevada Placer	72, 135 90, 647	1,500	4, 122 100, 315 878	71, 270 105, 400 2, 874	123	53	877	4,000	10, 00C
Plumas Riverside	10 1,093	5, 841	49 780 5,006	8 91 16,416	8 4	87 123	292 191		
San Bernardino San Diego Shasta	170 265, 953		142 15, 352	183 30, 554					
SierraSiskiyou Tulare	141	1, 311 450	95 30 76	28 24 38	20	146	46		
Tuolumne Yuba	1, 744 1, 000	5	203 5, 700	40 4,000					
Total, 1938	1, 505, 070 1, 412, 810	634, 173 969, 445		934, 899 891, 087	862 2, 775	17, 739 18, 734	464, 322 574, 890	8, 100 81, 300	12,000 222,700
Grand total: 1939 1938	4, 404, 055 3, 946, 459	637, 771 983, 955	600, 500 569, 627	998, 619 955, 017	32, 813 20, 744	154, 133 102, 845	843, 557 937, 529	108, 900 149, 900	813, 800 318, 900

¹ Figures under "Ore" include both raw ore and concentrates amalgamated or cyanided, but not raw ore concentrated before amalgamation or cyanidation of concentrates.

Mine production of metals from concentrating mills in California in 1939, by counties, in terms of recovered metals

	Materia	l treated	Concentrates smelted and recovered metal								
County	Ore	Old tailings Concentrates produced		Gold	Silver	Copper	Lead	Zinc			
Alpine	Short tons 510 30	Short tons	Short tons	Fine ounces 37 23	Fine ounces 4, 141	Pounds	Pounds 1,000	Pound			
Butte Imperial Inyo	33, 345 233	120	888 48	4, 815 270	1, 863 531	66, 300 800	6, 900	6, 000			
Mariposa Napa Nevada	4, 134 31, 948 580		45 636 48	270 3, 306 269	205 291, 248 121	10,000	900				
Orange and Sierra 1 Plumas Shasta	6, 477 415, 516 800		186 21, 281 48	26, 664 119	4, 267 192, 367 122	8, 056, 000	12,000	6,000			
Total, 1938	493, 573 379, 635	120 4, 375	23, 199 17, 158	36, 599 55, 817	494, 869 376, 926	8, 133, 100 1, 391, 500	20, 800 321, 700	12, 00			

¹ Combined to avoid disclosure of individual output.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN CALIFORNIA 219

Gross metal content of concentrates produced from ores mined in California in 1939, by classes of concentrates

	Concen-		Gross	metal cont	ent	
Class of concentrates	trates	Gold	Silver	Copper	Lead	Zinc
Dry gold	35, 721 862	Fine ounces 156, 598 13, 440	374, 308 746, 354	71, 814 13, 973	Pounds 123, 994 1, 102	Pounds 8, 965
Copper Lead Lead-copper Zine	18, 313 222 881 13	17, 752 1, 864 1, 077	191, 485 9, 472 16, 451 356	8, 382, 440 903 88, 220 34	82, 693 676, 180 1, 191	3, 289 13, 529
Total, 1938	56, 012 37, 902	190, 732 158, 662	1, 338, 426 1, 314, 455	8, 557, 384 1, 677, 975	885, 160 704, 466	25, 783

Mine production of metals from California concentrates shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	ъ1	COUNTIES	·			
	Concen- trates	Gold	Silver	Copper	Lead	Zinc
Alpine	Shorttons 17	Fine ounces	Fine ounces 4, 141	Pounds	Pounds 1,000	Pounds
Amador	5, 488	22, 165	3,836	2,000		
Butte	359	5, 945	11, 626	4,000	2,000	
Calaveras	4, 126	17, 495	9,309			
Eldorado	7,760	21, 266	4,621	6,000	4,000	6,000
Imperial and Orange 1	931	4,824	5,958	66, 300	10,000	
Inyo	53	346	702 458, 772	800 2,000	7, 100 16, 000	6,000
Kern	773	16, 437 14	458, 772	2,000	10,000	
Madera	2, 302	15, 399	13, 980	3,700	50,000	
Mariposa Napa	636	3, 306	291, 248	10, 000	30,000	
Nevada	7,834	39, 616	274, 306	25, 900	39, 800	
Placer	861	3, 895	42, 027	3,900	26,000	
Plumas	21, 455	29, 527	193, 428	8, 057, 900	9, 100	
Riverside	897	1, 189	16, 752	57, 700	650,000	
San Bernardino	100	673	3,779	1,800	13, 800	
Shasta	478	2, 649	964		3, 800	
Sierra	640	2, 596	774		2,000	
Siskiyou	60	331	673			
Trinity	18	91	74			
Tuolumne	1, 214	2, 921	1,440			
Yuba	8	10	3			
Total, 1938	56, 012 37, 902	190, 732 158, 662	1, 338, 426 1, 314, 455	8, 242, 000 1, 541, 400	834, 600 640, 600	12,000
ву с	LASSES	OF CONCE	NTRATES	1	<u>.</u>	<u> </u>
Dry gold	35, 721	156, 598	374, 308 746, 354	48, 000 10, 000	105, 500 1, 000	
Dry gold-silver	862 18, 313	13, 440 17, 752	191, 485	8, 125, 600	1,000	
Copper Lead	222	1, 752	9, 472	700	77, 300	
Lead-copperL	881	1, 077	16, 451	57, 700	649, 800	
Zinc	13	1,071	356		1,000	12,000
	56, 012	190, 732	1, 338, 426	8, 242, 000	834, 600	12,000

¹ Combined to avoid disclosure of individual output.

Gross metal content of California crude ore shipped to smelters in 1939, by classes of ore

Class of ore	Ore	Gross metal content						
Class of ore	Ore	Gold	Silver	Copper	Lead			
Dry and siliceous gold. Dry and siliceous gold-silver. Dry and siliceous silver. Copper. Lead.	Short tons 5, 540 3, 990 406 436 706	Fine ounces 6, 677 1, 062 7 93 148	Fine ounces 7, 728 154, 640 29, 291 6, 402 7, 902	Pounds 9, 603 13, 275 5, 946 94, 179 5, 345	Pounds 4, 453 760 20, 085 238 208, 482			
Total, 1938.	11, 078 12, 750	7, 987 10, 327	205, 963 271, 544	128, 348 79, 339	234, 018 368, 446			

Mine production of metals from California crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Ore	Gold	Silver	Copper	Lead
	Short tons	Fine ounces	Fine ounces	Pounds	Pounds
Alpine	18	12	348		5,000
Amador	21	47	22		
Butte	100	115	43		
Calaveras	96	80	352		
Eldorado	11	45	10		
Fresno	11	3	1		
Imperial	426	337	534	1,700	2,000
Inyo	926	494	15, 278	75, 200	172, 900
Kern	8	21	8	,	
Lassen	75	36	280		
Los Angeles and Monterey 1	114	66	150		
Mariposa	53	49	135	300	
Modoc	ĩ	7	4		
Mono	178	3	15, 315	2,000	12.000
Nevada	48	2,054	3, 481	100	200
Placer	753	648	1,046	100	200
Plumas	144	120	1,010	100	900
Riverside	83	37	76	2,300	200
San Bernardino	6, 575	2,007	168, 284	36, 200	24, 200
San Diego	17	2,007	100, 204	30, 200	24,200
Shasta	233	419	209		200
Sierra	968	1.085	203		
Siskiyou	21	1,000	19		
Trinity	42	55	102		
Tuolumne	145	188	156		
Yuba	11	6	150		
1 aba	11				
	11,078	7, 987	205, 963	118,000	217, 400
Total, 1938	12, 750	10, 327	271, 544	70, 600	349, 400
BY CL	ASSES OF	ORE			-
Dry and siliceous gold	5, 540	6, 677	7, 728	7, 700	3,000
Dry and siliceous gold-silver	3, 990	1,062	154, 640	11,600	600
Dry and siliceous silver	406	7	29, 291	4,500	14, 400
Copper	436	93	6, 402	90, 800	200
Lead	706	148	7, 902	3, 400	199, 200
	11,078	7, 987	205, 963	118,000	217, 400

¹ Combined to avoid disclosure of individual output.

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in California in 1939, by counties and districts, in terms of recovered metals 1

County and district 1	Mines	producing ²	Ore and old		Gold		Silver (lode	Common	T	7	Total
County and district	Lode	Placer	tailings	Lode	Placer	Total	and placer)3	Copper	Lead	Zinc	value
Alpine County: Monitor	1		Short tons	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Pounds	Pounds 1,000	Pounds	\$4, 153
Silver Mountain Summit City	1 1		4	3		3	265				285
mador County	į.		14	9		9	83		5,000		606
East Belt 4	9	.6	1, 640	253	2,090	2, 343	881				82, 603
Ione Mother Lode 5	13	15 11	720, 595	84, 181	20, 659 6, 658	20, 659 90, 839	2, 417 18, 833	2 000			724, 706 3, 192, 357
Butte County:			· ·		,	,	<i>'</i>	2,000			0, 102, 001
Butte Creek Centerville	2	6	1, 086	194	8, 380 83	8, 574 83	893 8				300, 696
Forbestown	2	(6)	81	106	30	136	130				2, 910 4, 848
Inskip Magalia	1	1 10	150 2	9 17	17 1, 109	26 1, 126	3 126				912
Merrimac	2	2	34	24	1, 109	1, 126	239				39, 496 55, 322
Oroville Yankee Hill	. 1 5	17	200	72	38, 324	38, 396	2,771	100	200		1, 345, 761
alaveras County		2	22, 230	7, 179	1, 135	8, 314	12, 896	3, 900	1,800		300, 234
Camanche 7		7			7, 600	7, 600	687			1	266, 466
Campo Seco	4	3	86. 151	8, 723	2, 313	2, 313 8, 723	65 7, 854				80, 999
East Belt 4	1 11	3	45, 901	14, 086	198	14, 284	2, 030				310, 637 501, 318
Jenny Lind	2	15 39	721	72	12, 272	12, 344	1, 136				432, 811
West Belt 8		1	456, 863	33, 198	18, 161 9, 374	51, 359 9, 374	10, 896 996				1, 804, 961 328, 766
Colusa County: Sulphur Creek	1		6	1		. 1					35
Del Norte County: French Hill	İ	3			103	103	20				0.010
Smith River		ĭ			23	23	20 2				3, 619 806
Eldorado County: East Belt 4	. 7	5	12, 381	2, 290	1 470	0.700	1 500				
Mother Lode 5	44	21	79, 293	38, 262	1, 479 5, 414	3, 769 43, 676	1, 529 5, 512	5, 500	1, 300		133, 014 1, 532, 973
West Belt 8	11	5	105, 856	18, 322	6, 236	24, 558	5, 669	500	2,700		863, 557
Auberry	. 1		15	6		. 6	3				212
Copper King	1		10	.4		ž l					140
Friant	1	2	11	3	439	442	80				15, 524

See footnotes at end of table.

Mine production of gold, silver, copper, lead, and zinc in California in 1939, by counties and districts, in terms of recovered metals—Continued

1 (9) (9) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Short tons Short tons	Lode Fine ounces 3 19,025 348	Placer Fine ounces 724 32 540 14	Total Fine ounces 724 32 543 14	Silver (lode and placer) Fine ounces 81 1 82	Pounds	Lead Pounds	Zinc Pounds	value \$25, 395 1, 121
13 (9) 2 (6) 1	66, 444	19,025	724 32 540 14	724 32 543				Pounds	\$25, 395
13 (9) 2 (6) 1 1	66, 444	19, 025	540 14	543	1 82				
13 (9) 2 (6) 1 1	83		(9)		2				19, 061 491
1	20		15	10 19, 025 363	10 8, 373 542	68, 000	2, 000		10 678, 630 13, 167 456
	150	22	6	13 22 12	48 6, 095	70, 900	200		812 11, 931
6	178 236 1, 191	144 244		144 244	1, 415 5, 982	300 2, 500	44, 200 99, 700		8, 109 17, 546 2, 913
7 (9)	137 1,826	110 287	(9)	110 10 287	171 10 566	600			4, 028 10 10, 429 12, 389
1	195	36		36	1, 366 134 58	100 300	21, 000 200	6,000	3, 497 132 2, 839
1	200	42 4, 313	63	63 42 4, 313	5 96 663				2, 208 1, 538 151, 408
2 5 11	188 1, 287	19 122 1, 059		122 1, 059	579 802	500 800	13, 200 900		738 5, 335 37, 735
1	11 37 3 1,799	1, 766	14	44 1, 780	7 6, 044				486 1, 545 66, 403
8	5, 599 2, 646	3, 799 265		265	4, 613 125				136, 096 9, 360
3 (6)	1 34, 289	7,916	22 89 1	89 7, 917	6, 506	1, 300	7, 200		77 3, 12 281, 98 1, 12
2 (6) 2 (6)	42 24	6 13	46 16	32 52 29 519	13 9 7 545				1, 12 1, 82 1, 02 18, 53
_	17 (*) 2 4 4 1 1 1 1 3 2 5 5 11 1 4 7 7 8	8 1,191 1 120 7 137 17 (*) 1,826 2 321 4 195 1 4 1 5 24,433 24,433 2 41 5 188 1 1,287 1 37 4 3 1,799 7 5,599 8 2,646 1 34,289 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 2 2,646 3 3,799 4 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 1, 191 244 244 5, 982 2,500 1 120 83 83 121 120 600 17 137 110 110 110 171 600 17 1,826 287 (9) 10,287 10,566 10,566 2 321 350 350 205 205 205 4 195 36 36 13,666 100 134 300 1 61 80 63 63 55 134 300 58 10 55 134 300 58 10 55 134 300 58 10 55 134 300 58 10 55 134 300 58 10 55 134 300 58 10 10 134 300 58 10 10 134 300 58 10 10 10 10 10 10 10 </td <td>8 1, 191 244 244 5, 982 2, 500 99,700 1 120 83 83 12 17 110 110 171 600 171 600 171 600 171 600 171 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 171 600 171 171 171 600 171<!--</td--><td>8 1, 191 244 244 5, 982 2,500 99,700 1 1 120 83 83 12 1 1 17 100 1110 171 600 1 117 600 1 110 171 600 1 1 1 600 1 1 1 1 1 1 1 1 360 360 360 1 366 360 <</td></td>	8 1, 191 244 244 5, 982 2, 500 99,700 1 120 83 83 12 17 110 110 171 600 171 600 171 600 171 600 171 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 600 171 171 600 171 171 171 600 171 </td <td>8 1, 191 244 244 5, 982 2,500 99,700 1 1 120 83 83 12 1 1 17 100 1110 171 600 1 117 600 1 110 171 600 1 1 1 600 1 1 1 1 1 1 1 1 360 360 360 1 366 360 <</td>	8 1, 191 244 244 5, 982 2,500 99,700 1 1 120 83 83 12 1 1 17 100 1110 171 600 1 117 600 1 110 171 600 1 1 1 600 1 1 1 1 1 1 1 1 360 360 360 1 366 360 <

Havilah	11 !	1 1	319	128	8	136	69				4, 807
Long Tom	2		89	7		7	1, 116, 349	700	0 000		245 2, 800, 816
Mojave	35	1 1	230, 101	58, 358 250	62	58, 359 312	471		0,000		11, 240
Pioneer	10	2	2, 961 143	200	02	99	78				3, 518
Rademacher	5 38	(9)	1, 030, 881	21, 937	(⁹)	10 21, 937	10 6, 593				10 772, 270
Randsburg ¹⁸ Red Rock	30		1, 030, 331	7	(7)	7	12				253
Sageland	7		126	64		64	38				2, 266
Summit		1			27	27	3				947
White River	2	1	610	71	. 4	75	38				2, 651
Lessen County:					·		320				2, 142
Diamond Mountain	4		238	55		55 40	35				1, 424
Hayden Hill	3		272	40		40	90				1, 121
Los Angeles County:	-		28, 628	4, 287		4, 287	899				150, 655
Cedar Iron Mountain	1		500	54		54	14				1,900
	9		68	16		16	22				575
Neenach Palomas	ĩ	4	19	66	23	89	11				3, 122
San Gabriel		4			138	138	21				4,844
Madera County:		_									4 600
Hildreth	6	(6)	80	78	55	133	49				4, 688 25, 628
Potter Ridge	8	19	5,384	399	329	728	218				20,028
Mariposa County:		_ '	40.040	0.700	210	3,948	1, 186	200		1 1	139,006
East Belt 4	22	3	12,810	3, 738 8, 881	175	9, 056	3,481	2,000	1 500		319,601
Hunter Valley	14 49	1 17	30, 534 102, 812	8, 881 18, 745	5, 284	24, 029	14. 751	1, 800	48, 500		853, 495
Mother Lode		16	102, 812	10, 740	50,895	50, 895	4, 743		,		1, 784, 544
Merced County: Snelling	<u>î</u> -	١ ،	1	7	00,000	7	4				248
Mono County:	•		-	•					į .		1
Blind Springs	5		652	171		171	3, 203				8, 159
Bodie.	6		71, 467	3,410		3, 410	63, 032				162, 135
Chidago 11	6		1, 275	327		327	2,014				12, 812 318
Dunderburg	1		40	9		9	3,013				8,730
Mammoth Lakes	2		331	191		191 39	.0,013				1, 372
Masonic	1		59	39 2, 182		2, 182	686				76, 836
May Lundy	1		19,069	2, 102		5	1				176
Mono Diggings	1 1	2	178	3	-	3	15, 314	2,000	12,000		11, 272
White Mountain Napa County: Calistoga	i		31, 948	3, 306		3,306	291, 248	10,000			314, 446
Nevada County: Canstoga	1		01,010	0,000		,	,	,			
French Gulch	1	6	49	22	1, 250	1, 272	178				44,641
Grass Valley-Nevada City	33	15	1, 139, 559	292, 059	18, 740	310, 799	403, 126	16,800	28,900		11, 154, 708
Washington	7	5	6,665	1, 235	3, 149	4, 384	7, 301	9, 200	11, 100		159, 874
You Bet	1	9	200	10	2, 268	2, 278	221				79,880
Placer County:					1 000	1 100	760	100	900		42, 400
Auburn	3	4	716	140	1,056	1, 196	760 14.1	100	300		14 176
Butcher Ranch	(8)	1	(9) 19, 349	(⁹) 3, 191	653	3, 844	528				134, 898
Dutch Flat	3	1 4	19, 549	3, 191	1 000	0,011	020				,

See footnotes at end of table

Mine production of gold, silver, copper, lead, and zinc in California in 1939, by counties and districts, in terms of recovered metals—Continued

County and district	Mines	producing	Ore and old		Gold		Silver (lode				Total
County and district	Lode	Placer	tailings	Lode	Placer	Total	and placer)	Copper	Lead	Zinc	value
Placer County—Continued. Foresthill	7	9	Short tons	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Pounds	Pounds	Pounds	
Iowa Hill	1 1	10	130	140	1, 014 1, 093	1, 160 1, 112	135 127				\$ 40,692
Last Chance	9	6	120	58	466	524	57				39, 006 18, 379
Lincoln		16			9, 228	9, 228	1, 520				324, 012
Michigan Bluff Ophir	.1	3			244	244	57				8, 579
Plumas County:	. 10	21	100, 014	18, 457	7,651	26, 108	50, 967	3,900	25, 700		949, 989
Bucks Lake	. 1	- '	50	29		29					
Butte Valley		1			68	68	0				1,020 2,385
Crescent Mills	10	9	49,070	4, 915	441	5, 356	1, 167	600			188, 315
Genesee	3	(9)	367, 572	12, 911	(9)	10 12, 911	10 189, 591	8, 054, 200			
Granite Basin Johnsville	. 3	(6)	4, 327	590	_1	591	616	1,400	10,000		21,719
La Porte	3	(8)	406	148	76 934	224	68				
Lights Canyon		4			115	934 115	73 8				32, 740
Quincy	3	13	4,620	627	552	1, 179	142				4, 030 41, 361
Rich Bar	1	5	48, 475	13, 795	923	14, 718	2, 893				517, 281
Seneca		2			41	41	3	-, 000			1, 437
Arica	1		20	19							
Bendigo	1		30 5	19		19 2	18				698
Chuckawalla Cottonwood Springs	5	(6)	207	87	1	88	17				3: 092
Cottonwood Springs	1		14	3		3	3				3,092
Dale 18	19		1,054	845		845	406	500	200		29, 912
Eagle Mountain Gold Park	3	3	7, 910	1, 201	10	1, 211	16, 451	57, 700	649, 800		90, 093
Ironwood	1 1		60 40	14 16		14 16					490
Pinacate	5	2	1, 045	420	33	453	148				560
Pinon	5		110	45		45	7				15, 955 1, 580
Santa Rosa 16	2		24	1		ĭ	44	1.600			231
Sacramento County: Cosumnes River		ا م						-,			
Folsom		6 9		4	14, 436	14, 436	806				505, 807
Walltown	1 1		11	37	139, 664	139, 668	6,706				4, 892, 932
San Bernardino County:	-		+	31		37	. 7				1, 300
Alamo	2		8	5		5	3				177
Baxter	1 1		50	13		13	8				460
Buckeye Calico	4 4		1,007	136		136	689	4, 100			5,654
Oanto	4 1		4,090	8		. 8 !	13, 788	2, 600			9, 910

Clark M	ountainlie	1		1				1		1,400		66
Coolgaiu	16		. 4			. 11	11				1	385
Date 10		13		20,641	4, 508		4, 508	6, 519	700	2 300		162, 386
Dry Lak	e	1	1 1	2	, 4	2	-, - 6	. 0,010	•.00			211
Fremont	Peak	3	_	398	21		21	2				
Gold Par	k	1 1		40				Ď.				739
Goldaton	^				11		11	4				388
Contaston	0	6		108	66		66	85				2, 368
Grapevii	10	2		. 2	2		2	2				71
Holcomb	Valley	5	4	24, 533	1,022	369	1, 391	344				48. 919
Ibex		2		45	12		12	011				
Ivannah		0			110			2 22				421
Kaleo		2			110		110	9, 384	1, 400	800		10, 403
Zingston	Mountain	1 4			39		39	392		100		1,636
Tringation	Mountain	2		59	3		3	571	600	12 300		1, 133
Lead Mo	untain	1		. 23	7		7					245
Lytle Cr	eek	1	3	80	1 7	15	22	1				771
Mid Hill	8	l ī		30	! :	1 - 1	5	<u>.</u>				
Morongo		1 -		90	1		9	5				177
Old Won	nan Mountain		. 2			6	6					210
Old Moll	Tall INTOUTHFAILE	5		271	154		154	17			· ·	5, 402
Ora Mou	intain	3		2, 559	933	I	933	410	200			32, 954
Panamin	t	2		6	6		6	š	200	100		217
Providen	Ce	1 7		42	· 11		11	ខ្ល		100		
Kandshii	rg 18	Ē	9	4, 585	1, 223	107		150 100				390
Shadow	Mountain					167	1, 390	153, 185	11,600			153, 837
Gianol	MOUIII alii	2		43	36		36	34				1, 283
Signar		2		24	47		47	26	300			1, 693
SHVer_M	ountain	19	l	1, 237	563		563	1, 753	7, 300	12, 100		22, 223
Slate Rai	1ge 13	7		145	68		68	83	1,000	12, 100		2, 436
8010		7		874	714		714	883				2, 430
Spangler		à		137	25				800	8, 900		26, 091
Summit	Valley	9		197	20		25	31				896
Vanderbi			2			5	5				1	175
		3		1, 846	151		151	1, 093	800			6, 110
w mppie	Mountain	9		251	161	1	161	43	7 600			6, 455
San Diego Co	ounty:						-02	-0	1,000			0, 100
El Caton		1	l	40	8		8	2			1	224
Julian		Ê		541	227			_Z				281
Pine Well	ATT			041	221		227	55				7,982
Com Enometro	еу	Z		287	183		183	188				6, 533
OBU FIBUUSO) Collingy: San Brancisco		(6)			224	224	18				7, 852
San Joaquin	County:											1,002
Camanch	e 7		3			860	860	143				20 107
Linden			1 7			1, 031	1, 031					30, 197
San Laris Ohi	spo County: Pozo		2					09				36, 132
Santa Cruz C	ounty: Santa Cruz		2			14	14					490
Charle Clur C	ounty: Santa Cruz		1			2	2 .					70
Shasta Count	y:							- 1				• •
Centervil	le		2			8	8	1			1	281
French G	ulch	11	5	15, 477	6,047	1, 453	7, 500	9 024		0.000		
			29	53	62	1, 200		4,004		3, 800		264, 059
	ings	3				20, 777	20, 839					730, 659
			2	10, 737	1, 385	219	1,604	776				56, 667
redaing.		(9)	2	(9)	(9)	206	14 206	14 23		(9)		14 7, 226
Snasta		5	(0)	584	264	(9)	10 264	10 41				10 9, 268
	oton ot and of table		,				201 (41				·· 0, 200

See footnotes at end of table.

Mine production of gold, silver, copper, lead, and zinc in California in 1939, by counties and districts, in terms of recovered metals—Continued

County and district	Mines p	Mines producing		Gold			Silver (lode	Conne	Lond	Zinc	Total
	Lode	Placer	Ore and old tailings	Lode	Placer	Total	and placer)	Copper	Lead	Zine	value
Sierra County:			Short tons	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Pounds	Pounds	Pounds	#204 D46
Alleghany		14 2	68, 717	18, 201	726 74	18, 927 74	3, 687				\$664, 948 2, 594
Depot Hill Downieville		21	1, 025	217	1,916	2, 133	278		2,000		74, 938
Poker Flat		21	1,020	211	51	2, 155	210		2,000		1, 788
Port Wine		í			29	29	3				1, 01
Sierra City		2	2, 804	1,507	13	1, 520	127				53, 28
Siskiyou County:			2,001	1,001	10	1,020					00, =0
Callahan	6	9	218	215	9, 815	10, 030	1, 314				351, 94
Greenhorn		, š	319	217	13, 432	13, 649	2,002				479, 07
Humbug	5	4	129	131	4, 328	4, 459	650				156, 50
Klamath River		26	1, 392	804	12, 607	13, 411	2, 632				471, 17
Liberty		17	72, 319	3, 179	1, 153	4, 332	509				151, 96
Quartz Valley	8	2	524	276	71	347	89				12, 20
Quartz Valley	1	5	277	131	1, 789	1, 920	317				67, 41
Scott Bar	3	Š	545	356	320	676	102				23, 72
stanislaus County:		·									
Knights Ferry	1	4			3, 783	3, 783	328				132, 62
La Grange		. ŝ			11, 579	11, 579	1, 161				406, 05
Waterford		ĭ			7	7	1			l	24
ehama County: Bend		2			905	905	68				31, 72
rinity County:		_				1	1				
Big Bar		6			98	98	9				3, 43
Coffee Creek	7	4	157	73	141	214	102				7, 55
Hayfork.	3	1. 7	132	219	2,062	2, 281	137				79, 92
Helena	2	4	585	319	228	547	113				19, 22
Junction City	1	7	39	5	13, 422	13, 427	1, 323				470, 84
Lewiston	9	11	2, 267	206	9,830	10,036	1,375		.		352, 19
New River	(9)	7	(9)	(9)	195	14 195	14 28				14 6, 84
Salver		7			520	520	44				18, 23
Trinity Center		3			1, 347	1,347	181		.		47, 26
Weaverville		14	82	99	13, 430	13, 529	1,341		-		474, 42
ulare County: White River		2	511	79	14	93	44		.		3, 28
uolumne County:		_	1					1	1		
East Belt 4	47	10	9, 208	2, 297	3, 723	6,020	1, 222				211, 52
Mother Lode 5	10	5	36, 572	3, 523	2, 521	6,044	1,812			I	212, 7

Yuba County: Camptonville Chailenge Dobbins Indian Ranch Smartville	(9) 2 1 1 1	6 2 2 2 2	(9) 20 49 10	(°) 8 9 3	393 175 167 217 9, 989	443 14 175 175 226 9, 992	74 14 15 20 22 768				15, 555 14 6, 135 6, 139 7, 925 350, 241
Strawberry Valley Other counties and districts 17	18	20	1, 165 286, 766	304 22, 840	1, 614 81, 436	1, 918 104, 276	176 44, 840		10,800	6,000	67, 249 3, 680, 916
Total, California	1,028	749	5, 577, 853	799, 219	636, 045	1, 435, 264	2, 599, 139	8, 360, 000	1, 052, 000	12,000	52, 918, 012

¹ Only those counties and districts shown separately for which Bureau of Mines is at liberty to publish figures; others producing listed in footnote 17 and their output included under "Other counties and districts."

der "Other counties and districts."

2 Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.

3 Source of total silver as follows: 2,643,008 ounces from lode mines and 56,131 ounces from placers.

4 East Belt district lies in Amador, Calaveras, Eldorado, Mariposa, and Tuolumne Counties.

5 Mother Lode district lies in Amador, Calaveras, Eldorado, Mariposa, and Tuolumne Counties.

6 Output from property not classed as a "mine."

7 Camanche district lies in Amador, Calaveras, and San Joaquin Counties.

5 West Belt district lies in Calaveras and Eldorado Counties.

Included under "Other counties and districts."

Exclusive of placer output, which is included under "Other counties and districts."
 Chidago district lies in Inyo and Mono Counties.

Slate Range district lies in Inyo and San Bernardino Counties.
 Randsburg district lies in Kern and San Bernardino Counties.

Exclusive of lode output, which is included under "Other counties and districts."
 Dnle district lies in Riverside and San Bernardino Counties.
 Santa Rosa district lies in Orange and Riverside Counties.

Osanta Rosa district lies in Orange and Riverside Country; Country; Sycamore in Fresno Country; Cargo Muchacho (placer) in Imperial Country; Coso (placer) and Modocin Inyo Country; Randsburg (placer) in Kern Country; Monterey Country (Los Burros district); Orange Country (Lucas and Santa Rosa districts); Butcher Ranch (lode) and Damasacus in Placer Country; Genesee (placer) and Gold Lake in Plumas Country; Paradise in San Bernardino Country; Iron Mountain, North Cow Creek, Redding (lode), and Shasta (placer) in Shasta Country; Pike in Sterra Country; Didn in Stanislaus Country; New River (lode) in Trinity Country; Ventura Country (Snowey district); and Bear Valley, Browns Valley, Challenge (lode), and Yuba River in Yuba Country.

ALPINE COUNTY

Monitor district.—The Zaca Mining Corporation, which operated the Zaca mine, was the principal producer in Alpine County in 1939.

AMADOR COUNTY

Camanche district.—The Comanche Gold Dredging Co. was consolidated with the Gold Hill Dredging Co. during 1939, and dredging by the Comanche boat was continued under the Gold Hill name. The

dredge had sixty-two 7-cubic foot buckets.

East Belt district.—Garibaldi Bros. operated a nonfloating washing plant about one-half mile east of Volcano intermittently during 1939. E. A. Kent operated a dragline dredge on the South Branch of Sutter Creek one-half mile south of Volcano from January 1 until June 6; the dragline excavator had a 2½-cubic yard bucket. Lessees carried on hydraulic operations at the Union Flat mine from February 1 to July 1. The Fort Ann Mining Co. worked the Fort Ann mine from March 1 to June 1 and treated its ore by amalgamation and concentration.

Ione district.—The Arroyo Seco Gold Dredging Co. worked a property 3 miles west of Ione throughout 1939; the company's connectedbucket dredge had eighty-six 6-cubic foot buckets and was powered by electricity. The Lancha Plana Gold Dredging Co. operated a connected-bucket dredge on Jackson Creek almost continuously during the year; the electric-powered dredge was of Yuba type, with sixtyfive 4½-cubic foot buckets. H. G. and H. H. Kreth hydraulicked gravel on the Horton claim at Buena Vista on Jackson Creek from the first of the year until May 12. E. L. Lilly operated a dragline dredge with a 2½-cubic vard bucket on the Lorentz property from January 1 to August 21. The San Andreas Gold Dredging Co. moved one of its dragline dredges from Calaveras County to a property near Ione and began operations on September 21; the dragline excavator was Dieselpowered and used a 1½-cubic yard bucket. E. A. Kent operated a dragline dredge on Sutter Creek 5 miles west of the town of Sutter Creek; the dragline excavator had a 2½-cubic yard bucket. The Universal Dredging Corporation and the Humphreys Gold Corporation carried on dragline dredging.

Mother Lode district.—The Placeritas Mining Co. operated a dragline dredge on Indian Creek throughout 1939 except for a 6-week shut-down during August and September; the dragline excavator had a 1%-cubic yard bucket. The River Pine Mining Co. worked a dragline dredge. Two dragline dredges operated on the Hingston ranch part of the year. The dredge formerly operated by Wolin, Hall, & Wackman was worked during the early months of the year by Wolin-Hall; the plant was sold May 6 to T. M. Hingston, who optioned the dredge to Searcy and Poole on November 6. E. L. Lilly began work on the same property with a larger dragline dredge August 27 and continued until the end of the year; his dragline excavator was equipped with a 2½-cubic yard bucket. A large number of other placer operators, including many snipers, were reported in the Mother Lode district. The Argonaut Mining Co., Ltd., operated the Argonaut mine throughout 1939; the company gold ore was treated by amalgamation and flotation, and the concentrates were shipped to a smelter. addition to operations at the Argonaut mine, the company started

work June 1 on the tailings pile at the Plymouth mine and continued production until the end of the year; for this operation the company built a flotation and evanidation plant with a daily capacity of 500 tons. The tailings pile contained approximately 750,000 tons when operations began. The Central Eureka Mining Co. operated the Central Eureka and Old Eureka mines throughout the year. According to the company printed annual report for the year ended December 31, 1939, 50,242 tons of ore were treated, from which the mill recovered \$25.13 per ton; except for a small quantity of silver, the product was gold and totaled \$1,262,395.86; 86 percent was recovered by amalgamation and 14 percent by cyanidation of flotation concentrates. During the year \$270,000 was paid in dividends. The Delta Tailings Co. continued to cyanide material derived from a deposit of old tailings collected as a delta on one of the streams draining a section of the Mother Lode district. The Fremont Gover Co. continued operations at the Fremont Gover group of claims; part of the work at the property was reopening of old workings. The Kennedy Mining & Milling Co. operated the Kennedy mine throughout 1939; gold ore was treated by amalgamation and flotation, and old tailings were treated in the company 1,000-ton cyanide plant. The Keystone Mine Syndicate worked the Keystone mines throughout the year; 65,291 tons of ore were treated in the company 225-ton amalgamation-flotation mill; and gold recovery was 3,610 ounces in bullion and 3,752 ounces in concentrates sent to a smelter.

BUTTE COUNTY

Forbestown district.—Clean-up of the Midas mill site by a lessee. after the Idaho Maryland Corporation had dismantled its mill at the property, resulted in a small production of gold and silver in 1939.

Golden Summit district.—The Table Mountain Dredging Co. worked a dragline dredge at Thompson's Flat during the early months of

1939.

Magalia district.—Wilder and Cornell worked the Evers mine with gasoline shovel and Ainlay bowls from January 1 to June 1, 1939.

Merrimac district.—Piombo Bros. & Co. moved its dragline dredge to French Creek and on June 15, 1939, started operations that con-

tinued until the end of the year.

Oroville district.—The Amo drift placer mine treated 987 cubic vards of gravel in 1939, from which 167 ounces of gold and 14 ounces of silver were recovered; the company developed a special gravityconcentration method for saving very fine gold. Baker and McCowan operated a dragline dredge on the Farnan ranch near Palermo, using a 11/2-cubic yard dragline excavator from August 1 until the end of The Golden Feather Dredging Co. operated a dragline dredge on the Feather River near Oroville from October 14 to 28; gravel was dredged with a 6-cubic yard dragline excavator. Bishop worked a dragline dredge on the Gianella ranch from January The Gibson Mining Co. operated a dragline dredge on the William Richter & Sons operated a dragline dredge Miller property. using a dragline excavator with a 1½-cubic yard bucket throughout The Gold Hill Dredging Co. operated a dredge of the connected-bucket type on the east side of the Feather River 7 miles south of Oroville the entire year; the dredge used electric power and had seventy-four 9-cubic foot buckets. Yuba Consolidated Gold Fields operated two electrically powered dredges of the connected-bucket type on land adjoining the Feather River throughout the year; one had eighty-four and the other eighty-nine 9-cubic foot buckets. A very large quantity of gold was reported by gold buyers as having originated from small-scale hand-operated mines in the Oroville district.

Yankee Hill district.—The Morris Ravine Mining Co. treated 1,100 cubic yards of gravel from its drift mine on Table Mountain and recovered 119 ounces of gold and 11 ounces of silver in 1939. Hoefling Bros. worked the Surcease mine throughout the year and treated the ore in a 70-ton flotation and cyanidation plant; the flotation tailings were classified and cyanided, and the concentrates were shipped to a smelter.

CALAVERAS COUNTY

Camanche district.—The Wallace Dredging Co. operated its electrically powered connected-bucket dredge with sixty 3-cubic foot buckets from January 1 to October 11, 1939, on land bordering Bear Creek southeast of Wallace; the dredge was idle the rest of the year. The Lancha Plana Gold Dredging Co. operated the Lancha Plana Dredge No. 2 on gravel along the Mokelumne River throughout the year; the dredge used electric power and had eighty-four 6-cubic foot buckets. At the Merhten Bros. property along the Mokelumne River gravel was delivered to sluice boxes by a carry-all drawn by a tractor.

Campo Seco district.—The Pacific Placers Engineering Co. operated its nonfloating washing plant in 1939 on several properties near Valley Springs.

Copperopolis district.—The Jumbo Consolidated Mining Co. worked the Mt. King mine in the Madam Felix section of the Copperopolis district during 1939; ore was treated in a 250-ton flotation-amalgamation mill, and the concentrates were shipped to a smelter. Ore from the Royal mine, reported as in production throughout the year, was treated in a stamp mill with plate-amalgamation and flotation; concentrates were smelted.

East Belt district.—A lessee operated the Continental mine throughout 1939; 413 tons of gold ore were treated in a stamp mill using amalgamation plates followed by flotation, and 126 ounces of gold were shipped as bullion and 87 ounces were contained in concentrates shipped to a smelter. The St. Joseph Lead Co. worked the Sheepranch mine throughout the year and treated the ore in the company 150-ton amalgamation-flotation mill.

Jenny Lind district.—The California Gold Dredging Co. operated its connected-bucket dredge in the Jenny Lind district (Calaveras County) in 1939 from the first of the year until March 6, when the county line was crossed; the remainder of the year was spent dredging gravels in Stanislaus County. A small connected-bucket dredge was operated on the Dickhart ranch. The Pacific Placers Engineering Co. operated its nonfloating mechanical placer equipment on several properties in the district. The Milton Gold Dredging Enterprise operated its dragline dredge from the first of the year until August 29. The General Dredging Corporation used a dragline dredge on San Antonio Creek from January 1 to August 23; the dragline exca-

vator had a 1½-cubic yard bucket. The General Dredging Corporation took over the dragline dredge operated by the General Gold Corporation (formerly South Gulch Placers) September 1; the dragline excavator had a 2-cubic yard bucket. The former company had operated on South Gulch since May 5, 1939. The Thompson dredge operating east of Linden was converted November 1 from a connectedbucket dredge with twenty-seven 1-cubic foot buckets to a dragline

dredge.

Mother Lode district.—The San Andreas Gold Dredging Co. operated a dragline dredge on the Airola and Costa properties from January 2 to February 25, 1939, the dragline excavator using a 1½-cubic yard bucket; this dredge worked the Carrie Rivara property from February 26 to March 5, the Cademartori property from April 6 to 17, the Costa de Martini property from April 18 to May 16, the Drury property from May 7 to July 6, and the Calaveras Cement Co. property from July 7 to August 26; it was then moved to the Ione district of Amador County. On September 9, 1939, the San Andreas Gold Dredging Co. purchased a dragline dredge with a Diesel-powered dragline excavator and a 1-cubic yard bucket from Houston, Houston & Bever; this dredge worked the Bonnie, Bowling Green, and Batten properties the rest of the year. C. E. Gruwell operated a dragline dredge on the Calaveras Central and Vallecito Western properties and worked gravel on Coyote and French Creeks. E. A. Kent worked a dragline dredge on San Antonio Creek 7 miles northeast of Angels Camp from February 21 until March 26, the dragline excavator having a 1%-cubic yard bucket; this dredge was moved to Coyote Creek 6 miles east of Angels Camp and operated from June 3 to the end of the year. The R. & M. Mining Co. operated a dragline dredge with a dragline excavator equipped with a 1-cubic yard bucket on Coyote Creek throughout the year. Houston Bros. (Houston, Houston, & Bever) treated 500,000 cubic yards of gravel on Coyote Creek between January 1 and September 7 and recovered 4,022 ounces of gold; this dredge was sold to the San Andreas Gold Dredging Co. The Calaveras Land Co. worked the Lloyd drift mine on the Central Hill Channel throughout 1939. In addition to the gold recovered by dragline dredging on the Vallecito Western property, a lessee recovered 274 ounces of gold and 31 ounces of silver from 687 cubic yards of gravel obtained by drift mining. C. E. Gruwell operated the Big Springs quartz mine at Angels Camp throughout the year. The Carson Hill Gold Mining Corporation operated the Carson Hill mine throughout 1939, and 396,114 tons of ore were treated in the company 1,100-ton amalgamation-concentration-cyanidation plant; after amalgamation and concentration the concentrates were reground and returned to the circuit for cyanidation. Amalgamation accounted for the recovery of 12,419 ounces of gold and 1,207 ounces of silver, and cyanidation for 13,751 ounces of gold and 6,611 ounces of silver; 7 tons of concentrates smelted contained 155 ounces of gold and 37 ounces of silver. company mined a larger tonnage than any other lode property on the Mother Lode. Gold ore was treated by amalgamation and gravity concentration at the Comet mine throughout 1939. The LeRoi Mines, Inc., operated the Easyz Bird mine throughout the year and treated a large tonnage of ore by flotation; most of the recovered gold came from the concentrates shipped to a smelter.

ELDORADO COUNTY 1

East Belt district.—In 1939 a lessee on the C. G. Woodburn drift mine 2 miles east of Fairplay mined 301 cubic yards of gravel from which 92 ounces of gold and 22 ounces silver were recovered. Work at the Cooley drift mine yielded 87 ounces of gold and 11 ounces of silver from 2,500 cubic yards of gravel. The Rocky Bar mine on the Middle Fork of Cosumnes River 5 miles east of Fairplay yielded 1,042 ounces of gold and 308 ounces of silver from the treatment of 40,000 cubic yards of gravel; in addition, 15,000 cubic yards of overburden were removed. The mine was worked with a 1½-cubic yard gasoline shovel loading 5-ton dump trucks, which hauled the material to a stationary washing plant. The Cosumnes Mines, Inc., operated the Middle End

mine near Grizzly Flat.

Mother Lode district.—The General Dredging Corporation worked the bed of the American River in 1939 near the point where James W. Marshall made his historic gold discovery in 1848; the company operated a dragline dredge which had a dragline excavator with a 1½-cubic yard bucket. Sills Bros. worked the Coolridge and Marr property on Greenwood Creek with a dry-land washing plant from April 1 to July 31. Hoosier Gulch Placers operated a dragline dredge, using an electric dragline excavator with a 3-cubic yard bucket, on Logtown Ravine from June 1 until December 27. Stuchara Mining Co. worked the Skinner property 1½ miles south of Pilot Knob from May 15 to August 1; gravel was excavated with a %-cubic yard gasoline shovel and the gold recovered in a stationary washing plant. Alhambra-Shumway Mines, Inc., which had been exploring the Alhambra-Shumway mine near Kelsey since 1937, uncovered a high-grade ore shoot during the early months of 1939; production began March 14, and before the end of the year 4,043 tons of ore had been mined, from which 17,572 ounces of gold and 2,401 ounces of silver were recovered by amalgamation and in gravity concentrates. During the year the company paid \$268,826.20 in dividends. The Beebe Gold Mining Co. treated 9,482 tons of ore and 982 tons of old tailings in 1939 from the Beebe-Eureka mine, from which 1,752 ounces of gold and 474 ounces of silver were recovered before the mine and mill were closed June 22. Ore from the Black Oak mine was treated by amalgamation and flotation. H. H. Smith treated 500 tons of ore mined at the Funny Bug mine and recovered bullion containing 33 ounces of gold and 11 ounces of silver and concentrates (27 tons) containing 22 ounces of gold, 30 ounces of silver, and 6,713 pounds of copper. The Lode Development Co. worked the Rozecrans mine from January 1 until mine operations were suspended July 31; the mill treated ores from other mines later in the year. The Middle Fork Gold Mining Co., one of the leading producers in Eldorado County, worked the Sliger mine in the Spanish Dry Diggings section of the Lode throughout 1939; the company reported good headway in sinking its new shaft. A pocket at the Stuckslager mine 10 miles west of Placerville yielded 50 tons of ore containing 267 ounces of gold and 46 ounces of silver. The Lode Development Co. operated the Taylor mine from April 1 to October 1; the ore was treated at the Rozecrans mill.

¹ 1 See also Logan, C. A., Mineral Resources of Eldorado County, Calif.: Jour. Mines and Geol., State Min. Rept., vol. 34, No. 3, 1938, pp. 206-280.

West Belt district.—The Big Canyon Dredging Co. operated a dragline dredge using a Diesel-powered dragline excavator with a 31/2cubic vard bucket on Big Canyon Creek throughout 1939; 3,735 ounces of gold and 451 ounces of silver were recovered from 710,000 cubic yards of gravel. A dragline dredge using a dragline excavator with a 1½-cubic yard bucket was operated from April 1 until the end of the year by the Horseshoe Dredging Co. on Weber Creek; 225,350 yards of gravel were treated and 1,298 ounces of gold recovered. The Lemroh Mining Co. treated 100,762 cubic yards of gravel on Weber Creek 10 miles west of Placerville by dragline dredging and recovered 663 ounces of gold; operation was begun October 21 and continued until the end of the year. The dragline excavator was electrically powered and had a 1-cubic vard! bucket. dredge mounted on four wheels and fed by a dragline excavator with a 1½-cubic yard bucket was used at the Muir mine on Sweetwater Creek 7 miles west of Rescue; 34,680 cubic yards of gravel were treated and 289 ounces of gold recovered. The Mountain Copper Co., Ltd., worked the Big Canyon mine throughout 1939; the ore was treated in the company 300-ton flotation mill, and the concentrates were shipped to a smelter. The El Dorado Crystal mine was operated throughout the year, and the ore was treated by cyanidation.

FRESNO COUNTY

Friant district.—The Grant-Service Rock Co. recovered more than \$5,000 in gold in 1939 as a byproduct at its Rockfield sand and gravel plant on the San Joaquin River.

HUMBOLDT COUNTY

China Flat district.—The Frederick Gold Mining Corporation operated a nonfloating washing plant and an electrically powered

excavator at its mine on Willow Creek in 1939.

Orleans district.—Hydraulicking of 4,000 cubic yards of gravel at the Nichols mine on Red Cap Creek yielded 84 ounces of gold and 9 ounces of silver in 1939. Cleaning bedrock at the Pearch hydraulic mine on the Klamath River northwest of Orleans yielded 154 ounces of gold and 23 ounces of silver.

IMPERIAL COUNTY

Cargo Muchacho district.—In 1939 the Desert Gold & Aluminum Corporation used a power shovel for delivering gravel to stationary sluice boxes. The American Girl mine was operated by O'Brien Mines, Inc., from the first of the year until April 30, when the company was consolidated with Gold Diggers, Inc. The new organization, Allied Mines, Inc., worked the property until August 7, when operations were suspended owing to lack of profitable ore; 33,345 tons of ore were treated in the company 160-ton flotation mill, and 888 tons of copper concentrates shipped to smelters contained 4,815 ounces of gold, 1,863 ounces of silver, and 71,605 pounds of copper. This operation was in process of liquidation at the end of the year. The Holmes & Nicholson Mining & Milling Co. worked the Cargo Muchacho Group comprising the Madre, Padre, Madre No. 2, Cargo Muchacho, and Cargo Muchacho No. 3 claims; the gold ore was hauled to the company 80-ton cyanide mill 12 miles from the mine and 4 miles west of Winterhaven. This mill also accepted custom ore. The Sovereign Development Co. worked the Sovereign mine in the same district; all the ore, except a small quantity shipped for direct smelting, was treated by cyanidation. The principal product was gold. A small quantity of Tumco old tailings was treated by cyanidation.

INYO COUNTY 2

Carbonate district.—Gold ore from the Ashford and Golden Treasure mines was shipped to a custom cyanide plant and to a smelter in 1939.

Cerro Gordo district.—Ore and old tailings from the Monte Carlo mine were treated early in 1939 in the 75-ton countercurrent decantation-cyanidation plant of Keeler Gold Mines, Inc.; this plant also treated custom ore, principally from the Skidoo section of the Wildrose mining district.

Coso (Darwin) district.3—A number of old mines in the Coso district were explored during 1939, and several small shipments of gold

and gold ore were reported.

Etho Canyon district.—A number of shipments of gold ore were made from the Inyo mine to a custom cyanidation mill in 1939.

Fish Springs district.—Several kinds of ore were shipped from the Montezuma mine in 1939—25 tons of gold-silver ore shipped to a custom cyanide plant yielded 3 ounces of gold and 193 ounces of silver; from 33 tons of zinc-lead ore shipped to a selective-flotation custom mill concentrates were made, containing 2 ounces of gold, 260 ounces of silver, 6,435 pounds of lead, and 7,914 pounds of zinc; and 70 tons of lead ore shipped to a smelter contained 6 ounces of gold, 629 ounces of silver, 164 pounds of copper, and 15,075 pounds of lead.

Sherman district.—The Argus Mining Co. operated the Orondo mine throughout 1939; the ore was crushed, and gold and silver were extracted by cyanide leaching. Burton Bros., Inc., cyanided 18,117 tons of ore from its Ruth mine and recovered 2,930 ounces of gold and 651 ounces of silver; the ore was very porous and after crushing was

treated by cyanide leaching in a 5-day cycle.

South Park district.—Banta Mines produced 239 tons of gold ore at the American Eagle and Suitcase mines during 1939; the ore was treated by amalgamation and cyanidation and yielded 168 ounces of gold and 147 ounces of silver. The Gem Mines, Inc., operated a flotation mill at the Gem mine in the Jail Canyon section of the South Park district. Lessees worked the Gold Bug mine.

Union district.—Ore was shipped to custom cyanidation plants from

the Reward (Brown Monster) mine during 1939.

Wildrose district.—Lessees operated the Del Norte mine in the Skidoo section of the Wildrose district during 1939; the ore was shipped to custom cyanidation mills for treatment. P. H. Greer Co., Inc., worked the Gold King mine for 8 months and shipped 1,273 tons of ore to a custom cyanidation mill; 726 ounces of gold and 3 ounces of silver were recovered.

³ See also Tucker, W. B., and Sampson, R. J., Mineral Resources of Inyo County, Calif.: Jour. Mines and Geol., State Min. Rept., vol. 34, No. 4, 1938, pp. 568-500.

³ See also Kelley, Vincent C., Geology and Ore Deposits of the Darwin Silver-lead Mining District, Inyo County, Calif.: Jour. Mines and Geol., State Min. Rept., vol. 34, No. 4, 1938, pp. 503-562.

KERN COUNTY

Agua Caliente district.—Gold ore was treated by amalgamation and

gravity concentration at the Aunt Rosa mine in 1939.

Cove district.—The Kern Mines, Inc., worked the Big Blue and Lady Bellegroups throughout 1939 and treated 34,259 tons of ore by amalgamation and flotation in its 150-ton mill; the product was 2,178 ounces of gold and 887 ounces of silver, recovered as bullion, and 481 tons of concentrates which contained 5,724 ounces of gold, 5,611 ounces of

silver, 1,314 pounds of copper, and 11,900 pounds of lead.

Mojave district.—Lindgren and Ryder shipped 240 tons of ore from the New Bob-Tail mine to a custom cyanidation mill in 1939; 139 ounces of gold were recovered. The Cactus Mines Co. operated the Cactus Queen mine in the Middle Butte section of the Mojave district throughout the year; gold-silver ore was treated in the company 125-ton cyanidation and flotation mill, and the resulting concentrates were shipped to a smelter. This mine was the State's leading silver producer in 1939, as in 1938. Gold ore was shipped to a custom cyanidation plant from the Eureka mine in 1939. Lessees shipped 6,722 tons of ore to a custom cyanide plant from the Fairview mine in the Rosamond section of the Mojave district; 1,334 ounces of gold and 5,270 ounces of silver were recovered. Four sets of lessees at the Four Jacks mine mined 2,481 tons of ore, which was shipped to custom cyanide mills and yielded 765 ounces of gold and 13,995 ounces of silver. The Pride of Mojave Mining Co. worked the Four The Golden Queen Mining Co. operated the Golden Queen mine the entire year; in addition to treating a large tonnage of company ore in its 425-ton cyanidation mill, it did a substantial custom-mill business. The Lodestar Mining Co. worked the Lodestar mine throughout the year and shipped gold ore to the Golden Queen mill for treatment. Lessees worked the Middle Butte mine. Burton Bros., Inc., operated the Tropico mine both on company account and through lessees; 15,226 tons of ore cyanided yielded 4,877 ounces of gold and 15,674 ounces of silver. In addition to treating company and lessee ore, the organization handled custom ore for more than 350 shippers. As a pioneer in California custom milling east of the Sierra Nevada Mountains, Burton Bros., Inc., has been an important factor in the development of mineral resources within a radius of many miles. Owing to good roads and cheap truck transportation, ore has been sent to this mill from mines more than 100 miles away. Whitmore Mines, Inc., and lessees shipped 1,573 tons of gold-silver ore to custom cyanide mills; 444 ounces of gold and 12,690 ounces of silver were recovered. Lessees shipped gold ore to custom cyanide mills from the Yellow Dog mine throughout 1939.

Pioneer district.—A lessee on the Mammoth property in the Keysville section of the Pioneer district cyanided old tailings in 1939.

Randsburg district.—The Big Dyke mine was operated intermittentlyd uring 1939. Ore and old tailings were treated by amalgamation at the Black Hawk mine. The Butte Lode Mining Co. worked the Big Butte property. Ore and old tailings were treated by amalgamation at the King Solomon mine. Ore was shipped to custom mills from the Lucky Boy mine; 302 tons of ore yielded 336 ounces of gold and 93 ounces of silver. At the Operator mine ore was amalgamated and old tailings were cyanided. The Anglo American Mining Cor-

poration, Ltd., operated the Yellow Aster mine 4 and old tailing pile from the first of the year until December, when a labor strike caused suspension of operations. According to the company printed annual report for the year ended December 31, 1939, 852,438 tons of ore were mined from the open pit and dumps, of which 845,654 tons were crushed and screened; the undersize—271,413 tons—was milled and the oversize discarded as waste; 266,907 tons were cyanided. average content of the ore in place was valued at 72 cents per ton. the average of cyanide-plant tailings at 28 cents per ton, and the average of oversize discarded at 26 cents per ton. Ore was mined with power shovels and delivered to the crushing plant in trucks. In addition to the ore sent to the cyanide plant, 156,243 tons of old When the labor strike was settled March 26. tailings were cvanided. 1940, the pit was not reopened, but cyanidation of old tailings was This company handled more than a million tons of ore and old tailings and ranked higher in tonnage worked than any lode mine in the State during 1939.

LOS ANGELES COUNTY

Cedar district.—The Governor mine operated by the Governor Mine Co. was the leading producer of gold in Los Angeles County in 1939.

MADERA COUNTY

Potter Ridge district.—A lessee worked the Enterprise mine throughout 1939. A 35-ton cyanide leaching plant treated old tailings at the Nogi Extension mine from January 1 to September 20; 4,102 tons of old tailings yielded 159 ounces of gold and 43 ounces of silver.

MARIPOSA COUNTY

East Belt district.—The Bandarita Mining Co. worked the Bandarita mine in the Red Cloud section of the East Belt district throughout 1939 and treated 1,228 tons of ore by amalgamation and flotation; 179 ounces of gold and 22 ounces of silver were recovered in bullion, and 125 ounces of gold, 150 ounces of silver, and 254 pounds of copper were contained in 73 tons of concentrates. A lessee operated the Marble Springs mine during 1939 and treated 466 tons of ore by amalgamation to recover 124 ounces of gold and 32 ounces of silver. Operation of the Nutmeg mine in the Whitlock section of the district from January 1 to November 1 resulted in the production of 425 tons of ore yielding 394 ounces of gold and 92 ounces of silver by amalgamation; the property was sold November 1 to an organization that prepared for expanded production by building a powerline to the property, installing a 25-ton mill, and deepening the shaft 130 feet. San Juan Ramsey Co. worked the Original and Ferguson mine throughout the year; 7,573 tons of ore treated by amalgamation and flotation yielded bullion, containing 1,911 ounces of gold and 510 ounces of silver, and 81 tons of concentrates, containing 256 ounces of gold and 141 ounces of silver. Amalgamation of 665 tons of ore at the Our Chance mine yielded 344 ounces of gold and 58 ounces of silver.

⁴ See also Frolli, A. W., Open-pit Mining and Milling Methods and Costs at the Yellow Aster Mine, Randsburg, Calif.: Bureau of Mines Inf. Circ. 7096, 1940, 46 pp.

Hunter Valley district.—The Cotton Creek Mining Co. worked the Cotton Creek mine during 1939. The Mount Gaines Mining Co. operated the Mount Gaines mine in the Quartzburg section of the Hunter Valley district throughout the year; 19,341 tons of ore treated by amalgamation and flotation yielded bullion, containing 3,793 ounces of gold and 1,189 ounces of silver, and 445 tons of concentrates, containing 3,527 ounces of gold, 1,332 ounces of silver, 1,758 pounds of copper, and 324 pounds of lead. The Mariposa-Washington Mining Co. worked the Washington mine, also in the Quartzburg section of the district, from August 1 to the end of the year and built a 75-ton concentrating mill. A lessee on the Ruth Pierce property in the Hornitos section of the district cyanided 3,181 tons of old tailings and recovered 176 ounces of gold and 149 ounces of silver; the tailings

were given a 72-hour leach.

Mother Lode district.—A bulldozer was used to move 10,000 cubic yards of gravel to sluices at the Five Aces mine on the North Fork of Merced River; 105 ounces of gold and 11 ounces of silver were recovered in 1939. The Trebor Corporation operated a dragline dredge on Agua Fria Creek for 9 months; the dragline excavator had a 2-cubic yard bucket. The Bondurant Mining & Milling Co. worked the Bondurant mine. Madden and Goulter worked the Goldbug, Miocene No. 2, and Miocene No. 3 claims from May until the end of the year; 138 tons of ore amalgamated yielded 595 ounces of gold and 122 ounces of silver. The Buckeye Mining Co. worked the Granite King mine throughout the year and produced 396 tons of ore from which 285 ounces of gold and 91 ounces of silver were recovered by amalgamation. Operation of the Hasloe mine yielded 211 tons of ore, from which 199 ounces of gold and 76 ounces of silver were recovered by plate-amalgamation and barrel-amalgamation of gravity concentrates. The Boston California Mining Co. operated the Malvina mine. The Pacific Mining Co. worked the Pine Tree and Josephine mines throughout the year and treated ore in the company 150-ton flotation mill; jig concentrates were amalgamated and flotation concentrates shipped to a smelter. This company was the largest gold producer in Mariposa County in 1939. A partnership worked the Red Banks mine from March 15 to October 15 and treated 12,796 tons of ore by amalgamation and flotation; 206 ounces of gold and 70 ounces of silver were recovered as bullion; and 1,340 ounces of gold, 6,822 ounces of silver, and 481 pounds of copper were contained in concentrates.

MERCED COUNTY

Snelling district.—The B & W Mining Co. operated a dragline dredge 1 mile west of the town of Merced Falls from August 15, 1939, until the end of the year, and 120,000 cubic yards of gravel yielded 879 ounces of gold and 102 ounces of silver; the washing plant used electric power, and the dragline excavator (2-cubic yard bucket) burned stove oil. The Merced Dredging Co. operated an electrically powered dredge, with sixty 9½-cubic foot buckets, 1 mile west of Snelling throughout the year. The San Joaquin Mining Co. operated an electrically powered dredge, with sixty-four 9½-cubic foot buckets, 3 miles west of Snelling. The Snelling Gold Dredging Co. operated two electrically powered dredges—one with sixty-six and the other with seventy-seven 7-cubic foot buckets; both dredges operated the

full year. Four miles east of Snelling the Yuba Consolidated Gold Fields operated throughout the year two electrically powered dredges—one with seventy-two 9-cubic foot buckets and the other with seventy-one 5%-cubic foot buckets.

MONO COUNTY

Blind Springs district.—Several small mines were active in the Blind Springs district during 1939. The most important development, however, was the building of a cyanidation and flotation custom mill by the Mineral Reduction Co. By the end of the year more than 75 shippers had taken advantage of the mill and nearly 4,000 tons of ore had been treated; treatment of a much larger tonnage in 1940 was expected. Ore was shipped from many points in the Owens Valley and from Nevada, and a substantial revival of mining, particularly at small gold and silver properties, seemed probable.

Bodie district.—The Roseklip Mines Co. operated its 300-ton

Bodie district.—The Roseklip Mines Co. operated its 300-ton cyanidation mill on dump ore from the Standard mine throughout 1939. A small cyanide leaching plant treated 1,500 tons of old tailings at the Syndicate mine between July 12 and November 8 and recovered

164 ounces of gold and 379 ounces of silver.

Chidago district.—Lessees operated the Casa Diablo mine and shipped gold-silver ore to a cyanidation custom mill in 1939. The

Gold Crown mine also was active.

Mammoth Lakes district.—The Monte Christo Co. worked the Monte Christo mine from October 10 to December 23, 1939; 257 tons of ore shipped to a custom cyanidation plant yielded 168 ounces of gold and 2,981 ounces of silver.

May Lundy district.—The Simpson (Log Cabin) mine was operated

during 1939.

White Mountain district.—Molini Bros. operated the Green Monster mine and shipped silver ore to a smelter in 1939.

MONTEREY COUNTY

Los Burros district.—An exploration and development campaign was carried on at the Last Chance property in 1939; new ore was developed in the old mine, and a 25-ton flotation plant was built during the year.

NAPA COUNTY

Calistoga district.—The Graham Loftus Oil Corporation operated the Grigsby (Palisade) mine throughout 1939; the ore was treated by flotation, and the concentrates were shipped for smelting.

NEVADA COUNTY

French Corral district.—The Climax Dredging Co. operated a dragline dredge on the H. C. Black property on Deer Creek from November 10, 1939, until the end of the year. The dragline excavator had a

Diesel engine and a 1-cubic yard bucket.

Grass Valley-Nevada City district.—The Atlas Gold Dredging Corporation operated a dragline dredge on several properties, including the Dawson City and the Larsen-Klein, during the first half of 1939. The Innis Dredging Co. treated 750,000 cubic yards of gravel and

recovered 5,557 ounces of gold with a dragline dredge during 1939; the dragline excavator had a 2-cubic yard bucket. The Calneva Mining Co. worked gravel on the Martell ranch with a dragline dredge. J. C. Pantle operated a dry-land dredge equipped with Ainlay centrifugal bowls on the Gleason and Robinson ranches on Clear Creek 4 miles south of Rough and Ready; 107,138 cubic yards of gravel treated at the Robinson ranch yielded 563 ounces of gold, and 95,000 yards of gravel treated at the Gleason ranch yielded 303 ounces of gold. William Richter operated a dragline dredge on Scotts Flat Creek from October 25 until the end of the year; the dragline excavator had a 1½-cubic yard bucket. The Grass Valley Bullion Mines, Inc., operated throughout 1939; the ore was trucked to the Idaho Maryland Mines, Inc., mill at Grass Valley for treatment by amalgamation, flotation, and concentrate-cyanidation. Empire Star Mines, Ltd., operated the Empire, North Star, and Pennsylvania mines at Grass Valley; the Murchie mine at Nevada City; the Zeibright mine in Bear Valley; and the Pennsylvania mine at Browns Valley, Yuba County. During the year known bodies of ore at the Murchie mine were exhausted, but exploration work was continued. Early in 1940 a flood on the Bear River washed out the Zeibright tailings pond and caused a cessation of operations until a new tailings-disposal method could be worked out. Cooley Butler operated the Golden Center mine throughout 1939. The Great Northern Mines, Inc., worked the throughout 1939. Hoge mine throughout the year; gold ore and old tailings were treated by amalgamation and flotation. A lessee worked the Green Mountain mine at Nevada City. The Idaho Maryland Mines Corporation operated the Idaho Maryland-Brunswick Group throughout 1939. According to the company printed annual report for the year ended December 31, 1939, 115,001 ounces of gold were recovered from 410,411 tons of ore compared with 117,267 ounces of gold recovered from 331,406 tons in 1938. In 1939, 30 percent of the production came from development headings. In addition to company ore, 23,815 tons of custom ore from Grass Valley Bullion Mines, Inc., and 218 tons of custom concentrates were treated in the company metallurgical plant. Dividends declared and paid in 1939 totaled \$1,066,285.80. This mine had the largest gold output of any mine in California in 1939. The Lava Cap Gold Mining Corporation operated the Lava Cap mine throughout the year; 116,380 tons of ore were treated by amalgamation and flotation, and the resulting concentrates were shipped for smelting. Recovery was as follows: By amalgamation, 2,285 ounces of gold and 596 ounces of silver; in flotation concentrates, 32,580 ounces of gold, 265,319 ounces of silver, 10,486 pounds of copper, and 17,712 pounds of lead. Development work was continued by the Spring Hill Gold Mines Corporation throughout the year.

Washington district.—The Bradley Mining Co., operator of the Spanish mine, ended in 1939 its long record as the largest producer in the Washington district; the mine was on a production basis until March, on a development basis from April to August, and on a small-

production basis by lessees the rest of the year.

You Bet district.—The Pilot Dredging Co. operated a dragline dredge on the Alpha Stores property during 1939. Minnis & Moody worked the Little York placer 3 miles west of Dutch Flat from May 1 to December 1; a ¾-cubic yard gasoline shovel and trucks were used for delivering 18,000 cubic yards of gravel to a stationary washing plant; and 525 ounces of gold were recovered. F. R. Croft operated a dry-bank plant on the Shorty Jefferies mine from January 1 to June 15; a bulldozer and %-cubic yard gasoline shovel were used in delivering gravel to a stationary washing plant; and 351 ounces of gold were recovered.

ORANGE COUNTY

Santa Rosa district.—The Blue Light Silver Mines Co. operated the Silverado or Blue Light mine in Silverado Canyon from May 15, 1939, until the end of the year; 800 tons of ore were treated by flotation, and a bulk concentrate containing 9 ounces of gold, 4,095 ounces of silver, 10,476 pounds of lead, and 9,549 pounds of zinc was shipped to another mill for selective flotation.

PLACER COUNTY

Auburn district.—The Gaylord La Valle drift mine was operated in 1939 (in succession) by Swinburn & Associates, Jose Oro Mining Co., J. A. Conner, and Conner and Swinburn; 1,975 cubic yards of gravel yielded 326 ounces of gold.

Butcher Ranch district.—The Monarch Syndicate cyanided ore from

the Monarch mine during the early months of 1939.

Damascus district.—The Lost Camp Mining Co. worked the Lost

Camp hydraulic mine in Blue Canyon for 45 days in 1939.

Dutch Flat district.—The Canyon Mines Corporation treated ore from the Rawhide mine throughout 1939 in the company 100-ton amalgamation and concentration mill.

Foresthill district.—The Volcano Mining Co., Ltd., worked the Volcano drift mine throughout 1939; 1,400 cubic yards of gravel

yielded 271 ounces of gold and 35 ounces of silver.

Lincoln district.—Pantle Bros. operated a dry-land dredge on the Stevens, Clark, and Ahart ranches and in Auburn Ravine in 1939; in all, 329,000 cubic yards of gravel were excavated with a 1-cubic yard gasoline dragline excavator and delivered to a dry-land washing plant carrying four Ainlay bowls. Fay Placer mine operated a dragline dredge on the Guilford ranch throughout the year; the dragline excavator had a ½-cubic yard bucket. W. K. Jansen treated 245,162 cubic yards of gravel on the Jones and Finney ranches; a dragline excavator with a 11/2-cubic yard bucket was used to deliver gravel to a dry-land washing plant. The Midland Co. operated a dragline dredge intermittently during 1939 and treated 250,000 yards of gravel yielding 715 ounces of gold and 104 ounces of silver; the dragline excavator had a 11/4-cubic yard bucket. Four miles east of Lincoln the Jasper-Stacy Co. operated throughout the year an electrically powered dragline dredge using a dragline excavator with a 2-cubic yard bucket. The gravels of this district carry zircon, which was produced as a byproduct at plants using jigs; no market has yet been developed for this product.

Ophir district.—The Panob Gold Dredging Co. operated a non-

Ophir district.—The Panob Gold Dredging Co. operated a non-floating washing plant, using a dragline excavator with a 1½-cubic yard bucket, on the F. E. Kayo and the G. E. Stoll properties near Loomis in 1939. The Gold Hill Dredging Co. operated an electrically powered connected-bucket dredge with eighty-seven 8½-cubic foot buckets on the Chabot property 2 miles east of Loomis from January

1 to May 14. F. O. Bohnett operated a dry-land plant on several properties during the year. The Alabama California Gold Mines Co. worked the Alabama mine throughout 1939 and treated 74,539 tons of ore in the company 300-ton amalgamation and flotation mill to yield bullion, containing 10,157 ounces of gold and 3,266 ounces of silver, and 652 tons of concentrates, containing 3,231 ounces of gold, 39,530 ounces of silver, 5,771 pounds of copper, and 26,826 pounds of lead. The Oro Fino Consolidated Mines operated the Oro Fino mine. The Burm Ball Mining Co. operated the Sisley mine throughout the year.

PLUMAS COUNTY

Crescent Mills district.—A. A. Merritt and F. Humphrey, under the name of "Cherokee Mine", produced 8,635 tons of ore from the Cherokee mine between January 16, 1939, and the end of the year; the ore was treated in a 100-ton amalgamation and flotation mill (built during the year) and yielded 165 ounces of gold and 40 ounces of silver in bullion and 1,046 ounces of gold, 277 ounces of silver, and 904 pounds of copper in 35 tons of flotation concentrates. The North Canyon Mines, Inc., worked the Droege and New York mines in 1939. Indian Valley Mining Co., Inc., worked the Standart mine from January 1 until February 27, when a fire destroyed the 150-ton mill built in 1938; a new 250-ton amalgamation and flotation mill was built and placed in operation August 16, and 24,000 tons of ore treated yielded 1,410 ounces of gold and 347 ounces of silver.

Genesee district.—The Walker mine of the Walker Mining Co. (affiliate of the Anaconda Copper Mining Co.) has been the outstanding mine in Plumas County for many years and was the State's principal copper producer in 1939. According to the company printed annual report for the year ended December 31, 1939, 367,041 tons of ore were milled and 17,342 tons of concentrates produced. Shipments consisted of 17,056 tons of concentrates, lime scale, and precipitates, with a net recovery of 8,010,226 pounds of copper.

180,039 ounces of silver, and 11,777 ounces of gold.

Granite Basin district.—The Robinson mine was operated in 1939 from May until November 10; ore was treated in the 50-ton amalgamation and flotation mill on the property.

Quincy district.—The Imperial mine was active during 1939.

Rich Bar district.—Lord & Bishop operated a dragline dredge at Grays Flat during the early months of 1939. The Virgilia Mining Corporation continued operations at the Ohio Point Group during 1939.

RIVERSIDE COUNTY

Dale district.—A large number of small operations in 1939 were

reported in the Riverside County part of the Dale district.

Eagle Mountain district.—The Imperial Smelting & Refining Co. treated 7,903 tons of ore in the 100-ton flotation mill at the Black Eagle mine in 1939; 1,195 ounces of gold, 16,451 ounces of silver, 88,220 pounds of copper, and 676,180 pounds of lead were contained in the concentrates produced. The company contributed 62 percent of the total lead produced in the State in 1939.

Pinacate district.—The Ida Leona Mine & Milling Co. worked the

Ida Leona mine throughout 1939.

SACRAMENTO COUNTY

Cosumnes River district.—The Cosumnes Gold Dredging Co. operated a connected-bucket dredge with sixty-three 12-cubic foot buckets 7 miles southwest of Sloughhouse during 1939. The Hoosier Gulch Placers worked bodies of gravel throughout the year on Hoosier Gulch, Katesville Gulch, Lagoon Gulch, and Ohio Gulch with an electrically powered dragline dredge; the dragline excavator used a 2-cubic yard bucket.

Folsom district.—The Capital Dredging Co. operated two connectedbucket dredges in 1939 at its property 5 miles south of Folsom; both dredges were electrically powered—one having 88 and the other 100 18-cubic foot buckets. Cutter & Mueller treated 17,492 cubic yards of gravel on a property 2 miles east of Fair Oaks on the American River from May until December, using a gasoline shovel with a \%-cubic yard dipper in connection with a dry-bank washing plant; 150 ounces of gold and 8 ounces of silver were recovered. The General Dredging Corporation operated a dragline dredge on two properties on the American River; one dragline excavator had a 14-cubic yard bucket and the other a 3-cubic yard bucket. The Natomas Co. operated a fleet of seven dredges, all electrically powered, on its property near Natoma. The number and size of buckets per dredge were: No. 1 dredge, 62 16-cubic foot buckets; No. 4, 67 15-cubic foot buckets; No. 5, 105 12-cubic foot buckets; No. 6, 106 11-cubic foot buckets; No. 7, 98 9-cubic foot buckets; No. 8, 105 12-cubic foot buckets; and No. 10, 83 15-cubic foot buckets.

SAN BERNARDINO COUNTY

Calico district.—A lessee on the Zenda mine in 1939 recovered 8,329 ounces of silver and 2 ounces of gold by treating old tailings in a 12-ton leaching plant; in addition, 107 tons of ore shipped for smelting contained 3,291 ounces of recoverable silver.

Dale district.—The Camco Mining Co. operated the Carlyle mine The Gold Crown Mining Co., Ltd., worked the Gold during 1939. Crown mine throughout the year; in addition to treating company ore, the mill handled a large quantity of custom material. This new outlet for ore helped to reopen many small mines nearby in both San Bernardino and Riverside Counties.

Holcomb Valley district.—The Holcomb Valley Placer Co. operated a dry-bank plant in 1939 from February 5 to November 27. Fe Gold Mining Corporation worked the Santa Fe mine the latter part of the year.

Ord Mountain district.—The Ramsey Mining Co. worked the Ram-

sey or Wheeler mine throughout 1939.

Randsburg district.—In 1939 a lessee on the property of Atolia Rand Placers, Inc., 1 mile west of Atolia in the part of the Randsburg district extending from Kern into San Bernardino County, treated 1,309 cubic yards of gravel obtained by trenching and drifting, which yielded 148 ounces of gold and 27 ounces of silver. Lessees working the Kelly mine shipped gold-silver ore to a smelter. The mill at the property was rehabilitated during the year as a cyanidation and flotation plant; treatment of ore began January 1, 1940. In addition to ore from the Kelly mine, custom material is solicited.

Silver Mountain district.—A number of operations in 1939 reported small outputs in the Silver Mountain district; much of the ore produced was shipped to a custom cyanide plant.

Solo district.—The Korfist Mining Co. worked the Aero Trust

mine during 1939; most of the ore was shipped to a smelter.

SAN FRANCISCO COUNTY

Small-scale placer miners worked the Pacific Ocean beach sands near the San Francisco-San Mateo County line in 1939 and recovered 224 ounces of gold and 18 ounces of silver.

SAN DIEGO COUNTY 5

Julian district.—Development work and some production during

1939 were reported at the Ranchito mine.

Pine Valley district.—Ore was shipped to a custom cyanide plant and a smelter from the Eagles Nest Group in Long Valley; the property was discovered in April 1939.

SAN JOAQUIN COUNTY

Linden district.—A. G. Watkins & Sons operated a dragline dredge throughout 1939. SHASTA COUNTY 6

French Gulch district.—The Lincoln Gold Dredging Co. treated 198,163 cubic yards of gravel in 1939 and recovered 544 ounces of gold and 61 ounces of silver by dragline dredging on Clear Creek near French Gulch; the dragline excavator had a 1%-cubic yard bucket. Operations at the Mad Ox mine produced 1,327 tons of ore which yielded 211 ounces of gold and 5 ounces of silver. The J. H. Scott Co. worked the Washington mine throughout the year; 8,174 tons of ore were treated by amalgamation and flotation to yield 2,561 ounces of gold and 574 ounces of silver in bullion and 2,200 ounces of gold, 742 ounces of silver, and 4,000 pounds of lead

in 330 tons of concentrates.

Igo district.—R. S. Olson operated a dragline dredge on China Gulch, using a dragline excavator with a 4-cubic yard bucket, throughout 1939. The Clear Creek Dredging Co. operated a dragline dredge from May 1 to the end of the year; the dragline excavator, with a 1½-cubic yard bucket, used Diesel power. Lord & Bishop operated a dragline dredge during 1939. Baker & McCowan operated a dragline dredge with a dragline excavator and a 11/2-cubic yard bucket on Dry Creek from January 1 to June 17. Cinco Mineros Co. operated a dragline dredge near Gas Point from January 1 until May 15; the dragline excavator had a 1½-cubic yard bucket. Piombo Bros. & Co. operated a dragline dredge on Dry Creek from January 1 to June 15; the dragline excavator used gasoline-engine power and had a 1½-cubic yard bucket. The Pioneer Dredging Co. operated an electrically powered dragline dredge with a 3-cubic yard bucket in the Happy Valley section of the Igo district. The El Oro Dredging Co.

See also Tucker, W. B., and Sampson, R. J., Mineral Resources of San Diego County, Calif.: Jour. Mines and Geol., State Min. Rept., vol. 35, No. 1, 1939, pp. 8-55.
 See also Averill, Chas. Volney, Mineral Resources of Shasta County, Calif.: Jour. Mines and Geol., State Min. Rept., vol. 35, No. 2, 1939, pp. 108-191.

worked a dragline dredge on the Rice property. The Roaring River Gold Dredging Co. operated a connected-bucket dredge with seventy-

two 3-cubic foot buckets on Roaring River near Gas Point.

Iron Mountain district.—The Mountain Copper Co. Ltd., largest mineral producer in Shasta County, worked the Iron Mountain mine throughout 1939; the ore was mined by the open-cut method and cvanided in a 500-ton sand-leaching plant and a 200-ton countercurrent slime plant.

Old Diggings district.—Walker Mines, Consolidated, worked the Walker mine in 1939 from April until the end of the year; 9,770 tons of ore were cyanided and yielded 984 ounces of gold and 495 ounces of

silver.

Redding district.—A sand and gravel plant on the Sacramento River north of Redding recovered 152 ounces of gold and 14 ounces of silver in 1939 as a byproduct in the preparation of 75,000 tons of sand and gravel.

Shasta district.—Treatment of 430 tons of ore in a 600-ton ball mill in the Hopeso mine yielded 159 ounces of gold and 23 ounces of

silver by amalgamation in 1939.

SIERRA COUNTY

Alleghany district.—Gamble & Wilson operated the Kenton mine from the beginning of 1939 until December 1. The Dickey Exploration Co. worked the Oriental mine from September 1 until the end of the year; the old stamp mill on the property was rebuilt as a flotation plant so that sulfide ores could be treated. Original Sixteen to One Mine, Inc., largest gold producer in Sierra County, was active throughout the year. After consolidation of O'Brien Mines, Inc., former operator of the Plumbago mine, with Gold Diggers Syndicate, control of the property passed to Allied Mines, Inc., on April 30; 9,854 tons of ore treated by amalgamation and gravity concentration yielded bullion, containing 1,329 ounces of gold and 215 ounces of silver, and 162 tons of concentrates, containing 521 ounces of gold.

Downieville district.—The Ruby mine on Rock Creek near Good-

years Bar was operated throughout 1939 and was the most productive

drift placer in the State.

Pike district.—The Sierra Alaska mine was the leading producer

in the Pike district in 1939.

Sierra City district.—A lessee on the Colombo property mined 1,200 tons of ore during 1939, most of which was shipped direct to smelters; settlement was made for 1,147 ounces of gold and 40 ounces The Sierra Buttes Tailing Co. treated 1,311 tons of old tailings by cyanide leaching and gravity concentration and recovered 95 ounces of gold and 28 ounces of silver, in bullion, and 20 tons of concentrates, containing 146 ounces of gold and 46 ounces of silver

SISKIYOU COUNTY

Callahan district.—Yuba Consolidated Gold Fields operated a connected-bucket dredge with seventy-two 9-cubic foot buckets on Scott River north of Callahan throughout 1939.

⁷ See also Averill, Chas. Volney, The Mountain Copper Co., Ltd., Cyanide Treatment of Gossan: Jour. Mines and Geol., State Min. Rept., vol. 34, No. 3, 1938, pp. 312-330.

Greenhorn district.—The Cal Oro Dredging Co. operated a connected-bucket dredge on Greenhorn Creek north of Yreka intermittently in 1939; the company reported that 1,000,000 cubic yards of gravel were treated, with a recovery of 1,653 ounces of gold and 281 ounces of silver. The Yreka Gold Dredging Co. operated a connected-bucket dredge, with sixty-seven 6-cubic foot buckets, 2 miles north of Yreka.

Humbug district.—William Von der Hellen Mines operated a stationary washing plant on the Klamath River in 1939 from April 12 to the end of the year; two shovels, one of 1½ and the other of 1¼ cubic yards capacity, and six trucks were used in excavating and

delivering the gravel to the washing plant.

Klamath River district.—The Lincoln Gold Dredging Co. operated two dragline dredges on Klamath River near Happy Camp in 1939 from March 15 to September 13; one dragline excavator had a 2-cubic yard bucket and the other a 11/4-cubic yard bucket, and 485,910 cubic vards of gravel yielded 3,776 ounces of gold and 454 ounces of silver. Larsen Bros. and Harms Bros. operated a dragline dredge at the Scandia mine on Horse Creek throughout the year; the dragline excavator had a 2½-cubic yard bucket. Merriam Mining Merger worked the Buzzard Hill quartz mine.

Liberty district.—Hydraulicking 20,000 cubic yards of gravel at the Banner mine in 1939 from January 1 to July 10 yielded 117 ounces of gold and 18 ounces of silver. Hydraulicking, drifting, and smallscale hand methods were used at the Joubert mine. A lessee worked the S. T. S. mine on Eddy's Gulch by hydraulicking from January The King Solomon Mines Co. operated the King Solomon mine throughout the year; the ore was mined by the open-cut method

and treated by amalgamation in a 300-ton mill.

Salmon River district.—Sacchi & Spellenberg operated a dragline dredge in 1939 on the South Fork of Salmon River near Forks of Salmon from February to the end of the year; the dragline excavator used Diesel power and had a 1½-cubic yard bucket.

Scott Bar district.—A lessee worked the Quartz Hill mine during

1939.

STANISLAUS COUNTY

Jenny Lind district.—The California Gold Dredging Co. operated a connected-bucket dredge, with eighty-one 6-cubic foot buckets, throughout 1939. The Placer Properties Co. operated a dragline dredge on the Stanislaus River near Oakdale from July 18 to the end of the year.

La Grange district.—The La Grange Gold Dredging Co. operated a connected-bucket dredge with sixty-two 9½-cubic foot buckets on the Tuolumne River, and the Tuolumne Gold Dredging Corporation operated a connected-bucket dredge with 100 12-cubic foot buckets

throughout 1939.

TEHAMA COUNTY

Bend district.—The Midland Co. operated a dragline dredge in the Bend district for a short time in 1939. The Tehama Dredging Co. operated a dragline dredge on the Evans mine from May 10 to the end of the year; the dragline excavator had a 1/2-cubic yard bucket.

TRINITY COUNTY

Hayfork district.—The Cinco Mineros Co. operated a dragline dredge, equipped with a dragline excavator using a 1½-cubic yard bucket, near Hayfork in 1939 from May 19 to the end of the year. The Hayfork Gold Dredging Co. operated a dragline dredge during the early months of the year, after which the plant was dismantled and shipped to Sonora, Mexico.

Helena district.—A lessee operated the Enterprise mine throughout 1939 except during June and July; from 560 tons of ore treated by amalgamation and flotation 270 ounces of gold and 59 ounces of silver were recovered in bullion, and 41 ounces of gold and 31 ounces of silver

were contained in 41 tons of concentrates.

Junction City district.—The Bergin hydraulic mine was operated 3 months in 1939. Canyon Placers, Inc., worked the Canyon Placers in Canvon Creek 8 miles from Junction City from the first of the year until May 19. The Junction City Mining Co. operated an electrically powered connected-bucket dredge, with seventy-two 10-cubic foot buckets, on Trinity River near Junction City throughout the year. The Goldfield Consolidated Mines Co. worked the Red Hill mine from January 1 to June 1 and from December 9 to 31. The Golden Gravel Mining Co. operated a dragline dredge intermittently on the Sourdough Group on Trinity River 8 miles west of Junction City.

Lewiston district.—Interstate Mines, Inc., operated a dragline dredge The Lincoln Gold Dredging Co. moved a dragline during 1939. dredge, with a dragline excavator using a 2-cubic yard bucket, to the Leas & Lowden, Adrian, and Lunden properties late in the year; the treatment of 55,435 cubic yards of gravel yielded 269 ounces of gold and 31 ounces of silver. The Lewiston Gold Dredging Co. operated a connected-bucket dredge from January 1 until the boat was sunk on The company reported that work would not be resumed. T. D. and C. R. Harris operated a connected-bucket dredge on Trinity River 4 miles above Lewiston throughout the year; the dredge. used electric power and had forty-two 11-cubic foot buckets. The Brown Bear lode mine produced from dumps and mill clean-up. property was worked by E. E. Erich from January until May, when F. E. Yocum, operating as the Mines Exploration Co., took over the lease; during August a 1,000-ton test run was made on dump ore.

New River district.—Johnston Bros. operated the Hazel D property during 1939, and the ore was treated in a 25-ton amalgamation mill.

Salver district.—The Swanson Mining Corporation hydraulicked a small yardage of high-grade gravel on the South Fork of Trinity River, working intermittently between January 1 and May 29, 1939.

Trinity Center district.—The Carrville Gold Co. operated its con nected-bucket dredge through its agent, Yuba Consolidated Gold

Fields, from September 15, 1939, to the end of the year.

Weaverville district.—The General Utility Corporation operated a dragline dredge in 1939 on Redding Creek near Douglas City from January 1 to March 18; the Diesel-power dragline excavator had a 1½-cubic yard bucket. The Viking Dredging Co. operated a dragline near the confluence of Redding Creek and Trinity River throughout the year; a dragline excavator with Diesel power and a 2-cubic yard bucket was used. The Sound Gold Co., Inc., operated a dragline washing plant from October 21 to the end of the year; 12,000 cubic

yards of gravel yielded 114 ounces of gold and 17 ounces of silver. The Weaver Dredging Co. operated a dragline dredge, using a dragline excavator with a 2½-cubic vard bucket, on Weaver Creek throughout 1939; 1,161,254 cubic yards of gravel yielded 4,263 ounces of gold and 372 ounces of silver. The Oro Trinity Dredging Co. operated a dragline dredge, with a dragline excavator using a 1½-cubic yard bucket, near Weaverville throughout the year.

TUOLUMNE COUNTY

East Belt district.—Moccasin Mines operated a dragline dredge on Moccasin Creek from January 1 to March 15, 1939, when the property was turned over to H. Hellwig, who operated it until August 21; the dragline excavator was equipped with Diesel power and a 2-cubic yard Under the Hellwig management 438,223 cubic yards of gravel were handled and yielded 2,506 ounces of gold and 431 ounces of silver. The Densmore Gold Mines, Inc., which had been financed by the Reconstruction Finance Corporation, turned the Densmore mine over to a group of lessees on April 1, 1939. The Shoe String Mining Co. operated the Experimental mine during 1939; 350 tons of ore yielded 147 ounces of gold and 20 ounces of silver by amalgamation. Guria Gold Mining Co. operated the Liguira mine throughout the year; a 30-ton cyanide mill was installed, but failure of the slimes to leach resulted in discontinuance of the operation. A lessee worked the Ryan mine. The Bald Mountain Mines, Inc., worked the Sugarman mine from May 11 to the end of the year; 150 tons of ore vielded

140 ounces of gold and 8 ounces of silver.

Mother Lode district.—The Barker Corporation operated a dragline dredge on Tuolumne River in 1939 from October 21 to December 31. E. A. Kent operated two dragline dredges (No. 1 and No. 3) in Tuolumne County. Dredge No. 1 worked Curtis Creek 5 miles south of Jamestown from the first of the year until February 7; a dragline excavator with a 1%-cubic yard bucket was used. Dredge No. 3, equipped with a 11/2-cubic yard bucket, operated on Woods Creek from June 16 to August 10, when it was closed down owing to lack of water: operations were resumed October 9 and continued until December 6. Hemming Bros. worked the Alameda mine 2½ miles northwest of The Eagle-Shawmut mine was the largest gold producer in Tuolumne County in 1939; operations began in May and continued to the end of the year. The Delgold Corporation worked the Eringo-Bragh mine. Gold Diggers Syndicate, operator of the Heslep, App, Dutch, and Sweeney mines, was taken over by Allied Mines, Inc., May 1, and mill operations which had been discontinued in March were resumed October 1 and continued to the end of the year; 6,609 tons of ore, treated by amalgamation and flotation, yielded 161 ounces of gold and 40 ounces of silver in bullion and 563 ounces of gold and 342 ounces of silver in 232 tons of concentrates.

YUBA COUNTY

Bear River district.—The Far West Dredging Co. operated a dragline dredge on Bear River during 1939.

Browns Valley district.—Empire Star Mines Co., Ltd., continued operations at the Pennsylvania mine in 1939.

Smartville district.—The Calmich Mining Co. conducted an exploration campaign at the Blue Point mine and produced some gold in 1939 by drift mining. The Williams Bar Dredging Co. operated a connected-bucket dredge throughout the year on the Mammoth, Archimedes, Montclair, and Forbes properties in the bed of Yuba River near Smartville. A large number of snipers, camped along Yuba River, worked gravel by small-scale hand methods.

Strawberry Valley district.—The Poverty Hill hydraulic mine was active in 1939, and production was reported from the Mount de Oro

quartz mine.

Yuba River district.—Yuba Consolidated Gold Fields operated a fleet of six dredges at its property in the Yuba River Basin near Hammonton. All the dredges were equipped with 18-cubic foot buckets and electric power; two of them had 87 buckets each, two had 100 buckets each, one had 126 buckets, and one had 135 buckets.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN COLORADO

(MINE REPORT)

By Chas. W. Henderson and A. J. Martin

SUMMARY OUTLINE

Page	Page
Calculation of value of metal production 250	Metallurgic industry 255 Review by counties and districts 260
Mine production by counties 252 Mining industry 254	Golden Cycle mill 268
Ore classification 255	Cripple Creek district 280

Gold production in Colorado in 1939 varied little (0.2-percent decrease) in quantity and value from that in 1938, but the total value of the recovered gold, silver, copper, lead, and zinc increased (1 percent) to \$22,319,041, the highest value in any year since 1918. Silver production increased for the seventh consecutive year, but copper, lead, and zinc each decreased from 1938. As silver ranks next to gold as a source of revenue from Colorado ores, the Act of Congress approved July 6, 1939, dealing with the coinage of silver and authorizing a 10-percent increase in payments for newly mined domestic silver, helped materially to stabilize employment in the industry and furnished the incentive for the expansion that followed in some sections of the State. Moreover, the stimulus afforded by the \$35 price for gold continued, and several large-scale development operations were in progress during the year, notably in the Cripple Creek, San Juan, and Leadville areas.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zinc ³
1935	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0.71875 .7745 .7735 4.646+ 5.678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046	Per pound \$0.044 .050 .065 .048

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.
² 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.
² Yearly average weighted price of all grades of primary metal sold by producers.
⁴ \$0.6464644. ♣ 0.67372797

· \$0.67878787.

Annual figures for the 5 years ended with 1939 and total production from 1858 to 1939 are given in the table that follows. Colorado has produced more silver in the past than any other State and ranks second in total recorded output of gold.

Mine production of gold, silver, copper, lead, and zinc in Colorado, 1935-39, and total, 1858-1939, in terms of recovered metals

Year			Ore sold or treated	Gold (lode a	and placer)	Silver (lode and placer)		
fe.gr	Lode	Placer	(short tons)	Fine ounces	Value	Fine ounces	Value	
1935	870 714 655 669 758	842 601 490 592 583	1, 770, 984 2, 151, 849 2, 068, 619 1, 996, 095 1, 914, 593	349, 280. 80 366, 607. 00 368, 905. 00 367, 468. 00 366, 852. 00	\$12, 224, 828 12, 831, 245 12, 911, 675 12, 861, 380 12, 839, 820	4, 696, 064 5, 902, 776 6, 260, 693 7, 932, 095 8, 496, 488	\$3, 375, 296 4, 571, 700 4, 842, 646 5, 127, 819 5, 767, 313	
1858–1939			(1)	37, 549, 390. 00	808, 105, 614	700, 938, 158	546, 383, 465	

Year	Con	per	L	ead	z	ine		
	Pounds	Pounds Value Pour		Value	Pounds	Value	Total value	
1935 1936 1937 1938 1939	14, 654, 000 17, 730, 000 21, 868, 000 28, 342, 000 26, 430, 000	\$1, 216, 282 1, 631, 160 2, 646, 028 2, 777, 516 2, 748, 720	11, 345, 000 14, 534, 000 19, 572, 000 18, 910, 000 16, 444, 000	\$453, 800 668, 564 1, 154, 748 869, 860 772, 868	2, 403, 000 2, 344, 000 8, 494, 000 9, 106, 000 3, 660, 000	\$105, 732 117, 200 552, 110 437, 088 190, 320	\$17, 375, 938 19, 819, 869 22, 107, 207 22, 073, 663 22, 319, 041	
1858-1939	2 225, 394	60, 160, 319	2 2, 352, 841	222, 114, 677	² 1, 130, 232	158, 590, 836	1, 795, 354, 911	

¹ Figures not available.

Gold and silver produced at placer mines in Colorado, 1935-39, in fine ounces, in terms of recovered metals

	Sluicin	a and		D=1011-1		Dredges								
Year	hydra		Drift m	ining	Dry-land 1		Dragline floating		Floating bucket		Total			
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver		
1935 1936 1937 1938 1939	² 7,058.74 2,307.74 1,948.21 2,285.00 2,535.00	573 401	1, 990, 14 2, 020, 13 1, 362, 00	411 279	7, 998. 55 7, 754. 79 6, 212. 24 10, 201. 00 10, 631. 00	2,020		286 279	4, 305. 71 1, 528. 33 1, 910. 07 1, 027. 00 4, 688. 00	364 434 239	19, 363. 00 13, 581. 00 14, 871. 00 18, 041. 00 19, 819. 00	2, 705 2, 565 3, 250		

Dragline and power-shovel excavators with sluices or special amalgamators.
 Figures for sluicing and hydraulic include those for drift mining.

Gold.—In total value gold was the leading metal produced in Colorado from 1858 to 1939, but in annual value it was surpassed by silver from 1874 to 1896 and by molybdenum from 1937 to 1939. The principal gold-producing districts in 1939, in order, were: Cripple Creek, Teller County; Mosquito, Park County; Upper San Miguel, San Miguel County; Red Cliff, Eagle County; Gold Hill, Boulder County; Empire, Clear Creek County; Animas, San Juan County; Summitville, Rio Grande County; and Sneffels, Ouray County. The largest gold-producing properties, in order, were the United Gold Mines and Cresson at Cripple Creek, London in the

² Short tons.

Mosquito district, Eagle in the Red Cliff district, and Smuggler Union at Telluride. Important gains in gold production were made in San Miguel, Boulder, Eagle, and Park Counties; the largest decreases were in Teller, San Juan, Rio Grande, Gilpin, and Lake Counties. Dry and siliceous ores yielded 87 percent of the total gold; copper ore 6 percent; lead, lead-copper, zinc, and zinc-lead ores

slightly more than 1 percent; and placers nearly 6 percent.

Silver.—Silver production in Colorado has increased annually since 1932, when the output (1,860,408 ounces) was the lowest in 59 years; the output in 1939 (8,496,488 ounces, in terms of recovered metal) was the highest since 1914. Eagle County contributed 71 percent of the total in 1939, Mineral County 7 percent, San Miguel 7 percent, San Juan 3 percent, and other counties (chiefly Pitkin, Ouray, Lake, and Clear Creek) 12 percent. The principal silver-producing properties were: Eagle mine, Eagle County; New York-Pittsburg-Last Chance-Del Monte group, Mineral County; Smuggler Union group,

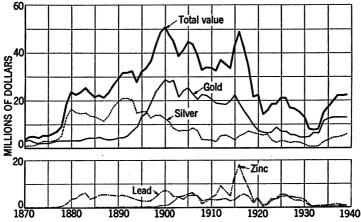


FIGURE 1.—Value of mine production of gold, silver, lead, and zine and total value of gold, silver, copper, lead, and zine in Colorado, 1870-1939. The value of copper has been less than \$2,000,000 annually, except in a few years.

San Miguel County; Shenandoah-Dives-Mayflower group, San Juan County; and Butterfly group, San Miguel County. Copper ore yielded 72 percent of the total silver; dry and siliceous ores 23 percent; and other types of ore, together with a very small quantity of silver

from placer mines, 5 percent.

Copper.—In 1939 the mine output of recoverable copper in Colorado decreased 7 percent from the record annual output of 28,342,000 pounds in 1938. Eagle County produced 90 percent of the State total; the remainder came chiefly from San Juan, Ouray, Saguache, Clear Creek, and San Miguel Counties. The only sizable copper producer in the State was the Empire Zinc Division (Eagle mine) of the New Jersey Zinc Co. at Gilman, Eagle County, which shipped copper-iron-silver-gold-lead ore direct to the copper smelter at Garfield, Utah.

Lead.—Although the total recorded production of lead in Colorado from 1858 through 1939 was more than 10 times that of copper, the annual recovered output from 1932 to 1939 was less than that of copper; the average over the 8 years was 12,292,750 pounds for lead

and 17,172,875 pounds for copper. Of the 16,444,000 pounds of lead recovered in 1939, 54 percent was contained in concentrates made from dry and siliceous gold, gold-silver, and silver ores, mostly from San Miguel, San Juan, Park, Clear Creek, Ouray, Mineral, and Pitkin Counties; 9 percent was in concentrates from zinc-lead ore, mostly from Dolores County; and the remainder was recovered principally from copper and lead ores shipped from Eagle and Lake Counties direct to smelters.

Zinc.—Of the 3,660,000 pounds of zinc recovered from Colorado ores in 1939, Dolores County contributed 47 percent, San Juan 32 percent, Lake 10 percent, and Summit 5 percent; Pitkin, Ouray, San Miguel, Gunnison, and Hinsdale Counties together contributed 6 percent. The principal producers of zinc were the Rico Argentine Mining Co. at Rico, Dolores County, which began treating zinc-lead-silver-copper ore in its new 135-ton flotation mill in September; and the Shenandoah-Dives Mining Co. at Silverton, San Juan County, a large producer of dry and siliceous gold-silver ore containing some lead, copper, and zinc and a buyer of custom complex lead and zinc-lead ores for treatment in its 750-ton selective-flotation mill.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Colorado in 1939, by counties, in terms of recovered metals

County		s pro- cing	Gold (lode	and placer)	Silver (lode and placer)		
·	Lode	Placer	Fine ounces	Value	Fine ounces	Value	
Adams		12	317	\$11,095	53	\$36	
Arapahoe		8	13	455			
Boulder	166	12	28, 934	1,012,690	40, 045	27, 18	
Chaffee	18	26	699	24, 465	3, 991	2, 70	
Clear Creek	110	33	34, 930	1, 222, 550	113, 174	76, 82	
Costilla		3	19	665	1		
Custer	6	1	119	4, 165	2,690	1, 82	
Denver		9	9	315			
Dolores	8	l i	123	4, 305	41, 356	28, 07	
Douglas		17	80	2, 800	,	,	
Eagle	11	5	22, 949	803, 215	6, 074, 024	4, 122, 97	
Elbert		1 2	23	805	.,	-,,	
Fremont	1	l ī	4	140			
Garfield	ī	_	322	11, 270	159	10	
Gilpin	85	102	10, 894	381, 290	51, 209	34, 76	
Grand	2	1	6	210	1, 102	74	
Gunnison	14	Ŕ	1,908	66, 780	4, 315	2, 92	
Hinsdale	3	ľ	56	1, 960	2, 649	1, 79	
ackson		1	2	70	2,010	2,	
lefferson		58	154	5, 390	31	2	
Lake	82	19	9, 987	349, 545	131, 514	89, 27	
La Plata	8	10	674	23, 590	5, 999	4. 07	
Mineral	10		709	24, 815	596, 858	405, 14	
Moffat	10	8	149	5, 215	9	100, 11	
Montezuma	3	٥	943	33, 005	1. 102	74	
Montrose.	2	18	113	3, 955	1, 102	70	
Ouray	14	3	12, 586	440, 510	158, 798	107, 79	
Park	26	112	43, 467	1, 521, 345	38, 691	26, 26	
Pitkin	20 5	112	45, 407				
Rio Grande	1		14, 445	35	210, 176	142, 66	
	1	7	24	505, 575 840	53, 460	36, 28	
Routt Saguache		•	89		13	00.10	
Saguache	10			3, 115	48, 794	33, 12	
San Juan	20		16, 152	565, 320	286, 150	194, 23	
San Miguel	19	18	29, 955	1, 048, 425	577, 004	391, 66	
Summit.	29	93	1,994	69, 790	35, 310	23, 96	
Peller	104	6	134, 003	4, 690, 105	17, 708	12, 02	
	758	583	366, 852	12, 839, 820	8, 496, 488	5, 767, 313	
Fotal, 1938	669	583 592	367, 468				
L Utal, 1300	009	092	507,408	12, 861, 380	7, 932, 095	5, 127, 819	

Mine production of gold, silver, copper, lead, and zinc in Colorado in 1939, by counties, in terms of recovered metals—Continued

	Cop	per	Lea	d	Zin	c	Total
County	Pounds	Value	Pounds	Value	Pounds	Value	value
Adams							\$11, 131
Arapahoe							458
Boulder		\$16,848	83, 000	\$3,901		I	1, 060, 621
Chaffee	4, 500	468	85, 000	3, 995			31, 637
Clear Creek	226,000	23, 504	910,000	42, 770			1, 365, 648
Costilla							666
Custer	1,800	187	23,000	1,081			7, 259
Denver			<u>-</u>				31
Dolores	129,000	13, 416	1, 504, 000	70, 688	1, 734, 000	\$90, 168	206, 649
Douglas							2,800
Eagle	23, 842, 000	2, 479, 568	2, 274, 000	106, 878			7, 512, 63
Elbert							804
Fremont							140
Garfield		62					11, 44
Gilpin		11, 232	188,000	8,836			436, 118
Grand		,	3,000	141			1, 09
Gunnison		1, 976	17, 000	799	6,000	312	72, 79
Hinsdale		312	62,000	2,914	4,000	208	7, 19
Jackson			02,000	_,	-,		7
Tefferson							5, 41
Lake		1, 248	2, 208, 000	103, 776	351,000	18, 252	562, 09
La Plata		_,	4,600	216	,		27, 87
Mineral		135	718, 000	33, 746			463, 83
Moffat	1,000		120,000	,			5, 22
Montezuma	500	52					33, 80
Montrose		1, 560					5, 58
Ouray		37, 274	654, 400	30, 757	13,000	676	617, 00
Park	69,000	7, 176	1, 078, 000	50, 666	,		1, 605, 45
Pitkin	1, 200	125	532,000	25, 004	176, 000	9, 152	176, 98
Rio Grande	1,200			,			541, 86
Routt							84
Saguache	248, 000	25, 792	240, 000	11, 280			73, 30
San Juan		105, 352	2, 092, 000	98, 324	1, 166, 000	60, 632	1, 023, 86
San Miguel		21, 840	3, 529, 000	165, 863	12, 000	624	1, 628, 41
Summit	5, 700	593	239, 000	11, 233	198, 000	10, 296	115, 88
Teller	J 3,.00.]					4, 702, 12
							,,
	26, 430, 000	2, 748, 720	16, 444, 000	772, 868	3, 660, 000	190, 320	22, 319, 04
Total, 1938	28, 342, 000	2, 777, 516	18, 910, 000	869, 860	9, 106, 000	437, 088	22, 073, 66
1000	20, 012, 000	2, 111, 010	10, 010, 000	000,000	0, 200, 000	,	,,

Gold and silver produced at lode mines in Colorado in 1939, by counties, in terms of recovered metals

County	Ore sold or treated (short tons)	Gold (fine ounces)	Silver (fine ounces)
Boulder	101, 740	28, 857	40, 036
Chaffee	911	347	3, 938
Clear Creek	156, 210	34, 892	113, 168
Custer	1, 420	119	2,690
Dolores	12, 317	121	41,356
Eagle	340, 464	22, 921	6, 074, 023
Fremont	2	1	
Garfield	199	322	159
Gilpin	21, 645	5, 112	50, 135
Grand	41	3	1, 102
Gunnison	6,750	1,897	4, 312
Hinsdale	1,066	56	2, 649
Lake	53, 441	7, 606	130, 811
La Plata	2,604	674	5, 999
Mineral	37, 083	709	596, 858
Montezuma	839	943	1, 102
Montrose	97		7.
Ouray	35, 711	12, 580	158, 795
Park		34, 597	36, 926
Pitkin	24, 088	1	210, 176
Rio Grande	43, 039	14, 445	53, 460
Saguache	2, 546	89	48, 794
San Juan	199, 271	16, 152	286, 150
San Miguel	202, 616	29, 891	576, 964
Summit	3, 602	731	34, 980
Teller	538, 138	133, 967	17, 705
T 01101			
	1, 914, 593	347, 033	8, 492, 363
Total, 1938	1, 996, 095	349, 427	7, 928, 845

Gold and silver produced at placer mines in Colorado in 1939, by counties, in fine ounces, in terms of recovered metals

	Clastel		_				Dre	edges				
County	hydi	ng and aulic		rift ning	Dry-	land 1		gline ting		ating eket	T	ot al
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
Adams	317	53									317	53
Arapahoe	13										13	
Boulder Chaffee	45	5			32	4					77	9
Clear Creek	102	16	5	1.	245	36					352	53
Costilla	38 19	6 1									38	6
Denver	. 19										19	1
Dolores	2										9	
Douglas	72		8								2	
Eagle.	28	1									80	
Elbert	ĩ	-			22						28 23	1
Fremont	3										3	
Gilpin	548	109	2		3, 282	787	1,950	178			5, 782	1,074
Grand	3						-,000	1.0			3	1,073
Gunnison	11	3									11	3
Jackson	2										2	
Jefferson	154	31									154	31
Lake	95	20			2, 286	683					2, 381	703
Moffat	21	. 1			128	8					149	9
Montrose	35	10			78	18					113	28
Ouray Park	6 466	3 81									6	3
Routt	24	13			4, 152	784			4, 252	900	8,870	1,765
San Miguel	64	40									24	13
Summit	421	102			406	116			400		64	40
Teller	36	3			400	110			436	112	1, 263 36	330
	0 505	400										
Total, 1938	2, 535	498	15		10,631	2,436	1,950	178	4,688	1,012	19, 819	4, 125
10001, 1956	2, 285	433	1, 362	279	10, 201	2,020	3, 166	279	1,027	239	18, 041	3, 250

¹ Dragline and power-shovel excavators with sluices or special amalgamators.

MINING INDUSTRY

The output of dry and siliceous gold, gold-silver, and silver ores from mines and dumps in Colorado in 1939 increased 1 percent over 1938 and copper ore 3 percent; lead ore decreased 25 percent, zinc-lead ore 88 percent, and the total for all classes of ore 4 percent. Sunnyside mine in San Juan County, the only important producer of zinc-lead ore in Colorado in 1938, was closed June 30 of that year and very little zinc-lead ore was mined in the State during the next 15 months; in September 1939 the Rico Argentine Mining Co. began producing zinc-lead-silver-copper ore at Rico, Dolores County, and mined and treated about 100 tons daily to the end of the year. Nearly all the large producers of gold and silver ores that were active in 1938 continued operations throughout 1939. The statutory requirement that assessment work be done on claims held by location (suspended annually from 1933 to 1938 by acts of Congress) was in effect again in 1939 and apparently caused the increase over 1938 in the number of producing lode mines, as the aggregate of small lots of ore reported mined and shipped while assessment work was being done did not materially affect the total tonnage output of the State.

The quantity of gravel handled in 1939 by 2 floating connected-bucket dredges, 1 dragline floating dredge, and 26 dry-land dredges was approximately 2,430,964 cubic yards; specific data on yardage handled at small-scale placer operations are not obtainable because of lack of knowledge by the operators of the quantity of gravel sluiced.

On April 2, 1940, the Wage and Hour Division of the United States Department of Labor declared the open-cut mining of placer gold in Colorado to be an industry of a seasonal nature and thus entitled to certain exemptions under the wage-hour law. Figures supplied by the Bureau of Mines showed that approximately 80 percent of the placer gold output of Colorado in 1938 and 81 percent in 1939 were produced between May 1 and November 1.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Colorado in 1939, with content in terms of recovered metal	Ore sold or treated in	Colorado in 1939	, with content in terms of	of recovered metals
---	------------------------	------------------	----------------------------	---------------------

Source	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Dry and siliceous gold ore	1, 224, 849 242, 178 75, 208	299, 907 19, 204 820	736, 547 516, 653 731, 974	871, 830 1, 162, 445 20, 380	5, 476, 230 3, 102, 540 1, 295, 575	9,000 1,098,000 176,000
	1, 542, 235	319, 931	1, 985, 174	2, 054, 655	9, 874, 345	1, 283, 000
Copper ore Lead ore Lead-copper ore Linc ore Zinc ore Zinc lead ore	342, 499 14, 700 1, 464 344 13, 351	22, 653 3, 712 445 16 276	6, 114, 224 320, 657 26, 670 8, 078 37, 560	24, 169, 380 37, 545 93, 705 800 73, 915	2, 332, 545 2, 407, 465 266, 435 7, 000 1, 556, 210	160, 000 2, 217, 000
	372, 358	27, 102	6, 507, 189	24, 375, 345	6, 569, 655	2, 377, 000
Total, lode mines	1, 914, 593	347, 033 19, 819	8, 492, 363 4, 125	26, 430, 000	16, 444, 000	3,660,000
Total, 1938	1, 914, 593 1, 996, 095	366, 852 367, 468	8, 496, 488 7, 932, 095	26, 430, 000 28, 342, 000	16, 444, 000 18, 910, 000	3, 660, 000 9, 106, 000

METALLURGIC INDUSTRY

Ore treated in 1939 by all mills in Colorado handling ores of gold, silver, copper, lead, and zinc totaled 1,511,792 tons, of which 920,834 tons were treated in company mills at mines; 545,323 tons by the Golden Cycle custom roast-amalgamation-cyanidation-flotation mill at Colorado Springs; and 45,635 tons by custom flotation mills in or near the mining districts (some of which also treated company ore included above), comprising the following: Boston mill at Ward in Boulder County; Clear Creek-Gilpin, Clear Creek Consolidated, Dumont, Hoosac, Ruth, and Silver Leaf in Clear Creek County; Creede Mills in Mineral County; Banner American in Ouray County; Shenandoah-Dives in San Juan County; and Smuggler Union mill in San Miguel County. All these custom mills except the Shenandoah-Dives treated only gold, gold-silver, silver, or silver-lead-gold-copper ores. Zinc-lead ore containing gold and silver from Dolores, Gunnison, Hinsdale, Lake, Ouray, San Juan, San Miguel, and Summit Counties was shipped to custom mills at Midvale, Tooele, and Bauer, Utah. The samplers at Boulder and Idaho Springs each operated about 5 months during the year.

Direct-smelting ores comprised 21 percent of the State total output of ore in 1939. The Arkansas Valley lead bullion-leady copper matter smelter at Leadville purchased most of the gold, silver, and gold-silver-lead-copper ores and concentrates shipped to smelters during the year. Some ores and concentrates (containing appreciable amounts of copper) from Boulder, Clear Creek, and Gilpin Counties were

smelted in the 25-ton Forks copper smelter in Gilpin County, built in 1939 and operated 53 days beginning about October 1. Ore and concentrates were shipped to smelters in other States, as follows: Zinclead sulfide and zinc-lead carbonate ores from Lake County to Coffeyville, Kans.; zinc concentrates from Dolores, Pitkin, and San Juan Counties to Amarillo, Tex.; copper-iron-silver-gold ore from Eagle County, copper-silver ore from Montrose County, and gold-silver-leadcopper ores and concentrates from the San Juan region to Utah smelters; and copper-gold-silver concentrates from San Juan County to El Paso. Tex.

Mine production of metals in Colorado in 1939, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Ore and concentrates amalgamated ¹ Ore, old tailings, concentrates, sands, and slimes cyanided ² Concentrates smelted Ore smelted Placer ¹	780, 064 3 636, 969 62, 389 401, 310	72, 095 135, 813 102, 600 36, 525 19, 819	27, 684 78, 181 1, 690, 469 6, 696, 029 4, 125	2, 159, 530 24, 270, 470	10, 570, 435 5, 873, 565	3, 179, 000 481, 000
Total, 1938		366, 852 367, 468	8, 496, 488 7, 932, 095	26, 430, 000 28, 342, 000	16, 444, 000 18, 910, 000	3, 660, 000 9, 106, 000

¹ Quicksilver purchased (which is close to quantity used) by amalgamation mills was 3,870 pounds. Placer mines used approximately 400 pounds.

² Cyanide (in terms of 96- to 98-percent NaCN) used was 1,140,514 pounds.

³ Comprises 350.800 tons of sands and slimes from ore and iron concentrates first roasted and amalgamated, 194,218 tons of tailings from ore first floated, 42,280 tons of tailings from ore first treated by jigging, and 49,671 tons of combined flotation concentrates, crude ore, and old tailings cyanided direct.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Colorado in 1939, by counties, in terms of recovered metals

			ered in lion		Concentrates smelted and recovered metal									
County	Ore treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)					
Boulder Chaffee	83, 556 31	21, 165 9	6, 037	3, 532	4, 929	24, 063	154, 240	70, 000						
Clear Creek Custer Eagle	141, 907 1, 351	21, 234 119 3	5, 557 882 18	6, 084	11, 433	70, 649	185, 725	677, 515						
FremontGilpin	16, 739	3, 084	11, 589											
Gunnison	5, 968	1, 687	1, 067	952 46	858 65	3, 080 1, 204	11, 235	8, 970 4, 300	-					
LakeLa Plata	8, 501 9	385	1, 631	509	317	1, 772		34, 700	9,000					
Montezuma	724	625	122											
Ouray Park	30, 055	8, 223	2, 248	3, 012	3, 621	77, 680	304, 100	353, 410						
Rio Grande	30, 366 43, 039	698 10, 724	118	1, 306	3, 753	4, 147	600	101, 500						
Saguache	39	42	49, 759 22	759	3, 721	3, 701								
San Juan	20	19	10											
San Miguel	179, 353	8, 982	10, 629	18, 235	19, 494	387, 253	118, 200	2, 971, 640						
Teller	45 513, 134	130, 897	16, 174											
			10, 174											
Total, 1938	1, 054, 840 991, 477	207, 908 212, 016	105, 865 113, 963	34, 435 29, 109	48, 191 39, 581	573, 549 435, 308	774, 100 856, 355	4, 222, 035 2, 551, 120	9, 000					

Mine production of metals from concentrating mills in Colorado in 1939, by counties, in terms of recovered metals

			Concent	trates smelte	d and recove	red metal	
County	Ore treated (short tons)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Boulder	17, 660	1, 335	2, 516	3, 623	3, 830	1, 200	
Chaffee	535	39	180	103	500	100	
Clear Creek	13, 513	1, 570	1,773	25, 436	28, 105	182, 810	
Dolores	11,858	3, 105	64	32, 047	120, 700	1, 352, 130	1,669,000
Gilpin	3, 313	418	352	6, 677	16, 430	31, 740	
Grand	. 8	1	1	96		65	
Gunnison	569	19	122	320	300	4, 400	
Hinsdale	1,003	76	9	2, 572	3,000	62, 000	4, 000 32, 000
Lake	14, 438	1,894	1,002	27, 035 4, 353	5, 590	261, 155	32,000
La Plata	2, 500	80	332	4, 353		575	
Mineral	34, 748	1, 322	632	408, 385	1,300	445, 450	13,000
Ouray	4,808	362	92	28, 314	42, 750	141, 475	13,000
Park	97, 162	7,069	27, 715	27, 538	64, 465	895, 995 318, 955	176, 000
Pitkin	7, 850 25	522		100, 157 66	1, 200 10	4, 280	170,000
Saguache	198, 741	6,372	15, 345	269, 736	1, 006, 750	1, 991, 050	1, 166, 000
San Juan San Miguel	198,741	2, 505	1, 230	174, 168	88, 500	545, 800	12,000
	23, 119	356	1, 230	4, 797	2,000	109, 220	98,000
Summit Teller	1,624	903	2,990	1, 497	2,000	100, 220	20,000
Tener	24, 969	903	2, 990	1, 497			
·	458, 443	27, 954	54, 409	1, 116, 920	1, 385, 430	6, 348, 400	3, 170, 000
Total, 1938	627, 298	48, 784	63, 123	1, 582, 413	2, 614, 735	11, 208, 042	9, 064, 000

Gross metal content of concentrates produced from ores mined in Colorado in 1939, by classes of concentrates smelted

Class of concentrates	Concen- trates	Gross metal content									
	produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (wet assay) (pounds)	Lead (wet assay) (pounds)	Zinc (pounds)					
Dry gold Dry gold-silver Copper Lead Lead-copper Zinc	17, 141	31, 055	124, 417	345, 126	698, 167	205, 006					
	486	358	5, 889	12, 175	23, 422	760					
	2, 146	2, 794	61, 761	576, 992	142, 660	154, 926					
	33, 067	57, 083	1, 215, 739	412, 438	8, 831, 333	3, 543, 704					
	6, 325	11, 186	269, 926	1, 174, 720	2, 062, 350	1, 362, 769					
	3, 224	171	19, 405	70, 967	141, 319	3, 521, 290					
Total, 1938	62, 389	102, 647	1, 697, 137	2, 592, 418	11, 899, 251	8, 788, 455					
	77, 893	102, 932	2, 040, 977	4, 150, 762	16, 156, 177	15, 895, 539					

Mine production of metals from Colorado concentrates shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

		·				
	Concentrates (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Boulder Chaffee Clear Creek Dolores Glipin Grand Grand Hinsdale Lake	39 7, 654 3, 105 1, 370 1 65 76	7, 445 180 13, 206 64 1, 210 1 187	27, 686 103 96, 085 32, 047 9, 757 96 1, 524 2, 572	158, 070 500 213, 830 120, 700 27, 665 300 3, 000	71, 200 100 860, 325 1, 352, 130 40, 710 65 8, 700 62, 000	1, 669, 000
La Plata Mineral Ouray Park	2, 403 80 1, 322 3, 374 8, 375	1, 319 332 632 3, 713 31, 468	28, 807 4, 353 408, 385 105, 994 31, 685	5, 590 1, 300 346, 850 65, 065	295, 855 575 445, 450 494, 885 997, 495	13, 000
Pitkin Rio Grande Saguache San Juan San Miguel	522 759 6 6, 372 20, 740	3, 721 15, 345 20, 724	100, 157 3, 701 66 269, 736 561, 421	1, 200 1, 006, 750 206, 700	318, 955 4, 280 1, 991, 050 3, 517, 440	176, 000 1, 166, 000 12, 000
Summit Teller Total, 1938	356 903 62, 389 77, 893	2, 990 102, 600 102, 704	1, 690, 469 2, 017, 721	2, 000 2, 159, 530 3, 471, 090	109, 220 	98, 000

BY CLASSES OF CONCENTRATES SMELTED

Dry gold Dry gold-silver Copper Lead Lead-copper Zinc	17, 141 486 2, 146 33, 067 6, 325 3, 224 62, 389	31, 055 358 2, 794 57, 083 11, 186 124	124, 417 5, 889 61, 761 1, 215, 739 269, 926 12, 737 1, 690, 469	276, 490 9, 715 539, 880 334, 795 941, 460 57, 190 2, 159, 530	628, 720 21, 050 79, 675 7, 974, 070 1, 855, 315 11, 605	2, 000 3, 177, 000 3, 179, 000
			` ',	_, _ 10,000	-5, 5.0, 100	0, 110, 000

Gross metal content of Colorado crude ore shipped to smelters in 1939, by classes of ore

	O	re	Gross metal content							
Class of ore	Short tons	Percent of total	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)			
Dry and siliceous gold	18, 862	4.70	9, 051	41, 396	37, 438	431, 518	52, 313			
	3, 523	.88	703	19, 972	4, 205	271, 072	155, 540			
	20, 386	5.08	73	176, 622	6, 862	345, 848	52, 429			
	341, 487	85.09	22, 649	6, 112, 144	24, 884, 221	4, 640, 203	4, 319, 291			
	13, 572	3.38	3, 585	308, 693	32, 725	2, 462, 468	541, 047			
	1, 464	.36	445	26, 670	116, 438	296, 427	85, 466			
	344	.09	16	8, 078	968	8, 096	186, 028			
	1, 672	.42	3	2, 454	3, 205	133, 835	403, 274			
Total, 1938	401, 310	100.00	36, 525	6, 696, 029	25, 086, 062	8, 589, 467	5, 795, 388			
	377, 320	100.00	34, 707	5, 797, 161	25, 701, 459	7, 107, 357	6, 214, 441			

Mine production of metals from Colorado crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Boulder	524	247	6, 313	3, 930	11, 800	
Chaffee		158	3, 835	4, 000	84, 900	
Clear Creek		452	11, 526	12, 170	49, 675	
Custer	69		1, 808	1, 800	23, 000	
Dolores	459	57	9, 309	8, 300	151, 870	65, 000
Eagle	340, 463	22, 918	6, 074, 005	23, 842, 000	2, 274, 000	
Garfield		322	159	600		
Gilpin	1, 593	818	28, 789	80, 335	147, 290	
Grand		2	1,006		2, 935	
Gunnison		23	1, 721	18, 700	8,300	6,000
Hinsdale	63	47	77			
Lake	30, 502	5, 902	100, 373	6, 410	1, 912, 145	310,000
La Plata	95	335	1.646		4, 025	
Mineral	2, 335	77	188, 473		272, 550	
Montezuma		318	980	500		
Montrose	97		75	15,000		
Ouray		644	50, 553	11, 550	159, 515	
Park	1, 225	2, 431	5, 123	3, 935	80, 505	
Pitkin.		1	110, 019		213, 045	
Saguache		47	48, 706	247, 990	235, 720	
San Juan		788	16, 404	6, 250	100, 950	
San Miguel		185	4, 914	3, 300	11,560	
Summit		673	30, 181	3,700	129, 780	100,000
Teller		80	34			
	401, 310	36, 525	6, 696, 029	24, 270, 470	5, 873, 565	481, 000
Total, 1938	377, 320	34, 707	5, 797, 161	24, 870, 910	5, 150, 838	42,000
	ву (CLASSES O	F ORE			
			47.000	00.555	007.000	1
Dry and siliceous gold	18, 862	9, 051	41, 396	32, 775	387, 360	
Dry and siliceous gold-silver	3, 523	703	19, 972	3, 420	243, 920	
Dry and siliceous silver	20, 386	73	176, 622	5, 535	311, 345	
Copper		22, 649	6, 112, 144	24, 106, 080	2, 326, 415	
Lead		3, 585	308, 693	25, 655	2, 222, 290	
Lead-copper	1,464	445	26, 670	93, 705	266, 435	
Total to copper and lead	399, 294	36, 506	6, 685, 497	24, 267, 170	5, 757, 765	
plants	399, 294	30, 300	0,000,497	24, 207, 170		
Zinc	344	16	8,078	800	7,000	160,000
Zinc-lead	1,672	3	2, 454	2, 500	108, 800	321,000

36, 525

401, 310

6, 696, 029 24, 270, 470

5, 873, 565

481,000

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Colorado in 1939, by counties and districts, in terms of recovered metals

County and district	Mine due	es pro- cing	Ore sold or treated	Go	ld (fine oun	ces)	Silve	r (fine ou	inces)	Copper	Lead	Zine	Total
	Lode	Placer	(short tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	value
Adams County		12			317	317		53	53				\$11, 131
Arapahoe County Boulder County:		8			13	13							458
Central	18		7,724	3, 376		3, 376	1,015						
Gold Hill	63	2	72, 494	17, 781	2	17, 783	29, 663		1, 015 29, 663	500			118, 90
Grand Island	7	2	1, 297	315	18	333	1,868	3	1,871	154, 200 100	72,000 4,100		661, 96
Magnolia.	14	_	2, 664	841	10	841	56		1,871	100	4,100		13, 12
Sugar Loaf	37	8	9, 975	4,310	57	4, 367	5, 685	6	5, 691	900	5, 000		29, 47
Ward	27		7, 586	2, 234	0.	2, 234	1,749		1, 749	6,300	1,900		157, 03
Chaffee County:			.,	-,		-, -01	1,,110		1,749	0,000	1,800		80, 12
Brown Canyon		1			2	2		l				j i	70
Chalk Creek	4		163	142		142	1,918		1,918	1,000	27, 600		7, 67
Granite	5	25	547	189	350	539	237	53	290	500	1,000		19, 16
La Plata	1		5	1		1	311		311		1,000		246
Monarch	5		165	6		6	1,472		1,472	3,000	56, 400		4, 172
Riverside	1		16	3		3							105
Trout Creek			5	2		2		l					70
Clear Creek County:	1		10	4.		4		l <u></u>					140
Alice			=00					i			-		
AliceArgentine	2		709	527		527	109		109	••••			18, 519
Empire	11	2	771	162		162	3, 191		3, 191	7, 500	31,600		10, 101
Geneva Creek	1	2	75, 124	16, 386	1	16, 387	2,870		2,870	700	700		575, 599
Griffith	10		3, 065	355		0.7	- 000		. 9		100		46
Idaho Springs	62	31	50, 371	10, 841		355	7, 033		7, 033	8,000	49, 800		20, 372
Montana		91	9, 617	1, 279	37	10, 878 1, 279	68, 435 22, 692	6	68, 441	129,700	693, 400		473, 266
Trail Crook	1 71		16, 551	5, 341		5, 341	8, 829		22, 692	77, 300	57, 200		70, 895
		3	10, 001	0, 341	19	3, 341	8,829	1	8, 829	2, 800	77, 200		196, 847
USIER Committee Hardscraphia	6	"	1, 420	119	19	119	2, 690	1	2, 690				666
Jenver County_	1	9	1, 120	115	9	119	2,090		2, 090	1,800	23,000		7, 259
Dolores County Pioneer	0	ĭ	12, 317	121	2	123	41, 356		41, 356	129,000	1, 504, 000		315
Douglas County		17	, 02.		80	80	11,000		41, 000	129,000	1, 504, 000	1, 734, 000	206, 649
Eagle County:	1 1		,		"								2, 800
Burns-McCoy	l- 	4			5	5						1	175
Holy Cross	1		2	3		š	99		99	200	400		212
Mount Egley		1			23	23		1	i	200	100		806
Red Cliff	_ 10		340, 462	22, 918		22, 918	6,073,924		6,073,924	23, 841, 800	2, 273, 600		7, 511, 442
Gibert County		2			23	23	., ,			20,011,000	-, -, 0, 000		805
Fremont County	_ 1	1	2	1	3	4							140
Parfield County: Rifle Creek	' 1 '		199	322		322	159		159	600			11, 440

Gilpin County:		1	ı	ı	ŧ	l	1	1		1	1	1 1		
Southern	68 17	91	17, 228	4, 412	3, 807	8, 219	49, 616	890	50, 506	106, 200	187, 400		341, 801	
Northern	17	11	4, 417	700	1,975	2, 675	519	184	703	1,800	600		94, 317	
Grand County	2	1	41	3	3	6	1, 102		1, 102	l	3,000		1,099	
Gunnison County:			1				1				1,		-, ***	
Box Canyon	1		347	47		47	7		7				1,650	
Elk Mountain	4	. 3	158	7	2	9	1,093		1,093	18,700	6,900	6,000	3, 638	
Gold Brick	6		5, 890	1,817		1,817	2, 581		2, 581	300	8,700		65, 787	
Goose Creek	1		9				174		174		1,400		184	
Green Mountain	1		326	26		26	6		6				914	
Taylor Park (Tin Cup)		5			9	9		3	3				317	•
Tomichi	1		20				451		451				306	
Hinsdale County:			1 000	9	1	_								
GalenaLake	2		1,003 63	47		.9	2, 572		2, 572	3,000	62,000	4,000	5, 495	
Jackson County	1		7 03	47	2	47 2	77		77				1,697	
Jefferson County					154	154		31	31				70	
Lake County:		00			104	194		91	91				5, 411	
California (Leadville)	73	10	53,006	7,409	35	7, 444	129, 376	9	129, 385	11,400	2, 176, 800	344,000	400 740	
Other districts 1	l a	10	435	197	2, 346	2, 543	1, 435	694	2, 129	600	31, 200		469, 749 92, 342	
La Plata County: California	Ř		2,604	674	2,010	674	5, 999	094	5, 999	000	4, 600	7,000	92, 342 27, 878	
Mineral County: Creede	10		37, 083	709		709	596, 858		596, 858	1,300	718, 000		463, 836	
Moffat County: Fourmile (Tim-			0.,000				000,000		000,000	1,000	110,000		400,000	
berlake)		8			149	149		9	Q				5, 221	•
Montezuma County	3		839	943		943	1, 102		1, 102	500			33, 805	
Mantena Country				0.20		0.20	1,102		1,102				55, 500	
La Sal	2	6	97	<u></u>	83	83	75	19	94	15,000			4, 529	
Naturita		12			30	30		9	9				1,056	
Ouray County:			l		l		i						-,	
Red Mountain			2, 452	80		80	9,809		9,809	40, 500	87, 700	13,000	18, 468 212	
Ridgway		3			6	6		3	3		- -	l	212	
Sneffels	3		29, 100	11, 749		11, 749	80, 866		80, 866	301, 200	362, 600		514, 473	
Uncompangre	6		4, 159	751		751	68, 120		68, 120	16, 700	204, 100		83, 854	
Park County:		40		1	٠ ا							1 1	•	
Alma Placers		49			3, 154	3, 154		663	663				110, 840	
Beaver Creek Buckskin		7	56	22	4,300	4, 300		903	903				151, 113	
Consolidated Montgomery	4	6	2,784	929	16 8	38 937	408 3, 129	3	411	700	6, 800		2,002	
Fairplay	4	19	2, 184	929	663	663	3, 129	3 137	3, 132 137	500	1,000		35, 020	
Hall Valley		19			003	. 003	50	137	137 50				23, 298	
Mosquito	15		125, 894	33, 638		33, 638	33, 317		33, 317	100 67, 700	1,000 1,069,200		91	
Tarryall	1 2	30	120,001	8	729	737	22	56	70	07,700	1,009,200		1, 257, 238	
Pitkin County:	_	"	1	"	120	101	1 22	00	10				25, 848	
Lincoln Gulch	1	l	5	1		1	38		38		1,800	1	146	
Roaring Fork	4		24, 083	l			210, 138		210, 138	1, 200	530, 200		176, 835	
Rio Grande County: Summit-	_		,							1,200	550, 200	1.0,000	110,000	
ville	1		43, 039	14, 445	- -	14, 445	53, 460		53, 460				541, 863	
Routt County: Hahns Peak		7		·	24	24		13	13				849	
		~ .		_										

¹ Includes Alicante, Granite, Lackawanna Gulch, St. Kevin, Tennessee Pass, and Twin Lakes districts.

Mine production of gold, silver, copper, lead, and zinc in Colorado in 1939, by counties and districts, in terms of recovered metals—Continued

County and district			Ore sold or treated	Gol	d (fine oun	ces)	Silver (fine ounces)				Lead		Total
	Lode	Placer	(short tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	value
Saguache County: Blake Crestone	1 1		3 39	1 42		1 42	1 22		1 22	200			\$57 1, 485
Kerber Creek	8		2, 504	46		46	48, 771		48, 771	247, 800	240, 000		71, 76
Animas Eureka Ice Lake Basin San Miguel County;	14 4 2		198, 036 442 793	15, 278 781 93		15, 278 781 93	268, 769 6, 298 11, 083		268, 769 6, 298 11, 083	995, 000 6, 800 11, 200	1, 915, 300 28, 400 148, 300	1, 147, 000 19, 000	970, 310 34, 640 18, 913
Iron Springs Klondyke Lower San Miguel	4 1	1	23, 161 5	1, 247	2	1, 249	174, 567 62	9	174, 567 62	88, 800 1, 700	550, 700	12, 000	197, 95 21: 35
Mount Wilson Upper San Miguel Summit County:	3 11	6	179, 435	103 28, 541	52	103 28, 593	286 402, 049	31	286 402, 080	200 119, 300	900 2, 977, 400		3, 86 1, 426, 02
Breckenridge Montezuma Ten Mile	16 7	92	1, 748 252 1, 239	632 5 61	1, 260	1, 892 5 64	10, 224 5, 071 2, 755	329	10, 553 5, 071 2, 756	2, 500 1, 500	71,000 73,700	98, 000	82, 070 7, 23
Wilkinson Feller County: Cripple Creek	. 104	6	363 538, 138	33 133, 967	36	33 134, 003	16, 930 17, 705	3	16, 930 17, 708	1, 700	79, 300 15, 000	100, 000	7, 83 18, 72 4, 702, 12
Total Colorado	758	583	1, 914, 593	347, 033	19, 819	366, 852	8, 492, 363	4, 125	8, 496, 488	26, 430, 000	16, 444, 000	3, 660, 000	22, 319, 04

ADAMS COUNTY

Sand and gravel handled in the washing plant of the Brannan Sand & Gravel Co. on Clear Creek north of Denver yielded gold as a byproduct in sluices operated throughout 1939 by a lessee. Individuals working intermittently with sluices and pans at other points on Clear Creek in Adams County produced small lots of dust, most of which were sold to dealers in Denver.

ARAPAHOE COUNTY

Sluicing on Platte River and Cherry and Dry Creeks south of Denver recovered small lots of placer gold in 1939.

BOULDER COUNTY

Boulder County recorded a gain of 26 percent in 1939 over 1938 in output of gold, the chief metal in value produced in the county in both years; although part of the gain resulted from an increase in quantity of dump ore shipped, the output from newly mined ore also increased substantially. Boulder, as usual, had more producing lode mine operations than any other county in the State; however, many of those counted are prospects and dumps, inactive mines under investigation, and others producing in general less than 25 tons of ore. Space does not permit mention of these operations or of small placer mines in the following review by districts.

Central (Jamestown) district.—The Wano mine was operated throughout 1939 by the owner and several sets of lessees, who continued to ship the ore to the Golden Cycle mill at Colorado Springs. Associated Metal Mines, Inc., drove 175 feet of drifts and a 50-foot winze at the John Jay mine and shipped 149 tons of gold ore; by consolidation with the Acme Mining & Milling Co. as of December 31, 1939, the company acquired the 40-ton flotation mill adjacent to the mine. Lessees at the Alice, Black Rose, Gray Eagle, Monitor, and Rip Van Dam mines and the owner of the Gold Leaf mine were the other

principal shippers from the Central district. Gold Hill district.—In 1939 Gold Hill was again the largest goldproducing district in Boulder County. The Slide-Klondike group of mines, operated continuously by Slide Mines, Inc., ranked first among the individual properties of the district and county in production of gold, silver, copper, and lead. The ore was treated in the company mill by combined gravity and flotation concentration; free gold caught on burlap tables between the classifier and Wilfley tables was amalgamated, retorted, and sold to the Denver Mint, and the concentrates were shipped to smelters. Mining Associates, Inc., operated its flotation mill at Salina from February 28 to September 2 on ore from a leased section of the Sunshine mine; the company operated at the mine throughout the year, shipping part of the ore to the Golden Cycle mill. Other lessees at the Sunshine also shipped considerable The Sunshine mine ranked second in the Gold Hill district in gold production; the Emancipation group, also operated continuously by lessees, ranked third; the American-Interocean, fourth; and the Melvina, fifth. They were followed by the Ingram, Cash (mine and dump), Golden Harp, Atchison, Cold Spring, St. Joe, King, Fisk,

These 15 mines and dumps produced 95 Richmond, and Myrtle. percent of the district total gold in 1939; the remainder came from 48

small lode operations and 2 placers.

Grand Island district.—A lessee worked the St. Louis mine from April 1 to December 31, 1939, and shipped 586 tons of ore to custom plants. Lessees operated the Amy Paul mine throughout the year and shipped 215 tons of ore. Other producers included the Cross and Enterprise-Mogul groups.

Magnolia district.—The American X, Ben C. Lowell, Cash-Rebecca, India, Keystone, Senator Hill, Pickwick, Poorman, Rusty Dime, and Sac and Fox-Dunraven groups comprised those producing 25 tons or more of mine and dump ore in the Magnolia district in 1939. ore was shipped to the Golden Cycle mill at Colorado Springs or the sampler at Boulder, except 1,000 tons of dump material treated in the 50-ton flotation- and gravity-concentration mill at the Keystone mine.

Sugar Loaf district.—The Poorman mine, worked throughout 1939 by lessees, continued to be the principal producer of gold in the Sugar Loaf district; the bulk of the ore was shipped to the Golden Cycle The Yellow Pine group, which yielded silver ore containing some lead, gold, and copper, produced most of the district output of At the Logan mine a 75-ton flotation mill, equipped with carpeted launders in the ball mill-classifier circuit to recover free gold, was built; it treated 2,300 tons of ore during the year. The 25-ton Orphan Boy amalgamation-flotation mill was operated intermittently. Other important producing mines included the Alpine Horn, Empress, Grand Republic, Nancy, and Wood Mountain. A dragline and sluicing plant operated on the Giggy and Colby placers from April 1 to May 30 produced nearly all the district output of placer gold.

Ward district.—Kissell & Co. drove 500 feet of development drifts in 1939 at the B & M mine and continued to ship part of the ore produced from underground operations to the Golden Cycle mill; the remainder of the ore and 3,775 tons of dump material were treated by flotation in a leased mill near Ward. The other principal producers of gold in the Ward district were, in order of output, the Utica group, Boston, Golden Queen, Humboldt (mine and dump), Rose, Columbia-Big Five, and Brock No. 5. Most of the ore was sold to

the Golden Cycle mill.

CHAFFEE COUNTY

Brown Canyon district.—A placer miner sluicing on the Kelly ranch

on the Arkansas River recovered a little gold in 1939.

Chalk Creek district (Romley, St. Elmo).—Lessees continued to work the Mary Murphy mine on a small scale in 1939 and shipped gold-silver-lead-copper-[zinc] ore to the Leadville smelter. A few lots of smelting ore were shipped from the Allie Bell group, Philip

Carey Mining & Milling Co. group, and Flora Bell claim.

Granite district (see also Lake County).—The Granite Tunnel property, which has been under development for several years and which was equipped with a 50-ton flotation mill in 1939, was the only producer of more than 4 tons of ore in the Chaffee County part of the Granite district during the year; the mill was run part of 1939 and produced gold-silver-copper concentrates, which were sold to the Leadville smelter. Wolfe and Hesser operated a 4-cubic yard power shovel and screening and sluicing plant on the Driscoll Construction Co. placer ground in Lost Canyon from July 12 to October 8 and handled 20,000 cubic yards of gravel from which were recovered 186 fine ounces of gold and 28 fine ounces of silver. Len Savage operated his placer in Lost Canyon from June 15 to November 20, using a hand sluice part of the time and a power shovel and screening-sluicing plant the rest. The Independent placer, also in Lost Canyon, was worked during the open season with a small placer machine. Individuals sluicing on the Arkansas River near Granite recovered a little gold.

La Plata district.—Lessees at the Meta mine shipped 5 tons of

silver ore to the Leadville smelter in 1939.

Monarch district.—The output of the Monarch district in 1939 comprised chiefly lead-silver-gold ore from the Garfield and Hawkeye mines and lead-copper-silver ore from the Lilly group, all shipped to the Leadville smelter.

Riverside district.—The Victory Mining Co. shipped 16 tons of gold ore in 1939 from the Big Chief claim to the Golden Cycle mill at

Colorado Springs.

Trout Creek district.—A lessee prospecting at the Nelly Bly claim

shipped two small lots of gold ore in 1939.

Turret district.—Three truckloads of gold ore were shipped in October 1939 from the Monongahela group to the Golden Cycle mill.

CLEAR CREEK COUNTY

Alice district (Yankee, Lincoln).—Porphyry Mines, Inc., did 321 feet of churn drilling in 1939 at the Alice group, an important producer of gold, silver, and copper from 1935 until it was closed October 22, 1938; the only output in 1939 came from a clean-up of the mill. The Glacier Gold Mining Co. operated the Reynolds group part of the year and treated some ore in the stamp-amalgamation mill on the property. At the San Juan mine 50 tons of ore were treated by amalgamation. Lessees at the Gold King mine shipped several hundred tons of ore to the Golden Cycle mill.

Argentine district.—Lessees working the Santiago and Waldorf groups on a small scale in 1939 shipped ore to custom plants in Clear

Creek County and to the Leadville smelter.

Empire district.—In 1939 Minnesota Mines, Inc., operated continuously its consolidated group of claims in the area north of Empire; since 1935 this company has been the largest producer of gold The ore is treated in the 250-ton mill at the in Clear Creek County. mine by concentration on mats in launders and by flotation followed by cyanidation of the flotation concentrates. After being treated the flotation concentrates, containing chiefly iron sulfide, are sold to the General Chemical Co. of Denver; the mat concentrates, containing mostly free gold, are amalgamated. Three Leasers worked the Conqueror group under a sublease from the Viking Gold Mines Corporation throughout 1939 and continued to ship the ore to the Golden Cycle mill until September, after which they had it treated in the Clear Creek-Gilpin mill adjacent to the sampler at Idaho Springs. Lessees operated the Tenth Legion-Gold Dirt-Sprankel-Empress Tunnel group throughout the year; part of the ore produced was sold to the Golden Cycle mill at Colorado Springs, part was treated in local custom mills, and part in the Gold Dirt mill which was reconditioned during the year. Other producers in the Empire district included the Gold Bug, Gold Fissure (or Badger), Mint, Omaha No. 2,

Geneva Creek district.—In 1939 the Twin Basin Mining & Milling Syndicate built a small cyanide plant at the Sill mine and treated a

little ore to test the equipment.

Griffith (Georgetown-Silver Plume) district.—The Capital Tunnel group was operated part of 1939 by J. M. O'Connor, who shipped the ore to custom mills for treatment. Ore from the Corry City dump was treated in the Silver Leaf mill. Lessees at the Lebanon mine treated some ore from the mine and dump in the Lebanon mill. Direct-smelting ore was shipped from the Johnny Bull, St. George,

and a few other mines and dumps in the Griffith district.

Idaho Springs district.—The Alma-Lincoln Mining Co. operated its group of mines continuously in 1939 and treated 35,115 tons of ore by mat concentration and flotation in the company mill. Lincoln adit and 450-foot interior incline shaft on the Lincoln vein were cleaned out and reconditioned, and considerable ore was extracted from stopes on this vein. A large part of the ore, however, continued to come from the South Lincoln-Barber Elliott veins. During the year the company installed four slushers for underground loading of chutes. The Dixie mine on Ute Creek was a substantial producer of gold; the ore was treated in the Ruth custom mill at Idaho Springs. This mill was operated continuously and received ores from both Clear Creek and Gilpin Counties. The Williams The Williams Mining Co., operating the Williams mine, was a steady shipper throughout the year to the Golden Cycle mill. Ore from the Metropolitan group was treated in the Hoosac mill. Colorado Silver Mines, Inc., operated the Bald Eagle mine under lease from June 15 to December 31, treating the ore in the company mill near Blackhawk, Gilpin County. Other sizable producers of ore shipped to custom plants were the Castleton, Golden Edge, Idaho Bride, Santa Fe, Stephens Placer, and Shafter mines. The Clear Creek-Gilpin sampler at Idaho Springs was operated from April to September; it purchased ore, mostly in small lots, from mines and prospects in the Idaho Springs and nearby districts. Placer gold was recovered by individuals sluicing on Clear Creek.

Montana district (Lawson, Dumont).—From January 1 to June 9, 1939, the Clear Creek Consolidated Mining Co. operated the Brown-Jenks-Equinox group of claims opened by the Clear Creek and Gilpin adit just east of Dumont and treated 6,742 tons of gold-silver-copperlead ore in the company mill by amalgamation, flotation, and tabling; the mine was inactive the remainder of the year, but the mill was used to treat custom ore from the Eagle and Red Elephant mines in the Montana district and the Badger, Capital Prize, Lord Byron, Stanley, and Stephens properties in nearby districts. The Red Elephant group was operated continuously by Red Elephant Metals, Inc., and yielded 2,460 tons of silver-lead ore. Other producers included the Earl of Kent, Franklin D, and Milton claims. The Dumont mill was run as a custom plant most of the year and treated 4,116 wet tons of ore from 20 mines in Clear Creek County and 1 mine in Gilpin

County.

Trail Creek district.—The Lamartine-Falcon group of mines on Trail Creek 51/2 miles southwest of Idaho Springs, which has been under development by Lamartine Mines, Inc., since 1937, was the third-largest producer of gold in Clear Creek County in 1939. Before its mill was completed in July the company shipped 517 tons of ore to the Golden Cycle mill; the company mill began operating on July 31 and from that time until December 31 treated 10,672 tons. Treatment was by flotation supplemented by jigs in the ball mill-classifier circuit to extract free gold for amalgamation. Lessees worked part of the Freeland group intermittently and treated some ore in the Freeland mill. The Phoenix-Trail Mining Co. operated the Phoenix mine part time; the ore produced was concentrated in the Dumont mill. Ore was shipped to local custom plants and to the Golden Cycle mill from the Donaldson (Wheatland)-Little Champion group, Empress, Diamond Mountain, Freeland Extension, Lone Tree, Mendic, Miller Tunnel, and Oneida groups.

COSTILLA COUNTY

Sluicing in Grayback Gulch on the property of the Drum Estate and on the Griffith and one other placer in Costilla County recovered small lots of placer gold in 1939.

CUSTER COUNTY

Hardscrabble district (Westcliffe, Silver Cliff).—Intermittent small-scale operations in 1939 at the Defender, Little Annie, and other mines and prospects in the Hardscrabble district resulted in the shipment of a few lots of lead-silver and copper-lead-silver ore to the Leadville smelter. Shore, Kettle, Henning & Stroehlke operated their 10-ton cyanide plant at Silver Cliff on material trucked 8 miles from a tailings dump on the Nemaha-William property; gold-silver precipitates produced were shipped to the Midvale (Utah) refinery.

DENVER COUNTY

Individuals sluicing on Platte River and Cherry Creek in Denver recovered a little placer gold in 1939.

DOLORES COUNTY

Pioneer district (Rico).—The Rico Argentine Mining Co., which carried on a development campaign at its property in 1937, 1938, and 1939 and constructed a 135-ton selective-flotation mill, began mining and treating ore in September 1939 and maintained production at an average of 100 tons of ore daily to the end of the year. The products of the mill were copper-iron-silver concentrates (carrying some lead and zinc and a little gold) shipped to the Garfield (Utah) smelter; lead-silver concentrates (containing some zinc and copper and a little gold) shipped to the Leadville smelter; and zinc concentrates (carrying also silver, lead, copper, and a little gold) shipped to the Amarillo (Tex.) smelter. Other output from Rico included zinc-lead-silver and copper-gold-silver ores from the Falcon, Gold Anchor, Nora Lilly, and Pigeon claims and Rico Townsite shipped to custom flotation plants and smelters in Utah. The St. Louis Smelting & Refining Co. did development work at its property during part of the year and shipped several cars of zinc-lead-silver ore.

DOUGLAS COUNTY

Individuals sluicing and drift mining on Cherry and Dry Creeks and Newlin, Russellville, and other gulches near Parker and Franktown in 1939 recovered small lots of gold dust, most of which were sold to dealers in Denver; two lots sold to the Denver Mint averaged 0.993 fine in gold.

EAGLE COUNTY

Burns-McCoy district.—Sluicing on Colorado River near Burns

recovered a little placer gold in 1939.

Holy Cross district.—Thos. E. Knight worked his Glengarry claim 30 days in August 1939 and shipped two 1-ton test lots of lead-copper-silver-gold ore to the Leadville smelter.

Mount Egley district.—Lessees on the Norgaard property produced

placer gold in 1939.

Red Cliff district (Battle Mountain).—The Red Cliff or Battle Mountain district contributed the bulk of the Colorado output of silver and copper in 1939 and ranked first among the districts of the State in combined value of gold, silver, copper, and lead. The chief producer, as usual, was the New Jersey Zinc Co. Empire Zinc Division, which continued to ship large quantities of copper-iron-silver-gold sulfide ore from its Eagle mine at Gilman to the Garfield (Utah) smelter. The company 600-ton underground flotation mill in Eagle Canyon, used in 1930–31 to treat zinc-lead ore (large reserves of which are also developed in the mine), was idle from 1932 to 1939, inclusive. The Ben Butler Corporation continued to ship gold-silver-copper ore to the Garfield smelter from the Ben Butler mine and installed an ore washing and sorting plant. Other producers included the Evening Star, Golden Comet-Pacific group, Groundhog, Star of the West, and Tip Top.

ELBERT COUNTY

A floating "pony dredge" using 23 buckets (7 by 7 by 12 inches) was run 4½ months in 1939 on the Crail ranch on Ronk Creek near Elizabeth and handled 3,000 cubic yards of gravel, which yielded 22.23 fine ounces of gold. A small lot of placer gold was recovered by an individual sluicing on Gold Run Creek.

EL PASO COUNTY

GOLDEN CYCLE MILL

The Golden Cycle custom mill at Colorado Springs recovered 44 percent of the total Colorado output of gold from lode mines in 1939. It treated 545,323 tons of ore averaging 0.31216 ounce of gold to the ton, of which 477,464 tons were gold-[silver]-sulfotelluride ores from the Cripple Creek district (Teller County) and 67,859 tons comprised miscellaneous gold, gold-silver, and gold-silver-lead ores from other districts, mainly in Boulder, Clear Creek, and Gilpin Counties. Ores purchased vary in character and grade; therefore, all are not treated by the same methods. Average-grade Cripple Creek ores, comprising most of the mill feed, together with iron concentrates made from low-grade ores treated by flotation, are roasted, amalgamated, 1

¹ Free gold saved on lightweight canton-flannel blankets and amalgamated in iron arrastre,

and cyanided. Miscellaneous ores containing appreciable quantities of base metals are treated by selective flotation. The tailings from all operations are separated into sand and slime fractions and cyanided. In 1939 the mill recovered more than 98 percent of its total gold output in the form of gold-silver bullion; the remainder was contained in lead-copper concentrates shipped to the Leadville smelter. The revised schedule of gold payments and treatment and freight rates, effective December 1, 1938, proved successful in stimulating production of low-grade ore, and the total tonnage treated in 1939 was the highest in any year in the history of the mill. Among the additions to the plant equipment in 1939 is a Cottrell electric dust-precipitation system.

The Mill Tailings Recovery Co. installed an 80-ton cyanide plant at the old Portland mill tailings dump near Colorado Springs and began treating the tailings in April 1939; the plant, most of which is outdoors, was run until the open season ended in December. The output from this dump is included in the figures for the Cripple Creek

district (Teller County), where the material originated.

FREMONT COUNTY

A 2-ton lot of gold ore was shipped from the Little Rose prospect in the Whitehorn district to the Golden Cycle mill in 1939. A little placer gold was recovered by sluicing at the old Dorcas millsite at Florence.

GARFIELD COUNTY

Rifle Creek district.—The lessee at the Gray Eagle mine 8½ miles from New Castle continued to ship gold-silver-copper sulfide ore to smelters in 1939.

GILPIN COUNTY

Southern districts (Blackhawk, Central City, Nevadaville, Russell Gulch).—Frontenac, Inc., operated the Frontenac-Aduddell group in Russell Gulch continuously in 1939 and was the leading lode producer of gold, silver, lead, and copper in Gilpin County. About half the ore produced was sold to the Golden Cycle mill; part was treated in the Gold Ridge mill and part in the Ruth mill (at Idaho Springs, Clear Creek County); and part was shipped crude to the Leadville smelter. The New Brunswick mine and 15-ton stamp amalgamationtable concentration mill were operated throughout the year. Lessees at the Mineral, Powell, Carr, Granite, Mammoth West, and Phoenix claims in the consolidated group owned by the California-Hidden Treasure Mines Co. shipped several hundred tons of ore. Material from dumps on this company's property at Nevadaville was treated by the Continental Mining Co., lessee, which rebuilt the old Monmouth-Kansas mill and installed equipment for amalgamation and flotation; the new plant has a capacity of about 175 tons daily and treated 2,377 tons during the year. The Monmouth-Kansas mine was worked from April 15 to December 31 by lessees who shipped 1,092 tons of ore containing 749 ounces of gold and 2,928 ounces of The Gold Ridge Mining Co. operated its 75-ton flotation mill the first few months of the year on ore from the Clay County group. The Old Town Mining Co. erected a 50-ton flotation mill at the Old Town group and operated it several weeks after July. Ore was shipped to custom plants, chiefly the Golden Cycle mill at Colorado Springs, from other mines, prospects, and dumps in the southern districts; the principal producers were the Champion, Chase, Druid, Federal, Golden Dollar-Stewart, Lotus, National, Pewabic group, and War Dance.

The Manion Placer Co. operated a 1½-cubic yard dragline and portable land dredge on the Eugene placer 223 days in 1939. The Dunfield-James partnership ran a ¾-cubic yard dragline and portable washing plant from May 1 to July 1 on placer ground in Russell Gulch, and the Johnson Mining Co. operated similar equipment on the Pot O'Gold placer from May 1 to September 10. A lessee worked the Missions Mines Co. placer in Russell Gulch with a ¾-cubic yard power shovel, sand pump, and concentrating table. Individuals continued sluicing and panning during the open season on North Clear Creek.

Northern districts.—Lessees operated the We Got Em and Cowboy group during November and December 1939 and treated 1,000 tons of ore in the flotation mill on the property. The Dalham Leasing Co. worked the Dirigo mine from February 15 to April 15 and shipped several cars of ore to the Golden Cycle mill. A lessee at the Lone Star group shipped 297 tons of ore. Several claims in the Perigo group were worked intermittently by lessees who shipped part of the ore produced to the Golden Cycle mill and treated part in the mill at the mine. Other small lode producers included the Golden Flint, Long John, and Victoria properties.

The Cooley Gravel Co. worked the Pactolus placer near Pinecliff with a rated 2,000- to 2,500-cubic yard floating dredge fed by a 1½-cubic yard dragline for its third season, which lasted from April 4 to November 30. The yield from 348,718 cubic yards of gravel handled was 1,950 fine ounces of gold and 178 fine ounces of silver. The company exhausted the gravel in 1939 and removed its equipment. Individuals recovered some gold by sluicing in Gamble and Lump

Gulches.

GRAND COUNTY

The Wolverine Syndicate shipped 25 tons of lead-silver-gold ore to the Leadville smelter from the Wolverine group, about 22 miles north of Granby, which was operated 1 month in 1939. Owners operated the La Plata claim 18 miles west of Empire 60 days and shipped 16 tons of silver-gold-lead ore. Placer gold was recovered by sluicing at the Jerry claim on Broncho Creek.

GUNNISON COUNTY

Box Canyon district.—J. C. Ternahan worked the Independent mine 6 miles south of Pitkin under lease throughout 1939 and produced 347 tons of ore, which he treated in his 10-ton stamp-amalgamation

mill on the nearby Northern Light claim.

Elk Mountain district.—Superior Metal Mines, Inc., operated the Shakespear-North Pole group from June 8 to October 8, 1939, and shipped 112 tons of copper-silver ore to the Garfield (Utah) smelter. A few lots of ore were shipped to smelters from the Kebler Creek property and the Little Willie and White Star claims. A little gold was recovered from placers in Washington Gulch.

Gold Brick district.—The Carter Mines Co. continued operations at its mine and mill on Gold Creek. The mine is opened by an 8,800-foot adit, a 1,200-foot vertical four-compartment raise, and numerous Water from Gold Creek furnishes power to run the mill. During the past few years the ore has been treated by amalgamation and gravity concentration, although the mill is equipped with flotation machines; in 1939 flotation was used in combination with tables following amalgamation, and about 6,000 tons of ore were treated. On April 3 Burleson Mines, Inc., began work at the Raymond group under a lease and continued operations to the end of the year. The old tunnel was extended 1,000 feet, making it 4,200 feet long, and 600 feet of drifts were driven. A 65-ton mill—comprising a crusher, ball mill, jig, classifier, conditioner, six-cell flotation machine, and tablewas installed in an old mill building on the property and operated 28 shifts (8 hours each) late in the year; it treated 569 tons of ore. Small tonnages of ore were amalgamated at the Chicago-Climax, Idoline, and Wayne properties, and 4 tons were shipped from the Gold Pink claim.

Goose Creek district.—A 9-ton lot of lead-silver ore mined while assessment work was being done on a claim southwest of Iola was shipped to the Leadville smelter in 1939.

Green Mountain district.—Development work was done and some ore produced in 1939 at the Lulu-Lucky Strike group, which is

equipped with a small mill.

Taylor Park (Tin Cup) district.—Individuals sluicing on Illinois Creek and other streams in Taylor Park in 1939 recovered some placer gold.

Tomichi district.—Twenty tons of dry silver ore were shipped in

1939 from the Little Dick claim to the Leadville smelter.

HINSDALE COUNTY

Galena district.—The M. B. Burke Mining & Investment Co. operated the Ute and Ulay group and flotation mill on a small scale from May 17 to December 23, 1939. From the Mill placer material containing zinc, lead, gold, silver, and copper was shipped to the custom concentrator at Midvale, Utah.

Lake district.—Golden Mammoth Mines, Inc., shipped 63 tons of gold ore from the Golden Wonder group to the Leadville smelter in

 $\bar{1}939.$

JACKSON COUNTY

Lessees worked the Pure Gold placer on Independence Mountain in 1939 with a small placer machine to which the gravel was hauled by truck. Lack of water prevented operation for more than a few weeks.

JEFFERSON COUNTY

Placer miners worked gravel bars along Clear Creek intermittently in 1939 and recovered many small lots of dust, which were sold to dealers and to the mint in Denver. The Tate Sand & Gravel Co. property near Arvada yielded the largest individual output.

LAKE COUNTY

LEADVILLE DISTRICT

The Arkansas Valley lead bullion-leady copper matte custom smelter of the American Smelting & Refining Co. at Leadville was operated continuously (one furnace) in 1939. Receipts of ore and concentrates totaled 111,526 tons (all but 50 tons from Colorado mines) compared with 107,423 tons (including 88 tons from outside

the State) in 1938.

The largest mining enterprise in the Leadville district was that of the Resurrection Mining Co., which carried on an extensive development campaign at the Resurrection and adjacent properties; much of the ore shipped by the company was removed in development. Lessees continued to ship ore from the Ibex group. The H. G. N. mill was remodeled and operated for a period on ore from the Garbutt, Fanny Rawlings, and Maid of Erin dumps. Treatment was by crushing, grinding, jigging, tabling, and amalgamating the high-grade concentrates; the other concentrates were sold to smelters. The London Deep Mines Co. operated the First National mine and 100-ton mill part of the year. The California Gulch Milling Co. erected a 75-ton flotation- and gravity-concentration mill in California Gulch near Leadville and operated it from November 10 through December on ore trucked from the Venir dump. Zinc-lead ore from the North Moyer and South Moyer dumps was shipped to the Ozark pigment plant at Coffeyville, Kans. Some ore from the Triumph and Highland Chief mines was sent to the Golden Cycle mill, but most of the district output was sold to the Leadville smelter. Other producing mines and dumps included the Adelaide, Black Prince, Breece, Chippewa, Commerce, Dolly B, Highland Mary, Humboldt and Flagstaff dumps, Lilian, Little Sliver dump, New Monarch, Ollie Reed, President dump, St. Louis Tunnel, Tenderfoot, Triumph, and Valley. Placer gold was recovered in California and Buckeye Gulches.

OTHER DISTRICTS

Alicante district.—The Alicante and John Reed mines were worked as one unit by lessees about 6 months in 1939 and yielded zinc-leadgold-silver-copper ore, of which part was sold to the Leadville smelter and part to the custom concentrator at Midvale, Utah.

Granite district (see also Chaffee County).—Burns Mines, Inc., shipped about a car of gold ore from its property in 1939. Raeanna Mining Co. worked the Oregon placer in Long Gulch west of Granite 40 days with draglines and washing plants.

continued small-scale sluicing on the Arkansas River.

Lackawanna Gulch district.—The lease of the Eureka Saturday Night Mining Co. on the Eureka-Saturday Night group was canceled in May 1939, and the only output from the property during the year was a few tons of gold concentrates shipped to the Leadville smelter. A lessee at the Mt. Champion mine shipped some gold ore.

St. Kevin-Sugar Loaf district.—Several lots of ore were shipped to the Leadville smelter in 1939 from the Amity, Dinero, and Griffen

mines.

Tenmile (Climax, Fremont Pass) district.—The Climax Molybdenum Co. at Climax, 13 miles north of Leadville, operated its 12,000-ton flotation mill continuously in 1939 (averaging 9,400 tons of ore daily for the year) and produced molybdenum sulfide concentrates containing 21,796,116 pounds of elemental molybdenum.

Tennessee Pass district.—Testing with sluice boxes at the Wye

placer yielded a little gold in 1939.

Twin Lakes district.—The Brown Brothers Mining Co. shipped 58 tons of lead-gold-silver-copper ore from the Gordon-Tiger group in 1939, and a lessee at the Columbine recovered a little gold by amalgamation and shipped 1 ton of lead-gold-silver ore. The dryland dredge of the Mt. Elbert Mining Corporation on the Derry Ranch placers 12 miles south of Leadville was operated from April 15 to December 26.

LA PLATA COUNTY

The American Smelting & Refining Co. lead bullion-leady copper matte smelter at Durango, which was closed November 30, 1930,

remained idle in 1939.

California (or La Plata) district (Hesperus, La Plata).—The May Day mine and flotation mill were operated on a small scale in 1939. Two lessees worked part of the Gold King group from April to October and shipped ore to the Leadville smelter. Miscellaneous lots of ore were shipped to smelters from the Bessie G, Bonner, Durango Girl, Non Pariel, and Sara S properties, and test lots were shipped to the Golden Cycle mill at Colorado Springs from the White Diamond group.

MINERAL COUNTY

Creede district.—Silver production in the Creede district increased 30 percent in 1939 over 1938, following an increase of 42 percent in 1938 over 1937. The principal market for the ore continued to be the custom flotation mill of Creede Mills, Inc., at Creede. the year the mill treated 34,748 tons of ore averaging 0.031 ounce of gold and 17.2 ounces of silver to the ton and 2.71 percent lead. The ratio of concentration was 26 tons into 1, and the concentrates averaged 0.478 ounce of gold and 309 ounces of silver to the ton and 18.7 percent lead; they were shipped to the Leadville smelter. Besides running its custom mill the company operated several leased mines in 1939; it took over the Amethyst and Creede Mines group early in February and part of the Pittsburg group later in the year. The Emperius Mining Co., operating the Del Monte-New York-Last Chance-Pittsburg group under a sublease from Morgan & Sloan, was the largest individual shipper of custom ore to the mill. company also shipped rich silver ore direct to the Leadville smelter. Other producing mines included the Commodore-Bachelor, Corsair, Manitoba, and Monon.

MOFFAT COUNTY

Fourmile (or Timberlake) district.—The Gooldy group of placers 29 miles north of Craig was worked by Eldorado Gold Placer Mines during the early summer of 1939 and by Paul J. Kruesel and A. T. Willett later in the year. The equipment used included a gasoline-powered dragline excavator and dry-land dredge. Sluicing was done at other placers in the Fourmile district.

MONTEZUMA COUNTY

In 1939 the Red Arrow Gold Corporation built a 20-ton amalgamation-flotation mill at its Red Arrow mine in the East Mancos River area and treated 724 tons of ore averaging 0.869 ounce of gold and 13.88 ounces of silver to the ton; in addition, the company shipped some high-grade ore to the Leadville smelter. Development work done in the mine during the year totaled 1,000 feet of drifts and tunnel. The Outwest Mining Co. worked its mine adjoining the Red Arrow on a small scale from May to December and shipped high-grade gold ore to smelters. The Barr-Menefee Mining Co., lessee on the Stafford group, shipped 8 tons of gold-silver-copper-lead ore.

MONTROSE COUNTY

La Sal district.—Lessees at the Cashin and Independence No. 7 claims shipped copper-silver ore to the Garfield (Utah) smelter in 1939. The Hardscrabble and Red Canon placers on Dolores River were worked with bulldozers and sluices part of the year and produced most of the output of placer gold from the La Sal district.

Naturita district.—Individuals sluicing on San Miguel River in

1939 recovered small lots of placer gold.

Paradox Valley district.—The United States Vanadium Corporation operated its vanadium mines and roasting and leaching plant at Uravan throughout 1939 at the rate of approximately 240 tons of ore daily. The company extracts its own salt in the vicinity and owns and operates its own coal mines.

OURAY COUNTY

Red Mountain district.—San Juan Metals, Inc., operated its flotation mill at the Treasury Tunnel group about 15 days early in 1939 and then closed the mine and mill; they were taken over later in the year by the Idarado Mining Co., which worked about 2 months getting the property in shape for further development. Ore from the Yankee Girl group was treated in the Banner American (G. A. Franz) mill near Ouray. Several lots of zinc-lead ore from the Dauntless and copper ore from the Kentucky Giant and Paymaster claims were shipped to custom plants at Midvale, Utah.

Ridgway district.—Sluicing at small placers on Uncompangre River

near Ridgway recovered a little gold in 1939.

Sneffels district.—King Lease, Inc., operated the Camp Bird mine and the King Lease 75- to 100-ton amalgamation-flotation mill continuously in 1939. The expansion of the company mining operations (until 1938 confined to the upper levels of the mine) to include the lower levels resulted in important changes in the conduct of operations at the end of 1939. The third level, the main haulage adit to the King Lease mill in Imogene Basin, was connected by shafts and raises with the lower adit 1,450 feet below the third level, and equipment was installed to lower the ore from the upper levels to the lower adit, through which it will be transported about 11,000 feet to the old Camp Bird, Ltd., camp for treatment. A new 100- to 125-ton amalgamation-flotation mill was built within the old Camp Bird stamp-mill building and made ready for operation in 1940. With the new transportation system, employees can live in the Camp Bird,

Ltd., camp at a lower altitude than the other camp in Imogene Basin. Lessees worked the Atlas mine from May to December and shipped some ore to the Midvale (Utah) smelter. The New Trust Ruby Mining & Milling Co. treated 900 tons of ore from the Trust Ruby

mine in a 15-ton amalgamation mill.

Uncompange district.—Lessees at the Syracuse Tunnel group continued to ship ore, containing chiefly silver and lead, to smelters and had 1,511 tons concentrated in the Banner American 100-ton flotation mill. The mill was operated intermittently in 1939, part of the time by G. A. Franz Mines and part by G. A. Franz, Inc.; it also treated company ore from the Pony Express group and some ore from the Yankee Girl (Red Mountain district). The McCullough lease continued to ship gold-silver-copper ore to the Leadville smelter from the American Nettie and Wanakah groups, worked as a unit, and treated 1,000 tons of old tailings from the Wanakah mill dump in the 30-ton flotation mill on the property. Ore was shipped to smelters in Utah from the Senorita group, to the Shenandoah-Dives mill at Silverton (San Juan County) from the Columbo claim, and to the Leadville smelter from a clean-up of the old Munn sampler.

PARK COUNTY

Alma Placers district.—Most of the output from the Rhodes property in 1939 came from blocks of ground worked by the Alplaco Mining Co., R. L. & W. Co., and Snelling lease. All three operators used central sluicing plants, to which gravel dug from open pits by power shovels was hauled by trucks. The London Extension Mining Co. placer adjoining the Rhodes property on the east was worked by the Placer Operating Co. with a dry-land dredge fed by a 1¾-yard dragline.

Beaver Creek district.—The Timberline Dredging Co. operated its electric floating connected-bucket dredge on Beaver Creek near Fairplay from April 4 to December 31, 1939, and handled 776,000 cubic yards of gravel yielding 4,252 fine ounces of gold and 900 fine ounces of silver; the dredge is equipped with 84 buckets, each with a capacity of 7½ cubic feet. Small-scale sluicing was done by individuals on

upper Beaver Creek.

Buckskin district.—A few lots of ore were shipped to the Leadville smelter from the Golden Era, Home Sweet Home, and Wyandotte-Apex groups in 1939. Seven tons of ore extracted while a tunnel was being driven at the Funston-Lucky Strike group were amalgamated at the mine. Sluicing in Buckskin Gulch recovered a little placer

gold.

Consolidated Montgomery district.—The Magnolia Gold Mining Co. operated the Magnolia mine and 50-ton flotation mill at the rate of about 400 tons of ore monthly from January to June 1939. Production was interrupted early in July when the mill was struck by lightning and burned, but rebuilding was nearly completed before the year ended; meanwhile, some ore was shipped crude to the Leadville smelter. Small lots of smelting ore were shipped from the Columbia, Nova Zembla, and Wheeler claims. A placer miner recovered some gold in Montgomery Gulch.

Fairplay district.—Miles O. Deatherage worked placer ground on the west bank of Platte River with a 1-cubic yard gasoline shovel, two trucks, and a central sluicing plant from June to October 1939; water was obtained from a ditch reaching to Sacramento Gulch 3 or 4 miles away. Gow, Burton, and Walley operated a power shovel and central sluicing plant on Platte River about 4 months. A small caterpillar shovel and sluice were used intermittently at the Snowstorm placer. Other operators produced some gold from placers, mostly by sluicing.

Hall Valley district.—A lessee at the Ypsilanti claim shipped test

lots of ore to the Ruth mill in Clear Creek County and the Leadville

smelter in 1939.

Mosquito district.—The London Mines & Milling Co. operated its consolidated group of mines on London Mountain continuously in The mine workings are reached through the 4,400-foot London Extension tunnel, and the ore is sorted before being treated in the company 200-ton flotation- and gravity-concentration mill. Besides gold, the concentrates contained some silver, a little copper, and considerable lead and zinc; they were sold to the Leadville smelter. The London-Butte Gold Mines Co. worked the Butte mine throughout 1939 and treated 17,881 tons of ore in the company 100-ton flotation From heads averaging 0.2547 ounce of gold and 0.137 ounce of silver to the ton, 0.04 percent lead, and 0.02 percent zinc the mill made 1.438 tons of concentrates containing 4,322 ounces of gold, 2,463 ounces of silver, 140,607 pounds of lead, and 71,889 pounds of zinc. The Chicago Mines Co., operating the Record mill for the third season, treated 28,036 tons of ore from the South London mine dump and 1,769 tons of custom ore from the American mine. The American was operated by W. A. Ellis, Inc., owner, which continued to ship highgrade gold ore to the Leadville smelter. Some ore was shipped also from the Evening Star, Good Samaritan, Little Fool, and other mines and prospects in the Mosquito district. Ore from the Ophir mine was treated in a small mill erected by lessees.

Tarryall district.—The Peerless Mining Co. operated its gasoline-powered 1\(\frac{1}{2}\)-cubic yard shovel and portable four-bowl washing machine in 1939 for the sixth consecutive season in Park Gulch. The equipment was run on the Hogg placer from April 19 to November 12 and handled 104,120 cubic yards of gravel, from which were recovered 499 fine ounces of gold and 35 fine ounces of silver. The Sterling Mining Co. also worked on the Hogg placer from July 15 to October 30, using a dragline and sluicing plant. Individuals sluicing on Tarryall Creek recovered small lots of placer gold. was shipped from the Black Butterfly lode claim and an unidentified

prospect.

PITKIN COUNTY

Lincoln Gulch district.—A 5-ton lot of gold-silver-lead ore was shipped to the Leadville smelter from the Three Brothers claim in 1939. Roaring Fork district (Aspen).—About half of the silver output of Pitkin County in 1939 came from lime fluxing material, carrying 4 to 10 ounces of silver to the ton (averaging 6.61 ounces) and some lead. shipped to the Leadville smelter from the Smuggler, Spar Consolidated, and other groups under the management of D. P. Rohlfing; in general, payment for lime in this material exceeds that for silver. Midnight Mining Co. operated the Midnight group continuously 6 days a week. The ore mined (7,500 tons) was treated in the company 50-ton flotation mill. Besides lead-silver concentrates, which are the main product of the mill and are sold to the Leadville smelter, some byproduct zinc concentrates were produced and shipped to the Amarillo (Tex.) zinc smelter. Lessees treated 350 tons of ore from the Mollie Gibson dump with jigs and tables, and a car of lead-silver ore was shipped from another property in the Roaring Fork district.

RIO GRANDE COUNTY

Summitville district.—Summitville Consolidated Mines, Inc., operated its consolidated group of mines and 125- to 150-ton mill at Summitville continuously in 1939. During the past 3 years the company has mined substantial quantities of ore during the summer months by the glory-hole system from veins uncovered in development work carried into new ground. It operates three groups of underground workings which, together with the glory holes, furnish enough ore to keep the mill running throughout the year. The ore is ground in a ball mill with cyanide solution to minus 100-mesh. A jig between the ball mill and classifier removes coarse high-grade gold-silverpyrite concentrates, which are shipped to the Leadville smelter. classifier overflow goes to primary thickeners to remove pregnant solution; the primary thickener underflow goes to agitators and from them to three stages of countercurrent decantation. The pregnant solution is precipitated in Merrill-Crowe units, and the precipitates are acid-treated and reduced to bullion for shipment to the Denver Mint.

ROUTT COUNTY

Individuals recovered some gold and silver in 1939 from placers in the Hahns Peak area.

SAGUACHE COUNTY

Blake district.—The Tripple-T Mining Co. drove 250 feet of tunnel at the Copper Head group of claims in 1939 and shipped a test lot of ore to the Midvale (Utah) smelter. Other work included the building of roads and installation of mill machinery and power units.

Crestone district.—Sublessees on the Independent, Alamosa, and Fanton claims, in a group on the mineral section of Baca Grant No. 4 under lease to the Luis Maria Baca Mining & Development Co.,

shipped several lots of ore to the Golden Cycle mill in 1939.

Kerber Creek district (Bonanza).—Rawley Mines, a limited partnership, continued to work the Rawley mine from January 1 to April 19, 1939, when it surrendered the lease; most of the ore was shipped to the copper smelter at Garfield, Utah, and the remainder to the Leadville smelter. Other lessees at the Rawley group shipped some ore during the year. Other producers of occasional lots of ore shipped to the Leadville smelter included the Essie group, Joe Wheeler, Jupiter, and Warwick. A little ore was treated by table concentration at the Paragon-Michigan group.

SAN JUAN COUNTY

Animas district.—The Shenandoah-Dives Mining Co. continued operations at its Mayflower Tunnel group on King Solomon Mountain and 750-ton selective-flotation mill on Animas River near Silverton from January 1 to June 15, 1939, when a strike of company employees

caused a shut-down of both mine and mill until September 5. agreement between the company and the men resulted in the reopening of the property on September 7 and continuous operation of it the remainder of the year. As the Shenandoah-Dives mill treats custom ore as well as company ore, the shut-down caused a decrease in the output from other mines in the vicinity. Company ore treated in 1939 totaled 195,006 tons and yielded 5,722 tons of combined lead. lead-copper, copper, and zinc concentrates, containing in all 14,867 ounces of gold, 240,003 ounces of silver, 1,968,193 pounds of lead (wet assay), 1,132,012 pounds of copper (wet assay), and 1,838,311 pounds of zinc; the lead and lead-copper concentrates were shipped to the Leadville smelter, the copper concentrates to the El Paso (Tex.) smelter, and the zinc concentrates to the Amarillo (Tex.) smelter. The custom ore treated amounted to 3,241 tons; most of it came from the Bandora, Champion, Highland Mary, Little Fannie-Philadelphia, Mystery, and North Star-Sultan groups—all in the Animas district except the Bandora, which is in the Ice Lake Basin district. small producers included the Coming Wonder, Copper Bell group, Molas-Senior Warden group, Silver Ledge, and Sylvanite. The American Smelting & Refining Co. continued development of the Silver Lake group.

Eureka district.—The Sunnyside mine and 1,000-ton selective-flotation mill at Eureka, closed June 30, 1938, remained idle throughout 1939. Shipments of ore from the Brooklyn group 8 miles northwest of Silverton to the Leadville smelter totaled 253 tons containing 724 ounces of gold, 5,539 ounces of silver, and some lead, copper, and iron. The other producers of small tonnages of ore were the Lead Carbonate mine, Lucky Jacks group, and St. Paul. Development work was

continued at the Sandiago-Golden Fleece-Scotia group.

Ice Lake Basin district.—In 1939 the Blanco Mining Co. continued to ship ore from the Bandora group to the Shenandoah-Dives mill and the Leadville smelter. Two tons of silver ore were shipped from an unidentified property, presumably a prospect.

SAN MIGUEL COUNTY

Iron Springs district (Ophir).—Butterfly Consolidated Mines, Inc., continued developing the Butterfly-Terrible-Silver Bell group of mines and increased the daily capacity of the mill (formerly 100 tons) to 250 tons. In 1939 the mill treated 23,000 tons of ore, which yielded 2,470 tons of combined table and flotation concentrates containing 1,101 ounces of gold, 172,865 ounces of silver, 554,531 pounds of lead (wet assay), 101,056 pounds of copper (wet assay), 77,225 pounds of zinc, and 1,348,640 pounds of iron. The concentrates were shipped to the Midvale (Utah) smelter. J. M. Belisle shipped several cars of zinc-lead-gold-silver-copper ore from the New Dominion mine to the custom concentrator at Midvale, Utah. Small lots of ore were shipped to smelters from the Carbonero mine and Sulphurette dump. A little placer gold was produced at the Waterfall placer.

Klondyke district.—In 1939 the owner of the Hidden Treasure group shipped 5 tons of material containing copper and silver to the smelter

at Tooele, Utah.

Lower San Miguel district (Sawpit, Vanadium).—Placer miners recovered some gold in 1939 by sluicing at the Little Donnie, Southern Boy, and other placers along San Miguel River and its tributaries.

Mount Wilson district.—The Chindey-Special Sessions group, Shenandoah claim, and Silver Pick group were worked on a small scale during the summer of 1939 and yielded small lots of high-grade gold

ore which were shipped to the Midvale (Utah) smelter.

Upper San Miguel district (Telluride).—The Smuggler Union group, operated since December 15, 1936, by Veta Mines, Inc., was the largest producer of gold in the San Juan region in 1939 and ranked fifth in the State. While increasing production steadily, the company has carried on an extensive program of development below the Pennsylvania or fifteenth level, the former lowest workings, which has resulted in opening additional productive ground. In 1939 mining on the new sixteenth level was continued, and development of the seventeenth level was begun. The combined output of ore from the upper and lower levels was treated in the company amalgamationflotation mill, recently enlarged and equipped to handle 500 tons daily; the average for 365 days in 1939 was 375 tons compared with The mill feed in 1939 included 44 tons of custom 188 tons in 1938. ore from the Tomboy mine and 30 tons from four other properties. A new project undertaken by the company in 1939 is the driving of a crosscut from the Pennsylvania Tunnel to heretofore unexplored ground under the old workings of the Montana claim in the Tomboy The company nearly completed the driving of a 1,500-foot tunnel under Blue Lake at an elevation of 12,500 feet to tap the lake 120 feet below the surface in order to develop a year-round supply of water with which to run the power plant. Alta Mines, Inc., continued production from the Alta-St. Louis group throughout 1939. The mine is developed by a tunnel 6,650 feet long on the Alta vein. ore is treated in the company 150-ton mill by jig, flotation, and table concentration; the jig concentrates are amalgamated, and the flotation and table concentrates are shipped to the Leadville smelter. on the Gold Run placer concentrated old tailings with screens, jigs, and mat-lined launders. Old tailings and dirt were cleaned up around the Cimarron mill and treated in a small stamp mill. A little gold was recovered by hand methods at the Wasatch claim. Individuals sluicing along San Miguel River recovered small quantities of placer gold.

SUMMIT COUNTY

Breckenridge district.—Small-scale operations only were carried on at lode mines in the Breckenridge district in 1939, and most of the ore produced was shipped direct to the Leadville smelter. Producing mines included the Bullion King, Cross Mountain, Dunkin, Fredonia, Jumbo, Laurium (Blue Flag), Mountain Mary, and Royal Tiger group (Greenwood, Jessie, and Sallie Barber claims). Part of the output from the Royal Tiger group was zinc-lead ore, shipped to the custom concentrator at Midvale, Utah.

The Blue River Co. operated its floating connected-bucket dredge

The Blue River Co. operated its floating connected-bucket dredge at Breckenridge from May 9 to August 6, 1939; the dredge is equipped with eighty-eight 9-cubic foot buckets, screens, jigs, sluices, ball mill, and mechanical amalgamator. Power shovels, trucks, and central sluicing plants were used to work the Bemrose-Bostwick and Louis D placers. Other placers along French Gulch and on Blue and Swan

Rivers were worked by sluicing and hydraulicking.

Montezuma district.—Lessees at the Florado-Sts. John group treated ore, mostly from the dump, by jigging during part of 1939; the concentrates produced and some crude ore were shipped to the Leadville smelter. The Bullion mine was operated by a lessee during June and July; part of the ore produced was shipped direct to the Leadville smelter, and part was concentrated in a small gravity-concentration mill near the mine before shipment. A few lots of smelting ore were shipped from the Pennsylvania group, Silver King, Tip Top, and other properties.

Ten Mile (Kokomo, Robinson) district.—A lessee of the Wilfley mine and mill treated 1,200 tons of material from the dump by table concentration in 1939. Small lots of smelting ore were shipped from the Boston and three unidentified properties. A little gold was recovered

from a placer near Dillon.

Wilkinson district.—Walter McDaniel operated his Big Four claim on Green Mountain 250 days in 1939 and continued to ship silver-lead-zinc-gold-copper ore, part of which was sold to the Leadville smelter and part to the Combined Metals Reduction Co. at Bauer, Utah.

TELLER COUNTY

CRIPPLE CREEK DISTRICT

Cripple Creek is the leading gold-producing district in Colorado. From 1891, when gold was discovered in that area, through 1939 it has yielded a total of 18,053,874 fine ounces valued at \$385,460,527, or 48 percent of the State total output of gold from 1858 to 1939, inclusive. In 1939 the district produced 134,003 ounces (37 percent of the State total) compared with 145,215 ounces (40 percent) in 1938. decrease in 1939 resulted from a decline in the average grade of the ore, as the number of producing mines and dumps was about the same as in 1938 and the total tonnage of ore handled was larger. The quantity of ore shipped to the Golden Cycle mill at Colorado Springs (operations reviewed under El Paso County) decreased slightly, but the increased tonnage treated locally by flotation in the Cameron mill in its first full year of operation, together with the usual tonnage treated in the Kavanaugh cyanide leaching plant, raised the total output of ore from mines and dumps in the district proper to 522,538 tons, an increase of 24,181 tons over 1938. Other output credited to the Cripple Creek district in 1939 is 15,600 tons of tailings from the old Portland mill dump at Colorado Springs, treated in the Mill Tailings Recovery Co. cyanide plant. This dump is composed entirely of tailings from ore shipped from the Cripple Creek district many years ago. Cripple Creek ores generally contain gold as the only commercial metal, but some silver ore has been shipped from two or three veins in the district; a small quantity of silver is recovered annually in bullion produced from the gold ores.

MINES REVIEW

The Golden Cycle Corporation operated its Ajax and Anchoria Leland groups of mines throughout 1939 and in December purchased the Index group. Less ore of better-than-average grade was produced from the Ajax group in 1939 than in 1938 owing to temporary suspension of operations below the 2,000-foot or Roosevelt drainage tunnel level pending completion of the new 6-mile Carlton drainage tunnel

(for the driving of which the corporation on March 27 authorized the expenditure of not to exceed \$1,000,000). Some of the benefits expected from the tunnel, the remarkable progress made after actual driving was begun in July, and the production of the Ajax and Anchoria Leland properties are shown in the following extract from the corporation annual report to stockholders for the year ended December 31, 1939:

The new Carlton Tunnel is the most important mining operation now being carried on by the Golden Cycle Corporation. This tunnel will be 32,000 feet in length and will give 1,100 feet of additional drainage to the Cripple Creek district. The Roosevelt Tunnel, which was completed in about 1918, permitted the mining of millions of tons of ore that could not have been profitably mined had it been necessary to pump the water which this tunnel drained. It is hoped that the new Carlton Tunnel will prove to be as successful and be the means of maintain-

ing the tonnage of ore the mill must have to operate successfully.

The Portland, Vindicator, Ajax, and Cresson have all worked below the present water level of the district, and all have had the same experience with the water problem. That is, the heavy expense of pumping has rendered mining below the Roosevelt Tunnel unprofitable and unsatisfactory in every way. When this tunnel is completed and drainage takes place it will be permanent. This will result in far more development work in depth than could ever be accomplished result in far more development work in depth than could ever be accomplished under pumping operations. The driving of the Carlton Tunnel by the Golden Cycle Corporation was a step that had to be taken if tonnage was to be maintained in the future. The Carlton Tunnel will permit the development of the deeper areas, in the most productive territories in the Cripple Creek district, and it is in this area that I believe we must look for the greater part of the future tonnage for the mill. We do know that there is a considerable amount of ore now under water that can be mined when drainage takes place.

The monthly progress and average footage per day is as follows:

Month	Monthly	Average daily	Total dis- tance
July	Feet 345 1, 201 1, 367 1, 534	Feet 21. 5 38. 7 48. 8 49. 5	Feet 345 1, 546 2, 913 4, 447
November December	1, 474 1, 387	49. 1 47. 8	4, 447 5, 921 7, 308

The average, over-all costs per foot of tunnel driven is \$29.925. In this is included \$4.035 depreciation on buildings, equipment, road work, and all other

preliminary expense.

The Ajax shipped 32,512 tons of an average value of \$16.41 per ton. This operation showed a net profit of \$18,439.43 before income taxes. 9,485 feet of development was done, by both company and lessees, during the year. The pumps were pulled from the 2,600 level on July 1, and all levels below the 2,000 were allowed to flood. The lower levels can be worked, without the heavy ex-

The lower levels can be worked, without the heavy expense of pumping, when drained by the Carlton Tunnel.

The new washing plant finished in March 1939 is working very satisfactorily. At the present time the ore-house dump is being handled through this plant, with good results. Some development work is being carried on by the company on the 2,000 level, in hopes of finding ore in undeveloped territory; and every effort is made to encourage leasing on the upper levels in order to maintain some pro-

duction until the tunnel is completed and the deeper workings are drained.

At the present time, considerable repair work is being done to the buildings and shaft, and we are also removing some large wooden structures that constitute a big fire hazard.

The Anchoria Leland mine shipped 7,568 tons of an average value of \$13.64 This operation showed a net profit of \$16,948.49 for 1939 before income Development work by both company and lessees amounted to 2,260 feet. Two new ore bins were erected in order to take care of more lessees' ore, and increase production, if possible.

The main shaft on the Index property, which was very recently acquired by the Golden Cycle Corporation, is being repaired and it is hoped that underground operations will be started in a short time. This property has not been worked extensively for a great many years, and I feel that it has good possibilities.

The largest producers of gold in the Cripple Creek district and in the State in 1939 were the United Gold Mines Co., an operating and holding company for property scattered throughout the district, and the Cresson Consolidated Gold Mining & Milling Co., operating the Cresson. Dante, and Gold Sovereign mines.

The annual report of the United Gold Mines Co. for the year ended December 31, 1939 (dated February 15, 1940), includes a report of the mine superintendent, which gives the following details on opera-

tions at individual mines:

The Vindicator, Portland, and Rose Nicol Groups are the three largest operations of the United Gold Mines and account for approximately 70 percent of the total ore shipped. The greater part of this ore was produced by lessees. The company operated seven working shafts, mainly for the accommodation of splitcheck lessees. Some development work was done on company account, mainly on the Portland and Rose Nicol mines.

On the 1,700-foot level of the Portland No. 2 shaft an ore body, some 75 feet long, has been discovered in undeveloped territory. Preparations are now being

made to mine this ore, and at this date it looks very promising.

Portland No. 1 ore house was completely destroyed by fire, of undetermined origin, in January 1940. We were very fortunate in not losing the head frame and other structures. This ore house is being replaced by a steel structure, and it is planned eventually to handle the ore from both Portland No. 1 and No. 2 shafts through the new steel ore house. No. 2 shaft is of the utmost importance to the United Gold Mines at this time, on account of the driving of the New Carlton Drainage Tunnel, which will provide 1,100 feet of additional drainage deeper than is now afforded by the Roosevelt Tunnel. This increased depth of drainage is of importance to the Portland and Vindicator, in that the ultimate depth of profitable mining will be increased. Portland No. 2 shaft is the deepest shaft in the Cripple Creek district.

The Cariton Tunnel will be 32,000 feet in length. The portal is situated 8½ miles south of Cripple Creek and Victor; from that point it is being driven directly toward a point under Portland No. 2 shaft. This should completely drain the Portland to the new tunnel level and permit mining operations to be carried on 1,100 feet deeper than we are now working. While there is no known ore existing below the present water level on the Portland, some of the best territory in the district, for development work at depth, is located on this property and new ore

bodies should be opened.

The Golden Cycle Corporation is financing the tunnel until it reaches the Portland. In order to drain the Vindicator it will be necessary for the United Gold Mines Co. to drive a 5,000-foot lateral from the Portland to the Vindicator.

Production of company ore by United Gold Mines Co. in 1939

Mine	Net tons	Gross value	Company ore cash receipts	Average gross value per ton
Vindicator Rose Nicol	8, 270 2, 010	\$34, 906. 39 43, 993. 51	\$10, 890. 58 30, 670. 90	\$4. 22 21. 89
	10, 280	78, 899. 90	41, 561. 48	7. 68

Production of lessee ore of United Gold Mines Co. in 1939

Group	Net tons	Gross value	Royalties received	Lessees' receipts	A verage gross value per ton
Vindicator. Rose Nicol. Theresa. W. P. H. lessees. Deadwood group Londonderry group Hardwood group Empire group Portland lessees. Last Dollar lessees. Hull City.	32, 293 2, 954 5, 196	\$306, 770. 47 93, 804. 38 105, 687. 56 6, 045. 60 287, 757. 60 20, 672. 80 28, 242. 622 14, 269. 63 280, 015. 31 84, 100. 38 31, 813. 75	\$69, 901. 31 23, 805. 28 34, 801. 21 730. 46 28, 819. 15 1, 323. 61 5, 116. 84 299. 23 74, 909. 20 21, 973. 10 8, 751. 83 270, 431. 22	\$98, 602, 46 31, 545, 07 32, 269, 28 2, 672, 04 125, 361, 50 7, 224, 36 27, 267, 86 6, 024, 33 96, 583, 44 20, 329, 88 8, 070, 00 455, 950, 22	\$8. 48 10. 90 12. 47 11. 10 8. 91 7. 00 11. 23 9. 20 12. 96 7. 81 8. 05

Production of properties of United Gold Mines Co. before and after organization of the company (May 15, 1902) to Dec. 31, 1939

	Net tons	Gross value
Ore mined before consolidation Production under operation of United Gold Mines Co.	26, 310 1, 885, 280	\$456, 806. 19 20, 481, 282. 18
Total to Dec. 31, 1939	1, 911, 590	20, 938, 088. 37

The annual report of the Cresson Consolidated Gold Mining & Milling Co. for the 12 months ended December 31, 1939 (dated February 15, 1940), says—

The following is a summary of the development work for the 12 months ending December 31, 1939:

Development	
Drifts and crosscuts:	Feet
Company	
Lessees1, 692	
	5,002
Raises and winzes:	•
Company	
Lessees1, 784	
	2, 676
	7. 678

Tonnage of ore and waste, hoisted through the Cresson shaft, kept the plant running to full capacity during the year. When it is considered that the Cresson shaft has only one hoisting compartment and it is necessary to handle all men and supplies through this shaft, the amount of both ore and waste that is handled by one skip is phenomenal.

Development work was maintained throughout the year, and some ore bodies of various sizes discovered. However, the main ore-bearing zone above the present drainage tunnel level is beginning to be pretty well prospected, and if production is to be maintained in the future it will probably have to come from

the area that is now under water.

The driving of the new Carlton drainage tunnel, by the Golden Cycle Corporation, is of the utmost importance to the Cresson mine. The main tunnel will be 32,000 feet in length, to a point under the Portland No. 2 shaft of the United Gold Mines Co. From this point, after connection is made with this shaft, it will probably be necessary for the Cresson Co. to drive a lateral of some 4,000 feet, in order to afford complete drainage of the Cresson area to the new tunnel level. However, it is expected, when the main tunnel cuts the water courses it will encounter in the last 5,000 feet, some drainage will begin to take place on the Cresson mine.

The Carlton Tunnel will afford 1,100 feet of additional drainage to the district and will be 700 feet below the twentieth level of the Cresson mine. The 18th, 19th, and 20th levels, which are below the present drainage tunnel, were abandoned

some 11 years ago, due to the heavy pumping expense.

Plans are being made to do some development on the Hart group of claims, which this company recently acquired. These claims are entirely undeveloped and lie in a very favorable territory on the North Slope of Bull Hill.

The average cost per ton shipped by company and the lessees during 1939 was \$2.755 on a total of 128,404 tons.

Federal taxes	
State income taxes	
State and county taxes	.093
Capital stock taxes	.007
Social-security taxes	.030
Unemployment taxes	.045
Compensation insurance	
Insurance	.005
Salaries of officers and directors	.033
Mining operations	2.286
Mining operations Pumping	.025
General expense	.036

Production of Cresson Consolidated Gold Mining & Milling Co., 1903 to Dec. 31, 1939

Period	Dry short tons	Gross value	Freight and treatment	Net value
1903 to Dec. 31, 1938	2, 720, 230	\$41, 402, 871. 00	\$13, 319, 409. 83	\$28, 083, 461. 17
1939: Company ore Lessee ore	60, 048 68, 356	451, 225. 53 808, 200. 95	215, 651. 37 306, 918. 77	235, 574. 16 501, 282. 18
1903 to Dec. 31, 1939	2, 848, 634	42, 662, 297. 48	13, 841, 979. 97	28, 820, 317. 51

Period	Royalties re- ceived by company	Amount paid lessees	Average gross value per ton	Average net value per ton	Dividends
1903 to Dec. 31, 1938			\$15. 22	\$10.32	\$13, 186, 472. 50
1939: Company ore Lessee ore	\$234, 572. 03	\$266, 710. 15	7. 51 11. 82	3. 92 7. 33	97, 600. 00
1903 to Dec. 31, 1939			14. 98	10. 12	1 13, 284, 072. 50

¹Represents 31.14 percent of gross value and 46.09 percent of net value.

During the year the Golden Cycle Corporation and other Carlton companies operating in the Cripple Creek district and the Stratton-Cripple Creek Mining & Development Co., another large owner of mining properties in the district, acting to remove one of the common causes of litigation and to stimulate mining, entered into agreements under the terms of which the boundaries of claims, instead of the apex of the veins, determine the ownership of the ore; and royalties on low-grade ore mined by lessees on the properties involved are

The principal producers in 1939 among the Stratton properties were Block 107, American Eagles, Orpha May, Logan, Longfellow, Favorite, and Geneva; the other producers comprised Blocks 47, 140, and 219, Colorado King, Globe Hill, Los Angeles, Pikes Peak, and Matoa dump. Development work done at all mines on the Stratton Estate in 1939 totaled 9.989 feet.

The Free Coinage group, operated by lessees, continued to be an important producer in 1939. The Lark Mining Co. maintained a

steady output of ore from the Queen group until it surrendered the lease on September 30 and from the Forest Queen group until October 19. The Elkton, Jerry Johnson, New Gold Dollar, Empire Lee, Acacia, Doctor Jack Pot, Atlas (Midget Bonanza King), and Joe Dandy groups were substantial producers. Gold Producers, Inc., continued operations at the Victor mine on the Smith Moffat property under lease and the company-owned El Paso group. The Tenderfoot Mining Co. continued developing the Mollie Kathleen, Sangre de Cristo, and other groups on Tenderfoot Hill and shipped considerable Cameron Mines, Inc., operated its flotation mill at the Cameron shaft throughout the year on ore from the Cameron and Pinnacle groups, which were consolidated into a one-unit operation. mill has a capacity of 100 tons of ore per 24 hours, but owing to a drought which hindered operation it was run only two shifts for several months and three shifts for the remainder of the year. concentrates were shipped to the Leadville smelter. Some of the other producing mines and dumps in the Cripple Creek district in 1939 were the Ben Hur, Bogart-Blue Flag (Twin Sisters shaft), Buckeye, Cardinal-Great West, Delmonico, Economic Dump, Friday, Gold King, Golden Swan, Hiawatha, Irving Howbert (Ethel Louise), Le Clair (Mary McKinney), Mary Nevin, Prince Albert, Rainbow, School Section, Strong, and Teutonic.

Placer gold and high-grade specimen ore from the district, sold to assayers, refiners, and the Denver Mint in 1939, yielded 44 fine

ounces of gold.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN THE EASTERN AND CENTRAL STATES

(MINE REPORT)

By J. P. DUNLOP AND H. M. MEYER

SUMMARY OUTLINE

	Page	1	Page
Summary	287	Mine production in the Central States	295
Calculation of value of metal production		Quantity and tenor of ores	
Mine production in the Eastern States		Production of lead and zinc by regions	295
Alabama		Review by States	
Georgia		Arkansas	
Maryland		Illinois	296
New Jersey		Indiana	. 297
New York		Kansas	297
North Carolina		Kentucky	298
Pennsylvania		Michigan	
South Carolina		Missouri	
Tennessee .		Oklahoma	
Virginia	004	Wisconsin	

There were no outstanding developments in mining and milling in the Eastern States in 1939, unless the brief furore in the Dahlonega district of Georgia could be termed significant. The total output of gold was 2,514 fine ounces less than in 1938, notwithstanding an increase of 2,152 ounces in South Carolina; production in each of the other Eastern States except Pennsylvania declined. There was little change from 1938 in output of silver or copper, but shipments of galena decreased considerably. The output of recovered zinc increased 8,454 short tons, but this rise was proportionately much smaller than that in the Tri-State region and in some districts in the Western States.

The dominating events in the Central States in 1939 were the greatly augmented production of lead concentrates in southeastern Missouri, the increase in shipments (not production) of galena from the Tri-State region, and the publicity given to health and living conditions prevailing in the latter region (actually the situation probably is no worse than in mining or industrial areas elsewhere).

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zinc ³
1935 1936 1937 1938 1938	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0. 71875 . 7745 . 7735 4. 646+ 5. 678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046 .047	Per pound \$0.044 .050 .065 .048 .052

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+(\$20.671835) per fine ounce.
² 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.
² Yearly average weighted price of all grades of primary metal sold by producers.
² \$0.64646464.

Mine production of gold, silver, copper, lead, and zinc in the Eastern and Central States in 1939, by States, in terms of recovered metals

State	Ore (short	Gold (l	lode and icer)	Silver (lode and placer)						Copper		Lead		Zine		Total
state	tons)	Fine ounces	Value	Fine ounces	Value	Pounds	Value	Short tons	Value	Short tons	Value	value				
Eastern States: Alabama Georgia	10 730	3 670	\$105 23, 4 50	58	\$39							\$105				
Georgia Maryland New Jersey New York	606, 504 420, 000	71	2, 485	2	25, 285			(2)			1 \$11, 507, 318	23, 489 2, 486 1 11, 507, 318 8 3, 770, 741				
North Carolina Pennsylvania South Carolina	(6) 114, 514	495 1, 815 13, 833	17, 325 63, 525 484, 155	37, 250 3, 961 13, 558 5, 480	2, 689 9, 203 3, 720	(3)	(4)					\$ 20,014 \$ 72,728 487,875				
Tennessee Virginia	653, 581	163 364	5, 705 12, 740	31, 994 1, 780	1, 208	421, 295, 000	4\$2, 214, 680	(2)	² \$590, 696 (²)	⁷ 56, 225 (⁷)	⁷ 5, 847, 400 (⁷)	8 8, 680, 198 9 13, 948				
	10 3, 409, 619 10 3, 159, 880	17, 414 19, 928	609, 490 697, 480	94, 083 94, 945	63, 862 61, 380	21, 295, 000 21, 079, 160	2, 214, 680 2, 065, 758	6, 284 7, 900	590, 696 726, 800	180, 955 172, 501	21, 100, 174 19, 211, 235	24, 578, 902 22, 762, 653				
ArkansasIllinoisIndiana	(11)	4	140	675	458			308	28, 952	123 334	12, 792 34, 736	12, 792 64, 146 140				
Kansas Kentucky Michigan	(11)				69, 154	87, 970, 000	9. 148. 880	87	1, 287, 518 8, 178	68, 971 909	7, 172, 984 94, 536	8, 460, 502 102, 714				
Missouri Oklahoma Wisconsin	1 8, 802, 900	1		213, 400	144, 853			156, 281 27, 720 388	14, 690, 414 2, 605, 680 36, 472	15, 096 140, 379 5, 904	1, 569, 984 14, 599, 416 614, 016	9, 218, 034 16, 405, 251 17, 205, 096 650, 488				
Total, 1938	22, 972, 151 19, 037, 105	4	140	315, 953 386, 210	214, 465 249, 671	87, 970, 000 93, 486, 000	9, 148, 880 9, 161, 628	198, 481 158, 873	18, 657, 214 14, 616, 316	231, 716 198, 721	24, 098, 464 19, 077, 216	52, 119, 163 43, 104, 831				

Estimated smelting value of recoverable zinc content of ore after freight, haulage, smelting, and manufacturing charges are added.

New York and Virginia included under Tennessee; Bureau of Mines not at liberty to publish separate figures.

Excludes value of lead, which is included under Tennessee;
North Carolina and Pennsylvania included under Tennessee; Bureau of Mines not at liberty to publish separate figures.

Excludes value of copper, which is included under Tennessee.

6 Ore is magnetite-pyrite-chalcopyrite, flotation copper concentrates from which yielded gold, silver, and copper; Bureau of Mines not at liberty to publish figures for ore and

oper.

7 Virginia included under Tennessee; Bureau of Mines not at liberty to publish separate figures.

8 Includes also value of copper from North Carolina and Pennsylvania, lead from New York and Virginia, and zinc from Virginia.

9 Excludes value of lead and zinc, which is included under Tennessee.

10 Excludes magnetite-pyrite-chalcopyrite ore from Pennsylvania.

11 No figures available for small quantity of ore treated in Arkansas, Illinois, or Kentucky.

Number of lode and placer mines producing and yield of gold and silver in the Eastern States in 1939, by States

State	Number	of mines	Gold (fin	e ounces)	Silver (fine ounces)				
	Lode	Placer	Lode 1	Placer	Lode 1	Placer			
Alabama Georgia Maryland New Jersey New York North Carolina Pennsylvania South Carolina Tennessee Virginia.	1 8 3 2 2 13 1 5 8	3 2	3 277 71 	393 7 8	23 2 37, 250 3, 961 13, 558 5, 480 31, 994 1, 780	35			
Total, 1938	47 51	24 26	1 17, 001 1 19, 261	413 667	1 94, 048 1 94, 906	35 39			

1 1939: Dry and siliceous gold ores (120,274 tons) yielded 14,949 ounces of gold and 6,023 ounces of silver; copper ore (528,710 tons) yielded 237 ounces of gold and 35,073 ounces of silver; magnetite-pyrite-chalcopyrite ore yielded 1,815 ounces of gold and 13,558 ounces of silver; zinc ore (1,787,404 tons) yielded no gold or silver; and zinc-lead ore (973,231 tons) yielded 39,394 ounces of silver.

1938: Dry and siliceous gold ores (88,671 tons) yielded 17,441 ounces of gold and 4,813 ounces of silver; copper ore (615,403 tons) yielded 375 ounces of gold and 42,470 ounces of silver; magnetite-pyrite-chalcopyrite ore yielded 1,422 ounces of gold and 9,360 ounces of silver; zinc ore (1,530,295 tons) yielded no gold or silver; and zinc-lead ore (925,511 tons) yielded 23 ounces of gold and 38,263 ounces of silver.

Gold.—The production of gold in the Eastern States totaled 17,414 fine ounces in 1939, or 2,514 ounces less than in 1938. The output from siliceous ores decreased from 17,441 to 14,949 ounces and that from placer mines from 667 to 413 ounces; that from the refining of copper bullion increased from 1,797 to 2,052 ounces. Fewer lode mines and placers were operated in 1939 than in 1938, and only two of the placers yielded more than 100 ounces of gold. The estimated of the placers yielded more than 100 ounces of gold. output of gold in the Southern Appalachian States from 1799 to 1939, inclusive, is recorded as 2,548,375 fine ounces valued at \$53,649,210.

Of the 120,274 tons of siliceous ores (from mines in Alabama, Georgia, Maryland, North Carolina, South Carolina, Tennessee, and Virginia) treated in 1939, 120,047 tons went to gold and silver mills. Gold concentrates (95 tons) shipped to smelters yielded 173 fine ounces of gold, whereas bullion from gold milling plants yielded 14,656 ounces. Ore amalgamated (5,437 tons) yielded in bullion 945 ounces of gold, and ore cyanided (114,610 tons) yielded 13,711 ounces. The 227 tons of dry and siliceous ores shipped crude to smelters yielded 120 ounces of gold.

Copper concentrates shipped to smelters in 1939 yielded 1,976

ounces of gold.

The only output of gold reported from the Central States for 1939— 4 fine ounces valued at \$140—was from small placer prospecting in

Vigo County, Ind.
Silver.—Of the silver (94,083 fine ounces) produced in 1939 in the Eastern States, 35 ounces came from placer bullion, 5,696 ounces from bullion recovered at gold and silver mills, 84,480 ounces from concentrates smelted, and 3,872 ounces from ore shipped crude to smelters. Siliceous ores yielded 6,023 ounces of the silver; zinc-lead ores from New York, Virginia, and Tennessee 39,394 ounces; copper ore 35,073 ounces; and copper concentrates recovered by flotation from magnetite-pyrite-chalcopyrite ore 13,558 ounces.

The production of silver in the Central States in 1939 was 315,953 ounces. The output of Illinois (675 ounces) came from galena concentrates recovered in milling fluorspar, that of Missouri (213,400 ounces) from the refining of lead bullion, and that of Michigan (101,878

ounces) from copper ore.

Copper.—The mine production of recoverable copper in the Eastern States was 21,295,000 pounds valued at \$2,214,680 in 1939 compared with 21,079,160 pounds valued at \$2,065,758 in 1938. The output from Tennessee was considerably less than in 1938 and that from Pennsylvania increased nearly 40 percent, but the Bureau of Mines is not at liberty to show the copper production of each State. Copper ore yielded about 0.0004 ounce of gold and 0.07 ounce of silver to the ton of crude ore. Copper concentrates from the magnetite-pyrite-chalcopyrite ore mined at the Cornwall mine in Pennsylvania contained about 25 percent copper and 0.10 ounce of gold and 0.78 ounce of silver to the ton.

The copper output of the Central States in 1939 came entirely from Michigan copper mines. The State output of refined copper decreased from 93,486,000 pounds in 1938 to 87,970,000 pounds in 1939 and the average recovery per ton of rock from 24.9 to 19.1

pounds.

Lead.—The recoverable lead produced from mines in the Eastern States in 1939 came from zinc-lead ores from the Austinville mine in Virginia, the Balmat mine in New York, and the Embree mine in Tennessee. Shipments of galena or lead carbonate concentrates totaled 9,953 tons and yielded 6,284 tons of lead, or 1,616 tons less than in 1938.

Lead recovered from shipments of lead ore and concentrates in the Central States increased from 158,873 tons in 1938 to 198,481 tons in 1939, owing mainly to the increase in shipments from southeastern Missouri (the largest lead-producing region in the United States) from 118,870 to 153,522 tons. Mines in the Tri-State or Joplin region shipped 57,941 tons of lead concentrates in 1939 compared with 51,751 tons in 1938.

Zinc.—The recoverable zinc in ore and concentrates shipped from mines in the Eastern States totaled 180,955 tons valued at \$21,100,174 in 1939 compared with 172,501 tons valued at \$19,211,235 in 1938. Mines in New Jersey yielded 88,716 tons as metal or in oxide.

[N. B.—The value of the zinc in New Jersey is the estimated smelting value of the recoverable zinc content of the ore after freight, haulage, smelting, and manufacturing charges are added.]

The output of recoverable zinc from New York mines rose from 29,896 tons in 1938 to 36,014 tons in 1939; it was derived from zinc ore and zinc-lead ore. Zinc sulfide ores yielded all the zinc produced in Tennessee except that from zinc-lead carbonate ore of the Embree mine and copper ore of the Tennessee Copper Co. The recovered zinc content of sphalerite concentrates shipped from mines in Virginia may not be disclosed, but the total from concentrates shipped from Tennessee and Virginia in 1939 was 56,225 tons; the output of Tennessee increased about 2,565 tons.

Zinc concentrates shipped from mines in the Central States had a recoverable zinc content of 231,716 tons in 1939 compared with 198,721 tons in 1938. Mines in the Tri-State region shipped ore and

concentrates yielding 224,446 tons of zinc, Oklahoma contributing 62.5 and Kansas 30.7 percent of the total. Stocks of sphalerite were negligible at the end of 1939. The recoverable zinc in shipments from Missouri mines increased from 10,226 to 15,096 tons; in 1939, as in 1938, the entire output came from southwestern Missouri.

MINE PRODUCTION IN THE EASTERN STATES

Alabama.—Gold production in Alabama from 1830 to 1939, inclusive, has totaled 49,453 fine ounces. The output in 1939 was only 3 ounces, recovered in prospecting at the Blue Hill mine in Tallapoosa County; the Gold Log and Hog Mountain mines were not

operated.

Georgia.—From 1830 to 1939, inclusive, Georgia is reported to have produced 869,207 fine ounces of gold. In 1939, 17 placers and 8 lode mines yielded 670 ounces of gold and 58 ounces of silver. Of the 393 ounces of placer gold produced, 61 ounces came from mines near Dahlonega and Auraria in Lumpkin County; 316 ounces from mines near Sautee, Helen, and Nacoochee in White County; and the rest (16 ounces) from mines in Dawson, Hall, and Cherokee Counties. The larger producers of placer gold were the Ferey Gold Mining Co., Loud Gold Mines Co., and Dixie Gravel Co., all in White County. Gold recovered from 730 tons of siliceous ore amounted to 277 ounces and came mainly from the Hamilton mine in McDuffie County, operated by W. T. Fluker. The 5-stamp amalgamation-concentration mill was operated throughout the year on ore taken from two shafts; development work totaled about 150 feet. The Ferey Gold Mining Co. at Nacoochee, White County, operated its mine steadily by means of a dragline, trommel screen, and sluice boxes. Various properties at Dahlonega controlled by Dr. Craig R. Arnold were reported under lease or option for development in 1940. The Simmons prospect near Buford in Gwinnett County was not worked, but some old tailings were treated by G. D. McKay. The Dixie Gravel Co. made a good output from the Dukes Creek placer by means of a hydraulic elevator. The Loud Gold Mines Co. operated its placer at Helen in White County. Gold bullion was shipped to the mint by the Rex Mining & Development Co., Southern Mining & Development Co., J. S. Speer, T. F. Christian, and J. P. McDonald from various small placer operations in Lumpkin and Dawson Counties. R. H. Stumann shipped bullion purchased from small placer operations in Cherokee County. The Turkey Hill 5-stamp mill at Dahlonega was operated by A. H. Head on a small quantity of ore extracted in sinking a 110-foot shaft. Small shipments of crude ore were made to the Tennessee Copper Co. from the Hartman and the Cherokee mines at Holly Springs.

Considerable publicity was given to the Dahlonega district in Lumpkin County in November 1939 by the discovery of a pocket of free gold at the Calhoun mine. Ore was reported as averaging \$60,000 to \$200,000 to the ton. Naturally such news on the front pages of many newspapers revived speculative interest in the old district. The discovery of rich pockets of gold in Georgia, Maryland, and other Southern States has not been unusual, but the discovery at the Calhoun mine had superlative press notices. No report was made to the Bureau of Mines regarding the quantity of gold recovered in 1939, and none of the bullion was received by the Bureau of the Mint.

Maryland.—The total gold production of Maryland to the end of 1939 is estimated at 6,102 fine ounces. The Maryland mine in Montgomery County was worked only 3 months in 1939. It is equipped with a 200-foot three-compartment shaft, and ore is mined at the 150- and 200-foot levels and treated at the 10-stamp amalgamation mill; the 30-ton ball mill and concentrating table were not used in 1939. Prospecting and development work was done by Kirk & McNamara at the Harrison and Sawyer mines and other prospects, also in Montgomery County. Two shafts were sunk, and some opencuts were made. The property is equipped with a 10-stamp mill, and bullion was sent to the Philadelphia Mint. No work was done at any of these mines in 1939 after October.

New Jersey (see also second table of this chapter, footnote 1).—The production of zinc ore in New Jersey in 1939 was 606,504 tons containing 88,716 tons of recoverable zinc as metal or in oxide. The producing properties were the Sterling and Mine Hill mines; they were operated about 280 days in 1939 and have a much larger potential

output.

New York.—The quantity of zinc ore mined and treated in New York rose from 105,000 tons in 1938 to 115,000 tons in 1939 and that of zinc-lead ore from 280,600 to 305,000 tons. The total concentrates shipped yielded 36,014 tons of zinc and nearly 2,400 tons of lead; the lead concentrates from the Balmat mine contain considerable silver also. The Balmat mine near Sylvan Lake produces zinc-lead ore, is equipped with a 1,000-ton all-flotation concentration plant, and has an inclined shaft 1,300 feet deep. The Edwards mine has a vertical shaft 1,500 feet deep and an inclined shaft from the 1,500- to the 2,100-foot level. The all-flotation plant has a capacity of 500 tons. It is reported that the Universal Exploration Co. continued drilling

and exploration near Hyatt in St. Lawrence County.

North Carolina.—The gold output of North Carolina from 1799 to 1939, inclusive, is recorded as 1,155,172 fine ounces. The yield in 1939 was 495 ounces—488 ounces from 13 lode mines and 7 ounces from 4 placers. The output of silver was 3,961 ounces, of which 134 ounces came from dry gold ores and the remainder from copper ore. The Fontana copper mine in Swain County, the only producer of copper, the largest producer of silver, and the second-largest producer of gold in the State in 1939, was operated steadily by the North Carolina Exploration Co.; the high-grade copper ore was shipped to the Tennessee Copper Co. at Copperhill, Tenn. The crude ore is mined through a 2,600-foot inclined shaft. The largest producer of gold in North Carolina was the Capps mine in Mecklenburg County; about 44 percent of the State total in 1939 came from this mine and the 125-ton cyanide plant near Charlotte, although the property was operated only a few months early in the year and later was reported idle and in the hands of a receiver. The old Silver Hill mine in Davidson County, which yields a lead-zinc ore containing copper, gold, and silver and which was reopened in 1938, was idle in 1939. It is equipped with a 10-stamp mill and Deister slime tables. Flotation should be added to the plant. The Tribro mine in Halifax County was worked 98 days by Passavant Bros. by means of an open-cut, and the ore was treated at a 3-ton amalgamation mill. Some small producing properties were the East Hill in Union County, the Sedberry in Montgomery County, and the Calhoun in Gaston County. The Sobel Mining

Co. operated a small mill on its property near Union Mills in Rutherford County; bullion was shipped to the Philadelphia Mint and concentrates to Carteret, N. J. The Mary B. mine near Essex in Halifax County was prospected by open pits, and a small quantity of ore was treated. Payne & Stepp shipped a small carload of ore from a prospect in Swain County to Copperhill, Tenn. Shipments of small lots of crude ore were made to Carteret, N. J., by Mrs. Gordon Wilfong from a prospect in Catawba County, by George V. Patterson from the Ferguson mine in Gaston County, and by R. M. Hutchinson from a prospect near Kings Mountain. A few tons of crude ore were shipped by B. M. Nicholson of Enfield, Halifax County, to Perth Amboy, N. J. The meager production of placer gold came from prospects in Burke, Guilford, Stanly, and Wilkes Counties.

Pennsylvania.—The Cornwall mine and mill in Lebanon County

Pennsylvania.—The Cornwall mine and mill in Lebanon County were operated at capacity in 1939; the mine has an open-cut and three inclined shafts 1,300 feet deep. The ore (magnetite-pyrite-chalcopyrite) is treated by magnetic separation and the tailings from the iron concentrates go to the 2,000-ton flotation plant; the copper concentrates, which contained about 25 percent copper and 0.10 ounce of gold and 0.78 ounce of silver to the ton, were shipped to

the Nichols Copper Co.

South Carolina.—From 1829 to 1939, inclusive, mines in South Carolina produced 282,246 fine ounces of gold. In 1939 the output from five lode mines and one placer was 13,833 ounces, of which only 8 ounces came from the placer. Gold milling plants recovered 13,754 ounces of gold and 5,475 ounces of silver; concentrates shipped to smelters yielded 34 ounces of gold and 5 ounces of silver; and 54 tons of ore were shipped crude to smelters. The old Haile mine, with the reputation of having been the largest gold producer in the Southern Appalachian States, was worked throughout the year; its output in 1938 and 1939 was largely responsible for the notable increase in that region in each year. In 1939 it yielded 13,551 fine ounces of gold and 5,452 ounces of silver.

Haile Gold Mines, Inc., operated its mines and countercurrent-decantation cyanide plant throughout 1939. The daily capacity of the mill is 400 tons, and the ore (about 113,700 tons milled in 1939) is a mixture of quartz and pyrite. Ore from the old pits and 55,885 tons from the recently developed Red Hill pit were cyanided, and good recoveries were made from the low-grade ore (of which reserves are ample) developed by geophysical exploration and drilling. The history of the Haile mine and its development and operation by the

present owners have been described by Brodt and Newton.1

The Dorothy mine in York County was operated by W. K. Hunter, and 2 cars of crude ore were shipped in 1939 to the Tennessee Copper Co. at Copperhill, Tenn. The Ross-Carroll mine in York County was operated by W. E. Tummon by means of a 70-foot shaft, and the ore was treated at a small mill; bullion recovered was sent to the Philadelphia Mint and concentrates were shipped to Carteret, N. J. Other production included a small output of gold from the old Hegeler mine in Lancaster County and from prospects in Chesterfield County operated by A. M. Miller of Jefferson. The small output of placer gold came from the Brewer mine in Chesterfield County, operated by the Wandelyn Mining Co.

¹ Brodt, H. H., and Newton, Edmund, Gold Mining at the Haile Mine in South Carolina: Min. Cong. Jour., vol. 24, No. 10, October 1938, pp. 20-27.

Tennessee.-Mines in Tennessee produced 19,638 fine ounces of gold from 1831 to 1939, inclusive; almost the entire output since 1906 has come from copper ore, and copper bullion was the source of 161 ounces in 1939. The quantity of silver recovered in 1939 was 31,246 ounces from copper ore and 748 ounces from zinc-lead ore. The Embree Iron Co., the only producer of lead in Tennessee, shipped lead carbonate concentrates. The production of copper from Tennessee mines decreased about 835 tons from 1938, but that of zinc increased about 2,565 tons.

The total output of copper from mines in Tennessee, Pennsylvania. and North Carolina was 10,648 tons in 1939 compared with a total of 10,540 tons from the Eastern States in 1938; production in Pennsylvania increased about 1,250 tons. The total lead recovered from mines in Virginia, New York, and Tennessee was 6,284 tons in 1939 compared with 7,896 tons in 1938. The total zinc recovered from mines in Tennessee and Virginia was 56,225 tons in 1939 compared with 56,766 tons in 1938. The Bureau of Mines is not at liberty to publish figures for the foregoing States separately.

The Tennessee Copper Co. ran its 1,200-ton (daily) flotation plant and its smelter in 1939, but not at capacity, on ore from the Burra Burra, Eureka, and Isabella mines in Tennessee and on sulfide ore from the Fontana mine in Swain County, N. C.; about 136 tons contained in six shipments of ore were received from other States. Some 48-percent zinc concentrates were produced at the mill and shipped to Donora, Pa., and the copper bullion was sent to the Nichols Copper Co. The Mascot mine and 2,800-ton concentrating plant of the American Zinc Co. of Tennessee were operated steadily in 1939; the mine is opened by a 520-foot shaft and an inclined shaft from the 520-foot level to the maximum depth of 850 feet. The output was larger in 1939 than in 1938. The company also worked the Grasselli mine, where operations were conducted at the 350-foot level. The crude ore from both mines was treated at the Mascot mill, which is equipped with a differential-tension density cone that considerably increases the capacity of the plant. The Universal Exploration Co. worked steadily in 1939 at both the mine and 800-ton all-flotation mill, but the plant for treating zinc carbonate ore was idle throughout Two shafts were used in 1939. The average grade of the sphalerite shipped in 1939 was 64.329 percent zinc, which is considerably higher than that from any other mine in the United States. The Embree Iron Co. in Washington County shipped some zinc carbonate concentrates and increased its shipments of lead carbonate slightly.

A log washing plant was used to treat the crude ore.

Virginia.—Mines in Virginia produced 166,557 fine ounces of gold from 1828 to 1939, inclusive, but only 7,440 ounces have been produced during the last 29 years. In 1939 the output of the State was 364 ounces of gold and 1,780 ounces of silver from four lode mines and two placers. Shipments of lead and zinc concentrates decreased, but the Bureau of Mines is not at liberty to publish figures for lead and zinc output, as the Austinville mine of the New Jersey Zinc Co. is the only producer of zinc-lead ore in Virginia. The mine and 2,000ton concentration-flotation mill were operated throughout the year.

The Vaucluse mine near Wilderness in Orange County, which has a 325-foot shaft and is equipped with a 75-ton all-flotation plant, was idle in 1939; the only shipment during the year was a few tons of concentrates that had been made in 1938. The Red Bank mine near Virgilina, Halifax County, operated by Joseph Hamme, was the largest producer of gold in Virginia in 1939; the property is equipped with a small amalgamation mill. Amos V. Pankey operated the London and Virginia gold mine near Dillwyn in Buckingham County; bullion was shipped to the Philadelphia Mint and concentrates to Carteret, N. J. The ore was obtained from an open pit and was milled at the Booker mill, but plans have been made for a new milling plant in 1940. The Nassog copper prospect in Floyd County was not worked in 1939 but is to be developed in 1940. The output of placer gold in Virginia in 1939 came mainly from the Bertha and Edith mines in Goochland County operated by H. H. Walton, of Pendletons.

MINE PRODUCTION IN THE CENTRAL STATES

Quantity and tenor of ores.—One basis for comparing the relative magnitude of mining in different States is the quantity of crude ore or "dirt." The metal content of the ores of the several mining regions and States exhibits marked differences; therefore, comparison of tenor of the ores is interesting and significant. Virtually all the ore from the Central States is of such low tenor as to require concentration. In Kentucky and southern Illinois most of the lead and zinc concentrates are recovered as byproducts in the concentration of the fluorspar that they accompany, and the metal content of the crude ore raised cannot be calculated. In Arkansas very little ore has been mined for several years, and the average tenor calculated from the output of ore during these years would not offer accurate comparison with that during a period of active mining.

Quantity and tenor of copper, lead, and zinc ores, old tailings, etc., produced in the Central States, 1937–39, by States

	1937	7	1938	3	1939		
State ¹	Ore, etc.	Metal content ²	Ore, etc.	Metal content 2	Ore, etc.	Metal content ²	
Kansas	Short tons 5, 607, 900 4, 197, 881 5, 992, 731 10, 432, 000 285, 000 26, 515, 512	Percent 1. 90 1. 13 3. 07 1. 77 3. 41	Short tons 3, 751, 300 3, 757, 705 4, 148, 000 7, 321, 400 58, 700 19, 037, 105	Percent 2. 58 1. 24 3. 28 1. 71 4. 46	Short tons 3, 701, 300 4, 603, 751 5, 650, 800 8, 802, 900 213, 400 22, 972, 151	Percent 2. 45 . 96 3. 12 2. 00 3. 26	

¹ No figures available for small quantity of ore treated in Arkansas, Illinois, or Kentucky.
² The percentages represent the metal content of the ore insofar as it is recovered in the concentrates. In Michigan the metal so recovered is copper; in other Central States the metals are lead and zinc combined, the relative proportions of which are shown in the second table of this chapter and in the tables of tenor of ore given in the sections devoted to the respective States.

Production of lead and zinc by regions.—The report of this series for 1930 (chapter of Mineral Resources of the United States, 1930, pt. I) gives the areas included in the seven lead- and zinc-producing regions of the Central States. Mineral Resources, 1914, contains brief reviews of the history of lead and zinc mining in the Central States, the yearly production of each State from 1907 to 1914, inclusive, and historical notes and estimates of the total production of lead and zinc in each

Subsequent records may be found in annual issues State before 1907. of Mineral Resources and Minerals Yearbook.

Of a total of 412,190 tons of blende concentrates produced in 1939 in the Tri-State region 72,931 tons, or 12,944 tons more than in 1938, were derived from old tailings.

Mine production of lead and zinc in the Central States in 1939, by regions

Davidan	Le	ad 1	Ziı	ne 2	m-4-11
Region	Short tons	Value	Short tons	Value	Total value
Concentrates: Joplin or Tri-State Southeastern Missouri. Upper Mississippi Valley ³ Kentucky-southern Illinois Northern Arkansas.	57. 941 210, 526 567 657	\$3, 399, 068 12, 339, 360 29, 327 25, 589	413, 139 4 10, 169 2, 832 382	\$14, 199, 263 355, 915 67, 430 5, 800	\$17, 598, 331 12, 339, 360 385, 242 93, 019 5, 800
Total, 1938	269, 691 216, 244	15, 793, 344 11, 759, 610	426, 522 366, 647	14, 628, 408 11, 242, 633	30, 421, 752 23, 002, 243
Metal: Joplin or Tri-State Southeastern Missouri. Upper Mississippi Valley ³ . Kentucky-southern Illinois. Northern Arkansas.	44, 176 153, 522 388 395	4, 152, 544 14, 431, 068 36, 472 37, 130	224, 446 5, 904 1, 243 123	23, 342, 384 614, 016 129, 272 12, 792	27, 494, 928 14, 431, 068 650, 488 166, 402 12, 792
Total, 1938	198, 481 158, 873	18, 657, 214 14, 616, 316	231, 716 198, 721	24, 098, 464 19, 077, 216	42, 755, 678 33, 693, 532

Includes galena and a small quantity of lead carbonate concentrates.
 Includes sphalerite and a small quantity of zinc carbonate and zinc silicate concentrates.
 Includes Iowa, northern Illinois, and Wisconsin.
 The zinc concentrates shipped in 1939 were a flotation product. No raw concentrates were shipped in 1939; about 32,360 tons were produced.

REVIEW BY STATES

Arkansas.—Most of the small mines in Arkansas were inactive in 1939 until fall, and little development was done. Higher prices in September brought about the reopening of mines in various districts, but all operations were on a very small scale and there was no ship-ment of galena. A total of 382 tons of zinc carbonate was shipped from about 11 mines in Arkansas in 1939; the recoverable zinc content was 123 tons. None of the mines gave any data for 1939 on their shipments, but the smelters that purchased the concentrates gave the information. Shipments of zinc carbonate were made from the Edith, Yellow Rose, Philadelphia, McIntosh, Silver Hollow, Monte Cristo, and Red Cloud mines in the Rush district; the Brewer, Eleventh Hour, and Bonanza mines in Newton County; and the Jack Pot mine near Virtually all the zinc concentrates obtained in small lots by L. A. Watkins, of Harrison, Ark., were sold to the Ozark Smelting Co. at Coffeyville, Kans.

Illinois.—Most of the lead and zinc produced in southern Illinois is recovered from fluorspar-lead-zinc mining, and shipments of galena and blende concentrates were much larger in 1939 than in 1938. The shipments of galena were mainly from properties of the Aluminum Ore Co., Hillside Fluor Spar Mines, and Mahoning Mining Co. and amounted to 529 tons having an average lead content of 59.4 percent; 308 tons of lead and 675 fine ounces of silver were recovered from these shipments compared with 175 tons of lead and 576 ounces of silver in 1938. The Mahoning Mining Co. operated its property near

Cave in Rock, Hardin County; two shafts were used. The ore mined contains more lead and zinc than is normally found with fluorspar, and tests showed that the crude ore is amenable to treatment.² The 200-ton all-flotation plant built at Rosiclare was put in operation in June 1939; lead concentrates, blende concentrates, and fluorspar were shipped. The galena averaged 45 percent lead and the sphalerite 61 percent zinc. The crude ore from the mine is trucked 18 miles to the concentrating plant, which has direct rail facilities.

Indiana.—Four fine ounces of gold valued at \$140 were recovered

in 1939 from small placer prospecting in Vigo County.

Kansas.—Shipments of galena concentrates from mines in Kansas in 1939 totaled 17,845 tons with a recovered lead content of 13,697 tons compared with 19,909 and 15,239 tons, respectively, in 1938. Shipments of sphalerite concentrates amounted to 126,235 tons with a recovered zinc content of 68,971 tons compared with 133,546 and 73,024 tons, respectively, in 1938. About 530,900 tons of Kansas crude ore were concentrated at mills in Oklahoma and yielded 41,402 tons of sphalerite concentrates and 3,601 tons of galena concentrates. In all, about 30 mines and 23 mills were operated in Kansas in 1939.

No output for 1939 was reported from the Lawton or Crestline camps, and scrapping only was done at Galena. The Peacock mine at Badger-Peacock was operated throughout the year by L. W. Goings & Co. Production in the Kansas part of the Waco district was from tailings and ore from the Acme and Butte Kansas properties of the R. H. & G. Mining Co. The total output of the Waco area in 1939 was 56 tons of galena and 6,627 tons of sphalerite, of which properties in Kansas yielded 44 tons of galena and 4,713 tons of sphalerite. Considerable development work was done by the St. Louis Smelting & Refining Co. at Waco, but the 800-ton mill was not operated until early in January 1940. Mines and mills near Baxter Springs shipped 4,039 tons of galena and 17,774 tons of sphalerite. St. Louis Smelting & Refining Co. (various mines and the Ballard mill) was much the largest producer of both lead and zinc, and the Sunflower mine also had a large output. Ore was mined and milled or shipped to custom mills from the Robob, Bilharz, Wade, and Iron Mountain mines. Mines and mills in the Blue Mound-Treece area shipped 13,492 tons of galena and 103,447 tons of sphalerite. Mines in Kansas that shipped ore to the Central mill at Cardin, Okla., included the Mid-Continent, Wright, Bendelari, Big John, Black Eagle, Chubb, Robob, and Kansouri. The Muncie and the Jarrett mines and mills of the Federal Mining & Smelting Co. were operated and made large shipments of concentrates. Other large producers in this area were the Vinegar Hill Zinc Co. (Barr mine), J. P. Dines Mining Co., Eagle-Picher Mining & Smelting Co. (Wilbur and Webber mills), Kansas Explorations, Inc. (Robinson and Jarrett mills), Oklahoma Interstate Mining Co. (Cherokee mine), and New Blue Mound Mining Co. The five large producers of sphalerite from old tailings were the Captain Milling Co., J. L. Smith Chat Co., Youngman & Youse, C. Y. Semple, and Youngman Milling Co. These five tailing mills treated about 1,922,000 tons of material and shipped 262 tons of galena and 17,622 tons of sphalerite.

² Clemmer, J. B., Duncan, W. E., DeVaney, F. D., and Guggenheim, M., Flotation of Southern Illinois Lead-zinc-fluorspar Ores: Bureau of Mines Rept. of Investigations 3437, 1939, 31 pp.

Mine shipments of lead and zinc in Kansas, 1935-39

	Load a	oncentrates	Zina an	ncentrates	Metal content ¹					
Year	Bear concentrates		Zanc concentrates		Lead		Zinc			
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
1935 1936 1937 1937 1938 1939	14, 301 14, 789 20, 559 19, 909 17, 845	\$579, 690 765, 746 1, 454, 507 1, 023, 851 1, 010, 106	102, 078 149, 095 151, 646 133, 546 126, 235	\$2, 948, 509 5, 473, 457 6, 476, 064 4, 132, 248 4, 300, 365	10, 892 11, 409 16, 008 15, 239 13, 697	\$871, 360 1, 049, 628 1, 888, 944 1, 401, 988 1, 287, 518	54, 110 79, 017 80, 300 73, 024 68, 971	\$4, 761, 680 7, 901, 700 10, 439, 000 7, 010, 304 7, 172, 984		

¹ In calculating the metal content of the ores from assays allowance has been made for smelting losses of both lead and zinc. In comparing the value of ore and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.

Tenor of lead and zinc ore and old tailings milled and concentrates produced in Kansas, 1938-39

	19	38	1939		
	Crude ore	Old tail- ings	Crude ore	Old tail- ings	
Total ore and old tailings milledshort tons	2, 044, 500	1, 706, 800	1, 764, 300	1, 937, 000	
Total concentrates shipped: Galenadodo	19,869	40	17, 583	262	
Sphaleritedo Ratio of concentrates to ore, etc.:	116, 213	17, 333	108, 423	17,812	
Leadpercent	0.97 5.15	1.01	$\frac{.98}{6.27}$. 01	
Metal content of ore, etc.:		1.01		. 92	
Leaddododo	. 76 3. 46		. 78	. 01	
Average lead content of galena concentrates do	78. 0	. 61 60. 6	3.75 78.5	. 56 66, 4	
A verage zinc content of sphalerite concentratesdo A verage value per ton:	60.8	60.0	60.7	60.6	
Galena concentrates	\$51.45	\$40.00	\$56.67	\$52.05	
Sphalerite concentrates	30.60	33. 22	34.39	32. 11	

Kentucky.—Six mines in Kentucky shipped 612 tons of zinc carbonate, 1,614 tons of sphalerite, and 128 tons of galena in 1939. The zinc carbonate sold was shipped mainly by Avery H. Reed of Marion, C. F. Lester of Princeton, and the Hickory Cane Mining Co. of Marion; the sphalerite came from the Eagle Fluor Spar Co. property. Most of the lead concentrates were shipped by Roberts & Frazer (Kentucky Fluor Spar Co.) and the National Fluorspar Co. The galena averaged about 69 percent lead and the sphalerite about 47 percent zinc. The recovered content of the concentrates shipped was 87 tons of lead and 909 tons of zinc. The Reed shipments were from a 150-foot shaft on land owned by the K-K-Mining Co. in Crittenden County. The Eagle Fluor Spar Co. is near Salem in Livingston County and is equipped with a concentrating plant; the concentrates shipped in 1939 came from stocks, as the property was idle. Hickory Cane Mining Co. shipments were derived from development done at the 250-foot level.

Michigan.—Production of copper in Michigan declined to 87,970,000 pounds in 1939 from 93,486,000 pounds in 1938, or 6 percent. The

drop was due to the closing in October of the famous Conglomerate lode of the Calumet and Hecla Consolidated Copper Co. owing to exhaustion of ore reserves. This mine has produced almost continuously since 1866, when operations began, and has been responsible for the principal part of Calumet and Hecla's total output. The company states that over a period of 73 years the mine contributed more than 3.275,000,000 pounds of copper to the country's total. result of the shut-down of the Conglomerate mine a considerably larger proportion of Calumet and Hecla's production in 1939 was from tailings, and the yield of copper from Michigan ore and tailings (0.96 percent) was the smallest since 1918 and one of the lowest on record. The proportion of copper from tailings to copper from ore in the State in 1939 is believed to have been the highest in Michigan's history.

Copper was produced in 1939 from the same mines as in 1938, that is. Calumet and Hecla, Copper Range Co., Quincy Mining Co., and Isle Royale Copper Co. The property of the Peninsula Copper Co. (formerly known as the Seneca mine) was optioned to Calumet and Hecla, and its production was covered by the report for the latter

company. Output of silver in Michigan in 1939 (101,878 fine ounces) was the highest recorded since 1933, when 125,926 ounces were produced, and except for 1933 was larger than in any year since 1926. In 1916, however, silver production totaled 716,640 ounces.

Mine production of gold, silver, and copper in Michigan, 1935-39 1

			(Copper 2		Concentrate	e ("min-			
		Silver		Yie	ld	eral"]	Ore ("rock")			
Year	Year (fine ounces) (fine ounces)	Pounds	Pounds per ton of ore ("rock")	Percent	Pounds	Yield (percent copper)	(short tons) 4			
1935 1936 1937 1938 1939	51. 44	4, 219 25, 454 93, 634 101, 878	64, 108, 689 95, 968, 019 94, 928, 000 93, 486, 000 87, 970, 000	46. 6 29. 8 22. 6 24. 9 19. 1	2. 33 1. 49 1. 13 1. 24 . 96	95, 509, 256 141, 166, 376 148, 172, 000 144, 964, 890 136, 771, 339	67. 1 68. 0 64. 1 64. 5 64. 3	1, 376, 803 3, 225, 600 5 4, 197, 881 3, 757, 705 4, 603, 751		

Figures based on actual recovery of copper from "mineral" smelted and estimated recovery from "mineral" not smelted during year.
 Includes copper from sands.
 Includes "mineral" from sands.

Value of silver and copper produced in Michigan mines, 1935-39

	Copper					Cop			
Year	Silver	Total	Per ton of ore ("rock")	Total	Year	Silver	Total	Per ton of ore ("rock")	Total
1935 1936 1937	\$3, 032 19, 689	\$5, 321, 021 8, 829, 058 11, 486, 288	\$3. 86 2. 74 2. 74	\$5, 324, 053 8, 829, 058 11, 505, 977	1938 1939	\$60, 531 69, 154	\$9, 161, 628 9, 148, 880	\$2. 44 1. 99	\$9, 222, 159 9, 218, 034

⁴ Includes sands

Includes "mineral" from sands.
 Excludes 600 tons of siliceous ore.

The following data are abstracted from reports of the companies to their stockholders.

Production of copper by the Calumet and Hecla Consolidated Copper Co. in 1939 totaled 28,915,000 pounds at an average cost sold (excluding depreciation and depletion) of 8.81 cents a pound. The Lake Linden and Tamarack reclamation plants worked throughout the year under normal conditions and treated sand below the average grade of reserves. Together they recovered 23,400,000 pounds of copper at an average cost sold (excluding depreciation and depletion) of 6.19 cents a pound. In 1938 the mines produced 48,264,000 pounds at an average cost of 7.37 cents a pound and the reclamation plants 16,619,000 pounds at 6.86 cents. The average price received advanced from 10.03 cents in 1938 to 10.81 cents in 1939. This small increase

was largely offset by increased mining costs.

Of the 1939 recovery 7,269,000 pounds were from table treatment following grinding, 12,909,000 pounds from leaching, and 3,222,000 pounds from flotation. At the current rate of recovery the remaining Conglomerate sands should last 4 to 4½ years. Mining at the Conglomerate lode was continued through October, by which time all the commercial rock had been mined. Active mining was begun on this lode in 1866 and has continued almost uninterruptedly for 73 years, during which time the lode has produced more than 3,275,000,000 pounds of copper. At the Calumet mill at Lake Linden 164,526 tons of Conglomerate rock were stamped. The mill and its auxiliary grinding plant ceased operations with the closing of the Conglomerate mine, but for the present they are being maintained in serviceable condition. At the Ahmeek mill 759,301 tons of Kearsarge amygdaloid rock from the Ahmeek mine and 30,996 tons from the Peninsula Copper Co. area were stamped. The mill is operating at its best metallurgical efficiency but at only about 50 percent of capacity. The smelter received 43.716 tons of concentrates, smelted 42,429 tons, and produced 54,187,766 pounds of refined copper. Copper oxide totaling 1,855 tons and containing 2,832,335 pounds of copper was shipped to Results of exploration in the Mass-Michigan area in Ontonagon County were generally unfavorable, and exploration was abandoned in December. Exploration work in Houghton and Keweenaw Counties was generally discouraging.

Operations at the Calumet and Hecla reclamation plants at Lake Linden and Hubbell in 1939 and for the entire period of their operation

	1939	Since begin- ning
Quantity treated	2, 574, 000 0. 548 . 092 23, 400, 000 9. 09	33, 672, 000 0. 657 . 125 357, 343, 000 10. 61

The mine production of copper by the Copper Range Co. was 17,-856,237 pounds, and copper produced at the tailings recovery plant amounted to 253,172 pounds, a total of 18,109,409 pounds. Of the

copper produced, 1,075,582 pounds were from the Globe mine and the remainder from the Champion mine. The company expects that production at the Globe mine will show substantial improvement in 1940. Ore reserves at the Champion mine were reported to be about 10 percent below those on hand at the beginning of the year, but minable areas were more spotty and scattered. These conditions minable areas were more spotty and scattered. made mining more difficult and costs higher. The tailings recovery plant operated on an experimental basis 1½ months. It was hoped that operations at the plant would be resumed in the spring of 1940. The average cost of production for the company rose from 9.50 cents a pound in 1938 to 10.12 cents in 1939, and as the average selling price advanced from 9.80 to 10.81 cents there was a slight increase in net realization per pound. Concentrates treated at the smelter totaled nearly 26,800 tons, or 16 percent more than in 1938. The rise was due to the handling of larger quantities of custom material. tions of the company for 5 years are shown in the following table:

Copper produced by the Champion mine of the Copper Range Co., 1935-39

Year	Rock	Copper	Yield	Cost per	Pri c e	
	stamped	produced	per ton	pound ¹	received	
1935	Short tons 280, 500 320, 815 2 306, 075 5 333, 190 6 330, 605	Pounds 16, 759, 889 17, 486, 019 16, 131, 277 18, 066, 891 18, 109, 409	Pounds 57. 56 54. 51 8 51. 59 8 54. 06 3 54. 01	Cents 8. 26 8. 87 11. 45 9. 50 10. 12	Cents 8. 68 9. 59 12. 375 9. 80 10. 81	

Excludes depreciation and depletion.
 Excludes 133,594 tons of tailings treated.
 Yield from ore only.

Missouri.—The following tables show the shipments of lead and zinc in southwestern Missouri, which is part of the Tri-State region, and in southeastern Missouri. The tenor of the crude ore and concentrates is given for each area.

Mine production of lead and zinc in southwestern Missouri, 1935-39

	Lead concentrates			es	Zinc concentrates				Metal content ¹			
Year	Ga	lena	Carb	onate	Sph	alerite	Sili	cate	Le	ad	2	Zinc
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1935 1936 1937 1938	2, 340 5, 587 4, 130	\$19, 600 113, 912 368, 231 209, 758 199, 885	294 173 104	8, 160	34, 068 37, 715	1, 085, 455 1, 611, 158 560, 089	621 1,690 1,022	43, 411 17, 931	2,006 4,426 3,157	\$44, 160 184, 552 522, 268 290, 444 259, 346	20, 589 10, 226	1, 866, 50 2, 676, 57

¹ In calculating the metal content of the ores from assays allowance has been made for smelting losses of both lead and zinc. In comparing the values of ore and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.

⁴ Includes Globe mine.

Excludes small unstated quantity of tailings treated.
 Excludes 85,842 tons of tailings treated.

Tenor of lead and zinc ore and old tailings treated and concentrates produced in southwestern Missouri, 1935-39

	1935	1936	1937	1938	1939
Total ore and old tailings treatedshort tons Total concentrates in ore:	1 554, 300	² 871, 200	³ 980, 100	4 479, 600	5 523, 800
Leadpercent_	0.15	0. 27	1.02	0.88	0.70
Zinc	2, 60	3, 95	5.82	4. 07	5.48
Metal content of ore:		0.00	0.00		
Leaddo	. 10	. 20	.78	. 67	. 54
Zincdo	1.49	2, 40	3.47	3,00	3. 20
Average lead content of galena concentratesdo	73.7	77.0	79.0	77.0	76. 6
Average lead content of lead carbonate concentrates		1			
percent	60.0	63.0	63.0	50.0	
Average zinc content of sphalerite concentrates_do	59.4	61.1	60.7	58.5	58.9
Average zinc content of silicates and carbonates_do	38.0	40.1	40.5	44.4	45.0
Average value per ton:		i .			İ
Galena concentrates	\$40.00	\$50.53	\$66.00	\$50.79	\$54.41
Lead carbonate concentrates	30.00	35.70	47. 16	31.14	
Sphalerite concentrates	28. 57	32. 20	43.30	30. 26	34.05
Zinc silicates and carbonates	14. 62	17. 33	25. 69	17. 54	17.66

¹ Includes 364,000 tons of old tailings and slimes yielding 16 tons of galena concentrates and 5,840 tons of 58.3-percent sphalerite concentrates.

2 Includes 408,700 tons of old tailings and slimes yielding 5 tons of galena concentrates and about 6,200 tons

8 No tailings treated in 1939.

Mine production of lead and zinc in southeastern Missouri, 1935-39

	Lead co	ncentrates		oncen-	Metal content 1					
Year	(ge	alena)	trates (sphal- erite)		I	ead	Zine			
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
1935	131, 405 145, 575 209, 937 163, 500 210, 526	\$5, 638, 005 7, 278, 750 14, 360, 271 9, 040, 593 12, 339, 360	112 24	\$2, 016 720	96, 941 108, 422 153, 205 118, 870 153, 522	\$7, 755, 280 9, 974, 824 18, 078, 190 10, 936, 040 14, 431, 068	44 11	\$4, 400 1, 430		

¹ In calculating the metal content of the ores from assays allowance has been made for smelting losses of both lead and zinc. In comparing the values of ore and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.

Tenor of lead ore and concentrates in southeastern Missouri disseminated-lead district, 1935-39

	1935	1936	1937	1938	1939
Total lead ore short tons Galena concentrates in ore percent Zinc content of ore do	3, 082, 300	3, 418, 800	5, 012, 631	3, 668, 400	5, 127, 000
	4. 26	4. 26	4. 18	4. 45	4. 11
Average lead content of galena concentrates do Average value per ton of galena concentrates Average zinc content of sphalerite concentrates	73. 3	76. 0	74. 5	74. 8	74. 4
	\$42. 91	\$50. 00	\$68. 42	\$55. 29	\$58. 61
percent_Average value per ton of sphalerite concentrates		45. 0 \$18. 00	51. 6 \$30. 00		

The value of the silver, lead, and zinc shipped from Missouri mines was \$16,405,251 in 1939 compared with \$12,396,948 in 1938. The silver in 1939 (213,400 fine ounces) was recovered from lead refining. Lead ore yielded no copper. The quantity of recovered lead increased

of 59.8-percent sphalerite concentrates. 3 Includes 422,000 tons of old tailings yielding 40 tons of galena concentrates and 6,932 tons of 57.9-percent

sphalerite concentrates.
4 Includes 126,600 tons of old tailings and slimes yielding 1,420 tons of 55.8-percent sphalerite concentrates.

from 122,027 to 156,281 tons and that of recoverable zinc from 10,226

to 15,096 tons.

Shipments of lead concentrates from Missouri mines were 214,200 tons in 1939 compared with 167,734 tons in 1938; of the total, 210,526 tons were shipped from mines in southeastern Missouri compared with 163,500 tons in 1938, of which the recovered lead content was 153,522 and 118,870 tons, respectively. No sphalerite was shipped from southeastern Missouri in either year. Shipments of lead concentrates from southwestern Missouri mines in 1939 comprised 3,674 tons of galena, most of which came from mines in the Spring City,

Oronogo, and Webb City camps.

The total value given for all concentrates is based on actual receipts by the sellers and not on quoted prices. In 1939, as in 1938, the quoted price was that paid for medium quantities or carlots; small lots brought less. The quoted prices of all sphalerite concentrates in 1939 ranged from \$29 to \$44 a ton. The opening quotations were \$29; in the eleventh week the price increased to \$30, which held for 18 weeks. Early in July the price advanced to \$31 and early in August to \$31.50. During the second week of August it jumped to \$40 a ton, in the third week of September to \$42, and in the last week of September to \$44, the highest quotation of the year. This price held steadily until the second week of December, when there was a sharp break to \$39.50. This price prevailed until the end of 1939. No prices were quoted in 1939 for zinc silicate or lead carbonate. The price quotation for 80-percent galena concentrates for the first 3 weeks of 1939 was \$54.38 a ton; early in February it fell to \$52.94. There were only slight changes in weekly price from March until June. The price in July was \$55.18 and in the first week of August jumped to \$58.06, where it was steady for 5 weeks. The highest price of the year (\$64.54) was reached in the second week of September, and it held until the end of December. The average price paid for zinc silicate in 1939 was about \$17.60 a ton.

The foregoing quoted prices apply to all mines in the Tri-State or Joplin region of Kansas, Missouri, and Oklahoma.

Of the 413,139 tons of zinc concentrates shipped from the Tri-State region in 1939, it is estimated that flotation concentrates comprised 199,249 tons; flotation lead concentrates are estimated at 11,500 tons. The extension of flotation has increased the zinc content of the sphalerite concentrates, but the average grade of galena concentrates has decreased. Most of the galena from jigs and tables has a lead content of 80 percent (and above), but the flotation galena does not average as much as 70 percent lead. The small quantity of galena produced at tailing mills is generally of low grade for Missouri type, the lead content averaging 35 to 69 percent. About 43 large and small mines were worked in southwestern Missouri in 1939; only 13 mills were operated.

Until about September 1939 small mine development and churn drilling were handicapped by low prices for ore and scarcity of capital for investment. Few ore bodies of consequence were located, and most of the ore treated came from old mines that had been reopened. Drilling at Aurora was not very successful, and little ore came from the Alba-Neck City camp. Old mines were reopened at Racine, Seneca, and Duenweg. Mines near Oronogo and Stark City yielded

a large part of the concentrates from southwestern Missouri. The Eagle-Picher Mining & Smelting Co. continued shipments from Stark City to the Central mill at Cardin, Okla., and a new shaft was sunk on the Dungy land. Operations were continued at the old Oronogo Circle open pit by means of power shovels and trucks. The mining was done by the Oronogo Mutual Mining Co., and the crude ore was milled at the American mill (800 tons daily). Other shipments to this mill were made from the Wingfield, Red Dog, Lucky Tiger, and Hickam mines. The Oronogo Circle, in addition to sending ore to the American mill, moved more than 125,000 tons of waste from the open pit where operations were limited to about the 100-foot level. Eventually operations will extend to the old workings below 220 feet. The F and M Mining Co. operated several shafts and its 200-ton mill throughout 1939. The Playter custom mill at Waco received crude ore from various camps, in addition to the mines at Waco. Other producers of lead or zinc concentrates in 1939 were the Burton Mining Co., Boulder Lead & Zinc Co., Eunamar Mining Co., Little Six Mining Co., and Deer Park Mining Co., all near Joplin; the Mary Arnold Mining Co. at Ozark; L. Eakins (custom mill) at Webb City; Midwestern Mining & Milling Co. at Wentworth; Ritter Mining Co. at Waco; Pilant & Ogle and R. Nunn & Co. at Granby; and Lemons Mining Co. at Seneca. About 66,000 tons of crude ore from Missouri mines were shipped to the Central mill in Oklahoma in 1939.

The lead ore (5,127,000 tons) mined in southeastern Missouri in 1939 yielded 4.11 percent in galena concentrates averaging 74.4 percent lead. The quantity of ore mined and milled was 1,458,600 tons more than in 1938 but the recovery slightly less. The mines and mills of the St. Joseph Lead Co., with a daily capacity of 20,500 tons, were operated at a much higher rate than in 1938, and the Mine La Motte Corporation mill treated 33 percent more ore than in 1938. The Annapolis mine and mill in Iron County were worked part of the year by the Basic Metals Mining Co. The Ozark Lead Co. on the Fleming tract at Fredericktown had a much larger output than in 1938; its crude ore is treated at the Clark & Hallock mill. Of the 210,526 tons of concentrates made in southeastern Missouri, 94,488 tons were flotation galena concentrates compared with 73,884 tons No sphalerite or zinc carbonate concentrates were shipped from southeastern Missouri in 1939, and less than 300 tons of galena were purchased and shipped by buyers of small lots recovered in shallow workings.

Oklahoma.—Events in 1939 of greatest importance to Oklahoma mine operators and others in the Tri-State lead and zinc region were the war in Europe, which caused prices of sphalerite concentrates to advance rapidly in September; the realization in December that Europe had no urgent need of imported zinc metal or concentrates; and the increase in imports of metal concentrates from Mexico and South America fostered by the lower import tariff on zinc and by lack of facilities to ship zinc to its normal market, which especially affected the Tri-State region.

Operators of mines in the Tri-State area have long been aware that health and housing conditions in the region are not perfect, although much improvement has been made in recent years. The mine management had studied various phases of health and safety in the mines and plants and had complied with regulations as well as with procedures

beyond the requirements of law in protecting the health and safety of the workers in mines and mills. However, the operators have very little control over housing conditions but have contributed liberally to improvement of health and hospital facilities. Undoubtedly some dust disease still exists in the region, but most of the cases of silicosis originated under conditions of 20 or more years ago, and few new cases occur with modern equipment and rules. The operators do not believe that dust from tailing piles or other sources has caused silicosis to workers above ground or to travelers on highways; moreover, they think that while some poor housing facilities can be found, this condition exists in almost every community, large or small, and they are very willing to assist in every way Federal, State, and local authorities to remedy all objectionable features.

Several reports on silicosis have been published, including a recent

article by H. C. Chellon.3

Nearly all the tailings treated at mills in the Tri-State region (7,274,000 tons in 1939) are moved by truck; in addition, a large part of the crude ore is transported by truck, including part of that treated at custom or central mills. The average truck haul is said to be 2 miles, and the cost, of course, varies with the distance the material is moved. Some data relating to the increased quantity hauled by truck in the Tri-State area have been published by Netzeband.⁴

About 23 mills of various sizes were operating in Oklahoma at the end of 1939. At least 100 operators, large and small, did not mill their crude ore but shipped it to custom mills or central mills. The Tri-State Zinc & Lead Ore Producers Association reported at the end of the year that stocks at mines in the Tri-State region totaled 12,022 tons of sphalerite and 491 tons of galena. Stocks of sphalerite increased 3,600 tons compared with December 31, 1938, but stocks of galena decreased nearly 8,000 tons.

A large part of the blende concentrates from the tailing mills and from the central mills is a flotation product, but the tailing mills produce only a small quantity of low-grade galena. The proportion of flotation sphalerite at the large central mills has shown a substantial increase. Except at a few large mills there has been no great

increase in flotation galena concentrates.

About 1,871,000 tons more old tailings than crude ore were treated in Oklahoma in 1939, and the tailings yielded about 21 percent of the

total sphalerite.

There was no production from the Peoria or Davis camps in 1939 or 1938. Mines near Commerce were operated part of the year, and the Midas, Mispah, Crabapple, and Lost Trail leases produced concentrates at small mills or shipped crude ore to custom mills. The shippers in the Sunnyside-Quapaw area were the Atlas Milling Co., Century Zinc Co. (Scott), and St. Louis Smelting & Refining Co. (No. 4).

In the central part of the Oklahoma section of the Tri-State region, the Lawyers Lead & Zinc Co. and Skelton Lead & Zinc Co. ran partly on ore in 1939 and partly on old tailings. The following mills ran tailings only: Rialto Mining Corporation, Cardin Mining & Milling Co. (Nos. 2 and 3), Eagle-Picher Mining & Smelting Co.

³ Chellon, H. C., Dust Count Technique in Tri-State Mines: Eng. and Min. Jour., December 1939, pp. 29-33.

⁴ Netzeband, W. F., Truck Transport Serves Tri-State Mining: Eng. and Min. Jour., January 1940, p. 34.

(Beaver), Britt Mining Co., Tri-State Zinc, Inc. (Sooner and Ottawa), Cortez King Brand Mining Co. (New York), and C. Y. Semple

(Martin).

The Éagle-Picher Mining & Smelting Co. treated more crude ore in 1939 than any other Tri-State operator; among company-operated mines shipping to the Central mill were the Admiralty, Blue Goose, Crystal, Grace Walker, How-bah-wah-tah 1, 2, and 3, La Salle, Southside, See Sah, and Swift. Other large shippers to the Central mill were the Davis Big Chief Mining Co., Craig Mining Co., Cameron & Henderson, J. Dryer, Childress Mining Co. (Acme), Romo Mining Co., Gray Wolf Mining Co., Needmore Mining Co., Carpenter Mining Co., Commerce Tulsa Mining Co., Imperial Mining Co., W. H. Mining Co., and Ottawa Mines Corporation. The Bird Dog 800-ton mill received ore from many of the old Commerce leases but has since been used to crush crude ore for the Central mill. Other large operations in Oklahoma included Evans Wallower Zinc, Inc. (4 and 7), Oklahoma Interstate Mining Co. (Woodchuck and Townsite mines), United Zinc Smelting Corporation, Kansas Exploration Co. (Ritz), Guaranty Mining & Royalty Co., Indian Mining & Milling Co., Lulu Belle Mining Co., Baird Mining Co., Blue Ribbon Mining Co., Lavrion Mining Co., Federal Mining & Smelting Co. (Gordon), and Mission Mining & Royalty Co. The Guaranty mill treated ore from the Sherida, Sante Fe, and Blue Ribbon mines; the Gordon mill, from seven or eight mines of the Federal Mining & Smelting Co.; and the Beck No. 2 mill, from numerous mines but principally from the Dobson, Pioneer, and St. Louis No. 10 mines.

The total quantity of crude ore milled at the Central mill in 1939 was 1,881,079 tons, and the total ore milled at the See Sah, Bird Dog, and Blue Goose mills was 567,100 tons. About 72 percent of the sphalerite and 36 percent of the galena milled at the Central mill were flotation products. Numerous improvements were made at the Central mill in 1939, and the plant operates smoothly with a capacity up to 10,000 tons daily. A large cone crusher has been installed at the foot of the tailings conveyor to reduce the size of the cone-plant tailings product to meet commercial demands, which are mainly for the smaller sizes of material. Some of the old Commerce mills may be operated occasionally, but most of the Eagle-Picher Mining &

Smelting Co. crude ore will be treated at its Central mill.

Mine shipments of lead and zinc in Oklahoma, 1935-39

	Lead concentrates (galena)			ncentrates	Metal content ¹				
Year		(spii	alerite)	Lead		Zine			
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1935 1936 1937 1938 1939	30, 790 34, 833 39, 446 27, 608 36, 422	\$1, 329, 656 1, 735, 732 2, 729, 690 1, 446, 058 2, 189, 077	246, 131 244, 740 255, 839 208, 484 258, 214	\$7,047,052 7,628,448 10,428,354 6,390,422 8,937,554	23, 405 25, 427 29, 840 21, 004 27, 720	\$1, 872, 400 2, 339, 284 3, 521, 120 1, 932, 368 2, 605, 680	129, 763 129, 175 135, 696 112, 924 140, 379	\$11, 419, 144 12, 917, 500 17, 640, 480 10, 840, 704 14, 599, 416	

¹ In calculating the metal content of the ores from assays allowance has been made for smelting losses of both lead and zinc. In comparing the values of ore and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.

Tenor of lead and zinc ore, old tailings, and slimes milled and concentrates produced in Oklahoma, 1938-39

	19	38	1939		
	Crude ore	Old tailings and slimes	Crude ore	Old tailings and slimes	
Potal ore, etc., milledshort tons_	3, 072, 400	4, 249, 000	3, 465, 900	5, 337, 000	
Fotal concentrates shipped: dodo	27, 208 167, 250	400 41, 234	35, 820 203, 095	602 55, 119	
Ratio of concentrates to ore, etc.: Leadpercent	0. 91	0. 01	0.80	0. 01	
Zinedo Metal content of ore, etc.:	5. 30	. 97	5. 97	1.03	
Leaddododo	. 71 3. 19	. 58	. 62 3. 64	.01	
Average lead content of galena concentratesdo Average zinc content of sphalerite concentratesdo	78. 0 60. 2	52. 0 60. 1	78. 1 61. 1	51.7 59.5	
Average value per ton: Galena concentrates	\$52. 62 30. 61	\$35.79 30,83	\$60. 52 34. 96	\$35. 10 33. 33	

Mine production of lead and zinc concentrates in Oklahoma, 1891-1939, by districts

	Lead con (mainly	centrates galena)	Zinc concentrates				
District			Spha	Zinc silicate and carbonate			
	Short tons	Value	Short tons	Value	Short	Value	
Davis Miami ¹ Peoria	1, 277, 003 2, 639	\$103, 959, 345 127, 163	7, 339, 697 220	\$27, 399 286, 292, 623 8, 289	899 164 3, 120	\$24, 592 2, 692 79, 649	
	1, 279, 642	104, 086, 508	7, 340, 475	286, 328, 311	4, 183	106, 938	

¹ Including Quapaw and Sunnyside.

Wisconsin.—The output of galena concentrates in Wisconsin in 1939 was 74 tons more than in 1938; shipments of sphalerite increased substantially, and the recovered zinc rose 3,831 tons. All the low-grade concentrates made were re-treated at flotation plants. The Vinegar Hill Zinc Co. worked only the Winskill-Petersen mine. Low-grade concentrates were made at the Winskill mill and then sent to the all-flotation plant. Small lots of ore and concentrates were shipped to these plants from at least 50 small mines near Shullsburg, New Diggings, Linden, Leadmine, Platteville, Highland, Hazel Green, Dodgeville, Cuba City, and Benton; the shippers included the McKinley Mining Co., which did not operate its mill in 1939. The Badger mine at Linden was operated part of the year by W. E. Faithorn, and lead and zinc concentrates were made at the flotation plant built several years ago by the Badger Zinc Co.

Mine production of lead and zinc in Wisconsin, 1935-39

	Tand oon	centrates	Zinc con	centrates	Metal content ¹				
Year	Dead con	contrates	(sphalerite)		Lead		Zinc		
	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	
1935	398 1, 277 1, 590 493 567	\$16, 963 61, 198 109, 468 21, 050 29, 327	33, 027 38, 276 37, 060 23, 895 310, 169	\$379, 262 400, 899 444, 531 2 121, 180 3 355, 915	286 904 1,091 320 388	\$22, 880 83, 168 128, 738 29, 440 36, 472	8, 923 8, 126 6, 938 2, 073 5, 904	\$785, 224 812, 600 901, 940 199, 008 614, 016	

¹ In calculating the metal content of the ores from assays allowance has been made for roasting and smelting losses of both lead and zinc. In comparing the values of ores and metal it should be borne in mind that the value given for the ore is that actually received by the producer, whereas the value of the lead and zinc is calculated from the average price for all grades.

² The zinc concentrates shipped in 1938 were a flotation product of raw concentrates roasted at Cuba City, Wis. No raw concentrates were shipped in 1938; about 13,000 tons were produced.

³ Virtually all the raw concentrates in 1939 were milled at the Winskill-Petersen mill and re-treated at the flotation plant of the Vinegar Hill Zinc Co., yielding 10,169 tons of 60-percent zinc concentrates. No raw concentrates were shipped in 1939; about 32,360 tons were produced.

Tenor of lead and zinc ore and concentrates produced in Wisconsin, 1935-39

	1935	1936	1937	1938	1939
Total oreshort tons_ Total concentrates in ore:	236, 000	284, 800	285, 000	58, 700	213, 400
Leadpercent	0. 17	0.45	0.56	0,84	0, 26
Zinedodo	14.00	13. 44	13.00	¹ 22. 15	² 15. 15
Leaddodo	. 12	. 32	. 29	. 55	. 19
Zincdo	4.85	3. 61	3. 12	3. 91	3. 07
Average lead content of galena concentratesdo Average zinc content of sphalerite concentrates	73. 3	72. 2	70. 1	67. 0	70. 0
Average value per ton: percent	34. 6	27.0	24.0	18.5	20. 2
Galena concentrates	\$42.62	\$48.08	\$68.85	\$42.70	\$51.72
Sphalerite concentrates	11.48	10. 47	11.99	8 31. 11	4 35. 00

¹ The zinc concentrates shipped in 1938 (3,895 tons) were a flotation product or raw concentrates roasted at Cuba City, Wis. No raw concentrates were shipped in 1938; about 13,000 tons, averaging 18.5 percent zinc, were produced.

2 All sphalerite shipped in 1939 (10,169 tons) was a flotation product. No raw concentrates were shipped in 1939; 32,360 tons, averaging 20.2 percent zinc, were produced.
 2 Value is that of roasted or flotation concentrates shipped. No value can be assigned for zinc concentrates

prior to reasting or re-treatment by flotation.

4 Value is that of flotation concentrates shipped, which averaged 60 percent zinc.

The sphalerite concentrates averaged before treatment by flotation about 20.2 percent zinc, and the finished product shipped in 1939 to smelters (10,169 tons) averaged about 60 percent zinc. The flotation lead concentrates made totaled 318 tons.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN IDAHO

(MINE REPORT)

By T. H. MILLER AND PAUL LUFF

SUMMARY OUTLINE

Page	
Colonistion of value of metal production 309	Metallurgic industry 31: Review by counties and districts 31: Coeur d'Alene region 33:

The total value of the metal output from mines in Idaho was \$29,-794,144 in 1939 compared with \$29,028,103 in 1938, an increase of nearly 3 percent. The total value of each metal except silver increased; zinc increased \$718,216 and gold \$460,215, but silver declined \$588,404. Production of gold in Idaho in 1939 (116,662 fine ounces) was the largest since 1895; the gain over 1938 was due to increased output from lode mines as the output from placers declined. The quantity of silver decreased 9 percent and that of lead 1 percent; copper increased 18 percent in quantity and zinc 8 percent. Most of the decrease in total output of silver was at the Sunshine mine, and most of the increase in that of zinc was at the Morning mine, both in the Coeur d'Alene region, chief metal-producing area

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead ³	Zinc *
1935	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0.71875 .7745 .7735 4.646+ 8.678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046	Per pound \$0.044 .050 .065 .048 .052

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.
² 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.
² Yearly average weighted price of all grades of primary metal sold by producers.
² \$0.64646464.

Mine production of gold, silver, copper, lead, and zinc in Idaho, 1935-39, and total, 1863-1939, in terms of recovered metals

Year	Mines pro- ducing		Ore (short	Gold (lode	and placer)	Silver (lode and placer)		
	Lode Placer	tons)	Fine ounces	Value	Fine ounces	Value		
1935 1936 1937 1938 1939	289 281 347 305 362	1, 079 828 741 463 465	1, 520, 945 1, 807, 530 2, 075, 402 1, 999, 147 2, 108, 445	83, 823. 06 80, 291. 40 81, 861. 00 103, 513. 00 116, 662. 00	\$2, 933, 807 2, 810, 199 2, 865, 135 3, 622, 955 4, 083, 170	10, 240, 953 14, 537, 530 19, 587, 766 18, 993, 676 17, 222, 370	\$7, 360, 685 11, 259, 317 15, 151, 137 12, 278, 740 11, 690, 336	
1863-1939			(1)	7, 332, 862. 00	159, 789, 573	435, 350, 307	297, 862, 558	

Year	Coj	pper	Le	ead	Zi		
1 ear	Pounds	Value	Pounds	Value	Pounds	Value	Total value
1935 1936 1937 1938 1939	2, 095, 867 2, 954, 000 4, 464, 000 4, 278, 000 5, 032, 000	540, 144 419, 244 523, 328	158, 040, 250 182, 678, 000 207, 422, 000 184, 354, 000 181, 962, 000	\$6, 321, 610 8, 403, 188 12, 237, 898 8, 480, 284 8, 552, 214	62, 105, 568 98, 200, 000 108, 398, 000 88, 060, 000 95, 098, 000	\$2, 732, 645 4, 910, 000 7, 045, 870 4, 226, 880 4, 945, 096	\$19, 522, 704 27, 654, 472 37, 840, 184 29, 028, 103 29, 794, 144
1863-1939	2 90, 789	28, 701, 317	2 5, 308, 306	565, 487, 466	² 723, 682	98, 034, 957	1, 149, 875, 871

¹ Figures not available.

Gold and silver produced at placer mines in Idaho, 1935-39, in fine ounces, in terms of recovered metals

Year	Sluicing and hydraulic		Drift mining		Dragline and dry-land dredges ¹		Floating (bucket) dredges		Total	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
1935 1936 1937 1938 1939	2 8,134. 07 2 8,282. 46 4, 286. 00 4, 987. 00 5, 443. 00	² 2, 641 ² 1, 473 1, 399 969 1, 638	(2) (2) 433. 00 410. 00 196. 00		49. 15 6, 859. 00 17, 448. 00 14, 051. 00	19 1,652 6,202 5,721	23, 616, 96 26, 098, 19 28, 962, 00 31, 234, 00 28, 973, 00	9, 544 9, 661 9, 171 10, 100 7, 490	31, 751, 03 34, 429, 80 40, 540, 00 54, 079, 00 48, 663, 00	12, 185 11, 153 12, 287 17, 328 14, 875

¹ A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."
² Figures for sluicing and hydraulic include those for drift mining.

Gold.—The output of recoverable gold in Idaho was 13 percent greater in 1939 than in 1938; it was the largest since 1895, when 125,517 ounces were produced. The output of gold from lode mines increased 37 percent over 1938 and was the largest since 1901; most of the increase came from gold ore and gold-silver ore. The output of gold from placers declined 10 percent, owing to the decreased output of gold from dredging. Nearly 54 percent of the State gold output in 1939 came from siliceous ore and 37 percent from all types of dredging operations. Eight floating (bucket) dredges treated 6,626,356 cubic yards of gravel and recovered 28,973 ounces of gold, a decrease of 2,261 ounces from 1938; 6 dragline dredges and 17 dry-land dredges treated 2,094,600 cubic yards of gravel and recovered 14,051 ounces of gold, a decrease of 3,397 ounces. Of the total placer gold, 85 percent came

² Short tons.

from the Boise Basin, Warren, Newsome, Carson, Elk City, Pierce, Orogrande, and Riggins districts where dredges were operated. Of the total lode gold, 89 percent came from the Warm Springs, Middle Boise, Burgdorf-Marshall Lake, Yellow Pine, Mineral Hill, Carson, Boise Basin, Ramey Ridge, Ten Mile, and Yankee Fork districts and the Coeur d'Alene region. Substantial increases in output of gold were recorded in the Warm Springs, Burgdorf-Marshall Lake, Middle Boise, Yellow Pine, Yankee Fork, and Mineral Hill districts and the Coeur d'Alene region, but large decreases in the Boise Basin, West View (Montour). Ten Mile, and Carson districts.

View (Montour), Ten Mile, and Carson districts.
Snyder Mines, Inc., operating lode property near Ketchum, was the largest gold producer in Idaho in 1939. It was followed by the Fisher-Baumhoff Co., which operated two bucket dredges near Centerville; the Golden Anchor mine at Burgdorf; the Boise-Rochester property at Atlanta; the Warren Dredging Co. at Warren; the Yellow

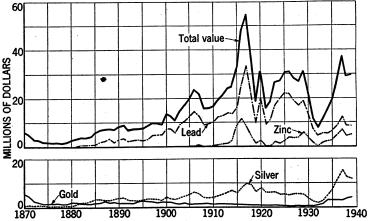


FIGURE 1.—Value of mine production of gold, silver, lead, and zine and total value of gold, silver, copper, lead, and zine in Idaho, 1870–1939. The value of copper has been less than \$2,000,000 annually except in a few years.

Pine mine at Stibnite; Newsome Creek Placers near Golden; Idaho Canadian Dredging Co. (formerly Moores Creek Dredging Co.) at Idaho City; Consolidated Gold Mines, Inc., at Murray; De Lamar Milling Corporation at De Lamar; and Gold Producers, Inc., at Shoup.

Silver.—The output of recoverable silver in Idaho was 17,222,370 fine ounces in 1939, a decrease of 9 percent from 1938. Production from the Sunshine mine declined from 11,352,154 to 9,414,514 ounces; there were also large decreases in silver output from the Polaris, Hecla, and Crescent mines, but increases were reported at the Morning and Mineral Point properties. The Coeur d'Alene region produced 88 percent of the State total silver in 1939; the rest came chiefly from the Warm Springs, Bayhorse, Carson, Port Hill, Pend d'Oreille, Blue Wing, Burgdorf-Marshall Lake, and Boise Basin districts. Silver ore yielded 65 percent of the State total silver; zinc-lead ore, 24 percent; lead ore, 5 percent; and gold-silver ore, 4 percent. The yield of silver

from silver ore decreased 2,358,552 ounces and that from lead ore also declined, but the output from zinc-lead ore increased 508,520 ounces and that from gold-silver ore, 632,251 ounces.

Nine mines—the Sunshine, Bunker Hill & Sullivan, Triumph, Polaris, Morning, Hecla, Crescent, Page, and Mineral Point—produced 92 percent of the silver output of the State in 1939. All these mines,

except the Triumph, are in the Coeur d'Alene region.

Copper.—The output of recoverable copper in Idaho was 5,032,000 pounds in 1939, an increase of 18 percent over 1938. The gain resulted chiefly from increased output of silver-copper ore from the Mineral Point mine and from shipments of copper ore from the Empire (Mackay Metals) mine. Silver ore (chiefly from mines in the Coeur d'Alene region) yielded nearly 67 percent of the State total copper; zinc-lead ore, 20 percent; gold ore, 6 percent; and copper ore and lead ore together, 7 percent.

The Sunshine mine produced nearly half of the total copper output of the State in 1939; most of the remainder came from the Mineral Point, Polaris, Copper Queen, Hecla, Bunker Hill & Sullivan, Triumph,

Morning, and Empire properties.

Lead.—The output of recoverable lead in Idaho was 181,962,000 pounds in 1939, a decline of 1 percent from 1938, but the total value increased slightly in consequence of the higher average sales price. The marked decrease in output of lead from the Hecla, Triumph, and Bunker Hill & Sullivan mines more than offset an increase of about 12,000,000 pounds in lead from the Morning mine. Nearly 90 percent of the State total lead came from the Coeur d'Alene region and 6 percent from the Warm Springs district; considerable lead was produced also in the Port Hill, Bayhorse, Texas, and Pend d'Oreille districts. Zinc-lead ore from the Coeur d'Alene region and the Warm Springs district yielded 87 percent of the State total lead; lead ore, chiefly from the Coeur d'Alene region, yielded 11 percent. Lead recovered from lead ore decreased 23,515,438 pounds, but that from zinc-lead ore increased 18,770,583 pounds.

The combined lead output in 1939 of the three largest producers—Morning, Bunker Hill & Sullivan, and Hecla—was 135,073,600 pounds (134,740,600 pounds in 1938), or 74 percent of the State total; other large producers were the Page, Triumph, Star, Blackhawk, Idaho-Continental, Jack Waite, Gold Hunter, and Clayton properties.

Zinc.—The output of recoverable zinc in Idaho was 95,098,000 pounds in 1939, an increase of 8 percent over 1938. The gain was due entirely to increased output of zinc from mines in the Coeur d'Alene region, as production in the Warm Springs district declined 9,213,480 pounds. The largest increase (8,593,700 pounds) in zinc output was recorded from the Morning mine, but substantial increases were made also at the Hecla and Bunker Hill & Sullivan properties. More than 84 percent of the State total zinc in 1939 came from the Coeur d'Alene region, and nearly all the remainder came from the Warm Springs district. Zinc-lead ore concentrated yielded virtually all the zinc in 1939; only 78,114 pounds of recoverable zinc came from crude ore shipped to smelters.

Three mines—the Morning, Bunker Hill & Sullivan, and Triumph—produced 73 percent of the State total zinc in 1939; the rest came

chiefly from the Star, Hecla, Page, and Frisco mines.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Idaho in 1939, by counties, in terms of recovered metals

	Mines p	roducing	Gold (lode a	nd placer)	Silver (lode	and placer)
County	Lode	Placer	Fine ounces	Value	Fine ounces	Value
AdaAdams	2 2	8 2	621 543 3	\$21, 735 19, 005 105	37 361	\$25 24 5
Benewah Blaine Boise Bonner	30 53 7	1 2 70	13, 539 21, 973 38	473, 865 769, 055 1, 330	1, 211, 925 49, 737 69, 630	822, 640 33, 761 47, 264
Bonneville	4 4 12	4 5	92 67 7 304	3, 220 2, 345 245 10, 640	68, 254 1, 211 5, 065	46, 330 822 3, 438
Canyon Cassia Clark	1 1	2	642	22, 470 70	47 106 31	32 72 21
Clearwater Custer Elmore		34 11 33 5	2, 101 1, 976 12, 352 151	73, 535 69, 160 432, 320 5, 285	216, 623 39, 734 2, 307	279 147, 041 26, 971 1, 566
Gooding Idaho Jerome	65	3 134 7	36, 031 179	1, 261, 085 6, 265	58, 441 6	39, 669 4
Latah Lemhi Lewis Nez Perce	44	6 48 3 8	6, 907 31 94	490 241, 745 1, 085 3, 290	95, 837 3 19	65, 053 2 13
Owyhee Power Shoshone	35 34	17 8 18	6, 548 32 5, 928	229, 180 1, 120 207, 480	172, 073 15, 204, 934	116, 801 10, 320, 925
Twin Falls Valley Washington	6	11 21 4	6, 297 39	4, 620 220, 395 1, 365	17, 537 8, 038	11, 904 5, 456
Total, 1938	362 305	465 463	116, 662 103, 513	4, 083, 170 3, 622, 955	17, 222, 370 18, 993, 676	11, 690, 336 12, 278, 740

G	Cop	per	Lea	d	Ziı	1C	Total
County	Pounds	Value	Pounds	Value	Pounds	Value	value
AdaAdamsBenewah	14, 154	\$1, 472					\$21, 760 20, 722 105
Blaine	242, 798	25, 251	11, 188, 660	\$525, 867	14, 934, 673	\$776, 603	2,624,226
Boise Bonner	2, 721 6, 096	283 634	90, 021 1, 205, 958	4, 231 56, 680	27, 596	1,435	807, 330 107, 343
Bonneville		001	1, 200, 000				3, 220
Boundary	17,750	1,846	2, 249, 255	105, 715			156, 236
Butte	1, 904 1, 029	198 107	234 16, 575	11 779	5,769	300	1, 276 15, 264
Camas		101	10,010				22, 502
Cassia		27	8, 085	380			549
Clark			5, 915	278			299 73, 814
Custer	217, 942	22,666	2, 176, 361	102, 289			341, 156
Elmore	3,846	400	42	2			459, 693
Gem	356	37	3, 235	152			7, 040 665
Gooding Idaho		2, 108	18, 106	851			1,303,713
Jerome					1		6, 269
Latah			1, 567, 915	73, 692			490 418, 224
Lemhi Lewis	362, 827	37, 734	1, 567, 915	75,092			1, 087
Nez Perce							3,303
Owyhee			21	1			345, 982
PowerShoshone		430, 156	163, 397, 979	7, 679, 705	80, 129, 962	4, 166, 758	1, 120 22, 805, 024
Twin Falls		100, 100					4,622
Valley	779	81	27, 170	1, 277			233, 657
Washington	3, 154	328	6, 468	304			7,453
m . 1 .000	5, 032, 000	523, 328	181, 962, 000	8, 552, 214	95, 098, 000	4, 945, 096	29, 794, 144 29, 028, 103
Total, 1938	4, 278, 000	419, 244	184, 354, 000	8, 480, 284	88, 060, 000	4, 226, 880	28, 028, 103

Gold and silver produced at lode mines in Idaho in 1939, by counties, in terms of recovered metals

County	Ore sold or treated	Gold	Silver	County	Ore sold or treated	Gold	Silver
Ada Adams Adams Blaine Boise Bonner Boundary Butte Camas Cassia Clark Clearwater	Short tons 28 401 114, 990 17, 299 12, 386 15, 847 73 509 13 15 2, 758	Fine ounces 27 507 13, 536 3, 258 38 67 7 288 2	Fine ounces 3 358 1, 211, 925 45, 369 69, 630 68, 254 1, 211 5, 062 106 31 78	Custer Elmore Gem Idaho Lemhi Owyhee Shoshone Valley Washington Total, 1938	Short tons 41,752 57,377 264 32,340 97,506 46,955 1,611,068 56,695 169 2,108,445 1,999,147	Fine ounces 1, 817 11, 803 108 15, 417 5, 730 3, 551 5, 350 6, 130 6 67, 999 49, 434	Fine ounces 215, 954 39, 628 2, 288 53, 183 95, 728 168, 359 15, 204, 831 17, 402 8, 035 17, 207, 495 18, 976, 348

Gold and silver produced at placer mines in Idaho in 1939, by counties, in fine ounces, in terms of recovered metals

County	Sluici hyd	ing and raulic	Drift :	mining	dry	ine and -land lges 1	(bu	ating cket) dges	To	tal
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
AdaAdamsBenewahBlaine	31 36 3	3 3			563	31			594 36 3	34
Boise	839 92 16	203	52	12	37	13	17, 787	4, 140	18, 715 92	4, 368
Canyon Clearwater Custer Elmore Gem	203 91 323 43	42 629 89 19			637 20 68 226	47 6 40 17	1, 521	285	16 642 1,744 159 549 43	333 669 106
Gooding Idaho Jerome Latah	19 1, 634 179 14	326 6	105	14	9, 210	1,853	9, 665	3, 065	20, 614 179	5, 258
Lembi Lewis Nez Perce	1, 086 31 94	99 3 19	16		75	10			14 1, 177 31 94	109 3 19
Owyhee Power Shoshone	145 32 198	83	17		2, 852 363	3, 631			2, 997 32	3,714
Twin Falls Valley Washington	132 167 27	3 75 3	6						578 132 167 33	103 3 75 3
Total, 1938	5, 443 4, 987	1,638 969	196 410	26 57	2 14,051 17,448	² 5, 721 6, 202	³ 28,973 31, 234	³ 7, 490 10, 100	48, 663 54, 079	14, 875 17, 328

A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."
 Recovered from 2,094,600 cubic yards of gravel treated by 6 dragline and 17 dry-land dredges.
 Recovered from 6,626,356 cubic yards of gravel treated by 8 connected-bucket dredges.

MINING INDUSTRY

Increased activity at gold properties in Idaho in 1939, which was centered chiefly at mines near Burgdorf, Atlanta, Stibnite, Shoup, Murray, and De Lamar, resulted in the largest output of gold in the State since 1895 and the largest output of gold from lode mines since 1901. However, production of silver and lead declined, despite gains in average sales price of both metals in 1939. The average sales

price of zinc increased from 4.8 to 5.2 cents a pound, resulting in a gain of 8 percent in quantity and 17 percent in total value of zinc output over 1938. Production of copper rose 18 percent in quantity and 25 percent in total value. There was a substantial increase in output of zinc-lead ore from mines in the Coeur d'Alene region, but a decrease from the Triumph property near Ketchum in the Warm Springs district.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Ida	ho in 1939, with	content in terms of	recovered metals
----------------------------	------------------	---------------------	------------------

Source	Mines produc- ing	Ore	Gold	Silver	Copper	Lead	Zinc
Dry and siliceous gold ore Dry and siliceous gold-silver ore Dry and siliceous silver ore	223 23 39	Short tons 245, 001 88, 044 451, 381	Fine ounces 48, 646 13, 261 633	Fine ounces 159, 570 722, 943 11, 241, 260	Pounds 316, 470 13, 544 3, 355, 093	Pounds 181, 006 3, 101, 003 1, 332, 657	Pounds
Copper oreLead oreZinc oreZinc-lead oreZinc-lead ore	1 276 11 68 3 21	784, 426 1, 416 125, 964 144 1, 196, 495	62, 540 600 661 6 4, 192	12, 123, 773 44, 278 824, 618 1, 754 4, 213, 072	3, 685, 107 226, 600 122, 971 1, 448 995, 874	4, 614, 666 17, 277 19, 150, 421 4, 443 158, 175, 193	78, 114 95, 019, 886
Total, lode mines Total, placers	1 362 465	2, 108, 445	67, 999 48, 663	17, 207, 495 14, 875	5, 032, 000	181, 962, 000	95, 098, 000
Total, 1938		2, 108, 445 1, 999, 147		17, 222, 370 18, 993, 676	5, 032, 000 4, 278, 000		95, 098, 000 88, 060, 000

¹ A mine producing more than 1 class of ore is counted but once in arriving at total for all classes.

METALLURGIC INDUSTRY

Of the 2,108,445 tons of ore produced in 1939 in Idaho, 1,919,136 tons (91 percent) were treated at concentration plants, 121,898 tons (6 percent) were treated at amalgamation and cyanidation mills, and 67,411 tons (3 percent) were shipped crude to smelters.

Ore treated at concentration plants in 1939 comprised 120,940 tons of gold ore, 45,393 tons of gold-silver ore, 446,656 tons of silver ore,

109,652 tons of lead ore, and 1,196,495 tons of zinc-lead ore.

Ore treated at straight amalgamation mills in 1939 comprised 2,594 tons, yielding 737 ounces of gold and 313 ounces of silver. Ore treated at combined amalgamation and concentration plants comprised 108,886 tons, yielding 17,271 ounces of gold and 9,508 ounces of silver in amalgamation bullion and 1,572 tons of concentrates yielding 9,912 ounces of gold and 84,330 ounces of silver. About 700 pounds of quicksilver were consumed at amalgamation plants in Idaho.

Ore (10,418 tons) treated at straight cyanidation plants in 1939 contained 1,790 ounces of gold and 4,000 ounces of silver, indicating cyanide extraction of 87 percent of the gold and 77 percent of the silver; the plants used about 24,000 pounds of sodium cyanide (91-percent grade), 3,500 pounds of zinc dust, 117,800 pounds of lime, and 185 pounds of lead acetate.

The lead smelter and refinery of the Bunker Hill & Sullivan Mining & Concentrating Co. at Bradley were operated continuously in

1939 on ore and concentrates, chiefly from the Bunker Hill & Sullivan, Hecla, Sunshine, Polaris, and Crescent mines. During the fall the company began construction of an antimony-bismuth plant designed to handle ores and concentrates from the "Dry-Belt" section of the Coeur d'Alene region, eliminating these metals from the regular lead-smelting operations; the new plant was put in operation early in 1940. The electrolytic zinc plant of the Sullivan Mining Co. near Bradley operated throughout the year at a normal rate, chiefly on zinc concentrates from the Bunker Hill & Sullivan, Hecla, and Star mills.

Details of the treatment of all ores produced in Idaho in 1939 are given in the tables that follow.

Mine production of metals in Idaho in 1939, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zinc
Ore amalgamated	Short tons 111, 480	Fine ounces 18, 008	Fine ounces 9, 821	Pounds	Pounds	Pounds
Ore cyanided Concentrates smelted Ore smelted Placer	10, 418 246, 821 67, 411	1, 559 33, 159 15, 273 48, 663	3, 071 15, 895, 169 1, 299, 434 14, 875	4, 676, 079 355, 921	167, 781, 272 14, 180, 728	95, 019, 886 78, 114
Total, 1938		116, 662 103, 513	17, 222, 370 18, 993, 676	5, 032, 090 4, 278, 000	181, 962, 000 184, 354, 000	95, 098, 000 88, 060, 000

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Idaho in 1939, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

	Mate-		ered in lion	Concentrates smelted and recovered metal					
County	rial treated	Gold	Silver	Concen- trates produced	Gold	Silver	Copper	Lead	
AdaBlaine	Short tons 28 95	Fine ounces 27	Fine ounces	Short tons	Fine ounces	Fine ounces	Pounds	Pounds	
Boise Camas Custer Custer Courter Camas Custer Cust	1,888 10	403 12	196 4 4	11	92	151		191	
Elmore	100	7, 445 9, 489 478 108 31	5, 001 4, 402 94 107 6	744 343 435 39	3, 904 4, 576 1, 221 119	31, 569 47, 025 3, 833 1, 752	3, 846 18, 531 280, 108	10, 356 4, 636	
Valley Washington	10	2 5	1						
Total, 1938	111, 480 72, 477	18, 008 13, 459	9, 821 6, 311	1,572 616	9, 912 3, 389	84, 330 34, 056	302, 485 182, 742	15, 225 9, 142	

CYANIDATION MILLS

Adams. Blaine. Clearwater. Idaho.	370 6, 600 2, 758 140	495 645 357 15	160 2, 663 78 3					
ShoshoneValley	50 500	3 44	165					
Total, 1938	10, 418 113, 686	1,559 2,855	3, 071 1, 878					
Grand total: 1939	121, 898 186, 163	19, 567 16, 314	12, 892 8, 189	1, 572 616	9, 912 3, 389	84, 330 34, 056	302, 485 182, 742	15, 225 9, 142

Mine production of metals from concentrating mills in Idaho in 1939, by counties, in terms of recovered metals

			Concentrates smelted and recovered metal								
County	Ore treated	Concen- trates produced	Gold	Silver	Copper	Lead	Zine				
	Short	Short	Fine	Fine							
	tons	tons	ounces	ounces	Pounds	Pounds	Pounds				
Blaine	65, 034	22, 366	2, 763	596, 169	221, 024	7, 824, 178	14, 926, 520				
Boise	14, 818	532	1, 813	15, 720	566	69, 860	11,020,020				
Bonner	11,989	798	· 4	43, 670	1, 255	1,009,300					
Boundary	15, 780	1,579	16	67, 536	17,050	2, 222, 739					
Camas	27	11	15	599		2,342					
Custer	38, 900	1,370	31	119, 487	14, 260	1,757,967					
Elmore		1 1	6	6							
Gem	200	41	70	1, 162	118	2, 016					
Idaho		55	1, 134	1, 165	1, 694	7,673					
Lemhi.	73, 255	2,007	3, 614	65, 556	57, 273	201, 291					
Owyhee	45, 557	421	2, 789	132, 974							
ShoshoneValley	1, 594, 820	213, 391	5, 182	14, 751, 951	4,060,008	154, 668, 681	80, 087, 597				
vaney	56, 074	2,677	5, 810	14, 844	346						
	1, 919, 136	245, 249	23, 247	15 910 990	4 979 504	107 700 047	07 010 000				
	1, 779, 815	259, 846	23, 247	15, 810, 839	4, 373, 594	167, 766, 047	95, 019, 886				
10001, 1000	1, 110, 010	200,040	44,041	18, 065, 739	3, 903, 414	170, 766, 396	88, 060, 000				

Gross metal content of concentrates produced from ores mined in Idaho in 1939, by classes of concentrates smelted

Class of concentrates	Concen- trates	Gross metal content						
Class of concentrates	pro- duced	Gold	Silver	Copper	Lead	Zinc		
Dry gold. Dry gold-silver Dry silver. Copper. Lead. Lead-copper Zinc. Iron (from zine-lead ore).	Short tons 4,771 431 1,665 10,632 127,899 2,606 97,825 992	Fine ounces 20, 456 2, 832 12 2, 573 4, 353 193 918 1, 822	Fine ounces 97, 956 134, 891 109, 594 9, 689, 954 4, 318, 605 1, 158, 489 368, 401 17, 279	Pounds 16, 827 223 51, 813 3, 535, 434 910, 375 407, 458 356, 550 46, 100	Pounds 82, 890 1, 000 60, 542 347, 908 167, 902, 149 646, 146 5, 319, 211 24, 550	Pounds		
Total, 1938	246, 821 260, 462	33, 159 26, 030	15, 895, 169 18, 099, 795	5, 324, 780 5, 064, 759	174, 384, 396 178, 055, 964	120, 076, 935 111, 467, 047		

Mine production of metals from Idaho concentrates shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	Zinc
BlaineBoise	Short tons 22, 366 543	Fine ounces 2, 763 1, 905	Fine ownces 596, 169 15, 871	Pounds 221,024 566	Pounds 7, 824, 178 70, 051	Pounds 14, 926, 520
Bonner Boundary Camas Custer Custer	798 1,579 11 1,370	4 16 15 31	43, 670 67, 536 599 119, 487	1, 255 17, 050 14, 260	1,009,300 2,222,739 2,342 1,757,967	5, 769
Elmore	745 41 398	3, 910 70 5, 710	31, 575 1, 162 48, 190	3, 846 118 20, 225	2,016 18,029	
Lemhi Owyhee Shoshone Valley	2, 442 460 213, 391 2, 677	4, 835 2, 908 5, 182 5, 810	69, 389 134, 726 14, 751, 951 14, 844	337, 381 4, 060, 008 346	205, 927 154, 668, 681	80, 087, 597
Total, 1938	246, 821 260, 462	33, 159 26, 030	15, 895, 169 18, 099, 795	4, 676, 079 4, 086, 156	167, 781, 272 170, 775, 538	95, 019, 886 88, 060, 000

Mine production of metals from Idaho concentrates shipped to smelters in 1939, in terms of recovered metals—Continued

BY CLASSES OF CONCENTRATES

	Concen- trates	Gold	Silver	Copper	Lead	Zinc
Dry gold Dry gold-silver Dry silver Copper Lead Lead-Lead-copper	Short tons 4,771 431 1,665 10,632 127,899 2,606	Fine ounces 20, 456 2, 832 12 2, 573 4, 353 193	Fine ounces 97, 956 134, 891 109, 594 9, 689, 954 4, 318, 605 1, 158, 489	Pounds 14, 784 216 45, 500 3, 185, 026 739, 749 328, 500	Pounds 64, 668 600 54, 449 319, 127 161, 684, 230 613, 848	Pounds
Zinc Iron (from zinc-lead ore)	97, 825 992	918 1, 822	368, 401 17, 279	317, 604 44, 700	5, 029, 150 15, 200	95, 019, 886
	246, 821	33, 159	15, 895, 169	4, 676, 079	167, 781, 272	95, 019, 886

Gross metal content of Idaho crude ore shipped to smelters in 1939, by classes of ore

Class of ore			Gross metal content						
Class of ore	Ore	Gold	old Silver Coppe		Lead	Zine			
Dry and siliceous gold. Dry and siliceous gold-silver Dry and siliceous silver. Copper Lead Zine	Short tons 2, 492 42, 322 4, 725 1, 416 16, 312 144	Fine ounces 3, 520 10, 417 116 600 614 6	Fine ounces 23, 757 588, 031 229, 557 44, 278 412, 057 1, 754	Pounds 4, 420 16, 721 45, 696 234, 644 94, 784 1, 888	Pounds 31, 511 3, 672, 795 193, 426 25, 377 11, 320, 009 4, 816	Pounds			
Total, 1938	67, 411 33, 169	15, 273 7, 090	1, 299, 434 868, 364	398, 153 235, 862	15, 247, 934 14, 188, 397	89, 378			

Mine production of metals from Idaho crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Ore	Gold	Silver	Copper	Lead	Zine
	Short tons	Fine ounces	Fine ounces	Pounds	Pounds	Pounds
Adams	31	12	198	14, 154		
Blaine	43, 261	10, 121	613, 090	21,774	3, 364, 482	8, 153
Boise	593	950	29, 302	2, 155	19, 970	
Bonner	397	34	25, 960	4,841	196,658	27, 596
Boundary	67	51	. 718	700	26, 516	
Butte	73	7	1,211	1, 904	234	
Camas		261	4, 459	1,029	14, 233	
Cassia	13	2	106	260	8, 085	
Clark	15	- 1	31		5, 915	
Custer		1,785	96, 463	203,682	418, 394	
Elmore	278	448	3,052	_00,00_		
Gem	64	38	1, 126	238	1, 219	
daho	128	203	588	44	77	
Lemhi	2, 227	417	26, 245	25, 446	1, 361, 988	
Owyhee	564	535	33, 526	20, 110	21	
Shoshone	16,098	134	452, 872	76, 107	8, 729, 298	42, 36
Valley	120	274	2, 452	433	27, 170	12,00
	159	1 1	8,035	3, 154	6, 468	
Washington		1				
	67, 411	15, 273	1, 299, 434	355, 921	14, 180, 728	78, 11
Гotal, 1938	33, 169	7,090	868, 364	191,844	13, 578, 462	

BY CLASSES OF ORE

Dry and siliceous gold. Dry and siliceous gold-silver. Dry and siliceous silver. Copper. Lead. Zinc.	2, 492 42, 322 4, 725 1, 416 16, 312	3,520 10,417 116 600 614 6	23, 757 588, 031 229, 557 44, 278 412, 057 1, 754	3, 506 13, 298 36, 910 226, 600 74, 159 1, 448	26, 226 3, 099, 929 175, 887 17, 277 10, 856, 966 4, 443	78, 114
	67, 411	15, 273	1, 299, 434	355, 921	14, 180, 728	78, 114

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Idaho in 1939, by counties and districts, in terms of recovered metals

County and district		nes ucing	Ore sold		Gold			Silver		Copper	Lead	Zinc	Total value
County and district	Lode	Placer	or treated	Lode	Placer	Total	Lode	Placer	Total				
Ada County: Black Hornet	2		Short tons 28	Fine ounces 27	Fine ounces	Fine ounces 27 3	Fine ounces 3	Fine ounces	Fine ounces 3	Pounds	Pounds	Pounds	\$947 108
Bolse Highland (Boise River) Snake River		5 2			28 563	28 563		3 31	3 31				982 19, 726
Adams County: Rock Flat Seven Devils Snake River	2	1	401	507	26 10	26 507 10	358	3	3 358	14, 154			912 19, 460 350 105
Benewah County: Tyson Creek Blaine County: Little Wood River Mineral Hill and Camas	1	1	12 7, 258	933	3	933	137 9, 542		137 9, 542	19 1, 106	2, 681 49, 851	8, 153	221 42. 014
Sawtooth	6	<u>2</u> -	107, 479	129 12, 474	3		5, 037 1, 197, 209		5, 037 1, 197, 209	241, 673	6, 681 11, 129, 447	14, 926, 520	8, 248 2, 573, 743 3, 449
Banner Boise Basin Eight Mile Creek	41	62	15, 444 269	2, 883 20	18, 680	21, 563 20 10	4, 147 40, 064 6	4, 365	4, 147 44, 429 6	2, 606	89, 575		789, 344 704 350
Garden Valley	3 2		866 10 1	195		195	274 800		274 800	77			7, 025 558 70 702
South Fork of Payette RiverSummit Flat	4	. 4	543	145	20	20 145	78	3	3 78 3,048	2, 346	21, 915		5, 128 5, 863
Lakeview Pend d'Oreille Bonneville County: Mt. Pisgah	6	4	12, 198	31 7	92	31 7 92	3, 048 66. 582		66, 582	3, 750	1, 184, 043	21,000	101, 480 3, 220
Boundary County: Moyie Yahk Port Hill	3 1			65 2		65	794 67, 460		794 67, 460	750 17, 000	2, 221, 489		152, 039
Butte County: Antelope CreekLava Creek	- 3		20 53	7	-	7	296 915		296 915	1, 904	43 191		401 875

Mine production of gold, silver, copper, lead, and zinc in Idaho in 1939, by counties and districts, in terms of recovered metals—Continued

County and district		ines ucing	Ore sold or treated		Gold			Silver		Copper	Lead	Zinc	Total
	Lode	Placer	or treated	Lode	Placer	Total	Lode	Placer	Total	Сорры	Dead	Zine	value
Camas County: Beaver Creek Little Smoky and Carrietown	1		Short tons 300	Fine ounces 150	Fine ounces	Fine ounces 150	Fine ounces 1,818	Fine ounces	Fine ounces 1,818	Pounds	Pounds 3,000	Pounds	\$6,625
Skeleton Creek South Fork of Boise River	4		166 43	27 111	13	40 111 3	3, 194 50	3	3, 197 50	1, 029	13, 426 149	5, 769	4, 608 3, 926
Canyon County: Snake River Cassia County: Stokes Clark County: Birch Creek Clearwater County: Burnt Creek	1 1		13 15	2	642	642	106 31	47	47 106 31	260	8, 085 5, 915		105 22, 502 549 299
Olearwater River. Moose Creek and Independence Creek. North Fork of Clearwater River. Pierce.		3 8 8 3	2, 758	357	8 18 24 12 1, 682	8 18 24 12		3 3 3	3 3 3 3				280 632 842 422
Custer County: Alder Creek Bayhorse	6		1, 151 39, 488	208 32	1, 082	2, 039 208 32	4,900	324	4,900	176, 250	83, 106		71, 638 32, 842
Boulder East Fork Loon Creek	1 2	1	86	5 9	3	5 9 3	168, 882 3, 051 134		168, 882 3, 051 134	33, 288	56, 511		213, 113 4, 902 481 105
Rough Creek	3	6 3	226 798	54 1, 509	21 107 28	21 54 107 1, 537	8, 085	3 56	8, 085 56	289	29, 021		737 8, 772 3, 783
Elmore County: Bear Creek Black Warrior	10	4	941 1	1,309	13	211	30, 902 103	610 3	31, 512 106	8, 096	8, 382 42		76, 421, 7, 459
Boise River Middle Boise Neal Pine Grove	4 2	16 1	56, 418 6	11, 594 3	150 131 4	150 11, 725 7	39, 522	50 34	50 39, 556				105 5, 284 437, 625 245
Snake River South Fork of Boise River Gen County: West View		6 2 5	264	108	248 3 43	5 248 3 151	3 2, 288	19	3 19				177 8, 693 105
Gooding County: Snake River		3		100	19 24	19	2, 200	3	2, 307	356	3, 235		7, 040 665
Burgdorf-Marshall Lake Camp Howard Clearwater River	6	9 11 1	16, 392	10, 266	494 459 14	10, 760 459 14	45, 923	84 81 3	46, 007 81 3	3, 404	6,064		842 408, 468 16, 120 492

Dista		10	245 [129	680 1	809	59 1	137	196 ।	1			28, 448	
DixieElk City	16	15	1, 727	295	2, 365	2, 660	984	405	1, 389	77	553		94, 077	
Florence and French Creek		22	7, 111	106	289	395	56	106	162		000		13, 935	
Kitchen Creek	*	1		100	14	14		1 200	102				490	
		5			14	4							140	
Lolo Creek Lower Salmon River		6			78	78		19	19				2, 743	
Lower Saimon River					19	11	333		333				611	
Maggie and Pete King Creeks	. 1	5	ا ا	*	5, 099	5, 099	333	1,052	1, 052				179, 179	
Newsome		2	821	86	1, 527	1, 613	131	308	439				56, 753	
Orogrande		. 0	4, 130	1. 715	1, 521	1, 715	2, 920	300	2, 920	15, 000	3, 127		63, 714	
Ramey Ridge			4, 150	1, 713	1,000	1, 713	2, 920	224	2, 920	15,000	3, 127		35, 152	
Riggins		3	807	804	1,000	804	735	224	735	1, 644	7, 277		29, 152	
Robbins	8		807	004	91	91	100	22	22				3, 200	
Salmon River (Shoup)		۱ (11	11		44	24				385	
Selway River		2			11 2	11							70	
Seven Devils						2		3					3, 152	
Simpson		9			90 16	90 16		9	0				560	
Snake RiverSouth Fork of Clearwater River		ļ				10							175	
South Fork of Clearwater River		l i			5	1 700				144	958		61, 121	`
Ten Mile	6	8	7, 507	1,671	52	1, 723	1, 108	6	1, 114	144	908 127		304, 734	
Warren	14	12	595	341	8, 293	8, 634	934	2,805	3, 739		127		6, 269	
Jerome County: Snake River		7			179	179		6	6				0, 209	
Latah County:	l .						1						140	
Gold Creek		3			4	4								
Hoodoo		1			3	3							105 245	
Moscow Mountain		. 2			7	7							240	
Lemhi County:	1 .												4 500	
Blackbird	. 2		164	87		87	47		47	14, 432			4, 578	
Blue Wing Boyle Creek and Carmen Creek	. 1		38, 778	13		13	60, 315		60, 315	54, 500	172, 510		55, 172	
Boyle Creek and Carmen Creek	. 1		8,000	390		390	2, 360		2, 360	846	9, 447		15, 784	
Eldorado	1	2	4	3	6	9	_3		3	58			323	
Eureka	. 6	4	277	66	37	103	59	19	78	1, 414	702		3, 838	
Gibbonsville	. 8	8	118	101	614	715	62	34	96	346	234		25, 137	
Indian Creek	. 2		498	32		32	9		9				1, 126	
Junction	. 1		. 3				56		56		2, 745		167	
Kirtley Creek	.	4			118	118		. 9	9				4, 136	
McDevitt	. 1		15, 500	838		838	3, 297		3, 297	280,000			60, 688	
Mackinaw	. 3	17	36	35	270	305	215	25	240	67	5, 660		11, 111	
Mineral Hill	. 4	5	30, 805	3, 508	27	3, 535	3, 101		3, 101	981	22, 276		126, 979	
Pratt Creek and Sandy Creek			510	93		93	106		106	86	2, 085		3, 434	
Rattlesnake			. 4				78		78	289	319		98	
Salmon River		6			88	88		. 22	22				3, 095	
Spring Mountain	. 2		27				311		311	154	24, 192		1, 364	
Texas	. 3		1,687	62		62	25, 267		25, 267	7, 356	1, 327, 149		82, 462	
Yellow Jacket	. 5	2	1,095	502	17	519	442		442	2, 298	596		18, 732	
Lewis County: Salmon River	.	3			31	31		. 3	3				1, 087	
Nez Perce County:	1		1	1	ľ		1	1						
Salmon River		2			10	10							350	
Snake River		6	l	·	84	84	I	. 19	19			l	2, 953	

Mine production of gold, silver, copper, lead, and zinc in Idaho in 1939, by counties and districts, in terms of recovered metals—Continued

County and district		ines ucing	Ore sold		Gold			Silver		Copper	Lead	Zine	Total
	Lode	Placer	or treated	Lode	Placer	Total	Lode	Placer	Total	Jopper			value
Owyhee County: Carson Castle Oreek	27 6	8	Short tons 46, 125 817	Fine ounces 3, 437	Fine ounces 2, 493	Fine ounces 5, 930	Fine ounces 141,022	Fine ounces 3, 686	Fine ounces 144, 708	Pounds	Pounds	Pounds	\$305, 776
Snake River Steele Power County: Snake River	2	8 1 8	13	105	500 4 32	105 500 13 32	27, 275 62	28	27, 275 28 62		21		22, 190 17, 519 497 1, 120
Shoshone County: Beaver Coeur d'Alene Eagle	2 1	5 7	3, 361 100 10, 650	38 31 17	375 76 3	413 107 20	4, 729 6 7, 425	75 9	4, 804 15 7, 425	423 8, 346	264, 148 1, 875, 490	647, 000 232, 346	63, 819 3, 758 106, 838
Evolution. Hunter. Lelande. Placer Center. St. Joe.	5 6 5 3		391, 422 480, 820 243, 385 17, 291	492 378 374 41		492 378 374 41 44	10, 768, 896 1, 270, 226 1, 058, 687 83, 154		10, 768, 896 1, 270, 226 1, 058, 687 83, 154	3, 189, 683 240, 346 270, 904 28, 057	845, 660 57, 010, 149 36, 583, 191 2, 213, 596	41, 855, 365 10, 208, 000 1, 268, 693	7, 698, 489 5, 756, 396 3, 010, 114 230, 808
Summit. Yreka. Twin Falls County: Snake River. Valley County:	3 8	1 11	12, 451 451, 588	3, 211 768	132	3, 291 768 132	2, 531 2, 009, 177	19	2, 550 2, 009, 177 3	5, 154 393, 202	75, 447 64, 530, 298	22, 693 25, 895, 865	1, 540 122, 178 5, 811, 087 4, 622
Big Creek. Deadwood Basin Leke City Middle Fork of Salmon River.	1	5 3 2	17 500	106 44	26 4 19 3	132 48 19 3	498 165	3	501 165 3	173	6, 362		5, 277 1, 792 667
Pistol CreekSilver CreekSouth Fork of Salmon River	1	6	103 1	170	67	170	1, 927 28	19	1, 927 28 19	260	20, 617 191		105 8, 254 28 2, 358
Thunder Mountain Yellow Pine Washington County: Monroe Creek (Weiser)	1	3	56, 074 10	5, 810 5	48	5, 810 5	14, 844	50	50 14, 844	346			1, 714 213, 462
Snake River Washington	1	4	159	1	33	33 1	8, 035	3	8, 035	3, 154	6, 468		178 1, 157 6, 121
Total Idaho	362	465	2, 108, 445	67, 999	48, 663	116, 662	17, 207, 495	14, 875	17, 222, 370	5, 032, 000	181, 962, 000	95, 098, 000	29, 794, 144

ADA COUNTY

Black Hornet district.—Virtually all the output from the Black Hornet district in 1939 was gold ore from the Adelmann mine treated by amalgamation.

Highland (Boise River) district.—The entire output of the Highland district in 1939 was recovered by sluicing, chiefly at the Pick & Shovel,

Pinto, Sheep Gulch, and Stout placers.

Snake River district.—Dry-land washers were operated in 1939 at the Osborn and Hot Shot properties near Grand View on the Snake River. The Gold Flour Mining Co. operated the Osborn claim, by far the largest producer.

ADAMS COUNTY

Rock Flat (Thorn Creek) district.—Placer gold and silver were recovered in 1939 by hydraulicking at the Victory placer on Thorn Creek.

Seven Devils district.—The metal output of the Seven Devils district in 1939 came from 372 tons of gold ore from the Placer Basin mine and

29 tons of copper ore from the Helena claim.

Snake River district.—Placer gold was recovered in 1939 by sluicing at various bars along the Snake River in Adams County.

BENEWAH COUNTY

The entire output of Benewah County in 1939 was placer gold recovered from stream gravel from Tyson Creek.

BLAINE COUNTY

Little Wood River district.—A small lot of silver-lead ore was shipped

from the Idaho Muldoon dump in 1939.

Mineral Hill and Camas district.—The value of the metal output from the Mineral Hill and Camas district in 1939 was nearly double that in 1938, owing to increased output of gold recovered from old tailings at the Daisy dump, from which 6,600 tons of old tailings were treated in a 100-ton cyanide plant by the Gold Recovery Co. The rest of the district output comprised gold ore from the Bellevue, Champlain, Gold Bottom, Happy Day, Jumbo, Golden Arrow, Treasure Vault, and Walla Walla properties; lead ore from the Eureka and Clearwater & Wolverine properties; silver ore from the Liberty, Bullion-Ophir, and Kelley mines; and zinc ore from the Red Elephant mine.

Sawtooth district.—The Vienna mine was the chief producer in the Sawtooth district in 1939; several cars of siliceous ore were shipped

by a lessee to smelters in Utah.

Warm Springs district.—Nearly all the output from the Warm Springs district in 1939 was that from the Triumph-North Star-West Shore groups operated by Snyder Mines, Inc., which comprised about 65,000 tons of zinc-lead ore shipped to the flotation plant of the Combined Metals Reduction Co. at Bauer, Utah, and 41,461 tons of gold-silver ore and 682 tons of lead ore shipped to the smelter at Tooele, Utah. This company was the largest producer of gold in Idaho in 1939 and ranked third in output of zinc, fourth in silver, and

fifth in lead. Other producers in the Warm Springs district included the Valley Creek No. 2, Mascot, and Homestake mines. A little placer gold was recovered from claims on Placer Creek.

BOISE COUNTY

Banner district.—A lessee shipped 166 tons of silver ore in 1939 from the Edna mine near Idaho City. Placer gold was recovered from

stream gravel from Gold Fork and Edna Creeks.

Boise Basin district (Centerville, Placerville, Idaho City, Pioneerville, Quartzburg).—In 1939 the Boise Basin district again was the chief gold-producing area in Idaho, but its output was 21 percent less than in 1938. Nearly 87 percent of the gold was recovered from placer operations, mostly by bucket dredges. Four bucket dredges treated 4,346,382 cubic yards of gravel in 1939 and recovered 17,787 ounces of gold compared with 18,549 ounces in 1938. The Fisher-Baumhoff Co. continued to operate two bucket dredges (one 21/2cubic foot and one 6-cubic foot) near Centerville and was the largest producer of placer gold in Idaho. The Idaho-Canadian Dredging Co. (formerly the Moores Creek Dredging Co.) operated its 7½cubic foot bucket dredge at Idaho City throughout the year. Considerable gold was also recovered by the 4-foot bucket dredge at Pioneerville operated by The Grimes Co. Other important sources of placer gold were the Gold Hill, Leary-Brogan, Lucky Boy, and Elk Creek properties. The Lord & Bishop Co., a large producer of placer gold in 1938, suspended operations on Fall Creek late in that year and moved its dragline equipment to a property in California. Most of the lode production of the district in 1939 was gold ore from the Mayflower mine; the Texas-Owyhee Mining & Development Co. operated the mine continuously and treated 12,818 tons of gold ore in the 150-ton flotation plant. Rich gold-silver ore from the Come Back property at Pioneerville was shipped to a smelter, and lessees treated by concentration several hundred tons of gold ore from the Gold Hill & Iowa dumps. Most of the remainder of the district lode output was gold ore from the Black Eagle, Illinois, Enterprise, Golden Age, Twin Sister, and Native Missourian properties.

Eight Mile Creek district.—The Birthday Consolidated Gold Mines, Inc., treated 264 tons of gold ore in 1939 in a small concentration plant built during the year and shipped 5 tons of high-grade gold ore to a

smelter.

Garden Valley district.—The entire output of the Garden Valley district in 1939 was placer gold from the Wash Creek and Gold Dollar

claims.

Grimes Pass district.—Gold ore from the Golden Eagle and Homestake properties was concentrated in 1939, and gold ore from the Grandview group was amalgamated and concentrated. The Grandview property was operated by the Buckhorn Mining Co. and was the chief producer.

North Fork district.—A little silver ore from the Packer John claim

and from a prospect was shipped to a smelter in 1939.

South Fork of Payette River district.—Placer gold and silver were recovered by sluicing in 1939 at properties near Grimes Pass and Lowman.

Summit Flat district.—Gold ore from the Golden Cycle, Jessie, King, and Rock Creek properties was treated by amalgamation in 1939.

BONNER COUNTY

Lakeview district.—Several cars of silver-lead ore from the Keep Cool dump and a small lot of zinc concentrates from former milling

operations were marketed in 1939.

Pend d'Oreille district.—The Hope (Elsie K.) and Whitedelf properties near Clark Fork again were the chief producers in the Pend d'Oreille district; several thousand tons of silver-lead ore from each property were treated by flotation in 1939. Rich silver ore from the Brown Bear, Katherine, and Keystone claims was shipped to a smelter.

BONNEVILLE COUNTY

Placer gold was recovered by hydraulicking in 1939 at the Rosana, James, Lottie, and McCoy Creek properties in the Mt. Pisgah district.

BOUNDARY COUNTY

Moyie Yahk district.—Gold ore from the Buckhorn mine was treated by concentration in 1939, and lead ore from the Regal and

Midas properties was shipped to a smelter.

Port Hill district.—The Idaho-Continental mine, operated by the Idaho-Continental Mining Co., was the only producer in the Port Hill district in 1939; 15,630 tons of silver-lead ore were treated by flotation in 1939, compared with 4,000 tons in 1938.

BUTTE COUNTY

Antelope Creek district.—A little copper ore from the Copper Queen

claim was shipped to a smelter in 1939.

Lava Creek district.—Virtually all the output from the Lava Creek district in 1939 was gold-silver ore from the Hornsilver mine near Arco, operated by the Era Mining & Development Co., Inc.

CAMAS COUNTY

Beaver Creek (Mineral Hill) district.—Lessees shipped several cars

of gold ore from the Princess mine in 1939.

Little Smoky and Carrietown district.—The decrease in output of gold from the Little Smoky and Carrietown district in 1939 resulted from suspension of dredging operations by the Baumhoff-Fisher Co. Most of the district output was silver ore and lead ore from the Silver Star property and gold ore from the Five Points mine.

Skeleton Creek district.—Gold ore was produced at the El Oro, Red

Horse, Gold Mountain, and Tip Top properties in 1939.

CANYON COUNTY

J. R. Rhodes operated a %-cubic yard power shovel and stationary washer in 1939 from March 24 to October 12 at a placer on the Snake River near Wilder and treated 32,178 cubic yards of gravel.

CASSIA COUNTY

A little lead ore was produced at the Alice & Badger group in the Stokes district in 1939,

CLEARWATER COUNTY

Burnt Creek district.—A little placer gold was recovered in 1939

from stream gravel by small-scale operators near Elk River.

Clearwater River district.—Various placer operators on the Clearwater River near Orofino and Greer recovered small lots of gold and silver in 1939.

Moose Creek and Independence Creek district.—The entire output of the district in 1939 was placer gold and silver recovered chiefly from the Lilly Simpley First Change and White Diamend deines

the Lilly, Simplex, First Chance, and White Diamond claims.

North Fork of Clearwater River district.—Small-scale operators recovered a little placer gold and silver from stream gravel near Dent

in 1939.

Pierce district.—The output of gold in the Pierce district in 1939 was more than double that in 1938 owing to operation of a new 2½-cubic foot bucket dredge by the Quartz Creek Dredging Co. The dredge was active from July 8 to the end of the year and handled 495,639 cubic yards of gravel. The Dividend Placer Mining Co. placed a ½-cubic yard dragline and floating washer on the American property, but operations were suspended after a short run. Small-scale placering was continued on various creeks. The Silver Creek Gold Mining Co. was the only lode operator in the district; 2,758 tons of gold ore were treated by cyanidation.

CUSTER COUNTY

Alder Creek district.—Most of the increase in the value of the metal output of the Alder Creek district in 1939 was due to reopening of the Empire property by the Mackay Exploration Co.; 996 tons of copper ore were shipped. The remainder of the district output was principally silver-lead ore from the Bluebird, Horseshoe, and White

Knob properties.

Bayhorse district.—The Clayton Silver Mines was in 1939, as usual, the chief producer in the Bayhorse district. The company operated its mine and 100-ton flotation plant throughout the year and shipped rich silver-lead concentrates to a smelter in Utah; 38,900 tons of silver-lead ore were milled, about the same quantity as in 1938. The rest of the district output was chiefly copper ore and lead ore containing considerable silver from the Ramshorn mine operated by lessees.

Boulder district.—Several cars of silver-lead ore were shipped from

the Livingston mine in 1939.

East Fork (Washington Basin) district.—A little gold ore from the Dewey claim and a small lot of silver-lead ore from the Fuller prospect were marketed in 1939.

Rough Creek district.—Placer gold and silver were recovered in 1939

by sluicing operations at the Grubstake claim near Stanley.

Seafoam district.—The metal output of the Seafoam district in 1939 came from siliceous ore from the Greyhound mine and silver-lead ore

from the Mountain King and Josephus Lake properties.

Stanley and Stanley Basin district.—A ¾-cubic yard dry-land excavator was operated a short time in 1939 at Stanley Creek Placers by the Stanley Basin Placer Mining Corporation; equipment for recovering the gold includes a vibrating screen, riffles, and special amalgamators. Other placer producers were the Lucky Strike,

Golden Rule & Hot Stuff, Progressive, Bessie, and Nip & Tuck claims. Yankee Fork district.—The chief output from mines in the Yankee Fork district in 1939 was rich gold ore from the General Custer-Lucky Boy group and copper ore rich in gold and silver from the Why Not mine. Other lode producers included the Jordan, Peak, Yankee Fork, Fourth of July, Snowdrift, P. & G. No. 2, and Fuller properties. Most of the placer output came from the Horse Trail property.

ELMORE COUNTY

Bear Creek district.—The Avalanch-Richmond, Passover, and Empire lode properties were the chief producers in the Bear Creek district in 1939; most of the output was gold ore amalgamated and concentrated. Other producers of gold ore included the Vishnue, Daly, and Black Ribbon mines. A little placer gold and silver was produced from various claims near Rocky Bar.

Boise River district.—Most of the placer output from the Boise River district in 1939 came from the Five Bars and Sunflower proper-

ties near Twin Springs.

Middle Boise (Atlanta) district.—The increase of \$206,186 in value of metal output in the Middle Boise district in 1939 resulted from the large gain in output of gold ore from the Boise-Rochester property. Talache Mines, Inc., operated the property throughout the year and treated 41,634 tons of gold ore and 6,000 tons of old tailings in a 150-ton amalgamation and flotation plant. The Last Chance Mining Co., operating Atlanta Mines (Monarch), continued to be a large producer of gold ore; about 8,500 tons of ore were treated by amalgamation and concentration, and 273 tons of rich gold ore were shipped to a smelter. The property was acquired by Talache Mines, Inc., in November. The remainder of the district output was nearly all placer gold recovered chiefly from the Boise Bar, Buck Creek, McKibbin, Honey Bee, and Rex properties.

Neal district.—Small amounts of placer and lode gold were produced

from various properties in the Neal district in 1939.

Pine Grove district.—Small lots of gold ore were produced in 1939

at the Elk Horn and Owens claims at Pine.

Snake River district.—Stationary washers were operated for a short time in 1939 at the Mathis placer property near Bruneau and at the Rose claim near King Hill; nearly all the gold output from the district was recovered from these two properties.

GEM COUNTY

West View district.—The total value of the metal output of the West View district declined from \$144,736 in 1938 to \$7,040 in 1939, owing to suspension late in 1938 of dragline operations at the Gatfield & Montour property by Ralph Davis, Inc.; a little gold was recovered by hydraulicking at the property in 1939. Most of the output of the district was siliceous ore from the Lulu mine near Pearl.

GOODING COUNTY

Most of the placer output from properties on the Snake River near Hagerman in 1939 came from the Lucky Strike and Padgett claims.

IDAHO COUNTY

American Creek (Bully, Mill, and Castle Creeks) district.—Small amounts of placer gold and silver were recovered in 1939 by sluicing operations at the Holmes, Golden Eagle, and John's Creek properties.

Burgdorf-Marshall Lake district.—There was a large increase in output of gold and silver in the Burgdorf-Marshall Lake district in 1939 owing to a gain in output of gold ore from the Golden Anchor mine; the property was operated throughout the year by the Golden Anchor Mining Co., and 16,301 tons of gold ore were treated in the 50-ton amalgamation and concentration mill. The rest of the district output was chiefly placer gold recovered by hydraulic and sluicing operations at the Golden Rule and Laughing Water properties and gold ore from the Leadville and Old Kentuck mines.

Camp Howard (Salmon River) district (White Bird).—Green & Kuney operated a power shovel and stationary washer at the Large Bar in 1939 from January 15 to April 10, when work was suspended, and was by far the most important producer in the Camp Howard district. Other placer producers included the Rosebud, Burgund, White Bird,

and Snure properties.

Clearwater River district.—Small amounts of placer gold and silver were recovered in 1939 by sluicing operations at the Lindgren claim

near Pardee.

Dixie district.—The output of gold in the Dixie district increased 325 ounces in 1939, owing to the gain at the Dixie and Alpha properties. About 65,000 cubic yards of gravel were handled by the ¾-cubic yard dragline and stationary washer at Dixie Placers, and it was by far the most important producer in the district. The rest of the district output was principally gold ore from the Ontario mine

and placer gold from the Capitol claim.

Elk City district.—The 1½-cubic yard dragline and floating washer of the American River Mining Co. handled 246,500 cubic yards of gravel in 1939 and accounted for most of the gain in the Elk City district; other placer producers included the Lucky Coin (power shovel and dry-land dredge), Little Million (power shovel and stationary washer), Columbus, and Gold Hill properties. The lode output of the district was chiefly gold ore from the Blue Ribbon, Mary K., Black Lady, Buster, Stickner Quartz, and Last Chance mines.

Florence and French Creek district.—Most of the placer gold produced in 1939 was recovered by the dragline and floating washer at the Sterling property on Sand Creek and by sluicing operations at various claims on Salmon River near French Creek. The chief producers of lode gold were the Gold Bug, Golden Dyke, and Wayerly

mines.

Kitchen Creek district.—A little placer gold was recovered in 1939 by sluicing operations at the Kitchen Creek claim.

Lolo Creek district.—Small lots of placer gold were marketed in 1939

from the Alice and Lolo claims.

Lower Salmon River district.—Most of the output from placers along the Salmon River in 1939 came from drift mining and sluicing operations at the Frank Hatke, Grubstake, and Sunshine properties.

Maggie and Pete King Creeks district.—In 1939 a little gold-silver ore from the Selway mine was shipped to a smelter, and a little placer gold was produced from the New than New than 18

gold was produced from the Nugget and Sunnyside claims.

Newsome district.—The Newsome Creek Mining Co. continued dredging operations on Newsome Creek in 1939 and again was a large producer of gold. The company operated its 3-cubic yard dragline and floating washing plant from March 25 to December 31 and treated 841,901 cubic yards of gravel; at the end of the year the

property was acquired by the Ferris Mining Co.

Orogrande district.—The Mount Vernon Mining Co. was the largest producer of gold in the Orogrande district in 1939; the company operated the 2-cubic foot bucket dredge on Crooked River from April 14 to November 22 and treated 218,335 cubic yards of gravel. The Orogrande-Frisco Gold Mines, Inc., largest producer of gold in the district in 1938, was idle in 1939. The lode output of the district was chiefly gold ore from the Penman mine treated by flotation.

Ramey Ridge district.—The Snowshoe property, by far the most important producer in the Ramey Ridge district, was operated throughout 1939 by the Pierce Metals Development Co., and 4,125 tons of gold ore were treated in a 25-ton concentration plant. In January a fire destroyed the compressor building and power plant, but the build-

ing was rebuilt and new equipment installed.

Riggins (Salmon River) district.—The Shorts Bar Mining Co. operated a 2½-cubic yard dragline and floating washing plant on property 3 miles above Riggins on the Salmon River in 1939 and treated 360,000

cubic yards of gravel from July 10 to December 23.

Robbins (Buffalo Hump) district.—Nearly all the output from the Robbins district in 1939 was gold ore from the St. Louis mine; a new 25-ton flotation plant, erected by a lessee, was operated a short time during the last quarter of the year.

Salmon River (Shoup) district.—Placer gold and silver were recovered in 1939 by drift mining and sluicing operations at claims along the Salmon River west of Shoup; most of the output came from the Paradise Bar, Leyrer, Rutherford, and Willoughby properties.

Selway River district.—A little placer gold was recovered in 1939 by

sluicing operations at the Happy Day and Maytag claims.

Simpson (Salmon River) district (Lucile).—Various small-scale placer operators continued to work bars along the Salmon River near Lucile. The chief producers in 1939 were the Katie B., Butcher Bar, and Betty Jean properties.

Snake River district.—Gold was recovered by sluicing operations in

1939 at the Bonanza placer.

South Fork of Clearwater River district.—A little placer gold was

recovered in 1939 from stream gravel near Stites.

Ten Mile district (Golden).—The output of gold from both lode and placer properties in the Ten Mile district decreased in 1939. The decline in output of gold ore from the Blackbird mine, operated by the Clearwater Mining Co., accounted for most of the loss at lode mines, and the drop in placer production was due to suspension in August 1938 of dragline dredging at the Lena B-Komo property. The Lone Pine mine continued to be the largest producer of gold in the district; about 6,150 tons of gold ore were treated by amalgamation and concentration. Other fairly large producers of gold ore were the Center Star, Blackbird, and Shamrock properties. Most of the placer gold produced in the district was recovered by hydraulic and sluicing operations at the Key claim.

Warren district.—Bucket dredging continued in 1939 to be the chief source of gold in the Warren district. The Warren Dredging Co. operated its 3½-cubic foot bucket dredge throughout the year and treated 1,134,000 cubic yards of gravel; it was the largest producer of placer gold in Idaho County. The Baumhoff-Fisher Co., also a large producer of placer gold, operated its 3½-cubic foot bucket dredge from March 21 to August 6 and treated 432,000 cubic yards of gravel; the dredge was moved late in the year and will operate in 1940 on Moose Creek near Salmon City in Lemhi County. Most of the remainder of the district output in 1939 was gold ore from the Rescue, Gold King, Little Giant (Unity), Harding, and Silver King properties and placer gold from the Poorman, Buck Diggins, and Smith Gulch claims.

JEROME COUNTY

In 1939, as usual, the entire metal output of Jerome County was placer gold and silver recovered by various sluicing operations along the banks of the Snake River near Jerome, Murtaugh, and Hansen.

LATAH COUNTY

Placer gold was recovered in 1939 from claims in the Gold Creek, Hoodoo, and Moscow Mountain districts.

LEMHI COUNTY

Blackbird district.—The output of the Blackbird district in 1939 comprised gold ore from the Meadow property and copper ore from the Uncle Sam mine.

Blue Wing district.—The Ima Mines Corporation in 1939 again was the only producer in the Blue Wing district. The company treated 38,778 tons of tungsten ore by flotation and magnetic separation; several hundred tons of silver-lead-copper concentrates were shipped to the smelter at Midvale, Utah, and tungsten concentrates were shipped to eastern markets.

Boyle and Carmen Creeks district.—The metal output from the Boyle and Carmen Creeks district rose in 1939 owing to increased output of low-grade gold ore from the Silver Star-Contact group by the Gibbons-ville Mining & Exploration Co.

Eldorado district.—A small lot of gold ore was produced from the Gold Bond mine in 1939, and a little placer gold was recovered from a claim on Bohannon Creek.

Eureka district.—About 200 tons of gold ore from the Queen of the Hills mine were treated by amalgamation in 1939; other producers of gold ore included the Tendoy, Lynch, and Poorman's Luck properties. Most of the placer gold was recovered by sluicing operations at the Greenhorn claim.

Gibbonsville district.—The North Fork Placers, operating four hydraulic giants at the Sundown property, was the most important producer in the Gibbonsville district in 1939; about 520 ounces of gold were recovered from 100,000 cubic yards of gravel. Hydraulic giants were operated at the Sheep Creek property by the Golden Dawn Mining Co. The district output of lode gold was considerably less than in 1938; the chief producers were the Bingham, Cross, and Providencia properties.

Indian Creek district.—About 100 tons of gold ore were produced in 1939 from the old Kittie Burton & Ulysses property operated by the Good Hope Mining Co., Inc., and 400 tons of old tailings from the Kittie Burton dump were amalgamated by the Idaho Gold Recovery Corporation.

Kirtley Creek district.—Small-scale placer operations in 1939 were

reported at several properties on Kirtley Creek.

McDevitt district.—In 1939, as in 1938, the entire output of the McDevitt district was gold ore from the Copper Queen mine near Tendoy. The Tendoy Copper Queen Syndicate operated the property throughout the year and treated about 15,500 tons of ore by

amalgamation and concentration.

Mackinaw district.—Most of the metal output of the Mackinaw district in 1939 was placer gold recovered by hydraulicking and sluicing and by dragline dredging. The output from lode mines in the district comprised lead ore from the Ringbone Cayuse claim and gold ore from the Shoo Fly and P. M. & B. properties. The chief production from hydraulicking and sluicing came from the K. G. W., Mae Belle, Big Jureano, Last Chance, and Best Bet properties. Dragline excavators and dry-land dredges were operated at the Camp

Creek and Richardson properties.

Mineral Hill district.—Production of gold from the Mineral Hill district in 1939 increased about 1,300 ounces over 1938, owing chiefly to the gain in output of gold ore from the Grunter and Gold Hill properties at Shoup. The Grunter mine, operated throughout the year by Gold Producers, Inc., was by far the largest gold producer in Lemhi County; 24,947 tons of gold ore were treated by concentration. A lessee treated about 5,500 tons of gold ore from the Gold Hill mine by amalgamation and concentration. Other producers of gold ore were the Monolith and Billy Boy properties. Most of the district output of placer gold was recovered from the Cove Creek and Rattle-snake claims.

Pratt and Sandy Creeks district.—Fire destroyed the milling plant of the Goldstone Mining Co. early in 1939, resulting in a substantial decrease in the gold output of the district; the company shipped only 5 tons of high-grade gold-lead concentrates. Other producers were

the Sick Horse and Dictator claims.

Salmon River district.—Small-scale placer operations in 1939 were reported at several properties along the Salmon River from Shoup to the county line.

Spring Mountain district.—Lessees shipped a little silver-lead ore

from the Red Warrior and South Gilmore properties in 1939.

Texas district.—The value of the metal output of the Texas district was \$82,462 in 1939, a gain of \$49,064 over 1938, caused by increased shipments of silver-lead ore from the Latest Out mine at Gilmore. A little silver-lead ore was shipped also from the Allie and Snow Slide properties.

Yellow Jacket district.—The Condor Gold Mining Co. operated the Yellow Jacket property near Forney and treated several hundred tons of gold ore in a flotation plant in 1939, an increase over 1938. Gold ore was produced also from the Bryan and Tin Cup claims and

placer gold from the Yellow Jacket Placers.

LEWIS COUNTY

Several placer operators worked stream gravel along the Salmon River in Lewis County in 1939.

NEZ PERCE COUNTY

In 1939, as in 1938, the metal output of Nez Perce County was placer gold and silver recovered by small-scale placer operations along the Salmon and Snake Rivers.

OWYHEE COUNTY

Carson district (Silver City, De Lamar).—Production of gold from placer properties in the Carson district declined in 1939, but that from lode mines increased. The decrease in placer gold resulted from suspension in December 1938 of bucket dredging at De Lamar by Jordan Creek Placers, largest producer of gold in Owyhee County from 1936 to 1938. The gain in output of lode gold and silver resulted from the treatment of a large tonnage of old tailings (gold-silver) by the De Lamar Milling Corporation; about 45,200 tons were treated in a 200-ton flotation plant, and the company was the largest producer of gold and silver in Owyhee County. Several cars of rich gold ore were shipped from the Adelaide-Empire group by the Ymir Consolidated Mining Co., and gold-silver ore from the Addie mine was amalgamated and concentrated. Other producers of gold ore included the Pauper, South Central, Tango, Dewey, and Gold Bug mines. The De Lamar Placers operated its dragline and floating washer at property on Jordan Creek 6 months in 1939 and treated 250,000 cubic yards of The Morrison-Knudsen Co., Inc., a new operator in the district, worked the Lewis group near Silver City and treated 47,000 cubic yards of gravel with a power shovel and dry-land washer.

Castle Creek district.—Nearly all the output from the Castle Creek district in 1939 was rich silver ore from the Silver Rock mine and gold

ore from the Overall-Lucky Boy group.

Snake River district.—Considerable placer gold was recovered in 1939 from gravel along the Snake River near Hammett and Grand View. Most of the output came from dry-land dredging at the Gray, Dollar, and Grand View (Murphy) properties by J. R. Rhodes and Grand View Mines.

Steele district.—Most of the output from the Steele district in 1939

was gold ore from the Morning Glory mine near Triangle.

POWER COUNTY

The metal output of Power County in 1939 was, as usual, placer gold from small operations along the Snake River near American Falls.

SHOSHONE COUNTY

COEUR D'ALENE REGION

The value of the metal output of the Coeur d'Alene region increased 2 percent in 1939, chiefly as a result of the gain in production of zinc. The output of silver dropped more than 2,100,000 ounces owing to marked decreases at the Sunshine and Polaris mines, and the output of lead also declined. Large decreases in output of lead at the Hecla and Bunker Hill & Sullivan properties more than offset a substantial

increase at the Morning mine. However, the output of zinc from the region increased 25 percent owing to large gains at the Morning, Hecla, and Bunker Hill & Sullivan mines; the output of gold increased nearly 2,000 ounces owing to increased output of gold ore from the Golden Chest mine at Murray; and the output of copper also rose. About 70 percent of the material produced in Shoshone County in 1939 was zinc-lead ore, 26 percent silver ore, and 3 percent lead ore. There was a marked increase in output of zinc-lead ore but a decided decline in output of lead ore.

The following table gives production of gold, silver, copper, lead, and zinc in the Coeur d'Alene region in 1938 and 1939 and the total

for 1884 to 1939.

Mine production of gold, silver, copper, lead, and zinc in the Coeur d'Alene region, Shoshone County, 1938-39, and total, 1884-1939, in terms of recovered metals

Year	Lode mines	Plac- ers	Ore	Gold (lode and placer)	Silver (lode and placer)	Copper	Lead	Zine	Total value
1938 1939 Total 1884–1939	43 34		Short tons 1, 514, 278 1, 611, 068	5, 928	Fine ounces 17, 325, 379 15, 204, 934 357, 271, 400	4, 136, 115	163, 397, 979	80, 129, 962	\$22, 346, 313 22, 805, 024 877, 368, 126

1 Figures not available.

² Short tons.

Beaver district.—The Interstate Lease operated the Interstate-Callahan group in 1939 and shipped 3,200 tons of zinc-lead ore to the Golconda custom mill near Wallace. Most of the remainder of the Beaver district output was placer gold recovered chiefly from the Big 4 group by a dragline and dry-land dredge.

Coeur d'Alene district.—In 1939 a little gold ore from the Mountain Lion mine was treated by amalgamation; placer gold and silver were recovered from the Grove Walker, Old Dunn, Badger, Joe Gandy,

Beehive Bar, Tiger Bar, and Nelson properties.

Eagle district.—Zinc-lead ore and lead ore from the Jack Waite mine continued in 1939 to be the chief output of the Eagle district. The American Smelting & Refining Co. worked the mine throughout the year, treated 10,352 tons of zinc-lead ore by flotation, and shipped

298 tons of high-grade lead ore to a smelter.

Evolution district.—The value of the metal production of the Evolution district was \$7,698,489 in 1939, a decrease of \$1,043,254 from 1938. The loss was caused by a substantial decline in output of silver from both the Sunshine and Polaris properties. However, the Sunshine Mining Co. remained the largest producer of silver in the United States; the company treated 320,990 tons of silver ore in its flotation plant compared with 321,605 tons in 1938, and the output of silver fell from 11,352,154 to 9,414,514 ounces. The Polaris Mining Co. operated its mine throughout the year, but production of silver ore dropped from 64,405 to 48,815 tons and that of silver from 1,583,721 to 1,085,023 ounces. The Coeur d'Alene Mines Corporation, operating the Mineral Point mine near Osburn, became a large producer of silver-copper ore in 1939; about 17,500 tons of ore were treated in the Hercules custom mill. The rest of the district output comprised

4.068 tons of silver ore from the Silver Dollar property and 47 tons of

lead ore from the Western Union mine.

Hunter district (Mullan).—The value of the metal output of the Hunter district was \$5,756,396 in 1939, a gain of \$1,509,747 over 1938, due to a substantial increase in output of zinc-lead ore from the Morning mine and to resumption of operations in September at the Star mine, a large producer of zinc and lead. The Morning mine was operated continuously by the Federal Mining & Smelting Co.; 363,122 tons of zinc-lead ore were treated by flotation (compared with 262,329 tons in 1938), 601 tons of first-class silver-lead ore were smelted, and about 14,000 tons of old tailings (zinc-lead) were shipped by lessees to the Golconda custom mill. The property was the largest producer of lead and zinc in the State. The Sullivan Mining Co. operated its 800-ton flotation mill the last quarter of the year and treated 48,860 tons of zinc-lead ore from the Star mine. Lessees continued to operate the Gold Hunter and Golconda properties; 34,500 tons of silver-lead ore from the Gold Hunter and 5,471 tons of zinc-lead-silver ore from the Golconda were concentrated. Nearly all the rest of the district output was old tailings (zinc-lead) treated in the Golconda

Lelande district (Burke, Mace, Frisco).—The Hecla mine, by far the most important producer in the Lelande district, was operated continuously in 1939 by the Hecla Mining Co.; 200,175 tons of zinc-lead ore were treated in the company flotation plant, and 9,066 tons of first-class silver-lead ore were shipped to a smelter. The Hull Leasing Co. continued to work the Frisco property and treated 23,708 tons of zinc-lead ore in its 100-ton flotation plant. The rest of the district output comprised 3,996 tons of silver-lead ore from the Sherman mine, 1,100 tons of zinc-lead ore from the Mace mine, and 5,340 tons of old

tailings (zinc-lead) from deposits along Canyon Creek.

Placer Center district.—The value of the metal output of the Placer Center district increased 26 percent in 1939 owing to steady operations at the Tamarack and Dayrock properties. The Tamarack & Custer Consolidated Mining Co. worked the Tamarack mine throughout the year and shipped 10,974 tons of zinc-lead ore to the Hercules custom mill at Wallace. The company began to construct a 300-ton flotation plant at the mine in October. The Dayrock mine was operated continuously by the Dayrock Mining Co., and 6,208 tons of silver-lead ore were shipped to the Hercules mill. Most of the remainder of the district output was zinc-lead ore from the Success mine.

St. Joe district.—Placer gold was recovered in 1939 from the Gold

Producer, Haystack, Grizzly-Cooley, and Iron Hill properties.

Summit district (Murray).—Production of gold from the Summit district increased to 3,291 ounces in 1939, owing to the large gain in output of gold ore from the Golden Chest mine operated by Consolidated Gold Mines, Inc.; 12,190 tons of ore were treated by flotation. The rest of the district output was principally zinc-lead ore from the Anchor group and placer gold and silver recovered by various operators working property owned by the Coeur d'Alene Placer Mining Co.

Yreka district (Kellogg).—The value of the metal output of the Yreka district was \$5,811,087 in 1939, a gain of 3 percent over 1938. As usual, zinc-lead ore from the Bunker Hill & Sullivan property was the most important product in the district; 343,019 tons were concentrated in 1939 compared with 347,315 tons in 1938.

ranked second in output of silver, lead, and zinc in Idaho in 1939. The Bunker Hill & Sullivan Mining & Concentrating Co. continued operations at the Crescent group, treated 16,503 tons of silver ore by flotation, and shipped 2,740 tons of rich silver ore to a smelter; the total output of ore was much less than in 1938. The Page and Blackhawk properties were operated continuously by the Federal Mining & Smelting Co., and 71,852 tons of zinc-lead ore from the Page and 15,950 tons of similar ore from the Blackhawk were treated in the Page flotation plant; the total output of ore from the two properties in 1938 was 82,895 tons. The rest of the district output in 1939 was chiefly silver ore and lead ore from the Caledonia mine.

TWIN FALLS COUNTY

In 1939, as in 1938, the output of Twin Falls County was placer gold and silver recovered by sluicing at various properties along the Snake River.

VALLEY COUNTY

Big Creek district.—A little lead ore containing considerable gold was produced in 1939 from the Sunday claim, and placer gold was marketed chiefly from the Smith Creek, Freezeout, and Blue Monday properties.

Deadwood Basin district.—Nearly all the output from the Deadwood Basin district in 1939 was old tailings (gold) from the Merry

Blue property treated by cyanidation.

Lake City (McCall) district.—Placer gold and silver were recovered in 1939 by hydraulic and sluicing operations at the Neely Hill and New Deal Queen claims.

Pistol Creek district.—Operations continued at the Lucky Boy mine

in 1939, and rich gold-lead ore was shipped to smelters in Utah.

South Fork of Salmon River district.—Several small-scale placer operators sluiced stream gravel in 1939 along the South Fork of

Salmon River near Warren.

Thunder Mountain district.—Production from the Thunder Mountain district in 1939 was mostly gold recovered by the sluicing of eroded-vein material from the Sunnyside property, operated by lessees; the mine was formerly worked by the Thunder Mountain Mining & Milling Co., but operations by the company were suspended late in 1938.

Yellow Pine district.—The Yellow Pine mine was in 1939, as usual, the only producer in the Yellow Pine district. The Bradley Mining Co. operated the property continuously and treated 56,074 tons of antimony-gold ore by flotation, a substantial increase over the 35,880 tons treated in 1938; the concentrates, containing considerable anti-

mony, were shipped to the smelter at Midvale, Utah.

WASHINGTON COUNTY

Monroe Creek (Weiser) district.—A little gold ore was produced in 1939 from the Blue Dog claim.

Snake River district.—Placering in 1939 was reported at several

properties along the Snake River in Washington County.

Washington district.—Operations continued at the Silver Still mine near Mineral in 1939, and several cars of silver ore containing lead and copper were shipped to smelters in Utah.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN MONTANA

(MINE REPORT)

By T. H. MILLER AND PAUL LUFF

SUMMARY OUTLINE

Page	
Summary. 337 Calculation of value of metal production 337 Mine production by counties. 341 Mining industry. 343 One destination 349	Review by counties and districts 349 Butte or Summit Valley district 369

The total value of the output of recoverable metals in Montana in 1939 increased \$12,841,124, or 46 percent, over 1938. Substantial gains were recorded in both quantity and value of each of the five metals; the value of copper increased \$5,214,268, zinc \$2,770,072, gold \$2,130,100, silver \$2,028,598, and lead \$698,086. The gain of \$9,376,536 in Silver Bow County (from \$18,300,823 in 1938 to \$27,677,359 in 1939) represented 73 percent of the total State gain and was made possible by reopening of the zinc mines and increased output from the copper mines of the Anaconda Copper Mining Co. at Butte. There were important increases in output of siliceous ores, chiefly gold ore, from several counties. The gain from placer mines was notable.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 3	Copper 3	Lead 3	Zine ³
1935 1936 1937 1938	Per fine ounce \$35, 00 35, 00 35, 00 35, 00	Per fine ounce \$0. 71875 . 7745 . 7735 4. 646+ 8. 678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046	Per pound \$0.044 .050 .065 .048

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+(\$20.671835) per fine ounce.

1 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.

3 Yearly average weighted price of all grades of primary metal sold by producers.

4 \$0.64646464. \$0.67878787.

Mine production of gold, silver, copper, lead, and zinc in Montana, 1935-39, and total, 1862-1939, in terms of recovered metals

Year			nes pro- ucing	Ore (short tons)		Gold (lode a	nd placer)	Silver (loc	le and placer)
		Lode	Placer		F	ine ounces	Value	Fine ounce	s Value
1935 1936 1937 1938 1939	 	68 57 61 48 59	0 284 5 406 2 265	2, 412, 113 3, 853, 116 4, 898, 009 2, 724, 466 3, 792, 780		151, 088. 03 180, 209. 20 202, 252. 00 203, 313. 00 264, 173. 00	\$5, 288, 081 6, 307, 322 7, 078, 820 7, 115, 955 9, 246, 055	9, 322, 95 11, 600, 56 11, 812, 09 6, 403, 96 9, 087, 57	8, 984, 636 9, 136, 654 4, 139, 935
1862-1939			-	(1)	16	3, 161, 441. 00	350, 103, 647	688, 454, 93	503, 598, 112
		Сод	pper		Le	ad	Zi	ne	m
Year	Pou	nds	Value	Pound	is	Value	Pounds	Value	Total value
1935 1936 1937 1938 1939	154, 957 219, 088 289, 050 154, 420 195, 65	8,000 6,000 6,000	\$12, 861, 4 20, 156, 0 34, 975, 7 15, 133, 7 20, 348, 0	96 38, 118, 0 76 35, 914, 0 48 18, 654, 0	000 000 000	\$1, 247, 101 1, 753, 428 2, 118, 926 858, 084 1, 556, 170	109, 561, 477 99, 434, 000 78, 336, 000 17, 688, 000 69, 598, 000	\$4, 820, 705 4, 971, 700 5, 091, 840 849, 024 3, 619, 096	\$30, 918, 228 42, 173, 182 58, 402, 016 28, 096, 746 40, 937, 870
1862-1939	2 5, 78	3, 030	1, 699, 118, 6	00 2 582, 9	947	61, 780, 542	2 1, 586, 370	239, 058, 968	2, 853, 659, 869

¹ Figures not available.

Gold and silver produced at placer mines in Montana, 1935-39, in fine ounces, in terms of recovered metals

Year	Sluicing, hydraulic, and drift		Dragline a land dre		Floating (dreds		Total		
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	
1935 1936 1937 1938 1939	4, 586, 48 2, 803, 02 2, 989, 00 3, 896, 00 2, 283, 00	647 338 369 351 252	9, 031. 88 18, 312. 43 15, 844. 00 10, 096. 00 18, 901. 00	1, 554 3, 393 4, 249 2, 943 4, 659	12, 680. 87 19, 300. 35 17, 564. 00 21, 356. 00 33, 815. 00	1, 294 1, 923 1, 797 3, 240 6, 723	26, 299. 23 40, 415. 80 36, 397. 00 35, 348. 00 54, 999. 00	3, 495 5, 654 6, 415 6, 534 11, 634	

¹ A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."

Gold.—The output of gold in Montana increased to 264,173 fine ounces in 1939—the largest output since 1887, when 289,212 ounces were produced. Gold from lode mines increased 41,209 ounces and that from placers 19,651 ounces. Gold from Jefferson County increased 11,804 ounces, from Madison County 11,505 ounces, and from Lewis and Clark County 10,997 ounces; substantial gains were recorded also in Broadwater, Deer Lodge, Granite, and Silver Bow Counties. Most of the gain from placer mines came from the new bucket dredges of the Winston Bros. Co. and the Perry-Schroeder Mining Co., which were placed in operation late in 1938. Large gains in output of gold were reported at the Southern Cross, Victoria, Ohio Keating, and Golden Sunlight mines and at the Butte properties of the Anaconda Copper Mining Co. Siliceous ores yielded 72 per-

² Short tons.

cent of the State total gold in 1939 and placers 21 percent. Ore treated at amalgamation and cyanidation mills yielded 31 percent of the gold, crude ore shipped direct to smelters 33 percent, and ores treated at concentration mills 15 percent. The output of gold ore increased to 815,949 tons in 1939 (compared with 756,223 tons in 1938); it comprised 82,359 tons treated at amalgamation plants, 490,429 tons treated at cyanidation plants, 148,138 tons treated at concentration plants, and 95,023 tons shipped crude to smelters.

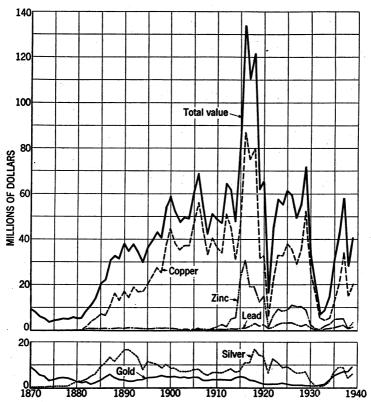


Figure 1.—Value of mine production of gold, silver, copper, lead, and zinc and total value in Montana, 1870-1939.

The West Mayflower property (Madison County) of the Anaconda Copper Mining Co. in 1939 again was the largest gold producer in Montana; it was followed by the Winston dredge near Clancey, the Ruby Gulch mine at Zortman, the Victoria mine at Silver Star, the Butte Highlands mine in Silver Bow County, the Butte properties of the Anaconda Copper Mining Co., the Porter dredge at Helena, the Jardine mine in Park County, the Golden Messenger mine in Lewis and Clark County, and the Southern Cross mine in Deer Lodge County. These 10 properties yielded 105,665 ounces of gold in 1939.

Silver.—The output of recoverable silver in Montana was 9,087,571 fine ounces in 1939 compared with 6,403,962 ounces in 1938 and 11,812,093 ounces in 1937. Most of the gain in 1939 was in Silver Bow County (6,114,455 ounces produced in 1939 compared with 4,018,192 ounces in 1938) and was due to reopening of the zinc mines and to increased output from the copper mines of the Anaconda Copper Mining Co. The production of silver from Jefferson, Cascade, and Granite Counties also increased substantially. Copper ore yielded 52 percent of the State total silver in 1939, zinc-lead ore 20 percent, and silver ore 18 percent. Nearly 79 percent of the silver came from ores treated by concentration and 19 percent from ore sent direct to smelters. Silver from zinc-lead ore increased 1,331,843 ounces and that from copper ore 838,344 ounces. The output of silver ore increased 26,962 tons and that of gold-silver ore 48,172 tons.

The Anaconda Copper Mining Co. was in 1939, as usual, the chief silver producer in Montana—the copper and zinc units at Butte and the Flathead mine yielding nearly 70 percent of the State total. Other important silver producers included the Comet mine near Basin, the Granite Bimetallic and Silver Prince mines near Philipsburg, the Big Seven and Florence mines at Neihart, the Hecla mine in Beaverhead County, and the West Mayflower mine in Madison

 $\mathbf{Countv.}$

Copper.—Copper ore, the most valuable mineral product of Montana, yielded recoverable gold, silver, and copper valued in all at \$23,621,484 in 1939, or 58 percent of the total value of the metal output of the State. The Anaconda Copper Mining Co. was, as usual, the only important producer of copper in Montana; the output of recoverable copper from company mines at Butte increased 27 percent over 1938, owing to increased rate of operations during the last 4 months of 1939, but it was considerably less than the output in 1937. The company shipped 2,197,863 tons of copper ore to the mill at Anaconda compared with 1,561,186 tons in 1938 and 3,068,665 tons in 1937.

Lead and zinc.—The Anaconda Copper Mining Co. resumed production of zinc-lead ore from the zinc mines at Butte in March 1939, after a shut-down of more than a year; zinc shipments were resumed in December at the Emma mine, leased by the company. result, the output of zinc-lead ore in Montana increased to 320,248 tons in 1939 from 114,769 tons in 1938, with proportionate increases in production of all five metals. There was a decrease in zinc-lead ore from the Jack Waite mine, but an increase from the Comet mine. Zinc-lead ore from Granite County increased slightly but was much less than in 1937, as no zinc-lead ore was produced at the Trout Concentrates smelted yielded 60 percent of the State total lead and 64 percent of the zinc in 1939, crude ore smelted yielded 32 percent of the lead, and slag fumed yielded nearly 8 percent of the lead and 36 percent of the zinc. There was an increase in lead from crude ore smelted, chiefly from the Flathead mine in Flathead Countv and the Glendennin property in Judith Basin County.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Montana in 1939, by counties, in terms of recovered metals

County		produc- ng	Gold (lode a	and placer)	Silver (lode and placer)		
	Lode	Placer	Fine ounces	Value	Fine ounces	Value	
Beaverhead Broadwater Carbon Cascade Deer Lodge Fergus Flathead Collection	11 13 8 3	11 28 1 5 3	11, 570 19, 901 1 2, 078 9, 866 3, 185 614	\$404, 950 696, 535 35 72, 730 345, 310 111, 475 21, 490	181, 718 31, 179 438, 374 11, 251 3, 465 473, 846	\$123, 348 21, 164 297, 563 7, 637 2, 352 321, 641	
Gallatin Granite Jefferson Judith Basin Lewis and Clark Lincoln Madison Meagher	50 96 3	1 17 18 	6 14, 283 30, 984 109 45, 854 1, 944 61, 875	210 499, 905 1, 084, 440 3, 815 1, 604, 890 68, 040 2, 165, 625	9 693, 028 553, 192 38, 529 122, 265 11, 024 231, 308	6 470, 419 375, 500 26, 153 82, 992 7, 483 157, 009	
Mineral Missoula Park Phillips Powell Ravalli Sanders Silver Bow	12. 5 2 24 5 8	20 22 5 3 28 3 2	1, 072 2, 258 8, 627 18, 196 8, 895 171 155 22, 036	13, 825 37, 520 79, 030 301, 945 636, 860 311, 325 5, 985 5, 425 771, 260	112 56 2,805 7,375 74,443 68,475 3,306 27,219 6,114,455	76 38 1, 904 5, 006 50, 531 46, 480 2, 244 18, 476	
Total, 1938.	594 482	5 282 265	22, 056 29 69 264, 173 203, 313	9, 246, 055 7, 115, 955	9, 087, 571 6, 403, 962	4, 150, 418 91 2 6, 168, 533 4, 139, 935	

County	Con	pper	Le	ad	Zi	ne	Total
	Pounds	Value	Pounds	Value	Pounds	Value	value
Beaverhead Broadwater Carbon		\$20, 737 2, 364	763, 064 422, 319	\$35, 864 19, 849			\$584, 899 739, 912
Cascade Deer Lodge		962	586, 425	27, 562	10,000	\$520	35 399, 337 352, 947
Fergus Flathead Gallatin	38 3,404 58	4 354 6	383 5, 533, 553 5, 830	260, 077 274			113, 849 603, 562 496
Granite Jefferson Judith Basin	134, 981 391, 721 11, 231	14, 038 40, 739 1, 168	445, 192 4, 003, 787 1, 566, 745	20, 924 188, 178 73, 637	1, 326, 404 2, 142, 308	111, 400	1, 074, 259 1, 800, 257
Lewis and Clark Lincoln	39, 173 4, 798	4, 074 499	3, 324, 531 83, 809	156, 253 3, 939	22, 000 25, 278, 000	1, 144 1, 314, 456	105, 917 3, 162, 665 79, 961
Madison Meagher Mineral		9, 527 156	211, 383 1, 532	9, 935 72			2, 342, 096 14, 129 37, 558
Missoula Park Phillips		1,816 6 183	8, 639 30, 318	406 1,425			83, 156 308, 382 687, 574
Powell	3, 875 2, 308	403 240	127, 000 21, 234	5, 969 998			364, 177 9, 467
Silver Bow Sweet Grass	184, 182 194, 533, 471 1, 000	19, 155 20, 231, 481 104	6, 558, 915 9, 415, 341	308, 269 442, 521	787, 000 40, 032, 288	40, 924 2, 081, 679	392, 249 27, 677, 359 1, 210
Toole	195, 654, 000	20, 348, 016	33, 110, 000	1, 556, 170	69, 598, 000	3, 619, 096	2,417
Total, 1938	154, 426, 000	15, 133, 748	18, 654, 000	858, 084	17, 688, 000	849, 024	40, 937, 870 28, 096, 746

Gold and silver produced at lode mines in Montana in 1939, by counties, in terms of recovered metals

County	Ore sold or treated	Gold	Silver	County	Ore sold or treated	Gold	Silver
Beaverhead Broadwater Cascade Deer Lodge Fergus Flathead Gallatin Granite Jefferson Judith Basin Lewis and Clark Lincoln Madison	Short tons 57, 246 70, 329 44, 432 29, 825 51, 695 26, 860 26 123, 405 128, 423 2, 733 327, 990 14, 569 180, 619	Fine ounces 9, 497 17, 333 2, 078 9, 842 3, 168 614 113, 281 14, 455 125, 676 1, 695 57, 666	Fine ounces 181, 553 30, 718 438, 374 11, 251 3, 465 473, 846 99 941 546, 595 38, 529 119, 684 11, 018 230, 396	Meagher Mineral Missoula Park Phillips Powell Ravalli Sanders Silver Bow Sweet Grass Total, 1938	Short tons 10 204 1, 600 52, 919 129, 785 13, 319 234 37, 491 2, 498, 922 144 3, 792, 780 2, 724, 466	Fine ounces 25 602 8, 416 18, 179 4, 393 140 21, 912 29 209, 174 167, 965	Fine ounces 3 3 2, 671 7, 347 74, 443 67, 974 3, 303 27, 219 6, 114, 433 134 9, 075, 937 6, 397, 428

Gold and silver produced at placer mines in Montana in 1939, by counties, in fine ounces, in terms of recovered metals

							· · · · ·		1	
County	Sluicing and hydraulic		Drift mining		Dragline and dry-land dredges ¹		Floating (bucket) dredges		Total	
· · · · · · · · · · · · · · · · · · ·	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
Beaverhead Broadwater Carbon Deer Lodge Fergus Gallatin Granite Jefferson Lewis and Clark Lincoln Madison Meagher Mineral Missoula Park Phillips Powell Ravalli Sanders Silver Bow	17 5 94 78 290 93 169 94 243 71 211 6 259	5 31 	24 	17	2, 006 2, 357 127 6, 330 4, 682 156 10 294 781 1, 584 11 457 106	160 428 	757 10, 121 15, 206 3, 950	71 3, 704 1, 640 874	2, 073 2, 568 1 24 17, 5 1, 002 16, 529 20, 178 249 4, 209 4, 209 1, 647 1, 656 211 177 4, 502 108 15 112	165 461
Toole	30	22	39	1					69	3
Total, 1938	2, 075 23, 896	232 351	208 (²)	20 (²)	18, 901 10, 096	4, 659 2, 943	33, 815 21, 356	6, 723 3, 240	54, 999 35, 348	11, 634 6, 534

¹ A floating washing plant supplied with gravel by a dragline excavator is called a "dragline dredge"; a stationary or movable washing plant supplied with gravel by any type of power excavator is called a "dry-land dredge."

² Figures for sluicing and hydraulic include those for drift mining.

MINING INDUSTRY

Reopening of the zinc mines and increased output from the copper mines of the Anaconda Copper Mining Co. at Butte accounted for most of the gains in metal output in Montana in 1939; however, increases were reported in gold ore treated at amalgamation and cyanidation mills, and there was a marked increase in crude gold ore

shipped direct to smelters.

Gold recovered at placer mines in Montana increased 19,651 fine ounces over 1938. Seven connected-bucket dredges were in operation during 1939 and handled 7,435,147 cubic yards of gravel yielding 33,815 ounces of gold and 6,723 ounces of silver; the recovered gold was valued at \$1,183,525, indicating an average value of 15.9 cents to the cubic yard of gravel treated. Dragline or power-shovel excavators with dry-land or floating washing plants were reported in operation at 49 properties; the plants treated 4,377,813 cubic yards of gravel, which yielded 18,901 ounces of gold and 4,659 ounces of silver: the gold recovered was valued at \$661,535, indicating an average value of 15.1 cents to the cubic yard.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Montana in 1939, with content in terms of recovered metals

Source	Mines produc- ing	Ore	Gold	Silver	Copper	Lead	Zinc
Dry and siliceous gold ore Dry and siliceous gold-silver ore Dry and siliceous silver ore	379 36 82	Short tons 815, 949 55, 620 177, 892	Fine ounces 179, 610 5, 491 5, 477	Fine ounces 448, 893 287, 304 1, 606, 840	Pounds 172, 622 94, 266 282, 386	Pounds 848, 853 142, 512 1, 461, 541	Pounds
Copper ore Lead ore Zinc ore Zinc-lead ore	1 495 9 91 3 19	1, 049, 461 2, 253, 270 23, 096 3 146, 705 320, 248	190, 578 7, 636 2, 296 16 8, 648	2, 343, 037 4, 697, 920 214, 368 38, 482 1, 782, 130	549, 274 2 193,897, 430 51, 271 5, 631 1, 150, 394		25, 399, 604 44, 198, 396
Total, lode mines Total, placers	1 594 282	3, 792, 780	209, 174 54, 999	9, 075, 937 11, 634	² 195,654, 000	33, 110, 000	69, 598, 000
Total, 1938		3, 792, 780 2, 724, 466		9, 087, 571 6, 403, 962			69, 598, 000 17, 688, 000

A mine producing more than 1 class of ore is counted but once in arriving at total for all classes.
 Includes 4,004,361 pounds recovered from precipitates.
 Includes 145,638 tons of current slag fumed.
 Includes 5,563,800 pounds recovered from precipitates.

METALLURGIC INDUSTRY

Lode mines in Montana produced 3,792,780 tons of ore and old tailings in 1939 compared with 2,724,466 tons in 1938. The output in 1939 comprised 82,359 tons treated at amalgamation mills, 490,429 tons treated at cyanidation mills, 2,836,478 tons treated at concentration plants, 237,876 tons shipped crude to smelters, and 145,638

tons treated at a slag-fuming plant.

Two combined cyanidation and concentration mills and 19 straight cyanidation mills were operated in Montana in 1939; the ore and old tailings treated increased from 433,233 tons in 1938 to 490,429 tons in 1939. The material treated in 1939 contained 79,132 ounces of gold and 223,654 ounces of silver and the bullion and concentrates produced yielded 68,349 ounces of gold and 126,153 ounces of silver, indicating average recoveries of 86 percent of the gold and 56 percent of the silver. Fifteen of the mills, treating 464,412 tons of material, reported the consumption of 286,302 pounds of 91-percent sodium cyanide, 69,876 pounds of calcium cyanide, 80,560 pounds of zinc dust (including zinc shavings used at one plant), and 3,725,537 pounds of lime; in addition, two plants used 1,103 pounds of lead acetate and one plant used 5,270 pounds of manganese dioxide.

Ore treated at straight concentration plants increased from 1,976,828 tons in 1938 to 2,836,478 tons in 1939. The 1939 total comprised 148,138 tons of gold ore, 43,600 tons of gold-silver ore, 125,262 tons of silver ore, 2,197,863 tons of copper ore, 300 tons of lead ore, 1,067

tons of zinc ore, and 320,248 tons of zinc-lead ore.

Details of the treatment of all ores produced in Montana in 1939 are given in the tables that follow.

Mine production of metals in Montana in 1939, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zine
Ore amalgamated	Short tons 82, 359	Fine ounces 9, 354	2,042	Pounds	Pounds	Pounds
Concentrates smelted 1 Copper precipitates smelted	490, 429 500, 204 2, 007	68, 278 44, 614	126, 015 7, 177, 059	187, 498, 271 4, 004, 361	19, 914, 836	44, 320, 000
Ore smelted Slag fumed Placer	237, 876 145, 638	86, 928 54, 999	1, 747, 220 23, 601 11, 634	4, 151, 368	10, 683, 164 2, 512, 000	25, 278, 000
Total, 1938		264, 173 203, 313	9, 087, 571 6, 403, 962	195, 654, 000 154, 426, 000	33, 110, 000 18, 654, 000	69, 598, 000 17, 688, 000

¹ Includes zinc concentrates treated at electrolytic plants.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Montana in 1939, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

			vered in llion	Concen	trates sm	elted an	d recover	ed metal
County	Material treated	Gold	Silver	Concen- trates pro- duced	Gold	Silver	Copper	Lead
Beaverhead	Short tons	Fine ounces 21	Fine ounces 2	Short tons	Fine ounces	Fine ounces	Pounds	Pounds
Broadwater Deer Lodge	1,442	1, 032 122	189 17	59	131	327	242	840
Granite Jefferson Lewis and Clark	355 1,030 770	70 135 129	41 38 31	6 64	21 98	8 600	921	6, 104
Lincoln Madison Mineral	14, 485 7, 914 175	1, 145 1, 501 2	257 600	366 146 7	415 506 10	10, 573 1, 087	4, 618 1, 105	75, 196 438
Missoula Park Powell	900 52, 295 451	178 4, 908 71	33 797 35	2, 128	122 3, 291	31 825		
RavalliSanders	66 35	33 7	2	6	26	35		
Total, 1938	82, 359 77, 478	9, 354 9, 492	2, 042 2, 050	2, 800 1, 599	4, 620 2, 639	13, 486 5, 687	6, 932 1, 559	82, 578 20, 158
	CYAI	NIDATI	ON MII	LLS	'	'		
Beaverhead Deer Lodge	38, 195 18, 986	7, 365 2, 908	1, 988 327	6	60	12		
Fergus Granite Lewis and Clark	51, 552 12, 612 158, 243	3, 089 2, 965 18, 683	1, 927 103 40, 969	16	11	126	40	9, 860
Madison Phillips Silver Bow	62, 356 128, 981 19, 504	8, 083 15, 249 9, 936	16, 245 63, 592 864					
Total, 1938	490, 429 433, 233	68, 278 64, 759	126, 015 120, 062	22	71	138	40	9, 860
Grand total: 1939 1938	572, 788 510, 711	77, 632 74, 251	128, 057 122, 112	2, 822 1, 599	4, 691 2, 639	13, 624 5, 687	6, 972 1, 559	92, 438 20, 158

Mine production of metals from concentrating mills in Montana in 1939, by counties, in terms of recovered metals

			Concentrates smelted and recovered metal							
County	Ore treated	Concentrates produced	Gold	Silver	Copper	Lead	Zinc			
Broadwater Cascade Granite Jefferson Judith Basin Lewis and Clark Madison Park Powell Sanders Silver Bow Sweet Grass	Short tons 63, 622 44, 117 82, 612 108, 736 54 14, 065 65, 941 500 5, 000 36, 028 2, 415, 693 110	Short tons 7,786 1,543 26,382 15,288 37 459 3,304 47 496 3,744 438,277 19	Fine ounces 10, 846 1, 465 2, 508 5, 584 2, 032 7, 351 2 535 51 9, 523 26	Fine ounces 6, 799 355, 567 385, 489 479, 192 5, 069 15, 255 5, 673 4, 145 21, 334 5, 884, 547	Pounds 13, 858 7, 525 105, 445 357, 904 14, 515 78, 863 58 1, 112 28, 975 186, 882, 044 1, 000	Pounds 88, 871 559, 084 381, 203 3, 664, 727 11, 800 344, 862 1, 591 30, 318 37, 527 5, 249, 074 9, 415, 341	Pounds 10,000 1,326,404 2,142,308 22,000 787,000 40,032,288			
Total, 1938		497, 382 351, 779	39, 923 32, 061	7, 163, 435 4, 718, 975	187, 491, 299 145, 431, 136	19, 822, 398 11, 237, 033	44, 320, 000 5, 561, 167			

Gross metal content of concentrates produced from ore mined in Montana in 1939, by classes of concentrates smelled

	Comoom	Gross metal content							
Class of concentrates	Concen- trates	Gold	Silver	Copper	Lead	Zinc			
Dry gold	Short tons 11,720	Fine ounces 18, 467	Fine ounces 12,578	Pounds 28, 305	Pounds 95, 674	Pounds			
Dry gold-silver Dry silver	23, 753 1, 408	1,881 2,001	156, 791 323, 060	78, 517 6, 022	58, 738 67, 331				
Copper Lead Zinc	384, 480 15, 123 44, 743	9, 882 5, 592 2, 961	4, 598, 779 761, 328 1, 140, 326	190, 572, 750 547, 848 625, 687	16, 167, 608 3, 610, 356	412, 83			
Iron (from zinc-lead ore)	18, 977	3, 830	184, 197	222, 084	1, 026, 757	49, 243, 451 1, 984, 501			
Total, 1938	500, 204 353, 378	44, 614 34, 700	7, 177, 059 4, 724, 662	192, 081, 213 148, 646, 904	21, 026, 464 11, 740, 075	51, 640, 79 7, 682, 16			

Mine production of metals from Montana concentrates shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	Zinc
Beaverhead	Short tons	Fine ounces	Fine ounces	Pounds	Pounds	Pounds
Broadwater	7.845	10, 977	7, 126	14, 100	89, 711	
Cascade	1, 543	1, 465	355, 567	7, 525	559, 084	10,00
Granite	26, 388	2, 529	385, 497	105, 445	381, 203	1, 326, 40
lefferson	15, 352	5, 682	479, 792	358, 825	3, 670, 831	2, 142, 30
Judith Basin	37		251		11,800	22,00
Lewis and Clark		2,043	5, 195	14, 555	354, 722	
Lincoln	366	415	10, 573	4, 618	75, 196	
Madison	3, 450	7,857	16, 342	79, 968	2,029	
Mineral	7	10	-		l	
Missoula	18	122	31	46		
Park	2, 175	3, 293	6, 498	58	30, 318	
Powell	496	535	4, 145	1, 112	75, 527	
Sanders	3, 750	77	21, 369	28, 975	5, 249, 074	787, 00
Silver Bow	438, 277	9, 523		186, 882, 044	9, 415, 341	40, 032, 28
Sweet Grass	19	26	114	1,000		
	500, 204	44, 614	7, 177, 059	187, 498, 271	19, 914, 836	44 200 00
Total, 1938	353, 378	34, 700	4 794 669	145, 432, 695	11, 257, 191	44, 320, 00 5, 561, 16
1 00ai, 1800	000, 010	. 52, 100	1, 121, 002	110, 102, 000	11, 201, 191	0, 501, 10
	BY CLAS	SES OF CO	NCENTRA	ATES		
D1d	11 700	10 407	10 570	01.200	00.040	
Dry gold Dry gold-silver	11,720	18, 467	12, 578	21, 369	92,046	
Dry gold-suver	23, 753	1,881	156, 791	76,063	29, 539	

Dry gold Dry gold-silver Dry silver Copper Lead Zinc Iron (from zinc-lead ore)	11, 720 23, 753 1, 408 384, 480 15, 123 44, 743 18, 977 500, 204	18, 467 1, 881 2, 001 9, 882 5, 592 2, 961 3, 830 44, 614	761, 328 1, 140, 326 184, 197	21, 369 76, 063 5, 118 186, 131, 629 465, 665 594, 385 204, 042 187, 498, 271	92, 046 29, 539 64, 638 15, 520, 349 3, 429, 816 778, 448	44, 320, 000
--	---	--	-------------------------------------	--	--	--------------

Gross metal content of Montana crude ore shipped to smelters in 1939, by classes of ore

Class of ore	Ore	Gross metal content					
		Gold	Silver	Copper	Lead		
Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper Lead	Short tons 95, 023 12, 020 52, 630 55, 407 22, 796	Fine ounces 76, 564 3, 610 2, 796 1, 682 2, 276	Fine ounces 277, 484 130, 513 1, 018, 344 109, 817 211, 062	Pounds 132, 857 44, 494 218, 257 4, 040, 027 60, 887	Pounds 293, 934 117, 668 842, 293 10, 204, 938		
Total, 1938	237, 876 160, 118	86, 928 59, 014	1, 747, 220 1, 541, 297	4, 496, 522 3, 612, 552	11, 458, 833 6, 262, 349		

Mine production of metals from Montana crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Ore	Gold	Silver	Copper	Lead
Beaverhead Broadwater Cascade Deer Lodge Fergus Flathead Gallatin Granite Jefferson Judith Basin Lewis and Clark Lincoln Madison Meagher Mineral Misseale Mi	5, 265 315 8, 448 143 26, 860 26 27, 826 18, 657 2, 679 9, 274 84 44, 408 10 29	Fine ounces 2, 051 5, 324 613 6, 812 79 614 1 7, 717 8, 638 109 4, 821 135 40, 225	Fine ounces 179, 551 23, 403 82, 807 10, 907 1, 538 473, 846 9 307, 300 66, 765 38, 278 49, 888 197, 209 31	199, 394 8, 631 1, 725 38 3, 404 58 29, 536 32, 896 11, 231 24, 618 180 11, 638 1, 500	Pounds 763, 064 332, 608 27, 341 5, 533, 553 5, 830 63, 989 332, 956 1, 554, 945 457, 809 8, 613, 209, 354 1, 532
Missoula Park Phillips Powell Ravalli Sanders Silver Bow Sweet Grass	700 124 804 7, 868 168 1, 428 63, 725 34	302 215 2, 937 3, 787 30 56 2, 453 3	2, 607 52 10, 851 63, 794 3, 303 5, 848 229, 022 20	17, 415 1, 760 2, 763 2, 308 155, 207 3, 647, 066	51, 473 21, 234 1, 309, 841
Total, 1938	237, 876 160, 118	86, 928 59, 014	1, 747, 220 1, 541, 297	4, 151, 368 3, 429, 505	10, 683, 164 5, 977, 679
ВУ	CLASSES	OF ORE	<u> </u>		
Dry and siliceous gold. Dry and siliceous gold-silver. Dry and siliceous silver. Copper. Lead.	95, 023 12, 020 52, 630 55, 407 22, 796	76, 564 3, 610 2, 796 1, 682 2, 276	277, 484 130, 513 1, 018, 344 109, 817 211, 062	56, 365 18, 203 189, 890 3, 835, 740 51, 170	245, 919 112, 973 520, 351 9, 803, 921
	237, 876	86, 928	1, 747, 220	4, 151, 368	· 10, 683, 164

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Montana in 1939, by counties and districts, in terms of recovered metals

County and district	Mines produc- ing		Ore sold	Gold			Silver			Copper	Lead	Zine	Total value
	Lode	Placer	or treated	Lode	Placer	Total	Lode	Placer	Total				
Beaverhead County: Argenta Argenta Bald Mountain Bannack Big Hole Blue Wing Bryant Eikhorn Horse Prairie Creek Polaris Vipond Broadwater County: Backer Beaver Cedar Plains Park Cascade County: Montana	15 12 16	1 23	Short tons 34, 814 488 4, 995 679 1, 974 13, 521 8 722 234 15, 979 50, 932 3, 184	Fine ounces 6, 986 100 1, 338 200 65 798 3 7 783 2, 891 11, 539 2, 120 2, 078	Fine ounces 4 2,031 25	Fine ounces 6, 990 100 3, 369 225 65 798 3 13 7 3, 281 2, 891 11, 539 2, 190 2, 178	Fine ounces 7, 313 333 1, 108 1, 230 30, 631 126, 692 1, 102 436 12, 708 548 10, 112 2, 126 17, 932 438, 374	### Fine ounces 159 3 3	Fine ounces 7, 313 333 1, 267 1, 223 30, 631 126, 692 1, 102 2 3 436 12, 708 10, 112 2, 126 17, 951 438, 374	Pounds 884 327 29 1, 481 96 194, 039 2, 538			\$251, 488 4, 244 118, 778 16, 474 23, 126 160, 041 1, 124 457 296 8, 871 115, 564 406, 607 103, 387 359, 337
Cascate County; Deer Lodge County: French Gulch Georgetown Lost Creek Oro Fino Silver Lake Warm Springs Fergus County: Cone Butte	7	1	29, 136 346 343	9, 676	16 6 2	16 9,676 6 161 5 2	1, 077 4, 262 5, 912		1, 077 4, 262 5, 912				560 339, 391 210 8, 528 4, 188 70
North Moccasin. Warm Springs. Flathead County: Hog Heaven Gallatin County: Eldridge Elk Creek. Johnson Gulch	5 3	. 1	51, 552 118 26, 860	3, 089 61 614	5	3, 106 61 614 5 1	1, 927 1, 460 473, 846		1, 927 1, 460 473, 846	3, 404 19 39			110, 018 3, 147 603, 562 175 37 284

Granite County:		1 1		ı	1	ı	ı	1 .			1		
Alps	1	Į i	29	16		16	3	1	3	48	ł	1	567
Boulder	9	3	754	509	38	547	1. 174	3	1, 177	2, 856	6,894		20, 565
Dunkleberg	3	"	23	6	1	6	283		283	2,000	0,001		402
First Chance	12	6	2.857	2, 782	796	3,578	2,883	75	2, 958	1. 827	489		127, 451
Flint Creek	79		104, 470	5,071		5,071	681, 752		681, 752	129, 154	436, 809	1, 326, 404	743, 185
Gold Creek	l š	4	75	53	41	94	31	3	34	120, 101	100,000	1,020, 101	3,313
Henderson	l i	1	205	82	104	186	196	3	199	952			
Maxville	1 2		544	99	101	99	5, 959	3	5, 959	19	256		6,744
Moose Lake	%		23	15		15	196		196	19	744		7, 524
Red Lion	1 5		12,618	2, 976		2.976	106				744		693
Rock Creek.	1 1		1, 803	1,669	23	1,692	352	3	106 355	125	·		104, 232
Stony	1 7	9	1, 303	1,009	20	1,092	302	0	300	120			59, 474
Jefferson County:	١ .		4	3		3	0		6				109
	5		127	00			- 455	1					
Amazon Bigfoot	0 9			33		33	1,457		1,457	211	16, 787		2, 955
Digitot	2		26	29		29	249		249	212	1, 213		1, 263
Boulder	1 .0	1	178	24	63	87	1,622	9	1,631	134	9,086		4, 593
Cataract	24	8	63, 517	6, 125	71	6, 196	403, 889	19	403, 908	278, 952	3, 343, 383	2, 140, 500	788, 484
Clancey	3	7	31	17	12,955	12, 972	212	4, 536	4,748	125	297		457, 270
Colorado			51, 866	1, 256		1, 256	123, 171		123, 171	107, 385	517, 851	1, 808	163, 168
Elkhorn	10		745	323		323	2, 136		2, 136	875	17,809		13, 683
Golconda	1		15	7	l	7	59	l	59	10	957		331
Homestake	3	1	8	9	1	9	25		25	1	l		332
Lowland	1	1	50	17	3, 245	3, 262	3	2, 005	2,008				115, 533
McClellan Creek	1		21	2		2	554		554	163	234		474
Mitchell	3	1	318	337	195	532	831	28	859	616	128		19, 273
Warm Springs	5		264	216		216	856		856	923	2,915		8, 374
Whitehall	17		10, 947	5, 998		5, 998	11.416		11, 416	1, 827	90, 553		222, 125
Willow Creek	1		310	62		62	115		115	288	2, 574		2, 399
Judith Basin County:		1		1							2,0.1		2, 000
Barker	1 2	1	2, 719	109		109	38, 454	1	38, 454	11, 183	1, 560, 299	22, 000	105, 558
Running Wolf Creek	l ī		14	1			75		75	48	6, 446	22,000	359
Lewis and Clark County:	_									10	0, 440		509
Dry Gulch	2	1 7	46, 337	8, 278	39	8, 317	8, 216	3	8, 219	221	511		296, 721
Greenhorn	1 5	الما	23	0,210	141	145	140	19	159	57	2, 872		5, 324
Heddleston	1 7	1 *	1. 397	280	111	280	12, 394	1.0	12, 394	8, 481	14, 596		19, 781
Helena	14	7	57, 512	3, 105	9, 341	12, 446	6, 821	878	7, 699	1,760	111, 425		
Jefferson Gulch	1 7	1 '	9,022	13	0,011	13	9	010	1, 099	1,700	111, 425		446, 256
Lake Helena	1 1		49	13		13	62		62	86	0.00%		461
Lincoln	1 1		40	57	211	268	22			183	2, 235		611
Marysville	18	6	40, 680	6.744	3, 953	10, 697	27, 552	28	50				9, 433
Missouri River	1 10	6	40,000	0,744			21,002	750	28, 302	17, 106	363, 233		412, 457
Dimini		3	1,772	348	6, 396	6, 396		850	850				224, 437
RiminiScratch Gravel	1 2	3	454		95	443	18, 091	53	18, 144	10, 019	315, 766		43, 704
	1 0			456		456	1, 737		1, 737	779	574		17, 247
Smelter Spokane Hills	! ;		145, 638				23, 601		23, 601			25, 278, 000	1, 448, 540
Spokane Huis	1 -		55	47		47	59		59	96	319		1, 710
Stemple	5	1	34, 022	6, 331	2	6, 333	20, 893		20, 893	356	915		235, 917
Wolf Creek	1		2				87		87	29	85]	66
Lincoln County:	l				1			1 1					
Libby	1	8	64	123	236	359	50	6	56	96	149		12,620
Sylvanite	4		14, 505	1,572		1, 572	10, 968		10, 968	4, 702			66, 886
Ural		. 1		l	13	13		1					455
												,	100

Mine production of gold, silver, copper, lead, and zinc in Montana in 1939, by counties and districts, in terms of recovered metals—Continued

County and district		produc- ng	Ore sold or treated		Gold	,		Silver		Copper	Lead	Zinc	Total value
	Lode	Placer	or treated	Lode	Placer	Total	Lode	Placer	Total				,
Madison County: Cherry Creek	3		Shorttons 204	Fine ounces 341	Fine ounces	Fine ounces 341	Fine ounces 8, 443	Fine ounces	Fine ounces 8, 443	Pounds	Pounds	Pounds	\$ 17, 666
Norris	. 31	3	32, 386	8, 393	1, 169	9, 562	13, 717	168	13, 885	2, 221	43, 022		346, 348
Pony	. 18		65, 170	7, 397		7, 397	12, 394		12, 394	78, 904	5, 276		275, 762
Renova			21,742	20, 180		20, 180	113, 501		113, 501	231			783, 367
Rochester			1, 985	480		480	3, 527 8, 079	28	3, 527 8, 107	625 1, 413	88, 277 27, 362		23, 408 69, 621
Sheridan Silver Star	25 13	11	2, 012 43, 993	1, 641 13, 163	150	1, 791 13, 163	19, 931	20	19, 931	2, 144	12, 021		475, 022
Tidal Wave		3	1, 511	2, 241	8	2, 249	6, 441		6, 441	4, 606	24, 234		84, 705
Virginia City		1 8	9, 840	3, 317	87	3, 404	41, 110	9	41, 119	1, 135	8, 510		147, 569
Washington		li	1, 731	513	2, 795	3, 308	1, 544	707	2, 251	327	2, 681		117, 468
Willow Creek	1 1	1 -	45	010	2,.00	0,000	1, 709		1, 709				1, 160
Meagher County:	1 -		1						, ,		ļ.		•
Atlanta Creek		. 1			5	5							175
Beaver Creek		10			354	354		75	75				12, 441
Camas Creek		1			14	14		3	3				492
Castle Mountain.			10				31		31	1, 500	1, 532		249
Thompson Gulch		4			22	22		3	3				772
Mineral County:	1	ì	1)			1 _	1	1	1	1		
Cedar Creek		20	23	10	1,047	1, 057	3	53	56				37, 033
Gold Mountain.	. 1		175	12		12							420
St. Regis	. 2		6	3		3							105
Missoula County:	1			400		400	000	1	296	346	22		17, 388
Coloma			1,026	490		490	296		131	340	22		49, 789
Elk Creek		9			1, 420 236	1, 420 331	34	131	37				11, 610
Nine Mile	3	13	220	95	230	17	2, 341	9	2, 341	17, 115	8, 617		4, 369
Wallace Park County:	- 3		354	17		17	2, 341		2, 341	17, 110	0,017		4, 109
Crevasse	. 1	ł	1, 165	134	ł	134	25		25		ĺ		4, 707
Emigrant Creek			1, 100	194	196	196	20	28	28				6, 879
New World		1 3	513	7	180	100	5, 694	20	5, 694	58	30, 318		5, 541
Sheepeater (Jardine)	1 1		51, 241	8, 275		8, 275	1, 628		1,628	00	00,010		290, 730
Yellowstone River		2	01, 211	0, 210	15	15	1,020		2,020				525
Phillips County: Little Rockies	2	3	129, 785	18, 179	17	18, 196	74, 443		74, 443	1, 760			687, 574
Powell County:	T *		120,	10, 110	1] 20, 200	1	}	1	_,.00			•
Big Blackfoot	3	4	226	200	30	230	442	3	445	135	298		8,380
Douglas Creek		ī			6	6							210
Nigger Hill	9	3	5, 382	669	12	681	7, 696		7, 696	1, 615	87, 085		33, 320
Ophir		1			58	58		3	3				2, 032
Pioneer	. 1	9	450	64	3,903	3, 967	34	442	476	I		l	139, 168

•														
Race Track	2		38	26		26	25		25				927	
Washington Gulch	3	10	50	56	493	549	78	53	131	1, 029			19, 411	
Zozell	. 6		7, 173	3, 378		3, 378	59, 699		59, 699	1,096	39, 617		160, 729	
Ravalli County:	·		1, 110	0, 0.0		0,0.0	00,000		00,000	2,000	00,021		200,120	
	2		147	27		27	3, 300		3, 300	2, 308	21, 234		4, 423	
Curlew Eight Mile	. 4		21	41		~ 2	0,000		0, 500	2 , 000	-1, -01		107	
Overwich	1		21 66	33	108	141	· ·						4, 937	
	2	9	00	00	100	141		ب					3, 001	
Sanders County:			07 041	57			25, 706		25, 706	30, 827	6, 503, 298	787, 000	369, 229	
Eagle	1		37, 041	07		57	20, 700			30, 327	1, 128	101,000	255	
Plains	2		14	3		3			140		1,120			
Revais Creek	1		287	46		46	389		389	153, 336			17, 821	
Trout Creek	. 4		149	- 34		34	984		984		54, 489		4, 419	
Vermillion		2			15	15							525	
Silver Bow County:		İ						ľ						
Butte or Summit Valley	29		2, 478, 557	11,899			6, 097, 933			194, 532, 961				
Divide Creek	4		180	22		22	2,920		2,920	510			2,805	
German Gulch		5	- 		72	72		3	3				2, 522	
Highland	3	4	19, 563	9, 945	7	9,952	1, 488		1, 488				349, 330	
Independence	1		622	46		46	12,092		12,092				9, 818	
Lost Child		1			2	2							70	
Silver Bow Creek		10			43	43		19	19				1, 518	
Sweet Grass County: Independence	1	1	144	29		29	134		134	1,000			1, 210	
Toole County: Gold Butte				I	69	69		3	3	l			2, 417	
1000 00000, 0000 1000														
Total Montana	594	282	3, 792, 780	209, 174	54, 999	264, 173	9, 075, 937	11, 634	9, 087, 571	195, 654, 000	33, 110, 000	69, 598, 000	40, 937, 870	
1000 1010101011011111111111111111111111	001		0, 102, 100		0.,000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,		,,	1		
	·	'	·	<u>'</u>	<u> </u>	·	<u> </u>	·	·		<u> </u>	<u>' </u>	·	

BEAVERHEAD COUNTY

Argenta district.—The value of the metal output from mines near Argenta decreased \$50,817 in 1939, owing chiefly to a decrease of nearly 1,000 ounces in gold from the Ermont property. The mine and 100-ton cyanidation mill were operated regularly by Ermont Mines, Inc.; 33,163 tons of gold ore were milled, but the gold content was considerably lower than 1938. Despite the smaller output of gold, the mine was again the chief producer in Beaverhead County. Shipments of gold ore from the Shafer mine were continued, but the output was much less than in 1938. Other producing lode mines in the Argenta district (all producing ore shipped crude to smelters) included the Goldfinch, Ground Hog, Iron Mountain, Jack & Rosemont, Lookout, May Day, Midnight, Oro Fino, Pay Day, Pine Tree, and Silver Horn. The placer output of the district came from sluicing about 400 cubic yards of gravel at the Watson Gulch property.

Bald Mountain district.—In 1939 lessees operating the Faithful group shipped gold ore to a custom cyanidation mill at Bannack and

gold ore and lead ore to smelters.

Bannack district.—There was an increase in gold from placer operations in the Bannack district in 1939, but this gain was more than offset by decreased output from lode mines. The Golden Messenger Corporation surrendered its lease on the Sleeping Princess (I. B.) property of the New York-Montana Mines Co. at the end of 1939; the output during the year comprised 305 tons of gold ore shipped to smelters and 570 tons treated in the cyanidation mill, but the output of gold decreased more than 1,300 ounces. The Bannack-Apex Mining Co. operated the Hendricks (Graeter) property the entire year and treated 3,975 tons of ore in the 50-ton cyanidation mill; the mill also handled custom ore from several mines in the area. Other producing lode mines in the Bannack district included the Garnet. Gold Bug, Gold Crown, and Wallace. The Ralph E. Davis Syndicate operated the dragline and floating washing plant on Grasshopper Creek from April to December, treating 1,125,000 cubic yards of gravel; the equipment used comprised a 5-cubic yard dragline and a 1%-cubic yard dragline and two electric-powered washing plants with a combined capacity of 7,000 cubic yards a day. Nearly 2,000 ounces of gold were produced in 1939, a marked increase over 1938, but the gravel handled was of unusually low grade, as about 75 percent of the 1939 yardage was old dredge tailings. A small hydraulic plant at the Dark Horse placer washed about 20,000 cubic yards of gravel. Placer gold was recovered also from small-scale sluicing operations at two properties on Grasshopper Creek.

Big Hole district.—In 1939 lessees operating the Star property on Meadow Creek 3 miles west of Wise River shipped 200 tons of gold ore to the smelter at Anaconda; crude ore was shipped to smelters from the Dark Horse and S. S. & R. mines; and a little gold ore from the North Star mine was amalgamated. Small-scale placer operations were reported at the Carlin, Pierce Arrow, Rabbit Gulch, and Cherry

Blossom properties.

Blue Wing district.—The entire output from the Blue Wing district in 1939 was siliceous silver ore shipped to smelters from the Blue Wing, Del Monte (Bonaparte), Ingersoll, New Departure, and Randall properties.

Bryant district.—The Hecla mine west of Melrose was in 1939, as usual, the only producer in the Bryant district; the output comprised 13,350 tons of silver ore and 171 tons of lead ore shipped to smelters, a marked increase over 1938.

Elkhorn district.—A car of copper ore was shipped from the Old Elkhorn mine in 1939, and a test lot of silver ore was produced at the

Up Two property.

Horse Prairie Creek district.—Several hundred cubic yards of gravel were treated in a power loader and stationary washing plant at the

Golden Leaf placer late in 1939.

Vipond district.—Lessees at the Lone Pine & Argyle Silver property of the Quartz Hill Mining Co. shipped 712 tons of silver ore in 1939 to the smelter at Anaconda; silver ore was shipped also from the Monte Cristo and Triangle mines.

BROADWATER COUNTY

Backer district.—The value of the metal output from the Backer district increased \$76,802 in 1939; most of the gain was in gold from placer mines. The Fair Play Placers, Inc., was the chief placer producer in the district; the company operated a 2½-cubic yard dragline and floating washer, having a daily capacity of 4,000 cubic yards, at property in Confederate Gulch from March 1 to December 23 and treated about 600,000 cubic yards of gravel. The Empire Gulch Mining Co. (formerly Charles L. Sheridan) operated a 2½-cubic yard dragline and dry-land washing plant at the Boulder Bar placer from April 10 to September 10 and treated 100,000 cubic yards of gravel. Other producing placers in the district included the Antler, Armstrong, Boulder, Bourbon, Eldorado Bar, Homestead, Magpie Gulch, North Star, Rattlesnake Bench, Rose, and Tenderfoot properties. of the output from lode mines in the district came from the Superior mine, where unusually rich gold ore was treated in a small amalgamation plant; gold ore was shipped to smelters from the Cooper, Harriett, and Satellite mines.

Beaver district.—Lessees continued to operate at the Custer mine near Winston in 1939; the output of gold from crude ore and from concentrates from the 60-ton flotation plant was more than double that The rest of the Beaver district output was crude ore shipped to smelters; it comprised gold ore from the Black Tail, Chicago, East Pacific, Edna, Iron Age, Martha Washington, Midas, Mystery, Stolen Sweets, Triumph, and Vosburg mines and lead ore from the

Monte Cristo and Stray Horse mines.

Cedar Plains district.—The value of the metal output from mines in the Cedar Plains (Radersburg) district in 1939 increased \$183,077 over 1938, owing chiefly to marked increase in gold from the Ohio Keating mine; the property was operated the entire year by the M & M Mining Co., and 25,321 tons of gold ore were treated in the rebuilt (80-ton) flotation plant. The C. G. Gold Corporation continued regular operations at the Keating group; the output comprised 3,473 tons of concentrates (from 23,301 tons of gold ore treated in the 100-ton flotation plant) and 2,210 tons of crude gold ore shipped to smelters. Other producers in the district included the Apex, Black Friday, Comstock, Cyclone, Emma, Gopher, and Spar mines.

Park district.—The Marietta mine in 1939 again was the chief producer in the Park, or Indian Creek, district; the mine was operated by lessees, and the output comprised 257 tons of gold ore and 502 tons of lead ore shipped to smelters. At the Blacksmith property 504 tons of gold ore were treated in the 25-ton amalgamation and concentration mill, and 218 tons of gold ore were shipped direct to smelters. As in 1938, gold ore from the Speculator mine was treated in a small amalgamation mill. Other producing lode mines in the district included the Crosscut, Don L., Independent, Iron Mask, Justice, Little Giant, Mississippi, Monarch, Silver Wave, Sparrow, W. A. Clark, and West Park & Venezuela properties. Poston Bros. operated a 2-cubic yard dragline and stationary washer and tested about 1,500 cubic yards of gravel from properties along Indian Creek during October; small-scale sluicing was reported at several placers in the district, including the Whip-poor-will property.

CARBON COUNTY

Testing operations at bars along the Clark Fork River near Belfry yielded a small lot of placer gold in 1939.

CASCADE COUNTY

Montana district.—The total value of the metal output from mines in Cascade County in 1939 increased \$139,815 over 1938, owing chiefly to larger output of silver ore from the Big Seven property; the mine and 50-ton flotation mill were operated the entire year by the Montana Silver Queen Mining Co., and the output comprised nearly 600 tons of rich silver concentrates from the mill and nearly 300 tons of crude silver ore shipped to the smelter at East Helena. Output of silver ore from the Florence mine also increased. Silver ore was treated also in small flotation mills at the Benton and Hartley properties, and a little lead ore was milled by the New London Mining The remainder of the district output comprised zinc-Corporation. lead ore shipped to the zinc mill at Anaconda from the Minute Man property, and crude ore shipped to smelters from the Commonwealth, Lucky Strike, Peabody, Silver Belt, and Star mines. In addition, a test lot of lead ore was shipped from the Silver Dyke property; however, no work was done at the property by the Silver Dyke Mining Co., and the milling plant, formerly the largest mill in the Neihart area, was dismantled.

DEER LODGE COUNTY

Georgetown district.—The marked increase in output of gold from mines in the Georgetown district in 1939 was the result of increased output of gold ore from the Southern Cross mine; the property, owned by the Anaconda Copper Mining Co., was operated under lease by the Quarry Mining Co., and shipments of gold ore to the smelter at Anaconda increased to 7,721 tons containing 6,588 ounces of gold. Thomas H. Sheridan operated the full year at the Holdfast property, but the output of gold ore treated in the 50-ton cyanidation mill decreased slightly to 13,866 tons. The Gold Coin Mines Co. continued operations at the Gold Coin mine and amalgamation mill throughout the year, and in addition, during the summer months,

the cyanidation plant treated old tailings; the combined output of the two plants, however, was considerably less than in 1938. Other producing mines in the district included the Cable, Hub, and Revenue properties.

Oro Fino district.—Crude ore was shipped to smelters in 1939 from

the American, Cashier, Grizzly Bear, and Independence mines.

Silver Lake district.—A lessee operating the Silver Reef mine 13 miles west of Anaconda shipped 342 tons of silver ore to smelters in 1939. A test lot of silver ore was shipped from the Chloride Silver property.

FERGUS COUNTY

Cone Butte district.—Small lots of gold ore were shipped to smelters

in 1939 from the Golden Armells and Golden Jack properties.

North Moccasin district.—The North Moccasin Mines Syndicate continued operations in 1939 at the Barnes-King mine 20 miles north of Lewistown; ore treated in the 150-ton cyanidation mill increased over 1938, and the output of gold increased more than 300 ounces. Small lots of placer gold were recovered by sluicing at three properties; most of it came from the Grubstake placer in Iron Gulch.

Warm Springs district.—All the output from mines in the Warm Springs district in 1939 was crude ore shipped to smelters; it comprised gold ore from the Maginnis group, silver ore from the Argentite, Bay Horse, and Silver Queen mines, and a little lead ore from the Globe

property.

FLATHEAD COUNTY

Hog Heaven district.—The Anaconda Copper Mining Co. continued regular operations in 1939 at the Flathead mine south of Kila; the output of silver ore decreased slightly (from 15,797 tons in 1938 to 13,447 tons in 1939), but the output of crude lead ore sent to the East Helena smelter increased from 4,997 to 13,201 tons. A little silver ore was shipped to the smelter at Tacoma, Wash., from the Eudora property and from prospects.

GALLATIN COUNTY

A test lot of gold ore was sent in 1939 to the East Helena smelter from the Beacon mine, a little lead ore was shipped from the Last Chance mine, and a little gold was recovered by sluicing at the Jewel placer. No production in 1938 was reported from mines in Gallatin County.

GRANITE COUNTY

Alps district.—A car of gold ore from the Alps group south of Clinton

was shipped to the East Helena smelter in 1939.

Boulder district.—Most of the increase in gold from the Boulder district in 1939 resulted from shipments of gold ore from the Gold King & Gold Mountain mine, where the output comprised 354 tons of ore containing 346 ounces of gold. Crude ore from the Blue Bird, Brooklyn, Golden Summit, Moonlight, and Sunday mines was shipped to smelters, and ore from the Royal Gold property was treated in a small amalgamation and concentration mill. Most of the placer output came from drift mining at the Montana-Tonopah placer.

Dunkleberg district.—Small lots of crude ore were shipped to smelters

in 1939 from the Murrial, Ruth, and Standby properties.

First Chance district.—The entire output from lode mines in the First Chance (Garnet) district in 1939 was crude gold ore shipped to smelters. Most of it came from leasing operations of the Mitchell-Mussigbrod group (including the Fairview, Fourth of July, Free Coinage, International, Lead King, Red Cloud, Robert Emmett, and San Jose claims). Other producers included the Fluker, Forest, Hobo & Gold Leaf, Grant & Hartford, Laddy Buck, Lynx, Peggy Ann, Sierra, Sunrise, and Tiger mines.

During 1939 the Star Pointer Exploration Co. completed the erection of a 6-cubic foot connected-bucket dredge at the mouth of Bear Creek near Bearmouth; the dredge is electric-powered and equipped with 88 buckets. The new plant was placed in operation October 29 and dredged 349,131 cubic yards of gravel before the end of the year. Small-scale sluicing was reported at the Alma (Cave Gulch), Dixie,

Little Dick, and Ten Mile placers.

Flint Creek district.—The total value of the metal output from mines in the Flint Creek (Philipsburg) district in 1939 increased \$261,529 over 1938 owing to increased output by the Philipsburg Mining Co. Operations at the Granite-Bimetallic mine and 165-ton flotation plant were suspended in September, after producing 841 tons of rich silver concentrates and 388 tons of crude silver ore that were shipped to smelters. During the summer, however, a plant was built to treat the old tailings dumps near Philipsburg. The tailings were accumulated from the treatment of several hundred thousand tons of Granite-Bimetallic ore in the old chloridizing-roast, pan-amalgamation mill. Considerable experimentation preceded construction of the new 300-ton mill, which is essentially a desliming plant using jigs The deslimed, highly siliceous product was shipped and classifiers. to the Tacoma smelter under a special freight and treatment schedule: the mill handled about 43,000 tons of tailings after it was put in operation in August.

The Contact Mines Corporation operated throughout 1939 at the Silver Prince property at Philipsburg; its output comprised 6,716 tons of silver ore shipped to smelters and 6,589 tons of zinc-lead ore sent to the mill at Anaconda, a marked increase over 1938. The Taylor-Knapp Co. (Taylor, Nelson & Knapp, Inc., before June 1939) shipped 2,345 tons of crude silver ore and 1,023 tons of zinc-lead ore from the Two Percent mine during the year. The Trout Mining Division of American Machine & Metals, Inc., shipped 3,567 tons of crude silver ore from the Trout & Algonquin group in 1939, but no zinc-lead ore was produced. The remainder of the output from the Flint Creek district was crude ore shipped to smelters, chiefly from the Headlight,

Hobo, and Shannon mines.

Gold Creek district.—Gold ore was shipped to smelters in 1939 from the Clear Grit and Yaller Boy properties, and gold ore was amalgamated at property operated by Schmuck & Whitty. Most of the placer output from the Gold Creek district came from a power shovel and stationary washing plant operated by the Master Mining Co. at the Tibbits & Fowler property; the Triangle and Willow Creek placers also were operated in 1939.

Henderson district.—H. J. Schneider & Bros. operated a ½-cubic yard dragline and stationary washer at the New Deal placer in 1939

and treated about 12,000 cubic yards of gravel. Gold ore was shipped

to a smelter from the Sunrise group.

Maxville district.—Siliceous ore was shipped to smelters in 1939 from the Copper Queen, Hoffman (Goldonna), and White Horse properties.

Moose Lake district.—A little gold ore was shipped from the Moose property in 1939, and a test lot of silver ore was shipped from the

Red Lion district.—There was a marked decrease in gold from the Red Lion district in 1939, as the output from the Hidden Lake mine was less than in 1938. The mine was operated until May 25 by Hidden Lake Venture, Inc., and later by the Red Lion Mining Co.; the total output comprised 12,612 tons of ore treated by cyanidation in 1939 compared with 24,139 tons in 1938. A small lot of gold ore was shipped to a smelter from the Olympic property.

Rock Creek district.—Nearly 1,700 tons of gold ore were shipped to a smelter in 1939 from the Ella (MacDonald) property, a new producer in the Rock Creek district; siliceous ore was shipped to smelters also from the Mountain Ram, Ozark, and Shakespeare mines. Most of the placer output of the district came from sluicing operations at

the Basin and Quartz Gulch properties.

JEFFERSON COUNTY

Amazon district.—Crude ore was shipped to smelters in 1939 from the Adolphus, Amazon & Deadwood, Boulder, Schevers, and Wilbur Silver mines.

Bigfoot district.—Small lots of gold ore were shipped from the Bald

Eagle and State properties in 1939.

Boulder district.—Crude ore was shipped in 1939 from several mines near Boulder, including the Baltimore, Ida, Davis-Eureka, Molly McGregor, and Red Eagle properties. A scraper and dry washer were used in treating 7,350 cubic yards of gravel from the Boulder

placer.

Cataract district.—The value of the metal output from the Cataract district in 1939 increased \$246,508 over 1938 owing to increased output of zinc-lead ore at the Comet property; the mine and flotation mill were operated the entire year by the Basin Montana Tunnel Co., and the ore mined increased from 38,170 to 59,420 tons; small lots of custom ore from several mines in the district were also milled, including ore from the Buckeye & Boston, Crystal, Golconda, and Sylvan In addition to the zinc-lead ore sent to the Comet mill, lessees shipped 1,515 tons of siliceous ore from the Comet mine to smelters. Basin Goldfields, Ltd., operated the Boulder mine from January through September and shipped 1,141 tons of gold ore to the Anaconda smelter. Ore was also shipped to smelters from the Basin Bell, Blue Bird, Congo, Crescent, Dickerson, Mae Lilly, Mayflower, Mantle, Minneapolis, Morning, Saturday Night, and Sirius mines. Gold ore was treated by amalgamation and concentration at the Gray Lead and Hope & Katie (Jib) properties. Small-scale sluicing was reported at several placers near Basin, including the Big Rock, Gold Hill, Nancy, and Park & Anderson properties.

Clancey district.—The output of gold from the Clancey (Prickly Pear Creek, Montana City, etc.) district in 1939 increased 5,526

ounces over 1938, owing to increased output by Winston Bros. Co., largest placer producer in Montana, whose new 6-cubic foot floating dredge (put in operation in August 1938) operated during the entire year 1939 and handled 1,787,413 cubic yards of gravel. In addition, the company operated the 4-cubic yard dragline and floating washer on Prickly Pear Creek from January until June 24, 1939, when the plant was closed and dismantled after all available ground had been dredged; the dragline plant handled 353,643 cubic yards of gravel. The Holmes Gulch Mining Co. produced several hundred ounces of gold at a dragline and dry-land washer in Holmes Gulch. The Dutton Ranch dragline and dry-land washer operation of O. A. Barnes produced a little placer gold before the equipment was moved to Marysville in Lewis and Clark County in May. A dragline and dry-land washing plant were operated for 20 days in July at the Weber placers on Buffalo Creek. The output from lode mines in the Clancey district was crude ore shipped to smelters, chiefly from the Eagle's Nest and Liverpool properties.

Colorado district.—The Alta property near Wickes in 1939 again was the chief producer in the Colorado district; the property was operated throughout the year by Eathorne & Fox, and the output comprised 48,632 tons of old tailings treated in the 200-ton flotation plant and 218 tons of crude lead ore shipped direct to a smelter. A small lot of zinc-lead ore from the Bunker Hill mine was trucked to the Comet mill. Silver tailings at the Frohner property were treated in a small jig mill. The rest of the district output was crude ore shipped to smelters from the Arogon, Blizzard, Blue Bird, Buckeye, Gregory, Henna, Minah, Minnesota, Mount Washington, Offset, and Pen Yan

properties.

Elkhorn district.—The Center Reef mine was operated during 1939 by lessees, who shipped 159 tons of gold ore to a smelter and treated about 200 tons of ore in a small amalgamation plant. A little gold ore from the Klondyke mine was amalgamated. Siliceous ore was shipped to smelters from the C & D, Golden Curry, Hard Cash, Little Goldie, Moreau, New Elkhorn, Queen, and Wildcat properties.

Golconda district.—A lessee shipped small lots of gold ore from the

Wonder mine to a smelter in 1939.

Homestake district.—Small lots of gold ore were shipped to smelters in 1939 from the Golden Valley, Martha, and Sleeping Beauty mines.

Lowland district.—Kit Carson Placers operated the dragline and

Lowland district.—Kit Carson Placers operated the dragline and dry-land washer equipment on Lowland Creek from April 20 to October 31, 1939, and treated about 630,000 cubic yards of gravel, a marked increase over 1938. A little gold ore from the Infinite property was treated in 1939 in a small amalgamation mill.

McClellan Creek district.—Small lots of silver ore were shipped in

1939 from the Shaw mine to the East Helena smelter.

Mitchell district.—E. A. Studer & Son operated a ½-cubic yard power shovel and stationary washing plant at the Lewis placer in Mitchell Gulch from June to November 1939 and treated about 25,000 cubic yards of gravel. The John & Jim group of the Economy Mines Co. was operated by lessees in 1939, and 298 tons of gold ore were shipped to a smelter. A small lot of gold ore mined at the Haystack Butte mine in 1938 was shipped to a smelter in 1939.

Warm Springs district.—The value of the metal output from the Warm Springs district decreased from \$76,260 in 1938 to \$8,374 in

1939 owing to the closing of the mill at the Fleming property of the Newburg Mining & Milling Co. late in 1938; the property was idle in 1939, and one small lot of clean-up material was shipped to a smelter. The Alhambra Gold Mines, Inc., operated the Katie & Pilot group throughout 1939 and shipped 160 tons of gold ore to the East Helena smelter. Gold ore was also shipped to smelters from the

Badger, Green Leaf, and Iron King mines.

Whitehall district.—The value of the metal output from the Whitehall district in 1939 increased \$124,293 over 1938 owing to the larger output of gold ore from the Golden Sunlight mine; the property was operated by the A. O. Smith Corporation and various sublessees, and the output of ore shipped to smelters increased from 3,425 to 9,621 tons. Other shipments from the district comprised gold ore from the Claxton, Gold Star, Jack Benny, Lone Eagle, Lucky Hit, Maid of Erin, Morning Glory, New Year, Pay Day, and Sunnyside mines and lead ore from the Blue Bell, Carbonate, Mary Lucile, Midnight, and Surprise properties.

Willow Creek district.—The Callahan (Deer Horn) mine of the Golden Age Mining Co. was operated only a short time in 1939, and the output of gold ore treated in the amalgamation and concentration

plant decreased to 310 tons.

JUDITH BASIN COUNTY

Barker district.—Thorson Bros. continued leasing operations in 1939 at property of Glendennin Mines, Inc., in the Barker district; the output comprised 2,659 tons of crude lead ore shipped to a smelter and 54 tons of zinc-lead ore shipped to the mill at Midvale, Utah. A test lot of lead ore was shipped from the Champion mine.

Running Wolf Creek district.—One lot of lead ore from the Morro mine south of Stanford was shipped to the East Helena smelter in

1939.

LEWIS AND CLARK COUNTY

Dry Gulch district.—The Golden Messenger Corporation operated throughout 1939 at the mine and 130-ton cyanidation plant at York; the mill treated 46,268 tons of ore, which yielded 8,234 ounces of gold and 8,168 ounces of silver in cyanide bullion. The rest of the Dry Gulch district output comprised gold ore shipped to a smelter from the Blue Bird mine and small lots of placer dust from small-scale sluicing operations at several properties, including the Franklin, Maude, and Oro placers.

Greenhorn district.—A lessee operated a 1-cubic yard dragline and dry-land washer in 1939 at the Austin Mountain placer and treated about 10,000 cubic yards of gravel. Sluicing was reported at the Con Kelly and Potter placers. Small lots of lead ore were shipped

from the Humboldt and King Tut lode mines.

Heddleston district.—Lessees shipped nearly 1,400 tons of siliceous ore to smelters in 1939 from the dump at the Anaconda property at the head of the Blackfoot River 35 miles northwest of Helena.

Helena district.—The Montana Consolidated Mines Corporation resumed production at the Spring Hill mine in March 1939, after completion of the new 30-ton concentrate-cyaniding plant. In 1939 the company treated about 56,000 tons of ore in the 300-ton straight-

flotation plant; the flotation concentrates were treated by cyanidation in the new 30-ton plant, and the cyanide tailings were re-treated by flotation to recover lead concentrates. The output of gold from the property decreased more than 800 ounces compared with 1938. Other producing lode mines in the Helena district included the Court House, Eula, Little Wonder, Lockey, Lone Star, Old Dominion, San Juan, Sky, and Whitlatch properties. The Porter Bros. Corporation operated the 6-cubic foot dredge north of Helena throughout the year and treated 1,805,983 cubic yards of gravel, about the same yardage as in 1938, but the output of gold decreased more than 600 ounces. Placer production was reported at six other properties near Helena. Jefferson Gulch district.—One small lot of gold ore was shipped by a

lessee in 1939 from the Wiggins property 8 miles northeast of Finn.

Lake Helena district.—Lessees shipped small lots of gold ore in 1939

from the Lake Shore (Violet Jane) group north of Lake Helena.

Lincoln district.—The Lincoln Metals Co. shipped 40 tons of gold ore from the Margarets property 6 miles northwest of Lincoln in 1939. Most of the placer output of the Lincoln district came from a dragline and dry-land washer operation at the Stonewall property; a small dragline and dry-land washer were operated at the Blue Cloud property; and sluicing was reported at the Bloom & Old Billy Williams,

Blue Bird, Harvey, and Liverpool placers.

Marysville district.—The value of the metal output from mines in the Marysville district increased from \$211,213 in 1938 to \$412,457 in 1939; gold from lode mines increased 1,295 ounces and that from placer mines 3,806 ounces. The gain from placers was chiefly the result of operations by Ralph Davis, Inc.; the 3½-cubic yard dragline and floating washer were put in operation April 15, 1939, and handled about 705,000 cubic yards of gravel from the Silver Creek placer during the rest of the year; the property was the largest gold producer at Marysville. O. A. Barnes moved the 1-cubic yard dragline and floating washing plant, previously operated at the Dutton Ranch property near Clancey in Jefferson County, to the Esperanza placer in Empire Gulch in May 1939; the plant handled 10,660 cubic yards of gravel at the Marysville location from August 1 to November 15. Other producing placers near Marysville in 1939 included the Chevallier, Deadman Gulch, and Trus-to-luck properties. The Rex Mining Co., operating the Empire group, again was the largest lode producer at Marysville; the company treated 14,065 tons of gold ore in the 50-ton concentration plant and shipped 459 tons of rich gold-lead concentrates to a smelter. The Martin Mining Co. treated more than 11,000 tons of tailings from the Eck property in a new 120-ton roasting and cyanidation mill. The J. C. Archibald Co. operated its cyanide mill from June 1 to October 31 and treated about 10,000 tons of Bald Butte tailings; in addition, lessees shipped nearly 1,200 tons of crude gold ore from the Bald Butte mine to smelters. Gold ore from the Big Ox and Albert Brown properties was treated by cyanidation. Lessees at the Drumlummon property shipped 1,720 tons of gold ore, a decrease from 2,430 tons in 1938. Crude ore was also shipped to smelters from the Belmont, Big Ox, Climax, Eureka, Excelsior, Mount Pleasant, Carbonate, Penobscot, Piegan-Gloster, Shannon, and Three M mines.

Missouri River district.—The 6-cubic foot dredge of the Perry-Schroeder Mining Co., which was put in operation in November 1938, operated throughout 1939 and treated 1,459,010 cubic yards of gravel from the Eldorado property 15 miles northeast of Helena. The Duclo Mining Co. operated a dragline and dry-land washer at the Gruell Bar. Production was also reported at the Golden Ring & Sunset, Howe, and Mable (Easterly) placers.

Rimini district.—All the output from lode mines near Rimini in 1939 was crude ore shipped to smelters; most of it was lead ore from the Anna May & Broadway property, shipped by lessees. Other lode producers included the Aurora, Johnny Tunnel, Lone Pine, Peerless Jennie, and Sunset mines. Most of the placer output came from the

Black Eagle and Gould properties.

Scratch Gravel district.—Most of the output from the Scratch Gravel district in 1939 was gold ore shipped to smelters from the Ajax and Franklin mines. Crude ore was also shipped from the Gold Crown,

Nettie, Silver Coin, and Umatilla properties.

Smelter district.—The fuming plant of the Anaconda Copper Mining Co., treating slag from the lead smelter of the American Smelting & Refining Co. at East Helena, operated throughout 1939, and the output of zinc-lead fume sent to Great Falls was double that in 1938. The value of the metal output increased \$795,123 over 1938

and represented most of the gain in Lewis and Clark County.

Stemple district.—The Standard Silver-Lead Mining Co. operated throughout 1939 at the Gould property near Wilborn; 29,053 tons of ore (about the same quantity as in 1938) were treated in the 80-ton cyanidation plant, but the output of gold decreased from 6,265 to 5,652 ounces. Gold ore from the Prize mine was treated by cyanidation by Granite Butte Mines, Inc., and a car of crude ore was shipped to a smelter. The North Gould Mining Co. treated ore from the American Boy group by amalgamation. Small lots of gold ore were shipped to smelters from the Little Dandy and Red Star mines. A little placer gold was recovered by sluicing at the Diamond & Gem placer on Virginia Creek.

LINCOLN COUNTY

Libby district.—The Davis & White Mining Co. operated a 1-cubic yard power shovel and dry-land washing plant from June 1 to October 20, 1939, and treated about 33,000 cubic yards of gravel from the Liberty placer on Libby Creek. Other producing placers near Libby in 1939 included the Big Cherry Creek, Horsehoe, Last Chance, Libby (Brophy), and Logan (Nugget) properties. Gold ore was shipped to a smelter from the Golden West group.

Sylvanite district.—The Morning Glory Mines, Inc., operated the Sylvanite (Keystone) mine in 1939 and treated more than 14,000 tons of gold ore by amalgamation and concentration; the output of gold decreased slightly from that in 1938. Small lots of crude lead ore were shipped to smelters from the Black Diamond and Grouse

Mountain properties.

Ural district.—L. C. Curtis & Sons operated a %-cubic yard dragline and stationary washing plant during December 1939 and treated about 1,100 cubic yards of gravel from the Pioneer placer on the Kootenai River.

MADISON COUNTY

Cherry Creek (Havana) district.—Siliceous ore was shipped to smelters in 1939 from the East Riverside, New Havana, and September

Syndicate mines, all on Cherry Creek east of Norris.

Norris district.—The Revenue mine in the Upper Hot Springs section was the largest producer in the Norris district in 1939; the mine and 80-ton cyanidation mill were operated the entire year by Revenue Mine Developing Group, Inc. The new mill, which was placed in operation in October 1938, treated 26,280 tons of ore from the Revenue mine in 1939 (compared with 6,400 tons in 1938), and the output of gold recovered in cyanide bullion increased to 3,997 ounces; in addition, the company shipped 302 tons of gold ore to a smelter; and the total output of gold was 4,180 ounces compared with 1,885 ounces in 1938. Gold produced from the Boaz mine 5 miles east of Norris decreased to 2,511 ounces in 1939, as the output of crude ore shipped to smelters decreased from 1,788 to 775 tons; however, a 60-ton cyanidation plant erected at the mine during 1939 was put in operation late in the year and treated about 1,500 tons of ore before the end of the year. Lessees operating the Lexington mine 5 miles southwest of Norris shipped 644 tons of gold ore to a smelter and sent 1,586 tons of ore to the Revenue mill, but the total output of gold decreased more than 500 ounces. The rest of the output from lode mines in the district was crude gold ore shipped to smelters from the Arctic, Boyles, Betty May, Billy, Bi-Metallic, Black Chief, Devil's Dream, Eldorado, Emperor, Erma & Lucky Strike, Fortuna, Galena, Gold Bug, Golden Link, Grubstake, Headlight, Josephine, Mascot & Pony, Monitor, Montida, New York Belle, Pulverizer, Rosebud, Santa Christo, Valdez, and Water Lode mines; most of it came from the Billy, Emperor, and Montida mines. Homer Wilson operated the 5-cubic foot dredge at the Norwegian placer from March 27 to December 22, 1939, and treated 239,805 cubic yards of gravel; the output of gold increased nearly 500 ounces.

Pony (Mineral Hill) district.—The Liberty Montana Mines Co. operated throughout 1939 at the Mammoth property and treated 28,324 tons of ore in the 120-ton mill compared with 30,862 tons in 1938, but the output of gold (in copper concentrates shipped to a smelter) decreased 1,115 ounces. The Montana Southern Mining Co. treated 36,317 tons of ore from the Atlantic-Pacific mine in the 100-ton flotation plant and produced 3,164 ounces of gold (almost the same quantity as in 1938) in gold concentrates shipped to a smelter. Crude ore was shipped to smelters from the Ben Harrison Fraction, Bozeman, Fraction, Galena, Katie, Keystone-Strawberry, Lone Wolf, McVey, Moonlight, Ridgeway, Whip-poor-will, White Pine, Whiterock, and Wolftone mines; most of it was gold ore from the Bozeman mine.

Renova (Bone Basin) district.—The West Mayflower Mining Co. (Anaconda Copper Mining Co.) in 1939 again was the largest gold producer in Montana; the company shipped 21,308 tons of gold ore, containing 19,734 ounces of gold and 113,084 ounces of silver, to the Anaconda smelter. Gold ore was also shipped to smelters from the Blue Bird, Colorado, Gold Hill, Lakewater, Last Chance Fraction, and Little Nugget properties.

Rochester (Rabbit) district.—The Lively Mining Co. treated 1,411 tons of gold ore in 1939 from the Hidden Treasure mine in a 12-ton

amalgamation and concentration mill and shipped 38 tons of crude ore to a smelter. The Commonwealth Lead Mining Co. shipped 198 tons of lead ore from the Calvin mine to the East Helena smelter. Crude ore was also shipped to smelters from the Cooper, Gold Crown.

Red Wing, Sandy, Shoemaker, and Struggler mines.

Sheridan district.—The Sheridan Gold Mining & Milling Co. shipped 417 tons of gold ore from the Homestake & Uncle Sam property in 1939 compared with 338 tons in 1938, but the output of gold decreased 340 ounces. The output from the Fairview group (operated by Fairview Gold Mines, Inc.) comprised 188 tons of gold ore and 33 tons of lead ore, a decrease from 457 tons of gold ore in 1938. Other producing lode mines in the Sheridan district included the Compipius, Cousin Jack, Cousin Jennie, Ella Jay, Gold Point, Goldsmith, Jonquil, Klondike, Lake Shore, Leiter, Lone Tree, Noble, North Star, Red Bird, Red Pine, Sage Hen, Silver Bullion, Sunbeam, and Tamarack mines. Most of the placer output came from drift mining at the Cash Boy & Lost Boy property; other producing placers included the Aurum, Blue Bird, Comet, Halloran, and Wisconsin Creek properties.

Silver Star district.—The value of the metal output of the Silver Star district increased from \$231,850 in 1938 to \$475,022 in 1939, owing chiefly to increased output of gold from the Broadway (Victoria) property operated by Victoria Mines, Inc. The company treated 32,991 tons of ore in the 100-ton cyanide mill (about the same quantity as in 1938), and the output of crude ore shipped direct to smelters increased from 193 to 5,314 tons. The Green Campbell Mining Co. operated the Green Campbell mine the entire year and treated several thousand tons of ore in the 25-ton amalgamation and flotation plant; the output of gold from the property increased 1,200 The Golden Rod Mining Co. continued to ship rich gold ore from the Golden Rod mine, but the output was less than half that in 1938. Gold ore was also shipped to smelters from the Aurora, Broomtree, Edgerton, Iron Rod, Moonlight, Ohio, Silver King, Stansell, and Wheal Clifford properties.

Tidal Wave district.—Most of the increase in metal output from the Tidal Wave district in 1939 was in gold ore shipped to smelters from the B & H property operated by the Inspiration Gold Mining Co. A little gold ore from the Agitator mine was amalgamated. Crude ore was shipped to smelters from the Corncracker, Hemmingway (Eleanora), Ella, High Ridge, Last Chance, Keynote, Lone Eagle, Lone Pine, Lottie, Pollinger, Silver Dollar, and Smith properties.

Virginia City district.—The value of the metal output of the Virginia

City district in 1939 increased \$89,941 over 1938, as the output of crude ore shipped to smelters increased. Lessees operating the Bartlett mine shipped 2,525 tons of gold ore to smelters, a marked increase over 1938; there was also an increase at the Mapleton property, as lessees shipped 3,614 tons of gold-silver ore to smelters. Crude ore was also shipped from the Alameda, Apex, Atlas Extension, Bamboo Chief, Bull Frog, Easton Pacific, El Fleda, Hansen, High Up, Homestake, Marietta, Oro Cache, Prospect, Randolph, R. B. P., St. John, Virginia City, and Winnetka properties. Gold ore from the Alder Gulch, Mountain Flower, and Valley View properties was treated in small amalgamation mills, and ore from the Easton Pacific

mine was treated by flotation. Most of the placer output came from

the Alder Gulch and Chambers properties.

Washington district.—All the placer output from the Washington district in 1939 was recovered by the 4½-cubic foot dredge operated by the Gold Creek Mining Co. at the Washington Bar property. Lessees operating the Missouri-McKee property treated 1,538 tons of gold ore by amalgamation and concentration and shipped 135 tons of gold ore to a smelter. Crude ore was also shipped to smelters from the Diamond Cross, Highland Lady, and Snowslide properties.

Willow Creek district.—The Buena Vista Mining Co. shipped a little silver ore from the Silver Mountain property 21 miles south of Alder

to the Anaconda smelter in 1939.

MEAGHER COUNTY

Atlanta Creek district.—A little placer gold was recovered in 1939 from the ground-sluicing of 200 cubic yards of gravel at the Atlanta &

Fox property.

Beaver Creek district.—Most of the output from the Beaver Creek district in 1939 came from operation of a 1-cubic yard power shovel and dry-land washing plant, which treated 29,786 cubic yards of gravel from a placer operated by the T. C. Mines. Other producing placers in the district included the Barton Gulch, Benton, and Watson properties.

Castle Mountain district.—A little copper ore was shipped in 1939 from the Bell of Castle mine on Hensley Creek, and a little lead ore

was shipped from the Great Eastern prospect.

Thompson Gulch district.—A ¾-cubic yard power shovel and dryland washer were operated from April 15 to June 15, 1939, and treated 1,050 cubic yards of gravel from the Little Buck property. A little placer gold came from the Camp Robber and Cornerstone properties.

MINERAL COUNTY

Cedar Creek district.—Superior Mines, Inc., operated a 1½-cubic yard power shovel and dry-land washer from April 12 to November 24, 1939, and treated about 90,000 cubic yards of gravel from the Cedar Creek property. Other producing placers in 1939 included the Alibi & Hungary, C. B. & Q., Dakota, Dr. Eddy & Nugget, Golden Sunset, Henrietta & Success, Lost Gulch, Lucky Boy, McFarland, Meadow Creek, No Name & Buck Tail, Oregon, Stemwinder, Stockholm, Sunlight, and Windfall properties. A car of gold ore was shipped from the Last Chance mine to the smelter at Anaconda.

Gold Mountain district.—The Gold Mountain Mines, Inc., treated a little gold ore in a 50-ton flotation- and blanket-concentration mill

in 1939.

St. Regis district.—Small lots of gold ore were shipped to smelters in 1939 from the Gold Chrome and Jack mines.

MISSOULA COUNTY

Coloma district.—Gold ore from the Dandy and Mountain View properties was treated in small amalgamation and concentration mills in 1939; gold ore was shipped to smelters from the Clemantha, Dandy, Dixie, I. X. L., Mammoth, Northern Star, and Portia mines.

Elk Creek district.—The yield of placer gold from the Elk Creek district in 1939 increased 849 ounces over 1938, owing to increased

output by the Norman Rogers Mining Co.; the company operated a dragline and dry-land washer from April 27 to December 16 and treated about 200,000 cubic yards of gravel. A dragline and floating washer were operated at the Piegan placer by W. S. Grubbs & Co. Other producing placers included the Betty Ann, Bob Cat, and

Depression properties.

Nine Mile district.—The Ellis Gold Mines Co. operated a 1¼-cubic yard power shovel and dry-land washer from August 23 to December 23, 1939, and treated about 60,000 cubic yards of gravel from the Boyd placer on Eustache Creek. Other producing placers in the Nine Mile district included the Barrette, Crysalis, Hard Chance, Imperial, Kennedy Creek, Little Marion, Marion Creek, Oro, and The Bench properties. Several cars of gold ore were shipped from the San Martina lode mine.

Wallace district.—Crude copper ore from the Hidden Treasure mine was shipped to the smelter at Anaconda in 1939, and small lots of lead ore were shipped from the Adalin and Conflict properties.

PARK COUNTY

Crevasse district.—The Snowshoe Mining Co. operated its property from June 25 to October 1, 1939, and treated 1,165 tons of gold ore in the 25 ton amplementation and concentration mill

in the 25-ton amalgamation and concentration mill.

Emigrant Creek district.—Small-scale sluicing was continued in 1939 at placers on Emigrant Creek; most of the output came from the treatment of about 5,000 cubic yards of gravel from the Hefferlin property.

New World district.—The Irma Mines, Inc., treated several hundred tons of silver ore from the Irma & Republic property by flotation in 1939 and shipped rich silver-lead concentrates. A lessee shipped a

small lot of gold ore from the Homestake mine.

Sheepeater (Jardine) district.—The Jardine Mining Co. operated throughout 1939 at the Jardine property 6 miles north of Gardiner; 51,130 tons of gold ore were treated in the 185-ton amalgamation and concentration plant, and 111 tons of crude gold ore were shipped to the smelter at Anaconda.

PHILLIPS COUNTY

Little Rockies district.—The Ruby Gulch Mining Co. continued regular operations in 1939 at the Ruby Gulch property at Zortman. The output comprised 82,369 tons of ore treated in the 300-ton cyanidation mill and 804 tons of gold ore shipped direct to smelters; the output of gold decreased nearly 600 ounces from 1938. The Little Ben Mining Co. treated 46,612 tons of ore from the August group in the 150-ton cyanidation plant compared with 53,581 tons in 1938; the output of gold decreased slightly. Most of the output of placer gold from the Little Rockies district came from the Big Slide and Dorothy & Snowball properties.

POWELL COUNTY

Big Blackfoot district.—The Hilda Gold Mining Co. operated the Blackfoot property 10 miles northeast of Helmville from April 5 to November 10, 1939, and shipped 217 tons of gold ore to the East Helena smelter. A little gold ore from the Hill Top mine was shipped also to East Helena. A test lot of gold ore from the Sweepstake

group was amalgamated. Most of the placer output came from the

Blue Jay and Gold Dust properties.

Nigger Hill (Elliston) district.—Ore from the Big Dick mine was treated by flotation in 1939 by Big Dick Mines, Inc., and nearly 500 tons of rich gold-lead concentrates were shipped to the East Helena smelter. Crude ore was shipped to smelters from the Carbonate Boy, Hattie M. & Annie R., Hub Camp, Kierstead, Little Blackfoot Queen, Ontario, Orphan Boy, and Speck mines. Most of the placer gold came from sluicing at the Blackfoot and Little Bear properties.

Ophir district.—In 1939 lessees hydraulicked about 20,000 cubic yards of gravel at the Levi Davis (Harpole) placer in Ophir Gulch.

Pioneer district.—In 1939 the 9-cubic foot dredge of the Pioneer Placer Dredging Co. was operated from January 1 to August 10 and from October 1 to December 31 and treated 1,114,505 cubic yards of gravel from property on Gold Creek; in 1938 the dredge operated the entire year and treated 1,866,840 cubic yards of gravel. The output of gold decreased more than 2,800 ounces. Other producing placers in the Pioneer district included the Cold Springs, Gold Star, Irwin, Murray Patent, Nellie B, and Orphan Boy properties. Gold ore from the Pike's Peak group was treated in a small amalgamation plant.

Race Track district.—Small lots of gold ore were shipped to smelters in 1939 from the Amazon and Dark Horse properties on Race Track

Creek.

Washington Gulch district.—The Washington Gulch Leasing Co. and other lessees worked intermittently in 1939 at the Eldorado placer in Washington Gulch; about 42,000 cubic yards of gravel were treated in the dragline and dry-land washer during the year. Other producing placers in the Washington Gulch district included the Beatrice, Gold Bar, Good Luck, New Deal, Old Shoe, Rietz, Toole (Jefferson Creek Placers), and Whitetail properties. Most of the output from lode mines was gold ore from the Grey property. Small lots of crude ore were shipped from the Mascot property and from a prospect.

Zozell (Emery) district.—The entire output of the Zozell district in 1939 was crude ore shipped to smelters, chiefly from the Emery and Bonanza properties; other producers included the Blue Eyed

Maggie, Emma Darling, and Hidden Hand properties.

RAVALLI COUNTY

Curlew district.—There was a marked decrease in the value of the metal output of the Curlew district, as the 100-ton flotation plant, which treated nearly 18,000 tons of old tailings from the Curlew dumps in 1938, was not operated in 1939; the district output in 1939 comprised siliceous ore and lead ore from the Curlew mine shipped to smelters and a small lot of silver ore from the Pleasant View mine.

Overwich district.—Placer gold and silver were recovered at the Hogue and Hughes Creek properties in 1939. Gold ore from the

Baker-Brickley and Washington mines was amalgamated.

SANDERS COUNTY

Eagle district.—A decrease of \$109,271 from 1938 was recorded in the value of the metal output of the Eagle district in 1939, as the output of zinc-lead ore from the Jack Waite mine dropped from 43,390 to 36,028 tons; the property, which extends over the State line into Shoshone County, Idaho, was operated the entire year by the American Smelting & Refining Co. The milling ore was treated in the flotation plant at Duthie, Idaho. In addition, the company shipped 1,013 tons of rich lead ore in 1939, compared with 1,278 tons in 1938.

Revais Creek district.—In 1939 the Green Mountain Mining Co. shipped 287 tons of rich copper ore from the Drake property on

Revais Creek near Dixon to the smelter at Anaconda.

Trout Creek district.—The Gold Lode Mining Co. treated a little ore from the Golden Reef mine in a small amalgamation and concentration mill in 1939. Other producers in the Trout Creek district included the Ambassador, Heidelberg, and Montana Standard properties.

Vermillion district.—All the output from the Vermillion district in 1939 came from sluicing at the Mammy Lou & Driftwood and

Ogoma placers on the Vermillion River.

SILVER BOW COUNTY

The total value of the metal output from mines in Silver Bow County in 1939 increased \$9,376,536 over 1938, as the output of both copper ore and zinc-lead ore from mines at Butte increased. The following table gives the output of mines in Silver Bow County, which includes the Butte or Summit Valley district, in 1938 and 1939 and the total from 1882 (the first year for which detailed records are available) to the end of 1939.

Production of gold, silver, copper, lead, and zinc in Silver Bow County, Mont., 1938-39, and total, 1882-1939, in terms of recovered metals

Year	Mines produc- ing	Ore	Gold (lode and placer)	Silver (lode and placer)	Copper	Lead	Zinc	Total value
1938 1939 1882–1939		Short tons 1, 642, 491 2, 498, 922 (1)	22,036	6, 114, 455	Pounds 153, 709, 857 194, 533, 471 25, 753, 806	9, 415, 341	40, 032, 288	\$18, 300, 823 27, 677, 359 2, 333, 039, 695

¹ Figures not available.

Butte or Summit Valley district.—The output of copper ore from the Butte mines of the Anaconda Copper Mining Co. increased in 1939 owing to increased rate of operations during the last 4 months of the year. The output comprised 2,197,863 tons of ore sent to the copper concentrator at Anaconda (compared with 1,561,186 tons in 1938) and 54,075 tons of crude ore sent direct to the smelter (compared with 45,161 tons in 1938); the output of cement copper from the mine-water

² Short tons.

precipitation plants decreased slightly. Operations were resumed at the Butte zinc properties of the company in March 1939 after a shutdown of more than a year; during the remainder of the year 200,036 tons of zinc-lead ore were shipped to the zinc concentrator at Anaconda, a marked increase from the output (2,638 tons) in 1938. of recoverable metals (from all classes of materials) increased greatly in 1939—gold increased more than 4,900 ounces, silver more than 2,000,000 ounces, copper nearly 41,000,000 pounds, lead about 8,400,-000 pounds, and zinc nearly 36,000,000 pounds. Mine development at the copper mines in 1939 comprised 237 feet of shaft sinking, 147,953 feet of drifting, and 8,537 feet of diamond drilling; at the zinc properties 17,775 feet of drifting and 1,939 feet of diamond drilling were reported. Mining of zinc-lead ore was resumed in December 1939 at the Emma mine (owned by the Butte Copper & Zinc Co. but operated under lease by the Anaconda Copper Mining Co.); the mine had been closed since January 1938. The output in 1939 comprised 5.741 tons of zinc-lead ore sent to the mill at Anaconda; in addition, the company produced 6,199 short tons of manganese ore. Other producers of zinc-lead ore shipped to mills included the Amy Silversmith, Amy X, Green Copper, Josephine, Magna Charta, Minnie Jane, Wappello, and Wild Pat properties. The rest of the output from the Butte district was crude ore shipped to smelters from the Alice, Amy Silversmith, Black Rock, Bluebird, Brophy, Eveline & Twilight, Fayal, Green Copper, Illinois, Josephine, Lavena, Lexington, Magna Charta, Margaret Ann, Pittsmont, Quarter Moon, Sailor's Dream, Sunny Dell, Valdemere, and Wild Pat properties.

Divide Creek district.—Siliceous ore was shipped to smelters in 1939 from the Gallinipper, Homestead, Margaret, and Queen of the Hills

properties.

German Gulch district.—Most of the output from the German Gulch

district in 1939 came from sluicing operations at the Beal placer.

Highland district.—The Butte Highlands Mining Co. operated throughout 1939 at the Highlands property 20 miles southwest of Butte; 19,504 tons of ore were treated in the cyanidation mill, and the output of gold increased to 9,936 ounces from 8,849 ounces in 1938. The rest of the Highland district output comprised crude ore shipped to a smelter from the Highland Queen and North Highland properties and small lots of placer gold from several prospects.

Independence district.—In 1939 lessees shipped 622 tons of silver ore

from the Goldflint mine to the smelter at Anaconda.

SWEET GRASS COUNTY

Independence district.—A little gold ore from the Daisy property on Basin Creek 55 miles south of Big Timber was treated in a small tableconcentration mill in 1939, and a car of crude gold ore was shipped direct to a smelter.

TOOLE COUNTY

Gold Butte district.—There was a decrease in gold from Toole County in 1939 owing to suspension of operations at Gold Butte Placers late in 1938; the 1939 output came from the Banner, Cummings, Gopher, and Small placers.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN NEVADA

(MINE REPORT)

By Charles White Merrill and H. M. Gaylord

SUMMARY OUTLINE

	Page		Page
SummaryCalculation of value of metal production Mine production by counties	369 372	Mining industry Ore classification Metallurgic industry	373 374
		Review by counties and districts	380

In 1939 copper displaced gold as Nevada's most valuable mineral product, but neither the quantity nor the total value of the copper output reached the mark set in 1937. Gold production exceeded in quantity that in each year since 1916 and in value since 1912. The total value of the gold, silver, copper, lead, and zinc (each calculated in terms of recovered metal) produced in Nevada in 1939—\$30,480,-870—exceeded that in each year (except 1937) since 1929. ing 1939 with 1938, gold increased 22 percent in both quantity and total value, silver decreased 1 percent in quantity but increased 4 percent in value, copper increased 44 percent in quantity and 53 percent in value, lead decreased 9 percent in quantity and 7 percent in value, and zinc decreased 30 percent in quantity and 25 percent in The total value of the five metals was 30 percent greater than in 1938; of the total, copper comprised 45 percent, gold 42 percent, silver 10 percent, zinc 2 percent, and lead 1 percent.

White Pine County continued in 1939 to be the largest contributor to the mineral output of the State; it ranked first in both copper and gold and fourth in silver. Esmeralda County was the leading producer of silver and Lincoln County the leading producer of both zinc

and lead.

All tonnage figures are short tons and "dry weight"; that is, they do

not include moisture.

Yardage figures used in measuring material treated in placer operations are "bank measure"; that is, the material is measured in the ground before treatment.

The value of metal production herein reported has been calculated

at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead ³	Zine ³
1935 1936 1937 1938 1939	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0.71875 .7745 .7735 4.646+ 5.678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046	Per pound \$0.044 .050 .065 .048 .052

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.

2 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.

3 Yearly average weighted price of all grades of primary metal sold by producers.

4 \$0.64646464.

Mine production of gold, silver, copper, lead, and zinc in Nevada, 1935-39, and total, 1859-1939, in terms of recovered metals

Year			Ore, old tailings, etc. (short	Gold (lode a	e and placer) Silver (lode and p		and placer)
	Lode	Placer	tons)	Fine ounces	Value	Fine ounces	Value
1935. 1936. 1937. 1938. 1939.	706 661 682 795 891	149 119 117 130 104	4, 392, 819 6, 584, 138 7, 565, 466 5, 880, 021 6, 894, 999	188, 031 286, 370 281, 332 296, 434 361, 518	\$6, 581, 085 10, 022, 950 9, 846, 620 10, 375, 190 12, 653, 130	4, 393, 426 5, 068, 786 4, 864, 750 4, 355, 471 4, 316, 029	\$3, 157, 775 3, 925, 775 3, 762, 884 2, 815, 658 2, 929, 668
1859-1939 2			(3)	24, 025, 110	519, 440, 526	569, 700, 164	526, 451, 794

Year	Cor	Copper		ad	Zi	Total value	
	Pounds	Value	Pounds	Value	Pounds	Value	
1935 1936 1937 1938	74, 266, 000 141, 392, 000 149, 206, 000 92, 338, 000 133, 194, 000	\$6, 164, 078 13, 008, 064 18, 053, 926 9, 049, 124 13, 852, 176	25, 352, 000 21, 424, 000 18, 694, 000 9, 358, 000 8, 472, 000	\$1, 014, 080 985, 504 1, 102, 946 430, 468 398, 184	31, 072, 000 26, 954, 000 28, 472, 000 17, 888, 000 12, 456, 000	\$1, 367, 168 1, 347, 700 1, 850, 680 858, 624 647, 712	\$18, 284, 186 29, 289, 993 34, 617, 056 23, 529, 064 30, 480, 870
1859-1939	4 1, 308, 129	384, 140, 922	4 499, 837	53, 261, 461	4 231, 877	31, 702, 976	1, 514, 997, 679

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to

4 Short tons.

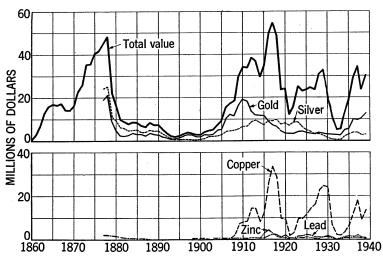


FIGURE 1.—Value of mine production of gold, silver, copper, lead, and zinc and total value in Nevada, 1860-1939.

Gold.—Almost three-fourths of the recoverable gold output of Nevada in 1939 was derived from dry ores, chiefly gold ore, and virtually all the gold from base-metal ores came from copper ore. Placer

property. Tompiled by Chas. W. Henderson, supervising engineer, field offices, Denver, Colo. From 1904 (when irst satisfactory annual canvass of mine production was made) to 1939, inclusive, the output was as follows: Gold, 12,198,233.51 ounces, valued at \$274,957,293; silver, 281,287,315 ounces, \$189,293,571; copper, 1,306,203 short tons, \$383,494,294; lead, 262,046 short tons, \$30,624,899; zinc, 231,877 short tons, \$31,702,976; total value, \$910,073,033.

3 Figures not available.

gold comprised 9 percent of the State total, and the output was more than twice that in 1938. Five companies produced 47 percent of the State total gold, and the 10 leading mines, listed in the following table, supplied 56 percent.

Ten leading gold-producing mines in Nevada in 1939, in order of output

Rank	Mine	District	County	Rank in 1938	Operator	Source of gold
1	Getchell	Potosi	Humboldt	3	Getchell Mine, Inc	Gold ore.
2	Emma Nevada:	Robinson	White Pine	2	Consolidated Coppermines	Copper ore.
3	Mary	Silver Peak	Esmeralda	1	Corporation and lessees. Black Mammoth Consolidated Mining Co. and Prescott Lease.	Gold ore.
4	Ruth and Copper Flat Pit.	Robinson	White Pine.	4	Nevada Consolidated Cop- per Corporation.	Copper ore.
5	Manhattan dredge	Manhattan	Nye	(1)	Manhattan Gold Dredging	Dredge.
6	Chiquita	Yellow Pine	Clark	7	Chiquita Mining Co., Ltd	Gold ore.
7	Keystone	Comstock	Storey	47	Dayton Consolidated Mines	Do.
8 9 10	Penelas Emma E Silver Hill	Phonolite Cortez Comstock	Nye Eureka Storey	9 16 14	Co. Penelas Mining Co Greenan & Co., Inc Silver Hill Mining Co	

¹ Operation began November 15, 1938; no regular clean-up made until 1939.

Silver.—The 10 leading silver-producing mines in Nevada in 1939, listed in the following table, produced 54 percent of the State total recoverable silver; the first 3 yielded more than one-third of the total. As in preceding years, most of the silver output was a byproduct of ore mined chiefly for other metals.

Ten leading silver-producing mines in Nevada in 1939, in order of output

Rank	Mine	District	County	Rank in 1938	Operator	Source of silver
1	Nivloc	Silver Peak	Esmeralda	1	Desert Silver, Inc	Silver ore.
2	Mizpah	Tonopah	Nye	2	Lessees of The Tonopah Mining Co. of Nevada.	Gold-silver ore.
3	Pioche Nos. 1 and 2.	Pioche	Lincoln	4	Combined Metals Reduc-	Zinc-lead ore.
4	Tonopah Belmont.	Tonopah	Nye	5	Lessees of Tonopah Bel- mont Development Co.	Gold-silver ore.
5	Overman	Comstock	Storey	7	Consolidated Chollar Gould & Savage Mining Co.	Do.
6	Ruth and Copper Flat Pit.	Robinson	White Pine.	9	Nevada Consolidated Copper Corporation.	Copper ore.
7	Crown Point	Comstock	Storey	8	Sutro Tunnel Coalition, Inc.	Gold-silver ore;
8	Bristol Silver	Jack Rabbit	Lincoln	6	Bristol Silver Mining Co	Silver ore.
9	Jubilee and Techatticup.	Eldorado Can-	Clark	14	Diamond Gold Mining Co.	Gold-silver ore.
10	Nevada Wonder	Wonder	Churchill	17	Various lessees	Do.

Copper.—Over 98 percent of the recoverable copper output of Nevada in 1939 came from mines operated by the following companies: Nevada Consolidated Copper Corporation, working the Ruth mine at Ruth and the open pit at Copper Flat (in the Robinson district, White Pine County); the Consolidated Coppermines Corporation, working the Emma Nevada mine at Kimberly (also in the Robinson district); and the Mountain City Copper Co., working the Mountain City mine at Mountain City (in the Cope district, Elko County). During 1938 a curtailment program was in effect at all these mines, but during 1939 output was expanded.

Lead.—Lincoln County produced over three-fourths of the total recoverable lead output of Nevada in 1939, most of which came from the Pioche district. Three-fifths of the State total lead was derived from zinc-lead ore mined at the Pioche Nos. 1 and 2 mines by the Combined Metals Reduction Co., affiliate of the National Lead Co. Small quantities of lead were reported from many districts, including the Jack Rabbit (Lincoln County), Yellow Pine (Clark County), and

Delano, Merrimac, and Spruce Mountain (Elko County).

Zinc.—Over nine-tenths of the recoverable zinc output of Nevada in 1939 was produced by the Combined Metals Reduction Co. from zinc-lead ore mined at the Pioche Nos. 1 and 2 mines in the Pioche district of Lincoln County. The Yellow Pine district of Clark County was the only other area in the State that produced a substantial quantity of zinc.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Nevada in 1939, by counties, in terms of recovered metals

		s pro-			C	lold			Silver (lode and		
County		Plac-]	∠ode	P	lacer		Total	placer)		
	Lode	er	Fine ounces	Value	Fine ounces	Value	Fine ounces	Value	Fine ounces	Value	
Churchill Clark Douglas. Elko Esmeralda Eureka. Humboldt Lander Lincoln Lyon Mineral Nye. Ormsby Pershing Storey Washoe White Pine	32 60 4 64 36 30 54 56 35 58 102 126 3 69 94 64 19	(2) 4 7 10 7 10 5 2 25	52, 338 10, 039 58, 106 8, 613 7, 249 11, 348 4, 192 25, 051 52 4, 992 33, 629 1, 827	840, 910 910 195, 510 1, 831, 830 351, 365 2, 033, 710 301, 455 253, 715 397, 180	2 22 56 305 394 2, 465 873 74 25, 230 2, 205	770 1, 960 10, 675 13, 790 86, 275 30, 555 2, 590 883, 050	5, 608 52, 394 10, 344 58, 500 11, 078 7, 249 12, 221 4, 266 50, 281 52 7, 197 33, 641 1, 879	\$113, 155 840, 910 980 196, 280 1, 833, 730 362, 040 2, 047, 500 253, 715 427, 735 149, 310 1, 759, 835 1, 820 251, 895 1, 177, 435 65, 765 2, 783, 235	315, 669 106 195, 505 914, 720 158, 376 56, 405 82, 735 514, 345 58, 990 104, 709 733, 347 523 62, 362	72 132, 706 620, 901 107, 504 38, 287 56, 160 349, 131 40, 042	
Total, 1938	891 795	104 130	328, 960 283, 475	11, 513, 600 9, 921, 625	32, 558 12, 959	1, 139, 530 453, 565	361, 518 296, 434	12, 653, 130 10, 375, 190	4, 316, 029 4, 355, 471	2, 929, 668 2, 815, 658	

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.
² Output from property not classed as a "mine."

Mine production of gold, silver, copper, lead, and zinc in Nevada in 1939, by counties, in terms of recovered metals—Continued

_	Cop	per	Lea	đ.	Zine	3	Total
County	Pounds	Value	Pounds	Value	Pounds	Value	value
Churchill	36,000	\$3,744	96, 000 402, 000	\$4, 512 18, 894	696, 000	\$36, 192	\$250, 755 1, 114, 012 1, 052
Elko Esmeralda Eureka	28, 302, 000 4, 000 8, 000	2, 943, 408 416 832	680, 000 20, 000 132, 000	31, 960 940 6, 204		9, 984	3, 314, 338 2, 456, 047 476, 580
Humboldt Lander	8, 000 934, 000	832 97, 136	44, 000 68, 000	2, 068 3, 196		312	2, 088, 999 544, 222
Lincoln Lyon	682, 000 12, 000		6, 446, 000	302, 962			1, 573, 384 469, 025
Mineral Nye Ormsby		416 416	134, 000 132, 000	6, 298 6, 204			227, 099 2, 264, 242 2, 175
Pershing Storey Washoe Washoe	14,000 2,000	1, 456 208	128, 000 2, 000	6, 016 94	16,000	832	302, 530 1, 459, 830 67, 176
White Pine	103, 184, 000	10, 731, 136	188, 000	8,836	72,000	3, 744	13, 869, 404
Total, 1938	133, 194, 000 92, 338, 000			398, 184 430, 468			30, 480, 870 23, 529, 064

MINING INDUSTRY

Expansion of production at the three large copper mines in Nevada in 1939 resulted in the increased tonnage of ore treated compared with 1938. Increases were as follows: Copper ore, 22 percent; dry ores, 7 percent; and old tailings, 14 percent. Output of zinc-lead ore decreased 29 percent. The connected-bucket dredge of the Manhattan Gold Dredging Co. in the Manhattan district, Nye County, completed its first full year of operation in 1939; the output of this dredge was the principal cause of the 151-percent increase in yield of placer gold in the State in 1939. Quicksilver consumption at placer mines totaled 871 pounds.

ORE CLASSIFICATION

The following table classifying ores produced in Nevada in 1939 shows that nearly 72 percent of the tonnage of ore (including old tailings) sold or treated was copper ore, 22 percent gold ore, 4 percent gold-silver ore, nearly 2 percent silver ore, and the remainder (less than 1 percent) zinc-lead, lead, lead-copper, and zinc ores.

Details of ore classification are given in the chapter of this volume

on Gold and Silver.

Ore and old tailings sold or treated in Nevada in 1939, with content in terms of recovered metals

_	Ore and ol treat						
Source	Ore	Old tail- ings	Gold	Silver	Copper	Lead	Zinc
Dry and siliceous gold ore Dry and siliceous gold-	Short tons 889, 273	Short tons 605, 723	Fine ounces 219, 419	Fine ounces 476, 795	Pounds 146, 900	Pounds 102, 000	Pounds
silver ore Dry and siliceous silver ore	293, 374 103, 053	12, 419 3, 209	34, 919 4, 415	1, 731, 713 1, 340, 602	16, 100 688, 000	187, 500 797, 300	189, 50
Copper ore Lead ore Zinc ore Zinc-lead ore	1, 285, 700 4, 936, 001 6, 725 219 150 44, 848	621, 351	258, 753 68, 028 1, 266 3	3, 549, 110 280, 654 225, 992 2, 118 12 248, 000	851, 000 132, 291, 600 26, 200 22, 400 2, 800	1, 086, 800 3, 200 2, 166, 700 117, 900 1, 700 5, 095, 700	189, 50 8, 20 95, 80 12, 162, 50
Total, lode mines Total, placers	6, 273, 643	621, 356	328, 960 32, 558	4, 305, 886 10, 143	133, 194, 000	8, 472, 000	12, 456, 00
Total, 1938	6, 273, 643 5, 334, 330	621, 356 545, 691	361, 518 296, 434	4, 316, 029 4, 355, 471	133, 194, 000 92, 338, 000	8, 472, 000 9, 358, 000	12, 456, 00 17, 888, 00

METALLURGIC INDUSTRY

Of the 6,894,999 tons of lode material sold or treated in 1939 in Nevada 72 percent was ore sent to concentrating mills, 16 percent was ore sent to amalgamation and cyanidation mills, 9 percent was old tailings sent to amalgamation and cyanidation mills, and 3 percent was ore (including small quantity of old tailings) sent to smelters. The only changes from 1938, aside from a general increase in State total tonnage, was a small gain in the proportion treated in concentrating mills and an attendant loss in the proportion treated in amalgamation and cyanidation mills. In 1939, as in 1938, flotation was employed at concentration mills to the virtual exclusion of gravity concentration. A much larger tonnage of material was cyanided than amalgamated, and cyanidation was used in treating old tailings almost to the exclusion of other methods. Of the gold recovered as bullion, cyanidation accounted for 83 percent and amalgamation 17 percent; of the silver recovered as bullion, 97 percent was derived by cyanidation and 3 percent by amalgamation. The total quantity of crude ore shipped to smelters increased 11 percent over 1938; there was little change in the quantity of dry ores shipped to smelters, but there were substantial increases in copper ore and lead ore. The 500-ton cyanide plant constructed by the

Standard Cyaniding Co. In the Imlay district, Pershing County, was an outstanding addition to the metallurgical equipment of the State; production at this plant began November 7.

Quicksilver consumption in Nevada in 1939 at mills using amalgamation was 5,691 pounds in the recovery of 33,050 ounces of gold and

44,458 ounces of silver from 307,959 tons of material treated.

Data obtained on cyanide consumption in 1939 at Nevada mills are nearly complete. In the treatment of 691,931 tons of the ore and 606,661 tons of the old tailings, 872,668 pounds of 91-percent sodium cyanide and 45,000 pounds of commercial-grade calcium cyanide (50-percent NaCN equivalent) were used, with a recovery of 123,443 ounces of gold and 1,182,347 ounces of silver; in terms of 98-percent NaCN, the consumption was 833,294 pounds, or 0.64

pound per ton of material treated.

Custom mills were operated in various parts of Nevada during 1939. Those of importance were at Silver City, Lyon County; Westgate, Churchill County; Gold Point, Esmeralda County; and Nelson, Clark County. Most of the custom mills obtained part of their mill feed from mines worked by the mill operators. Large quantities of ore and concentrates were shipped out of the State, principally to lead and copper smelters in the Salt Lake Basin. The Bauer (Utah) plant of the Combined Metals Reduction Co. treated all the company zinclead ore mined at Pioche, Lincoln County. The McGill copper smelter at McGill in White Pine County, operated by the Nevada Consolidated Copper Corporation, continued in 1939 to be the only smelter and the most important metallurgical plant in the State; the concentrator (18,000 tons daily capacity), operated by the same company, was the largest mill in the State.

Mine production of metals in Nevada in 1939, by methods of recovery, in terms of recovered metals

		,				
Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zinc
Ore, old tailings, and concentrates amalgamated	Short tons 307, 959	Fine ounces 33, 050	Fine ounces 44, 458	Pounds	Pounds	Pounds
Ore, old tailings, sands, slimes, and concentrates cyanided Concentrates smelted:	1, 507, 366	162, 986	1, 626, 049	1 2,000		
Flotation Gravity	256, 617 91	80, 928 460	727, 591 2, 741	119, 675, 400 700	5, 173, 900 2, 100	11, 688, 000
Ore and old tailings smelted	192, 735	51, 536	1,905,047	13, 515, 900	3, 296, 000	768, 000
Total, lode mines Total, placers		328, 960 32, 558	4, 305, 886 10, 143	133, 194, 000	8 , 472, 000	12, 456, 000
Total, 1938		361, 518 296, 434	4, 316, 029 4, 355, 471	133, 194, 000 92, 338, 000	8, 472, 000 9, 358, 000	12, 456, 000 17, 888, 000

¹ From cyanide precipitates.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Nevada in 1939, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

		AMA							
	Materia	l treated		vered in Illion	Concen	trates sm	elted and	d recovere	ed metal
County	Ore ¹	Old tailings	Gold	Silver	Con- cen- trates pro- duced	Gold	Silver	Copper	Lead
	Short tons 319	Short tons	Fine ounces 38	Fine ounces 107	Short tons	Fine ounces	Fine ounces	Pounds	Pounds
Churchill Clark	24, 052 14	351	3,376	1, 322	568	6, 406	76, 758	2,400	100
Douglas Elko	1, 475 85, 441		431 4,084	1, 083 1, 338	1	4	120		
Esmeralda Humboldt	34, 454 420		7, 850 169	4, 090 34	6	9	10		
Lander Lyon	14, 837 1, 622	160	1,807 386	2, 821 329	2	25	104		
Mineral	20, 372	150	4,373	2, 245 29	207	1, 402	957		100
OrmsbyPershingStoreyWashoe	3, 542 115, 866 1, 374	30 2, 858 100	1, 254 9, 212 13	846 29, 878 317	6 344	15 1, 575	30 7, 279	500	1,000
White Pine	514		45	18	3	13	19		
Total, 1938	304, 302 456, 391	3, 657 2, 094	33, 050 35, 151	44, 458 28, 901	1, 137 3, 569	9, 449 23, 718	85, 277 244, 726	2, 900 6, 700	1, 200 35, 600
		CYA	NIDAT	IIM NOI	LLS				
Churchill Clark Douglas	5, 229 93, 629 45	2,376	1, 537 11, 963 15	68, 771 126, 483 105	1 214	1, 346	78 82, 692	600	2, 300
Elko Esmeralda Eureka	29, 200 175, 759 12, 220	1, 159 2 414, 857	2,822 40,922 5,957	57, 173 884, 846 1, 618					
HumboldtLander	278, 999 11, 270	165	49,051	3, 185 1, 931					
Lincoln	18, 939	168, 966 21, 081	3, 798 9, 449	16, 216 54, 600	5	45	50		
Lyon Mineral Nye	4, 703 26, 091		2, 103 8, 699	9, 728 17, 359	2	17	9		
Ormsby Pershing Storey	20, 684 218, 470	1, 630 78	1,300 22,493	483 5, 378 372, 168	3 1	8 7	50 244		
Washoe White Pine	23 18	1, 700	709	283 5, 722					
Total, 1938	895, 285 638, 163	² 612, 081 ³ 532, 977	162, 986 116, 765	1, 626, 049 1, 351, 128	496 113	3, 397 2, 066	84, 517 7, 175	600	6, 100 4, 800

Figures under "Ore" include both raw ore and concentrates amalgamated or cyanided but not raw ore concentrated before amalgamation or cyanidation of concentrates.
 Yielded also 2,000 pounds of copper from cyanide precipitates.
 Yielded also 1,300 pounds of copper from cyanide precipitates.

² 615, 738 | 196, 036 | 1, 670, 507 | 151, 916 | 1, 380, 029

1, 633 3, 682

12, 846 | 169, 794 25, 784 | 251, 901

3,500 6,700

7,300

40, 400

1, 199, 587 1, 094, 554

Grand total:

1938_____

Gross metal content of concentrates from concentrating mills treating Nevada ore and old tailings in 1939, by classes of concentrates

Class of concentrates	Concen-		Gros	ss metal cont	ent	
Class of concentrates	trates produced	Gold	Silver	Copper	Lead	Zinc
Dry gold_ Dry gold-silver_ Dry silver_ Copper_ Lead_ Zinc_ Zinc_lead_	Short tons 8, 186 257 30 230, 630 4, 434 11, 531 7	Fine ounces 1, 228 283 66, 274 668 89	Fine ounces 11, 172 9, 455 697 254, 820 252, 431 31, 897 66	Pounds 1, 679 736 503 126, 925, 359 3, 529 2, 241	Pounds 201, 426 7, 806 1, 030 412 4, 985, 646 234, 993 1, 053	Pounds 311, 926 2, 527 1, 534 668, 343 12, 988, 867 7, 655
Total, 1938	255, 075 209, 618	68, 542 48, 498	560, 538 876, 854	126, 934, 047 90, 588, 243	5, 432, 366 6, 605, 824	13, 980, 852 20, 033, 444

Mine production of metals from concentrating mills in Nevada in 1939, in terms of recovered metals

BY COUNTIES

			BY COUN	TIES			
			Concent	rates smelted	and recover	ed metal	
	Ore treated	Concen- trates produced	Gold	Silver	Copper	Lead	Zinc
Elko Humboldt Lander Lincoln Lyon	Short tons 114, 923 1, 218 3, 045 43, 493 118	Short tons 36, 749 101 618 23, 434	Fine ounces 384 246 131 910 25	Fine ounces 55, 143 7, 573 15, 724 246, 310 409	Pounds 16, 383, 200 200 110, 700	Pounds 211,900 500 6,300 4,886,500	Pounds 192, 000 6, 000
Mineral Pershing Storey White Pine	3, 700 187 5, 101 4, 792, 815	23 74 46 194, 028	473 195 66, 178	4, 332 7, 284 1, 163 222, 600	3, 000 1, 500 103, 173, 700	2,000 31,000 300 30,200	16, 000
Total, 1938	4, 964, 600 4, 134, 380	255, 075 209, 618	68, 542 48, 498	560, 538 876, 854	119, 672, 600 86, 873, 800	5, 168, 700 6, 306, 300	11, 688, 000 16, 836, 000
		BY CLASS	SES OF CO	NCENTRA	TES		
Dry gold-silver Dry silver Copper Lead Zinc Zinc-lead		8, 186 257 30 230, 630 4, 434 11, 531 7	1, 228 283 66, 274 668 89 68, 542	11, 172 9, 455 697 254, 820 252, 431 31, 897 66 560, 538	1, 500 700 400 119, 665, 700 2, 675 1, 625	161, 200 6, 200 500 300 4, 779, 700 219, 800 1, 000	11, 681, 100 6, 900 11, 688, 000

Gross metal content of concentrates produced from ores mined in Nevada in 1939, by classes of concentrates

Class of concentrates	Concen- trates		Gr	oss metal cont	en t	
Class of concentrates	produced	Gold	Silver	Copper	Lead	Zinc
Dry gold	Short tons 9, 645 430 30 230, 630 4, 435 11, 531 7	Fine ounces 12, 870 1, 482 66, 274 673 89	Fine ounces 97, 797 92, 604 697 254, 820 252, 451 31, 897 66	Pounds 2, 965 3, 704 503 126, 925, 359 3, 529 2, 241	Pounds 206, 763 10, 236 1, 030 412 4, 985, 750 234, 993 1, 053	Pounds 311, 926 2, 527 1, 534 668, 343 12, 988, 867 7, 655
Total, 1938	256, 708 213, 300	81, 388 74, 282	730, 332 1, 128, 755	126, 938, 301 90, 598, 250	5, 440, 237 6, 648, 334	13, 980, 852 20, 033, 444

Mine production of metals from Nevada concentrates shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	Zine
Churchill	Short tons	Fine ounces	Fine ounces	Pounds	Pounds	Pounds
Clark	782	7, 752	159, 450	3,000	2, 400	
Elko	36, 750	388	55, 263	16, 383, 200	211, 900	192,00
Esmeralda	270	1,972	1, 394		3,800	
HumboldtLander	107 618	255	7, 583	200	500	6,00
Lincoln	23, 434	131 910	15, 724 246, 310	110, 700	6,300	
Lyon	20, 101	70	459	300	4, 886, 500	11, 474, 00
Mineral	25	498	4, 436		2,000	
Nye	209	1,419	966		100	
Pershing	83 391	23	7, 364	3,000	31,000	16,00
StoreyWhite Pine	194, 031	1, 777 66, 191	8, 686 222, 619	2,000 103, 173, 700	1,300 30,200	
	101,001	00, 101	222, 018	100, 170, 700	30, 200	
m	256, 708	81, 388	730, 332	119, 676, 100	5, 176, 000	11, 688, 000
Total, 1938	213, 300	74, 282	1, 128, 755	86, 880, 500	6, 346, 700	16, 836, 000
-	BY CLA	sses of o	CONCENTE	RATES		
Dry gold	9, 645	12, 870	97, 797	2, 200	166, 100	
Dry gold-silver	430	1,482	92, 604	3, 500	8, 500	
Dry silver	30 230, 630		697	400	500	
Copper Lead Zine	4, 435	66, 274 673	254, 820 252, 451	119, 665, 700 2, 675	300	
Zinc	11, 531	89	31,897	1,625	4, 779, 800 219, 800	11, 681, 100
Zinc-lead	7		66		1,000	6, 900
	256, 708	81, 388	730, 332	119, 676, 100	5, 176, 000	11, 688, 000
	200, 100	01, 000	100,002	110, 010, 100	0, 110, 000	11, 088

Gross metal content of Nevada crude ore shipped to smelters in 1939, by classes of ore

Class of ore	Ore	Gross metal content									
Class of ore	Ore	Gold	Silver	Copper	Lead	Zinc					
Dry and siliceous gold	Short tons 52, 540 67, 457 29, 323 29, 549 6, 605 219 132 1, 262	Fine ounces 31, 943 15, 272 862 1, 759 1, 264 3	Fine ounces 87, 353 1, 081, 116 444, 523 25, 858 224, 616 2, 118	Pounds 146, 015 15, 929 771, 735 13, 017, 702 33, 802 25, 949	Pounds 114, 896 150, 351 656, 174 4, 118 2, 276, 116 125, 239 2, 048 271, 549	Pounds					
Total, 1938	187, 087 168, 646	51, 103 1 56, 597	1, 865, 584 1 1, 767, 425	14, 011, 132 5, 717, 447	3, 600, 491 3, 363, 817	1, 353, 378 1, 307, 804					

¹ Includes gold and silver in 349 tons of gold-silver old tailings, metal content of which was not reported separately.

Mine production of metals from Nevada crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

		BY COOK	ILES	-		
	Ore	Gold	Silver	Copper	Lead	Zinc
Churchill	Short tons 4, 236	Fine ounces	Fine ounces	Pounds	Pounds	Pounds
Clark	2, 959	935	28, 414	33, 000	96, 000 399, 600	696, 000
Elko	27, 997	1,709	64, 698	11, 918, 800	468, 100	
Esmeralda	2, 678	5, 360	27, 127	2,000	16, 200	
Eureka	14, 973	4, 082	156, 736	8,000	132,000	
Humboldt Lander	2, 486	950	41, 494	7,800	43, 500	
Lincoln	16, 212 18, 715	6, 200 2, 458	64, 747	823, 300	61,700	
Lyon	138	2, 408	242, 982 682	681, 100 11, 700	1, 501, 000	
Mineral.	4, 833	1, 205	90, 172	4,000	132,000	
Nye	29, 280	10, 560	704, 018	4,000	131, 900	
Ormsby	2	4	11		202,000	
Persning	2,099	2, 415	48, 377	11, 000	95, 000	
Storey	114	147	4,837		700	
Washoe.	1,998	1, 105	1, 438			
White Pine	58, 367	12, 295	262, 740	10, 300	157, 800	72,000
	187, 087	51, 103	1, 865, 584	13, 515, 000	3, 235, 500	768, 000
Total, 1938	168, 646	1 56, 597	1 1, 767, 425	5, 454, 100	2, 932, 800	1, 052, 000
	ву	CLASSES	OF ORE			
Dry and siliceous gold	52, 540	31, 943	87, 353	139, 700	92, 100	
Dry and siliceous gold-silver	67, 457	15, 272	1,081,116	14, 100	118, 500	
Dry and siliceous silver	29, 323	862	444, 523	686, 400	570, 600	
Copper	29, 549	1,759	25, 858	12, 626, 200	2, 900	
Lead	6, 605	1, 264	224, 616	26, 200	2, 141, 900	
Lead-copper	219 132	3	2, 118	22, 400	117, 900	
Zinc- Zinc-lead	1, 262				1,400	89, 800
ZIIIO IGAU	1, 202				190, 200	678, 200
	187, 087	51, 103	1, 865, 584	13, 515, 000	3, 235, 500	768, 000

 $^{^{1}}$ Includes gold and silver from 349 tons of gold-silver old tailings, metal content of which was not reported separately.

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Nevada in 1939, by counties and districts, in terms of recovered metals 1

County and district 1		Mines produc- ing ²			Gold			Copper	Lead	Zinc	Total value
•	Lode	Placer	tailings	Lode	Placer	Total	placer) ³				
Churchill County:			Short tons	Fine ounces	Fine ounces	Fine ounces		Pounds	Pounds	Pounds	****
Alpine	1		26	3		3	1, 272				. \$968 874
Broken Hills	1		69	1		1	1, 236				
Dixie Valley	6		2, 372	376		376	600				13, 56
Eagleville 4			3	6		6	1 1				21
Eastgate			881	297		297	3, 710				12, 91
Fairview	8		2, 341	641		641	48, 982		89, 300		. 59, 88
Holy Cross	1		29	36		36	9, 898		6, 700		8, 29
Sand Springs	3	1	328	209		209	10, 442				14, 40
Wonder	4		5, 811	1,643	1	1,643	119, 825				. 138, 84
Clark County:	-		-,			· ·	1				
Crescent	5	1	338	118	1	118	5, 701		5, 400		8, 25
Eldorado Canyon	11		71, 178	11, 538		11, 538	305, 019	1,300	3, 300		611, 16
Gold Butte	1		6, 235	509		509	174	2,000	0,000		17, 93
Pyramid	2		0, 200	15		15	1 4		200		537
Searchlight			2, 035	1, 471		1, 471	1, 682	9, 400	14, 200		54, 272
Yellow Pine	13		41, 154	10, 375		10, 375	3, 089	25, 300	378, 900	696, 000	421, 85
	10		41, 104	10, 575		10, 373	3,003	20, 300	310, 800	080,000	121,00
Douglas County:	1	1 45			2	2					70
Mt. Siegel		. (8)			, · z	15	105				596
Mountain House	2		45	15		10	100				. 581
Elko County:		1		_							491
Alder	2		14	8		8	311				
Centennial	2		523	391		391	301	200	5, 500		14, 169
Contact	8		207	6		6	1,012	29, 700	100		3, 990
Cope	8	3	134, 788	96	17	113	39, 690	28, 129, 700			2, 956, 38
Cornucopia	2	I	2,014	224		224	16, 509				19,040
Delano	4		921	. 2		2	24, 572	400	311, 300		31, 422
Ferguson Springs	1		3		1		7	800			. 88
Gold Circle	3		29, 625	2, 916		2, 916	55, 007				139, 398
Island Mountain	2		134	56		56	32	200			2,003
Jarbidge		1	978	374		374	1, 335	_50			13, 996
Lime Mountain			3, 358	1, 258		1, 258	4, 102	105, 200			57, 75
Loray			0,000	1,200		1, 200	296	100, 200			21
Mardis			79	194		194	620	1,000	4, 400		7, 522
Maruis	3		2, 487	12		12	39, 073	1, 400	225, 700	192,000	47, 680
Merrimac	0						2, 515	1, 400	1, 300		2, 328
Mud Springs			488	16		16			1, 300		3, 62
Railroad	1		195	2		. 2	1, 463	23, 800	1,800		528
Rock Creek	1	1	1 5	1	I 	1	726		-		1 52

c	ů
ŏ	č
ĭ	_

Spruce Mountain Tecoma Tuscarora	7 1 3	i	472 31 754	3 1 26	5	3 1 31	6, 484 427 1, 023	9, 500	105, 300 24, 600		10, 443 1, 481 1, 779
Esmeralda County: Desert	6		130	80		80	355				3, 041
Divide Goldfield	6		812 380, 461	689 8, 130		689 8, 130	20, 073 4, 210	4. 000	1, 400		37, 806 287, 824
Klondyke	2	i	61	23	2	25	1, 920	4,000	7, 400		2, 526
Lida.	3	1	34	5	23	28	2, 258		200		2, 522
Lone Mountain Palmetto	1		32, 282 10	1, 934 20		1, 934	4, 864				70, 992 703
Silver Peak	10		210, 451	39, 353		39, 353	851, 776		9, 500		1, 955, 977
Sylvania		5			31	31	8				1,090
Eureka County: Buckhorn	1		837	270	1	270	2, 270	W-1			10.991
Cortez	3		13, 896	6, 354		6, 354	64, 683	2,700	27,000		267, 846
Diamond	1		2, 759	29		29	40, 438				28, 464
Eureka Lynn	21	10	9, 178 385	3, 232 154	305	3, 232 459	40, 538 162	500 300	103, 700		145, 563 16, 206
Safford	2	10	138	104	300	400	10, 285	4, 500	1,300		7, 510
Humboldt County:								,			•
Awakening Barrett Springs			23, 748 630	4, 915 510	3	4, 915 513	3, 787 7, 927	1, 600	3, 700 10, 500		174, 769 23, 996
Central 6	3	i	30	31	5	36	40	1,000			1, 287
Disaster Peak	. 1		37	1		.1	1, 148	300	500		869
Donnelly Dutch Flat	. 2		30	18	4	18 4	13				639 140
Gold Run	8	2	245	64	27	91	2, 959	1,000	16, 900	6,000	6, 404
Jackson Creek	. 1		3	8		8	3				282
Leonard Creek Paradise Valley	. 3	1	88 27	43	23	66	814 74	3, 800	7,700		3, 224 515
Potosi	. 1		278, 975	49, 288		49, 288	2, 559	3, 300	1, 800		1, 726, 902
Rebel Creek	. 4		1,674	143		143	27, 530	500	2,700		23, 871
Sawtooth ⁶ Sulphur	2	. 1	192	2	332	332	41 899				11, 648 680
Warm Springs			10, 367	2, 386		2, 386	335	600			83, 800
Lander County:	1		1	1							
Battle Mountain Bullion	23	4 5	14, 397 14, 069	5, 365 2, 082	1,420 1,026	6, 785 3, 108	36, 916 26, 947	801, 900 125, 200	40, 300 24, 000		347, 825 141, 220
Gold Basin	5	3	689	326	1,020	3, 103	1, 502	120, 200	24,000		12, 430
Hilltop	4		271	194		194	2, 968	700	1, 700		8, 957
Kingston Lewis			637 379	228 136		228 136	1, 201 11, 641		1, 900		8,795
McCov		1	31	42	19	61	11, 041	6, 200	1,900		13, 396 2, 147
New Pass	3		412	181		181	43				6, 364
Reese RiverLincoln County:	. 5		62	59		59	1, 500		100		3, 088
Atlanta	1		26	1	1		740		1		502
Callente	2		163	169		169	1,502	600	1,900		7,086
Comet	- 5		663	66		66	8, 942	900	61, 900		11, 383
Eagle Valley	. 2	1	254	150	1	150	701	l	1	. 1	5, 726

See footnotes at end of table.

Mine production of gold, silver, copper, lead, and zinc in Nevada in 1939, by counties and districts, in terms of recovered metals—Continued

County and district	Mines		Ore and old tailings	-	Gold		Silver (lode and placer)	Copper	Lead	Zinc	Total value
	Lode	Placer	tanings	Lode	Placer	Total	and placer)				
Lincoln County—Continued. Ferguson	2		Short tons 170, 049	Fine ounces 5, 294	Fine ounces	Fine ounces 5, 294	Fine ounces 19, 643	Pounds 100	Pounds	Pounds	\$198, 634
Jack Rabbit	2		13, 874	162		162	121, 587	673, 900	443, 100		179, 11
Pahranagat	7		128	2		2	5, 430	2, 100	9, 700		4, 430
Pioche	12		46, 851	1.406		1.406	354, 432	4, 400	5, 928, 700	11, 474, 000	1, 165, 549
Tempiute	1		52				1, 201	-,	700	11, 1, 1, 000	848
Viola	1		17				167				113
Lyon County:			1		1						1
Buckskin		2]	<u> </u>	38	38	17				1,342
Cambridge			357	67	1	67	24				2, 361
Palmyra	9		1.035	300		300	3, 833				13, 102
Pine Grove	1		47	14		14	5				49
Ramsey	1		220	76		76	4				2, 66
Silver City	39	2	44, 793	7, 702	831	8. 533	31.994	300			320, 403
Yerington	4	ī	217	35	4	39	623	11, 700			3, 005
Mineral County:		-		•	•	•		11,100			3,000
Aurora	11		3,960	656	ł	656	4. 199				25, 810
Bell			411	353		353	326				12, 576
Buena Vista			300	15		15	11				532
Candelaria	6		3, 725	458		458	34, 995	500	41, 700		41, 796
Eagleville 4	1		437	49		49	1,060	300	41, 700		2, 435
East Walker	6		350	176	3	179	326		1, 200		6, 543
Fitting		•	28	80	1	80	27		1, 200		2, 818
Garfield			441	443		443	37, 308	1.900	55, 200		2, 816 43, 621
Hawthorne	12		2, 497	669		669		1, 900	00, 200		
Pilot Mountain			2, 497	52			16, 397	1, 500	26, 000		35, 923
Pine Grove				27		52	181				1, 943
Rand			27			27	16				956
Regent		;-	134	113		113	371				4, 207
Santa Fe	6	1	846	252	71	323	3, 504		3, 900		13, 867
Silver Star	31		164	17 832		17	1, 811		1,500		1, 895
Nye County:	01		1, 413	832		832	4, 177	100	4, 500		32, 177
Antelope Springs	1										
Athons	1		1 10-	2.1		1	139				129
AthensBellehelen			1, 127	642		642	518				22, 822
Bullfrog			61	51		51	1,668				2, 91
Cloverdale			1, 322	684		684	2, 453	600			25, 667
		1	33	. 9	6	15	8				530
Current			70	34		34	28				1,209
Eden	1		40	. 3	·	3	3				10'

										•	
Ellendale	1 1	1	239	147		147	103				5, 215
Fairplay	5		137	29		29	1, 861			1	2, 278
Golden Arrow	9		263	73		73	1, 145				3, 332
	;			49		19	461				348
Hannapah	1 -		25	. 1		1					
Jackson	7		174	108		108	242				3, 944
Johnnie	5	2	1,725	386	21	407	60				14, 286
Mammoth	5	- 1	250	183	,	183	366		700		6, 686
Manhattan	21	18	20, 032	7, 222	20, 748	27, 970	9, 530		6, 100		985, 706
	21	10			20, 140						5, 808
Millett	8		125	136		136	1, 544				
Morey	2		442	27		27	8, 202				6, 512
Northumberland	1		4,029	540		540	539			i	19, 266
Phonolite	l ī		18,069	6, 347		6, 347	13, 883				231, 569
Quartz Mountain	5		500	192		192	7, 383	3,000	95, 900		16, 551
			900	192		192	4, 000	3,000	90, 900		
Řeveille	1		1				41				28
Round Mountain	3	3	2,024	. 800	4, 452	5, 252	3,874				1 86, 4 50
San Antone	3		55	7		7 1	2, 966		1,500		2, 329
Silverton	9		6				100		-,		68 .
	16		18, 767	6, 925		6. 925	596, 173				647, 050
Tonopah	10			0, 920							047,000
Tybo	6		6, 231	456		456	79, 272	400			71, 112
Union	5	1	142	48	3	51	785		100		2, 323
Ormsby County: Delaware	3	1	85	52		52	523				2, 175
Pershing County:	1										,
Antelope	l a	4	983	292	163	455	7, 544	10, 400	83, 700	11,600	26,664
	1 4	*	505	202	109	400	88	10, 400		11,000	154
Buena Vista	1 1								2,000		
Central 6	3		420	33		33	11, 968	400	22, 100		10, 359
Farrell	1		! 1 !	1		1	1				36
Haystack	1		672	596		596	222				21,011
Imlay	1 1	0	20, 038	481	230	711	823				25, 444.
Jersey	l î		35	7	200	'	456		5,000		790
	‡			1 114		1 ,,,, 1		0 700			
Kennedy	1 5		327	114		114	2, 439	2, 500	3, 200		6, 056
Loring	3		200	89		89	63				3, 158
Muttleberry	1	l	14				331		200		234
Placerites		2	1		25	25	8				880
Rochester	16	2	965	366	32	398	23, 330	700	10,600	4,400	30, 566
Rosebud	(7)	-	(7)	(7)	1, 710	8 1, 710	8 226	100			8 60, 003
	(1)	0	(9)	(9)	1,710						
Sawtooth 6		. 1			5	5	2				176
Seven Troughs	10		1, 297	2, 221		2, 221	2, 165				79, 205
Sierra	9	3	2,040	249	23	272	1,486		1, 200		10, 585
Spring Valley	9		1,001	154		154	3, 410		_,		7, 705
	1 5	1	52	107	17	24	628				1, 266
Trinity	1 6	1			- 17						
Velvet	2		36	26		26	10				917
Storey County: Comstock	46	1	310, 763	33, 629	. 12	33, 641	415, 584	2,000	2,000		1, 459, 830
Washoe County:		1	',	,				· '			
Galena	1	1	35	17		17	25				612
Jumbo		1	j 55		19	19	30				685
					19		90				
Leadville	į į		5	. 3		3	. 3				107
Peavine	2		18	10		10	314				563
White Horse	13	2	874	583	33	616	263				21, 739
					•						,

See footnotes at end of table;

Mine production of gold, silver, copper, lead, and zinc in Nevada in 1939, by counties and districts, in terms of recovered metals-Continued

County and district	Mines produc- ing		Ore and old	Gold			Silver (lode		Lead	Zine	Total value
	Lode	Placer	tailings	Lode	Placer	Total	and placer)	Сорры	Dead	Zine	Total value
White Pine County: Aurum Bald Mountain	7		Short tons	Fine ounces 10	Fine ounces	Fine ounces 10	Fine ounces 2, 489	Pound 900	Pounds 5, 300	Pounds	\$2, 382
Cherry Creek Duck Creek Eagle Granite Newark	9 2 5 7		16, 206 65 401 210	1, 918 2 4 171		1,918 2 4 171	143, 356 2, 207 4, 287 431 15	1, 300	15, 200 10, 400 2, 600		3, 674 6, 400
Osceola Robinson Shoshone Taylor	12 39 1 2	3	8, 310 4, 825, 246 8 1, 320	5, 453 71, 031 28	868	6, 321 71, 031	2, 407	103, 180, 700	72, 700 7, 700	72, 000	222, 869 13, 438, 688 498 6, 658
Ward White Pine Combined districts	3 8 13		1, 390 2, 367 21, 307	26 10 7, 555		26 10 7, 555	15, 457 9, 067 68, 726	700 400 200	4, 300 69, 800 1, 700		11, 677 9, 827 311, 176
Total Nevada	891	104	6, 894, 999	328, 960	32, 558	361, 518	4, 316, 029	133, 194, 000	8, 472, 000	12, 456, 000	30, 480, 870

¹ Only those districts shown separately for which Bureau of Mines is at liberty to publish figures; other producing districts listed in footnote 9 and their output included under "Combined districts."

3 Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.

3 Source of total silver as follows: 4,305,886 ounces from lode mines and 10,143 ounces from placers.

Eagleville district lies in both Churchill and Mineral Counties.

Output from property not classed as a "mine."
Central and Sawtooth districts lie in both Humboldt and Pershing Counties.
Included under "Combined districts."
Exclusive of lode output, which is included under "Combined districts."

Includes following districts: Desert in Churchill County; Silver Glance in Douglas County; Hornsilver in Esmeralda County; Florence and National in Humboldt County; Talapoosa in Lyon County; Rosebud (lode) in Pershing County; and Granite Range and Stateline Peak, in Washoe County.

CHURCHILL COUNTY 1

Operation of a custom cyanide mill by the Westgate Mining & Milling Corporation was an important factor in reviving metal production in Churchill County. In 1939 this company handled over 5,000 tons of ore from more than 65 shippers.

Dixie Valley district.—The Comstock-Keystone Mining Co. cyanided

old tailings at the Dixie mine during 1939.

Eastgate district.—Gold ore was shipped from the Gold Ledge mine

to a custom cyanide plant in 1939.

Fairview district.—Lessees on the Blue Eagle mine in 1939 shipped to a custom cyanide plant 150 tons of gold-silver ore yielding 45 ounces of gold and 1,612 ounces of silver. Lessees shipped lead ore from the Chalk Mountain mine for smelting. Several groups of lessees worked the Nevada Hills mine and shipped ore to a custom cyanide plant and a smelter.

Holy Cross district.—Lessees working the Pyramid Group shipped 29 tons of lead smelting ore in 1939; the ore contained 36 ounces of gold, 9,898 ounces of silver, and 7,302 pounds of lead.

Sand Springs district.—The Summit King Mines Co. purchased the Dan Tucker mine March 1, 1939, and shipped 293 tons of smelting ore containing 198 ounces of gold, 10,291 ounces of silver, and 178 pounds of copper; a 70-ton cyanide plant was under construction at the end of the year.

Wonder district.—The Jack Pot mine was worked by a lessee from January 1 to April 30, 1939; 27 tons of silver ore shipped to a custom cyanide plant yielded 2 ounces of gold and 575 ounces of silver, and 42 tons shipped to a smelter yielded 5 ounces of gold and 1,749 ounces The Nevada Wonder mine, largest producer of gold and silver in Churchill County in 1939, was operated by lessees. Price worked the Queens and July No. 1 claims from April 1 to August 30; 52 tons of ore shipped to a custom cyanide plant contained 4 ounces of gold and 819 ounces of silver, and 57 tons shipped to a smelter contained 4 ounces of gold and 1,871 ounces of silver.

CLARK COUNTY 2

Crescent district.—Lessees of the Paden mine in 1939 shipped to a smelter 129 tons of ore which contained 11 ounces of gold, 5,427 ounces

of silver, and 4,636 pounds of lead.

Eldorado Canyon district.—The Diamond Gold Mining Co. worked the Jubilee and Techatticup mines throughout 1939; most of the ore was treated in the company 70-ton flotation mill, but small shipments were made to a custom cyanide mill and a smelter. The Oro Plata mine was active. The El Dorado Rover Mining Co. operated the Rand, Bell, and Rover groups and also treated some custom ore in its 100-ton cyanide plant; 27,375 tons of company ore yielded 4,560 ounces of gold and 93,492 ounces of silver. W. W. Hartman operated the Wall Street mine throughout the year; the ore was treated in a 50-ton amalgamation and flotation mill on the property.

Gold Butte district.—The Lakeshore Gold Mining Co. worked the

Utah mine in 1939.

¹ See also Vanderburg, William O., Reconnaissance of Mining Districts in Churchill County, Nev.: Bureau of Mines Inf. Circ. 7093, 1940, 57 pp.

3 See also Vanderburg, William O., Reconnaissance of Mining Districts in Clark County, Nev.: Bureau of Mines Inf. Circ. 6864, 1837. 81 pp.

Searchlight district.³—A lessee on the Duplex mine in 1939 shipped 29 tons of smelting ore which contained 147 ounces of gold, 92 ounces of silver, 1,098 pounds of copper, and 2,746 pounds of lead. The Calumet Gold Mines Co. worked the Quartette mine from January 1 to November 1; several small-scale lessees were also reported as active

on the property.

Yellow Pine district.—The Chiquita Mining Co., Ltd., operated the Chiquita mine throughout 1939 and treated 31,604 tons of ore in the company 100-ton cyanide mill; slimes were cyanided, and concentrates removed by jigging were tabled and amalgamated; and recovery was as follows: By amalgamation, 1,050 ounces of gold and 83 ounces of silver; by cyanidation, 5,806 ounces of gold and 311 ounces of silver; and in concentrates, a content of 161 ounces of gold, 18 ounces of silver, and 539 pounds of copper. The Barefoot Lease operated the Keystone-Barefoot mine throughout the year; 7,908 tons of ore were treated in a 40-ton amalgamation-flotation mill and yielded 1,215 ounces of gold and 123 ounces of silver as bullion and 349 tons of concentrates containing 2,033 ounces of gold, 167 ounces of silver, 2,429 pounds of copper, and 174 pounds of lead; and a small quantity of crude ore was shipped to a smelter. Lead ore and zinc-lead ore were shipped from the Milford No. 2 mine. Lessees shipped zinclead ore from the Root Zinc mine. The Yellow Pine Lease worked the Yellow Pine mine from February 8 to December 31; shipments totaled 209 tons of lead-copper ore and 722 tons of zinc-lead ore with a metal content of 3 ounces of gold, 1,946 ounces of silver, 24,722 pounds of copper, 277,792 pounds of lead, and 494,785 pounds of zinc.

ELKO COUNTY

Centennial district.—The Bull Run mine was productive in 1939. Cope district.—The Mountain City Copper Co., third-largest producer of copper in Nevada, was active throughout 1939. Part of the ore was treated in the company 450-ton flotation mill, and high-grade ore was shipped for direct smelting. The Protection mine was operated from April 1 to the end of the year; 530 tons of ore shipped to a smelter contained 49 ounces of gold and 7,801 ounces of silver, and 414 tons of old tailings cyanided yielded 11 ounces of gold and 1,329 ounces of silver.

Cornucopia district.—The Par Mining Co. shipped to a smelter 1,956 tons of old tailings containing 220 ounces of gold and 15,655

ounces of silver.

Delano district.—During 1939 a lessee and a sublessee shipped from the Cleveland mine to a smelter 134 tons of lead ore containing 4,915 ounces of silver, 474 pounds of copper, 49,375 pounds of lead, and 1,277 pounds of zinc. The Delno Mining & Milling Co. shipped lead ore from the Net Group.

Gold Circle district.—The Esmeralda Gold Mines, Ltd., operated the Esmeralda mine approximately 10 months of 1939 and treated the ore in a 30-ton cyanide mill on the property. The Gold & Silver Circle Mines, Inc., and lessees worked the Gold Circle Group during

22

³ See also Callaghan, Eugene, Geology of the Searchlight District, Clark County, Nev.: U. S. Geol. Survey Bull. 906-D, 1939, pp. 135-188.

the year. Lessees on the Queen mine treated 425 tons of ore by amalgamation to recover 120 ounces of gold and 69 ounces of silver. Jarbidge district.—The Kookaburra mine was worked between

April 6 and November 1, 1939.

Lime Mountain district.—The Lime Mountain Consolidated worked the Lime Mountain mine throughout 1939 and shipped to a smelter 3,358 tons of ore containing 1,258 ounces of gold, 4,102 ounces of silver, and 107,427 pounds of copper.

Mardis district.—During 1939 a lessee shipped gold ore to a smelter

from the Virginia mine.

Merrimac district.—The Rip Van Winkle Mining Co. made a number of shipments of silver ore containing lead and zinc during 1939. Railroad district.—A lessee shipped copper ore from the Sweep-

stakes mine in 1939.

ESMERALDA COUNTY

Divide district.—The Tonopah Divide Mining Co. operated the Tonopah Divide mine in 1939 on the leasing system; smelter shipments totaled 685 tons of ore containing 560 ounces of gold and

19.292 ounces of silver.

Goldfield district.—Lessees worked the Combination Fraction throughout 1939 and shipped their output to smelters. The Goldfield Deep Mines Co. leased its Florence claims; smelter shipments totaled 512 tons of ore containing 3,001 ounces of gold, 230 ounces of silver, and 2,265 pounds of copper. The Goldfield Consolidated Mines Co. operated underground on the leasing system throughout the year. The company tailings pile was worked from March 1 to December 16 by the Bradshaw Syndicate, Inc.; 379,000 tons of old tailings hydraulicked and pumped to a 1,400-ton cyanide plant yielded 4,248 ounces of gold and 3,790 ounces of silver.

Hornsilver district.—The Gold Bug mine was operated under lease to McCarty and Wilson from January to June 1, 1939, when the lease was turned over to the Nevada Minnesota Mining Co.; 324 tons of ore treated in the neighboring Ohio Mines Corporation cyanide mill yielded 113 ounces of gold and 165 ounces of silver, and 98 tons of smelting ore contained 87 ounces of gold, 154 ounces of silver, and 2.163 pounds of lead. The Ohio Mines Corporation worked the

Ohio mine throughout the year.

Lone Mountain district.—The Weepah Nevada Mining Co. suspended operations in 1939 after cyaniding 32,277 tons of old tailings, from which 1,773 ounces of gold and 4,560 ounces of silver were

recovered as bullion.

Silver Peak district.—E. L. Cord (Prescott lease) and the Black Mammoth Consolidated Mining Co. worked the Mary mine throughout 1939. The lease operated a 350-ton flotation and cyanide sandleaching plant, and the company operated a 150-ton all-slime cyanide Desert Silver, Inc., operated a 200-ton cyanide plant at the Nivloc mine throughout the year; 70,403 tons of ore yielded 3,507 ounces of gold and 833,234 ounces of silver. This property was the largest silver producer in the State in both 1939 and 1938. The Oro Monte mine (Gold Wedge Divide Mining Co.) and the Sentinel mine were productive.

EUREKA COUNTY 4

Buckhorn district.—In 1939 a lessee shipped gold ore to a smelter

from the Buckhorn mine.

Cortez district.—The Cortez Metals Co. shipped silver ore to a smelter from the Cortez mine during 1939. Greenan & Co., Inc., operated the Emma E mine and mill in the Mill Canyon section of the Cortez district throughout the year and treated 12,220 tons of ore in a 35-ton cyanide plant to recover 5,957 ounces of gold and 1,618 ounces of silver as bullion. Gold ore was shipped to a smelter from the Ventura mine.

Diamond district.—The Silver Ledge Mines, Inc., shipped silver

ore to a smelter from the Wynona mine in 1939.

Eureka district.—In 1939 the Eureka Corporation, Ltd., shipped gold-silver ore to a smelter from the Cyanide Group and gold ore from the Oswego and Richmond-Eureka mines. The Eureka Prospect Co. operated the Diamond Excelsior mine on the leasing system throughout the year and shipped gold-silver ore to a smelter. Cardinalli & Frank, lessees of the Eureka-Croesus mine, shipped lead ore to a smelter.

Lynn district.—Gold ore was shipped to a smelter from the Lynn Big Six mine in 1939. A number of productive small-scale placer

operations were reported.

Safford district.—The Modarelli Mining Co. operated the Morning Glory mine in Safford Canyon 7 miles west of Palisade from January 15 to October 15, 1939, and shipped silver ore to a smelter.

HUMBOLDT COUNTY 5

Awakening (Slumbering Hills) district. - Wadley & Hunt, holders of a lease and option on the Jumbo mine in 1939, ceased operations August 30; the property reverted to the Austin Bros. Gold Mining Co., which resumed operations later in the year. The Morning mine was active during 1939.

Barrett Springs district.—The West Coast Mines Co. shipped gold-

silver ore from the Pansy Lee mine to a smelter in 1939.

National district.—The P. H. O'Neil Corporation worked the Na-

tional mine under the leasing system throughout 1939.

Potosi district.—Getchell Mine, Inc., operated the Getchell mine throughout 1939; this property, which has been in production only since March 1, 1938, attained first place in 1939 among Nevada gold producers. Oxidized ore was treated by agitation of slimes and leaching of sands in the company 700-ton cyanide plant; sulfide ore containing a large percentage of arsenic was roasted and treated in the cyanide slime plant. During the year the company paid \$570,000 in dividends, bringing the total dividend disbursements during less than 2 years of production to \$720,000.

Rebel Creek district.—The Ohio Eagle Mines Co. shipped silver ore

in 1939 from the Ohio mine for smelting.

Warm Springs district.—The Curley Luck Gold Corporation operated the Ashdown mine throughout 1939; ore was treated in the com-

⁴ See also Vanderburg, William O., Reconnaissance of Mining Districts in Eureka County, Nev.: Bureau of Mines Inf. Circ. 7022, 1938, 66 pp.

5 See also Vanderburg, William O., Reconnaissance of Mining Districts in Humboldt County, Nev.: Bureau of Mines Inf. Circ. 6995, 1938, 54 pp.

6 See also Calkins, Frank C., Gold Deposits of Slumbering Hills, Nev.: Univ. Nevada Bull., vol. 32, No. 3, 1938, 26 pp.

pany 30-ton amalgamation and concentration mill. The Homer Verne Mining Co. operated the Homer Verne mine in the Boyd Basin section of the Warm Springs district a few months; 1,075 tons of ore were treated in a 40-ton stamp mill, and 385 ounces of gold and 122 ounces of silver were recovered as bullion.

LANDER COUNTY 7

Battle Mountain district.—In 1939, as in former years, lessees at the numerous small mines in the Battle Mountain district produced most of the ore shipped to smelters. The Copper Canyon Mining Co., which operated mines of the Copper Canyon group and Copper Basin group, was the leading producer in the district; part of its property was operated on company account and part through lessees; in all, 7,356 tons of copper ore containing 1,705 ounces of gold, 14,869 ounces of silver, and 805,199 pounds of copper were shipped to smelters. A lessee operated the Gold Cash mine from February to the end of the year and shipped to a smelter 1,046 tons of ore containing 300 ounces of gold and 431 ounces of silver. Reid & Reid operated the Honeycomb group under lease from the Buffalo Valley Mines Co. continuously in 1939, and the gold ore produced was shipped to a smelter. A group of lessees on the San Miguel (Iron Canyon claim) mine shipped 4,015 tons of ore containing 2,304 ounces of gold, 8,659 ounces of silver, 9,729 pounds of copper, and 36,055 pounds of lead. Between August 1 and December 3 a group of lessees on the Silver King mine shipped to a smelter 172 tons of ore containing 115 ounces of gold and 691 ounces of silver. Other active lode mines in the district included the Bailey Day, Big Bertha, Big Florence, Billie Day, Blue Eagle, Buena Vista, Buzzard, Cleveland, Good Chance, Independence, Jake, Plumas, and Ridge. F. C. Madsen worked the Box Canyon Placers property (Pay Day, Gold Eagle, and Duckey claims) with a dry concentrator; 3,545 cubic yards of gravel yielded 112 ounces of gold and 12 ounces of silver. J. O. Greenan recovered 386 ounces of gold and 51 ounces of silver while testing the Dahl placers. During the first 2 weeks of the year Chase & Caldwell produced 120 ounces of gold from 1,300 cubic yards of old tailings and 360 cubic yards of virgin gravel obtained in drift mining. On November 28 the property was leased to the Natomas Co., a leading connected-bucket dredge operator of California.

Bullion district.—The treatment of 10,500 tons of ore by cyanidation at the Goldacres property in 1939 resulted in the production of 1,717 ounces of gold and 151 ounces of silver; the ore was crushed to minus-2-inch size and given a cyanide leach in a 35-ton plant. The Gray Eagle Mining Co. operated the Gray Eagle mine; part of the ore was treated in the company concentrator, and part was shipped crude to a smelter. The Little Gem Mining Co. worked the Little Gem mine; ore was treated in the company flotation plant, and small lots of copper ore were shipped for direct smelting. The Mill Gulch Placer Mining Co. operated a dragline dredge on the Blue Sky No. 8 and Yellow Streak claims in the Camp Raleigh section of the Bullion district from January 1 to April 3; the dragline excavator used Diesel power and had a 1%-cubic yard bucket. Before operations were sus-

⁷ See also Vanderburg, William O., Reconnaissance of Mining Districts in Lander County, Nev.: Bureau of Mines Inf. Circ. 7043, 1939, 83 pp.

pended, 101,382 cubic yards of gravel had been treated to yield 800

ounces of gold and 93 ounces of silver.

Gold Basin district.—Gold ore was shipped to a custom cyanide plant from the Farnsworth, Gold Annie and Greenback Gold. Gold Park, and May-be-so properties during 1939.

Kingston district.—A lessee operated the Kingston mine from January 5 to December 5, 1939; 637 tons of smelting ore contained 228

ounces of gold and 1,201 ounces of silver.

New Pass district.—Smith and Snyder treated by amalgamation 276 tons of ore from the Thomas W. mine in 1939 and recovered 130 ounces of gold and 22 ounces of silver.

LINCOLN COUNTY

Caliente district.—Lessees working the Caliente Cobalt mine in 1939 shipped to a smelter 156 tons of ore containing 169 ounces of gold, 1,339 ounces of silver, 314 pounds of copper, and 3,748 pounds of

Comet district.—The Prince Consolidated Mining Co. operated the Prince mine on the leasing system throughout 1939, and ore and old tailings were shipped to a smelter.

Eagle Valley district.—The Andesite Mining Co. shipped gold ore

to a smelter during 1939.

Ferguson (Delamar) district.8—The Caliente Cyaniding Co. operated a 500-ton all-slime cyanide plant on Delamar old tailings during 1939 and treated 168,966 tons to recover 3,798 ounces of gold and 16,216 ounces of silver. Lessees shipped gold ore from the Delamar Exploration Co. property.

Jack Rabbit district.—The Bristol Silver Mines Co., leading operator in the Jack Rabbit district during 1939, shipped a large tonnage of

silver ore to a smelter.

Pioche district.9—From the Apex mine in 1939 W. A. Free & Sons shipped to a smelter 1,707 tons of lead ore containing 178 ounces of gold, 95,390 ounces of silver, 1,650 pounds of copper, and 901,218 pounds of lead. The Hodges Cook Mercantile Co. shipped 853 tons of lead smelting ore from the Highland King mine; the ore contained 151 ounces of gold, 6,286 ounces of silver, 2,565 pounds of copper, and 143,982 pounds of lead. The Combined Metals Reduction Co., affiliate of the National Lead Co., worked the Pioche Nos. 1 and 2 mines throughout the year and was the largest producer of both lead and zinc in the State. Virtually all the ore was shipped to the company 600-ton selective-flotation mill at Bauer, Utah, where gold (iron) concentrate, lead concentrate, and zinc concentrate were made.

LYON COUNTY

Silver City district. 10—Lessees operated the Buckeye mine in 1939 and shipped the ore to amalgamation and cyanidation custom mills. The Dayton Consolidated Mines Co. operated the Dayton mine throughout the year both on company account and through lessees:

^{*} See also Callaghan, Eugene, Geology of the Delamar District. Lincoln County, Nev.: Univ. Nevada Bull, vol. 31, No. 5, 1937, 72 pp.

* See also Wheeler, Harry E., and Lemmon, Dwight M., Cambrian Formations of the Eureka and Pioche Districts. Nev.: Univ. Nevada Bull.. vol. 33, No. 3, 1939, 60 pp.

* See also Gianella, Vincent P., Geology of the Silver City District and the Southern Portion of the Comstock Lode, Nev.: Univ. Nevada Bull., vol. 30, No. 9, 1936, 108 pp.

7,914 tons of ore yielded 2,392 ounces of gold and 8,801 ounces of silver by cyanidation. In addition to ore from the Dayton mine, the company treated ore obtained from mines it operated in the Comstock district of Storey County and custom ore from more than 200 shippers. The company mill was an important factor in production at small mines in the Silver City district and in other districts within trucking distance of the plant. Ore mined at the Haywood property was shipped to a custom cyanide mill. Several lessees on the Montezuma property shipped to a custom cyanide mill 390 tons of ore from which 121 ounces of gold and 680 ounces of silver were Various lessees operated the Oest mine and shipped ore to custom amalgamation and cyanidation mills in the district. Smith and Crow worked the Silver Queen mine and shipped ore to the Trimble custom amalgamation mill. A large number of lessees and sublessees worked the property of South Comstock Gold Mines, Inc.: their product was shipped to custom amalgamation and custom cyanidation mills. Lessees also worked the Sutro dump. A number of lessees shipped gold ore from the Vivian mine to custom amalgamation and custom cyanidation mills. The Dayton Douglas Cyanidation Co. operated its 100-ton cyanide leaching plant from April 1 to December 1 and treated 17,819 tons of old tailings yielding 736 ounces of gold and 9,449 ounces of silver. The Oro Neva Dredging Co. began work with a dragline dredge 1½ miles northwest of Dayton at the end of 1939, using a dragline excavator with a 21/2-cubic yard Contractors Corporation operated a nonfloating washing plant at the Rose mine from September 1 to the end of the year: 49,000 cubic yards of gravel delivered by truck loaded by a 1½-cubic yard power shovel yielded 638 ounces of gold and 310 ounces of silver. Talapoosa district.—The Talapoosa Tailings Treatment Co. operated

Talapoosa district.—The Talapoosa Tailings Treatment Co. operated a 40-ton cyanide leaching plant in 1939 on old tailings from the Talapoosa mine; a lessee on the property shipped ore to a custom cyanide plant. The Loranger & Myler Lease worked the Virginia

Hills property.

MINERAL COUNTY 11

Aurora district.—The Spring Valley Milling Co. began operating a flotation plant at Aurora May 16, 1939, and worked dump material on a royalty basis the rest of the year; concentrates were shipped to a smelter.

Bell district.—Lessees worked the Olympic (Omco) mine during 1939; 411 tons of ore shipped to a custom cyanide plant yielded 353

ounces of gold and 326 ounces of silver.

Candelaria district.—Shipments of ore from the Georgine, Lucky Hill, Hecla-Climax, Protection, Silver King, and Silver Surprise mines in the Candelaria district during 1939 were reported. Most of the ore went to smelters, but some was sent to custom cyanide plants.

Garfield district.—The New Eldorado Mines Co. shipped crude smelting ore from the Garfield mine in 1939. The West End Consolidated Mines Corporation shipped 188 tons of lead ore to a smelter from the Mabel mine; the ore contained 213 ounces of gold, 20,974 ounces of silver, 2,104 pounds of copper, and 20,968 pounds of lead.

¹¹ See also Vanderburg, William O., Reconnaissance of Mining Districts in Mineral County, Nev.: Bureau of Mines Inf. Circ. 6941, 1937, 79 pp.

Hawthorne district.—Silver ore was shipped to a smelter from the Lucky Boy mine by the Lucky Boy Consolidated Mines Co. in 1939. The Borealis Mines Trust Estate cyanided ore from the Silent Partner mine.

Regent district.—In 1939 lessees worked the Heckla mine and shipped

ore to a custom cyanide mill.

Silver Star district.—Production by lessees on the Fortuna mine in 1939 was recorded. Five sets of lessees worked the Mary Ann mine, and most of the ore was shipped to custom cyanide mills.

NYE COUNTY

Athens district.—Ore from the Warrior mine was treated at the

Dayton cyanide mill in 1939.

Bullfrog district.—Gold ore was shipped to a smelter from the Polaris mine during 1939. The Senator Stewart mine was operated by lessees from June 1 to the end of the year; 181 tons of ore yielded 198 ounces of gold and 175 ounces of silver when treated by cyanidation at a custom plant.

Ellendale district.—Gold ore from the Ellendale mine was shipped

to a smelter during 1939.

Manhattan district.—In 1939 more than 3,000 tons of ore from the Indian Camp and Jumbo group were treated by amalgamation. lessee worked the property of the Manhattan Consolidated Mines Development Co. from January to December; gold ore was treated by amalgamation and concentration, and the resulting concentrates were shipped to a smelter. Lessees worked the Union No. 2 mine owned by the Nevada Coalition Gold Mines Co. A lessee operated the Sunday mine throughout the year and treated in a 5-ton stamp mill 1,250 tons of ore which yielded 1,216 ounces of gold and 795 ounces of silver. The Reliance Mining Co. operated the Verden mine throughout 1939; in July the property was opened to leasers. The White Caps Gold Mining Co. and lessees mined 2,826 tons of ore at the White Caps mine; 726 tons of ore yielded 67 ounces of gold and 2 ounces of silver by amalgamation, and 2,100 tons of ore shipped to smelters contained 2,345 ounces of gold and 64 ounces of Lessees operated the Arizona No. 3 drift mine from April 4 to the end of the year; 1,408 cubic yards of gravel yielded 159 ounces of gold and 60 ounces of silver. Lessees sluiced gravel from the Little Grey mine between May 1 and the end of the year. The Manhattan Gold Dredging Co., largest producer of placer gold in Nevada in 1939, operated a connected-bucket dredge the entire year.

Northumberland district.—The Northumberland Mining Co. began construction work at the Northumberland mine in April 1939 and production on November 16; ore was mined with a power shovel in an open pit and delivered to the new company 300-ton cyanide plant. A total of 4,029 tons of ore was treated and yielded 540 ounces of

gold and 539 ounces of silver.

Phonolite district.—The Penelas Mining Co. worked the Penelas mine throughout 1939; 18,069 tons of ore, yielding 6,347 ounces of gold and 13,883 ounces of silver, were treated in the company 50-ton countercurrent cyanide plant.

Quartz Mountain district.—A lessee shipped lead ore from the San

Rafael mine to a smelter during 1939.

Round Mountain district.—Lessees worked the Gold Hill mine from May 15 to November 30, 1939; 1,670 tons of ore treated in a cyanide plant on the property yielded 444 ounces of gold and 1,077 ounces The Monte Cristo mine was active during the year. of silver. Dodge Construction, Inc., operated a stationary washing plant at the Round Mountain mine of the Nevada Porphyry Mining Co. Sluicing was carried on at the Shoshone Fraction property from April 28 to November.

Tonopah district.—The Tonopah Belmont Development Co. operated the Tonopah Belmont mine on the leasing system from January to October 31, 1939, when a fire destroyed the timber in the working shaft and much of the surface equipment. Before the fire, 3,979 tons of ore containing 1,574 ounces of gold and 145,549 ounces of silver had been shipped for smelting. The Tonopah Mining Co. of Nevada worked its property on the leasing system throughout the year; all ore was shipped crude to smelters. The West End Consolidated Mines Corporation operated the West End mine through lessees; 3,072 tons of ore containing 688 ounces of gold and 58,075 ounces of silver were shipped to a smelter.

Tybo district.—R. R. Redenbaugh and E. Vassar shipped 660 tons of silver ore to a smelter from the Ramona mine; the ore contained 13 ounces of gold, 15,441 ounces of silver, 646 pounds of copper, and 9,064 pounds of lead. Lessees on the 2-G mine shipped 2,644 tons of smelting ore which contained 209 ounces of gold and 28,396 ounces The Dimmick lease working the Tybo mine shipped 2,793 tons of smelting ore containing 228 ounces of gold, 32,445 ounces of

silver, and 19,263 pounds of lead.

PERSHING COUNTY 12

Antelope district.—The Lambert lease worked the North Star claim in the Scossa section of the Antelope district in 1939 and treated 450 tons of ore in a 3-stamp mill equipped with amalgamation plates and table concentrators; 120 ounces of gold and 115 ounces of silver were recovered as bullion, and 11 ounces of gold and 10 ounces of silver were contained in 3 tons of concentrates sold to a smelter.

Central district.—In 1939 lessees at the Keystone mine shipped 370 tons of smelting ore containing 11 ounces of gold, 11,341 ounces of silver, 424 pounds of copper, and 31,638 pounds of lead.

Haystack district.—The Jungo Star Gold Mines Co. worked the Jungo Star mine throughout 1939 and shipped ore to a custom cyanide mill and smelter.

Imlay district.—The Standard Cyaniding Co. built a 500-ton cyanidation plant in 1939 to treat ore mined at the Gold Standard and Lally claims; production from the company open pit was begun November 7.

Rochester district.—The Looney mine was active during 1939.

Rosebud district.—Nelson, Mullen & Webster, Inc., installed a dry-bank plant on the Janke claims and operated from January 4 to November 24, 1939. The Rio Seco Mining Co. operated a dry-land placer plant on the Rio Seco mine from April to the end of the year; 84,603 cubic yards of gravel yielded 728 ounces of gold and 82 ounces of silver. Many small-scale placer miners were active in the Rosebud district.

¹² See also Vanderburg, William O., Reconnaissance of Mining Districts in Pershing County, Nev.: Bureau of Mines Inf. Circ. 6902, 1936, 57 pp.

Seven Troughs district.—Several lessees worked the Portland mine in 1939. A group of properties owned by the Nevada State Gold

Mines Co. was operated on the leasing system.

Sierra district.—The White Bear Mining Co. worked the Black Hole mine throughout 1939. A lessee treated old tailings at the property in a 20-ton cyanide leaching plant.

STOREY COUNTY

Comstock district.—In 1939 the Adriatic mine was operated by the Adriatic Mining Co. from January 1 to May 18, when operation was turned over to Adriatic Mines, Inc., which continued work until December 16; 5,101 tons of ore were treated by flotation to produce 46 tons of concentrates containing 195 ounces of gold, 1,163 ounces of silver, 1,679 pounds of copper, and 317 pounds of lead. lessees on the Chollar-Potosi mine shipped gold-silver ore to a custom cyanidation plant. The Consolidated Virginia Mining Co. worked the Consolidated Virginia mine, both on company account and under lease; gold ore was shipped to a custom cyanidation plant. Sutro Tunnel Coalition, Inc., operated the Crown Point mine during the year; the output of gold-silver ore was treated in the company cyanida-The Hartford mine was worked by the Hartford Mining The Dayton Consolidated Mines Co. worked the Justice mine and shipped the output to the company cyanidation mill at the Dayton mine in Lyon County. The Keystone mine was operated by the Dayton Consolidated Mines Co. and several lessees; 22,278 tons of ore shipped to the Dayton cyanide mill in Lyon County yielded 7,005 ounces of gold and 30,375 ounces of silver. The Storey County Mines, Inc., worked the Overland mine during the first part of 1939; the company was reported in bankruptcy late in the year. The Consolidated Chollar Gould & Savage Mining Co. operated the Overman mine in the Gold Hill section of the Comstock Lode throughout 1939; 96,098 tons of ore treated in the 300-ton flotation-cyanidation plant (remodeled during the year as a 400-ton all-cyanide plant) yielded 5,250 ounces of gold and 129,367 ounces of silver. Sierra Nevada, Ltd., worked the Sierra Nevada mine near the north end of the Lode; ore was treated by amalgamation and flotation, and the resulting concentrates were shipped to a smelter. The Silver Hill mine was operated by the Silver Hill Mining Co.

WASHOE COUNTY

Granite Range district.—The Burm Ball Mining Co. began production from the Mountain View mine January 26, 1939, and continued

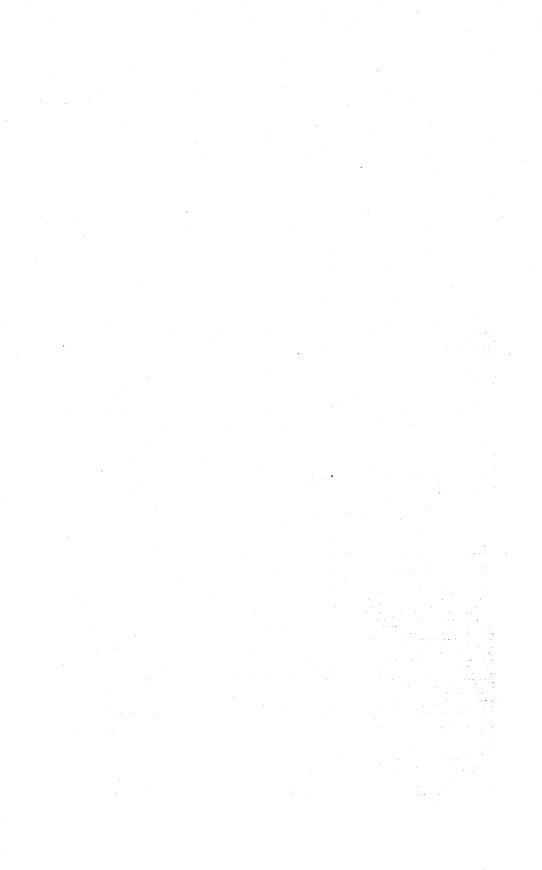
operations until the end of the year.

White Horse district.—The Renegade mine was worked throughout 1939. Lessees operated the Texas No. 2 mine and treated 67 tons of ore which yielded amalgam containing 115 ounces of gold and 45 ounces of silver.

WHITE PINE COUNTY

Cherry Creek district.—During 1939 shipments of 1,007 tons of old tailings from the Cherry Creek district to the McGill smelter to be used as siliceous flux contained 75 ounces of gold and 4,936 ounces of silver. The Egan mine was operated on the leasing system; 3,037 tons of ore shipped to a smelter contained 545 ounces of gold and 22,554 ounces of silver. Silver ore was shipped to a smelter from the

Exchequer mine. The Nevada Standard Mining Corporation shipped gold-silver ore to a smelter. Gold-silver ore was shipped by lessees from the Mary Ann mine.


Granite district.—Lessees shipped gold ore to a smelter from the

Stinson mine during 1939.

Osceola district.—The Gilded Age Mining Co. worked the Gilded Age mine in 1939. The Golden Eagle Leasing Co. and another lessee shipped gold ore from the Golden Eagle mine to a smelter. Venture Gold Syndicate carried on a development campaign at the Lassie Jean mine and built a 15-ton amalgamation-concentration mill during the year. Placers Recovery Co. hydraulicked gravel at the Ghost

Walk and Transit mines.

Robinson district.—The Chainman Leasing Co. shipped 9,691 tons of smelting ore from the Chainman mine during 1939; contents were 1,009 ounces of gold and 19,629 ounces of silver. The Consolidated Coppermines Corporation, second-largest copper producer in Nevada in 1939, was active the entire year. Copper ore mined on company account was shipped to McGill for concentration and smelting; siliceous ore was produced and shipped by lessees. During the year the company developed plans for building its own concentrator, but after negotiations with the Kennecott Copper Corporation a contract was signed to continue shipping ore to the McGill concentrator. Terms of the new contract reduced the basic charges for freight and milling 8 cents a ton beginning October 1, 1940, and raised the maximum daily tonnage to be treated from 6,000 to 9,000 tons. The contract runs until December 31, 1975, but contains clauses to permit its earlier termination. According to the company printed annual report for the year ended December 31, 1939, 2,327,922 tons of ore were produced, which yielded on the basis of smelter settlements 47,690,894 pounds of copper, 26,374 ounces of gold, 89,264 ounces of silver, 26,786 pounds of lead, and 84,164 pounds of zinc. Copper ore was mined by the company and shipped to the McGill concentrator; siliceous ores were mined by lessees and sent to the McGill smelter; and small outputs of lead and zinc ores were shipped to other smelters. Goldsilver ore was shipped from the Hayes mine. Shipments of 2,312 tons of ore from the Jupiter mine to a smelter contained 373 ounces of gold and 1,233 ounces of silver. A lessee on the Matilda claim shipped 1,356 tons of smelting ore which contained 318 ounces of gold and 1,898 ounces of silver. Silver ore was shipped from the Midnight mine. Gold ore was shipped to a smelter from the Revenue property. The Nevada Consolidated Copper Corporation, operating subsidiary of the Kennecott Copper Corporation and largest industrial company in Nevada, worked the Ruth mine at Ruth and the open pit at Copper Flat throughout the year; it handled more ore and produced more copper than any other operation in the State. addition to its mining activities, the company operated the McGill copper smelter (only smelter in the State) and the McGill flotation concentrator (18,000 tons daily capacity); both of these plants did some custom work. The smelter operated 263 days and the concentrator 293 days during the year. A lessee operated the Saxton claim from April through December and shipped gold ore to a smelter. Lessees shipped 1,016 tons of smelting ore from the Turkoy (Nevada Consolidated Copper Corporation property) mine 2 miles north of Ruth; contents were 219 ounces of gold and 910 ounces of silver.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN NEW MEXICO

(MINE REPORT)

By Chas. W. Henderson and A. J. Martin

SUMMARY OUTLINE

P	age	Page
Summary Calculation of value of metal production Mine production by counties		- 401 - 402 402

The mine output of recoverable gold, silver, copper, lead, and zinc in New Mexico in 1939 surpassed in total value that in each year since 1929; the increase over 1938 was \$5,928,753, or 63 percent. Copper, the bulk of which came from the Chino open-pit mine at Santa Rita, Grant County, showed the largest relative gain in both quantity and value, and its value represented 62 percent of the total for the five metals. Gold was the only one of these metals to show a decrease from 1938. Zinc production in the Central district, Grant County, increased materially and more than offset the decrease in San Miguel County caused by the closing on May 31 of the Pecos mine, which during the preceding 12 years and 5 months was the largest producer of zinc, lead, gold, and silver in New Mexico and a substantial producer of copper. Mining operations in most of the other principal mining districts of the State continued at a rate of output equal to or higher than in 1938.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold ¹ Silver ²		Copper 3	Lead 3	Zine 3	
1935	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0.71875 .7745 .7735 4.646+ 5.678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046 .047	Per pound \$0.044 .050 .065 .048	

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.

1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.

Yearly average weighted price of all grades of primary metal sold by producers.

4 \$0.6464644.

\$0.67878787.

The following table shows the number of mines in New Mexico producing gold, silver, copper, lead, and zinc, and their annual output of ore and metals from 1935 to 1939; also the total production from 1848 to 1939. The report of this series for 1929 (chapter of Mineral Resources of the United States, 1929, pt. 1, pp. 729–759) gives the yearly production of each important metal-producing district in New Mexico from 1904 to 1929, inclusive. Subsequent records year by year may be found in annual issues of Mineral Resources and Minerals Yearbook.

Mine production of gold, silver, copper, lead, and zinc in New Mexico, 1935–39, and total, 1848–1939, in terms of recovered metals

Year		Mines produc- ing			Ore (short	Gold (lode	and placer)	Silver (1 pla	ode and cer)
1621		Loc	le	Placer	tons)	Fine ounces	Value	Fine ounce	Value
1935 1936 1937 1938 1938		1 1 1	50 36 59 66	234 169 160 164 168	440, 799 514, 966 4, 191, 092 2, 414, 857 4, 977, 375	33, 435 33, 037 41, 171 43, 050 36, 979	1, 156, 295 1, 440, 985 1, 506, 750	1, 163, 255 1, 243, 766 1, 229, 860	900, 941 962, 053 795, 061
1848-1939					(1)	2, 084, 992	46, 308, 913	62, 540, 420	49, 204, 495
		Cop	per		Le	ead Zino			Total value
Year	Poun	ds	,	Value	Pounds	Value	Pounds	Value	10tai vaiue
1935 1936 1937 1938 1939	4, 505, 6, 332, 64, 106, 40, 878, 92, 284,	000 000 000 000	7, 4, 9,	\$373, 915 582, 544 756, 826 006, 044 597, 536	14, 578, 000 13, 252, 000 13, 024, 000 9, 898, 000 10, 784, 000	\$583, 120 609, 592 768, 416 455, 308 506, 848 22, 617, 379	44, 252, 000 41, 336, 000 47, 854, 000 56, 472, 000 58, 712, 000 2 543, 655	\$1, 947, 088 2, 066, 800 3, 110, 510 2, 710, 656 3, 053, 024 65, 387, 786	\$4, 837, 590 5, 316, 172 14, 038, 790 9, 473, 819 15, 402, 572 459, 271, 100

¹ Figures not available.

³ Short tons.

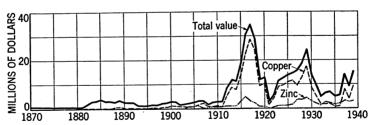


FIGURE 1.—Value of mine production of copper and zinc and total value of gold, silver, copper, lead, and zinc in New Mexico, 1870-1939. The value of gold, silver, and lead produced annually has been relatively small.

Gold and silver produced at placer mines in New Mexico, 1935-39, in terms of recovered metals

	Go	old	Silver		Metal.		Go	old	Silv	er	Total
Year	Fine ounces	Value	Fine ounces	Value	Total value	Year	Fine ounces	Value	Fine ounces	Value	value
1935 1936 1937	3, 554 3, 378 3, 027		235	182	\$124, 621 118, 412 106, 102	1939	2, 626 3, 474			\$108 142	

Gold.—The principal gold-producing districts in New Mexico in 1939 were: Mogollon, Catron County, which contributed 21 percent of the State total recoverable output of gold; Willow Creek (Pecos mine), San Miguel County, 15 percent; Central, Grant County, 13 percent; Steeple Rock, Grant County, 12 percent; Lordsburg, Hidalgo County, 11 percent; Las Animas, Sierra County (mostly from placers), 8 percent; and Mount Baldy, Colfax County, 8 percent. The most important gold-mining districts of the State are described in Information Circular 6987, issued by the Bureau of Mines.¹ Dry and siliceous ores yielded 48 percent of the State total gold in 1939; copper ore nearly 26 percent; zinc-lead ore 16 percent; and placers, together with a small quantity from lead, zinc, and lead-copper ores, slightly more than 10 percent.

Silver.—The mine production of recoverable silver in New Mexico in 1939 (the largest since 1916) was 14 percent above that in 1938. The Central district contributed 30 percent of the State total silver, Mogollon 27 percent, Steeple Rock 17 percent, Willow Creek 12 percent, and Lordsburg 9 percent. Dry and siliceous ores yielded 48 percent of the total silver; copper ore 27 percent; zinc-lead ore 22 percent; and zinc, lead-copper, and lead ores, together with a small

quantity of silver from placers, 3 percent.

Copper.—Copper production in New Mexico in 1939 increased 126 percent in quantity and 140 percent in value over 1938. opening of the new Chino copper smelter of the Nevada Consolidated Copper Corporation at Hurley on May 2 was an outstanding event, as the State had been without a smelting industry for many years. The smelter treated concentrates from the adjacent 17,500-ton Chino concentrator, operated on ore from the Nevada Consolidated open pits at Santa Rita which produced most of the State copper. pany smelter also treated siliceous mixed copper sulfide and oxide ores from its own ore bodies, as well as copper precipitates from mine waters. The only other important producers of copper in the State during the year were the Banner Mining Co., producing copper-goldsilver ore from the Bonney mine near Lordsburg, and the American Smelting & Refining Co., operating the Ground Hog group near Hanover and producing zinc-lead-silver ore and copper-lead-silver ore. Copper ore and mine-water precipitates yielded 98 percent of the total copper and zinc-lead ore nearly 2 percent.

Lead.—Although the Pecos mine (which produced 86 percent of the total lead output from New Mexico in 1938) was operated only 5 months in 1939, other lead-producing mines in the State, among which the largest was the Ground Hog near Hanover in Grant County, made an increased production, and the State total output of recoverable lead increased 9 percent in quantity over 1938. Zinc-lead ore vielded 74 percent of the total lead, copper ore 14 percent, lead ore 4

percent, and other types of ore 8 percent.

Zinc.—The output of recoverable zinc from mines in New Mexico increased 4 percent in quantity in 1939 over 1938. A substantial increase in production in the Central district, Grant County, which resulted in part from the resumption of mining at the Ground Hog group, more than offset the decrease in San Miguel County caused by the closing of the Pecos mine. The other principal producers of zinc

¹ Metzger, O. H., Gold Mining in New Mexico: Bureau of Mines Inf. Circ. 6987, 1938, 71 pp.

in the State were the Empire Zinc Co. Hanover group and the Pewabic group, both in the Central district. Zinc-lead sulfide ore was shipped from several mines in Grant and Socorro Counties to the Ozark pigment plant at Coffeyville, Kans.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in New Mexico in 1939, by counties, in terms of recovered metals

County	Mines p	roducing	Gold (lode a	and placer)	Silver (lode and placer)		
	Lode	Placer	Fine ounces	Value	Fine ounces	Value	
Catron Colfax Dona Ana Eddy Grant Hidalgo Lincoln Luna Otero Rio Arriba Sandoval San Miguel Santa Fe Sierra Socorro Taos	12 7 8 1 81 35 2 5 6 1 2 1 8 2 6 1 8 1 2 5 6 6 1 6 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	55 42 55 1 4 10 50	7, 708 2, 800 70 10, 369 4, 406 263 455 9 55 66 5, 694 1, 520 3, 384 147 33	\$269, 780 98, 000 2, 450 362, 915 154, 210 9, 205 315, 925 311, 925 2, 310 199, 290 53, 200 118, 440 5, 145 1, 155	381, 013 1, 196 392 3 671, 045 135, 982 84 17, 397 467 2, 130 166, 619 8, 881 12, 702 1, 905 975	\$258, 627 812 266 455, 497 92, 303 57 11, 809 113, 999 6, 028 8, 622 1, 293 662	
Total, 1938	214 166	168 164	36, 979 43, 050	1, 294, 265 1, 506, 750	1, 400, 878 1, 229, 860	950, 899 795, 061	

County	Cop	pper	Le	ad	Zi	nc	Total
	Pounds	Value	Pounds	Value	Pounds	Value	value
Catron Colfax Dona Ana Eddy Grant Hidalgo Lincoln Luna Otero Rio Arriba San doval San Miguel Santa Fe. Sierra Socorro Taos	28, 500 2, 800 700 84, 728, 000 6, 376, 000	\$94 2, 964 291 73 8, 811, 712 663, 104 	4, 600 6, 566, 000 52, 600 332, 800 100 5, 000 3, 599, 000 23, 700 200, 000	\$216 308, 602 2, 472 15, 642 5 235 169, 153 9 1, 114 9, 400	9, 000 9, 849, 000 633, 000	\$2, 507, 492 468 512, 148 32, 916	\$528, 501 101, 776 3, 223 75 12, 446, 218 912, 089 9, 262 44, 832 1, 065 2, 508 3, 766 1, 037, 162 129, 042 131, 546 49, 690 1, 817
Total, 1938	92, 284, 000 40, 878, 000	9, 597, 536 4, 006, 044	10, 784, 000 9, 898, 000	506, 848 455, 308	58, 712, 000 56, 472, 000	3, 053, 024 2, 710, 656	15, 402, 572 9, 473, 819

Gold and silver produced at lode mines in New Mexico in 1939, by counties, in terms of recovered metals

County	Ore sold or treated (short tons)	Gold (fine ounces)	Silver (fine ounces)
Catron Colfax Dona Ana Eddy Grant Hidalgo Lincoln Luna Otero Rio Arriba Sandoval San Miguel Sant Fe Sierra Socorro Taos	61, 411 26, 567 4 4, 683, 979 117, 040 3, 599 67 975 514 75, 620 2, 430 2, 209 2, 559 141	7, 708 2, 756 70 10, 187 4, 406 60 455 6 52 66 5, 694 755 1, 113 147	381, 013 1, 189 392 3 671, 005 135, 982 71 17, 397 467 2, 130 166, 619 8, 844 12, 590 1, 905
Total, 1938	4, 977, 375 2, 414, 857	33, 505 40, 424	1, 400, 669 1, 229, 693

Gold and silver produced at placer mines in New Mexico in 1939, by counties, in fine ounces, in terms of recovered metals

County		Sluicing and hydraulic		Drift mining		Dry-land dredges ¹		Total	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver	
Colfax	44 46 203 3 3 47 185	7 10 13 3 3 11			718 2, 086	30 34 101	44 182 203 3 3 765 2, 271	7 40 13 37 112	
Total, 1938	534 549	44 60	4		2, 940 2, 073	165 107	3, 474 2, 626	209 167	

¹ Dragline and power-shovel excavators with sluices or special amalgamators.

MINING INDUSTRY

The output of ore from mines in New Mexico producing gold, silver, copper, lead, and zinc totaled 4,977,375 tons in 1939, the largest in any year on record and 2,562,518 tons more than in 1938. Most of the ore in 1939, as in 1938, was copper ore mined with power shovels from the Chino open-pit mine of the Nevada Consolidated Copper Corporation at Santa Rita, Grant County. Underground mining was done at the other principal mines of the State, comprising, in order of output and by types of ore, the Empire Zinc Co. Hanover group and the Pewabic group in Grant County (Central district), producing zinc ore; the Bonney mine in Hidalgo County, copper-gold-silver ore; the Ground Hog group in Grant County (Central district), zinc-lead-copper-silver ore; the Pecos mine in San Miguel County, zinc-lead-copper-gold-silver ore; and the Black Hawk Consolidated Mines Co. (Mogollon Operations) in Catron County, the Aztec mine in Colfax County, and the East Camp group in Grant County (Steeple Rock district), siliceous gold-silver ores.

In yardage handled at placer mines the John I. Hallett Construction Co. in the Hillsboro district, Sierra County, ranked first and was followed by the Universal Placer Mining Corporation near Cerrillos, Santa Fe County; William Little in the Pittsburg district, Sierra County; and the Bear Creek Mining Co. (including yardage handled by the Ryan Mining Corporation, initial operator on the property) and the Texas Placer Co., both in the Pinos Altos district, Grant County. These operators handled 535,462 cubic yards of gravel with draglines and land washing plants and recovered 84 percent of the State total placer gold.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in New Mexico in 1939, with content in terms of recovered metals

Source	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Dry and siliceous gold ore Dry and siliceous gold-silver ore Dry and siliceous silver ore	33, 278 77, 455 469	5, 699 12, 176 10	15, 897 643, 670 8, 012	79, 322 22, 657 4, 601	33, 676 254, 407 8, 881	
	111, 202	17, 885	667, 579	106, 580	296, 964	
Copper ore. Lead ore Lead-copper ore. Zinc ore. Zinc-lead ore	4, 517, 429 1, 431 1, 102 217, 517 128, 694	9, 426 319 11 55 5, 809	381, 875 7, 461 8, 503 27, 298 307, 953	190, 272, 599 4, 652 64, 062 220, 825 1, 615, 282	1, 465, 208 400, 555 235, 482 378, 500 8, 007, 291	41, 450, 000 17, 262, 000
	4, 866, 173	15, 620	733, 090	192, 177, 420	10, 487, 036	58, 712, 000
Total, lode mines	4, 977, 375	33, 505 3, 474	1, 400, 669 209	192, 284, 000	10, 784, 000	58, 712, 000
Total, 1938	4, 977, 375 2, 414, 857	36, 979 43, 050	1, 400, 878 1, 229, 860	192, 284, 000 40, 878, 000	10, 784, 000 9, 898, 000	58, 712, 000 56, 472, 000

¹ Includes 3,237,257 pounds of copper recovered from mine-water precipitates.

METALLURGIC INDUSTRY

The following six flotation mills treated 96 percent of the total New Mexico output of ore in 1939: Chino at Hurley, Empire Zinc at Hanover, Banner near Lordsburg, Peru near Deming, Pecos in San Miguel County, and Combination near Hanover. Two percent was treated by the Little Fanney cyanidation mill at Mogollon, the Aztec amalgamation-flotation mill in Colfax County, and scattered small concentration and amalgamation mills; and 2 percent was shipped crude to smelters outside the State. The Chino concentrates produced after March 22 were treated in the new Chino smelter at Hurley; the remainder of the concentrates produced in the State were shipped to smelters in other States, mentioned in the following review by counties and districts.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN NEW MEXICO 403

Mine production of metals in New Mexico in 1939, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)
Ore amalgamated Ore cyanided Concentrates smelted Ore smelted Placer	24, 703 63, 750 215, 947 87, 020	658 7, 647 16, 614 8, 586 3, 474	179 377, 816 519, 616 503, 058 209	² 88, 074, 425 4, 209, 575	7, 798, 121 2, 985, 879	57. 178, 000 1, 534, 000
Total, 1938		36, 979 43, 050	1, 400, 878 1, 229, 860	92, 284, 000 40, 878, 000	10, 784, 000 9, 898, 000	58, 712, 000 56, 472, 000

Cyanide used was approximately 192,800 pounds of Aero Brand calcium cyanide, approximately 48 to 49 percent NaCN.
 Includes 3,237,257 pounds of copper recovered from smelting of mine-water precipitates.

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in New Mexico in 1939, by counties, in terms of recovered metals

		Recove bull		Conc	Concentrates smelted and recovered metal						
County	ounty Cre treated (short tons)	Gold (fine ounces)	Silver (fine ounces)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)			
Catron Colfax Dona Ana Grant Santa Fe	61, 242 26, 261 10 40	7, 557 512 11 44	377, 531 108 4 18	416	2, 077	993	28, 500				
Santa Fe	128 650 12 110	52 94 16 19	11 68 5 250	6 1	23 3	1, 127 2	391	55			
Total, 1938	88, 453 84, 057	8, 305 9, 276	377, 995 424, 310	423 524	2, 103 2, 370	2, 122 1, 856	28, 891 28, 800	23, 760			

Mine production of metals from concentrating mills in New Mexico in 1939, by counties, in terms of recovered metals

			Concentrates smelted and recovered metal								
County	Ore treated (short tons)	Concentrates produced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)				
Colfax Grant Hidalgo Rio Arriba San Miguel Sierra Socorro	50 4, 608, 614 116, 153 975 75, 620 10 480	1 186, 809 13, 040 39 15, 622 1 12	4 4,632 4,077 52 5,694 3 49	219, 211 130, 297 467 166, 619 3 896	181, 267, 789 6, 359, 345 300 418, 000 100	4, 194, 069 5, 000 3, 599, 000	47, 329, 000 9, 849, 000				
Total, 1938	4, 801, 902 2, 302, 992	215, 524 145, 537	14, 511 18, 829	517, 494 483, 805	1 88, 045, 534 40, 539, 050	7, 798, 069 9, 121, 500	57, 178, 000 55, 850, 000				

¹ Includes 3,237,257 pounds of copper recovered from mine-water precipitates.

Gross metal content of concentrates produced from ores mined in New Mexico in 1939, by classes of concentrates smelted

	Concen- trates		G	ross metal co	ntent	
Class of concentrates	pro- duced (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (wet assay) (pounds)	Lead (wet assay) (pounds)	Zinc (pounds)
Dry gold Dry gold-silver Copper Lead Lead-copper Zinc	2 32 146, 000 453 11, 498 57, 962	7 57 10, 588 62 5, 601 452	3 1, 069 181, 491 1, 751 290, 784 68, 488	645 188, 765, 844 7, 602 1, 650, 930 600, 323	703 94 315, 573 8, 173, 759 780, 878	45, 692 2, 569, 158 63, 203, 165
Total, 1938	215, 947 146, 061	16, 767 21, 605	543, 586 522, 080	¹ 91, 025, 344 42, 292, 557	9, 271, 007 10, 799, 010	65, 818, 015 68, 555, 111

¹ Includes 3,287,100 pounds of copper contained in mine-water precipitates.

Mine production of metals from New Mexico concentrates shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Concentrates (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (pounds)
Colfax Grant Hidalgo Rio Arriba San Miguel Sierra	417 186, 809 13, 040 39 15, 622	2, 081 4, 632 4, 077 52 5, 694 26	994 219, 211 130, 297 467 166, 619 1, 130	28, 500 181, 267, 789 6, 359, 345 300 418, 000 491	4, 194, 069 5, 000 3, 599, 000 52	47, 329, 000 9, 849, 000
Total, 1938	215, 947 146, 061	16, 614 21, 199	519, 616 485, 661	188, 074, 425 40, 567, 850 SMELTED	7, 798, 121 9, 145, 260	57, 178, 000 55, 850, 000
Dry gold Dry gold-silver. Copper. Lead. Lead-copper. Zinc.	2 32 146,000 453 11,498 57,962	7 57 10, 588 62 5, 601 299	3 1,069 181,491 1,751 290,784 44,518	607 186, 235, 593 6, 087 1, 354, 017 478, 121	382 52 283, 798 7, 513, 889	57, 178, 000

16,614

519, 616 188, 074, 425

57, 178, 000

7, 798, 121

215, 947

¹ Includes 3,237,257 pounds of copper recovered from mine-water precipitates.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN NEW MEXICO 405

Gross metal content of New Mexico crude ore shipped to smelters in 1939, by classes of ore

	0	re	Gross metal content							
Class of ore	Short tons	Percent of total	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zine (pounds)			
Dry and siliceous gold	5, 032 15, 268 469 59, 144 1, 431 1, 102 1, 047 3, 527	5. 78 17. 55 . 54 67. 97 1. 64 1. 27 1. 20 4. 05	2, 789 4, 514 10 941 319 11 3	12, 840 263, 554 8, 012 202, 507 7, 461 8, 503 278	52, 617 22, 581 4, 878 4, 224, 931 5, 979 80, 078 522	48, 886 254, 812 11, 605 2, 664, 107 446, 281 261, 646 24, 833 860, 176	5, 574 159, 678 809 25, 153 602, 993 1, 306, 866			
Total, 1938	87, 020 27, 808	100.00 100.00	8, 587 9, 949	503, 155 319, 722	4, 391, 586 338, 083	4, 572, 346 920, 308	2, 101, 073 871, 730			

Mine production of metals from New Mexico crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	В	COUNT	IES			
	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)	Zinc (poun ds)
CatronColfax	169 256	151 163	3, 482 87	900		
Dona Ana	149 4	59	388 3	2, 800 700	4,600	
Eddy	75, 325 887 101	5, 511 329	451, 776 5, 685	3, 460, 211 16, 655	2, 371, 931 52, 600	892, 000
Lincoln Luna Otero	3, 599 67	60 455 6	71 17, 397 87	9, 500 6, 600	332, 800 100	9,000
Sandoval Santa Fe Sierra	514 2, 302 1, 549	66 703 993	2, 130 8, 833 11, 392	100 671, 200 31, 909	200 23, 648	
SocorroTaos	2, 067 31	79 11	1, 002 725	9, 000	200, 000	633, 000
Total, 1938	87, 020 27, 808	8, 586 9, 949	503, 058 319, 722	4, 209, 575 310, 150	2, 985, 879 752, 740	1, 534, 000 622, 000
	BY CI	LASSES C	F ORE			
Dry and siliceous gold	5, 032 15, 268 469	2, 789 4, 514 10	12, 840 263, 554 8, 012	50, 031 19, 832 4, 601	28, 624 228, 107 8, 881	
Copper	59, 144	941	202, 507	4, 065, 997	1, 465, 208	
Lead-copper	1, 431 1, 102	319 11	7, 461 8, 503	4, 652 64, 062	400, 555 235, 482	
Total to copper and lead plants. ZincZinc-lead	82, 446 1, 047 3, 527	8, 584 2	502, 877 181	4, 209, 175 400	2, 366, 857 17, 000 602, 022	487, 000 1, 047, 000
	87, 020	8, 586	503, 058	4, 209, 575	2, 985, 879	1, 534, 000

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in New Mexico in 1939, by counties and districts, in terms of recovered metals

County and district		es pro- cing	Ore sold or	Gold	i (fine ou	nces)	Silv	er (fine o	unces)	Copper	Lead	Zinc	Total
County and district	Lode	Placer	treated (short) tons)	Lode	Placer	Total	Lode	Placer	Total	(pounds)	(pounds)	(pounds)	value
Catron County: Mogollon Colfax County: Mount Baldy Dona Ana County: Organ Eddy County Grant County:	12 7 8 1	5	61, 411 26, 567 159 4	7, 708 2, 756 70	44	7, 708 2, 800 70	381, 013 1, 189 392 3	7	381, 013 1, 196 392 3	900 28, 500 2, 800 700			\$528, 501 101, 776 3, 223 75
Burro Mountain Central Chloride Flat Gold Hill 1	3 15 1	1	4, 665, 556 2	7 4, 828	1	4, 829	1, 002 420, 769 28		1,002 420,769 28	6, 400 84, 687, 500	5, 881, 300 400	47, 354, 000	1, 591 12, 000, 957 38
Lone Mountain Pinos Altos Steeple Rock	45 7	36	29 1 2, 465 12, 772	807 4, 487	167	974 4, 487	140 19 11, 067 237, 030	40	140 19 11, 107 237, 030	15, 700 13, 000	2,600 119,700 19,000	147, 000	1, 757 13 56, 532 320, 183
Swartz. White Signal Hidalgo County: Apache	3 4	5	2, 998 14 164	1 13 37	14	27 37	943 7 3, 636		943 7 3, 636	5, 300 100 5, 600	543, 000		64, 187 960 4, 580
Gold Hill ¹ Lordsburg San Simon Sylvanite	20 2 4		30 116, 331 75 440	4, 230 2 113		4, 230 2 113	103 131, 471 566 206		103 131, 471 566 206	6, 367, 900 300 2, 000	4, 600 6, 000 36, 900 100		1, 147 899, 835 2, 219 4, 308
Lincoln County: Jicarilla Nogal White Oaks	<u>1</u> 1	55	1 100	60	203	203	52 19	13	13 52 19				7, 114 35 2, 113
Luna County: Cooks Peak Victorio Otero County:	4		106 3, 493	2 453		2 453	595 16, 802		595 16, 802	800 8, 700	54, 000 278, 800	9,000	3, 563 41, 269
Orogrande Sacramento Rio Arriba County: Headstone Sandoval County: Cochiti	4 2 1 2	4	37 30 975 514	52 66	3	9 55 66	25 62 467 2, 130		25 62 467 2, 130	3, 600 3, 000 300 100	100 5, 000		706 359 2, 508 3, 766
San Miguel County: Willow Creek Santa Fe County: Ortiz Mountains (Cerrillos) San Pedro.	1 1 7	8 2	75, 620 19 2, 411	5, 694 9 746	736 29	5, 694 745 775	166, 619 13 8, 831	34 3	166, 619 47 8, 834	418, 000 200 671, 000	3, 599, 000	9, 849, 000	1, 037, 162 26, 128 102, 914
Sierra County: Chloride Kingston	8 2		775 150	242 1		242 1	4, 371 3, 254		4, 371 3, 254	2, 200 200	22, 700		12, 733 2, 293

Lake Valley Las Animas (Hillsboro) and Pittsburg Tierra Blanca Socorro County:	$\begin{smallmatrix}2\\13\\1\end{smallmatrix}$	50	119 1, 160 5		2, 271	3, 139 2	1, 572 3, 315 78	112	1, 572 3, 427 78	29, 900	300 100		1, 091 115, 306 123
Good Fortune Hansonberg Magdalena	1 1 7 2		22 9 1, 903	14		14	7 15 648 18		7 15 648 18	4, 400 1, 800	4, 300 181, 000 10, 100	633, 000	463 212 42, 540 487
San Mateo Mountains. Silver Mountain (or Water Canyon) Taos County: Red River	3 3	1	495 112 141	68 65 30	3	68 65 33	928 289 975		928 289 975	2, 800	4, 600		3, 010 2, 978 1, 817
Total New Mexico	214	168	4, 977, 375	33, 505	3, 474	36, 979	1, 400, 669	209	1, 400, 878	92, 284, 000	10, 784, 000	58, 712, 000	15, 402, 572

¹ District lies in both Grant and Hidalgo Counties.

CATRON COUNTY

Mogollon district.—In 1939 the Black Hawk Consolidated Mines Co. operated continuously the Consolidated group (comprising the Andrew Jackson Consolidated, Lexington Contention, and Lexington Gunboat claims on the Queen vein) and the Little Fanney 200-ton cyanide mill, both under lease from the Lehigh Metals Co. This group was the largest single producer of gold and silver in the State during the year. The mill treated 55,137 tons of ore and 1,075 tons of old tailings on company account and 5,028 tons of custom ore, of which the bulk came from the Maud S, Last Chance, Little Fanney, and Pacific groups, all worked by lessees. The rest of the custom ore came from the Bearup, Champion, Hardscrabble, Joy, and Oakton properties. Some of the ore produced at the Last Chance and Maud S groups and a few lots of ore from the Homestake and Sheridan claims were shipped crude to the El Paso smelter and to ore buyers at Silver City and at Douglas, Ariz.

COLFAX COUNTY

Mount Baldy district (Baldy, Elizabethtown, Eagle Nest).—The Aztec mine group, owned and operated by the Maxwell Land Grant Co., continued in 1939 to be the principal producer in the Mount Baldy district. The ore was treated in the company 140-ton mill by jigging in the ball mill-classifier circuit, followed by flotation. The products were gold-silver-copper concentrates, shipped to the El Paso smelter, and gold-silver bullion, sold to the Denver Mint. Other mines owned by the Maxwell Land Grant Co. and worked by lessees on a small scale included the Montezuma and Gold Dollar. The Deep Tunnel Mining Co. built a 40-ton cyanide plant at the Moreno-Red Bandana group 2 miles northeast of Elizabethtown and operated it from July 8 to September 19 on company and custom ore. The custom ore came from the Ajax, Black Tail, and a claim owned by the Maxwell Land Grant Co., all in the Mount Baldy district, and the Memphis and Black Copper groups in the Red River district, Taos County. Placer miners continued to recover some gold by sluicing on streams in the Mount Baldy district.

DONA ANA COUNTY

Organ district.—The Donalco Mining Co. worked the Mormon mine 1½ months in November and December 1939 and the Rock of Ages 2 months beginning in September. The company shipped several lots of gold-silver-copper ore from each property to the El Paso smelter. A few small lots of smelting ore were shipped from other claims in the Organ district.

EDDY COUNTY

The Ammann Mining Co. shipped 4 tons of copper-silver ore to the El Paso smelter from its claim 11½ miles northwest of Carlsbad.

GRANT COUNTY

Burro Mountain district (Tyrone).—Strong & Harris worked the Virtue claim under lease 2 months in 1939 and shipped 88 tons of gold-silver ore to the El Paso smelter. Lessees at the Casino and Sunset claims each shipped some copper-silver ore.

Central district (Bayard, Fierro, Georgetown, Hanover, Santa Rita).— The Nevada Consolidated Copper Corporation, Chino Mines Division, continued producing throughout 1939 from its open-pit mine at Santa The ore is mined with electric shovels and transported 10 miles over the Atchison, Topeka & Santa Fe Ry. to Hurley, where it is concentrated in the company mill, the daily capacity of which has been increased during the past 2 years from 15,000 to 17,500 tons. The concentrates produced before March 22, 1939, were shipped to the El Paso smelter for treatment under contract; those produced after that date were smelted in the new company smelter adjacent to the concentrator, which was put in operation on May 2. copper concentrates carry a low content of gold and silver to the ton. Molybdenite concentrates are recovered in the mill as a byproduct. The Twenty-fifth Annual Report of the Kennecott Copper Corporation, dated March 16, 1940, contains the following paragraphs regarding operations at the Chino property in 1939:

A total of 27,558,108 tons of ore having a calculated average of 1.02 percent copper was treated at the four domestic properties of the Corporation. Copper production amounted to 502,570,103 pounds, or about 50 percent more than the 1938 production of 334,816,884 pounds. In addition to the ore mined, approximately 36,573,000 tons of noncommercial overburden were removed at the power-shovel properties in Utah, Nevada, and New Mexico, this tonnage being equivalent to 1.40 tons overburden per ton of ore sent to the respective concentrating mills.

Copper production at the Chino property was continued at a comparatively low rate for the first half of the year but was stepped up to full capacity during the last 4 months. Orders for seven electric locomotives and other equipment necessary for the partial electrification of pit haulage were placed and preparatory track and line work commenced toward the close of the year. At Hurley a dust-collecting system was installed in the primary crushing plant. At the power plant a new 10,000-kilowatt turbogenerator and one high-pressure, high-superheat boiler were ordered and will be installed during the year 1940 to provide adequate generating capacity and permit more efficient utilization of reverberatory waste heat steam. The new smelter, which embodies in its design the latest developments in smelting practice, has proven satisfactory in every way since placed in service early in May and has effected a very material reduction in the cost of smelting.

Molybdenite production amounted to 12,055,554 pounds, including 111,561 pounds produced in an experimental way at the Braden plant in Chile. The molybdenite content of the ore treated at the Utah and New Mexico properties averaged 0.0354 percent and the recovery 71.31 percent. In contrast the 1938 recovery was 60.08 percent and in 1937, the first full year of operation, 43.41 percent. The demand for molybdenite was seriously curtailed upon the outbreak of war and largely as a result thereof the entire production was not sold. Since December the market has been narrowed even more, and there has been a

further accumulation of unsold product.

The Empire Zinc Co. operated its Hanover mine group and 300-ton selective-flotation mill continuously in 1939. The products of the mill were zinc concentrates, shipped to the American Zinc Co. plant at East St. Louis, Ill., and the New Jersey Zinc Co. plants at Depue, Ill. (Mineral Point Zinc Division), and Palmerton, Pa.; and lead-copper concentrates, shipped to the El Paso smelter. The Pewabic zinc mine at Hanover and the Peru 500-ton mill near Deming were operated by the Callahan Zinc-Lead Co. under lease from January 1 to February 15 and were then inactive until June 5, when they were reopened by the same company and continued producing to the end of the year. Besides ore from the Pewabic mine, the mill treated some zinc ore produced by lessees from the Republic claim in the Union Hill group of the Hanover-Bessemer Iron & Copper Co.

centrates produced in the mill in January and February were shipped to the Illinois Zinc Co. smelter at Dumas, Tex. This smelter was closed March 25 and did not reopen during the year; the concentrates produced from June to December went to the American Smelting & Refining Co. plant at Amarillo, Tex. The Callahan Zinc-Lead Co. returned the property to the Peru Mining Co., owner, as of

January 1, 1940.

The American Smelting & Refining Co. operated the 200-ton Combination mill near Hanover under lease from March 1 to December 31, 1939, treating mostly company zinc-lead-copper-silver ore from the Ground Hog group but also custom ore of somewhat similar type from the Peerless, Grandview (Swartz district), Gold Frog group, September group, Silver Hill (Pinos Altos district), and two other properties in the Central district. The zinc concentrates produced in the mill were shipped to the Amarillo (Tex.) smelter and the lead-copper concentrates to the El Paso smelter. Part of the output from the Ground Hog was copper-lead-silver ore, shipped direct to the El Paso smelter; part of that from the Peerless and September groups was zinc-lead ore, shipped to the Ozark pigment plant at Coffeyville, Kans.; and 80 tons from the Gold Frog group was gold-silver-lead ore, shipped to the El Paso smelter.

A few cars of smelting ore were shipped from other mines in the Central district, including the Union Hill group and the Cash and Gold Spot claims. A placer miner in the Central district recovered

a little gold.

Chloride Flat district.—A lessee on the Baltic claim shipped 2 tons

of lead-silver ore in 1939.

Gold Hill district (see also Hidalgo County).—Small lots of gold-silver ore from the Ellandell, God's Tenth No. 1, Reservation, and Yellow Queen claims and 6 tons of lead-silver ore from the World's Fair claim were sold to the Ira L. Wright assay office at Silver City.

Lone Mountain district.—A little silver ore was shipped from the

My Chance claim in 1939.

Pinos Altos district.—Lessees operated the Calumet 20-ton flotation- and table-concentration mill as a custom plant part of 1939. The ore treated came chiefly from the Ohio, Silver Hill, and Alaska mines and the Wild Horse dump. The products of the mill were lead-copper-gold-silver concentrates, sold to the El Paso smelter, and zinc-gold-silver-copper-lead concentrates, sold to the Amarillo (Tex.) smelter. Most of the ores produced from other mines and dumps in the Pinos Altos district were shipped to the El Paso smelter, the Ira L. Wright assay office at Silver City, and to Hawley & Hawley at Douglas, Ariz. Producers of 25 tons or more of ore included the Cleveland, Golden Rule-Campo Santo group, Hazard, Houston Thomas, Iron Clad, Lupita group, Mountain Key, Mina Grande, and Waggoner dump.

The Ryan Mining Corporation built a dam to collect water and installed a dragline, washer, and sluices on the Sunny Spot placer on Bear Creek 3 miles north of Pinos Altos in the summer of 1939; digging and washing continued about 2 months, when interrupted by heavy cloudbursts. The operation was later taken over by the Bear Creek Mining Co., which ran the equipment from November 1 to December 31. The Texas Placer Co. operated a dragline and portable screening plant, with a jig as a concentrator, on its claims on Bear

Creek from early summer to December 31. These two operations produced most of the placer gold from the Pinos Altos district in 1939. Individuals continued to recover some gold with sluices and pans.

Steeple Rock district.—The East Camp Exploration Syndicate operated the East Camp group continuously in 1939. It sank the vertical shaft an additional 550 feet to a total depth of 850 feet and drove 1,000 feet of drifts. Production totaled 10,248 tons of ore averaging 0.34 ounce of gold and 22.02 ounces of silver to the ton; the ore was shipped crude to the International Smelting & Refining Co., Miami, Ariz. The Carlisle group was operated by Veta Mines, Inc., from January 1 to February 15, when the company surrendered its lease; other lessees at the property shipped some ore and old tailings during the year. The other producing mines in the Steeple Rock district comprised the Homestake, Laura, Norman King, Frazier Brothers group, and Thanksgiving-Alberta property. The ore was shipped crude to smelters in Arizona and Texas. The Willmont Mining Co. erected a 30-ton cyanide plant at the Laura mine and began operating it in January 1940.

Swartz (or Carpenter or Camp Monarch) district.—The Black Range Development Co. operated the Grandview group throughout 1939 and produced 2,998 tons of ore, of which about half was zinc-lead ore sold to the Ozark pigment plant at Coffeyville, Kans.; the remainder was mostly zinc-lead-copper-silver ore and was shipped to the Com-

bination mill near Hanover for treatment.

White Signal district.—Small lots of gold ore from the Apache Trail and Reward claims and a 4-ton lot of gold-silver-copper ore from the Combination claim were shipped to the Ira L. Wright assay office at Silver City in 1939. Testing operations on placer ground of Sunset Gold Fields, Inc., and sluicing by individuals in Gold Gulch recovered a little placer gold.

HIDALGO COUNTY

Apache district.—The output from the Apache district in 1939 comprised chiefly silver-copper-lead-gold ore shipped to the El Paso

smelter from the Apache and Chappo groups.

Gold Hill district (see also Grant County).—A few truckloads of gold ore and lead-silver-gold ore from the Bob Cat, Martha Greer, Mary Florence, and Oro Grande prospects were sold to ore buyers at Silver City and at Douglas, Ariz., in 1939. Sweet & Wallace shipped 14 tons of lead-silver ore from another property to the El Paso smelter.

Lordsburg district.—The Banner Mining Co. operated the Bonney mine and 350-ton flotation mill 6 miles south of Lordsburg continuously in 1939. The vertical main shaft was sunk an additional 193 feet to a total depth of 1,213 feet, 3,138 feet of development drifts were driven, and 864 feet of diamond drilling were done. The product of the mill is copper-gold-silver-[iron] concentrates, which are sold to the El Paso smelter. Individuals working small mines, prospects, and dumps intermittently shipped newly mined and sorted dump ore to the El Paso smelter and to Hawley & Hawley at Douglas, Ariz. The producers included the Blas Noche property, Henry Clay, Homestake, Needmore, and Silver King. The Miser's Chest Mining & Milling Co., Inc., repaired 300 feet of the 400-foot 73° incline shaft at the Miser's Chest group and drove 400 feet of drifts.

San Simon district (Steins).—The Bob Montgomery group was worked on a small scale throughout 1939 by the owner, who shipped 64 tons of lead-silver ore to the El Paso smelter. A few lots of gold-silver ore were shipped from another property in the San Simon district.

Sylvanite district.—Lessees at the Buckhorn-Barney-Woods group 16 miles southwest of Hachita shipped four cars of gold-silver ore to the El Paso smelter in November and December 1939. A lessee at the Hardscrabble group shipped several cars of gold-silver-copper smelting ore. Some gold-silver ore was shipped from the Last Chance claim and another property in the Sylvanite district.

LINCOLN COUNTY

Jicarilla district.—Placer miners continued to recover gold in 1939 by rocking and sluicing in the Jicarilla Mountains southeast of Ancho.

Nogal district.—In 1939 the owner of the Silver Plume group shipped 1 ton of silver ore.

White Oaks district.—The Big Four Gold & Tungsten Mines drove a 100-foot incline shaft and 75 feet of drifts on its property 14 miles north of Carrizozo in 1939 and shipped 100 tons of gold-silver ore to the El Paso smelter.

LUNA COUNTY

Cooks Peak district.—Small-scale prospecting and mining at the Ethel-"85" group, the Big Lead & Silver property, and the Lookout claim yielded lead-silver ore, which was shipped to the Ira L. Wright assay office at Silver City. The Lookout claim also yielded 19 tons of zinc-lead ore, shipped to the Ozark pigment plant at Coffeyville, Kans. The owners of the Copper claim shipped 19 tons of copper-silver ore to the El Paso smelter.

Deming.—The Peru 500-ton selective-flotation mill at Wemple near Deming was operated most of 1939 under lease by the Callahan Zinc-Lead Co. and continued to treat ore from the Pewabic mine (see Central district, Grant County)

(see Central district, Grant County).

Victorio district.—Shanks Carpenter shipped oxidized gold-silver-lead-[zinc]-iron-lime ore to the El Paso smelter throughout 1939 from the Victorio group 4 miles south of Gage. The mine is developed by a 300-foot vertical shaft, a 700-foot adit, and over 4,000 feet of drifts.

OTERO COUNTY

Orogrande district.—The Garnet mine (opened by a 250-foot shaft and 200 feet of drifts) and three prospects in the Orogrande district each produced in 1939 a little copper ore containing gold and silver, all of which was sold to the El Paso smelter. The placer gold credited to Otero County for 1939 in this report was recovered from the Orogrande placer in 1938 but was not sold until 1939.

Sacramento district.—A sample lot of copper-silver ore from the La Luz No. 1 claim was trucked to the El Paso smelter in 1939, and 20 tons of copper-lead-silver ore were shipped from another property

near High Rolls.

RIO ARRIBA COUNTY

Headstone district.—The Badger-Hidden Treasure group, operated for a period in 1938 under lease, reverted to the Amarillo Gold Mining

Co., owner, which operated the mine and mill part of 1939. The product of the mill was gold-silver-lead-copper concentrates, sold to the Leadville (Colo.) smelter. Small lots of placer gold were recovered from the Columbine and other placers in the Headstone district.

SANDOVAL COUNTY

Cochiti (Bland) district.—Lessees worked the Lone Star-Crown Point-Iron King group several months in 1939 and shipped gold-silver ore to the El Paso smelter. Some gold and silver were recovered from a clean-up of the old Cossak cyanidation mill.

SAN MIGUEL COUNTY

Willow Creek district (Tererro).—The American Metal Co. of New Mexico continued production from its Pecos mine on Willow Creek until May 31, 1939, when the mine was closed owing to exhaustion Part of the equipment, which includes a 12-mile aerial tram and the machinery in the 600-ton flotation mill in Alamitos Canyon. was sold in 1939 and 1940. The total output of the mine from its first production on January 20, 1927, to the date of closing in 1939 was 2,299,082 dry tons of ore containing 243,474 ounces of gold, 7,748,006 ounces of silver, 185,514,389 pounds of lead (wet assay), 35,835,807 pounds of copper (wet assay), and 595,355,840 pounds of zinc. The ore, treated by selective flotation, yielded 193,751 tons of lead-copper concentrates—containing 162,338 ounces of gold, 4,536,216 ounces of silver, 146,061,551 pounds of lead (wet assay), 16,491,992 pounds of copper (wet assay), and 46,342,538 pounds of zinc—and 473,606 tons of zinc concentrates—containing 25,922 ounces of gold, 1,642,360 ounces of silver, 13,497,879 pounds of lead (wet assay), 10,855,170 pounds of copper (wet assay), and 504,824,696 pounds of zinc. The aggregate smelter gross value of the combined concentrates before deductions for freight and treatment was \$35,325,554, and the net value after deductions was \$18,007,048.

SANTA FE COUNTY

Ortiz Mountains district (Cerrillos).—From March 27 to December 31, 1939, the Universal Placer Mining Corporation operated a 2½-cubic yard dragline and a land dredge, using a dry-separation method, on a part of the Ortiz grant known as the Old Placers about 6 miles south of Cerrillos and was the principal producer of placer gold in Santa Fe County during the year. Individuals continued to recover gold at small placers in the Ortiz Mountains, using sluices and dry washers. Some copper-gold-silver smelting ore was shipped from a lode claim.

San Pedro or New Placers district.—Lessees at the San Pedro (or Copper) mine, owned by John J. Raskob, continued to ship coppergold-silver ore to the El Paso smelter in 1939. Raskob Interests, Inc., did considerable development work at the property and built a 150-ton flotation mill which was set going early in 1940. Gold was recovered in a Huntington mill at the Old Timer group and by hand methods at the Candelari, La Santa Fe, Live Oak, and Mascot claims. The Ortiz Gold Mining Co. shipped 6 tons of gold ore to the Leadville (Colo.) smelter. The Lazarus and another placer near Golden produced some gold.

SIERRA COUNTY

Chloride (Apache, Cuchillo Negro) district.—The Bald Eagle group was under development in 1939 by the Empire Mines & Metals Co., which shipped a test lot of lead-silver ore to the El Paso smelter and began installing equipment for a mill. Small lots of smelting ore were shipped from the Alta Vista No. 1, Fortuna, and other claims in the Chloride district. Andrew B. Stewart operated the Grand Republic group under lease from April to December and treated 650 tons of ore by jig and table concentration; the jig concentrates were amalgamated and the table concentrates shipped to the El Paso

Kingston district.—Silver ore containing a little lead, copper, and gold was shipped to smelters in 1939 from the Virginian and one other

property in the Kingston district.

Lake Valley district.—Three cars of silver ore were shipped to the

El Paso smelter from the Lake Valley district in 1939.

Las Animas district (Hillsboro).—The John I. Hallett Construction Co. continued operations throughout 1939 at the leased Gold Dust, Graf Von Luxemburg, Bunker Hill, and other placers in a group about 8 miles east of Hillsboro. The equipment consists of two gasoline-powered dragline excavators of 1 and 11/4 cubic yards capacity, a Coulter-Ainlay bowl recovery plant mounted on wheels, water-storage tanks, and pumps. Sluicing and panning at other placers in the Hillsboro district recovered some gold.

Lessees at the Wicks lode mine shipped copper-gold-silver ore to the El Paso smelter steadily throughout 1939. Small-scale operations at the Biglow, Bonanza, Duke, El Oro, M. K. T., Mocassin, Ready Pay-Apex, and other properties yielded ore aggregating 149 tons, of which part was sold to the El Paso smelter, part to Hawley & Hawley at Douglas, Ariz., and part to the Ira L. Wright assay

office at Silver City.

Pittsburg district.—From February 1 to December 31, 1939, William Little operated a ¾-cubic yard dragline and centrifugal bowl washing plant on placer ground of the Pittsburg Placer Mining Co. viduals continued sluicing and panning at placers in the Pittsburg district; they sold the gold recovered to the Myers Co. general store at Hatch.

Tierra Blanca district.—In 1939 L. E. Cleveland shipped 5 tons of

gold-silver ore from his Silver Bell claim.

SOCORRO COUNTY

Good Fortune district (40 miles west of Tularosa).—A lessee worked the Belle Vista prospect 2 months in 1939 and shipped a car of coppersilver ore to the El Paso smelter.

Hansonberg district (17 miles southeast of Carthage).—The Globe Mining Co. shipped 9 tons of lead-silver ore from Bingham in 1939.

Magdalena district.—The Ozark Smelting & Mining Co. operated its Waldo group from September 18, 1939, to the end of the year, producing zinc-lead ore for shipment to the Ozark pigment plant at Coffeyville, Kans. A lessee operating the Kelly group also shipped zinc-lead ore to this plant and lead-copper-silver ore to the El Paso smelter. The Oro Alto Mining Co. shipped gold-silver-lead-copper ore from a property south of Kelly. Small tonnages of smelting ore were shipped from other properties in the Magdalena district.

Mockingbird district.—Small lots of lead-silver ore were shipped from

two properties in the Mockingbird district in 1939.

San Mateo Mountains district.—A lessee operated the Panky group from January to April 1939 and mined about 480 tons of ore, which was treated in the flotation mill at the mine. The yield was 12 tons of high-grade gold-silver concentrates shipped to the El Paso smelter. Bishop & Warren worked the Victorio claim 1 month and shipped 15 tons of gold-silver ore.

Silver Mountain (or Water Canyon) district.—Test runs made in 1939 on ore from the Open Cut mine in the gravity-concentration mill on the property yielded some gold and silver. Other small producers in the Silver Mountain district were the Rose Quartz and La Plata

claims.

TAOS COUNTY

Red River district.—The Black Copper and Memphis mines were operated on a small scale several months in 1939; each yielded some ore, which was sent to the small custom cyanide mill of the Deep Tunnel Mining Co. near Elizabethtown, Colfax County, for treatment. Scavarda Brothers worked their Neptune claim from June 17 through December and shipped 31 tons of gold-silver ore to the El Paso A little gold was recovered from a placer claim near Red smelter.

The Molybdenum Corporation of America continued to produce molybdenum ore from the Phyllis group on Sulphur Creek. is treated in the company 40-ton (per 24 hours) flotation mill at the

junction of Sulphur Creek and Red River above Questa.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN OREGON

(MINE REPORT)

By Charles White Merrill and H. M. Gaylord

SUMMARY OUTLINE

	Page		Page
Summary	417	Mining industry	421
Mine production by counties	420	Metallurgic industry	422
		Review by counties and districts	196

The total value (in terms of recovered metals) of the gold, silver, copper, and lead produced in Oregon in 1939—\$3,350,950—exceeded that in each year since mining was begun in 1852 and represents a 14-percent increase over 1938. It was divided among the metals as follows: Gold, over 97 percent; silver, 2 percent; and copper and lead combined, less than 0.5 percent. No recovery of zinc was reported for the year. Baker County continued as the leading metal producer and contributed 48 percent of the State total value; Grant County yielded 34 percent, Jackson County 9 percent, Josephine County 7 percent, and the other 14 producing counties only 2 percent.

The principal shift in production between counties in 1939, com-

pared with 1938, was an increase in importance of Grant County and a sharp decline in that of Josephine County; the increase in Grant County resulted mainly from activities of lessees working the Independence Cougar mine, and the decline in Josephine County was caused primarily by suspension of dredging on Grave Creek by the

Rogue River Gold Co. late in 1938.

Cornucopia Gold Mines, which worked the Cornucopia mine in the Cornucopia district of Baker County, not only was the largest producer of lode gold in Oregon in 1939 but also led in output of total gold

and of silver, copper, and lead.

Another feature in the mining industry of the State in 1939 was the record output of gold by dragline dredges, which exceeded that by connected-bucket dredges for the first time and more than counterbalanced losses by some of the other placer methods.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

Yardage figures used in measuring material treated in placer operations are bank measure; that is, the material is measured in the ground before treatment.

The value of metal production reported has been calculated at the

following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zine 3
1935	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0.71875 .7745 .7735 4.646+ 5.678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046 .047	Per pound \$0.04 .05 .06 .04

1 Price under authority of Gold Reserve Act of Jan 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan 31, 1934, was \$20.67+(\$20.671835) per fine ounce.

2 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.

3 Yearly average weighted price of all grades of primary metal sold by producers.

4 \$0.6464644.

Mine production of gold, silver, copper, lead, and zinc in Oregon, 1935-39, and total, 1852-1939, in terms of recovered metals

	Mines producing 1		producing 1 Ore, old tailings,		and placer)	Silver (lode and placer)		
Year	Lode	Placer	etc. (short tons)	Fine ounces	Value	Fine ounces	Value	
1935	115 93 104 84 116	268 166 150 157 201	184, 543 136, 338 77, 230 74, 936 69, 025	54, 160. 11 60, 753. 00 52, 662. 00 81, 729. 00 93, 372. 00	\$1, 895, 604 2, 126, 355 1, 843, 170 2, 860, 515 3, 268, 020	110, 385 85, 061 60, 564 100, 507 105, 388	\$79, 339 65, 880 46, 846 64, 974 71, 536	
1852-1939			(2)	5, 410, 821.00	117, 341, 778	4, 594, 512	4, 345, 195	

	Co	pper	Le	ad	Zi	ine	Total
Year	Pounds	Value	Pounds	Value	Pounds	Value	value
1935	397, 800 574, 000 820, 000 76, 000 96, 000	\$33, 017 52, 808 99, 220 7, 448 9, 984	59, 575 158, 000 218, 000 46, 000 30, 000	\$2, 383 7, 268 12, 862 2, 116 1, 410	122, 000 48, 000	\$6, 100 3, 120	\$2, 010, 343 2, 258, 411 2, 005, 218 2, 935, 053 3, 350, 950
1852-1939	³ 12, 052	4, 571, 253	³ 620	61, 625	³ 140	13, 846	126, 333, 697

¹Beginning with 1936, excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.

² Figures not available.

³ Short tons.

Gold produced at placer mines in Oregon, 1935-39, by classes of mines and by methods of recovery

	3.51	Material	G	old recovered	i
Class and method	Mines pro- ducing 1	treated (cubic yards)	Fine ounces	Value	Average per cubic yard
Surface placers: Gravel mechanically handled: Connected-bucket dredges;					
1935	5	3, 440, 000	12, 720, 13	\$445, 205	\$0, 12
1936		5, 148, 000	12, 720. 13 17, 067. 26	597, 354	. 11
1937	4	5, 017, 000	17, 178. 00	601, 230	. 12
1938 1939	5 5	7, 258, 000 6, 267, 000	29,006.00 25,028.00	1,015,210 875,980	. 14
		0, 201, 000	20,028.00	670, 560	
Dragline dredges: 2		1 007 000	4 000 00	140 000	
1935 1936	3 4	1, 237, 000	4,008.23	140, 288	.11
1937	4	2,066,000	12,989.42	454, 630	.22
	11	2, 085, 000 2, 891, 000	9, 126, 00 15, 939, 00	319,410	. 15
1938 1939	10	5, 964, 000	26, 257. 00	319, 410 557, 865 918, 995	. 19
Nonfloating washing plants: 3					=
1935	11	327,000	5,040.89	176, 431	. 54
1936	6	136,000	1, 479. 21	176, 431 51, 772	.38
1937	ğ	186,000	2, 017. 00	70, 595	.38
1938	5	136,000	1,768.00	61,880	.45
1939	13	346,000	2, 169. 00	75, 915	. 219
Gravel hydraulically handled: Hydraulic:					
1935	72	669, 000	4, 224. 84	147, 869	. 22
1936	52	1,051,000	2, 677, 05	93, 697	. 08
1937	48	366,000	2, 344. 00	82,040	. 224
1938	66	731,000	3, 261. 00	114, 135	, 150
1939	76	440, 000	2, 585. 00	90, 475	. 200
Small-scale hand methods: 4 Wet:					
1935	151	615, 663	6, 293. 52 4, 785. 85	220, 273	. 358
1936	79	455, 580	4, 785. 85	167, 505	. 368
1937	71	173, 892	3, 197. 00	111,895	. 643
1938 1939	57 83	332, 800 299, 200	3, 874. 00 4, 398, 00	135, 590 153, 930	. 407
Dry: 5			44.00		
1938	2	800	16.00	560	.700
1939	1	400	13. 00	455	1, 138
Underground placers: Drift:					
1935	26	7,337	416. 42	14, 575	1, 98
1936	20	5, 420	422. 21	14, 777	2.726
1937	15	3, 108	357.00	12, 495	4.020
1938 1939	11 13	5, 400 5, 400	467. 00 329. 00	16, 345 11, 515	3, 027 2, 132
Grand total placers:					
1935	268	6, 290, 000	32, 704. 03	1, 144, 641 1, 379, 735	. 182
1936	166	8,862,000	39, 421. 00	1, 379, 735	. 156
1937	6 150	7,831,000	34, 219. 00	1, 197, 665	. 153
1938 1939	157	11, 355, 000	54, 331. 00	1,901,585	. 167
	201	13, 322, 000	60, 779, 00	2, 127, 265	. 160

Gold.—Production of gold in Oregon in 1939 increased 14 percent over 1938; the output from placers increased 12 percent and that from lode mines 19 percent. Of the total placer gold, 43 percent was

Beginning with 1936, excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.
 Includes all placer operations using dragline excavator for delivering gravel to floating washing plant.
 Includes all placer operations using power excavator and washing plant, both on dry land; when washing plant is movable, outfit is termed "dry-land dredge."
 Includes all operations in which hand labor is principal factor in delivering gravel to sluices, long toms, dip boxes.

dip boxes, pans, etc.
None reported for 1935-37, inclusive.

A mine using more than 1 method of recovery is counted but once in arriving at total for all methods.

recovered by dragline dredges, 41 percent by connected-bucket dredges, 7 percent by small-scale hand methods, 4 percent each by hydraulicking and nonfloating washing plants with mechanical excavators, and 1 percent by drifting. All the lode gold was derived from dry ores and virtually all from gold ore. Although 317 properties produced in 1939, the bulk of the gold came from relatively few mines; the following 10 properties supplied 72 percent of the total.

The 10 leading gold producers in Oregon in 1939, in order of output, were: Cornucopia Gold Mines (gold ore), Sumpter Valley Dredging Co. (connected-bucket dredge), Ferris Mining Co. (formerly Ferris & Marchbank) (dragline dredge), Western Dredging Co. (connected-bucket dredge), Porter & Co. (connected-bucket dredge), Independence Cougar Lessees (gold ore), Oroplata Mining Co. (dragline dredge), H. F. England Co. (dragline dredge), Consuelo Oregon Mines (dragline dredge), and Little, Harris & Wolfinger (dragline dredge).

Silver.—Silver production in Oregon in 1939 increased 5 percent in quantity and 10 percent in value over 1938. Of the State total silver, Baker County contributed 85 percent (76 percent coming from the Cornucopia mine in the Cornucopia district) and Grant County 12 percent; dry gold ore yielded 88 percent and placer gravels 10 percent. Nearly 88 percent of the total lode silver was recovered by concentration followed by smelting of the resulting concentrates.

Copper, lead, and zinc.—More than 92 percent of the copper produced in Oregon in 1939 was a byproduct of gold production at the Cornucopia mine. Lead production in the State totaled only 30,000 pounds. No zinc was reported recovered.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, and lead in Oregon in 1939, by counties, in terms of recovered metals

		es pro-			G	lold		·	Silver	
County			L	ode	P	acer	п	'otal	and pl	acer) -
	Lode	Placer	Fine ounces	Value	Fine ounces	Value	Fine ounces	Value	Fine ounces	Value
Baker Coos Crook	30	39 5	21, 994	\$769, 790 140	22, 002 117	\$770, 070 4, 095	43, 996 117 4	\$1, 539, 860 4, 095 140	89, 236 16 6	\$60, 572 11
Curry Douglas Grant Harney	3 2 17	7 11 32 1	57 40 6,008	1, 995 1, 400 210, 280	197 300 26, 648 3	6, 895 10, 500 932, 680 105	254 340 32, 656 3	8, 890 11, 900 1, 142, 960 105	37 49 13, 045	2: 33 8, 85
Jackson Josephine Lane Linn	33 22 3 3	39 53	1, 119 3, 098 259	39, 165 108, 430 9, 065	7, 651 3, 499	267, 785 122, 465	8, 770 6, 597 259 20	306, 950 230, 895 9, 065	1,805 803 337	1, 22 54 22
Malheur Marion Morrow	1	(3) 1	12 2	420 70	291 2 1	10, 185 70 35	291 4 1	700 10, 185 140 35	38 1	2
Umatilla Union Wallowa Wheeler		(3) 1			32 22 4 2	1, 120 770 140 70	32 22 4 2	1, 120 770 140 70	6 3 2	
Total, 1938	116 84	201 157	32, 593 27, 398	1, 140, 755 958, 930	60, 779 54, 331	2, 127, 265 1, 901, 585	93, 372 81, 729	3, 268, 020 2, 860, 515	105, 388 100, 507	71, 53 64, 97

See footnotes at end of table.

Mine production of gold, silver, copper, and lead in Oregon in 1939, by counties, in terms of recovered metals—Continued

County	Copper		Lead		Total
	Pounds	Value	Pounds	Value	value
BakerCoos	92, 000	\$9, 568	18,000	\$846	\$1,610,84 4,10
CrookCurry					14- 8, 91- 11, 93
Douglas Grant Harney	2,000	208	4,000	188	1, 152, 21 10
Jackson Josephine			2,000	94	308, 26 231, 44
Lane Linn	2,000	208	6,000	282	9, 78 70
Malheur Marion					10, 21 14 3
Morrow Jmatilla					1, 12 77
Union Wallowa Wheeler					14 7
Total, 1938	96, 000 76, 000	9, 984 7, 448	30, 000 46, 000	1, 410 2, 116	3, 350, 95 2, 935, 05

¹ Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to

property.

2 Source of total silver as follows: 1939, 94,794 ounces from lode mines and 10,594 ounces from placers; 1938, 92,206 ounces from lode mines and 8,301 ounces from placers.

3 Output from property not classed as a "mine."

MINING INDUSTRY

Of the 65,261 tons of ore sold or treated in Oregon in 1939, 65,174 tons were dry gold ore and 87 tons dry gold-silver ore; in addition, 3,764 tons of old tailings, of value principally in gold, were treated. The following figures give a measure of the large increase in output from Oregon mines during recent years: Tonnage of ore and old tailings sold or treated in 1939 was 13 times and quantity of lode gold produced was nearly 9 times that at the low point reached in 1932; and quantity of placer gold produced was 10 times and total value of gold, silver, copper, and lead produced was 11 times that at the low point recorded in 1928. Three-fourths of the lode gold produced in Oregon in 1939 came from the Cornucopia mine in the Cornucopia district of Baker County and the Independence Cougar mine in the Granite district of Grant County. Half of the placer gold output of the State was produced by the following four companies: The Sumpter Valley Dredging Co. (connected-bucket dredge), Sumpter district, Baker County; Ferris Mining Co. (dragline dredge), Canyon district, Grant County; Western Dredging Co. (connectedbucket dredge), Canyon district, Grant County; and Porter & Co. (connected-bucket dredge), Granite district, Grant County. six operators supplied 58 percent of the total gold produced in Oregon in 1939.

Reports on the use of quicksilver at Oregon placer mines indicate that 1,400 pounds were consumed during 1939. All the connectedbucket dredges used quicksilver, and they averaged 53 ounces of gold recovered per pound consumed. The average consumption of quicksilver by all dragline dredges was 1 pound per 42 ounces of gold recovered, but several of the dredges did not amalgamate; those that did use quicksilver consumed 1 pound per 16 ounces of gold saved.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore and old tailings sold or treated in Oregon in 1939, with content in terms of recovered metals

Source	Material so	ld or treated	Gold	Silver	G		
	Ore	Old tailings		Silver	Copper	Lead	
Dry and siliceous gold ore Dry and siliceous gold-silver ore	Short tons 65, 174 87	Short tons 3,764	Fine ounces 32, 518 75	Fine ounces 93, 268 1, 526	Pounds 96, 000	Pounds 30, 000	
Total, lode mines	65, 261	3, 764	32, 593 60, 779	94, 794 10, 594	96, 000	30, 000	
Total, 1938	65, 261 61, 278	3, 764 13, 658	93, 372 81, 729	105, 388 100, 507	96, 000 76, 000	30, 000 46, 000	

METALLURGIC INDUSTRY

Of the 69,025 tons of ore (including 3,764 tons of old tailings) sold or treated in Oregon in 1939, Baker County produced 38,632 tons (including 1,275 tons of old tailings), or 56 percent; Josephine County, 15,889 tons (including 2,284 tons of old tailings), or 23 percent; and Grant County 11,222 tons (ore), or 16 percent. Of the State total ore and old tailings, 56 percent was treated in concentrating mills, most of which used flotation; 32 percent was treated in amalgamation and cyanidation mills, with or without concentration equipment; and 12 percent was shipped crude to smelters. Sixty-four percent of the total lode gold was recovered ultimately by the smelting of concentrates; 20 percent by direct smelting of ore; 10 percent as bullion by cyanidation of ore, concentrates, and old tailings; and 6 percent by amalgamation of ore and old tailings. All material requiring smelting was shipped out of the State, as Oregon has no smelters.

Data furnished by operators of gold and silver mills show that 2,389 pounds of 91-percent sodium cyanide were consumed in recovering 303 ounces of gold and 161 ounces of silver from 3,439 tons of old tailings, and 156 pounds of quicksilver were used in the recovery of 1,971 ounces of gold and 383 ounces of silver from 4,422 tons of ore.

Mine production of metals in Oregon in 1939, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead
Ore and old tailings amalgamatedOre, concentrates, and old tailings cyanided.	Short tons 4, 747 17, 468	Fine ounces 2, 048 3, 087	Fine ounces 516 400	Pounds	Pounds
Concentrates smelted: Flotation. Gravity Ore smelted	2, 030 91 8, 060	20, 549 260 6, 649	82, 398 642 10, 838	88, 400 7, 600	13, 700 2, 700 13, 600
Total, lode mines Total, placers		32, 593 60, 779	94, 794 10, 594	96,000	30,000
Total, 1938		93, 372 81, 729	105, 388 100, 507	96, 000 76, 000	30, 000 46, 000

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Oregon in 1939, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

<u> </u>									
	Materia	l treated		ered in lion	Concen	trates sm	elted and	l recover	ed metal
County	Ore 1	Old tailings	Gold	Silver	Con- cen- trates pro- duced	Gold	Silver	Copper	Lead
BakerCurry	Short tons 2,026	Short tons	Fine ounces 804 3	Fine ounces 161	Short tons 20	Fine ounces 40	Fine ounces 40	Pounds	Pounds
Douglas Grant Jackson Josephine Lane Linn	387 1, 333	300 25	29 133 774 283 8 12	3 33 246 66 3	4 17 3	6 87 17	11 69 5		
Marion	4, 422 6, 101	325 360	2,048 2,952	516 608	44 43	150 217	125 258	716	700
	<u> </u>	CYAN	IDATIO	ON MII	LLS	1	<u> </u>	l	
Baker Curry Frant Jackson Josephine	819 212	1, 275 180 1, 984	157 49 117 27 2, 737	10 11 23 18 338					
Total, 1938	14, 029 9, 243	3, 439 11, 950	3, 087 2, 611	400 592					
Grand total: 1939 1938	18, 451 15, 344	3, 764 12, 310	5, 135 5, 563	916 1, 200	44 43	150 217	125 258	716	700

¹ Figures under "Ore" for cyanidation mills include both raw ore and concentrates cyanided, but not raw ore concentrated before cyanidation of concentrates.

Mine production of metals from concentrating mills in Oregon in 1939, by counties, in terms of recovered metals

	Materia	l treated	Concentrates smelted and recovered metal						
County	Ore Old tailings		Concen- trates produced	Gold	Silver	Copper	Lead		
BakerGrantJackson	Short tons 32, 885 4, 675 1, 200	Short tons	Short tons 1, 669 362 46	Fine ounces 19, 431 1, 122 106	Fine ounces 80, 021 2, 393 501	Pounds 88,000 400	Pounds 12, 100 1, 600 2, 000		
Total, 1938	38, 760 44, 660	1,348	2, 077 1, 991	20, 659 19, 555	82, 915 85, 057	88, 400 72, 604	15, 700 44, 595		

Gross metal content of concentrates produced from ores mined in Oregon in 1939, by classes of concentrates

	Concen-	Gross metal content						
Class of concentrates	trates	Gold	Silver	Copper	Lead	Zine		
Dry gold	Short tons 452 1,666 3	Fine ounces 1, 378 19, 415 16	Fine ounces 3, 019 79, 978 43	Pounds 1, 397 89, 502 277	Pounds 5, 525 19, 549 534	Pounds 1, 664		
Total, 1938	2, 121 2, 034	20, 809 19, 772	83, 040 85, 315	91, 176 75, 166	25, 608 69, 873	1,664		

Mine production of metals from Oregon concentrates shipped to smelters in 1939' in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead
Baker Grant Jackson Josephine	Short tons 1,689 366 63 3	Fine ounces 19, 471 1, 128 193 17	Fine ounces 80, 061 2, 404 570	Pounds 88, 000 400	Pounds 12, 800 1, 600 2, 000
Total, 1938	2, 121 2, 034	20, 809 19, 772	83, 040 85, 315	88, 400 73, 320	16, 400 44, 59
BY CLASSES	OF CONC	ENTRATE	s		
Dry gold Copper Lead-copper	452 1,666 3	1, 378 19, 415 16	3, 019 79, 978 43	87, 800 200	4, 30 11, 80 30
	2, 121	20, 809	83, 040	88, 400	16, 40

Gross metal content of Oregon crude ore shipped to smelters in 1939, by classes of ore

Class of ore	Ore		Gross metal content						
	Ole -	Gold	Silver	Copper	Lead	Zine			
Dry and siliceous gold Dry and siliceous gold-silver	Short tons 7, 973 87	Fine ounces 6, 574 75	Fine ounces 9, 312 1, 526	Pounds 10, 093	Pounds 20, 703	Pounds 3, 684			
Total, 1938	8, 060 1, 420	6, 649 2, 063	10, 838 5, 691	10, 093 3, 464	20, 703 1, 997	3, 684			

Mine production of metals from Oregon crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Ore	Gold	Silver	Copper	Lead
BakerCrook	Short tons 2, 446 12	Fine ounces 1, 562 4	Fine ounces 3, 811 6	Pounds 4,000	Pounds 5, 20
Curry Douglas Grant Jackson	5, 4 5, 341 8	5 11 4, 630 125	15 6, 630 25	1,600	2, 40
Josephine Lane	20 224	61 251	15 334	2,000	6,00
Total, 1938	8,060 1,420	6, 649 2, 063	10, 838 5, 691	7, 600 2, 680	13, 60 1, 40
BY CL	ASSES OF	ORE			
Dry and siliceous gold	7, 973 87	6, 574 75	9, 312 1, 526	7, 600	13, 600
	8,060	6, 649	10, 838	7,600	13, 60

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, and lead in Oregon in 1939, by counties and districts, in terms of recovered metals 1

G	Mines pr	oducing 2	Ore and old		Gold		Silver (lode Copper		Lead	Total value
County and district 1	Lode	Placer	tailings	Lode	Placer	Total	and placer) 3	Copper	Leau	10tai vaiue
Baker County:			Short tons	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Pounds	Pounds	
Baker	3	6	37	38	173	211	42			\$7,414
Bull Run	. 2	(4)	11	15	17	32	8	100		1, 136
Connor Creek		. 2	ľ		267	267	41			9, 373
Cornucopia		5	32, 972	19, 743	357	20, 100	80, 916	88, 700	12, 800	768, 251
Cracker Creek		1	1, 247	516	3, 201	3, 717	1, 335			131,001
Eagle Creek		(4)	101	19	8	27	5			948
Greenhorn 8		1 2	iii	118	17	135	420	2, 400	4, 500	5, 47
Hereford		5			131	131	34	_,		4, 60
Mormon Basin 6	3	l ă	145	122	724	846	476			29, 93
Rock Creek		40	331	203	30	233	1.801		700	9, 41
		(4)	981	450	39	489	83			17, 17
Sparta		(9)	801	400	16, 918	16, 918	3,874			594, 76
Sumpter	·- <u>-</u> -	0					109	800		15, 13
Virtue	4	(4)	721	414	14	428 451	90			15, 84
Weatherby	6	1	1,975	356	95	401	90			10,01
loos County:	l				١					56
Coos Bay		(4)			16	16	1			2.94
Johnson Creek		4			84	84	10			
Randolph		1			13	13	4			45
Rock Creek		(4)			4	4	1			14
Crook County: Maury Mountain	2		. 12	4		. 4	6			14
Curry County:							i			
Chetco		. 1			15	15	1			52
China Diggings		1	181	52		52	11			1,82
Gold Beach		(4)			135	135	17			4,73
Mule Creek		1 1			3	3				10
Port Orford		9			32	32	5			1, 12
Sixes		1 3	5	5	12	17	3			59
Douglas County:		1	1		1					
Agness	1	(4)	1	1	1	-1	1			3
Canyonville		1 19 1			3	3	l i			10
		1 2	5	29	142	171	17			5, 99
Cow Creek	1		0	29	142	111	11			10
Elk Creek		(4)								1.44
Green Mountain		. 2			41	41	6			1.12
Mount Reuben 7		. 1			32	32	1 2			1, 41
Myrtle Creek	1	1	4	11	29	40	18			52
Ollala		. 2			15	15	1			
Riddle		. 2		.	34	34	2			1, 19
Frant County:		i					1			l _
Black Butte		. 1		.	. 2	2				7
Canyon	4	10	121	54	13, 374	13, 428	1,402			470, 93
Desolation 8		. 4	l		28	28	5			98
Granite	5	i ,	10, 828	5, 823	9, 414	15, 237	10, 965	1, 800	4,000	541, 11

Greenhorn ⁶ North Fork John Day	3	4	214	88	68 23	156 23	58	200		5, 520 809
Quartzburg	4	3	57	36	3, 309	3, 345	538			117, 440
Susanville	(%)	3	(9)	(9)	430	16 430	10 70			10 15, 098
Harney County: Idol City		. 1			3	3				105
Ashland	3	1	587	352	. 8	360	157			12, 707
Elk Creek	(9)	(4)	(9) 00.	(9)	ğ	10 9	10 1		(9)	10 316
Foots Creek		8			447	447	61			15, 686
Gold HillGreenback ¹¹	10	10	567	243	2, 635	2,878	327			100, 952
Jacksonville	4	1	184 20	157	19 365	176 373	33 56			6, 182 13, 093
Upper Applegate	14	15	173	246	4, 168	4,414	657			154, 936
Josephine County:			2.0	-10	2,200	-,				101,000
Althouse	(9)	9	(9)	(9)	181	10 181	10 27			10 6, 353
Galice	5	14	13, 670	2, 722	778	3, 500	306			122, 708
Greenback 11	2 5	8	103 1, 814	26 149	290 963	316 1, 112	40 263			11, 087 39, 099
Illinois River	(9)	8	(9)	(9) 148	366	10 366	10 43			10 12, 839
Lower Applegate	5	(9) ັ	239	168	(9)	12 168	12 43			12 5, 909
Mount Reuben 7	1		8	8		8	3			282
WaldoLane County: Bohemia		6	249		856	856	. 59			30, 000
Linn County: Quartzville	3		249 43	259 12	8	259 20	337	2,000	6,000	9, 784 703
Malheur County:			40	12	۰	20	*			700
Malheur.		2			221	221	24			7, 752
Mormon Basin 6 Snake River		2			63	63	12			2, 213
Marion County:		1			7	7	2			246
Gold Butte	1		40	2		2	1			71
North Santiam	l	(4)			2	2				70
Morrow County: Emberger		1			1	1				35
Umatilla County: Desolation 8		1			32	32	6			1, 124
Camp Carson		2			19	19		· ·		000
Grande Ronde		ĭ			3	18	1			666 106
Wallowa County: Wallowa		(4)			ı 4	4	2			141
Wheeler County: Spanish Gulch		1			2	2	_ 			70
Combined districts 18	6	4	1, 269	145	76	221	535		2,000	8, 193
Total Oregon	116	201	69, 025	32, 593	60, 779	93, 372	105, 388	96,000	30,000	3, 350, 950
	l			1			250,000	30,000	30,000	2, 330, 000

¹ Only those districts shown separately for which Bureau of Mines is at liberty to publish figures; other producing districts listed in footnote 13 and their output included under "Combined districts."

2 Excludes itinerant prospectors, snipers, high-graders, and others who gave no evidence of legal right to property.

³ Source of total silver as follows: 94,794 ounces from lode mines and 10,594 ounces from

⁴ Output from property not classed as a "mine."
Greenhorn district lies in both Baker and Grant Counties.
Mormon Basin district lies in both Baker and Malheur Counties.

⁷ Mount Reuben district lies in both Douglas and Josephine Counties.
8 Desolation district lies in both Grant and Umatilla Counties.
9 Included under "Combined districts."
10 Exclusive of lode output, which is included under "Combined districts."
11 Greenback district lies in both Jackson and Josephine Counties.
12 Exclusive of placer output, which is included under "Combined districts."
13 Includes following districts: Homestead (all placer) in Baker County; Susanville (lode) in Grant County; Elk Oreck (lode) in Jackson County; Althouse (lode), Illinois River (lode), and Lower Applegate (placer) in Josephine County.

BAKER COUNTY 1

Connor Creek district.—Lessees working the Connor Creek placer mine in 1939 produced 138 ounces of gold and 20 ounces of silver from

1,850 cubic yards of gravel.

Cornucopia district.2—The Cornucopia mine, operated by Cornucopia Gold Mines, was the outstanding producer in Oregon in 1939. The content of its output of concentrates and smelting ore was 19,579 ounces of gold, 80,613 ounces of silver, 90,080 pounds of copper, and 19,675 pounds of lead. The mine was the principal source of each of these four metals and, in terms of recovered metals, supplied 60 percent of the lode gold produced in the State, 21 percent of the total gold, 76 percent of the total silver, 92 percent of the copper, and 39 percent of the lead. The company sent 32,870 tons of gold ore to its 150-ton flotation mill and shipped 1,666 tons of copper concentrate and 20 tons of crude ore to a smelter. An extensive construction campaign resulted in the building, during the year, of workmen's houses, a substation, bunk houses, a recreation hall, and a change house. The company announced the acquisition of the Queen of the West group of 13 quartz claims and the Panter group of 3 claims in 1939. The Forest Queen mine was worked from July until the end of the year. Among the placers in operation along Pine Creek in the Cornucopia district were the Boulder Creek, Lillard (formerly Ingram), Pebble, and Cold Springs mines.

Cracker Creek district.—The dragline dredge of Consuelo Oregon Mines was the largest gold producer in the Cracker Creek district in 1939. A small quantity of gold ore derived from dumps and clean-up work in old mills at the E and E and North Pole mines was shipped for smelting. An examination and sampling campaign covering the North Pole, E and E, Tabor Fraction, and Columbia mines, undertaken by the Campbell Oregon Gold Mining Corporation in 1938, was terminated September 30, 1939, without production, and the

lease surrendered in October.

Greenhorn district.—The Snow Creek lode mine was the principal producer in the Greenhorn district in 1939. Some changes were made in the mine flotation mill, but most of the output came from direct

smelting ore.

Mormon Basin district.—The Oregon Mining Co. operated a dragline dredge on Burnt River 5 miles below Bridgeport during 1939 and produced 457 ounces of gold and 74 ounces of silver. Small shipments of smelting ore recovered from the clean-up of old mills and dumps were made from the Humboldt, Rainbow, and Sunday Hill mines.

Rock Creek district.—Lessees of the Elkhorn mine in 1939 treated 125 tons of gold ore by amalgamation and concentration and shipped 20 tons of concentrates for smelting; 43 ounces of gold were recovered by amalgamation and 40 ounces by smelting of concentrates. Mill cleanings were shipped from the Highland mine.

¹ See also State of Oregon Department of Geology and Mineral Industries, Oregon Metal Mines Handbook: Bull. 14-A, 1939, 125 pp.
Lorain, S. H., Gold Mining and Milling in Northeastern Oregon: Bureau of Mines Inf. Circ. 7015, 1938,

⁴⁶ pp.

3 See also Goodspeed, G. E., Geology of the Gold Quartz Veins of Cornucopia: Am. Inst. Min. and Met. Eng., Min. Technol., vol. 3, No. 2. March 1939, pp. 15-18.

Sparta district.—Lessees working the Macy mine in 1939 treated 969 tons of gold ore by amalgamation and recovered 446 ounces of

gold and 72 ounces of silver.

Sumpter district.—The Sumpter Valley Dredging Co., the largest producer of placer gold in Oregon in 1939, treated 3,291,663 cubic yards of gravel and recovered 11,289 ounces of gold and 2,523 ounces of silver; the company dredge was of the connected-bucket electric-power type with seventy-two 9-cubic foot buckets. Little, Harris & Wolfinger worked a dragline dredge with a 1½-cubic yard bucket throughout the year and recovered 3,083 ounces of gold and 748 ounces of silver from 590,149 cubic yards of gravel. The Nutting Dredging Co., which began operations April 6, 1939, with a 1¾-cubic yard bucket dragline, handled 501,144 cubic yards of gravel during the remainder of the year to recover 2,472 ounces of gold and 584 ounces of silver.

Virtue district.—Work at the Columbian mine in 1939 yielded 623 tons of smelting ore containing 338 ounces of gold and 99 ounces of

silver.

CURRY COUNTY

China Diggings district.—Operations begun August 15, 1939, at the Robert E mine continued during the rest of the year; cyanidation of 180 tons of old tailings yielded 49 ounces of gold and 11 ounces of silver.

GRANT COUNTY 8

Canyon district.—Ferris & Marchbank became the Ferris Mining Co. November 1, 1939. The organizations operated a dragline dredge equipped with a 4-cubic yard Diesel-electric dragline excavator and handled 1,943,200 cubic yards of gravel during 1939 to recover 6,747 ounces of gold and 697 ounces of silver. This is one of the largest (if not the largest) dragline-dredge projects in the world. The hydraulicking of 10,000 cubic yards of gravel at the Quartz Gulch mine resulted in the production of 70 ounces of gold and 10 ounces of silver. The Western Dredging Co. operated its connected-bucket dredge on the John Day River near John Day throughout the year; the dredge

was equipped with seventy-two 6-cubic foot buckets.

Granite district.—The Oroplata Mining Co. worked the Milwaukee Placers in the Ten Cent section of the Granite district throughout 1939; the site of Lawton, an abandoned mining town, formed part of the area dredged. The company used a Diesel-powered washing plant and a dragline excavator with a 2½-cubic yard bucket and washed 940,000 cubic yards of gravel to recover 3,661 ounces of gold and 901 ounces of silver. Porter & Co. operated an electric dredge with sixty-two 4½-cubic foot buckets; the company property lies on Bull Run, Clear, Granite, Olive, and Crane Creeks. Work was begun at the Bellevue mine October 1, and 87 tons of ore containing 75 ounces of gold and 1,526 ounces of silver were shipped before the end of the year. The Constitution mine was worked throughout 1939; part of the ore was treated at the company flotation mill, and the remainder was shipped direct to a smelter. The mill burned November 2. The Independence Cougar mine, which had only a small output

³ See also works cited in footnote 1.

in 1938, made a production in 1939 that ranked it as the second-largest lode gold and third-largest silver producer in Oregon. Lessees on the property completely rebuilt the old metallurgical plant as a flotation mill with a daily capacity of 75 tons. Approximately 4,000 tons of ore were treated by flotation to produce 290 tons of concentrates; the concentrates, containing 789 ounces of gold and 773 ounces of silver, and 5,049 tons of crude ore, containing 3,820 ounces of gold and 2,812 ounces of silver, were shipped to a smelter.

Quartzburg district.—The H. F. England Co. operated throughout

1939 a dragline dredge, using a dragline excavator with a 1½-cubic yard bucket, on Dixie Creek, 2 miles from Prairie City.

Susanville district.—The Timms Gold Dredging Co., which had operated since November 1933 on the Middle Fork of John Day River near Galena, worked out its dredgeable ground in 1939 in about 2 months. The company spent much of the year testing beds of gravel and rebuilding the dredge.

JACKSON COUNTY

Ashland district.—Development work was continued at the Ashland mine throughout 1939; the resulting gold ore was treated by amalgamation and concentration. A small output of gold ore was reported from the Free Gold mine.

Elk Creek district.—Production was resumed at the Buzzard mine by Al Sarena Mines, Inc., November 15, 1939; the ore was treated

by table concentration.

Foots Creek district.—William von der Hellen Mines abandoned operation of the Lance mine March 24, 1939, after washing 29,494 cubic yards of gravel to recover 335 ounces of gold and 44 ounces of silver in a stationary washing plant to which the gravel was delivered

from an open-cut by power shovel and trucks.

Gold Hill district.—The Lucky Bart mine, following lessee operation during the early months of 1939, was taken over by the Lucky Eagle Mining Co. May 1; production for the year was 122 ounces of gold and 33 ounces of silver recovered by amalgamation. Gold Hill Placers operated a washing plant, mounted on caterpillar treads, on Sardine Creek from April 20 until the end of 1939. The Pleasant Creek Mining Corporation operated a sluice-type connected-bucket dredge and produced a substantial quantity of gold during the year.

Upper Applegate district.—The B-H Co. continued to operate its dragline dredge on West Fork of Forest Creek in 1939, except for a shut-down from September 3 until November 1. A dragline dredge was worked for 5 months by the Crescent Pacific Mining Co. on the Applegate River. From June 1 until September 1 M. C. Lininger & Son operated a stationary washing plant fed by a gasoline shovel and trucks and washed 25,360 cubic yards of gravel to recover 195 ounces The Glide Foundation operated a Diesel-powered dragline of gold. dredge with a 14-cubic yard bucket on Poorman's Creek from January 1 until May 1.

JOSEPHINE COUNTY

Galice district.—The Lewis Investment Co. operated the Benton mine throughout 1939 and was the third-largest producer of lode gold in the State. The ore was treated in a cyanide plant having a daily capacity of 50 tons. A new road, completed by the Civilian Conservation Corps from a point near Galice to the mine, makes year-round trucking possible.

Grants Pass district.—A lessee hydraulicked a substantial quantity of gravel at the Forest Queen mine and Boulder claim on Louse Creek

during 1939.

Greenback district.—P. B. Wickham, lessee of the Greenback mine, reopened the property and rebuilt the mill during 1939; the only output from the property resulted from operations by other lessees who cyanided old tailings to recover 74 ounces of gold and 85 ounces of silver. From January 10 to April 15, while water was available, 20,000 cubic yards of gravel were hydraulicked at the Blue Channel mine. Gold was produced at the Columbia mine by hydraulicking

when water was sufficient for operation.

Lower Applegate district.—The Powell Creek Mining Co. worked the Bonanza mine from May 1, 1939, until the end of the year. Including lessee output, 139 tons of gold ore were treated by amalgamation and concentration at the nearby Humdinger mill to recover 40 ounces of gold by amalgamation and 2 tons of concentrates. The concentrates, containing 14 ounces of gold, and 20 tons of crude ore, containing 61 ounces of gold, were shipped to a smelter. The Humdinger mine was operated intermittently during 1939; 53 tons of ore amalgamated yielded 30 ounces of gold and 6 ounces of silver.

Waldo district.—At the Esterly mine 75,000 cubic yards of gravel were hydraulicked to recover 421 ounces of gold and 25 ounces of silver during 1939. A substantial quantity of gold was produced by

hydraulicking at the Platurica (Plataurica) mine.

LANE COUNTY

Bohemia district.—A small shipment of smelting gold ore was made from the Helena mine in 1939.

MALHEUR COUNTY 4

Malheur district.—A dragline dredge was operated on Quartz Gulch three-fourths mile south of Malheur City during 1939.

OTHER COUNTIES

Small outputs in 1939 were reported also from Coos, Crook, Douglas, Harney, Linn, Marion, Morrow, Umatilla, Union, Wallowa, and Wheeler Counties.

Details of production by counties and districts are given in the

preceding table.

⁴ See also works cited in footnote 1.

GOLD, SILVER, COPPER, AND LEAD IN SOUTH DAKOTA

(MINE REPORT)

By Chas. W. HENDERSON AND A. J. MARTIN

SUMMARY OUTLINE

Page	Page
Summary 433	Mining and metallurgic industry 435
Calculation of value of metal production 433	Metallurgic recovery 435
Mine production by counties 435	Review by counties 436

Metal mining in South Dakota is confined to a small area comprising parts of Custer, Lawrence, and Pennington Counties in the group of mountains known as the Black Hills. Gold is the chief metal produced and gold mining the principal mineral industry of the State. Gold was first discovered in South Dakota on French Creek, Custer County, in 1875. In 1939 the recovered output of gold in the State was the highest for any one year during the period 1876-1939; it totaled 618,536 fine ounces valued at \$21,648,760, an increase of 4 percent over 1938, the former record year. Besides gold, South Dakota in 1939 produced 167,584 fine ounces of byproduct silver valued at \$113,754. No recoverable copper has been produced in the State since 1918 and no lead since 1935. As the record gold production of 1939 indicates, operations at the principal producing mines were maintained at close to capacity throughout the year. The Homestake mine at Lead, Lawrence County, the largest producer of gold in the United States, yielded 92 percent of the State output of gold; other mines in Lawrence County—chiefly the Bald Mountain Mining Co. group at Trojan, the Maitland in the Maitland district, and the Gilt Edge in the Bear Butte district—contributed most of the remainder. The only sizable producer outside of Lawrence County was the Golden Slipper mine in the Hill City district, Pennington County. The output of gold and silver from Custer County came from placer mines on French Creek.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zinc *
1935	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0.71875 .7745 .7735 4.646+ 5.678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046	\$0.044

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.
¹ 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.
² Yearly average weighted price of all grades of primary metal sold by producers.
² \$0.64846464.

Except for a slight drop in 1937 from 1936, gold production in South Dakota has increased annually over the 5 years ended with 1939. The quantity of silver recovered varied somewhat in proportion to the gold produced in the individual years but also increased over the period.

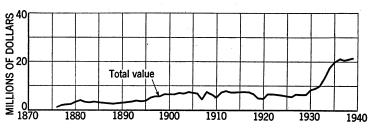


FIGURE 1.—Total value of mine production of gold and silver in South Dakota, 1876-1939.

Mine production of gold, silver, copper, and lead in South Dakota, 1935-39, and total, 1876-1939, in terms of recovered metals ¹

Year	Mines produc- ing		Ore (short	Gold (lode a	nd placer)	Silver (lode	and placer)
	Lode	Placer	tons)	Fine ounces	Value	Fine ounces	Value
1935. 1936. 1937. 1938. 1939.	15 12 14 11 18	199 130 73 71 80	1, 487, 235 1, 549, 146 1, 597, 178 1, 586, 181 1, 632, 778	567, 230. 20 586, 353. 40 581, 544. 00 594, 847. 00 618, 536. 00	\$19, 853, 057 20, 522, 369 20, 354, 040 20, 819, 645 21, 648, 760	151, 047 144, 448 139, 638 162, 295 167, 584	\$108, 565 111, 875 108, 010 104, 918 113, 754
1876-1939			(1)	18, 850, 644. 00	441, 369, 749	8, 999, 991	6, 402, 381

Year	Coj	pper	Le	Motel	
T ear	Pounds	Value	Pounds	Value	Total value
1935 1936			7,000	\$280	\$19, 961, 902 20, 634, 244
1937 1938 1939					20, 462, 050 20, 924, 563 21, 762, 514
1876-1939	195, 691	\$34, 598	575, 313	34, 820	447, 841, 548

¹ For total production of gold and silver in South Dakota, by years, see Mineral Resources, 1913, pt. I, p. 42; Mineral Resources, 1922, pt. I, p. 194; and subsequent volumes of Mineral Resources and Minerals Yearbook.

³ Figures not available.

Gold and silver produced at placer mines in South Dakota, 1935-39, in terms of recovered metals

Year	Go	ld	Silv	Total	
	Fine ounces	Value	Fine ounces	Value	value
1935. 1936. 1937. 1938. 1939.	936. 86 346. 80 1, 010. 60 1, 069. 00 622. 00	\$32, 790 12, 138 35, 371 37, 415 21, 770	103 31 75 82 47	\$74 24 58 53 32	\$32, 864 12, 162 35, 429 37, 468 21, 802

MINE PRODUCTION BY COUNTIES

Mine production of gold and silver in South Dakota in 1939, by counties, in terms of recovered metals

County		s pro-	Gold (lode	and placer)	Silver (lode	and placer)	Total value
·	Lode	Placer	Fine ounces	Value	Fine ounces	Value	value
Custer Lawrence Pennington	10 8	16 16 48	268. 00 615, 422. 00 2, 846. 00	\$9, 380 21, 539, 770 99, 610	22 167, 098 464	\$15 113, 424 315	\$9, 395 21, 653, 194 99, 925
	18	80	618, 536. 00	21, 648, 760	167, 584	113, 754	21, 762, 514

Gold and silver produced at placer mines in South Dakota in 1939, by counties and methods of recovery, in fine ounces, in terms of recovered metals

County	Sluicing and hydraulic		Drift mining I		Dry-land dredges 1		Total	
	Gold	Silver	Gold	Silver	Gold	Silver	Gold	Silver
Custer Lawrence Pennington	26. 00 123. 00 121. 00	4 14 5	9. 00 15. 00	1 3	233. 00 36. 00 59. 00	17 2 1	268. 00 174. 00 180. 00	22 19 6
Total, 1938	270. 00 176. 98	23 13	24. 00 22. 47	4	328, 00 869, 55	20 68	622. 00 1, 069. 00	47 82

¹ Dragline and power-shovel excavators with sluices or special amalgamators.

MINING AND METALLURGIC INDUSTRY

The total ore mined and treated by producers of lode gold and silver in South Dakota in 1939 was 1,632,778 tons yielding in recovered metals 617,914 fine ounces of gold and 167,537 fine ounces of silver compared with 1,586,181 tons yielding 593,778 ounces of gold and 162,213 ounces of silver in 1938. An analysis of methods of treatment shows that 1,400,015 tons were treated by amalgamation followed by cyanidation of sands and slimes; 170,270 tons by cyanidation only or by roasting followed by cyanidation; 47,860 tons by jigging, amalgamation of the jig concentrates, and all-slime cyanidation of the remaining pulp; 508 tons by amalgamation only; 12,900 tons by amalgamation and flotation concentration (101 tons of concentrates containing 348.40 ounces of gold and 67 ounces of silver were shipped to smelters); 1,143 tons by flotation followed by cyanidation of the concentrates; and 82 tons (containing 1,250.90 ounces of gold and 443 ounces of silver) were shipped crude to smelters. Operating details at both lode and placer mines are given in the following review by counties.

METALLURGIC RECOVERY

Gold and silver bullion produced at mills in South Dakota by amalgamation, 1935-39

Year	Ore treated	Gold in bullion	Silver in bullion	Quicksilver used
1935	Short tons 1, 382, 774 1, 393, 450 1, 414, 772 1, 430, 391 1, 461, 283	Fine ounces 335, 553. 97 330, 052. 08 329, 975. 10 328, 044. 50 336, 424. 93	Fine ounces 75, 858 66, 585 66, 640 52, 602 64, 710	Pounds 15, 550 15, 093 10, 178 7, 744 9, 221

Gold and silver bu	ullion produced	at mills i	n South	Dakota b	y cyanidation,	1935-39
--------------------	-----------------	------------	---------	----------	----------------	---------

		Mater	ial treated	Gold in	Silver in		
Year	Crude ore	Concen- trates	Sands and slimes	Total	bullion product	bullion product	cyanide used ¹
1935	Short tons 104, 431 155, 652 182, 406 155, 667 170, 270	Short tons	Short tons 1, 380, 128 1, 382, 676 1, 394, 252 1, 416, 899 1, 443, 548	Short tons 1, 484, 559 1, 538, 328 1, 576, 658 1, 572, 566 1, 613, 879	Fine ounces 230, 653, 47 255, 849, 83 249, 980, 70 262, 913, 21 279, 889, 77	Fine ounces 73, 558 77, 811 72, 833 98, 777 102, 317	Pounds 686, 625 749, 923 786, 072 860, 762 3 887, 888

1 In terms of 96- to 98-percent strength.

REVIEW BY COUNTIES

CUSTER COUNTY

The Sterling Mining Co. operated its 1½-cubic yard dragline and screening and sluicing plant on the Durst ranch on French Creek 1 mile west of Custer from April to June 1939. Harry E. Mosher worked the Rhodes placer ground on French Creek 1 mile east of Custer from May 1 to October 15, using a ¾-cubic yard dragline and sluices. Drift mining was done at the Plaza Bar on French Creek 2½ miles above Custer, operated intermittently by Max Husaboe from April 13 to October 30. Other placer miners sluicing and panning along the creek recovered some gold. No production was made from lode mines in Custer County during the year.

LAWRENCE COUNTY

Homestake mine.—The Homestake mine has been producing almost continuously since 1876 and has been operated since 1877 by the Homestake Mining Co., which at first owned only the Homestake and Golden Star claims but has since acquired and consolidated into one group numerous other claims which, with the first two, now constitute the Homestake mine. Development of the mine from the 3,200- to the 5,000-foot level has been in progress since 1932, and two shafts equipped for an ultimate depth of 5,000 feet are being sunk to replace other shafts, one of which was still in use in 1939. One of the new shafts, the Ross, has been in operation since 1934 and had been completed to the 4,100-foot level at the end of 1938; the other, the Yates, was begun in 1938. The annual report of the general manager of the Homestake Mining Co. for the year ended December 31, 1939, says—

Operations during 1939 were normal in all departments. Ore production from the mine was 1.62 percent higher than in 1938 and the gross income for gold and silver produced was 3.31 percent higher. It is expected that production for 1940 will be slightly lower than in the past year.

Operating expenses exclusive of taxes were slightly higher than in 1938. resulted largely from certain nonrecurring costs. Total taxes were \$3,132,512.11, which is slightly higher than in 1938. This amounted to \$2.24 per ton of ore mined.

There are 196,913 tons of broken ore remaining in shrinkage stopes. The reserve of developed ore is 18,395,991 tons. Of this reserve 7,653,400 tons are in the new ledge which has been under development for the past 3 years. This ore is materially lower in grade than that in the main ledges. Production

From 1,143 tons of ore treated by flotation.

Actually 1,675,500 pounds of calcium cyanide (48- to 49-percent strength) and 53,995 pounds of sodium cyanide (91-percent strength); all reduced to equivalent of 96- to 98-percent strength to conform with earlier use of figures for high-strength NaCN and KCN.

from this ledge began in 1939 and will be substantially increased in 1940. It is expected therefore that the grade of ore produced in 1940 will be slightly lower

than that for 1939.

The mine, treatment plants, and other surface plants are in excellent condition. All changes resulting from reconstruction of Cyanide sand plant No. 1 are completed. Improvements in the metallurgical plants which began with the construction of Cyanide sand plant No. 3 in 1933 have resulted in material economies in treatment cost.

Yates shaft construction has made excellent progress. In the shaft, 3,426 feet of pilot raises are completed of which 1,714.5 feet have been stripped to full size The hoist building, head frame, and crusher house are nearly and timbered. completed and installation of equipment is under way. It is expected that the shaft will be ready for operation soon after the middle of the year.

The winze from the 4,100-foot level was sunk to the 4,550-foot level and 543

feet of level development completed on the 4,550-foot level.

Precipitation was again below normal and power output from the hydroelectric

plants was the lowest on record.

A new sawmill was authorized and construction is under way. improvements in log-hauling equipment it was deemed advisable to locate the sawmill out of the forest, and a site at Spearfish, about 20 miles from Lead, was The new mill will probably be in operation in July 1940.

Ore milled, receipts, and dividends, Homestake mine, 1935-39 1

Year	Ore milled	Receipts for bul	lion product	
	(short tons)	Total	Per ton	Dividends
1935 1936 1937 1937 1938	1, 379, 163 1, 383, 929 1, 394, 773 1, 377, 314 1, 400, 015	\$19, 191, 013. 19 19, 506, 534. 78 19, 304, 076. 45 19, 284, 459. 67 19, 922, 964. 60	\$13. 9150 14. 0950 13. 8403 14. 0015 14. 2300	\$14, 064, 960 9, 041, 760 9, 041, 760 9, 041, 760 9, 041, 760

¹ From 1876 to 1939, inclusive, this mine yielded bullion and concentrates that brought a net return of \$379,997,979 and paid \$124,187,482 in dividends.

Interesting data regarding the extensive mining operations at the Homestake mine, published by the Homestake Mining Co. in 1938, include the following: In the mining of approximately 1,400,000 tons of ore annually approximately 600,000 tons of porphyry or waste rock must be handled to "back-fill" the stopes from which the ore is taken. To mine this ore, 1,554,117 pounds of 40-percent dynamite and approximately 773 miles of fuse are used; over 1,000,000 blasts were set off in 1937, and 11,000 feet of crosscut and 25,000 feet of main drift were run at a cost of \$15 per foot through waste rock never brought In addition, 2 miles of diamond drilling were done. to the surface. There were 490 drilling machines in service in the mine, and approximately 500,000 pounds of drill steel were required. In hauling the ore from the stopes to the shafts 73 miles of narrow-gage railroad track and 36 compressed-air locomotives were used. In 1937 the amount paid for labor alone was \$4,081,193.

In the course of mining and development in 1939 the company sank 1,714 feet of shaft, drove 33,592 feet of drifts and 11,744 feet of raises. and did 39,930 feet of diamond drilling. Surface treatment plants operated (besides the primary crushing plants at the hoists) comprised the South mill (the main secondary crushing, grinding, and amalgamating plant, with a capacity of 3,900 tons per 24 hours), cyanide sand plant No. 1, cyanide sand plant No. 3, and the refineryall at Lead; and the slime plant at Deadwood. Silver is parted from the gold in the refinery, and virtually pure metals are shipped to the

mint, the gold bars ordinarily ranging in fineness from 0.996 to 0.998 and the silver from 0.985 to 0.995. The mine produced more gold in

1939 than in any other year in its history.

Other mines.—The Bald Mountain Mining Co., the second-largest producer of gold and silver in South Dakota in 1939, operated its consolidated group of mines and cyanide mill at Trojan at an average rate of 336 tons of ore daily for 365 days. The 110-ton gas-fired rotary hearth furnace, installed in 1938 to treat the refractory sulfide ores not amenable to treatment by straight cyanidation, was reported to be working satisfactorily. The yield in recovered metals from 122,524 tons of ore treated in the mill and 74 tons of high-grade ore shipped to smelters was 29,279 fine ounces of gold and 37,132 fine ounces of silver, which together brought a net return of \$1,040,982 after deductions for transportation and mint and smelter charges. The ore treated in 1939 came from the Portland, Clinton, Empire, Two Johns, and Dakota claims and was brought to the mill by rail tramway and trucks. The company did 9,911 feet of development work in the mine during the year.

At the Maitland group 5½ miles northwest of Deadwood the Canyon Corporation continued operations at capacity throughout 1939, producing an average of 101 tons daily of refractory sulfide ores (commonly known as blue ores) for treatment in its 100-ton roast-cyanide mill. Besides gold and silver, the ores contain pyrite, silica, dolomite, and some undetermined arsenic mineral. The recovery was 11,820 fine ounces of gold worth \$413,700 and 2,012 fine ounces of silver worth \$1,366. Mine development work done totaled 4,090 feet and prospecting 3,463 feet. The mine is opened by a vertical shaft 600 feet

deep and by drifts and winzes.

The Gilt Edge-Dakota Maid group in the Bear Butte district was operated continuously in 1939 by Gilt Edge Mines, Inc. The mine is developed by two vertical shafts, 120 and 400 feet deep, and by 8,500 feet of drifts and tunnels. The ore is treated in the company 150-ton mill by jaw crushing, ball-mill grinding, classification, and jigging followed by continuous countercurrent decantation-cyanidation. The jig product, containing about 30 percent of the recoverable gold, is tabled and treated in an amalgam barrel, and the amalgam recovered

is melted with the precipitate.

The Black Hills Tin Co. treated 1,143 tons of ore from its property near Tinton in a 100-ton flotation mill, equipped with a cyanide unit to treat the concentrates, built in 1939 and operated from September 13 to November 30. The Frerichs Mining Co., operating a group of claims in Whistler Gulch 1½ miles from Deadwood, recovered some gold during the year from ore treated in a 50-ton cyanide mill on the property. Gold, Inc., operated the Minnesota group 4 miles northeast of Rochford on Gimlet Creek part of 1939 and shipped to the Denver Mint several lots of gold recovered by amalgamation. The property was taken over during the year by the G. F. G. Corporation, which continued developing the mine and did construction work on a new mill. Other small lode-gold producers in Lawrence County comprised the Golden Bottle and Ragged Top properties. Individuals cleaning up the soil underlying the old melting furnace and assay office at the Monarch mine recovered 34 fine ounces of gold.

The Driskill Co. handled about 8,400 cubic yards of gravel on the Little Tom placers on Potato Creek 2 miles east of Tinton with a

%-cubic yard power shovel and land dredge and recovered 36 fine ounces of gold and 2 fine ounces of silver. Sluicing at small placers near Deadwood and Tinton yielded some gold.

PENNINGTON COUNTY

Empire Gold Mines, Inc., operated its Golden Slipper mine and amalgamation-flotation mill 5 miles east of Hill City about 10 months in 1939, treating 40 to 50 tons daily. The Yellow Bird Mining & Milling Association completed a 50-ton flotation mill at the Yellow Bird group 4½ miles southwest of Rochford in the spring of 1939 and operated it intermittently until July 19, when operations were suspended owing to lack of ore. Inca Gold Mines, Inc., produced some gold from test runs of ore in its flotation mill on the Bessie B claims a short distance northwest of Mystic. Other producing lode properties, equipped with small amalgamating mills, included the Burlington and Gold Lode, 7 and 5 miles, respectively, northwest of Hill City; the Western Bell and James, south of Hill City; and the Shellerud, in the Hornblende district.

The Anchor Gold Mining Co. worked the Matt placer on Gold Run Creek from April 15 to June 15, 1939, with a 1½-cubic yard dragline and a portable land dredge on skids and handled 6,000 cubic yards of gravel. Individuals sluicing, drift mining, and panning, principally on Battle, Castle, Rapid, and Spring Creeks, continued to recover small lots of gold dust, most of which was sold to dealers or traded for

groceries at stores in the vicinity.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN TEXAS

(MINE REPORT)

By Chas. W. Henderson and A. J. Martin

SUMMARY OUTLINE

Page	
Summary 441 Calculation of value of metal production 441	Smelting and refining plants in Texas 443 Mines review by counties 443
Mine production 442	Withes leview by counties
Ore classification 442	

From 1885 through 1939 silver has been the principal metal produced in Texas, and most of the output has come from the Presidio mine at Shafter, Presidio County. Recovery of some gold and lead with the silver has made this mine the largest producer of these metals also in the State. The other producers of more than 1,000 ounces of silver in 1939 were the Hazel mine in Culberson County and the Sancho Panza and Plata Verde mines in Hudspeth County; silvercopper ores from these three mines yielded 98 percent of the copper produced in the State during the year. Silver production decreased 6 percent in quantity from 1938 but only 2 percent in value owing to an increase of 10 percent in the Government price of newly mined domestic silver by an act of Congress approved July 6, 1939. As the new price of \$0.711+ per ounce was in effect for only the last 6 months of 1939, the increase in the average price (formerly \$0.646+) for the year was only 5 percent. The output of gold and lead decreased in both quantity and value, but that of copper increased. No zinc has been recovered from ores mined in Texas since 1917.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zine 3
1935	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0.71875 .7745 .7735 4.646+ 5.678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046 .047	Per pound \$0.044 .050 .065 .048

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jān. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.
² 1935-37: Yearly average weighted Treasury buying price for newly mined silver: 1938-39: Treasury buying price for newly mined silver.
² Yearly average weighted price of all grades of primary metal sold by producers.
² \$0.64646464.

MINE PRODUCTION

The following table shows the annual output of ore and the quantity and value of the metals recovered from Texas mines from 1935 to 1939, as well as the total metal production from 1885 to 1939.

Mine production of gold, silver, copper, lead, and zinc in Texas, 1935–39, and total, 1885–1939, in terms of recovered metals

Year	Ore (short	Gol	ld	Silver		
	tons)	Fine ounces	Value	Fine ounces	Value	
1935 1936 1937 1937 1938	72, 222 104, 990 120, 145 131, 002 141, 795	518 613 562 439 324	\$18, 130 21, 455 19, 670 15, 365 11, 340	1, 000, 960 1, 361, 459 1, 325, 660 1, 433, 008 1, 341, 945	\$719, 440 1, 054, 450 1, 025, 398 926, 389 910, 896	
1885-1939	(1)	7,423	193, 750	30, 091, 579	21, 151, 856	

• • • • • • • • • • • • • • • • • • •	Cor	per	Le	ad	Zi	Total value	
Year	Pounds	Value	Pounds	Value	Pounds	Value	1 otal value
1935 1936 1937 1938 1939	28, 000 53, 000 320, 000 32, 000 68, 000	\$2, 324 4, 876 38, 720 3, 136 7, 072	1, 043, 000 935, 000 790, 000 684, 000 454, 000	\$41, 720 43, 010 46, 610 31, 464 21, 338			\$781, 614 1, 123, 791 1, 130, 398 976, 354 950, 646
1885-1939	2 920	269, 957	2 4, 203	421, 541	2 744	\$106, 491	22, 143, 595

¹ Figures not available.

Mine production of gold, silver, copper, and lead in Texas in 1939, by counties, in terms of recovered metals

County	Mines producing	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)
Culberson Hudspeth Presidio	1 5 1	1, 742 1, 119 138, 934	1 323	32, 690 5, 507 1, 303, 748	24, 000 44, 000	1, 400 452, 600
Total, 1938	7 7	141, 795 131, 002	324 439	1, 341, 945 1, 433, 008	68, 000 32, 000	454, 000 684, 000

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Texas in 1939, with content in terms of recovered metals

Source	Mines produc- ing	Ore (short tons)	Gold (fine ounces)	Silver (fine ounces)	Copper (pounds)	Lead (pounds)
Dry and siliceous silver ore	5 2 1	141, 132 657 6	323.90	1, 339, 609 2, 209 127	35, 830 32, 170	452, 855 160 985
Total, 1938	1 7 7	141, 795 131, 002		1, 341, 945 1, 433, 008	68, 000 32, 000	454, 000 684, 000

¹A mine producing more than 1 class of ore is counted but once in arriving at total for all classes.

² Short tons.

SMELTING AND REFINING PLANTS IN TEXAS

In 1939 the American Smelting & Refining Co. continued to purchase gold, silver, copper, and lead ores and concentrates from operators in the Western States for reduction in its lead and copper smelters at El Paso. The copper and lead furnaces were in operation only part of the year owing to a sharp drop in receipts as a result of the termination on March 22, 1939, of the company contract under which it had treated the copper concentrates from the 15,000-ton Chino concentrator at Hurley, N. Mex., and of the closing on May 31, 1939, of the Pecos zinc-lead mine and 600-ton flotation mill in San Miguel County, N. Mex., formerly an important shipper of leadcopper-gold-silver concentrates to the plant. In addition to the lead and copper furnaces the plant contains a unit for the recovery of arsenic. The Nichols electrolytic copper refinery at El Paso, a unit of the Phelps Dodge Corporation, continued to treat copper anodes produced at the corporation Arizona smelters. The Illinois Zinc Co. smelter at Dumas treated concentrates from the Peru mill at Deming, N. Mex., from January 1 to March 25, 1939, when it was shut down; it remained idle the rest of the year. The American Smelting & Refining Co. zinc smelter at Amarillo was operated continuously on zinc ores and concentrates purchased from operators in Arizona, Colorado, Nevada, New Mexico, and Utah.

MINE REVIEW BY COUNTIES

Culberson County.—Ore from the Hazel mine northwest of Van Horn, worked under lease by A. P. Williams throughout 1939 except for 2 weeks in July, yielded all the metal output from Culberson County during the year. The ore contained principally silver, with a small content of copper, and was shipped crude to the El Paso smelter.

Hudspeth County.—A lessee began operating the Sancho Panza mine northeast of Allamoore on a small scale about September 1, 1939, and to the end of the year shipped silver-copper ore to the El Paso smelter. The Texas-Arizona Mining Co. shipped a few cars of silver ore containing a little copper from the Plata Verde mine southwest of Van Horn. Small quantities of copper and silver-copper ore from two prospects in the Allamoore district, one of which was called the Sancho Panza No. 2, and 6 tons of lead-silver ore from a property near Sierra Blanca were shipped to the El Paso smelter during the year.

Presidio County.—The American Metal Co. of Texas operated its Presidio silver mine and gravity concentration-cyanidation mill at Shafter continuously at capacity in 1939. The maximum quantity of ore the mill can handle in 24 hours is 400 tons and the average treated was 381 tons compared with 350 tons in 1938. However, the average grade of ore was lower in 1939 than in 1938, and the total quantity of silver recovered decreased slightly. The mine is developed by two vertical shafts, one 400 and one 700 feet deep; three underground subshafts, one 100, one 250, and one 450 feet deep; and nine levels with stopes, raises, and other openings totaling more than 50 miles of underground workings. Development work in 1939 totaled 7,884 feet of drifts and raises and 30,319 feet of diamond drilling. The minerals contained in the ore are argentite, cerargyrite, galena, anglesite, and cerussite. The ore is transported 1½ miles by rail and

aerial tramways from the shafts to the mill. It is crushed to onequarter-inch size and then slimed to 65 percent minus 200-mesh in ball mills, grinding in cyanide solution. Minus-6-mesh material is screened out before grinding and tabled for lead-silver concentrates. Part of the ball-mill circulating load is also passed over tables. The pulp is agitated in Pachuca tanks and then passes through a series of thickeners for washing and decantation. The last thickener underflow is filtered before going to waste. The silver-bearing solutions are clarified and precipitated, using zinc dust. In 1939 the mill produced 636 tons of table concentrates averaging 0.04 ounce of gold and 321.29 ounces of silver to the ton and 35.18 percent lead (wet assay). The concentrates and precipitates were shipped to the Carteret (N. J.) smelter. Electric power for the mine and mill is obtained from a 1,200-horsepower Diesel plant.

Production of silver from the Presidio mine, 1 1885-1939 2

Period	Mill heads		tent of mill (ounces)	Recovery of silver		
I enou	treated (short tons)	Per ton	Total	Percent	Ounces	
1885-1912 1913-26 1927 1928 1928 1929 Total, 1885-1929 1930 1934	450, 000 720, 000 48, 190 57, 475 54, 644 1, 330, 309 24, 985 46, 653 70, 166	25. 84 12. 00 22. 87 23. 17 19. 74 17. 88 16. 09 19. 70 15. 87	11, 628, 000 8, 640, 000 1, 102, 105 1, 331, 696 1, 078, 673 23, 780, 474 401, 926 919, 064 1, 113, 686	81. 68 83. 66 91. 41 91. 04 90. 30 83. 77 88. 79 91. 39 87. 84	9, 497, 757, 228, 222, 221, 007, 4331, 212, 344, 974, 044 19, 919, 797, 356, 858, 936, 936, 936, 936, 936, 9378, 300	
1936 1937 1938 1939 Total, 1885–1939	98, 499 110, 220 127, 574 138, 934 1, 947, 340	14. 41 12. 76 12. 76 11. 24	1, 419, 371 1, 406, 825 1, 627, 844 1, 561, 618	87. 48 86. 79 84. 72 83. 49	1, 241, 60 1, 220, 92 1, 379, 18 1, 303, 748	

Howbert, Van Dyne, and Gray, F. E., Milling Methods and Costs at Presidio Mine of the American Metal Co. of Texas: Am. Inst. Min. and Met. Eng. Tech. Pub. 368, 1930.
 Howbert, Van Dyne, and Bosustow, Robert, Mining Methods and Costs at Presidio Mine of the American Metal Co. of Texas: Am. Inst. Min. and Met. Eng. Tech. Pub. 334, 1930.
 No production in 1931, 1932, and 1933.

GOLD. SILVER. COPPER. LEAD. AND ZINC IN UTAH

(MINE REPORT)

By T. H. MILLER AND PAUL LUFF

SUMMARY OUTLINE

Page	Page
	Metallurgic industry 450
Calculation of value of metal production 445	Review by counties and districts 453
	Tintic district 456
Mining industry 449	
Ore classification 449	Park City region 460

The total value of the output of gold, silver, copper, lead, and zinc from mines in Utah, in terms of recoverable metals, was \$62,725,551 in 1939 compared with \$43,745,902 in 1938, an increase of 43 percent. There was a gain in total value of each of the five metals, notably in copper which increased \$14,560,424; the total value of gold rose \$2,699,235, that of silver \$1,043,302, that of lead \$317,152, and that of zinc \$359,536. Most of the gain in copper and gold was in the Bingham district and was due to a larger output of copper ore by the Utah Copper Co. There was a substantial increase in production of zinc-lead ore from the Park City region, but this gain was partly offset by decreased output of zinc-lead ore from other sections of the State.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zine 3
1935 1936 1937 1938 1939	Per fine ounce \$35.00 35.00 35.00 35.00	Per fine ounce \$0. 71875 . 7745 . 7735 4. 646+ 5. 678+	Per pound \$0. 083 . 092 . 121 . 098 . 104	Per pound \$0. 040 . 046 . 059 . 046 . 047	Per pound \$0.044 .050 .065 .048

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.

¹ 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.

³ Yearly average weighted price of all grades of primary metal sold by producers.

^{\$ \$0.67878787.}

Mine production of gold, silver, copper, lead, and zinc in Utah, 1935-39, and total, 1864-1939, in terms of recovered metals

Year	Mines producing		Ore (short	Gold (lode	and placer)	Silver (lode and placer)		
1 ear	Lode	Placer	tons)		Value	Fine ounces	Value	
1935 1936 1937 1938 1939	203 171 189 183 175	31 28 14 22 11	7, 771, 596 14, 997, 892 24, 578, 275 13, 248, 660 21, 094, 097	184, 759. 80 223, 444. 00 322, 759. 00 200, 630. 00 277, 751. 00	\$6, 466, 593 7, 820, 540 11, 296, 565 7, 022, 050 9, 721, 285	9, 206, 329 9, 997, 645 12, 869, 117 9, 682, 732 10, 758, 657	\$6, 617, 049 7, 743, 176 9, 954, 262 6, 259, 544 7, 302, 846	
1864-1939			(1)	8, 346, 234. 00	192, 343, 230	657, 732, 367	479, 995, 955	

3 7	Сог	per	Le	ead	Zi	Total value	
Year -	Pounds	Value	Pounds	Value	Pounds	Value	Total value
1935 1936 1937 1938 1939	129, 515, 217 252, 434, 000 411, 988, 000 216, 252, 000 343, 780, 000	\$10, 749, 763 23, 223, 928 49, 850, 548 21, 192, 696 35, 753, 120	127, 019, 175 139, 772, 000 178, 916, 000 131, 314, 000 135, 268, 000	\$5, 080, 767 6, 429, 512 10, 556, 044 6, 040, 444 6, 357, 596	62, 213, 614 72, 384, 000 96, 002, 000 67, 316, 000 69, 052, 000	\$2, 737, 399 3, 619, 200 6, 240, 130 3, 231, 168 3, 590, 704	\$31, 651, 571 48, 836, 356 87, 897, 549 43, 745, 902 62, 725, 551
1864-1939	2 3, 147, 824	924, 114, 309	² 4, 012, 517	432, 208, 528	² 703, 819	84, 017, 989	2, 112, 680, 011

¹ 1864-1901: Figures not available; 1902-39: 361,473,820 tons produced.

2 Short tons.

Gold.—The output of gold in Utah increased 77,121 ounces in 1939—gold from copper ore increased 61,553 ounces and that from siliceous ores 15,228 ounces. Copper ore yielded 57 percent of the total gold, siliceous ores 31 percent, and zinc-lead ore 10 percent. Ore of all classes treated at concentration mills yielded 67 percent of the total gold, crude ore smelted 27 percent, and ore cyanided nearly 6 percent. There was a gain of 61,165 ounces in gold from the Bingham or West Mountain district, owing to increased output of copper ore from the Utah Copper property, and the district yielded nearly 69 percent of the State total gold. There were marked increases in gold from Tooele County and the Tintic district and a slight increase from Park City. The Utah Copper Co. was, as usual, the largest gold producer in Utah; it was followed by the Con Mercur, United States & Lark, Tintic Bullion, and Mammoth mines.

Silver.—The output of silver from Utah mines increased 11 percent in 1939. There was a gain of more than 600,000 ounces in Tooele County, owing to greater production from the Ophir Hill and Hidden Treasure properties; there were increases also at Bingham and Park City, but there was a decrease of nearly 282,000 ounces in the Tintic district. Zinc-lead and zinc-lead-copper ores yielded 44 percent of the total silver, siliceous ores 32 percent, copper ore 14 percent, and lead ore nearly 10 percent. Concentrates of all classes yielded 62 percent of the total silver and crude ore smelted nearly 38 percent. Silver from copper ore gained nearly 600,000 ounces, owing to increased output of copper ore at Bingham; silver from siliceous ores increased more than 320,000 ounces. The United States & Lark property again was the leading silver producer in Utah, followed by the Tintic Standard, Utah Copper, Silver King Coalition, Park City Consolidated, and Ophir Hill properties; these six properties produced 69 percent of the State total.

Copper.—The output of recoverable copper in Utah increased 127,528,000 pounds in 1939, owing to the increased rate of operations by the Utah Copper Co. The open-cut mine at Bingham and the

mills at Magna and Arthur were operated at a record high in November and December, and the output of copper ore from the mine increased from 11,704,900 tons in 1938 to 19,310,200 tons in 1939 but was much less than the record of 23,119,800 tons established in 1937. Copper ore and mine-water precipitates yielded more than 96 percent of the State total copper in 1939, and most of the remainder came from siliceous ores shipped for smelting and from zinc-lead ore treated by flotation. Other important copper producers included the United

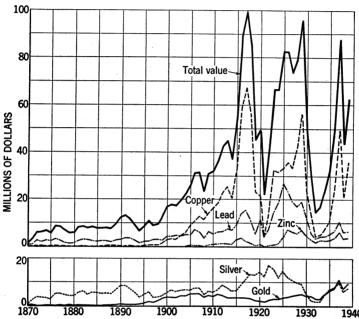


FIGURE 1.—Value of mine production of gold, silver, copper, lead, and zinc and total value in Utah, 1870-1939.

States & Lark property at Bingham, the Ophir Hill and Hidden Treasure mines in Tooele County, and the Ohio Copper and Boston

Consolidated mines at Bingham.

Lead.—There was a 3-percent gain in production of recoverable lead The output from the Park City region and from in Utah in 1939. Tooele County increased, but that from the Bingham and Tintic districts declined. Most of the gain was from siliceous ores, as lead from lead ore decreased and that from zinc-lead ore was about the same as in 1938. Zinc-lead and zinc-lead-copper ores yielded 70 percent of the total lead, lead ore 17 percent, and siliceous ores 11 percent. Reopening the Silver King Coalition and Park Utah Consolidated mines in May 1939 resulted in increased output of lead from Park City, but there were decreases from the United States & Lark mine at Bingham and from the Tintic Standard mine in the Tintic district; substantial increases were made by the Ophir Hill and Hidden Treasure mines in Tooele County. The United States & Lark mine again was the largest lead producer in Utah, followed by the Silver King Coalition, Tintic Standard, Ophir Hill, Park Utah Consolidated, and West Calumet properties; these six mines produced 74 percent of the State total.

Zinc.—The output of recoverable zinc in Utah increased slightly in 1939, owing to the increase in the Park City region; zinc from Bingham decreased nearly 4,500,000 pounds, and there were slight decreases in the Tintic district and in Tooele County. Nearly all the zinc recovered came from zinc-lead ore treated by flotation at four plants; zinc-lead ore shipped for smelting yielded 191,504 pounds of recoverable zinc. The United States & Lark mine at Bingham again was the chief zinc producer, followed by the Silver King Coalition and Park Utah Consolidated at Park City and the West Calumet and Hidden Treasure in Tooele County; these five mines produced 85 percent of the State total.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Utah in 1939, by counties, in terms of recovered metals

County	Mines pr	oducing	Or	e (short	Gol	d (lode	and	d placer)	Sil	ver (lode a	nd placer)
County	Lode	Placer		tons)	Fine	ounces		Value	Fin	e ounces	Value
Beaver Box Elder Garfield	12 3 1	2		11, 958 166 1		1, 546 31 8		\$54, 110 1, 085 280		89, 178 8, 667	\$60, 533 5, 883
Grand	7 32 1	3		1, 884 159, 953 239		70 1, 189 21, 825 55		2, 450 41, 615 763, 875 1, 925	1,	8, 275 , 029, 435 9	5, 617 698, 768
Piute Salt Lake San Juan Sevier	8 24 1 1	2	20,	2, 608 , 042, 085 1	1	1, 824 90, 801 21 1	(63, 840 6, 678, 035 735 35	4,	19, 464 , 157, 250 6 3	13, 212 2, 821, 891 4
Summit Tooele Uintah Utah	6 48 2 20	2		105, 933 557, 061 4 135, 772	i	2, 614 34, 251 29 19, 534		91, 490 1, 198, 785 1, 015 683, 690	1,	, 138, 313 , 006, 469 , 81 , 209, 876	772, 673 683, 179 55 1, 500, 037
Wasatch Washington	5 4			76, 411 19		3, 934 18		137, 690 630	1,	,091,332	740, 783 190
Total, 1938	175 183	11 22		, 094, 097 , 248, 660		77, 751 00, 630		9, 721, 285 7, 022, 050		, 758, 657 , 682, 732	7, 302, 846 6, 259, 544
Compte	Copper				Lead	i			Zin	c	Total
County	Pounds	Value	е	· Pound	ds	Value		Pound	s	√alue	value
Beaver Box Elder Garfield	20, 683 298 154		151 31 16	1, 398,	213 511	\$65, 7	16 24	108, 7	50	\$5,655	\$188, 165 7, 023 296
Grand Iron Juab Millard		116,	48 436	5, 532,	702 489	260, 0	33 27	426, 9	04	22, 199	2, 463 47, 313 1, 861, 305 1, 931
Piute SaltLake San Juan Sevier	5, 269 335, 782, 000 279	34, 921,	548 328 29	74, 051,	766 298	3, 480, 4	00 11	41, 808, 6	92	2, 174, 052	78, 200 50, 075, 717 768 37
Summit	509, 596 4, 285, 202 596 1, 737, 856	445,	$\frac{661}{62}$	19, 478, 19, 210, 11, 798,	659 830)1 39	15, 018, 5 7, 293, 7	88	780, 967 379, 277	2, 613, 607 3, 609, 803 1, 171
Wasatch Washington	315, 077 2, 952	32,		3, 783,		554, 55 177, 84		1, 306, 0 3, 089, 2		67, 912 160, 642	2, 986, 901 1, 249, 724 1, 127
Total, 1938	343, 780, 000 216, 252, 000	35, 753, 21, 192,		135, 268, 131, 314,	000	6, 357, 59 6, 040, 4		69, 052, 0 67, 316, 0		3, 590, 704 3, 231, 168	62, 725, 551 43, 745, 902

¹ Includes 145 ounces of placer gold distributed as follows: Garfield County, 7 ounces; Grand County, 70 ounces; Millard County, 19 ounces; San Juan County, 21 ounces; and Uintah County, 28 ounces.

² Includes 148 ounces of placer gold.

MINING INDUSTRY

The output of copper ore from the Utah Copper mine at Bingham was increased markedly during the fall of 1939, and by the end of the year the property was producing recoverable copper at the rate of nearly 40,000,000 pounds a month, the highest rate in the history of the company; the resulting increase for the full year in tonnage of copper ore carrying also a low content of gold and silver accounted for nearly all the gain in copper output in Utah in 1939 and contributed The output of zinc-lead much of the increase in both gold and silver. ore from the Park City region was materially higher than in 1938 but was considerably below a normal average, as the properties of both the Silver King Coalition Mines Co. and the Park Utah Consolidated Mines Co. were operated only about 8 months in 1939 (these mines were reopened in May after a year's shut-down). The production of both lead and zinc from Bingham decreased in 1939, owing to the decrease in zinc-lead ore mined at the property of the United States Smelting, Refining & Mining Co. There was a marked increase in value of metal output in Tooele County in 1939; most of the gain in gold was due to increased activity at mines in the Camp Floyd (Mercur) district, and the increased output at the Ophir Hill and Hidden Treasure properties was responsible for the gain in output of silver, copper, and lead.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Utah in 1939, with content in terms of recovered metals

Source	Mines produc- ing	Ore	Gold	Silver	Copper	Lead	Zine
Dry and siliceous gold ore	41 24 30	Short tons 385, 500 133, 029 320, 368	Fine ounces 63, 507 17, 582 4, 405	Fine ounces 419, 534 894, 471 2, 081, 651	Pounds 2, 090, 687 1, 322, 736 3, 169, 613	Pounds 1, 052, 405 3, 357, 471 10, 354, 617	Pounds
Copper oreLead oreLead-copper oreZinc-lead-copper ore².	95 15 77 1	838, 897 19, 602, 472 77, 072 4, 951 570, 705	85, 494 159, 653 5, 043 41 27, 375	3, 395, 656 1, 514, 899 1, 048, 887 81, 490 4, 717, 700	6, 583, 036 1 331, 374, 061 649, 545 385, 239 4, 788, 119	14, 764, 493 22, 873 23, 380, 971 1, 915, 212 95, 184, 451	69, 052, 000
Total, lode mines. Total, placers	⁸ 175 11	21, 094, 097	277, 606 145	10, 758, 632 25	1 343, 780, 000	135, 268, 000	69, 052, 000
Total, 1938	186 205	21, 094, 097 13, 248, 660	277, 751 200, 630	10, 758, 657 9, 682, 732	1 343, 780, 000 4 216, 252, 000	135, 268, 000 131, 314, 000	69, 052, 000 67, 316, 000

Includes 7,923,790 pounds recovered from mine-water precipitates.
 Zinc-lead-copper ore all from 1 mine; Bureau of Mines not at liberty to publish figures.
 A mine producing more than 1 class of ore is counted but once in arriving at total for all classes.
 Includes 10,220,878 pounds recovered from mine-water precipitates.

METALLURGIC INDUSTRY

The 21,094,097 tons of ore produced in Utah in 1939 comprised 230,224 tons treated by cyanidation (no ore amalgamated in Utah in 1939) compared with 190,312 tons cyanided and 7,624 tons amalgamated in 1938; 20,393,488 tons treated at concentration plants, a decided increase from 12,597,042 tons in 1938; and 470,385 tons shipped crude to smelters compared with 453,682 tons in 1938.

All the ore cyanided was treated at the plants of two companies at Mercur, each of which treated considerable custom as well as company ore. The 230,224 tons cyanided contained 21,805 ounces of gold and 3,800 ounces of silver; the cyanide bullion produced yielded 15,651 ounces of gold and 1,967 ounces of silver, indicating an average

recovery of 72 percent of the gold and 52 percent of the silver.

Ten concentration plants were operated in Utah in 1939. Three plants (Arthur, Magna, and Ohio Copper) treated 19,601,000 tons of copper ore and old tailings; four mills (Bauer, Midvale, Silver King, and Tooele) treated 570,187 tons of zinc-lead ore and zinc-lead-copper ore; one mill (Ophir Hill) treated 222,178 tons of silver tailings; and two small gravity-concentration plants in Tooele County treated 123 tons of lead ore.

The following tables give details of treatment for all the ore produced in Utah in 1939.

Mine production of metals in Utah in 1939, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zinc
Ore cyanided. Concentrates smelted. Ore smelted. Mine-water precipitates smelted ¹ Placer. Total, 1938	Short tons 230, 224 774, 106 470, 385 5, 218	Fine ounces 15, 651 186, 796 75, 159 145 277, 751 200, 630	Fine ounces 1, 967 6, 712, 712 4, 043, 953 25 10, 758, 657 9, 682, 732	Pounds 330, 323, 150 5, 533, 060 7, 923, 790 343, 780, 000 216, 252, 000	Pounds 101, 862, 708 33, 405, 292 135, 268, 000 131, 314, 000	Pounds 68, 860, 496 191, 504 69, 052, 000 67, 316, 000

¹ All from Salt Lake County.

Mine production of metals from concentrating mills in Utah in 1939, by counties, in terms of recovered metals

		Concentrates smelted and recovered metal								
County Ore milled	Concen- trates produced	Gold	Silver	Copper	Lead	Zinc				
Beaver	Short tons 375 2, 276 19, 940, 749 94, 454 269, 801 11, 460 74, 373	Short tons 187 840 671, 929 36, 962 48, 211 6, 230 9, 747	Fine ounces 3 32 178, 327 1, 687 2, 065 918 3, 764	Fine ounces 1, 679 10, 922 3, 737, 376 976, 644 863, 371 131, 436 991, 284	Pounds 3, 205 3, 543 325, 626, 061 460, 852 3, 854, 549 65, 768 309, 172	Pounds 37, 569 229, 004 62, 306, 532 18, 453, 678 15, 193, 640 2, 124, 734 3, 517, 551	Pounds 108, 750 301, 100 41, 742, 992 15, 018, 596 7, 293, 788 1, 306, 000 3, 089, 270			
Total, 1938	20, 393, 488 12, 597, 042	774, 106 545, 983	186, 796 124, 882	6, 712, 712 5, 502, 246	330, 323, 150 200, 941, 529	101, 862, 708 95, 229, 226	68, 860, 496 67, 219, 921			

Gross metal content of concentrates produced from ores mined in Utah in 1939, by classes of concentrates smelted

	Concen-	Gross metal content								
Class of concentrates	trates produced	Gold	Silver	Copper	Lead	Zine				
Copper	Short tons 514, 994	Fine ounces 159, 167	Fine ounces 1, 497, 195	Pounds 333, 310, 495	Pounds	Pounds				
Lead	81, 543	11,864	3, 802, 352	2, 636, 138	87, 461, 944	9, 063, 20				
Lead-copper	26, 857		640, 490	4, 038, 615	9, 838, 534	841, 47				
Zinc	72, 130	4, 083	510, 166	983, 691	6, 725, 447	76, 511, 22				
Iron (from zinc-lead ore) 1	78, 582	11, 362	262, 509	414, 531	3, 053, 392	4, 079, 87				
Total, 1938	774, 106	186, 796	6, 712, 712	341, 383, 470	107, 079, 317	90, 495, 77				
	546, 903	126, 526	5, 504, 390	207, 751, 017	100, 112, 555	88, 179, 67				

¹ Also belongs in "Dry" classification.

Mine production of metals from Utah concentrates shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	Zinc
Beaver Juab Salt Lake Summit Trocele Utah Wasatch Total, 1938	Short tons 187 840 671, 929 36, 962 48, 211 6, 230 9, 747 774, 106 546, 903	Fine ounces 3 32 178, 327 1, 687 2, 065 918 3, 764 186, 796 126, 526	Fine ounces 1, 679 10, 922 3, 737, 376 976, 644 863, 371 131, 436 991, 284 6, 712, 712 5, 504, 390	Pounds 3, 205 3, 543 325, 626, 061 460, 852 3, 854, 549 65, 768 309, 172 330, 323, 150 200, 941, 529	Pounds 37, 569 229, 004 62, 306, 532 18, 453, 678 15, 193, 640 2, 124, 734 3, 517, 551 101, 862, 708 95, 229, 226	Pounds 108, 75 301, 10 41, 742, 99; 15, 018, 59; 7, 293, 78; 1, 306, 00 3, 089, 27(68, 860, 49(67, 219, 92;
ву	CLASSE	S OF CO	NCENTRA	TES SMELT	ED	
Copper. Lead Lead-copper Zinc Iron (from zinc-lead ore) ¹	514, 994 81, 543 26, 857 72, 130 78, 582	159, 167 11, 864 320 4, 083 11, 362	1, 497, 195 3, 802, 352 640, 490 510, 166 262, 509 6, 712, 712	323, 311, 231 2, 145, 795 3, 536, 137 934, 504 395, 483 330, 323, 150	83, 962, 936 9, 283, 497 6, 389, 174 2, 227, 101 101, 862, 708	68, 860, 496

¹ Also belongs in "Dry" classification.

Gross metal content of Utah crude ore shipped to smelters in 1939, by classes of ore

	0	Gross metal content								
Class of ore	Ore	Gold	Silver	Copper	Lead	Zinc				
Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper Lead Lead-copper Zinc-lead	Short tons 155, 276 133, 029 98, 190 1, 472 76, 949 4, 951 518	Fine ounces 47, 856 17, 582 4, 151 486 5, 043 41	Fine ounces 417, 567 894, 471 1, 583, 946 17, 704 1, 048, 775 81, 490	Pounds 2, 155, 340 1, 363, 696 975, 318 144, 262 785, 509 481, 549	Pounds 1, 763, 986 5, 593, 677 5, 919, 824 38, 118 24, 434, 682 1, 995, 012 156, 085	Pounds				
Total, 1938	470, 385 453, 682	75, 159 59, 184	4, 043, 953 4, 177, 452	5, 905, 674 5, 375, 896	39, 901, 384 40, 860, 920	212, 793 106, 743				

Mine production of metals from Utah crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Ore	Gold	Silver	Copper	Lead	Zinc
Beaver	Short tons 11, 583 166	Fine ounces 1, 543 31 1	Fine ounces 87, 499 8, 667	Pounds 17, 478 298 154	Pounds 1, 360, 644 511	Pounds
Iron Juab Millard	1, 884 157, 677 239	1, 189 21, 793 36	8, 275 1, 018, 513	461 1, 116, 034	702 5, 303, 485	125, 804
Piute Salt Lake San Juan	2, 608 101, 336 1	1, 824 12, 474	19, 464 419, 874 3	5, 269 2, 232, 149 279	12,766 11,744,766	65, 700
Sevier Summit Tooele Uintah	11, 479 57, 036 4	927 16, 535 1	161, 669 141, 131 78	48, 744 430, 653 596	4, 017, 019 830	
Utah Wasatch Washington	124, 312 2, 038 19	18, 616 170 18	2, 078, 440 100, 048 280	1, 672, 088 5, 905 2, 952	9, 673, 671 266, 300	
Total, 1938	470, 385 453, 682	75, 159 59, 184	4, 043, 953 4, 177, 452	5, 533, 060 5, 089, 593	33, 405, 292 36, 084, 774	191, 504 96, 079
	BY CI	LASSES O	FORE			
Dry and siliceous gold Dry and siliceous gold-silver Dry and siliceous silver Copper Lead Lead-copper Zinc-lead	98, 190	47, 856 17, 582 4, 151 486 5, 043 41	417, 567 894, 471 1, 583, 946 17, 704 1, 048, 775 81, 490	2, 090, 687 1, 322, 736 945, 813 139, 040 649, 545 385, 239	1, 052, 405 3, 357, 471 3, 555, 117 22, 873 23, 361, 738 1, 915, 212 140, 476	191, 504
-	470, 385	75, 159	4, 043, 953	5, 533, 060	33, 405, 292	191, 504

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Utah in 1939, by counties and districts, in terms of recovered metals

County and district						Gold		Silver			Copper	Lead	Zinc	Total
•	Lode	Placer	treated	Lode	Placer	Total	Lode	Placer	Total	Соррог		Zine	value	
Beaver County: Beaver Lake Bradshaw	1 2		Short tons 38 91	Fine ounces	Fine ounces	Fine ounces	Fine ounces 171 2, 263	Fine ounces	Fine ounces 171 2, 263	Pounds 125	Pounds 22, 957	Pounds	\$1, 208 1, 641	
Granite Pine Grove San Francisco Star and North Star Box Elder County:	1 1 4 3		5 889 10, 632 303	57 1, 470 16		57 1, 470 16	19 6, 871 78, 400 1, 454		19 6, 871 78, 400 1, 454	48 1, 173 16, 173 3, 164	2, 043 185, 490 1, 150, 744 36, 979	19, 481 89, 269	114 15, 499 161, 447 8, 256	
Ashbrook Crater Island Park Valley Garfield County:	1 1 1		160 3 3	26 1 4		26 1 4	8, 661 3 3		8, 661 3 3	134 164	362 149		6, 820 54 149	
Henry Mountains Imperial (Crescent Creek) Grand County: Colorado River Iron County: Stateline Juab County:	7	2 3	1,884	1, 189	7 70	1 7 70 1, 189	8, 275	19	19 8, 275	154 	702		51 245 2, 463 47, 313	
Detroit I Fish Springs Mount Nebo Tintic I West Tintic	1 3 2 22 4		349 66 10 159, 426 102	90 1 21, 723		90 1 21, 723 11	850 6, 986 34 1, 021, 101 464		850 6, 986 34 1, 021, 101 464	11, 731 125 1, 104, 500	45, 064 4, 765 5, 470, 979	426, 904	4, 947 6, 908 247 1, 847, 619	
Millard County: Detroit 1 Sawtooth Mountains Piute County:	1	2	239	36	19	36 19	9		9	3, 221	11, 681		1, 584 1, 266 665	
Gold Mountain Mount Baldy Ohio Salt Lake County: Big Cottonwood	2 1 5		1, 749 172 905	675 1, 079 70		675 1, 079 70	6, 189 12, 316 959		6, 189 12, 316 959	3, 625 1, 644	11, 170 1, 596		27, 826 47, 027 3, 347	
Little Cottonwood West Mountain San Juan County: Colorado River	6 14	2	1, 748 20, 039, 432	193 190, 553	21	55 193 190, 553	23, 349 13, 605 4, 120, 296		23, 349 13, 605 4, 120, 296	48, 115 21, 010 335, 712, 875	214, 659 151, 660 73, 684, 979	86, 789 41, 721, 903	37, 380 25, 303 50, 013, 034	
La Sal	1		1		21	. 21	3	3	3	279			737 31	

¹ Detroit district lies in both Juab and Millard Counties.

² Tintic district lies in both Juab and Utah Counties.

Mine production of gold, silver, copper, lead, and zinc in Utah in 1939, by counties and districts, in terms of recovered metals—Continued

County and district		produc- ig	Ore sold or treated		Gold	:		Silver	·	Copper	Lead	Zine	Total value
Lode Placer	Placer	treated	Lode	Placer	Total	Lode	Placer	Total				varue	
Sevier County: HenrySummit County: Uintah	1 6		Short tons 2 105, 933	Fine ounces 1 2, 614	Fine ounces	Fine ounces 1 2, 614	Fine ounces 3 1, 138, 313	Fine ounces	Fine ounces 3 1, 138, 313	Pounds 509, 596	Pounds 19, 478, 276	Pounds 15, 018, 596	\$37 2, 613, 607
Tooele County: Camp Floyd Clifton Columbia Dugway	9 4 1 1		274, 369 186 34 63	31, 282 128		31, 282 128	2, 394 2, 092 168 84		2, 394 2 092 168 84	1, 029	17, 596 11, 553 8, 489	16, 192	1, 096, 495 6, 834 657 1, 298
Erickson Free Coinage Lakeside North Tintic Ophir	3 1 14		79 57 390 30 243, 506	7 1 420		7 1 420	1, 009 364 461 28 781, 471		1, 009 364 461 28 781, 471	423 4, 139, 971	28, 532 120, 681 13, 383 12, 099, 553	2, 536, 692	930 1, 623 6, 029 648 1, 676, 297
Rush Valley Silver Islet. Third Term Willow Springs. Uintah County:	8 1 1 2		38, 089 1 50 207	2, 114		2, 114 	217, 358 50 50 940		217, 358 50 50 940	143, 404 29 346	6, 844, 681 149 5, 893 60, 149	4,740,904	804, 671 44 311 13, 966
CarbonateGreen RiverUtah County:	2	2	4	1	28	1 28	78	3	78 3	596	830		189 982
American Fork Tintic 2 Wasatch County:	7 13		570 135, 202	177 19, 357		177 19, 357	3, 169 2, 206, 707		3, 169 2, 206, 707	16, 923 1, 720, 933	32, 766 11, 765, 639	30, 000 1, 276, 000	13, 206 2, 973, 695
Blue Ledge Snake Creek Washington County:	1		76, 337 74	3, 931		3, 931	1, 089, 109 2, 223		1, 089, 109 2, 223	313, 740 1, 337	3, 773, 298 10, 553	3, 079, 270 10, 000	1, 246, 955 2, 769
Bull ValleyTutsagubet	1 3		18	18		18	277		277 	2, 952			632 495
Total Utah	175	11	21, 094, 097	277, 606	145	277, 751	10, 758, 632	25	10, 758, 657	343, 780, 000	135, 268, 000	69, 052, 000	62, 725, 551

² Tintic district lies in both Juab and Utah Counties.

BEAVER COUNTY

Beaver Lake district.—A car of silver-lead smelting ore was shipped

in 1939 from the Beaver Lake mine northwest of Milford.

Bradshaw district.—Two cars of silver smelting ore were shipped in 1939 from the Honey Boy mine 10 miles southeast of Milford. A test lot of gold ore was produced at the Cave property.

Granite district.—A test lot of lead ore was shipped in 1939 from

the Beaver View property 5 miles north of Adamsville.

Pine Grove district.—All the output from the Pine Grove district in 1939 was silver-lead ore shipped to smelters from the Revenue property, 22 miles west of Frisco, operated by the Wah Wah Mining Co.

San Francisco district.—The value of metal output from the San Francisco district increased \$105,149 in 1939, owing to the increase at the Horn Silver mine near Frisco; the mine was operated on a block-leasing system, and the output comprised 8,821 tons of gold-silver ore and 1,609 tons of lead ore shipped to smelters and 120 tons of zinclead ore sent to the flotation plant at Midvale—a total of 10,550 tons compared with 4,811 tons in 1938. The rest of the district output comprised small lots of smelting ore from the Cactus, Quadmetals, and Club properties.

Star and North Star district.—Lessees continued shipments of zinclead ore and lead ore from the Moscow Silver property in 1939; a car of zinc-lead ore was shipped also from the Harrington-Hickory mine by the New Majestic Mining Co.; and a test lot of gold ore was shipped

from the Gold Bar property.

BOX ELDER COUNTY

Ashbrook district.—A lessee shipped 160 tons of silver ore from the Vipont mine in 1939, an increase from 30 tons in 1938.

Crater Island district.—A test lot of copper ore was shipped from

the Copper Blossom property in 1939 by a lessee.

Park Valley district.—The Little May Mining Co. mined a little gold ore at the Raft River property in 1939.

GARFIELD COUNTY

A test lot of copper ore was shipped in 1939 from the Bromide & Mount Hillyer property in the Henry Mountains district. A little placer gold was recovered at two properties in the Imperial (Crescent Creek) district.

GRAND COUNTY

The entire output from Grand County in 1939 came from operations at three placers along the Colorado River; most of it originated at the Rio Grande group 2 miles north of Moab, where about 25,000 cubic yards of gravel were handled by a tractor-scraper unit.

IRON COUNTY

Stateline district.—The value of metal output from Iron County (all from the Stateline district) in 1939 was more than double that in 1938, owing to increased shipments of gold ore to smelters from the Gold Hill and Creole mines; the rest of the district output was crude ore shipped to smelters from several properties, including the Wonder. Buck & Winner, Helen, and Beaver Empire mines.

JUAB COUNTY

Detroit district.—Lessees continued to ship gold ore from the Ibex mine 35 miles west of Delta, but the output in 1939 decreased sharply from that in 1938.

Fish Springs district.—Small lots of rich silver-lead ore were shipped in 1939 from the Carnation, Galena, and Utah mines (all east of Callao), but the value of the metal output of the Fish Springs district declined \$11,844.

Mount Nebo district.—Small lots of lead ore were shipped in 1939

from the Liberty Lead and Earl properties near Santaquin.

Tintic district.—The Tintic district lies in both Juab and Utah Counties, and the mines in both sections are reviewed here. The table that follows gives the metal production in each section in 1939, a comparison of the total with that for 1938, and the total output of the district from 1869 to 1939. The table indicates increases in output of gold and copper but decreases in silver, lead, and zinc. The value of the output from the western section (Juab County) increased \$212,293, but that from the eastern or Utah County section decreased \$127,764.

Mine production of gold, silver, copper, lead, and zinc in Tintic district, Juab and Utah Counties, Utah, 1938-39, and total, 1869-1939, in terms of recovered metals

	Mines pro- ducing	Ore	Gold	Silver	Copper	Lead	Zinc	Total value
1939 Juab County Utah County	22 13	Short tons 159. 426 135, 202						\$1, 847, 619 2, 973, 695
Total, 1938	35 25	293, 428	36, 148	3, 509, 632	2, 353, 970		1, 842, 458	4, 736, 785

¹ Figures not available.

In 1939 the Chief Consolidated Mining Co. continued to operate at the Chief No. 1, Gemini, Eureka Hill, and Plutus mines in Juab County, but no work was reported at the Apex Standard property in Utah County. According to the company printed annual report the output in 1939 was considerably larger than that in 1938. It comprised 25,613 tons of siliceous ore, 1,250 tons of lead ore, and 2,155 tons of zinc-lead ore from the Chief No. 1 mine; 2,947 tons of siliceous ore and 456 tons of lead ore from the Gemini mine; 3,768 tons of siliceous ore and 35 tons of lead ore from the Eureka Hill mine; and 4,100 tons of siliceous ore and 13 tons of lead ore from the Plutus mine—a total of 40,337 tons of ore of all classes yielding 3,601 ounces of gold, 345,788 ounces of silver, 117,569 pounds of copper, 919,847 pounds of lead, and 367,460 pounds of zinc. In addition, lessees shipped old tailings from the Eureka Hill dumps and residue from the Chief Consolidated volatilization plant at Eureka, which has been idle for many years. The company reported a total of 2,132 feet of development and 485 feet of diamond drilling at the Juab County properties in 1939. The United States Smelting, Refining & Mining Co. in 1939 continued to operate at the Centennial-Beck, Victoria, and Eagle & Blue Bell properties; all the output was by lessees and

comprised about 39,000 tons of siliceous ore and about 2,700 tons of lead ore, indicating slight decreases compared with 1938. Mammoth Mining Co. operated regularly in 1939 at the property near Mammoth and produced 40,801 tons of smelting ores (chiefly siliceous gold ore), about the same as in 1938; no new development other than stoping was reported, and dividends paid totaled \$59,298. Crude ore was shipped to smelters by lessees from the Dragon, Empire Star, Swansea, Treasure, and Victor groups, all owned or controlled by the International Smelting & Refining Co.; most of the output was siliceous gold-silver ore from the Dragon and Empire Star units. Leasing operations at the Godiva property were continued in 1939, and the output comprised 3.651 tons of ore (gold ore. lead ore, and zinc-lead ore) shipped to smelters. The output of siliceous ore from the Grand Central mine of the American Smelting & Refining Co. decreased from more than 28,000 tons in 1938 to about 1,700 tons in 1939; the entire output in 1939 was from lessees' operations, as no production was made on company account. The remainder of the output from the Juab County section of the Tintic district was crude ore shipped to smelters from several properties, including the Joe Daily, Showers, Sunbeam, and Undine (Windrige) mines.

The printed annual report of the Tintic Standard Mining Co. and subsidiary companies gives the following details of production in 1939 from properties in the Utah County section of the Tintic district, owned or controlled by the company: Tintic Standard mines (including the Iron Blossom mine), 65,317 tons of siliceous ore and 21,440 tons of lead ore; Eureka Standard mine, 3,357 tons of siliceous ore and 9,886 tons of zinc-lead ore; Eureka Lilly mine, 2,876 tons of siliceous ore; Colorado Consolidated mine, 10,491 tons of siliceous ore; and Sioux mine, 168 tons of siliceous ore. Ore of all classes from all mines totaled 113,535 tons containing 7,236 ounces of gold, 2,064,563 ounces of silver, 1,107,694 pounds of copper, 13,600,146 pounds of lead, and 1,747,563 pounds of zinc. The company reported 8,526 feet of development for 1939, chiefly in drifting and raising in the Tintic Standard mine. Producing mines in the Utah County section of the Tintic district, owned or controlled by the International Smelting & Refining Co. and its subsidiaries, included in 1939 the Eureka Bullion. May Day (Mountain View), North Lily, Tintic Bullion, and Yankee properties; the output from the North Lily mine declined, but there was a sharp increase in gold from the Tintic Bullion property as a result of the opening of a new body of rich gold ore in the mine during The remainder of the district output was crude lead ore shipped

to smelters from the Zuma mine.

West Tintic district.—Crude ore was shipped to smelters in 1939 from four properties in the West Tintic district, including the Copper Prince. Orient, and Scotia mines.

MILLARD COUNTY

Detroit district.—The Detroit district lies in both Juab and Millard Counties; the output from the Millard County section in 1939 was gold ore shipped to smelters from the King Tut group.

Sawtooth Mountains district.—Placer gold was produced at the

Amasa and New Klondike placers in 1939.

PIUTE COUNTY

Gold Mountain district.—The mill of the Annie Laurie property was not operated in 1939, but lessees shipped nearly 400 tons of gold ore from the mine for smelting. Gold ore was shipped also from the General Connor mine.

Mount Baldy district.—Lessees continued operations at the Deer Trail mine during 1939, and the output of gold ore shipped to smelters

increased.

Ohio district.—Gold ore was shipped to smelters in 1939 from the Bully Boy, Gold Strike, Tusher, and Wedge properties. A test lot of lead ore was shipped from the Salt Gap prospect.

SALT LAKE COUNTY

Big and Little Cottonwood districts.—Lessees continued operations in 1939 at the Cardiff property in the Big Cottonwood district; the output was about the same as in 1938 and comprised copper ore, lead ore, and zinc-lead ore shipped for smelting and zinc-lead ore shipped to Midvale for milling. Other producers in the district included the Wasatch Gold Mines property and the Tar Baby mine.

All the output from the Little Cottonwood district in 1939 was crude smelting ore shipped; producing mines included the Alta United, Columbus, Columbus Rexall, Michigan-Utah, and Toledo properties.

Columbus, Columbus Rexall, Michigan-Utah, and Toledo properties. Bingham (West Mountain) district.—The Bingham district is by far the most important mining area in Utah. In 1939 mines in the district produced recoverable gold, silver, copper, lead, and zinc valued in all at \$50,013,034, or 80 percent of the State total. The value of the district output increased \$16,305,116 (48 percent) and represented 86 percent of the State total gain. Most of the district gain was in copper, the output of which increased 123,614,375 pounds (58 percent); there were also substantial increases in gold and silver, but the quantity of lead and zinc declined. The following table gives the production from mines at Bingham in 1938 and 1939 and the total from 1865 to 1939.

Mine production of gold, silver, copper, lead, and zinc in Bingham or West Mountain district, Salt Lake County, Utah, 1938-39, and total, 1865-1939, in terms of recovered metals

Year	Mines pro- ducing	Ore	Gold (lode and placer)	Silver (lode and placer)	Copper	Lead	Zinc	Total value
1938 1939		Short tons 12, 507, 863 20, 039, 432			Pounds 212, 098, 500 335, 712, 875			
Total, 1865–1939		(1)	3, 939, 250	112, 378, 401	² 2, 932, 7 09	² 1, 347, 994	2 349, 937	1, 214, 636, 982

¹ Figures not available.

All the increase in output of gold, silver, and copper from Bingham in 1939 was caused by the increased rate of operations by the Utah Copper Co. The open-cut mine at Bingham and the mills at Magna and Arthur were operated continuously in 1939, and the output of copper ore was 19,310,200 tons compared with 11,704,900 tons in

² Short tons.

1938; the output, however, was much less than the record of 23,119,800 tons established in 1937. According to the printed annual report of the Kennecott Copper Corporation the output of recoverable copper from Utah operations ranged from an average of about 23,000,000 pounds a month from January through August to a high of nearly 40,000,000 pounds a month in November and December. In addition to copper concentrates and other products from the mills, the company also shipped several million pounds of cement copper from the minewater precipitation plant at Copperton. The molybdenite units in the mills operated regularly in 1939, and the over-all recovery of molybdenite was increased markedly. The American Smelting & Refining Co. operated the full year at the Boston Consolidated property of the Utah Copper Co.; the output, comprising nearly 40,000 tons of gold ore and lead ore shipped to smelters and about 700 tons of zinc-lead ore sent to Midvale for milling, was slightly less than in 1938.

The United States Smelting, Refining & Mining Co. operated continuously at the United States & Lark property at Bingham in 1939, but the quantity of zinc-lead ore sent to the mill at Midvale was nearly 24,000 tons less than in 1938 and the output of crude ore shipped to smelters also declined, resulting in decreases in output of all five metals. Most of the decrease in lead and zinc output from the Bingham district was caused by smaller production at the United States & Lark mine. Other properties at Bingham operated in 1939 by the United States Smelting, Refining & Mining Co. were the Bingham Metals, Montana-Bingham Consolidated, Niagara, and Utah Metal & Tunnel.

The Apex-Delaware group of the National Tunnel & Mines Co. was operated continuously in 1939 by lessees and on company account; the output—about the same as in 1938—comprised gold ore and lead ore shipped to smelters and zinc-lead ore sent to the mill at Tooele. Work on the Elton tunnel was continued, and early in 1940 the bore was reported to have reached the midpoint of its projected length of 23,000 feet.

The Ohio Copper Co. treated 290,800 tons of old tailings in its 1,000-ton mill during 1939, a decrease from the quantity milled in 1938, but the output of copper increased considerably; copper precipitates and a little crude ore also were shipped from the property.

The production of all five metals from the Bingham (Lavagnino) property of the Combined Metals Reduction Co. rose in 1939, as the output of both crude ore shipped to smelters and zinc-lead ore shipped to the mill at Bauer increased; the yield of gold from the property was 70 percent greater than in 1938.

Other production from the Bingham district in 1939 included copper ore from the Bingham Congor mine and gold ore from the Ophir group.

SAN JUAN COUNTY

Colorado River district.—Placer bullion was recovered in 1939 by sluicing at the Dorothy and Red Canyon properties on the Colorado River.

La Sal district.—A test lot of copper ore was shipped in 1939 from the Lisbon Copper group south of Moab.

SEVIER COUNTY

Henry district.—The B. W. & H. property, chief producer in Sevier County in 1938, was idle in 1939. A test lot of gold ore was shipped from the Independence property.

SUMMIT AND WASATCH COUNTIES

PARK CITY REGION

The value of metal output from mines in the Park City region increased \$1,131,072 (41 percent) in 1939, owing chiefly to reopening of the Silver King Coalition and Park Utah Consolidated properties. The following table gives the production from the Park City region in 1938 and 1939 and the total since 1870.

Mine production of gold, silver, copper, lead, and zinc in Park City region, Summit and Wasatch Counties, Utah, 1938–39, and total, 1870–1939, in terms of recovered metals

Year	Mines pro- ducing	Ore	Gold	Silver	Copper	Lead	Zine	Total value
1938	12 11	Short tons 149, 113 182, 344	Fine ounces 5, 678 6, 548 436, 338	2, 229, 645	824, 673		18, 107, 866	3, 863, 331

¹ Figures not available.

The mine and 800-ton flotation plant of the Silver King Coalition Mines Co. at Park City were reopened on May 8, 1939, ending a shut-down that began in April 1938. According to the company printed annual report the 1939 output comprised 66,876 tons of milling ore and 243 tons of crude lead ore shipped for smelting; the products sold contained 1,308 ounces of gold, 924,874 ounces of silver, 447,098 pounds of copper, 14,746,345 pounds of lead, and 10,180,823 pounds of zinc. Mine development in 1939 totaled 11,944 feet, including 373 feet of shaft sinking at the new Thaynes shaft which was completed to a depth of 1,752 feet. This shaft has improved ventilation in the entire mine and provides a new outlet for mine waste. Dividends declared in 1939 amounted to \$305,117.

The Park Utah Consolidated Mines Co. resumed work on a part-time basis at the Judge (City unit) property in May after a shutdown of about a year. The rate of production was increased during the fall and was on a normal basis at the end of the year. The output comprised 29,303 tons of zinc-lead ore sent to the mill at Tooele and 5,888 tons of smelting ore (silver ore and lead ore). According to the company printed annual report the 35,191 tons of ore contained 722 ounces of gold, 244,901 ounces of silver, 25,759 pounds of copper, 7,097,906 pounds of lead, and 8,911,940 pounds of zinc. Operations were resumed also at the Liberty property near Keetley by the Park City Utah Mines Co. (affiliate of the Park Utah Consolidated Mines Co.) after a shut-down of several years owing to litigation; the output in 1939 comprised 2,551 tons of zinc-lead ore and 2,038 tons of lead ore. The Daly Mining Co. (subsidiary of the Park Utah Consolidated Mines Co.) shipped 331 tons of silver ore from the Daly dumps.

According to the printed annual report of the Park City Consolidated Mines Co. the output from the Roosevelt group comprised 55.631 tons of ore in 1939 compared with 74,650 tons in 1938. 1939 output, shipped to the flotation plant at Midvale for treatment, contained 2,744 ounces of gold, 845,607 ounces of silver, 105,873 pounds of lead, and 2,728,974 pounds of zinc. The New Park Mining Co. operated the full year at the Park Galena property, producing 15,845 tons of zinc-lead ore—about the same as in 1938. The company extended the Mayflower tunnel about 3,000 feet, undercutting the Park Galena ore body in December; mining of this ore body will be greatly facilitated with completion of raises from the tunnel level. The United States Smelting, Refining & Mining Co. reported 2,884 feet of drifting and raising at the Park City unit (Star) during 1939; several cars of zinc-lead ore produced during development were shipped to Midvale for milling. Lessees operating property of the Park Flag Mines Co. shipped about 3,700 tons of siliceous smelting ore in 1939.

The rest of the output from the Park City region in 1939 included old tailings from Silver Creek shipped for smelting and a little zinclead ore from the New Quincy property sent to Tooele for milling.

TOOELE COUNTY

The total value of metal output from mines in Tooele County increased \$1,355,829 (60 percent) in 1939, as substantial gains were

recorded in the Ophir and Camp Floyd districts.

Camp Floyd district.—The output of gold from Mercur continued to increase in 1939, and the output was 31,282 ounces compared with 23.001 ounces in 1938 and 14,016 ounces in 1937. The Con Mercur property, operated by Snyder Mines, Inc., again was the largest producer in the district; the output comprised 43,493 tons of gold ore shipped to smelters and 21,240 tons of ore treated by straight cyani-The Snyder cyanidation mill also handled nearly 38,000 tons of ore from the West Dip property operated by the Ophir Development Co., and custom ore was received also from five other mines in the district. The Geyser Marion Gold Mining Co. continued operations at the Geyser Marion and Sacramento properties; more than 150,000 tons of gold ore were treated in the enlarged cyanidation units, a marked increase over 1938. Other producers at Mercur in 1939 were the Boston Sunshine, Herschel, Saratoga (McCornick), Rover, and Silver Lode properties.

Clifton (Gold Hill) district.—All the output from Gold Hill in 1939 was crude ore shipped for smelting; it comprised lead ore from the Rube and Spotted Fawn mines and silver ore from the Success and

Rose properties.

Columbia district.—A car of lead smelting ore was shipped from the

Benmore group near Vernon in 1939.

Dugway district.—Zinc-lead ore from the Four Metals mine was

shipped in 1939 to Tooele for milling.

Erickson district.—A lessee shipped silver smelting ore from the property of the O. K. Silver Mining & Milling Co. in 1939.

Free Coinage district.—Lead smelting ore was shipped from the Humdinger and Utah-Bunker Hill properties in 1939.

Lakeside district.—The Georgia Lyn Mining Co. treated a little lead ore in a small gravity-concentration plant and shipped lead concentrates, together with crude lead ore, to the Murray smelter in 1939. Lessees shipped crude lead ore from the Monarch mine of the Lakeside Monarch Mining Co., but the flotation mill on the property was idle.

North Tintic district.—Lessees shipped small lots of lead smelting

ore from the Scranton property in 1939.

Orhir district.—The total value of metal output from mines in the Ophir district increased from \$551,189 in 1938 to \$1,676,297 in 1939, owing to increased output from both the Hidden Treasure and The United States Smelting, Refining & Mining Ophir Hill mines. Co. operated the entire year at the Hidden Treasure mine, and the output comprised lead-copper ore shipped to smelters and zinc-leadcopper ore sent to the mill at Midvale. The complex milling ore was treated in a separate circuit of the Midvale concentrator, making copper concentrates, lead concentrates, zinc concentrates, and iron concentrates; the increase in output of copper was noteworthy. new 700-ton flotation plant of the International Smelting & Refining Co., which was put in operation in November 1938, was operated throughout 1939, treating 222,178 tons of old tailings from the Ophir Hill dumps; lead-copper concentrates were trucked to the smelter at Tooele for treatment. Underground mining at the Ophir Hill property was continued by the Ophir Development Co., and the output comprised nearly 2,300 tons of zinc-lead ore sent to Tooele for milling; the Ophir Development Co. also operated property of the Ophir Coalition Mines Co. and shipped crude lead smelting ore. remainder of the district output in 1939 was lead ore and silver ore shipped to smelters from the Kearsarge, Ophir, Queen of the Hills, Tintic Ophir, Wandering Jew, Madison, Hullinger, Cowan, Silver

Eagle, and Silver Prince properties.

Rush Valley district.—The Combined Metals Reduction Co. continued operations in 1939 at the Cyclone (Bluestone), Honerine (Bullion Coalition), and West Calumet properties. Most of the production came from company and lessee operations at the West Calumet mine, which produced 32,738 tons of zinc-lead ore sent to the mill at Bauer and 461 tons of lead ore shipped for smelting. The cutput from the Honerine group comprised 709 tons of crude lead ore and 48 tons of zinc-lead ore, and that from the Cyclone property 3,919 tons of lead ore. The rest of the district output was crude lead ore shipped for smelting, chiefly from the Commodore, Muirbrook, and Salvation-

Hercules mines.

Silver Islat district.—A test lot of silver ore was shipped from the Silver Island mine in 1939.

Third Term district.—A little lead ore was treated in a small table-

concentration plant in 1939 by the Metal Queen Mining Co.

Willow Springs district.—Most of the output from the Willow Springs district in 1939 was lead ore shipped by lessees from the Oro Del Rey mine. A little gold ore was shipped from the Depression property.

UINTAH COUNTY

The output from Uintah County in 1939 comprised placer gold and silver from sluicing operations at the Big Ben and Big Lizard placers on Green River, a test lot of copper ore from the Dyer mine in the Carbonate district, and a little lead ore from a prospect near Vernal.

UTAH COUNTY

American Fork district.—Lessees continued operations at the Yankee property of the American Smelting & Refining Co., but the output in 1939 declined to 431 tons of gold ore shipped for smelting and 65 tons of zinc-lead ore sent to Midvale for milling. A car of zinc-lead milling ore was shipped also from the Dutchman mine. The remainder of the output comprised small lots of crude lead ore from the Blue Rock, Miller, Silver Dipper, and Silver Dollar properties.

Tintic district.—Mines in the Utah County section of the Tintic

district are reviewed under Juab County.

WASHINGTON COUNTY

A small lot of copper ore was shipped by a lessee in 1939 from the Dixie property of the Utah Southern Mining Co., and small lots of crude ore were shipped from the Hidden Canyon and Silver Peak properties, all in the Tutsagubet district. A little gold ore was produced at a prospect in the Bull Valley district.

GOLD, SILVER, COPPER, LEAD, AND ZINC IN WASHINGTON

(MINE REPORT)

By T. H. MILLER AND PAUL LUFF

SUMMARY OUTLINE

	Page	· ·	Page
Summary	. 465	Metallurgic industry	470
Calculation of value of metal production	. 465	Review by counties and districts	474
Mine production by counties	. 468	Chelan Lake district	476
Mining industry	. 469	Republic district	477
Ore classification	469	Metaline district	479

The total value of the gold, silver, copper, lead, and zinc recovered from Washington ores and gravels was \$6,739,467 in 1939 compared with \$5,510,440 in 1938, an increase of 22 percent. Substantial gains were recorded in output of gold, silver, and copper but losses in lead The total value of the copper produced increased 59 percent and that of the gold and silver each 22 percent; the total value of lead declined 11 percent and that of zinc 4 percent. Except for a brief shut-down during the summer, the Holden mine and mill of the Howe Sound Co. in Chelan County were operated regularly in 1939, and gains at this property accounted for the increases in total output of gold, silver, and copper in the State. The closing of the Azurite plant in February caused a decrease in gold from Whatcom County, but there was a gain in gold from Okanogan County owing to operation of the Alder group near Twisp by the Methow Gold Corporation. Production of gold from the Republic district, Ferry County, increased slightly in 1939, but that from Stevens County decreased as the First Thought cyanide mill was idle. The output of lead and zinc from Pend Oreille County declined slightly as the mine and mill of the Metaline Mining & Leasing Co. were closed in March.

All tonnage figures are short tons and "dry weight"; that is, they

do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1		Copper 3	Lead 3	Zinc ³	
1935	Per fine ounce	Per fine ounce	Per pound	Per pound	Per pound	
	\$35.00	\$0.71875	\$0.083	\$0.040	\$0.044	
	35.00	.7745	.092	.046	.050	
	35.00	.7735	.121	.059	.065	
	35.00	4.646+	.098	.046	.048	
	35.00	5.678+	.104	.047	.052	

¹ Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67 + (\$20.671835) per fine ounce.

2 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.

2 Yearly average weighted price of all grades of primary metal sold by producers.

4 \$0.67678787

Mine production of gold, silver, copper, lead, and zinc in Washington, 1935–39, and total, 1860–1939, in terms of recovered metals

Year	Mir produ			(short ns)	Go	old (lode	and	placer)	Silver (lode a	and placer)
•	Lode	Placer	10			Fine ounces		Value	Fine ounces	Value
1935	. 44	172 106 90 80 84	13 29 90	32, 187 33, 435 94, 826 91, 689 24, 564	12 36 74	0, 739. 60 2, 217. 40 3, 310. 00 1, 175. 00 0, 420. 00		\$340, 886 427, 609 1, 270, 850 2, 596, 125 3, 164, 700	52, 338 66, 900 126, 304 380, 938 442, 063	\$37, 618 51, 814 97, 696 246, 263 300, 067
1860-1939	-		(1)	1,715	5, 413. 00	1	38, 794, 778	10, 455, 685	7, 395, 579
	c	opper				Lead		2	Zine	Total
Year	Pounds	Va	lue	Pou	nds	Valu	e	Pounds	Value	value
1935	86, 699 204, 000 128, 000 12, 034, 000 17, 996, 000	1 1 1,17 1,87	7, 196 8, 768 5, 488 9, 332 1, 584	1, 68 5, 66 8, 56 7, 43	6, 150 0, 000 0, 000 8, 000 6, 000	\$8, 77, 333, 394, 349,	280 940 128 492	2, 159 8, 806, 000 8, 232, 000 22, 804, 000 20, 262, 000	440, 300 535, 080 1, 094, 592 1, 053, 624	\$394, 041 1, 015,771 2, 253, 054 5, 510, 440 6, 739, 467
1860-1939	2 28, 766	7,92	9, 093	2 4	6, 818	5, 806,	138	2 50, 408	5, 292, 434	65, 218, 022

^{1 1860-1903:} Figures not available; 1904-39: 4,758,966 tons produced.

Gold and silver produced at placer mines in Washington, 1935-39, in terms of recovered metals

77	Go	ld	Silv	Total value		
Year	Fine ounces	Value	Fine ounces	Value	Total value	
1935 1936 1937 1937 1938	1, 547. 60 657. 20 371. 00 1, 575. 00 2, 261. 00	\$54, 166 23, 002 12, 985 55, 125 79, 135	263 133 48 218 358	\$189 103 37 141 243	\$54, 355 23, 105 13, 022 55, 266 79, 378	

Gold.—The output of recoverable gold in Washington in 1939 increased 22 percent over 1938, owing chiefly to the larger output of copper ore in Chelan County. Gold from copper ore increased 17,414 ounces, but that from gold ore decreased 1,890 ounces. Gold ore treated at cyanidation plants declined in Ferry, Stevens, and Whatcom Counties, but that shipped to smelters increased markedly in Ferry and Okanogan Counties. The output of gold from Ferry County increased slightly, as the gain in gold from crude smelting ore more than offset the decrease from gold ore cyanided. Production of gold in Okanogan County increased sharply as a result of operations at the Alder group near Twisp. Idleness of the cyanidation mill at the Orient property in 1939 was the cause of decreased output of gold from Stevens County, and closing of the Azurite mill in February resulted in a marked decline in the output of gold from Whatcom County. The Holden property in Chelan County was again by far the largest gold producer in Washington, contributing in 1939 more than half of the State total. Other important producers included the Aurum, Knob Hill, Mountain Lion, Quilp, and Republic properties in Ferry County; the Alder property in Okanogan County;

² Short tons.

and the Azurite mine in Whatcom County. The State total output of gold ore was 261,651 tons in 1939 compared with 271,557 tons in 1938; it comprised 6,421 tons amalgamated, 161,551 tons cyanided, 2,600 tons concentrated, and 91,079 tons shipped direct to smelters. Production of gold from placer mines increased from 1,575 ounces in 1938 to 2,261 ounces in 1939; as usual, most of it came from operations on bars along the Columbia River in Ferry and Stevens Counties. Mechanical placer equipment (draglines, power shovels, tractor scrapers, etc.) was used at 15 properties and treated 276,325 cubic yards of gravel which yielded 1,876 ounces of gold and 316 ounces of silver, a total recovery of 24 cents per cubic yard.

Silver.—The output of recoverable silver in Washington in 1939 increased 16 percent in quantity over 1938. Silver from copper ore and gold ore increased, but that from silver ore and zinc-lead ore decreased. Copper ore yielded 43 percent of the total silver, gold ore nearly 38 percent, silver ore nearly 15 percent, and lead ore and zinc lead ore 3 percent. Production of silver increased sharply in Chelan and Ferry Counties but decreased markedly in Okanogan County. The Holden mine in Chelan County was again the chief silver producer in Washington, followed by the Aurum and Knob Hill mines at

Republic and the Arlington mine in Okanogan County.

Copper.—The output of recoverable copper in Washington increased 50 percent in quantity in 1939 to a new record and, as in 1938, nearly 98 percent of it came from the Holden property of the Howe Sound Co. in Chelan County; the company treated 596,967 tons of gold-copper-silver ore in its 2,000-ton flotation plant and was again by far the largest producer of gold, silver, and copper in the State. Other copper producers included the Sunset and Florence Rae mines in Snohomish County, the Alder and Arlington mines in Okanogan County, the Royal property in Chelan County, and the Chinto mine

in Stevens County.

Lead and zinc.—The output of recoverable lead in Washington decreased 13 percent in quantity in 1939 and that of zinc 11 percent. Production of zinc-lead ore, chiefly from two mines in Pend Oreille County, rose slightly, but the grade was lower and less lead and zinc were recovered than in 1938. The 700-ton mill of the Pend Oreille Mines & Metals Co. was operated the entire year, but the 400-ton plant of the Metaline Mining & Leasing Co. was operated only 3 months. A little zinc-lead ore was treated at a test mill in Stevens County. Most of the remainder of the lead output came from the Electric Point mine and other properties in Stevens County.

MINE PRODUCTION BY COUNTIES

Mine production of gold, silver, copper, lead, and zinc in Washington in 1939, by counties, in terms of recovered metals

		•			1		
County		nes ucing	Gold (lode	and placer)	Silver (lode and placer)		
	Lode	Placer	Fine ounces	Value	Fine ounces	Value	
AsotinBenton		11 4	171 31	\$5, 985 1, 085	28 3	\$19 2	
Chelan Clallam Columbia	6	7 3 1	48, 500 13	1, 697, 500 455 35	184, 059	124, 937	
Douglas Ferry Grant		4 8 4	103 29, 287 85	3, 605 1, 025, 045 2, 975	159, 670 22	15 108, 382 15	
King Kittitas	2 3	5 2	195 69 26	6, 825 2, 415 910	598 152	406 103 2	
Lincoln Okanogan Pend Oreille	26 2	12 2	7,718 8	270, 130 280	44, 522 11, 603	30, 221 7, 876	
Skamania Snohomish Stevens	1 3 19	3 12	8 54 967	280 1,890 33,845	4, 835 35, 917	3, 282 24, 380	
Whatcom Whitman	7	5 1	3, 179 5	111, 265 175	629	427	
Total, 1938	88 77	84 80	90, 420 74, 175	3, 164, 700 2, 596, 125	442, 063 380, 938	300, 067 246, 263	

~ .	Cor	per	Lea	d	Zi	ne	Total	
County	Pounds	Value	Pounds	Value	Pounds	Value	value	
Asotin Benton Chelan	17, 581, 327	\$1, 828, 458					\$6, 004 1, 087 3, 650, 895	
Clallam Columbia Douglas Ferry Grant	8, 423	876	2, 936	\$138			455 35 3, 620 1, 134, 441 2, 990	
King Kittitas	875 67	91 7	2, 085 447	98 21			2, 990 7, 420 2, 546 912	
Okanogan Pend Oreille Skamania	149, 500	15, 548	47, 723 7, 018, 404	2, 243 329, 865	20, 260, 558	\$1, 053, 549	318, 142 1, 391, 570 280	
Snohomish Stevens Whatcom Whitman	237, 462 18, 279 67	24, 696 1, 901 7	364, 192 213	17, 117 10	1, 442	75	29, 868 77, 318 111, 709 175	
Total, 1938	17, 996, 000 12, 034, 000	1, 871, 584 1, 179, 332	7, 436, 000 8, 568, 000	349, 492 394, 128	20, 262, 000 22, 804, 000	1, 053, 624 1, 094, 592	6, 739, 467 5, 510, 440	

Gold and silver produced at lode mines in Washington in 1939, by counties, in terms of recovered metals

County	Ore sold or treated	Gold	Silver
Chelan Ferry King Kittitas Okanogan Pend Öreille Skamania Snohomish Stevens Whatcom	Short tons 606, 143 224, 455 909 18 23, 386 259, 320 644 3, 190 6, 489	Fine ounces 48, 485 28, 544 195 23 7, 574	Fine ounces 184, 059 159, 552 598 146 44, 497 11, 603
Total, 1938	1, 124, 564 901, 689	88, 159 72, 600	441, 705 380, 720

Gold and silver produced at placer mines in Washington in 1939, by counties, in fine ounces, in terms of recovered metals

County		ng and aulic	Dry-land	dredges 1	Total	
	Gold	Silver	Gold	Silver	Gold	Silver
Asotin	60 25 15 13	10 3	111 6	18	171 31 15 13	28
Columbia. Douglas Ferry. Grant Kittitas	1 2 10 9 46	1 6	101 733 76	22 118 21	1 103 743 85 46	22 118 22
Lincoln Okanogan Pend Oreille Snohomish	26 34 8 13	3 6	110	19	26 144 8 13	25
Stevens Whatcom Whitman	96 22 5	13	739	118	835 22 5	131
Total, 1938	385 509	42 68	1, 876 1, 066	316 150	2, 261 1, 575	358 218

¹ Dragline and power-shovel excavators with sluices or special amalgamators.

MINING INDUSTRY

The increased output of gold, silver, and copper in Washington in 1939 was due chiefly to normal operations at the Holden property of the Howe Sound Co. The 2,000-ton flotation mill treated 596,967 tons of ore, compared with 371,800 tons in 1938. As a result, the output of both gold and copper established new records for the State. There was a decrease in gold from ore cyanided, but this loss was more than offset by gains in gold from ore smelted and ore concentrated. The Azurite mill in Whatcom County was closed in February 1939 and the First Thought mill in Stevens County was idle all of 1939, but the Knob Hill plant at Republic operated at capacity the entire year. The output of lead and zinc declined slightly owing to the closing of one of the plants at Metaline Falls in March.

ORE CLASSIFICATION

Details of ore classification are given in the chapter of this volume on Gold and Silver.

Ore sold or treated in Washington in 1939, with content in terms of recovered metals

Source	Mines pro- ducing	Ore	Gold	Silver	Copper	Lead	Zinc
Dry and siliceous gold ore. Dry and siliceous gold-	55	Short tons 261, 651	Fine ounces 39, 979	Fine ounces 167, 388	Pounds 134, 417	Pounds 4, 165	Pounds
silver oreDry and siliceous silver ore.	1 11	68 5, 138	30 67	1, 672 65, 449	595 19, 615	2, 991 66, 484	
Copper oreLead ore	67 8 10	266, 857 597, 957 400	40, 076 48, 064 18	234, 509 192, 237 3, 279	154, 627 17, 841, 078 275	73, 640 343, 051	
Zinc-lead ore	3	259, 350	1	11, 680	20	7, 019, 309	20, 262, 000
Total, lode mines Total, placers	88 84	1, 124, 564	88, 159 2, 261	441, 705 358	17, 996, 000	7, 436, 000	20, 262, 000
Total, 1938	172 157	1, 124, 564 901, 689	90, 420 74, 175	442, 063 380, 938	17, 996, 000 12, 034, 000	7, 436, 000 8, 568, 000	20, 262, 000 22, 804, 000

METALLURGIC INDUSTRY

The total output of ore from mines in Washington in 1939 was 1,124,564 tons and comprised 6,421 tons treated at amalgamation mills, 161,551 tons treated at cyanidation mills, 864,151 tons treated at concentration plants, and 92,441 tons shipped crude to smelters.

Amalgamation plants.—Five straight amalgamation plants and four combined amalgamation and concentration plants were operated in Washington in 1939 and treated 6,421 tons of gold ore; the chief producers were the Bodie mine in Okanogan County and the Boundary

Red Mountain property in Whatcom County.

Cyanidation plants.—The 400-ton straight cyanidation plant of Knob Hill Mines, Inc., at Republic, Ferry County, operated throughout 1939 on ore from the Knob Hill, Mountain Lion, and Quilp mines; and the 100-ton cyanidation and blanket-concentration mill at the Azurite mine in Whatcom County operated 30 days on Azurite ore. The two plants treated 161,551 tons of ore and reported the consumption of 20,043 pounds of sodium cyanide (91-percent grade), 220,800 pounds of calcium eyanide, 34,997 pounds of zinc dust, and 876,093 pounds of lime.

Concentration plants.—The 864,151 tons of ore treated at 14 straight flotation plants comprised 597,127 tons of copper ore treated at 2 plants, 259,350 tons of zinc-lead ore treated at 3 plants, 5,074 tons of silver ore treated at 7 plants, and 2,600 tons of gold ore treated at 2

plants.

Details of the treatment of all ore produced in Washington in 1939 are given in the following tables.

Mine production of metals in Washington in 1939, by methods of recovery, in terms of recovered metals

Method of recovery	Material treated	Gold	Silver	Copper	Lead	Zinc
Ore amalgamated	Short tons 6, 421	961	Fine ounces	Pounds	Pounds	Pounds
Ore cyanided	161, 551 64, 105 92, 441	15, 481 49, 442 22, 275 2, 261	56, 078 257, 345 127, 938 358	17, 618, 979 377, 021	7, 086, 370 349, 630	20, 262, 000
Total, 1938		90, 420 74, 175	442, 063 380, 938	17, 996, 000 12, 034, 000	7, 436, 000 8, 568, 000	20, 262, 000 22, 804, 000

GOLD, SILVER, COPPER, LEAD, AND ZINC IN WASHINGTON 471

Mine production of metals from amalgamation and cyanidation mills (with or without concentration equipment) in Washington in 1939, by types of mills and by counties, in terms of recovered metals

AMALGAMATION MILLS

	Recovere			Concentrates smelted and recovered metal						
County	Ore treated	Gold	Silver	Concen- trates produced	Gold	Silver	Copper	Lead		
Okanogan	Short tons 5,321	Fine ounces 541 8	Fine ounces 299	Short tons 133	Fine ounces 222	Fine ounces 374	Pounds 282	Pounds 1, 018		
Skamania Whatcom	1,090	412	45	40	64	88				
Total, 1938	6, 421 2, 071	961 439	344 230	173 58	286 111	462 190	282	1, 018		

CYANIDATION MILLS

Ferry Whatcom	156, 176 5, 375	13, 523 1, 958	55, 876 202	7	694	80		
Total, 1938	161, 551 210, 090	15, 481 27, 061	56, 078 57, 663	7 24	694 2, 344	80 213		
Grand total: 1939 1938	167, 972 212, 161	16, 442 27, 500	56, 422 57, 893	180 82	980 2, 455	542 403	282	1,018

Mine production of metals from concentrating mills in Washington in 1939, by counties, in terms of recovered metals

		Concentrates smelted and recovered metal										
	Concen- trates pro- duced	Gold	Silver	Copper	Lead	Zine						
Chelan King Okanogan Pend Oreille Stevens	Short tons 597, 127 900 4, 374 259, 320 2, 430	Short tons 40, 509 127 416 22, 665 208	Fine ounces 48, 012 188 250	Fine ounces 182, 350 415 36, 683 11, 603 25, 752	Pounds 17, 581, 327 777 33, 395	1, 462 42, 735 7, 018, 404 22, 751	Pounds 20, 260, 558 1, 442					
Total, 1938	864, 151 631, 864	63, 925 52, 253	48, 462 31, 094	256, 803 248, 011	17, 618, 697 11, 991, 876	7, 085, 352 8, 080, 690	20, 262, 000 22, 804, 000					

Gross metal content of concentrates produced from ores mined in Washington in 1939, by classes of concentrates smelted

Class of concentrates	Concen- trates		Gross metal content								
	produced	Gold	Silver	Copper	Lead	Zinc					
Dry gold Dry silver Copper Lead Lead-copper Zine	Short tons 307 193 40, 819 4, 500 11 18, 275	Fine ounces 1, 168 10 48, 234 29 1	Fine ounces 957 23, 209 210, 099 20, 845 2, 221 14	Pounds 1, 100 2, 470 18, 154, 132 5, 192 1, 233	Pounds 4, 952 19, 709 24, 120 6, 946, 691 2, 082 422, 348	Pounds 108, 421 22, 514, 166					
Total, 1938	64, 105 52. 335	49, 442 33, 549	257, 345 248, 414	18, 164, 127 12, 364, 069	7, 419, 902 8, 538, 054	22, 622, 587 25, 562, 321					

Mine production of metals from Washington concentrates shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Concen- trates	Gold	Silver	Copper	Lead	Zinc
Chelan King	Short tons 40, 509 127	Fine ounces 48, 012 188	Fine ounces 182, 350 415	Pounds 17, 581, 327 777	Pounds	Pounds
Okanogan Pend Oreille	549 22, 665	472	37, 057 11, 603	33, 677	43, 753 7, 018, 404	20, 260, 558
Stevens	208 47	12 758	25, 752 168	3, 198	22, 751	1,442
Total, 1938	64, 105 52, 335	49, 442 33, 549	257, 345 248, 414	17, 618, 979 11, 991, 876	7, 086, 370 8, 080, 690	20, 262, 000 22, 804, 000

BY CLASSES OF CONCENTRATES

Dry gold	307 193 40, 819 4, 500 11 18, 275	1, 168 10 48, 234 29 1	957 23, 209 210, 099 20, 845 2, 221 14	1, 059 2, 100 17, 610, 252 4, 520 1, 048	2, 480 18, 921 12, 060 6, 670, 769 1, 990 380, 150	20, 262, 000
	64, 105	49, 442	257, 345	17, 618, 979	7, 086, 370	20, 262, 000

GOLD, SILVER, COPPER, LEAD, AND ZINC IN WASHINGTON 473

Gross metal content of Washington crude ore shipped to smelters in 1939, by classes of ore

Cl. mark and	0	Gross metal content						
Class of ore	Ore	Gold	Silver	Copper	Lead			
Dry and siliceous gold. Dry and siliceous gold-silver. Dry and siliceous silver. Copper. Lead.	Short tons 91, 079 68 64 830 400	Fine ounces 22, 172 30 3 52 18	Fine ounces 109, 857 1, 672 3, 246 9, 884 3, 279	Pounds 119, 638 614 411 267, 814 340	Pounds 3, 389 5, 960 2, 167 357, 300			
Total, 1938	92, 441 57, 664	22, 275 11, 551	127, 938 74, 413	388, 817 43, 748	368, 82 509, 61			

Mine production of metals from Washington crude ore shipped to smelters in 1939, in terms of recovered metals

BY COUNTIES

	Ore	Gold	Silver	Copper	Lead
Chelan	Short tons 9,016	Fine ounces	Fine ounces	Pounds	Pounds
FerryKing	68, 279 9	15, 021 7 23	103, 676 183 146	8, 423 98 67	2, 936 623 447
Kittitas Okanogan Snohomish	13, 691 644	6, 561 41	7, 141 4, 835	115, 823 237, 462	3, 970
Stevens Whatcom	760 24	120 29	10, 034 214	15, 081 67	341, 441 213
Total, 1938	92, 441 57, 664	22, 275 11, 551	127, 938 74, 413	377, 021 42, 124	349, 630 487, 310
BY CI	LASSES OF	ORE			
Dry and siliceous gold		22, 172 30	109, 857 1, 672	116, 035 595	1, 685 2, 991
Dry and siliceous silver Copper Lead	64	3 52 18	3, 246 9, 884 3, 279	365 259, 751 2 7 5	1, 903
Doad	92, 441	22, 275	127, 938	377, 021	349, 630

REVIEW BY COUNTIES AND DISTRICTS

Mine production of gold, silver, copper, lead, and zinc in Washington in 1939, by counties and districts, in terms of recovered metals

County and district		es pro-	Ore sold		Gold			Silver		Copper	Lead	Zinc	Total value
	Lode	Placer	or trouved	Lode	Placer	Total	Lode	Placer	Total				Value
Asotin County: Snake River		11	Short tons	Fine ounces	Fine ounces 171	Fine ounces 171	Fine ounces	Fine ounces 28	Fine ounces 28	Pounds	Pounds	Pounds	\$6,004
Benton County: Columbia River	1	2	596, 967	48, 011	31	48, 011 2	181, 777	3			l		1, 087 3, 631, 363 70
Leavenworth Peshastin Creek Wenatchee River Clallam County: Ozette	3 1	2 3 3	160 20 8, 996	1 5 468	5 8 13	1 10 476 13	573 3 1, 706		573 3 1, 706				1, 292 352 17, 818 455
Columbia County: Snake River		1 1			1 103 742	1 103 742		22	22 118				35 3, 620 26, 050
Danville Enterprise Republic Grant County: Columbia River	3 3 13	1	91 12 224, 352	28, 533	1	28, 534	78 383 159, 091		78 383 159, 091	8, 000 29 394	2, 894 42		1, 270 399 1, 106, 722
King County: Miller River Kittitas County: Fish Lake	2		909	195 16	85	85 195 16	598 146	22	22 598 146	875 67	2, 085 447		2, 990 7, 420 687
Swauk Lincoln County: Columbia River Okanogan County: Cascade	1	5 2	5, 000	708	46 26	53 26 708	638	6 3	638				1, 859 912 25, 213
Columbia River Conconully Methow Myers Creek and Mary Ann Creek	3 10	5 2	454 14, 989 484	9 6, 557 217	119	119 9 6, 557 226	5, 364 5, 383 386	19	5, 364 5, 383 389	2, 596 133, 192 10			4, 178 4, 813 247, 196 8, 176
Palmer Mountain Similkameen River Pend Oreille County: Metaline	8	5 2	2, 459 259, 320	83	16 8	83 16 8	32, 726 11, 603	3	32, 726 3 11, 603	13, 702	31, 064 7, 018, 404	20, 260, 558	28, 004 562 1, 391, 570
Skamania County: Niggerhead Snohomish County: Index Sultan	1 1 2	<u>3</u> -	514 130	8 38 3	13	8 38 16	4, 505 330		4, 505 330				280 24, 788 5, 080
Stevens County: Bossburg	1		6				134		134	19	639		123

Chewelah	2	12	136	9	835	9 835	5, 149	131	5, 149 131	13, 375	1, 851		5, 288 29, 314
Colville Kettle Falls	2 3		43 448	16 79		16 79	1, 186 2, 634		1, 186 2, 634	96 1, 327	4, 447 2, 064	1, 442	1, 659 4, 788
NorthportOrient	5		391				775		775	77	317, 914		15, 476 601
Springdale Whatcom County:	4		2, 163	ií		11	25, 905		25, 905	3, 356	37, 256		20, 069
Mount Baker Slate Creek	3 4	5	795 5, 694	409 2, 748	22	431 2, 748	109 520		109 520	19 48	213		15, 161 96, 548
Whitman County: Snake River		1			5	5							175
Total Washington	88	84	1, 124, 564	88, 159	2, 261	90, 420	441, 705	358	442, 063	17, 996, 000	7, 436, 000	20, 262, 000	6, 739, 467

ASOTIN COUNTY

The output of placer gold from Asotin County increased in 1939 owing to the operation of four small dragline and washer plants on bars along the Snake River; the rest of the county output was obtained by small-scale sluicing operations.

BENTON COUNTY

The placer output from bars along the Columbia River near Richland and Paterson decreased slightly in 1939, as the output from the Gone Busted property was less than in 1938.

CHELAN COUNTY

Chelan Lake district.—The Chelan Division of the Howe Sound Co. continued regular activity at the Holden property during 1939, except from July 6 to August 17 when the property was strike-bound. The company mined and milled 596,967 tons of gold-copper-silver ore and was again the leading producer of gold, silver, and copper in Washington. The ore was treated in the 2,000-ton flotation plant, and copper concentrates rich in gold and carrying considerable silver were shipped to Tacoma for smelting. The company reported that mine development in 1939 comprised 13,440 feet of drifts, 5,176 feet of raises, and 21,991 feet of diamond drilling. The 57-percent increase (\$1,317,806) in total value of metal output in the Chelan Lake district was greater than the net gain (\$1,229,027) in the State total value in 1939.

Columbia River district.—A little placer gold was produced in 1939

at two properties on the Columbia River near Malaga.

Leavenworth district.—A car of copper concentrates was shipped to Tacoma in 1939 from the property of the Royal Development Co., 48 miles northwest of Leavenworth and only 8 miles in a direct line over the mountain from the Holden mine; the Royal property is equipped with a 350-ton flotation mill. It was an important producer of copper from 1935 to 1937 but has been idle since March 1, 1937.

Peshastin Creek district.—Small lots of gold ore were shipped to smelters in 1939 from the Black & White, Blewett, and Apex lodes; a little placer gold was reported recovered from two properties.

Wenatchee River district.—Shipments of ore from the Gold King & Macbeth (Keegan Mining & Development Co.) property near Wenatchee ceased early in 1939, after the contract with the Tacoma smelter terminated. From August 16, 1938, to April 17, 1939, the property produced 19,842 tons of highly siliceous low-grade gold ore which was used as flux at Tacoma; the ore was mined from an opencut and contained 1,358 ounces of gold and 4,164 ounces of silver. Placer gold was reported recovered from three properties on the Wenatchee River near Cashmere and Dryden.

CLALLAM COUNTY

Small-scale sluicing operations on beach sands near Ozette were continued in 1939; most of the gold came from the Yellow Bank property.

COLUMBIA COUNTY

A little placer gold was recovered by sluicing at a bar on the Snake River north of Dayton in 1939.

DOUGLAS COUNTY

The output of gold from placer operations on Columbia River bars in Douglas County increased considerably in 1939 owing to the operation of a bulldozer and sluicing plant on the Hopkins property near Alameda.

FERRY COUNTY

Columbia River district.—Gold production from placer properties along the Columbia River in Ferry County increased markedly in 1939 as the result of work by the Newton Construction Co.; the company used two tractor-scraper units in hauling 90,000 cubic yards of gravel to a washing plant and was the largest placer producer in Washington. Others in the district included small dragline operations at the Fish and Plumb Bar properties and several small-scale sluicing operations.

Danville district.—Shipments of gold ore from the Morning Star mine decreased in 1939. Small lots of copper ore were shipped from the

Grand Forks and Gold Cup mines.

Enterprise district.—Small lots of crude ore from the Lucky Boy, Stemwinder, and Tyler properties near Inchelium were shipped in

1939 for smelting.

Republic district.—Mines in the Republic district produced metals valued at \$1,106,722 in 1939, an increase of \$133,818 over 1938. The entire output from lode mines was siliceous gold ore and comprised 156,176 tons treated by cyanidation and 68,176 tons shipped direct The ore cyanided came from the Knob Hill and Mountain Lion properties operated by Knob Hill Mines, Inc., and from the Quilp property of the Eureka Mining & Milling Co.; it was treated in the 400-ton cyanide plant at the Knob Hill mine. Most of the crude smelting ore came from leasing operations on property of the Aurum Mining Co.; other producers of smelting ore included the California, El Caliph, Flag Hill, Knob Hill, Morning Glory, Quilp, Republic, Seattle, Valley, Klepinger, and Anecia properties. The Aurum property was the largest gold producer in the district in 1939, followed by the Knob Hill, Mountain Lion, Quilp, and Republic. A little placer gold was recovered by sluicing at the Marcella property on Granite Creek.

GRANT COUNTY

Most of the output of Grant County in 1939 came from the small power-shovel operation of Miller Bros. at Chinaman Bar on the Columbia River; gold was also recovered at three small sluicing operations along the river.

KING COUNTY

Miller River district.—Gold ore from the Apex mine was treated in 1939 in the 75-ton flotation plant of Apex Gold Mines, Inc. A small quantity of gold ore was shipped from the Coney Basin mine for smelting.

KITTITAS COUNTY

Fish Lake district.—A little gold ore was mined at the Silver Creek

property north of Cle Elum in 1939.

Swauk district.—Producing placers near Liberty in 1939 included the Black Bar, Deer Gulch, Gold Bar, and Sunny Bar properties. Small lots of gold ore were produced at the North Star and Sonny Brown mines.

LINCOLN COUNTY

Small-scale sluicing operations in 1939 were reported at two properties on the Columbia River north of Wilbur.

OKANOGAN COUNTY

Cascade district.—The entire output of the Cascade district in 1939 was gold ore from the Bodie mine north of Wauconda and was treated by amalgamation and concentration; the property was operated part of the year by the Northern Gold Corporation and later by the Toroda Gold Mines Corporation.

Columbia River district.—The Gold Bar Mining Co. operated a bulldozer and washing plant in 1939 at the Gold Bar on the Columbia River near Kartar, treating 10,045 cubic yards of gravel from April 11 to November 6. Sluicing was reported at the Funk, Gove, Hill, and

Lucky Strike properties.

Conconully district.—Silver ore was treated by flotation at two properties near Conconully in 1939—the Sonny Boy mine operated by the Ruby Mountain Mining Co. and the Mineral Hill group operated by Central Mines, Inc.: lead concentrates were produced at both

plants.

Methow district.—The value of the metal output of the Methow district increased from \$8,443 in 1938 to \$247,196 in 1939 and accounted for most of the gain in Okanogan County. Operations at the Alder group near Twisp were begun April 22 by the Methow Gold Corporation; the output comprised nearly 13,000 tons of gold ore, containing considerable silver and copper, and copper concentrates from several hundred tons of ore treated in the Red Shirt mill and shipped to Tacoma for smelting. Other producers in the district included the Highland Light, Mazama Pride, Mazama Queen, Mid Range, Gold Crown, and Hyde properties.

Myers Creek and Mary Ann Creek district.—Gold ore was shipped in 1939 for smelting from the Gray Eagle, Mother Lode, Poland China (Overtop), and Harris lode mines. Small-scale sluicing operations were reported at the Ottia May and Davey placers.

Palmer Mountain district.—The value of the metal output of the Palmer Mountain district decreased \$38,271 in 1939, owing chiefly to the closing of the Arlington mine and mill on April 30; the quantity of silver ore treated at the 75-ton flotation plant was only one-third of that in 1938. Other producers in the district included the Four Metals, Grand Summit, John Judge, Golden Zone, Monto Oro, Owasco, and Ruby mines.

Similkameen River district.—Small-scale sluicing operations in 1939

were reported at five placers along the Similkameen River.

PEND OREILLE COUNTY

Metaline district.—The value of the metal output from Pend Oreille County decreased from \$1,473,116 in 1938 to \$1,391,570 in 1939 as the output of both lead and zinc declined. The Pend Oreille Mines & Metals Co. operated the mine and 700-ton flotation plant the entire year and treated 241,624 tons of zinc-lead ore compared with 214,120 tons in 1938, but the output of lead and zinc decreased slightly; the company reported mine development in 1939 comprising 50 feet of shaft, 1,500 feet of drifts, 1,000 feet of tunnel, and 10,000 feet of diamond drilling. The Metaline Mining & Leasing Co. suspended production March 15, 1939, after 17,696 tons of zinc-lead ore had been treated in the 400-ton flotation mill (in 1938 the mill treated 35,064 tons of ore); the company reported 9,174 feet of diamond drilling during the year. A little placer gold was recovered by sluicing at two properties on the Pend Oreille River.

SKAMANIA COUNTY

A little gold ore was amalgamated in 1939 at the Camp Creek property in the Niggerhead district.

SNOHOMISH COUNTY

Index district.—The Sunset Copper Co. was idle in 1939, but lessees shipped 514 tons of crude copper ore from the Sunset mine to Tacoma

for smelting.

Sultan district.—Four lots of copper ore were shipped to Tacoma in 1939 by the Florence Rae Mining Co., and a small lot of gold ore was shipped from a prospect. Sluicing operations were reported at three placers on the Sultan River.

STEVENS COUNTY

Bossburg district.—Lessees shipped a test lot of silver-lead ore from

the Silver Trail mine north of Colville in 1939 for smelting.

Chewelah district.—The Chinto Mining Co. shipped 130 tons of silver-copper ore in 1939 to Tacoma from the Chinto mine on Eagle Mountain; the company reported 700 feet of drifts and tunnels and 1,500 feet of diamond drilling done during the year. A test lot of silver-lead ore was shipped from the Jay Gould mine.

Columbia River district.—The placer output from bars along the Columbia River in Stevens County in 1939 was about the same as in 1938; most of the 1939 output came from power-shovel or tractor-scraper operations at the Gibson Bar, B & W, Grover, and Valbush

placers. Sluicing was reported at eight placers.

Colville district.—A car of silver-lead ore was shipped to the Bunker Hill smelter from the Old Dominion mine in 1939, and a little zinc-lead ore was treated by flotation in a small test mill at the Middleport

mine.

Kettle Falls district.—The Silver Queen property of the Ark Mines Co. was operated by lessees about 5 months in 1939, and the quantity of silver ore treated in the 40-ton flotation plant decreased from about 1,700 tons in 1938 to 250 tons in 1939; silver-lead-copper concentrates were shipped to the Bunker Hill smelter. The remainder of the

output of the Kettle Falls district in 1939 was gold ore shipped from

two properties.

Northport district.—The output of lead from the Northport district decreased in 1939 as shipments of crude lead ore from the Electric Point mine declined. Crude lead ore was also shipped from the Gladstone Mountain, Lead Trust, and W. J. Bryan mines to the Bunker Hill smelter, and a little silver ore from the Burrus mine was treated in a small flotation mill.

Orient district.—The metal output of the Orient district decreased sharply in 1939 owing to the closing of the 50-ton cyanidation mill of the First Thought Mine Corporation; no ore was milled in 1939 (in 1938 the mill treated 11,668 tons), but considerable development at the mine was reported. The district output in 1939 comprised small lots of gold ore shipped to Tacoma from the Gem and Gold

Stake mines.

Springdale district.—The metal output of the Springdale district increased in 1939 as the Deer Trail mine near Fruitland was reopened; the mine and 100-ton flotation plant were operated several months by the Metals Development Co., and silver concentrates and crude silver ore were sent to the Bunker Hill smelter. The remainder of the district output was crude ore shipped from the Cleveland, Double Eagle, and Lucky Boy mines for smelting.

WHATCOM COUNTY

Mount Baker district.—The Boundary Red Mountain mine was idle in 1939, but material cleaned up from former operations was treated by amalgamation and gold valued at more than \$12,000 was recovered. The placer output came from sluicing operations on Ruby Creek

The placer output came from sluicing operations on Ruby Creek. Slate Creek district.—The value of the metal output of the Slate Creek district dropped from \$429,823 in 1938 to \$96,548 in 1939, owing to the closing of the Azurite mine and mill in February 1939; the mill treated only 5,375 tons of ore in 1939 compared with 36,515 tons in 1938. The mine has been operated under lease by the American Smelting & Refining Co. since 1936. A 100-ton cyanidation and corduroy-table concentration plant was built and placed in operation in November 1936 and since that time it has treated 72,998 tons of gold ore. The remainder of the district output in 1939 comprised gold ore from the Allen Basin group, shipped to Tacoma, and from the Newlight mine, treated by amalgamation and concentration.

WHITMAN COUNTY

A little placer gold was recovered in 1939 by sluicing at a bar on the Snake River near Almota.

GOLD, SILVER, COPPER, AND LEAD IN WYOMING

(MINE REPORT)

By Chas. W. Henderson and A. J. Martin

SUMMARY OUTLINE

	ge		Page
Summary 4	81	Mine production by counties	482
Calculation of value of metal production 4	81	Review by counties and districts	482

The bulk of the 583 fine ounces of gold and 75 fine ounces of silver recovered from Wyoming ores and gravels in 1939 came from placer mines in the Atlantic City district, Fremont County. No recoverable copper or lead was produced in the State during the year, and only 57 tons of gold and gold-silver ores were shipped from lode mines and Other activities reported at mines in the State include about 1,000 feet of development work at 14 properties in Albany, Carbon, Fremont, and Johnson Counties; construction of a new mill building at the property of the Powder River Corporation in Johnson County; and reconditioning of the old stamp mill at the Keystone mine in Albany County.

All tonnage figures are short tons and "dry weight"; that is, they do not include moisture.

The value of the metal production herein reported has been calculated at the following prices.

Prices of gold, silver, copper, lead, and zinc, 1935-39

Year	Gold 1	Silver 2	Copper 3	Lead 3	Zine 3
1935 1936 1937 1937 1938	Per fine ounce \$35.00 35.00 35.00 35.00 35.00	Per fine ounce \$0. 71875 . 7745 . 7735 4. 646+ 5. 678+	Per pound \$0.083 .092 .121 .098 .104	Per pound \$0.040 .046 .059 .046 .047	Per pound \$0.044 .050 .065 .048

Price under authority of Gold Reserve Act of Jan. 31, 1934. Treasury legal coinage value of gold from Jan. 18, 1837, to Jan. 31, 1934, was \$20.67+ (\$20.671835) per fine ounce.
 1935-37: Yearly average weighted Treasury buying price for newly mined silver; 1938-39: Treasury buying price for newly mined silver.
 Yearly average weighted price of all grades of primary metal sold by producers.
 \$0.67878787.

The following table shows the annual output of ore from lode mines producing gold, silver, copper, and lead and the quantity and value of the metals recovered from both lode and placer mines in Wyoming from 1935 to 1939; it also gives the total metal production from 1867 About three-fourths of the total recorded value of the four metals is in copper, most of which was mined before 1924 in the Encampment district in Carbon County and the Hartville district in Laramie County.

Mine production of	f gold, silver,	copper, and	lead in	Wyoming,	1935-39,	and total,
	1867-1938	9. in terms of	recovere	ed metals		

37	Ore		old (lode and placer)		Gold (lode and placer) Silver (lode and placer)		Copper		Lead		Total
Year	(short tons)	Fine ounces	Value	Fine ounces	Value	Pounds	Value	Pounds	Value	value	
1935 1936 1937 1938	4, 190 344 17 581 57	3, 715. 00 1, 964. 40 1, 776. 00 798. 00 583. 00	\$130, 025 68, 754 62, 160 27, 930 20, 405	1, 152 1, 113 203 328 75	\$828 862 157 212 51	1,000	\$83	5,000	\$200	\$131, 136 69, 616 62, 317 28, 142 20, 456	
1867-1939	(1)	76, 673. 00	1, 791, 883	74, 372	51, 567	² 16, 319	5, 682, 652	28	568	7, 526, 670	

¹ Figures not available.

MINE PRODUCTION BY COUNTIES

Mine production of gold and silver in Wyoming in 1939, by counties, in terms of recovered metals

County		nes ucing	Ore sold or		Gold			Silver		Total value
	Lode	Placer	treated	Lode	Placer	Total	Lode	Placer	Total	value
			Short tons	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Fine ounces	Fine ounces	•
AlbanyBig Horn	2	3	12	5. 80	2.60 5.40	8. 40 5. 40	1		1	\$295 189
Carbon Crook	1	2	29	16. 20	17. 00 2. 60	33. 20 2. 60	6	3	9	1, 168
FremontIohnson	5 1	17	12 4	7. 40 1. 60	518. 40	525. 80 1. 60	6	59	65	18, 447 56
Park Teton		2 2			3. 20 2. 80	3. 20 2. 80				112 98
Total, 1938	9 8	28 26	57 581	31. 00 193. 60	552. 00 604. 40	583. 00 798. 00	13 249	62 79	75 328	20, 456 28, 145

REVIEW BY COUNTIES AND DISTRICTS

ALBANY COUNTY

Douglas Creek district (Holmes, Keystone).—The Landrith Co. repaired the old stamp mill at the Keystone mine in 1939 and shipped 5 tons of clean-up material containing gold to the Leadville (Colo.) smelter. A 7-ton lot of gold-silver ore was shipped to the Garfield (Utah) smelter from an unidentified claim, presumably in the Douglas Creek district. Some development work was done at the Gold Crater group. Individuals sluicing on Douglas and Little Beaver Creeks recovered small lots of placer gold.

BIG HORN COUNTY

George E. Frame worked his placer ground along Big Horn River approximately 7 miles north of Kane from July 10 to October 10, 1939, using equipment consisting of steel wash boxes, a 4- by 3-inch pump driven by an automobile engine, hose with a 2-inch nozzle, ½-inch grizzly screen, and sluices. The gravel was shoveled by hand into the wash boxes, from which it was carried by water over the screen and sluices. The gold recovered totaled 5.40 fine ounces.

² Short tons.

CARBON COUNTY

Encampment or Upper Platte district.—Development work was continued at the Golden Clover property, from which a car of gold ore containing a little silver was shipped to the Garfield (Utah) smelter

in 1939.

Spring Creek district.—The Saratoga Mining Co. operated its 1-cubic yard dragline and screening and sluicing plant on North Spring Creek about 11 weeks in April, May, and June 1939. Sluicing was done from April 20 to September 10 at the Betty No. 1 placer on Savery Creek west of the Spring Creek district.

CROOK COUNTY

Hurricane district.—Small lots of placer gold, one of which ran 0.882 fine in gold and 0.088½ fine in silver, were recovered in 1939 from the Baker placer on Sand Creek.

FREMONT COUNTY

Atlantic City district.—In 1939 the E. T. Fisher Co. operated its 1½-cubic yard dragline and portable traction screening and sluicing plant for the seventh consecutive season on placer ground in the vicinity of Atlantic City. The company production of gold was a little higher than in 1938 but was much less than the peak of approximately 2,700 ounces recovered in 1934. None of the other individual operations in the Atlantic City district produced more than 10 fine ounces of gold in 1939. The Wyoming Mining Co. operated a ½-cubic yard dragline and a washing plant consisting of two 5-foot concentrating tables and sluices from June 15 to August 10 on placer ground in Poorman Gulch; the recovery amounted to 10.75 crude ounces of dust and buttons averaging 0.906½ fine in gold. Individuals sluicing at the Badger-Fox-Coyote, Blue Bird, Hester, and other placers near Atlantic City and South Pass City recovered small lots of placer gold, part of which was sold to the Smith-Sherlock Co. at South Pass City and part to the Denver Mint.

The B & H Gold Mining Co. shipped 8½ tons of gold-silver ore to the Garfield (Utah) smelter from the Ellen Mc lode mine group, operated only during the period required for assessment work. Other lode claims from which a little gold was recovered by hand methods in 1939 included the Bouncing Dollar, Jack Rabbit, and Snowbird. The Iron Duke Mining Co. sank 50 feet of shaft and drove 25 feet of drift and 40 feet of crosscut at the Iron Duke mine but shipped no ore during the year. The Diana Mining Co. drove 200 feet of development drifts and tunnel at the McGrath or "1914"-Sullivan property. Some development work was done at the Independent, Lone

Star, and R. J. Reynolds groups.

JOHNSON COUNTY

In 1939 the Powder River Corporation shipped a test lot of ore from its property in sec. 20, T. 47 N., R. 85 W., sixth principal meridian. A mill building was constructed on this property during the year.

PARK COUNTY

A little placer gold was recovered in 1939 on Clark Fork in Tps. 57 and 58, R. 101 W., sixth principal meridian.

TETON COUNTY

Two individuals working placers in the Snake River area, one using a shaking machine and the other a sluice, recovered small quantities of placer gold in 1939.

SECONDARY METALS—NONFERROUS

By JAMES S. EARLE

SUMMARY OUTLINE

	Page	1	Page
Explanation and scope of report	485	Secondary lead	
General summary	488	Secondary nickel	494
Salient statistics	488	Secondary tin	495
Secondary aluminum	489	Detinning plants	496
Secondary antimony		Export allotments of tin-plate scrap	497
Secondary copper and brass	491	Secondary zinc	497
Secondary gold and silver	492	Classification of old metals	498

In recognition of the need for additional facts on consumption of the more common nonferrous secondary metals and in order to present information of interest to both suppliers and consumers, the Bureau of Mines revised and enlarged the scope of its nonferrous secondary metal survey in 1939. To satisfy the growing demand for quantitative data on items of nonferrous scrap consumed and to make a separation between "new" and "old" scrap, schedules used in the 1939 canvass were designed to include stocks (by items) on hand at the beginning and end of the year, as well as receipts of purchased scrap and quantities used or resold.

Companies reported the weight of each metal recovered in pure or elemental form apart from the items of scrap used. In compiling the data recoverable metal contents were calculated from assay values assigned to each item of scrap used; in this manner, each metal recovered in alloyed form was determined after allowance had been

made for that recovered in pure or unalloyed form.

To avoid duplication of figures, data were assembled only from consumers of purchased secondary metals that are equipped to produce finished products. Returns from remelters, smelters, and refiners were tabulated apart from those from manufacturers and foundries. Thus, two large groups that use scrap as a source of metal supply were included in the survey, whereas metal dealers and those producing "percentage metals" and similar products requiring further metallurgical treatment were excluded.

The canvass of remelters, smelters, and refiners included all metal companies in the United States that produce refined and alloyed products for sale to consumers, whereas the canvass of manufacturers and foundries included all companies that consumed purchased scrap

for use in the manufacture of finished products.

Schedules mailed to remelters, smelters, and refiners differed from those mailed to manufacturers and foundries in that no information on plant scrap was requested; manufacturers and foundries were requested to report inventories of plant scrap on hand at the beginning and end of 1939. The tables for 1939, except for the table showing tin recovered at detinning plants and the tables on imports and exports, do not include comparisons with 1938 because details reported for 1939 are not on a basis comparable with those reported in previous years. It should be stated, however, that the total tonnages recovered in 1939 appear to be approximately comparable to the recoveries revealed by past surveys. A historical table showing nonferrous secondary metals recovered during the 10-year period 1929–38 is included in this report.

Secondary metals of certain classes recovered in the United States, 1929-38, in short tons

사용 	1929	1930	1931	1932	1933
Copper, including that in alloys other than brass Brass scrap re-treated. Lead as metal Lead in alloys Zinc as metal Zinc in alloys other than brass. Tin as metal Tin in alloys and chemical compounds. Aluminum as metal Aluminum in alloys Antimony as metal and in alloys Nickel as metal. Nickel in nonferrous alloys and salts	138, 500 172, 500 65, 400 11, 600 7, 400 26, 900 25, 850 22, 550 11, 131	332, 800 192, 000 129, 000 126, 800 49, 300 5, 600 20, 600 19, 700 18, 900 8, 082 500 2, 400	7, 400 5, 500 14, 300 15, 200 15, 100	187, 700 86, 400 128, 000 70, 300 20, 000 6, 300 4, 650 10, 100 12, 200 11, 800 6, 450 200 1, 250	247, 100 130, 000 131, 800 92, 700 48, 100 7, 600 7, 250 14, 850 14, 500 19, 000 7, 400 300 1, 350
Total quantityTotal value	1, 202, 281 \$331, 028, 900	913, 382 \$193, 255, 100	720, 770 \$110, 674, 600	545, 350 \$65, 022, 800	721, 950 \$101, 268, 800
	1934	1935	1936	1937	1938
Copper, including that in alloys other than brass Brass scrap re-treated Lead as metal Lead in alloys Zinc as metal Zinc in alloys other than brass Tin as metal Tin in alloys and chemical compounds Aluminum as metal Aluminum in alloys Antimony as metal and in alloys Nickel as metal Nickel in nonferrous alloys and salts.	124, 500 83, 900 29, 300 8, 200 8, 250 16, 650 21, 000 25, 400 7, 550 1, 300	364, 300 120, 800 156, 800 113, 600 55, 400 9, 600 18, 300 22, 500 27, 900 9, 600 1, 250	20, 900 30, 600 9, 900 855	29, 360 33, 200	252, 700 153, 100 119, 400 105, 500 42, 270 6, 400 18, 710 22, 100 8, 500 850 1, 450
Total quantity Total value	740, 400 \$127, 286, 100	910, 700 \$155, 036, 800		1, 052, 390 \$239, 130, 800	

Although reports were not received from all consumers, the final tables include data covering 154 plants of remelters, smelters, and refiners, and 1,367 plants of manufacturers and foundries that consumed purchased scrap in 1939. In previous years returns were received from approximately 400 companies. The term "purchased scrap" includes all crude scrap metal received from metal dealers or other sources of supply, as well as all scrap items returned from customers for reworking on a toll basis or conversion agreement.

Stocks of "plant scrap" shown at plants of manufacturers and foundries include all scrap on hand at the beginning and end of the year that was produced within the plant reporting. Typical examples of plant scrap are sprues, gates, risers, butts, croppings, clippings,

borings, turnings, and defective products produced as a result of manu-

facturing operations.

"New scrap" is defined as the refuse produced during the manufacture of articles for ultimate consumption, including all finished and semifinished articles that are to be reworked. Typical examples of new scrap are defective castings, clippings, punchings, turnings, borings, skimmings, drosses, and slags. Finished and semifinished articles frequently are received as scrap because of excess inventory, faulty manufacture, or change in design or other causes of obsolescence, and the metal content of all such articles is included as new

"Old scrap" is defined as scrap derived from metal articles that have Typical examples of been discarded after serving a useful purpose. old scrap are discarded trolley wire, battery plates, railroad-car boxes, automobile crankcases, cocks and faucets, and lithographers plates.

In presenting these new data the Bureau of Mines believes that a decided advance has been made that will help to clarify the recovery of metals from secondary sources. It has long been recognized that the return of metals from use exerts a profound effect upon the mining industry, and the revised canvass has been designed to demonstrate the real significance of secondary metals and to assemble basic data of value to the expanding secondary-metals industry. Because of difficulties occasioned by revision of the canvass and the complex nature of secondary scrap metals, results of the first year's canvass on the new basis are not exact. The Bureau of Mines will welcome suggestions for improving the accuracy of the data and is aware that time will be required to present all details satisfactorily.

The figures on recoveries of metals from secondary sources in 1939 were derived from consumption data on the following items of scrap:

Aluminum:

Pure clippings

Pure wire and cable Castings

Clean sheet

Painted sheet Dural sheet and clippings

Borings and turnings

Foil

Drosses and skimmings

Antimony:

Battery lead plates

Hard lead

Common babbitt

Genuine babbitt No. 1 babbitt

No. 1 pewter

Cable lead

Type metals

Battery mud

Copper:

No. 1 wire

No. 2 wire

No. 1 heavy Mixed heavy

Light

Composition or red brass

Railroad car boxes

Cocks and faucets

244615-40-32

Copper—Continued.

Heavy yellow brass

Yellow brass castings

Light brass

Old rolled brass

Brass clippings

Brass pipe

No. 1 Red composition turnings

No. 1 Yellow rod-brass turnings

No. 1 Yellow brass turnings Auto radiators (unsweated)

Electrotype shells Aluminum-base alloys

Bronze

Manganese-bronze

Aluminum-bronze

Nickel-silver

Bell metal

Secondary blister

Copper oxide

Buffings

Grindings

Washings

Brass ashes

Brass skimmings

Slags

Residues

Miscellaneous copper-bearing ma-

terials

Lead: Tin: Soft lead New tin-plate clippings Hard lead Old tin-coated containers Cable lead Block tin pipe Battery lead plates Tinfoil Common babbitt Tin scruff and dross Solder No. 1 pewter Type metals Genuine babbitt Dross No. 1 babbitt Battery mud Residues Copper-base alloys Copper-base alloys Lead-base alloys Type-metal dross Solder dross Solder joints Clippings Lead oxide Sheet Slag Skimmings Nickel: Dross Nickel clippings, anodes, hangers. Die castings Flue dust Monel metal Residues Stainless steel Zinc ashes Nickel-silver Remelt zinc Secondary blister copper Die-cast slabs Nichrome wire Castings Nickel-steel Copper-base alloys Nickel-iron

GENERAL SUMMARY

The value of the more common nonferrous metals recovered from secondary sources as metal and in alloys and chemical products totaled \$199,856,800 in 1939. Metals recovered from market scrap produced as a result of manufacturing operations (new scrap) accounted for \$81,868,200 of the total value, whereas metals returning from use (old scrap) accounted for \$117,988,600.

Salient statistics of nonferrous secondary metals recovered in the United States in 1939

	New	scrap	Old	l scrap	Total		
Metal	Short tons	Value	Short tons	Value	Short tons	Value	
Aluminum Antimony Copper Lead Nickel Tin Zinc	15, 100 150 212, 800 30, 700 1, 910 12, 300 144, 540	\$5, 964, 500 37, 100 44, 262, 400 2, 885, 800 1, 337, 000 12, 349, 200 15, 032, 200 81, 868, 200	34, 900 9, 660 286, 900 210, 800 1, 010 16, 860 45, 100	\$13, 785, 500 2, 387, 900 59, 675, 200 19, 815, 200 707, 000 16, 927, 400 4, 690, 400	50, 000 9, 810 499, 700 241, 500 2, 920 29, 160 189, 640	\$19, 750, 000 2, 425, 000 103, 937, 600 22, 701, 000 2, 044, 000 29, 276, 600 19, 722, 600	

The general improvement in nonferrous-metal markets in 1939 created widespread activity in the secondary-metals industry. The gain over 1938 followed increases in consumption, production, and prices and the downward trend of primary stocks of nonferrous metals. The secondary-metals industry was slightly more active in the first half of 1939 than in the latter half of 1938; however, substantial advances did not get under way until July, when demand increased in sympathy with the improved rate of industrial operations. The outbreak of war in Europe on September 1 precipitated a rush by

domestic consumers to increase metal inventories in anticipation of war orders. As a result of the sudden gain in demand, scrap supplies became momentarily frozen because many dealers hesitated to dispose of their scrap stocks on a bullish market. The situation eased as soon as primary metals attained some stability at moderately higher levels. By October many dealers in secondary metals realized that early hopes of tremendous orders for materials from belligerent countries were not materializing, and as domestic consumers had covered their needs fairly well early in September, domestic demand also subsided. Activity relaxed toward the end of the year.

SECONDARY ALUMINUM

The quantity of secondary aluminum recovered in 1939 totaled 50,000 short tons valued at \$19,750,000. The value was computed at 19.75 cents a pound of weight recovered.

Aluminum recovered from secondary sources in 1939 included 2,900 short tons of pure metal (98+ percent) and 47,100 tons of aluminum alloys. The aluminum content of the recovered alloys was approximately 43,900 tons (93 percent).

Secondary aluminum recovered in the United States in 1939, in short tons

	1939
Aluminum as metal. Aluminum alloys produced and recovered from aluminum scrap	2, 900 47, 100
	50, 000
From new scrap From old scrap Scrap	15, 100 34, 900

Of the 50,000 tons of aluminum recovered in 1939, remelters supplied 39,700 tons (79 percent) and manufacturers and foundries 10,300 tons (21 percent). The 39,700 tons recovered by remelters included 11,600 tons (29 percent) derived from new scrap and 28,100 tons (71 percent) from old scrap. The 10,300 tons reported by manufacturers and foundries included 3,500 tons (34 percent) obtained from new scrap and 6,800 tons (66 percent) from old scrap. Thus, the 50,000 tons of secondary aluminum produced included 15,100 tons (30 percent) recovered from new scrap and 34,900 tons (70 percent) from old scrap.

The principal sources of aluminum recovered from scrap in 1939 were alloy castings and various items of soft and hard sheet. Of the total aluminum recovered, 50 percent came from castings, 27 from sheet, 7 from borings and turnings, 6 from new aluminum clippings, 2 from aluminum wire and cable, and 8 from miscellaneous materials comprising mainly drosses and skimmings. Of the aluminum recovered at plants of remelters, 40 percent was obtained from alloy castings, 34 from various classes of sheet scrap, 8 from borings and turnings, 4 from new aluminum clippings, 2 from wire and cable, and 12 from miscellaneous materials. Of the aluminum recovered at plants of manufacturers and foundries, 79 percent came from alloy castings, 11 from new aluminum clippings, 7 from various classes of sheet scrap, and 1 each from wire and cable, borings and turnings, and miscellaneous materials.

Stocks of unmelted aluminum scrap at remelting plants increased 15 percent from 3,900 tons at the beginning of 1939 to 4,500 at the end of the year. Stocks of purchased aluminum scrap at manufacturing and foundry plants decreased 17 percent from 2,300 tons to 1,900. Total stocks of purchased scrap on hand at all plants advanced from 6,200 tons to 6,400, a net gain of 3 percent. In addition, stocks of plant scrap at manufacturing and foundry plants increased from 2,800 tons at the beginning of the year to 3,000 at the end of the year, a 7-percent rise.

Dealers' buying prices for scrap cast aluminum in New York averaged 7.47 cents a pound in 1939 compared with 7.58 cents in 1938. Average monthly quotations in 1939 ranged from 6.87 cents for May, June, and July to 9.50 cents for November and December.

The average price of new aluminum clippings in New York was 13.90 cents a pound in 1939 compared with 13.18 cents in 1938. Prices had a spread of 2.38 cents a pound in 1939, ranging from 13.12 cents in January to 15.50 cents in December.

SECONDARY ANTIMONY

A total of 9,810 short tons of secondary antimony valued at \$2,425,000 was recovered in 1939. The value in 1939 was computed at 12.36 cents a pound, the average price for ordinary brands of American-grade antimony.

Antimony recovered in lead-base alloys (in oxide and as metal) totaled 9,520 tons in 1939 and that recovered in tin-base alloys 290 tons.

Secondary antimony recovered in the United States in 1939, in short tons

	1939
In lead-base alloys ¹ In tin-base alloys	9, 520
	9, 810
From new scrapFrom old scrap	 150 9,660

¹ Includes antimony recovered as metal and in oxide and other compounds; 923 tons of antimony were recovered in antimonial lead produced at primary lead refineries.

Remelters, smelters, and refiners furnished 7,430 tons (76 percent) of the 9,810 tons of antimony recovered in 1939 and manufacturers and foundries 2,380 tons (24 percent). Of the 7,430 tons recovered by remelters, smelters, and refiners, 120 tons (1.6 percent) came from new scrap and 7,310 tons (98.4 percent) from old scrap. Of the 2,380 tons recovered by manufacturers and foundries, 30 tons (1.3 percent) were obtained from new scrap and 2,350 tons (98.7 percent) from old scrap. Thus, it may be seen that by far the greater part of the secondary antimony was recovered from old scrap metals. Only 150 tons (1.5 percent) of the 9,810 tons came from new scrap, whereas 9,660 tons (98.5 percent) came from old scrap.

Discarded lead storage batteries, the principal source of secondary antimony, were the source of 58 percent of the antimony recovered in 1939. Other scrap lead alloys, including hard or antimonial

lead, common babbitt, type metals, and drosses, supplied 39 percent

and scrap tin alloys 3 percent.

As all the recovered antimony comes from lead- and tin-base alloys, stocks of scrap containing antimony are shown under the headings "Secondary lead" and "Secondary tin."

SECONDARY COPPER AND BRASS

Copper recovered from scrap metals, including that in alloys, totaled 499,700 short tons valued at \$103,937,600 in 1939. The value in 1939 was computed at 10.4 cents a pound, the average price of all

merchantable grades of new metal.

A total of 151,370 tons of copper was recovered in 1939 as essentially pure metal, of which the larger part was refined electrolytically. Alloys other than brass yielded 182,730 tons and brass alloys 162,400 tons. In addition to the copper recovered as metal and in alloys, 3,200 tons of copper were recovered from scrap metals in the form of chemicals.

Secondary copper recovered in the United States in 1939, in short tons

	1939		1939
As metal: At primary plants At other plants	116, 613 34, 757	Brass scrap remelted (gross weight): New scrap Old scrap	1 170, 900 80, 200
In brass	151, 370 1 162, 400 1 182, 730 3, 200	In brass scrap: New scrap Old scrap	251, 100 1 111, 600 50, 800
In new scrap (not including brass) In old scrap (not including brass)	1 101, 200 236, 100	Total secondary copper (including copper in brass scrap):	162, 400
7	337, 300	From new scrap From old scrap	¹ 212, 800 286, 900
			499, 700

¹ Includes some plant scrap at brass mills.

Brass and copper scrap imported into and exported from the United States, 1938-39, in short tons

	1938	1939
Brass scrap imported Scrap copper imported Brass scrap exported Scrap copper exported	(1) 15, 988 21, 811	132 5, 338 17, 643

^{1 190} pounds, gross weight.

Of the 499,700 tons of copper recovered in 1939, remelters, smelters, and refiners accounted for 237,700 tons (48 percent), and manufacturers and foundries 262,000 tons (52 percent). The 237,700 tons recovered by remelters, smelters, and refiners included 43,000 tons (18 percent) derived from new scrap and 194,700 tons (82 percent) from old scrap. The 262,000 tons reported by manufacturers and foundries included 169,800 tons (65 percent) obtained from new scrap and 92,200 tons (35 percent) from old scrap. Thus, the 499,700 tons

of copper included 212,800 tons (43 percent) recovered from new

scrap and 286,900 tons (57 percent) from old scrap.

Various items of brass scrap were the principal source of the copper reclaimed from scrap in 1939, although the amounts recovered from items of scrap copper and composition and bronze alloys also comprised a large part of the total. The copper recovered in brass scrap and alloys other than brass, reported by certain brass mills that were unable to report purchased and plant scrap separately, is included The quantity of copper in new scrap is therefore in new scrap. somewhat higher by an indeterminable amount than that actually Of the total copper recovered, 43 percent came from brassscrap items, consisting mainly of light and heavy yellow brass; 28 percent from items of copper scrap, including No. 1 wire, No. 2 wire, No. 1 heavy, and mixed heavy and light copper; 23 percent from composition and bronze alloys, including automobile radiators; and 6 percent from miscellaneous items. Of the copper recovered at plants of remelters, smelters, and refiners, 42 percent was obtained from items of copper scrap, 29 percent from brass, 24 percent from composition and bronze (including automobile radiators), and 5 percent from miscellaneous items. Of the copper recovered at plants of manufacturers and foundries, 18 percent came from items of copper scrap, 53 percent from brass scrap, 22 percent from composition and bronze (including automobile radiators), and 7 percent from miscellaneous items.

Stocks of purchased copper scrap at remelting, smelting, and refining plants rose from 38,100 tons at the beginning of 1939 to 41,000 at the end of the year, a gain of 8 percent. Stocks of purchased copper scrap at manufacturing and foundry plants decreased 9 percent from 56,000 tons to 50,800. Total stocks of purchased scrap on hand at all plants declined from 94,100 tons to 91,800, a net loss of 2 percent. Stocks of plant scrap at manufacturing and foundry plants decreased 2 percent from 17,300 tons at the beginning of the year to 17,000 at the end of the year.

Dealers' buying prices for heavy copper scrap in New York averaged 7.80 cents a pound in 1939 compared with 6.81 cents in 1938. Average monthly prices in 1939 ranged from 6.86 cents a pound for May to

9.31 cents for November.

No. 1 composition averaged 7.04 cents a pound in 1939 compared with 6.36 cents in 1938. Prices in 1939 ranged from a low of 6.11 cents, the average for May, to a high of 8.25 cents in November.

SECONDARY GOLD AND SILVER

Mints and refineries reported the recovery of 895,096 fine ounces of gold and 24,972,260 fine ounces of silver from waste or discarded material in 1939 compared with 870,881 ounces of gold and 18,438,847 ounces of silver in 1938.

SECONDARY LEAD

Secondary lead recovered in 1939 totaled 241,500 short tons, or 50 percent of the total production of refined lead from domestic and foreign sources in the United States. The value of lead recovered as metal and in alloys was \$22,701,000 in 1939, computed at 4.7 cents a pound.

Lead recovered as metal from secondary sources in 1939 amounted to 86,900 short tons. Antimonial lead accounted for 113,050 tons, other lead alloys 22,100 tons, alloys other than lead alloys (principally copper alloys) 13,650 tons, and chemical products 5,800 tons.

Secondary lead recovered in the United States in 1939, in short tons

At other plants. 5 In antimonial lead 1111 In other lead alloys 2 In alloys other than lead alloys 112 In chemical products 2 From new scrap 3		1939
At other plants. 5 In antimonial lead 1111 In other lead alloys 22 In alloys other than lead alloys 112 In chemical products 24 From new scrap 3	At primary plants	29, 011
11 antimonial lead	At other plants	57, 889
In chemical products 24 From new scrap 3	In antimonial lead	86, 900 1 113, 050
From new scrap 3	anoys other than lead anoys	22, 100 13, 650
From new scrap 3	n chemical products	5, 800
		241, 500
		30, 700 210, 800

¹ Includes 12,658 tons of lead recovered from secondary sources at primary plants.

By far the greater part of the lead reclaimed in 1939 was recovered by remelters, smelters, and refiners, who accounted for 206,900 tons (86 percent); scrap lead and lead in alloys recovered by manufacturers and foundries totaled 34,600 tons (14 percent). Of the 206,900 tons recovered by remelting, smelting, and refining processes 24,800 tons (12 percent) came from new scrap and 182,100 tons (88 percent) from old scrap. Of the 34,600 tons recovered at plants of manufacturers and foundries, 5,900 tons (17 percent) was obtained from new scrap and 28,700 tons (83 percent) from old scrap. Thus, the 241,500 tons of secondary lead comprised 30,700 tons (13 percent) from new scrap and 210,800 tons (87 percent) from old scrap.

Worn-out automobile batteries, the principal source of secondary lead, supplied 51 percent of the total lead recovered in 1939. Recoveries of lead from other secondary sources were as follows: 13 percent from soft lead, 9 percent from cable lead, 8 percent from drosses and residues, 6 percent from alloys other than lead, 4 percent from common babbitt, 3 percent each from solder, hard lead, and type metals.

Stocks of purchased lead scrap at remelting, smelting, and refining plants decreased 11 percent from 24,700 tons at the beginning of 1939 to 21,900 at the end of the year. Stocks of purchased lead scrap at manufacturing and foundry plants increased 7 percent from 6,100 tons to 6,500. Total stocks of purchased scrap on hand at all plants dropped 8 percent from 30,800 tons to 28,400. Plant scrap at manufacturing and foundry plants rose 10 percent from 2,000 tons at the beginning of the year to 2,200 at the end of the year.

Dealers' buying prices for heavy scrap lead in New York averaged 4.19 cents a pound in 1939 compared with 3.86 cents in 1938. Buying prices for battery plates ranged from 2 to 2.38 cents a pound during the first 7 months of 1939; in August prices advanced steadily and in September reached 2.75 to 3 cents, remaining at this level for the balance of the year. Battery-plate smelting charges were quoted at \$16 to \$17 per ton throughout the year.

SECONDARY NICKEL

The secondary nickel recovered in 1939 totaled 2,920 short tons valued at \$2,044,000. The value was computed at 35 cents a pound,

the spot delivery price of electrolytic nickel, including duty.

Nickel recovered as metal from secondary sources amounted to 45 The quantity recovered in 1939 also included 2.180 tons of nickel in nickel-copper alloys, 330 tons in nickel-iron alloys, 315 tons in Monel metal, and 50 tons in stainless steel.

Secondary nickel recovered in the United States in 1939, in short tons 1

		1939
As metal		45 315
In copper alloys		2,180
In iron alloys	ł	330
From new scrap		2,92
From old scrap		1,910 1,010

¹ Exclusive of nickel recovered from secondary copper treated at electrolytic refineries.

Of the 2,920 tons of nickel recovered in 1939, remelters, smelters, and refiners produced 525 tons (18 percent), and manufacturers and foundries 2,395 tons (82 percent). The 525 tons recovered by remelters, smelters, and refiners included only 25 tons (5 percent) derived from new scrap and 500 tons (95 percent) from old scrap. 2,395 tons recovered by manufacturers and foundries, 1,885 tons (79 percent) came from new scrap, whereas only 510 tons (21 percent) came from old scrap. Thus, of the total 2,920 tons of secondary nickel recovered, 1,910 tons (65 percent) was derived from new scrap and 1.010 tons (35 percent) from old scrap.

Nickel-silver scrap is by far the largest source of secondary nickel, having contributed 60 percent of the nickel recovered in 1939. Nickel was recovered from other secondary sources as follows: 15 percent from clippings, nickel anodes, hangers, baskets, etc., 12 percent from iron alloys, 11 percent from Monel metal, and 2 percent from stainless steel.

Stocks of purchased nickel scrap at remelting, smelting, and refining plants decreased 38 percent from 470 tons at the beginning of 1939 to 290 at the end of the year. Stocks of purchased nickel scrap at plants of manufacturers and foundries dropped 28 percent from 920 Total stocks of purchased scrap on hand at all plants tons to 660. declined from 1,390 tons to 950, a net loss of 32 percent. Stocks of plant scrap in the hands of manufacturers and foundries increased 7 percent from 1,390 tons at the beginning of the year to 1,490 at the

end of the year.

Dealers' buying prices (nominal) in New York for new nickel clippings stood at 27 cents a pound throughout the first 11 months of 1939 but advanced to 31 to 31.5 cents in December. The quotation for Monel clippings (14.5 to 15 cents a pound early in January) dropped to 12 to 13 cents before the end of that month and did not change until August, when it increased slightly to 13 cents; this level was held until early in December, when prices advanced to 15 to 15.5

cents for the remaining weeks of the year.

SECONDARY TIN

Secondary tin recovered in 1939 totaled 29,160 short tons valued at \$29,276,600. The value was computed at 50.20 cents a pound, the

average price of Straits tin in New York for the year.

Metallic tin recovered from secondary sources amounted to 4,460 short tons in 1939. The greater portion of the metallic tin recovered in 1939 (4,089 tons) came from tin-plate scrap, whereas other sources contributed only small amounts (371 tons). Tin recovered in alloys and chemical compounds accounted for 24,700 tons in 1939. The quantity recovered in 1939 also included 12,420 tons of tin in copper alloys, 6,925 tons in lead alloys, 4,675 tons in tin alloys, and 680 tons in chemical compounds.

Secondary tin recovered in the United States in 1939, in short tons

	1939
s metal: At detinning plants At other plants	4,0
	4, 4
n copper alloys	
rom new scraprom old scrap	29, 1 12, 3 16, 8

Remelters, smelters, and refiners produced 13,410 tons (46 percent) and manufacturers and foundries (including detinning plants) 15,750 tons (54 percent) of the 29,160 tons of tin recovered in 1939. The 13,410 tons recovered by remelters, smelters, and refiners included 4,910 tons (37 percent) derived from new scrap and 8,500 tons (63 percent) from old scrap. Of the 15,750 tons recovered by manufacturers and foundries, 7,390 tons (47 percent) were obtained from new scrap and 8,360 tons (53 percent) from old scrap. Thus, the 29,160 tons of tin recovered included 12,300 tons (42 percent) derived from new scrap and 16,860 tons (58 percent) from old scrap.

The largest recovery of tin in 1939 was made in scrap-copper alloys, the source of 43 percent of the total. Other sources contributed the following recoveries: 16 percent from new tin-plate clippings (including 0.3 percent from old containers), 16 percent from solder, 9 percent from tin scruff and drosses, 5 percent from common babbitt, 3 percent from No. 1 babbitt, 2 percent each from block-tin pipe, genuine babbitt and No. 1 pewter, type metals, and miscellaneous

itame

Stocks of purchased tin-base scrap at remelting, smelting, and refining plants rose from 375 tons at the beginning of 1939 to 550 tons at the end of the year, a 47-percent increase. Stocks of purchased tin-base scrap at manufacturing and foundry plants (not including detinning plants) increased 150 percent from 50 tons to 125. Total stocks of purchased tin-base scrap on hand at all plants advanced 59 percent from 425 tons to 675. Stocks of plant scrap in the hands of manufacturers and foundries declined 24 percent from 340 tons at the beginning of the year to 260 at the end of the year.

Dealers' buying prices for block-tin pipe in New York in 1939 remained at 35 to 36 cents a pound until late in April, when they rose to 41 to 42 cents. In August prices eased to 39 to 40 cents but advanced sharply following the outbreak of war in Europe on September 1. Prices became nominal, but by the last week of September were holding at 44 to 45 cents and remained at this level until the middle of December, when quotations dropped to 42 to 43 cents for the remainder of the year.

The price of automobile babbitt in 1939 followed the pattern of changes in the price of block-tin pipe. For the first 3 months quotations were 21 to 22 cents a pound, rising to 24 to 25 cents the latter part of April. In September prices became nominal, and quotations were not resumed until early in December, when they were 27 to 28

Detinning plants.—The quantity of new tin-plate clippings treated at detinning plants established a record of 248,676 long tons in 1939, exceeding the 209,474 tons treated in 1938 by 39,202 tons (19 percent). Old tin-coated containers treated in 1939 totaled 6,429 long tons compared with 3,059 tons in 1938. Tin recovered as metal and in chemical products, 4,769 short tons, also established a new high, exceeding the 3,923 tons recovered in 1938 by 846 tons (22 percent). Tin reclaimed was equivalent to 37.70 pounds per long ton of new tin-plate clippings treated in 1939 compared with 37.05 pounds in 1938.

Secondary tin recovered at detinning plants in the United States, 1938-39

	1938	1939
Scrap treated: Clean tin plate	209, 474	248, 676
Člean tin plate long tons Old tin-coated containers do	3, 059	6, 429
	212, 533	255, 105
Tin recovered as metal: New tin-plate clippings short tons Old tin-coated containers do	2, 492 42	4, 007 82
Tin content of tin tetrachloride, tin bichloride, tin crystals, tin oxide, and sodi- um stannate producedshort tons.	1, 389	680
	3, 923	4, 769
Weight of tin tetrachloride, tin bichloride, tin crystals, tin oxide, and sodium stannate produced. short tons. Average quantity of tin recovered per long ton of clean tin-plate scrap	2, 757	1, 195
Average delivered cost of clean tin-plate scrap	37. 05 \$11. 42	37. 70 \$15. 06

For the past few years, almost wholly because of the disappearing demand for tin tetrachloride in the silk industry, the quantity of pig tin produced from tin-plate clippings has increased while that recovered in chemicals has decreased. The ratio of tin reclaimed as pig tin to that reclaimed in chemical products increased sharply in 1939. This ratio, which stood at 0.5:1 in 1935, had increased to 1.8:1 by 1938 and reached 5.9:1 in 1939.

The average cost of new tin-plate clippings delivered at detinning plants, which follows roughly the changes in price of No. 1 heavy-melting steel, advanced to \$15.06 per long ton in 1939, a gain of 32

percent over the average of \$11.42 in 1938.

Imports of tin-plate scrap into the United States, largely from Canada, totaled 12,633 long tons valued at \$126,518 in 1939 compared

with 10,444 tons valued at \$81,685 in 1938.

Exports of tin-plate scrap, waste—waste, circles, strips, cobbles, etc., from the United States amounted to 25,888 long tons valued at \$1,121,153 in 1939 compared with 24,216 tons valued at \$902,607 in 1938. Exports of tin-plate scrap or that portion which is subject to export licensing (Public, No. 448, 74th Cong.) amounted to 10,204 long tons valued at \$186,393 in 1939 compared with 12,495 tons valued at \$227,874 in 1938.

Export allotments of tin-plate scrap.—Export allotments totaling 13,636 long tons of tin-plate scrap, subject to license, were assigned during the calendar year 1939. The Department of State issued 172 licenses in 1939 authorizing the exportation of 10,699 tons of tin-plate scrap valued at \$200,497.52. All licenses issued in 1939 named

Japan as the country of destination.

The rules of procedure governing issuance of licenses during 1940 were released by the Department of State on December 5, 1939. The allotments in 1940 will be based upon the individual producer's request therefor, with the provision that no allotment of more than 25 long tons shall exceed 20 percent of the producer's output of tinplate scrap during the calendar year 1938. No allotment to any producer shall exceed 2,000 tons. Export quotas for 1939 were based upon 20 percent of the 1937 production.

SECONDARY ZINC

Zinc recovered from secondary sources totaled 189,640 short tons valued at \$19,722,600 in 1939. The value was computed at 5.2 cents

a pound, the average selling price of all grades.

Zinc recovered as metal in 1939 from distillation and remelting of purchased secondary materials totaled 35,970 short tons; moreover 98,879 tons of zinc were recovered in copper alloys, 16,429 tons in zinc oxide, 1,674 tons in zinc sulfate, 6,686 tons in zinc chloride, 16,293 tons in zinc dust, and 13,709 tons in lithopone.

Secondary zinc recovered in the United States in 1939, in short tons

	1939
As metal: By distillationBy remelting	1 33, 135 2, 835
in copper alloys	35, 970 2 98, 879
Zinc oxide Zinc sulfate Zinc chloride	1,674
Zinc dustLithopone	16, 293
From new scrapFrom old scrap	189, 640 144, 540 45, 100

¹ In addition, 17,293 tons of zinc were recovered by redistillation of plant scrap. Total output of redistilled secondary zinc was 50,423 tons.
² Includes some plant scrap at brass mills.

Of the 189,640 tons of zinc recovered in 1939, remelters, smelters, and refiners supplied 91,800 tons (48 percent) and manufacturers and foundries 97,840 tons (52 percent). The 91,800 tons recovered by remelters, smelters, and refiners included 58,500 tons (64 percent) derived from new scrap and 33,300 tons (36 percent) from old scrap. The 97,840 tons reported by manufacturers and foundries included 86,040 tons (88 percent) obtained from new scrap and 11,800 tons (12 percent) from old scrap. Thus, the 189,600 tons of zinc recovered included 144,540 tons (76 percent) derived from new scrap and 45,100 tons (24 percent) from old scrap.

The principal source of zinc recovered in 1939, secondary copper alloys contributed 45 percent of the total, and zinc drosses and skimmings 42 percent. Recoveries from other secondary sources were as follows: 5 percent from die castings, 2 percent from clippings and sheet, 2 percent from flue dusts, and 4 percent from miscella-

neous sources.

Stocks of purchased zinc scrap on hand at remelting, smelting, and refining plants decreased 12 percent from 18,200 tons at the beginning of 1939 to 16,100 at the end of the year. Stocks of purchased zinc scrap on hand at manufacturing and foundry plants increased 20 percent from 540 tons to 650. Total stocks of purchased scrap on hand at all plants declined 11 percent from 18,740 tons to 16,750. Stocks of plant scrap at manufacturing and foundry plants advanced from 600 tons at the beginning of the year to 765 at the end of the year, a rise of 28 percent.

a rise of 28 percent.

Dealers' buying prices for new zinc clippings in New York in 1939 remained at 2.75 to 3 cents a pound until late in April, when they rose to 3 to 3.25 cents. This level was held until the first week of September when quotations increased sharply to 4.5 cents, and by the end of September they stood at 4.875 to 5 cents. The first week in December prices dropped to 4.50 to 4.75 cents and again the middle of December to 4.375 to 4.50 cents, closing the year at this level.

Old-zinc quotations ranged from 2.25 to 2.50 cents a pound during the first 8 months of 1939 but increased to 3.25 cents in the first week of September; this level was held until the first week of December,

when prices weakened slightly to 3.125 to 3.25 cents.

CLASSIFICATION OF OLD METALS

The standard classification of old metals (Circ. M), effective since March 16, 1932, was revised by the Secondary Metal Institute, a division of the National Association of Waste Material Dealers, Inc., at the association's convention in March 1940. The revised classifications (Circ. O) provided that changes become effective June 1, 1940.

The revisions apply principally to various items of secondary aluminum. The item of "scrap-aluminum castings" (Circ. M, item 33) is now divided into five separate groups, four of which cover automotive castings. Other changes include substitution of "scrap sheet and sheet utensil aluminum" (Circ. O, item 31), for "painted sheet aluminum" and "old scrap sheet aluminum" (Circ. M, items 31 and 32), and substitution of "aluminum borings and turnings" for "aluminum borings" (Circs. O and M, item 34).

Complete specifications for various grades of nickel scrap have been

added to the classification.

The revised classification, as shown in Circular O, follows:

STANDARD CLASSIFICATION FOR OLD METALS, EFFECTIVE FROM JUNE 1, 1940

1. Delivery.—(a) Delivery of more or less on the specified quantity up to 11/4 percent is permissible.

(b) If the term "about" is used, it is understood that 5 percent more or less of

the quantity may be delivered.

(c) Should the seller fail to make deliveries as specified in the contract the purchaser has the option of canceling all of the uncompleted deliveries or holding the seller for whatever damages the purchaser may sustain through failure to deliver and if unable to agree on the amount of damages, an Arbitration Committee of the National Association of Waste Material Dealers, Inc., appointed for this purpose, to determine the amount of such damages.

(d) In the event that buyer should claim the goods, delivered on a contract are not up to the proper standard and the seller claims that they are a proper delivery, the dispute shall be referred to an Arbitration Committee of the National Associa-

tion of Waste Material Dealers, Inc., to be appointed for that purpose.

(e) A carload, unless otherwise designated, shall consist of the weight governing the minimum carload weight at the lowest carload rate of freight in the territory in which the seller is located. If destination of material requires a greater carload minimum weight, buyer must so specify.

(f) A ton shall be understood to be 2,000 pounds unless otherwise specified.

On material purchased for direct foreign shipment a ton shall be understood to be a gross ton of 2,240 pounds unless otherwise specified.

(g) If, through embargo, a delivery cannot be made at the time specified, the contract shall remain valid, and shall be completed immediately on the lifting of

the embargo, and terms of said contract shall not be changed.

(g-1) When shipments for export for which space has been engaged have been delivered or tendered to a steamship for forwarding and through inadequacy of cargo space the steamship cannot accept the shipment, or where steamer is delayed in sailing beyond its scheduled time, shipment on the next steamer from the port of shipment shall be deemed a compliance with the contract as to time of shipment.

(h) In case of a difference in weight and the seller is not willing to accept buyer's weights, a sworn public weigher shall be employed and the party most in

error must pay the costs of handling and reweighing.
(i) When material is such that it can be sorted by hand, consignees cannot reject the entire shipment if the percentage of rejection does not exceed 10 percent. The disposition of the rejected material should then be arranged by negotiations;

no replacement of the rejected material to be made.

Upon request of the shipper, rejections shall be returnable to the seller on domestic shipments within 1 week and on foreign shipments within 30 days from the time notice of rejection is received by them, and upon payment by them of 1 cent a pound on material rejected to cover cost of sorting and packing; the seller to be responsible for freight both ways.

2. No. 1 copper wire. To consist of clean untinned copper wire not smaller than No. 16 B. & S. wire gage. To be free from burnt copper wire which is brittle

and all foreign substances.

3. No. 2 copper wire.—To consist of miscellaneous clean copper wire which may contain a percentage of tinned wire and soldered ends but to be free of hair wire and burnt wire which is brittle; the tinned wire not to be over 15 percent of the total weight.

4. No. 1 heavy copper.—This shall consist of untinned copper not less than onesixteenth inch thick, and may include trolley wire, heavy field wire, heavy armature wire, that is not tangled, and also new untinned and clean copper clippings

and punchings, and copper segments that are clean.

5. Mixed heavy copper.—May consist of tinned and untinned copper, consisting of copper clippings, clean copper pipe and tubing, copper wire free of hair wire, and

burnt and brittle wire, free from nickel-plated material.

6. Light copper.—May consist of the bottoms of kettles and boilers, bathtub linings, hair wire, burnt copper wire which is brittle, roofing copper and similar copper, free from radiators, brass, lead and solder connections, readily removable

iron, old electrotype shells and free of excessive paint, tar, and scale.
7. Composition or red brass.—May consist of red scrap brass, valves, machinery bearings and other parts of machinery, including miscellaneous castings made of copper, tin, zinc, and/or lead, no piece to measure more than 12 inches over any one part or to weigh over 60 pounds, to be free of railroad boxes, and other similarly excessively leaded material, cocks and faucets, gates, pot pieces, ingots and burned brass, aluminum composition, manganese, and iron.

8. Railroad bearing.—Shall consist of railroad boxes or car journal bearings; must be old standard used scrap, free of yellow boxes, also iron-backed boxes, and must be free of babbitt, also free of excessive grease and dirt.

9. Cocks and faucets.—To be mixed clean red and yellow brass, free of gas cocks

and beer faucets, and to contain a minimum of 35 percent red.

10. Heavy yellow brass.—May consist of heavy brass castings, rolled brass, rod brass ends, chandelier brass, tubing, not to contain over 15 percent of tinned and/or nickle-plated material; no piece to measure more than 12 inches over any one part and must be in pieces not too large for crucibles. Must be free of manganese mixture, condenser tubes, iron, dirt, and excessive corroded tubing. Must be free of aluminum brass containing over 0.20 percent aluminum.

11. Yellow brass castings.—Shall consist of brass castings in crucible shape, that is, no piece to measure more than 12 inches over any one part; must be free of manganese mixtures, tinned and nickel-plated material, and must be free of visible

aluminum brass.

12. Light brass.—May consist of miscellaneous brass, tinned or nickel-plated, that is too light for heavy brass; to be free of gun shells containing paper, ashes or iron, loaded lamp bases, clockworks, and automobile gaskets. Free of visible iron unless otherwise specified.

13. Old rolled brass.—May consist exclusively of old pieces of sheet brass and pipe free from solder, tinned and nickel-plated material, iron, paint and corrosion,

ship sheathing, rod brass, condenser tubes, and Muntz metal material.

14. New brass clippings.—Shall consist of the cuttings of new sheet brass to be absolutely clean and free from any foreign substances and not to contain more than 10 percent of clean brass punchings to be not smaller than one-quarter inch in diameter.

15. Brass pipe.—Shall consist of brass pipe, free of nickel-plated, tinned, soldered, or pipes with cast-brass connections. To be sound, clean pipes free of sedi-

ment and condenser tubes.

16. No. 1 Red composition turnings.—To be free of railroad-car box turnings and similarly excessively leaded material, aluminum, manganese, and yellow brass turnings; not to contain over 2 percent free iron; to be free of grindings and foreign material especially babbitt. Turnings not according to this specification, to be

sold subject to sample.
17. No. 1 Yellow rod brass turnings.—Shall consist of strictly rod turnings, free of aluminum, manganese, composition, Tobin, and Muntz metal turnings; not to contain over 3 percent free iron, oil, or other moisture; to be free of grindings and babbitts; to contain not more than 0.30 percent tin and not more than 0.15 per-

cent combined iron.

18. No. 1 Yellow brass turnings.—Shall consist of yellow brass turnings, free of aluminum, manganese and composition turnings; not to contain over 3 percent of free iron, oil or other moisture; to be free of grindings and babbitts. To avoid dispute, to be sold subject to sample.

19. Auto radiators (unsweated).—All radiators to be subject to deduction of The tonnage specification should cover the gross weight of the radia-

tors, unless otherwise specified.

20. No. 1 pewter.—Shall consist of tableware and soda fountain boxes, but in

any case must test 84 percent tin. Siphon tops to be treated for separately.

21. Zinc.—Must consist of clean sheet and cast zinc, also cast batteries to be free of loose oxide and dross, sal ammoniac cans, and other foreign materials.

22. Zinc dross.—Must be unsweated in slabs and must contain a minimum of

92 percent of zinc.
23. Tin foil.—Shall consist of pure foil free of lead compositions and other foreign ingredients and matters.

24. Electrotype shells.—Must be hand-picked and free of loose dross and chunks

of dross.

25. Scrap lead.—Should be clean, soft scrap lead.

26. Battery lead plates.—(a) Shall consist of dry battery lead plates, moisture not to exceed 1 percent, allowance to be made for wood, rubber, and paper and excess moisture, or

(b) Lead plus antimony content, dry basis, less a treatment charge.

Note: Contracts covering this item should specify which method is to be used

as a basis of settlement.

27. New pure aluminum clippings.—Shall consist of new, clean, unalloyed sheet clippings and/or aluminum sheet cuttings. Must be free from oil, grease, and any other foreign substance. Also to be free from punchings less than one-half inch square.

28. New pure aluminum wire and cable.—Shall consist of new, clean, dry, unalloyed aluminum wire or cable, free from iron, insulation, and any other foreign substance.

29. Old pure aluminum wire and cable.—Shall consist of old, unalloyed aluminum wire or cable containing not over 1 percent free oxide or dirt and free from

iron, insulation, and any other foreign substance.

30. Alloy sheet aluminum.—To be sold on specification and sample.

31. Scrap sheet and sheet utensil aluminum.—Shall consist of clean, old, unalloyed sheet and utensils and unalloyed manufactured sheet aluminum, free from alloy, iron, dirt, or any other foreign substance and to be free of hub caps, radiator shells, airplane sheet, foil, and bottle caps.

32. Aluminum crank cases.—Shall consist of automobile and/or airplane crank cases, transmission cases and oil pans, free of iron, brass, babbitt bushings, brass bushings, and any other foreign materials. Oil and grease shall not exceed

33. Aluminum cylinder heads.—Shall consist of all types of aluminum automobile cylinder heads, free of iron, brass, and any other foreign materials. and grease shall not exceed 2 percent.

34. Aluminum borings and turnings.—To avoid dispute, should be sold subject

to sample.

35. Aluminum foil.—Shall consist of pure aluminum foil, free from paper and

any foreign ingredients.

36. Aluminum die castings.—Shall consist of auto steering wheels, brake shoes, and all castings made by the die-casting or pressure-casting process, free of iron,

brass, and any other foreign materials. Oil and grease shall not exceed 2 percent.

37. Aluminum pistons.—(a) Clean aluminum pistons—shall be free from struts, bushings, shafts, iron rings, and any other foreign materials. Oil and grease shall not exceed 2 percent.

(b) Aluminum pistons with struts—shall consist of clean, whole aluminum pistons with struts, free from bushings, shafts, iron rings, and any other foreign

materials. Oil and grease shall not exceed 2 percent.

38. Aluminum industrial castings.—Shall consist of all other aluminum castings except cylinder heads, die-cast aluminum, pattern metal, and hat blocks, and free of iron, babbitt, brass, and all other foreign materials. Castings shall not have over 4 percent zinc content. Oil and grease shall not exceed 2 percent.

39. Mixed common babbitt.—Shall consist of lead-base bearing metal containing not less than 8 percent tin, free from Allens metal, ornamental, antimonial, and

40. High tin-base babbitt.—To have a minimum of 78 percent tin.

41. Block tin.—Shall consist of tin pipe and soda-tank lining, free from solder and brass connections, pewter, pump strips, and pot pieces.

DOMESTIC CLASSIFICATION OF NICKEL—NICKEL ALLOYS AND NICKEL BEARING MATERIALS

42. Nickel clippings.—Shall consist of new nickel clips—plate and skeleton Minimum nickel contents 981/2 percent, maximum copper contents material.

0.50 percent.

43. New nickel.—Shall consist of forgings, flashings, punchings, new pipe, tubes, new bright wire, or screen, bar, rod, angles, or other structural rolled stock. Each grade to be packed and sold separately. Minimum nickel contents Minimum nickel contents 98½ percent, maximum copper contents 0.50 percent.
44. Carbonized nickel.—Packed and sold separately.

Minimum nickel con-

tents 95 percent, maximum copper contents 0.50 percent.

45. Old nickel scrap.—Shall be of 98-99 percent purity, maximum 0.50 percent copper. All rolled stock should come under this classification such as sheet, pipe, tubes, bars, rods. Same to be free of soldered, brazed, or welded alloyed material. It shall also be free of trimmed seams that have been sweated. Soldered, brazed, welded, and sweated material shall be packed and sold separately. All painted materials shall be packed and sold separately.

46. Old nickel wire-screen cloth.—To be packed and sold separately. Samples

should be submitted for quotations.

47. Nickel castings.—To be packed and sold separately and sold on analysis or sample.

48. Manganese nickel.—To be sold separately and/or by sample.

49. Cupro nickel.—Describe the physical characteristics and send representative samples for quotations.

50. Nickel turnings.—To be sold separately by analysis or according to sample. When submitting a sample of turnings containing oil, same shall be submitted in oilproof containers.

51. Nickel anodes.—Cast and rolled, each to be hard anodes free of soft, carbonized, and crusty material. Hooks to be cut off as close as possible to the

Substitutions not permitted.

52. Clean nickel peelings and strippings.—Sold on sample or analysis.
53. Copper-nickel peelings or strippings.—Sold on sample submitted or analysis.
54. Nickel baskets.—Hooks, racks, and hangers. Since this material varies to a great extent in alloys and deposits of various metals, representative samples

should be submitted for quotation.

55. New Monel metal clips.—Should consist of new Monel clippings, skeleton, plate, of the standard grade of Monel. Alloyed Monel to be packed and sold No used or cut old bright sheet Monel will be acceptable. punchings to be sold separately.

56. Clean old Monel sheet.—Shall be of the standard grade of Monel, free of alloyed Monel. No sweated material of any kind acceptable. Free of welded,

brazed, or soldered material, other metals, and alloy attachments.

57. Soldered Monel sheet.—To be the whole or part of a sheet.

I Free of trimmed seams or sweated trimmed seams. May include Monel welded sheet where a good portion of the piece is attached to the weld.

58. Soldered Monel wire, screen, and cloth.—To be sold separately. Must be free of filled filter cloth and asbestos-containing material.

59. Clean Monel wire, screen, and cloth.—Must be free of solder. material packed and sold separately. Sweated

60. Monel turnings.—Should contain a minimum of 60 percent nickel. To be free of other metals. Should the material contain oil, sample should be submitted in oilproof containers for a quotation.

61. Monel castings.—To be guaranteed minimum 60 percent nickel. All other

alloys of Monel castings are to be packed and sold separately.

62. Nickel-silver clips.—Sold on nickel content specifications such as 10 percent, 12 percent, 15 percent, 18 percent, 20 percent. Leaded nickel-silver clips should be packed and sold separately. A description as to its physical characteristics should be made in offering all nickel-silver material. It should also be free of chrome-plated material and any other metal or alloy content material.

63. Old nickel-silver.—Shall consist of old nickel-silver sheet, pipe, rod, tubes, wire, screen, soldered or unsoldered. Must not be trimmed seams alone, and it is also to be free of foreign substances, iron-rimmed material, or other metals.

64. Nickel-silver castings.—To be packed and sold separately.
65. Nickel-silver turnings.—To avoid misunderstanding, to be sold by sample Samples should be submitted in oilproof containers when the sample or analysis. contains oil.

66. Ferronickel chrome iron.—Ferronickel chrome-iron materials whether castings, forgings, pipe, rod, tubes, wire screen, ribbon or in any other form, should be sold on analysis basis. Physical description should accompany each inquiry. Approximate weight of pieces should accompany the inquiry. Copper content

up to one-half percent to be acceptable.

67. Ferronickel iron alloy.—Shall consist of alloys containing nickel and iron Physical description should accompany each inquiry and, in the case of larger pieces, approximate weight should be mentioned. Copper content in the alloy up to one-half percent to be acceptable. Material containing chrome should always be packed separately.

68. New stainless steel.—18-8 type graded as new clippings, 0.10 and under in

carbon.

69. Stainless steel.—18-8 type. Shall consist of new and old sheet, pipe, rod, tubes, forgings, and flashings. Sold with no carbon guarantee, but to be free of all other metals and alloys.

70. Stainless-steel castings.—Submit analysis, size of pieces, and physical de-

scription.

71. Stainless-steel turnings.—Submit sample.
72. Edison A and Edison B batteries.—To be sold by type and to be free of

crates and liquid.

73. Packages.—Shall be good strong packages suitable for shipment, and each package shall be plainly marked with separate shipping marks and numbers and with the gross and tare weights so that the packages may reach their destination and their weights can be easily checked.

IRON AND STEEL SCRAP 1

By JAMES S. EARLE AND HAROLD E. CARMONY

SUMMARY OUTLINE

	Page		Page
General summary Salient statistics Prices Legislation Stocks Consumers' stocks Suppliers' stocks	503 505 506 507 507 508 509	Air furnaces Crucible and puddling furnaces Blast furnaces	518 519 521 522 522
Consumption Consumption by districts and States Consumption by type of furnace Open-hearth furnaces. Bessemer converters	513 516	Review by countries	524 524

The iron and steel scrap industry in 1939 was characterized by sharp increases in consumption, exports, and prices and a slight rise in consumers' stocks of scrap. There was a sharp decrease in stocks of pig iron. Reflecting the 66-percent rise in steel ingot production in 1939, the use of ferrous scrap increased 52 percent over that in 1938 but was 15 percent below the tonnage consumed in 1937. During the first half of 1939 the rate of consumption was fairly stable and approximated the levels established in the last quarter of 1938, but with the outbreak of war in Europe demand improved as steel production soared to record proportions in the closing months of the year. The consumption of scrap probably reached an all-time peak in November 1939.

The proportion of purchased scrap used in open-hearth furnaces—the largest consumers of purchased scrap—has, in general, trended downward for a number of years. Again in 1939 the ratio of scrap to pig iron decreased and the proportions of both home and purchased scrap dropped slightly. The decline in the proportion of purchased scrap used in 1939 was accentuated by the quickened demand for steel and resulted in an increased amount of steel produced from duplexing operations following the outbreak of war in September. The sharp increase in steel production to record heights created an abnormal demand for scrap, and for a short period the price of scrap exceeded that of pig iron. During October and November many consumers were obliged to increase the amount of pig iron used because of the high cost of scrap. The higher prices offered for scrap developed an abundant supply, and the high levels were soon reduced; in consequence, the price structure and furnace proportions assumed a more normal aspect before the end of the year.

¹ Minerals Yearbook, 1939, p. 513, gives definitions of the various scrap terms used in this report. 244615—40——33

The total consumption of ferrous scrap and pig iron in 1939 increased 60 percent over that in 1938. Of the 63,892,174 gross tons used, 51,681,886 tons were charged to steel-making furnaces and 12,210,288 to iron furnaces. In making the average ton of steel in 1939 less scrap and more pig iron were used than in 1938; the relative consumption of both home and purchased scrap declined in 1939 from 1938. In iron furnaces, moreover, the relative use of both home and

purchased scrap decreased while that of pig iron increased.

Exports of ferrous scrap from the United States in 1939 increased 20 percent over 1938 and were second only to the record shipments of 1937, in both tonnage and value. Consignments to Japan comprised 56 percent of the total and exceeded those of any previous year, while those to the United Kingdom, Canada, and Poland were greater than in 1938. Shipments to Italy in 1939 were slightly lower than in 1938, while those to the Netherlands and Germany were reduced drastically early in the year and disappeared when the Allied blockade of Germany was established. Several bills and resolutions that would directly or indirectly impose restrictions on scrap exports from the United States were introduced during the first session of the Seventy-sixth Congress, but the session adjourned without passing any of the proposed legislation.

Immediately after the declarations of war in September the International Scrap Convention—a centralized buying agency for European consumers—suspended operations. Italy and certain Balkan countries continued to buy independently, but the United Kingdom and Germany withdrew from the domestic market. Coincident with the increased production of iron and steel and the abrupt rise in the price of scrap, agitation for legislation to restrict exports of iron and steel scrap from the United States was resumed in the last 4 months of 1939, and additional measures to accomplish this were introduced in the third session of the Seventy-sixth Congress, which opened in

January 1940.

Prices for scrap fluctuated widely in 1939. The quotation for No. 1 Heavy-melting steel scrap at Pittsburgh, according to Iron Age, ranged from a low of \$14.25 per gross ton the second week in May to a high of \$24.25 the first week in October. The average for 1939 was \$17.17 compared with \$14.02 in 1938 and \$18.86 in 1937. Scrap prices received little support in the first quarter of 1939 from either domestic or foreign markets; however, a strong foreign demand early in the second quarter stabilized prices at a time when domestic markets were depressed because of labor difficulties in the coal-mining industry. Following the settlement of the labor disputes prices trended upward in sympathy with the quickened rate of steel production. The price of basic pig iron remained stationary in 1939 until the last week of September, when the price at Valley furnaces increased 10 percent and held at the higher level for the remaining months of the year.

The unprecedented rise in steel production during the latter half of 1939 precipitated an abnormal and unexpected demand for scrap that dealers and brokers found difficult to meet. This occasioned considerable alarm as to the depleted condition of domestic stocks of iron and steel scrap. At the request of trade organizations representing

both dealers and consumers of scrap the Bureau of Mines undertook to survey the stock situation as of September 30, 1939.² The results of the canvass of suppliers and consumers indicated inventories exceeding 7,111,701 gross tons, which was equivalent to a 10-week supply at the September rate of consumption. Some authorities interpreted this as representing an adequate supply. Another survey as of December 31, 1939, revealed stocks exceeding 7,400,000 tons. Consumers' stocks of scrap increased from 4,596,094 tons at the beginning of 1939 to 4,741,159 at the close of the year.

Salient statistics of ferrous scrap and pig iron in the United States, 1938-39

	1938	1939	Percent of change in 1939
Stocks, Dec. 31: Ferrous scrap and pig iron at consumers' plants: Home scrap Purchased scrap Pig iron	Gross tons 1, 687, 609 2, 908, 485 4, 359, 484	Gross tons 1, 729, 228 3, 11, 931 3, 369, 136	+2 +4 -23
	8, 955, 578	8, 110, 295	-9
Ferrous scrap at suppliers' yards and in transit: Prepared scrap Unprepared scrap Scrap in transit to yards or for export and at docks	l (i)	1, 792, 312 662, 421 105, 955	(1) (1) (1)
	(1)	2, 560, 688	(1)
Consumption: Ferrous scrap and pig iron charged to— Steel furnaces: 2			
Home scrap Purchased scrap Pig iron	8, 521, 258 7, 137, 455 15, 691, 312	13, 650, 649 10, 834, 885 27, 196, 352	+60 +52 +73
	31, 350, 025	51, 681, 886	+65
Iron furnaces: ³ Home scrap Purchased scrap Pig iron	2, 800, 083 2, 886, 138 2, 813, 037	3. 868, 901 4, 079, 972 4, 261, 415	+38 +41 +51
•	8, 499, 258	12, 210, 288	+44
All furnaces: Home scrap Purchased scrap Pig iron	11, 321, 341 10, 023, 593 18, 504, 349	17, 519, 550 14, 914, 857 31, 457, 767	+55 +49 +70
	39, 849, 283	63, 892, 174	+60
Ferrous scrap (total)	21, 344, 934	32, 434, 407	+52
Exports: Iron and steel Tin plate, waste—waste, circles, strips, cobbles, etc Average prices per gross ton:	2, 974, 375 24, 216	3, 558, 551 25, 888	+20 +7
Sorap: No. 1 Heavy Melting, Pittsburgh 4 No. 1 Cast cupola 4 For export Pig iron, f. o. b. Valley furnaces: 4	15.13	\$17. 17 17. 21 15. 40	+22 +14 +2
Basic. No. 2 Foundry	21.70	21. 09 21. 59	-3 -3

Data not available.
 Includes open-hearth, bessemer, and electric furnaces.
 Includes cupola, air, Brackelsberg, puddling, crucible, and blast furnaces; also direct castings.
 Iron Age, vol. 145, Jan. 4, 1940.

³ Bureau of Mines, Mineral Market Reports: M. M. S. 770, Dec. 4, 1939, 5 pp.; M. M. S. 797, Jan. 19,

^{1940, 6} pp.

³ Bureau of Mines, Quarterly Iron and Steel Scrap Stock Reports: No. 3, April 18, 1940, 2 pp.; No. 4, May 21, 1940, 7 pp.

Figure 1 shows the consumption of purchased scrap and output of pig iron and steel ingots and castings from 1905 to 1939, inclusive.

PRICES 4

The undertone of scrap prices in 1939 was generally firm, except for the period of coal-mine labor difficulties during the second quarter. Quotations for No. 1 Heavy-melting steel and No. 1 Cast cupola scrap, which had averaged \$15.75 and \$15.50 per gross ton (Pittsburgh), respectively, in December 1938, eased off, with No. 1 Heavy-melting steel dropping to \$14.25 in the second week of May and No. 1 Cast cupola scrap dropping to \$15.25, the low point of the year, in the second week of April. However, this weakness was short-lived, and there was a gradual uptrend in prices until September, when the advent of war in Europe disrupted the price structure. Quotations for scrap reached the high point of the year during the first week of October, when No. 1 Heavy-melting steel and No. 1 Cast cupola scrap reached \$24.25 per ton. The increase in the average price of No. 1

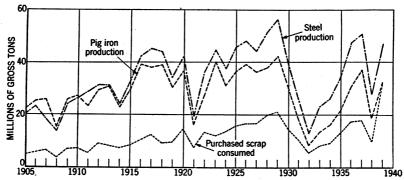


FIGURE 1.—Consumption of purchased scrap and output of pig iron and steel in the United States, 1905-39.

Figures on consumption or purchased scrap for 1905-32 are from State of Minnesota vs. Oliver Iron Mining Co. et al., Exhibits, vol. 5, 1935, p. 328; those for 1933-34 are estimates by authors; and those for 1935-39 are based upon Bureau of Mines reports. Figures on output of pig iron and steel are as given by the American Iron and Steel Institute.

Heavy-melting steel during the first month of the renewed Allied and German hostilities was the most rapid rise since June 1917. The average price in October of \$23.05 for No. 1 Heavy-melting steel was exceeded in recent years only by that of \$23.15 in March 1937; while the October average of \$22.95 for No. 1 Cast cupola scrap was the highest on record since June 1923. In the closing weeks of 1939 prices gradually eased off to an average of \$18.50 per ton for No. 1 Heavy-melting steel and \$19.38 for No. 1 Cast cupola scrap. The high rate of ingot production in the last quarter of 1939 reduced suppliers' stocks but did not create an acute shortage of scrap as many expected. Higher prices widened the area from which supplies were drawn and stimulated collections of old scrap, while increased industrial activity produced greater amounts of home scrap.

In contrast to the rather wide fluctuations in scrap prices in 1939 the price of basic pig iron, established at \$20.50 per gross ton at Valley furnaces late in September 1938, remained unchanged until

⁴ Pittsburgh price quotations from The Iron Age.

the third week of September 1939, when it rose to \$22.50 and held at

this level during the rest of the year.

Export scrap prices in 1939, as indicated by the declared value of exports, averaged \$15.40 a gross ton for the year and were only slightly above the 1938 average of \$15.11. In the first 3 months of 1939 prices were supported by the fair volume of loading against old contracts. but in the second quarter they declined as a result of the general market weakness. The average value of exports in June-\$14.11-represented the low monthly average for the year. Even lower averages probably would have prevailed had it not been for the steadying effect of new orders and increased loading for export at this time. Exports continued at an accelerated rate in the second half of the year and, together with increased domestic demand, caused a rise in the export After the outbreak of war in Europe the rapidly increased demand for scrap in the inland steel districts was the dominant factor in the domestic market and was reflected in the upward trend of export prices. Average export values advanced steadily through the latter part of 1939 and reached \$19.45 a ton in December.

LEGISLATION

Several new bills 5 and resolutions 6 calling for the licensing or restricted embargoing of iron and steel scrap were introduced during the first session of the Seventy-sixth Congress. Moreover, Senator Schwellenbach's bill (S. 2025, 75th Cong.) to restrict foreign shipments of ferrous scrap was reintroduced (S. 651, 76th Cong.) without change. Some of the more recent proposals provide for the embargoing of pig iron as well as of iron and steel scrap. Resolutions by Senator Pittman (S. J. Res. 123, 76th Cong.) and Senator Schwellenbach (S. J. Res. 143, 76th Cong.) designed to prohibit exports of certain commodities, articles, and materials (including iron and steel scrap) to countries that are parties to the Nine-power Treaty and violate the rights of American citizens in China were of outstanding Senator Pittman's resolution makes provision for the embargo to go into effect 30 days after proclamation by the President without any action by Congress, and Senator Schwellenbach's resolution would have such an embargo go into effect 60 days after proclamation by the President if not disapproved by concurrent resolution of Congress. Congress adjourned, however, without acting on any of the bills or resolutions, deferring further consideration to the 1940 session of the Seventy-sixth Congress.

STOCKS

Beginning in 1939 the regular annual canvass of consumers of iron and steel scrap and pig iron was expanded to include stocks of home scrap, purchased scrap, and pig iron on hand at the beginning and end of the year. In addition, to complete the data on total visible supplies of iron and steel scrap in the United States, a separate canvass

³ H. R. 979. A bill to prohibit the exportation of pig iron, scrap iron, and scrap steel except under license from the Secretary of Commerce.

H. R. 3419. A bill to prohibit the exportation of pig iron, scrap iron, and scrap steel to China and Japan.

H. R. 7159. A bill to prohibit the exportation of articles in violation of existing treaties to which the United States is signatory.

⁶ H. J. Res. 42. A joint resolution providing for an embargo on scrap iron and pig iron under Public Resolution No. 27 of the Seventy-fifth Congress.

of suppliers (including scrap-iron dealers, automobile wreckers, and selected lists of railroads and manufacturers) was begun on a quarterly basis in September 1939. The final results of the annual survey indicate that total consumers' and suppliers' stocks of iron and steel scrap totaled 7,301,847 gross tons on December 31, 1939, or 98,153 tons less than the 7,400,000 tons previously published as a result of the quarterly survey. Comparable figures for December 31, 1938, are not available as far as suppliers' stocks are concerned, inasmuch as the quarterly surveys did not begin until September 1939.

Consumers' stocks.—Consumers' stocks of home and purchased scrap were slightly greater at the end of 1939 than at the beginning of the year. Supplies of 1,729,228 gross tons of home scrap and 3,011,931 tons of purchased scrap on hand December 31, 1939, represented increases of 2 and 4 percent, respectively, above the 1,687,609 tons of home scrap and 2,908,485 tons of purchased scrap on hand at the beginning of the year. Thus, stocks of scrap totaling 4,741,159 tons at the year end were 3 percent greater than the 4,596,094 tons on hand at the beginning of the year.

In contrast to consumers' stocks of scrap, stocks of pig iron totaling 3,369,136 tons at the end of the year had decreased 23 percent from the 4,359,484 tons on hand at the beginning of the year.

Consumers' stocks of ferrous scrap and pig iron on hand in the United States on December 31, 1938–39, by States and districts, in gross tons

		Decemb	er 31, 1938		December 31, 1939				
State and district		Scrap							
	Home	Pur- chased	Total	Pig iron	Home	Pur- chased	Total	Pig iron	
Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont	10, 170 553 14, 015 769 4, 315 83	27, 873 3, 644 46, 874 959 4, 403 2, 988	38, 043 4, 197 60, 889 1, 728 8, 718 3, 071	20, 682 1, 114 112, 893 479 7, 642 315	11, 886 462 14, 911 459 3, 484 90	29, 277 2, 570 46, 796 1, 142 6, 019 2, 657	41, 163 3, 032 61, 707 1, 601 9, 503 2, 747	29, 109 4, 309 130, 983 766 10, 642 1, 183	
Total New Eng- land	29, 905	86, 741	116, 646	143, 125	31, 292	88, 461	119, 753	176, 992	
Delaware New Jersey New York Pennsylvania	16, 538 86, 579 511, 693	74, 073 223, 734 456, 489	90, 611 310, 313 968, 182	95, 152 487, 908 968, 423	24, 622 120, 028 503, 987	78, 788 204, 203 559, 312	103, 410 324, 231 1, 063, 299	86, 126 358, 890 720, 150	
Total Middle Atlantic	614, 810	754, 296	1, 369, 106	1, 551, 483	648, 637	842, 303	1, 490, 940	1, 165, 166	
Alabama District of Columbia Kentucky Maryland	35, 552 170, 778	55, 136 98, 060	90, 688 268, 838	455, 977 126, 935	57, 296 131, 578	63, 506 82, 501	120, 802 214, 079	183, 903 119, 911	
Florida Georgia Mississippi North Carolina South Carolina Tennessee Virginia West Virginia	1, 827 2 1, 150 67 } 12, 637 1, 076	33, 348 284 2, 931 2, 314 44, 914 \$9, 879	35, 175 286 4, 081 2, 381 57, 551 100, 955	11, 587 141 1, 014 1, 471 26, 674 57, 354	1, 821 1, 280 71 11, 032 1, 921	26, 115 443 2, 374 2, 473 50, 847 108, 969	27, 936 444 3, 654 2, 544 61, 879 110, 890	18, 208 148 1, 013 1, 524 41, 904 48, 176	
Total South- eastern	223, 089	336, 866	559, 955	681, 153	205, 000	337, 228	542, 228	414, 787	

Consumers' stocks of ferrous scrap and pig iron on hand in the United States on December 31, 1938-39, by States and districts, in gross tons—Continued

		Decembe	r 31, 1938		December 31, 1939				
State and district	Scrap								
	Home	Pur- chased	Total	Pig iron	Home	Pur- chased	Total	Pig iron	
Arkansas	258	12, 114	12, 372	609	617	14, 959	15, 576	1, 031	
Texas	2, 221	9, 860	12, 081	504	1,840	14, 028	15, 868	492	
Total South- western	2, 479	21, 974	24, 453	1, 113	2, 457	28, 987	31, 444	1, 523	
Illinois Indiana Iowa	117, 679 219, 719 2, 009	339, 201 278, 777 24, 274	456, 880 498, 496 26, 283	544, 000 175, 244 10, 621	121, 079 241, 084 963	351, 179 201, 498 18, 549	472, 258 442, 582 19, 512	349, 835 131, 686 19, 312	
Kansas Nebraska	} 1,865	16, 412	18, 277	472	1, 126	10, 455	11, 581	1, 016	
MichiganWisconsin	148, 186	193, 387	341, 573	429, 660	79, 484	213, 555	293, 039	319, 599	
Minnesota Missouri	7, 763 8, 315	53, 385 98, 489	61, 148 106, 804	15, 142 6, 857	3, 730 11, 650	32, 330 97, 113	36, 060 108, 763	18, 735 12, 822	
North Dakota	2, 100	157	2, 257	75	2, 100	237 529, 267	2, 337 858, 309	38 705, 657	
Ohio	249, 556	474, 952	724, 508	723, 433	329, 042	529, 201	808, 509	705, 057	
Total North Central	757, 192	1, 479, 034	2, 236, 226	1, 905, 504	790, 258	1, 454, 183	2, 244, 441	1, 558, 700	
Arizona Nevada New Mexico	10, 835	4, 287	15, 122	46	4, 306	10, 518	14, 824	5	
ColoradoUtah	12, 748	70, 000	82, 748	57, 466	11,811	101, 156	112, 967	30, 530	
Idaho Wyoming	200	1, 645	1,845	40	150 5	1,700	1,850	30	
Montana	27	5, 229	5, 256	283	49	5, 585	5, 634	322	
Total Rocky Mountain	23, 810	81, 161	104, 971	57, 835	16, 321	118, 959	135, 280	30, 888	
Alaska Oregon	3, 524	41, 828	45, 352	1, 903	3, 994	43, 371	47, 365	2, 688	
Washington California	32, 800	106, 585	139, 385	17, 368	31, 269	98, 439	129, 708	18, 392	
Total Pacific	36, 324	148, 413	184, 737	19, 271	35, 263	141, 810	177, 073	21, 080	
Total United States	1, 687, 609	2, 908, 485	4, 596, 094	4, 359, 484	1, 729, 228	3, 011, 931	4, 741, 159	3, 369, 136	

Suppliers' stocks.—In appraising stocks, insofar as suppliers are concerned, it should be noted that the coverage of the canvass is unknown. However, the data assembled include virtually complete returns from the larger suppliers, as well as a representative number of returns from others, and the figures shown probably reveal a substantial part of the total visible supplies of iron and steel scrap in suppliers' hands.

Stocks held by dealers, automobile wreckers, railroads, and manufacturers rose from 2,463,701 gross tons (reported by 3,018 concerns) on September 30, 1939, to 2,560,688 tons (reported by 4,680 concerns) on December 31, 1939. This increase was due to inclusion in the survey of a representative number of the larger industrial plants that produce scrap for sale and to the larger number of reports received in December from small dealers who did not reply in the September

survey. Stocks in the hands of the larger suppliers were 22 percent lower at the end of the year than at the end of September, and railroad inventories declined 14 percent for the period. Although the number of concerns canvassed in December was increased only 5 percent over the number canvassed in September, the average of replies received increased from 44 percent in September to 65 in December. This increase in replies resulted in only a 4-percent rise of stocks in suppliers' hands. Nineteen States, which embraced approximately 47 percent of the total 4,680 replies received in the December canvass, showed actual declines in stocks reported, notably Pennsylvania, Ohio, Illinois, and Michigan, all of which contain large scrap-consuming areas.

Suppliers' stocks of iron and steel scrap on hand and in transit, September 30 and December 31, 1939, by States and districts, in gross tons

		Septem	ber 30, 1939			Decemb	er 31, 1939		
State and district	Yards		Scrap		Yards	Scrap			
	report- ing	Pre- pared	Unpre- pared	Total	report- ing	Pre- pared	Unpre- pared	Total	
Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont	62 25 118 15 14 22	24, 658 6, 174 28, 497 750 11, 413 1, 506	5, 516 1, 311 12, 767 948 7, 641 1, 500	30, 174 7) 485 41, 264 1, 698 19, 054 3, 006	92 38 195 22 22 32	22, 734 13, 714 56, 362 2, 472 9, 064 1, 838	7, 393 1, 717 27, 562 3, 532 5, 959 1, 492	30, 127 15, 431 83, 924 6, 004 15, 023 3, 330	
Total New Eng- land	256	72, 998	29, 683	102, 681	401	106, 184	47, 655	153, 839	
Delaware New Jersey New York Pennsylvania	9 125 334 288	608 32, 480 147, 765 203, 784	510 32, 344 57, 611 87, 794	1, 118 64, 824 205, 376 291, 578	14 181 515 444	2, 196 59, 333 162, 627 165, 224	684 42, 904 59, 591 95, 003	2, 880 102, 237 222, 218 260, 227	
Total Middle At- lantic	756	384, 637	178, 259	562, 896	1, 154	389, 380	198, 182	587, 562	
Alabama District of Columbia Fiorida Georgia Kentucky Maryland Mississippl North Carolina South Carolina Tennessee Virginia West Virginia Total Southeastern Arkansas Louisiana Oklahoma Texas	27 7 30 44 30 20 14 33 17 27 42 29 320 17 29 37 134	10, 931 9, 500 5, 167 13, 521 21, 784 43, 628 2, 818 15, 471 4, 206 16, 242 29, 932 11, 324 184, 524 9, 275 22, 542 7, 849 74, 483	15, 231 1, 325 1, 365 2, 877 5, 894 6, 803 1, 080 2, 556 1, 947 8, 025 10, 644 2, 230 59, 977 2, 580 6, 481 2, 519 25, 416	26, 162 10, 825 6, 532 16, 398 27, 678 50, 431 3, 898 18, 027 6, 153 24, 267 40, 576 13, 554 244, 501 11, 855 29, 023 10, 368 7 99, 899	477 227 429 599 522 488 225 466 224 439 5524 211 34 655 163	20, 608 16, 255 11, 643 12, 438 25, 848 48, 366 5, 855 18, 377 11, 260 14, 853 37, 114 9, 942 232, 559 7, 510 22, 167 17, 531 160, 330	9, 548 2, 182 3, 617 2, 679 9, 301 8, 306 1, 227 6, 410 4, 494 8, 896 10, 268 2, 569 69, 497 4, 145 8, 716 4, 465 39, 175	30, 156 18, 437 15, 260 15, 117 35, 149 56, 672 7, 082 24, 787 15, 754 47, 382 12, 511 302, 056 11, 655 30, 883 21, 996 199, 505	
Total Southwest- ern	217	114, 149	36, 996	151, 145	283	207, 538	56, 501	264, 039	
Illinois Indiana Iowa Kansas Michigan Minnesota Missouri	186 92 77 67 134 51 85	248, 894 35, 631 27, 585 21, 027 110, 818 145, 192 34, 238	141, 060 5, 258 16, 134 2, 196 13, 670 25, 276 21, 179	389, 954 40, 889 43, 719 23, 223 124, 488 170, 468 55, 417	294 161 109 95 199 85 111	189, 495 48, 292 36, 062 9, 909 71, 929 109, 723 29, 480	112, 446 8, 812 13, 937 6, 473 23, 689 40, 487 18, 939	301, 941 57, 104 49, 999 16, 382 95, 618 150, 210 48, 419	

Suppliers' stocks of iron and steel scrap on hand and in transit, September 30 and December 31, 1939, by States and districts, in gross tons-Continued

		Septemb	er 30, 1939		December 31, 1939				
State and district	Yards		Scrap		Yards	Scrap			
·	report- ing	Pre- pared	Unpre- pared	Total	report- ing	Pre pared	Unpre- pared	Total	
Nebraska	28 11 212 15 73	12, 232 3, 579 191, 706 1, 290 35, 696	6, 376 1, 944 45, 345 3, 170 15, 962	18, 608 5, 523 237, 051 4, 460 51, 658	47 17 383 16 126	10, 737 2, 650 120, 139 1, 175 30, 476	5, 391 1, 562 58, 726 2, 300 16, 556	16, 128 4, 212 178, 865 3, 475 47, 032	
Total North Cen- tral	1, 031	867, 888	297, 570	1, 165, 458	1, 643	660, 067	309, 318	969, 385	
Arizona	7 46 14 11 5 5 9	3, 290 30, 039 121 4, 945 152 292 1, 798 1, 805	419 10, 165 571 1, 067 145 181 6, 295 5, 390	3, 709 40, 204 692 6, 012 297 473 8, 093 7, 195	17 70 21 16 10 6 11 14	1, 563 20, 825 369 5, 425 640 1, 145 3, 659 1, 440	268 5, 139 2, 263 1, 763 490 200 2, 746 6, 453	1, 831 25, 964 2, 632 7, 188 1, 130 1, 345 6, 405 7, 893	
Total Rocky Mountain	106	42, 442	24, 233	66, 675	165	35, 066	19, 322	54, 388	
California Oregon Washington	219 50 63	71, 807 17, 590 19, 405	29, 343 8, 149 24, 051	101, 150 25, 739 43, 456	364 69 77	93, 133 40, 409 27, 976	32, 757 8, 835 26, 309	125, 890 49, 244 54, 285	
Total Pacific Coast	332	108, 802	61, 543	170, 345	510	161, 518	67, 901	229, 419	
Total United States	1 3, 018	1, 775, 440	² 688, 261	2, 463, 701	1 4, 680	1, 792, 312	² 768, 376	2, 560, 688	

¹ Includes 1,724 dealers, 1,227 automobile wreckers, and 67 railroads in September; and 2,580 dealers, 1,832 automobile wreckers, 66 railroads, and 202 manufacturers in December.

² Includes 107,562 tons in transit to yards or to shipping point for export and at docks awaiting export in September; and 105,955 tons in December.

CONSUMPTION

In the canvass of consumers of ferrous scrap and pig iron, data are obtained only on that portion of scrap used in remelting pro-To simplify the annual canvass, no details are sought regarding the ordinary trade classifications of scrap consumed, and no attempt is made to obtain data on its value or cost at consumers' plants. Statistics are compiled to show the consumption of scrap and pig iron by districts and States and by types of furnace. To avoid disclosing details concerning individual plants reporting it is necessary in some instances to combine figures for some States. All such combinations are made with a view to revealing details of consumption by types of furnace rather than by geographic subdivisions.

The importance of scrap from the standpoint of conservation is illustrated by the relative quantities of scrap and ore used in the domestic iron and steel industry. The total scrap consumed in 1939 was equivalent to 121 percent of the iron content of all domestic and foreign iron and manganiferous ores used in blast furnaces, and purchased scrap alone equaled 56 percent of the iron content of the ores; in 1938 the comparable percentages were 132 and 62.

Scrap constitutes by far the greater part of the ferrous raw materials used in iron and steel plants in the Southwestern, Pacific Coast, and New England districts. These regions, however, used only slightly more than 5 percent of the total scrap consumed in 1939. Except for the Southwestern district, proportionately less scrap was used in all areas in 1939 than in 1938, although most of the decreases were relatively small.

Ferrous scrap and pig iron consumed in the United States and percentage of total derived from home scrap, purchased scrap, and pig iron, 1938-39, by districts

			1938			1939					
		Pe	rcent of	total us	ed		Pe	Percent of total used			
District	Total used (gross		Scrap		Dia	Total used (gross		Scrap			
	tons)	Home Pur-chased Total Pig iron		tons)	Home	Pur- chased	Total	Pig iron			
New England	479, 464 12, 025, 365 6, 238, 315 138, 187 19, 783, 190 372, 256 812, 506 39, 849, 283	26. 1 28. 8 25. 3 25. 5 29. 4 24. 4 24. 5	46. 7 22. 1 19. 9 71. 3 26. 0 38, 9 64. 0	72. 8 50. 9 45. 2 96. 8 55. 4 63. 3 88. 5	27. 2 49. 1 54. 8 3. 2 44. 6 36. 7 11. 5	773, 651 20, 314, 650 9, 344, 743 1, 152, 150 31, 361, 491 819, 249 1, 126, 240 63, 892, 174	27. 8 25. 7 24. 8 23. 4 29. 5 24. 4 25. 2 27. 4	44. 5 20. 5 19. 3 73. 9 24. 1 30. 6 60. 5	72. 3 46. 2 44. 1 97. 3 53. 6 55. 0 85. 7	27. 7 53. 8 55. 9 2. 7 46. 4 45. 0 14. 3	

Proportion of home and purchased scrap and pig iron used in furnace charges in the United States, 1938-39, in percent

•		1938			1939			
Type of furnace		Scrap		Pig		Pig		
	Home	Purchased	Total	iron	Home	Purchased	Total	iron
Open hearth Bessemer Electric Cupola Air 1 Crucible Puddling Blast	28. 1 . 5. 4 47. 6 26. 4 48. 2 41. 4 6. 3 71. 8	23. 4 . 2 50. 7 37. 1 21. 4 43. 4 33. 2 28. 2	51. 5 5. 6 98. 3 63. 5 69. 6 84. 8 39. 5 100. 0	48. 5 94. 4 1. 7 36. 5 30. 4 15. 2 60. 5	27. 3 5. 6 47. 2 29. 3 39. 8 43. 2 6. 0 58. 2	21. 5 . 2 51. 0 36. 4 22. 6 52. 1 14. 2 41. 8	48. 8 5. 8 98. 2 65. 7 62. 4 95. 3 20. 2 100. 0	51, 2 94, 2 1, 8 34, 3 37, 6 4, 7 79, 8

¹ Includes data for 2 Brackelsberg furnaces.

Open-hearth steel furnaces use by far the largest quantities of ferrous scrap and pig iron. They consumed 70 percent of the total scrap in 1939 (68 percent in 1938), 73 percent of the home scrap (70 percent in 1938), 67 percent of the purchased scrap (66 percent in 1938), and 76 percent of the pig iron (74 percent in 1938).

Cupolas, the second largest consumers of scrap, took 21 percent of the purchased scrap in 1939 compared with 24 percent in 1938. Their relative consumption of home scrap did not change from 1938, when the percentage was 15; however, their consumption of pig iron de-

creased to 10 percent in 1939 from 13 percent in 1938.

Open-hearth and cupola furnaces together consumed 88 percent of both home and purchased scrap and 86 percent of the pig iron in 1939. Bessemer converters used 10 percent of the pig iron consumed in 1939 but only relatively small quantities of scrap (0.61 percent of the total). Although electric furnaces consumed only 5 percent of the total scrap in 1939, 98 percent of the total charge to this type of equipment was home and purchased scrap.

Consumption of ferrous scrap and pig iron in the United States, 1938-39, by type of furnace, in gross tons

	Active		Serap		
Type of furnace or equipment	plants reporting	Home	Purchased	Total	Pig iron
Open hearth Bessemer Electric Cupola Air Brackelsberg Crucible Puddling Blast Direct castings Open hearth Bessemer Electric Cupola Air 1939 Open hearth Air Air	257 2, 611 120 2 22 7 71 15 23, 266	7, 956, 151 111, 751 453, 356 1, 740, 688 } 294, 414 592 763, 832 11, 321, 341 12, 743, 166 190, 319 717, 164 2, 550, 853	6, 651, 479 3, 695 482, 281 2, 451, 214 130, 798 622 2, 926 300, 578 	14, 607, 630 115, 446 935, 637 4, 191, 902 425, 212 1, 214 3, 483 1, 064, 410 	13, 729, 371 1, 946, 048 15, 893 1 2, 404, 637 185, 514 218 5, 343 1 217, 325 18, 504, 349 23, 951, 940 3, 217, 142 27, 270 1 2, 990, 355
Brackelsberg Crucible Puddling Blast Direct castings	2 22 7 77 18	310, 862 754 1, 867 1, 004, 565	176, 786 909 4, 439 721, 286	487, 648 1, 663 6, 306 1, 725, 851	294, 033 82 24, 963 1 951, 982
	2 3, 393	17, 519, 550	14, 914, 857	32, 434, 407	31, 457, 767

 ¹ Includes some pig iron used in making direct castings.
 ² Where 2 or more separate departments, such as blast-furnace, open-hearth, foundry, etc., are situated at the same place and are operated by 1 establishment, each appears as 1 plant in the total.

CONSUMPTION BY DISTRICTS AND STATES

All 48 States, the District of Columbia, and Alaska contain plants consuming ferrous scrap or pig iron. The greatest consumption, however, is concentrated in the steel-making centers of the North Central, Middle Atlantic, and Southeastern States. These areas include the 8 largest consuming States, which used 82 percent of the total scrap, 92 percent of the pig iron, and 88 percent of the total scrap and pig iron charged into furnaces in 1939. These States, the relative position of which did not change from 1938, and the percentage of the total ferrous scrap and pig iron each consumed in 1939 were as follows: Pennsylvania 26, Ohio 21, Indiana 11, Illinois 8, Michigan 7, Alabama 5, New York 5, and Maryland 5.

Consumption of ferrous scrap and pig iron in the United States, 1935-39, by districts

				Ser	ар				
	Ac-	Hor	ne	Purch	ased	Tot	al	Pig i	ron
District and year	tive plants report- ing		Change from pre- vious year, per- cent	Gross tons	Change from pre- vious year, per- cent	Gross tons	Change from pre- vious year, per- cent	Gross tons	Change from pre- vious year, per- cent
New England: 1935	232 238 257 257 263	144, 408 177, 305 233, 938 125, 307 215, 117	(1) +22. 8 +31. 9 -46. 4 +71. 7	401, 698 223, 956	(1) +27. 6 +3. 2 -44. 2 +53. 8	449, 629 566, 620 635, 636 349, 263 559, 586	(1) +26. 0 +12. 2 -45. 1 +60. 2	239, 549 130, 201	(1) +32. 1 +23. 7 -45. 6 +64. 4
1935	770 804 825 817 835	5, 765, 704 6, 516, 129 3, 466, 651	(1) +51. 6 +13. 0 -46. 8 +50. 4	5, 487, 702 2, 649, 938		7, 004, 405 10, 865, 633 12, 003, 831 6, 116, 589 9, 376, 336	+10.5 -49.0	6, 445, 123 10, 661, 526 12, 681, 040 5, 908, 776 10, 938, 314	(1) +65. 4 +18. 9 -53. 4 +85. 1
1935	370 408 448 445 470	2, 056, 519 2, 156, 393 1, 576, 624	(1) +31. 2 +4. 9 -26. 9 +46. 9	1, 949, 704 1, 244, 608	(1) +15. 9 -3. 8 -36. 2 +44. 9	3, 316, 267 4, 083, 021 4, 106, 097 2, 821, 232 4, 118, 801	$^{(1)}$ $+23.1$ $+.6$ -31.3 $+46.0$	4, 494, 498 3, 417, 083	(1) +32.3 +18.6 -24.0 +52.9
1935	98 104 111 114 131	20, 922 35, 326 51, 855 35, 158 35, 594	(1) +68. 8 +46. 8 -32. 2 +1. 2	75, 348 115, 289 147, 710 98, 541 112, 471	(1) +53. 0 +28. 1 -33. 3 +14. 1	96, 270 150, 615 199, 565 133, 699 148, 065	(1) +56. 5 +32. 5 -33. 0 +10. 7	23, 903 4, 488	$ \begin{array}{r} (1) \\ +39.2 \\ +242.8 \\ -81.2 \\ -9.0 \\ \end{array} $
1935 1936 1937 1938 1939 Rocky Mountain:	1, 144 1, 230 1, 350 1, 333 1, 374	7, 490, 057 10, 444, 433 10, 462, 393 5, 827, 181 9, 254, 712	(1) +39. 4 +. 2 -44. 3 +58. 8	9, 184, 317	+23.9 $+3.5$ -44.0	14, 651, 098 19, 318, 552 19, 646, 710 10, 969, 364 16, 815, 897	+31.9	10, 875, 718 14, 977, 899 16, 086, 555 8, 813, 826 14, 545, 594	(1) +37. 7 +7. 4 -45. 2 +65. 0
1935 1936 1937 1938 Pacific Coast:	58 62 66 66 68	109, 796 166, 862 199, 056 91, 030 200, 006	(1) +52. 0 +19. 3 -54. 3 +119. 7	125, 259 257, 316 284, 825 144, 642 250, 882	$^{(1)}$ $+105.4$ $+10.7$ -49.2 $+73.5$	235, 055 424, 178 483, 881 235, 672 450, 888	(1) +80. 5 +14. 1 -51. 3 +91. 3	174, 507 323, 391 372, 213 136, 584 368, 361	$^{(1)}$ $+85.3$ $+15.1$ -63.3 $+169.7$
1935 1936 1937 1938 1939	193 217 231 234 252	210, 611 255, 240 251, 269 199, 390 283, 743	$^{(1)}$ $+21.2$ -1.6 -20.6 $+42.3$	451, 995 694, 274 679, 283 519, 725 681, 091	(1) +53. 6 -2. 2 -23. 5 +31. 0	662, 606 949, 514 930, 552 719, 115 964, 834	$^{(1)}$ $+43.3$ -2.0 -22.7 $+34.2$	108, 085 145, 489 158, 769 93, 391 161, 406	$^{(1)}$ $+34.6$ $+9.1$ -41.2 $+72.8$
1937	² 3, 063 ² 3, 288 ² 3, 266	13, 346, 752 18, 901, 389 19, 871, 033 11, 321, 341 17, 519, 550	+5.1 -43.0	13, 068, 578 17, 456, 744 18, 135, 239 10, 023, 593 14, 914, 857	-33. 6 +3. 9 -44. 7	26, 415, 330 36, 358, 133 38, 006, 272 21, 344, 934 32, 434, 407	+37. 6 +4. 5 -43. 8	20, 620, 463 30, 098, 634 34, 056, 527 18, 504, 349 31, 457, 767	(1) +46. 0 +13. 1 -45. 7 +70. 0

Canvass begun in 1935.
 Where 2 or more separate departments, such as blast furnace, open hearth, foundry, etc., are situated at the same place and are operated by 1 establishment, each appears as 1 plant in the total.

Consumption of ferrous scrap and pig iron in the United States in 1939, by States and districts

				Scra	р			Pig ir	on
State and district	Ac- tive plants	Hom	ie	Purcha	sed	Total			Per-
State and district	re- port- ing	Gross tons	Per- cent of total	Gross tons	Per- cent of total	Gross tons Percent of total		Gross tons	cent of total
Connecticut	73	79 023	0. 5	125, 986	0.9	205, 009	0.6	74, 005	0. 2
Maine	21 121		(1)	5, 163	(1) 1.1	11, 447	(1)	6,000	(1)
Massachusetts	20		(1)		(1)	5, 253	(1)	1,630	(1)
Rhode Island Vermont	14 14	21, 106 4, 414	(1).1	\$2, 121 35, 966 7, 533	.2	57, 072 11, 947	(1)	23, 444 5, 830	(1)
Total New England	263	215, 117	1.2	344, 469	2.3		1.7		· · ·
Delaware	10	102 200		010 717	2, 1	£19 119	1.6	050.000	
New Jersey New York	93 241	193, 396 832, 967	1.1 4.8	319, 717 790, 197	5.3	1 '	5.0		. 8 5. :
Pennsylvania	491	4, 188, 446	23.9	3, 051, 613	20. 5		22.3		28.
Total Middle Atlantic	835	5, 214, 809	29.8	4, 161, 527	27.9	9, 376, 336	28.9	10, 938, 314	34.8
Alabama District of Columbia	89	672, 303	3.8	522, 095	3.5	1, 194, 398	3. 7	2, 123, 905	6.8
Maryland. Florida Georgia Mississippi North Carolina South Carolina	28 35	1, 166, 852	6.7	488, 108	3.3	1, 654, 960	5.1	2, 112, 084	6. 7
Florida	22	37, 906	. 2	85, 881	.6	123, 787	.4	55, 049	. 2
Georgia Mississippi	52 12		(1)	1,878	(1)		(1)	323	(1)
North Carolina	49 17	12, 246 2, 042	(1)	23, 753 3, 650	(1).2	2, 594 35, 999 5, 692	(1).1	12, 369 2, 010	(1)
I CTTTC22CC		} 98,653	.6	168, 875	1.1	267, 528	.8		(-)
Virginia West Virginia	67 36	324, 851	1.9	508, 992	3. 4	833, 843	2.6	785, 770	2. 1
Total Southeastern	470	2, 315, 569	13. 3	1, 803, 232	12. 1	4, 118, 801	12. 7	5, 225, 942	16. 6
Arkansas	17	1							
LouisianaOklahoma	24 22	11, 764	.1	48, 012	.3	59, 776	.2	1, 788	(1)
Texas	68	23, 830	.1	64, 459	. 4	88, 289	. 3	2, 297	(1)
Total Southwestern	131	35, 594	. 2	112, 471	. 7	148, 065	. 5	4, 085	(1)
IllinoisIndianaIowa	232	1, 417, 775	8.1	1, 286, 180	8.6	2, 703, 955 3, 683, 989	8.3	2, 473, 833	7. 9
IndianaIowa	156 63	1, 417, 775 2, 098, 696 63, 569	12.0 .3	1, 286, 180 1, 585, 293 76, 088	10.6 .5	139, 657	11.3 .4	3, 419, 691 48, 959	10. 9
Kangas	42 15	15, 192	.1	44, 273	.3	59, 465	. 2		(1)
Nebraska Michigan Wisconsin	208	1, 755, 577	10.0	1, 214, 421	8.2	2, 969, 998	9.2	1, 651, 448	5. 2
Minnesota	72	84, 526	. 5	131, 805	. 9 2. 2	216, 331	.7	166, 050	. 8
Minnesota Missouri North Dakota	74 3	92, 116	. 5	326, 926		,	1.3	33, 714	.1
South DakotaOhio	3 368	3, 725, 815	(1) 21. 3	651 2, 895, 548	(¹) 19. 4	2, 097 6, 621, 363	(1) 20.4	132 6, 748, 630	(1) 21. 4
Total North Central	1,374	9, 254, 712	52.8	7, 561, 185	50.7	16, 815, 897	51.8	14, 545, 594	46. 2
Arizona	8	, , , , , , , ,				====		====	10. 2
Nevada New Mexico	4	6, 815	(1)	16, 244	. 1	23, 059	.1	32	(1)
New Mexico Colorado	1 28	100 074		000 000		410 701			
	15 4	} 189, 954 192	1.1	229, 837 2, 103	1.6	419, 791 2, 295	1.3	368, 054 20	1. 2
IdahoWyoming	ī	2	(1) (1) (1)			2	(1)	1	(1)
	7	3, 043		2,698	(1)	5, 741	(1)	254	(1)
Total Rocky Mountain.		200, 006	1.1	250, 882	1.7	450, 888	1.4	368, 361	1.2
Alaska Oregon	1 38	36, 201	. 2	140, 915	1.0	177, 116	.6	5, 636	(1)
Washington	70 143	247, 542	1.4	540, 176	3.6	787, 718	2.4	155, 770	.5
Total Pacific Coast	252	283, 743	1.6	681, 091	4.6	964, 834	3.0	161, 406	. 5
Total United States: 1939	2 3, 393	17, 519, 550	100.0	14, 914, 857	100.0	32, 434, 407		31, 457, 767	100.0
1938	3, 266	11, 321, 341	100.0	10, 023, 593	100. 0	21, 344, 934		18, 504, 349	100.0
1 I am then 0.05 morest									

Less than 0.05 percent.
 Where 2 or more separate departments, such as blast furnace, open hearth, foundry, etc., are situated at the same place and are operated by 1 establishment, each appears as 1 plant in the total.

CONSUMPTION BY TYPE OF FURNACE

Open-hearth furnaces.—The total ferrous scrap and pig iron consumed in open hearths in 1939 was 46,747,374 gross tons, a 65-percent increase over 1938. Of the 1939 total home scrap comprised 27 percent, purchased scrap 22 percent, and pig iron 51 percent; in 1938 the percentages were 28, 24, and 48, respectively. The use of home scrap increased 60 percent, purchased scrap 51 percent, and pig iron 74 percent.

Charges to open-hearth furnaces in 1939 consisted of 49 percent total scrap and 51 percent pig iron compared with percentages in 1938 of 52 and 48, respectively. Of the total scrap consumed in open hearths in 1939, 44 percent was purchased scrap compared with 46 percent in 1938 and 47 percent in 1937. Higher proportions of purchased scrap are used in areas remote from pig-iron-producing centers, but the practice of using scrap exclusively is relatively rare. In 1939 only 5 plants out of a total of 136 operated on a 100-percent scrap basis; they consumed only 303,651 tons, less than 1 percent of the total consumption of ferrous raw materials in open hearths.

Pennsylvania, the leading steel producer, outranked all other States in 1939 in the consumption of ferrous scrap and pig iron in open hearths followed by Ohio, Indiana, and Illinois.

Consumption of ferrous scrap and pig iron in open-hearth furnaces in the United States in 1939, by districts and States, in gross tons

District and State	Active		Scrap		
2.Strict and State	report- ing	Home	Purchased	Total	Pig iron
New England: Connecticut. Massachusetts. Rhode Island.	1 0	48, 796	175, 960	224, 756	58, 789
Total: 1939 1938	4 3	48, 796 28, 633	175, 960 120, 324	224, 756 148, 957	58, 789 28, 198
Middle Atlantic; Delaware New Jersey New York Pennsylvania	1 7	690, 552	493, 637 2, 408, 795	1, 184, 189 5, 868, 697	1, 507, 237 7, 212, 480
Total: 1939	59 58	4, 150, 454 2, 759, 738	2, 902, 432 1, 814, 415	7, 052, 886 4, 574, 153	8, 719, 717 4, 859, 292
Southeastern and Southwestern: Alabama. Georgia Tennessee Oklahoma District of Columbia Kentucky Maryland West Virginia	3 1 1 1 1 2 1 2	376, 158 1, 331, 346	424, 907 873, 013	801, 065 2, 204, 359	1, 607, 861 2, 475, 557
Total: 1939	12 11	1, 707, 504 1, 104, 661	1, 297, 920 866, 852	3, 005, 424 1, 971, 513	4, 083, 418 2, 638, 878
North Central: Illinois. Indiana. Michigan. Iowa. Missouri. Minnesota. Wisconsin. Ohio.	11 7 4 1 3 1 2 25	990, 704 1, 860, 413 699, 944 } 52, 728 } 75, 807 2, 850, 724	808, 461 1, 367, 304 490, 477 219, 396 66, 296 2, 072, 119	1, 799, 165 3, 227, 717 1, 190, 421 272, 124 142, 103 4, 922, 843	1, 680, 735 3, 076, 669 957, 708 5, 801 156, 558 4, 756, 948
Total: 1939	54 56	6, 530, 320 3, 888, 171	5, 024, 053 3, 423, 935	11, 554, 373 7, 312, 106	10, 634, 419 6, 028, 762

Consumption of ferrous scrap and pig iron in open-hearth furnaces in the United States in 1939, by districts and States, in gross tons—Continued

District and State	Active plants		DI-1			
District and State	report- ing	Home	Purchased	Total	Pig iron	
Rocky Mountain and Pacific Coast: Colorado California Washington	1 5 1	306, 092	651, 903	957, 995	455, 597	
Total: 1939	7 7	306, 092 174, 948	651, 903 425, 953	957, 995 600, 901	455, 597 174, 241	
Total United States: 1939	136 135	12, 743, 166 7, 956, 151	10, 052, 268 6, 651, 479	22, 795, 434 14, 607, 630	23, 951, 940 13, 729, 371	

Bessemer converters.—The consumption of ferrous scrap and pig iron in bessemer converters in 1939 totaled 3,413,686 gross tons, a 66-percent increase over 1938. The proportion of scrap consumed in converter practice is low (amounting to only 5.8 percent in 1939), and virtually the entire quantity was home or plant scrap. Almost all of the small tonnage of purchased scrap consumed in converters was used in small steel-foundry plants.

Ohio was the principal consumer of scrap in bessemer converters in 1939.

Consumption of ferrous scrap and pig iron in bessemer converters in the United States in 1939, by districts and States, in gross tons

District and Garden	Active plants			Scrap	-	Pig iron	
District and State	report- ing		Home	Purchased	Total	Pig iron	
New England and Middle Atlantic: Delaware	1 1 1 9	}	860 52, 010	714 1, 183	1, 574 53, 193	760 1, 080, 807	
Total: 1939	12 11		52, 870 25, 959	1, 897 1, 305	54, 767 27, 264	1, 081, 567 366, 415	
Southeastern and Southwestern: Alabama Maryland West Virginia Louisiana	1 1 1 1	}	24, 185	1,054	25, 239	226, 923	
Total: 1939	4 4		24, 185 16, 371	1, 054 766	25, 239 17, 137	226, 923 129, 728	
North Central: Illinois Indiana Michigan Missouri Ohio	2 1 1 1 5	}	16, 048 97, 216	3, 057 217	19, 105 97, 433	465, 865 1, 442, 787	
Total: 1939	10 11		113, 264 69, 421	3, 274 1, 624	116, 538 71, 045	1, 908, 652 1, 449, 905	
Total United States: 1939	26 26		190, 319 111, 751	6, 225 3, 695	196, 544 115, 446	3, 217, 142 1, 946, 048	

Electric steel furnaces.—Ferrous scrap and pig iron consumed in electric furnaces in 1939 totaled 1,520,826 gross tons, a 60-percent increase over 1938. Pig iron comprised less than 2 percent of the total ferrous raw materials used in electric furnaces in 1939. Of the 267 active plants reporting in 1939, 99 operated exclusively on scrap and consumed 447,810 tons—about 29 percent of the total scrap and pig iron used.

Ohio led all States in 1939 in the consumption of scrap in electric furnaces, followed by Pennsylvania, Illinois, Michigan, and New

York.

Consumption of ferrous scrap and pig iron in electric steel furnaces in the United States in 1939, by districts and States, in gross tons

District and State	Active plants			Scrap		Die inse
District and State	report- ing		Home	Purchased	Total	Pig iron
New England:						
Connecticut New Hampshire Rhode Island	4 1 1	}	5, 697	5, 681	11, 378	479
Massachusetts	6	ľ	7,603	3, 375	10, 978	68
Total: 1939	12 13		13, 300 7, 293	9, 056 8, 033	22, 356 15, 326	547 378
Middle Atlantic:		=				
Delaware New Jersey	1 5	}	15, 969	21, 370	37, 339	608
New York Pennsylvania	19 52		32, 539 150, 297	53, 310 149, 649	85, 849 299, 946	2, 648 5, 393
Total: 1939	77 73		198, 805 125, 930	224, 329 131, 572	423, 134 257, 502	8, 649 4, 284
Southeastern: District of Columbia Maryland West Virginia	1 1 1	}	6, 482	8, 471	14, 953	93
Alabama Florida Georgia	$\begin{smallmatrix}2\\1\\1\\1\end{smallmatrix}$	}	1, 880	4, 372	6, 252	12
Tennessee Virginia	2 3	}	12, 544	6, 531	19, 075	238
Total: 1939	12 12		20, 906 14, 362	19, 374 15, 963	40, 280 30, 325	343 342
Southwestern: Arkansas Oklahoma Louisiana Texas	1 1 3 7	}	13, 552	12, 177	25, 729	241
Total: 1939	12 10		13, 552 15, 069	12, 177 11, 932	25, 729 27, 001	241 192
North Central: Illinois Indiana Iowa Kansas	18 11 2 1	}	80, 789 15, 886 4, 021	128, 286 29, 301 6, 655	209, 075 45, 187 10, 676	1, 808 321 175
Nebraska Michigan Minnesota Missouri Ohio	1 23 3 10 24)	109, 198 1, 682 4, 931 197, 290	67, 671 3, 534 5, 610 179, 048	176, 869 5, 216 10, 541 376, 338	9, 056 89 632 3, 174
Wisconsin	14	-	22, 603	36, 580	59, 183	1, 428
Total: 1939 1938	107 104		436, 400 256, 344	456, 685 265, 178	893, 085 521, 522	16, 683 9, 942

Consumption of ferrous scrap and pig iron in electric steel furnaces in the United States in 1939, by districts and States, in gross tons—Continued

	Active plants		Scrap		Pig iron	
District and State	report- ing	Home	Purchased	Total	rig iron	
Rocky Mountain: Arizona Colorado Nevada Utah	2 2 1 1	4, 813	6, 301	11, 114	51	
Total: 1939	6	4, 813 4, 735	6, 301 6, 068	11, 114 10, 803	51	
Pacific Coast: Alaska Oregon California Washington	1 4 23 13	3, 544 20, 455 5, 389	6, 381 22, 985 19, 104	9, 925 43, 440 24, 493	8 713 35	
Total: 1939	41 39	29, 388 29, 623	48, 470 43, 535	77, 858 73, 158	756 755	
Total United States: 1939	267 257	717, 164 453, 356	776, 392 482, 281	1, 493, 556 935, 637	27, 270 15, 893	

Cupola furnaces.—Consumption of ferrous scrap and pig iron in cupola furnaces in 1939 totaled 8,717,760 gross tons, a 32-percent increase over 1938. Use of home scrap increased 47 percent, purchased scrap 30 percent, total scrap 37 percent, and pig iron 24 percent. Thus, the proportion of purchased scrap more than held its own, although the relatively low prices of scrap during the first 9 months of the year were an important factor.

Charges to cupola furnaces in 1939 consisted of 29 percent home scrap, 37 percent purchased scrap, and 34 percent pig iron; in 1938 the percentages were 26, 37, and 37, respectively. Many cupola plants operate on 100-percent scrap charge; a total of 472 plants reported the use of 700,566 tons of ferrous scrap without the use of pig iron in 1939 compared with 421 plants that reported the use of

595,090 tons in 1938.

The relative position of States that are large consumers of scrap in cupola furnaces was not changed in 1939. Michigan continued as the principal consumer, followed in order by Ohio, Pennsylvania, Illinois, and New York.

Consumption of ferrous scrap and pig iron in cupola furnaces in the United States in 1939, by districts and States, in gross tons

District and State	Active plants			Pig iron	
	report- ing	Home	Purchased	Total	rig non
New England: Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont	60 21 105 17 11	55, 402 6, 284 45, 922 1, 447 13, 524 4, 414	37, 101 5, 163 76, 440 1, 686 16, 121 7, 533	92, 503 11, 447 122, 362 3, 133 29, 645 11, 947	50, 304 6, 000 59, 903 1, 323 13, 022 5, 830
Total: 1939	228 222	126, 993 76, 187	144, 044 90, 576	271, 037 166, 763	136, 382 88, 694

Consumption of ferrous scrap and pig iron in cupola furnaces in the United States in 1939, by districts and States, in gross tons—Continued

District and State	Active plants		Scrap		Pig iron
	report- ing	Home	Purchased	Total	rig iron
Middle Atlantic:					
Delaware	6	1, 563	3, 800 201, 086	5, 363 281, 360	2, 037 139, 631
New York	81 194	80, 274	201, 086	281, 360	139, 631
New York Peansylvania	322	80, 274 136, 145 217, 076	234, 202 342, 720	370, 347 559, 796	137, 521 294, 418
Total: 1939 1938	603 597	435, 058 306, 532	781, 808 600, 727	1, 216, 866 907, 259	573, 607 533, 814
Southeastern:					
Alabama District of Columbia	76 2	141, 192	126, 327	267, 519	533, 2 86
District of Columbia	30	27, 193	35, 591	62, 784	26, 820
Florida	21	1, 469	3, 769	5, 238	572
Georgia	50	16 252	22, 235	38, 487	21, 047
Kentucky Mississippi	24	20, 279	20, 069	40, 348	52, 562
North Carolina	12 49	716 12, 246	1, 878 23, 753	2, 594 35, 999	323
South Carolina	17	2, 042	23, 753 3, 650	35, 999 5, 692	12, 369 2, 010
Tennessee.	55	67, 642	73, 573	141 215	111, 291
North Carolina South Carolina Tennessee Virginia West Virginia	62 28	17, 144 18, 523	77, 965 19, 897	141, 215 95, 109 38, 420	22, 605 107, 632
Total: 1939	426	324, 698	408, 707 328, 536		
1938	402	239, 416	328, 536	733, 405 567, 952	890, 517 644, 268
Southwestern:	16	910	2 506	4 200	107
Arkansas Louisiana	20	810 4,600	3, 586	4, 396	167 682
Okianoma	20	1, 141	14, 752 6, 536	7, 677	686
Texas	60	10, 817	55, 7 2 6	19, 352 7, 677 66, 543	1, 398
Total: 1939	116 102	17, 368 19, 551	80, 600 69, 194	97, 968 88, 745	2, 933 4, 086
North Central:					
Illinois	179	221, 164	287, 922 153, 466	509, 086 283, 018	203, 503
Indiana	122 57	129, 552	153, 466	283, 018	114, 692 40, 438
Iowa Kansas	40	54, 908 10, 884	60, 958	115, 866	40, 438
Michigan	169	628, 102	387, 477	1. 015. 579	1, 742 493, 553
Minnesota	65	628, 102 15, 742	33, 426 387, 477 63, 442	44, 310 1, 015, 579 79, 184	14, 189
Missouri	59	32, 884	109,088	141, 972	14, 189 26, 842
Nebraska North Dakota	14	2, 338	7, 107	9, 445	1, 260
South Dakota	3 3	1,446	651	2, 097	132
Unio	262	239, 788	328 580	568, 368	296, 994
W isconsin	111	175, 854	328, 580 104, 701	280, 555	121, 882
Total: 1939 1938	1, 084 1, 045	1, 512, 662 1, 027, 637	1, 536, 818 1, 173, 555	3, 049, 480 2, 201, 192	1, 315, 227 1, 079, 551
Rocky Mountain:					
Arizona	6	3, 850	13, 698	17, 548	
Colorado Idaho	23	10,021	27, 246	37, 267	20, 276
Montana	47	192	2, 103	2, 295 5, 741	20
Nevada New Mexico Wyoming	3	3,043	2, 698		254
New Mexico	ĭ	490	555	1,045	32
Wyoming Utah	1 13	11, 139	20, 771	31, 910	10 200
Total: 1939	58				16, 362
1938	56	28, 737 19, 861	67, 071 51, 360	95, 808 71, 221	36, 945 22, 186
Pacific Coast:				-	
California	112	95, 437	129, 054	224, 491	31, 079
Oregon Washington	34 55	2, 931 6, 969	8, 153 20, 297	11, 084 27, 266	1, 938 1, 727
Total: 1939	201				
1938	187	105, 337 51, 504	157, 504 137, 266	262, 841 188, 770	34, 744 32, 038
Cotal United States: 1939	2, 716 2, 611	2, 550, 853 1, 740, 688	3, 176, 552 2, 451, 214	5, 727, 405 4, 191, 902	1 2, 990, 355 1 2, 404, 637

¹ Includes some pig iron used in making direct castings.

Air furnaces.—Ferrous scrap and pig iron consumed in air furnaces in 1939 amounted to 781,681 gross tons, a 28-percent increase over 1938. The use of home scrap increased only 6 percent, while the use of purchased scrap rose 35 percent and that of pig iron 58 percent. Thus, equipment of this type used relatively more pig iron than total scrap in 1939, although there was an increase of 1 point in the proportion of purchased scrap used. Only nine operators of air furnaces reported exclusive use of scrap in 1939, the quantity consumed amounting to 33,812 tons.

Ohio led all States in 1939 in the consumption of scrap in air furnaces, followed by Pennsylvania, Indiana, Illinois, Michigan, and Wisconsin.

Consumption of ferrous scrap and pig iron in air furnaces 1 in the United States in 1939, by districts and States, in gross tons

701-1-1-1-1-1-1-1	Active plants			Scrap		Pig iron
District and State	report- ing		Home	Purchased	Total	rig iron
New England: Connecticut. Massachusetts. New Hampshire Rhode Island	7 3 1	}	9, 125 10, 033	2, 856 6, 007	11, 981 16, 040	8, 586 9, 474
Total: 1939	12 12	<u> </u>	19, 158 12, 676	8, 863 4, 381	28, 021 17, 057	18, 060 12, 554
Middle Atlantic: Delaware	1 3 9 24	}	4, 496 19, 411 50, 061	2, 152 9, 796 28, 609	6, 648 29, 207 78, 670	6, 314 13, 710 47, 437
Total: 1939	37 36		73, 968 42, 039	40, 557 21, 798	114, 525 63, 837	67, 461 42, 108
Southeastern and Southwestern: Virginia West Virginia Texas	1 2 1	}	6, 498	12, 351	18, 849	4, 324
Total 1939 1938	4 3		6, 498 2, 109	12, 351 5, 251	18, 849 7, 360	4, 324 2, 077
North Central: Illinois Indiana Michigan Iowa Minnesota Missouri Ohio Wisconsin	14 11 7 2 1 1 21	}	93, 635 32, 367 8, 228 47, 841 27, 393	40, 553 22, 359 5, 165 36, 878 9, 381	134, 188 54, 726 13, 393 84, 719 36, 774	71, 305 33, 684 10, 544 59, 412 27, 571
Total: 1939	68 68		209, 464 236, 765	114, 336 99, 183	323, 800 335, 948	202, 516 128, 020
Rocky Mountain and Pacific Coast: Colorado	1 2	}	1, 774	679	2, 453	1, 672
Total: 1939	3 3		1, 774 825	679 185	2, 453 1, 010	1, 672 755
Total United States: 1939	124 122		310, 862 294, 414	176, 786 130, 798	487, 648 425, 212	294, 033 185, 514

¹ Includes 2 Brackelsberg furnaces, 1 each in Indiana and Ohio.

Crucible and puddling furnaces.—Crucible and puddling furnaces, whose combined output of iron and steel is very small, consume only minor quantities of ferrous raw materials.

Consumption of ferrous scrap and pig iron in crucible and puddling furnaces in the United States in 1939, by districts and States, in gross tons

District and Ghala	Active			Scrap		.
District and State	plants reporting	Ho	me	Purchased	Total	Pig iron
New England: Connecticut	1 3 1	}	119	531	650	1
Total: 1939	5 6		119 219	531 416	650 635	1 142
Middle Atlantic: New Jersey New York Pennsylvania	3 7		802 1, 424 2, 226 783	382 2, 494 2, 876 2, 122	1, 184 3, 918 5, 102 2, 905	4, 915 15, 227 20, 142 3, 369
Southeastern and North Central: Kentucky Maryland Virginia Indiana Kansas Ohio	1 1 1 1	}	235	1, 914	2, 149	4, 856
Total: 1939	10 10		265 147	1, 932 1, 010	2, 197 1, 157	4, 900 2, 050
Pacific Coast: California Washington	1 1	}	11	9	20	2
Total: 1939	2		11	9	20	2
Total United States: 1939	29 29		2, 621 1, 149	5, 348 3, 548	7, 969 4, 697	25, 045 5, 561

Blast furnaces.—Ferrous scrap constitutes only a small proportion of the metal-bearing materials consumed in blast furnaces. The other materials used in 1939 were 53,422,383 gross tons of iron and manganiferous iron ores, 3,735,132 of cinder and scale, and 1,737,000 of flue dust. Total consumption of scrap in 1939, as reported by 77 plants operating blast furnaces, was 1,725,851 tons, a 62-percent increase over 1938. Of the 1939 total, 58 percent was home scrap and 42 percent purchased scrap.

The proportion of scrap used in blast furnaces again declined in 1939, amounting to 5.6 percent of the pig iron produced in 1939 compared with 5.7 percent in 1938 and 6.6 in 1937. Purchased scrap was equivalent to 2.3 percent of the pig iron produced in 1939 compared

with 1.6 percent in 1938 and 2.5 in 1937.

Blast furnaces in Ohio continued to consume more scrap in 1939 than those in any other State, using 52 percent more than Pennsylvania, the second ranking State; in 1938 Ohio furnaces consumed 30 percent more than Pennsylvania furnaces.

Consumption of ferrous scrap in blast furnaces in the United States in 1939, by districts and States, in gross tons

District and State	Active	Scrap		
	plants re- porting	Home	Purchased	Total
New England and Middle Atlantic: Massachusetts				
New York	1 7	50, 503	95, 480	145, 983
Pennsylvania	21	257, 676	118, 163	375, 839
Total: 1939	29 24	308, 179 205, 969	213, 643 78, 225	521, 822 284, 194
Southeastern:				
Alabama	6	175, 918	45, 101	221, 019
Kentucky	1	45, 421	26, 903 8, 913	26, 903 54, 334
Maryland Tennessee	1	194	691	94, 334 885
West Virginia	2	14, 687		14, 687
Total: 1939	11	236, 220	81, 608	317, 828
1938	12	200, 141	43, 653	243, 794
North Central:				
Illinois	4	81, 022	40, 555	121, 577
Indiana.	3 1	27, 773	13,906	41, 679 1, 000
Iowa Michigan	4	45, 582	1,000 84,454	130, 036
Minnesota	2	5, 266	7, 396	12, 662
Ohio	21	292, 926	278, 688	571, 614
Total: 1939	35	452, 569	425, 999	878, 568
1938	33	348, 798	178, 700	527, 498
Rocky Mountain:				
Colorado	1	7, 597	36	7, 633
Utah	1	,,,,,,	. 30	,
Total: 1939	2	7, 597	36	7, 633
1938	2	8, 924		8, 924
Fotal United States: 1939	77	1,004,565	721, 286	1, 725, 851
1938	71	763, 832	300, 578	1,064,410

FOREIGN TRADE 7

Imports.—Imports of iron and steel scrap into the United States, which are unimportant, totaled 29,492 gross tons valued at \$301,513 in 1939 compared with 24,451 tons valued at \$281,240 in 1938. Of the 1939 total, 27,208 tons came from Canada, 1,219 tons from Mexico, 937 tons from Europe, and only 128 tons from other countries. In addition, 12,633 tons of tin-plate scrap were imported in 1939, largely from Canada, compared with 10,444 tons in 1938 and 12,916 tons in 1937.

Exports.—Ferrous scrap exports (all types) from the United States in 1939 exceeded those of 1938 by 20 percent in tonnage and 22 percent in value, being outdistanced in tonnage and value only by the record shipments of 1937. A total of 3,584,439 gross tons valued at \$55,911,516 was exported in 1939 compared with 2,998,591 tons valued at \$45,829,533 in 1938. The shipments included 25,888 tons of tin-plate scrap, waste—waste tin plate, tin plate strips, cobbles, etc., valued at \$1,121,153 in 1939 compared with 24,216 tons valued at \$902,607 in 1938. The following table shows the principal countries to which shipments of scrap were consigned during the 5-year period 1935–39.

 $^{^7}$ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Ferrous scrap exported from the United States, 1935-39, by countries, in gross tons

Country	1935	1936	1937	1938	1939
Canada. Germany. Italy. Japan. Netherlands. Poland and Danzig. United Kingdom. Other countries.	96, 128	63, 712	185, 571	92, 217	175, 496
	4, 113	6, 799	88, 153	230, 903	16, 584
	382, 775	285, 126	381, 394	434, 717	425, 896
	1, 117, 973	1, 057, 621	1, 911, 508	1, 381, 801	2, 024, 264
	9, 055	4, 777	143, 401	206, 554	52, 864
	36, 627	31, 104	275, 607	151, 451	154, 608
	277, 366	364, 874	847, 177	387, 347	508, 293
	179, 922	122, 119	268, 738	113, 601	226, 434
Total value	2, 103, 959	1, 936, 132	4, 101, 549	2, 998, 591	3, 584, 439
	\$22, 949, 070	\$24, 684, 084	\$79, 387, 459	\$45, 829, 533	\$55, 911, 516

Of the total exports of ferrous scrap from the United States in 1939, 2,000,940 gross tons cleared through customs districts on the Atlantic coast (1,769,611 tons in 1938), 876,976 tons from districts bordering the Gulf of Mexico (779,613 tons in 1938), 544,554 tons from districts along the Pacific coast (368,842 tons in 1938), and 161,969 tons from other customs districts (80,525 tons in 1938).

Exports were drawn largely from seaboard areas where the cost of transportation from the point of origin to the port of exportation is relatively low and where the cost of transportation to domestic iron and steel plants not within the area is often prohibitive.

WORLD ASPECTS

The increase in world steel production in 1939, owing in a large measure to the turbulent state of affairs among the powerful foreign nations, resulted in expansion of the use and demand for iron and steel scrap compared with 1938. According to Metal Statistics 1940, world production of steel in 1939 totaled 131,800,000 gross tons, a 24-percent increase over the 1938 production of 106,000,000 tons and only 500,000 tons below the 1937 record (132,300,000 tons). The United States supplied 71 percent of the world increase, and all other countries contributed 29 percent. However, world production of steel in 1939, excluding the United States, established an all-time record of 85,050,000 tons, a 10-percent increase over the 1938 figure (77,650,000 tons) and a 4-percent increase over the 1937 record (81,731,000 tons). Steel production in the United States increased 66 percent over 1938.

World production of pig iron (including ferro-alloys) in 1939 totaled 100,389,000 gross tons, an increase of 18,803,000 tons over the 1938 production of 81,586,000 tons but a loss of 2,166,000 tons from the previous 1937 record of 102,555,000 tons. The United States supplied the greater part of the increase in world pig-iron production in 1939, as indicated by the fact that production of the rest of the world totaled 68,578,000 tons, an increase of 6,169,000 tons over the 1938 production of 62,409,000 tons.

The increased spread between the production of pig iron and steel in 1939 compared with 1938 indicates a pronounced rise in the world use of iron and steel scrap during 1939.

Cartel activities.—In the first 8 months of 1939 the British Iron and Steel Federation, acting for the International Scrap Convention, made two purchases of iron and steel scrap in the United States that

totaled about 850,000 gross tons. Immediately after the outbreak of war in September the International Scrap Convention suspended operations, although no formal liquidation took place.8 In the remainder of 1939 each European nation bought independently. Italy and the Balkan States made additional purchases totaling about 100,000 tons, but the United Kingdom, which had a large share in the earlier purchases made for the cartel, ceased buying. As in former years, the extensive purchases of scrap made by Japan in the United States during 1939 were negotiated by the several large mercantile houses of that nation.

REVIEW BY COUNTRIES

Germany.—Steel production in Germany proceeded at a feverish rate to meet the 1939 military requirements. New records were established, and the German output of steel ingots and castings continued to exceed the combined production of the United Kingdom and France. The productive capacity of Germany was augmented by conquests of Czechoslovakia and Poland, although these acquisitions furnished little additional raw-material supplies and the rate of steel production remained very largely dependent on imports of iron ores from the Scandanavian Peninsula. Germany adopted stringent measures to conserve its domestic supplies of iron and steel scrap. The use of pig iron produced from low-grade domestic ores and highgrade imported ores was continued. German imports of scrap from the United States were reduced drastically in 1939 and, 2 months before the outbreak of war, shipments from the United States to Germany had ceased. Figures showing the consumption of scrap in Germany in 1939 are not available, but it is estimated that the consumption in 1938 totaled 11,000,000 metric tons compared with 10,000,000 in 1937 and 9,700,000 in 1936.9

Italy.—Steel production in Italy reached new high levels in 1939. although the increase over previous years was relatively small. Italian production of pig iron also set a new record in 1939, but the iron and steel industry remains dependent by a wide margin on foreign raw Italian imports of pig iron are surpassed by those of iron and steel scrap; and, although imports of scrap from the United States, whence Italy has received more than half its imports of this commodity in recent years, were slightly lower in 1939 than in 1938, the decrease may be attributed to a lack of shipping facilities occasioned by the outbreak of Allied and German hostilities. Italy is keenly aware of the vulnerability of her steel industry and, to minimize demand for raw materials from foreign sources, has by Royal Decree Laws issued stringent regulations regarding the use of scrap.¹⁰ Restrictive measures also have been taken to curtail certain uses of iron and steel, and these materials may no longer be employed for enclosures, divisions of land, gardens, villas, etc., including barbed wire and fencing of any metal.¹¹

Japan.—The Japanese steel industry, which has maintained a spectacular growth during the past decade, established new production records in 1939. The problem of raw materials is still difficult, as evidenced by the fact that steel production, which has almost tripled

Boaily Metal Reporter, vol. 39, No. 197, October 14, 1939, p. 10.
 Daily Metal Reporter, vol. 39, No. 87, May 9, 1939, p. 10.
 Bureau of Mines, Mineral Trade Notes: Vol. 10, No. 2, February 20, 1940, p. 9.
 Iron and Steel Fortnightly, vol. 1, No. 14 (N. S.), July 20, 1939, p. 94.

since 1930, has not been accompanied by proportionate increases in the output of pig iron. Consequently the maintenance of present production rates depends entirely on imports of pig iron and iron and steel scrap. Although sources of scrap within the empire are not large, strict Government control is exercised over all available supplies. A new iron and steel industrial policy provides for the unification, purchase, and distribution of scrap iron and the establishment of prices

for materials based on the efficiency of various plants.¹²

The announced abrogation of the Treaty of Commerce and Navigation between the United States and Japan and the outbreak of war in Europe caused no little disturbance within Japanese iron and steel circles during the last 5 months of 1939. Apprehension regarding these matters was based on Japanese dependence on iron and steel scrap imports from the United States, on iron ore brought in from colonial possessions of belligerent countries, on securing plant equipment from Germany, and on the importation of special and alloy steels required for the aircraft, automobile, and machine-tool industries.¹³

Poland.—At the outset of 1939 it appeared that Poland, because of the seizure of the Trans-Olzan area from Czechoslovakia, had accomplished self-sufficiency in steel-making and was capable of meeting the needs of national defense. However, in the spring of 1939 the demand for armament became very great, and Poland entered world scrap markets, placing large orders in France and the United States. Consignments of scrap from the United States to Poland, which totaled approximately 15,000 gross tons for the first 4 months of 1939, increased to over 26,000 tons in May and continued at higher rates in June, July, and August. However, they dropped to less than 9,000 tons in September and disappeared after the German military

conquest of Poland.

United Kingdom.—Scrap was an extremely significant factor in the all-time records of steel production established in the United Kingdom during 1939. Excess supplies of iron and steel scrap that depressed markets during 1938 disappeared rapidly following the increased production rate of the first quarter of 1939. Imports of scrap from the United States were resumed in March and established new highs during the third quarter; however, the trend was sharply downward throughout the remaining months of the year. House-to-house collection campaigns for scrap were inaugurated as early as March 1939, and some 150,000 firms were requested to assist by contributing whatever scrap was in their possession. Later, following the outbreak of war, collection campaigns were intensified and extended to include dumps to assemble as much scrap as possible at home with a view toward reducing the number of ships involved in the scrap trade. industry undertook to use higher ratios of pig iron in furnace charges, hoping to abate the demand for scrap. 15 Nevertheless, figures for 1939 indicate that a larger proportion of scrap was used than during any of the years immediately preceding.

 ¹² Iron and Steel Fortnightly, vol. 1, No. 24, December 20, 1939, p. 152.
 ¹³ Iron and Steel Fortnightly, vol. 1, Nos. 19 and 20 (N. S.), October 1939, p. 113.
 ¹⁴ Bureau of Mines, Mineral Trade Notes: Vol. 10, No. 3, March 20, 1940, pp. 6, 7, 8.
 ¹⁵ Iron Age, vol. 143, No. 25, June 22, 1939, p. 75.

IRON ORE, PIG IRON, FERRO-ALLOYS, AND STEEL

By ROBERT H. RIDGWAY AND H. W. DAVIS 1

SUMMARY OUTLINE

	Page		Page
General features in 1939	527	Pig iron	556
Salient statistics		Production and shipments	
Consumption of ferrous scrap and pig iron		Value at blast furnaces	
Iron ore.		Commercial quotations	
Production and shipments	533	Foreign trade	
Principal mines		Consumption	
Beneficiation		World production	
Average value		Ferro-alloys	
Consumption		Production and shipments	
Stocks at mines		Ferromanganese	
Foreign trade	541	Spiegeleisen	
Mining in Cuba		Ferrosilicon	
Review of Lake Superior district	542		
		Ferrophosphorus	
Production and shipments	542	Ferrotungsten	564
Analyses		Foreign trade	
Stocks at Lake Erie ports	544		566
Prices of Lake Superior ore	544	Production	566
Reserves	545	Foreign trade	568
Mining by States	545		
Men employed and output per man at mines.			
World production	555		

War-geared international economy drove world production of iron and steel to record or virtually record levels in 1939. Although other nations expanded their near-capacity activities of 1938, the major part of the world increase in 1939 was due to the gain in American output, which rose precipitously during the latter half of the year. Relatively small quantitative increases established new production peaks in Germany, Italy, Japan, the U. S. S. R., and the United Kingdom. Some of the gain in Germany, the second largest world producer and the largest producer in Europe, was due to territorial accession during 1939; but production in that country, even as formerly constituted, advanced despite some slowing down in certain Saar works during the first stages of the war. As a result of hostilities, output of iron and steel in several of the principal countries is under strict control and is oriented to armament and munitions, with little attention to civilian requirements. World production of pig iron (including ferroalloys) and steel increased 23 percent and 24 percent, respectively, compared with 1938; domestic production of each increased 66 percent, and output of each in the rest of the world rose 10 percent. the total world output of pig iron and steel in 1939 the United States furnished about 32 and 35 percent, respectively, compared with the 23 and 27 percent in 1938. Since the depression the United States has been supplying a smaller proportion of the total world iron and steel production than formerly.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Salient statistics of iron ore, pig iron, ferro-alloys, and steel in the United States, 1938-39

	1938			1939		
	Gross tons	Value	Gross tons	Value		
ron ore:						
Production by—	· .		-			
Districts: Lake Superior	21 308 410	1	(41, 679, 608	,		
Southeastern	21, 308, 410 4, 325, 729	(1)	6, 011, 420	(1)		
Northeastern	2, 306, 910	} ``	3, 112, 893	ì		
Western	506, 233	J	917, 448	J		
	28, 447, 282	(1)	51, 721, 369	(1)		
Mining methods:						
Open pit	² ³ 14, 705, 349	J (1)	§ 32, 741, 636	(1)		
Underground	² 313, 741, 933	J	(2 18, 979, 733	J		
	28, 447, 282	(1)	51, 721, 369	(1)		
Varieties:						
Hematite	4 525, 607, 467	1)	[4 5 47, 756, 770			
Brown ore	363, 146 4 5 2, 476, 221	(1)	586, 372	(1)		
Carbonate	448	}	463)		
	28, 447, 282	(1)	51, 721, 369	(1)		
Shipments (exclusive of ore for paint)	26, 430, 910	\$74, 322, 405	54, 820, 589	\$158, 511, 3		
Average value per ton at mine Stocks at mines Dec. 31	7, 611, 048	(1)	4, 746, 507	(1)		
Imports	2, 122, 455	5, 288, 195	2, 412, 515	5, 865, 51		
Exports	591, 524	1, 954, 287	1, 057, 304	3, 578, 08		
Pig iron: Production	10 500 000	, m	91 077 014	40		
Shipments	18, 582, 322 18, 202, 354	356, 875, 369	31, 075, 914 32, 091, 485	(1) 626, 824, 69		
Average value per ton at furnaces		19.61		19. 8		
Imports	30, 400	598, 461	38, 592	663, 09		
ExportsFerro-alloys:	432, 851	7, 135, 129	177, 024	3, 435, 73		
Production	584, 724	(1)	735, 171	(1)		
Shipments:						
Ferromanganese	223, 720	19, 144, 884	296, 631	24, 137, 21		
Spiegeleisen	24, 939	§ 728, 830	84, 739	2, 484, 04		
Ferrosilicon Other varieties	163, 775 51, 678	7, 999, 661 14, 586, 138	343, 822 115, 970	16, 850, 38 32, 684, 97		
Other varieties						
Imports:	464, 112	³ 42, 459, 513	841, 162	76, 156, 58		
Ferromanganese	26, 258	1,770,948	41, 227	2, 935, 21		
Spiegeleisen	17, 248	625, 480	38, 264	1, 329, 81		
Ferrosilicon	5, 325	134, 067	8, 203	237, 54		
Steel production:						
Open hearth:		l.				
BasicAcid	25, 691, 963 272, 337	11	42, 704, 197	1		
Bessemer	1, 880, 661	(1)	518, 839 2, 999, 032	} (1)		
Crucible	6	'	831			
Electric	505, 024	J	918, 810	J		
•	28, 349, 991	(1)	47, 141, 709	(1)		

¹ Figures not available. ² Some underground included with open pit. ² Revised figures.

4 Small quantity of hematite included with magnetite.
5 Small quantity of magnetite included with hematite.

As iron and steel manufacture the major implements of war, unsettled conditions in Europe and Asia dominated the iron-ore industry in 1939 and disturbed the usual routes of flow. Faced with problems of restricted imports and national self-sufficiency, certain European powers in recent years have focused their attention on development and treatment of low-grade ore bodies within their national boundaries. These activities were accelerated in 1939, particularly in Germany and the United Kingdom; even so, both countries still

depend heavily on foreign ore supplies. The supply of raw materials, especially iron ore in Germany and England and to a smaller extent coal in France and Italy, is of utmost importance in maintaining the steel-production rate. The present international situation is furnishing further impetus to the nationalistic spirit of self-sufficiency, particularly as to iron and steel, in other nations.

In the first half of 1939 the domestic iron and steel industry maintained the gain of the last half of 1938, and steel operations were about 53 percent of capacity or slightly below those during the last quarter of 1938. During the latter half of 1939, however, production increased rapidly, amounting to nearly 5,500,000 tons in November or more than 93 percent of capacity compared with 62 percent in November, the peak month for 1938. Slightly more than one-third of the 1939 output was made in the final 3 months, when the production rate for steel ingots rose to new heights. At the close of 1939, activities were off a little but were still at a high rate (86 per-

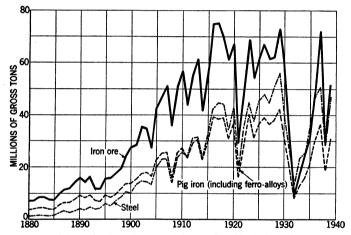


FIGURE 1.—Trends in production of iron ore, pig iron, and steel in the United States, 1880-1939.

cent of capacity for December); the average rate of production in the last quarter of 1939 was 89 percent compared with 51 percent in the second quarter. The average operating rate during 1939 was 64 percent compared with 40 percent in 1938. The producers of such mineral products as iron ore, manganiferous iron ore, fluorspar, fluxing stone, and coke, which depend on iron and steel furnaces for their chief market, felt the increased demand during the last half of 1939. Domestic production of iron ore, the principal raw material, increased 82 percent over 1938 but still was 21 percent under the 1925–29 average. Figure 1 shows the trends in domestic production of iron ore, pig iron, and steel for more than half a century.

A factor in the rise of domestic steel output in 1939 was the decision of consumers to change their inventory position. The advent of war in Europe created uncertainties that caused consumers of steel to rush to build up stocks of raw material. The automobile industry, with a strong fourth-quarter demand, was the largest consuming outlet for steel, taking about one-sixth of the total. Production of automobiles in 1939 increased 44 percent over 1938 and amounted to

3,577,058 units—still somewhat below the 5-million car year 1929. Although the farmer's cash income rose about 5 percent in 1939, the quantity of steel moving into this outlet was lower than in 1938. Exports of steel in 1939 increased over 1938 and were more than treble the quantity moving into agriculture. The relative quantity of steel used in containers, the third largest consuming outlet, was about the same in 1939 as in 1938.

The capital-goods industries expanded in 1939, and more steel was consumed in this outlet. Buying of equipment by the railroads rose sharply in September, and they participated in the business expansion of the fall when full utilization of capacity was approached. The problem of insufficient capacity of railroad equipment owing to the small outlays for new rolling stock during the last decade was brought into focus by the 1939 peak carloadings and heavy railway traffic. Recent replacements of rolling stock are designed for increased speed and efficiency, both for passenger and freight service. New freight cars made of low-alloy, high-strength steels increase capacity and lighten dead weight. Thus less steel may be used as a new unit replaces an old one. Large expenditures, however, will be necessary to correct the accumulated obsolescence.

The shipbuilding industry revived in 1939, and at the end of the year the total tonnage under construction in American shippards was the highest since 1920. Activity increased in both private and Government yards on merchant and naval ships. The shipbuilding industry was bolstered by the acceleration of the building program

of the Maritime Commission in September.

The construction industry had a better year in 1939 than in 1938, as activities continued to advance for the sixth consecutive year. Both public and private work contributed to the increase, with residential building especially active. Industrial and commercial building were only moderately higher in 1939 than in 1938, but increases were more pronounced after conditions changed in September. Despite the increase, total expenditures for construction in 1939 were less than three-quarters of those in the peak years 1926 to 1929; however, the physical volume and consumption of raw material, including steel, undoubtedly were greater as construction costs have

changed during the last decade.

Continuing the movement of 1938, the price of steel products dropped during the first half of 1939 as demand weakened and the upturn of production late in 1938 flattened and receded. reduction during the first half of 1939 on nearly all steel products brought down the composite price of finished steel, as compiled by Iron Age, to 2.236 cents per pound in June from 2.286 cents at the beginning of the year. Recovery followed, and before the year ended there was frenzied buying of many products as consumers sought to fill their needs in advance because of fears that war would cause higher prices and delayed deliveries. At the beginning of the last quarter of 1939 the mills were generally sold out for the rest of the year, and prices advanced, the Iron Age average rising to 2.242 cents for November and 2.261 cents for December. The average for the year was 2.257 cents a pound. Pig-iron prices followed somewhat the same pattern, but buying during the earlier months was restricted by hold-over contracts. September saw a big "pick-up" in demand as prices advanced \$1 to \$2 a ton on most grades. The Iron Age composite pig-iron price, which was \$20.61 a long ton until the end of August, advanced \$1 a ton in September and \$1 more in October; it held the October level the rest of the year. Scrap prices, which had been fairly steady until September, rose 44 percent by early October but were off several dollars per ton during the rest of the quarter. The price of ferromanganese at seaboard was reduced \$12.50 a ton, in January, but in September it was raised to \$100 a ton. Spiegeleisen, which had been quoted at \$28 during the year, also increased in price in September, that of the 19–21 percent manganese grade advancing to \$32. The quotations on Lake ores for the 1939 season were unchanged from 1938.

Figure 2 gives trends in prices of iron ore, pig iron, steel, and steel

scrap since 1890.

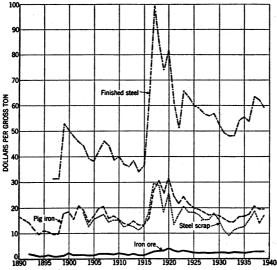


FIGURE 2.—Trends in prices of iron ore, pig iron, finished steel, and steel scrap, 1890-1939. The prices of iron ore and pig iron are the averages f. o. b. mines and furnaces, respectively, as reported to the Bureau of Mines; the price of finished steel is an average composite computed by American Metal Market; that of steel scrap is an average at Pittsburgh of No. 1 Heavy Melting, computed by Iron Age.

Employer-employee relationships, which have been receiving increased attention in recent years, were better in 1939 than in 1938 as employment rose to a higher level. As operations at plants increased there were steady gains in employment and earnings of wage earners during the year. According to the American Iron and Steel Institute average hourly earnings were 84 cents, the highest for any year in the history of the industry. Total pay rolls in the industry in 1939, according to the same source, were \$810,000,000 compared with \$600,000,000 in 1938. The contract entered into in March 1937 between the steel-manufacturing subsidiaries of the United States Steel Corporation and representatives of the Steel Workers Organizing Committee, one of the affiliates of the Congress of Industrial Organizations, as the collective bargaining agency for employees who were members of the Amalgamated Association of Iron, Steel, and Tinworkers of America, expired in February 1938. The agreement was renewed subject to change upon 10 days' notice from either party and

to termination if changes are not agreed to within 20 days of the notice. This affords an opportunity for adjustment of operations to varying economic conditions. Apparently, the agreement is working out satisfactorily to the parties concerned, as there have been no changes since the signing. There were no major strikes in the iron and steel industries in 1939, although the Bureau of Labor Statistics, United States Department of Labor, lists 57 strikes that began in 1939, which involved 14,466 workers and resulted in 212,760 man-days idle during the year; however, all of the strikes were minor in extent. The wages-and-hours law, which provided for a change from 25 to 30 cents in the hourly rate and a reduction of the workweek from 44 to 42 hours effective October 24, 1939, had little or no effect on the iron and steel industry.

The record rate of activity in the steel industry during the closing months of 1939 brought production to near capacity. As the rise was abrupt, little time was available for expansion, and problems of immediate production were paramount. Present steel making and finishing capacity can take care of any reasonable demands, and little new capacity was added in 1939. War orders might serve as an incentive to increase capacity; but industry, recalling events of the last war, is chary of making investments on this basis. Three blast-furnace stacks were remodeled during the year, and four stacks were dismantled, resulting in a decrease in blast-furnace capacity. Only one open-hearth furnace (Alton, Ill.) was added to capacity in 1939. Considerable capacity was added to finishing operations of the steel processes, thereby rounding out activities of various producers.

Imports of iron ore into the United States in 1939 increased 14 percent over 1938 and were equivalent to 5 percent of the domestic production. Imports of pig iron rose 27 percent but were equivalent to only 0.1 percent of the domestic output. Imports of ferro-alloys also increased owing to much larger receipts of ferromanganese and spiegeleisen, the latter having more than doubled the 1938 figure. Imports of iron and steel manufactures, although relatively small, gained 19 percent over the low total for 1938. Exports of iron and steel products, which are much higher than imports, likewise advanced, topping those of 1938 by 16 percent. Exports of pig iron amounted to 177,024 long tons and were much lower than in 1938, whereas exports of iron ore, largely to Canada, increased 79 percent. Exports of ferro-alloys were higher than in 1938 but still did not represent much tonnage. Although exports of scrap increased 20 percent over 1938, they were 13 percent below the 1937 total.

Import duties on a few minor iron and steel products were lowered in 1939 under the Trade Agreements Act of June 12, 1934. These changes, which were provided for in the new trade agreement with Canada signed November 17, 1938, became effective January 1, 1939, and superseded the agreement signed November 15, 1935. There were also some changes, including a reduction in the duty on low-phosphorus (0.04 percent and under) pig iron from \$1.125 to \$0.75 per long ton, in the trade agreement with the United Kingdom, which likewise was signed November 17, 1938, to become effective January 1, 1939. Chromite was bound on the free list in the Turkish Agreement

signed April 1, 1939, to become effective May 5, 1939.

In connection with its studies on the concentration of economic power, the Temporary National Economic Committee held hearings on various phases of the iron and steel industry late in the year. Testimony was taken from men in the industry with a view to developing information on the competitive position of different factors of the industry.

CONSUMPTION OF FERROUS SCRAP AND PIG IRON

Data on the consumption of ferrous scrap and pig iron, formerly included in this chapter, will be found in the chapter on Iron and Steel Data on the consumption of pig iron will be found in the pig-iron section of this chapter.

IRON ORE

Production and shipments.—Mining of iron ore in the United States experienced the second best year since 1930. Production amounted to 51,721,369 gross tons, a gain of 82 percent over 1938 but 21 percent under the 1925-29 average. Output in 1939 came from 208 mines (this figure does not include an undetermined number of small operations whose aggregate output is only a fraction of 1 percent of the total), of which 11 produced more than 1 million tons each compared with 172 mines having only 4 in the million-ton class in 1938. Sixteen States were active producers in 1939 as well as in 1938. nesota, with 31,547,701 tons, supplied 61 percent of the domestic total, and Michigan, with 9,159,222 tons or 18 percent, was the second largest producer. These two States and Wisconsin (972,685 tons or 2 percent) constitute the Lake Superior region, which furnished 81 percent of the domestic total. Of the 1939 total, about three-fifths came from open-pit operations compared with about one-half in 1938. Shipments of iron ore likewise were much larger in 1939, amounting to 54,820,589 gross tons, an increase of 107 percent over 1938 but 18 percent less than the 1925-29 average. The greater part of the iron ore mined in the United States is used in the manufacture of iron and steel, but 56,763 tons of domestic ore were shipped in 1939 for other uses as follows: Cement, 33,140 tons; paint, 12,235 tons; ferromagnesite, 3,000 tons; flux at nonferrous smelters, 6,640 tons; and other industries, 1,748 tons.

The quantities of iron ore shown in the following tables include ore that was beneficiated—that is, treated in any way—as well as ore that did not require treatment. Although included in the figures on production, the iron ore sold for the manufacture of paint-12,235 tons in 1939 valued at \$66,817 (\$5.46 a ton) compared with 9,694 tons in 1938 valued at \$44,249 (\$4.56 a ton)—is not included in shipments from mines. The output of manganiferous ore that contained 5 to 35 percent manganese also is not included; 709,247 tons, valued at \$2,148,321, were shipped in 1939 compared with 308,860 tons, valued at \$858,356, in 1938. Moreover, the statistics do not include iron sinter recovered from the roasting of domestic pyrites concen-

trates in Tennessee.

Iron ore mined in the United States in 1939, by States and varieties, in gross tons [Exclusive of ore containing 5 percent or more manganese]

State	Number of active mines	Hematite	Brown ore	Magnetite	Carbon- ate	Total
Alabama California Georgia Michigan Minnesota Missouri New Jersey New York Pennsylvania South Dakota Tennessee Virginia Utah Washington Wisconsin Wyoming	58 4 10 36 65 212 4 4 4 2 2 2 2 2 2 2 2	5, 445, 868 1 17, 173 7, 867 9, 159, 222 31, 547, 701 9, 824 (3) 781 7, 757 972, 685 587, 892	514, 639 18, 219 29, 415 300 } 23, 799	(1) 247 399, 289 3 2, 713, 141 262, 087 3, 000	{	5, 960, 507 17, 173 26, 333 9, 159, 222 31, 547, 701 39, 239 399, 289 2, 713, 604 300 24, 580 262, 087 10, 757 972, 685 587, 892
Total: 1939 1938	² 208 ² 172	1 3 47,756,770 1 3 25,607,467	586, 372 363, 146	1 3 3, 377, 764 1 3 2, 476, 221	463 448	51, 721, 369 28, 447, 282

Quantity and tenor of iron ore mined in the United States, 1938-39, by States and mining methods

		1938	. **			193	9	
		Total					tal	
State	Open pit (gross tons)	Under- ground (gross tons)	Gross tons	Iron content, natural (percent)	Open pit (gross tons) Under- ground (gross tons)	Gross tons	Iron content, natural (percent)	
Alabama California Georgia. Michigan Minnesota. Missouri New Jersey New Mexico New York Pennsylvania Tennessee Virginia Utah Washington Wisconsin South Dakota	332,717 28,380 8,944 686,981 111,195,117 27,409 1,826 } 22,121,271 } 13,179 167,933 1,825	277 5, 317, 330 1 3, 254, 187 1, 135 185, 639 (2) (2)	28, 380 9, 221 6, 004, 311 14, 449, 304 28, 544 185, 639 1, 826 2, 121, 271 13, 179 167, 933 3, 555 854, 795	55. 07 39. 33 52. 23 52. 31 51. 33 63. 24 61. 11 67. 10 42. 76 47. 15 52. 53 54. 11 39. 41 39. 41	17, 173 26, 333 1, 246, 550 27, 639, 063 37, 989	7, 912, 672 3, 908, 638 1, 250 399, 289 (2) 2, 431 972, 685	17, 173 26, 333 9, 159, 222 31, 547, 701 39, 239 399, 289 2, 713, 604 24, 580 262, 087 10, 757 972, 685 300	56. 44 47. 9: 51. 63 52. 44 52. 5 63. 3:
Wyoming	119, 767 1 2 14, 705, 349	156, 228 1 2 13, 741, 933			231, 966 232, 741, 636			

¹ Revised figures.

Small quantity of magnetite included with hematite.
 Excludes an undetermined number of small pits. The output of these pits is included in the tonnage given.
3 Small quantity of hematite included with magnetite.

² Some underground included with open pit.

Iron ore mined in the United States, by mining districts and varieties in 1939, in gross tons

[Exclusive of ore containing 5 percent or more manganese]

District	Hematite	Brown ore	Magnetite	Carbonate	Total
Lake Superior	41, 679, 608 5, 443, 372 11, 144	291, 316 97, 467	247 1 2, 713, 141		41, 679, 608 5, 734, 688 108, 858 1 2, 713, 141
Northern New JerseyOther districts	1 2 622, 646	197, 589	399, 289 2 265, 087 1 2 3, 377, 764	463	399, 289 1 1, 085, 785

Small quantity of hematite from "Other districts" included with magnetite from Adirondack and Cornwall districts.
 Small quantity of magnetite included with hematite.

Iron ore shipped from mines in the United States, 1938-39, by States

[Exclusive of ore containing 5 percent or more manganese and ore sold for paint]

	193	88	1939		
State	Gross tons	Value	Gross tons	Value	
Alabama California Georgia Michigan Minnesota Missouri New Jersey New Mexico New York Pennsylvania Tennessee Virginia Utah Washington Wisconsin Wyoming Undistributed	28, 378 9, 221 4, 092, 902 14, 535, 744 4, 20, 671 139, 890 1, 826 2, 232, 837 13, 456 169, 947 3, 333 625, 378	\$7, 341, 620 (1) 11, 375 13, 139, 823 44, 361, 534 31, 514 760, 929 (1) 5, 867, 320 (1) (1) (1) (1) (2) (2) (2) (1) (1) (2) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (8) (8) (8) (8) (9) (9) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	5, 985, 208 17, 173 25, 846 11, 238, 605 32, 370, 241 36, 638 394, 709 2, 693, 856 23, 759 262, 087 10, 747 1, 173, 828 587, 892	\$9,971,024 (1) 51,076 37,026,666 97,113,591 53,836 1,865,037 7,403,756 (1) (2) 44,186 3,526,986 (1) 21,455,186	

¹ Included under "Undistributed."

Principal mines.—The importance of large mining units in the iron-mining industry is shown by the fact that 11 yielding more than 1,000,000 tons each produced about half the entire output in 1939. In years of heavy demand this situation is more pronounced, thus concentration of production was greater in 1939 than in 1938, when 13 mines yielding more than 500,000 tons each furnished about half the output. Of the eleven 1-million-ton producers in 1939, 9 were in Minnesota (all on the Mesabi range), with 1 each in Alabama and Pennsylvania. Only 4 contributed a million tons or more in 1938. Of the 11 principal producers in 1939, 7 were open pits; 1 was operated by underground methods, and 3 were combinations. Except for 1 mine that produced magnetite, all principal mines produced hematite.

² Includes value for States entered as "(1)."

Iron-ore mines of the United States in 1939, by size of output

Name of mine	State	Nearest town	Range or dis- trict	Mining method	Gross tons
Hull-Rust-Burt- Sellers group.	Minnesota	gerati			5, 389, 179
Red Mountain group.	Alabama	Bessemer	Birmingham	Underground	3, 350, 184
Missabe Mountain	Minnesota	Virginia	Mesahi	Onen nit	2 730 250
Mahoning	do	Hibbing	do	do	9 595 091
Hill Annex	do		ldo	do ·	2, 166, 603
Adams-Spruce group.	do	i Eveleth	l do	Combination	1, 606, 295
Minnewas	do	Virginia	do.	Open nit	
Morris	do	Hibbing	l00	Combination	1, 183, 718
Hill-Trumbull	do	Marble	do	Open pit	1 019 673
Hill-Trumbull Frazer Woodward No. 3 Mesabi Chief	do	Chisholm	do	40	1 000 217
Woodward No. 3	Alabama	Bessemer	Birmingham	Underground Open pit	885, 223
Mesabi Chief	Minnesota	Nashwauk	Mesabi	Open pit	839, 325
Harney-Durt	ao	Unisnoim	do	do	809, 505
Montreal	Wisconsin	Montreal	Gogebic	Underground	808, 973
Raimund Nos. 1 and 2.	Alabama	Bessemer	Birmingham	Undergrounddo	662, 473
Susquehanna	Minnesota	Hibbing	Mesabi	Open pit	618, 639
Grant	do	Buhl	do	Open pitdoCombinationOpen pitdo	601, 118
Sunrise Biwabik Morrison	W yoming	Sunrise	Hartville	Combination	587, 892
Biwabik	Minnesota	Biwabik	Mesabi	Open pit	575, 740
Morrison	do	Coleraine	do	do	569, 378
Webb	do	Hibbing	do	Combination	564, 781
Pioneer	qo	Ely	Vermilion	Underground	555, 127
Godirey	do	Chisholm	Mesabi	do	554, 454
Negaunee.	Michigan	Negaunee	Marquette	do	551, 362
Webb Pioneer Godfrey Negaunee Anvil - Palms - Keweenaw	ao	Bessemer	Gogebic	do	533, 027
Close Nos 1 and 9	Alabama	•	.	_	
Sloss Nos. 1 and 2	Alabama	ao	Birmingham	do	528, 962
Maas Leonidas	Minnegan	Negaunee	Marquette	do	520, 944
Leomoas[winnesota	Eveleth	Mesabi	do	508, 360
Output of 98 1 mines no	roduzaina moro the	= E00 000 tome	1.		
Output of 28 ¹ mines produced to 10 ¹ mine	roducing hotwoon	3H 000,000 LOHS 686	Ж М. 4		1 33, 649, 704
Output of 10 mines pro	ducing between	00,000 and 000,000	o tons each		1 5, 945, 198
Output of 11 mines pro	ducing between a	00,000 and 200,000	tons each		3, 340, 130
Output of 28 mines pro	ducing between 2	00,000 8444 900,000	tons each		2, 762, 501
Output of 17 mines pro	ducing between a	00,000 and 100 000	tons each		4, 181, 991
Output of 104 2 mines p	raducing between a	D,000 8HG 100,000	tons eacn		1, 216, 178
Carpar of 101 - mines i	noducing less tha	m so,ooo tons each			625, 667
Grand total of U	nited States (208	² mines)			51, 721, 369

Output of 1 mine producing more than 500,000 tons included with mines producing between 400,000 and 500,000 tons each.
² Excludes an undetermined number of small pits. The output of these pits is included in the tonnage

Beneficiation.—Beneficiation of iron ore was reported at 51 mines in 8 States compared with 43 mines in 7 States in 1938. At many mines the ore is crushed and screened to improve its structure, but ore so improved is not included in the statistics on beneficiated ore. Some iron ore is recovered in the form of dust from blast furnaces; data on ore so recovered, however, have been accounted for previously in shipments from mines.

Beneficiated ore shipped from domestic mines in 1939 increased 95 percent over 1938 and comprised 17 percent of the total shipments in 1939 compared with 18 percent in 1938.

Beneficiated iron ore shipped from mines in the United States, 1938-39 [Exclusive of ore containing 5 percent or more manganese and of ore sold for paint]

	V	19	938	1939		
State	Variety	Gross tons	Value	Gross tons	Value	
Alabama Georgia Minnesota New Jersey New York Pennsylvania Tennessee California	Brown oredo	263, 766 2, 805, 996 139, 890 } 1, 613, 602 } 13, 181	\$605, 226 8, 150, 937 760, 929 4, 443, 421 34, 542	471, 054 11, 840 6, 658, 596 321, 037 1, 933, 404 23, 367	\$995, 860 21, 312 18, 082, 918 1, 438, 902 5, 869, 653 52, 848	
		4, 836, 435	13, 995, 055	9, 419, 298	26, 461, 493	

The quantity of crude ore beneficiated in the Lake Superior district (all in Minnesota) in 1939 totaled 10,194,506 gross tons and the beneficiated ore recovered 6,170,779 tons—a ratio of 1.652 to 1. In 1938 the crude ore treated totaled 5,112,485 tons and the beneficiated ore recovered therefrom 2,999,464 tons—a ratio of 1.704 to 1. the concentration in this district is done by washing, but a few plants are equipped with jigs. Processes have been described by Zappfe and Most of the concentrated ore shipped from Minnesota is obtained in the treatment of wash ores from the western end of the Mesabi range which yield 65 percent concentrates and 35 percent tailings containing about 22 percent iron. Preliminary tests of a limited number of samples indicate that wash ore tailings are amenable to concentration by flotation 3 and that a merchantable commodity can be produced. Improved concentration of low-grade ores is being given increased attention.

In recent years a process has been developed on the Mesabi range for roasting ore to the magnetic state and concentrating it on magnetic separators. More recently heavy-density separation has been developed by Butler Bros. at the Harrison plant on the Mesabi range. aim is to make a high-grade concentrate rather than a clean tailing. Finely ground ferrosilicon is used as a suspension medium in two 7½-foot-diameter cone separators that have a surprisingly large capacity. The material treated passes 11/4-inch but is retained on 4-mesh.⁶ The ferrosilicon adhering to the concentrate and tailing is washed off on screens, thickened, passed through a magnetizing coil, and recovered by Crockett magnetic separators; it is then demagnetized and reused. The rated capacity of the plant is 160 tons of feed per hour to each cone, or a total of 320 tons per hour.7 Experiments are being conducted on heavy-medium concentration of materials finer than 4-mesh.

² Zappfe, Carl, and Hunner, E. E., Preparation for Market Requirements, Shipment and Reduction: Lake Superior Iron Ores, chap. 6, Lake Superior Iron Ore Assoc., Cleveland, 1938, pp. 77–84.

³ Searles, John N., Some Tests with Flotation on Messbi Wash-ore Tailings: Eng. and Min. Jour., vol. 139, No. 6, June 1938, pp. 42–44.

⁴ Counselman, T. B., Dollars in Current Tailings of Mesabi Washing Plants: Eng. and Min. Jour., vol. 140, No. 4, April 1939, pp. 34–36.

⁵ Craig, J. J., Magnetic Concentration on the Mesabi Makes Progress: Eng. and Min. Jour., vol. 139, No. 1, January 1938, pp. 48–52.

⁶ Engelmann, E. W., Concentration and Milling: Min. and Met., vol. 21, No. 397, January 1940, pp. 37.

⁷ Rudolph, J., Iron-ore Beneficiation: Eng. and Min. Jour., vol. 141, No. 2, February 1940, pp. 83–84.

The first concentration plant to be erected on the Vermilion range is under construction. The plant will treat ore left in underground

workings by earlier operators.

Wet magnetic methods will replace dry magnetic machines in the new mill in the Mineville-Port Henry district of New York. In the Birmingham (Ala.) district the Tennessee Coal, Iron & Railroad Co. has under way a central ore conditioning and sintering plant. The Bureau of Mines continued its work on milling of the red iron ores and ferruginous sandstones of the Birmingham area by scuffing. Results indicate possible commercial application, and plans were materializing rapidly for installation of a plant incorporating this innovation. Application of this principle to ferruginous sandstones that are low in phosphorus may result in production of a commodity useful in acid steel processes.

Beneficiated ore comprised a slightly smaller part of the total shipments in 1939. As pressure for production increases, a relatively larger proportion of the total comes from direct shipping ores. Thus in 1939 the percentage of beneficiated ore was about the same as in 1937, a year of very high production. Furthermore, in 1939, the immediate need for a high tonnage late in the year also favored production of the more easily obtainable direct shipping ores. Data for recent years are shown in the following table, and corresponding statistics for 1914 (the first year for which they were gathered) to 1929 are given in Mineral Resources, 1930. Data for 1930 to 1934, inclusive, are given in Minerals Yearbook, 1935.

Iron ore shipped from mines in the United States, 1925-29 (average) and 1935-39, in gross tons, and percentage of beneficiated ore compared to the total shipped

	ese and of ore sold for paintl

Year	Benefici- ated	Total	Percentage of beneficiated to total	Year	Benefici- ated	Total	Percentage of beneficiated to total
1925–29 (ave.)	8, 653, 590	66, 697, 126	13. 0	1937	12, 350, 136	72, 347, 785	17. 1
1935	6, 066, 601	33, 426, 486	18. 1	1938	4, 836, 435	26, 430, 910	18. 3
1936	9, 658, 699	51, 465, 648	18. 8	1939	9, 419, 298	54, 820, 589	17. 2

Average value.—The average value per gross ton of iron ore at the

mines was \$2.89 in 1939 compared with \$2.81 in 1938.

The table that follows gives the average value at the mines of the different classes of iron ore in 1938-39 for each of the producing States or groups of States, except where there are fewer than three shippers of a certain variety of ore in a State and permission was not given to publish the value. These data are taken directly from statements of producers and probably represent the commercial selling prices only approximately, as not all reports are comparable. Some evidently include mining costs only; others contain, in addition, the cost of selling and insuring the ore; others include an allowance for a sinking

⁸ Dean, R. S., Annual Report of the Metallurgical Division. Progress Report 34: Bureau of Mines Rept. of Investigations 3480, January 1940, pp. 67-69.

fund; and still others comprise only costs charged against blast furnaces. None of the reports, however, is supposed to include freight charges.

Average value per gross ton of iron ore at mines in the United States, 1938-39
[Exclusive of ore containing 5 percent or more manganese and of ore sold for paint]

State	Hem	atite	Brow	n ore	Magı	netite
	1938	1939	1938	1939	1938	1939
Alabama Georgia Michigan	\$1. 67 3. 21	\$1.62 2.53 3.29	\$2.34 1.23	\$2. 16 1. 74		(1)
Minnesota	3. 05 1. 51	3. 00 2. 14	(1)	(1)	\$5. 44	\$4.73
New York Pennsylvania Wisconsin	3.02	3, 00			2. 63	2.75
Other States 2	1.35	1. 13	2.49	2, 42	2. 76	2, 83

Less than 3 producers; permission to publish not given, therefore value may not be shown.
 1938: California, New Mexico, Tennessee, Utah, Virginia, Washington, and Wyoming; 1939: California, Tennessee, Utah, Virginia, Washington, and Wyoming.

2, 89

2.31

2. 12

2. 79

2. 99

2.82

Consumption.—The production of 31,075,914 gross tons of pig iron in 1939 required 53,422,383 tons of iron and manganiferous iron ores, 3,735,132 tons of mill cinder and roll scale, and 721,286 tons of purchased scrap, an average of 1.862 tons of metalliferous materials

(exclusive of home scrap and flue dust) per ton of iron made.

The greater part of the iron ore used in Alabama furnaces in 1939 was hematite, chiefly from mines in Jefferson County, but some came from Etowah and St. Clair Counties. Considerable brown ore, iron sinter, pyrite ash, and imported iron ore and manganese ore and small quantities of domestic manganese-bearing ores were used. The brown ore originated chiefly in mines of the Birmingham and Russellville In addition to the iron sinter (sintered pyrite districts, Alabama. ash) from Tennessee, considerable pyrite ash was shipped to Birmingham in 1939 from acid plants in other Southern States. pyrite from which the ash was made was of both domestic and foreign origin. The domestic manganese-bearing ores came chiefly from Alabama, Arkansas, Georgia, and Tennessee. Imported manganesebearing ores came from Cuba. In 1939 Alabama furnaces consumed an average of 2.440 tons of ore in making 1 ton of pig iron, the highest average for any State.

Maryland furnaces consumed considerable domestic ore in 1939, in addition to ores from Africa, Australia, Brazil, Chile, Cuba, and Sweden. These furnaces used an average of 1.544 tons of ore per ton of pig iron; however, they used proportionately more cinder, scale, and

scrap than furnaces in any other State except Minnesota.

Illinois, Indiana, Kentucky, Michigan, Minnesota, and West Virginia blast furnaces handled Lake Superior iron ore and manganiferous iron ore exclusively. Kentucky furnaces had the lowest consumption of metal-bearing material per ton of iron.

In New York the furnaces in the Buffalo district used ore chiefly from the Lake Superior district, as well as considerable magnetite from New York, and the furnace at Standish consumed magnetite from the Chateaugay mine at Lyon Mountain, N. Y.

Blast furnaces in Ohio consumed considerable magnetite from New York, hematite and brown ore from Missouri, and some ore from

Africa, in addition to ore from the Lake Superior district.

Virtually all the ore consumed in western Pennsylvania furnaces came from the Lake Superior district. Those in the eastern part of the State used some Lake ores; magnetite ores from Pennsylvania, New Jersey, and New York; and considerable ore from Africa, Australia, Chile, Cuba, Sweden, and the U. S. S. R.

The Pueblo (Colo.) blast furnaces handled hematite from the Sunrise mine in Wyoming and manganese-bearing ores, chiefly from

Colorado and New Mexico.

The Provo (Utah) furnace treated chiefly semialtered magnetite from the Iron Mountain mine near Cedar City, Utah, and manganese-bearing ores from Idaho and Utah.

The Tennessee furnace used Tennessee brown ore and iron sinter.

Iron ore and other metallic materials consumed and pig iron produced in 1939, by
States, in gross tons

	Met	alliferous ma	terials consu	.	Materials consumed per ton of iron made			
State		nanganifer- on ores	Cinder, scale, and	Total	Pig iron produced, exclusive of ferro- alloys	Ores	Cinder, scale, and	Total
	Domestic	Foreign	purchased scrap	Total			chased scrap	
Alabama Illinois Indiana Kentucky Maryland Michigan Minnesota New York Ohio Pennsylvania West Virginia Undistributed '	6, 381, 465 4, 577, 855 5, 680, 528 332, 172 641, 020 1, 546, 733 314, 621 3, 515, 369 11, 739, 847 14, 129, 449 1, 272, 443 1, 028, 338	14, 551 2, 114, 937 	97, 621 300, 040 479, 053 45, 279 360, 579 157, 896 38, 012 142, 452 1, 089, 897 1, 654, 169 54, 549 36, 871	6, 493, 637 4, 877, 895 6, 159, 581 3, 77, 451 3, 116, 536 1, 704, 629 352, 633 3, 658, 403 12, 837, 139 15, 883, 999 1, 327, 492 1, 089, 496	2, 621, 268 2, 650, 541 3, 309, 903 231, 494 1, 784, 959 963, 946 176, 699 2, 046, 447 7, 216, 278 8, 730, 118 750, 016 594, 245	2. 440 1. 727 1. 716 1. 435 1. 544 1. 604 1. 781 1. 718 1. 628 1. 630 1. 697 1. 771	0. 037	2. 477 1. 840 1. 861 1. 631 1. 746 1. 768 1. 798 1. 779 1. 819 1. 770 1. 833
	51, 160, 340	2, 262, 043	4, 456, 418	57, 878, 801	31, 075, 914	1. 719	. 143	1.862

¹ Includes Colorado, Iowa, Massachusetts, Tennessee, and Utah.

Foreign iron and manganiferous iron ore consumed in the manufacture of pig iron in the United States, 1938-39, by sources of ore, in gross tons

Source of ore	1938	1939	Source of ore	1938	1939
Africa Asia Australia Brazil Chile Cuba	8, 711 108 61, 473 9, 597 1, 232, 156 175, 044	47, 084 1, 133 54, 941 12, 917 1, 841, 797 272, 332	Newfoundland	4, 215 77 16, 203 1, 507, 584	19, 479 271 7, 718 54 4, 317 2, 262, 043

Stocks at mines.—During 1939 stocks at the mines declined 38 percent from 1938 and at the end of the year were the lowest since 1907.

State	1938	1939	State	1938	1939
Alabama	27, 506	2, 805	North Carolina Pennsylvania Virginia Washington Wisconsin	200	200
Michigan	5, 299, 847	3, 384, 077		79, 125	95, 492
Minnesota	1, 728, 263	986, 467		3, 086	3, 126
Missouri	4, 523	2, 207		255	265
New Jersey	95, 093	99, 674		356, 579	158, 939
New York	16, 571	13, 255		7, 611, 048	4, 746, 507

Foreign trade.—Imports of iron ore in 1939 increased 14 percent over 1938. Chile continued to be the chief source of imports into this country, furnishing 66 percent of the 1939 total, while Cuba and Sweden supplied 11 percent each. In addition to the figures in the following table, 266 tons of dross or pyrites ash were imported from Canada in 1939.

Iron ore imported for consumption in the United States, 1937-39, by countries, in gross tons

Communication of the Communica	19	37	19	38	193	1939		
Country	Gross tons	Value	Gross tons	Value	Gross tons	Value		
Algeria	3, 700 79, 588 11, 000	\$17, 424 137, 444 26, 620	7, 480 82, 827 9, 650	\$32, 170 138, 614 44, 170	7,000 16,520 16,700	\$25, 167 30, 184 68, 267		
British West Africa (other) Canada	5, 046 1, 438, 886	44, 156 2, 608, 696	875 1,577,750	26, 441 2, 853, 060	11, 540 23, 275 1, 586, 625 10	55, 677 129, 251 2, 824, 252 22		
Cuba India, British	441, 500 845	1,065,929 10,567	148, 701	357, 730	269, 866	596, 318		
Iran (Persia) Mexico	3, 385 4, 183	55, 713 9, 613	5, 648	90, 969	110 1,722	5, 207 3, 319		
Newfoundland and Labrador Norway Philippine Islands	45, 080 252, 657 350	115, 804 919, 936 4, 200	75, 625	394, 705	14, 450 199, 966 22	41, 183 845, 355 230		
Sweden	150, 233	796, 953 8, 466	213, 616	1, 339, 393	264, 353	1, 227, 864		
United KingdomYugoslavia	516	20, 116	228 55	10, 131 812	356	13, 214		
	2, 442, 069	5, 841, 637	2, 122, 455	5, 288, 195	2, 412, 515	5, 865, 510		

Exports of iron ore from the United States totaled 1,057,304 gross tons valued at \$3,578,086 (\$3.38 a ton) in 1939 compared with 591,524 tons valued at \$1,954,287 (\$3.30 a ton) in 1938. Of the 1939 total. 1,032,635 tons went to Canada.

Mining in Cuba.—Shipments of iron ore from Cuba to the United States increased 84 percent in 1939 over 1938. The 1939 total of 279,133 gross tons included 164,210 tons of hematite carrying (dried) 54.90 percent iron and 72,204 tons of siliceous ore carrying (dried) 31.05 percent iron from the Daiquiri-Juragua mines on the southern coast and 42,719 tons of nodulized brown ore carrying (dried) 54.52 percent iron from the Mayari mines near the northern coast. The Mayari mine was nonproductive in 1939.

The total stock of ore reported on hand was 164,059 gross tons at the end of the year compared with 170,044 at the end of 1938.

The following table shows shipments of iron ore from Cuba since the mines were opened in 1884. The statistics on shipments of Cuban iron ore are collected by the Bureau of Mines.

Iron ore shipped from mines in the Province of Oriente, Cuba, 1884-1939, in gross tons

Year	Juragua (hematite and mag- netite), Sigua Daiquiri (hematite and a little magnetite)		Mayari (brown ore)	Guama (hematite)	El Cuero (hematite)	Total
1884–1937 1938 1939	1 21,784, 498 141, 212 236, 414	20, 438	3, 847, 577 10, 887 42, 719	41, 241	903, 103	26, 596, 857 152, 099 279, 133
, , , , , , , , , , , , , , , , , , ,	22, 162, 124	20, 438	3, 901, 183	41, 241	903, 103	27, 028, 089

 $^{^1}$ Of this quantity, 5,932 tons were sent to Pictou, Nova Scotia, and 64,228 tons to other ports outside of the United States.

REVIEW OF LAKE SUPERIOR DISTRICT

Production and shipments.—Activities in the Lake Superior district (the principal producing district) were at a much higher rate, particularly during the closing months of 1939. The season began at about the level of 1938, but the quick rise in iron and steel output during the latter half of the year caused much greater demand for iron ore. Over three-fourths (81 percent in 1939) of the domestic output comes from the Lake Superior region, where in the third quarter of 1939 mine schedules were revised upward on short notice and immediately available lake transportation capacity was pressed into Monthly shipments down the Lakes, the main artery of service. iron-ore movement, reached high levels. As much of the lake ore comes from the Mesabi range (71 percent in 1939) where open-pit operations predominate, great flexibility in output is attained and increases of considerable magnitude are possible on short notice. The mild fall weather and the late closing of navigation permitted revised requirements to be filled from a lake movement of 45,000,657 tons of iron ore and manganiferous iron ore compared with 19,263,886 tons in 1938. More ore could have moved if the season had been longer, but the tonnage shipped was sufficient to raise combined stocks at furnaces and lower Lake ports at the end of the season above those on hand at the end of the 1938 season, notwithstanding the fact that consumption was at a much higher rate. Shipments of ore from the Lake Superior district totaled 44,849,573 gross tons (44,197,610 gross tons of iron ore and 651,963 tons of manganesebearing ores containing 5 percent or more manganese) compared with 19,546,835 tons (19,254,171 tons of iron ore and 292,664 tons of manganese-bearing ore containing 5 percent or more manganese) in 1938. The iron-ore-shipment figures given above include 872 tons of paint ore in 1939 and 147 tons in 1938.

Production in the Lake Superior region in 1939 increased 96 percent over 1938 but was considerably below the record. The district fur-

nished 81 percent of the United States total compared with 75 percent in 1938, thereby regaining part of the ground lost to other districts. particularly the Birmingham district, in 1938. Several ranges contributed to the district total. The Mesabi was the largest producer. furnishing 71 percent of the district output and 57 percent of the United States total. The output by ranges is shown in the following table. After 1905 the figures do not include manganiferous iron ore containing 5 percent or more manganese.

Iron ore mined in the Lake Superior district, 1854-1939, by ranges, in gross tons [Exclusive after 1905 of ore containing 5 percent or more manganese]

Year	Marquette	Menominee	Gogebic	Vermilion	Mesabi	Cuyuna	Total
1854–1937 1938 1939	194, 940, 914 2, 686, 713 3, 906, 195 201, 533, 822	1, 283, 563 1, 921, 704	2, 888, 830 4, 304, 008	932, 505 1, 400, 341	13, 256, 605	260, 194 625, 133	21, 308, 410 41, 679, 608

In 1939, 69 percent of the ore produced on the iron ranges of the Lake Superior district came from open-pit mines. A large part of the open-pit production originates in operations on the Mesabi range. which in 1939 supplied 65 percent of the open-pit ore mined in the district. There is no open-pit mining in Wisconsin and relatively little in Michigan. In addition to the output on the Mesabi range, there is some open-pit production in Minnesota on the Cuyuna range.

Recent years have witnessed significant changes in open-pit mining practice in the iron country.9 The use of small tractor shovels. tractors, wagons, scrapers, scraper hoists, heavy trucks, and conveyors continued to expand in 1939. In May 1939, six trucks were received at the Mahnomen mine on the Cuyuna range to replace railroad haulage. These trucks 10 are four-wheeled, with 13.50-inch by 24-inch dual tires on the rear and 12-inch by 24-inch tires on the front. The gross load capacity is 62,000 pounds and the payload capacity 36,000 pounds. The average load per truck was 12.9 long tons in 1939. The 9-cubic yard water-level-capacity body is carried over the rear axles, is rear dump and scoop-ended, and is raised and lowered by a horizontal double-acting hydraulic cylinder through rocker arms. The oil-burning engine delivers 185 horsepower, and the trucks move 8 to 10 miles per hour up an 8-percent grade when The average haul at the Mahnomen mine was 0.73 mile loaded and 0.70 mile empty; the ore was elevated an average of 206 feet. For the 304,168 tons hauled during 1939 the total ton-mile cost was \$0.0644.11

Of interest in 1939 was the shipments from the Michipicoten range in Ontario, Canada. Although this output is not included in Bureau production figures, it enters the same commercial channels. came from the old Helen mine of the Algoma Steel Corporation,

[•] Ridgway, Robert H., and Davis, H. W., Iron Ore, Pig Iron, Ferro-alloys and Steel: Bureau of Mines Minerals Yearbook, 1939, pp. 547-548.

• Gallagher, W. H., Truck Haulage at the Mahnomen Mine: Min. Cong. Jour., vol. 25, No. 11, November 1939, pp. 28-30.

• Data from unpublished manuscript by F. A. Kelley, general supt., Pickands, Mather & Co., Crosby,

Minn.

which in August 1939 began production from new open-pit operations and shipments for the first time since 1922. A total of 111,307 tons of sinter, made from the carbonate ores, was shipped during the season. Other Canadian production in the lake region of Ontario will come from the Steep Rock Lake some 150 miles west of Port Arthur, where large reserves of high-grade hematite are reported to have been developed. The Ontario Government is encouraging production of iron ore by a bonus of 2 cents per unit of iron.

Analyses.—The following table, compiled by the Lake Superior Iron Ore Association, summarizes the average analyses of the total tonnages of all grades of ore shipped and shows the remarkable uniformity maintained during the past 5 years. This uniformity does not mean, of course, that the average grade of available Lake Superior ore is not declining. The grade of shipments has been maintained partly by beneficiation and partly by mixing ores from different deposits. The method of sampling and grading Lake Superior iron ores has been described by Bayer 12 and the method of classification and sampling by Murray. 13

Average analyses of total tonnages (bill-of-lading weights) of all grades of iron ore from all ranges of Lake Superior district, 1935-39

Year	Gross tons	Iron (nat- ural)	Phos- phorus	Silica	Manga- nese	Moisture
1935	28, 214, 056 44, 745, 754 61, 972, 823 19, 353, 497 44, 983, 754	Percent 51. 44 51. 45 51. 53 51. 90 51. 75	Percent 0.093 .091 .091 .093 .089	Percent 8. 93 8. 62 8. 27 8. 25 8. 27	Percent 0. 79 . 81 . 82 . 81 . 76	Percent 10, 75 10, 92 11, 31 10, 13 10, 73

Stocks at Lake Erie ports.—At the close of navigation in 1939, according to the Lake Superior Iron Ore Association, 5,216,496 gross tons were in stock at Lake Erie ports compared with 5,290,294 tons on the corresponding date in 1938. At the opening of navigation in May 1940, 2,950,752 tons were in stock at these ports, a decrease of 1,534,215 tons from the figure on May 1, 1939. Withdrawals from docks were therefore 2,265,744 tons during the winter of 1939–40.

Prices of Lake Superior ore.—The prices established May 4, 1939, for the four standard grades of Lake Superior ore were the same as in 1937 and 1938 but were 45 cents a ton more than the price that had been maintained from 1929 to 1936. The unit prices for 1937, 1938, and 1939 for base ore of the various grades quoted at Lake Erie ports were as follows: Old-range bessemer, 10.194 cents; Mesabi bessemer, 9.903 cents; old-range nonbessemer, 9.903 cents; and Mesabi nonbessemer, 9.612 cents. The prices that correspond to these unit prices are, respectively, \$5.25, \$5.10, \$5.10, and \$4.95 a gross ton. The base of the four standard grades for 1925–39 is an iron content of 51.5 percent natural. For the bessemer grades the phosphorus con-

Bayer, E. P., Sampling and Grading Mesabi iron Ore: Min. and Met., vol. 18, No. 372, December 1937, pp. 547-548.
 Bayer, E. P., Grading Lake Superior Iron Ores: Eng. and Min. Jour., vol. 139, No. 3, March 1938, pp.

<sup>50-51.

13</sup> Murray, C. B., Classification and Sampling: Lake Superior Iron Ores, chap. 4, Lake Superior Iron Ore Assoc., Cleveland, 1938, pp. 69-72.

tent is 0.045 percent (dry), and for the nonbessemer grades the phosphorus content ranges from 0.045 to 0.18 percent. Ores containing more than 0.18 percent phosphorus are classed as high-phosphorus ores, whereas those containing 18 percent or more silica are classed as siliceous ores.

Reserves.—Estimates of ore reserves for Minnesota, furnished by the Minnesota Tax Commission, and for Michigan, furnished by the Michigan Board of Tax Commissioners, are shown in the following tables. These estimates reveal decreases from 1938 of 9,581,775 gross tons in Minnesota and 6,097,470 tons in Michigan. Reserves in Wisconsin have been estimated recently at 5,500,000 tons.

Unmined iron-ore reserves in Minnesota, May 1, 1935-39, in gross tons

Range	1935	1936	1937	1938	1939
Mesabi Vermilion Cuyuna	1, 163, 087, 457 13, 307, 031 46, 709, 113	1, 164, 802, 947 13, 074, 509 63, 066, 428	1 1, 172, 908, 376 13, 943, 325 61, 922, 739	² 1, 143, 339, 871 13, 599, 025 60, 690, 596	1, 132, 513, 348 13, 631, 484 61, 902, 885
	1, 223, 103, 601	1, 240, 943, 884	1, 248, 774, 440	1, 217, 629, 492	1, 208, 047, 717

^{1 200,000} tons removed from tax roll by applications granted.
2 8,152,896 tons removed from tax roll—land has reverted to State.

Iron-ore reserves in Michigan, Jan. 1, 1936-40, in gross tons

Range	1936	1937	1938	1939	1940
Gogebic. Marquette Menominee	45, 615, 323 52, 461, 173 60, 347, 752 158, 424, 248	42, 757, 025 51, 339, 347 59, 936, 572 154, 032, 944	40, 706, 291 49, 869, 363 58, 031, 692 148, 607, 346	40, 456, 002 52, 130, 385 57, 168, 510 149, 754, 897	37, 160, 900 49, 573, 794 56, 922, 733 143, 657, 427

MINING BY STATES

Alabama.—Production of iron ore in Alabama during 1939 increased 39 percent over 1938. About 91 percent of the 1939 production came from underground mines and the remainder from open-cuts. Hematite represented 91 percent of the 1939 total, and much of this red ore contained enough or nearly enough lime to be self-fluxing. hematite is derived chiefly from underground mines on Red Mountain near Birmingham in Jefferson County, where in 1939 Raimund Nos. 1 and 2, Red Mountain group (comprising the Muscoda, Wenonah, and Ishkooda groups), Sloss Nos. 1 and 2, and Woodward No. 3 mines were producers. Several smaller mines (open-pit and underground) in Etowah, Jefferson, and St. Clair Counties contributed to the total output of hematite ore. The iron content of the hematite produced in 1939 averaged (natural) 35.40 percent, manganese 0.15 percent, phosphorus 0.31 percent, and lime 16.12 percent. The Red Mountain group, with 3,350,184 tons, was the second largest producer in the United States in 1939.

Limonite (brown ore) is mined from a number of widely scattered deposits in Alabama, but production is not nearly so large as that of red ore. In 1939 the output of brown ore comprised 9 percent of the

Alabama total. Brown ores, however, are of higher grade and usually have been subjected to beneficiation, although some operations are rather crude. The brown ore mined in 1939 averaged (natural) 47 percent iron and 0.67 percent manganese. Brown ore is mined from open-cuts and was produced chiefly from the Russellville mines in Franklin County, the Champion mine in Blount County, and the Martaban, Reno, and Woodstock mines in Tuscaloosa County.

California.—Production in California in 1939 was small and came from four mines, two producing magnetite (one in Santa Cruz County and one in Inyo County) and two producing hematite (one in San Bernardino County and one in Inyo County). The magnetite averaged 64 percent iron; the hematite, which averaged 56 percent

iron, was absorbed chiefly by the cement industry.

Georgia.—Production of iron ore in Georgia increased to 26,333 gross tons in 1939 from 9,221 tons in 1938. Ten mines—three in Bartow County, one each in Dade, Haralson, and Polk Counties, and four in Walker County—furnished the output in 1939. The output from Georgia in 1939 comprised 18,219 tons of brown ore containing (natural) 41 to 47 percent iron and 0.13 to 3 percent manganese; 7,867 tons of hematite containing (natural) 45 to 60 percent iron and 0.15 to 1 percent manganese; and 247 tons of magnetite averaging (natural) 64.76 percent iron, 0.1 percent manganese, and 0.03 percent phosphorus. Shipments of iron ore comprised 19,643 tons to blast furnaces, 6,203 tons to cement plants, and 487 tons to paint manufacturers.

Michigan.—Output from Michigan comes from three ranges—the Marquette, the Menominee, and the Gogebic. All ranges increased their production in 1939, the Gogebic showing the largest tonnage gain. Production in Michigan rose 53 percent in 1939 over 1938 and totaled 9,159,222 gross tons. Of the 1939 total, 86 percent came from underground mines; the Negaunee mine, an underground producer on the Marquette range, was the largest producer. The iron content (natural) of the ore mined in Michigan in 1939 averaged

51.68 percent compared with 52.23 percent in 1938.

Iron-ore reserves in Michigan at the end of 1939 totaled 143,657,427

gross tons, a decrease of 6,097,470 tons during the year.

A report of the iron-ore mines of Michigan for 1939, published by the Geological Survey Division of the Michigan Department of Conservation, ¹⁴ shows that the average number of men employed was 5,818 (5,633 in 1938), the average number of days worked 206 (157 in 1938), the average daily wage \$7.07 (\$7.59 in 1938), the average yearly earning \$1,457.12 (\$1,192.29 in 1938), and the average tons of ore mined per man per day 6.63 (5.32 in 1938).

The data in the following table on average per-ton costs of mining ore at underground mines and at siliceous open pits have been abstracted from statistics published in much greater detail by the

Geological Survey Division of Michigan.

¹⁴ Pardee, F. G., and Eddy, G. E., General Statistics Covering Costs and Production of Michigan Iron Mines: Michigan Dept. of Conservation, Geol. Survey Div., Lansing, 1940.

Average per-ton costs of mining iron ore at underground mines and at siliceous open pits in Michigan in 1939

		Siliceous				
Item	Gogebic	Marquette	Dickinson and Iron	Total	open pits	
Cost of mining Deferred mining cost Taxes General overhead Transportation Marketing Royalty Interest on borrowed money	\$1.5481 .2032 .3042 .2299 1.8208 .0550 .4008	\$1.6936 .0731 .2824 .2533 1.4959 .0904 .2960 .0133	\$1.6611 .1230 .2016 .1750 1.6324 .0775 .2497 .0125	\$1.6359 .1296 .2750 .2294 1.6480 .0756 .3228 .0086	\$0. 4447 . 0394 . 0470 . 1005 1. 5211 . 0798 . 0967 . 0014	
Total ore cost Lake Erie value per ton	4. 5621 5. 3086	4. 1980 5. 2377	4, 1328 5, 0370	4. 3249 5. 2218	2. 3306 2. 4791	
Gross ore profit 1	. 7465	1.0397	. 9042	. 8969	. 1485	

¹This figure does not represent true profit, as much ore is sold below the Lake Erie price.

Minnesota.—More than 1 billion gross tons (1,166,434,188) of iron ore have been produced in Minnesota. In 1939 output increased 118 percent over that in 1938. Three ranges contribute to Minnesota's production—the Cuyuna, the Mesabi, and the Vermilion. The Mesabi range supplies a large part of the Minnesota total and in 1939 produced 29,522,227 tons. Output from open-pit mines in 1939 furnished 88 percent of the total compared with 77 percent in 1938 and 88 percent in 1937. Of the 11 domestic mines producing more than 1 million tons each in 1939, 9 were in Minnesota; of these 7 were open pits, and 2 used combination open-pit and underground methods. Of the 65 mines in Minnesota active in 1939 (55 in 1938), 45 (29 in 1938) yielded more than 100,000 tons each. The iron content (natural) of the ore mined in 1939 averaged 52.43 percent compared with 52.31 percent in 1938.

According to the annual report of the mine inspector of St. Louis County, the average number of men employed in iron mines in St. Louis County was 4,589 in 1939 (3,773 in 1938), and the average daily wage was \$6.61 (\$6.60 in 1938) for 8 hours. In 1939, 3,098,991 cubic yards of overburden were removed compared with 3,762,318

yards in 1938.

According to the annual report of the mine inspector of Itasca County, the average number of men employed in iron mines was 2,567 in 1939 (2,132 in 1938), and the average daily wage was \$6.08 (\$5.82 in 1938) for 8 hours. In 1939, 4,555,471 cubic yards of overburden were removed compared with 3,807,920 yards in 1938.

Unmined iron-ore reserves in Minnesota on May 1, 1939, totaled 1,208,047,717 gross tons, a decrease of 9,581,775 tons from 1938.

Missouri.—An undetermined number of small mines in Butler, Carter, Crawford, Dent, Franklin, Howell, Iron, Madison, Phelps, Pulaski, Ripley, St. Francois, Shannon, and Wayne Counties supplied the iron-ore output of Missouri in 1939. The ore, which averaged 52.51 percent iron, comprised both hematite and brown ore, was mined by open-pit and underground methods, and was shipped to paint and steel plants as well as nonferrous smelters.

New Jersey.—Output of iron ore in New Jersey increased in 1939 over 1938 and totaled 399,289 tons. The ore, all magnetite and all produced from underground operations, came from three mines in Morris County and one mine in Warren County in the northern part of the State. New Jersey ores are crushed and concentrated before Most of the concentration is done magnetically, although shipment. some nonmagnetic martite is recovered by gravity methods and some hand sorting is practiced, principally to recover high-grade lump used in open-hearth steel furnaces. The concentrates produced in 1939 averaged (natural) 63.32 percent iron. The largest output came from the Scrub Oaks mine. Other producers were the Mt. Hope, Richard, and Washington mines.

New York.—The iron ore produced in New York during 1939 was chiefly magnetite from underground operations at the Harmony and Old Bed shafts in Essex County and the Chateaugay mine in Clinton County. Some hematite was mined for paint in Oneida and Wayne Shipments from New York in 1939 included sinter averag-Counties. ing 68 percent iron, lump averaging 61 percent iron, and concentrates

averaging 68 percent iron.

The largest producer was the Republic Steel Corporation, which operates properties at Mineville near Port Henry and at Lyon Moun-The Chateaugay mine at Lyon Mountain was acquired by the

corporation on August 1, 1939.

Pennsylvania.—Pennsylvania is the most important source of magnetite in the United States. The output comes from the Cornwall mine in Lebanon County, where the ore is extracted by both open-pit and underground methods. In addition, some carbonate ore for use in paint was mined in Carbon County in 1939. Hickok 15 has summarized the history of iron-ore production in Pennsylvania and the changing economic conditions that affect the industry and control its history; he also discusses the geological environment, mode of origin, and future reserves of the various types of iron ore.

South Dakota.—A small quantity (300 gross tons) of brown iron ore was mined at a property in Pennington County and shipped to paint

plants in 1939.

Tennessee.—The output of iron ore (brown ore and hematite) in Tennessee in 1939 came from two mines (one in Hickman County and one in Lewis County) and an undetermined number of small surface workings in Hamilton County; it contained 46.41 percent

iron and was shipped to blast-furnace and paint plants.

In addition, considerable sintered pyrite ash was made at the plants of the Tennessee Copper Co. in Ducktown Basin. This sinter, which contained 67.4 percent iron and 0.005 percent phosphorus in 1939, moved largely to the blast furnaces in the Birmingham district, where it was added to the blast-furnace burden. Such sinter is not included in iron-ore production or shipment figures for the United States.

Utah.—Two operators in Iron County supplied the Utah total in By far the larger output came from the Iron Mountain mine, while a relatively small quantity came from the Great Western mine. The ore, principally semialtered magnetite, contained (natural) 53.14

¹⁵ Hickok, W. O., IV, Iron Ores of Pennsylvania: Pennsylvania Geol. Survey Bull. M 18-B, 4th ser., 1939, 21 pp.

percent iron and moved largely to the blast furnace at Provo, Utah,

although small quantities went to steel and cement plants.

Virginia.—The output of iron ore in Virginia is small. The entire 1939 production was brown ore from Botetourt County and averaged (natural) about 53 percent iron. The ore was used in the manufacture of hydrogen gas.

Washington.—Two open-pit mines and one underground mine produced the total output of Washington in 1939. Two mines—the Napoleon in Stevens County and the Keystone in Pend Oreille County—yielded hematite averaging (natural) 35.10 percent iron, which was used for cement manufacture, and the Neutral mine in Okanogan County yielded magnetite averaging (natural) 68.73 percent iron, which was used in making ferromagnesite.

Wisconsin.—The Montreal underground mine in Iron County was the larger producer of iron ore in Wisconsin, contributing 808,973 gross tons of the 972,685 produced in 1939. The ore—hematite—averaged (natural) 52.88 percent iron, 1.17 percent manganese, and 0.057 percent phosphorus. The Cary underground mine, also in Iron County, was the other producer in 1939 and furnished 163,712 tons of hematite containing (natural) 53.98 percent iron, 0.62 percent manganese, and 0.048 percent phosphorus. Shipments from Wisconsin mines totaled 1,173,828 tons in 1939.

Wyoming.—The output of iron ore from Wyoming in 1939 came from the Sunrise mine and comprised 587,892 gross tons of hematite containing (natural) 53.22 percent iron, 0.07 percent manganese, and 0.066 percent phosphorus. Much of the ore is a red, earthy hematite similar to Mesabi ore. Production came from both open-pit and

underground operations.

Iron ore mined in the United States, 1938-39, by States and counties
[Exclusive of ore containing 5 percent or more manganese]

		1938		1939			1938		1939
State and county	Ac- tive mines	Gross tons	Ac- tive mines	Gross tons	State and county	Ac- tive mines	Gross tons	Ac- tive mines	Gross tons
Alabama: Bibb and Tus- caloosa Blount Butler, Cone-	3 2	143, 736 31, 764	3 2	238, 708 40, 374	California: San Bernardino Inyo Santa Cruz	1 1 1	28, 380	$\left\{\begin{array}{c}1\\2\\1\end{array}\right.$	} 17, 173
cuh, and Crenshaw Calhoun	2 5	1, 509 21, 378 12, 826	2 9	20, 082 34, 107	Georgia	3	28, 380	4	17, 173
Cherokee Chilton Cleburne	5 2 2	12, 826 5, 559 2, 138	12 2	27, 186 4, 651	Georgia: Bartow Dade	3	9, 176	3 1	18,129 42
Coosa Etowah Franklin	1 1 2	47 77 101, 790	1 1	1,631 509 120,183	Haralson Polk Walker	1	45	1 1 4	247 90 7,825
Jefferson Lamar Marshall	6	3, 970, 604	8 2	5, 443, 372 494 83	Michigan:	4	9, 221	10	
Pike St. Clair Shelby Talladega	3 2 1	233 4, 417 7, 251	1	3, 316 1, 987 7, 583 16, 241	Dickinson Gogebic Iron Marquette	3 10 12 14	2, 034, 035 1, 012, 786	10	
	37	4, 303, 329	58	5, 960, 507		39	6, 004; 311	36	9, 159, 222

Iron ore mined in the United States, 1938-39, by States and counties—Continued
[Exclusive of ore containing 5 percent or more manganese]

	1							,	
		1938		1939			1938		1939
State and county	Ac- tive mines	Gross tons	Ac- tive mines	Gross tons	State and county	Ac- tive mines	Gross tons	Ac- tive mines	Gross tons
Minnesota: Crow Wing Itasca St. Louis		260, 194 3, 603, 483 10, 585, 627 14, 449, 304	24 36	625, 133 7, 415, 016 23, 507, 552 31,547, 701	New York: Essex. Clinton Oneida. Wayne. Pennsylvania: Lebanon	1 1 1 1	2, 120, 823	1 1 1 1	2, 713, 141
Missouri: Butler, Car- ter, Craw- ford, How-					Carbon South Dakota:	6	448 2, 121, 271	6	-,,
ford, How- ell, Phelps, Pulaski, Ripley, Shannon,					Tennessee: Hamilton Hickman	<u>i</u>	<u> </u>	(²)	300
and Wayne. Dent Franklin Iron	1 10 1 1	25, 995 1, 135 1, 200	17 1 1	33, 314 1, 250 1, 646 1, 360	Lewis Virginia: Bote- tourt	1 2	13, 179	1 2	24, 580
Madison St. Francois	1	214	1 1	985 684	Utah: Iron	4 2	13, 179 167, 933	1 4 2	24, 580 262, 087
-	1 13	28, 544	112	39, 239	Washington: Okanogan			1	3,000
New Jersey: Morris Warren	3	185,639	3 1	399, 289	Pend Öreille Stevens	$\frac{1}{2}$	1, 730 1, 825 3, 555	$\frac{1}{3}$	2, 431 5, 326 10, 757
New Mexico: Grant	3	185, 639	4	399, 289	Wisconsin: Iron Wyoming: Platte	2 1	854, 795 275, 995	2 1	972, 685 587, 892
GIAUL		1,826				1 172	28, 447, 282	1 208	51, 721, 369

In addition there is an undetermined number of small pits. The output of these pits is included in the tonnage given.
 Undetermined number of small pits. The output of these pits is included in the tonnage given.

MEN EMPLOYED AND OUTPUT PER MAN AT MINES

Although complete information on employment at iron-ore mines in 1939 is not yet available, incomplete figures indicate that about 22,000 men working about 39,000,000 man-hours were required to produce 51,721,369 tons of merchantable ore, an average of 1.326 tons per man-hour. Thus, the total man-hours worked in 1939 advanced 27 percent over 1938, whereas the output of merchantable ore increased 82 percent; in consequence, output per man-hour increased 43 percent. The gain in output per man-hour in 1939 compared with 1938 was due mainly to a shift in the production of ore from underground to open-pit mines and to nearer-capacity operation of large units. Specifically, about three-fifths of the output came from open-pit mines in 1939 compared with about one-half in 1938, and 11 mines produced more than 1 million tons each in 1939 compared with 4 in 1938.

Figure 3 shows trends in employment and output at iron-ore mines in the United States from 1923 to 1938.

During 1938, the last year for which complete statistics are available, the low level of iron-ore output resulted in a decrease in labor at the mines. The average number of men decreased, as did the average number of days and total man-hours worked. In 1938, 19,788 men working 30,625,760 man-hours produced 28,447,282 tons of merchantable ore, an average output of 0.929 ton per man-hour, whereas in 1937, 25,945 men working 51,416,193 man-hours produced

72,093,548 tons of merchantable ore, or 1.402 tons per man-hour. Thus, although the output of merchantable ore declined 61 percent from 1937 to 1938, the number of men, total man-hours worked, and output per man-hour decreased only 24, 40, and 34 percent, respectively. The output per man-hour in 1937 exceeded that for any year since records have been compiled and undoubtedly was greater than in any other year. The relatively larger labor requirements in 1938 than in 1937 resulted from several factors—the proportionately smaller output of open-pit mines and of direct shipping ore, the partial-capacity production of operating units, and the stripping of proportionately more overburden in preparation for future mining.

The number of man-hours of labor decreased in all districts in 1938 from 1937, but the decrease was relatively more in the Lake Superior and Northeastern districts than in the Southeastern and Western districts. In the Lake Superior district, the principal producing

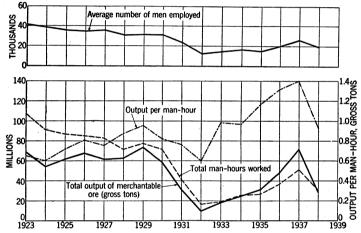


FIGURE 3.—Trends in number of men employed at iron-ore mines, output of merchantable ore, man-hours worked, and output per man-hour in the United States, 1923-38

region, output of merchantable ore decreased 65 percent in 1938 from 1937, but this decrease was more pronounced than the decline in labor requirements, as the total man-hours worked dropped only 42 percent. Much of the Lake Superior output comes from Minnesota, where open pits furnished 77 percent of the State total in 1938. Because of this preponderant production from open pits, output per man-hour in Minnesota is greater than in any other State or district and in 1938 amounted to 1.390 tons. Output per man-hour in 1938, however, was substantially less than in 1937 (2.479 tons) owing to the smaller proportion of ore from open-pit mines and to partial-capacity opera-Although, as was pointed out in Minerals Yearbook, 1934 (p. 322), the improved performance in mining iron ore has been closely related to advances in mechanization, better mining methods, operation of larger units, and more efficient management of mines, the gain in the 6-year period 1933-38 compared with the 10-year period 1923-32 was due chiefly to expansion of open-pit operations in Minne-For example, whereas about 75 percent of the merchantable ore produced in Minnesota from 1923 to 1932 came from open-pit mines, 85 percent was so produced in 1933-38. The significance of this

shift can be appreciated when it is recalled that Minnesota contributed 61 percent of the total merchantable ore produced in 1923–38 and that during this period the output of men at open-pit mines averaged 2.019 tons per man-hour compared with only 0.699 ton per

man-hour for workers at underground mines.

The greater output per man-hour in recent years also was due partly to the stripping of proportionately less overburden in Minnesota in 1933–38 than in 1923–32, in preparation for future mining. In 1933–38 about one-fourth cubic yard of overburden was removed for each ton of merchantable ore mined in Itasca and St. Louis Counties, Minn., whereas in 1923–32 about one-half cubic yard of overburden was re-

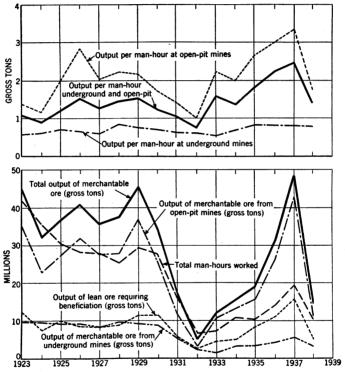


FIGURE 4.—Trends in output of merchantable iron ore per man-hour at open-pit mines in Minnesota compared with production of merchantable and lean ore and total man-hours worked, 1923-38.

moved for each ton of merchantable ore mined. Any material shift in the labor force used for direct mining of the ore at the expense of that used in stripping will result in a much higher output per man-hour for any year. This is illustrated strikingly in figure 4, which shows that in 1926, 1933, 1935, 1936, and 1937, when only about one-fourth cubic yard of overburden was removed for each ton of merchantable ore mined at both open-pit and underground mines, the output per worker increased substantially, whereas in the other years, when one-third to four-fifths cubic yard of overburden was removed for each ton of ore mined, the output per worker decreased.

Another factor that affects the output per man-hour is the tendency to mine leaner ore. Proportionately more lean ore requiring beneficiation has been mined in Minnesota in recent years than during the period 1923-32. In 1933-38, for instance, beneficiated ore represented 21 percent of the total merchantable ore compared with an average

of only 16 percent in 1923-32.

Most of the ore mined in the Southeastern district—the second largest producing region—is obtained from underground operations. Output of merchantable ore perman-hour in this area increased slightly to 0.631 ton in 1938 from 0.624 ton in 1937. The largest and most consistent producing mines in the Southeastern district are in Jefferson County, Ala., where 3,803 men working 6,058,805 man-hours in 1938 produced 3,970,604 tons of merchantable ore, equivalent to an average output of 0.655 ton per man-hour. Virtually all ore produced in Jefferson County comes from underground mines. In comparing the man-hour cost of mining ore in Jefferson County, Ala., with that at underground mines in the Lake Superior district one should remember that whereas the ore in the Lake Superior district is considerably richer in iron the ore from the Jefferson County mines contains enough

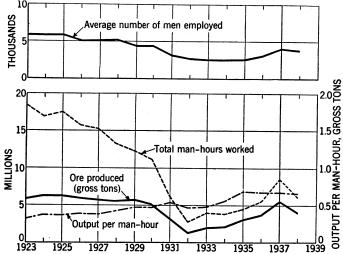


FIGURE 5.—Trends in production, man-hours worked, output per man-hour, and number of men employed at iron-ore mines in Jefferson County, Ala., 1923-38.

or almost enough lime to make it self-fluxing. Thus, the lower iron content is partly offset by the self-fluxing nature of the ore, although it is impossible to show this important characteristic in the productivity figures.

Figure 5 shows trends in production and employment at iron-ore

mines in Jefferson County, Ala., 1923–38.

In the Northeastern district the average output of merchantable ore per man-hour increased to 0.735 ton in 1938 from 0.523 ton in 1937. The gain in productivity was due partly to the fact that proportionately more ore was produced in 1938 than in 1937 from the Cornwall open pit, where a relatively high output per man-hour is attainable.

The following table shows employment at iron mines and beneficiating plants, quantity and tenor of ore produced, and average output per man by districts and States in 1938. Corresponding statistics and supplementary data are given in Minerals Yearbook, 1934 to 1939, inclusive.

Employment at iron-ore mines and beneficiating plants, quantity and tenor of ore produced, and average output per man in 1938, by districts and States

[Exclusive of ore containing 5 percent or more manganese]

		:	Employment	;		1			Pre	oduction			•			
			Time em	ployed			Merchantable ore				. Average per man (gross tons)					
District and State	Average			Man-hours		Crude ore		Iron contai		harine	Crud (partly		Merchantable ore			
	number of men employed	Average number	Total man-	Aver-		(partly estimated),	Gross tons		annou .	mat		n n	Iron contained			
	empioyeu	of days	shifts	age per shift	Total	gross tons	G1033 tons	Gross tons	Per cent natural	Per shift	Per hour	Per shift	Per hour	Per shift	Per hour	
Lake Superior: Michigan Minnesota Wisconsin	5, 712 7, 113 546	190 183 253	1, 085, 278 1, 298, 860 138, 126	8. 0 8. 0 8. 0	8, 684, 421 10, 396, 059 1, 105, 018	6, 004, 311 16, 560, 932 854, 795	6, 004, 311 14, 449, 304 854, 795	3, 135, 807 7, 558, 445 455, 306	52. 23 52. 31 53. 26	5. 533 12. 750 6. 189	0. 691 1. 593 . 774	5. 533 11. 125 6. 189	0. 691 1. 390 . 774	2. 889 5. 819 3. 296	0. 36 . 72 . 41	
	13, 371	189	2, 522, 264	8.0	20, 185, 498	23, 420, 038	21, 308, 410	11, 149, 558	52. 32	9. 285	1.160	8. 448	1.056	4. 420	. 555	
Southeastern: AlabamaGeorgia	4, 262	197	838, 572	8. 1	6, 785, 808	4, 903, 761 9, 221	4, 303, 329 9, 221	1, 564, 626 3, 627	36. 36 39. 33	5.848	. 723	5. 132	. 634	1.866	. 23	
Tennessee Virginia	94	82	7, 694	9. 3	71, 830	} 45, 412	13, 179	6, 233	{ 47. 15 52. 53	7. 100	. 761	2, 911	. 312	1. 281	. 13	
	4, 356	194	846, 266	8. 1	6, 857, 638	4, 958, 394	4, 325, 729	1, 574, 486	36. 40	5. 859	. 723	5. 112	. 631	1. 861	. 230	
Northeastern: New Jersey New York Pennsylvania	483 } 1,180	216 245	104, 195 289, 262	8. 0 8. 0	833, 338 2, 303, 830	311, 320 2, 521, 514	185, 639 2, 121, 271	117, 405 983, 442	63. 24 67. 10 42. 76	2. 988 } 8. 717	. 374 1. 094	1. 782 7. 333	. 223	1. 127 3. 400	. 141	
	1,663	237	393, 457	8.0	3, 137, 168	2, 832, 834	2, 306, 910	1, 100, 847	47. 72	7. 200	. 903	5. 863	. 735	2. 798	. 35	
Western: California Missouri New Mexico Utah	192	139	26, 646	8.8	235, 760	28, 917 28, 544 1, 826 167, 933	28, 380 28, 544 1, 826 167, 933	15, 629 14, 652 1, 116 90, 874	55. 07 51. 33 61. 11 54. 11	8. 661	. 979	8. 641	, 977	4. 641	. 52	
Washington Wyoming	206	127	26, 212	8.0	209, 696	3, 555 275, 995	3, 555 275, 995	1, 401 145, 725	39. 41 52. 80	J 10. 529	1.316	10, 529	1. 316	5. 559	. 69	
	398	133	52, 858	8. 4	445, 456	506, 770	506, 233	269, 397	53. 22	9. 587	1. 138	9. 577	1. 136	5. 097	. 60	
	19, 788	193	3, 814, 845	8.0	30, 625, 760	31, 718, 036	28, 447, 282	14, 094, 288	49. 55	8, 314	1.036	7. 457	. 929	3. 695	. 46	

WORLD PRODUCTION

The following table shows the production of iron ore by countries from 1935 to 1939, insofar as statistics are available. Although complete returns for 1939 are not yet available it is evident that world production was considerably greater than in 1938. Output in the latter year amounted to 162,000,000 metric tons, of which the United States supplied only 18 percent, compared with 211,000,000 tons in 1937, of which the United States supplied 35 percent.

World production of iron ore, 1935-39, by countries, in metric tons
[Compiled by M. T. Latus]

Country 1	1935	1936	1937	1938	1939
North America:					
Cuba (shipments)	228, 408	456, 827	496, 258	154, 540	283, 613
Guatemala	95, 590		101 136, 018	110 951	(2) (2)
Mexico Newfoundland	677, 137	123, 121 907, 646	1, 635, 554	118, 251 1, 707, 180	1, 679, 625
United States	31, 030, 423	49, 571, 804	73, 250, 649	28, 903, 861	52, 551, 497
South America:					
Brazil (exports)	47, 184 841, 300	110, 997	209, 715 1, 489, 637	359, 115	396, 938
Chile 3Europe:	841, 300	1, 347, 831	1, 489, 037	1, 608, 399	1, 626, 490
Belgium	164, 520	190, 660	265, 540	180, 920	(2)
Bulgaria	2, 370	6, 498	11,920	16, 771	(2)
Czechoslovakia	731, 058	1, 089, 623	1, 836, 495	(4)	(2)
France Germany ⁵	32, 045, 900 5, 851, 634	33, 301, 620	37, 839, 000 9, 575, 234	33, 137, 000 10, 938, 650	
Austria	775, 421	7, 339, 836 1, 024, 288	1, 884, 694	2, 600, 063	\ \times_2
Greece		280, 271	300, 498	348, 613	(2)
Hungary	192, 396	279, 673	290, 044	369, 935	(2)
Italy	551, 454	838, 833	997, 805	990, 043	<u> </u>
Luxemburg	4, 133, 808 765, 152	4, 895, 992 846, 809	7, 766, 254 1, 008, 225	5, 140, 632 1, 425, 297	(2)
Norway	332, 536	466, 659	780, 152	872, 591	(2)
Poland Portugal	880	6, 539	7,700	2, 519	418
Rumania	93, 813	108, 549	129,060	138, 942	131, 992
Spain	2, 633, 165	2, 045, 890	990, 783	2, 513, 827	(2) (2)
Sweden Switzerland (exports) U. S. S. R. ⁴ United Kingdom: Great Britain ⁷	7, 932, 854 5, 894	11, 249, 605 31, 833	14, 952, 549 148, 578	13, 928, 023 133, 998	171, 279
U.S.S.R.6	26, 845, 000	27, 918, 000	26, 000, 000	26, 529, 700	(2)
United Kingdom: Great Britain 7.	11, 070, 256	12, 905, 243	14, 443, 146	12, 049, 531	(2)
r ugosiavia	234, 729	450, 859	629, 172	607, 111	666, 863
Asia:	23, 456	26, 738	25, 834	18, 340	(2)
Burma Chosen	228, 220	234, 400	207, 500	(4)	(2) (2)
India, British	2, 378, 788	2, 567, 488	2, 883, 548	2, 787, 711	·-··· (2)
Indochina	635	10, 017	33, 285	130, 298	(2)
Japan	515, 529	754, 400	(4)	(9)	(2)
Malay States:		457	1, 165	938	(3)
Federated Malay States Unfederated Malay States Philippine Islands (exports)	1, 434, 293	1, 681, 102	1, 686, 990	1, 606, 289	(2) (2)
Philippine Islands (exports)	283, 311	654, 458	601, 190	910, 952	(2)
Turkey U. S. S. R.				71, 375	239, 035
		(6)	(6)	(6)	(3)
Africa: Algeria Belgian Congo Egypt	1, 674, 628	1, 884, 281	2, 427, 230	3, 105, 037	8 2, 750, 000
Relgian Congo	1,011,020	1,001,201		2,650	(2)
Egypt	15				(2)
Moroceo		-	00.004	000 100	(3)
French	1, 167, 606	1,047,041	66, 864 1, 424, 737	266, 100 1, 341, 658	(2)
Northern Phodesic	1, 107, 000	1,047,041	528	2081	138
Sierra Leone	440, 498	575, 689	644, 160	875, 789	(3)
Sierra Leone South-West Africa			14, 280	23, 861	19, 500
Tunisia Union of South Africa	503, 000	750,000	943, 763	822, 053	(3)
Union of South Africa	304, 048	364, 981	461, 796	505, 314	490, 136
Oceania: Australia:					بالمشاه ميانات
New South Wales Queensland South Australia	7, 785				(2)
Queensland	1, 137	2, 338	4, 551	5, 207	3, 526
South Australia	1, 898, 712	1, 917, 589	1, 896, 370	2, 281, 404	2, 613, 036
Tasmania			62	36, 279	(²) 83, 567
New Caledonia New Zealand	10, 817		580	1, 238	(2)
TAGM TIGHTSTITCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	138, 000, 000			162, 000, 000	(²)

¹ In addition to the countries listed, China, Finland and Madagascar report production of iron ore, but complete data are not available.

² Data not available.

³ Production of Tofo Mines.

⁴ Estimate included in total.

³ Data not available.

³ Data not available.

³ Production of Tofo Mines.

⁵ Exclusive of manganiferous iron ore carrying 12 to 30 percent manganese.

⁶ Russia in Asia included with Russia in Europe.

⁷ Exclusive of bog ore, which is used mainly for the purification of gas.

^{*} Estimated.

PIG IRON

Production and shipments.—Domestic production of pig iron, exclusive of ferro-alloys, increased 67 percent in 1939 over 1938 and was the second best year since 1929. The output in 1939 comprised 31,031,973 gross tons using coke and 43,941 tons using charcoal as fuel. Pennsylvania was the largest producer of pig iron in 1939, with 28 percent of the total; Ohio ranked second, with 23 percent. Of the pig iron manufactured in 1939, it is calculated that 1,360,174 tons valued at \$23,141,343 were made from 2,262,043 tons of foreign ores, including ore from Africa, Australia, Brazil, Chile, Cuba, Newfoundland, Palestine, Sweden, and the U. S. S. R., indicating an average yield of 60.13 percent from imported ore. Domestic ore (51,160,340 tons) and cinder, scale, and purchased scrap (4,456,418 tons) totaling 55,616,758 tons were reported as used in the manufacture of 29,715,740 tons of pig iron, indicating an average pig-iron yield of 53.43 percent from domestic materials. In addition, 1,004,565 tons of home scrap and 1,737,000 tons of flue dust were consumed in making pig iron in 1939.

Shipments of pig iron, exclusive of ferro-alloys, were 76 percent above 1938 in both quantity and value in 1939. The values given represent the approximate amounts received for the iron f. o. b. furnaces and do not include freight costs, selling commissions, and other items that are figured in some of the market prices for pig iron published by trade journals.

Pig iron produced and shipped in the United States, 1938-39, by States

	Prod	luced	Shipped from furnaces					
State	1938	1939	19	938	1939			
	Gross tons	Gross tons	Gross tons	Value	Gross tons	Value		
Alabama Colorado Illinois Indiana Iowa Kentucky Maryland Massachusetts Michigan Minesota New York Ohio Pennsylvania Tennessee Utah Virginia West Virginia Undistributed	2, 023, 269 (1) 1, 656, 591 1, 791, 085 (2) 126, 102 1, 201, 374 556, 230 (1) 1, 338, 907 4, 210, 514 4, 836, 093 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2, 621, 268 (1) 2, 650, 541 3, 309, 903 231, 494 1, 784, 959 (1) 963, 946 (2) 2, 046, 447 7, 216, 278 8, 730, 118 (1) (1) (1) 2, 750, 016 2, 770, 944 31, 075, 914	1, 990, 342 (1) 1, 519, 572 1, 807, 808 (2) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	\$29, 190, 091 (1) 30, 899, 012 37, 025, 980 (1) (1) (1) (1) 9, 806, 994 25, 450, 694 (1) (25, 450, 68, 824 101, 266, 844 (1) (1) (1) (23, 450, 68, 844 (1) (1) (24, 450, 844 (1) (1) (25, 450, 844 (1) (1) (25, 450, 844 (1) (1) (25, 450, 844 (1) (1) (25, 450, 844 (1) (1) (25, 450, 844 (1) (1) (1) (1) (25, 450, 844 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2, 717, 502 (1) 2, 860, 577 3, 375, 325 (1) 231, 494 1, 805, 080 2, 210, 223 7, 249, 123 7, 979, 649 (1) (1) (2) (1) (2) (1) (2) (3) (4) (4) (5) (6) (1) (1) (1) (1) (2) (1) (2) (3) (4) (4) (5) (6) (6) (7) (8) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	\$43, 902, 68: (1) 57, 718, 81- 68, 164, 618 (1) (1) (1) (1) 18, 872, 156 (1) 45, 275, 716 147, 154, 864 186, 302, 533 (1) (1) (1) 2 59, 433, 314		

¹ Included under "Undistributed."

² Includes statistics for States entered as "(1)."

Pig iron shipped from blast furnaces in the United States, 1938-39, by grades

		1938		1939			
Grade	Gross tons	Valu	e	Characteria	Value		
	Gross was	Total	Average	Gross tons	Total	Average	
Charcoal Foundry Basic Bessemer Low-phosphorus Malleable Forge All other (not ferro-alloys)	26, 558 1, 538, 349 13, 058, 455 2, 611, 015 120, 195 765, 780 1, 347 80, 655	\$657, 885 28, 308, 696 250, 310, 020 56, 680, 050 2, 830, 256 16, 489, 173 27, 653 1, 571, 636	\$24. 77 18. 40 19. 17 21. 71 23. 55 21. 53 20. 53 19. 49	57, 778 2, 155, 874 23, 559, 239 4, 618, 440 294, 276 1, 284, 449 5, 750 115, 679	\$1, 404, 719 40, 820, 296 448, 263, 976 98, 823, 031 6, 838, 917 27, 775, 986 110, 009 2, 787, 756	\$24. 31 18. 93 19. 03 21. 40 23. 24 21. 62 19. 13 24. 10	
	18, 202, 354	356, 875, 369	19. 61	32, 091, 485	626, 824, 690	19. 53	

The number of furnaces in blast on June 30 and December 31 and the total number of stacks recorded for 1938 and 1939, exclusive of electric reduction furnaces, were as follows:

Blast furnaces (including ferro-alloy blast furnaces) in the United States, 1938-391

State	In blast June 30.	D	ec. 31, 19	38	In blast	Dec. 31, 1939			
State	1938	In	Out	Total	June 30, 1939	In	Out	Total	
Alabama Colorado Illinois Indiana Kentucky Maryland Massachusetts Michigan Minnesota Missouri New York Ohio Pennsylvania Tennessee Utah Virginia West Virginia	2 4 5 1 4 1 5 17 20 1 1	16 1 9 8 1 5 5 1 	4 2 14 11 1 1 3 1 1 8 1 19 49 3	20 3 23 19 2 6 1 8 2 1 1 78 3 3 1 1 3	14 1 8 9 2 6 1 5 1 5 1 28 32 2 1 1 1 1 3	18 3 14 17 2 6 1 1 2 6 1 2 1 1 3 65 1 1 3	1 9 2 	19 3 23 23 19 • 2 • 6 1 1 8 2 2 - 155 48 78 3 3 1 1 1	

¹ American Iron and Steel Institute.

Value at blast furnaces.—The average value of all kinds of pig iron given in the accompanying table is based upon reports of manufacturers to the Bureau of Mines. The figures represent the approximate values f. o. b. blast furnaces and do not include the values of ferroalloys. The general average value for all grades of pig iron at the furnaces was \$19.53 a gross ton in 1939—only 8 cents less than in 1938.

Average value per gross ton of pig iron at blast furnaces in the United States, 1935–39, by States

State	1935	1936	1937	1938	1939
Alabama	\$14.67	\$15.01	\$16.68	\$14.67	\$16. 16
IllinoisIndiana	17. 58 17. 78	18. 24 18. 14	21. 11 21. 11	20. 33 20. 48	20. 18 20. 19
Michigan New York	15. 64 15. 95	15. 56 15. 87	16. 99 20. 65	17. 55 20. 81	16. 57 20. 48
OhioPennsylvania	16. 70 18. 38	17. 02 18. 82	21. 63 21. 73	20. 35 21. 62	20. 30 20. 75
Other States 1	14. 46	17. 50	18. 92	17. 04	16. 69
Average for United States	16. 91	17. 59	20. 76	19. 61	19. 5

¹ Colorado, Iowa, Kentucky, Maryland, Massachusetts, Minnesota, Tennessee, Utah, Virginia, and West Virginia.

Commercial quotations.—The average monthly prices of foundry, basic, and bessemer pig iron at Valley furnaces and of foundry pig iron at Birmingham furnaces, according to published market quotations, are summarized in the following table:

Average monthly prices per ton of chief grades of pig iron, 1938-39 1

Month	Foundry pig iron at Valley furnaces		at Bir	Foundry pig iron at Birmingham furnaces		pig iron ley fur-	Basic pig iron at Valley furnaces		
	1938	1939	1938	1939	1938	1939	1938	1939	
January February March April May June July August September October November December	24. 00 24. 00 24. 00 24. 00 23. 35 20. 00 20. 00 20. 16 21. 00	\$21. 00 21. 00 21. 00 21. 00 21. 00 21. 00 21. 00 22. 20 23. 00 23. 00 23. 00	\$20. 38 20. 38 20. 38 20. 38 20. 38 19. 61 16. 38 16. 38 17. 38 17. 38	\$17. 38 17. 38 17. 38 17. 38 17. 38 17. 38 17. 38 17. 38 19. 38 19. 38	\$24. 50 24. 50 24. 50 24. 50 24. 50 23. 85 20. 50 20. 50 20. 66 21. 50 21. 50	\$21. 50 21. 50 21. 50 21. 50 21. 50 21. 50 21. 50 21. 50 22. 70 23. 50 23. 50 23. 50	\$23. 50 23. 50 23. 50 23. 50 23. 50 22. 85 19. 50 19. 66 20. 50 20. 50 20. 50	\$20. 56 20. 56 20. 56 20. 56 20. 56 20. 56 20. 56 21. 76 22. 56 22. 56	
Average	22. 21	21.60	18. 58	17. 97	22. 71	22. 10	21.71	21. 1	

¹ Metal Statistics, 1940.

Foreign trade.—Imports of pig iron for consumption in 1939 increased 27 percent over 1938 owing to larger receipts from Canada and British India. British India supplied 64 percent of the 1939 total.

Pig iron imported for consumption in the United States, 1935–39, by countries, in gross tons

Country	1935	1936	1937	1938	1939
North America: Canada	13, 771	11, 603	6, 638	2, 656	6, 862 155
Europe: Belgium Czechoslovakia	100	973 37			
Denmark France	50				1
Germany Netherlands Norway Sweden U. S. S. R.	4, 877 48, 122 2, 420 907 9, 124	4, 749 60, 363 2, 649 \$\mathrew\$ 689 24, 556	510 28, 772 875 600 4, 581	14, 236 850 205	6, 473 261
United Kingdom	14, 500	4, 354	100	42	
Hong Kong India, British Japan		200 55, 426	69, 621	12, 411	24, 840
Kwantung		209			
Value	130, 937 \$1, 979, 324	165, 808 \$2, 336, 236	\$1, 701, 304	30, 400 \$598, 461	38, 592 \$663, 091

Exports of pig iron from the United States in 1939 decreased to 177,024 gross tons from 432,851 in 1938 but were still much higher than normal. Sweden (64,767 tons) and the United Kingdom (64,769 tons) together took 73 percent of the total.

Pig iron exported from the United States, 1938-39, by countries, in gross tons

Country	1938	1939	Country	1938	1939
North America: Canada. Other North America South America: Argentina Chile. Colombia Peru Other South America Europe: Belgium France Germany. Greece Hungary Italy Netherlands Norway Sweden. United Kingdom Other Europe.	1, 426 233 215 76 3, 349 12, 241 10, 075 13, 825 6, 672 610	3, 423 1, 069 1, 385 1, 262 614 797 140 1, 041 200 60 1, 705 650 5, 240 5, 240 6, 601 1, 767 6, 6, 601 1, 767 6, 6, 767 64, 767 64, 767	Asia: China Hong Kong Japan Philippine Islands Other Asia Africa: Algeria Union of South Africa Oceania: New Zealand Value	6, 553 1, 970 316, 280 734 665 6, 236 1, 462 15 432, 851 \$7, 135, 129	9, 149 1, 281 9, 812 488 869

Consumption.—Consumption of pig iron rose 70 percent in 1939 over 1938. Pig iron, a product of the blast furnace, is a semiraw material and, except for the small quantity used in direct castings, moves to other type furnaces for further refining or mixture with other required ingredients. In general, it goes to steel-making or ironmaking furnaces. By far the larger part is taken to steel-making furnaces (open-hearth, bessemer, and electric) for refining and processing into steel. In 1939, 86.5 percent of the pig iron was consumed in steel making. Direct castings took 3 percent of the 1939 total, and the remaining 10.5 percent was consumed in iron-making furnaces, of which the cupola is by far the most important. The consumption of pig iron by types of furnace for 1936 to 1939 is shown in the following Typically, the quantities of pig iron used in these furnaces are supplemented by the addition of ferrous scrap. The proportion of pig iron to scrap used in steel furnaces increased in 1939 compared with 1938, whereas the proportion of pig iron in cupola furnaces decreased.

Consumption of pig iron in the United States, 1936-39, by type of furnace

m	1936	1936		1937		1938		1939	
Type of furnace or equipment	Gross tons	Percent of total	Gross tons	Percent of total	Gross tons	Percent of total	Gross tons	Percent of total	
Open hearth Bessemer Electric Cupola ¹ Air Brackelsberg	21, 960, 842 3, 635, 562 22, 866 3, 633, 720 407, 038	73. 0 12. 1 . 1 12. 1 1. 3	25, 118, 216 3, 688, 335 44, 715 4, 195, 234 } 444, 988	73. 8 10. 8 .1 12. 3 1. 3	13, 729, 371 1, 946, 048 15, 893 2, 404, 637 185, 514	74. 2 10. 5 . 1 13. 0 1. 0	23, 951, 940 3, 217, 142 27, 270 2, 990, 355 294, 033	76. 2 10. 2 . 1 9. 5	
Crucible Puddling Direct castings 1	34 30, 498 408, 074	(2) . 1 1. 3	31, 489 533, 507	(2) . 1 1. 6	218 5, 343 217, 325	(2) (2) 1. 2	82 24, 963 951, 982	(²) . 1 3. 0	
	30, 098, 634	100.0	34, 056, 527	100.0	18, 504, 349	100.0	31, 457, 767	100.0	

¹ Some pig iron used in making direct castings included in cupola.

The consumption of pig iron in this country is widespread, and plants using pig iron are situated in all 48 States, the District of Columbia, and Alaska. As expected from the nature of its use, consumption is concentrated largely in the iron- and steel-making centers of the North Central, Middle Atlantic, and Southeastern States. These areas in 1939 used 98 percent of the pig iron, Pennsylvania (the leading consumer) taking nearly 29 percent of the total and Ohio (the second largest consumer) 21 percent. Of the chief consuming areas in 1939 the Middle Atlantic district made the largest gain over 1938—85 percent compared with 65 percent in the North Central district and 53 percent in the Southeastern district, including the Birmingham district of Alabama. The following table shows the distribution of pig-iron consumption by States from 1936 to 1939.

² Less than 0.05 percent.

Consumption of pig iron in the United States, 1936-39, by States and districts

			1		1			
		1936		1937		1938		1939
State and district	Con- sum- ers	Gross tons	Con- sum- ers	Gross tons	Con- sum- ers	Gross tons	Con- sum- ers	Gross tons
Connecticut Maine New Hampshire Massachusetts Rhode Island Vermont	53 16 13 87 13 14	79, 208 9, 257 75, 389 25, 983 3, 866	58 16 13 103 14 14	87, 912 8, 824 2, 180 98, 407 35, 140 7, 086	57 16 14 98 13	47, 746 4, 052 1, 248 59, 774 14, 362 3, 019	59 15 15 97 12 12	74, 005 6, 000 1, 630 103, 156 23, 444 5, 830
Total New England	196	193, 703	218	239, 549	211	130, 201	210	214, 065
Delaware	6 79 191 341	215, 460 1, 371, 661 9, 074, 405	81 192 348	309, 065 1, 793, 421 10, 578, 554	{ 7 80 194 345	927, 350 4, 781, 482	7 79 193 365	250, 893 1, 622, 545 9, 064, 876
Total Middle At- lantic	617	10, 661, 526	628	12, 681, 040	626	5, 908, 776	644	10, 938, 314
Alabama District of Columbia Kentucky Maryland West Virginia Florida Georgia Mississippi North Carolina South Carolina Tennessee Virginia	50 1 18 24 21 9 34 7 26 14 46 44	1, 453, 524 501 } 1, 489, 375 648, 882 } 41, 051 351 11, 064 1, 912 } 142, 994	59 1 22 25 22 11 40 7 27 12 53 45	1,802,027 444 } 1,724,693 746,015 } 64,357 301 11,033 2,086 } 143,542	59 1 { 21 26 22 { 10 40 6 30 13 { 53 44	1, 395, 369 1, 353, 414 501, 920 33, 965 327 10, 929 1, 533 119, 626	57 24 24 26 23 { 12 40 7 32 13 { 52 46	2, 123, 905 2, 112, 084 785, 770 } 55, 049 323 12, 369 2, 010 } 134, 432
Total Southeastern.	294	3, 789, 654	324	4, 494, 498	325	3, 417, 083	334	5, 225, 942
ArkansasOklahoma Louisiana Texas	3 8 8 20	2, 273 4, 699	$\left\{\begin{array}{cc} 6\\ 9\\ 8\\ 22 \end{array}\right.$	4, 732 19, 171	$ \left\{ \begin{array}{c} 5\\7\\8\\23 \end{array}\right. $	1,797 2,691	{ 6 6 8 24	1, 788 · 2, 297
Total Southwestern.	39	6, 972	45	23, 903	43	4, 488	44	4, 085
Illinois Indiana Iowa Minnesota Missouri Kansas Nebraska Michigan Wisconsin South Dakota Ohio	176 109 41 48 48 13 8 142 110 1 258	2,770,746 3,473,415 62,576 46,024 40,367 } 3,726 } 1,567,890 9 7,013,146	193 116 51 49 54 { 17 9 { 165 118	3, 077, 837 3, 661, 133 80, 893 206, 903 51, 885 } 5, 108 } 1, 828, 870 7, 173, 926	182 120 51 52 50 { 15 8 { 158 116	1, 468, 762 1, 891, 230 39, 214 131, 618 25, 319 } 2, 529 } 980, 742 	179 124 49 53 53 63 14 7 { 168 118 2 290	2, 473, 833 3, 419, 691 48, 959 166, 050 33, 714 } 3, 137 } 1, 651, 448 132 6, 748, 630
Total North Central.	954	14, 977, 899	1, 050	16, 086, 555	1, 028	8, 813, 826	1, 057	14, 545, 594
Arizona Nevada New Mexico Colorado Utah Idaho Wyoming Montana	} 4 } 16 } 4	72 320, 514 2, 805	2 15 5	43 371,688 482	1 17 4	22 136, 366 196	1 19 5	32 368, 054 275
Total Rocky Mountain	24	323, 391	22	372, 213	22	136, 584	25	368, 361
Oregon Washington California	16 35 90	8, 223 137, 266	18 41 94	6, 810 151, 959	18 33 90	} 4,927 88,464	19 37 95	5, 636 155, 770
Total Pacific Coast.	141	145, 489	153	158, 769	141	93, 391	151	161, 406
Total United States.	2, 265	30, 098, 634	2, 440	34, 056, 527	2, 396	18, 504, 349	2, 465	31, 457, 767

World production.—World production of pig iron (including ferroalloys) in 1939 increased 23 percent over 1938 to 102,000,000 metric tons and was 19 percent above the 1925-29 average. The United States supplied 32 percent of the 1939 total compared with 23 percent in 1938. Thus, while American production increased 66 percent, that for the rest of the world increased only 10 percent.

World production of pig iron (including ferro-alloys), 1935-39, by countries, in metric

[Compiled by M. T. Latus]

			·		
Country 1	1935	1936	1937	1938	1939
Australia ² Belgian Congo		795, 804	963, 163 565	941, 551 4 600	³ 1, 100, 000
Belgium		3, 161, 340	3, 803, 750	2, 426, 130	3, 068, 200
Brazil	64, 082	78, 418	98, 108	118, 580	150, 000
Canada	667, 028	766, 625	996, 671	773, 573	844, 760
China (Manchuria)	607, 949	647, 402	4 650, 000	4 700, 000	4 700, 000
ChosenCzechoslovakia	245, 196	216, 752	168, 344	4 200, 000	4 200, 000
Czechoslovakia	810, 938	1, 139, 886	1, 675, 064	1, 233, 987	³ 1, 000, 000
Finland		13, 107	11, 258	27, 000	4 30, 000
France		6, 230, 420	7, 916, 000	6, 061, 322	3 7, 900, 000
Germany 8		15, 302, 477	15, 959, 806	18, 596, 000	3 20, 300, 000
Austria		248, 111	389, 118	י (ו	
Hungary India, British	185, 883	306, 290	357, 935	335, 016	³ 460, 000
India, British	1, 489, 216	1, 568, 089	1, 655, 457	1, 583, 284	3 1, 800, 000
Italy	703, 844	815, 490	865, 305	928, 847	3 1, 000, 000
Japan	1, 964, 613	2, 072, 445 1, 986, 604	2, 750, 000	4 2, 800, 000	4 3, 000, 000
Luxemburg	1, 872, 372 64, 139	88, 032	2, 512, 495 89, 717	1, 500, 000	3 1, 800, 000 4 100, 000
Mexico Netherlands	253, 616	274, 883	311, 773	98, 376 266, 956	284, 004
New Zealand	4, 981	214,000	311, 773	200, 900	201,001
Norway	130, 751	167, 357	181, 238	173, 748	4 175, 000
Poland		581, 869	724, 296	967, 668	3 1, 000, 000
Rumania	81, 989	97, 096	127, 234	130, 388	4 140, 000
Spain		220, 815	128, 000	439, 897	3 500, 000
Sweden		631, 736	692, 865	713, 579	3 640, 000
Union of South Africa	173, 486	202, 186	276, 236	294, 406	300, 227
U. S. S. R.	12, 606, 100	14, 546, 077	14, 520, 000	15, 179, 856	3 15, 200, 000
United Kingdom	6, 527, 105	7, 844, 922	8, 629, 313	6, 871, 546	3 8, 300, 000
United States	21, 715, 541	31, 571, 224	37, 749, 575	19, 474, 677	32, 321, 653
Yugoslavia	21, 793	44, 453	41, 006	58, 458	4 60, 000
	74, 125, 000	91, 620, 000	104, 200, 000	82, 895, 000	102, 000, 000

¹ In addition to countries listed, pig iron is produced in Chile and the Philippine Islands, but production figures are not available.

FERRO-ALLOYS

Production and shipments.—The production of ferro-alloys was 735,171 gross tons in 1939 compared with 584,724 in 1938, an increase of 26 percent. In 1939 ferro-alloys were made at 13 blast-furnace plants, 16 electric-furnace plants, and 3 aluminothermic plants; in addition 3 plants made ferrophosphorus and 2 plants made ferrosilicon as a byproduct. Of the 1939 total, 486,098 tons were made in blast furnaces and 245,236 tons in electric furnaces.

² Year ended June 30.
3 Approximate production as published by Steel, vol. 196, No. 1, January 1940, p. 269.
4 Estimated production.
5 Beginning with March 1935, production of the Saar is included with that of Germany. Production of the Saar in January and February 1935 amounted to 302, 196 metric tons.

Shipments of all classes of ferro-alloys in 1939 rose 81 percent in quantity and 79 percent in total value over 1938. Compared with the 5-year average for 1925–29 (715,250 tons), 1939 shipments increased 18 percent.

Ferro-alloys shipped from furnaces in the United States, 1938-39, by varieties

Variety of alloy	19	938	1939		
various of anos	Gross tons	Value	Gross tons	Value	
Ferromanganese Spiegeleisen Ferrosilicon (7 percent or more silicon) Ferrophosphorus Ferrofungsten Other varieties ²	223, 720 24, 939 163, 775 6, 593 484 44, 601	\$19, 144, 884 1 728, 830 7, 999, 661 469, 940 1, 453, 227 12, 662, 971 1 42, 459, 513	296, 631 84, 739 343, 822 13, 320 1, 609 101, 041	\$24, 137, 211 2, 484, 042 16, 850, 356 898, 471 4, 846, 386 26, 940, 122 76, 156, 588	

1 Revised figures.

Ferromanganese.—Shipments of ferromanganese in 1939 increased 33 percent over 1938 but were 2.4 percent below the 5-year average for 1925–29 (303,883 gross tons). The average value per ton, f. o. b. furnaces, reported for ferromanganese was \$81.37 in 1939 compared with \$85.58 in 1938.

The production of ferromanganese in 1939 increased 11 percent over 1938 and was made at seven blast-furnace plants and one electric-furnace plant in both 1938 and 1939. In both years most of the output was made in blast furnaces.

Ferromanganese produced in the United States and metalliferous materials consumed in its manufacture, 1935-39

	Ferrom	anganese p	roduced	Mate	Manga-			
Year Gross		Mn contained		Manganese ore (35 percent or more Mn, natural)		Iron and manga-	Cinder, scale, and pur-	ganese
tons	tons	Percent	Gross tons	Foreign	Domes-	niferous iron ores chased scrap	chased	made (gross tons)
1935 1936 1937 1938 1939	214, 290 316, 000 376, 443 242, 994 270, 111	79. 41 79. 09 79. 54 78. 65 79. 24	170, 168 249, 933 299, 425 191, 104 214, 040	401, 846 595, 114 698, 052 416, 738 502, 986	4, 286 5, 987 9, 444 22, 548	9, 195 12, 467 17, 511 9, 696 8, 324	8, 921 2, 821 6, 017 8, 462 6, 250	1. 895 1. 902 1. 879 1. 808 1. 862

² Ferroboron, ferrochromium, ferrocolumbium, ferromolybdenum and calcium-molybdenum compounds, ferrotitanium, ferrovanadium, ferrozirconium, silicomanganese, silicospiegeleisen, and zirconium ferrosilicon.

The tonnage of manganese ore used per ton of ferromanganese produced increased slightly in 1939. As shown in the following table all manganese ore used in making ferromanganese in 1939 came from foreign sources.

Quantity and tenor of manganese ore used in manufacture of ferromanganese in the United States, 1938–39

Source of ore	19	38	1939		
	Gross tons	Manganese content (percent, natural)	Gross tons	Manganese content (percent, natural)	
Africa	152, 698 64, 060	48. 99 41. 44	129, 227 58, 284 856	48. 14 43. 75 48. 16	
Cuba	36, 295 55, 965 107, 720 22, 548	48. 07 49. 24 47. 61 53. 20	58, 999 86, 309 169, 311	48. 16 49. 84 47. 54	
C 31100 C 500005	439, 286	47.72	502, 986	47. 72	

Spiegeleisen.—Shipments of spiegeleisen from domestic furnaces in 1939 rose 240 percent over 1938. The average value per ton at the furnaces was \$29.31 in 1939 compared with \$29.22 (revised figure) in 1938. The entire production, which increased to 91,491 tons in 1939 from 11,311 tons in 1938, was made in blast furnaces. Output in 1939 averaged 20.18 percent manganese. Most of the spiegeleisen was manufactured from domestic ores in 1939, only 206 tons of foreign manganese ore being used.

Ferrosilicon.—Shipments of ferrosilicon in 1939 increased 110 percent over 1938. The production of ferrosilicon in 1939 totaled 279,964 gross tons, including 144,948 tons made by blast furnaces, 134,844 tons by electric furnaces, and 172 tons as a byproduct in the manufacture of artificial abrasives in electric furnaces. The silicon content of the production in 1939 ranged from 7 to 95 percent but averaged 24 percent. Most of the raw material used in making ferrosilicon was of domestic origin.

Ferrophosphorus.—Production of ferrophosphorus decreased slightly to 15,465 gross tons containing 24.37 percent phosphorus in 1939 from 15,842 tons containing 24.14 percent phosphorus in 1938, but shipments from furnaces increased 102 percent. Most of the 1939 output was made in electric furnaces, and all of it was manufactured from domestic materials.

Ferrotungsten.—Shipments of ferrotungsten gained 232 percent in quantity and 233 percent in total value over 1938. The 1939 shipments contained 78.43 percent (2,827,282 pounds) tungsten and were valued at \$1.71 per pound of contained tungsten. Production totaled 1,586 gross tons containing 78.45 percent tungsten (2,786,686 pounds). In addition to domestic ores (chiefly from California, Colorado, and Nevada), foreign ores from China, the Malay States, Mexico, and South America were used. All ferrotungsten was made in electric furnaces.

Foreign trade.—Imports of all alloys of the rarer metals are not recorded separately but are grouped as shown in the following table. Ferromanganese and spiegeleisen comprised most of the imports in both 1938 and 1939. Imports of ferromanganese for consumption (chiefly from Norway and the Netherlands) were 41,227 gross tons-57 percent more than in 1938. Imports of spiegeleisen for consumption (chiefly from Canada) were 38,264 tons, an increase of 122 percent The duty on ferrosilicon containing 8 percent but less than 30 percent silicon was cut from 1½ cents to 1 cent per pound of silicon content, effective January 1, 1939, in the new trade agreement with Canada. That country supplies most of the imports of this material.

Exports of ferro-alloys, which are relatively unimportant in ton-nage, rose in 1939 over 1938. Exports of ferromanganese and spiegeleisen in 1939 were 2,923 gross tons and of other ferro-allovs 4.042 tons.

Ferro-alloys and ferro-alloy metals imported for consumption in the United States, 1938-39, by varieties

	1938			1939		
Variety of alloy	Gross weight (gross tons)	Content (gross tons)	Value	Gross weight (gross tons)	Content (gross tons)	Value
Ferromanganese: Containing over 1 percent carbon Containing not over 1 percent carbon Manganese silicon (manganese content) Manganese boron, manganese metal, and	26, 001 257	2 0, 903 215	\$1, 739, 501 31, 447	40, 210 1, 017 (¹)	32, 565 849 17	\$2, 815, 465 119, 749 1, 240
spiegeleisen not more than 1 percent car- bon (manganese content). Spiegeleisen. Ferrochrome or ferrochromium: Containing 3 percent or more carbon	(1) 17, 248	(1)	8, 798 625, 480	(1) 38, 264	(1) 22	9, 247 1, 329, 814
Containing less than 3 percent carbon Ferrosilicon Chrome or chromium metal Chromium and zirconium silicon and calci-	(2) 175 5, 325 39	(3) 121 626 (1)	29, 953 134, 067 48, 343	8, 203 56	127 1,036 (¹)	38, 558 237, 543 59, 520
um silicide. Ferromolybdenum, molybdenum metal and powder, calcium molybdate, and other compounds and alloys of molybdenum (molybdenum content).	899 (¹)	(1)	93, 319	1,773	(1)	225, 312
Ferrotitanium Tungsten and combinations, in lumps, grains, or powder:				(1)	(5) 12	32, 327 77
Tungsten metal (tungsten content)	(1)	9	23, 994	(1)	18	41, 440
tungsten carbide (tungsten content) Tungsten acid and other compounds of tungsten, n. s. p. f. (tungsten content)	(1)	1	7, 523	(1)	(⁶)	1, 430
tungsten, n. s. p. i. (tungsten content)	(1)	(7)	1,606	(1)	(8)	4, 424

¹ Not recorded.

^{2 100} pounds.

³ 60 pounds. 4 25 pounds.

⁵ 350 pounds. ⁶ 251 pounds.

^{7 241} pounds. 8 700 pounds.

Ferromanganese and ferrosilicon imported for consumption in the United States, 1938-39 by countries

	Ferror	Ferromanganese (manganese content)				Ferrosilicon (silicon content)			
Country	1938			1939		1938		1939	
	Gross tons	Value	Gross tons	Value	Gross tons	Value	Gross tons	Value	
CanadaCzechoslovakia ²FranceGermany ²	3, 043 1, 137	\$211, 356 152, 068	(1) 2, 050 846 391	\$50 162, 091 100, 905 24, 622	626	\$134, 067	1,036	\$237, 543	
Japan Netherlands Norway Poland and Danzig 2 Sweden Yugoslavia	5, 843 10, 547 	37, 118 403, 561 953, 045 	7, 974 19, 563 1, 598 22 970	561, 509 1, 909, 610 118, 015 3, 356 55, 056					
	21, 118	1, 770, 948	33, 414	2, 935, 214	626	134, 067	1,036	237, 543	

Less than 1 ton.
For statistical purposes, trade with the Sudeten area, as far as ascertainable, is included with Germany, while trade with the other Czechoslovak Provinces occupied by Germany and Poland has been included with these countries since March 18 or 19, 1939. After November 16, 1939, trade with Danzig and that part of Poland occupied by Germany has been included with Germany.

Ferro-alloys and ferro-alloy metals exported from the United States, 1938-39, by varieties

	1	938	1939	
Variety of alloy	Gross tons	Value	Gross tons	Value
Ferromanganese and spiegeleisenOther ferro-alloys 1	247 1, 197	\$18, 799 1, 171, 869	2, 923 4, 042	\$247, 798 1, 024, 826

¹ Includes ferrosilicon, ferrotungsten, ferrovanadium, and other ferro-alloys.

STEEL

Production.—The domestic steel industry operated at 53 percent of capacity in the first half of 1939, maintaining production at the level of the latter half of 1938. During the second half of 1939, however, the operating rate increased progressively from 52.4 percent of capacity in July to 93.3 percent in November but dropped to 85.6 percent in December. Slightly more than one-third of the 1939 output of steel was made in the final 3 months, when the production rate rose to an all-time high. The average operating rate was 64 percent in 1939 compared with 40 percent in 1938. The following figures covering the output of steel were compiled by the American Iron and Steel Institute. Production of steel ingots and castings in 1939 totaled 47,141,709 gross tons, 4 percent below the 1925–29 average but an increase of 66 percent over 1938.

Of the 1939 total, 91.7 percent was made in the open hearth, 6.4 percent in bessemer converters, 1.9 percent in electric furnaces, and only 831 tons in crucible furnaces. The bulk (42,704,197 tons) of the total open-hearth output in 1939 was made in basic furnaces.

Of the total output of steel ingots and castings, 46,908,428 gross tons were ingots in 1939 compared with 28,210,841 tons in 1938.

A large part of the steel production comes from the contiguous States Pennsylvania and Ohio. In 1939 these two States produced about 50 percent of the total steel, 49 percent of the open-hearth steel, and 76 percent of the bessemer steel.

Open-hearth steel ingots and castings manufactured in the United States, 1935-39, by
States, in gross tons

[Includes only that portion of the steel for castings produced in foundries operated by companies manufacturing steel ingots]

State	1935	1936	1937	1938	1939
New England States. New York and New Jersey. Pennsylvania. Ohio. Indiana. Illinois. Other States.	248, 778 1, 275, 496 7, 850, 710 7, 702, 018 4, 376, 998 2, 534, 811 6, 726, 618	301, 161 2, 109, 946 12, 913, 903 9, 789, 985 5, 963, 501 3, 663, 011 8, 794, 621	276, 021 2, 789, 413 14, 561, 700 9, 067, 944 5, 947, 368 3, 913, 318 9, 716, 539	163, 658 1, 347, 802 7, 072, 157 5, 372, 234 3, 435, 360 1, 950, 224 6, 622, 865	256, 116 2, 346, 348 12, 162, 743 8, 851, 298 5, 791, 520 3, 292, 745 10, 522, 266
	30, 715, 429	43, 536, 128	46, 272, 303	25, 964, 300	43, 223, 036

Bessemer-steel ingots and castings manufactured in the United States, 1935-39, by States, in gross tons

[Includes only that portion of the steel for castings produced in foundries operated by companies manufacturing steel ingots]

State	1935	1936	1937	1938	1939
Ohio	1, 361, 933 764, 403 375, 445 333, 250	1, 639, 329 952, 971 } 866, 157	1, 747, 710 830, 440 871, 777	1, 074, 032 348, 060 458, 569	1, 285, 383 990, 251 723, 398
	2, 835, 031	3, 458, 457	3, 449, 927	1, 880, 661	2, 999, 032

Steel electrically manufactured in the United States, 1935-39, in gross tons

[Includes only that portion of the steel for castings produced in foundries operated by companies manufacturing steel ingots]

Year	Ingots	Castings	Total	Year	Ingots	Castings	Total
1935 1936 1937	521, 818 704, 213 814, 310	19, 674 68, 242 31, 227	541, 492 772, 455 845, 537	1938 1939	468, 610 849, 573	36, 414 69, 237	505, 024 918, 810

The steel-production figure for 1939 includes 2,867,817 gross tons of alloy-steel ingots and castings, which represent 6 percent of the total. This figure includes steels in which the minimum of the range specified in any of the elements named exceeds the following percentages: Nickel, 0.40 percent; chromium, 0.30 percent; copper, 0.50 percent; manganese, 1.65 percent; silicon, 0.50 percent; molybdenum, 0.10 percent; vanadium, tungsten, cobalt, titanium, and zirconium, any percent. The output of alloy steels in 1939 increased 94 percent and that of total steel 66 percent over 1938. Of the total alloy-steel

output in 1939, 72 percent came from basic open hearths, 5 percent from acid open hearths, 23 percent from electric furnaces, 206 tons from crucible furnaces, and 3,113 tons from bessemer furnaces.

Production of alloy-steel ingots and castings, 1935-39, by processes, in gross tons
[Includes only that portion of the steel for castings produced in foundries operated by companies manufacturing steel ingots]

Process	1935	1936	1937	1938	1939
Open hearth, basic	1, 633, 541 73, 400	2, 239, 885 115, 766	2, 285, 000 146, 835	1, 052, 706 91, 151 12	2, 055, 601 139, 804 3, 113
Bessemer Crucible Electric	154 412, 563	209 527, 762	241 600, 550	332, 475	206 669, 093
	2, 119, 658	2, 883, 622	3, 032, 626	1, 476, 348	2, 867, 817

From the foregoing tables it will be seen that most of the steel made in electric furnaces (73 percent in 1939) is alloy steel. Typically, steels with higher alloy content are made in electric furnaces and steels

with lower alloy content by the open-hearth process.

Foreign trade.—Although exports of iron and steel products (excluding scrap) in 1939 did not approach the high figure established in 1937, they were 16 percent above 1938 and surpassed those in any other Because of unsettled conditions and expanded year since 1929. armament activities foreign producers have been unable to meet demands in their own countries, and buyers have turned to the United States for supplies. Shortage of necessary raw materials, inadequate smelting capacity, and finishing and fabricating facilities insufficient to meet expanded demands in other nations have caused abnormal exports in a wide range of semimanufactured and manufactured American The situation abroad, however, is being rectified by the construction and equipment of new plants and the search for and development of sources of raw material. The success of these programs may make other nations more important factors in export markets, with a consequent lower demand in this country. methods now being used may make competition difficult for American

Exports of iron ore, pig iron, and ferro-alloys are covered in other sections of this report. All important items in the 1939 movement of iron and steel products, except pig iron and rails, registered gains. Exports of iron and steel scrap (including tin-plate scrap), although lower than the unprecedented total of 4,101,549 tons in 1937, amounted to 3,584,439 tons. Of the 1939 scrap exports 83 percent went to three countries—Japan (57 percent), United Kingdom (14 percent), and

Italy (12 percent).

Although exports of American iron and steel products in 1939 reached most of the world markets, seven countries took 52.6 percent of the total—Canada 15.6 percent, Japan 8.1 percent, the United Kingdom 6.5 percent, Brazil 6.0 percent, Sweden 5.9 percent, the Philippine Islands 5.8 percent, and the Netherlands 4.7 percent.

Iron and steel exported from the United States, 1938-39

		1938		1939		
Article	Gross tons	Value	Gross tons	Value		
Semimanufactures: Steel ingots, blooms, billets, slabs, and sheet bars Iron and steel bars and rods:	167, 641	\$5, 905, 201	215, 750	\$8, 090, 822		
Iron barsConcrete reinforcement bars	26, 105	100, 803 1, 366, 775 8, 873, 068 1, 381, 414	866 47, 255 160, 446 31, 450	89, 298 2, 267, 422 12, 897, 431 1, 330, 141		
Other steel pars. Wire rods. Iron and steel plates, sheets, skelp, and strips: Boiler plates. Other plates, not fabricated. Skelp iron or steel. Iron and steel sheets, galvanized. Steel sheets, black, ungalvanized. Iron sheets, black Strip band, and scroll iron or steel: Cold-rolled	6, 753 214, 355 59, 867	460, 613 10, 883, 283 2, 465, 104 7, 020, 398 16, 442, 444 614, 633	1 '	536, 366 11, 479, 538 3, 359, 890		
Iron and steel sheets, galvanized. Steel sheets, black, ungalvanized. Iron sheets, black Strip band, and scroll iron or steel:	76, 037 205, 278 7, 566	1		9, 594, 599 19, 698, 555 812, 392		
Hot-rolled		2, 714, 356 2, 469, 958 19, 078, 015	26, 243 62, 710 311, 016	2, 811, 861 3, 740, 975 33, 032, 832		
Structural iron and steel: Water, oil, gas, and other storage tanks complete and knocked-down material. Structural shapes:	37, 730	3, 284, 095	28, 735	2, 646, 797		
Not fabricated	83, 691 38, 057 2, 348 863 4, 909	4, 507, 428 3, 666, 049 219, 003 160, 272 519, 986	115, 465 37, 154 6, 701 1, 656 8, 878	5, 549, 454 3, 505, 595 505, 833 303, 258 797, 021		
Rails for railways	82, 721	3, 111, 734 444, 081 325, 514	59, 092 8, 814 2, 009	2, 375, 481 618, 666 365, 830		
Switches, frogs, and crossings. Railroad spikes. Railroad bolts, nuts, washers, and nut locks. Tubular products: Boiler tubes.	2, 606 1, 236	186, 529 148, 132	3, 513 1, 950	253, 848 221, 653		
Casing and oil-line pipe. Seamless black pipe, other than casing and oil line. Welded black pipe. Welded galvanized pipe.	8, 124 63, 703 7, 459 13, 779 17, 404	1, 541, 236 6, 916, 700 1, 286, 813 1, 407, 519 1, 762, 457 1, 088, 644	15, 170 87, 905 10, 219 23, 957 33, 398	1, 959, 587 8, 717, 000 1, 355, 699 2, 279, 376 3, 245, 345		
Malleable-iron screwed pipe fittings. Cast-iron screwed pipe fittings. Cast-iron pressure pipe and fittings. Cast-iron soil pipe and fittings. Riveted-steel or iron pipe and fittings.	3, 102 1, 891 20, 045 9, 957 945	1, 088, 644 506, 202 1, 312, 048 656, 704 189, 307	4, 608 2, 365 31, 805 11, 978	582, 190 1, 618, 952 744, 917		
Wire and manufactures: Barbed. Galvanized wire. Iron or steel wire, uncoated. Wire rope, and strand.	33, 942 25, 792 24, 080	2, 457, 339 1, 946, 316 1, 830, 283	7, 574 53, 323 28, 259 32, 235	2, 115, 909 3, 743, 725 2, 098, 188 2, 417, 065		
Wire rope, and strand. Woven-wire fencing and screen cloth All other. Nails and bolts (except railroad):	4, 372 3, 541 6, 262	1, 181, 125 682, 452 1, 504, 675	6, 058 5, 294 11, 899	1, 514, 691 1, 155, 051 2, 491, 593		
Wire nails Horseshoe nails All other nails, including tacks and staples Bolts, nuts, rivets, and washers (except railroad)	20, 720 888 4, 348 8, 057	1, 369, 771 179, 128 476, 580 2, 082, 898	25, 796 931 5, 527 8, 856	1, 697, 071 208, 364 610, 143 2, 349, 658		
Castings and forgings: Horseshoes and calks. Iron and steel, including car wheels and axles. Advanced manufactures:	103 37, 634	13, 114 4, 536, 947	224 51, 854	29, 576 7, 033, 534		
House heating boilers and radiatorsOil burners and parts		333, 101 1, 125, 993 476, 610		279, 443 1, 085, 111 607, 445		
Axes. Shovels and spades Hammers and hatchets Saws, wood and metal cutting All other tools		476, 610 248, 392 232, 008 1, 225, 686 9, 356, 596		316, 817 303, 707 1, 754, 048 11, 923, 674		

Imports for consumption of iron and steel (exclusive of scrap) in 1939 were 19 percent greater than in 1938. The import trade was much lower than the export trade. Ferromanganese, pig iron, and spiegeleisen accounted for most of the increase in 1939, as manufactured and unmanufactured articles gained only 4 percent. Imports came principally from European countries, Canada, and British India. Imports of scrap in 1939 were only 29,492 long tons (21 percent above 1938), and 92 percent of the 1939 total came from Canada.

Iron and steel imported for consumption in the United States, 1938-39, by commodities

	1	938	. 19	939
Commodity	Gross	Value	Gross	Value
	tons		tons	
Semimanufactures:			-	
Steel bars:				
Concrete reinforcement	1, 531	\$51,924	2, 364	\$74, 289
Solid or hollow, n. e. s	18, 899	1, 122, 228	17,060	906, 873
Hollow and hollow drill steel	865	131, 386	1, 357	198, 753
Iron slabs, blooms, or other forms	(1)	00 005		
Bar iron	504	29, 005	930	76, 488
Wire rods, nail rods, and flat rods up to 6 inches in	F 000	410.454	10.000	000 000
width	5, 280	410, 454	10,692	928, 639
Boiler or other plate iron or steel, except crucibles and	355	10 000	18	967
saw-plate steel Sheets or plates of iron or steel	(1)	18, 900 17	10	13, 017
Sheets or plates of iron or steel	205	5, 586	18	4,009
Steel ingots, blooms, and slabs	553	65, 413	727	90, 907
Billets, solid or hollow Die blocks or blanks; shafting, etc	96	34, 191	89	7, 847
Circular corr plotos	32	14, 233	52	23, 659
Circular saw plates		14, 200	02	20,000
other plate iron or steel.	5, 651	290, 289	750	31, 287
Sheets and plates and steel, n. s. p. f	361	29, 634	604	39, 528
Tin plate, terneplate, and taggers' tin	109	32, 013	99	24, 809
Manufactures:		,		,
Structural iron and steel	39, 624	1, 494, 869	39, 533	1, 351, 831
	3, 336	98,020	7,020	175, 814
Rails for railways Rail braces, bars, fishplates or splice bars, and tie plates	288	14, 935	765	29, 800
Pipes and tubes:				•
Cast-iron pipe and fittings	1,619	59, 420	1,841	69, 732
Other pipes and tubes	29, 102	2, 481, 334	30, 587	2, 621, 288
Wire:				
Barbed	12, 528	720, 378	15, 249	926, 511
Round iron and steel	1, 531	308, 223	2, 310	497, 233
Baling	152	10, 170	202	13, 231
Telegraph, telephone, etc., except copper, covered	o=	** ***		0.044
with cotton jute, etc.	27	14, 144	8	3, 241
Flat and steel strips not thicker than 14-inch and	0.000	1 000 001	0.150	1 707 657
not over 16 inches wide	2,696	1, 626, 961	3, 153 1, 663	1, 727, 657
Rope and strand	2, 020 1, 459	376, 406 96, 865	1,003	291, 361 89, 382
Galvanized fencing wire and wire fencing	9, 403	406, 246	23, 227	855, 545
Hoop or band iron or steel for baling Hoop, band, strips, or scroll iron or steel, n. s. p. f	16, 728	644, 974	443	52, 876
	7, 598	649, 998	7, 287	557, 898
Nails Castings and forgings, n. e. s	3, 815	427, 788	1, 124	148, 508
Castings and forgings, ii. e. s.	9, 010	121,100	1, 124	140,000

¹ Less than 1 ton.

MANGANESE AND MANGANIFEROUS ORES

By Robert H. Ridgway and H. W. Davis 1

SUMMARY OUTLINE

	Page	<u> </u>	Page
General features	571	Consumption of manganiferous raw materials	581
Salient statistics	572	Metallurgical industry	582
Emergency stock pile	572	Ferromanganese	582
Government exploration	574	Spiegeleisen.	585
Domestic production	576	Manganiferous pig iron	586
Imports of manganese ore		Battery industry	586
Stocks	580	Miscellaneous industries	587
Prices	580	World production	587

The outbreak of war in Europe in September and the sudden increase in steel-plant activities in this country during the last quarter of the year were the principal factors influencing the manganese industry in 1939. The low rate of steel activity, the large stocks on hand, and active selling programs weakened the market during the first half of the year, and domestic quotations which opened the year at \$0.30 a long-ton unit (before duty) declined, continuing the slump of 1938. Developments in Europe during the second half of the year increased demand, restricted shipping, and caused large increases in ocean-freight and war-risk-insurance rates. Meanwhile the domestic consuming industry revived sharply, with the result that prices jumped to \$0.50 per unit before duty. The situation eased slightly at the close of the year. Restrictions placed on supplies from a number of sources may have hampered exports.

Despite the increase in imports for consumption, stocks in bonded warehouses increased, reaching a new year-end peak, according to data of the Bureau of Foreign and Domestic Commerce. As most of the domestic consumption is supplied by imports, the apparent consumption of manganese ore paralleled the 30-percent gain in imports for consumption. Stimulated by higher prices and possible Government purchases, activity at domestic manganese operations increased, but production was still small and the increase of little

significance. Much new activity, however, was reported.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Salient statistics of the manganese industry in the United States, 1925-29 (average) and 1935-39, in long tons

	1925-29 (average)	1935	1936	1937	1938	1939
Manganese ore:						
Total shipments containing 35 per-						
cent or more Mn	59, 312	26, 428	32, 119	40, 241	25, 321	29, 307
Shipments of metallurgical ore	1 41, 892	16, 679	18, 557	26, 419	16, 989	18, 580
Shipments of battery ore	17, 420	7, 264	7,747	6, 447	4, 959	7, 767
Imports for consumption	600,000	383, 500	813, 362	911, 919	483, 586	627, 131
Stocks in bonded warehouses at end			·		·	
of year	304,000	418, 302	366, 381	681, 290	842, 048	903, 561
Indicated consumption (35 percent						
or more Mn)	659,000	413, 286	848, 491	954, 503	509, 930	656, 438
Ferro-alloys:						
Production of ferromanganese	306, 360	214, 290	316, 000	376, 443	242, 994	270, 111
Imports of ferromanganese 23	4 50, 590	21, 830	30, 593	23, 888	21, 118	33, 414
Production of spiegeleisen	95, 463	60, 018	95, 137	(5)	11, 311	91, 491
Imports of spiegeleisen 2	7, 298	32, 384	52, 011	16, 841	17, 248	38, 264
Exports of spiegeleisen and ferro-	·		,	**		•
manganese	3, 769	131	466	1, 725	247	2, 923
Stocks of ferromanganese in bonded						
warehouses	3 4 7, 765	5, 796	9,902	11, 788	8, 392	4, 253

¹ Includes small quantity of miscellaneous ore.

The process for making electrolytic manganese, developed and patented by the Bureau of Mines, has been installed in a small commercial plant at Knoxville, Tenn., by the Electromanganese Corporation, Rand Tower, Minneapolis, Minn. The Bureau is now investigating new uses for the metal.² Tests of samples of low-grade or complex ores from nine localities in Alabama, California, Colorado, Idaho, Missouri, Nevada, and New Mexico showed that the manganese occurred in mineralogic forms that would not permit high-grade concentrates to be produced by usual ore-dressing methods. The application of roasting and leaching, however, to the production of manganese by the electrolytic process was indicated in most of the samples.³

The trend in imports and domestic production of manganese ore is

shown graphically in figure 1.

Emergency stock pile.—The Strategic Materials Act (Public, No. 117, 76th Cong., ch. 190, 1st sess.), which was signed by the President on June 7, 1939, authorized the expenditure of \$100,000,000 over a 4-year period for the purchase of strategic materials. Only \$10,000,000 was appropriated in the Third Deficiency Bill, approved August 2, 1939 (Public, No. 361, 76th Cong., ch. 633, 1st sess.), and purchases were restricted largely to the high-priority mineral commodities on the strategic list. Of all strategic mineral commodities, manganese ore is required in the largest quantities.

Only high-grade ore suitable for the manufacture of ferromanganese, the form in which manganese is usually added in steel manufacture, has been designated as strategic. Specifications for this type of

material were drawn in three grades as follows:

⁴ Includes small quantity of other manganese alloys. ⁵ Bureau of Mines not at liberty to publish figures.

Imports for consumption.
 Manganese content.

¹ Dean, R. S., Anderson, C. T., Moss, C., and Ambrose, P. M., Progress Reports—Metallurgical Division. 33. Manganese and Its Alloys: Bureau of Mines Rept. of Investigations 3477, 1939, pp. 1-47. ¹ Engel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division. 36. Ore-dressing Studies, 1938-39: Bureau of Mines Rept. of Investigations 3484, 1940, pp. 3-12.

Specifications for ferrograde manganese ore, percent

Item	Grade A	Grade B	Grade C
Manganese (minimum) Iron (maximum) Silica (maximum) Phosphorus (maximum) Alumina (maximum) Zine (maximum)	48	48	48
	7	17	7
	9	210	7
	.12	.18	7
	3	6	.15
	1	1	6

1 Iron content to be not less than 1 percent.

² For each additional percent of manganese content over 48 percent an additional 0.2 percent silica content is allowable.

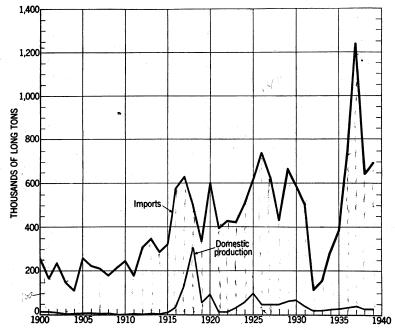


FIGURE 1.—Imports and domestic production of manganese ore, 1900–1939. Statistics on imports shown in the graph represent "general imports" for the period 1900–1933; beginning with 1934 data classified as "general imports" were not available, and the figures plotted for 1934–39 represent imports for consumption adjusted for changes in stocks in bonded warehouses and are closely comparable with the record for earlier years.

It was further provided that all ore should pass a 6-inch screen and that not more than 12.5 percent should pass a 20-mesh screen.

Proposals for supplies (S-1 and S-2), for opening October 19, 1939, were sent out September 19, 1939. In all, 15 bids were received, of which 7 proposed to furnish ore from domestic deposits and 8 from foreign sources. On October 30, 1939, two contracts were awarded, both on Grade B ore. One for 25,000 long tons at \$0.612 per unit, c. i. f. Baltimore, Md., was awarded to the Cuban-American Manganese Corporation, which proposed to furnish nodulized concentrates from Cuba; Cuban manganese ores are not dutiable. Delivery on this contract was begun late in 1939 and was completed early in 1940. The other contract, which called for 5,000 tons at \$0.75 a unit, f. o. b. Army Ordnance Depot, Curtis Bay, South Baltimore, Md., was

awarded to the Greenbrier Mining Co. The bidder proposed to supply ore from an undeveloped property in West Virginia, but the contract was later canceled as the bidder failed to provide performance bond. Further proposals (S-13) for bids were issued December 1, 1939, for opening on December 19, 1939. No satisfactory bids were received, and no awards were made. The third proposals (S-17) were issued February 1, 1940, for opening February 20, 1940. Eighteen bids were Ten proposed to furnish ore from domestic deposits and eight from foreign sources. On March 5, 1940, five contracts were awarded—three on Grade B ore and two on Grade A ore. Derivatives, Inc., and Tonerde, Inc., New York, were awarded two contracts on Grade B ore, one for 2,000 tons at \$0.49 per unit, exclusive of duty, c. i. f. Baltimore, and one for 11,000 tons at \$0.53 per unit, exclusive of duty, c. i. f. Baltimore. This ore will come from India, South Africa, and Brazil. Two contracts were let on Philippine ore—one for 2,000 tons of Grade A ore at \$0.628 per unit, c. i. f. Baltimore, to C. Tennant & Sons, New York, acting as agents for Fernadez Hermanos, and the other to L. W. Lambert for 18,000 tons of Grade B ore at \$0.65 per unit, c. i. f. Baltimore. Philippine ores are not dutiable. The fifth contract was awarded to the Commercial Engineering Co. of Washington, D. C., for 8,000 tons of Grade A ore from Canada (Nova Scotia) at \$0.60 per unit, exclusive of duty, c. i. f. Baltimore. The contract was not accepted by the bidder as price was based upon supplying 20,000 tons. On March 16 a further award was made to L. L. Patrick for 5,000 tons of domestic Grade B ore at \$0.62, f. o. b Army Ordnance Depot, Ogden, Utah.

On February 18, 1940, proposals (S-18) for opening March 6 were issued for 5,000 tons of Grade B ore to replace a canceled contract on a previous letting. Nine bids were received, four on domestic ore and five on foreign ore. On March 16, 1940, a contract was let to L. W. Lambert (at \$0.65 per unit, c. i. f. Baltimore, with an allowance of 75 cents a ton for unloading), who proposed to supply Philippine ore. The total awards involve about 68,000 long tons of ore and have obligated approximately \$2,000,000, exclusive of handling and storage

charges.

Government exploration.—Under section 7 of the Strategic Materials Act the Bureau of Mines and the Geological Survey undertook to search for and appraise ore deposits containing metals that have been designated as strategic by the Secretaries of War, Navy, and the Interior upon advice of the Army and Navy Munitions Board. The bill authorized the expenditure of \$500,000 a year, \$350,000 by the Bureau of Mines and \$150,000 by the Geological Survey, for each of the fiscal years ending June 30, 1940, 1941, 1942, and 1943. The geologists of the Survey and engineers of the Bureau are cooperating closely to accomplish the objectives of the act.

The Bureau of Mines, in carrying out its part ⁴ of the program, seeks to determine (1) the extent and quality of the ore, (2) the most suitable method of mining and beneficiating it, and (3) the cost at which it may

be produced.

An investigation of the deposits on the Olympic Peninsula of Washington was begun in 1939. Although the deposits in this area have been developed relatively little in the past, one mine made a

^{&#}x27;Finch, John W., Strategic Minerals Investigations—Procedure Followed by the Bureau of Mines . Bureau of Mines Inf. Circ. 7097, 1939, pp. 1-5.

rather substantial production of good-grade ore. Some 4,000 feet of diamond drilling at the Crescent mine disclosed a small body of high-grade ore. Three deposits on the peninsula have been selected for probable project work during the coming fiscal year. One-ton samples were taken from several deposits in Colorado, Idaho, Nevada, and Utah and sent to the Bureau laboratories for ore-dressing tests.

Under the strategic minerals program, the Geological Survey completed its survey in the Little Florida Mountains area in Luna County, southwestern New Mexico. A report has been prepared which is now in process of publication. The program also added impetus to work on the detail survey of the Artillery Peak region in Mohave County, Ariz. Work continued in the Olympic Mountains, but this is a large area and conditions are difficult; the following is a published abstract of a report ⁵ on the results of the geological investigations to date.

The Olympic Peninsula, Wash., is bordered on the northern, eastern, and southern parts by a thick sequence (30,000 feet) of volcanic rocks, argillites, graywackes, and limestones of lower Eocene age. These rocks are much deformed, and dips of less than 45° are uncommon. The less competent strata, particularly the limestones and limy argillites, are much contorted, both as a result of the mountain-building processes and of the pouring out of lava on the limy muds of the sea bottom. Chocolate-red limestone that contains as much as 10 percent of finely divided hematite is of special interest, as it forms the common host rock for the manganese. The limestones are associated with lavas, particularly pillow basalts. They underlie and overlie the lava, form the matrix between pillows or agglomerate fragments, and in some places form beds at the edges of lava flows.

* * * In a few places the manganese minerals have replaced lava, as indicated by remnants of pillow structures. The manganiferous bodies are generally small and contain from a few to a few hundred tons of ore, but some bodies are considerably larger. At the Crescent mine about 25,000 tons (16,000 tons—corrected figure) of high-grade hausmannite (Mn₃O₄) have been mined. Exploration, however, has been for the most past superficial and insufficient to determine

the limits of the ore bodies.

The mineral composition of the ores is unique, in that the ore consists of hausmannite and a fine-grained mixture of manganese silicates commonly called "bementite." Small quantities of cinnabar and native copper are widely distributed throughout the deposits. The hausmannite deposits, notably of the Crescent mine, are low in silica. Other deposits contain small amounts of oxides and are chiefly manganese silicates. Still other bodies contain only manganese silicates and jasper and grade into bodies of bright-red jasper that may or may not contain small amounts of manganese silicates.

The manganese ore deposits at Philipsburg, Mont., were resurveyed, and an appraisal of the manganese-ore situation at Butte was undertaken. Minor geologic investigations were made in the Lake Creek district, Jackson County, Oreg.; in the Piedmont region, Va.; in northeastern Arizona; and in San Miguel County, Colo. Some preliminary work was done on the tungsten-bearing manganese deposits in the Golconda district and East Range area, Humboldt County, Nev., as well as the Sodaville area in Mineral County, Nev. All the projects undertaken in connection with the strategic-minerals program will be covered by brief economic reports, including maps, of the localities investigated.

Tables of domestic shipments of manganese ore, imports of manganese ore and ferromanganese, and apparent consumption of manganese, from 1910 to 1938, which present the historical background for a study of the strategic position of manganese ore, are given in Minerals

Yearbook, 1939 (pp. 579-580).

⁵ Park, Charles F., Jr., Manganese Deposits in the Olympic Peninsula, Wash.: Soc. Econ. Geol. (abs. of paper to be presented at 20th annual meeting), vol. 34, No. 8, December 1939, pp. 944-945.

DOMESTIC PRODUCTION

The domestic production (shipments from domestic mines) of manganese ore increased 16 percent over 1938. Of the manganese ore shipped to metallurgical plants in 1939, 5,708 long tons contained (natural) 48 percent or more Mn.

Manganiferous raw materials shipped by producers in the United States, 1935–39, in long tons

	Metall		26:1			
Year	Manganese ore (35 per- cent or more Mn)	Ferruginous manganese ore (10 to 35 percent Mn)	Manganifer- ous iron ore (5 to 10 per- cent Mn)	Manganifer- ous zinc residuum	Battery	Miscel- laneous manga- nese ore
1935	16, 679 18, 557 26, 419 16, 989 18, 580	93, 291 98, 962 151, 955 33, 620 239, 544	430, 893 841, 557 1, 189, 017 275, 240 469, 703	113, 997 124, 288 115, 998 39, 079 129, 238	7, 264 7, 747 6, 447 4, 959 7, 767	2, 485 5, 815 7, 375 3, 373 2, 960

Shipments of the various grades of manganese ore during the last 5 years are given, by States, in the following tables. In addition, battery-grade ores were produced in Montana; manganiferous zinc residuum was produced from New Jersey zinc ores; and miscellaneous manganese ores came from Alabama, California, Montana, Tennessee, Virginia, and West Virginia.

Metallurgical manganese ore shipped from mines in the United States, 1935-39, by
States, in long tons

State	1935	1936	1937	1938	1939	State	1935	1936	1937	1938	1939
Alabama Arkansas California Georgia Montana	59 3, 809 306 6, 960 2, 155	377 4, 557 3, 821 5, 154	689 16, 854	3, 058 5, 300	5, 365 2, 646 2, 243	Texas Utah Virginia Washington West Virginia	1, 972	1, 635 196 138	952	1, 314	50 475 10
New Mexico North Carolina Tennessee	1, 418	2, 679	878 1, 214	3, 603	339 43 7, 306		16, 679	18, 557	26, 419	16, 989	18, 580

Ferruginous manganese ore shipped from mines in the United States, 1935-39, by States, in long tons

State	1935	1936	1937	1938	1939	State	1935	1936	1937	1939	1939
Alabama Arkansas Colorado Georgia Idaho Massachusetts Michigan Minnesota Montana	3, 735 555 77, 931	3, 285 10, 568 2, 717	7,509 11,577 4,045	3, 477 655 2, 807 230 17, 424	1, 970 7, 516 7, 156 163 649 182, 260	New Mexico North Carolina. Tennessee Utah. Virginia	190 645 93, 291	874	902 3, 436 1, 170	6, 093 456 1, 670	294 262

Manganiferous iron ore shipped from mines in the United States, 1935-39, by States, in long tons

State	1935	1936	1937	1938	1939
Alabama Colorado Georgia Michigan Minnesota Wisconsin	56 4, 847 419, 373 6, 617 430, 893	427 840, 725 405 841, 557	149 5, 492 9, 739 1, 173, 637 1, 189, 017	16, 057 259, 183 275, 240	469, 703

Manganese and manganiferous ores shipped by mines in the United States in 1939, by States

	Ore co	ontainin t or mo	g 35 per- re Mn	Ore c	ontaining percent	10 to 35 Mn	Ore	containin percent	g 5 to 10 Mn
	Ship- pers	Long tons	Value	Ship- pers	Long tons	Value	Ship- pers	Long tons	Value
Metallurgical: Alabama Arkansas Colorado Georgia Idaho Massachusetts Minnesota Montana New Mexico North Carolina Tennessee Utah Virginia Washington Undistributed Total metallurgical Battery: Montana	1 2 3 3	103 5, 365 2, 646 	\$1,416 (¹) 45,171 (¹) (°) 796 109,661 (¹) (¹) (¹) (¹) (1) (1) (1) (1) (2) (1) (1) (2) (3) (3) (4) (4) (5) (7) (8) (8) (8) (8) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	3 1 1 4 1 1 2 1 2 1 2 5 4	519 1, 970 7, 516 7, 156 163 649 182, 260 2, 121 31, 999 262 4, 584	\$4, 561 (1) (1) 35, 959 (1) (1) (1) (2) 632 2, 030 1, 550 27, 004 862, 661 934, 397			\$1, 213, 924
Miscellaneous: Alabama California Montana Tennessee Virginia West Virginia Total miscellaneous	1 1 2 2 2 1 2 7 1 13	84 6 1,129 529 1,186 26 2,960	22, 746 18, 515 21, 855 380 63, 496						
	31	29, 307	794, 746	28	239, 544	934, 397	3	469, 703	1, 213, 924

1 Included under "Undistributed."

Alabama.—Shipments of manganese ore from Alabama in 1939 were made by J. B. Bynum, who operates the Walnut Grove mine at Walnut Grove, Etowah County, and by the Manganese Corporation, which buys ore from small operators chiefly in Calhoun and Cleburne Counties. Shipments comprised 103 long tons averaging (natural) 35.09 percent Mn to metallurgical plants and 84 tons averaging (natural) 70.18 percent MnO₂ for miscellaneous uses. Shipments of ferruginous manganese ore came from Calhoun and Etowah Counties and averaged (natural) 30.83 percent Mn.

 ¹ producer each in Montana, Tennessee, and Virginia shipped both metallurgical and miscellaneous ore.
 Mills through which all ore was shipped; producers not counted.

Arkansas.—Two shippers, Walter H. Denison Manganese & Contracting Co. and Arkansas Manganese Co., supplied the Arkansas total (5,365 long tons) of manganese ore in 1939 from operations in the Batesville-Cushman district of Independence County. The ore averaged (dried) about 48 percent Mn. In addition, 1,970 tons of ferruginous manganese ore averaging (dried) 32.25 Mn were shipped.

California.—The Pacific Coast Manganese Corporation shipped 6 tons of ore containing 70 percent MnO₂ in 1939 from the Daisy mine

in the Paymaster district, Imperial County.

Colorado.—No manganese ore was shipped from Colorado in 1939, but 7,516 long tons of ferruginous manganese ore, containing (natural) 17.06 percent Mn and 22.79 percent Fe, were shipped by the Chrysolite Co. from the Allright, Chrysolite, and Fairview claims in Lake

County.

Georgia.—Manganese ore shipped from Georgia in 1939 amounted to 2,646 long tons, of which the White Manganese Corporation and Knight & Beatty supplied the larger part. The ore averaged (natural) 39.15 percent Mn and came from the Cartersville district in Bartow County. Shipments of ferruginous manganese ore totaled 7,156 tons averaging (natural) 14.25 percent Mn. Aside from a small quantity from the Gibson mine in Floyd County, all ferruginous manganese ore shipped from Georgia came from the Cartersville district. No manganiferous iron ore was shipped from Georgia in 1939, but shipments of iron ore that contained less than 5 percent Mn were continued in 1939.

Idaho.—The Lava Manganese Mining Co., operating the Vanza mine in Bannock County, shipped 163 long tons of ferruginous manganese ore in 1939 containing (natural) 32.6 percent Mn and 7.1 percent iron.

Massachusetts.—Shipments of ferruginous manganese ore from Massachusetts in 1939 came from the Taconic mine in Hampshire

County.

Minnesota.—All shipments of manganese-bearing ores, that is, ore containing 5 percent or more Mn (natural), came from the Cuyuna range in Crow Wing County. The ferruginous manganese ore averaged (natural) 11.69 percent Mn and 35.93 percent iron and came from the Allstead-Hillcrest, Louise, and Merritt mines. The manganiferous iron ore shipped in 1939 contained 7.21 percent Mn and 36.67 percent iron and came from the Hopkins, Louise, Sagamore,

and Mahnomen mines.

Montana.—Shipments of manganese ore from Montana in 1939 were 7 percent less than in 1938. Of the 1939 total, one-fifth was nodulized rhodochrosite from the Emma mine in Butte, which averaged (dried) 58.85 percent Mn, and 70 percent was battery-grade concentrates from the Philipsburg district, which averaged (dried) about 70 percent MnO₂. Rhodochrosite was also shipped from the Emma mine to several miscellaneous consumers. Shipments of ferruginous manganese ore comprised 1,192 long tons of ore and 929 tons of tailings from operations at the Trout mine in the Philipsburg district.

New Mexico.—Shipments of manganese ore from New Mexico in 1939 came from Luna County and averaged (natural) 43 percent Mn

and 3 percent iron. Most of the shipments came from the Manganese Valley mine operated by Edwin A. Stone; W. T. Blackwell shipped 1 car from the American Mining Co. mine in the Little Florida Mountains. Shipments of ferruginous manganese ore consisted of 31,379 long tons containing (natural) 13 percent Mn and 38 percent iron from the Boston Hill mine near Silver City in Grant County and 620 tons containing (natural) 31 percent Mn and 9 percent iron from the Lake Valley mine in Sierra County.

North Carolina.—One producer (Weber, Magann & Co.) shipped 1 car of ore containing (natural) 35 percent Mn from the North Cove mine in McDowell County and 1 car of ferruginous manganese ore containing (natural) 31 percent Mn. These 2 cars constituted the

total shipments from North Carolina in 1939.

Tennessee.—Operations in four counties—Hamilton, Johnson, Monroe, and Unicoi—supplied the total output of Tennessee in 1939, which comprised 7,306 long tons averaging (natural) 35.05 percent Mn shipped to metallurgical plants and 529 tons averaging (natural) 70 percent MnO₂ shipped to chemical plants. The largest production came from the Embree Iron Co. in Unicoi County near Embreeville. The remainder was supplied by N. T. Dixon, W. E. Michael, and J. L. Akus. Shipments of ferruginous manganese ore, which averaged (natural) 22.11 percent Mn, came chiefly from Unicoi County.

Utah.—Two small carloads, one containing (natural) 35.4 Mn and 4.5 percent iron from the Kramer mine in Tooele County and the other containing (natural) 41 percent Mn and 1 percent iron from the Last Chance and Desert Rock mines in Grand County, constituted the total manganese-ore shipments from Utah in 1939. Shipments of ferruginous manganese ores, which averaged 28 percent Mn and 1 percent iron, were made by producers in Juab, Grand, and Tooele

Counties.

Virginia.—Shipments of manganese ore from Virginia in 1939 were lower than in 1938 and comprised 475 long tons of metallurgical ore containing (natural) 45 percent Mn and 1,186 tons of miscellaneous ore averaging (natural) 44 percent Mn. The manganese ore originated in Appomattox, Augusta, Bland, Campbell, Smyth, and Tazewell Counties. Shipments of ferruginous manganese ores in 1939 came from Augusta, Bland, and Pulaski Counties and averaged (natural) 25 percent Mn.

Washington.—A trial lot of 10 tons of manganese ore from the Coon Creek mine in Grays Harbor County constituted the 1939 ship-

ments from Washington.

West Virginia.—One small carload of manganese ore containing (natural) 43 percent Mn and 2 percent iron was shipped from the Sweet Springs mine in Monroe County. A new mill was completed on the property early in 1940.

Puerto Rico.—No manganese ore was shipped from Puerto Rico in

1939.

IMPORTS OF MANGANESE ORE

Imports for consumption of manganese ore containing 35 percent or more manganese increased 30 percent in 1939 over 1938. Decreases in receipts from Cuba and the U. S. S. R., two of the largest sources of

supply, were more than balanced by increases from Brazil, Gold Coast, and British India, other important sources. Gold Coast, with an increase of 91 percent over 1938, supplied the largest quantity—39 percent of the total. In addition to the 1939 imports shown in the following table, 30,684 long tons of ore containing 8,452 tons of manganese (28 percent Mn) came from the Union of South Africa.

Manganese ore (35 percent or more Mn) imported for consumption in the United States, 1937–39, by countries

Country	Mang	anese ore tons)	e (long	Mn	content tons)	(long	,	Value	
	1937	1938	1939	1937	1938	1939	1937	1938	1939
Other countries	77, 987 122, 937 254, 547 70, 380 	29, 698 131, 422 126, 857 25, 480 4, 002 166, 042 85 483, 586	42, 713 105, 936 242, 924 89, 545 6, 966 3, 401 135, 243 403 627, 131	35, 505 56, 385 130, 147 36, 523 	13, 307 61, 534 63, 890 13, 121 1, 600 80, 673 43 234, 168	19, 499 51, 719 122, 769 45, 556 3, 483 1, 697 68, 882 206 313, 811	\$597, 413 2, 185, 800 2, 942, 430 679, 232 	\$220, 328 2, 242, 425 1, 500, 813 236, 945 44, 075 2, 661, 557 13, 254 6, 919, 397	\$366, 597 1, 689, 547 3, 019, 368 1, 054, 718 89, 784 45, 716 2, 204, 304 28, 016 8, 498, 050

General imports (containing 35 percent or more Mn), which represent the movement of ore into this country, were greater than imports for consumption, and totaled 698,490 long tons containing 341,816 tons of manganese. Of this quantity, 200,781 long tons came from the U. S. S. R., 155,123 from Gold Coast, 108,984 from British India, 105,936 from Cuba, 103,526 from Brazil, and 24,140 from other sources. In addition, 30,684 long tons of ore containing 8,452 tons of manganese (28 percent Mn) were imported from the Union of South Africa.

STOCKS

Stocks of manganese ore in bonded warehouses rose for the third consecutive year and according to figures of the Bureau of Foreign and Domestic Commerce reached a peak of 903,561 long tons containing 441,806 tons of Mn at the end of 1939. This abnormally high level of stocks resulted from low activity in the domestic steel industry and overbuying in recent years.

PRICES

Prices of manganese ore according to grade and origin, as quoted by the various trade journals, apply to imported ore and (except for battery ore) are on a unit basis. The unit is 1 percent of a long ton, or 22.4 pounds of contained manganese. Prices of battery-grade ore are quoted on a per-ton basis, with a minimum requirement of manganese dioxide.

The quotations in the following table are from the Engineering and Mining Journal.

Domestic prices of metallurgical manganese ore in 1939, in cents per long-ton unit [C. i. f. North Atlantic ports, cargo lots, exclusive of duty]

	Begin- ning of year	End of year		Begin- ning of year	End of year
Brazilian, 46–48 percent Mn Chilean, 47 percent Mn Indian, 50 percent Mn Caucasian, 52–55 percent Mn.	\$0. 27 . 28 . 30 . 30	\$0. 45 . 45 . 48 . 50	South African: 50-52 percent Mn44-48 percent Mn	\$0. 28 . 25	\$0. 49 . 45

According to the Engineering and Mining Journal, the prices for chemical (battery-grade) ores per long ton in carlots at the end of 1939 were as follows: Domestic, containing 70 to 72 percent manganese dioxide, \$45; and foreign, containing 80 to 85 percent MnO₂, \$50 to \$70. Foreign quotations increased \$5 to \$10 a ton during the year.

CONSUMPTION OF MANGANIFEROUS RAW MATERIALS

The following table shows the indicated consumption of manganiferous raw materials in the United States in 1939. The table does not consider differences in consumers' stocks at the beginning and end of the year. As such stocks are largely imported ore and the import figure used in the table is that for imports for consumption it is thought that the change in stocks would not be great because the manganese ore may be kept in bond until withdrawn for consumption. The duty is then paid, and the ore is reported as imports for consumption.

Indicated consumption of manganiferous raw materials in the United States in 1939

		aining 35 or more	contain	residuum ing 10 to ent Mn	Ore containing 5 to 10 percent Mn		
	Long tons	Mn content (percent)	Long tons	Mn content (percent)	Long tons	Mn content (percent)	
Domestic shipments Imports for consumption	29, 307 627, 131	42 50	368, 782 30, 684	13 28	469, 703 1 62, 757	7. 2 8. 7	
Total available for consumption	656, 438	50	399, 466	14	532, 460	7.4	

¹ Estimated.

Besides the material shown in the foregoing table, 652,900 long tons of ore containing 2 to 5 percent Mn were used, presumably in the manufacture of manganiferous pig iron, in 1939 compared with 358,200 tons in 1938. Figures are not available for imports of ore of this class.

METALLURGICAL INDUSTRY

Although some manganese is used in both the ferrous and non-ferrous metallurgical industries the bulk is consumed in the manufacture of iron and steel. Most of the ore entering this industry is used in the manufacture of ferromanganese and spiegeleisen, the forms in which manganese usually is added to steel.

Chief manganese alloys imported into and made from domestic and imported ores in the United States, 1938-39, in long tons

Administration of the property of the con-	19	038	19	39
er en et men en en en en en en en en en en en en e	Alloy	Manga- nese	Alloy	Manga- nese
Ferromanganese:				
Imported	26, 258	01 110	41 007	00 41
Domestic production	242, 994	21, 118	41, 227	. 33, 414
From domestic ore 1		191, 104	270, 111	214, 040
From imported ore 1	13, 926	10, 996	104	83
Total	229, 068	180, 108	270, 007	213, 957
Ratio (percent) of Mn in ferromanganese of do-	269, 252	212, 222	311, 338	247, 454
mestic origin to total Mn inferromanganese made				
and imported.		- 10		
Number of plants making ferromanganese	8	5. 18		. 03
Spingalaigan:	. 8		8	
Imported	17, 248	10 450	00.004	
Domestic production		1 3, 450	38, 264	1 7, 653
		2, 289	91, 491	18, 463
From domestic ore ¹ From imported ore ¹	11,060	2, 249	91, 114	18, 388
Total	251	40	377	75
Ratio (percent) of Mn in spiegeleisen of domestic	28, 559	5, 739	129, 755	26, 116
origin to total Mn in spiegeleisen made and im-			-	
ported	100	00.10		
Number of plants making spiegeleisen	3	39. 19		70. 41
Total available supply of metallic manganese as alloys	3		5	
Percent of available supply of manganese in—		217, 961		273, 570
Ferromanganese and spiegeleisen imported		11.07	- 1	
Ferromanganese made from imported ore				15.01
Spiegeleisen made from imported ore		82. 63		78. 21
Ferromanganese made from domestic ore				. 03
Spiegeleisen made from domestic ore		5. 05		03
Ferromanganese and spiegeleisen made from do-		1.03		6. 72
		c 00		
Spiegeleisen made and imported		6. 08		6. 75
Total open-hearth and Bessemer steel	07 044 001	2. 63		9. 55
r over oben-nearth and Dessemer steet	41,844,961		46, 222, 068	

¹ Estimated.

Ferromanganese.—The domestic output of ferromanganese in 1939, which increased 11 percent over 1938, was produced at the following plants:

Bethlehem Steel Co., Johnstown, Pa.
Carnegie-Illinois Steel Corporation, Etna, Pa.
Electro Metallurgical Co., Alloy, W. Va.
Jones & Laughlin Steel Corporation, Aliquippa, Pa.
E. J. Lavino & Co., Reusens, Va., and Sheridan, Pa.
Sloss-Sheffield Steel & Iron Co., North Birmingham, Ala.
Tennessee Coal, Iron & Railroad Co., Ensley, Ala.

In addition to the above plants, shipments were made by the Colorado Fuel & Iron Corporation, Pueblo, Colo., and the Pittsburgh Metallurgical Co., Niagara Falls, N. Y.

The larger part of the ferromanganese produced in this country is made from foreign ores, as shown in the following table.

Ferromanganese produced in the United States and metalliferous materials consumed in its manufacture, 1935-39

	Ferromanganese produced				Materials consumed (long tons)					
Year	Long	Manganese contained		Manganese ore (35 percent or more Mn, natural)		Iron and manga- niferous	Cinder, scale, and purchased			
tons	tons	Percent Long tons		Foreign	Domestic	iron ores	scrap	(long tons)		
1935. 1936. 1937. 1938. 1939.	214, 290 316, 000 376, 443 242, 994 270, 111	79. 41 79. 09 79. 54 78. 65 79. 24	170, 168 249, 933 299, 425 191, 104 214, 040	401, 846 595, 114 698, 052 416, 738 502, 986	4, 286 5, 987 9, 444 22, 548	9, 195 12, 467 17, 511 9, 696 8, 324	8, 921 2, 821 6, 017 8, 462 6, 250	1. 895 1. 902 1. 879 1. 808 1. 862		

The sources of the foreign ore used in the production of ferromanganese are shown in the following table.

Foreign manganese ore used in manufacture of ferromanganese in the United States, 1935-39, in long tons

Source of ore	1935	1936	1937	1938	1939
Africa Brazil Chile Cuba India India U. S. S. R	69, 857 47, 663 2, 941 56, 411 76, 983 520 147, 471 401, 846	199, 143 86, 032 832 32, 317 105, 289 	150, 112 112, 238 186 60, 012 62, 199 313, 305 698, 052	152, 698 64, 060 36, 295 55, 965 107, 720 416, 738	129, 227 58, 284 856 58, 999 86, 309 169, 311 502, 986

Shipments of ferromanganese in 1939 increased 33 percent over 1938. The record of shipments during the past 5 years is as follows:

Ferromanganese shipped from furnaces in the United States, 1935-39

Year	Long tons	Value	Year	Long tons	Value
1935 1936 1937	194, 627 322, 353 359, 842	\$16, 374, 328 24, 088, 298 30, 696, 748	1938 1939	223, 720 296, 631	\$19, 144, 884 24, 137, 211

Although there is a small export trade in ferromanganese, the quantity manufactured in the United States is supplemented by imports. Ferromanganese imported for consumption in 1939 included 1,017 long tons containing not over 1 percent carbon, 14,136 tons containing over 1 but less than 4 percent carbon, and 26,074 tons containing not less than 4 percent carbon.

Ferromanganese imported into and exported from the United States, 1935-39

	Impor	ts for consum	Exports 1		
Year	Gross weight (long tons)	Mn content (long tons)	Value	Gross weight (long tons)	Value
1935 1936 1937 1938 1939	27, 240 37, 953 29, 559 26, 258 41, 227	21, 830 30, 594 23, 888 21, 118 33, 414	\$1, 731, 411 2, 251, 951 2, 163, 616 1, 770, 948 2, 935, 214	131 466 1, 725 247 2, 923	\$10, 389 26, 540 72, 502 18, 799 247, 798

¹ Includes spiegeleisen; not separately classified.

Norway supplied 59 percent of the imports in 1939. Distribution of imports by countries is shown in the following table:

Ferromanganese imported for consumption in the United States, 1938-39, by countries

	193	38	1939		
Country	Mn content (long tons)	Value	Mn content (long tons)	Value	
Canada Czechoslovakia. France Germany ² Japan Netherlands. Norway Poland and Danzig ² Sweden Yugoslavia.	308 5,843 10,547	\$211, 356 152, 068 37, 118 403, 561 953, 045 13, 800 1, 770, 948	(1) 2, 050 846 391 7, 974 19, 563 1, 598 22 970	\$50 162, 091 100, 905 24, 622 561, 509 1, 909, 610 118, 015 3, 356 55, 056	

Customs districts through which imported ferromanganese entered in 1938 and 1939 are as follows:

Manganese content of ferromanganese imported for consumption in the United States, 1938-39, by customs districts, in long tons

Customs district	1938	1939	Customs district	1938	1939
Buffalo. Chicago. Connecticut. Galveston Los Angeles Maryland Massachusetts Michigan New Orleans	389 1, 585 163 96 12, 157 39 322 1, 126	892 3, 434 362 425 257 18, 079 243 1, 773 1, 082	New York. Ohio. Oregon. Philadelphia. San Francisco. Washington (State)	1, 090 334 3, 526 160 131 21, 118	934 2, 497 249 2, 773 296 118 33, 414

¹ Less than 1 ton.
² For statistical purposes, trade with the Sudeten area, as far as ascertainable, is included with Germany, while trade with the other Czechoslovak Provinces occupied by Germany and Poland has been included with these countries since March 18 or 19, 1939. After November 16, 1939, trade with Danzig and that part of Poland occupied by Germany has been included with Germany.

Stocks of ferromanganese in bonded warehouses at the end of 1939 were 4,253 long tons containing 3,603 tons of Mn compared with 8,392

tons containing 6,971 tons of Mn at the end of 1938.

The quoted prices of ferromanganese dropped \$5.25 per long ton in February but increased \$10 a ton in September and \$10 a ton in October, as shown in the following table.

Prices per long ton of ferromanganese in the United States, 1937-39 1

[80 percent—delivered at Pittsburgh]

Month	1937	1938	1939	Month	1937	1938	1939
January February March April May June	\$84. 79 84. 79 92. 29 99. 79 107. 29 107. 29	\$107. 49 107. 49 107. 49 107. 49 107. 77 107. 77	\$90. 58 85. 33 85. 33 85. 33 85. 33 85. 33	July August September October November December	\$107. 29 107. 29 107. 29 107. 29 107. 39 107. 49	\$97.77 97.77 97.77 97.77 97.77 97.83 97.83	\$85. 33 85. 33 95. 33 105. 33 105. 33

¹ Steel, vol. 106, Jan. 1, 1940.

Spiegeleisen.—Shipments of spiegeleisen in 1939 increased 240 percent over 1938.

Spiegeleisen produced and shipped in the United States, 1935-39

Year	Produced Shipped from furnaces		iced	oduced Veer		Produced	Shipped from furnaces	
(long tons)	Long tons	Value	Year	(long tons)	Long tons	Value		
1935 1936 1937	60, 018 95, 137 (¹)	54, 793 92, 336 134, 983	\$1, 303, 574 2, 249, 217 3, 969, 822	1938 1939	11, 311 91, 491	24, 939 84, 739	² \$728, 830 2, 484, 042	

¹ Bureau of Mines not at liberty to publish figures.

Spiegeleisen was manufactured at the following plants in 1939:

Carnegie-Illinois Steel Corporation, Duquesne, Pa. E. J. Lavino & Co., Sheridan, Pa. New Jersey Zinc Co., Palmerton, Pa. Sloss-Sheffield Steel & Iron Co., North Birmingham, Ala. Tennessee Coal, Iron & Railroad Co., Ensley, Ala.

In addition to these plants the Keokuk Electro-Metals Co., Keokuk, Iowa, and E. J. Lavino & Co., Reusens, Va., made shipments from

Most of the spiegeleisen produced in the United States in recent years has been made from domestic raw materials, but 206 long tons of foreign ore containing 49.55 percent Mn were consumed in 1939 in the manufacture of spiegeleisen.

Imports of spiegeleisen for consumption in 1939 increased 122 percent over 1938. Canada, with 37,470 long tons, furnished 98 percent of the supply, while the remaining tonnage came from Norway and the Netherlands.

² Revised figures.

Spiegeleisen imported for consumption in the United States, 1935-39

Year	Long tons	Value	Year	Long tons	Value
1935 1936 1937	32, 384 52, 011 16, 841	\$915, 134 1, 404, 983 589, 766	1938 1939	17, 248 38, 264	\$625, 480 1, 329, 814

The quoted prices of spiegeleisen at producers' furnaces increased \$2 a long ton in September and \$2 a ton in October, remaining at \$32 a

Manganiferous pig iron.—Precise data are not available on the consumption of manganiferous ores in the production of manganiferous pig iron; however, 469,703 long tons of domestic ore containing 5 to 10 percent Mn and 652,900 tons containing 2 to 5 percent Mn were shipped in 1939. Foreign manganiferous iron ore (62,757 tons) also was consumed in the manufacture of pig iron. The sources of the foreign ores for the past 3 years are given in the following table. Import figures are not available on ore containing 2 to 5 percent Mn.

Foreign ferruginous manganese ore and manganiferous iron ore consumed in the United States, 1937-39, in long tons

	Ferrugin	ous manga	nese ore	Manganiferous iron ore		
Source of ore	1937	1938	1939	1937	1938	1939
Africa:	E7 170					
Egypt Undistributed	57, 176	11, 753	1, 184	446		
Asia: Palestine	323	·	1, 133			
Philippine Islands	2, 257	2, 887				
UndistributedAustralia	2, 541			140, 372	61, 473	54, 94
Brazil		2, 829		1,658	9, 597	6, 83
SpainSweden					4, 215	98
Undistributed	6, 982	6, 005	582			
	69, 279	23, 474	2, 899	142, 476	75, 285	62, 75

BATTERY INDUSTRY

Shipments of manganese ore to battery makers by domestic producers in 1939 totaled 7,767 long tons. No ore was shipped from Puerto Rico in 1939. Imported manganese ore also was consumed in the battery industry, but no figures are available on such imports.

Manufacturers of dry cells apparently use two grades of material.⁶ Although not less than 70 percent MnO₂ was required for one grade it is expected that the MnO₂ content would average 72 percent, and individual shipments as low as 70 percent would not be rejected. The ore should be free from particles bearing lead in any concentrated form. Not more than 1 gram of easily recognizable iron pyrite should be present in 100 pounds of ore.

⁶ Engel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division. 36. Ore-dressing Studies, 1938-39, Ore-testing Studies of the Ore-dressing Section: Bureau of Mines Rept. of Investigations 3484; 1940, pp. 31-34.

Specifications for	manganese or	re used by	various dr	y-cell manufacturers
--------------------	--------------	------------	------------	----------------------

Constituent	Percent						
MnO2 ¹	² 70. 0 2. 0 . 15 . 025	84. 0 2. 0 . 10 . 03	70. 0 2. 0 . 25 . 03	80. 0 2. 5 . 015 . 025	70.0 1.5 .25 Trace	85.0	70. (
N1. CoNi-Co	. 005	. 10	. 001	.07 .04 .08	do do Trace		
Sb	.005	. 05		.10	Trace		
iiO2 Magnetic iron	. 50	. 50	3. 0	2. 0	15.0	3.0	
002	2.0	.50					

¹ Computed from available oxygen content.

MISCELLANEOUS INDUSTRIES

Certain manganese ores with peculiar physical or chemical properties are required for the manufacture of special articles in the chemical, ceramic, and glass industries. The glass and paint industries require an ore containing about 85 percent MnO₂ and not more than 1 percent iron. Low iron content is especially desirable in ores for the glass industry, and uniform quality is particularly sought.⁷

WORLD PRODUCTION

The following table shows, insofar as statistics are available, the world production of manganese ores from 1935 to 1939 and their average manganese content. Most of the figures are from official statistics of the countries concerned; they are supplemented by data from semiofficial and other sources.

Manganese ore produced in principal countries of the world, 1935-39, in metric tons
[Compiled by R. B. Miller]

Country 1	Percent Mn	1935	1936	1937	1938	1939
North America: Canada (shipments) Costa Rica		91	200	77 100	304	359
Cuba Mexico	36-50+ 40+	35, 269 3, 217	48, 471 3, 377	131, 299 17	123, 844 117	102, 415 27
United States: Continental (shipments)	35+	26, 852	32, 635	40, 887	25, 727	29,777
Puerto Rico (exports) South America:	48-51	3, 412	3, 058	2, 381	1, 039	20, 111
ArgentinaBolivia	35–38 50	3 439	8 443	606	437	(2) 3 500
Brazil	38-50 40-50	41, 767 4, 370	156, 201 5, 180	253, 661	221, 961	192, 956
Chile (exports) Peru	40-50	4, 370	5, 180	13, 014 157	19, 967 24	12, 550 4, 024

¹ In addition to the countries listed, Belgium is reported to produce a small quantity of manganese ore, but statistics of output are not available. Czechoslovakia reports a production of manganese ore, but as it has been ascertained that the product so reported averages less than 30 percent Mn and therefore would be considered ferruginous manganese ore under the classification used in this report, the output has not been included in the table.

² Peroxidation not less than 93 percent.

<sup>Data not available.
Shipments by rail and river.</sup>

⁷ Engel, A. L., and Shelton, S. M. Progress Reports—Metallurgical Division. 36. Ore-dressing Studies, 1938-39, Ore-testing Studies of the Ore-dressing Section: Bureau of Mines Rept. of Investigations 3484, 1940, pp. 31-34.

Manganese ore produced in principal countries of the world, 1935-39, in metric tons—Continued

Country	Percent Mn	1935	1936	1937	1938	1939
Europe:					1 007	(4)
Bulgaria	30-45		1, 500	3,000	1, 887 163	(2) (2) (2) (2) (3)
Germany	30+	224 423	242 1, 680	226 6, 952	7, 075	(2)
Greece	30+ 35-48	6. 291	27, 228	25, 088	22, 221	2
Hungary	34-37	9, 127	24, 132	33, 532	48, 282	2
Italy Portugal	34-37 40+	158	24, 132	317	557	225
Rumania	30–36	19, 795	33, 856	50, 749	60, 173	41, 546
Spain	31-34	1, 260	(4)	(4)	(4)	(2)
Sweden		6, 495	5, 943	`ź, 845	`5, 347	(2)
U. S. S. R	41-48	2, 384, 600	3, 002, 000	2, 752, 000	2, 272, 800	(2) (2) (2)
Yugoslavia	32-38	928	2, 739	4, 420	3, 759	5, 655
Asia:	02 00		_,		<i>'</i>	,
China (exports)	45-46	827	23, 794	51, 446	1, 247	1
India:			, i			
British	47-52	651, 779	826, 498	1, 068, 472	983, 464	(2)
Portuguese	42-50+	4,064	2, 662	4,077	9, 478	8, 204
Indochina		1, 568	3, 430	5, 287	2, 214	2, 440
Japan	49-51	71, 659	67, 753	(4)	(4)	(2)
Netherland India	50-55	12, 353	8, 619	11, 083	9,687	(2) (2)
Philippine Islands (exports) Turkey Unfederated Malay States	45-50	519	255	12, 206	49, 359	3, 339
Turkey	30-50	9, 200	4,600	530	2, 186	
Unfederated Malay States	30	28, 504	37, 366	33, 319	32, 483	31, 953
Africa:	56			27, 471	7, 725	(2)
Belgian Congo	30+	87, 303	134, 972	186, 320	153, 112	119, 882
Egypt Gold Coast (exports)	50+	437, 571	417, 621	535, 495	329, 411	(2)
Morocco:	30T	401,011	411,021	000, 100	020, 111	
French	40-50+	24, 865	39, 360	76, 460	86, 597	(2)
Spanish		21,000	00,000	660	152	(2) (2)
Northern Rhodesia	30-48	4,040	3,071	2, 379	2,779	3,018
Union of South Africa		95, 450	258, 244	631, 194	551, 739	419, 697
Oceania:		1,	-/	,	l '.	·
Australia:						
New South Wales			73	109	221	(2)
Queensland				1,052	382	
New Zealand				5	91	(2)
			F 450 000	0.040.000	F 100 000	(0)
		3, 975, 000	5, 178, 000	6, 040, 000	5, 108, 000	(2)

Brazil.—Production in Brazil was at a lower rate in 1939 than in 1938, but exports were higher—189,003 metric tons and 136,843 tons, respectively. Shipments of ore from the mines to the ports were reduced in September and October owing to coal shortages that curtailed train schedules. European coal had been used, but the outbreak of hostilities early in September suddenly reduced supplies. In November the situation was relieved somewhat, as coal was obtained from other sources. The export tax on manganese ore, which had been reduced during the first quarter of 1939, was increased again during the second quarter. Although the tax rate was not changed the official value was increased considerably, thereby increasing the tax payable. The tax on ore containing 45.01 to 46 percent manganese—the grade constituting the bulk of the exports—was raised from 2.633 milreis per metric ton in the first quarter to 6.400 in the second quarter compared with 3.240 in 1938.

Cuba.—All the manganese ore from Cuba comes from the Province Output by the Cuban-American Manganese Corporation, the principal producer in Cuba, totaled 102,415 metric tons (dried) in 1939, of which 96,779 tons were nodulized concentrates containing 51 percent Mn; the remainder was jigged ore containing 42 percent Mn or sorted ore containing 49 percent Mn. Exports by the

Data not available.
 Estimate included in total.

company were 104,361 metric tons, of which 90,177 tons were nodulized concentrates and 14,184 tons washed or jigged ore averaging 38 percent Mn. Operations have been described by Norcross.⁸ The company also buys ore offered by small producers. Other Cuban shipments amounted to 2,102 metric tons. Activities were reported near Baire, La Maya, Guisa, Los Negros, El Trumfo, and Maffo in Oriente, but independent producers exported only about 100 tons.

Gold Coast.—The African Manganese Mines Co., Ltd., which operates at Nsuta near Tarkwa, Wasaw district, Western Province, is the only producer of manganese ore in Gold Coast Colony. Exports were prohibited without license by proclamation on September

3, 1939.

India, British.—Water-borne exports from India, normally the second largest producer in the world, increased from 526,661 metric tons in 1938 to 664,893 in 1939. These figures do not include exports through Mormugao, which were 132,491 metric tons in 1938. A 3-percent ad valorem special armament tax on all exported mineral substances was imposed in November 1939. Export licenses have been required on movement of manganese ore from India since

September 1939.

Union of South Africa.—Output in the Union of South Africa in 1939 was lower than in 1938. Virtually the entire production came from deposits north of Postmasburg in Griqualand West, Cape Province. All Cape ore is exported; exports in 1939 totaled 332,702 metric tons compared with 319,049 in 1938. The renewal of the Clearance Agreement with Germany, the largest buyer of South African ores, near the end of 1938 was a bright spot in an otherwise dull market during the first half of 1939. Several grades of ore containing 28 to more than 50 percent Mn are shipped, but a large part of the shipments contain less than 45 percent Mn. Small quantities (227 metric tons in 1939) of wad, together with some high-grade pyrolusite and psilomelane, are produced in the Krugersdorp district, Transvaal, for local consumption only.

U. S. S. R.—Data showing production in 1939 are not available.

U. S. S. R.—Data showing production in 1939 are not available. Of the 1937 production, 57 percent came from the Chiaturi deposits in Gruzia, 33 percent from the Nikopol deposits in the Ukraine, and the other 10 percent from the Republics of Russia, Bashkiria, and Krasnoyar. Virtually all the Chiaturi ore is exported, while Nikopol supplies the bulk of the domestic consumption. The Chiaturi deposits furnish a large proportion of the imports of manganese ore into the United States. Typically, the composition of washed

Caucasian manganese ore is as follows:

Analysis of Caucasian washed manganese ore, percent

Mn SiO ₂ Fe	51 -52	BaSO4	0.3 -0.5
SiO ₂	6. 8- 9. 5	P	. 155 170
Fe	. 4- 1. 5	CaO	. 90 -1. 20
Al_2O_3	1. 6- 2. 5	MgO	.1540

⁸ Norcross, F. S., Jr., Development of the Low-grade Manganese Ores of Cuba: Am. Inst. Min. and Met. Eng. Tech. Pub. 1188, February 1940, pp. 1-13.

CHROMITE

By ROBERT H. RIDGWAY

SUMMARY OUTLINE

	Page		Page
General features in 1939	591	Uses	597
Salient statistics	592	Metallurgical	597
Emergency stock pile	593	Refractory	598
Government exploration	593	Chemical	598
Domestic production	594	Prices	598
Imports	595	World production	599
Consumption	597	World trade	599

The first half of 1939 was uneventful in the chromite industry. The quiet condition of the market established in 1938 continued, as the domestic industrial rate showed little change. After midyear, however, the abrupt rise in the domestic steel-making rate to 93 percent of capacity in November, together with threats of an advent of war in Europe, were bullish demand factors. This increase in demand was offset somewhat by the scarcity of ship bottoms and the high ocean-freight and war-risk-insurance rates. Another factor hampering international flow during the last quarter of 1939 was application of various forms of export licenses, embargoes, and taxation by the producing countries. With international movement restricted by lack of demand during the first half of the year and by shipping difficulties during the second half, it is doubtful whether world production equaled that in 1938 or reached 1,000,000 long tons. Output in Turkey, one of the principal producers, held up well, while that in Southern Rhodesia and the Union of South Africa, other large producers, declined.

Owing to the tightening of supplies, quotations increased in October and again in December, but consumers' stocks cushioned the effect of the sharp increase in demand. Most of the increase in prices was due to increased transportation charges and did not revert to the

producers.

Imports into the United States during the last half of 1939 were more than double those during the first half and would have been greater had conditions permitted. Higher prices and unsettled world conditions focused attention on the development of domestic production. Although output was small (a few thousand tons), known deposits and promising areas were being examined by private concerns and Government agencies. California, Oregon, Montana, Washington, and Wyoming were the scene of much of this activity. So far, however, exploration has revealed no extensive deposits of high-grade metallurgical ore but has developed deposits suitable for the refractory and chemical industries. The largest output in 1939 came from California, where the principal producer is planning operations at the Pilliken mine in Eldorado County that will yield 750 to 1,000 tons of concentrates a month beginning in March 1940.

The following table compares the salient statistics of the chromite industry during the last 5 years with the yearly average from 1925 to 1929.

Salient statistics of the chromite industry in the United States, 1925-29 (average) and 1935-39

	1925-29 (average)	1935	1936	1937	1938	1939
Apparent available supply: Importslong tons Shipments from domestic mines long tons	224, 357 276	259, 063 515	324, 258 269	553, 916 2, 321	352, 085 812	317, 511 3, 614
TOTIS TOTIS						
Imports:	224, 633	259, 578	324, 527	556, 237	352, 897	321, 125
Africa 1percent of total	63	36	37	50	48	37
Cubado	15	18	22	17	11	2
Greecedo	9	8 22	8 20	5 9	3	
New Caledoniado Turkeydo	6	6	20	9 7	8	
U. S. S. R do		ĭ	ĭ	·		
Other countriesdo	7	9	6	12	2 24	2 2
World productionlong tons	428,000	780, 000	1,051,000	1, 260, 000	1, 107, 000	(3)

Originated in Southern Rhodesia and Union of South Africa.
 Principally from the Philippine Islands.
 Figures not yet available.

Figure 1 shows trends in consumption, prices, and domestic shipments during the past 15 years.

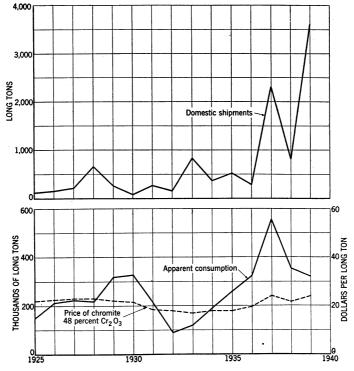


FIGURE 1.—Trends in consumption, prices, and domestic shipments of chromite, 1925-39.

CHROMITE 593

Emergency stock pile.—On June 7, 1939, the President signed the Strategic Materials Act (Public, No. 117, 76th Cong., ch. 190, 1st sess.) which authorized the expenditure of \$100,000,000 over a period of 4 years for the purchase of stock piles of strategic materials. Only \$10,000,000 was appropriated in the Third Deficiency Bill, approved August 2, 1939 (Public No. 361, 76th Cong., ch. 633, 1st sess.), however, and purchases were restricted largely to the high-priority mineral commodities on the strategic list. Chromite is one of the four mineral commodities comprising the first priority class for stockpile reserves. Its importance is appreciated more readily when it is realized that the steel industry is charged with three-fourths of the domestic consumption.

The following specifications were drawn for high-grade metallurgical

lump ore:

Cr ₂ O ₃ (minimum)	48 percent.
Fe (maximum)	\(\frac{1}{3} \) of Cr content.
S (maximum)	0.50 percent.
P (maximum)	0.20 percent.

The specifications also provided that all lumps shall pass a 6-inch screen and that not more than 10 percent shall pass a ½-inch sieve.

Proposals for supplies (S. 3 and S. 4) dated September 20, 1939, for opening October 20, 1939, were sent to a large number of bidders, but only two offers were received. The disturbed conditions in ocean shipping at the time were not without effect on the ability of possible suppliers to guarantee delivery on a contract price. As neither bidder met the conditions of the proposal no awards were made, and under dates of October 30 and 31, telegrams were sent to five recognized handlers and potential suppliers requesting bids on 5,000 to 40,000 long tons of ore. Three offers were received, and two contracts were awarded. On November 20, a purchase order was issued to Dorothea Reddy Maroney for 25,000 tons of chromite at \$33.744 per long ton, delivered New Cumberland, Pa. The bidder proposed to furnish ore from undeveloped properties on the Kenai Peninsula in Alaska. At this writing no ore has been received. The other bid was let to the Mutual Chemical Co. for 20,000 tons of ore at \$26.50, c. i. f. Phila-This concern proposed to supply the chromite from deposits delphia. in Turkey; the ore is of known good grade and very acceptable to consumers in this country. Delivery on this contract was begun early in 1940.

Earlier in the year 1,801 short tons of chromite from Southern Rhodesia was purchased by the Navy Department at \$20.74 per short ton. The ore, delivered in June, was supplied by E. J. Lavino & Co. This purchase covered a previous contract on chromite from

domestic sources that was canceled because of nondelivery.

Government exploration.—Under section 7 of the Strategic Materials Act the Geological Survey and the Bureau of Mines undertook to search for and appraise ore deposits containing metals that have been designated as strategic by the Secretaries of War, Navy, and the Interior upon advice of the Army and Navy Munitions Board. The bill authorized the expenditure of \$500,000 a year, \$350,000 by the Bureau of Mines and \$150,000 by the Geological Survey, for each of the fiscal years ending June 30, 1940, 1941, 1942, and 1943. Close cooperation of the geologists of the Survey and engineers of the Bureau will be necessary to accomplish the objectives of the act.

The Bureau of Mines, in carrying out its part 1 of the program, seeks to determine (1) the extent and quality of the ore, (2) the most suitable method of mining and beneficiating it, and (3) the cost at which it may

be produced.

Three exploration projects were set up on chromite. Deposits in Sweetgrass and Stillwater Counties, Mont., Casper Mountain, Wyo., and near John Day, Oreg., were investigated and drilled by the Bureau In one area there is definite indication of a large tonnage of ore that will concentrate to about 42 to 45 percent Cr₂O₃ with a Cr-Fe ratio of 1.7 to 1. In another area, although the proved tonnage is not so large, the results of the work indicate that the tonnage possibilities have by no means been fully tested. The results of exploration on both areas have been so encouraging that the Bureau feels that further exploratory work is justified and is definitely planning additional work on one area during the next fiscal year. The metallurgical problem in connection with utilization of these ores is being investigated by the Bureau, and some encouraging results have been obtained. tions are that these ores would supplement supplies in an emergency.

Under the strategic minerals program, the Geological Survey investigated chromite in Wyoming, Montana, Oregon, and California. A magnetometric survey of the Casper Mountain (Wyo.) deposit was completed in the early summer. Detailed geologic mapping of the chromite zone in the Stillwater basic complex east of the Stillwater River, Mont., was completed. The principal chromite deposits in the eastern half of the serpentine belt on the north slope of the Strawberry Mountains in Grant County, Oreg., were mapped in detail. Geologic maps were completed of the Sourdough area, Curry County, and the Sordy area, Josephine County, Oreg. The High Plateaus area, Del Norte County, and the Pilliken area of disseminated chromite, Eldorado County, Calif., were mapped. Additional work in Montana, Oregon, and California is planned for the field season of 1940.

DOMESTIC PRODUCTION

Domestic production, as measured by shipments from the mines. increased to 3,614 long tons in 1939 from 812 tons in 1938 and was the largest since 1919. Except for 100 tons from Oregon, the entire output was from California. The bulk of the chromite came from the Pilliken mine where operations during 1939 were conducted by the United States Chrome Mines, Inc. The concentrates, all of which were shipped but not consumed, contained about 46 percent Cr₂O₃, 21 percent FeO, and 6 percent SiO₂. The Rustless Mining Co. took over this property on November 1, 1939, immediately dismantled the mill, and is installing new equipment. Production was expected to begin early in 1940, and plans called for a monthly output of 750 to 1,000 tons of concentrates. Much smaller shipments came from Calaveras, Del Norte, Placer, Plumas, Siskiyou, and Tuolumne Counties, Calif., and from Grant County, Oreg.

¹ Finch, John W., Strategic Minerals Investigations—Procedure Followed by the Bureau of Mines: Bureau of Mines Inf. Circ. 7097, 1939, pp. 1-5.

Chromite (ores and concentrates) shipped from mines in the United States, 1935-39 [All from California except in 1937 and 1939, as indicated]

Year		ning 45 per- ore chromic	Ore contain percent oxide	ning 35 to 45 chromic	То	tal
	Long tons	Value	Long tons	Value	Long tons	Value
1985	74 (3) 4 5 2,006 5 812 3,056	(1) (3) 4 5 \$11, 568 5 10, 730 (1)	2 441 3 269 2 5 315 (5) 6 558	(1) 3 \$2,978 2 5 3,320 (5) (1)	² 515 269 ² 4 2, 321 812 ⁶ 3, 614	2 \$6, 163 2, 978 2 4 14, 888 10, 730 46, 892

1 Included in total value; Bureau of Mines not at liberty to publish figures separately.
2 Includes a small quantity of ore containing less than 35 percent chromic oxide.
3 Ore containing 45 percent or more chromic oxide included with ore containing 35 to 45 percent.
4 Includes 288 long tons of ore valued at \$880 shipped from mines in Oregon, a small part of which contained

35 to 45 percent chromic oxide. ⁵ A small quantity of ore containing 35 to 45 percent chromic oxide included with ore containing 45 percent

6 Includes 100 tons of ore from Oregon.

Although chromite has been produced in Wyoming the work at Casper Mountain by the Geological Survey and the Bureau of Mines attracted attention during the year. No official statement has been made regarding this area, but in 1939 Beckwith 2 described the deposits as follows:

The chromite of Casper Mountain occurs disseminated, and in bands or lenses in tremolite-chlorite-talc schist, originally on ultrabasic rock. The best ore would require concentration to meet market requirements. Some laboratory concentrates contain sufficient $\operatorname{Cr}_2\operatorname{O}_3$ for the manufacture of ferrochromium; others contain an excessive amount of iron.

The utilization of domestic chromite has interested the Bureau of Mines for some time. In connection with work on the matte smelting of chromium,3 4 attempts were made in 1939 to desulfurize such matter by treating them with metallic manganese. Preliminary work also was done on the production of chromium and chromium alloys by electrolysis in fused electrolytes. The results of gravityconcentration tests on a sample of lower-grade California ore indicated that recovery would be low—about 70 percent.6 The Bureau has also developed a novel laboratory technique for the production of pure sponge chromium from chromite of lower grade than that now required by industry.

Imports of chromite in 1939 decreased 10 percent from the 1938 total, owing principally to a large decrease in shipments from Africa. Of the principal suppliers, only Cuba showed an increase. Shipments to this country were slow during the first half of the year, less than

IMPORTS 7

³ Beckwith, R. H., Asbestos and Chromite Deposits of Wyoming: Econ. Geol., vol. 34, No. 7, September 1939, pp. 812-843.

³ Koster, J., Studies on the Treatment of Domestic Chrome Ores. Progress Reports—Metallurgical Division.

13. Electrometallurgical Investigations: Bureau of Mines Rept. of Investigations 3322, 1936,

Division. 13. Electrometallurgical investigations. Bureau of Annual Report of the Metalpp. 3-27.

4 Dean, R. S., and others, Progress Reports—Metallurgical Division. 14. Annual Report of the Metallurgical Division, Fiscal Year 1936: Bureau of Mines Rept. of Investigations 3331, 1937, pp. 7-10.

5 Dean, R. S., and others, Progress Reports—Metallurgical Division. 34. Annual Report of the Metallurgical Division, Fiscal Year 1939: Bureau of Mines Rept. of Investigations 3480, 1940, p. 22.

5 Engel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division. 36. Ore-dressing Studies, 1938-39: Bureau of Mines Rept. of Investigations 3434, 1940, pp. 19-20.

7 Figures on imports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

one-third of the year's total being received in this period. With the upturn in general business conditions and the outbreak of war in Europe, shipments increased materially and doubtless would have been greater but for the uncertainty of shipping and high ocean freight rates. The chromite imported in 1939 contained only 42 percent Cr_2O_3 . The low average content was due to a drop in receipts from Africa whose chromite, particularly that from Rhodesia, is high grade. Of the principal imports in 1939, those from New Caledonia had the highest content of chromic oxide (53 percent) and those from Cuba the lowest (33 percent).

Crude chromite imported into the United States, 1935-39, by countries

Africa 1. 92, 682 120, 011 277, 420 168, 299 118, 233 54, 992 Cuba. 47, 743 69, 963 93, 098 39, 529 66, 002 21, 764 Greece. 20, 692 26, 688 24, 583 10, 000 11, 000 4, 322 India, British 14, 926 14, 795 23, 939 4, 051 16, 468 8, 170 New Caledonia 55, 686 65, 450 51, 831 28, 520 14, 359 7, 572 Philippine Islands 787 4, 986 43, 648 78, 233 71, 914 28, 624 Turkey 16, 660 19, 490 39, 391 20, 392 16, 632 8, 015 U. S. S. R. 3, 412 2, 310						1939			
tons) tons) tons) tons) tons) tons) Chromic oxide content Africa 1	Country					Long tons			
Cuba 47, 743 66, 963 93, 998 30, 529 66, 002 21, 764 Greece 20, 692 26, 688 24, 583 10, 000 11, 000 4, 322 India, British 14, 926 14, 795 23, 939 4, 051 16, 468 8, 170 New Caledonia 55, 686 65, 450 51, 831 28, 520 14, 359 7, 572 Philippine Islands 787 4, 986 43, 648 78, 233 71, 914 28, 624 Turkey 16, 600 19, 490 39, 391 20, 392 16, 632 8, 015 U. S. S. R 3, 412 2, 310	Country						oxide	Value	
	Cuba	47, 743 20, 692 14, 926 55, 686 787 16, 060 3, 412 7, 075	69, 963 26, 688 14, 795 65, 450 4, 986 19, 490 2, 310 565	93, 098 24, 583 23, 939 51, 831 43, 648 39, 391	39, 529 10, 000 4, 051 28, 520 78, 233 20, 392	66, 002 11, 000 16, 468 14, 359 71, 914 16, 632	21, 764 4, 322 8, 170 7, 572 28, 624 8, 015	\$1, 799, 397 361, 344 111, 684 254, 265 280, 783 634, 784 323, 704 48, 989	

¹ Originated in Southern Rhodesia and Union of South Africa; recorded by Foreign and Domestic Commerce as imported from Union of South Africa, Other British South Africa, Other British West Africa, and Mozambique.

The following tables give imports of chromium alloys and compounds into the United States from 1935 to 1939.

Chromium compounds imported for consumption in the United States, 1935-39

Year	Chrom	ic acid		and dichro- potash	Chromate and dichromate of soda		
	Pounds	Value	Pounds	Value	Pounds	Value	
1935 1936 1937 1938	4, 281 2, 685 2, 310 525	\$2, 198 1, 225 1, 184 614	1, 653 672 551	\$469 330 163	909	\$198	
1939	1, 155	614					

Ferrochrome or ferrochromium and chrome or chromium metal imported for consumption in the United States, 1935–39, in long tons

Class	1935	1936	1937	1938	1939
Ferrochrome or ferrochromium— Containing 3 percent or more carbon (chromium content)— Containing less than 3 percent carbon (chromium content). Chrome or chromium metal.	30 49	4 66 57	96 164 78	(1) 121 39	3 127 41

^{1 60} pounds.

CHROMITE 597

CONSUMPTION

Owing to lack of data on consumers' stocks, it is impossible to estimate accurately the total consumption of chromite in the United States. However, the apparent available supply decreased because imports were lower.

Domestic sales, imports, and apparent available supply of crude chromite in the United States, 1935-39, in long tons

Year	Sales from domestic mines	Imports	Apparent available supply	Year	Sales from domestic mines	Imports	Apparent available supply
1935 1936 1937	515 269 2, 321	259, 063 324, 258 553, 916	259, 578 324, 527 556, 237	1938 1939	812 3, 614	352, 085 317, 511	352, 897 321, 125

The steel industry consumes more than three-fourths of the supply of chromite either as a refractory or as a raw-material source of an important alloying element. The improvement in the steel industry, particularly the precipitous rise in operations during the last quarter of the year, increased the demand for chromite and resulted in a rise in price. The domestic automobile industry, one of the important users of alloy steel and chromium plating, expanded its output from 2,489,635 units in 1938 to 3,577,058 in 1939. The construction industry uses stainless steel for decorative purposes and large quantities of chromium-plated plumbing fixtures. Activity in this field, which has been increasing since 1933, improved over 1938 but was only about three-fourths of the average annual volume of the peak years 1926 to 1929, inclusive.

USES

Industrial uses of chromite fall into three groups—metallurgical, refractory, and chemical.

Metallurgical.—Chromium is one of the principal elements used in the manufacture of alloy steel. For this purpose most of the chromite is converted into ferrochromium in the electric furnace before it is added to the steel bath, although one domestic concern makes chromium-alloy steels in the electric furnace directly from alloy-steel scrap, mild-steel scrap, and chromite. Standard grades of ferrochromium contain 60 to 70 percent chromium, and a lower content generally is not acceptable. Ferrochromium is made in two grades, depending on the carbon content; the high-carbon grade contains 4 to 6 percent carbon, while the low-carbon grade contains less than 2 percent. High-carbon ferrochromium is made by smelting chromite in a singlephase electric furnace with coke as a reducing agent. Recovery is approximately 65 percent.8 Low-carbon grades are produced by smelting the high-carbon alloy with SiO2 and coke to produce a ferrochrome-silicon low in carbon which is then smelted in a Heroulttype furnace. Ores containing 48 to 50 percent Cr₂O₃ and as little iron as possible are required in this process; the chromium-iron ratio

⁸ Udy, Marvin J., The Utilization of High-iron Chrome Ores: Trans. Canadian Inst. Min. and Met., vol. 41, 1938, p. 204.

should be at least 3:1 as, if the ratio is less, the melt will not yield a 60- to 70-percent chromium content in the ferro even if the ore con-

tains as much as 50 percent Cr₂O₃.

Although chromium is used in many alloy steels, its largest and best-known use is in the manufacture of stainless steels. Increasing quantities are being used also in the field of low-alloy, high-strength steels where chromium imparts strength and adds to corrosion resistance. In recent years chromium plating has had a wide field of uses and become important industrially, but the amount of raw material consumed is small owing to the thinness of the layer of metal deposited. The nature of hard-chromium deposits and the many uses for hardchromium plating, including files, gages, bearing surfaces, cutting tools, and molds, have been described by Goodsell.

Refractory.—Chromite with certain physical and chemical properties is used for refractories. Lump and ground chromite and chromite cements are used in bricks and in building and patching furnaces. The possible use of chromite in open-hearth roofs continued to attract

attention in 1939.

The domestic trade-journal quotation for chromite brick in 1939

was steady at \$47 per short ton at producers' plants.

Chemical.—In addition to the chromite used in the manufacture of chromic acid for electroplating, considerable chromite is consumed in chemicals employed principally in the dyeing, tanning, and pigment industries. In recent years increasing quantities of chromium chemicals have also been used in pickling solutions in the nonferrousmetals industry.

The entire domestic production of chromium chemicals, made by only five companies, is from foreign ores. The results of a study conducted by the Federal Bureau of Mines and the State College of Washington of methods for producing chromates and dichromates from domestic ores and estimates of the economic possibilities of the

methods have been given by Doerner 10 and others.

PRICES

Prices of chromite quoted in the domestic trade journals cover imported ore and are given in dollars per long ton, c. i. f. North The quotations are largely nominal, and the market Atlantic ports. was weak during the first half of the year. However, the rise in steel operations increased the demand for chromite; and the outbreak of war in Europe, which resulted in a scarcity of ship bottoms, higher ocean freight rates, and higher insurance rates, brought about a rise in the price of chromite during the latter half of the year. The possibility of a shortage of supply due to interruption of shipping also tended to increase the price but was offset somewhat by the trade knowledge regarding stocks on hand. According to Steel, chromite containing 48 percent Cr₂O₃ opened the year at \$23 to \$24 In October the quotation rose to \$25 to \$26 and in December to \$26 to \$28. Ore with a lower chromic oxide content usually brings a lower price.

pp. 415-419.

10 Doerner, H. A., and others, A Study of the Methods for Producing Chromate Salts from Domestic Ores: State College of Washington Bull. 5, 1939, pp. 1-51.

⁹ Goodsell, R. M., The Application of Hard Chromium Plating: Met. Ind., vol. 37, No. 9, September 1939,

WORLD PRODUCTION

Complete data are not yet available on world output of chromite in The sharp drop in the output of Southern Rhodesia and the Union of South Africa, two of the principal producers, undoubtedly resulted in a lower world output in 1939 than in 1938 despite gains in some other countries. Excluding the U. S. S. R., for which no recent data are available, Turkey was the largest producer in 1939 followed by Southern Rhodesia and the Union of South Africa.

World production of crude chromite, 1935-39, by countries, in metric tons 1 [Compiled by R. B. Miller]

Country 1	1935	1936	1937	1938	1939
Australia (New South Wales)	605	422	466	967	(2)
Due 11 (amm auto)		3, 890	2,980	934	(2)
Brazii (exports)	325	270	2, 350	1,745	(2)
Canada (shipments)	1,037	837	3, 876		
		71,086	94, 592	40, 163	67, 06
Cyprus (shipments)	1, 198	508	1,641	5, 667	(2)
Greece	29, 779	47, 347	52, 620	42, 464	(2)
Greece					1, 93
India, British	39, 755	50, 280	63, 307	44,858	(2) (2) (2)
Japan		39, 039	(4)	(2)	(2)
Levant	800			500	(2)
New Caledonia	55, 311	47, 840	48, 022	52, 216	52, 00
Norway			176	508	(2)
Philippine Islands (exports)	1, 292	11, 891	69, 856	66, 911	4 73, 06
			741	505	(2)
Sierra LeoneSouthern Rhodesia	105, 913	183, 395	275, 617	186, 019	139, 08
Turkey (Asia Minor)	150, 472	163, 880	192, 508	213, 630	. (2)
Union of South Africa	90, 430	175, 669	168, 620	176, 561	160, 01
U, S, S, R		217, 000	(4)	(2)	(2)
United Kingdom			305	473	(²)
United States (shipments)	523	273	2, 358	825	3, 67
Yugoslavia	53, 027	54, 044	59, 932	50, 194	(2)
	793,000	1,068,000	1, 280, 000	1, 125, 000	(2)

¹ In addition to countries listed, chromite mining was reported in Albania in 1938; no production figures

Pare available.

2 Data not yet available.

3 Imports into the United States.

4 Estimate included in total.

WORLD TRADE

Except for the U S. S. R., the principal producing countries consume only small quantities of chromite, and the major consuming countries produce only a small fraction of their requirements. of the chromite produced thus enters international trade. exports in 1939 declined for the second successive year from the record figure established in 1937. Turkey, Southern Rhodesia, and the Union of South Africa were the principal exporters.

Figures on imports of chromite into consuming countries are not yet complete, but available data indicate that the three principal importing countries, in order of quantity, were the United States, Germany, and

France. A brief summary of the activities in the principal chromite producing

and consuming countries follows.

Albania.—It was reported during the year that large deposits of chromite had been discovered in several localities in the region of Pogradek, near Lake Okrida, in the vicinity of Memlichte and Kukes. Several hundred tons were mined during 1938, and the chromite is reported to average about 48 percent Cr₂O₃ with a silica content not Production is expected to increase considerably exceeding 9 percent.

in 1939; unofficial figures indicate an output of 3,000 tons. The deposits are being developed by the Azienda Minerali Metallici Italiani (Italian Metallic Minerals Concern), of Rome, which hopes

to supply all of Italy's needs.

Canada.—Chromite production in Canada is small and is confined to the Thetford-Black Lake area of the Eastern Townships of Quebec. No commercial production was reported in 1938 or 1939. Ferro-chromium is made in Canada by the Electrometallurgical Co. at Welland, Ontario; and Chrom X, a chromium compound that may be used to introduce chromium into the melt, is made by the Chromium Mining & Smelting Corporation, Ltd., at Sault Ste. Marie, Imported ores are used by these companies. Imports of chromite into Canada in 1939 were given as 15,055 metric tons valued at \$232,851. It was reported during the year that chromite had been discovered in the Arrow Lake district north of Nelson, British Columbia.

Cuba.—The entire Cuban production is shipped to the United States; imports into the United States from Cuba in 1939 were 67,061 metric tons compared with 40,163 tons in 1938. Cuban ores have a low con-

tent of Cr₂O₃ and are used in the refractory industry.

Cyprus.—The concentrating plant of the Cyprus Chrome Co., Ltd., at Ayios Nikolaos, which was completed about the middle of 1937 but because of technical difficulties did not begin full operation until the end of the year, worked satisfactorily during 1938. Approximately 15,740 metric tons of ore were treated and 9,161 tons of concentrates produced. In 1938 exports totaled 7,561 tons of concentrates averaging 50.4 percent Cr₂O₃, and during the first 6 months of 1939 exports were 1,118 tons. Shipment to ports other than British was prohibited without license in September 1939. A later order required bond, pending certificate of arrival at a country of destination.

France.—France depends on foreign sources for its domestic requirements. Imports during the first 7 months of 1939 were 32,632 metric tons, of which 9,713 tons came from French colonies, compared with 27,650 tons, of which 3,301 tons came from colonies, in the same period of 1938. Data for the closing months of 1939 are not available; total imports in 1938 were 40,178 tons, of which 3,305 tons came from French colonies. New Caledonia is the only French colony where

any appreciable amount of chromite is found.

Germany.—Germany does not produce chromite. Imports were 136,434 metric tons during the first 7 months of 1939 compared with 78,948 tons during the same period in 1938; in 1939, 62 percent came from Turkey and 20 percent from the Union of South Africa. Although Turkey replaced the Union of South Africa as the principal source of German imports during the first part of 1939, the Russian-German trade pact, announced about midyear, may foster the movement of Russian chromite to Germany.

Greece.—Exports of chromite from Greece were 52,360 metric tons in 1939 compared with 35,661 tons in 1938. Of the 1939 total, 22,278 tons went to Germany compared with 18,160 tons in 1938. Exports to the United States were 14,080 tons in 1939 compared with 5,600 tons in 1938. Since September 1939 exports have been subject to ministerial permission. The principal mines are those of the Société Union Minière at Xinia, northwest of Lamia, and of A. Apostolides at Tsagli, west of Volos.

CHROMITE 601

India.—Chromite is mined in Baluchistan, Mysore, the Singhbhum district of Bihar, and Seraikela State. Production data for 1939 are not available, but in 1938 the output in Baluchistan was 22,244 metric tons; in Mysore, 17,241 tons; in Bihar, 5,277 tons; and in Seraikela State, 96 tons. The chief mines in Baluchistan are near Hindubagh in the Zhob Valley. Water-borne exports during the first 11 months of 1939 were 19,083 tons. A 3-percent ad valorem special armament tax on all exported mineral substances was imposed in November 1939. Export licenses have been required on chromite shipped from India since September 1939.

Italy.—No chromite has been produced in Italy, and no imports have been recorded in the official statistics. Necessary supplies are imported usually in the form of alloys, but data regarding the small imports of chromium alloys have been combined with those of other

alloys in statistical publications.

New Caledonia.—Preliminary figures show that exports of chromite from New Caledonia in 1939 were 39,394 metric tons compared with 42,263 in 1938. A large part of the New Caledonia ore comes from two mines, the Tiebaghi mine operated by British interests and the Fantouche mine operated by American interests. New Caledonia ores are high grade, the Tiebaghi ore running 55 to 56 percent Cr₂O₃. Effective November 1, 1939, an armament tax on the export of chromite amounting to 12½ percent of the official valuation was established for a period of 2 years. Previously, certain export restrictions had been decreed.

Norway.—Imports of chromite into Norway in 1939 decreased to 19,580 metric tons from 50,022 tons in 1938. Much of the chromite sent to Norway is smelted into ferrochromium, because of the available electric energy, and exported. Exports of ferrochromium increased to 15,689 tons in 1939 from 11,605 tons in 1938. Shipments abroad were prohibited (except by license for individual consignments) by Pro-

visional Decree of August 28, 1939.

Philippine Islands.—In recent years the Philippine Islands has become an important producer of chromite. Most of the output in 1939 came from the following operators: The Benquet Consolidated Mining Co., operating the Consolidated mine in Zambales Province and the Florannie mine in Camarines Sur; the Acoje Mining Co. and the Zambales Mining Co., both operating in Zambales Province; and the Dinagat Mines Co. and the Tagobomar Development Co., operating on Dinagat. The following are analyses of the ore shipped by these producers:

Analyses of Philippine chromites

Producer	Cr ₂ O ₃	SiO ₂	Al ₂ O ₃	Fe
Consolidated Mines, Inc	33. 60	3. 66	30.16	11. 54
	51. 13	2. 92	(1)	13. 63
	51. 72	3. 72	11.38	11. 61
	48. 22	3. 69	(1)	13. 75
	47. 44	1. 18	(1)	11. 30

¹ Data not available.

Commercial or potentially commercial quantities of chromite have been found in Zambales, Camarines Sur, and Ilocos Norte Provinces, Luzon; in Antique Province, Panay; in southern Samar; on Homonhon

Island; on the northern end and eastern side of Dinagat Island; on Ambil Island; and in Misamis Oriental and Surigao Provinces, Mindanao. Zambales Province is the most outstanding reserve area. The largest single chromite deposit known in the Philippines occurs about 24 kilometers east of Masinloc and is reported 11 to contain 10,000,000 tons of ore. The ore, however, is low grade but finds an outlet in the refractory industry. The Florannie ore, which was used in the metallurgical industry, was exhausted in 1939 and the operation closed.

The following paragraph concludes an excellent article 12 on Philippine Chromite by Dean Frasche.

In the Philippines there are large areas of widely scattered chrome-bearing ultrabasic rocks which are principally confined to two belts along the eastern and western borders of the islands. Geographically the eastern belt rises in Camarines Sur, trends southeast into Samar, Homonhon Islands, Dinagat Island, and terminates in Surigao Province, Mindanao; while the western belt commences in Ilocos Norte, trends southward through Zambales Province, the Lubank Island group, northern Mindoro, western Panay, and ends in north central Mindanao. The known commercially important chromite deposits have been discovered in the more easily accessible areas within these belts, but only an insignificant part of the chrome-bearing areas have been systematically prospected. Because of poor transportation facilities and lack of development work, little information is available concerning many localities in which chrome ores are known to exist. With the remaining large areas yet to be explored and the known existence of undeveloped chrome deposits, it is not unreasonable to assume the Philippine Islands will become more important as a source of chromite

Rumania.—Development of chromite deposits in the Severin Mountains near the Danube River is being contemplated by newly formed Rumanian-German companies. The ore is reported to contain 30 to 50 percent Cr₂O₂ and 15 to 30 percent iron oxide. It has been estimated that the rich strata in the Banat may yield 10 million tons of

Southern Rhodesia.—The output of chromite in Southern Rhodesia during 1939 was lower than in 1938, continuing the rate attained by the sharp drop in December 1938. Production during 1939 was 139,083 metric tons compared with 186,019 tons during 1938.

put increased materially in December.

Present output comes from two districts (the Selukwe district and along the Great Dike). Foremost among the Rhodesia deposits are those in the Selukwe district where three mines are now producing. 13 These mines are the Railway Block, the Selukwe Peak, and the Iron Peak, 1½, 8, and 4 miles, respectively, from Selukwe. Most of the ore mined from underground workings is extracted by top slicing. The bulk of the chromite is shipped after hand sorting and blending. Only a small proportion is treated; ore is concentrated by classifiers, Much of the Rhodesia output is controlled by a jigs, and tables. British syndicate. Exports were prohibited without license by proclamation of September 4, 1939.

Sweden.—Imports of chromite into Sweden for the first 9 months of 1939 were 33,608 metric tons compared with 40,657 tons for the same period in 1938. Exports of ferrochromium from Sweden were 11,250 tons in 1938. Licenses were required for exports by decree dated

August 26, 1939.

11 Frasche, Dean, Philippine Chromite: Min. Cong. Jour., vol. 25, No. 12, December 1939, pp. 22-27.
12 Frasche, Dean, work cited in footnote 11.
13 Musgrave, J., Chrome Mining at Selukwe, Southern Rhodesia: Trans. Inst. Min. and Met., Nov. 17, 1938, pp. 1-16.

Turkey.—Exports of chromite from Turkey during 1939 were

192,832 metric tons compared with 208,055 tons in 1938.

Chromite deposits are distributed widely in Turkey, and this country is rapidly reestablishing itself as the world's largest producer. In the past most of the production has come from deposits in the western part of the country in the Marmaris, Eskisehir, and Dag Ardi districts. Since 1936, however, increasing quantities of ore have been mined from the Guleman and other newly developed deposits in Elazig Province, eastern Anatolia. This district is rapidly becoming one of the most important chromite-mining centers of the world. Output now comes from the Guleman mines, where the ore is extracted by open-cut methods. The product from the various workings is assembled at the head of an aerial tram which connects with the Ergani-Diyarbekir Railway at Erganimaden some 20 miles distant. From Erganimaden the chromite moves by rail to the port of Mersin, 630 kilometers away, where it is lightered to steamers for export. The ore is lumpy and of good metallurgical grade. Typical analyses have been given by Perkins ¹⁴ as follows:

Analyses of Guleman ore shipped into the United States

Cr ₂ O ₃	Fe	SiO ₂	Cr : Fe ratio	Cr ₂ O ₃	Fe	SiO ₂	Cr : Fe ratio
50. 42 49. 83 50. 08 52. 32 49. 60 52. 06	10. 86 10. 87 10. 97 11. 13 10. 63 10. 82	2. 21 2. 79 3. 17 2. 18 2. 11	3. 18:1 3. 13:1 3. 12:1 3. 29:1 3. 19:1 3. 29:1	51.74 51.74 51.74 51.77 51.78	11. 20 10. 91 10. 91 11. 17 11. 17	2. 63 2. 62	3. 147:1 3. 245:1 3. 245:1 3. 17:1 3. 17:1

The tax on chromite exported from Turkey ranges from 116.7 piasters per ton for an ore containing 40 percent Cr_2O_3 to 253.8 piasters per ton on an ore containing 54 percent Cr_2O_3 for companies operating under final concessions. Companies operating on research permits are limited to exports of 200 tons, and the tax is 20 percent of the export value. The law passed in 1933, which provided a refund of part of the export tax should the yearly exports of a company be higher than those during 1932, apparently was canceled in 1937. Exports also are subject to license control.

Union of South Africa.—Output in the Union of South Africa was lower in 1939 than in 1938; production increased materially after midyear. Exports, however, were 150,482 metric tons in the first 9

months of 1939 compared with 117,562 tons in 1938.

The available ores are generally friable, only a small quantity of hard, lumpy ore being recovered from time to time. Demand in recent years has resulted in the opening of new deposits, particularly in the Rustenburg district which contains large and easily minable occurrences. This activity resulted in the development of deposits where limited quantities of higher-grade and hard, lumpy ores were revealed. The iron content in most ores is high, ranging from 20 to 27 percent FeO, while the Cr₂O₃ content ranges from 42 to 48 percent. Ores containing 43 to 46 percent Cr₂O₃ are available in large tonnages, but some time will be required before production of higher-grade ores can be accelerated.

¹⁴ Perkins, Enoch, Turkey and Its Chrome Ore: Eng. and Min. Jour., vol. 140, No. 6, June 1939, pp 29-34.

U. S. S. R.—The U. S. S. R. is one of the largest producers of chromite. Output is reported to have reached 217,000 metric tons in 1936, but no subsequent data are available. The deposits are in the Ural Mountains, and the most important district is Saranovskoye, where reserves are said to be adequate to maintain current production for many years. Exports are small or nonexistent, as the output is consumed in the domestic industries.

United Kingdom.—Imports of chromite into the United Kingdom in 1938 were 38,242 metric tons, of which 80 percent came from members of the British Empire. The imports are used in the chemical and refractory industries, as no ferrochromium is made in the United Kingdom. Imports of ferrochromium, largely from Norway and Sweden, were 10,654 tons in 1938 compared with 18,432 tons in 1937.

Yugoslavia.—Production of crude chromite in Yugoslavia in 1939 was 44,097 metric tons. The Allatini Mines, Ltd., the principal producer, operates the mines at Orasje, 26 kilometers northwest of Skoplje. Deposits of chromite were reported to have been discovered in 1939 in the Ozreh Mountains, between Maglaj and Sprece, Yugoslavia. Exports of chromite are controlled by permits issued by the National Bank of Yugoslavia.

NICKEL AND COBALT

By H. W. Davis 1

SUMMARY OUTLINE

	Page	•	Page
Nickel. Summary. Salient statistics Production Foreign trade World aspects World production World consumption Review by countries	605 605 605 606 607 608 608	Cobalt	611 611 611 612

NICKEL

The great improvement in the heavy industries in the United States and Canada and the general speeding up of industry in Europe and other parts of the world to augment the production of necessary war supplies were outstanding, and these helped to raise world production and consumption of nickel to all-time highs in 1939. The increase in consumption over 1938 centered largely in the United States, although there were substantial gains in the British Empire. data on domestic consumption of nickel are not available, but the 1939 total may be estimated roughly at 52,000 short tons, an increase of 136 percent over 1938. As usual, domestic production of primary metal was insignificant (394 short tons). Figures on output of secondary nickel are not yet available for 1939; however, such production is small, averaging only 2,100 tons annually during the 5 years 1934-38. Domestic quotations for electrolytic nickel remained unchanged at 35 cents a pound throughout 1939.

Salient statistics for nickel, 1937-39

	1937	1938	1939
United States: Production (all byproduct of copper refining) short tons. Secondary production do Exports do Exports do Price per pound cents. Production short tons. Imports do Exports do Short tons. Imports do Short tons. Imports do Short do Short tons. Imports do Short do	219 2, 400 54, 438 4, 473 35 5 112, 453 491 111, 385 132, 000	416 2, 300 29, 546 6, 581 35 105, 286 491 98, 852 127, 000	394 (1) 64, 796 10, 167 35 113, 053 697 117, 391 (1)

⁵ Excludes small quantity produced in British Columbia.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

The steel industry continued to absorb over half of the world output Although some of the increase in consumption of nickel in 1939 undoubtedly can be attributed to the accelerated rate of naval construction and armament production, the major portion of the nickel used for steel continued to be absorbed in constructional steel for the automotive industry, in nickel-chromium stainless steels, and in nickel-alloy steels for a wide variety of other industrial purposes.

Canada furnished about 85 percent of the world's nickel. International Nickel Co. of Canada, Ltd., alone supplied 82 percent

of the total nickel used in 1939.

Search for commercial deposits of nickel in the United States was continued in 1939. The Cobalt Gold Mining Co. did 2,518 feet of diamond drilling at its property near Gold Hill, Colo. According to Goddard and Lovering:2

Numerous samples of the primary ore taken by the company yielded from 0.41 to 6 percent nickel, 0 to 0.60 percent cobalt, and small amounts of copper. Samples of supergene ore contained from 1.32 to 13.02 percent nickel, 0.22 to 6.22 percent cobalt, and 0.05 to 31.60 percent copper. There appear to be several thousand tons of ore in sight that contain from 2 to 5 percent nickel. The deposit seems to be comparatively small, but the ore-bearing beds are so dislocated by the diorite stock and by pegmatite dikes that it is impossible to project their extensions far beyond the mine workings. The ore is probably genetically related to the pre-Cambrian diorite stock. There are several copper deposits of this general type in other parts of the Front Range, but the only other known nickel-bearing deposit lies about 120 miles to the south.

The nickel deposits of Jackson County, N. C., are discussed in a

recent article.3

A study has been completed on the treatment of a precious-metalbearing nickel-copper ore from a deposit in the Bunkerville district of Clark County, Nev., and a paper containing the results of this investigation shows how combined electrothermal and electrolytic methods may be used to recover the nickel, copper, and precious metals from ore containing these elements.

The various phases of the nickel industry are discussed by Roush.⁵

PRODUCTION

Domestic production of nickel includes only minor quantities of secondary metal recovered from scrap-nickel anodes, nickel-silver, and copper-nickel alloys (including Monel metal) and small quantities of primary metal recovered in copper refining, as listed in the following table. Further details on the production of secondary nickel will be found in the chapter on Secondary Metals.

² Goddard, E. N., and Lovering, T. S., A Nickel Deposit near Gold Hill, Colo.: Soc. Econ. Geol. (abs. of paper presented at 19th annual meeting in conjunction with Am. Inst. Min. and Met. Eng.), New York, February 13-16, 1939, p. 131.

³ Pawel, G. W., Nickel in North Carolina: Eng. and Min. Jour., vol. 140, October 1939, pp. 35-38.

⁴ Koster, J., and others, Recovery of Nickel, Copper, and Precious Metals from Domestic Ores by a Combined Electrothermal and Electrolytic Method. Progress Reports—Metallurgical Division. 35. Electrometallurgical Investigations: Bureau of Mines Rept. of Investigations 3483, 1939, 28 pp.

⁵ Roush, G. A., Strategic Mineral Supplies: McGraw-Hill Publishing Co., New York, 1939, 485 pp. (Nickel. pp. 70-96).

Nickel produced in the United States, 1935-39

Year	Prim	ary 1	Secondary 2		
i ear	Short tons	Value	Short tons	Value	
1935	160 107 219 416 394	\$129,500 (3) (3) (3) (3) (3)	1, 950 1, 965 2, 400 2, 300 (4)	\$1, 365, 000 1, 375, 000 1, 680, 000 1, 610, 000 (4)	

¹ Nickel content of nickel salts and metallic nickel produced as a byproduct in the electrolytic refining of copper.

Nickel recovered as metal and in nonferrous alloys and salts.
Bureau of Mines not at liberty to publish value.
Figures not yet available.

FOREIGN TRADE

The principal nickel imports of the United States are metallic nickel and nickel alloys, matte (containing approximately 55 percent nickel and 25 percent copper), and nickel oxide. All the oxide and matte and 98 percent of the metallic nickel and alloys were obtained from Canada in 1939; Europe supplied the remaining metallic nickel and The matte is refined to Monel metal and other products at the plant of the International Nickel Co., Inc., Huntington, W. Va. Imports of nickel in 1939 were the largest on record.

Exports comprise largely products manufactured from imported raw materials; Europe is the principal market.

Nickel imported for consumption in the United States, 1937-39, by classes

Class	1937		1938	1939	
Class	Pounds	Value	Pounds Value	Pounds	Value
Unmanufactured: Nickel ore and matte. Nickel pigs, ingots, shot, etc. Nickel bars, rods, tubes, etc. Nickel oxide. Manufactured: Nickel silver or German silver in	25, 085, 947 81, 740, 134 4, 889 2, 044, 395	20, 299, 368 7, 103		99, 309, 184 216, 874	24, 914, 172
sheets, strips, rods, and wire All other manufactures of nickel	(1)	35, 668	(1) 296 219 19, 316		4, 060
		23, 986, 004	13, 089, 503		29, 078, 200

¹ Quantity not recorded.

Nickel exported from the United States, 1937-39, by classes

Class	1937		19	38	1939	
Class	Pounds	Value	Pounds	Value	Pounds	Value
Nickel, Monel metal, and other alloys	7, 633, 189 (1) 494, 848 818, 539	\$2, 685, 305 2, 464, 518 562, 693 181, 037	(1)	606, 892 552, 470	554, 027	495, 639 609, 611
		5, 893, 553		4, 147, 458		6, 318, 030

¹ Quantity not recorded.

WORLD ASPECTS

World production.—World production of nickel in 1939 may be estimated roughly at 121,000 metric tons, or about 5 percent more Canada increased its output 7 percent and supplied than in 1938. about 85 percent of the total. The output in New Caledonia, the second largest producer, apparently declined.

World production of nickel (content of ore), 1935-39, by countries, in metric tons [Compiled by R. B. Miller]

Country	1935	1936	1937	1938	1939
Australia				20	(1)
Brazil	5	478	104	375	25
Burma	1,488	1, 312	1, 233	959	921
Canada	62, 830	76, 992	2 102, 015	95, 514	102, 559
Egypt			14	33	(1)
Germany	272	660	890	550	(1)
Greece	1, 109	1, 255	957	1, 207	(1)
Italy		(3)	68	4 150	(1)
Japan	4	24	(1)	(1)	(1)
Japan Morocco, French	208	85	132	163	(1)
Netherland India				4 500	(1)
New Caledonia	8, 230	9, 200	11,600	11, 700	4 9, 300
Norway	1, 235	1, 270	877	1, 245	(1)
Southern Rhodesia	12	14	4	76	4 490
Union of South Africa				45	407
U. S. S. R.	1,829	2,000	2,000	2, 500	(1)
United States 5	145	97	199	377	357
	77, 400	93, 400	120, 100	115, 500	(1)

Data not yet available.
 Excludes small quantity produced in British Columbia.

3 Less than 1 ton.

Estimated.

Byproduct in electrolytic refining of copper.

World consumption. - World consumption of nickel in 1939, estimated at 128,000 short tons compared with 102,000 tons in 1938, attained a new peak. Figures are not available on consumption by countries, but most of the increase over 1938 occurred in the United States and the British Empire.

REVIEW BY COUNTRIES

Brazil.⁷—The nickel mines and rights of the Empreza Commercial do Goyaz S. A., a Brazilian corporation, formerly owned by a German group, have been bought by a Japanese organization. The mines are in the State of Goyaz, municipality of Sao José de Tocantins, 1,000 miles from the port of Santos. Ten trucks have been purchased for transporting the ore to the railway station, 210 miles away. nickel reserves of Tocantins are the largest in Brazil. There a There are 2.2 million tons containing about 5 percent nickel; some samples contained 14 percent. However, the long distance to the railway station and the transportation difficulties of four railway systems to the port of Santos aggravate economic operation of the mines, although the cost of production is low on account of the low wages and easy accessibility of the ore, which is only 5 to 10 meters below the surface.

Burma.—The nickel produced in Burma is derived from a nickelbearing speiss made by the Burma Corporation, Ltd., at Namtu in the

International Nickel Co. of Canada, Ltd., Annual Report, 1939.
 Mining Journal (London), vol. 206, September 2, 1939, pp. 812-813.

Northern Shan States. The speiss contains approximately 30 percent nickel, 8 percent copper, and 7 percent cobalt, as well as 17 ounces of silver to the ton.

Canada.—Virtually the entire Canadian output is derived from the copper-nickel ores of the Sudbury district, Ontario; and two companies—International Nickel Co. of Canada, Ltd., and Falconbridge Nickel Mines, Ltd.—are the principal producers. Production in Canada was 113,053 short tons valued at \$50,920,305 in 1939 com-

pared with 105,286 tons valued at \$53,914,494 in 1938.

The International Nickel Co. of Canada, Ltd., operated continuously at or near capacity during 1939. Four mines-Frood (4,722,563 tons), Creighton (1,298,752 tons), Levack (926,908 tons) and Garson (325,612 tons)—produced 7,273,835 short tons of ore. The open-pit department of the Frood mine had an initial production of 1,521,694 tons in 1939, and plans have been made to increase the output to 12,000 tons a day. A program of open-pit mining is under way at the Stobie mine, where there is a large body of low-grade ore. Proved ore reserves at all Canadian mines of the company were 224,594,000 tons containing 7,214,000 tons of copper and nickel on December 31, 1939, compared with 212,368,000 tons containing 6,806,000 tons of copper and nickel on December 31, 1938.

The concentrator treated 5,876,501 tons of ore in 1939. been approved to increase its capacity to 20,000 tons a day to treat additional tonnages of ore from the open-pit operations. Colborne nickel refinery produced 65,865 tons of refined nickel in 1939. Sales of nickel in all forms were 105,097 tons in 1939 (82,189)

tons in 1938).

Falconbridge Nickel Mines, Ltd., operated at a higher rate than in 1938 and treated 576,801 tons of ore (490,938 tons in 1938) comprising 332,724 tons of milling ore and 244,077 tons of smelting ore. The ore, which averaged 1.78 percent nickel and 0.93 percent copper in 1939, is smelted in Canada and the matte shipped to Norway for refining. Ore reserves were 7,502,000 tons averaging 1.80 percent nickel and 0.94 percent copper on December 31, 1939, compared with 6,881,000 tons averaging 1.80 percent nickel and 0.97 percent copper on December 31, 1938.

Finland. 10—Work on the mine and smelter of the Petsamon Nikkeli O/Y at Kolosjoki continued until the invasion of Finland in November. Before the outbreak of hostilities the indications were that the mine would come into production not later than the early months of

Germany.—Nickel-ore imports into Germany were 34,215 metric tons in 1938 (19,990 tons in 1937), of which 16,572 tons came from Netherland India, 13,368 tons from Canada, and 3,306 tons from Burma. Nickel-metal imports were 3,984 metric tons in 1938 (3,365) tons in 1937), of which 1,273 tons came from Great Britain, 949 tons from the United States, 924 tons from Norway, and 652 tons from

Greece.—It is reported, but not confirmed so far, that output of nickel at the Karditsa mine in Thessaly, northern Greece, has been suspended.¹¹ The mine is controlled by Krupp.

International Nickel Co. of Canada, Ltd., Annual Report, 1939.
 Falconbridge Nickel Mines, Ltd., 11th Annual Report, 1939.
 International Nickel Co. of Canada, Ltd., Annual Report, 1939, p. 10.
 Daily Metal Reporter, vol. 39, April 26, 1939, p. 6.

The first shipments of nickeliferous iron ore from Greece to Italy took place recently, and a regular business is expected in the future. 12

Hitherto all this ore has gone to Germany.

It is said that the production of nickeliferous ore containing a minimum of 2.25 percent nickel plus cobalt has been sold to Italy but that Germany is strenuously endeavoring to obtain the output of grades running from 1.5 to 2.25 percent nickel plus cobalt, which

will, it is anticipated, total fully 150,000 tons a year. 13

Italy.14—The mining and concentration of nickel ore have been resumed in the Alps and Sardinia. In the Alps the group of mines (Doccio, Vocca, and Sella Bassa) nearest Varallo are being worked. The deposits in this region contain pyrrhotite, pentlandite, chalcopyrite, and traces of cobalt. These ores are treated at a washing plant at Varallo Sesia. In Sardinia work has been resumed at the old mines of Perdas S'Oliu and Perdas de'Fogu, where new veins of considerable interest have been found. The ores are niccolite and smaltite, rich in nickel but rather difficult to treat, especially as they are mixed with silver, galena, blende, chalcopyrite, and marcasite. The nickel ores from the Sardinian mines are washed to obtain rich nickel concentrates for smelting, in which process cobalt, silver, and arsenic also are recovered.

Japan. 15—The Showa Kogyo Kaisha is producing ferronickel in a pilot plant from nickel ore mined in Oye-yama. It is proposed to adopt the Krupp process for making ferronickel. The original intention of producing metallic nickel has been abandoned temporarily owing to

lack of technical knowledge.

Netherland India. 16—At the annual meeting of the Oost-Borneo Maatschappij it was stated that the concern is to increase its participation in the nickel-mining enterprise of Bonitolo. The other partner is Fried. Krupp A. G. The erection of a treatment plant at the mine is being considered.

New Caledonia.—The new Yamato nickel mine at Kua has been opened; it is 4 kilometers from the Oulie-Oulié mine.17 It is stated that the Société le Nickel has completed huge smelting works at Doniambo and that at Noumea wharves were being built for the company and

the municipality.18

During the first 6 months of 1939, exports of ore (4 to 6 percent nickel content) were 20,301 metric tons, of which France took 15 percent, Germany 34 percent, and Japan 51 percent; exports of matte were 5,022 metric tons, of which 23 percent went to Belgium and 77

percent to France.

Norway.—The Falconbridge refinery at Kristiansand operated steadily throughout 1939 but was hampered somewhat by delayed shipments of matte at the beginning of the war. It operated on matte from the Falconbridge smelter near Sudbury, Ontario, Canada, and The refinery produced 9,233 short tons of nickel in custom matte. 1939 (8,013 tons in 1938). In 1939, sales of nickel were 9,337 short tons (7,142 tons in 1938).

¹² Metal Bulletin (London), No. 2395, June 6, 1939, p. 16.
12 Metal Bulletin (London), No. 2402, June 30, 1939, p. 17.
13 Mining Journal (London), vol. 208, January 13, 1940, p. 28.
15 Metal Bulletin (London), No. 2419, September 1, 1939, pp. 14–15.
16 Metal Bulletin (London), No. 2414, August 15, 1939, p. 16.
17 Metal Bulletin (London), No. 2317, March 28, 1939, p. 16.
18 Doyle, A. M., American consul, Sydney, Australia, April 3, 1939.

Southern Rhodesia.—It was stated that the Noel nickel mine at Gwanda had ceased production.¹⁹ In July ore valued at £7,380 was

produced.

United Kingdom.—The Clydach nickel refinery of the Mond Nickel Co., Ltd., produced 23,830 short tons of nickel in pellets in 1939 (21,981 tons in 1938) and 901 tons of nickel in salts (1,224 tons in 1938).

Yugoslavia.—Rich nickel deposits have been discovered in the ore-

bearing region between Caak and Valievo.²⁰

COBALT

Consumption of cobalt in the United States in 1939, as indicated by imports, increased substantially; as in the past, the demand was supplied entirely by imports, as there was no domestic output. Total imports measured by cobalt content, which established an all-time high, increased about 113 percent over 1938. Probably as a result of higher shipping costs and war-risk insurance, domestic quotations for 97 to 99 percent metal in lots of 100 pounds or more were advanced during the latter part of October to \$1.50 a pound from \$1.36 and black oxide (70 to 71 percent grade) in lots of 350 pounds or more to \$1.84 a pound from \$1.67.

World production may be roughly estimated at 6,000 metric tons in 1939 compared with 4,500 tons in 1938. Output in Northern

Rhodesia was two and one-half times that in 1938.

PRODUCTION

There was no marketed production of cobalt from domestic deposits A western electrolytic-zinc plant recovered 27 short tons of residue containing 3.11 percent cobalt, but no shipments were made.

The United States, a large consumer of cobalt, has thus far failed to develop substantial supplies, but search for commercial deposits and experiments on the recovery of cobalt from iron ore mined at Cornwall, Pa., were continued in 1939. In Graham County, Ariz., cobalt prospects have been under development, and ore estimated to contain about 14,000 pounds of cobalt has been mined; the ore is reported to average about 2 percent cobalt. Near Salmon City, Idaho, a deposit said to contain cobalt, gold, copper, and nickel is being developed. Samples of the primary ore taken from the property of the Cobalt Gold Mining Co. near Gold Hill, Colo., yielded 0 to 0.6 percent cobalt, and samples of supergene ore contained 0.22 to 6.22 percent cobalt. The nickel-cobalt deposits in Cottonwood Canyon, Churchill County, Nev., which are reported to have yielded about 500 tons of high-grade nickel-cobalt ore in the eighties, were studied by Ferguson.21

FOREIGN TRADE

Imports of cobalt into the United States in 1939 established an all-time record and total imports of cobalt, measured by cobalt content, increased about 113 percent over 1938. Imports of ore gained 36 percent, metal 127 percent, and oxide 82 percent. Exports of cobalt

South African Mining and Engineering Journal, vol. 50, pt. 2, September 30, 1939, p. 136.
 Chemical Age, vol. 38, April 2, 1938, p. 270.
 Ferguson, H. G., Nickel Deposits in Cottonwood Canyon, Churchill County, Nev.: Univ. of Nevada Bull. 5, Geol. and Min. Ser. 32, December 1, 1939, 21 pp.

and cobalt products are not reported separately, but they are believed to be relatively unimportant.

Cobalt ore, metal, and oxide imported for consumption in the United States, 1938-39, by countries, in pounds

	Oı	re	Me	etal	Oxide		
Country	1938	1939	1938	1939	1938	1939	
AustriaBelgiumCanadaChile	432, 201 17, 783	573, 226 37, 857	1 33 617, 088 80, 779	1, 910, 580	22, 050	242, 900	
Finland France Germany	11,100		240, 575	219, 716	89, 250 120, 540 141, 375	118, 300 128, 100 191, 344	
av	449, 984	611, 083	938, 476	2, 130, 296	373, 215	680, 644	

¹ Austria included with Germany, beginning May 6, 1938.

Cobalt ore, metal, oxide, and other compounds of cobalt imported for consumption in the United States, 1936-39

	1936		1937		1938		1939	
Class	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
Ore	1, 039, 760 883, 377 813, 642 46, 472	\$77, 965 1, 014, 965 885, 566 16, 502	587, 499 1, 073, 129 842, 847 56, 540	\$44, 352 1, 341, 928 1, 059, 432 21, 858	449, 984 938, 476 373, 215 41, 811	\$32, 354 1, 146, 559 519, 201 18, 277	611, 083 2, 130, 296 680, 644 75, 290	\$54, 446 2, 711, 677 944, 836 34, 343
Other salts and com- pounds	186	277	45	187	56	98	1, 374	3, 405

USES

As a result of extensive research the use of cobalt continues to expand, consequently world production has increased greatly. Cobalt oxide is used in the ceramic industry; cobalt salts in the preparation of driers for use in paints, varnishes, and linoleums and as a catalyst; and cobalt metal in various types of high-grade steels (especially metal-cutting and magnet steels), as a catalyst, and in electroplating.

The importance of cobalt as a fertilizer for granite soils has been the subject of experiment in Nelson and Auckland Provinces, New Zealand, and investigations are being extended to cobalt-deficient areas in the Waikaremoana district in the center of the North Island.²² In the United States there is a serious deficiency of cobalt in sections of Florida, and experimental work has been done by the Florida Experiment Station of the Department of Agriculture. A good discussion of the problem has been presented by Neal and Ahmann.²³

WORLD PRODUCTION

Lack of statistics on the production of cobalt in the Belgian Congo, one of the chief producers, and in several smaller producing countries precludes an accurate statement of total world output. However, such

²² American Fertilizer, vol. 90, April 29, 1939, p. 7. ²³ Neal, W. M., and Ahmann, C. F., The Essentiality of Cobalt in Bovine Nutrition: Jour. Dairy Sci., vol. 20, December 1937, pp. 741-753.

figures as are available indicate a world production of about 6,000 metric tons in 1939. Production in Northern Rhodesia was about 21/2 times that in 1938.

World production of cobalt, 1937-39, in metric tons [Compiled by M. T. Latus]

		1937		, 19	38	1939	
Country 1	Cobalt-bearing material	Gross weight	Cobalt content	Gross weight	Cobalt content	Gross weight (2) (2) (3) 3,322 (2) (2) (2)	Cobalt content
Belgian Congo Bolivia Burma ⁴ Canada: Ontario Morocco, French Northern Rhodesia	Cobaltiferous copper ore Cobalt ore Cobaltiferous nickel speiss Cobalt ores, oxide, and metal_ Cobalt ore s Cobaltiferous copper ore	(2) 5 4, 389 (2) 5, 280 (2)	1; 500 (3) 298 230 581 884	(2) (2) 3, 399 (2) 6, 541 (2)	(2) (2) 238 208 720 1,461	3,322 (2)	(2) (2) 229 332 (2) 3,581

¹ In addition to the countries listed, Chile, China, Finland, Germany, Italy, Japan, and Mexico produce cobalt, but production data are not available.
² Data not available.

3 Less than 1 ton.

Belgian Congo.—The Belgian Congo is one of the largest producers of cobalt, but accurate details are not available. However, as the cobalt-producing capacity of the country has been increased considerably by the discovery of further reserves of rich cobalt minerals and as a fourth electric furnace for the treatment of cobaltiferous minerals was installed at the Jabotville-Panda works, production probably increased in 1939. Moreover, imports of cobalt (content) into the United States from Belgium, where Belgian Congo cobalt is refined, increased 229 percent; receipts of metal advanced to 1,910,-580 pounds (617,088 pounds in 1938) and oxide to 242,900 pounds (22.050 pounds in 1938).

Preliminary work has begun at the Kabolela cobalt mine, and a concentrator is under construction.24 At Lubumbashi and Shituru

the roasting and electrolytic plants were extended.

Burma.—Cobalt is produced in Burma largely as a byproduct of lead-zinc mining at the Bawdwin mines of the Burma Corporation, A nickel speiss obtained at the lead smelter contains about 7 percent cobalt.

Canada.—Canadian output, including cobalt in ores exported, in oxides sold, and in metal made at Deloro, Ontario, totaled 732,561 pounds valued at \$1,137,599 in 1939 compared with 459,226 pounds valued at \$790,913 in 1938. In the Cobalt camp, Ontario, silver has been mined in close association with cobalt for many years, and the drop in the price of silver about midsummer 1939 adversely affected the output of cobalt. The O'Brien mine, the last major producer in the camp, ceased operations early in 1940.25

Cobalt Products, Ltd., a newcomer in the Cobalt camp, is now the main producer in Canada.26 Late in 1938 a concentrating unit of 100 tons capacity was built and is now functioning smoothly.

⁴ Year ended June 30 of year stated.
⁵ Average cobalt content estimated at 11 percent.

South African Mining and Engineering Journal, vol. 50, pt. 1, August 12, 1939, p. 749.
 Dominion Bureau of Statistics, Preliminary Report on the Mineral Production of Canada during the Calendar Year 1939: Ottawa, 1940.
 Mining and Metallurgy, vol. 21, January 1940, pp. 10-11.

ore is obtained from various surface dumps and from underground operations at the Agaunico property. Flotation concentrate carrying 10 to 18 percent cobalt either is sold directly or treated in a cupola to produce cobalt-silver matte.

Chile.—Exports of cobalt from Chile (all to the United States) in 1939 comprised 6.9 metric tons of ore and 10.2 metric tons of concen-

Finland.—Figures are lacking on output in Finland. Imports of cobalt metal into the United States from Finland declined to 219,716 pounds in 1939 from 240,575 pounds in 1938, but imports of oxide

increased to 118,300 pounds from 89,250 pounds in 1938.

Italy. 27—Italian production of ores containing nickel and cobalt has increased greatly during the past 2 years as a result of Government stimulation. It is predicted that the domestic production soon will be adequate to supply the greatest part of the country's requirements of nickel, estimated at 2,500 tons a year, while the production of cobalt will then afford a surplus for exportation. The production of nickel and cobalt ores in 1937 amounted to 7,591 metric tons containing 0.9 to 15 percent nickel and 0.7 percent cobalt. In 1938 the output had increased to 13,421 tons, of which 130 tons contained 14 to 16 percent nickel and 2 to 6 percent cobalt. Cobalt is also said to be obtained through electrolysis of certain zinc ores that average 50 grams of cobalt per ton. The principal deposits of ores containing nickel and cobalt appear to occur in the Piedmont district of northwestern Italy. The principal localities in which nickel- and cobalt-bearing minerals now are being recovered are Val di Sesia, Valle Strona, and Valle del Toce. Plants for the concentration of these minerals are at Varallo. The richer ores are found in Sardinia, which produced 130 tons containing 14 to 16 percent nickel and 2 to 6 percent cobalt in 1938.

Morocco, French.—Production of cobalt ore in French Morocco was 2,880 metric tons during the first 6 months of 1939 and exports were 3,833 metric tons. In 1938 the output of ore was 6,541 metric tons and exports were 5,300 metric tons.

The producing mines are about 155 miles west of Agadir in the Atlas Mountains; cobalt occurs on the surface in the form of erythrite, a hydrous cobalt arsenate, and at depth in the form of smaltite, a cobalt diarsenide.28 From 1932 to 1938 the output of concentrate contained a minimum of 13.25 percent cobalt and 3 percent nickel, but in 1939 the output contained 10.5 percent cobalt and 4.9 percent nickel. Most of the cobalt is exported to Belgium for refining.

Northern Rhodesia.—The Rhokana Corporation, Ltd., sold 1,124 short tons of cobalt in alloy and refined products during the year ended June 30, 1939, compared with 831 tons during the corresponding year 1938. During the fiscal year ended June 30, 1939, the co balt plant produced 4,511 short tons of alloy containing 1,761 tons of cobalt compared with 2,854 tons of alloy containing 1,183 tons of cobalt during the corresponding fiscal year 1938.29 The third electric furnace was operated continuously. The differential flotation of copper and cobalt was practiced until the end of May 1939, when it was stopped to permit a new segregation experiment to be conducted

Sholes, W. H., American consul general, Milan, Italy, September 20, 1939.
 Bureau of Foreign and Domestic Commerce, Minerals Circ. 21, December 29, 1939, pp. 32-33.
 Rhokana Corporation, Ltd., Directors' Report and Statement of Accounts for the Year Ended June

in the smelter. Until differential flotation ceased 73,152 short tons of concentrates had been produced, averaging 2.62 percent cobalt, of which 53.22 percent was recovered. At the end of May 1939 a new experiment was begun for recovery of cobalt from the converter slags. The results obtained to date are most encouraging, and the experiment is being continued.

According to the Rhodesia Chamber of Mines, production of cobalt in Northern Rhodesia was 3,947 short tons during the calendar year 1020 company with 1,610 tong during the calendar year 1020

1939 compared with 1,610 tons during the calendar year 1938.

MOLYBDENUM, TUNGSTEN, AND VANADIUM

By Robert H. Ridgway and H. W. Davis 1

SUMMARY OUTLINE

	Page	1	Page
Molybdenum	- 617	Tungsten—Continued.	
Summary	617	Prices	- 625
Salient statistics	618	1 Domestic production	- 020
Moral embargo	618	Foreign trade	- 020 699
Prices	618	Uses	620
Domestic production	618	World production	- 000
Imports and exports	- 620	Vanadium	699
Uses	621	Summary	- 633
World production	- 622	Salient statistics	- 633
Tungsten	623	Domestic production	694
Summary Salient statistics	623	Foreign trade	694
Salient statistics	624	Uses	624
Emergency stock pile	624	World production	625
Government exploration	625		. 000

MOLYBDENUM

The phenomenal rise in molybdenum production was checked in 1939, when world output declined about 9 percent. Although production dropped, shipments from the mines increased over 1938, resulting in a new all-time high. Extensive armament activities in foreign countries, together with the abrupt rise in steel operations in this country during the last quarter of 1939, created demands that were met not only by upward revision of operating schedules during the latter part of the year but also by withdrawals from producers' stocks. Thus in this country—the predominant producer—shipments of molybdenum in the form of concentrates exceeded output by 2 million pounds.

Of the world output of 33,000,000 pounds of molybdenum in 1939 the United States supplied 30,324,000 pounds (92 percent). The relatively small amount produced by other countries came mainly from Mexico and Norway; Norwegian production was less in 1939 than in 1938, while Mexican output maintained about the same level. Recovery of molybdenum was inaugurated at the Braden operations

in Chile during 1939.

Molybdenum is one of the few ferro-alloying elements of which this country has ample supplies for its own needs. Much of the domestic production is exported; in 1939 exports of concentrates were 43,554,310 pounds valued at \$14,066,501. Movement during the first half of the year was sluggish but increased during the last 6 months, reaching nearly 8.5 million pounds in October.

The Climax mine of the Climax Molybdenum Co., Colorado, is the principal producer of molybdenum, having supplied about 66 percent

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.
617

of the world output and 72 percent of the domestic output in 1939. Of particular interest in 1939 was the large increase in output of molybdenite concentrates as a byproduct from copper operations at Bingham, Utah; Chino, N. Mex.; and Miami, Ariz. Output from these sources comprised nearly one-fourth of the domestic output and was more than double that in 1938. A small production—the first ever reported—was made in Wisconsin in 1939.

Salient statistics of the molybdenum industry in the United States, 1937-39

	1937	1938	1939
Concentrates: Production	30, 357 48, 46 29, 419, 000 30, 122, 000 \$20, 571, 000 (2) (2) 7, 707 \$13, 491	36, 157 46, 05 33, 297, 000 25, 727, 000 \$17, 977, 000 (2) (2) (2)	32, 347 46, 87 30, 324, 000 32, 415, 000 \$22, 157, 000 43, 554, 310 \$14, 066, 501 26, 347 \$32, 327

¹ Estimated by Bureau of Mines.

Moral embargo.—Following the President's statement of December 2 regarding exports of airplanes and materials essential in airplane manufacture to nations guilty of unprovoked bombing of civilian populations from the air, the State Department on December 15 addressed a letter to all producers of molybdenum, including this metal on the embargo list. Molybdenum steels have been widely employed in aircraft construction during the last decade.

PRICES

Prices for molybdenite concentrates carrying 90 percent MoS₂ were quoted nominally by the Engineering and Mining Journal at 45 cents per pound of contained MoS₂ throughout 1939; this is equivalent to 75 cents per pound of contained Mo. Although the London quotations, in shillings per long-ton unit, remained steady throughout most of the year, the effect of the exchange rate was to reduce the quotation in equivalent dollars. For example, in January the quotation of 43 shillings per long-ton unit was equivalent to 44.83 cents per pound of contained MoS₂, whereas in December the quotation jumped to 50 shillings per long-ton unit but was equivalent to only 43.82 cents per pound of contained MoS₂ owing to the lower rate of exchange.

DOMESTIC PRODUCTION

Arizona.—Three mines in Arizona produced 4,395 short tons of molybdenum concentrates containing 752,539 pounds of molybdenum in 1939 compared with five mines producing 4,784 tons of concentrates containing 1,139,593 pounds of molybdenum in 1938. The reduction in 1939 was due to the closing of operations by the Arizona Molybdenum Corporation, the largest producer in Arizona in 1938. The

² Not separately recorded.

company, however, continued to make shipments from stocks, which

were exhausted during 1939.

Molybdenum was recovered as a byproduct at operations in Arizona The Miami Copper Co. increased the recovery and during 1939. shipment of molybdenite concentrates resulting from the re-treatment of copper sulfide concentrates at Miami, Gila County. Recovery of molybdenum at this property was begun in August 1938 and totaled 431,652 pounds of molybdenite in 1939. The process 2 involves treatment of the limed copper concentrate with live steam for about 80 minutes in a series of three agitators. From the last agitator the pulp is passed to a Hunt-type flotation machine, which produces a cut of froth for making a final molybdenite concentrate. flotation concentrate is made in a Denver Sub-A machine and is at least 90 percent MoS₂ and 2 to 3 percent copper. The reagents used are kerosene distillate, an alcohol frother, and sodium silicate. final market product is made by a leaching process, which further reduces the copper to a low figure. The other output was oxide concentrates from the mill of the Mammoth-St. Anthony, Ltd., where gold, silver, lead, molybdenum, and vanadium are recovered by selective flotation. In addition to treating ore from its Mammoth mine, the company continued during part of the year to treat similar ore from the oxide zone of the nearby Mohawk and New Year claims of the Molybdenum Gold Mining Co., a subsidiary of the Molybdenum Corporation of America. The Mohawk and New Year mines, however, were acquired by the Mammoth-St. Anthony, Ltd., early in the vear and closed on May 15, 1939. A head frame, ore bins, and a 1,200-foot aerial tram were completed at the Mammoth mine in 1939.

California.—There was a small production of molybdenite concen-

trates from a tungsten operation in Invo County in 1939.

Colorado.—The Climax Molybdenum Co., the world's largest producer of molybdenum, has a rated milling capacity of 12,000 tons of ore daily. From January to about midyear the flotation plant operated at about 7,500 tons daily and later in the year at capacity. In all, 3,430,952 short tons of ore containing 0.576 percent MoS₂ were mined and milled from which 20,485 tons of concentrates containing 21,796,116 pounds of molybdenum were recovered compared with 4,344,734 short tons of ore containing 0.606 percent MoS₂, from which 27,591 short tons of concentrates containing 28,242,085 pounds of molybdenum were recovered in 1938. Shipments exceeded production, resulting in lowering of stocks.

Molybdenum (element) contained in concentrates produced from the Climax deposit, Colorado, 1934–39

	Pounds		Pounds
1934	8, 378, 683	1937	22, 750, 368
1935	10, 168, 635	1938	28, 242, 085
1936	15, 216, 806	1939	21, 796, 116

There was also a small production (but no shipments) from the F. R. M. mine near Cowdrey, Jackson County, in 1939. The United States Molybdenum Corporation was doing development work on its property near Empire, Clear Creek County.

Engelmann, E. W., Ore Concentration and Milling: Min. and Met., vol. 21, No. 397, January 1940, p. 38.

Nevada.—There was no production or shipments from Nevada during 1939, but the Freeport Sulphur Co. was prospecting and drilling

the Elm Gulch property near Goldfield, Esmeralda Countv.

New Mexico.—The Molybdenum Corporation of America continued to operate its mine and mill some 7 miles east of Questa along the The ore is relatively high grade and the tonnage treated comparatively small. Development work on lower levels is reported to have given encouraging results.

Molybdenite concentrates also were produced by the Nevada Consolidated Copper Corporation at the Chino property incident to the

treatment of copper ores.

Utah.—All production in 1939 came from the Utah Copper Co., where molybdenite is recovered as a byproduct in the concentration of, copper ores and re-treatment of molybdenum-bearing concentrates. As the molybdenum content of the ore is very low the molybdenite concentrates are entirely byproduct, and production fluctuates with the output of copper; thus output was greater in 1939 than in 1938. Shipments, however, were not as large as production, resulting in an

accumulation of stocks.

Further steps ³ were taken by the Utah Copper Co. in 1939 to reduce the copper and insoluble matter in the molybdenite concentrate. improvement consists of an additional heat treatment of what formerly was the finished flotation concentrate in a small roaster at temperatures approximating 400° to 500° F., followed by grinding in a 4-foot by 5-foot 4-inch ball mill and cleaning in three more flotation cells. The first cleaner cell is used to remove a small amount of insoluble material by means of an alcohol frother. used to clean the molybdenite further. The two following cells are This supplementary treatment lessens the difficulty of removing the copper in the finished molvbdenite concentrate to the desired point.

Washington. The Deertrail Monitor Mines Co. mined about 2,000 short tons of ore containing 0.5 percent MoS₂ at its Monitor mine on Adams Mountain 6 miles east of Fruitland, Stevens County. About 2,000 tons were milled in the 40-ton flotation mill, and the concentrates

(10 tons) were stored at the mine.

Wisconsin.—The Wisconsin Molybdenum Corporation produced and shipped a small quantity of concentrates from a property near Middle Inlet, Marinette County.

IMPORTS AND EXPORTS

Exports of molybdenum, principally in the form of concentrates, provide an important outlet for the domestic molybdenum industry. Shipments of concentrates abroad during the latter half of 1939 were more than three times as large as during the first half. Exports by countries of destination are shown in the following table for 1939, the first year for which such data are available.

² Engelmann, E. W., Ore Concentration and Milling: Min. and Met., vol. 21, No. 397, January 1940, p. 38.

Molybdenum	concentrates	exported	from	the	United	States	in	1939	hu	countries
111 orgoword and	concentrates	ca poi tea	jioni	11110	O muea	Diales	uu	1000,	υų	countries

Country	Pounds	Value	Country	Pounds	Value
Belgium_Canada Czechoslovakia ¹_France Germany ¹_Hungary ¹_India, British Italy_Japan	621, 116 188, 828 42, 262 2, 960, 543 134, 960 37, 089 112 1, 004, 440 9, 361, 160	\$55, 560 84, 433 14, 800 792, 000 51, 532 16, 216 409, 701 3, 741, 888	Mexico Netherlands Norway Sweden U. S. S. R. United Kingdom	2, 000 2, 734, 211 2, 357 766, 294 18, 142, 378 7, 556, 560 43, 554, 310	707, 368 1, 107 310, 186 6, 832, 104 1, 049, 488 14, 066, 501

¹ For statistical purposes, trade with the Sudeten area, as far as ascertainable, has been included with Germany, while trade with the other Czechoslovak Provinces occupied by Germany and Hungary has been included with these countries since March 18 or 19, 1939.

Imports of molybdenum or molybdenum compounds are small.

Molybdenum ore and concentrates, ferromolybdenum, molybdenum metal and powder, calcium molybdate, and other compounds and alloys of molybdenum imported for consumption in the United States, 1935–39

Year	Molyb- denum content (pounds)	Value	Year	Molyb- denum content (pounds)	Value
1935 1936 1937	68, 758 49 7, 707	\$40, 721 213 13, 491	1938 1939	25 26, 347	\$81 32, 327

In addition to the quantity shown in the above table, 87,232 pounds of ore and concentrates containing 49,613 pounds of molybdenum valued at \$34,192 were imported for smelting, refining, and export in 1939, of which 10,232 pounds containing 5,541 pounds of molybdenum valued at \$3,638 came from Mexico, 44,000 pounds containing 22,440 pounds of molybdenum valued at \$17,710 came from Morocco, and 33,000 pounds containing 21,632 pounds of molybdenum valued at \$12,844 came from Turkey.

USES

Molybdenum is used principally in the iron and steel industry for making special alloy steels. Continued research is broadening the field of applications both in new outlets and as a substitute for and in addition to other alloying elements. Molybdenum may be used alone to impart certain desired properties to iron and steel, but more frequently it is employed with one or more of the other ferro-alloying elements. During the past decade the use of molybdenum high-speed steel has been increasing. The most popular analysis at present is: Carbon 0.72 to 0.81, silicon 0.20 to 0.45, manganese 0.30 maximum, chromium 3.50 to 4.00, tungsten 1.30 to 1.80, vanadium 0.90 to 1.30, and molybdenum 8.00 to 9.50.4 Molybdenum steels are used extensively in the automotive, oil, and aircraft industries.

For most purposes molybdenite (MoS₂), the principal raw material, is converted before using to ferromolybdenum (a product carrying 60 to 65 percent molybdenum) or to calcium molybdate (a compound

⁴ Breeler, Walter R., Development in Molybdenum High-speed Cutting Steels: Trans. Am. Soc. Metals, vol. 27, No. 2, June 1939, p. 289.

containing 35 to 45 percent molybdenum and resulting from the roasting of molybdenite with lime). The latter is the cheaper method of preparing molybdenum for industrial applications. Molybdenum oxide briquets also are used in making additions of molybdenum to iron and steel.

Molybdenum compounds find limited use in chemical and ceramic

industries, but consumption is not large.

WORLD PRODUCTION

World production of molybdenum comes from a small but increasing number of mines. Operations in Mexico, Norway, and the United States furnish most of the world requirements. The search for new sources was intensified in 1939; but, as far as is known, there were no significant developments.

World production of molybdenum ores and concentrates, 1935-39, in metric tons
[Compiled by M. T. Latus]

Country 1	1935	1936	1937	1938	1939
Australia: New South Wales (concentrates) Queensland (concentrates)		(²) 20	16 23	9 14	(3) 12
Victoria (concentrates)			(2) 31	36	(3) (3)
Canada (concentrates)			7		30
Chosen (ore)	_ 106	80	(3)	(3) 1, 560	(3) (3) (3)
Italy (ore)		861	46	12	(3)
Japan (dressed ore)	- 6	7	(3)	(3) 483	(3) (3) (3)
Mexico (Mo content)	- 687 190	534 187	629 149	258	(3)
Norway (Mo content)		422	344	462	429
Peru (concentrates)	_ 13	19	83	185	239
Rumania (Bi-Mo ore)	_ 14	46	27 43	164 80	(3) (3)
United States (Mo content)	_ 5, 222	7, 795	13, 344	15, 103	13, 75
Yugoslavia	_ 18		84	19	(3)

In addition to countries listed, molybdenum ore is also produced in China, but data of production are not available.
 Less than 1 ton.
 Data not available.

Canada.—The only commercial shipment of molybdenite reported in 1939 (1 long ton of concentrates) came from operations of the Molybdenite Corporation of Canada in Abitibi County, Quebec. Molybdenite concentrates also were produced in the Michipicoten district of Ontario by the Regnery Metals, but statistics relating to output are not yet available. Prospecting and development work were widespread; other properties under exploration included the Moss mine (leading world producer during the World War) in Onslow Township, Quebec; Kindale mine, Masham Township, Gatineau County, Quebec; Puritan, North American, and Zenith mines, Renfrew County, Ontario; and Powell River and Endako, British Columbia. An association known as the Molybdenum Institute of Canada was formed by interested parties in August 1939 to foster and encourage molybdenum production in Canada.

Chile.—The recovery of molybdenite concentrates from the copper operations of the Braden Copper Co. at Sewell was inaugurated in 1939, when 111,561 pounds of molybdenite were produced in an

experimental plant. Exports totaled 40 metric tons in 1939 and were

shipped to Great Britain.

Mexico.—Output in Mexico, which in 1939 was about the same as in 1938, comes principally from the Greene Cananea Copper Co., where molybdenite concentrates are recovered as a byproduct in the treatment of copper ores. Exports during the first 10 months of 1939 amounted to 690 metric tons.

Morocco, French.—French Morocco is the largest producer in Africa, and output may have reached 250,000 pounds of molybdenum in 1939. Much of the output comes from the mine of the Société de

Molybdène near Azegour.

Norway.—The Knaben Mölybdan Gruber was the chief producer in Norway in 1939. The Laxadalen Mölybdängruber, which installed a mill at its property near Gildeskal, northern Norway, produced about 65 metric tons in 1939. Exports of molybdenum concentrates

in 1939 were 676 metric tons compared with 796 in 1938.

Peru.⁵—Molybdenum is of growing importance in Peru's export trade. From an output of 13 metric tons in 1935 production of molybdenum concentrates jumped to an output of 239 tons in 1939. Molybdenum prospects are reported to occur in the Provinces of Huarochiri and Cajatambo in the Department of Lima, in the districts of Bolognesi, Recuay, Ticapampa, and Conchucos in the Department of Ancash, and near Solceantay in the Urubamba district of Cuzco. The principal producing mine, however, is that of the "Peru Molibdeno" near Ricran in the Department of Junin.

TUNGSTEN

World production of tungsten increased slightly in 1939. Lessened demand related—in part, at least—to the low rate of steel operations maintained in this country during the first 8 months of the year. The abrupt increase in domestic industrial activity during the closing months of 1939, together with the outbreak of war, caused unusual demands that resulted in increased prices in this country, but as the revival occurred late in the year its effect is not apparent in the production data for 1939. Conditions in the Far East continued to hamper the Chinese tungsten industry, which normally furnishes a large part of the world's supply. Major producing areas in Kwangtung were reported still in Chinese hands and are being worked extensively. Although the tungsten-producing area held by the invader is small and not yet pacified, the Japanese control the main routes of outflow, namely, via Shanghai or Canton. Adequate supplies, however, are reaching Hong Kong by devious routes, but the fear that Chinese supplies might be cut off undoubtedly had had some influence on the market.

The United States is now one of the principal producers of tungsten, and shipments from domestic mines in 1939 were the highest of any before and since the war years 1916–18, when exorbitant prices and shortage of supplies stimulated a country-wide search for strategic minerals. Although shipments from domestic mines increased, production declined 10 percent, resulting in reduced stocks at mines or

Wright, C. W., Mineral Resources, Production and Trade of Peru: Bureau of Mines Fcreign Minerals Quarterly, vol. 3, No. 1, January 1940, p. 38.

mills. Further impetus was added to the development and reequipment of properties in our Western States by conditions during the closing quarter of 1939. Governmental purchases for strategic stock-

pile purposes provided an additional incentive.

Tables of domestic shipments, imports, exports, and apparent consumption of tungsten in the United States from 1910 to 1938, which present the historical background for consideration of the strategic nature of tungsten, are given in Minerals Yearbook, 1939, p. 621.

Salient statistics of the tungsten industry in the United States, 1938-39

	19	38	1939		
	Short tons	Value	Short tons	Value	
Production (60 percent WO ₃)	4, 000 3, 044 81	(1) \$3, 161, 498 138, 693	3, 603 4, 287 743	\$4, 402, 185 997, 97	
Stocks in bonded warehouses, Dec. 31: Ore (W content) Metal (W content)	325 10	202, 371 26, 664	843 6	1, 357, 21 14, 97	

¹ Figures not available.

Emergency stock pile.—The Strategic Materials Act (Public No. 117, 76th Congress, ch. 190, 1st sess.) which was signed by the President on June 7, 1939, authorized the expenditure of \$100,000,000 over a 4-year period for the purchase of strategic materials. Only \$10,000,000 was appropriated in the Third Deficiency Bill, approved August 2, 1939 (Public No. 361, 76th Congress, ch. 633, 1st sess.), and purchases were restricted largely to the high-priority mineral commodities on the strategic list, including tungsten concentrates.

The following specifications were drawn up as to chemical analysis

of high-grade tungsten concentrates:

Tungsten trioxide (WO ₃)	_percent minimum	60.0
Tin (Sn)	_percent maximum	1.0
Copper (Cu)	do	.05
Phosphorus (P)	do	.035
Arsenic (As)	do	.50
Antimony (Sb)	do	.05
Bismuth (Bi)	do	.12
$Molvbdenum (Mo)_{}$	do	.40
Sulfur (S)	do	.50

Proposals for supplies (S-5) to be opened Friday, October 20, 1939, were issued on September 20, 1939. The proposals called for delivery, f. o. b. cars, United States Army General Depot, Columbus, Ohio. Four bids were received, two proposing to supply material from domestic sources and two from foreign sources. The ore from domestic sources was eliminated because the material the bidders offered was not up to specification. On October 26, 1939, a contract was awarded to the Wah Chang Trading Corporation of New York for about 425 short tons of concentrates from China at \$15.82 per short-ton unit, exclusive of duty. Deliveries on the contract were well under way at the year end.

As a result of competitive bids opened September 14, 1939, the Navy Department on September 25, 1939, purchased about 245 short

tons of tungsten concentrates with the small appropriation it received to provide for stock piles of strategic commodities. The contract, at \$25 per short-ton unit, Brooklyn, N. Y., was let to the Metal & Ore Corporation of New York City, which proposed to supply ore from mines in Nevada, Arizona, and California. Delivery on this contract

was under way in 1939.

Government exploration.—Under section 7 of the Strategic Materials Act, the Bureau of Mines and the Geological Survey undertook to search for and appraise ore deposits containing metals that have been designated as strategic by the Secretaries of War, Navy, and the Interior upon advice of the Army and Navy Munitions Board. The bill authorized the expenditure of \$500,000 a year, \$350,000 to the Bureau of Mines and \$150,000 to the Geological Survey, for each of the fiscal years ending June 30, 1940, 1941, 1942, and 1943. Close cooperation by the geologists of the Survey and the engineers of the Bureau of Mines will be necessary to accomplish the objectives of the act.

The Bureau of Mines, in carrying out its part ⁶ of the program, seeks to determine (1) the extent and quality of the ore, (2) the most suitable method of mining and beneficiating it, and (3) the cost at

which it may be produced.

A tungsten project was completed in 1939 in the Nightingale district of Nevada, exploring the possibility that a large amount of high-cost tungsten could be obtained in an emergency from various contact deposits of the kind that are known to occur in the Western States. Exploration consisted of trenching, diamond drilling, and sampling of underground workings. Although the deposit was not delimited entirely, additional ore, mostly marginal, was indicated, and some commercial ore was found. A number of other deposits of similar geologic occurrence in California, Nevada, and Arizona were ex-

amined with a view to initiating other project work.

As part of its program of investigation of strategic mineral deposits the Geological Survey made detailed geologic maps of several tungsten districts in California and Nevada. In California, field work on the Atolia district was completed, and mapping of several districts near Bishop—Pine Creek, Tungsten Hills, and Black Rock—is well advanced and scheduled for completion during 1940. A 2-year program of mapping was begun in the Eugene Mountains, Nev., in which the Mill City district is situated. A small area near Rose Creek was mapped, and further study was made of the Nightingale district; all three districts are in Pershing County. In addition, three deposits of tungsten-bearing manganese ore were examined near Golconda, Humboldt County; in the East Range, Pershing County; and near Sodaville, Mineral County.

Several tungsten deposits in Arizona were examined briefly, notably

those in the Little Dragoon Mountains, Cochise County.

PRICES

The quotations on tungsten ore or concentrates continued to decline during the first 8 months of 1939. The market moved in a desultory fashion despite the constant threat of stoppage of Chinese concentrates, owing to expanding Japanese control over transportation routes.

⁶ Finch, John W., Strategic Minerals Investigations—Procedure Followed by the Bureau of Mines: Bureau of Mines Inf. Circ. 7097, December 1939, pp. 1-5.

London prices for Chinese wolframite concentrates containing 65 percent WO₃, as given by the Mining Journal (London), were 59s.-61s. per long-ton unit at the beginning of the year. The quotations declined steadily until August, when they reached 47s.-48s. With the advent of the European War the quotations jumped sharply, reaching 55s.-60s. per unit in September; subsequent prices were nominal. Domestic quotations followed the same pattern, but the post-war rise was more pronounced owing to the control scheme adopted by the British and French Governments. Thus quotations on domestic scheelite of good analysis, which opened the year at \$16 to \$19 per short-ton unit, declined to \$15 to \$17 in August but rose to \$25 in September, from which there was a slight weakening at the year end. During most of the year some western buyers were paying \$12 a unit at the mines; later this was increased. The average price for the 1939 production as reported to the Bureau of Mines was \$17.11 per shortton unit of WO₃.

DOMESTIC PRODUCTION

Activities in the domestic tungsten-producing industry in 1939 continued at the higher level maintained in 1937 and 1938. Relatively slack demand curtailed operations during the early months of the year, but the abrupt rise in price in September brought new producers into operation. Although production of concentrates dropped 10 percent from 1938, shipments in 1939 increased 41 percent, reducing materially the stocks at the mills. Output in 1939, amounting to 3,603 tons of concentrates (reduced to an equivalent of 60 percent WO₃), came from a number of widely scattered operations in Arizona, California, Colorado, Idaho, Montana, Nevada, Utah, and Washington. Developments in the domestic tungsten-producing industry in recent years are tending to make the United States more nearly self-sufficient in this strategic mineral commodity at prices that have held. This situation, however, depends on the tariff, which at present amounts to \$7.931 per short-ton unit of WO₃ in ore and concentrates.

Tungsten ore and concentrates shipped from mines in the United States, 1935-39

	Quar	ntity	Reported value f. o. b. mines			
Year 🐬	Ore and concentrates, 60 percent WO ₃ (short tons)	Tungsten content (pounds)	Total	Average per unit of WO ₃	Average per pound of tungsten	
1935	2, 395 2, 612 3, 500 3, 044 4, 287	2, 279, 369 2, 485, 893 3, 331, 020 2, 897, 036 4, 080, 024	\$1, 921, 017 2, 323, 818 4, 094, 000 3, 161, 498 4, 402, 182	\$13. 37 14. 83 19. 50 17. 31 17. 11	\$0. 84 . 93 1. 23 1. 09 1. 08	

Arizona.—Shipments of tungsten concentrates from Arizona operations totaled 88 short tons containing 68.38 percent WO₃ in 1939 compared with 35 tons containing 63.09 percent WO₃ in 1938. Output comprised scheelite, wolframite, huebnerite, and ferberite concentrates. The largest output came from the Boriana mine in Mohave County, which was idle during the first 9 months of the year. J. J. Seeman shipped 27 short tons of scheelite concentrates contain-

ing 72.42 percent WO₃ from the Tungsten Reef mines in Cochise County in 1939. Scattering shipments came from other deposits in

Mohave and Cochise Counties, as well as in Pima County.

California.—Shipments of tungsten concentrates (all scheelite) from California amounted to 1,250 short tons containing 60.63 percent WO₃ in 1939, compared with 770 tons containing 65.44 percent WO₃ in 1938. The largest producer—the Atolia Mining Co. near Atolia in San Bernardino County—shipped 470 short tons of concentrates containing 52.70 percent WO₃. The company treated 4,979 short tons of ore containing 1.98 percent WO3 and 16,107 tons of tailings containing 1.40 percent WO₃. Eleven other producers—5 in Inyo, 1 in San Bernardino, 2 in Mono, 1 in Kern, 1 in Tulare, and 1 not placed—contributed to the California total. Invo was the largest producing county. Activities there continued to increase in the region around Bishop. The tungsten deposits of Inyo County have been described by Tucker and Sampson.7

Colorado.—Output of tungsten in Colorado was higher in 1939 than in 1938. Total shipments were 617 short tons of concentrates averaging 46.59 percent WO₃. All shipments were ferberite concentrates from Boulder County, the largest coming from operations of the Wolf Tongue Mining Co. near Nederland, where the Illinois shaft was sunk to the 400-foot level. The mill treated 1,603 short tons of ore containing 4.78 percent WO₃ in 1939. The Vanadium Corporation of America shipped 204 short tons of concentrates containing 50.66 percent WO₃ from the Conger mine near Nederland in 1939. The mine was reopened late in 1938, and a new mill was built which in 1939 treated 12,115 short tons of ore containing 1.20 percent WO₃.

The following is an abstract of a paper by Lovering 8 regarding the genesis of Boulder County ores.

The wall-rock alteration adjacent to the tungsten veins shows a narrow sericitized casing surrounding the vein, giving away abruptly to an argillized envelope extending to as much as 50 feet from the vein. The argillitic alteration indicates attack by early acid solutions, and the narrow sericitized sheath shows a change to neutral and alkaline solutions at a late stage. In the gold telluride veins the sericitic alteration is dominant, and the argillitic envelope is generally lacking. The early vein quartz shows that the clay minerals and marcasite immediately preceded the deposition of contemporaneous pyrite and ferberite. Hypogene brown iron oxide is later than the ferberite and is followed by barite and adularia. This mineralogy indicates a progressive change from acid to alkaline solutions and harmonizes with the evidence of wall-rock alteration. Ferberite was apparently precipitated in slightly acid solutions, but galena, tetrahedrite, abeliarity and migrarity are later and were presumedly precipitated. chalcopyrite, sphalerite, and miargerite are later and were presumably precipitated in alkaline solutions. Gold telluride is still later in the normal sequence and also is believed precipitated in alkaline solutions. Field evidence suggests that the source rock was a biotite latite heavily charged with volatiles and represented by dikes of latite and latitic explosion breccia. It is suggested that emanations from the underlying magma rose through the hot porous explosion breccia with little change in character, but soon dropped their load above the upward termination of the breccia in the overlying fissures where they reacted with the wall rock and became neutralized and finally alkaline through the acquisition of bases from the quartz monzonite that makes up the country rock of the deposit.

Idaho.—The Ima mine on Patterson Creek about 11 miles east of May was the only producer in Idaho in 1939. The mill treated 38,778 short tons of ore containing 0.6 percent WO₃, from which 226

⁷ Tucker, W. B., and Sampson, R. J., Mineral Resources of Inyo County: California Jour. Mines and Geology, Division of Mines, Dept. of Natural Resources, State of California, vol. 34, No. 4, October 1938, pp. 462-467.

⁸ Lovering, T. S., The Genesis of the Ferberite and Gold Telluride Ores of Boulder County, Colo.: Soc. Econ. Geol. (abs. of paper to be presented at the 20th annual meeting), vol. 34, No. 8, December 1939, p. 939.

tons of huebnerite concentrates averaging 66 percent WO₃ were recovered. The mill also makes a sulfide concentrate carrying silver, copper, lead, and zinc. The ore minerals are huebnerite, tetrahedrite, scheelite, galena, sphalerite, chalcopyrite, and molybdenite. New flotation equipment, slime tables, screen classification, and all auxiliaries were being installed late in 1939. A new 700-foot haulage level was completed and put into operation during 1939. Mining is accomplished by a filled square-set system of stoping, and the tungsten values are recovered from the ore by gravity methods following by roasting to remove the sulfur and then by magnetic separators.

Montana.—The Jardine Mining Co., the only producer in Montana in 1939, shipped 20 tons of scheelite concentrates averaging 68.2 percent WO₃ from operations at the Jardine mine in Park County. The principal output is gold, and tungsten is produced entirely as a

byproduct.

Nevada.—Nevada retained its position as the principal domestic tungsten producer in 1939; shipments of concentrates (virtually all scheelite) totaled 2,091 short tons reduced to an equivalent 60 percent WO₃. A large part of the output was scheelite concentrates from the mines of the Nevada-Massachusetts Co. near Mill City. The ore comes from three mines, the Stank, the Humboldt, and the Sutton. The Stank shaft has been sunk 1,325 feet, and the lower level has been prepared for mining. It was reported that the grade of ore is about the same as it had been on the upper levels. Humboldt mine the shaft is being sunk from the 1,225- to the 1,350-The Sutton mine is a new development and is down only New discoveries of ore have been reported at the about 150 feet. Sutton and Humboldt mines. The average grade of ore at Mill City is 1 percent WO3, while the concentrates average 75 percent There was no production from company operations at Mina in Mineral County in 1939. The Tungsten Metals Corporation, which enlarged its milling capacity near Ely, White Pine County, produced from three mines and was the largest of several other small producers that contributed to the Nevada total in 1939.

Utah.—Shipments from Utah in 1939 were only 3 short tons of scheelite concentrates averaging 58 percent WO₃ from Tooele and

Box Elder Counties.

Washington.—Virtually all shipments of tungsten concentrates from Washington in 1939 came from the Germania mine near Fruitland, Stevens County. Shipments from the Germania mine comprised 56 short tons of wolframite concentrates averaging 65 percent WO₃ and 165 tons of wolframite jig concentrates averaging 14 percent WO₃. The concentrates came from surface workings and reworking of tailings. The only other shipment from Washington was 1 ton of scheelite concentrates, also from Stevens County.

FOREIGN TRADE

Domestic supplies of tungsten are supplemented by imports, principally of concentrates but also in other forms. Imports of ore and concentrates for consumption (tungsten content) increased from 162,744 pounds in 1938 to 1,485,157 in 1939. China supplied 61 per-

Barton, W. P., and Arentz, S. S., Jr., Mining and Milling Tungsten at the Ima Mine: Min. Cong. Jour., vol. 25, No. 8, August 1939, pp. 16-19.
 Mining World, America's Largest Tungsten Mine: Vol. 1, No. 4, October 1939, pp. 2-6.

cent of the 1939 total. The distribution of imports for consumption is shown in the following table for 1938 and 1939.

Tungsten ore and concentrates imported for consumption in the United States, 1938-39, by countries

		1938			1939			
Country	Gross weight (pounds)	Tungsten content (pounds)	Value	Gross weight (pounds)	Tungsten content (pounds)	Value		
Argentina Australia Bolivia British Malaya	2, 286 108, 765	705 67, 460	\$961 58, 346	141, 872 102, 216 180, 019 200, 843 24, 576	76, 524 56, 639 96, 164 123, 682	\$50, 32 42, 19 77, 34 113, 06		
China Ecuador French Indochina	138, 380	69, 986	42, 350	1, 656, 307 37, 440 5, 630	12, 878 899, 806 21, 326 2, 876	8, 68 587, 48 7, 50		
Mexico Peru	27, 585	1, 360	1, 051	306, 907 87, 662	146, 637 48, 625	2, 833 89, 353 19, 190		
Union of South Africa	45, 069	23, 233	35, 985					
	322, 085	162, 744	138, 693	2, 743, 472	1, 485, 157	997, 971		

General imports of tungsten ore or concentrates, which represent the movement of ore to this country, amounted to 5,894,995 pounds containing 3,111,629 pounds of tungsten in 1939. Of the total general imports of tungsten China supplied 45 percent, Bolivia 24 percent, Australia 8 percent, Argentina 8 percent, Mexico 5 percent, Peru 3 percent, Burma 3 percent, Portugal 2 percent, and British Malaya and Chile 1 percent each.

In addition 589,828 pounds of tungsten in concentrates were imported for smelting, refining, and export in 1939 compared with 828,660 pounds in 1938. There is no record of any exports of tungsten

ore or concentrates from this country.

Imports of tungsten and tungsten carbide, and of tungstic acid and other compounds of tungsten, increased in 1939.

Tungsten in metal and compounds imported for consumption in the United States, 1938-39, by countries

	Tungst		al) and tun oide ¹	Tungstic acid and other com- pounds of tungsten					
Country	193	8	193	9	1938	3	1939	1939	
	Tungsten content (pounds)	Value	Tungsten content (pounds)	Value	Tungsten content (pounds)	Value	Tungsten content (pounds)	Value	
Austria	2 220	3 \$701			28	\$523			
Germany Hungary	² 1, 565	² 6, 822	251	\$1,430	169 44	680 403	438 262	\$2,002 2,422	
United Kingdom	21, 029	23, 994	39, 247	41, 440					
	22, 814	31, 517	39, 498	42, 870	241	1,606	700	4, 424	

Includes combinations containing either metal or carbide.
 Austria included with Germany beginning May 6.

USES

The principal quantitative use of tungsten is in the manufacture of tools for metal cutting. For this purpose it is employed either in certain types of steel known as high-speed tool steels (the more common one containing 18 percent tungsten, 4 percent chromium, and 1 percent vanadium) or in cemented carbides, either alone or with other elements. Tungsten finds important application in electric-light and radio-tube filaments, but the quantities used are not large. Tungsten salts are used in the chemical, pigment, and tanning industries.

WORLD PRODUCTION

World production apparently was at a slightly higher level in 1939 than in 1938, which was somewhat below the record figure established in 1937. Although complete figures are not available, preliminary data indicate that world production in 1939 may have reached 34,000 metric tons.

World production of tungsten ores, 1935–39, by countries, in metric tons of concentrates containing 60 percent WO_3

[Compiled by M. T. Latus]

Country 1	1935	1936	1937	1938	1939
North America: Mexico- United States (shipments)	54 2, 173	57 2, 370	33 3, 175	76 2, 761	(2) 3, 889
	2, 227	2, 427	3, 208	2, 837	(2)
South America: Argentina Bolivia (exports) Brazil (exports) Chile Peru	579 1, 423 7 57	702 1,741 3 92	866 1,802 6 5 30	1, 195 2, 530 2 (2) 170	(2) 3, 334 (2) (2)
	2, 066	2, 538	2, 709	(2)	(2)
Europe: France Great Britain (Cornwall) Italy Norway Portugal Sweden	256 1,140	1,414 62 1,697	148 3 3 2,069 127 2,350	22 258 4 19 2, 810 180 3, 293	(2) (2) (2) (2) (2) (3, 851 (2)
Asia: Burma China (exports) Chosen India, British Indochina (Tonkin) Japan Malay States:	949 417 96	5, 382 7, 638 1, 849 503 61	5, 924 17, 895 2, 058 15 648 (²)	6, 334 13, 387 (2) 12 545 (2)	(2) 11, 580 (2) (2) (2) (2) (2)
Federated Malay States	315	1,712 325 1 82	955 279 (3) 221	667 333 (3) 251	(2) (2) (2) (2)
	16, 105	17, 553	4 27, 995	(2)	(2)

¹ In addition to countries listed, tungsten ore is produced in Spain and the U. S. S. R., but no data of production are available for the period under discussion.

² Data not available.

Less than 1 ton.
 Exclusive of Japan.

World production of tungsten ores, 1935-39, by countries, in metric tons of concentrates containing 60 percent WO₃—Continued

Country	1935	1936	1937	1938	1939
Africa: Egypt Morocco, French			193	(2)	(2)
Nigeria Southern Rhodesia South-West Africa Tanganyika Territory	16 26 53	11 88 46 2	9 275 41 2 2	49 329 48 5	(2) (2) (2) 270 49 (2) (2)
Uganda Union of South Africa	11	30	2 40	127	(2) 100
Oceania:	112	177	562	(2)	(2)
Australia: New South Wales Northern Territory Queensland Tasmania New Zealand	63 126 27 275 61	18 141 22 245 49	66 345 110 345 28	113 515 167 390 54	(2) 354 33 472 (2)
	552	475	894	1, 239	(2)
	22, 458	24, 867	4 37, 718	(2)	(2)

² Data not available.

Argentina.—Argentina is the second-largest producer of tungsten in South America. All tungsten produced is exported, and shipments abroad have trebled since 1934. Since September 1939 exports have moved to the United States; previously the ore was shipped to European countries. Output comes principally from the Provinces of San Luis and Cordoba; much smaller amounts are produced in San Juan and Catamarca. The Sominar, Sociedad Minera Argentina, S. A., is the largest producer, supplying about 50 percent of the Argentine total. It has recently completed a modern concentrating plant that will increase output.

Bolivia.—Bolivia is the largest tungsten producer in South America. The tungsten mines are found throughout the tin belt, usually in separate deposits and rarely associated with tin ores. The principal mines are in the Departments of La Paz and Oruro, with smaller producers in the Departments of Cochabamba and Potosí. Transportation is the foremost problem, and there are still inaccessible areas with important ore deposits that will not be productive until roads or railroads are built. With enough capital for mine and mill-plant installations, together with competent technical advice, it would be possible to increase present Bolivian output substantially. A report giving information on the ore deposits, descriptions of mines, cost, and other data will be found in Mineral Trade Notes. 11

The new mining decree of June 7, 1939, provides that-

The State constitutes itself as the only "reseatedor" or middleman buyer of minerals of all kinds, the respective operations to be carried out by the Banco Minero de Bolivia. The mineral buyers operating in the country shall liquidate their operations within 120 days and shall place the minerals which they fail to liquidate and retain in their warehouses at the disposal of the Banco Minero.

This portion of the new decree does not affect the large mining companies who produce tungsten concentrates and export their product direct to foreign smelters. Much of the export in recent years has gone to Belgium for transshipment to Germany.

Burma.—Burma is the most important producer of tungsten in the British Empire. Output comes principally from the Hermyingyi

⁴ Exclusive of Japan.

¹¹ Bureau of Mines Mineral Trade Notes, Tungsten, Bolivia: Vol. 9, No. 3, September 20, 1939, pp. 13-24.

mine near Tavoy and the Mawchi mine in the southern part of Karenni State. Exports of tin-tungsten concentrates during 1939 were 12,212 metric tons compared with 10,602 in 1938. Exports were prohibited without license after October 9, 1939; licenses are granted only to the United Kingdom and France.

The mineralization at Mawchi has been described by Dunn, 12 while the mining and milling operations have been described by Denyer and Heath.¹³ Dunn ¹⁴ has also described the mineralization at

Hermyingyi mine.

China.—The Sino-Japanese hostilities continued to handicap the movement of tungsten ore from China, the largest world source. Exports of tungsten concentrates were lower in 1939 (11,580 metric tons) than in 1938 (13,387 tons), and a larger part of the movement passed through Hong Kong, owing partly to the establishment in Hong Kong of the Foreign Trade Office of the Chinese National Resources Commission, which has general charge of the sales of minerals in behalf of the Chinese Government. An exclusive sales agency was granted in 1939 to the Pekin Syndicate, Ltd., a British concern, for the sales rights on tungsten produced in Kiangsi, Hunan, and This agency has little or no control over export prices or production, which are handled by the commission. Sales from other Chinese sources also are handled by the commission. reported wolframite monopoly in South China, granted by the Japanese army to three Japanese firms, apparently was ineffective, as the army does not control sources of production.

The tungsten-producing area in the hands of the Japanese is small and not yet pacified. Producing mines, particularly in Kwangtung, were being worked extensively, and with the routes to Shanghai and Canton under Japanese control ores were reaching Hong Kong and other export points by devious routes through parts of South China not in Japanese hands, as well as through Indochina or Burma.

Exports of tungsten concentrates from Hong Kong during 1939 were 7,741 metric tons, of which 478 tons went directly to the United States. Apparently sales to Germany stopped with the outbreak of the war, while shipments were being made to the U.S.S.R. under the

Sino-Soviet barter agreement.

Cuba.—Activities were reported in 1939 aimed at production of commercial quantities of tungsten ore on the Isle of Pines by the Pan American Tungsten Corporation. No shipments were made in 1939, but a mill for the recovery of wolframite concentrates was erected which is expected to be in production early in 1940.

India, British.—There is little or no production of tungsten in India. Output previously credited to India came from Burma, which

was split from India as a separate State as of April 1, 1937.

Malay States.—The Kramat Pulai mine near Ipoh is the principal producer in the Malay States. The ore body is composed almost entirely of scheelite and fluorite. The scheelite is of good quality, but the reserves are limited, which explains declining production in recent years. Exports from the Malay States in 1939 were 661 metric tons, of which 220 tons were scheelite and 441 tons wolframite.

¹² Dunn, J. A., Tin-tungsten Mineralization at Mawchi, Karenni States, Burma: Records, Geol. Survey

India, vol. 73, part 2, 1938, pp. 299-237.

13 Denyer, J. E., and Heath, K. C. G., Mining and Milling Tin-tungsten Ore at the Mawchi Mine, Burma: Bull. Inst. Min. and Met., Bull. 426, March 7, 1940, pp. 1-30.

14 Dunn, J. A., Tin-tungsten Mineralization at Hermyingyi, Tavoy District, Burma: Records, Geol. Survey India, vol. 73, part 2, 1938, pp. 238-246.

Exports were prohibited without permit to all ports and destinations abroad other than British.

Portugal.—Output in Portugal, the largest European producer, in 1939 increased 37 percent over 1938. The Beralt Tin & Wolfram, Ltd., with properties at Panasqueira in the Province of Beira Baixa, district of Castello Branco, was the largest producer. Exports were 3,142 metric tons in 1939 compared with 2,450 in 1938 and have been subject to license since October 1939.

Southern Rhodesia.—The African Continent produces little tungsten; the principal output comes from Southern Rhodesia, where production decreased to 270 metric tons in 1939 from 329 metric tons in 1938. Exports were prohibited without license after September 4, 1939.

VANADIUM

Vanadium output in 1939 exceeded the high level reached in 1937 and 1938. The world supply comes from a limited number of operations, principally in four countries, of which Peru and the United States are now the most important. Production in Peru, all from the Minasragra mine, was 23 percent higher in 1939 than in 1938. revival of the domestic producing industry continued, as shipments from the mines also recorded a 23-percent increase. New deposits were being explored and developed during the year, and it was reported that activities were being revived in the Kifle district, Garfield County, Colo. Production in Northern Rhodesia was increased slightly in 1939, while that in South-West Africa dropped 8 percent. sources of vanadium may be supplemented in future by the recovery of vanadium from the treatment of pig iron made from vanadiumbearing iron ores at ferrous smelters in Germany. The process involves the treatment of converter slags, which, it is claimed, may run as high as 10 percent V. Enough vanadium to supply one-third of Italy's annual requirements is recovered from the caustic soda solution employed in the Bayer process of refining bauxite. 15 Vanadium is also recovered from the boiler and stack soot of ships burning Venezuelan and Mexican oil for fuel. Other byproduct sources are being investigated for recovery of vanadium.

Despite the increase in domestic production, imports for consumption into this country increased. Purely nominal quotations for vanadium ore were unchanged throughout 1939 at 271/2 cents per pound of contained V₂O₅.

Salient statistics of the vanadium industry in the United States, 1938-39

	1938		1939	
	Quantity	Value	Quantity	Value
Shipments: Carnotite ores !short tons_ Vanadium containedpounds_ Vanadium and complex oresshort tons Vanadium containedpounds_ Imports: Vanadium oresshort tons Vanadium containedpounds	4, 290 173, 859 3 247, 397 1, 439, 296 9, 981 1, 384, 320	\$158, 779 (2) 4 740, 000 (2) 891, 475	6, 256 206, 509 273, 098 1, 777, 559 15, 694 2, 132, 548	\$174, 660 (4) 4 879, 000 (2) 991, 511

¹ Also contained radium and uranium as follows: Radium—1938, 7,821 milligrams; 1939, 8,964 milligrams. Uranium—1938, 51,705 pounds; 1939, 59,269 pounds.

³ Figures not available.

⁴ Revised figures.

⁴ Estimated by Bureau of Mines.

¹⁵ Light Metals, Light Alloys and the Light-metal Industries in Italy: Vol. 3, No. 27, April 1940, p. 103.

DOMESTIC PRODUCTION

United States production (as measured by shipments) of vanadium contained in all types of ores from which it was recovered totaled 1,984,068 pounds in 1939 compared with 1,613,155 in 1938. Output

came from Arizona, Colorado, and Utah.

Arizona.—Vanadium was produced from operations of the Molybdenum Gold Mining Co. and the Mammoth-St. Anthony, Ltd., near Mammoth, where complex ores containing recoverable values in gold, silver, lead, molybdenum, and vanadium are treated in the flotation mill operated by the latter company. The mines of the Molybdenum Gold Mining Co. were acquired by the Mammoth-St. Anthony, Ltd., early in the year and were closed on May 15, 1939. New facilities were installed at the Mammoth mine during 1939.

Colorado.—The production of vanadium in Colorado in 1939 amounted to 1,755,489 pounds in vanadium and carnotite ores. The roasting and leaching plant of the United States Vanadium Corporation, the largest producer, at Uravan, Montrose County, was run throughout the year, treating an average of 240 tons of ore daily. The ore runs about 2 percent V_2O_5 ; and the vanadium is recovered as V_2O_5 by roasting the ore with salt, leaching the sodium vanadate with water, and precipitating the V_2O_5 with acid. The precipitate is then sintered to a product containing about 88 percent V_2O_5 . The company produces from its own properties, the coal and salt used in treating the ore and in addition to treating its own ores purchases small quantities from minor producers in the district.

The new mill erected near Gateway, Mesa County, by the Gateway Alloys, Inc., was not put into operation until the latter part of

October 1939.

Utah.—Vanadium-bearing ores were produced from a number of rather widely scattered places in Utah. Shipments, which were higher than in 1938, totaled 189,902 pounds of contained V_2O_5 in 1939 and originated in Grand and San Juan Counties in the southeastern part of the State. The largest shipment came from the Shumway property near Blanding, San Juan County, and amounted to 1,400 short tons of ore containing 2.45 percent V_2O_5 . The Harbro mines near Cisco, Grand County, made substantial shipments of concentrates containing carnotite.

FOREIGN TRADE

Imports of vanadium ores in 1939, all from Peru, totaled 15,694 short tons containing 3,808,122 pounds of V_2O_5 (2,132,548 pounds of V). Data on exports are not given by the Bureau of Foreign and Domestic Commerce. No exports were reported by producers in 1939.

USES

The principal use of vanadium is in the manufacture of special alloy steels and irons. A minor quantity is employed as a catalyst in the manufacture of sulfuric acid in the form of ammonia metavanadate and in the nonferrous, glass, ceramic, and color industries. The importance of vanadium as one of the principal alloying elements of ferrous metallurgy today is as great or greater than 10 years ago.

There have been numerous changes in its application during the last decade, both in tool and in constructional steels.¹⁶

WORLD PRODUCTION

World output in 1939 exceeded that in 1938 owing to larger production from most of the principal sources. Output in Peru comes from the Minasragra mine of the Vanadium Corporation of America. The richer ore from the mine goes to the sorting floor, where a shipping product containing about 11 percent V₂O₅ is sorted out, while the low-grade ore and discarded material from the sorting floor goes to the calcining plant, where it is first crushed to under a quarter inch and then burned in a furnace to eliminate the carbonaceous matter, leaving an ash with about 22 percent V₂O₅. This product is then sacked and shipped to Bridgeville, Pa., for reduction to ferrovanadium in the electric furnace.¹⁷ Exports from Peru in 1939 comprised 11,601 metric tons of ore and 2,726 tons of concentrates, all of which moved to the United States. Three mines—the Abenab and Baltika of the Southwest Africa Co., Ltd., and the Nageib of the Otavi Minen und Eisenbahn Gesellschaft—contributed to the total in the Territory of Southwest Africa. All the ore, which runs about 19.75 percent V₂O₅, is exported to England and Europe. Production in Northern Rhodesia was fused vanadic oxide from operations of the Rhodesian Broken Hill Development Co., Ltd., which also produces zinc. main source of supply of vanadium at present is surface dumps. which will soon be exhausted. Experiments are being conducted on the recovery of vanadium from the ores by selective flotation in order that production of vanadium can be continued.

World production of vanadium in ores and concentrates, 1935-39, in metric tons

[Compiled by R. B. Miller]

Country	1935	1936	1937	1938	1939
Mexico Northern Rhodesia Peru South-West Africa United States (shipments)	173 67 176 (¹)	204 161 547 63	45 235 583 591 493	180 374 826 557 732	386 1,016 514 900

¹ Bureau of Mines not at liberty to publish figure.

Strauss, Jerome, Vanadium: Metals and Alloys, vol. 10, No. 10, October 1939, p. A 58.
 Wright, C. W., work cited in footnote 5, pp. 36-38.

BAUXITE AND ALUMINUM

By HERBERT A. FRANKE AND M. E. TROUGHT 1

SUMMARY OUTLINE

Pag	re [Page
Summary 6	37 Aluminum	
Salient statistics 6		646
Bauxite6	38 Consumption	649
Production6	8 Prices	650
Consumption6	H Foreign trade	650
By industries 64	1 Technologic developments	- 652
Aluminum 6	3 World bauxite and aluminum industries	652
Abrasive 64		652
Chemical 64	3 Aluminum production	653
Oil refining and refractory 6	4 Aluminum consumption	654
Prices 64	5 Review by countries	654
Foreign trade		00-

Production of aluminum in the United States in 1939 shattered all previous records, and consumption equaled the peak reached in 1937. Exports and total sales of metal by the Aluminum Co. of America were the largest in history. These achievements were abnormal in that the demand for aluminum was enhanced by preparations for national defense and the wars abroad. The aviation industry consumed twice the quantity of aluminum it did in 1937, the previous Another noteworthy year for the metal is predicted for 1940 as war demands continue and uses for aluminum products widen. Domestic aluminum production in 1939 was 14 percent above that for 1938 and exceeded the previous high attained in 1937 by 12 percent. Primary producers withdrew 56 percent of the metal added to stocks in 1938, and apparent domestic consumption increased 87 percent. Imports of crude and semicrude aluminum rose 62 percent and exports were almost 6 times those in 1938 (3 times the previous record year, The quoted price of primary aluminum remained unchanged throughout 1939, but on March 25, 1940, the price was reduced from 20 to 19 cents per pound.

Domestic shipments and imports of bauxite likewise advanced in 1939. The larger demand came chiefly from the aluminum industry, but the abrasive, chemical, and other industries also increased their use of bauxite during the year. The greater production (shipments) of bauxite from Arkansas mines sufficed to increase the total for the United States 21 percent over that in 1938. Imports of bauxite exceeded those of any other year, increasing 14 percent over those in 1938. Exports (dried-ore basis) declined 4 percent. Apparent consumption increased 19 percent over that of 1938 and 7 percent over that of 1937, the previous peak. The domestic output was equivalent

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

to 45 percent and net imports to 55 percent of total consumption. The quoted range of prices for bauxite was slightly less than that in 1938.

Salient statistics of the bauxite and aluminum industries in the United States, 1937-39

² 425, 076	² 310. 916	
\$2, 444, 686 507, 423 123, 191 3, 700, 000 146, 341 \$55, 609, 000 20, 1 62, 560 \$8, 177, 600 \$2, 943, 214	\$1, 812, 545 455, 693 57, 726 3, 801, 000 143, 441 \$56, 659, 000 20, 0 38, 800 \$3, 379, 018 \$5, 484, 047	375, 307 \$2, 166, 236 520, 179 51, 635 4 4, 300, 000 163, 545 \$64, 600, 000 20, 0 (9) \$44, 766, 260 \$23, 630, 885 4 713, 600
	146, 341 \$55, 609, 000 20. 1 62, 560 \$8, 177, 600	146, 341 \$55, 609, 000 20. 1 62, 560 \$8, 177, 600 \$2, 943, 214 \$56, 659, 000 20. 0 33, 800 \$3, 379, 018

Dried bauxite equivalent.
 Revised figures.
 As shipped.
 Estimated.
 New York: 99 percent plus, pure virgin ingot, according to Metal Statistics 1940, published by American Metal Market.
 Figures not yet available.

Although official data on world bauxite and aluminum production and trade are more incomplete than heretofore on account of hostilities in Europe and Asia, new high records are believed to have been established again in 1939. Estimated world output of aluminum increased 12 percent over 1938. The United States probably remained second to Germany as the largest producer of aluminum. Of the total world output, it is estimated that Germany contributed 28 percent, the United States 23 percent, Canada 12 percent, the U. S. S. R. 8 percent, and France 8 percent. The world race for supremacy in the air explained the outstanding demand for metal as consumption broke all previous records. Larger quantities of aluminum also were used in other transportation industries, in electric transmission lines, in many other established fields, and in new industrial uses developed by the industry's active research laboratories.

World bauxite output kept pace with aluminum production in 1939, increasing an estimated 14 percent. France's large output was followed by that of Hungary, Surinam, British Guiana, Italy, the United States, and Yugoslavia. The United States ranked sixth in

importance and produced about 9 percent of the total.

BAUXITE

PRODUCTION

Bauxite production (mine shipments) in the United States increased 21 percent in quantity and 20 percent in value in 1939 compared with 1938 (fig. 1). Arkansas mines were responsible for all the increase as shipments from Alabama and Georgia decreased. Of the total domestic output, Saline and Pulaski Counties, Ark., contributed 96 percent, of which an estimated 60 percent came from underground mines and 40 percent from open-pit mines. Barbour and Henry Counties, Ala., and Sumter County, Ga., supplied the remaining 4 percent of the output, chiefly from open-pit operations.

Bauxite shipped from mines in the United States, 1935-39, by States

			Long tons			
State and year				To	tal	Value f.o. b. mine
	Crude Dried Calcine	Calcined	As shipped	Dried bauxite equivalent	as shipped	
Alabama and Georgia:						
1935	100	14, 021		14, 121	1 14, 114	\$91, 293
1936	91	16, 971		17, 062	1 17, 056	109, 32
1937	3, 410	14, 627		18, 037	1 17, 614	121, 82
1938	5, 532	² 12, 542		18, 074	¹ 17, 253	132, 88
1939	2, 727	11, 318		14, 045	13, 617	91, 28
Arkansas:						
1935	21, 594	164, 349	33, 848	219, 791	1 231, 331	1, 465, 30
1936	49, 243	268, 900	36, 800	354, 943	1 363, 255	2, 089, 19
1937	98, 340	257, 023	46, 832	402, 195	1 407, 462	2, 322, 86
1938	72, 097	194, 945	26, 238	293, 280	1 293, 663	1, 679, 66
1939	99, 215	225, 355	³ 36, 686	361, 256	361, 690	2, 074, 95
Total United States:	1					
1935	21, 694	178, 370	33, 848	233, 912	1 245, 445	1, 556, 59
1936	49, 334	285, 871	36, 800	372,005	1 380, 311	2, 198, 52
1937	101, 750	271, 650	46, 832	420, 232	1 425, 076	2, 444, 68
1938	77, 629	² 207, 487	² 26, 238	311, 354	1 310, 916	1, 812, 54
1939	101, 942	236, 673	³ 36, 686	375, 301	375, 307	2, 166, 23

¹ Revised figures.

The quantities in the foregoing and succeeding tables under the heading "As shipped" show the actual tonnage of material moved. Bauxite is shipped in several forms—crude, dried, activated, calcined, and sintered—in which the moisture content varies considerably; therefore all shipments must be converted to a common unit to permit correct interpretation of the statistical trend and more accurate comparisons of domestic production and shipments with imports and foreign production. This is accomplished by reducing all shipments to a "dried-bauxite equivalent," also listed in the tables.

Mine shipments which are used throughout this report to indicate production, formerly were classified according to use. These data, however, did not picture the true consumption in any particular year accurately, because of the large fluctuations in inventories held by some consumers who operate large processing plants near the mines to convert crude ore received from the mines into more concentrated products for delivery direct to places of ultimate consumption. The table showing shipments by uses has been modified this year to include bauxite shipped direct from the mines to ultimate consumers and that shipped from intermediate processing plants to final consumers. The variations in stocks held by processing plants thus have been eliminated, thereby giving a more accurate annual statement of consumption of domestic bauxite.

The dried bauxite shipped from Arkansas mines usually contains 55 to 60 percent Al₂O₃, 4 to 6 percent SiO₂, 2 to 4 percent Fe₂O₃, 2.5 to 3 percent TiO₂, and 27 to 30 percent combined moisture. The crude or undried ore normally contains 12 to 18 percent free moisture. The calcined bauxite contains about 80 to 84 percent Al₂O₃, 4 to 6 percent SiO₂, 5 to 8 percent Fe₂O₃, and 3.5 to 5 percent TiO₂. Ore shipped from Alabama and Georgia usually contains slightly less alumina and iron oxide and more silica than that from Arkansas. Stocks of bauxite on hand at all mines and processing plants on December 31,

² Includes small quantity of activated.

³ Includes sintered.

1939, totaled 149,377 long tons of crude ore and 9,367 tons of processed ore compared with 99,800 tons of crude ore and 7,880 tons of processed ore on December 31, 1938.

Except for the Pulaski Bauxite Co., all bauxite producers and processing plants active in the United States in 1938 (Minerals Yearbook,

1939, p. 635) again operated mines and plants in 1939.

In Arkansas the American Cyanamid & Chemical Corporation developed the Heckler property, adjoining the Rauch mine, Pulaski County, and the Ozark No. 24 property, a few miles northeast of the Ozark No. 28 mine, Saline County. A bauxite-sintering plant was placed in operation at the Ozark No. 28 mine during the summer of 1939. Its equipment includes a crusher, screens, a standard Dwight-

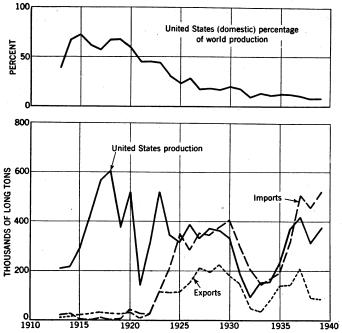


FIGURE 1.—Trends in production, imports, and exports of bauxite, 1913-39.

Lloyd sinter machine, and storage silos. The product is comparable in analysis and suitable for the same purposes as calcined bauxite. In the spring of 1939 the Porocel Corporation, owned jointly by the company and the Attapulgus Clay Co., began to produce activated

bauxite at Berger, Ark., using a new dry process.

In 1939 the Arkansas Bauxite Corporation operated its McDonald mine and developed its Townsend property, both in Saline County. Operations ceased at the company Standard mine in April 1939 and at the Bizzell mine early in 1938. The company employs a special wet process at its activated bauxite plant at West Bauxite, which is owned jointly with Max B. Miller & Co., Inc. The Consolidated Chemical Industries, Inc., temporarily abandoned its Alexander No. 1 mine (Rogers Tract) near Bryant, Ark., in the fall of 1938 and began to produce bauxite from its No. 2 mine (Gates lease) near Mount

Olive early in 1939. The Crouch Mining Co., Inc., continued to operate the England mine, Pulaski County, in 1939, but planned to begin production in 1940 at the Young property, Saline County. The Dixie Bauxite Co., Inc., and the Republic Mining & Manufacturing Co. (the largest producer) produced ore in 1939 from the same properties operated in 1938. In Arkansas the Republic Co. mined bauxite from open-pit as well as from underground operations, while all other companies produced only from underground.

In Alabama, the Republic Co. continued to produce bauxite from various pocket deposits in the Eufaula district, Barbour and Henry Counties. The Floridin Co. also mined ore in this district, shipping it undried to its activated-bauxite plant at Quincy, Fla. In Georgia the American Cyanamid & Chemical Corporation shipped ore which had been mined in 1936 and 1937 from its drying plant, and Benjamin

Easterlin installed a rotary drying kiln.

CONSUMPTION

Apparent consumption figures shown in the following tables differ from those published in previous reports of this series, inasmuch as they are based on shipments from mines and intermediate processing plants to ultimate consumers rather than shipments from mines irrespective of destination. Net imports (imports minus exports) comprised 55 percent of the apparent bauxite consumption in 1939 compared with 56 percent in 1938 and only 41 percent in 1937. (See fig. 1.) Canada takes most of the bauxite and alumina exported and uses a substantial quantity of it to manufacture crude abrasives, which are returned to the United States for final manufacture and consumption.

Data on production, imports, exports, and apparent consumption of bauxite in the United States from 1910 to 1938 were published in Minerals Yearbook, 1939, p. 636. These historical figures, however, as explained in the preceding paragraph, are not exactly comparable with those in the following table.

with those in the following table.

Shipments, imports, exports, and apparent consumption of bauxite in the United States, 1935-39, dried-bauxite equivalent, in long tons

	Domestic :	shipments to	industry i			Apparent	
Year	From Arkansas	From Ala- bama and Georgia	Total	Imports Exports	Exports	consump- tion	
1935	253, 771 352, 919 415, 050 275, 078 335, 647	14, 114 17, 056 17, 614 17, 253 13, 689	267, 885 369, 975 432, 664 292, 331 349, 336	199, 959 322, 790 507, 423 455, 693 520, 179	141, 060 144, 445 210, 657 90, 341 86, 540	2 326, 784 2 548, 320 2 729, 430 2 657, 683 782, 975	

From mines and processing plants.

BY INDUSTRIES

Shipments of domestic bauxite to ultimate consuming industries from mines and processing plants are listed in the following table according to the condition actually shipped and the dried-bauxite equivalent. Detailed information is not available on the consump-

² Revised figures.

tion, by industries, of bauxite imported. Unless otherwise noted, all mention of production and consumption in the discussion that follows is in terms of dried bauxite.

Bauxite shipped from mines and processing plants in the United States, 1935-39, by consuming industries, in long tons

	193	5	1936		1937		1938		1939	
Industry	As shipped ¹	Dried- baux- ite equiv- alent	As	Dried- baux- ite equiv- alent	As shipped ¹	Dried- baux- ite equiv- alent	As shipped ¹	Dried- baux- ite equiv- alent	As	Dried- baux- ite equiv- alent
Aluminum Chemical Abrasive Oil refining, refractory, 2 and other	112, 154 66, 316 51, 566 1, 758	86, 889	74, 512 63, 654	98, 069	78, 261 88, 685	209, 476 79, 150 135, 849 8, 189	63, 940 48, 999	63, 350 74, 614	81, 444 55, 346	79, 536 82, 326
Total quantity Total value	231, 794 \$1,715,927	267, 885	334, 610 \$2,282,301		383, 529 \$2,722,403	432, 664	267, 479 \$1,823,307		312, 036 \$2,448,038	

Principal bauxite consumers 1 in the United States in 1939

Chemical manufacturers:

Activated Alum Corporation, Baltimore, Md.

Aluminum Ore Co., subsidiary of Aluminum Co. of America, Gulf Building, Pittsburgh, Pa.

American Cyanamid & Chemical Corporation, 30 Rockefeller Plaza, New York, N. Y.

American Phosphate & Mfg. Co., Sand Springs, Okla.

Blockson Chemical Co., Joliet, Ill. Brown Co., Berlin, N. H. Brush Beryllium Co., Lorain, Ohio.

Calco Chemical Division, American Cyanamid Co., Bound Brook, N. J. Consolidated Chemical Industries, Inc., Petroleum Building, Houston, Tex. Charles Cooper & Co., Newark, N. J.

Davison Chemical Corporation, Rouse Building, Baltimore, Md. Diamond Alkali Co., Koppers Building, Pittsburgh, Pa.

E. I. du Pont de Nemours & Co., Incorporated, 1007 Market Street, Wilmington, Del.

Gaylord Container Corporation, Bogalusa, La. General Chemical Co., 40 Rector Street, New York, N. Y. Gulf Oil Corporation, Gulf Building, Pittsburgh, Pa.

Guir On Corporation, Guir Building, Fittsburgh, Fa.

Hercules Powder Co., Wilmington, Del.

Hilton-Davis Chemical Co., Langdon Farm Road & Pa. R. R., P. O. Box

8, Pleasant Ridge Station, Cincinnati, Ohio.

Hooker Electrochemical Co., Niagara Falls, N. Y.

William F. Jobbins, Incorporated, Aurora, Ill.

Kalunite, Incorporated, 81 Navajo Street, Salt Lake City, Utah.

Kimberly-Clark Corporation, Neenah, Wis. Charles Lennig & Co., Incorporated, 222 West Washington Square, Philadelphia, Pa.

Mallinckrodt Chemical Works, St. Louis, Mo.

Maintervold Chemical Works, St. Louis, Mo.
Mineral Products Corporation, Marysvale, Utah.
Monsanto Chemical Co., Everett, Mass.
National Aluminate Corporation, 6216 West 66th Place, Chicago, Ill.
Natural Products Refining Co., Jersey City, N. J.
Niagara Chlorine Products Corporation, Box 96, Lockport, N. Y.
Ohio Apex, Inc., Nitro, W. Va.
Pennsylvania Selt Manufacturing Co. Widener Building, Philadelph

Pennsylvania Salt Manufacturing Co., Widener Building, Philadelphia, Pa. Southwest Chemical Corporation, Little Rock, Ark.

Includes crude, dried, and calcined, 1935-39: also activated, 1938-39, and sintered, 1939.
Small quantity of bauxite shipped to makers of refractories probably included under "Abrasive."

¹ Some of the companies may consume aluminous raw materials other than bauxite. The list excludes oil-refining companies (chiefly in Pennsylvania and Mid-Continent fields), municipal water-treatment plants, and steel concerns that use bauxite.

Stauffer Chemical Co., 624 California Street, San Francisco, Calif. S. D. Warren Co., Cumberland Mills, Maine.

Westvaco Chlorine Products, Incorporated, Carteret, N. J.

Other manufacturers:

er manutacturers:
Abrasive Co., Philadelphia, Pa.
Atlas Lumnite Cement Co., Chrysler Building, New York, N. Y.
The Carborundum Co., Niagara Falls, N. Y.
The Exolon Co., Blasdell, N. Y.
Federal Abrasives Co., Anniston, Ala.
General Abrasive Co., Inc., Niagara Falls, N. Y.
General Refractories Co., Philadelphia, Pa.
Harbison Walker Refractories Co., Pittsburgh, Pa.

Harbison-Walker Refractories Co., Pittsburgh, Pa.

Laclede-Christy Clay Products Co., St. Louis, Mo. Massillon Stone & Fire Brick Co., Massillon, Ohio. Norton Co., Worcester, Mass.

Aluminum.—Shipments of bauxite from Arkansas to the aluminum industry in 1939 comprised 46 percent of the total domestic ore shipments. This quantity was relatively small, however, as almost three-fourths of the industry's bauxite requirements were imported from Surinam.

Abrasive.—In 1939, shipments of domestic bauxite to American and Canadian abrasive plants increased 10 percent from 1938, and amounted to 24 percent of the total tonnage. Technical advances made in the manufacture of abrasives have been very important in today's mass-production methods. Crystalline or fused aluminum oxide and silicon carbide are two standard abrasives that are hard enough to grind almost every material commonly used in the arts.2

Chemical.—Domestic bauxite consigned to the chemical industry increased 26 percent in 1939 and represented 23 percent of the total ore shipments. Shipments of aluminum salts advanced 20 percent and of alumina 3 percent. Returns from producers of primary aluminum salts and alumina show the consumption in 1939 of approximately 178,000 long tons of dried bauxite (58 percent domestic, 42 percent foreign), 8,546 short tons of alumina, 1,587 tons of aluminum, and a small quantity of clay, alunite, and chromite residue. Of the alumina shipped, 28 percent was used in the manufacture of aluminum salts.

Aluminum salts and alumina produced in the United States, 1938-39

	19	938	1939		
	Producers	Short tons	Producers	Short tons	
Aluminum salts: Alum: Ammonia	7	3, 754	7	5, 112	
PotashAluminum chloride:	3	1,715	4	2, 537	
Liquid Crystal Anhydrous	6 2 4	2, 167 6, 240	6 4 5	3, 145 8, 340	
Aluminum sulfate: Commercial:					
General Municipal Iron-free	16 10 8	353, 044 10, 278 15, 082	17 10 9	403, 813 11, 239 23, 640	
Sodium-aluminum sulfateSodium aluminate	8 2 7	24, 961	$\left\{\begin{array}{cc} \tilde{2} \\ 8 \end{array}\right.$	31, 545	
Total aluminum salts	7	417, 241 29, 043	10	489, 371 30, 695	

¹ Excludes alumina produced for use in making aluminum; includes activated, calcined, crude, light and heavy hydrate, and monohydrate D produced for sale.

³ Tone, Frank J., Abrasives, 1918-38: Chem. Ind., vol. 45, No. 2, pt. 1, August 1939, pp. 133-139.

Aluminum salts and alumina shipped by producers in the United States, 1938-39

			1938			1	939	
	a	Gh. 4	Value	в	a		Value	,
	Ship- pers	Short			Ship- pers	Short tons	Total	Aver-
Aluminum salts:								
Ammonia	7	4, 079	\$218,019	\$53	7	5, 570	\$294, 866	\$53
Potash	3	2, 085	121, 174	58	5	2,709	156, 358	58
Aluminum chloride: Liquid	6	2, 174	99, 208	46	6	3, 121	136, 792	44
Crystal	4	6, 166	521, 492	85	$\left\{\begin{array}{c} 4\\5\end{array}\right.$	8, 351	830, 347	99
Commercial: General	16	349, 051	7, 345, 471	21	17	408, 324	8, 031, 897	20
Municipal	iŏ	10, 689	161, 160	15	10	11, 010	166, 590	15
Iron-free	8	14, 508	417, 446	29	9	23, 695	587, 573	25
Sodium-aluminum sulfate Sodium aluminate	2 7	24, 153	1, 313, 384	54	$\left\{\begin{array}{c}2\\8\end{array}\right.$	31, 252	1, 608, 876	51
Total aluminum salts		412, 905	10, 197, 354			494, 032	11, 813, 299	
Alumina 1	7	29, 175	1, 955, 383	67	11	30, 178	2, 143, 522	71

 $^{^{1}}$ Excludes alumina produced for use in making aluminum; includes activated, calcined, crude, light and heavy hydrate, and monohydrate $\mathbf{D}.$

Aluminum salts shipped in, imported into, and exported from the United States, 1935-39

						Exports				
Year	Domesti	Oomestic shipments		Imports		ninum lfate		uminum ounds		
	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value		
1935 1936 1937 1938 1939	402, 717 444, 660 466, 894 412, 905 494, 032	\$10, 082, 936 10, 965, 660 12, 092, 992 10, 197, 354 11, 813, 299	1, 424 2, 106 2, 864 1, 871 828	\$68, 636 50, 608 61, 665 40, 189 22, 335	33, 091 28, 788 31, 807 27, 715 34, 734	\$685, 347 578, 001 679, 214 578, 330 744, 755	691 1, 483 2, 609 1, 770 1, 792	\$126, 435 250, 262 423, 363 257, 545 208, 455		

Oil refining, refractory, and other.—The consumption of activated bauxite in the percolation filtration of paraffin-base oils continued to increase in 1939. The term "activated bauxite" refers to a product that has undergone more careful crushing, screening, sizing, beneficiating, and drying steps than most bauxite. There is no other specific treatment of the product that must have particular physical rather than chemical properties. The granular activated bauxite marketed usually contains 5 to 10 percent combined water and may be furnished in 20/60, 30/60, or some other special mesh grade, in bulk or in 100- or 125-pound bags. It is sold under the trade names Porocel, X-Yte, and Florite, at prices ranging upward from \$33 per ton, f. o. b. Arkansas plants.

The very small percentage of bauxite reported shipped to the refractory industry probably is too low, as some products classed as abrasives are used chiefly because of their refractory properties. Aluminous refractories are fused electrically and cast economically in large blocks, and although particularly sensitive to thermal shocks,

high-density fused refractories have great chemical resistance at high temperatures.3 These dense products are rigid and relatively brittle and do not withstand heat shock, therefore they are not widely applicable in the steel industry. Imported bauxite, chiefly from Greece, continued to be used in the domestic production of calcium aluminate cement. In 1939 small quantities of domestic dried and calcined bauxite were consumed by the steel industry as a fluxing material.

PRICES

In 1939 the average selling price, f. o. b. mines and processing plants, was \$4.35 per long ton for crude (undried) bauxite; \$5.36 for crushed dried bauxite; \$12.48 for calcined bauxite; and \$37.08 for activated The average value for all grades of domestic ores as shipped

by mine producers was \$5.77 per ton (\$5.82 in 1938).

Quotations on domestic and foreign bauxite are nominal, and a definite price per ton can be ascertained only by direct negotiation between the buyer and seller. The open market for bauxite is relatively small because some of the larger consumers operate their own mines and others obtain supplies on a contract basis. Quotations given in the following table are from Engineering and Mining Journal Metal and Mineral Markets.

Range of quotations on bauxite, 1937-39

Type of ore	specifi	mical cations cent)	Prices during year			
	Al ₂ O ₃	SiO ₂	1937	1938	1939	
Domestic ore (per long ton): Chemical, crushed and dried ¹ Other grades ³ Pulverized and dried ³ Abrasive grade, crushed and calcined ³ Foreign ore (per metric ton): Dalmatian ⁵ Greek ⁵ French ⁵	55-58 50-59 56-59 78-84 50-55 56-58 56-59	(2) 5-8 8-12 (4) 1-3 3-5 2-4	\$6. 00-\$7. 50 6. 00- 7. 50 10. 00-12. 00 12. 50-15. 00 4. 50- 7. 50 7. 50- 8. 50 5. 50- 9. 00	\$6. 00-\$7. 50 6. 00- 7. 50 9. 00-12. 00 12. 00-15. 00 6. 00- 7. 50 7. 00- 8. 50 7. 00- 9. 00	\$6. 00-\$7. 00 6. 00- 7. 00 9. 00-11. 00 12. 00-14. 00 6. 00- 8. 00 7. 00- 8. 00 7. 90- 8. 00	

FOREIGN TRADE

Imports of bauxite (chiefly dried ore) in 1939 were the highest ever recorded (fig. 1), exceeding those received in 1938 by 14 percent and in 1937 (the previous peak) by 3 percent. Exports (dry equivalent) declined 4 percent compared with 1938. Of the 1939 imports Surinam supplied 477,094 long tons, British Guiana 29,586, Greece 8,190, France 5,280, and Netherland India 29. Imports, by custom districts, were as follows: 255,708 tons to Mobile, 189,341 to New Orleans, 40,104 to Philadelphia, 17,365 to Massachusetts, 8,190 to Chicago, 6,145 to Florida, 3,297 to Sabine, and 29 to New York. In addition to bauxite, 11 long tons of alumina were imported.

¹ F. o. b. Alabama and Arkansas mines. ² SiO₂ not specified; Fe₂O₃, 1.5-2.5 percent. ³ F. o. b. Arkansas mines.

Not specified.
C. i. f. Atlantic ports.

³Kraner, Hobart M, Alumina and Silica Refractories: Iron Age, vol. 145, Nos. 3 and 4, January 18 and 25, 1940, pp. 25-30 and 34-39.

Of the exports in 1939, 45,168 long tons were classified as bauxite and other aluminum ores, 6,372 tons as other bauxite concentrates, and 95 tons as alumina of which Canada was consigned 45,136 tons, 4,963 tons, and 93 tons, respectively. Of the remainder of "other bauxite concentrates," 900 tons went to Norway, 488 to Japan, 20 to Mexico, and 1 to Denmark.

Bauxite imported into and exported from the United States, 1935-39

Year		ts for con- otion 1 2	bauxi	s (including te concen- ates) ³	Year		ts for con- otion 1 2	bauxit	(including e concen- ites) ³
	Long tons	Value	Long			Long tons	Value	Long tons	Value
1935 1936 1937	199, 959 322, 790 507, 423	\$1, 448, 592 2, 370, 778 3, 609, 063	82, 491 84, 471 123, 191	\$2, 191, 167 2, 322, 915 3, 456, 916	1938 1939	455, 693 520, 179	\$3, 521, 325 3, 765, 140	57, 726 51, 635	\$1, 459, 491 1, 117, 564

¹ Also "alumina" as follows: 1935, 67 long tons valued at \$7,680; 1936, 117 tons, \$11,618; 1937, 182 tons, \$16,461; 1938, 64 tons, \$5,464: 1939, 11 tons, \$850.

² Chiefly dried ore.

³ As shipped.

ALUMINUM

PRODUCTION

Primary.—Primary aluminum production in the United States in 1939 increased 14 percent in quantity and value over that in 1938 and was the largest on record (fig. 2). Output would have been greater had it not been for the unusually low rainfall in certain areas, which reduced the amount of power available. The value of aluminum produced averaged 19.75 cents per pound in 1939, the same as in 1938. Of the total output, 41 percent was made at Alcoa, Tenn.; 35 percent at Massena, N. Y.; 13 percent at Badin, N. C.; and 11 percent at Niagara Falls, N. Y.

Aluminum produced in the United States, 1935-39

	Primar	Primary metal		Secondary metal		Primar	y metal	Seconda	ry metal
Year	Pounds	Value	Pounds	Value ¹	Year	Pounds	Value	Pounds	Value ¹
1936	224, 929, 000	\$22, 070, 000 41, 612, 000 55, 609, 000	103, 000, 000	\$19, 018, 000 19, 055, 000 23, 773, 000	1939_	286, 882, 000 327, 090, 000	\$56, 659, 000 64, 600, 000	77, 600, 000 (²)	\$15, 326, 000 (²)

Based on average price of primary aluminum as reported to Bureau of Mines.
 Figures not yet available.

In 1939 the Aluminum Co. of America completed a \$26,000,000 expansion program begun in 1937 and later announced the beginning of other developments to cost \$30,000,000. A new aluminum-reduction plant to be finished about January 1, 1941, at Vancouver, Wash., will utilize Bonneville power and alumina shipped from existing plants, and it will be capable of producing 30,000 short tons of metal annually. This plant, together with a 20-percent increase in capacity of the Alcoa works, will enable the company to produce more than 215,000 tons of aluminum annually. In addition to the development of reduction works, the new program will include: A bauxite beneficiating and drying plant at Paranam, Surinam, of 450,000 tons annual capacity; acquisition of additional ore-carrying vessels by the Ocean Dominion Steamship Co. to take care of increased bauxite shipments from South America; additions to the alumina works at Mobile, Ala., and East St. Louis, Ill.; hydroelectric station improvements along the Little Tennessee River; improved laboratory facilities; and enlarged manufacturing capacities at Alcoa, Tenn., Cleveland, Ohio, Lafayette, Ind., Los Angeles, Calif., Massena, N. Y., and New Kensington, Pa.

Early in 1940 the company began operating a powerful testing machine at New Kensington, Pa., capable of exerting a force of 3,000,000 pounds in compression and 1,000,000 pounds in tension at speeds as high as 36 inches per minute. To meet the increasing demand for aluminum from the aircraft industry, the company installed new production equipment and accumulated stocks in standard aircraft products. A 500-ton hammer for forging propellers, crankcases, and landing gears and a large corrugating press for the manufacture of airplane wings and other aluminum products were put in service. Other domestic fabricators of aluminum products also considerably expanded manufacturing facilities.

For the first time under the present capitalization, holders of common stock of the Aluminum Co. of America were paid a cash dividend in 1939 (\$6.00 per share and a stock dividend on December 27). A second cash dividend was paid in 1940 (\$1.00 per share on April 15). The consolidated net income of the company was \$36,633,389 in 1939

compared with \$15,563,145 in 1938.

Until June 1, 1939, the Government continued to present testimony (in District Court of the United States for the Southern District of New York) in support of its suit (filed April 23, 1937) asking dissolution of the Aluminum Co. of America, charging that it is a monopoly in violation of the antitrust laws. The court adjourned until June 21, when the company began to present its testimony which continued the rest of the year, except for the recess period ordered by Federal Judge Francis G. Caffey from August 4 to November 8, 1939. On September 13, 1939, the United States of America, through the Department of Justice, filed another suit against the company and two of its subsidiaries in the Federal District Court, New Orleans, La. This petition charges conspiracy to offset freight rates on bauxite from New Orleans to East St. Louis, Ill., in violation of the Elkins Act. This suit did not come to trial in 1939. On August 9, 1939, the Securities and Exchange Commission announced that the company and certain power subsidiaries were exempt from registration under the holding-company act on the ground that they were not public utility concerns.

On November 16, 1939, the Aluminum Co. of America signed 2-year contracts with two unions of the Congress of Industrial Organizations, which provide for some changes in working conditions and seniority ratings and affect plants at Alcoa, Tenn.; Edgewater, N. J.; New Kensington, Pa.; Detroit, Mich.; and Garwood, N. J. There are no company unions at any plants; and at Massena, N. Y., and East St. Louis, Ill., the unions of the American Federation of Labor are the bargaining agents. The company inaugurated a paid-vacation plan

for employees in 1939 which will be continued in 1940.

Because of the interest in aluminum as a strategic material, historical data on production, imports, exports, and apparent consumption of

primary aluminum and production of secondary aluminum were included in Minerals Yearbook, 1939, pp. 642-643. Figures on production of primary aluminum are given from 1893 to 1938, other data from 1910 to 1938.

Secondary.—In 1939 the Bureau of Mines began revising its statistical canvass of the secondary-metal industries; owing to the extra

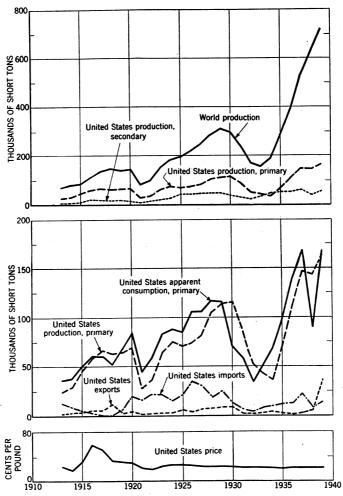


FIGURE 2.—Trends in production, imports and exports, apparent consumption, and average quoted prices of aluminum, 1913-39. Price is for No. 1 virgin 98-99 percent at New York through 1929, thereafter for 99 percent plus virgin ingot, as reported by American Metal Market.

time necessary for this revision, data on the output of secondary aluminum were not available when this report was prepared. It is believed, however, that the recovery of alloyed and unalloyed aluminum in 1939 approached the record high of 1937. Further details on secondary aluminum in 1939 are given in the chapter on Secondary Metals—Nonferrous, Minerals Yearbook, 1940.

CONSUMPTION

The apparent domestic consumption of primary aluminum in 1939 increased 87 percent over that in 1938 and was about the same as that in 1937, a record year (fig. 2). Secondary-aluminum consumption

also increased substantially.

The abnormally large demand for aluminum in 1939 was attributable directly to the high rate of activity in the aircraft and other industries stimulated by military preparedness as well as hostilities abroad. Aluminum alloy comprises more than 60 percent of the structural or net weight of an airplane, and in 1939 the aviation industry consumed twice the quantity of aluminum that it did in 1937, the previous peak year. Consumption in this field is expected to set an even greater record in 1940.

The quantity of aluminum used for truck bodies in 1939 was double that of 1938, and that used for windows, spandrels, and other architectural purposes was 80 percent higher than in the previous year. Further progress is expected in use of the metal in the transportation, architectural, and numerous "borderline" fields as a result of the March 1940 price reduction, which gives aluminum a better price

relationship with competing materials.

Production, imports, exports, and apparent consumption of primary aluminum and production of secondary aluminum in the United States, 1935-39, in pounds

		Primary a	aluminum		Secondary
Year	Production	Imports	Exports	Apparent consumption 1	aluminum (production)
1935 1936 1937 1938 1939	119, 295, 000 224, 929, 000 292, 681, 000 286, 882, 000 327, 090, 000	2 21, 291, 235 2 25, 562, 571 3 45, 178, 089 2 17, 740, 281 18, 579, 940	3, 970, 347 1, 605, 753 5, 383, 516 12, 618, 078 73, 218, 080	191, 645, 888 275, 443, 818 335, 958, 553 179, 045, 203 335, 337, 860	102, 800, 000 103, 000, 900 125, 120, 000 77, 600, 000 (3)

¹ Data not available on fluctuations in consumers' stocks. Withdrawals from producers' stocks totaled 55,030,000 pounds in 1935, 26,558,000 in 1936, 3,483,000 in 1937, and 62,886,000 in 1939; additions to producers' stocks totaled 112,959,000 pounds in 1938.

² Crude and semicrude, some of which may be secondary aluminum.

³ Figures not yet available.

The electrical conductor industry continued in 1939 to be second only to transportation as a major consumer of aluminum. The total mileage of aluminum cable, steel-reinforced, in the United States increased to 850,000 miles. More than 100,000 miles of cable were used in rural electrification, and over 1,000 miles of large-diameter cable were shipped for use in construction of the 220,000-volt power lines on the Bonneville Dam project. The strength of aluminumalloy trains was tested in the severe wreck of the Union Pacific Railroad streamliner "City of San Francisco," when only 3 out of 17 cars were damaged enough to require replacement. Wider recognition of the permanence and insulating value of aluminum foil 4 resulted in its increased use, and in 1939 it was adapted to insulation of locomotive A single-purpose aluminum house paint was placed on the market, and aluminum-alloy automotive bearings were developed.

Wilkes, Gordon B., Reflective Insulation: Ind. Eng. Chem., vol. 31, No. 7, July 1939, pp. 832-838.

From 1933 to 1938, inclusive, the percentage of aluminum used in various industries in the United States was approximately as follows: Transportation (land, air, and water), 29 percent; machinery and electrical appliance, 15; cooking utensil, 14; electrical conductor, 10; building construction, 8; food and beverage, 6; chemical, 5; iron and steel metallurgy, 5; miscellaneous foundry and metal working, 4; and general miscellaneous, 4.

PRICES

Throughout 1939 open-market quotations in New York for 99-percent-plus pure virgin ingot aluminum, delivered, remained unchanged at 20 cents a pound, carload lots. However, on March 25, 1940, the base price was reduced to 19 cents a pound for 10,000 pounds or more by the Aluminum Co. of America, which attributed the reduction to lowered production costs resulting from its extensive research and expansion program. Quotations for smaller lots down to 1 ton demand a ½-cent premium and for less-than-ton lots a 1-cent premium. 1940 reduction also included a downward adjustment in prices of fabricated products. European quotations for aluminum ingot on December 30, 1939, were (converted into American money): 19.4 cents per pound in the United Kingdom, 24.2 cents in Germany, 15.6 cents in France, and officially 25.2 cents in Italy (actually 41 to 46 cents was the open-market price). According to Metal Statistics 1940, dealers' 1939 buying prices per pound in New York for principal grades of domestic aluminum scrap averaged 7.47 cents for cast aluminum and 13.90 cents for new-aluminum clips. The average selling price of remelted metal, 98½ to 99 percent grade, was 19.38 cents, and of No. 12 alloy, No. 2 grade, 13.28 cents.

FOREIGN TRADE

Crude and semicrude aluminum exports were nearly six times higher in 1939 than in 1938 and three times the previous peak reached in 1918 (12,068 short tons). The large increase in exports is attributed to defense and wartime demands and the abandonment by Canada of some of its world markets to the United States so that it could better supply the United Kingdom. In the middle of December 1939 the Government added aluminum, because of its use in the manufacture of aircraft, to the list of metals morally embargoed to countries for unprovoked bombing and machine-gunning of civilians. This measure chiefly affects Japan and the U. S. S. R. Of the exports of crude in 1939 (28,121 short tons), 9,933 tons went to the United Kingdom, 8,143 to France, 4,503 to Japan, 1,790 to the U. S. S. R., 1,378 to Belgium, and 551 to Germany; of scrap (476 tons), 364 tons went to Japan; and of semicrude (8,488 tons), 5,533 tons went to the United Kingdom, 1,721 to France, 366 to Canada, 359 to China, 146 to Japan, and 145 to Australia.

Aluminum imported for consumption in the United States, 1937-39, by classes

Class	19	937	19	038	19	39
	Pounds	Value	Pounds	Value	Pounds	Value
Crude and semicrude: Crude form, scrap, alloy, etc	44, 701, 669 476, 400	1			1 28,060,094 612,773	1 \$3,251,484 133,629
Manufactures: Leaf (5½ by 5½ inches) Powder in leaf (5½ by 5½ inches) Bronze powder and powdered foil Foil less than 0.006 inch thick Table, kitchen, and hospital utensils, and other similar hollow ware. Other manufactures	45, 178, 069 (2) (3) 295, 299 2, 724, 550 86, 114 (4)	67, 979 212 124, 276 996, 513 48, 815 57, 266	186, 418 1, 831, 309 37, 129	17, 361 77, 425 734, 176 23, 747 34, 915	(2) (3) 110, 995 2, 827, 010 26, 776 (4)	1, 266, 436 16, 191 29, 468
Grand total	(4) (4)	1, 295, 061 8, 177, 600	(4)	887, 624 3, 379, 018	(4)	1, 381, 147 4, 766, 260

Aluminum exported from the United States, 1937-39, by classes

Class	19	37	19	38	1939		
	Pounds Value Pounds Value		Value	Pounds	Value		
Crude and semicrude: Ingots, scrap, and alloys. Plates, sheets, bars, strips, and rods.	4, 719, 034 664, 482 5, 383, 516	293, 453			16, 975, 233	9, 178, 278	
Manufactures: Tubes, moldings, castings, and other shapes Table, kitchen, and hospital utensils Foil Aluminum and aluminum bronze powder Other manufactures of aluminum.	588, 960 765, 810 422, 850 316, 482	121, 269	144, 999 82, 232	364, 240 66, 771	537, 532 1, 133, 031	302, 406 488, 010	
Grand total	(2)	1, 682, 419 2, 943, 214		1, 572, 256 5, 484, 047	(2)	2, 759, 334 23, 630, 885	

¹ Includes 951,662 pounds of scrap valued at \$160,283; not separately classified before 1939.
² Quantity not recorded.

Imports of crude and semicrude metal were 62 percent higher than in 1938 but for the first time since 1918 were less than exports. Imports (exclusive of scrap) comprised only 6 percent of the apparent consumption of primary aluminum in 1939. Of the imports of crude

Includes 10,092,927 pounds of scrap valued at \$760,913; not separately classified before 1939.
 1937: 29,279,568 leaves; 1938: 8,389,969 leaves; 1939: 13,589,224 leaves; equivalent in pounds not recorded.
 1937: 54,150 leaves; 1939: 70,000 leaves; equivalent in pounds not recorded.
 Quantity not recorded.

(8,984 tons), 3,766 tons came from Canada, 2,083 from Norway, 1,666 from France, and 1,125 from Switzerland; of scrap (5,046 tons), 3,475 tons came from the United Kingdom and 1,167 from France; and of semicrude (306 tons), 225 came from the United Kingdom and 75 from Switzerland. The value of aluminum manufactures exported increased 76 percent and of those imported 56 percent.

TECHNOLOGIC DEVELOMENTS

An outstanding development during 1939 was the successful brazing of aluminum alloys. Brazing differs from welding primarily in that no substantial quantity of the parent material is melted. Although the strength of brazed and torch-welded joints is about the same the cost is reduced, neater joints are provided requiring less finishing, and thinner parts can be joined by brazing.⁵ Furnace-, torch-, and dip-brazing methods have been devised, which use filler materials (aluminum-base alloys) and fluxes melting and flowing at temperatures (1,050° to 1,185° F.) below that of the parent material.

A new aluminum-base die-casting alloy (Alcoa 218) containing 8 percent magnesium is said to have high strength and resistance to corrosion.⁶ Alclad (72S)3S, a comparatively new wrought product, is particularly suited for combating localized corrosion and perforation.

Some of the other recent technologic developments in regard to aluminum include work on anodic coating and electroplating of aluminum alloys (Travers process), aluminum-coated steel, and the property of aluminum of restricting grain growth in steel metallurgy.

WORLD BAUXITE AND ALUMINUM INDUSTRIES

BAUXITE PRODUCTION

World production of bauxite continued to increase and in 1939 established another new record. Output is estimated as 4,400,000 metric tons, a 14-percent increase over 1938. The principal producing countries, in the probable order of importance, were: France, Hungary, Surinam, British Guiana, Italy, United States, Yugoslavia, U. S. S. R., Reports indicate that in 1939 the Unfedand Netherland India. erated Malay States increased bauxite output approximately 67 percent, Surinam 34 percent, British Guiana 27 percent, United States 21 percent, Hungary 18 percent, France 17 percent, and Italy 16 percent, while Yugoslavia decreased production 21 percent.

⁵ Hoglund, G. O., Brazing the Aluminum Alloys: Ann. Meeting, American Welding Soc., Chicago,

October 23–27, 1939.

Onix, E. H., Jr., Aluminum and Its Alloys: Metal Progress, vol. 36, No. 4, October 1939, pp. 355–356.

Edwards, Junius D., Anodic Coating of Aluminum: Internat. Convention, Am. Electroplaters' Soc., June 1939, 22 pp.
Bregman, Adolph, Electroplating on Aluminum: Iron Age, vol. 145, No. 6, February 8, 1940, pp. 40–42.

Allen, A. H., Mirrors of Motordom: Steel, vol. 104, No. 14, April 3, 1939, p. 30.

McQuaid, H. W., The Use of Aluminum for the Control of Grain Size in Commercial Steels: Metals Handbook, 1939, pp. 810–813.

World production of bauxite, 1935-39, by countries, in metric tons
[Compiled by M. T. Latus]

Country	1935	1936	1937	1938	1939
Australia:					
New South Wales			6, 793	442	(1)
Victoria		752	1,097	1,341	(1)
Brazil (exports)		7,000	8,770	12,928	(1)
British Guiana (exports)	113, 290	172, 884	305, 533	382, 409	483, 652
Czechoslovakia	1		846	(1)	(1)
France	512,850	649, 500	688, 200	682, 440	(1)
Germany	8,547	12, 425	18, 212	19,703	(1)
Greece	9, 489	129, 898	137, 412	179,886	(1)
Hungary	211,079	329, 091	532, 657	540,718	(1)
India, British	7,758	3,702	15, 393	15,005	(1) (1)
Indochina		30	7,000	160	(1) (1)
Italy	170.064	262, 246	386, 495	360, 837	(1)
Netherland India	16,708	133, 731	198, 970	245, 354	(1)
Portuguese East Africa		29	l		(1)
Rumania	6, 218	10, 829	10, 701	11.807	(1)
RumaniaSurinam (Dutch Guiana)	112.682	234, 845	392, 447	377, 213	504, 062
Unfederated Malay States: Johore	1	37	19, 305	55, 965	93, 740
U. S. S. R.	132,000	203, 200	2 230, 000	² 250, 000	(1)
United States (dried bauxite equivalent)	249, 384	386, 415	431, 898	315, 906	381.331
Yugoslavia	216, 197	292, 174		396, 368	314, 439
	1, 767, 000	2, 829, 000	3, 746, 000	3, 849, 000	(1)

¹ Data not available.

ALUMINUM PRODUCTION

World aluminum production continued to rise and in 1939 reached a new peak despite the general shortage of hydroelectric power in much of the Northern Hemisphere. Production is estimated as approximately 650,000 metric tons, an increase of 12 percent over 1938. Germany is believed to have remained the principal producer, accounting for an output 21 percent greater than that of the United States. Estimates for 1939 indicate that Japan increased its metal output 35 percent, Italy 16 percent, Canada, the U. S. S. R., and the United States each 14 percent, France 10 percent, and the United Kingdom and Norway each 7 percent.

World production of aluminum, 1935-39, by countries, in metric tons
[Compiled by R. B. Miller]

Country	1935	1936	1937	1938	1939
Canada France Germany Austria Hungary ttaly apan Norway Spain weden witzerland U, S, S, R. United Kingdom United Kingdom	13,800 4,400 15,000	26, 200 29, 700 97, 200 3, 300 15, 900 15, 400 600 1, 800 13, 700 30, 000 16, 300	41, 700 34, 500 127, 200 4, 400 1, 000 22, 900 10, 000 23, 000 	66, 000 45, 300 161, 100 4, 500 1, 500 25, 800 17, 000 29, 000 800 2, 400 27, 000 43, 800 23, 300 130, 100	75, 000 50, 000 (1) (1) 1, 500 30, 000 23, 000 (2) (1) (2) (2) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
Yugoslavia	259, 600	359, 900	481, 500	1, 200 578, 800	647, 400

¹ Estimate included in total.

² Estimated.

ALUMINUM CONSUMPTION

According to the Metallgesellschaft, world consumption of aluminum in 1938 totaled 515,100 metric tons, a 3-percent increase over 1937. Of the total, Germany accounted for 34 percent and all of Europe for 74 percent. The absence of complete official production and foreign trade statistics does not permit a reliable estimate of apparent consumption by countries for 1939, but it is safe to say that an all-time record was established, chiefly because of the military demand for the metal. The apparent primary consumption of the United States in 1939 totaled 152,100 metric tons (152,400 in 1937 and 81,200 in 1938), 14 percent less than that consumed by Germany in 1938 (176,600 tons). During recent years world aluminum-consuming countries have tended to become more self-sufficient in regard to metal output but more dependent on foreign sources for bauxite. ¹⁰

REVIEW BY COUNTRIES

When hostilities were begun in Europe and Asia, many countries ceased to publish statistical information and therefore only incomplete and estimated data for 1939 regarding production, trade, and developments are available for some nations. Official foreign trade statistics, however, are available on the European belligerents for the first 7 or 8 months of 1939. Since the outbreak of the wars both neutral and belligerent countries have issued various restriction decrees, particularly in regard to exports of strategic materials. Permits or licenses are necessary to export bauxite, alumina, or aluminum from the United Kingdom and France and their possessions (including Canada, Australia, British Guiana, Unfederated Malay States, and British India), and from Germany, Greece, Italy, Japan, Norway, Yugoslavia, and other countries.

British Guiana.—Bauxite production in 1939 aggregated 477,693 metric tons of ore containing 60 percent or more Al₂O₃ and 82,932 tons containing 30 to 50 percent Al₂O₃. Exports, chiefly to Canada, the United Kingdom, and the United States, totaled 483,652 tons in 1939 (382,409 in 1938). The Demerara Bauxite Co. extended mining operations to both banks of the Demerara River, and an investigation was made of bauxite occurrences in the Essequibo and Northwest

districts of British Guiana.

Canada.—Production and exports of aluminum broke all previous records in 1939. Of the 1939 exports (64,028 metric tons), 35,342 tons went to the United Kingdom, 19,089 to Japan, 2,629 to Germany, 1,800 to the United States, 1,500 to France, 1,078 to China, and 818 to Poland and Danzig. Of the bauxite imported in 1939 (459,924 tons), 405,214 tons came from British Guiana and 54,693 from the United States. Alumina (89 tons) came from the United States and the United Kingdom and cryolite (3,128 tons) from Greenland and the United States.

In the summer of 1939 the Aluminum Co. of Canada, Ltd., began a \$7,000,000 expansion program to be completed by May 1940, which included a 15-percent increase in reduction capacity at Arvida and Shawinigan Falls, Quebec (apparently bringing total annual capacity to 100,000 tons). Other recent construction includes a new fabrica-

¹⁰ Anderson, Robert J., Primary Aluminium: Mining Mag. (London), vol. 60, No. 4, April 1939, pp. 206-209.

tion plant near Kingston, Ontario, and a plant at Arvida for the manufacture of Alpaste, an aluminum paint pigment. Early in 1940 the British Government contracted for the entire exportable surplus of aluminum in Canada during 1940 and 1941, or about 90 percent of the output. Apparently, the Government also agreed to finance a further expansion of the aluminum industry. Permits and licenses are required for the exportation of bauxite, alumina, aluminum, and artificial abrasives from Canada.

France.—French bauxite production in 1939 is estimated as 800,000 metric tons. During the first 7 months of 1939 France exported 237,438 tons of bauxite, of which 166,069 were to the United Kingdom, 46,368 to Germany, 14,168 to Sweden, 5,365 to the United States, and the remainder to others. Alumina exports for the same period totaled 19,023 tons, of which 9,762 went to Norway and 9,246 to Switzerland. For the same period in 1938 France exported only

171.259 tons of bauxite and 9.970 tons of alumina.

Germany.—Decrees issued in the fall of 1939 restrict the consumption of light metals and their alloys and limit the expansion of the aluminum industry in Germany. Both decrees probably were influenced by difficulties experienced in obtaining enough electric energy because of the shortage of hydroelectric power in Bavaria and Austria and the inadequate supplies of coal at steam power plants and the limited equipment available for plant extensions. handicapped, it is believed that German and Austrian output of aluminum in 1939 totaled only about 180,000 metric tons instead of the planned 200,000 tons. If land and Danube River transport facilities are available and high prices are no hindrance, the German aluminum industry should not lack adequate supplies of bauxite because of the British-French blockade, as large reserves of aluminum ore are available in Hungary and the Balkans. Despite apparent interruptions in Yugoslav and Greek shipments in 1939, it is estimated that German bauxite imports exceeded 1,100,000 tons. During the first 7 months of 1939 Germany imported 645,149 tons of bauxite, 4,940 tons of crude aluminum, and 2,749 tons of aluminum scrap. Of the bauxite imported, 223,445 tons came from Hungary, 201,555 Yugoslavia, 63,617 from Greece, 57,570 from Netherland India, 47,678 from France, 45,542 from Italy, and 5,742 from Denmark (probably cryolite).

Recent German expansions include an alumina and aluminum-reduction works (Lippewerk) at Lünen, Westphalia, with an annual capacity of 40,000 tons of metal, and an 8,000-ton alumina plant at Lautawerk which decomposes German clay with sulfurous acid. 11

Greece.—Of 178,811 metric tons of bauxite exported in 1939 (139,245 in 1938), 89,622 tons went to Germany, 34,074 to Norway, 23,959 to Japan, and 19,335 to the United Kingdom. The Hellenic-Hydro-Electric Metallurgical Co. (American) plans to construct an alumina and aluminum-reduction plant in Greece, using power transmitted from the Acheloos River Falls to Hea. Despite low production costs Greece reports difficulty disposing of all its bauxite output, and large stocks accumulated in 1939.

¹¹ Metall und Erz (New Methods of Light-metal Production): Vol. 36, No. 3, 1939, pp. 63-72; also vol. 35, No. 19, 1938, pp. 499-510.
Singer, F., Methods of Extracting Alumina from Clay: Brick and Clay Record, vol. 94, No. 6, June 1939, pp. 54-58.

Hungary.—In 1939 bauxite exports (probably all to Germany) totaled 570,170 tons. The new aluminum-reduction plant of the Hungarian United Coal Mining Co., Ltd., at Tatabanya (Totis) began operating early in 1940, and a third Hungarian plant is proposed by the Hungarian Bauxite Trust and the Vereinigte Glühlampen und Elektrizitäts A.-G. for the Bakony district.

Italy.—Although the bauxite reserves of Italy (in Istria and in central and southeastern parts) are estimated to exceed 34,000,000 metric tons, two-thirds of this quantity is high in silica and unsuitable for the Bayer alumina process. Montecatini recovers vanadium from the caustic soda solution in the Bayer process and uses a portion of the red mud in the production of pig iron by means of sintering

and the electric arc furnace.13

Japan.—Productive capacity of the six established Japanese aluminum companies at the end of 1938 was about 27,000 metric On the basis of reported and estimated exports from Netherland India, Unfederated Malay States (Johore), Greece, Palao Island, and British India, Japanese bauxite imports approached 300,000 tons Japanese interests have developed bauxite deposits on Palao Island, though shallow in depth, and on Hainan Island, which were rejected previously by British interests because of their low Most of the older Japanese aluminum companies have ceased to experiment with unsuitable low-grade ore (alunite, shale, etc.) and have turned to imported bauxite despite the Government subsidy recently granted those using Empire raw materials. Under the recently enacted national policy bill, new firms are accorded preferred financing methods, certain tax exemptions, and free import privileges, but the Government controls production through licensing and can require plant experimental work. 14 So far, national expansion of the industry has been much slower than desired because of the shortage of coal, hydroelectric power, and coke, as well as slow equipment deliveries. In 1939 more than 28,000 tons of aluminum were exported to Japan from Canada, the United States, Norway, and Switzerland compared with approximately 21,500 tons in 1938.

Netherland India.—Bauxite exports in 1939 totaled 217,630 metric tons, of which 168,428 tons went to Japan and 49,072 to Germany. The N. V. Billiton Maatschappij began constructing a hydroelectric plant on the Asahan River, Sumatra, below Toba Lake, and later alumina (20,000-ton capacity annually) and aluminum-reduction works (5,000-ton capacity) will be built at Tandjong Balei, Sumatra.

Norway.—In 1939 imports of bauxite totaled 32,697 metric tons (25,942 in 1938) and of alumina, 45,639 tons (43,737 in 1938). Crude aluminum exports decreased from 28,577 tons in 1938 to 24,084 in 1939, of which 3,420 tons went to Japan, 2,799 to the United Kingdom, 2,242 to Sweden, 1,800 to Poland and Danzig, 1,727 to France, 1,775 to the U. S. S. R., 1,669 to Denmark, 1,600 to Switzerland, and 1,437 to the United States.

Surinam.—The N. V. Billiton Maatschappij has abandoned its plans to mine bauxite in Surinam.

103–106. ¹⁴ Bureau of Mines, Mineral Trade Notes: Vol. 9, No. 6, December 20, 1939, pp. 3–9.

¹³ Anderson, Robert J., The Aluminium Industry of Italy: Mining Mag. (London), vol. 61, No. 1, July 1939, pp. 13-27.

13 Light Metals, Light Alloys and the Light Metal Industries in Italy: Vol. 3, No. 27, April 1940, pp.

Sweden.—The A. B. Swenska Aluminium Kompaniet will erect an alumina plant, using a corundum type of ore found at the Boliden gold mines or imported bauxite, and has increased capacity of its

reduction plant at Mansbo 80 percent.

U. S. S. R.—The hitherto unsatisfactory progress of the Russian aluminum industry is attributed to a shortage of electrical power, obsolete equipment, high sulfur content (2.5 percent) in the alumina produced as blast-furnace slag, 15 and other difficulties. 16 Except for a few deposits in the Urals, most of the Russian bauxite reserves, 17 estimated at 53,000,000 tons, consist of low-grade ore. Bauxite from Turinsk is employed in the new Bayer alumina and the aluminumreduction plant at Kamensk in the Urals, which produced its first half ton of metal in September 1939. During the fall of 1939 the first unit of the alumina plant at Kirovsk, Kola Peninsula, was scheduled to begin utilizing nepheline tailings from apatite ore. alumina is to be shipped to the enlarged Volkhov reduction works.

Thermic silumin, an aluminum-silicon alloy, is to be produced direct from the ore in Miguet furnaces at the Dnepr reduction plant as soon as higher-grade raw material (kaolin, kyanite, etc.) is available and the iron content of the alloy can be reduced. In 1940 the U.S.S.R. plans to complete the Sosnovets reduction works south of Kandalaksha and to produce 90,000 tons of metal. Metal output is estimated as

only 50,000 tons in 1939.

Šwitzerland.—In 1939 exports of virgin aluminum ingots, etc., totaled 14,930 metric tons (21,814 in 1938) and of bars, sheets, stampings, etc., 3,299 tons. Aluminum-alloy ingots, etc., exported aggregated 5,450 tons, and other aluminum fabrications comprised 6,942 Of the 14,930 tons of new metal exported, 10,885 tons were consigned to the United Kingdom, 1,090 to Belgium, 789 to Germany, 670 to Japan, and 600 to the United States. The Aluminium Industrie A.-G., Neuhausen, regrouped all its affiliated companies early in 1940 because of the European hostilities and became a holding company for financing its subsidiaries.

Unfederated Malay States: Johore.—Three open-pit mines—the Bukit Pasir and Sri Medan mines near Batu Pahat and the Sungei Kim Kim mine near Pulau Nanas—produced bauxite in 1939.18 Virtually all the 85,745 metric tons of washed, undried ore exported in 1939 went to Japan through the ports of Batu Pahat and Penggerang. The Pasir ore contains 53 to 61 percent Al₂O₃, 2 to 4 percent SiO₂, 6 to 16 percent Fe₂O₃, 1 percent TiO₂, and 27 to 30 percent combined water, while the average Kim Kim ore contains 55.5 percent Al₂O₃, 6.5 percent SiO₂, 9 percent Fe₂O₃, 0.25 percent TiO₂, and 29 percent combined water.¹⁹

United Kingdom.—Early in 1940 the British Government apparently agreed to finance aluminum production and fabrication facilities in addition to those completed by the British and Canadian industries during 1939. To satisfy the strong demand for aluminum by the air-

¹⁸ Bureau of Mines, Mineral Trade Notes: Vol. 10, No. 3, March 1940, p. 3.
18 Reidemeister, von F., Die Aluminium-lage in der U. S. S. R.: Aluminium (Berlin), vol. 21, No. 11, November 1939, pp. 793-798.
17 U. S. S. R. All Union Scientific Research Institute of Economic Mineralogy, Bauxite: Trans., Nos. 110, 112, 120, and 151; 1937, 1938, and 1939.
18 Imperial Institute, Progress in Colonial Mineral Industry: Bull., vol. 37, No. 2, April-June 1939, pp. 272-271. Fermor, L. L., Report upon the Mining Industry of Malaya: 1940, pp. 17, 32-33, 194, 202.

craft and other war industries, orders were placed with Canada, the United States, Switzerland, and Norway. Soon after war was declared against Germany in September 1939, the Ministry of Supply assumed control of supplies and prices of aluminum, invoking a licensing system and prohibiting delivery of metal except in fulfillment of Government or existing written contracts. Export licenses were required from the Board of Trade; on October 10 imports of aluminum were added to the free list, and on February 1, 1940, imports became subject to license. On November 24 the Ministry of Supply became the sole vendor of aluminum; it raised the price on primary metal from £94 to £110 per long ton, delivered, and withdrew the maximum price control on aluminum scrap.

Foreign trade statistics are available only for the first 8 months of 1939, and imports during this period totaled 35,412 metric tons of crude aluminum and its alloys; 8,004 metric tons of sheets, plates, circles, bars, etc.; and 231,443 long tons of bauxite. Of the crude and alloy aluminum imported, 24,461 tons came from Canada, 10,123 from

Switzerland, and 539 from Norway.

MERCURY

By H. M. MEYER and A. W. MITCHELL

SUMMARY OUTLINE

Page	
London ceases to be sales center 660	
Monthly compilations 661 Stock pile provisions 662	World production 67

World events in 1939 had a marked influence on the mercury industry in the United States and, combined with conditions within the industry itself, caused sharp fluctuations in price. Political tension abroad plus uncertainty as to the selling policy of the Franco government after its victory in the Spanish Civil War combined to increase prices early in the year. In May, resumption of combined selling of Spanish and Italian metal by Mercurio Europeo brought a drop in price, signaling an effort by the Cartel to dispose of as much metal as possible rather than to run up the price. On September 5, following declaration of war by the United Kingdom, the price jumped \$20 a flask to \$110 and continued up sharply until it reached \$165 on September 18, with the prices quoted as nominal during the period. This abrupt rise undoubtedly was brought about in part by factors other than the anticipated increase in consumption for war require-Mercury had been imported into the United States at a very low rate since late in 1937, whereas in 8 of the 10 years preceding 1938 imports represented 24 to 68 percent of new supply available for consumption. Domestic production had not risen to meet the drop in imports, and presumably consumers had been drawing on their Consumers undoubtedly feared that competition for mercury among the nations at war or preparing for war threatened supplies. Added to the above, war-risk insurance greatly increased shipping costs. Despite these conditions, however, the increase in prices apparently was temporarily overdone, and prices dropped to \$132 late in November.

From September to November price gains abroad lagged greatly behind those in the United States. For example, the average monthly price in New York had been \$6 to \$11 above the London quotation for the first 8 months of the year, but in September the differential skyrocketed to \$49, largely because of the decline in the exchange rate of the pound. Late in December, however, these conditions were reversed; supplies in the United States were more plentiful because of increased domestic output, larger receipts of metal from abroad, and lowered rate of domestic consumption. The situation abroad, on the other hand, became more acute, and price conditions became so confused that at times it was difficult to learn the exact quotation on mercury. The sharp upward price trend continued at an accelerated pace in the first 2 months of 1940. An advance of \$50 in one day was

purported to be due to an Allied order for 10,000 flasks, to be delivered over a 3-month period. The domestic price policy during this period was conservative. The price was unable to withstand the tremendous pressure from foreign influences, however, and advanced, although it failed to reach the dizzy heights attained by the foreign price. Notwithstanding the domestic tariff of \$19, and insurance rates that totaled about \$5 (according to Metal and Mineral Markets), the domestic price was \$178 to \$182 a flask during most of February 1940, while that of the Cartel was \$200 a flask f. o. b. Spanish and Italian mines. Late in February the Cartel price was quoted as \$205, c. i. f.

New York, duty unpaid.

During the early part of 1940 it was rumored that Spain and Italy were producing at a high rate. Past production records for these countries give evidence that they should be able to supply world industrial and war requirements amply, provided mining operations are not impeded. Spain, for example, produced approximately 72,000 flasks in 1927 and in 1929, and there is every reason to believe that she can at least duplicate that record. Italy must be recovering metal at not less than the record rate of 67,000 flasks in 1937. When the output from the United States, the third largest producing country, is added, a total of about 160,000 flasks of mercury seems assured. This total will be supplemented by the outputs of smaller producing nations. For many years before and including the World War period

the world output failed to exceed 121,000 flasks.

It is reasonable to assume, therefore, that artificial factors were responsible for the hectic rise in prices abroad late in 1939 and early in 1940. The concentration of production control and possible lack of inventories in some important consuming nations may have accentuated fears regarding supplies, led to excessive orders, and paved the way for abuses in regard to price.

Salient statistics of the mercury industry in the United States, 1935-39

Flasks	of 76 pour	ıds]	[Flasks of 76 pounds]										
	1935	1936	1937	1938	1939								
Production flasks Number of producing mines	17, 518	16, 569	16, 508	17, 991	18, 633								
	90	87	101	91	107								
Average price per flask: New York London Imports for consumption:	\$71.99	\$79. 92	\$90. 18	\$75. 47	\$103.94 ×								
	\$60.74	\$64. 33	\$69. 65	\$66. 92	\$88.26								
PoundsEquivalent flasksExports:	593, 904	1, 374, 652	1, 437, 712	179, 522	265, 944								
	7, 815	18, 088	18, 917	2, 362	3, 499								
Pounds Equivalent flasks Apparent new supply flasks	(1)	19, 980	34, 485	54, 161	91, 789								
	(1)	263	454	713	1, 208								
	25, 200	34, 400	35, 000	19, 600	20, 900								
	69	47	46	88	83								
From domestic mines percent. Stocks in warehouses (bonded) at end of year flasks.	3, 582	2, 513	4, 286	553	3, 110								

¹ Not separately classified for 1935.

London ceases to be sales center.—Beginning with January 1, 1940, Spanish and Italian mercury was to have been sold by a Belgian agency rather than in London, obviously in order to have the metal marketed in neutral territory. This plan ran into difficulties, and London continued to market the metal until it was announced in February that the Cartel was selling its mercury directly.

MERCURY 661

World trade trends.—Available statistics for foreign countries indicate some mystery concerning events abroad. Despite preparations for war, the United Kingdom failed to maintain a high average surplus of imports and, as a matter of fact, barely showed an excess of imports in the first 8 months of 1939, with total imports of 24,154 flasks and re-exports of 23,220 flasks. The destination of these reexports has not been disclosed. A report early in the year that the French Government would take 11,000 flasks of metal from the United Kingdom did not explain the large movement from London, inasmuch as imports into France for the first 7 months of 1939 totaled only 3,997 flasks. Presumably Japan was the destination of the larger part of exports from the United Kingdom, but there are no statistics to substantiate this assumption.

Germany's rate of importation declined from the high rate attained in 1938, the total for the first 7 months being 13,915 flasks compared with 32,881 flasks in all of 1938—a decline of 27 percent in the monthly rate. As in 1938, virtually all the imported metal originated

in Italy.

Italy's exports for 7 months of 1939 totaled 25,602 flasks, indicating a monthly rate 18 percent below that for all of 1938 and 35 percent below the record rate established in 1937. Production totaled 38,639 flasks in the first 7 months of 1939 compared with 41,307 flasks in the

corresponding period of 1938.

Monthly compilations.—The strategic nature of mercury made it desirable for the Bureau of Mines to obtain current data covering production and stocks, and monthly canvasses of producers, dealers, and consumers were begun in September 1939. The original list covered mines that supplied more than 95 percent of domestic production in 1938, virtually all dealers and importers, and nearly 500 Large new mines are added to the list from time to time, whereas many of the smaller dealers and consumers have been dropped. In all, the canvasses probably cover more than 95 percent of these phases of the industry. Owing to the excellent cooperation received from virtually all of the companies approached, the results obtained are believed to be accurate. These monthly figures indicate that extensive enlargements at present mines and new developments have borne fruit and that the monthly rate of output has advanced from 1,500 flasks in September and October 1939 to 2,500 in March 1940. Results of the canvasses are shown in the following table.

Monthly production, consumption, and stocks of mercury in the United States, September 1939 to March 1940, in flasks of 76 pounds

		Consump-	Stocks			
	Production	tion	Consumers	Dealers		
1939: September October November December 1940: January February March	1, 500 1, 500 1, 600 1, 750 1, 800 2, 200 2, 500	2, 900 3, 100 2, 400 1, 700 2, 300 2, 000 1, 800	9, 900 8, 900 8, 700 9, 900 10, 900 9, 900 9, 300	3, 000 2, 400 2, 400 2, 700 2, 100 1, 200 1, 500		

Stock-pile provisions.—The \$10,000,000 appropriated by Congress for the purchase of strategic materials in the fiscal year 1940 were expended without provision for any mercury. This omission coincides with the knowledge that the deficiency with regard to mercury in the United States is not as great as it is for some other commodities. Moreover, several other strategic materials have a higher order of priority. For 1941 both the Senate and the House of Representatives have agreed on expenditure of \$12,500,000 for strategic minerals, and the Committee has accepted a compromise that would make \$3,000,000 available immediately. Both houses must approve the conference report before the bill goes to the President.

Preliminary examinations were made at a number of mercury properties in the United States in 1939 by the Mining Division of the Bureau of Mines, and present plans call for carrying on exploratory

work at one of these properties in 1940.

The Geological Survey has laid the groundwork for extensive studies of mercury deposits in the Western States and has undertaken detailed examination of several districts. In 1938 the principal active mercury mines in and near Lake County, Calif., were studied, and a report thereon is in preparation. In the summer of 1939, 28 districts in Washington, Oregon, Nevada, California, and Arizona were visited to get a perspective on the industry. Data obtained in 1939 in the small but important Mount Diablo district near San Francisco have been assembled in a report that should soon be ready for publication. The Bottle Creek and Buckskin districts in northwestern Nevada were studied in 1939, and reports on both are in preparation. Extensive field work in and near San Luis Obispo County, Calif., is still in progress and is resulting in substantial contributions to our knowledge of an area that contains such well-known mines as the Oceania, Klau, and Rinconada.

PRICES

The average monthly price for mercury in New York was slightly higher in January 1939 than the annual average for 1938-\$77.44 compared with \$75.47. In the early months of the year the price was strengthened by war fears abroad and by uncertainty over the sales policy of Spanish and Italian producers, should the Spanish Civil War terminate in favor of Franco. Franco won the war in the spring, and Mercurio Europeo resumed combined selling for properties formerly represented by that Cartel. The average for April was \$90.80; and the price eased, instead of rising, following the renewing of Cartel By August the monthly average was down to \$84.41. Following declaration of war between Germany and Great Britain and France in September, the price situation assumed an entirely different aspect. The domestic price advanced to \$110 on September 5, \$120 on September 7, \$135 on September 8, \$135-\$140 on September 12, \$145 on September 15, and \$165 on September 18, then eased during the remainder of the month. The average for September was \$140 and for October \$145.60. An understandable reaction carried the monthly average to \$134.98 for November and \$141.20 for December.

In general, London prices followed those in the United States for the first 8 months of 1939, the differential in favor of marketing in New York ranging from \$6.47 to \$10.75. As outlined in the opening statement of this report, the decline in the rate of importation of mercury into the United States for several years, combined with a static domestic production during that period, paved the way for increases in price and, with the current drop in the exchange rate of the English pound, led to a sharp increase in the price differential to \$49.22 in September. The differential dropped to \$37.60 in October, to \$25.23 in November, and—as conditions of supply reversed themselves—to only \$5.20 in December, the lowest for the year. The December trend continued into 1940, and in the early months of this year it was to the producers' advantage to sell abroad.

Mercurio Europeo did not renew its contract to sell metal in London at the end of 1939 but, owing to difficulties in arranging for a new agent, continued to sell metal there for several weeks in 1940, after which it began to sell directly to consumers from Spain and Italy.

Average monthly prices per flask (76 pounds) of mercury at New York and London and excess of New York price over London price, 1937-39

		1937			1938		1939			
Month	New York 1	London 2	Excess of New York over London	New York ¹	London 2	Excess of New York over London	New York ¹	London 2	Excess of New York over London	
January February March April May June July August September October November	\$90. 25 91. 00 91. 78 92. 00 95. 52 96. 65 93. 90 91. 42 89. 02 86. 14 83. 44	\$69. 52 69. 98 70. 43 70. 61 75. 89 75. 29 73. 41 67. 70 67. 30 65. 61 65. 01	\$20. 73 21. 02 21. 35 21. 39 19. 63 21. 36 20. 49 23. 72 21. 72 20. 53 18. 43	\$79. 24 76. 46 72. 44 71. 02 74. 64 80. 73 76. 86 75. 50 74. 42 73. 48 74. 07	\$64. 31 64. 54 63. 61 63. 07 65. 63 68. 98 68. 58 67. 90 66. 83 68. 80	\$14. 93 11. 92 8. 83 7. 95 9. 01 11. 75 8. 28 7. 60 7. 60 7. 59 4. 58 5. 26	\$77. 44 85. 23 87. 28 90. 80 86. 77 86. 62 86. 96 84. 41 140. 00 145. 60 134. 98	\$70. 97 75. 21 77. 81 82. 40 79. 87 76. 09 76. 21 76. 08 90. 78 108. 00 109. 75	\$6. 47 10. 02 9. 47 8. 40 6. 90 10. 53 10. 75 8. 33 49. 22 37. 60 25. 23	
Average	90. 18	65. 02	20. 53	76. 77 75. 47	70. 99 66. 92	5.78 8.55	141. 20	136. 00 88. 26	5. 20 15. 68	

¹ Engineering and Mining Journal, New York.
² Mining Journal (London) prices in terms of pounds sterling converted to American money by using average rates of exchange recorded by the Federal Reserve Board, through August, after which prices were quoted in American money.

CONSUMPTION AND USES

Statistics covering apparent consumption of mercury in the United States, as shown in the following table, indicate that there was an increase in 1939 over 1938. The data undoubtedly are incomplete, however, because in both years metal was recovered in the United States from concentrates received from Mexico, which are not included in import figures. These imports of concentrates added about 2,000 flasks to the total for 1939 and 2,400 flasks for 1938. In addition, consumers' stocks probably were depleted during both years, although there are no figures to substantiate this assumption.

The civilian and military uses of mercury are, to a large extent, indispensable. Its military uses are principally in the manufacture of fulminate for detonating high explosives, drugs (calomel, corrosive sublimate, etc.), dental amalgam, antifouling paint for ship bottoms, storage batteries, and barometers. Its civilian uses, in addition to the above, include the generation of power (mercury boilers), mercury

vapor lamps, and the manufacture of felt.

and.

Supply of mercury in the United States, 1935-39

[Flasks of 76 pounds]

Year	(fleaks)	Imports for consump- tion (flasks)	Exports (flasks)	Apparent new supply				
				Total (flasks)	From domestic mines (percent)	Imported (percent)		
1935	17, 518 16, 569 16, 508 17, 991 18, 633	7, 815 18, 088 18, 917 2, 362 3, 499	(1) 263 454 713 1, 208	2 25, 200 34, 400 35, 000 19, 600 20, 900	69. 0 47. 4 46. 0 88. 0 83. 3	31. 0 52. 6 54. 0 12. 0 16. 7		

¹ Not separately classified for 1935.

An article on mechanical engineering in power stations ¹ contains the following notes on mercury boilers:

Some years ago, when the efficiency of steam stations was of the order of 20 percent to 22 percent, with heat-consumption rates of 17,000 B. t. u. to 15,500 B. t. u. per kilowatt-hour, attempts were made to utilize other systems and much attention was paid to the binary fluid mercury cycle, especially in the United States. Plants utilizing this cycle were, in fact, installed in more than one area. It is known, however, that these have not been altogether satisfactory in practice. Considerable trouble has been experienced with the boilers installed at Kearney and Schenectady, and the former has been completely replaced. The new boiler has only one drum, and "porcupine" tubes with internal cores and close clearances have been eliminated. The convection surface, instead of being completely filled with a liquid, carries a mixture of liquid and vapor, so that the amount of mercury required per unit of heating surface is much reduced, although, by reason of the elimination of tube cores, the total quantity of mercury in the boiler is somewhat increased. In spite of various improvements, the boiler retains a number of complications, and, as Sir Leonard points out, its adoption is being retarded by the steady improvements which have taken place in the steam cycle. Heat rates of 11,000 B. t. u. per kilowatt-hour have, in fact, been obtained on certain steam plants, and even lower figures are contemplated for new stations at present under consideration.

Wehrly ² summarized mercury uses as follows:

In this country about 45 percent of the total mercury consumed is used in the preparation of mercurial salts—calomel, corrosives, oxides, organic mercurials, and other chemical compounds. In this class—the chemical uses—is also placed the production of fulminate, taking normally about 6 percent; vermilion, 6 percent; acetic acid, 2½ percent; and dyestuffs, slightly over 1 percent. The total for this class is over 60 percent. Mechanical adaptations calling for a total of about 13 percent comprise meters, measuring instruments such as barometers, hydrometers, thermometers, and gages; thermostats, vacuum tubes and pumps and pressure-control instruments. Of these, meters consume the most—about 6½ percent. In the electrical field, using a little over 8 percent, are such applications as battery zincs, diffusion lamps, cells for the preparation of caustic soda and chlorine, and arc rectifiers. Batteries and lamps take about equal quantities—2.7 percent. These uses total about 81 percent. Of the remainder, the most important use is in the preparation of hatters' felt, using over 10 percent of the total. Others are gold amalgamation, about 2 percent; dental amalgams, over 2½ percent; thermostatic and plating alloys, ½ percent; and laboratory use, about 2 percent.

In the chemical field the use is slightly decreasing; substitutes are available in the case of vermilion and fulminate. As a war measure, however, the use of ful-

² Estimated by Bureau of Mines.

¹ Engineering (London), Mechanical Engineering in Power Stations: Vol. 149, No. 3869, March 8, 1940, pp. 256-257.
2 Wehrly, Chas. S., Mercury: Columbia University Bull. Information, 40th ser., No. 25, June 1, 1940,

Wehrly, Chas. S., Mercury: Columbia University Bull. Information, 40th ser., No. 25, June 1, 1940, pp. 57-61.

MERCURY 665

minate would expand so greatly as to require more than is normally used even with this possibility of substitution. In the mechanical field all the uses are increasing with replacements, either as raw material or as finished products, practically nil. Electrical uses are increasing at a still greater rate, with substitution possible in but a minor part. In the manufacture of felt, however, there is definitely a move to replace mercury by other chemicals.

REVIEW BY STATES

The surprising thing about mercury production in the United States is that under varying conditions during the past 6 years, with numerous changes in the number of operating properties, with old-established mines closing and with new ones making good records, the output for the country has ranged only from 15,445 flasks in 1934 to 18,633 in 1939. This variation did not mark a continuous uptrend. however, for output in 1935 was 17,518 flasks; in 1936, 16,569; in 1937, 16,508; and in 1938, 17,991. In the years noted the price was between \$70 and \$80 in 1934, 1935, 1936, and 1938; a little over \$90 in 1937; and just under \$104 in 1939. The number of producing mines was approximately 90 in all years but 1937 and 1939, when it was 101 and 107, respectively. During these years a relatively few mines have dominated the picture, but there have been changes among the principal producers, particularly in 1938 and 1939. The Oceanic and Cloverdale mines, for example, were important producers in 1938, but both were closed at the end of the year. The Horse Heaven mine assumed importance in 1935 and the Mount Diablo mine in 1936-37; the Bonanza mine jumped to prominence in 1938 and was the second largest producer in 1939; and the Idaho Almaden mine, discovered in 1936, became one of the leading producers in 1939. The Bretz mine, Oregon, was one of the four largest producers in 1934 but failed to produce in 1939. Output at Texas mines declined during the period. The principal producing mines in 1939 were as follows:

Arkansas—Pike County, Valley mine.
California—Contra Costa County, Mount Diablo mine; Lake County, Great Western, Mirabel, and Sulphur Bank mines; Napa County, Oat Hill mine; San Benito County, New Idria mine; San Luis Obispo County, Klau mine; Santa Clara County, New Almaden mine.
Idaho—Washington County, Idaho-Almaden mine.
Nevada—Humboldt County, Wootan and McCown mine.
Oregon—Douglas County, Bonanza mine; Jefferson County, Horse Heaven mine; Lane County, Black Butte mine.
Texas.—Brewster County. Chisos and Rainbow mines.

Texas.—Brewster County, Chisos and Rainbow mines.

These 16 mines produced 88 percent of the country's total compared with 91 percent by the 16 principal mines in 1938.

Mercury produced in the United States, 1936-39

Year and State	Pro- duc- ing mines	Flasks of 76 pounds	Value ¹	Year and State	Pro- duc- ing mines	Flasks of 76 pounds	Value 1
1936: California Nevada Oregon Utah	51 11 13 1	8, 693 211 4, 126 25	\$694, 744 16, 863 329, 750 1, 998	1938: California Nevada Oregon Alaska, Arkansas,	52 17 13	12, 277 336 4, 610	\$926, 545 25, 358 347, 917
Arkansas, Texas, Arizona, and Washington	11	3, 514	280, 839	Texas, and Wash- ington	9 91	768 17, 991	57, 961 1, 357, 781
1937: ArizonaCaliforniaNevada	3 54 20	37 9, 743 198	3, 337 878, 624 17, 855	1939: Arkansas California Nevada Oregon	5 59 25 14	364 11, 127 828 4, 592	37, 834 1, 156, 540 86, 062 477, 293
OregonArkansas, Texas, and Washington_	14 10 101	4, 264 2, 266 16, 508	384, 527 204, 348 1, 488, 691	Arizona, Idaho, and Texas	4	1,722	178, 98

¹ Value calculated at average price at New York.

Arizona.—Mercury was reported produced at the Sunflower mine, Sunflower district, Maricopa County, in 1939, and there was some activity at other properties in Gila, Maricopa, Pinal, and Yavapai

Counties looking toward possible future output.

Arkansas.—The output of 364 flasks of mercury in Pike and Clark Counties was reported in 1939. This came from the properties that have produced in the past—that is, the Valley, Mid-Continent, and Parker Hill—and from the new producers—United States Mercury Co. and Jack-Fork Quicksilver Mining Co. United States Mercury Co. reported having recovered 104 flasks of metal in retorts from ore averaging about 4 percent. The company plans to install a new rotary furnace. Mid-Continent Mercury Producers, Inc., anticipates some plant changes, including a concentrating table for fines and new retorts to handle fines from the table. A new Cottrell rotary

furnace is being installed at the Big-Six mine.

California.—As usual, California was the most important mercuryproducing State in 1939, but her proportion of the country's total was Whereas output in 1939 was from a greater lower than in 1938. number of mines and operations were expanded at some properties that were active also in 1938, the total for the State was only 11,127 flasks compared with 12,277 in 1938. The decline is explained largely by the shut-downs at the Oceanic and Cloverdale mines, although output at three of the other large producers—the Great Western, New Idria, and Klau—was curtailed somewhat. Expansion of productive operations, particularly at Sulphur Bank and Mirabel, together with output from some newly opened properties, offset in part the reductions noted above. Production in 1939 came from the following 18 counties: Contra Costa, Fresno, Inyo, Kern, Kings, Lake, Mono, Monterey, Napa, San Benito, San Luis Obispo, Santa Barbara, Santa Clara, Siskiyou, Solano, Sonoma, Trinity, and Yolo. Except for the addition of Mono County, these are the same as in 1938. New Idria mine, San Benito County, again was the largest producer not only in California but in the United States as well. Other large MERCURY 667

producers were Mount Diablo mine, in Contra Costa County; Sulphur Bank, Mirabel, and Great Western mines, in Lake County; Oat Hill mine, in Napa County; Aurora mine, in San Benito County; Klau mine, in San Luis Obispo County; Guadalupe and New Almaden mines, in Santa Clara County; and Contact and Culver-Baer mines, in Sonoma County.

The California State Division of Mines, Department of Natural Resources, issued a comprehensive map in 1939 showing the situation of all known quicksilver deposits in the State, together with marginal data covering output for California and the world, some geologic notes, and other items. This map is entitled "Economic Mineral Map of California, No. 1, Quicksilver."

The Mount Diablo mine, Contra Costa County, operated by the Bradley Mining Co., produced 1,423 flasks of mercury in 1939 from approximately 12,000 tons of ore and was one of the largest producing properties in the country. A 40-ton rotary kiln and ¼-ton D retort

for soot are used at this mine.

Ben Byles reported production in retorts at the Archer mine, Fresno County.

There was some activity again in the Coso district, Inyo County,

and a reduced quantity of mercury was produced.

The Walabu Mining Co. operated the Cuddeback mine, Kern County, for part of the year and increased its output over 1938. Production was reported for the Dawson, Kings, and Canyon mines

in Kings County. Retorts were used at all three properties.

In 1939 Lake County produced 4,132 flasks of mercury (22 percent of the country's total), which gave it first rank among the mercury-producing counties in the United States. As usual, the principal properties were the Sulphur Bank and Great Western mines of the Bradley Mining Co. and the Mirabel mine of the Mirabel Quicksilver A 20-ton Herreshoff furnace is in use at the Great Western mine, a 50-ton rotary furnace with a double D retort for the treatment of soot at the Sulphur Bank, and a 25-ton rotary furnace at the Early in 1940 an electric hoist was to replace the air hoist in the main shaft at Great Western. Three new stainless-steel pipes in the condenser system were being tested at Mirabel. Production was reported also for the Anderson Springs, Bullion, Helen, and Abbott mines in Lake County. Development work was being carried on at some other mines in the county, and the installation of some new furnace and retort equipment was under way or in prospect.

A little mercury ore was retorted at the Ishtar Cinnabar Co. property in Mono County, but principally assessment work was done. A small amount of mercury was reported produced in Monterey

County in 1939 at the Franciscan and G. W. D. mines.

In Napa County 680 flasks of mercury were recovered, and the principal producing mine was the Oat Hill, where a 4-by 60-foot rotary furnace was in use. The mine was operated until June 1 by Humboldt Mercury Mines and thereafter by Oat Hill Mine, Inc. The Aetna, Ivanhoe, James Creek Placer, La Joya, Manhattan, Oat Hill Extension, and Toyon mines also produced in 1939. At the end of the year preparations were reported under way for reopening the Knoxville mine, idle except for dump operations since 1932. Furnaces were used for reducing metal at Aetna and La Joya, and retorts

were employed at the other mines. A new 10-ton rotary furnace, however, was planned for the Manhattan mine, where 33 flasks of mercury were recovered from 66 tons of ore. The Knapp Construction Co. was experimenting with new concentrating equipment late

in the year.

A dozen mines in San Benito County were reported to have produced mercury in 1939, the famous New Idria property being outstanding. In all, 3,815 flasks were recovered, and the county ranked second only to Lake County in output in the United States. New Idria mine again ranked as the leading producer in the country. Trade reports indicated that 135 men were employed at the property in September and that extensive development work was under way on the 300-foot level in the adjoining San Carlos property, which is being operated in conjunction with the New Idria mine. The conbeing operated in conjunction with the New Idria mine. centrating plant outside of No. 3 tunnel at New Idria was reported to have been improved and in September to have had a capacity of 400 tons daily. Mining for this mill is done by means of a dragline, using a Sullivan electric hoist. The material is sized to 5 inches by means of grizzlies, then screened and washed to one-half inch. The oversize is sorted on a belt, which acts both as a sorter and as a waste conveyor. The minus-one-half-inch material is run through a Bendelarijig and a drag washer. Nearly all water is recovered by means of a Wemco 14-foot thickener. Two 100-ton furnaces were in operation during most of the year. The second-largest producer in San Benito County was the Aurora mine, which changed hands in De-Production was made in the 25-ton rotary furnace. Other producers included the Florence Mac, Stayton, Valley View, and Wonder mines.

A marked decrease was noted in production of mercury in San Luis Obispo County during 1939, when 253 flasks were recovered compared with 1,111 flasks in 1938. The decline was due mainly to the fact that the Oceanic mine, the largest producer in 1938, was closed during all of 1939; in addition, output at the Klau mine decreased in 1939. Nevertheless, the Klau mine was the principal producer during 1939 and recovered mercury in a 3- by 40-foot Gould rotary furnace. Development work included sinking of a winze below the lowest old workings, together with development drifts and crosscuts on this level. The Buena Vista or Mahoney, Deer Trail, La Libertad, and

Little Bonanza mines also produced in 1939.

Production of mercury was reported in 1939 for the Falcon (Santa Ynez), Lion Den, and Los Prietos mines in Santa Barbara County. Retorts were used at Lion Den and furnaces at the other properties.

Santa Clara County supplied 293 flasks of California's total. The mercury was from newly mined ore retorted at Guadalupe and from mined ore and dump material retorted by several lessees at the New Almaden mine. Early in 1940 a new company—the New Almaden Corporation—was formed to acquire and operate properties formerly comprising the New Almaden mine. If this corporation succeeds in financing the project, the various leases presumbly will be operated as a unit.

Small quantities of mercury were recovered from old workings at the Great Northern mine, Siskiyou County, and from clean-up oper-

ations at the St. Johns mine, Solano County, in 1939.

MERCURY 669

The sharp contraction in output in Sonoma County was due to the failure of the Cloverdale mine to produce. Operations at the Cloverdale mine were described by Burr.3 The Contact mine was the principal producing property in 1939, followed by the Culver-Baer. reports indicated that the Contact mine was preparing to install a 40-ton furnace. No information is available regarding the Wyatt furnace reported to have been constructed there in 1938. Production was on record also for the Jumbo property and the Sonoma Quicksilver group. The entire output of the county was from retort operations. Indications were that the Mount Jackson mine, adjoining the idle Great Eastern and itself idle for many years, changed hands late in the year and that preliminary work anticipating resumption of mining was under way early in 1940.

The Altoona mine in Trinity County produced mercury in 1939 in

its 50-ton rotary furnace.

A small quantity of mercury was recovered from dumps at the Reed mine in Yolo County, said in the press to have been idle since 1880. and production was also indicated for the Harrison mine. rotary furnace was reported under construction at the Harrison mine in the latter part of the year, but production in 1939 was from a retort. Press reports claimed that a large output was anticipated at this

property.

Idaho.—The Idaho Almaden mine, situated 17 miles west of Weiser. Washington County, was discovered in 1936. It began to produce in May 1939 and in the remaining months of the year made an important contribution to the country's total, which ranked it as the seventh largest producing mine in the United States. Ore is crushed in a jaw crusher and delivered to the 50-ton rotary furnace at approximately minus 1 inch. A short description of the property was published in 1939.4

Nevada.—There was considerable activity in mercury development and mining in Nevada in 1939, new production coming particularly from Humboldt County, and plans are under way for greater expansion at a number of properties. The State produced 828 flasks of metal (compared with 336 flasks in 1938) from Elko, Esmeralda. Humboldt, Lander, Mineral, Nye, Pershing, and Storey Counties. Five counties—Esmeralda, Humboldt, Mineral, Nye, and Pershing produced the total for 1938.

No production was reported for Churchill County in 1939, but a a 2-by 24-foot Gould rotary furnace was being installed in December at the Wild Horse mine near Fallon, located by Clyde Garrett early

in the year. Production was begun early in 1940.

The Rand Co. acquired an option on the Mayflower and Wildhorse claims in the Ivanhoe mining district, Elko County, and produced

mercury in 1939.

Production for Esmeralda County was from newly mined ore at the Red Rock mine and from clean-up operations at the B and B mine. The furnaces at both properties were idle, as the metal produced was from retorts.

Production in Humboldt County totaled 404 flasks in 1939, or more than four times that for 1938; thus, the prophecy of larger output of

³ Burr, Geo. H., Mining and Treating Low-grade Quicksilver Ores at the Cloverdale Mine: Min. Cong. Jour., vol. 25, No. 6, June 1939, pp. 15-17.

⁴ Mining World, Idaho Almaden, Gem State's First Quicksilver Mine: Vol. 1, No. 4, October 1939 pp. 9-11.

mercury in the Bottle Creek district was fulfilled in part in 1939, and greater expansion in 1940 was anticipated. Four retorts were reported to be in operation at the Blue Can, Bottle Creek (Scossa), Blue Bird, and Wootan and McCown mines. A furnace was reported installed at the Scossa property, and one or two others are in prospect in the district. The retort capacity at the Wootan and McCown mine was increased during the year, and approximately 350 tons of ore were treated to recover 165 flasks of mercury. Niebuhr, who owns the Blue Can mine which is leased to Greenan interests, reported a new claim in the Jackson Mountains northwest of Winnemucca. A retort was reported under construction at this property early in 1940. A small rotary furnace was constructed late in 1939 at the Cahill mine in the Paradise Valley district. Prospects were reported to be good for installing a large reduction plant at the McCormick-Dermody property on Buckskin Mountain.

The Hot Springs mine, Lander County, produced 3 flasks of mercury

from 10 tons of ore retorted in 1939.

Production of mercury in Mineral County was reported for the Red Wing, Reward, Allen, Lost Steers, and Crystal Quick mines and was entirely from retorts; the total reported for the county was 26 flasks. Press reports indicated that some expansion was in prospect in 1940, with particular reference to acquisition of the Mina Mercury mine by new interests late in 1939 and reconditioning of reduction equipment there.

In Nye County the Van Ness, Mercury, Cinnabar, and Senator mines, and one other property, reported production of mercury in 1939. At the Van Ness mine 32 flasks were recovered from 160 tons of ore treated in retorts and at the Mercury mine 83 flasks from 630 tons of ore retorted. These two properties produced by far the major part of the county total. Prospects for expansion of output in this county included leasing of the Nevada Quicksilver (Doonan) mine at Ione and preparation of the mine for output early in 1940. A 30-ton

furnace was reported to have been installed at the mine.

Mercury production in Pershing County increased in 1939, when metal was reported recovered at the Goldbanks, Miner's Dream, Red Bird, and one other mine. Melvin McCoy treated 320 tons of ore in a retort at Goldbanks and produced 80 flasks of mercury. Alvin Guthrie had a lease on this mine for part of the year and produced an additional quantity. The Miner's Dream mine was reported in the press to have been discovered in 1928. The Goldbanks mine was described by Dreyer ⁵ in a cooperative publication of the Nevada State Bureau of Mines and the Federal Geological Survey.

In 1939 the American Quicksilver Corporation was reported to have put the furnace at the Castle Peak mine, Storey County, in condition for treating 40 tons of ore a day, and the property was operated after being idle since 1935. Early in 1940 the company stated that it had

relinquished its lease.

Oregon.—Oregon's output of mercury was relatively the same in 1939 as in 1938 (4,592 flasks compared with 4,610), despite the sharp increase in output at the Bonanza mine, Douglas County, which assumed second place in 1939 among the principal mercury-producing mines of the country. Production at the Horse Heaven and Black

⁵ Dreyer, Robt. M., Goldbanks Mining District, Pershing County, Nev.: Univ. of Nevada Bull., vol. 34, No. 1, January 15, 1940, pp. 30–36.

MERCURY 671

Butte mines, in Jefferson and Lane Counties, the other most important producers in the State, declined from 1938. Monthly production in Oregon advanced rapidly in the early months of 1940, owing mainly to expanded activity at Bonanza. In addition to the mines already mentioned properties in Clackamas, Crook, Jackson, and Malheur Counties contributed to the total output in 1939. The counties are the same as in 1938, except for the addition of Jackson County.

Two properties—the Oak Grove and the mine of D. E. Kiggins—reported all the mercury produced in Clackamas County in 1939.

Production was made in small furnaces at both mines.

The Oregon Department of Geology and Mineral Industries has issued a geologic map and description of the Round Mountain Quadrangle east of Prineville. Cinnabar is the principal important eco-

nomic mineral in the area.

Six properties produced mercury in Crook County during 1939—almost as many as in the remainder of the State—but none was outstanding. At the Mother Lode mine 266 tons of ore were treated in a furnace to recover 35 flasks of mercury. The company reported that the plant was in operation only 30 days. Reports indicate that two or three new plants were completed recently or were under con-

struction in the Prineville district early in 1940.

As already stated the Bonanza mine east of Sutherlin, Douglas County, increased its production greatly in 1939 so that it became the largest producer in the State and the second largest in the United States. During the year a 50-ton Herreshoff furnace was in operation, but in the late months a 70-ton Gould rotary furnace was under construction to supplement the output at the original plant. Press reports stated that with completion of the new plant early in 1940 the operating crew was raised from 20 to 45 men and that before the new installation the mine had been producing about 10 flasks of metal daily.

Mercury was recovered from dumps at the War Eagle mine, Jackson County. A new Johnson-McKay retort was reported under con-

struction early in 1940.

The Horse Heaven mine, Jefferson County, was the second largest producer in the State and ranked fifth in the country. The Nichols-Herreshoff furnace at the mine had a daily capacity of 20 tons. It was reported in the press that two additional hearths, with a rating of 30 tons a day, were installed late in the year and that no change was required in the condenser system. A shut-down of only 5½ days was required for the addition, and plant capacity was raised to 45–50 tons.

The Black Butte mine, operated by the Quicksilver Syndicate, at Blackbutte, 17 miles south of Cottage Grove, produced 540 flasks of mercury in 1939 from treating 17,456 tons of ore. There are two 75-ton rotary furnaces at the property. A short description of operations

at this property was published in the Mining World.6

The Bradley Mining Co. produced 12 flasks of mercury from 32 tons of ore and 23 flasks from furnace soot in retorts at the Opalite mine in 1939. Option on the Bretz mine again was taken up by the company late in the year. These two mines are 20 and 12 miles, respectively, west of McDermitt, Nev., across the border in Malheur County, Oreg.

⁶ Mining World, Black Butte Quicksilver: Vol. 2, No. 1, January 1940, pp. 17-i9.

Texas.—As usual, mercury was produced in Texas at the Chisos and Rainbow properties 90 miles south of Alpine or Marathon, Brewster County. No other production was reported for the State. The mercury deposits of the Terlingua region, where the Chisos and Rainbow mines occur, were described by C. P. Ross in a paper read before the Nineteenth Annual Meeting of the Society of Economic Geologists in New York in February 1939.

FOREIGN TRADE 7

During the first 10 months of 1939 imports of mercury for consumption in the United States continued at the sluggish rate that characterized 1938. Buying interest increased with the advent of war between Great Britain and Germany, prices rose sharply, and in November imports jumped. In that month 1,111 flasks were entered for consumption and in December 1,776 flasks, a total of 2,887 flasks for the 2 months or 83 percent of the total of 3,499 flasks imported With resumption of the operations of Mercurio Europeo in 1939. the United States again began to receive an overwhelmingly large proportion of its total imports of mercury from Spain. country supplied 2,601 flasks, Italy 336, and Mexico 562 in 1939. In addition to the mercury imported from Mexico as metal about 2.000 flasks were produced in the United States from antimonymercury concentrates received from Mexico. Statistics covering this class of imports are not shown separately in customs statistics. After the beginning of 1940 the price of mercury abroad was higher than that for metal imported into the United States, plus the duty of \$19 a flask. It is not surprising, therefore, that imports in January and February 1940 were only 147 and 3 flasks, respectively.

Mercury imported into the United States, 1935-39, by countries

	1935		19	1936		1937		1938		1939	
Country	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	
Hong Kong Italy Mexico Spain United Kingdom	4, 182 521, 017	347, 806	26, 393 774, 785 81, 760	21, 708 544, 072	116, 497 535, 156 38, 788	104, 730 440, 804 33, 046	95, 068	\$50, 434 82, 176 	42, 745 197, 671	\$29, 818 61, 313 245, 613 336, 744	

All classes of mercury compounds imported increased over 1938 except vermilion reds; but the totals, except mercury oxide, were smaller than in 1937. An upward trend of possible significance was indicated early in 1940, however. Imports of mercurous chloride from Italy alone totaled 18,710 pounds in February compared with 6,700 in all of 1939; of oxide (red precipitate) 9,000 and 18,200 pounds, respectively; and of mercury preparations (not specially provided for) 14,700 pounds in February and 15,000 in all of 1939.

⁷ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Mercury compounds imported for consumption in the United States, 1938-39

Compound	19	38	1939	
Compound	Pounds	Value	Pounds	Value
Chloride (mercuric) (corrosive sublimate)	265 11, 786 1, 011 33, 884	\$358 7, 604 815 30, 243 39, 020	300 6, 850 15, 061 18, 200 22, 624	\$174 5, 011 8, 755 14, 948 19, 755 48, 643

Exports of mercury totaled 1,208 flasks in 1939, the largest quantity since 1931 and except for that year the largest since 1920. Of the total, 304 flasks were consigned to Canada, 206 to the United Kingdom, 177 each to Japan and South America, 75 to Australia, and the remainder in small lots to roughly 3 dozen scattered countries throughout the world. At the end of the year the European price favored exportation of mercury from the United States, for it was higher than that for metal imported into the United States plus the duty of \$19 a flask.

WORLD PRODUCTION

The following table shows available data on world production of mercury, by countries, from 1935 to 1939.

World production of mercury, 1935-39, by countries

[Compiled by R. B. Miller]

[1 metric ton=29.008 flasks of 76 pounds]

w - w	19	35	19	1936		37	19	38	1939	
Country	Flasks	Metric tons	Flasks	Metric tons	Flasks	Metric tons	Flasks	Metric tons	Flasks	Metric tons
Algeria Australia: Queens-			102	3.5	140	4.8	191	6. 6	(1)	(1)
land Bolivia ³ Canada	17 250			2. 7 7. 7	9 16	.3 .6			3 7	0.1
China 2	1, 313 4	. 1	2, 460 2	.1	1, 736 2	59.8 .1	10 65 (1)		(1) 6 (1)	.2 .4 (1)
Czechoslovakia Germany Austria	2,004 116 106	4.0	1,876 1,093	64.7 37.7	275 3 1, 775 134	94.8 3 61.1 4.6	290 3 1, 750	100.0 3 60.2	(1)	(i) (i)
Italy Japan	28, 191 148	971.8 5.1	42, 732 429	14.8	66, 963 580	2, 308. 4 20. 0	(1)	2, 301. 0	(1) (1)	(1) (1)
Mexico New Zealand Rumania	6, 277 7 1	216.4 .3	5,307	183.0	4, 936 18	170. 2 . 6	8, 519 10 (¹)	293.7	7,376 (1) (1)	254. 3 (1) (1)
Southern Rhodesia Spain Tunisia	35, 559	1, 225. 8		1, 497. 0		977.5	(1)	(1)	(E)	(E)
Turkey U. S. S. R	25 25 8, 700	. 8 . 9 . 300. 0	62 815 8, 700	2. 1 28. 1 5 300. 0	25 483 8, 700	.9 16.7 300.0	270 597	9.3 20.6	(1)	(1) (1)
United States	17, 518 100, 261	603.9 3,456.5	16, 569 123, 878	571. 2 4,-270. 7	16, 508 130, 661	569. 1 4, 589. 6	17,991	620. 2 (1)	18,633	642.3

Data not yet available.
 Exports.
 Estimated.
 Production less than 1 flask or 0.1 metric ton.
 Production figure published by Metallgesellschaft.

Algeria.—According to the Metal Bulletin of March 12, 1940, page 6, the Ras-el-Ma quicksilver mine has recently been re-equipped. It was reported to be expected to produce a high proportion of a normal

French consumption of 130 tons during the first year of operations. In recent years, production in Algeria has averaged little over 100 flasks a year, but in 1931 and 1932 output was somewhat over 1,000

flasks annually.

Canada.—Of particular interest, because the British Empire is at present completely deficient in regard to mercury, is the report that a mercury property at Pinchi Lake in the Omineca mining division of British Columbia is now being developed by the Consolidated Mining & Smelting Co. An article ⁸ in The Miner states that the deposit was first observed in 1937, examined by Consolidated in June 1938, and optioned to that company in the following November. It reported also that a 50-ton reduction plant of simple design will be constructed at the mine.

As pointed out in the chapter of this series for 1939, a mercury deposit on Mud Creek in Bridge River Valley produced a small

quantity of metal late in 1938.

Italy.—In 1939, for the third successive year, Italy dominated the world mercury situation. This dominance is traced partly to dislocation of the Spanish industry by the civil war, which terminated in the spring of 1939, for over a long period these two countries have taken turns in world supremacy. Too, available data regarding size and grades of reserves place Spain above Italy in terms of the future. For the first 7 months of 1939—the latest data available—output was 38,639 flasks compared with 41,307 in the similar period of 1938, when the total for the year was 66,748 flasks. Mercury production was at a record level during 1937 and 1938, and under the conditions of increased demand incident to the opening of hostilities between Great Britain and France and Germany in September there is little reason to believe that output in 1939 was less than in the record years.

Exports for the first 7 months of 1939 totaled 25,602 flasks compared with 30,218 in the similar period of 1938 and 44,707 in that of 1937. The 12-month total for 1938 was 53,352 flasks and for 1937, 67,075 flasks. Of the total for 7 months of 1939, 43 percent went to Germany, 23 to Japan, 10 to Great Britain, and 8 to France compared with 60 percent to Germany in all of 1938, 12 to Japan, 4 to Great Britain,

and 6 to France.

In February 1940 the production of mercury was placed under special control for the duration of the war, or for not less than 2 years, according to a report from Consul Lester L. Schnare, Milan, Italy, dated March 1. Under the control established, the exportation of mercury ores and their derivatives to foreign countries is prohibited, except under special export licenses, and taxes amounting to 2,000 lire on each flask of mercury and to 50 lire on each kilogram of mercury contained in the ores extracted from the mines have been instituted. The taxes are to be paid when the metal is produced, regardless of the purpose for which it is destined, but the Ministry of Finance is authorized to modify them should developments in the international prices for mercury appear to justify such modification. Heavy penalties are provided for violations of the act.

According to continental advices, quoted in the Metal Bulletin of February 13, 1940 (p. 14), despite rapid advances in the export quotation of the Italo-Spanish Quicksilver Cartel since the beginning of the war, the Italian home price of 1,040 lire a flask remained unchanged

⁸ The Miner, Development of the Empire's Largest Mercury Producer: Vol. 13, No. 4, April 1940, p. 37.

MERCURY 675

until Ministry of Corporations recently raised it to 1,400 lire (\$71). This price still bore little relation to the export price (\$200). The spread between domestic and export prices would seem to give Italian producers of mercurials a marked advantage in world markets. As a possible substantiation of this assumption, imports of mercurials into the United States trended upward early in 1940.

The annual report of Soc. Stabilimento Minerario del Siele (Leghorn) stated that copper sulfate for use in the vineyards can be replaced by certain quicksilver compounds. Such a trend would aid Italy, which now must import large quantities of copper sulfate.

Mexico.—Production of mercury in Mexico was 6,989 flasks in the first 11 months of 1939 compared with 8,519 flasks in all of 1938. Exports during the first 11 months of 1939 were 6,799 flasks compared with 8,274 flasks in the full year 1938. As in previous years, the United States and the United Kingdom were the principal recipients of metal exported from Mexico. Mercury consigned to the United States in the early part of 1939 is believed to have been diverted

largely to the United Kingdom.

The Huitzuco mine treated 39,858 short tons of ore in its mill from January 1 to November 4, 1939, and produced concentrates containing 146,886 pounds of mercury. In the entire year 1938, 50,881 tons were treated, and concentrates contained 197,486 pounds of mercury. Concentrates shipped during the period covered for 1939 contained 156,999 pounds of mercury compared with 201,119 pounds in all of 1938. Reports received late in 1939 said that 1,814 flasks of mercury were recovered from January 1 to November 4, 1939, compared with 2,430 flasks in all of 1938. Concentrates from the Huitzuco mine are shipped to Los Angeles, Calif., for the production of mercury

and antimony. Spain.—It continued to be virtually impossible to obtain authentic information on mercury production in Spain. The civil war, which interfered with mining operations at the famous Almaden mine and caused the cessation of reports from Spain, ended in the spring of 1939, and the mines were transferred to the rebel government under Franco. After the war terminated, Italian and Spanish producers resumed the combined selling of mercury under Mercurio Europeo, with sales headquarters in London. The declaration of war on Germany by the United Kingdom and France in September 1939 made it desirable to revise marketing arrangements, so that the metal would be disposed of in neutral territory; therefore, the contract to sell mercury in London was not renewed at the end of 1939. A plan to sell in Belgium proved impractical, and London continued to market the metal during the first weeks of 1940, after which Mercurio Europeo began to sell its metal directly. Reports of the proposed establishment of a Mercurio Europeo sales office in Switzerland came from London in March 1940.

There were rumors that the Almaden mines produced at a high rate late in 1939, some estimates running as high as 12,000 flasks for December. A source believed to be reasonably accurate stated that at the end of 1939 output was proceeding at a rate of 40,000 flasks annually. Operations were reported hampered early in the year by the condition in which the Franco Government found the property, and no stocks were reported at the mine at the end of the Spanish war. Future production should be able at least to reach levels attained in the past, so that an output of 72,000 flasks probably can

be anticipated. This rate has been attained twice in the past—in 1927 and in 1929. Hewett 9 stated that output at the Almaden mine probably began about 400 B. C.; that the record of production since 1500 is known and showed an almost constant rise to a peak in 1888, except for temporary declines during the Napoleonic wars; and that the deposits have been owned by the State for 600 years and exploited by it for nearly 400 years. A new peak was reached in 1927, when output totaled 72,316 flasks; this production was almost matched by the record of 71,832 flasks for 1929. The long history of production and the known and probable reserves of the Almaden mine justify its position as the greatest mecury mine now known. The grade of ore produced—approximately 8 percent, of which approximately 6 percent is recovered—is several times as high as that in ores from Italy, the other of the two leading sources of mercury. Tenor of ores in the United States, the third-ranking world producer, averages less than 0.5 percent.

Roura & Forgas, selling agents for Almaden metal until the end of 1939, reported that exports from Spain totaled 53,441 flasks in 1939

compared with 36,000 flasks in 1938.

A commercial agreement between the French and Spanish Governments was reached early in 1940. This agreement included the delivery of 672 metric tons (almost 20,000 flasks of mercury) to France by the end of 1940 and, it is stated, cannot be denounced by either

party.

United Kingdom.—Combined selling of mercury by Mercurio Europeo, which includes the principal world producers in Spain and Italy, was resumed in May following termination of the Spanish Civil War. Headquarters of this agency had been in London; but in September the outbreak of war between Great Britain and France and Germany caused some difficulties in former marketing arrangements, and the contract to sell in London was not renewed at the end of the year. A plan to use Brussels as a center was discarded as impractical, and London continued to market the mercury for the first few weeks of 1940. Then Mercurio Europeo began to sell metal direct to consuming companies and governments. Statistics covering imports into and re-exports from the United Kingdom indicated that consumption in 1938 was large. Although war was closer in 1939 and hostilities actually were begun in September, statistics on foreign trade for the first 8 months of the year barely indicated an import surplus. Imports during that period were 24,154 flasks and re-exports 23,220 flasks, whereas in all of 1938 the figures were 44,317 and 15,535 flasks, respectively, and in 1937, 49,894 and 28,127 flasks.

Roura & Forgas, London agents for Mercurio Europeo, reported that mercury stocks in London were 17,804 flasks at the end of 1938

and only 900 flasks at the end of 1939.

Mercury and mercurials were placed under control by the Government late in 1939 and dealings in quantities exceeding 7 pounds permitted only under license. Maximum prices were established. Mercury is one of the few commodities for which the British Empire virtually depends completely on foreign sources of supply. Some efforts are being made in the Dominions to exploit occurrences of mercury ores.

⁹ Hewett, D. F., Cycles in Metal Production: Am. Inst. Min. and Met. Eng. Tech. Pub. 183, 1929, pp. 20-22.

By E. W. Pehrson and John B. Umhau

SUMMARY OUTLINE

	Page	1	Page
General summary	677	Foreign trade	
Salient statistics		Prices	
Government stock-piling program	679	Stocks	689
Licensing of exports of tin-plate scrap		World aspects of tin industry	690
Investigation of domestic resources		International Tin Control Scheme	
Domestic tin smelters		World mine production	
Domestic production		World smelter production	
Primary tin		World consumption	
Secondary tin		Review by countries	694
Consumption	201		

The most important event affecting the tin industry during 1939 was the declaration of war by England and France against Germany. Although this tragedy created many factors that influenced statistical and economic trends in the tin industry, the most significant development was the threat to the industrial economy and national defense of the United States through the tin shortage this war will make possible.

As stated in Minerals Yearbook, 1939 (p. 673), tin ranks high among our deficient strategic materials because of the essential usefulness of the metal industrially, the lack of domestic deposits, and our almost total dependence on supplies from relatively few overseas sources,

the most important of which is southeastern Asia.

The importance of this region as a source of tin and other raw materials was emphasized by Secretary of State Hull in April 1940 as follows:

I have noted with interest the statement by the Japanese Minister for Foreign Affairs expressing concern on the part of the Japanese Government for the maintenance of the status quo of the Netherlands Indies.

Any change in the status of the Netherlands Indies would directly affect the

interests of many countries.

The Netherlands Indies are very important in the international relationships of the whole Pacific Ocean. The islands themselves extend for a distance of approximately 3,200 miles east and west astride of the Equator, from the Indian Ocean on the west far into the Pacific Ocean on the east. They are also an important factor in the commerce of the whole world. They produce considerable portions of the world's supplies of important essential commodities such as rubber, tin, quinine, copra, et cetera. Many countries, including the United States, depend substantially upon them for some of these commodities.

Intervention in the domestic affairs of the Netherlands Indies or any alteration of their status quo by other than peaceful processes would be prejudicial to the cause of stability, peace, and security not only in the region of the Netherlands Indies but in the entire Pacific area.

An important step toward ameliorating the dangers inherent in our dependence on distant sources of supply for tin and other essential raw materials, was taken in 1939 when Congress passed the Strategic Materials Act. This law provides for the purchase of stock piles of these commodities for use in a national emergency. It also authorizes an investigation of domestic deposits of strategic minerals with a view to determining the extent to which domestic resources can be relied upon in time of stress. Although this action is somewhat belated as respects the present situation, it is reassuring to note that the importance of strategic minerals to national defense has received official recognition and that a stock pile of tin actually is being accumulated. Details of Government activity since the passage of the bill are given later in this chapter.

Keeping pace with increased industrial activity in the United States during 1939, apparent domestic consumption of tin rose 38 percent over 1938. Leading the advance in the use of tin in 1939 was the tinplate industry, which increased production 56 percent in consequence of the building up of inventories by can manufacturers, a small gain in the food pack, and a 92-percent advance in exports of tin plate. The use of tin in solder, babbitt, and bronze was substantially higher in 1939 than in 1938, but there was little change in demand from the collapsible-tube and foil trade. Consumers' stocks of virgin pig tin rose 21 percent during the year, and visible inventories, including metal affoat, rose 72 percent. Total stocks at the end of 1939 were equivalent to a 6.5-month supply at the average rate of consumption during the year. The New York quotations for Straits tin, prompt delivery, averaged 50.20 cents per pound in 1939 compared with 42.26 cents in 1938. Following the outbreak of war in Europe, fears of a domestic shortage of tin precipitated a buying wave; as a result the New York price broke away from parity with London and advanced to a peak of 75.00 cents on September 13. It is believed that no large tonnage changed hands during the panic. Meanwhile the International Tin Committee had removed virtually all restrictions on exports, and by the end of the year the domestic price settled to 49.00 cents. Imports of tin totaled 70,102 long tons in 1939 (80 percent came from Asia and 19 percent from Europe). Receipts from Europe were proportionately greater in 1939 than in 1938. Domestic mine production of tin in 1939, as in previous years, was insignificant. Late in the year it was announced that two large mining companies were planning to smelt Bolivian ores in the United States.

Salient statistics for tin in the United States, 1925-29 (average) and 1935-39

<u> </u>		<i>'</i>				
	1925–29 (average)	1935	1936	1937	1938	1939
Production—						
From domestic mineslong tons	24	44.5	101.0	168, 4	95	1 34
From secondary sourcesdo	30,600	24,900	25,000	27, 100	21,080	(2)
Imports for consumption (metal)do	78,009	64, 258	76,029	88, 115	49,699	70, 102
Exports (domestic and foreign)do	1,740	3 2, 292	3 386	§ 313	§ 205	3 1, 997
Monthly price of Straits tin at New York:						
Highestcents per pound_	70.67	52, 29	51.85	62.71	46. 23	63. 50
Lowest	39.79	46.91	42. 22	42.85	36.84	45.62
Averagedo	56.64	50.39	46.42	54. 24	42. 26	50.20
World production long tons	163,000	135, 300	179,000	208, 100	159,900	181,000
Ratio United States imports to world pro-						
ductionpercent	48	47	42	42	31	39
	1	i	1		ĺ	1

¹ Subject to revision.

Data not available.
 Figures for 1935-39 cover foreign only; domestic not separately recorded.

Full statistical data covering the last 5 months of 1939 are not available for other countries than the United States. However, the International Tin Research and Development Council estimates that apparent consumption of tin declined 5 percent abroad. Presumably most of the decline was due to curtailment of shipments by the Allied blockade of Germany and the countries over which Germany now has military control. World mine production increased 13 percent over 1938. Production in countries signatory to the International Tin Control Scheme was 17 percent higher, whereas that elsewhere was 4 percent lower than in 1938. The European War has diverted most of the ore which formerly went to continental European smelters to plants in the United Kingdom and the Straits Settlements. To meet the unexpected demand for tin in the last 4 months of 1939, the International Tin Committee raised export quotas for the third quarter from 45 to 120 percent retroactively, and for the fourth quarter from 60 to 100 percent. On September 18 the British Ministry of Supply fixed tin prices on the London Metal Exchange at £230 per long ton, but as world quotations rose considerably above this level pressure was exerted to remove the restrictions. They were removed on December 11, whereupon the price rose abruptly to £272 and declined again to about £248 at the close of the year. Apparently the Buffer Pool stock was used in an endeavor to stabilize prices in 1939, but official data are not available on this activity.

Government stock-piling program.—Although the Strategic Materials Act (Public No. 117, 76th Cong.) was approved by the President on June 7, 1939, funds for carrying out the provisions of the act were not made available until the Third Deficiency Appropriation Act was The Executive Branch of the Government signed on August 9. requested that \$25,000,000 be appropriated for stock-pile purchases during the fiscal year 1939-40, but Congress reduced the sum to \$10,000,000. The first and second proposals on tin, which were issued by the Procurement Division of the Treasury Department on October 4 and November 13, respectively, called for bids on three grades of tin, specifications for which were designed to meet the requirements of manufacturers of various products. Owing to the custom of the tin trade of buying tin almost exclusively on the basis of brand and the general reluctance of dealers to obligate themselves to deliver tin with narrow tolerances on composition, only a few offers In the third proposal, issued December 15, the were received. specifications were changed, and the following brands were considered as qualifying: Chempur, Pyrmont, Straits Trading, O. T. Lempriere & Co., E. S. Coy (Penang), Billiton, Mellanear (guaranteed 99.9 percent pure), Hawthorne Refined, Banka, Union Minière du Haut Katanga, and any other brand that will meet specifications. specifications stipulate that all tin shall be new metal, free from scrap or remelted metal; that the tin content shall be not less than 99.80 percent; and that maximum impurities, in percent, shall be as follows: Antimony 0.040, arsenic 0.050, lead 0.050, bismuth 0.015, copper 0.040, iron 0.015, silver 0.001, cadmium 0.001, nickel plus cobalt 0.010, and sulfur 0.010. Tin meeting these requirements is suitable for the manufacture of tin plate, which requires a high-purity metal and is considered as one of the most essential uses of tin. Tin offerings increased under the revised specifications.

Awards made under the three proposals issued in 1939 totaled approximately 3,680 long tons, and the net purchase price f. o. b. New York averaged 47.8 cents per pound.

The Navy Department has acquired a small reserve of tin under the strategic material stock-piling program authorized in the Navy

Appropriation Bills for the fiscal years 1938, 1939, and 1940.

Licensing of exports of tin-plate scrap.—According to the Fourth Annual Report of the National Munitions Control Board, 172 licenses for the export of tin-plate scrap were issued in 1939 (187 in 1938), involving 10,699 (13,237 in 1938) long tons of scrap valued at \$200,498 or \$18.74 per ton, based upon values stated in the applications for license. All licenses issued in 1939 named Japan as the country of destination. The maximum export quota authorized by the board was 15,000 tons. Allotments requested totaled 22,225 tons and allotments granted, 13,636 tons. Licenses were applied for on 13,413 tons, and actual exports, as reported by the Bureau of Foreign and Domestic Commerce, were 10,204 tons. Imports of tin-plate scrap totaled 12,633 tons in 1939.

The National Munitions Control Board estimates the production of tin-plate scrap in the United States at 251,000 tons in 1937 and 215,000 tons in 1938, and receipts at detinning plants for the respective years were 250,000 and 213,000 tons. Thus, the net effect of the tin-plate export licensing act has been to reserve the equivalent of virtually all domestic scrap production for the detinning industry. Data are not available for 1939, but as imports of tin-plate scrap exceeded exports, the detinning plants probably received more scrap in 1939 than was produced domestically. For the 4 years 1935 to 1938, the Board estimates total receipts by domestic detinning plants at 885,000 tons, which checks closely reports to the Bureau of Mines of 879,000 tons treated at detinning plants during the same period.

879,000 tons treated at detinning plants during the same period.

An attempt was made in 1939 to restrict exports of other forms of tin scrap. H. R. 61, introduced in the House of Representatives January 3, 1939, would have included "other scrap containing tin together with drosses" by amending the Faddis-Barbour Act licensing the export of tin-plate scrap; and H.R. 5840, which passed the House of Representatives May 1, 1939, proposed amending the same act by including "other scrap, drosses, or residues, the tin content of which is in excess of 10 percentum in which the copper content does not exceed the tin content." H. R. 2644, introduced January 16, 1939, also proposed a similar amendment to the same act to include "other scrap, drosses, or residues, the tin content of which is in excess of 1 percentum (instead of 10 percentum as in H. R. 5840) in which the copper content does not exceed the tin content." Official data on exports of these scrap items are not available, but from inquiries in the trade it is not believed that the quantity of tin so exported would exceed 2,000 tons in a peak year. None of the proposals has yet been enacted into law.

H. Res. 275, introduced July 26, 1939, provides for an investigation of the extent to which the United States depends on foreign nations for its supply of tin. It was referred to the House Committee on Rules, which recommended (Report 1680) February 26, 1940, that the resolution pass. Further action had not been taken by May 1940.

Investigation of domestic resources.—The investigation of domestic resources of deficient strategic minerals has been emphasized in the

Bureau of Mines program of technologic research in recent years. The chapter on tin in Minerals Yearbook, 1939, called attention to several Bureau reports on tin. In 1939 Information Circular 7069, entitled "Tin Deposits of the Black Hills, S. Dak.," by E. D. Gardner, was issued. Tin occurs in two areas in the region—in the Southern Hills and near Tinton. Gardner summarizes the possibilities for production in these districts as follows (pp. 47 and 71):

About 230,000 pounds of tin has been produced in the Southern Hills section of the Black Hills, and the known tin-bearing dikes were extensively developed by the early operators. The ore bodies so far found are small and widely scattered, therefore individual mining operations are necessarily on a small

If a custom treatment plant was available in the district and the price of tin were high enough, an intermittent daily production of about 50 tons of ore containing up to 1 percent tin could be expected. * * *

containing up to 1 percent tin could be expected.

About 148,000 short tons of ore assaying 7.5 pounds of tin per ton (about 500 long tons of metallic tin) has been partly blocked out on the Rough & Ready claim of the Black Hills Tin Co.; an additional 50 long tons of tin is contained in ore partly blocked out on other claims in the district. If it is assumed that the ore zones on the Rough & Ready continue downward, and of the same grade, each 100-foot vertical interval would contain 840 long tons of metallic tin. If the block that contains 4.1 pounds per ton is included, the total tin content per 100 feet would be 1,102 tons. The apparent average daily consumption of new tin in the United States in 1937 was 237 long tons.¹

The partly blocked out ore on the Rough & Ready claim would run the 150-

ton mill on the ground for about 3 years. For profitable operation, however, the price of tin would have to be higher than in normal times. A small production of tin also could be expected from other claims in the area if the price of tin

were high enough.

Government work in this field was accelerated in 1939 by the passage of the Strategic Materials Act, section 7a of which provides \$500,000 annually to the United States Department of the Interior for investigation of domestic resources of deficient minerals. The Bureau of Mines is allotted \$350,000 and the Geological Survey \$150,000 of the annual appropriations. During 1939 the Bureau of Mines conducted extensive investigations of tin occurrences at Tinton, S. Dak., and in Catron County, N. Mex., and made a preliminary survey of deposits in Alabama. The tin property at Majuba Hill, Nev., was reexamined. At Tinton sampling of surface outcrops and old underground workings and about 4,000 feet of diamond drilling were completed. A small tonnage of low-grade ore was indicated which might be workable under war prices. The work in New Mexico included sampling of placer deposits by trenches and test pits, several hundred feet of underground work, and underground and surface sampling of deposits in place.

The Geological Survey investigated deposits at Tinton, S. Dak.; Catron County, N. Mex.; Irish Creek, Va.; Lincolnton and Gaffney,

in the Carolinas; and Majuba Hill, Nev.

Domestic tin smelters.—Of unusual interest in 1939 was the announcement late in the year that the Phelps Dodge Corporation and the American Metal Co., Ltd., were establishing plants for treating Bolivian and other available tin ores. Presumably these companies have been investigating the smelting of refractory Bolivian ores for some time, so that the ventures did not result entirely from war conditions, although events in the last 4 months of the year undoubtedly were a factor in the determination to begin commercial produc-

¹ Miller, R. B., Tin: Bureau of Mines Minerals Yearbook, 1938, p. 616.

tion. Commenting on these new projects in a lecture on tin at Columbia University on November 20, Tuthill 2 stated:

To some extent, ore contracts have already been entered into, and several thousand tons will be arriving here shortly. It is only a matter of 2 or 3 months' time before we shall be once more turning out American refined tin mostly from refractory ores. And the good thing about it is that this strategically important industry is to stand on its own legs, without benefit of subsidy. Test runs indicate that the quality of this domestic refined tin, to be produced by new and more efficient methods, will be entirely acceptable to American consumers. Output, as now contemplated, will not be large—we shall still have to import the bulk of our metal requirements—but it is a vital and most interesting step toward selfsufficiency.

Although no commercial production was recorded in 1939, in December the American Metal Co., Ltd., was awarded a contract to supply the Government with 100 short tons of domestically refined highgrade tin at 47.22 cents per pound, subject to delayed delivery. This contract was made as part of the stock-pile purchasing program authorized by the Strategic Materials Act.

DOMESTIC PRODUCTION

Primary tin.—Only 34 long tons of tin were produced in 1939, a decline of 64 percent from 1938. Alaska again supplied virtually all the output.

According to the Federal Geological Survey (Bull. 917-A, p. 90):

The principal producing tin properties in Alaska lie in the extreme western part of Alaska near the western tip of Seward Peninsula. In addition to a few small one- and two-man camps that are fairly widely distributed in this general region the main tin-mining activity is on the property of the American Tinfields, Inc., The tin-bearing placers occur around the eastern border of Cape near Tin City. Mountain, a granite mass that forms the westernmost limit of the North American Continent and has been intruded into a country rock consisting of limestones and slates that had been much metamorphosed even before the intrusion of the granite. The tin minerals have been found in place in the contact zone of the granite, and attempts have been made in the past to develop some of the richer areas as lode

Early in 1940 it was reported that prospect drilling at the properties of the American Tinfields, Inc., failed to disclose substantial new deposits, and at the present rate of production commercial gravels would be exhausted within 4 or 5 years.3

In addition to Alaska, small shipments were reported from South Dakota, Montana, and New Mexico in 1939. Producers included W. C. Driskill and the Dakota Tin & Gold Co., both near Tinton, S. Dak.; George A. Mayer, near Basin, Mont.; and Paul Bellamy, Taylor Creek district, Catron County, N. Mex.

The Bear Creek mine near Tinton, S. Dak., operated by the Fansteel

Mining Corporation in 1938, was idle in 1939. Martin T. Anderson and associates sunk 28 test pits in the Squaw Creek placer, Taylor Creek mining district, New Mexico, which disclosed tin-bearing gravel (grade not given) ranging from 4 to 18 feet in thickness. No production was reported.

During 1939 there was considerable discussion regarding the possibility of tin production in the vicinity of Marquette, Mich. In response to an inquiry from the Bureau of Mines, United States

² Tuthill, Marshall W., Tin: Columbia Univ. Bull. of Information, The School of Engineering, 1940, p. 65. ³ Mining World, Tin Mining at America's Farthest West: Vol. 2, No. 3, March 1940, pp. 18-20.

Department of the Interior, the Geological Survey Division of the Michigan Department of Conservation replied as follows:

We have investigated the rumors of tin ore deposits in Marquette County. Michigan, and have found no facts to substantiate these reported discoveries.

A historical table of mine production of tin in the United States, by States, from 1910 to 1938, inclusive, was published in Minerals Yearbook, 1939, page 679.

Mine production of tin (content) in the United States, 1935-39, by States

Year	Alaska	South Dakota	Other States 1	Total	Value
1935 1936 1937 1937 1938	44. 1 101 166 94 333	(2) 0.4 .8 1	1.6	44. 5 101 168. 4 95	\$50, 200 105, 000 205, 300 90, 000 3 38, 000

¹ Montana, New Mexico, and Wyoming.

Secondary tin.—Complete statistics on the recovery of secondary tin in 1939 were not available when this summary was written. The Bureau of Mines annual survey has been delayed because of revisions adopted to obtain detailed information on the flow of various types of tin scrap and to segregate the recovery of tin from old and new materials. A very large part of the secondary tin produced in the United States is recovered from industrial or new scrap, and curtailment in consumption of virgin tin is reflected immediately in secondary-tin production figures. Because of these facts, the significance of secondary tin from the standpoint of national defense frequently has been overemphasized. Should foreign sources of tin be cut off, the quantity of secondary tin available would soon shrink to small proportions. Although the reclamation of tin is highly desirable as a conservation measure it should be borne in mind that it is not to be depended upon for large tonnages of metal in an emergency. Most of the uses of tin are dissipative, and there is no great store of metal in use that could be tapped should regular imports stop. Additional information on secondary tin is given in the chapter on Secondary Metals—Nonferrous.

Secondary tin recovered in the United States, 1925-29 (average) and 1935-39 1

	Tin reco	Fin recovered at detinning plants			in recovered	from all so	urces
Year	As	In	Total	As	In alloys	1	rotal .
	metal (long tons)	chemicals (long tons)	(long tons)	metal (long tons)	and chem- icals (long tons)	Long tons	Value
1925-29 (average)	900 1, 100 2, 300 2, 500 2, 200 3, 600	2,000 2,200 1,500 1,500 1,300 600	2, 900 3, 300 3, 800 4, 000 3, 500 4, 200	7, 500 8, 600 6, 500 7, 400 4, 300 (²)	23, 100 16, 300 18, 500 19, 700 16, 700 (2)	30,600 24,900 25,600 27,100 21,000 (2)	\$38, 034, 126 27, 498, 206 25, 621, 506 32, 124, 106 19, 284, 606 (2)

Figures compiled by J. P. Dunlop and James S. Earle, of the Bureau of Mines.
 Data not yet available.

² Less than 0.1 ton.

³ Subject to revision.

CONSUMPTION

Apparent consumption.—Apparent consumption of primary pig tin is determined by adding domestic smelter production to net imports. As there was no smelter output from 1925 to 1939, inclusive, apparent consumption for this period was equivalent to net imports. This computation does not consider fluctuations in dealer and consumer stocks, information on which is not always available; consequently the figures do not reveal the actual trend in consumption. Nevertheless, statistics on apparent consumption are useful in determining long-time trends. A table giving these data from 1910 to 1938 was published in Minerals Yearbook, 1939, page 680.

Apparent consumption of primary tin in 1939 was 68,105 tons, a 38-percent increase over the 49,494 tons recorded for 1938 but 22 percent below the all-time peak of 87,802 tons established in 1937. The figure for 1937 exaggerates actual consumption, however, as there were large accretions to consumers' stocks in that year. Actual

consumption reached a peak in 1929.

Consumption by uses. The following tables show actual consumption of primary and secondary tin as reported to the Bureau of Mines. Figures for 1939 were not available when this manuscript was pre-The items included in the table of consumption by uses represent the products of the first cycle of manufacture; for the purpose of this canvass, any virgin tin emerging from this stage as scrap is considered secondary metal. The figures thus understate consumption of primary tin, and much of the secondary tin listed duplicates data on the virgin metal because it is metal reclaimed from such byproducts as tin-plate clippings and virgin drosses from tinplate and tinning mills and other plants consuming virgin tin. In 1938, for example, domestic consumers purchased 48,551 tons of virgin metal, of which 165 tons were added to inventories and 48,386 tons processed. Of the tin processed, 46,712 tons emerged from the first stage of manufacture in the products shown in the accompanying tables and 1,674 tons were sold as scrap, lost, or added to stocks of metal in process.

Consumption of primary and secondary tin in the United States, 1936-38, in long tons

	1936	1937	1938
Stocks on hand Jan. 1	14, 981	17, 978	25, 984
	89, 232	101, 354	59, 811
Available supply Stocks on hand Dec. 31.	104, 213	119, 332	85, 795
	17, 978	25, 984	25, 172
Total processed during year	86, 235	93, 348	60, 623
	2, 827	2, 782	2, 109
Total consumed in manufacturing	83, 408	90, 566	58, 514
	358	436	239
Tin content of manufactured products Primary Secondary	83, 050	90, 130	58, 275
	68, 232	72, 928	46, 712
	14, 818	17, 202	11, 563

¹ 1936: Primary, 73,137; secondary, 2,176; terne, 994; scrap, 12,925. 1937: Primary, 82,946; secondary, 3,461; terne, 1,052; scrap, 13,895. 1938: Primary, 48,551; secondary, 1,983; terne, 787; scrap, 8,490.

Consumption of tin in the United States, 1936-38, by finished products (tin content), in long tons

	- 1	1936 1937			1936 1937 1938			1937			
	Pri- mary	Second- ary	Total	Pri- mary	Second- ary	Total	Pri- mary	Second- ary	Total		
Tin plate. Terneplate Solder Babbitt Bronze Collapsible tubes Tinning Foil Chemicals (other than tin oxide) Pipe and tubing 3 Tin oxide Type metal Galvanizing Bar tin Miscellaneous alloys White metal Miscellaneous	369 12,068 5,070 3,559 3,556 2,377 1,645 209 1,401 969 253 1,016 418	943 6, 682 1, 609 2, 631 13 43 43 1, 346 82 361 919 84 62 9	33, 750 1, 312 18, 750 6, 679 6, 190 3, 556 2, 390 1, 688 1, 555 1, 483 1, 330 1, 172 1, 1072 1, 1074 480 367 592	1 39, 221 382 12, 026 4, 501 3, 712 3, 571 2, 585 1, 456 11, 278 793 221 997 652 482 374 506 72, 928	1, 015 7, 832 2, 272 2, 784 (2) 67 4 1, 331 18 411 1, 140 (2) 174 24 33 97	39, 221 1, 397 19, 858 6, 773 6, 496 3, 571 2, 662 1, 204 1, 361 997 826 506 407 603	1 23, 545 264 7, 590 2, 893 2, 334 2, 334 1, 738 879 166 948 547 134 752 456 238 390 371	743 5, 208 1, 264 1, 598 35 (2) 910 (2) 444 978 	23, 545 1, 007 12, 798 4, 157 3, 932 1, 773 879 1, 076 948 991 1, 112 706 669 257 434 478		

¹ Includes small quantity of pig tin derived from detinning operations; Bureau of Mines not permitted

1 Includes small quantity of pig tin derived from defining operations, Dureau of Milles hot permitted to publish separate figures.

2 Small quantity included under "Miscellaneous."

3 In 1936 pure tin tubing required 1,476 tons and tin-lined tubing 7 tons; in 1937, 1,286 and 10 tons, respectively; not reported separately after 1937.

Tin is employed principally in the manufacture of tin plate. Normally this industry consumes approximately half the virgin tin used in the United States. Production of tin plate increased 56 percent in 1939 compared with 1938. This was attributed to the building up of inventories by can companies, a small increase in the total food pack, and the large increase (92 percent) in exports of tin plate.

According to the American Bureau of Metal Statistics, the use of virgin tin in various other products increased as follows in 1939: Solder, 29 percent; babbitt, 34 percent; and bronze, 32 percent;

collapsible tubes and foil decreased 2 percent.

FOREIGN TRADE 4

The principal items in the foreign trade of the United States in tin are imports of pig tin, which supply virtually all the domestic tin requirements, and exports of tin plate. Of minor importance are the import and export trade in tin-plate scrap; exports of tin-plate circles, strips, cobbles, etc.; and exports of waste—waste tin plate. There is also an appreciable export of miscellaneous tin manufactures, tin-plated hollow ware, and tin compounds. Virtually all the trivial domestic output of tin ore is exported, and a small quantity of ore is imported annually.

Metallic tin imported for consumption in 1939 increased 41 percent over 1938 but was 20 percent below the all-time record established

⁴ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

in 1937. Eighty percent of the total imports came from Asia, 19 percent from Europe, and 1 percent elsewhere. Receipts from Asia increased only 31 percent in 1939, whereas shipments from Europe more than doubled owing to much larger purchases from the United Kingdom. Imports of tin concentrates although small were the largest since 1923. They came largely from Bolivia and were consigned chiefly to the plants experimenting with tin smelting.

Foreign trade of the United States in tin and tin concentrates, 1935-39

Year	Tin ((metal)	Tin cond (tin c	centrates ontent)	Exports of tin (metal) ¹ (long tons)
· ·	Long tons	Value	Long tons	Value	
1935	64, 258 76, 029 88, 115 49, 699 70, 102	\$69, 815, 287 75, 450, 941 104, 284, 762 44, 860, 324 70, 590, 764	178 179 151 (2) 500	\$106, 078 94, 738 132, 810 298 418, 004	2, 292 386 313 205 1, 997

¹ Imported as pigs, bars, etc., and exported as such.

Tin 1 imported for consumption in the United States, 1938-39, by countries

	19	938	1939		
Country	Long tons	Value	Long tons	Value	
rgentina Lustralia Jelgian Congo		\$437, 762 126, 914 77, 376	251 250 100	\$256, 516 256, 498 123, 220	
Belgium Bolivia	395 25	394, 518 22, 355	1, 320	1, 429, 471	
British Malaya	11	32, 952, 813 8, 908	46,785	47, 139, 136 2, 358	
China Cuba Fermany	1	1,807,756 481 17,109	3, 259	3, 015, 954	
long Kong	1, 204	1, 034, 384	1, 062 25	999, 133 24, 87	
Vetherland India Vetherlands Canama (Canal Zone)	3, 096 2, 216	2, 716, 274 2, 062, 990	5, 316 1, 008 (2)	5, 442, 528 1, 018, 181 91	
ortugalweden weden United Kingdom		15 3, 200, 669	10, 698	27, 227 10, 855, 574	
	49,699	44, 860, 324	70, 102	70, 590, 76	

 $^{^1}$ Bars, pigs, blocks, grain, granulated, or scrap, and alloys, chief value tin, n. s. p. f. 2 Less than 1 ton.

Foreign trade in tin plate, taggers tin, and terneplate in various forms, 1935–39, in long tons

Year	Tin-plate so		Tin-plate circles, strips, cob-	Waste— waste tin	Tin plate, and ter	
	Imports	Exports	bles, etc., exports	plate, exports	Imports	Exports
1935	9, 185 9, 873 12, 916 10, 444 12, 633	34, 928 14, 375 14, 126 12, 495 10, 204	(1) (1) 13, 062 4, 467 6, 552	1 24, 525 1 44, 621 26, 259 7, 254 9, 132	187 233 246 109 99	134, 499 238, 880 360, 683 161, 576 311, 016

¹ Tin-plate circles, strips, cobbles, e tc., included in waste—waste tin plate.

² Less than 1 ton.

Foreign trade in miscellaneous tin manufactures and tin compounds, 1935-39

Year	Miscellar manuf		Tin compounds (pounds)		
	Imports 1	Exports 2	Imports	Exports	
1935. 1936. 1937. 1938. 1939.	\$71, 421 86, 962 50, 545 19, 453 20, 106	\$776, 855 1, 295, 484 2, 532, 747 2, 064, 515 1, 098, 140	5, 959 1, 715 865 5	128, 632 344, 578 218, 006 172, 467 204, 362	

 $^{^1}$ Includes tin manufactures, n. s. p. f.; tin foil; tin powder, flitters, and metallics. 2 Includes tin dross and tin-bearing scrap material other than tin-plate scrap.

Exports of tin plate, etc., increased 92 percent in 1939, regaining much of the loss sustained in 1938. Shipments to virtually all markets participated in the general improvement. Japan was a notable exception, having received only 287 tons in 1939 compared with 12,799 tons in 1938 and 42,689 in 1937. The export movement was exceptionally heavy in the last 4 months of the year after the outbreak of war in Europe.

Tin plate, terneplate (including long ternes), and taggers tin exported from the United States, 1938-39, by principal countries and customs districts

Country and customs district	19	938	1	939
Country and customs district	Long tons	Value	Long tons	Value
COUNTRY	4 494	AFF6 909	9, 838	41 170 000
Argentina	4, 434 1, 005	\$556, 383 111, 145	9, 538	\$1, 150, 280
Belgium Brazil	11, 743	1, 429, 917	39, 300	974, 065 4, 178, 659
British Malaya	3, 175	389, 012	10. 827	1, 061, 607
Canada.	16, 298	1, 996, 210	33, 283	3, 769, 152
Chile	2, 915	335, 211	8, 172	848, 527
China.	4, 466	589, 723	12, 520	1, 305, 364
Colombia	2, 332	296, 381	5, 544	620, 279
Cuba	8, 075	1, 014, 551	10, 516	1, 172, 546
Egypt	2, 429	249, 686	8, 179	871, 062
Hong Kong	2, 654	268, 949	5, 403	520, 453
India, British	5, 372	595, 999	1,648	167, 548
Indochina, French	1, 306	138, 718	7, 396	735, 036
Japan	12, 799	1, 649, 174	287	29, 126
Mexico	8, 646	1, 049, 305	16, 213	1, 854, 404
Netherland India	4, 192	452, 890	10, 498	1, 056, 749
Netherlands	12, 093	1, 487, 499	32, 784	3, 511, 715
Norway	2, 499	265, 487	6, 714	651, 750
Peru	3, 099	351, 811	2,775	279, 664
Philippine Islands	8,940	991, 154	16, 298	1, 685, 486
Portugal Portugal	853	87, 747	6, 256	658, 545
Spain	7, 154	736, 343	2,725	281, 327
Sweden	3,871	400, 781	13, 069	1, 269, 567
Syria	2, 433	257, 337	3, 769	361, 02
Turkey	6, 949	736, 020	3, 289	342, 575
Union of South Africa	4,668	515, 199	12, 563	1, 307, 478
U. S. S. R.	5, 659	775, 304		
Uruguay	4, 567	562, 579	6, 610	752, 093
Other countries 1	6, 950	787, 500	15, 422	1, 616, 750
CUSTOMS DISTRICT	161, 576	19, 078, 015	311, 016	33, 032, 832
Buffalo	1, 582	185, 389	9, 653	1, 100, 024
Chicago	3, 181	370, 041	7, 173	721, 511
Dakota	6, 481	867, 323	6, 817	799, 893
Maryland	72, 827	8, 461, 736	130, 690	13, 402, 067
Michigan	4,984	564, 271	9, 960	1, 098, 984
Mobile	102	10, 481	2, 526	264, 558
New Orleans	244	27, 540	8, 180	866, 947
New York	67, 688	8, 072, 602	117, 669	12, 793, 82
Philadelphia	2, 938	331, 334	10, 830	1, 133, 08
Other districts 1	1, 549	187, 298	7, 518	851, 946
	161, 576	19, 078, 015	311, 016	33, 032, 832
		1	1	i

¹ Includes all exports not exceeding \$250,000.

PRICES

The average price of Straits tin for prompt delivery in New York in 1939 was 19 percent above that in 1938 but 7 percent below the At the beginning of 1939 the quotation was 46.40 cents a pound, having dropped 0.25 cent over the New Year holidays. The weakness in the London market was evidenced by the gradual decline in the New York price to 45.00 cents on February 15, which proved to be the low for the year. Thereafter, improvement in domestic demand, particularly from the tin-plate trade, was largely responsible for a rise in price to 49.25 cents about the first of May. From May through August minor fluctuations paralleled the trend in the London market and changes in the dollar exchange value of sterling. After the outbreak of war between Germany and the United Kingdom and France on September 1, domestic consumers became apprehensive of a possible shortage and quickly absorbed available spot supplies. As a result, the New York market broke away from parity with London and rose abruptly to 75.00 cents on September 13, the high for 1939. To meet the increased demand for tin and to allay fears of a real shortage the International Tin Committee removed virtually all restrictions on production. This action promptly affected quotations for future deliveries, and by the close of the year the price of spot tin had declined to 49.00 cents.

In London monthly average prices for standard tin, spot delivery, in 1939 ranged from £213.91 per long ton in February to £248.97 in December; the average for August was £229.87. On September 1 the London Metal Exchange was closed temporarily because of the war emergency, but on September 6 quotations were resumed at no appreciable change from August levels. On September 18 the Ministry of Supply for the United Kingdom fixed the maximum price of tin at £230, London and Singapore, but London Metal Exchange quotations continued below this level until October 9, when the fixed price was adopted. On October 16 the Ministry of Supply announced that British firms could sell tin abroad above the maximum price of £230; however, this level was maintained as the official exchange quotation through December 8. Following the removal of all Government restrictions on tin prices on December 11, quotations rose abruptly to £272 but gradually settled to £247.75 at the close of the year.

Tin price data, 1925-29 (average) and 1935-39

	1925–29 (average)	1935	1936	1937	1938	1939
Average prices:						
New York: 1			l	!		
Straits tincents per pound_	56.64	50.39	46. 42	54. 24	42. 26	50. 20
99.75-percent tin (English refined)do	(2)	50.07	46. 29	54.06	42.07	3 47.84
99-percent tindo	ŠŚ. 50	49, 28	45.72	53, 01	40.84	4 46, 35
London: 5					20.02	
Standard tin£ per long ton	254.6	225.7	204.6	242.3	189.6	226. 3
Docents per pound.	55, 17	49.39	45, 40	53. 48	41. 39	44, 81
Premium allowed over standard:			1 -00	00. 10	22.00	11.01
Straits£ per long ton.	5.1	4.4	2.6	3.0	4.3	(2)
Bankado	6. 9	5. 3	1.7	0.0		(2) (2) (2)
Englishdo	7	. 5	4	. 4	1.3	(2)
Price indexes (1925-29 average=100):				• •	1.0	(-)
Straits tin (New York)	100	89	82	96	75	89
Copper (New York)	100	59	65	90	70	75
		54	63	80	63	68
Nonferrous metals 5	100	69	72	91	74	79
All commodities 6	100	81	82	88	80	79
THE COMMINGUISMS	100	01	. 62	- 00	- 00	18

American Metal Market.
 Data not available.
 10-month average.
 9-month average.
 Metal Bulletin, London, as compiled by International Tin Research and Development Council.
 Based on price indexes of United States Department of Labor.

Monthly price of Straits tin for prompt delivery in New York, 1937-39, in cents per pound 1

3.541-	1937				1938		1939		
Month	High	Low	Average	High	Low	Average	High	Low	Average
January February March April May June July August September October November December	51. 50 55. 65 66. 62½ 63. 50 57. 12½ 57. 25 60. 25 60. 37½ 47. 62½ 44. 75 66. 62½	49. 80 49. 90 54. 10 55. 00 54. 62½ 54. 62½ 57. 50 58. 25 55. 62½ 47. 62½ 41. 00 41. 00	55. 84 59. 31 59. 40 58. 62	42, 87½ 42, 62½ 42, 62½ 42, 00 39, 90 38, 25 43, 90 44, 25 43, 90 46, 70 46, 75	40.00 40.50 38.00 36.60 35.00 37.50 42.60 42.80 42.65 43.50 45.85	41. 52 41. 27 41. 15 38. 34 36. 84 40. 35 43. 37 43. 26 45. 22 46. 23 46. 18	46. 80 46. 373/2 46. 70 49. 25 49. 25 49. 10 48. 75 49. 50 75. 00 56. 00 52. 25	45. 15 45. 00 45. 75 46. 10 48. 70 48. 25 48. 40 48. 121/2 50. 00 55. 00 50. 00 49. 00	46. 38 45. 62 46. 21 47. 20 49. 02 48. 85 48. 52 48. 76 63. 50 55. 25 52. 24 50. 64

¹ Metal Statistics, 1940, pp. 409 and 411.

STOCKS

Total stocks of virgin tin on hand in the United States at the end of 1939, including metal afloat, increased 38 percent over 1938. Stocks in licensed warehouses were reduced considerably by the sharp demand for spot metal following the outbreak of war in Europe, but tin afloat to the United States and stocks at landings registered substantial gains. Total visible supplies rose 72 percent and consumers' stocks 21 percent during the year. Total stocks on hand at the end of the year, including metal afloat, were equivalent to only a 6.5-month supply at the average rate of consumption in 1939.

World visible supply, exclusive of consumers' stocks, decreased 3 percent in 1939, as the accompanying table shows. These data do not include stocks of metal accumulated by various countries as war reserves.

Stocks of virgin pig tin in the United States December 31, 1935-39, in long tons

	1935	1936	1937	1938	1939
Location of stocks: Afloat to United States ¹ At landings in New York ¹ In licensed warehouses in New York ¹	7, 650	10, 857	7, 678	4, 150	12, 663
	2, 192	4, 990	4, 106	1, 837	2, 415
	120	105	2, 279	3, 320	887
Total visible supply ¹ Consumers' stocks ²	9, 962	15, 952	14, 063	9, 307	15, 965
	7, 786	10, 238	3 17, 678	17, 843	4 21, 600
Total stocks on hand	17, 748	26, 190	31, 741	27, 150	37, 565

As reported by Commodity Exchange, Inc.
 As reported to the Bureau of Mines; does not include tin in process or secondary pig tin.
 Revised figures.

Visible stocks of tin in the world and in the United States at end of each month, 1925-29 (average) and 1935-39, in long tons 1

Month	1925 (a ve	5–29 rage)	19	35	19	36	19	37	19	38	193	39
	World ¹	U.S.	Worldi	u.s.	World	U.S.	World1	U.S.	World ¹	u.s.	World ¹	u.s
January February March April May June July August September October November December December September December December September December 8, 912 19, 620 18, 312 17, 765 19, 085 18, 250 18, 164 18, 339 18, 317 18, 356 19, 058 20, 557	3,027 2,803	23, 757 22, 908 21, 001 20, 076 17, 543 18, 174 17, 855 16, 168 17, 411	2, 581 3, 571 4, 531 4, 295 4, 930 5, 467 3, 227 2, 681 2, 849 1, 389 1, 472 2, 312	19, 291 21, 448 19, 004 21, 147 18, 583 18, 027 19, 229 18, 403 20, 726 25, 333	2, 985 3, 525 3, 968 2, 713 2, 941 3, 054 2, 151 3, 095 2, 860 3, 315 3, 030 5, 095	26, 341 27, 526 27, 168 27, 320 27, 073 28, 938 29, 371 26, 099 24, 858 26, 176	5, 478 4, 956 5, 731 4, 741 5, 144 4, 810 6, 193 5, 850 3, 538 3, 280 5, 285 6, 385		4, 866 5, 116 4, 458 4, 447 3, 679 4, 247 4, 071 5, 232 4, 573 4, 500 5, 060 5, 157	40, 035 37, 788 37, 224 33, 715 30, 039 29, 615 26, 338 31, 168 38, 206	5, 480 5, 800 3, 383 4, 383 5, 331 3, 613 3, 413 3, 530 3, 283	
Average_	18, 744	2, 573	19, 217	3, 275	20, 641	3, 228	27, 449	5, 116	36, 149	4, 617	34, 962	4, 13

¹ Metal Statistics, 1940, pp. 401 and 403. In this table figures for world stocks 1935–39 include carry-over in the Straits Settlements (on lighters and warrants) and carry-over at principal European smelters.

WORLD ASPECTS OF TIN INDUSTRY

International Tin Control Scheme.—During the first quarter of 1939 countries signatory to the production-control scheme were operating under quotas representing 35 percent of standard tonnages. An additional 10 percent was alloted for contributions to the Buffer Pool Scheme described in the Tin chapter in Minerals Yearbook, At the end of March allotments for the Buffer Pool were terminated. Production quotas for the second quarter were established at 40 percent. On June 14, quotas for the third quarter were fixed at 45 percent, but owing to the sharp increase in demand occasioned by the war the quotas were increased retroactively to 60 percent on September 1, to 80 percent on September 12, to 100 percent on September 18, and to 120 percent on October 11.

Despite the availability of mine stocks previously accumulated in some countries, producers were unable to step up exports fast enough to meet the greatly enlarged permissible quotas. In the third quarter of the year permissible exports for the seven major signatory countries totaled 62,391 long tons, whereas actual exports were only 40,274 tons, leaving an underexport for the 3 months of 22,117 tons. situation was partly rectified in the fourth quarter, when production schedules overtook export quotas, permitting an overexport of 12,640 tons. For the entire year there was an underexport of 7,456 tons. Nigeria, Netherland India, and Thailand (Siam) more than met their export allotments, but Malaya, French Indochina, Bolivia, and the Belgian Congo fell behind. With a permissible total of 34,944 tons, Bolivia exported 27,215 tons of tin.

Quotas for the final quarter of 1939 originally had been fixed at 60 percent on September 1, raised to 70 percent on October 11, and advanced to 100 percent on November 1. On this date it was agreed that the quota for the first quarter of 1940 should be not less than 60 percent. On December 1 the quota was established at 100 per-

cent but on December 28 it was changed to 120 percent.

The initial stock of 15,000 tons for the Buffer Pool Scheme was completed in March 1939. This stock was to be used to stabilize the price of tin between £200 and £230 per long ton. As the price of tin in London did not go below £208.75, presumably there was no reason for market support from the Pool organization; however, in February the spread between quotations for "spot" and "3-month" tin began to widen, and there was agitation for action by the Buffer Pool. May it was announced that the Pool was lending tin to the London Metal Exchange to keep the backwardation in check, and in June the Pool actually began selling as the price for spot tin reached £230. August accumulated sales of the Pool were estimated at more than 3.000 tons. During most of the last 4 months of the year the London price of tin was subject to Government control, and apparently the activity of the Pool was greatly curtailed. On October 16 it was announced that owing to the temporary shortage of tin the Buffer Pool had arranged to sell a small daily quota (25 tons) on the London Metal Exchange.

E. Baliol Scott,⁵ editor of the Mining Journal of London, has com-

mented on the International Tin Control Scheme as follows:

As a price-stabilizing factor international control of tin was as unsuccessful as ever. Owing to the war, it is difficult to say what the range of prices actually was, and on a superficial view it will doubtless be said that the war and not the Control should be blamed for prices reported to have run up in the United States to 70 cents per pound, or say £390 a ton for Straits. But if the situation be examined more closely, it will be realized that this rush to buy tin, after the outbreak of war, was due principally to the United States shortage of supply caused by the belief that the Buffer Pool would keep prices at, or below, £230 per ton for standard. As usual, the I. T. C. delayed the increase of quota too long.

The International Tin Research and Development Council, which consists of delegates appointed by the governments of the principal tin-producing countries, reorganized its activities in 1939. Formerly research was financed at widely dispersed institutions especially equipped to handle special problems. This arrangement did not meet the growing needs for research, and a program of centralization was adopted. In 1939 permanent headquarters were built near London, which contain administrative, laboratory, and library facilities. A research organization also was established at the Battelle Memorial Institute to study general problems and problems peculiar to the tinconsuming industry in the United States. The statistical office of the Council remains at The Hague, Netherlands.

World mine production.—World mine output of tin in 1939 is estimated at 181,000 tons, an increase of 13 percent over 1938 but 13 percent below the record established in 1937. Production in the countries participating in the International Tin Control Scheme in 1939 was 17 percent higher than in 1938, whereas that elsewhere was 4 percent lower. The output of the unrestricted producers comprised 16 percent of the total in 1939 compared with 19 percent in 1938, 15 percent in 1937, and 11 percent from 1925 to 1929. The Malay States continued to be the largest producer and contributed 30 percent of the 1939 total. Netherland India ranked second with 17 percent, Bolivia third with 15 percent, Thailand (Siam) fourth with

⁵ Scott, E. Baliol, Tin: Eng. and Min. Jour., vol. 141, No. 2, February 1940, p. 47.

9 percent, and Nigeria fifth with 6 percent. All these countries increased production substantially in 1939. China, which ranked fifth in 1938, produced 10 percent less tin in 1939. There were no outstanding new producers in 1939.

World mine production of tin (content of ore), 1925-29 (average) and 1935-39, by countries, in long tons

[Compiled by R. B. Miller]

Country	1925-29 (average)	1935	1936	1937	1938	1939
Restricted production:						
Belgian Congo	967	5, 301	6, 301	8,084	8, 820	9, 663
Bolivia 1	37, 169	25, 007	24, 052	25, 128	25, 484	27, 211
Indochina	691	1, 309	1, 381	1,577	1, 599	1, 470
Malay States:	302	2,000	2,002	2,011	2,000	2, 200
Federated 1	54, 606	40, 780	64, 680	75, 117	41, 206	52, 232
Unfederated	2, 206	1,542	1,979	2,075	2,041	2, 470
Straits Settlements	25	52	58	72	114	212
Netherland India	33, 266	20, 184	30, 728	39, 133	27, 299	1 31, 281
Nigeria	8, 319	6, 299	9, 648	10, 782	8, 977	1 10, 855
Portugal	(2)	750	858	(²)	(²)	(2)
Thailand (Siam)	8, 204	9, 876	12, 633	15. 786	14, 704	¹ 16, 991
United Kingdom	(2)	2,050	2, 099	(2)	(2)	(2)
Total signatory countries.	145, 453	113, 150	154, 417	177, 754	130, 244	152, 385
I that signatury countries	140, 400	110, 100	104, 417	177,707	100, 211	102, 000
Unrestricted production:						
Argentina	32	700	940	1, 423	1. 886	(3)
Australia	2, 830	3, 130	3, 027	3, 256	3, 329	3, 435
Burma	2, 228	4, 102	4, 546	4, 636	4, 412	(3)
Cameroun, French	2, 223	217	217	231	242	(3)
China 1	7, 085	9, 035	11, 082	12, 871	11, 605	10, 422
Germany	98	26	50	4 100	300	(3)
Italy	00		36	131	271	229
Japan	625	2, 197	2, 382	2, 175	2, 186	4 1, 700
Mexico.	2	621	368	373	249	273
Morocco, French	4	40	25	14	27	
Peru			97	173	103	(3) (3)
Portugal	625	(5)	(5)	1, 095	1,037	`í, 490
Portugal Portuguese East Africa	5	` 7	`´ 15	6	4	(3)
Photosia:	- 1			- 1	-	``
Northern		5	5	5	. 3	
Southern	15	7	47	139	267	450
Somaliland, Italian						4 40
South-West Africa	149	164	162	169	164	53
Spain	145	300	104	127	110	(3)
Swaziland	138	127	128	108	122	114
Tanganyika	22	145	207	243	241	222
Uganda	98	397	409	361	399	340
Union of South Africa	1, 174	622	634	537	558	482
United Kingdom	2, 658	(5)	(5)	1, 987	1, 999	1, 890
United States	24	45	101	168	95	34
Total nonsignatory countries	17, 957	21, 887	24, 582	30, 328	29, 609	28, 600
Grand total	163,000	135, 000	179, 000	208, 100	159, 900	181,000

Exports.
 Estimated
 See entry under "Unrestricted production."
 Estimate included in total.
 See entry under "Restricted production."

World smelter production.—As considerable tin enters world trade in the form of ore, geographical data on world smelter output differ materially from those on mine output. For example, virtually all ore from Bolivia and Nigeria is smelted in Europe. An appreciable part of the tin ore from Netherland India normally is smelted in the Netherlands, and the product of Siam and Indochina is smelted in British Malaya. The only commercial tin-ore smelter in the Western Hem-

isphere is in Argentina, and its output has increased somewhat in

recent years.

The European War has altered the flow of tin ores to some extent. The smelter at Arnhem, Netherlands, was partly shut down in September, and the ore from Netherland India, formerly smelted at this plant, has been diverted to smelters in British Malaya. Some Bolivian ore formerly was smelted in Germany, but the Allied blockade has stopped this flow. The greater part of the Bolivian output now moves to the United Kingdom, although small tonnages come to the United States, where two new tin-smelting ventures were announced late in Smelting facilities in the Belgian Congo are to be increased to treat local ores that formerly were shipped to Belgium.

World smelter production of tin, 1925-29 (average) and 1935-39, by countries. in long tons

Country	1925–29 (average)	1935	1936	1937	1938	1939
Argentina Australia Belgian Congo Belgium British Malaya British Malaya China Germany Italy Japan Netherland India Norway Portugal Thalland (Siam) United Kingdom Land Congo	720 88, 855 47, 080 3, 444 	591 2, 837 1, 588 4, 000 60, 479 9, 700 2, 042 241 2, 036 11, 221 15, 600 454 1 (°) 29, 100	591 2, 717 1, 955 5, 100 84, 591 10, 400 2, 293 286 1, 841 12, 854 20, 900 233 	734 2, 907 2, 313 4, 900 95, 372 11, 100 2, 671 75 1, 850 13, 757 26, 600 241 (9) 33, 800	1, 093 3, 229 2, 283 6, 800 63, 746 11, 200 271 1, 900 7, 207 25, 561 39 36, 200	(1) (2) (2) (3) (4) (5) (81, 536 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

Data not yet available.
 Estimated.

World consumption.—Apparent world consumption of tin in 1939 increased 10 percent over 1938, according to a preliminary estimate of the International Tin Research and Development Council. figures released by this authority indicate that apparent consumption in the United States advanced 39 percent, whereas that in the rest of the world declined 5 percent. A substantial increase is noted for the United Kingdom, and estimates for 11 months indicate that Japan's apparent consumption was well-maintained in 1939. Data for Germany, France, and Italy are available only for part of the year. is assumed that France and possibly Italy had full access to available tin supplies after the Allied blockade was established in September. the decline in apparent consumption of tin outside the United States must be due largely to curtailment of supplies to Germany and the countries over which Germany now has military control. Figures for 7 months indicate a substantial decline in consumption in the U.S.S.R. during 1939.

Exports plus difference between carry-over at end

and beginning of year. 4 Exports.

⁵ Includes production of some secondary tin.

<sup>Includes production of some statemated production in 1929.
A verage for 1926-27.
A verage for 1926-28.
Less than 1 ton.</sup>

Apparent tin consumption of the world, 1926-29 (average) and 1935-39, by countries, in long tons 1

Country	1926-29 (average)	1935	1936	1937	1938	1939
Belgium Canada Czechoslovakia. France Germany ² India, British Italy Japan. Netherlands Poland Spain. Sweden. Switzerland United Kingdom U. S. S. R. United States. Other countries	1, 513 10, 260 12, 444 2, 704 4, 268 4, 506 980 589 1, 565 1, 373 1, 742 21, 988 3, 791	1, 250 2, 086 1, 277 8, 210 11, 083 2, 541 6, 641 6, 221 1, 232 907 1, 713 1, 900 1, 001 21, 427 7, 311 62, 470 11, 930	1, 336 2, 164 1, 684 9, 748 9, 164 2, 293 3, 928 6, 403 1, 284 1, 322 1, 109 21, 860 9, 664 73, 039 12, 549	1, 520 2, 625 1, 731 9, 175 12, 368 2, 595 3, 601 8, 190 1, 470 1, 272 942 1, 1889 1, 100 25, 971 25, 125 86, 663 12, 863	1, 618 2, 355 1, 550 9, 049 13, 774 2, 494 4, 618 10, 963 1, 400 1, 819 1, 082 2, 883 1, 259 18, 290 16, 174 50, 724 11, 438	(3) (3) (3) (3) (3) (3) (3) (4) (5) (5) (7) (7) (7) (8) (7) (8) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

As estimated by the Tin Research and Development Council.
 Includes Austria; the Saar is also included after Feb. 17, 1935.
 Included in total.

4 Denmark and Norway only; others included in total.

REVIEW BY COUNTRIES

The outbreak of hostilities in Europe during the latter part of 1939 resulted in the establishment of many additional barriers to the international flow of minerals. Various prohibitions, restrictions, and control measures were adopted by belligerents and neutrals. The reader is referred to the chapter entitled "World Production of Minerals and Economic Aspects of International Mineral Policies" for details of this aspect of the tin industry in 1939.

Argentina.—Argentine exports of tin concentrates decreased from 988 metric tons during the first 6 months of 1938 to 534 tons for the same period of 1939. Further reduction is expected, as more of the ore will be smelted locally to meet domestic requirements because of the difficulties of obtaining a supply from Europe. Tin smelted in Argentina contains a high percentage of lead.

Belgian Congo.—Increased smelter production of tin in the Belgian Congo is indicated by the announcement that Geomines is expanding its smelting facilities to treat custom tin ores previously shipped to the smelter at Hoboken, Belgium. Transportation difficulties result-

ing from the war prompted this action.

Bolivia.—Bolivia again failed to produce its quota of tin allowable under the International Tin Control Scheme. Permissible exports for 1939 totaled 34,944 long tons, whereas actual exports were only 27,211 tons. The failure of Bolivia to produce its assigned quotas in recent years has been ascribed chiefly to the shortage of labor resulting from casualties in the Chaco War.

In an excellent summary of the Bolivian tin industry, C. W. Wright, foreign mineral specialist of the Bureau of Mines, makes the following statement on Bolivia's capacity for production:

Bolivia's tin production is mostly from narrow-vein deposits, and the production costs are in general considerably higher than those in the large-scale dredging operations of the principal tin-producing countries.

⁶ Wright, C. W., The Tin-mining Industry and Future Problems: Bureau of Mines Foreign Minerals Quarterly, vol. 2, No. 4, October 1939, 67 pp.

Were it not for the International Tin Cartel which controls and allocates production of the world's tin producers and in which Bolivia has a quota amounting to 23.6 percent, it is doubtful if the Bolivian producers would be able to compete on an open market. Present production capacity is estimated at 3,000 tons of tin a month, but with a somewhat higher price for tin, and mining laws that will encourage mine developments as well as expenditures on plant improvements, it is believed that the monthly output of tin could be increased to 4,000 tons, Under the influence of high prices that prevailed during the Great War, and again from 1926 to 1929, small mines were brought into production.

Various unsuccessful attempts have been made in the past to smelt tin ores in Bolivia. Failures have been ascribed to the refractory nature of the Bolivian ores, the lack of cheap fuel within the country, or the lack of cheap power. The electrochemical plant (Lamy process) started by Mauricio Bony at Oruro, mentioned in previous editions of Minerals Yearbook, apparently has not been successful. has been reported 7 that after the expenditure of \$200,000 work was suspended owing to financial difficulties, and the plant never was completed. It is also reported that the Bony plant will be taken over by G. B. Cobb, of Toronto, who proposes to install six electric furnaces, each capable of producing 10 tons of tin daily. The total cost of the plant is estimated at \$350,000, the capital to be supplied by North American interests. According to Cobb, smelting costs will not exceed \$40 per ton of tin. Electric power probably will be obtained from the plants of the Bolivian Power Co., Ltd., on the Miguilla River 70 miles north of Oruro. As the present price for power is 2 cents per kilowatt-hour, the possibility of electrosmelting tin economically has been questioned.8

A process for distilling tin from low-grade sulfide concentrates, recovering the tin as oxide and reducing the oxide by electrolytic methods, is being studied by the Hochschild group. Late in 1939 it was announced that two companies in the United States were contemplating the smelting of Bolivian tin ores, as was done on a large

scale during the World War of 1914-18.

Political events continue to play an important role in the Bolivian tin industry. On June 7, 1939, the administration of President German Busch issued a decree establishing more rigid regulation of the tin industry and imposing 100-percent control over the foreign-exchange realizations on tin exports. The decree was greatly ameliorated by the government that succeeded President Busch upon his

death in August.

Dr. Friedrich Ahlfeld, of the Bolivian Bureau of Mines and Petroleum, divides the Bolivian tin deposits into three groups—those associated with plutonic rocks, designated as the normal type; those associated with porphyritic rocks; and alluvial deposits. Deposits of the normal type are the source of 38.4 percent of the total production and constitute 41.1 percent of the reserves, whereas those of the porphyry types represent 58.7 and 57.2 percent, respectively. The alluvial deposits are relatively unimportant, contributing only 2.9 percent of the productive capacity and 1.7 percent of the reserves. The monthly productive capacity of the larger mines is 2,925 metric tons of tin and that of the smaller mines 275 tons, a total of 3,200 tons. The total visible and probable reserve is 520,000 tons of tin, of which the larger mines produce 489,450 tons. Allowing for a 40-percent

Wright, C. W., Work cited in footnote 6. Wright, C. W., Work cited in footnote 6.

loss in mining and milling and assuming a yearly production of

25,000 tons, reserves will last about 12 years.9

British Malaya.—The standard quota for Malaya under the Tin Control Scheme was 77,335 long tons of tin in 1939. Including Buffer Stock, Malaya's permissible quota for 1939 was 58,968 tons, but only 55,963 tons were exported, leaving an underexport of about 3,000 tons. Nevertheless, exports rose about 30 percent in 1939 in contrast to the 44-percent decline in 1938. Employment conditions were better toward the end of the year as a result of increased activity, which began in September. The number of tin miners employed increased from 46,639 at the end of August to 72,954 at the end of December.

The sudden demand for tin, starting in September, was met largely by increasing the dredge output. In August, dredges operating in Perak (Kinta Valley) and Selangor recovered only 11,652 piculs of ore (29 percent of the total), but in September, output in the region increased to 110,139 piculs (47 percent of the total) as a result of bringing 22 idle dredges into operation.

Ores imported in 1939 for smelting in Straits smelters included 22,961 tons from Siam, 10,775 from Netherland India, 4,863 from Burma, 2,166 from French Indochina, and 659 from other countries,

a total of 41,424 tons.

The report 10 of Sir Lewis Fermor, who was engaged to study the various problems of the mining industry of Malaya, was published in 1939. It is decidedly critical of the Government land policies that have been restricting the development of mining in recent years. Fermor states that far too much blame has been thrown on the mining industry for damage done to agriculture and estimates that soil losses resulting from the clean weeding on rubber plantations greatly exceed those resulting from mining. Moreover, the total area set aside for mining at the end of September 1938 was only 206,433 acres in contrast to 1,623,045 acres for rubber and 4,861,440 acres for Reserved Forests. He estimates that, as a result of the most generous mining policy, further discoveries of mining land in the Federated Malay States will not exceed 200,000 acres, so that the maximum probable withdrawal from agricultural lands, forest and other reserves, and State lands for mining purposes probably will not exceed 2 percent. He therefore recommends a more sympathetic attitude toward mining in considering problems relating to land use, drainage, and irrigation.

The Fermor report also recommends encouragement of private prospecting and Government surveys so that the total mineral reserves of Malaya may be determined. No new estimate of tin reserves is given. The estimate of 1,000,000 tons of tin in existing leaseholds, made in 1937 by H. G. Harris, Senior Warden of Mines, is used as a basis for discussion, to which Fermor adds a "guess" of 500,000 tons for reserves in unleased lands. The report recommends that Malaya should participate in a Fourth International Tin Control Scheme in 1942 but that every effort should be made to obtain an increase in quota commensurate with Malaya's capacity for production. As the tin industry is depleting a valuable national asset, Fermor urges that a portion of the revenues accruing annually from

[•] Ahlfeld, Friedrich, Systematics and Ore Reserves of the Bolivian Tin Deposits: Abstract of report presented at 8th Am. Sci. Cong., May 1940, Washington, D. C., 2 pp. 10 Fermor, Lewis Leigh, Report upon the Mining Industry of Malaya: Federated Malay States Government Press, Kuala Lumpur, 1940, 240 pp.

the export tax on tin be set aside to build up an amortization fund of \$200,000,000, the interest on which will be a source of revenue to the Government after the tin-ore deposits are exhausted.

The report apparently was not received enthusiastically by some Government officials, and recent press dispatches suggest that no official action on Fermor's recommendations will be taken until the

war is over.

Burma.—A substantial part of the Burmese tin output comes from tin-tungsten ores. The largest producer is the Mawchi mine, whence tin-tungsten concentrates are shipped to Rainham, England, for treatment by Murex, Ltd.; 5,078 tons of concentrates were produced during 11 months of 1939. During 1939 Mawchi Mines, Ltd., renewed its lease to December 3, 1970. Estimated ore reserves at the Mawchi mine, as of April 30, 1938, were 643,380 tons of 3.24-percent tin and tungsten. The Burmese Government proposes increasing the scale of royalties payable on tin produced in Burma and has submitted the matter to producers for consideration.

Lenya Mining Co. recently launched a new electric dredge for recovering alluvial tin in the mangrove swamps at Yomone, Lower

Burma.11

China.—The output of tin in Yunnan is about 10,000 tons a year, with little likelihood of a substantial increase for many years, according to S. B. Archdeacon, technical adviser to the Yunnan Provincial Government.¹² Modern methods have been introduced at the mines to some extent, but primitive methods still predominate. The National Resources Commission of the Chinese National Government plans modernization and increased production at the less-advanced mines operated by the Government near Kochiu. About 100 mining

companies at Kochiu employ 80,000 to 100,000 miners. ¹³ Government control has affected operations at Hong Kong refineries. Restrictions on exports from Yunnan during the last 6 months of 1939 appear to have brought about the closing of the Fung Tang and Sing Lee refineries, as the Chee Hing, Tin Hing, and Wing Hong plants were reported to be the only ones operating early in 1940. ¹⁴ Some tin ore from Yunnan is refined in Indochina, but the quantity appears to have declined during the latter part of 1939. Shipments of tin from Kochiu through Indochina for treatment at Hong Kong likewise decreased during that period. Official trade statistics of Burma do not indicate the movement of tin ore over the Burma-Yunnan Highway in 1939.

The tin deposits of Kiangsi, Kwangsi, and Kwangtung Provinces, which in the past contributed about 13 percent of the total annual

output of China, are now under Japanese control.

The United States Export-Import Bank has extended a \$20,000,000 credit to the Chinese Government to be repaid from proceeds of sales of tin and other materials imported into this country. The transaction does not contemplate the acquisition of tin by the United States Government.

France.—France consumes approximately 9,000 long tons of tin annually, virtually all of which comes from foreign sources. Esti-

Mining Journal (London), vol. 208, No. 5456, March 16, 1940, p. 167.
 Metal Bulletin (London), No. 2395, June 6, 1939, p. 5.
 Mining Journal (London), vol. 205, No. 5411, May 6, 1939, p. 455.
 American Metal Market, vol. 57, No. 29, February 10, 1940, p. 3.

mated apparent consumption during the first 7 months of 1939 was

about 4,600 tons.

Germany.—Statistical details of Germany's tin situation in 1939 are incomplete. Imports of metallic tin for the first 6 months of 1939 were 4,693 long tons compared with 5,816 tons for the same period Imports of tin ore for the respective periods were 2,592 tons and 3,513 tons. Apparent consumption (including figures for Austria) for the first 7 months of 1939 was estimated by the International Tin Research and Development Council at 6,649 tons compared with

13,774 tons for the entire year 1938.

Germany's conquest of Czechoslovakia and Poland has increased her dependence on foreign tin, as these two countries in recent years have consumed more than 3,000 tons annually. According to press reports Germany is making every effort to develop production from low-grade deposits within her borders. The Allied blockade greatly reduced receipts of ore and metal from overseas. Wartime control of metal prices was established on October 14, 1939, and the price of pig tin was fixed at 300 marks per hundred kilos.

Italy.—Italy's tin requirements are supplied largely by imports. Apparent consumption totaled 4,618 long tons in 1938 and 2,650 tons in 7 months of 1939. The small domestic output declined in 1939.

Japan.—Japan's consumption of tin, which has increased rapidly in recent years, totaled 9,685 long tons in 11 months of 1939 compared with 10,963 tons in 1938, showing the effect of recent large imports. The Metal Bulletin (London) of February 2, 1940, questions whether these receipts truly reflect Japan's consumption, stating:

In view of the fact that Japanese consumption is not believed to be equal to these large shipments, it is thought that some of the tin may have been reex-

ported to Europe.

Netherland India.—The permissible export quota of Netherland India for 1939 was 29,779 long tons, including contributions to the Buffer Stock. Actual exports, however, exceeded this figure and amounted to 31,281 tons. Netherland India's share in the Buffer Stock was 2,930 tons, of which the Billiton Co. was allotted 1,196 tons. Banka's production in 1939 totaled 17,544 tons of fine tin and

that of Billiton and Singkep, 12,690 tons.

Interest in the proposed merger of the Banka and Billiton operations was revived in 1939. Early in 1937 a bill designed to effect the merger was voted down by the People's Council of Netherland India, the chief objections being the proposed distribution of profits. the financial basis of the merger, and the suggested establishment of the controlling office in the Netherlands. After restudy of the situation, the Colonial Minister in 1939 drafted a new proposal modified The Government share to meet in part the Council's objections. in the new enterprise is to be increased from 90 to 91 percent and will be increased further to 92 percent if the average price of tin during the next 6 consecutive years falls below 1,360 guilders per long ton (32.4 cents per pound at the average 1939 exchange rate of 53.335 cents). In some quarters it was predicted that the new proposal would be approved in 1940, but with the turn of events in Europe in May 1940 official action probably will be postponed indefinitely.

Modernization of operations at Banka continued in 1939. November it was announced 15 that as a result of further mechanization it will be possible to reduce the number of Chinese employees and substitute Javanese workers with resultant savings in labor costs. Heretofore the Javanese have not proved to be satisfactory industrial laborers because of their inclination to work only for short periods and then lay off to spend their earnings. The Chinese are steady workers, but it has been necessary to import them at considerable expense and under long-term contracts necessitating payment during periods of idleness. Usually 1,000 Chinese are recruited annually in China, but the number is expected to be reduced to 600 in 1940.

The large new Karimata dredge, which was dredging unsuccessfully for ancient lost treasure in the North Sea in 1938, finally arrived at

Billiton the latter part of 1939.

Shortly after the outbreak of war in Europe it was reported 16 that the smelters of the Banka organization in Netherland India were capable of treating all Banka ores; however, Banka ores were diverted to smelters in the Straits Settlements after activities at the Arnhem works in the Netherlands were curtailed sharply in the last quarter Receipts of Banka, Billiton, and Singkep ores in the Straits Settlements in 1939 totaled 10,775 tons, virtually all of which arrived after September 1.

Netherlands.—Smelter production of tin declined sharply in 1939 owing to the drastic reduction in operations at the Arnhem smelter soon after the war started. This resulted from the ban on exports of tin promulgated by the Government in September, and the sharp curtailment of imports of ore from Netherland India and Bolivia caused by the Allied blockade. The Arnhem smelter is situated close

to the German border.

Nigeria.—In 1939 Nigeria exceeded her permissible export quota of 8,304 long tons by 2,551 tons. Shipments were greatly accelerated during the last quarter of the year, and the overexport doubtless was due to orders given by the Nigerian Government in the middle of September to ship all available stocks at the earliest possible opportunity.17 The principal producer is the Amalgamated Tin Mines of Nigeria, Ltd., a 1939 consolidation of Associated Tin Mines of Nigeria, Ltd., and the London Nigerian Tin Mines, Ltd. This company produced 6,121 tons of concentrates in 1939. A possible shortage of gasoline as a result of the war constitutes a threat to tin mining in Nigeria because motor vehicles are used for transportation between mines and railheads. The question of establishing reserve supplies was under consideration in the latter part of the year. In 1938 Nigeria imported 191,000 barrels of gasoline, of which 127,000 barrels were from the Netherland West Indies and 61,000 barrels from the United States.

United Kingdom.—Most of the tin produced in Great Britain is smelted from ores imported chiefly from Bolivia and Nigeria; 36,200 long tons were produced in 1938. In addition to ores, various forms of metallic tin and its alloys are imported, largely from Netherlands and British Malaya. Approximately 2,000 tons of tin are obtained

annually from mines and old dumps in Cornwall.

Metal Bulletin (London), June 16, 1939, p. 5.
 Metal Bulletin (London), October 13, 1939, p. 5.
 Mining Journal (London), vol. 207, No. 5440, November 25, 1939, p. 1000.

Complete statistical data for 1939 are not available, as publication of official figures on foreign trade was discontinued at the outbreak of the war in September. However, the International Tin Research and Development Council estimates apparent consumption at a new peak of 27,279 tons in 1939, an increase of 49 percent over 1938 and 5 percent over the previous record established in 1937. This large gain resulted from the sharp rise in demand for tin plate, production of which advanced 47 percent during the first 8 months of 1939 compared with a similar period in 1938, and the increase in munitions manufacture. In the latter part of the year available supplies of spot tin reached a very low point, causing suspension of all export licenses in October.

The United Kingdom ranks second among the world producers of tin plate, most of which it usually exports. Some tin plate is used in the domestic canning industry, but the domestic pack does not provide enough canned goods to meet home requirements, particularly for fruits. The United States is the principal supplier of canned fruits and shipped about 6,500,000 cases to the United Kingdom in 1939. The first continuous hot-strip mill in the United Kingdom began operations in 1939 at the tin-plate plant of Messrs. Richard Thomas & Co. at Ebbw Vale, South Wales. The plant can produce

about 600,000 base boxes of tin plate a week.

Early in March 1939 five large tin-plate manufacturers in Carmarthenshire undertook to work out a program for dealing with excess capacity as a move toward stabilization of the industry. Under one proposal £1,000,000 was to be subscribed for the purchase of obsolete plants; however, many works in South Wales that had been idle as long as 20 years were reopening to meet the demand for tin plate for military purposes and canned goods for storage. Tin-plate production quotas were suspended on June 14 to permit the industry to take care of this extra internal demand. Export quotas remained in force.

During the first 8 months of 1939 the United Kingdom imported 32,071 tons of tin ore and concentrate, of which 21,544 tons came from Bolivia and 4,260 tons from Nigeria. Imports of blocks, ingots, and bars during this period totaled 3,260 tons, of which 1,100 tons were reexported. Exports of tin during the 8 months ended August 31, 1939, totaled 13,345 tons, of which 7,084 tons went to the United States, 589 tons to Canada, and 850 tons to the U. S. S. R. In the same period of 1938 exports were 7,584 tons, of which only 382 tons went to the United States, 476 tons to Canada, and 2,945 tons to the U. S. S. R.

On October 12 it was announced that a trade agreement had been signed with the U. S. S. R. to exchange Soviet timber for British rubber and tin. The tin is to be the product of Cornish mines. The United States proposed to barter its surplus agricultural products for tin and rubber, but the final agreement involved only an exchange of United States cotton and British rubber.

U. S. S. R.—Until recent years production of tin in the U. S. S. R. was negligible. Although reliable statistics have not been available, it has been reported that production began in 1935 and has increased steadily. A recent press dispatch states that about 5,000 tons were produced in 1937 and some 7,000 tons in 1938. Reserves are reported

¹⁸ Mining Journal (London), vol. 207, No. 5434, October 14, 1939, p. 901.

to have been doubled in 1938 as a result of developments in eastern Siberia, the Far East, Ukraine, Caucasus, Urals, Kazachstan, and Kirgisia. These discoveries are said to make it possible for the U. S. S. R. to achieve self-sufficiency in tin. Heretofore it was generally believed that tin deposits in the U. S. S. R. were relatively low grade and refractory from a metallurgical standpoint. New processes are reported to have been worked out for treating the complex ores. The same dispatch described present and proposed tin operations in the U. S. S. R. 19

In October consummation of an agreement to exchange Russian timber for British tin and rubber was announced.

¹⁹ American Metal Market, vol. 46, No. 245, December 23, 1939, p. 3.

ARSENIC AND BISMUTH

By Herbert A. Franke 1

SUMMARY OUTLINE

	Page	•	Page
Arsenic	703	Bismuth	711
Summary.	703	Summary	
Salient statistics	704	Production	712
Production		Consumption	712
Consumption	705	Prices	713
Prices.	707	Foreign trade	713
Foreign trade	708	World production and consumption	714
Technologic developments	709		
World production and consumption			

ARSENIC

Production of white arsenic in the United States in 1939 was the highest on record, exceeding that in 1938 by 34 percent and that in 1924 (the previous peak) by 11 percent. Total domestic consumption was the second highest on record (being surpassed only in 1937), but the sale and use of arsenic from domestic sources were greater than ever before. Net imports comprised only 34 percent of the total consumption, as the European war stopped the increasing flow of foreign material. Exports of domestic white arsenic and calcium and lead arsenate, destined chiefly to South and Central America, also broke previous records. The selling price reported by domestic producers of arsenic was the lowest in history, although at New York the official quotations for white arsenic remained at 3 cents per pound in 1939, the same as in 1938. Federal and State Governments fighting grasshopper, Mormon-cricket, and white-fringed beetle invasions and the fruit-spraying industry consumed the largest proportion of white Farmers in the South used less calcium arsenate in dusting cotton fields than in recent years.

World production and consumption of arsenic also increased in 1939 over that in 1938.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Salient statistics for arsenic in the United States, 1925-29 (average) and 1936-39

	1925-29 (average)	1936	1937	1938	1939
Domestic sales: 1 Crude. short tons. Refined do. Imports for consumption do. Apparent consumption do.	2, 364 10, 035 10, 769 (3)	8, 755 6, 826 17, 586 32, 167	10, 903 6, 733 19, 256 34, 692	9, 428 3, 732 14, 238 25, 098	17, 070 5, 369 14, 674 33, 913
Average value for domestic sales: Crude		1. 52 2. 58	1.33 1.86	1.40 1.73	1.00 1.42
Imports for consumption: pounds Metallic arsenic pounds Sulfdie (orpiment and realgar) do Arsenic acid (H ₁ AsO ₄) do Calcium arsenate do Lead arsenate do Sheep dip do	575, 506 14, 692 1, 452 4 2, 133 135, 929	81, 671 355, 463 149 817, 200 224, 097		16, 868 241, 602 55 400, 000	39, 197 656, 498 210 1, 627, 193 11, 557 306, 900
Paris green and London purple do Sodium arsenate do Exports: Calcium arsenate do Lead arsenate do	4, 402 82, 105 5 2, 159, 168 5 1, 328, 828	33, 207 4, 694 6, 294, 563 827, 560	108, 825 13, 482 5, 383, 365 1, 042, 880	103, 556 11, 881 5, 242, 882 1, 021, 345	45, 823 7, 482 6, 731, 103 1, 712, 583

¹ Includes sales by domestic producers for export.

PRODUCTION

Increased smelter activity in the United States in 1939 effected a

34-percent gain in production of white arsenic (As₂O₃).

The American Smelting & Refining Co. shipped flue, baghouse, and Cottrell dusts, speiss, and other smelter-refinery byproducts containing arsenic for refinement to its Tacoma (Wash.), Murray (Salt Lake City, Utah), and El Paso (Tex.) plants. The Anaconda Copper Mining Co. produced byproduct white arsenic in the treatment of copper ores at its Anaconda (Mont.) smelter, and the United States Smelting, Refining & Mining Co. produced arsenic at Midvale, Utah. In recent years these smelters and refineries have recovered more arsenic per ton of ore treated and more finely divided arsenic The increase in recovery is attributed to improvethan ever before. ments in plant flue-dust recovery systems and to the higher price received for gold, which permitted the mining of lower-grade gold ore high in arsenious oxide. The finer grain of the product is the result of fine-ore grinding and flotation concentration.

Crude and refined white arsenic produced and sold by producers in the United States, 1935–39

	Crude				Refined		Total		
Year	Produc- tion	Sa	les	Produc-	Sales		Produc-	Sales	
	(short tons)	Short tons	Value 1	(short tons) Short tons	Value 1	tion (short tons)	Short tons	Value 1	
1935 1936 1937 1938 1939	7, 583 9, 937 9, 936 12, 619 17, 499	6, 985 8, 755 10, 903 9, 428 17, 070	\$204, 681 266, 113 290, 733 264, 004 343, 000	6, 654 5, 442 6, 878 4, 066 4, 842	5, 685 6, 826 6, 733 3, 732 5, 369	\$292, 777 352, 713 250, 822 129, 018 152, 500	14, 237 15, 379 16, 814 16, 685 22, 341	12, 670 15, 581 17, 636 13, 160 22, 439	\$497, 458 618, 826 541, 555 393, 022 495, 500

¹ Partly estimated.

Adjusted for exports by domestic producers for export.
 Adjusted for exports by domestic producers.
 Complete data not available.
 10,467 pounds in 1925 and 200 pounds in 1929; no imports from 1926 to 1928, inclusive.
 Average for 1928-29; exports of calcium arsenate and lead arsenate not separately recorded by Bureau of Foreign and Domestic Commerce prior to 1928.

Production, as reported by the Bureau of Mines, is measured after the low-grade flue dusts containing 20 to 30 percent As_2O_3 are subjected to a roasting or preliminary refining process. This crude arsenic usually contains 97 to 98 percent As_2O_3 . Most of the crude arsenic and a small quantity of better-grade arsenic obtained in certain parts of smelter flue systems are marketed without further refining. Some crude arsenic is refined further. Bureau of Mines statistics on refined arsenic include only products containing 99 percent or more As_2O_3 . The arsenic reported as a refined product is not duplicated in the crude arsenic statistics.

CONSUMPTION

Sales of domestic white arsenic advanced 71 percent in 1939, but at a sacrifice in price. Arsenic imported for consumption, however, increased only 3 percent. Apparent consumption (sales plus imports minus approximate exports) of white arsenic in the United States in 1939 totaled 33,913 short tons compared with 25,098 in 1938 and 34,692 in 1937. Net imports represented only 34 percent of consumption in 1939 compared with 48 percent in 1938. However, in addition to white arsenic, other arsenic products were imported for consumption; details are shown in the table of salient statistics at the

beginning of this chapter.

Of the domestic arsenic sold, 76 percent was crude and only 24 percent refined. Since 1934 sales of crude arsenic have gained at the expense of the refined product. This condition is attributed to demands by consumers for the lowest-price usable product and to keener competition among producers, who have improved their recovery processes to the point where 97 to 98 percent instead of 93 to 95 percent As₂O₃ is the first crude product. Consumers have become as particular concerning the physical as the chemical specifications, and those outside of the glass industry usually demand a screened product of 200-mesh or finer. The distribution in sales of domestic arsenic in 1939 by uses was approximately as follows: Insecticides, 66 percent; weed killer, 14; glass manufacture, 3; wood preservative, 2; and miscellaneous (including arsenical drugs), 1. Exports comprised 14 percent.

The sale of imported white arsenic by uses was canvassed for the first time in 1939, and reports received from importers accounting for about 47 percent of the imports show that 88 percent of that sold was employed in insecticides, 6 percent in glass, 3 percent in weed killer, 2 percent in wood preservative, and 1 percent in gas-refining, pharmaceutical, and other miscellaneous uses. Minor quantities of foreign arsenic were used in disinfectants and polishing and cleaning soaps; chemical intermediates; colors and printing inks; paints; and steel and other metal manufactures. A third of the arsenic imported contained 99 percent and the remainder 97 to 99.5 percent As₂O₃. Most of the arsenic was consumed by manufacturers on the Atlantic and Pacific seaboards and in Hawaii and a smaller quantity in the Southern

States.

No definite data are available on the domestic consumption of arsenical insecticides in 1939. Calcium arsenate consumption is believed to have been below normal (which is about 30,000,000 pounds), because the boll-weevil infestation was severe only in the eastern half of the Southern States and intensive leaf-worm control

was necessary only in eastern Texas. Consumption of lead arsenate probably remained about the same as in recent years (about 50,000,000 pounds). Substitution of the rotenone-bearing root poisons and sodium fluoaluminate slightly affected the use of arsenical insecticides, especially those employed on truck crops and to a limited extent on fruit trees. The severe winter of 1939–40 is generally believed to have killed many insects; in consequence, less calcium arsenate should be used in the cotton fields in 1940. Some fruit-growing sections of the United States did not experience a severe winter, and consumption

of lead arsenate probably will be about normal.

Federal and State agencies in 1939 extended their war against the grasshopper and Mormon-cricket invasions west of the Mississippi River and the white-fringed beetle menace in the South. The Department of Agriculture bought grasshopper-bait ingredients and shipped them to selected centers, where they were mixed and distributed through State and local agencies to farmers to be spread over their fields. Each ton (2,000 pounds) of grasshopper bait included bran, sawdust, and 10 gallons of liquid sodium arsenite containing 32 percent As₂O₃ or 4 pounds of white arsenic per gallon. Arsenicals used in 1939 by Federal and State agencies totaled 1,536,000 gallons of liquid sodium arsenite for grasshoppers and 84,000 gallons for white-fringed beetles, 338,000 pounds of dry sodium arsenite for Mormon crickets, and 420,000 pounds of calcium arsenate, also for white-fringed beetles. The congressional appropriation for control of incipient or emergency outbreaks of insect pests or plant diseases was reduced from approximately \$5,000,000 for the fiscal year 1940 to \$2,500,000 for 1941, as an unobligated balance and some insecticidal material remained from the previous year. Although the grasshopper attacks are not expected to be as serious in 1940 as they were in 1939, the Mormon crickets and white-fringed beetles are expected to offer a greater menace than It is estimated that in 1940 Federal and State agencies will use 1,170,000 gallons of liquid sodium arsenite in grasshopper bait, 420,000 pounds of dry sodium arsenite in destroying Mormon crickets, and 800,000 pounds of calcium arsenate and 100,000 gallons of liquid sodium arsenite in fighting white-fringed beetles.

Free arsenical drugs distributed by State and Territorial health departments to private physicians and clinics for the control of venereal diseases increased from 2,799,110 doses in the fiscal year 1938 to 4,677,757 in 1939, a gain of 67 percent. Arsenical drugs administered to clinic patients increased 71 percent—from 1,854,735 to 3,166,342 doses.² Manufacturers and distributors sold 12,390,837 doses of arsenical drugs in the United States during the calendar year

1939.

Until recently the Army and Navy Munitions Board classed arsenic as an essential material, and it still keeps arsenic under surveillance. Although arsenic is consumed chiefly in insecticides and weed killers, it is used also in the manufacture of "chilled shot," toxic gases, and various alloys. Owing to the present interest in national defense, it seems appropriate to give the following table on production and consumption of white arsenic since 1910.

² U. S. Public Health Service, Progress in Venereal Disease Control during Fiscal Year 1939: Reprint 121 from Venereal Disease Information, vol. 20, December 1939, pp. 376-378.

Production, sales, imports, exports, and apparent consumption of white arsenic in the United States, 1910-39, in short tons

Year	Produc- tion 1	Sales	Imports	Exports 2	Apparent consumption
1910	1, 497 3, 132 3, 141 2, 513 4, 670 5, 498 6, 151 6, 323 6, 029 11, 502 6, 158 9, 350 14, 902 20, 177 12, 119 14, 163 16, 605 17, 057 17, 137 12, 704 10, 650 13, 096 14, 237 15, 379 16, 814 16, 685 22, 341	(1) (2) (3) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	1, 348 1, 921 3, 103 1, 519 1, 594 1, 400 1, 671 1, 178 1, 847 4, 389 1, 081 10, 152 8, 877 9, 316 7, 703 12, 517 11, 153 13, 157 10, 471 7, 791 6, 882 10, 583 14, 110 15, 075 17, 586 19, 256 14, 238	(3) (3) (3) (4) (4) (2) (2) (2) (2) (3) (4) (4) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	2, 845 5, 053 6, 244 4, 032 6, 284 6, 898 7, 057 7, 329 8, 170 10, 418 15, 242 6, 455 11, 108 24, 423 23, 330 21, 633 19, 508 24, 077 22, 920 27, 703 27, 896 20, 188 17, 385 20, 138 17, 385 20, 380 27, 033 26, 945 32, 167 34, 692 25, 098 33, 913

¹ For years prior to 1910 see Mineral Resources of the United States, 1919, pt. 1, p. 19.

² As reported by producers. ³ Data not available.

PRICES

Although domestic quotations for white arsenic at New York remained at 3 cents per pound, packed in barrels, in carlots, throughout 1939, producers actually received much less for their product than heretofore. Sales increased 71 percent in quantity but only 26 percent in value. The average selling value was 1.00 cent per pound for crude and 1.42 cents for refined arsenic, a reduction of 29 and 18 percent, respectively, from 1938. The lower price is attributed to more severe competition existing in a limited market adequately supplied with both domestic and foreign arsenic and to increased deliveries of arsenic in bulk instead of in costly barreled containers. The following table shows the range in prices of various arsenical compounds.

Range of quotations on arsenic and its compounds at New York (or delivered in East), 1938–39, in cents per pound ¹

	1938	1939
Arsenic metal, lump, cases White arsenic (As ₂ O ₂), domestic, kegs, carlots Red arsenic (As ₂ O ₂), imported, cases Calcium arsenate, wholesale, drums, carlots Lead arsenate, wholesale, drums, carlots Sodium arsenate, wholesale, drums Sodium arsenite, dry, works, drums Sodium arsenite, dry, works, drums [gray]	40.00-41.00 3.00 15.75-16.50 6.75-7.25 11.00-13.00 8.00 9.00-13.00 7.50- 9.50	40. 00-60. 00 3. 00 15. 75-20. 00 6. 75- 7. 25 10. 00-11. 50 8. 00 9. 00-11. 00 7. 50- 9. 50

As reported by Oil, Paint, and Drug Reporter.

The minimum quotations given in the table often are dealers' prices and in some instances were in effect in 1939 only during the first half of the year. Delivered prices for most arsenicals vary in different sections of the United States. The price for arsenic metal rose from 40 to 60 cents (nominal) in September, after which prices ceased to be quoted. Part of the last half of the year no prices were quoted for red arsenic. Both commodities are imported from Europe (no domestic output) and doubtless became scarce as the war affected shipping conditions. In March 1940, a price war between domestic insecticide manufacturers developed, and minimum prices dropped from 11 to 8.5 cents per pound for lead arsenate and from 6.75 to 6 cents for calcium arsenate.

London quotations for white arsenic soared after the outbreak of European hostilities, rising from £12 per long ton to £22 in October 1939 and to £31 in December for Cornish brands (99 percent As_2O_3). Prices for Mexican (99 percent As_2O_3) and Swedish (99.5 percent As_2O_3) grades of arsenic increased from £10 5s-£10 15s. to £18-£20 in October and to £29-£30 in December.

FOREIGN TRADE

Imports of white arsenic in 1939 increased 3 percent over those in 1938 but were 24 per cent less than those received during the peak year 1937. Of the 1939 total, Mexico supplied 55, Sweden 18, France 15, Japan 7, Canada 3, and Belgium 2 percent. Imports from Mexico and Sweden declined 4 and 7 percent, respectively, whereas those from France increased 87 percent. After war was declared in Europe, the increasing flow of arsenic from France stopped, and shipments from Sweden became scarce.

White arsenic imported for consumption in the United States, 1935-39, by countries

Country	1935		1936		1937		1938		1939	
	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Australia Belgium Canada France Germany apan Mexico Sweden	56 129 1,068 2,354 10 1,058 9,274 1,126	\$2, 334 4, 450 65, 540 65, 609 906 42, 866 525, 140 30, 524	690 1,000 378 44 23 887 8,174 6,390	\$30, 500 30, 433 25, 908 1, 419 2, 213 41, 957 426, 590 182, 204	708 599 828 7 798 11,500 4,816	\$20, 373 48, 896 18, 838 663 37, 380 556, 097 138, 617	565 689 1, 176 112 482 8, 422 2, 792	\$16, 100 29, 854 30, 843 5, 656 17, 199 415, 180 93, 197	323 471 2, 200 (1) 963 8, 124 2, 593	\$10, 098 24, 760 50, 224 30, 079 377, 568 69, 304

¹ Less than 1 ton.

Arsenical compounds other than white arsenic appear in the table of salient statistics. Imports of arsenic metal more than doubled those of 1938 but were much less than those of 1937 and the average for 1925–29. Germany supplied 96 percent and France (a new exporter) 4 percent of the metal. Increases in imports also were recorded for the following products: Arsenic sulfide, 172; arsenic acid, 282; calcium arsenate, 307; lead arsenate, 100; and sheep dip, 82 percent. Imports of paris green and London purple decreased 56 percent and of sodium arsenate 37 percent. The 656,498 pounds

of arsenic sulfide imported included 336,217 pounds from Belgium, 166,277 from Germany, and 146,386 from France. Of the larger imports of calcium arsenate (1,627,193 pounds), 1,214,050 pounds came from Japan, 260,043 from Belgium, and 153,100 from France.

Domestic producers indicate that about 3,200 tons of white arsenic were sold for export in 1939 compared with 2,300 tons in 1938. Official export data thereon are not available. Exports of calcium and lead arsenate increased 35 percent in 1939 and were larger than ever before. This increase is attributed to larger purchases by South and Central American countries whose European sources of supply were restricted by the war. Of the 6,731,103 pounds of calcium arsenate exported (28 percent more than in 1938), 4,867,580 went to Peru, 653,106 to Mexico, 444,109 to Canada, 286,860 to Brazil, 279,894 to Argentina, 62,936 to Salvador, and 40,000 to Colombia. Of the 1,712,583 pounds of lead arsenate exported (68 percent more than in 1938), 567,845 went to Brazil, 235,050 to Argentina, 200,912 to Chile, 184,352 to the Union of South Africa, 81,710 to New Zealand, 72,305 to Cuba, 60,442 to Canada, 50,724 to Colombia, 47,932 to Australia, 47,549 to Mexico, and 46,725 to Switzerland.

TECHNOLOGIC DEVELOPMENTS

Adding 0.1 percent arsenic has brought about substantial improvements in the lead-tin type wiping solder used to connect joints of lead-sheathed telephone cables. The arsenic-bearing solder forms much less dross and has a finer and more uniform texture than ordinary lead-tin solder.3

The production of sodium arsenate from sodium arsenite by electrolysis has been found simple, safe, and economical under certain

conditions.4

A continuous process for manufacturing arsenic acid (H₃AsO₄) with arsenious oxide (As₂O₃) ⁵ reduces the consumption of nitric acid. A patent issued to two Swedish inventors 6 simplifies and cheapens the method of manufacturing calcium arsenate, which is usually produced by the reaction of arsenic acid with slacked lime in a suspension in water. In the process covered by the invention, calcium nitrate, the oxidizing agent, and calcium oxide are mixed and heated with arsenious oxide to produce calcium arsenate of any desired composition.

WORLD PRODUCTION AND CONSUMPTION

World output of marketable white arsenic in 1939 is estimated at 58,000 metric tons, a 5-percent increase over that estimated for 1938 (55,000 tons). The increase is attributed to intensified smelter activity, except in Mexico, where production dropped because of depressed mining conditions influenced by Government legislation. Accurate world-production data are not available, because some countries fail to record arsenic statistics and others report only sales

³ Schumacher, E. E., and Phipps, G. S., A Lead-tin-arsenic Wiping Solder: Metals and Alloys, vol. 11, No. 3, March 1940, pp. 75-76.

⁴ Lowenstein, Leo, Electrolytic Preparation of Sodium Arsenate: Paper presented at 76th meeting, Electrochem. Soc., Preprint 76-3, New York, September 11-13, 1939, pp. 29-33.

⁵ Scott, Garnett L. (to General Chemical Co.), Arsenic Acid: U. S. Patent 2,165,944, July 11, 1939.

⁶ Lindblad, Arel R., and Palen, Anders G. P. (to Bolidens Gruvaktiebolag), Calcium Arsenate: U. S. Patent 2,156,595, May 2, 1939.

World production of white arsenic, 1935-39, by countries, in metric tons 1 [Compiled by R. B. Miller]

Country	1935	1936	1937	1938	1939
Australia: New South Wales	1, 161 1, 200 373 5, 887 5, 508 167	124 3, 526 2, 731 732 619 (3) 230 9, 750 2, 739 85	2, 087 3, 039 717 630 (7) 6, 501 2, 852 234 100	4, 063 2, 706 519 987 (7) (2) 2, 845 77 (8)	(P) 1, 438 3, 332 (P) 790 (P) (P) (P) (P) (P) (P) (P) (P) (P) (P)
Italy Japan Mexico Portugal Rumania Southern Rhodesia	3, 161 9, 950 60	2, 629 8, 527 150	10, 762 112	(7) 8,894 1 6 19	(3) 7,06: (3) (3)
Sweden (sales) 4 United Kingdom United States	6,350	8, 647 155 13, 952	(*) 97 15, 253	(*) 66 15, 136	(*) (*) 20, 26
	54, 900	55, 700	(3)	(2)	(2)

1 Arsenic is also believed to be produced in Czechoslovakia, Peru, Rumania, Turkey, and the U.S.S.R. Production figures are not available for these countries.

2 Data not available.

3 Data not available. Estimate included in total.

4 Arsenic content of ores mined is as follows: 1935, 24,418 tons; 1936, 23,312 tons; 1937, 20,954 tons; and 1938,

World consumption of arsenic is estimated to average 55,000 tons annually,7 of which the larger part is consumed by the insecticide industry. The continued extensive use of arsenic as an insecticide has become endangered by the substitution of certain organic compounds that are less toxic to man than arsenicals (particularly poisonous lead arsenate used on fruit). Consuming countries that import large quantities of arsenic and its compounds include the United Kingdom, Peru, Argentina, Italy, Algeria, Netherland India, the Union of South Africa, Uruguay, and British India. Belgium and Germany, outstanding exporters, import substantial quantities of arsenic-bearing ore. Sweden, Mexico, France, the United States, Japan, and Canada also export considerable white arsenic and arsenical compounds.

Belgium.—The Belgochimie, S. A., 36 rue Ravenstein, Bruxelles, Belgium, produced metallic arsenic in 1939, and the Metallo-Chemical Corporation, 117 Liberty Street, New York, N. Y., was agent for the product in the United States. In 1939 Belgium's imports of arsenic metal totaled 7.6 metric tons (all from Germany) and its exports 5.1 Of the 3,332 tons of white arsenic exported (2,706 in 1938), 1.365 went to the United Kingdom, 549 to the United States, 297 to Brazil, 296 to Argentina, and 253 to Germany.

Canada.—Canada produced 790 metric tons of arsenic (not otherwise specified) in 1939 (987 in 1938) and exported 411 tons (625 in 1938). White arsenic imports totaled 234 tons (91 in 1938). The United States received the 411 tons exported and shipped virtually

all of the arsenic imported.

France.—Imports of metallic arsenic during the first 7 months of 1939 totalled 5.2 tons and exports 7.3 tons. Exports of white arsenic during the period totaled 2,494 tons.

⁷ Roskill & Co., Ltd., O. W., World Economic Review of Insecticides and Allied Products: London, June 1939, p. 41.

Germany.—Of the 1,608 tons of white arsenic imported during the first 7 months of 1939, 1,295 came from Sweden and the rest from Belgium and France. Of the exports in the same period (1,337 tons), 188 tons went to Brazil, 186 to the Netherlands, 169 to Spain, 148 to Hungary, and 118 to Turkey. During the year the Government made available to farmers 5,000 tons of calcium arsenate to fight the potatobeetle menace in western Germany.

Italy.—The S. A. Stabilimenti di Rumianca of Turin, on behalf of the Italian War Ministry, completed a new white-arsenic plant in the spring of 1940. The new works, together with the smaller plant at Pieve Vergonte, will be able to supply all Italian arsenic requirements.

Arsenical pyrite from the Val d'Ossola is the raw material.

Mexico.—In 1939 Mexico produced 7,063 metric tons of white arsenic (8,894 in 1938) and exported 6,985 tons (8,854 in 1938). All

exports in 1939 were shipped to the United States.

Sweden.—The Bolidens Gruv A.—B. has established several arsenicsalt timber-impregnation plants in Sweden and has begun tests in various parts of the world to prove the advantages of arsenic over creosote in wood preservation.

United Kingdom.—In recent years Cornish tin mines have produced less than 200 tons of white arsenic annually, and it has been necessary to import most of the British requirements (chiefly from Sweden, Belgium, and Mexico). After war was declared, consumers found it difficult to obtain adequate supplies, and arsenic prices more than doubled.

BISMUTH

Consumption of bismuth in the United States is believed to have increased substantially in 1939. Lack of complete data on production, sales, exports, and stocks makes it impossible to determine domestic consumption of bismuth accurately. Ordinarily, output of byproduct bismuth exceeds consumption by the pharmaceutical and alloy industries, but in 1939 greater demand forced producers to withdraw metal from their ample stock piles. Although imports of bismuth gained 98 percent, receipts of bismuth compounds and salts declined 85 percent. After the outbreak of the European war in September 1939 publication of unofficial data on bismuth exports ceased. During the first 8 months of 1939, however, exports gained almost 40 percent over those in all of 1938. The New York and world price for the metal rose in March 1939 from \$1.05 to \$1.10 per pound and in October 1939 to \$1.25. Manufacturers of certain bismuth compounds and salts advanced their prices accordingly in October.

The general increase in smelter activity in 1939 brought about an increase in world production of bismuth. Demand for bismuth in Europe showed marked improvement during the last half of 1939, and world consumption is estimated to have risen about 30 percent. Part of the increased demand abroad probably can be ascribed to the stocking of metal for national defense and against possible further advances in price. The price increase in October is attributable to differences in the world monetary exchange, to the greater demand for bismuth, and to wartime shipping conditions which made some supplies unavailable. After European hostilities began, it is probable that German production, consumption, and exportation of bismuth were severely curtailed. The loss of export trade was advantageous

to English, French, and American salt makers, who acquired a large share of the world business.

PRODUCTION

As heretofore, there were three domestic producers of bismuth in 1939. The American Smelting & Refining Co. produced bismuth-lead alloy at its Selby (Calif.), Perth Amboy (N. J.), and Monterrey (Mexico) plants for refinement at Omaha, Nebr. The Kroll-Betterton process ⁸ employed in lead debismuthization uses calcium, magnesium, and sometimes antimony. The Anaconda Copper Mining Co. obtained bismuth from Montana copper and Utah lead ores. However, the final bismuth recovery was made by the International Smelting & Refining Co. at East Chicago, Ind., which refined Tooele lead-bismuth bullion by the Parkes and Sperry methods and recovered bismuth from the slimes by a process involving various patents. The United States Smelting, Refining & Mining Co. shipped a lead-bismuth bullion from Midvale to the United States Smelting Lead Refinery, Inc., at East Chicago, Ind., where slimes from the Betts electrolytic process were treated for their bismuth content. The Cerro de Pasco Copper Corporation also supplied a substantial part of domestic bismuth requirements in 1939, importing metal derived from copper-lead ore in Peru.

In March 1940 the Bunker Hill & Sullivan Mining & Concentrating Co. began operating a new \$500,000 plant for the production of bismuth and antimony, which was added to the lead smelter-refinery at Kellogg, Idaho. The installation was necessitated by impairment of the quality of lead produced by the former pyrometallurgical process, which failed to remove all the bismuth. By means of the new Lee-Muir process hydro-, pyro-, and electro-metallurgy are used to separate the silver, copper, antimony, and bismuth in the tetrahedrite ore from the Big Creek silver belt of the Coeur d'Alene district.

CONSUMPTION

Domestic consumption of bismuth is believed to have advanced in 1939 to approximately 500,000 pounds. Probably 90 percent of the metal was used by manufacturers of pharmaceutical and medicinal compounds, salts, and mixtures and the rest by the metallurgical industry.

The principal bismuth compounds employed by the pharmaceutical trade included bismuth subcarbonate, used in antiacid or stomach remedies and in preparing patients for X-ray examinations; bismuth subnitrate, used in antiacid compounds, dusting powder, and in treating venereal diseases; bismuth subgallate, used to soothe intestinal disorders; and bismuth subsalicylate, used in treating venereal diseases and intestinal troubles. Other compounds included bismuth citrate, nitrate, sulfide, trioxide, betanaphthol, etc. In 1939 a stable alkali metal bismuth saccharate solution was invented (U. S. patent 2,178,126, issued on October 31, 1939, to C. W. Sondern and G. O. Doak) for intramuscular injection in conjunction with the treatment of syphilis.

⁸ Betterton, Jesse O., and Lebedeff, Yurii E., Debismuthizing Lead with Alkaline Earth Metals, Including Magnesium, and with Antimony: Trans. Am. Inst. Min. and Met. Eng., vol. 121 (Metallurgy of Lead and Zine), 1936, pp. 205–225.

The outstanding metallurgical characteristic of pure bismuth metal is its property of expanding 3.32 percent in cooling from the liquid to the solid state. This property, together with its low melting point and the even lower melting point of the alloys of which it forms a part, constitutes the basis for important industrial uses.9 Lowmelting-point and nonshrinking bismuth alloys have numerous applications, and in 1939 the use of bismuth in the metal-products-manufacturing industry continued to advance slowly but steadily. boiler, sprinkler, and other safety plugs and devices, low-melting solders, dental models, and tempering baths for small tools and parts employed bismuth alloyed with lead, tin, cadmium, mercury, or antimony. An alloy containing 55.5 percent bismuth and 44.5 percent lead changes very little in volume and was used extensively for duplicating patterns, for making master patterns in foundries, and for proof-casting forging dies. Bismuth alloys were employed as thin-walled tube fillers for bending and forming work; as castings for use in making molds for plastics, rubber, seamless hollow objects, and die castings; as matrices for the accurate location and setting of parts of complex punches and dies for forming and cutting operations and for similar machine- and stamping-shop accessories; and as oil-, air-, and water-tight seals between dissimilar materials, such as glass and copper or brass. The Ekko process, developed by the United States Rubber Co. for producing dies or molds in which a photographic likeness can be transferred to iron by the electroforming method, is expected to provide a larger outlet for the bismuth-lead alloy "cerrobase." The use of bismuth in low-melting solders is expected to increase further as a result of experimental work.

PRICES

In March 1939 the New York quoted price for bismuth metal was increased from \$1.05 to \$1.10 per pound for ton lots, and in October 1939 the price was advanced further to \$1.25 per pound, according to Engineering and Mining Journal Metal and Mineral Markets. At the same time, London quotations per pound increased from 4s. 3d. to 4s. 6d. and then to 6s. 3d. for 5-hundredweight lots. According to the Oil, Paint, and Drug Reporter, the minimum price for bismuth subcarbonate increased from \$1.53 per pound at the beginning of 1939 to \$1.73 (fiber drums) at the end of the year, subnitrate from \$1.33 to \$1.48, and subgallate from \$1.58 to \$1.68, but the price for subsalicylate remained at \$2.35 until January 1940, when it advanced to \$2.50.

FOREIGN TRADE

Imports of bismuth metal in 1939 were the greatest since 1912 (182,840 pounds) and exceeded those of 1938 by 98 percent. The entire 182,832 pounds imported were from Peru. Imports of compounds, mixtures, and salts of bismuth declined 85 percent, indicating the effect of the war on Germany, normally the largest exporter to the United States. France shipped the largest quantity in 1939, supplying 250 pounds valued at \$107, but imports from Germany continued highest in value, totaling 28 pounds valued at \$406. Bismuth also is imported as lead-bismuth alloy and possibly in other

⁶ Bregman, Adolph, Bismuth for Fusible Alloys, Models, and Matrix Work: Iron Age, vol. 144, No. 3, July 20, 1989, pp. 40-42.

intermediate metallurgical products, statistical data for which are not

available.

Official export data on bismuth are not separately recorded, but until the outbreak of European hostilities in September the Oil, Paint, and Drug Reporter published shipments from Atlantic and Gulf ports. For the first 8 months of 1939 these shipments totaled about 314,100 pounds, an increase of almost 40 percent over those reported for all of 1938 (225,600 pounds). Bismuth exports probably set a new high record in 1939. Most of the bismuth exported is destined to British and French ports.

Bismuth and "compounds, mixtures, and salts of bismuth" imported for consumption in the United States, 1935-39

Yевг	Bisn	nuth	Compounds, mixtures, and salts of bismuth		
, - 	Pounds	Value	Pounds	Value	
1935	102, 051 113, 443 67, 225 92, 298 182, 832	\$78, 061 86, 722 54, 007 74, 583 154, 339	871 564 3, 145 2, 004 297	\$4, 798 4, 807 9, 117 3, 387 649	

WORLD PRODUCTION AND CONSUMPTION

Lack of data makes it difficult to estimate accurately world production and consumption of bismuth. As a result bismuth statistics are somewhat confused. Another factor to be considered in connection with production of bismuth metal is the intermittent operation of bismuth-refining plants. Bismuth residue or concentrates recovered in lead and copper smelters or as byproducts in other nonferrous-metal plants often are not refined the same year but are held until metal stocks become low. Thus, the official data on bismuth production that are available do not necessarily present the actual trend in output by years. Increased smelter output resulted in greater world production of byproduct bismuth in 1939—possibly in excess of 3,000,000 pounds. Of this production, the United States, Peru, Canada, and Mexico supplied almost 90 percent. The rest came from Bolivia, Spain, Argentina, Japan, Belgium, France, Germany, and other countries. Production of bismuth ore from scattered operations in China and elsewhere was handicapped by unfavorable shipping conditions caused by the wars.

European consumption of bismuth is estimated at 1,500,000 pounds in 1938 and 2,000,000 pounds in 1939 and world consumption at about 2,600,000 pounds (2,000,000 in 1938). Perhaps part of the gain in world demand in 1939 was due to stocking for national defense and against a possible increase in price. Substantial quantities of bismuth were withdrawn from producers' stocks in 1939; however, it is believed that with the increased output the large stocks that have accumulated were only slightly reduced. The industry wishes to maintain adequate stocks to prevent a "run-away" price market, such as occurred during the World War. The stabilization of bismuth prices in recent years is due largely to the World Bismuth Cartel and has resulted in a slow but steady increase in world consumption of bismuth, especially its alloys. A great advance in price not only

would decrease use of the metal but also would foster output from sources other than the present smelter byproduct production, which now is greater than consumption. Considerable metal doubtless could be obtained from ores valued chiefly for their bismuth content, such as those in Bolivia. However, it is believed that metal cannot be recovered from these ores at the present price level, which must be maintained if consumption is to advance.

North America.—In 1939 Mexico produced 360,859 pounds of bismuth (409,612 in 1938). In Canada the Consolidated Mining & Smelting Co. at Trail, British Columbia, produced 409,449 pounds of bismuth in 1939. The output of Canada in 1938 was only 9,516 pounds. Canadian imports in 1939 included 10,252 pounds of bismuth metal (only 297 in 1938), all of which came from the United

States.

South America.—In Peru the Cerro de Pasco Copper Corporation produced 886,320 pounds of refined bismuth (482,382 in 1938), 89,820 pounds of bismuth-lead bullion (containing 71,620 pounds of bismuth), and 79,180 pounds of eutectic alloy (containing 43,940 pounds of bismuth). Peru exported 848,182 pounds of refined bismuth in bars (454,657 in 1938) and 171,385 pounds of bismuth in lead (49,955 in 1938). The metal content of Bolivian bismuth concentrates exported in 1939 totaled 28,660 pounds (42,316 in 1938). Bismuth concentrates containing 40 to 48 percent bismuth were shipped from the Province of Cordoba, Argentina. Pegmatite dikes worked at São José de Brejaúba, Municipality of Ferros, Minas Geraes, Brazil, for their semiprecious stones (beryl and aquamarine) contained isolated bodies of metallic bismuth and bismuth carbonate. Bismuth occurs in the copper-ore deposits in the Pedra Branca region, Paraíba, and Rio Grande do Norte, Brazil.

Europe.—The British-French blockade caused a scarcity of bismuth in Germany, and early in 1940 the medical profession was asked to reduce prescriptions containing bismuth to a minimum. Germany has exported considerable quantities of bismuth compounds and salts; for the first 7 months of 1939 these exports totaled 126,103 pounds compared with 153,662 and 162,481 pounds for all of 1938 and 1937, respectively. The importation of salts into the United States from Germany dropped from 2,000 pounds in 1938 to 28 in 1939. The United Kingdom and France probably continued to be the world's largest importers of bismuth in 1939. Data are not available on British imports in 1939, but in 1937 they aggregated 703,847 pounds, of which 624,557 pounds were reported as from the United States and 75,506 from Canada. Shipments recorded as from the United States doubtless included bismuth metal of foreign origin (shipments en route, or from bonded warehouse, which originated in Peru and Mexico) as well as of domestic origin. The basis for British bismuth quotations was changed from sterling to the dollar in September owing to fluctuations in the monetary exchange. The metal is on the "no export except under license" list. French imports in the first 8 months of 1939 totaled 264,555 pounds (352,740 in all of In 1939 the Central Scientific Experimental Institute of Rare and Small Metals at Novosibirsk, U. S. S. R., began production of bismuth metal. This experimental plant will continue to recover metal from Zabaikal tungsten-molybdenum concentrates and from Adrasmansky copper-bismuth concentrates. The electrolytic zinc

plant at Ordzhonikidze also is producing bismuth, and recovery of bismuth is contemplated from the lead-zinc ores mined at Tetiukhe. Data are not available on the resumption of bismuth-ore production in Spain, once the principal European producer.

Africa, Asia, and Australia.—The Union of South Africa, Uganda, and other countries in Africa probably produced small quantities of

bismuth ore in 1939.

Native bismuth produced in the Tavoy district, Burma, totaled 224 pounds in 1935, 112 in 1936, 246 in 1937, and none in 1938. Bismuth ore originating in China and exported from Hong Kong totaled only 9,733 pounds in 1939 (51,454 in 1938) and went to Australia and the United Kingdom.

Queensland, Australia, produced concentrates containing 1,120 pounds of bismuth metal and 5,600 pounds of bismuth-tungsten ore in 1939. Operations were resumed at the wolframite-molybdenite-

bismuth mines, Bamford Hill.

MAGNESIUM

By HERBERT A. FRANKE AND M. E. TROUGHT

SUMMARY OUTLINE

	Page		Page
Summary	717	Prices	722
Salient statistics	718	Foreign trade	722
Production	718	Technologic developments	722
Consumption	719	World production	723

Production (sales) of primary magnesium in the United States in 1939 was more than double the previous peak established in 1938, owing to large increases in domestic and foreign demand for the metal. The aircraft industry was chiefly responsible for the sharp advance in domestic demand. It not only produced more planes in 1939 but also substituted magnesium products for other materials in many parts of airplanes. The automobile, portable and high-speed equipment, textile, and other industries also extended their use of magnesium. Total consumption of structural and nonstructural products of primary magnesium and magnesium-rich alloys, used in these industries, advanced 77 percent; the use of structural products alone gained 84 percent and the manufacture of castings 73 percent. Nonstructural fabrications consumed by the munitions, chemical, and electrical industries increased 26 percent in 1939 over those in 1938. Doubtless the quantity of magnesium employed as a component in aluminum and other alloys and as a scavenger and deoxidizer in the metallurgical industry also rose appreciably. Although official data are not available, it is believed that a substantial part of the sales of domestic magnesium were exports, chiefly to the United Kingdom. Demand for metal from domestic and foreign consumers was so great in 1939 that exports had to be restricted. The lack of data on exports and stocks makes it impossible to evaluate the actual increase in domestic consumption of magnesium in 1939 compared with previous years.

The Dow Chemical Co., sole domestic producer of magnesium, enlarged its production facilities at Midland, Mich., in 1939 and began construction of a new plant at Freeport, Tex., in March 1940. The new magnesium plant will more than double the company capacity and will give the United States facilities to produce about 25,000,000

pounds of metal annually.

The quoted nominal price of magnesium at New York was reduced from 30 cents per pound (prevailing since 1931) to 28 cents in March

1939 and 27 cents in August 1939.

As a result of the rapid increase in demand for military aircraft abroad, consumption of magnesium probably established new peaks in 1939 in other countries. World output of magnesium may have increased about 35 percent over that indicated for 1938. Germany continued to be the chief producer and consumer, using magnesium

alloys extensively in airplanes and automobiles and in place of heavier imported materials in other industries. The United Kingdom probably exceeded the United States in production and consumption of the

metal, and France and Japan advanced rapidly.

Some authorities believe that consumption of magnesium will continue to expand because of the abundance of magnesium raw materials, the metal's lightness and strength, the improvements being made in corrosive resistance and fabrication technique, and the recent reductions in prices. America has not progressed as far as Europe in the use of magnesium alloys as construction materials, owing largely to the availability of aluminum and other alloys, the lower resistance to corrosion of magnesium, and the greater difficulties in fabrication.

Salient statistics of the magnesium industry in the United States, 1937-39

	1937	1938	1939
Primary magnesium sold or used short tons. Quoted price per pound 1 cents. Imports pounds. World production (estimated) short tons.	2, 270	2, 410	5, 325
	30.0	30. 0	27. 0
	1, 321	60	76
	21, 900	26, 400	36, 200

¹ Lowest nominal price (New York) for primary metal ingot 99.8 percent pure, carload lots.

PRODUCTION

Production (sales) of primary magnesium in the United States in 1939 was the largest in history and totaled more than the combined output in 1937 and 1938; however, the 10,650,121 pounds sold or used in 1939 included some metal withdrawn from stocks.

Magnesium sold or used by producers and imported into the United States, 1935-39

Year	Sold or used by producers		Imports for consumption 1	
	Pounds	Value	Pounds	Value
1935	4, 241, 218 3, 903, 312 4, 539, 980 4, 819, 617 10, 650, 121	(2) (3) (2) (2) (2)	884 1, 126 1, 321 60 76	\$1, 292 1, 479 1, 727 188 49

¹ Includes alloys and scrap (magnesium content).
2 Bureau of Mines not at liberty to publish figures.

The Dow Chemical Co. enlarged its production facilities at Midland, Mich., in 1939 and to meet the tremendous demand for metal began construction of a \$5,000,000 plant at Freeport, Tex., in March 1940 for completion late in the summer of 1940. The Texas plant will more than double the present annual capacity of 12,000,000 pounds. Magnesium chloride for the electrolytic process to be used at the Freeport plant will be obtained from sea water instead of underground brines, as at Midland. No data are available on the method to be used for extracting the MgCl₂ from the sea water, but apparently the reduction process will be similar to the one now employed at Midland, which was described by Gann in 1930 and 1932. Minor changes

¹ Gann, John A., The Magnesium Industry: Ind. Eng. Chem., vol. 22, 1930, p. 694; Magnesium: Min. and Met., vol. 13, 1932, pp. 179-183.

since Gann described the process include the use of near-anhydrous MgCl₂ in the feed to 60,000-ampere cells.

Figure 1 shows trends in magnesium production and prices since

1915.

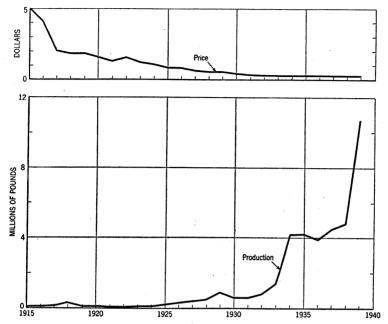


FIGURE 1.—Trends in quoted price and production of magnesium in the United States, 1915-39.

CONSUMPTION

As stated the large increase in demand for magnesium in the United States in 1939 is attributed chiefly to consumption by the aircraft industry. There was also a broader adoption of magnesium products in 1939 by certain nonaircraft industries, such as textiles, sewing machines, automobiles, conveying equipment, typewriters and other

business machines, and heavy machinery.

The huge advance in use of magnesium alloy in the aircraft industry indicates not only augmented aircraft production but also the use of magnesium for more parts than formerly. Both military and civil authorities have accepted magnesium alloys to a greater extent since the corrosion resistance of the alloys has been improved. Because of the lightness and strength of these alloys, their use in aircraft results in increased pay loads and improved performance.² As aircraft-production capacity is expected to exceed 2,000 planes monthly in 1940, consumption of magnesium should be larger than

² Winston, A. W., Magnesium Alloys and Their Use in Aircraft: Metal Progress, vol. 36, No. 3, September 1939, pp. 237-242.
Grant, L. B., Magnesium Alloys for Aircraft Parts (paper presented before Nat. Aircraft Production Meeting of Society of Automotive Engineers, Los Angeles, October 7, 1939): Iron Age, vol. 144, No. 18, November 2, 1939, pp. 36-39.

Quantitative data are not available on the increase in total consumption of domestic magnesium owing to the lack of information on exports and stocks. Complete data, however, are available on the manufacture of structural and nonstructural products of magnesium or high-magnesium alloys, sales of which gained 77 percent in 1939. Sales of structural products advanced 84 percent and non-structural products 26 percent.

Magnesium products (other than ingot and stick magnesium) manufactured in the United States and sold or used by the companies manufacturing the products, 1987-39

[This table includes only the products made from magnesium or alloys containing high percentages of magnesium. It does not include the large quantity of metal used as a deoxidizer and in alloys with low magnesium content]

Product	19	37	19	38 	1939		
Floract	Pounds	Pounds Value Pounds Value		Pounds	Value		
Structural products: Castings: Sand and permanent mold_ Die	} 1, 180, 190 118, 284 1 86, 954 31, 939 1, 024	\$1, 375, 884 74, 924 1 94, 250 18, 568 1, 797	1, 067, 310 124, 930 80, 206 5, 924	\$1, 392, 882 79, 764 49, 972 6, 541	{ 1, 321, 080 525, 372 180, 896 308, 443 17, 065 3, 404	\$2,030,175 385,770 116,287 185,746 26,925 2,553	
Total structural products_	1, 418, 391	1, 565, 423	1, 278, 370	1, 529, 159	2, 356, 260	2, 747, 456	
Nonstructural products: Wire and ribbon Shavings Powder	1 811 2 59, 354 2 40, 502	1 3, 020 2 26, 042 2 75, 110	184, 223	259, 256	232, 244	228, 129	
Total nonstructural products	100, 667	104, 172	184, 223	259, 256	232, 244	228, 129	
Grand total	1, 519, 058	1, 669, 595	1, 462, 593	1, 788, 415	2, 588, 504	2, 975, 585	

¹ Some products formerly classified as "Wire and ribbon" are included under "Structural shapes, rods, and tubing."

² Minor quantities of shavings included under "Powder"; separate figures not available.

Castings comprised 78 percent of the structural products sold or used in 1939; of these, 72 percent were sand and permanent-mold castings (chiefly the former) and 28 percent die castings. The value of magnesium sand and permanent-mold castings in 1939 averaged \$1.54 per pound; die castings, \$0.73 per pound; and all castings, \$1.31 per pound (the same as in 1938). Approximately 60 percent of all castings were used in airplane and aircraft-engine construction, and the remainder by the automobile, portable-equipment-and-tool, electric-motor (chiefly in squirrel-cage rotors), and foundry-equipment Magnesium-alloy die castings were adopted for three starter and generator parts of a popular low-priced automobile and for many additional applications in the textile, business machine, and optical equipment fields. The engine hood, radiator shell and grille unit, control quadrant, and most of the instrument panel of a new lightweight tractor also are made of magnesium alloy. The European automotive industry has made wide use of magnesium alloys for a number of years, particularly for castings for bus and truck crankcases and transmission housings.3

³ Alwicker, H., Use of Magnesium Alloys in the European Automotive Industry: Soc. Automotive Eng. Jour., vol. 45, No. 3, September 1939, pp. 9-13, 17-19.

In 1939 sales of sheet rose 45 percent; structural shapes, rods, and tubing, 285 percent; and forgings, 188 percent. The aircraft industry, which for the last few years has used increasing quantities of sand castings, also began using rolled sheet, extruded shapes, tubing, forgings, and die castings in 1939. In the United States magnesium-alloy sheet was produced for the first time for such interior parts of airplanes as walls, floors, seat and berth parts, partitions, doors, and other secondary structures. The Railway Express Co., Inc., adopted a portable roller-type gravity conveyor made almost entirely of magnesium alloy for loading and unloading. In Europe considerable quantities of magnesium alloy were used to construct tubes for thermit type incendiary bombs. Magnesium wire was employed by the domestic electrical-equipment industry; magnesium ribbon for chemical uses; and magnesium shavings, powder, and sawdust for pyrotechnic, chemical, and welding applications. Shavings and coarse powder also were used for the synthesis of certain organic chemicals by the Grignard reaction, as in the production of phenyl ethyl alcohol and butyl alcohol.

Pure magnesium ingot and some magnesium alloy were used as scavengers and deoxidizers in the metallurgical industry, particularly for the degasification and cleansing of nickel, nickel-silver, monel metal, copper, brass, bronze, and aluminum. Magnesium also was employed to debismuthize lead by the Betterton refining process. Aluminum alloys carrying as much as 10 percent magnesium are more resistant to alkaline corrosion than other aluminum alloys and, when heat-treated, develop the highest tensile strength of any alumi-

num casting alloy.

All the magnesium fabricators in the United States in 1938 (listed in Minerals Yearbook, 1939, pp. 708-709) were active in 1939 except the Madison-Kipp Corporation. The Hoover Co., however, discontinued production and use of magnesium die castings during the year. The Ford Motor Co., 3674 Schaefer Road, Dearborn, Mich., resumed manufacture of magnesium sand castings in 1939, and the Magna Manufacturing Co., Inc., Haskell, N. J., began producing magnesium powder early in 1940. The Dow Chemical Co. began operating a new foundry at Bay City, Mich., and during the summer of 1940 will complete construction of a new sheet-rolling mill at Midland, Mich. The American Magnesium Corporation began operation of a magnesium foundry at 5151 Magnolia Avenue, Los Angeles, Calif., and Magnesium Fabricators, Inc., 5 a division of the Bohn Aluminum & Brass Corporation, extended its plant at Adrian, Mich. Magnesium Products, Inc., 1119 Santa Fe Avenue, Los Angeles, Calif., and the Hills-McCanna Co., 2353 Nelson Avenue, Chicago, Ill., made magnesium products for the first time in 1939. Doubtless, other fabricating concerns mentioned in Minerals Yearbook, 1939, also enlarged manufacturing facilities in 1939.

Only a little magnesium scrap is on the market, and it is remelted by the Dow Chemical Co. and a new firm, Aluminum & Magnesium, Inc., Sandusky, Ohio, which produces secondary magnesium ingots. Most foundries remelt their own scrap, adding it to primary-alloy

charges.

⁴ Astbury, A. R., Materials in Relation to A. R. P.: Chem. and Ind. (London), vol. 58, No. 3, January 21, 1939, p. 43. ⁵ Allen, A. H., Molding and Casting Magnesium: Steel, vol. 105, No. 26, December 25, 1939, pp. 36-38.

PRICES

The nominal New York price for 99.8-percent ingot magnesium, carload lots, was reduced from 30 cents per pound (prevailing since 1931) to 28 cents in March 1939 and 27 cents in August 1939. Ingot quotations for less than carload lots, 100 pounds or more, fell to 29 cents per pound. The price for extruded sticks, carload lots, was reduced to 34 cents per pound; for less than carload lots, 100 pounds or more, to 36 cents per pound. Alloy ingot normally is quoted at 3 cents per pound more than pure magnesium ingot. London quotations for magnesium ingot and stick advanced from 1s. 5d. to 1s. 6d. late in 1939. At the close of the year powder ranged from 3s. 9d. to 8s. 6d. per pound, according to grade and specification.

FOREIGN TRADE

Although official export data on magnesium are not separately recorded, it is reported that a substantial quantity of metal was exported in 1939, chiefly to the United Kingdom. Owing to the enlarged domestic demand and limited production facilities the domestic producer was unable to meet the greater demand from abroad in 1939. Imports in 1939 comprised only 66 pounds of magnesium metal and scrap valued at \$24 and 10 pounds of magnesium alloys valued at \$25, all from Germany. In 1938 imports totaled 60 pounds of sheets, tubing, ribbons, etc., valued at \$188.

TECHNOLOGIC DEVELOPMENTS

The Dow Chemical Co. now can produce magnesium with improved resistance to corrosion by reducing such harmful impurities as iron by a special settling process. Surface-treatment methods for the decoration and protection of magnesium alloys from corrosion were developed further in 1939.6 Exposure tests on magnesium alloys coated with chemicals and paint showed higher stability and very satisfactory performance. Magnesium-manganese allovs and magnesium-aluminum alloys with additions of zinc or tin offered more resistance to corrosion, and surface treatments using either the phosphoric-acid or chrome-pickle process seem satisfactory. New primers also were developed for painting magnesium-alloy surfaces not chemi-

The art of die-casting magnesium alloys has advanced rapidly, and sound, dense metal now can be obtained at costs comparable to those of other die-cast alloys. The principle improvements in die casting have been the construction of strong, rigid, high-pressure machines that fill the die rapidly through well-placed gates and the introduction of cast-steel melting pots designed to maintain sulfur dioxide in contact with the molten metal and thus to inhibit active oxidation. perimental die-casting alloy with superior tensile and yield strength after heat treatment was developed in 1939.

Alloys with improved mechanical properties and chemical stability that were introduced in 1939 included a sand-casting alloy, Dow-

⁶ Grant, Leo, Surface Treatment of Magnesium Alloys: Metal Ind. (New York), vol. 37, Nos. 11 and 12, November and December 1939, pp. 544-545 and 605-606.

⁷ Mutchler, W., and Galvin, W. G., Tidewater and Weather-exposure Tests on Metals Used in Aircraft, also The Effect of Continuous Weathering on Light Metal Alloys Used in Aircraft: Nat. Advisory Comm. Aeronautics, Repts. 736 and 663, 1939, 28 and 27 pp.

metal C (AM 260), characterized by better pressure tightness and more uniform properties; a sheet alloy, Dowmetal J-1 (AM C57s), characterized by high strength and resistance to corrosion; and a relatively low cost extrusion alloy, Downetal FS (AM 52s), which has greater stability than those used before. An experimental wrought alloy containing 5.5 percent silver, Downetal Z, exhibits high hardness and high yield and ultimate strengths when heattreated and aged. Extrusion and forging alloys put on the market have better resistance to corrosion than heretofore and are specified both by the Navy Bureau of Aeronautics and the Army Air Corps. Better corrosion resistance is obtained from new magnesium alloys by adjustment of the alloy composition and careful control of iron, copper, and nickel impurities.

Manufacturers also learned more about the art of forming and drawing magnesium-alloy sheet, particularly as to correct temperature control, rate of deformation, and type of equipment required.9 Electric-spot- and gas-welding methods progressed and proved im-

portant in aircraft assemblies.

The Metallurgical Division of the Bureau of Mines obtained an appropriation in 1939 to continue its magnesium research at Pullman, Wash., and during the year discovered that better results are obtainable in the concentration of low-grade magnesite ores by flotation when cationic and anionic collectors are used alternately in successive Other developments included a floating cathode cell which produces a superior quality of metal in electrolyzing crude MgCl₂. Hydrocarbon oil is used instead of hydrogen to chill and condense the magnesium vapor produced in the electrothermal reduction of magmesium oxide by carbon, and the magnesium and oil are separated by distillation.10

In Italy, Montecatini plans to produce magnesium from sea water by first freeing the water of carbonates by the addition of calcium oxide. then adding milk of lime to precipitate magnesium hydroxide, which is washed with carbonate-free sea water and treated with carbon Next the crystalline magnesium carbonate recovered by filtration is treated with sodium chloride and water to give sodiumhydrogen carbonate and MgCl₂. The latter is dried, dehydrated, and

electrolyzed in the molten form.11

WORLD PRODUCTION

Official data on world production of magnesium continues to be unavailable, but recently more trustworthy estimates of output have appeared in the literature than heretofore. Magnesium has strategic importance because of its use in military aircraft, flares, and bombs, therefore information on the industry is shrouded in secrecy in most countries. The figures in the following table are based entirely upon estimates except those for the United States, which represent actual These data show that total world output of magnesium increased 21 percent from 1937 to 1938 and about 35 percent from 1938 to 1939. The United States produced 15 percent of the total in 1939.

^{*} Jerabek, H. S., Gross, W. H., and Wood, R. T., Magnesium Alloys—Compositions, Properties, and Designations of American Commercial Alloys: Metal Prog., vol. 37, No. 2, February 1940, p. 159.

* Dow Chemical Co., Downetal Magnesium Alloys: Handbook, August 1, 1939, pp. 42-44.

* Down, R. S., Progress Reports—Metallurgical Division, 34. Annual Report of the Metallurgical Division, Fiscal Year 1939: Bureau of Mines Rep. of Investigations 3480, 1940, pp. 43-54.

* Light Metals, Light Alloys and the Light Metal Industries in Italy: Vol. 3, No. 27, April 1940, p. 104.

Estimated world production of magnesium, 1937-39, by countries, in metric tons

Country	1937 1	1938 1	1939
France. Germany Italy. Japan Switzerland. U. S. S. R. United Kingdom. United States (sales)	1, 500 12, 080 66 1, 200 230 700 2, 000 2, 059 19, 800	1, 800 14, 100 102 1, 500 1, 000 3, 000 2, 186	2, 500 16, 500 300 (2) 700 (3) 5, 000 4, 831

¹ Partly based upon data supplied by Consul Sydney B. Redecker, Frankfort on the Main, Germany, and published in Bureau of Mines Mineral Trade Notes, vol. 9, No. 3, September 20, 1939, p. 9; and Lumsden, J., Magnesium, Magnesite, and Dolomite: Imperial Inst. (London), 1939, p. 23.

² Estimate included in the total.

Australia.—An electrolytic magnesium plant has been proposed at Hobart, Tasmania, to utilize dolomite occurring near Smithton.

Canada.—Adequate magnesium-bearing raw materials (including brucite, impure magnesite, dolomite, serpentine, and sea water) and cheap hydroelectric power are available in Canada, and, according to reports, Canada soon will begin to produce magnesium. The Consolidated Mining & Smelting Co. of Canada, Ltd., is experimenting with various magnesium-reduction processes. Interests in eastern Canada also are contemplating production of the metal. The National Research Council, Ottawa, is experimenting on electrolytic and electrothermic production methods.¹²

France.—Reports indicate that the four French magnesium producers increased output 40 percent in 1939. The output of the two principal works, at Saint-Auban and Jarrie, is sold by the Sté. Général du Magnesium. The two smaller producers are the Sté. Bozel-Malétra, at Villard, and the Sté. Astral, at Moissac. During the first 7 months of 1939, imports of magnesium totaled 213 metric tons

compared with 121 tons during the same period of 1938.

Germany.—The German and Austrian production of magnesium probably reached full capacity in 1939 despite the shortage of power in some sections of the country. Adequate raw materials were available for the plant at Bitterfeld, which utilizes magnesium chloride solution from potash waste liquors in conjunction with domestic dolomite and Austrian magnesite, and for the plant at Heringen, which uses specially selected carnallite. Both plants employ an electrolytic process, whereas the Radenthein (Austria) plant uses magnesite and a new thermal reduction process. Germany has adequate magnesium-fabrication facilities; one of the larger producers and fabricators of magnesium alloys is the Rachwitz plant near Leipzig, belonging to Bernhard Berghaus & Co., a subsidiary of I. G. Farbenindustrie. War demands for magnesium are said to exceed output, and in the fall of 1939 use of the metal was restricted to purposes authorized by control authorities.

Italy.—New magnesium plants under construction in Italy in 1939 included one at Bolzano belonging to the Società Anonima Italiana per il Magnesio e le Leghe di Magnesio, of Milan; another at Cogne, Aosta Valley, owned by the Società Nazionale Cogne; and a third at Apuania, near Rome, to be operated by Montecatini. The first two

¹¹ Pidgeon, L. M., Production of Magnesium: Canadian Chem. and Process Ind., vol. 23, No. 8, August 1939, pp. 395-400.

plants, each having an annual capacity of 2,400 tons, will utilize dolomite from new deposits discovered in the Dolomite Mountains, while the third plant (1,200 tons annual capacity) plans to use sea water. The dolomite is expected to yield from 8 to 10 percent magnesium. At Bolzano the magnesium oxide will be reduced with ferrosilicon. The plant and dolomite deposits near Palmos Suergiu, Cagliari, Sardinia, belonging to the Società Anonima Magnesio Italiano Sulcis, sole Italian magnesium producer for several years, was purchased by the Società Nazionale Cogne and German interests and apparently was abandoned. The three new plants plan to attain capacity production (6,000 tons) by 1941.

Japan.—Magnesium and aluminum plants will be constructed in Korea and Manchuria to utilize the low-cost power of the Suiho hydroelectric works on the Yalu River, which is to be completed in 1940. Magnesium plants are proposed by the Korean Riken Metals Co. at Heijo (1,000 to 2,000 tons annual capacity), the Dai Nippon Salt Industrial Co. in the Antung-Shingishu district, the Japan Soda Co., Ltd., and the Kokusan Light Metal Industrial Co. Large reserves of magnesite are available in Manchuria and Korea. concerns, Minami-Nippon Kagaku, Minami-Nippon Engyo, and Asaki Denka, proposed to establish magnesium plants on the Island of Formosa, but reports indicate that only the last-mentioned concern received official authorization. No data are available on the production of magnesium in 1939 by the established Japanese producers, Nichiman Magnesium Co., Ltd., Japan Magnesium Metal Co., Ltd., Asahi Electro-Chemical Industry Co., Ltd., and Japan Soda Co., Ltd., but it is believed that output increased substantially. Licenses to construct new or to extend old magnesium plants were recently granted to the Kwanto Electro-Chemical Co. at Shibukawa, the Biken Kinzoku Co. at Ube, the Nippon Magnesium Co. at Toyama, the Toyama Keikinzoku Co. at Hakata, and the Okuro Kogyo Co. at Shimada.

United Kingdom.—The number of companies active in the production of magnesium is believed to have increased from two ¹³ in 1938 to five by the end of 1939. The latter include Magnesium Elektron, Ltd., at Clifton Junction; Magnesium Metal & Alloys, Ltd., at Rainham, Essex; Magnesium Metal Corporation, Ltd., at Port Tennant, Swansea, England; Lancashire Metal Subliming Corporation, at St. Helens, Lancashire; and the Cardiff Corporation, Cardiff, South Wales. In addition, a pilot plant is operated at Avonmouth, England, by the Imperial Magnesium Corporation, Ltd. British dolomite is used as raw material by the first producer, and the others probably use either domestic dolomite or imported magnesite. The direct Government control of supplies and prices of primary aluminum and some other materials has not yet been applied to magnesium.

During the first 8 months of 1939 the United Kingdom imported 1,521 metric tons of magnesium compared with 1,491 tons for the same period in 1938. Most of the tonnage imported in 1939 probably came from the United States, whereas Germany supplied 1,361 tons and the United States only 208 tons in 1938. Metal imports totaled 1,637 tons in 1938, 2,265 in 1937, 2,488 in 1936, 1,449 in 1935, and

995 in 1934.

¹⁹ Lumsden, J., Magnesium, Magnesite, and Dolomite: Imperial Inst. (London), 1939, pp. 17-18.

ANTIMONY AND CADMIUM

By E. W. Pehrson and John B. Umhaut

SUMMARY OUTLINE

	Pag e	· ·	
Antimony	727	Antimony—Continued.	Page
Summary	727	World production	736
Salient statistics	729	Review by countries	737
National defense			
Domestic production			742
Mine output		Domestic production	743
Smelter output			
Secondary production		Foreign trade	745
Domestic consumption	732	Prices	745
Foreign trade		World production	756
Prinos	735	Review by countries	747

ANTIMONY

The antimony industry experienced an unusual year in 1939. The war in Europe and increasing industrial activity in the United States stimulated demand, particularly during the last third of the year when the world supply of ore appeared to be shrinking. fourth consecutive year the output of China, formerly the chief world producer, declined substantially. Japanese occupation of eastern China virtually has stopped exportation of antimony over the normal trade routes, but shipments on a reduced scale were maintained via French Indochina. For a portion of the year Oriental shipments were fairly well maintained by deliveries from Hong Kong; but toward the close of 1939 stocks were depleted, and shipments from this port were curtailed sharply. Production in Mexico likewise decreased in 1939, but during the latter part of the year the heavy export taxes that had been imposed in 1938 were removed with respect to the low-grade antimony ores, and exports rose appre-World production in 1939 is estimated to have been only a little lower than in 1938, as decreases in China and Mexico were largely offset by increases, chiefly in Bolivia and Yugoslavia.

The divergent trends in production and consumption brought about higher prices, although the increase may be considered moderate in view of the unusual conditions prevailing. For example, the New York price for American brands averaged only 12.36 cents a pound in 1939 compared with 12.35 cents in 1938. From a low of 11.25 cents in February the quotation gradually rose to 14.00 cents the latter part of September and remained at this level the rest of the year. Quoted prices for Chinese brands were nominal throughout 1939, averaging 14.44 cents at New York. After the outbreak of war in Europe the demand for domestically smelted metal became so heavy

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

that the chief domestic producer stipulated in its selling contracts that its metal was not to be used for war or speculation. This action was in line with the request of the Army and Navy Munitions Board that excessive exports of strategic raw materials be avoided to conserve

domestic supplies.

Domestic mine output in 1939 was disappointing. Production of antimony from antimony or gold-antimony ores declined 40 percent. The antimony contained in antimonial lead derived from domestic ores (all kinds) was 50 percent less than in 1938, but comprised only 8 percent of the apparent consumption of antimony. The decline in domestic output was offset by larger imports of ore and regulus. As actual consumption of antimony probably increased appreciably because of greater production of storage batteries, bearing metals, oxides, and other compounds, it is believed that producer and consumer stocks were reduced to a considerable extent in 1939.

The Laredo and Los Angeles smelters reported substantial increases in production. Oxide-production facilities at the Laredo plant were enlarged during 1939, making more furnace capacity available for the production of metal. A third producer of antimony metal will begin operations in 1940; the Bunker Hill Mining, Smelting & Concen-

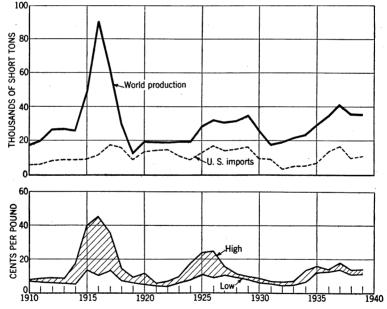


FIGURE 1.—Trends in world production, United States imports, and New York price of antimony, 1910-39.

trating Co. has announced the construction of a new plant at Kellogg, Idaho, to recover electrolytic antimony and other metals from the tetrahedrite contained in the dry-belt silver ores of the Coeur d'Alene region. Formerly these ores were treated in lead furnaces, where the bismuth content was a troublesome impurity.

Figure 1 shows trends in world production, United States imports,

and prices from 1910 to 1939.

Late in 1939 the State Department announced that the tariff on antimony oxide would be considered in negotiations for a new reciprocal trade treaty with Belgium. Domestic producers formally protested any reduction in the existing import duty. No official action had been taken by the end of the year.

Salient statistics for antimony in the United States, 1935-39

	1935	1936	1937	1938	1939
Production of antimony ore and concentratesshort tons	3, 616	3, 867	4, 250	2,730	3, 174
	559	755	1, 266	650	393
and foreign ores short tons. Secondary antimony produced do Imports for consumption:	1,136	1,471	1, 726	2, 080	1, 108
	9,600	9,900	12, 340	8, 500	(¹)
Antimony in ore do Needle or liquated antimony do Metal do	4, 587	10, 545	13, 818	8, 322	9, 448
	1, 352	1, 185	772	90	228
	1, 248	1, 171	1, 043	821	1, 045
Oxide	594	1, 201	1, 118	414	167
	318	392	437	711	58
	8, 351	15, 040	18, 132	11,557	11,609
Stocks of antimony in bonded warehouse at end of year short tons Average price of antimony at New York: 3	830	443	656	345	685
Chinese cents per pound. American do World production short tons	14. 08	12. 97	15. 30	14.59	14. 44
	13. 62	12. 25	15. 35	12.35	12. 36
	32, 800	38, 900	42, 100	35,600	35, 300

¹ Figures not yet available.

National defense.—The national defense aspects of antimony, which is classified as a strategic raw material by the Army and Navy Munitions Board, and domestic antimony resources were discussed in detail in Minerals Yearbook, 1939.

The Strategic Materials Act, Public No. 117, 76th Congress (referred to as the Thomas bill, S. 572, 76th Cong., in Minerals Yearbook, 1939) was signed by the President on June 7, 1939. The bill authorizes the expenditure of \$100,000,000 over a period of 4 years for the purchase of stock piles of strategic raw materials and \$500,000 annually for the investigation of domestic resources of strategic minerals by the United States Department of the Interior. Owing to the limited fund available for stock-piling, purchases have been confined to materials having a higher order of priority than antimony. The Bureau of Mines and the Geological Survey conducted extensive drilling, trenching, and stripping in the Yellow Pine district of central Idaho, but the results of the investigation have not been published as yet. The Bureau of Mines has developed an electrolytic method for improving the recovery of antimony from antimony-gold ores such as are found in that area.

DOMESTIC PRODUCTION

MINE OUTPUT

Antimony produced in the United States is derived from both antimony ores and lead ores. Data on the quantity derived from lead ores are not available, because the Bureau of Mines cannot obtain full information on the output of various commodities made from byproduct antimonial drosses obtained in lead refining. These drosses are used in the manufacture of antimonial lead, other alloys, and chemical compounds, such as oxides and sulfides. In 1939 antimonial lead containing 1929 tons of antimony of domestic origin was produced at primary lead refineries, but this antimony was obtained from antimony ores as well as from lead ores in unknown pro-

² According to American Metal Market.

³ Estimated.

portions. Likewise, information on the amount of domestic antimony recovered in other alloys and compounds is not available.

The quantity of antimony contained in domestic antimony ores and concentrates produced in 1939 totaled only 393 tons—40 percent less than in 1939. Despite the decline in output, there was considerable interest in antimony deposits during the year. Eighteen producers shipped ore containing 1 ton or more of antimony—1 in Idaho, 1 in Alaska, 7 in Nevada, and 9 in California. As in previous years the Yellow Pine district, Idaho, and the Kantishna district, Alaska, were the outstanding producing areas. Production in both areas declined in 1939.

Alaska.—A small concentrating mill capable of treating 25 to 35 tons of ore a day was installed in 1939 at the Stampede mine of Morris P. Kirk & Son, Inc., in the Kantishna district. The ore contains approximately 22 percent antimony in sulfide form. It is planned to operate the mill during the summer months only and to haul concentrates as well as direct-shipping crude ore to the railroad at Lignite during the winter for reshipment to the company smelter in Los Angeles. Transportation difficulties from mine to railroad were eased in 1939, when trail was broken for 50 miles to permit the use of tractors.

California.—Some activity at antimony deposits was reported in 1939. According to press dispatches, it is planned to reopen the Buzzard mine in the Rattlesnake district near Auburn, Calif. Besides antimony, the mine is said to contain values in gold, copper, silver, lead, and zinc. Some prospecting was done at an antimony property near Frazier Mountain and at another 10 miles west of Randsburg, Calif., which was worked during the World War. The ore body, which outcrops for 1,500 feet, is being developed for production.

A custom antimony concentrator with a daily capacity of 150 tons, known as the Amalia mill and believed to be the only custom mill for antimony ores in the United States, has been completed by the S. T. M. Mines in Pine Tree Canyon near the Los Angeles Aqueduct Station about 17 miles north of Mojave, Calif. The company owns or controls antimony deposits in Kern and Inyo Counties, which it states are large enough to insure continuous operation of the mill for an extended period; however, custom ores are to be given preference. *Idaho*.—The Bradley Mining Co. in 1939 produced concentrates

Idaho.—The Bradley Mining Co. in 1939 produced concentrates containing 209 tons of antimony compared with 379 tons in 1938. More ore was produced in 1939 than in 1938, but the antimony content was lower. The concentrates are largely ferruginous and contain gold and silver as well as antimony. The product is shipped to the lead smelter at Midvale, Utah. The capacity of the mill was enlarged during the year. Formerly the Meadow Creek mine was the chief source of ore, but owing to exhaustion at depth operations were shifted in the latter part of 1938 to surface deposits at the Yellow Pine mine. The activities of the Bradley Mining Co. were described in the May 1940 issue of Mining World.

The Antimony Gold Ores Co. was actively prospecting deposits in the Yellow Pine area during 1939. Early in 1940 it was reported that the company had optioned 63 claims to the New York & Honduras Rosario Mining Co. at a purchase price of \$1,500,000, payable over 12 years.

The antimony deposits of Valley County were investigated by the Federal Bureau of Mines and the Geological Survey as part of the

program authorized by the Strategic Materials Act. Pamphlet 44, entitled "Geology and Ore Deposits near Edwardsburg and Thunder Mountain, Idaho," by P. J. Shenon and C. P. Ross, was released by the Idaho Bureau of Mines in cooperation with the Geological Survey.

The Bureau of Mines has developed a pyrometallurgical and electrolytic method for treating gold-silver-antimony ores of the type

found in Valley County.2

Nevada.—Small shipments were reported from Lander, Nye, Pershing, and White Pine Counties in 1939. Some prospecting also

was reported under way in Humboldt County.

Washington.—A 20-ton mill was installed at the Cleveland mine in Stevens County 18 miles west of Springdale, Wash. The mine produces ore containing antimony, lead, and zinc.

SMELTER OUTPUT

From 1935 to 1937, inclusive, the only active primary antimony smelter in the United States was that of the Texas Mining & Smelting Co. at Laredo, Tex. In 1938 the Menardi Metals Co. reported the production of antimony at its plant in Los Angeles, Calif. Both

plants reported substantial increases in output during 1939.

The Texas Mining & Smelting Co. completed an addition to its oxide plant at Laredo in 1939. In an endeavor to keep domestic consumers supplied during the latter part of the year when the demand for antimony was exceptionally large, the company stipulated in its contracts that none of the metal manufactured at its smelter should be used for war or speculative purposes.

The Los Angeles plant reported production of antimony metal from foreign and domestic ores in 1938 for the first time. The antimony is derived largely from livingstonite concentrates produced in Mexico.

The principal product of the plant to date has been mercury.

Data on production of antimonial lead at primary lead refineries are shown in the accompanying table. The figures cover only part of the antimonial lead output, as large quantities are produced at plants that operate exclusively on scrap, and some hard lead is made by mixing antimony and soft lead.

Antimonial lead produced at primary lead refineries, 1935-39, in short tons

Year		Antimony content						
	Production	From do-	From for-	From	Total			
		mestic ores	eign ores 1	scrap	Quantity	Percent		
1935. 1936. 1937. 1938.	16, 384 23, 230 27, 524 24, 123 21, 995	1, 110 1, 434 1, 636 1, 871 929	26 37 90 209 179	593 691 853 729 923	1, 729 2, 162 2, 579 2, 809 2, 031	10. 6 9. 3 9. 4 11. 6 9. 2		

¹ Includes lead ores, antimony ores, and metallic antimony.

³ Koster, J., and Royer, M. B., Progress Reports—Metallurgical Division. 37. Electrolytic Recovery of Antimony from Antimonial Gold Ores: Bureau of Mines Rept. of Investigations 3491, 1940, 19 pp.

According to press reports, high-grade electrolytic antimony soon will be produced by the Bunker Hill Mining, Smelting & Concentrating Co. at Kellogg, Idaho. A new plant is being constructed to treat the concentrates produced in the dry-ore silver belt of the Coeur d'Alene region by the Lee-Muir process, which employs a combination of hydro-, pyro-, and electro-metallurgy. The concentrates consist largely of tetrahedrite, the bismuth content of which is an undesirable impurity in lead smelting. The new process separates the silver, copper, bismuth, and antimony of the tetrahedrite.

Secondary production.—Data on the recovery of secondary antimony in 1939 were not available when this report was written. The Bureau of Mines canvasses of the secondary-metal industries are being revised to develop more detailed information on the origin and flow of scrap, and the revision has delayed completion of the figures for 1939. Additional information on developments in 1939 is given in the Secondary

Metals—Nonferrous chapter of this volume.

DOMESTIC CONSUMPTION

Precise data on the consumption of primary antimony in the United States are not available owing to lack of information on dealer and consumer stocks and on the quantity of domestic antimony recovered in alloys other than antimonial lead and in compounds; however, an approximate idea of the trend of consumption can be obtained from the following table, which shows the annual supply available for consumption.

Primary antimony available for consumption in the United States, 1935-39, in short tons ¹

	1935	1936	1937	1938	1939
Domestic antimony recovered in antimonial lead	1, 110	1, 434	1,636	1,871	929
Antimony ore	4, 587	10, 545	13,818	8, 322	9, 448
	946	830	540	63	160
	502	975	909	336	138
Compounds * Type metal, etc Regulus	209	309	410	355	121
	1, 248	1, 171	1,043	821	1, 045
Total available	· 8,602	15, 264	18, 356	11,768	11, 841
	251	224	224	211	232
Available for consumption	8, 351	15, 040	18, 132	11,557	11,609

Excludes domestic antimony recovered as miscellaneous alloys, oxides, and other compounds.
 Content estimated at 70 percent.
 Content estimated at 80 percent.

Apparent consumption of primary antimony in 1939 increased only slightly over 1938, a moderate rise in imports having been offset largely by a decline in domestic output. Actual consumption, on the other hand, is believed to have gained substantially. One of the principal uses of antimony is in the manufacture of storage batteries. According to the American Bureau of Metal Statistics, 106,500 tons of antimonial lead were used for this purpose in 1939 compared with 92,000 tons in 1938. The antimony content of this material ranges

from 4 to 12 percent, and although a large part of the total is supplied by battery scrap a substantial quantity of new antimony is required

annually to "sweeten" the alloy.

Another important use of antimony is in the manufacture of babbitt metals employed in bearings. According to the Bureau of the Census, shipments of white-base antifriction bearing metals, produced for sale and for plant consumption by 39 manufacturers representing approximately 84 percent of the total industry, increased from 8,259 tons in 1938 to 11,785 in 1939.

The use of antimony in the manufacture of chemicals rose 75 percent in 1939 compared with 1938. In 1939, 7,668 tons of oxides and other compounds with an estimated antimony content of 6,188 tons were produced, whereas in 1938 only 4,393 tons (3,539 content) were made. Figures for the 3 preceding years are as follows: 1937, 6,992 tons (5,667 content); 1936, 4,852 tons (3,940 content); and 1935, 3,969 tons (3,227 content). Foreign ores are used largely in the manufacture of chemicals. The principal compound is the oxide, which is employed extensively as a pigment in sanitary enamelware and nitrocellulose enamels. The following companies reported production of antimony oxide and other salts in 1939:

American Smelting & Refining Co., 120 Broadway, New York, N. Y. Antimony Corporation, New Brunswick, N. J. Harshaw Chemical Co., Elyria, N. Y. John D. Lewis, Inc., Mansfield, Mass. McGean Chemical Co., Cleveland, Ohio. Texas Mining & Smelting Co., Laredo, Tex.

FOREIGN TRADE

The following tables show imports and exports of antimony and antimony products.

Antimony imported for consumption in the United States, 1935-39

	Antimony ore		liqua	edle or ted anti- nony	Antimony metal		Antimony oxides and other compounds		
Year	Short	Antimony content		1 1					
	tons Short tons	Value	Short tons		Short tons	Value	Short tons	Value	
1935	14, 205 30, 486 42, 453 19, 811 21, 000	4, 587 10, 545 13, 818 8, 322 9, 448	\$544, 608 1, 200, 132 1, 775, 011 1, 095, 497 1, 132, 359	1, 352 1, 185 772 90 228	\$165, 446 139, 784 101, 963 12, 016 30, 102	1, 248 1, 171 1, 043 821 1, 045	\$250, 771 243, 474 228, 485 155, 420 196, 812	628 1, 219 1, 136 420 173	\$94, 783 217, 505 249, 152 94, 400 29, 786

Antimony imported for consumption in the United States, 1938-39, by countries

	Antimony ore			Antimony metal		
Country	Gross weight	Antimon	content	Short tons	Value	
	(short tons)	Short tons	Value	SHOIT TOILS	v aiue	
1938						
Argentina	1, 101	715	\$69,931	25	\$5,009	
BelgiumBolivia	1,880	1, 133	159, 407			
Chile	1, 201	776	127, 156			
China France	70	43	4, 571	661 11	118, 199 2, 260	
Japan				(1)	24	
Mexico	14,896	5, 250	670, 185	112	25, 784	
Morocco	661	404	162 64, 085			
Peru United Kingdom		404	02,000	11	3, 799	
Yugoslavia				1	345	
<u> </u>	19, 811	8, 322	1, 095, 497	821	155, 420	
1939						
Argentina	332	218	21,700			
Belgium				191	35, 954	
Bolivia		2,454	371,099	661	117,072	
China				56	10, 566	
Mexico	16,036	6, 346	676, 471	125	29, 915	
Peru	706	430	63,089			
United Kingdom				12	3, 305	
	21,000	9, 448	1, 132, 359	1,045	196, 812	

¹ Less than 1 ton.

Estimated antimony content in type metal, antimonial lead, and other alloys imported for consumption in the United States, 1935-39, in short tons ¹

Year	Type metal and anti- monial lead	Other alloys 3	Total	Year	Type metal and anti- monial lead	Other alloys 2	Total
1935. 1936. 1937.	89 3 56 3 17	120 253 393	209 309 410	1938 1939	* 59 59	296 62	355 121

For details of gross weight and values see imports shown in Lead chapter of this volume.
 Chiefly in special antimony-lead alloys containing high percentage of antimony.
 Type metal only.

Foreign antimony (regulus or metal) exported from the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	318 392 437	\$62, 167 56, 308 86, 991	1938 1939	711 58	\$96, 836 16, 736

As in other recent years imports of antimony ore in 1939 came principally from Mexico and Bolivia. Shipments from both countries were larger than in 1938. Imports credited to Argentina and Chile probably originate in Bolivia.

In addition to the foreign exports reported above, 232 tons of antimony were exported in 1939 in manufactures (chiefly storage batteries) under the draw-back provisions of the tariff law; 211 tons were so exported in 1938. Stocks of needle or liquated antimony and rejects on hand in bonded warehouses totaled 685 tons at the end of 1939 compared with 345 tons on December 31, 1938.

PRICES

The antimony market always has been subject to rapid and wide fluctuations in price; however, in recent years variations have been less violent, and quotations have been maintained at higher levels.

The price of antimony, which dropped very low after the World War of 1914-18 (less than 5 cents per pound in 1921), continued at that level until 1924, when an upward trend was noted. For 5 years quotations were well-maintained, but with the advent of the depression they again slumped. In 1934 there was a noticeable increase, and for the past 5 years yearly quotations have continued above 12 cents per pound at New York. The average spot quotation for domestic metal in New York in 1939 was 12.36 cents compared with 12.35 cents in 1938. The year 1939 opened with the price at 11.75 cents. New York, and remained at a fraction over 11 cents (low for the year, 11.25 cents) until May 25, when it advanced to 12 cents as industrial activity moved upward; then the price increased gradually to 14 cents on September 25, where it remained until the close of the vear.

Throughout the year Chinese antimony was scarce, owing to Japanese blockade of the normal trade routes from producing cities. Prices were nominal throughout the year and higher than those for domestic metal. On January 3 the quotation for Chinese metal, duty paid, was 14.00 cents at New York. This price was maintained until October 27, when it advanced to 16.50 cents and remained at this figure for the rest of the year. The average price for the year for Chinese metal was 14.44 cents compared with 14.59 cents in 1938.

On the London Metal Exchange quotations for English brands (99 percent minimum) remained stable at £70-71 per long ton from July 1, 1938, through August 1939. At the beginning of September there was a slight increase to £71-73; in October it rose decidedly to £80-82: and on November 1, it reached £87½, which figure was maintained for the rest of the year. Foreign regulus (spot deliveries from warehouse, duty paid) was quoted at £52-53 on January 1. For the first 8 months of the year the price fluctuated between £49 and £54; it increased to £58 on September 1, and in October to £78-80, and from November 1 to the close of the year it was £87%.

Average monthly quoted prices of antimony, prompt delivery at New York, 1935-39, in cents per pound ¹

Month	Chinese brands (duty paid)				American brands				
	1935	1936	1937	1938	1939	1936	1937	1938	1939
January February March April May June July August September October November December	12.75 12.75	12. 96 13. 05 13. 42 13. 50 13. 50 13. 20 13. 00 12. 57 12. 50 12. 50 12. 50 12. 93	14. 14 14. 69 16. 92 16. 79 14. 79 14. 70 14. 70 15. 53 (2) 15. 91 14. 69	15. 56 15. 74 15. 75 15. 65 14. 46 13. 94 14. 00 14. 00 14. 00 14. 00 14. 00	14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.50 16.50	12. 74 12. 99 13. 07 12. 67 12. 41 11. 72 11. 24 11. 12 11. 76 12. 07 12. 21 12. 95	14. 14 14. 55 16. 37 16. 02 14. 79 14. 70 14. 81 15. 34 16. 59 16. 92 15. 87 14. 12	13. 75 13. 75 13. 75 13. 65 12. 46 11. 73 11. 02 10. 88 11. 32 12. 06 12. 25 11. 56	11. 68 11. 25 11. 27 11. 50 11. 70 12. 00 12. 00 12. 87 14. 00 14. 00
Average	14.08	12, 97	15. 30	14. 59	14.44	12. 25	15. 35	12.35	12, 36

Metal Statistics, 1940, pp. 521, 529.
 No average owing to lack of offerings during greater part of month.

Quotations for antimony ore on January 5, 1939, were reported as follows by Engineering and Mining Journal Metal and Mineral Markets: "Per (short-ton) unit of antimony contained, 50 to 55 percent, \$1.20 @ \$1.25; 58 to 60 percent, \$1.30 @ \$1.40; 60 to 65 percent, \$1.40 @ \$1.60. London, 60 to 65 percent, 6s. 6d. @ 6s. 9d. per long-ton unit." There was no variation in the domestic market price and very little in the London quotation until the latter part of April, when the domestic price for 50- to 55-percent ore was \$1.25 @ \$1.35; 58- to 60-percent ore, \$1.40 @ \$1.50; and 60- to 65-percent ore, \$1.50 @ \$1.60. In London the quotation for 60- to 65-percent ore was 6s. 6d. @ 7s. per long-ton unit. For the rest of the year there was a slight gradual increase in the domestic market price; the highest quotation was for the weeks of December 7 and 14, when domestic antimony ore was offered for \$1.55 @ \$1.60 for 50- to 55-percent ore; \$1.60 @ \$1.65 for 58- to 60-percent ore, and \$1.80 @ \$1.90 for 60- to 65-percent ore. The London market price for these respective weeks was 9s. 6d. @ 10s. 6d. for 60- to 65-percent material. The year closed with the domestic price of the lower-grade ore \$1.50 @ \$1.60 and of the other grades \$1.60 @ \$1.70 and \$1.80 @ \$1.90. The London price closed at 10s. 6d. for 60- to 65-percent ore.

WORLD PRODUCTION

Data on world production in 1939 are incomplete, but statistics from countries that contributed 89 percent of the total in 1938 indicate a 1-percent decline to an estimated 32,000 metric tons. China, formerly by far the outstanding source of antimony, dropped to third place in 1939, its output (exports) having been exceeded by that of Bolivia and of Mexico. Bolivia increased its output (exports) 7 percent in 1939 compared with 1938, whereas Chinese exports declined 17 percent and Mexico's output fell 2 percent. Yugoslavia, the fourth largest producer, made a notable gain in production, as did Canada where the recovery of byproduct antimony recently was inaugurated at the lead smelter at Trail, British Columbia. In 1939 Bolivia produced 29 percent, Mexico 23 percent, China 20 percent, and Yugoslavia 10 percent of the world supply of antimony; the United States produced only 1 percent.

World production of antimony, 1935-39, by countries, in metric tons ¹ [Compiled by R. B. Miller]

Country	1935	1936	1937	1938	1939
North America:					
Canada Honduras	5		² 18	34	³ 550
Mexico 4	4, 204	6, 719	9, 788	7, 391	7, 243
United States	466	630	1,056	542	328
South America:	1	}	0.7		45
Argentina Bolivia ⁶	3, 376	6, 040	6, 556	174 8, 682	(5) 9, 255
Peru	288	696	848	963	775
Europe:	1			000	
Czechoslovakia	1,944	829	997	3 800	(5)
Germany (Austria)		100	200	145	(5)
Greece	29 369	159 402	414	740	(5)
Italy Portugal	309	20	414	131	(5) (5)
Yugoslavia	162	1, 301	1, 447	2, 739	3, 337

See footnotes at end of table.

World production of antimony, 1935-39, by countries, in metric tons-Continued

Country	1935	1936	1937	1938	1939
Asia:					-
Borneo, British		30	4		(5)
Burma		82	28	84	(5)
China 7		16, 348	14,702	7,797	6, 497
Chosen	2	14	8	(5)	92
India, British				11	(2)
Indochina	16	38	5	83	(6) (8)
Japan		110 457	(⁵) 536	(§) 398	460
Turkey (Asia Minor)	103	407	990	998	400
Africa:	810	983	778	744	(5)
Algeria	910	900	110	144	(9)
Morocco: French	179	88	20	125	(A)
Spanish		12	158	93	(<u>\$</u>)
Southern Rhodesia		68	64	63	50
Union of South Africa		15	0.2	10	6
Oceania:	1	1			
Australia:	1		l		
New South Wales	24	45	70	70	(5)
Queensland		4	(8)	7	
Victoria	5	$9\bar{4}$	145	195	100
Western Australia	1		3 245	196	(5)
New Zealand				1	(5) (5)
A1VII					
	29, 800	35, 300	38, 200	32, 200	³ 32, 000

¹ Approximate recoverable metal content of ore produced exclusive of antimonial lead ores. 80 percent of reported gross content is used as a basis of calculations for all countries except Bolivia, Mexico, Peru, and the United States, where 92 percent is used.

2 Recoverable metal content of concentrates exported.
4 Includes antimony content of antimonial lead.
5 Date not available.
6 Exports.
7 Figures represent antimony content of regulus, crude antimony, and oxide exported.
8 434 kilos.

REVIEW BY COUNTRIES

Bolivia.—The antimony situation in Bolivia is described in a report by C. W. Wright, foreign mineral specialist, Bureau of Mines, entitled "Bolivia's Mineral Resources, Production, and Trade," La Paz, Bolivia, September 15, 1939. The section on antimony is quoted in full:

General statement.—Mining of antimony in Bolivia started in 1903, and from 1915 to 1917 Bolivia was second only to China in world's output. From 1926 to 1929 this industry was again active, and since 1934 production has increased steadily each year from 2,000 tons to 16,576 tons of concentrates or 9,427 tons of metal in 1938.

Antimony production in Bolivia is not restricted to any single area but is found in many of the provinces. The Districts of Tupiza, Department of Potosi,

and of Challapata, in the Department of Oruro, are the most important.

Excepting the few antimony-producing mines belonging to the larger mining companies, most of the mines are small and subject to intermittent operations dependent upon the market price for antimony and the local cost of mining. The average grade of the concentrate produced is from 60 to 65 percent. Lead, arsenic, and copper are sometimes present in the product and tend to reduce its selling value. Gold is also present, amounting in some instances to 20 grams or more, and this naturally adds to the selling value.

An attempt was made during the World War to smelt the antimony ore at Uyuni, in Bolivia, but the plant was soon abandoned. Plans are being studied whereby this may now be done by the use of domestic crude oil. At present all of the product is exported, 75 percent of it going to Belgium in 1938 and most of this was re-exported to Germany. The average tenor of the product is 60 percent

antimony, 1 percent lead, 0.2 percent copper, and 0.2 percent arsenic.

Were the market for antimony to improve as it did during the World War, it is probable that Bolivia could again increase the output of antimony ore to a few

times present production.

General occurrence of antimony ore.—Though the antimony deposits occur in the tin belt, the ore occurrence is not directly associated with that of the tin deposits.

Quartz veins traversing narrow belts of fractured black slates, often tens of miles in length, carry the antimony ore. These veins are usually narrow and irregular, and often ore masses occur where the veins intersect one another. At some of the mines veins 3 feet or more in width occur, and in these the antimony ore is found in large masses and disseminated in the quartz. A brief description is given in the following text of the principal mine in each of the nine zones.

The antimony deposits are more frequent in the southern part of the mineral belt away from the granite intrusive masses, which are exposed on the surface to the north. This granite intrusive, even though it does not outcrop on the surface, underlies this southern portion of the mineral zone, and it is believed that both the granite and the mineral deposits have been derived from the same underlying

In general, the development of these deposits is limited to the preparation of sufficient ore for only a few months' output. If capital were available to open up new ore bodies along the antimony-bearing zones, under proper technical guidance, it is probable that the present known ore reserves could be increased many times.

Descriptions of principal mines.—Nearly 60 percent of the antimony output, as well as the richest product, comes from the mines in the Department of Potosi. These occur in the vicinity of Tupiza, and the antimony veins here are usually wider and more persistent than in the other districts. This district is on the east slope of the Andes at a relatively low altitude. Next in importance are the mines near Challapata in the Department of Oruro.

In discussing the principal mines, first those in the Department of La Paz are

described, followed by those in the antimony mineral belts to the south.

Espiritu Santo mine.—(Bustos, owner, Rafael Taborga lessor.) in the Caracata District, Province of Loayza, 40 miles from La Paz. This mine is

At this mine irregular quartz veins containing antimony occur in a zone of black shale 160 feet wide which crosses the Caracata River diagonally, in a northwesterly direction and with an easterly dip of 60°. The ore bodies are developed by several adits, and the ore is mined by hand drilling without any special system and only the richer ore is stoped. From the mine the ore is trammed to the sorting floor at the mouth of the lowest adit, where it is concentrated by the usual hand Present production of concentrates is 50 tons a month. As much of the ore is disseminated in the quartz and is discarded, it would be possible with a small mechanical concentrating plant to double the present output. The locality, however, is unfavorable, as the water supply is small and malaria dominant. The mineral zone extends for some miles beyond this mine, and in it the reserves

of possible ore are believed to be large.

*Malliri mine.—(Empresa "Junkers," Jose Domingues, owner.) This mine is in the Province of Abaroa, northeast of Challapata, 15 miles from the railway

station.

Here stibnite is found in quartz veins forming masses from 2 to 8 feet wide, and from 30 to 80 feet in length and depth. The general strike of these veins and the black slate country rock in which they occur is north-south and the dip 75° to the east. The ore is mined by open-cuts and adits up to 600 feet in length. The monthly output is 75 tons of 60-percent antimony product, which is made by 15 hand sorters, a hand crusher, a hand jig, and two buddles. Fifty men and women are employed, and the output per man-shift is about 60 kilos of product. It is claimed that, with higher metal prices, the output could be largely increased. Challviri mine.—(M. Hochschild, owner.) The Challviri mine is located 25 miles posth of University of the Morocala plateau at an elevant

miles north of Uncia on the southeast side of the Morocala plateau at an eleva-

tion of 11,200 feet.

The ore deposits are quartz veins with stibnite occurring in masses and disseminated in the quartz. Chalcopyrite is also present in small amounts. The country rock is the friable black slate. Monthly output is 50 tons, all of which

is hand mined and treated. Ore reserves are small.

La India mine.—(Fadic, owner.) This mine is in the Province of Bustillos, 30 La India mine.—(Fadic, owner.) This mine lies in a mineral zone 984 feet wide traceable for miles south of Uncia.

20 miles in a southeast direction from La India to Terremoto.

Small irregular deposits of stibnite in quartz are found at a number of places along this zone of black slates. The India mine is at 13,200 feet elevation. Formerly this mine produced 100 tons a month, but present output is limited to Ferberite is also found in this mine in separate veins, and of this ore an output of from 1 to 2 tons a month is made, averaging 70 percent WOs. Although ore reserves are small, it is believed that this zone is a potential source of antimony

Irpa Irpa mine.—(Manuel Solares, owner.) The mine is located in the

Province of Chayante 40 miles southeast of Uncia.

This mine also lies in a zone of black slates extending from Amayapampa to beyond Morochata on the Colorado River, a distance of about 40 miles. Within this zone several other mines have been worked in the past, namely at Amayapampa, Capacirca, Cebadillas, and Chuquiuta. In general, these deposits are irregular quartz veins or lenses containing stibnite, and the product contains gold in payable quantities. At the Irpa Irpa mine the monthly production is 30 tons of concentrates and 34 workmen are employed. All work is done by hand. The ore reserves within this zone are very limited, but with exploration work it is believed that new important deposits will be found.

Churata mine.—(Stevenson, owner.) This mine is located in the Province of

Porco near Canton Yura.

This is only one of a number of mines which occur in the slate zone extending There are about 100 from Aguas Castillas to Tupiza, a distance of 85 miles. small mines along this zone which were largely responsible for the high output of antimony ore during the World War. Besides the Churata mine in the northern part of the zone, mining is in progress at the Putina, Dolores, and Uyuni Chico mines, owned by Rocsabado, and the Oropeza mine near Tocla, owned by Guerra and Paredes. In the southern part of the zone on Rio Blanco are the Huarojla and Thapi mines, owned by Hugo Gericke. The Churata mine, which is representative of the others, happens to be the largest producer at present. deposit consists of a series of quartz stibnite veins with occasional ore concentrations in masses as at the other mines already described. This mine alone produced 407 tons in 1937. The total annual output of the zone is about 1,500 tons of concentrates.

Churquini mine.—(Prisk & Wright, owners.) The Churquini mine is in the

Province of Sur Chichas 20 miles north of Escoriani.

Here a large number of small quartz veins with nests of antimony occur in a much disturbed zone of friable slates. In places a network of these veins is formed, and it is in these that the concentrations of antimony usually occur. This mine has been one of the largest producers in recent years, and in 1937 the The ore reserves at this output was 660 tons containing 68 percent antimony.

mine are limited and the mineral zone is relatively small.

Cobija mine.—(Rocabado, owner.) This mine is situated 25 miles west of the railway station of Oro Ingenio. This mine is the most important of several that have been developed along a fractured zone in a black slate belt extending for 20 miles in a northwesterly direction. The ore body at Cobija is a rich antimony quartz vein 3 feet in width which is being mined from a shaft 500 feet in depth. Other mines along this zone are Candelaria, owned by Pedro San Juan, and La Tesorera, owned by Hugo Gericke. No estimate can be made of the possible ore reserves along this zone, but it is believed that it is one of the richest antimony zones in Bolivia. At the Cobija mine there is a small mechanical concentrating mill with a Krupp ball mill, two jigs, and one table, also a sorting floor with hand jigs and buddles. The production in 1937 was 328 tons.

Santiago mine.—(Cia. Minera y Agricola Oploca de Bolivia, owners.)

Santiago mine is situated 3 miles west of Oploca.

In this area a mineralized zone of black slates has been traced for 3 miles, beginning with the San Pedro mine, of Hugo Gericke, on the south which has been intensely worked in the past and ending at the Santiago mine to the north. The zone at Santiago is 300 feet wide. Within it is a wide barren quartz vein and on each side of it a number of irregular and nested quartz veins with stibnite. At this mine the known ore reserves are estimated at 9,000 tons of antimony

metal, but because of the lead content of from 2 to 4 percent in the concentrate the mine is not now being worked. The mine is well-developed by several adits.

Methods of mining and concentrating the ores.—With few exceptions all of the antimony mines in Bolivia are worked by the most primitive methods, and much of the ore is wasted in the attempt to produce a high-grade concentrate. Only the richer portions of the ore bodies can be mined by this system. As is usual at most mines in mountainous districts, the ore bodies are first explored by surface cuts and trenches along the veins and then by adits to explore the deposits in depth. These adit levels are usually from 50 to 100 feet apart vertically and up to 600 feet or more in length. They are connected by raises, and from these stopes are started and the ore between the levels is stoped and sorted underground, the richer ore being dumped down the raises and frammed to the surface by car or wheelbarrow, while the waste rock and low-grade ore is usually left in the stopes as filling. Most of the mines are limited to hand mining operations.

The sorting floor is usually near the mouth of the lowest adit. Here women sort out the rich ore, using hammers to break off bits of waste rock from the larger pieces. The remaining poor ore is crushed and concentrated by hand methods.

The total cost of mining, concentrating, and transport of the antimony concentrates to the railway station, according to schedules filled in by the operators, varies from 600 to 1,000 Bolivianos, or \$20 to \$30 a ton, and of this total only about 40 percent is for labor, the rest being for supplies, transport, and overhead, including local taxes.

Marketing of antimony concentrates.—Until recently the producers of antimony concentrates sold their product to one of the several ore-purchasing firms, who in Today, turn advanced funds to the mine operators for supplies and wages. however, the Banco Minero is the sole local purchaser in Bolivia. The concentrates are usually purchased at a fixed price based upon the London market quotations, and for delivery at the railway station nearest the mine.

The large companies, however, make contracts directly with the smelting

companies for specified amounts within a definite period.

Prices are based on a 60-percent product, and a premium of B. 20 is paid per unit above this and a deduction of B. 30 is made per unit below 60 percent.

Generally there is no fixed penalty for copper in antimony ores, but concentrates containing a considerable amount of copper (over 0.5 percent) can only be sold

with difficulty or may be unsalable.

Arsenic and lead contents combined are usually free of penalty up to 0.5 percent in the "pure" ores and up to 1 percent in the "impure" ores. In the United States for excess content of lead, a deduction of 1 unit of antimony is made for each unit of lead in excess of 1 percent and 2 units for each unit of arsenic in excess of 0.2 percent arsenic. The "impure" ores are sold for the most part to Japanese ore buyers, who also pay for the gold content.

Ores containing over 10 percent lead may be sold without lead penalty, and only in case of a 15-percent or greater lead content is it possible to obtain payment

for lead.

Exports of antimony concentrates since 1937 and their value per ton were:

1937—11,971 valued at \$1,264,330 or \$105.59 per ton 1938—16,576 valued at \$1,167,474 or \$73.08 per ton 1939—7,400 valued at \$584,137 or \$78.94 per ton (6 months)

These figures are from the official export statistics, the average grade of the ore

shipped being 60.5 percent antimony.

Possibility of increasing antimony output.—The output of antimony jumped from 6,093 tons of concentrates in 1929 to 15,976 tons in 1938. Just how much the output can be further increased will depend, first of all, on the market price of the metal and to what extent the Government will encourage production by a reduction of present high taxes and by financial and technical assistance through the Banco Minero, which bank is now the sole local purchaser of ores in Bolivia. Any increase in the output of antimony in Bolivia will thus depend largely upon the attitude the Government takes toward the industry and the extent of its financial and technical aid to the industry. It is the announced intention of the Government to give financial and technical aid to the small mine operators through the Banco Minero and the Department of Mines and Petroleum. some instances this aid may consist in helping the operator to install a small mechanical plant for the treatment of low-grade ores, and in other cases in the construction of a road to facilitate transport.

The Department of Mines and Petroleum estimates the total reserves of probable antimony ore at 50,000 tons metal content, while the possible reserves are much greater—sufficient for some decades at the present rate of production. There is thus plenty of ore available from which, with favorable market conditions and Government assistance, Bolivia could more than double her present output.

Bolivia as a source of antimony supply for the United States.—Present-day world conditions justify an opinion that there may soon be a real opportunity for Bolivia

to enter the United States market.

In 1937 the United States consumed 18,132 tons of antimony metal, over 80 percent of which was imported. Of this tonnage Bolivia supplied 1,678 tons of concentrates containing 1,047 tons of metal in 1937, and 1,880 tons of concentrates with 1,132 tons of metal in 1939.

with 1,133 tons of metal in 1938.

Purchases of Bolivian antimony ore by American consumers would have to be made through the Banco Minero or from the large producing companies. long-term contracts could be concluded for specific tonnages at a fixed price over a period of years, this would be a big help to stimulate a greater output of antimony in Bolivia. Because of the impurities in the antimony concentrates, exports to the United States have been relatively small, even though the grade of the product is high.

Canada.—Antimony production consisted of antimony metal produced at the new plant of the Consolidated Mining & Smelting Co., Ltd., at Trail, British Columbia, and antimony in ores exported from a property near Fort St. James, British Columbia. The output totaled 606 short tons. Imports of metallic antimony declined from 428 tons in 1938 to 119 in 1939. At the Trail plant it was reported that production was being obtained from accumulated antimony-arsenic flue dusts. An excellent product was being made, but all of the difficulties

that developed in the process have not yet been overcome.

China.—Japanese occupation of eastern China caused a further decline in exports during 1939. Apparently the Chinese have maintained control of the producing areas, but Japan controls the normal trade routes. Early in 1940 it was reported that reopening of the Yangtze River by the Japanese had not resulted in any increase in shipments. Most of the material exported in 1939 went via French Indochina. According to official reports, Chinese exports of crude antimony increased from 544 metric tons in 1938 to 1,053 in 1939. In 1938, 531 tons were shipped to Hong Kong, whereas in 1939 only 2 tons were consigned there. In the latter year 1,051 tons were sent to "other countries," presumably largely to French Indochina. Exports of regulus declined from 7,183 tons to 5,707. No oxide (etc.) was shipped in 1939 compared with 257 tons in 1938. In 1939, 5,228 tons of regulus were sent to French Indochina and 474 to Hong Kong, whereas in 1938, 6,617 went to Hong Kong and only 378 to French Indochina.

Exports from Hong Kong increased from 2,994 to 5,721 tons, but toward the end of the year it was reported that stocks were nearly exhausted and exports almost nil. Ore shipments from this port

declined from 545 tons to 1 ton.

Germany.—German imports of antimony increased from 2,105 metric tons in 1936 to 3,642 in 1938. Receipts during the first 6 months of 1939 were 1,597 tons. Of the 1938 total China supplied 71 percent, Czechoslovakia 13 percent, Yugoslavia 8 percent, and other countries 8 percent. Germany has intensified mining operations in conquered territory in an endeavor to meet its mineral deficiencies. In Slovakia antimony ores have been produced near Medzibrod, near Poproc, and near Spisska Bana. Exploration is under way at various other localities. An antimony smelter at Vajskova has produced about 1,300 tons of metal annually in recent years.

Mexico.—Antimony is derived from three types of ore in Mexico. The most important source is straight antimony ore, which is mined in several localities, chiefly in San Luis Potosi, Oaxaca, Nuevo Leon, and Sonora. Considerable antimony is recovered in elemental form and in alloys at the lead refineries near Monterrey as a byproduct of lead ores. The third source is the mercury-antimony ores of the Huitzuco district, Guerrero. The greater part of the straight antimony ore is shipped to the smelter at Laredo, Tex., and imports of these ores into the United States increased during 1939. Mixed concentrates from the Huitzuco district are treated at a Los Angeles plant where both mercury and antimony are recovered. Production of antimony from this source was higher in 1939 than in 1938.

The 12-percent export tax imposed in 1938 on virtually all products shipped from Mexico proved unduly burdensome on producers of low-grade antimony concentrates. To alleviate the situation the Government in August 1939 removed the tax on all ores containing less than 25 percent antimony.

Yugoslavia.—The increase in output reported for Yugoslavia in 1939 resulted from the first full-year operation of the new 1,800-ton per year smelter of Podrinje Consolidated Mines, Ltd., near Krupanj and completion of another smelter near Loznica, owned by Montania A. G.

CADMIUM

The cadmium industry experienced a more satisfactory year in 1939 than in 1938. Domestic production of cadmium as metal and in compounds increased 15 percent over 1938 and nearly equaled the record output of 1937. Apparent consumption was 37 percent higher in 1939 than in 1938, and in consequence the United States returned to its former position as a net importer. Imports of metal increased four-teenfold, whereas exports fell from 458,283 pounds in 1938 to none in 1939. Sales of metallic cadmium more than doubled and exceeded production by 19 percent. Producers' stocks of metal declined from an estimated 1,750,000 pounds at the end of 1938 to approximately 950,000 pounds on December 31, 1939.

Most of the increase in demand in 1939 came from the plating and pigment industries. The high prices for cadmium in 1937 and 1938 stimulated the use of substitutes for cadmium plating, but with the return of more normal prices in 1939 some manufacturers employed cadmium again. The use of cadmium in bearing metals, which exhibited such a meteoric rise a few years ago, apparently did not increase in 1939 in proportion to the advance in automobile production. Production of the red and yellow cadmium lithopones, as well as straight cadmium sulfide, was substantially higher in 1939 than in 1938.

Data on the cadmium industry in 1939 are not available for many countries. Canada and South-West Africa established new output records. These countries and the United States, which supplied 58 percent of the 1938 output, produced 21 percent more cadmium in 1939 than in 1938. Production in Australia declined. Germany is reported to have restricted the use of cadmium in pigments, whereas British Empire resources were said to be adequate for all essential needs.

The downward trend in prices evident in 1938 continued during the first half of 1939. The New York quotation for commercial sticks, wholesale lots, dropped from 60 to 50 cents a pound between January 2 and the latter part of March. Early in August, as buying improved in anticipation of the European crisis, the price began moving to higher levels, and at the close of the year stood at 75 cents. The average quotation for the year was only 64.1 cents compared with 98.0 cents in 1938, but the price made a substantial net gain during the year. In March the premium for platers' sticks was reduced from 25 to 5 cents a pound.

Cadmium produced, sold by producers, imported, and consumed in the United States, 1935-39, in pounds

		Produced		Metallic			
Year	Metallic cadmium	Cadmium compounds (estimated Cd content)	Total cadmium	cadmium sold by producers	Metallic cadmium imported	Apparent consump- tion	
1935. 1936. 1937. 1938.	3, 477, 091 3, 633, 495 3, 995, 739 3, 753, 323 4, 141, 242	507, 400 626, 800 828, 000 431, 000 679, 000	3, 984, 000 4, 260, 000 4, 824, 000 4, 184, 000 4, 820, 000	4, 023, 900 3, 626, 669 3, 801, 321 1 2, 191, 035 4, 933, 778	185, 387 576, 139 828, 535 22, 582 309, 874	4, 169, 000 4, 836, 000 5, 652, 500 3, 748, 000 5, 130, 000	

¹ Of this quantity 458,283 pounds were exported.

DOMESTIC PRODUCTION

The figures on cadmium production in the foregoing table include metal derived from domestic and foreign raw material refined in the United States. Data are not available on the quantity produced from each source, but foreign metal apparently represents a substantial part of the total. In the first 11 months of 1939 Mexico reported shipments of crude material to the United States containing 816 tons

of cadmium compared with 838 tons in all of 1938.

Cadmium is derived chiefly as a byproduct from zinc ores, and its production depends to some extent on the rate of zinc output. In recent years, however, stocks of cadmium-bearing flue dusts and similar products accumulated over several years have made possible an increase in cadmium production that is relatively more rapid. By 1937 much of this material had been used, and since then production has been limited to some extent to that derived from current zinc operations. The recovery of metallic cadmium was discontinued at the Herculaneum (Mo.) plant of the St. Joseph Lead Co., and the Baltimore plant of the Chemical & Pigment Co., Inc. No new producers were reported in 1939.

The following companies produced cadmium or cadmium compounds in 1939:

Location of miant

	Location of plans
American Smelting & Refining Co	Denver, Colo.
American Steel & Wire Co	Donora, Pa.
American Zinc Co. of Illinois	Fairmont City, Ill.
Anaconda Copper Mining Co	Great Falls, Mont.
Ceramic Color & Chemical Manufacturing Co	New Brighton, Pa.
Chemical & Pigment Co., Inc	
E. I. du Pont de Nemours & Co	
Eagle-Picher Mining & Smelting Co	Henryetta, Okla.
Harshaw Chemical Co	
New Jersey Zinc Co	
St. Joseph Lead Co	Josephtown, Pa.
Sherwin-Williams Co	
Sullivan Mining Co	
United Color & Pigment Co	
U. S. Smelting, Refining & Mining Co	Midvale, Utah.
-	

A small but increasing quantity of secondary cadmium is recovered from scrap resulting largely from the manufacture of automobile bearings. It is not included in the statement of production, as it

would represent duplication of metal previously reported.

Recent additions to the technical literature on production processes include a description of operations at the cadmium plant of the Sullivan Mining Co. at Kellogg, Idaho.3 The separation of cadmium from zinc by the use of granular aluminum is described by Townsend and Cade. Patent 2,178,763, issued November 7, 1939, covers various methods of purifying cadmium by the addition of caustic soda while the metal is in the molten state.

DOMESTIC CONSUMPTION

The statistical trends in consumption during 1939 have been discussed in the summary at the beginning of the cadmium section of this chapter.

Sanderson 5 has described the uses of cadmium as follows:

Cadmium is a metal which, in various forms, is becoming of increasing economic importance. It has been used, when tin was scarce, as its substitute in solders, but this is not now a particularly valuable application. Its main value solders, but this is not now a particularly valuable application. Its main value is as an alloy of copper for the production of telegraphic, telephonic, and power transmission wires, because of the properties it gives to wire so produced. It has durability, good tensile strength, hardness, a high annealing temperature, and electrical conductivity, all of which are desirable properties in these uses. It thus possesses the virtues of both hard-drawn copper and the bronzes. Copper-cadmium trolley wire for tramcar systems has, in fact, proved extremely successful, having these times the life of hard-drawn copper wire. having three times the life of hard-drawn copper wire.

Copper-cadmium rolled plates have been used with some success for locomotive firebox plates, and castings made from a similar alloy have been used in electrical Alloys into whose composition the metal enters have been used for watch and clock hairsprings, because they have certain of the characteristics of steel, but add to these a resistance to corrosion and a nonmagnetic property. A small proportion of the cadmium produced is used with cerium earth metals

for producing spark-emitting alloys for use in cigarette lighters.

Alloys of cadmium with gold have been used in making jewelry. Silver-cadmium alloys are used for producing domestic silver. The most encouraging employment of the metal today, however, is as a constituent of bearing metals, on account of the low coefficient of friction obtained. Alloys of lead and cadmium appear to be the best for this purpose, though magnesium has also been introduced with good Cadmium in combination with bismuth and lead bismuth and tin, or lead and tin, has produced a range of fusible alloys for the production of fire-extinguishing devices, safety devices, electric fuse wires, and for certain copies for the reproduction of type matter in newspaper work. Cadmium is also a good deoxidizer for alloys of aluminum, silver, and nickel.

Cadmium is also used for electroplating and rustproofing, having certain advantages, such as thinness of coating, freedom from peeling, etc. Another valuable use is for accumulator cells, often in combination with nickel. Cadmium amalgams have been used in dentistry, but only where better and more expensive alloys could not be used. Cadmium oxide has been used as an electric-furnace high-temperature resistance material. A cadmium vapor arc lamp has been designed. Nor can one omit the very great use of the metal in paints, colors, and glazes; in photography for preparing the sensitive plates; and in medicine as "salts."

The toxic effect of cadmium in foods contaminated by contact with cadmium-plated containers is being investigated by the United States Department of Agriculture (Food Research Division Contribu-

^{*} Woolf, W. G., and Crutcher, E. R., Making Electrolytic Zinc at the Sullivan Plant: Eng. and Min. Jour., vol. 140, No. 8, August 1939, p. 77.

4 Townsend, F. E., and Cade, G. N., Separation of Cadmium from Zinc: Ind. Eng. Chem., vol. 12, No. 3, March 1940, pp. 163-164.

5 Sanderson, L., Cadmium: Canadian Min. Jour., vol. 60, No. 8, pp. 481-483.

tion No. 455). Anemia and marked enlargement of the heart were observed in rats fed on a diet containing 0.0031 to 0.025 percent cadmium. The Food and Drug Administration filed a libel action in the Federal Court of New York for the seizure of 40,000 lipsticks imported from France on the grounds that the cadmium and selenium they contained rendered them dangerous and in violation of section 601 (a) of the new food, drug, and cosmetic act.⁶

FOREIGN TRADE

Official statistics record separately only the imports of metallic cadmium. There is a limited import and export trade in cadmium compounds, and some metal is known to have been exported in former years, but the quantities involved are believed to be relatively unimportant except in 1938 when exports totaling 458,283 pounds were reported to the Bureau of Mines. No exports of metal were reported in 1939. Exports of cadmium with benefit of draw-back, mostly in bearings, totaled 52,149 pounds in 1939 and 36,081 in 1938. Imports of metallic cadmium in 1939 were much larger than in 1938 but were considerably below those of 1936 and 1937. Of the 309,874 pounds shipped in 1939 Belgium supplied 197,454 pounds, Netherlands 38,038, Italy 35,304, Canada 30,068, Norway 6,720, Poland and Danzig 2,240, and Germany 50. Belgium contributed 20,067 pounds of the 22,582 imported in 1938. The average value of the cadmium imported in 1939, as reported by the Customs Bureau, was \$0.42 a pound compared with \$1.35 in 1938, \$1.30 in 1937, and \$0.71 in 1936. The United States also imports crude materials containing cadmium for refining. Shipments of material of this type from Mexico to the United States for 11 months of 1939 contained 816 tons of cadmium compared with 838 tons for all of 1938.

PRICES

According to Engineering and Mining Journal Metal and Mineral Markets, the average price of cadmium in 1939 was 64.1 cents a pound compared with 98.0 cents in 1938, \$1.223 in 1937, 97.8 cents in 1936, and 55 cents in 1933 and 1934. These prices represented the average of the producers' and platers' quotations. As stated in Minerals Yearbook, 1939, this authority established in 1939 another average monthly price based solely upon quotations by producers for ordinary commercial shapes, quantity business. For 1939 this average was 59.2 cents a pound. Incomplete data obtained by the Bureau of Mines from producers indicate that the average value realized on sales of metallic cadmium in 1939 was 54 cents a pound compared with 75 cents in 1938, \$1.14 in 1937, 80 cents in 1936, and 50 cents in 1935.

At the beginning of 1939 patented shapes for platers were quoted at 85 cents a pound, New York, and quantity business, commercial sticks, at 60 cents a pound, but before the end of the month (January 23) these prices were reduced 5 cents owing to the weakness of the foreign market. On March 28 there was a second reduction of 5 cents in the price of commercial sticks, whereas the price on cadmium in patented shapes, for platers, was reduced 25 cents; thus the quotations became 50 and 55 cents, respectively. Prices remained at these

⁶ Oil, Paint and Drug Reporter, Cadmium and Selenium Held Dangerous in Cosmetics: Vol. 135, No. 26, June 26, 1939, p. 3.

levels until August 9, when the quotation for each item was advanced 5 cents. On September 5, commercial sticks were quoted at 65 cents a pound and patented shapes at 70 cents a pound; again on October 3, there was a further increase of 10 cents to 75 cents for commercial sticks and 80 cents for patented shapes. These prices remained unchanged for the rest of the year.

Effective January 1, 1939, the duty on cadmium was reduced from

15 cents to 7.5 a pound under the Canadian Trade Agreement.

The London quotation on January 5 was 2s. 1d. a pound. Between this time and August the trend in prices was downward, but after the outbreak of war in Europe quotations rose from less than 2s. late in August to 5s. 6d. at the close of 1939.

WORLD PRODUCTION

Data on world production of cadmium in 1939 are very incomplete, but production in the United States, Canada, and South-West Africa (which furnished 58 percent of the estimated output of 4,000,000 kilograms in 1938) increased 21 percent. The United States produced 47 percent of the 1938 total and increased its output 15 percent in 1939. Notable gains also were made by Canada and South-West Africa, but Australia produced 12 percent less cadmium in 1939 than Press reports indicate that Italy's output should have been about 100,000 kilograms in 1939. Production in Norway and Belgium probably decreased slightly, whereas that in the United Kingdom gained slightly.

World production of cadmium, 1935-39, by countries, in kilograms [Compiled by R. B. Miller]

	inplied by it.	D. Miller			
Country	1935	1936	1937	1938	1939
Australia (Tasmania) Belgium Canada. France Germany Italy Japan Mexico Norway Poland South-West Africa U. S. S. R United Kingdom United States: Cadmium compounds a Mexico	121, 000 167, 000 16, 360 3, 236 (3) 118, 335 120, 700	251, 826 203, 997 356, 484 84, 000 302, 000 54, 630 23, 563 (9) 101, 876 140, 900 4 98, 900 50, 000 22, 160 284, 310 1, 648, 117	210, 608 271, 000 338, 018 99, 000 355, 000 90, 850 (2) 154, 192 124, 461 4 138, 300 50, 000 124, 142 375, 573 1, 812, 427	199, 326 182, 000 317, 122 116, 500 432, 000 69, 000 (3) (3) 207, 667* 244, 000 116, 000 (7) 124, 898 195, 000 1, 702, 470	175, 150 1 530, 800 426, 234 (2) (2) (3) (3) (3) (3) (2) (2) (2) (3) (2) (3) (4) (5) (7) (8) (9) (9) (1) (1) (1) (2) (3) (4) (5) (7) (8) (9) (1) (1) (1) (1) (2) (3) (4) (5) (7) (8) (9) (1) (1) (1) (1) (2) (3) (4) (5) (7) (7) (8) (8) (9) (1) (1) (1) (1) (2) (3) (4) (5) (6) (7) (7) (7) (8) (9) (9) (1) (1) (1) (1) (1) (1) (2) (3) (4) (4) (5) (7) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9
	3, 150, 000	3, 600, 000	4, 200, 000	(3)	(2)

² Data not available. The Mexican Government reports the total cadmium content of material produced in Mexico as follows: 1935, 597,527 kilos; 1936, 535,017 kilos; 1937, 619,792 kilos; 1938, 762,398 kilos; and 1939, 816,584 kilos. This material is exported for treatment elsewhere; therefore, to avoid duplication of figures, the data are not

included in this table.
4 Cadmium content of quantity exported. Represents in part shipments from stocks on hand.
5 Estimated cadmium content.

REVIEW BY COUNTRIES

Australia.—The Electrolytic Zinc Co. of Australia, Ltd., produced 172 long tons of cadmium in the year ended June 30, 1939, of which 12 tons came from precipitates produced at the lead smelter at Port

Pirie and 160 tons from zinc-plant residues from Risdon.

Canada.—Owing to exhaustion of accumulated stocks of cadmium precipitates, cadmium production at Flin Flon declined farther to 70 short tons compared with 94 tons in 1938 and 154 in 1937. This decline apparently was more than offset by an increase in output at Trail as a result of the larger production of zinc.

Germany.—Cadmium is used chiefly in the manufacture of metal bearings, and consumption for this purpose is understood to have increased in recent years. Owing to the relative scarcity of the metal, its use in pigments was restricted in 1939. Cadmium is being

substituted for nickel in some plating applications.

South-West Africa.—The Otavi Mines Co. is the sole producer of cadmium dust in the territory. The dust is recovered as a smelter byproduct from the copper-lead-zinc ores of the Tsumeb mine. No output of this product was made in 1937, but in 1938 production amounted to 387 metric tons as against 351 in the first 9 months of 1939. Exports, marked for Antwerp, rose sharply from 436 metric tons in 1937 to 672 in 1938 and for the first 9 months of 1939 totaled 214 metric tons. The estimated value of these exports was £50,784 in 1937, £51,072 in 1938, and £16,078 in 1939.

PLATINUM AND ALLIED METALS

By H. W. DAVIS

SUMMARY OUTLINE

j	Page	l	
Summary. Salient statistics. Crude platinum Production Purchases. Prices. Refined platinum metals. New metals recovered	749 751 751 751 751	Stocks Foreign trade	752 752 755 755

Although the United States is by far the largest consumer of platinum metals in the world, before 1935 it had contributed only a negligible quantity to the world output. For example, during the 10 years 1925–34 production averaged only about 8,300 ounces annually—1,000 ounces of placer platinum, 600 ounces of palladium-bearing copper ore, and 6,700 ounces as byproducts of gold and other metals. Since 1935, however, chiefly because of large-scale mining in Alaska, production of platinum metals in the United States advanced progressively from 11,552 ounces in 1935 to 48,269 ounces in 1938—40,932 ounces of placer platinum, 7,247 ounces recovered from gold and copper refining, and 90 ounces obtained from platinum-bearing ore. Thus, the United States attained the rank of fourth largest producer of platinum metals in 1938. Although production dropped to 43,760 ounces in 1939, the country retained its rank.

Salient statistics of platinum and allied metals in the United States, 1938-39, in troy ounces

	1938	1939		1938	1939
Production:			Stocks in hands of refiners,		
Crude platinum from placers	40, 932	1 35, 060	Dec. 31: Platinum	71,058	71 200
D4444	20, 002	- 00, 000	Palladium	30, 071	71, 393 29, 273
New metals:			Other	16, 782	16, 884
Platinum	3 30, 444	2 36, 033			10,001
Palladium	3, 653	8, 491	} .	117, 911	117, 550
Other	2, 116	1, 917			
	36, 213	41, 441	Imports for consumption: Platinum	197 000	100 000
	30, 213	41, 411	Palladium.	127, 832 26, 858	190, 226 96, 829
Secondary metals:			Other	6, 499	19, 572
Platinum	44, 654	45, 432		0, 100	10, 012
Palladium	13, 489	13, 039		161, 189	306, 627
Other	6, 148	4, 972	l .		
	64, 291	63, 443	Exports: Unmanufactured	33, 635	46, 329
			Manufactures (except jewelry)	796	4, 041

¹ Subject to revision.

2 In 1938 includes 6, 376 ounces of new platinum from domestic sources, comprising 2,590 ounces derived from crude placer platinum, 25 ounces recovered from ore, and 8,761 ounces obtained from domestic gold and copper ores as a byproduct of refining; in 1939 includes 8,205 ounces of new platinum from domestic sources, comprising 2,919 ounces derived from crude placer platinum, 16 ounces recovered from ore, and 5,270 ounces obtained from domestic gold and copper ores as a byproduct of refining.

In addition to now being the fourth largest source of supply of platinum metals the United States is an important refining center and occupies a prominent position in the international platinum trade. In 1939, for example, 41,441 ounces of new platinum metals and 63,443 ounces of secondary platinum metals were recovered by domestic refiners, 306,627 ounces of unmanufactured platinum metals were imported for consumption, and 46,329 ounces of platinum and

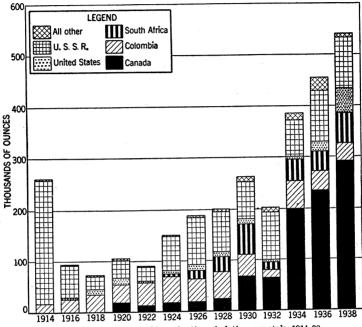


FIGURE 1.—Trend in world production of platinum metals, 1914-38.

allied metals (ingots, sheets, wire, alloys, and scrap) and a considerable

quantity of placer platinum were exported.

Despite the much larger output of domestic placer platinum, most of the new platinum metals recovered by refiners in the United States in 1939, as in previous years, were derived from crude platinum from foreign sources, notably Colombia, as most of the Alaska platinum was refined abroad. The major part of the refined new platinum metals now consumed in the United States emanates from the United Kingdom; the metals are recovered there chiefly as byproducts in refining nickel-copper matte from the Sudbury district of Ontario and, to a smaller extent, from matte from the Rustenburg district of the Union of South Africa and from placer platinum originating in the Goodnews Bay district (Alaska).

Figure 1 shows graphically the trend in world production of platinum metals from 1914 to 1938. The prominent position of Canada since 1930 and especially since 1934 is strikingly revealed, as well as the rise in production in the United States since 1936. The figures plotted for the U. S. S. R. for 1918, 1920, 1922, 1936, and 1938 are rough estimates of crude-platinum metals, whereas those for 1930,

1932, and 1934 are exports of refined platinum.

CRUDE PLATINUM

Production.—Mine returns for 1939 indicate a production of 33,900 troy ounces of crude platinum in Alaska, 1,140 ounces in California, and 20 ounces in Oregon—a total of 35,060 ounces. Comparable figures for 1938 are 39,889 ounces in Alaska, 1,000 ounces in California, and 43 ounces in Oregon—a total of 40,932 ounces. Most of the production in Alaska came from placers in the Goodnews Bay district south of the mouth of the Kuskokwim River. Smaller quantities were recovered in placer-gold mining in the Koyuk district, Seward Penin-Some platinum metals, especially palladium, also were obtained by reworking the tailings from earlier lode mining in the Ketchikan district, Kasaan Peninsula. In California most of the output of platinum was a byproduct of dredges working the gold placers in Merced, Placer, Sacramento, Shasta, Stanislaus, Tehama, Trinity, The principal production in Oregon came from and Yuba Counties. the ocean beach near Cape Blanco in Curry County.

Many gold and copper ores in the United States contain small quantities of platinum metals. In 1939, 8,634 ounces of platinum metals were recovered as a byproduct of refining gold and copper ores

compared with 7,247 ounces in 1938.

The platinum deposits of the Goodnews Bay district, Alaska, have been described recently by Mertie, and operations of the Goodnews Bay Mining Co. have been discussed by Spencer. The report by Mertie includes 27 commercial analyses of platinum metals of the Goodnews Bay district, arranged by creeks in numerical order downstream. The average commercial analysis of platinum metals of the streams is as follows:

Average commercial analysis of platinum metals of the Goodnews Bay district, Alaska, in percent

	Platinum	Squirrel	Salmon	Clara
	Creek	Creek	River	Creek
Platinum Iridium Osmium Ruthenium Rhodium Palladium Gold Impurities	60. 09	68. 48	73. 40	73. 29
	22. 04	13. 12	8. 93	5. 90
	3. 91	3. 27	2. 05	. 69
	. 36	. 26	. 15	. 13
	1. 83	1. 40	1. 88	. 42
	. 21	. 26	. 30	. 56
	. 28	. 41	2. 22	1. 01
	11. 26	12. 80	11. 07	18. 00

Purchases.—Platinum refiners in the United States reported purchases of domestic crude platinum from the following sources in 1939: Alaska, 3,222 ounces; California, 1,225 ounces; and Oregon, 32 ounces—a total of 4,479 ounces (4,993 ounces in 1938). Domestic refiners also reported purchases of 35,135 ounces (28,324 ounces in 1938) of foreign crude platinum in 1939—53 ounces from Canada, 31,748 ounces from Colombia, 1,624 ounces from Ethiopia, and 1,710 ounces from the Union of South Africa.

Prices.—Buyers reported purchases at \$19.39 to \$40.80 an ounce for domestic and \$22.06 to \$38 an ounce for foreign crude platinum in 1939.

¹ Mertie, J. B., Jr., Platinum Deposits of the Goodnews Bay District, Alaska: Geol. Survey Bull. 910-B, 1939, 145 pp.
2 Spencer, W. W., Alaskan Development at Goodnews Bay Makes United States Platinum Production Important: Min. and Met., March 1940, pp. 132-135.

REFINED PLATINUM METALS

New metals recovered.—Reports from refiners of crude platinum, gold bullion, and copper indicate that 41,441 ounces of platinum metals were recovered in the United States from these sources in 1939, an increase of 14 percent over 1938. It is estimated that 12,299 ounces of the total output in 1939 were derived from domestic sources.

New platinum metals recovered by refiners in the United States in 1939, by sources, in troy ounces

	Plati- num	Palla- dium	Iridium	Osmirid- ium	Others	Total
Domestic from— Crude platinum Ore. Gold and copper refining	2, 919 16 5, 270	12 3, 330	295 34	344	29 50	3, 599 66 8, 634
Foreign from crude platinum	8, 205	3, 342	329	344	79	12, 299
	27, 828	149	722	383	60	29, 142
Total recovery: 1939	36, 033	3, 491	1, 051	727	139	41, 441
1938	30, 444	3, 653	1, 247	384	485	36, 213

New platinum metals recovered by refiners in the United States, 1935-39, in troy ounces

Year	Platinum	Palladium	Iridium	Osmirid- ium	Others	Total
1935. 1986. 1937. 1938.	37, 284 39, 728 36, 174 30, 444 [36, 033	1, 432 4, 682 5, 945 3, 653 3, 491	2, 438 1, 678 1, 998 1, 247 1, 051	449 541 640 384 727	457 317 501 485 139	42, 060 46, 946 45, 258 36, 213 41, 441

Secondary metals recovered.—In 1939, 63,443 ounces of secondary platinum metals were recovered from the treatment of scrap metal, sweeps, and other waste products of manufacture that contain platinum, a decrease of 1.3 percent from 1938.

Secondary platinum metals recovered in the United States, 1935-39, in troy ounces

Year	Platinum	Palladium	Iridium	Others	Total
1935	47, 107	7, 852	2, 191	1,975	59, 125
	55, 959	6, 786	2, 204	1,217	66, 166
	55, 926	12, 680	2, 320	1,280	72, 206
	44, 654	13, 489	2, 150	3,998	64, 291
	45, 432	13, 039	3, 150	1,822	63, 443

Prices.—Refiners reported the following prices for platinum, palladium, and iridium: Platinum, high \$45, low \$26, and average \$36 an ounce for 1939 compared with \$43, \$24, and \$33.83 an ounce, respectively, for 1938; palladium, high \$25, low \$19, and average \$23.25 an ounce for 1939 compared with \$28, \$17, and \$23.21 an ounce, respectively, for 1938; iridium, high \$200, low \$50, and average \$112.67 an ounce for 1939 compared with \$90, \$50, and \$69.29 an ounce, respectively, for 1938.

Consumption and uses.—Platinum and its allied metals (palladium, iridium, rhodium, ruthenium, and osmium) are characterized by high

melting point, white color, and resistance to oxidation at high temperatures and to attack by destructive chemical compounds. As pure metals, combined, clad, or alloyed with other metals, the platinum metals are used in jewelry and dentistry, in the chemical and electrical

industries, and for numerous miscellaneous purposes.

A material gain in world output of platinum metals, owing chiefly to improvements in metallurgical processes used in refining coppernickel ores, has made available large quantities of platinum, palladium, iridium, rhodium, ruthenium, and osmium. For example, in 1938 world production of platinum metals was about 540,000 ounces, of which about 57 percent was recovered as byproducts in the refining of nickel, copper, and gold ores, whereas in 1929 world production was about 231,000 ounces, of which about 17 percent was so obtained. With increased supplies, relative stability in the price of platinum and palladium has been reached at levels that permit their use for plant equipment and other industrial purposes. Despite the rapid advance in output of the platinum metals during the past decade, research has found new uses for them, and developmental activities are opening up larger and more diversified markets in which these uses are becoming accepted.

The most widely used metal of the group is platinum, which constituted 100,266 ounces (63.3 percent) of the total platinum metals sold by domestic refiners in 1939. The largest single consumer of platinum is the jewelry industry, where, alloyed with iridium, it is used as a setting for diamonds and other precious stones in rings and various forms of jewelry. About 47 percent (47,385 ounces) of the total sales of platinum by domestic refiners went to the jewelry trade

in 1939.

Second in magnitude as a consumer of platinum in 1939 was the chemical industry, which took 20 percent (20,306 ounces) of the total domestic sales. It is used as a catalyst to produce sulfuric acid and for ammonia oxidation to produce nitric acid and nitric oxide, lining processing and reaction vessels, hydrogenation of organic compounds, rayon spinnerets, nozzles for the production of glass fiber, glass insulators for the bases of electric-light bulbs, tubing, valves, siphons, and safety disks for handling corrosive liquids and gases, anodes for the production of "per" salts, gas-analysis cells, crucibles, and laboratory equipment.

The dental industry ranked third as a consumer of platinum in 1939, taking 14 percent (13,755 ounces). Platinum, either pure or alloyed, is used in tooth pins, bridges, and bracings for artificial teeth, as matrices on porcelain inlays, and in orthodontic appliances.

The electrical industry, the fourth largest consumer of platinum in 1939, took 12 percent (11,952 ounces). It is used for thermocouples, temperature measuring and recording instruments, precision resistance thermometers, high-temperature furnace windings, spark-plug electrodes, magneto contacts, electrical contacts, relays, thermostats, automobile voltage regulators and direction indicators, and switches for potentiometric recorders.

Platinum leaf was made available during 1939 for outdoor signs and for interior decoration and book stamping. Palladium leaf was first

introduced for somewhat similar purposes in 1933.

Next to platinum, palladium is the most extensively used metal of the platinum group; it is about half as common as platinum but less costly. It comprised 51,406 ounces (32.5 percent) of the total platinum metals sold by domestic refiners in 1939. Palladium, pure or alloyed, is adapted to many of the uses of platinum and during the past 2 decades has been employed in increasing quantities by the dental, electrical, and jewelry industries. The conservation of gold by many countries has stimulated the demand for the platinum metals, particularly palladium, and the use of palladium as a substitute for gold alloys for dental restoration, pen points, and articles of jewelry has made substantial progress. The largest consumers of palladium in 1939 were the dental and electrical industries, which purchased 22,989 and 21,510 ounces, respectively, from domestic refiners. The jewelry industry is the next largest consumer of palladium, and small quantities are used in the manufacture of chemical ware.

Iridium ranks third in consumption among the platinum-group metals. Of the total sales of platinum metals in 1939, 4,322 ounces (2.7 percent) were iridium. This metal is used chiefly as a hardening addition to platinum, rendering it suitable for laboratory vessels, surgical tools, hypodermic needles, thermoelements, and jewelry. Its compounds are used as fixing agents, porcelain pigment, and (in the

form of black) as a catalyst.

The consumption of the other platinum metals—rhodium, osmium, and ruthenium—is small and comprised only 1.5 percent of the total for the group in 1939. Rhodium is alloyed with platinum for high-melting-point thermocouple wire, furnace windings, and laboratory ware for certain special uses. Rhodium plating is employed as a finish for glassware and silverware and in surfacing reflectors for searchlights and projectors. During 1939 platinum-rhodium spinnerets replaced the older platinum-gold spinnerets, because of their superior resistance to the various corrosive agents used in the production of rayon. Osmium, in association with other metals, provides pen points that will resist wear and corrosion by ink. These alloys also replace jewels as bearings in fine instruments. The oxide is used as a biological stain for fats and for fingerprint work. Ruthenium also is used as a hardener for platinum metals, and one of its salts serves as a biological stain.

The following table shows sales of platinum metals to domestic consumers by refiners in the United States in 1939. The figures include sales of platinum metals recovered from crude platinum, gold bullion, copper and nickel bullion and matte, electrolytic muds, and scrap materials and sweeps; in addition they include sales of imported platinum metals that are handled by domestic refiners. Sales by refiners totaled 158,357 ounces in 1939 compared with 127,306 in 1938.

Platinum metals sold by refiners in the United States in 1939, by domestic consuming industries, in troy ounces

Industry	Plati- num	Palla- dium	Iridium	Others	Total	Percent of total
Chemical Electrical Dental Jewelry Miscellaneous and undistributed	20, 306 11, 952 13, 755 47, 385 6, 868	468 21, 510 22, 989 5, 899 540 51, 406	187 917 120 3,014 84 4,322	626 429 19 432 857 2, 363	21, 587 34, 808 36, 883 56, 730 8, 349	14 22 23 36 5

Stocks.—On December 31, 1939, 117,550 ounces of platinum metals were in the hands of refiners compared with 117,911 ounces at the end of 1938.

Stocks of platinum metals in the hands of refiners in the United States, Dec. 31, 1935-39, in troy ounces

Year	Platinum	Palladium	Iridium	Others	Total
1935.	50, 265	27, 807	9, 202	6, 273	93, 547
1936.	56, 886	29, 853	8, 943	8, 235	103, 917
1937.	60, 236	21, 942	9, 785	7, 536	99, 499
1938.	71, 058	30, 071	8, 041	8, 741	117, 911
1939.	71, 393	29, 273	7, 796	9, 088	117, 550

FOREIGN TRADE 3

Imports of platinum metals into the United States during 1939 amounted to 306,627 ounces, establishing an all-time high. The principal sources of imported platinum metals in 1939 were the United Kingdom (250,699 ounces), Colombia (26,747 ounces), and the U. S. S. R. (19,846 ounces). Imports of palladium (chiefly from the United Kingdom) were noteworthy in 1939, increasing to 96,829 ounces from 26,858 ounces in 1938 and 45,427 in 1937, the previous record year.

Platinum metals imported for consumption in the United States, 1935-39

Year	Troy ounces	Value	Year	Troy	Value
1935 1936	164, 149 210, 440 206, 937	\$4, 228, 022 5, 996, 034 7, 418, 364	1938 1939	161, 189 306, 627	\$4, 366, 912 9, 881, 531

Platinum metals imported for consumption in the United States, 1938-39, by metals

	. 1	.938	1939		
Metal	Troy	Value	Troy ounces	Value	
Platinum: Ores of platinum metals (platinum content)	3, 263 26, 176 54, 299 44, 091 127, 829 3, 7, 77 2, 501 440 26, 858 1, 613 228 161, 189	\$71, 504 688, 166 1, 496, 491 1, 371, 246 3, 627, 407 118, 849 61, 391 16, 349 448, 152 87, 276 7, 338	5, 943 32, 266 83, 995 68, 022 190, 226 (1) 6, 363 2, 204 623 96, 829 5, 352 5, 030	\$137, 500 905, 315 2, 910, 159 2, 173, 260 6, 126, 234 8 686, 560 61, 162 22, 229 2, 099, 104 643, 703 252, 531 9, 881, 531	

¹ Less than 1 troy ounce.

² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Platinum metals (unmanufactured) imported for consumption in the United States in 1939, by countries, in troy ounces

				,					
		Plati	num		٠				
Country	Ores of platinum metals (platinum content)	Grain and nuggets	Sponge and scrap	Ingots, bars, sheets, or plates not less than ½-inch thick	Iridium	Osmi- um and osmi- ridium	Palla- dium	Rhodi- um and ruthe- nium	Total
Argentina		1, 218	552			5	3		1, 773 5
Belgium Canada Colombia	3, 435	129 23, 310	276 2	216			251		216 656 26, 747
EthiopiaFranceGuiana, British	2, 491		10		96	26		64	2, 491 186 10
Japan Netherlands			775 243 318	554 230	318		207	1, 040	775 797 2, 236
Norway Panama, Republic of Peru		160	10	230					10 160 15
Philippine Islands Union of South Africa U. S. S. R United Kingdom	17	7, 326	15 5 81, 789	15, 562 51, 460	4, 284 1, 665	2, 796	96, 368	9, 278	19, 846 250, 699
	5, 943	32, 266	83, 995	68, 022	6, 363	2,827	96, 829	10, 382	306, 627

Exports.—Exports of unmanufactured platinum metals totaled 46,329 ounces in 1939 (33,635 ounces in 1938), of which France took 13,709, Germany 11,401, and Japan 5,726 ounces.

Platinum and allied metals exported from the United States, 1935-39

	Unmanu	ifactured	Manufactures of, except jewelry		
Year	Troy ounces	Value	Troy ounces	Value	
935 1	3, 271 55, 454 59, 567 33, 635 46, 329	\$105, 895 2, 069, 205 2, 908, 552 1, 156, 644 1, 528, 563	1, 954 2, 590 2, 874 796 4, 041	\$84, 601 123, 891 100, 944 31, 111 213, 448	

¹ Excludes exports by parcel post.

Platinum and allied metals exported from the United States in 1939, by countries
[Includes exports by parcel post]

[Includes exports b	y parcor post.	<u>'</u>			
Country	Unmanufac gots, shee loys, and	ts, wire, al-	Manufactures of, except jewelry		
	Troy ounces	Value	Troy ounces	Value	
ArgentinaAustralia		\$116, 743	68 166 418	\$5, 204 13, 178 31, 199	
Belgium Brazil Canada	1, 085 2, 591	46, 467 73, 995 4, 751	61 104	3, 598 4, 566	
China	118 13, 709	4, 608 502, 527 303, 484	1	47	
Germany Japan Netherlands Palestine	5, 726 383	176, 731 14, 885 99	18 1,456 240	1, 169 84, 858 8, 596	
Switzerland Turkey United Kingdom	4, 170 201	132, 344 8, 394 110, 407	1, 320	51, 381 151	
Other countries		33, 024 1, 528, 563	4, 041	9, 498 213, 445	

WORLD PRODUCTION

The following table shows world production of platinum metals by countries from 1935 to 1939, insofar as statistics are available. Returns for 1939 are incomplete, but except for the U.S.S.R. those for 1938 are nearly complete. If the production of the U.S.S.R. is estimated roughly at 100,000 ounces in 1938, world production of about 540,000 ounces is indicated, of which Canada furnished 54 percent, U. S. S. R. 19 percent, Union of South Africa 11 percent, United States 9 percent, and Colombia 6 percent—a total of 99 percent. 1938 production comprised about 57 percent of platinum metals recovered as byproducts of nickel, copper, and gold ores, 33 percent of crude platinum metals from placers, and 10 percent recovered from sulfide and oxidized ores.

World production of platinum and allied metals, 1935-39, in troy ounces [Compiled by M. T. Latus]

Country and product	1935	1936	1937	1938	1939
Australia:					
New South Wales: Placer platinum	98	47	46	8	(1)
Tasmania: Placer osmiridium	235	281	586	191	283
Belgian Congo: From refineries:					
Palladium	5, 144	12, 571	12, 507	1, 575	(1)
Platinum	965	3, 183	2, 122	225	(1)
Canada; Placer platinum	39	20	22	16	25
From refineries: 2	39	20	42	70	20
Plotinum	105, 335	131, 551	139, 355	161, 310	148, 877
Platinum Other platinum metals	84, 772	103, 671	119, 829	130, 893	135, 402
Colombia: Placer platinum (exports) Ethiopia: Placer platinum Italy: From refineries: Platinum	38, 020	38, 333	29, 315	34, 549	39, 070
Ethiopia: Placer platinum	6, 320	8,038	(1)	(1)	
Italy: From refineries: Platinum	772	836	1, 286	ì. 029	83888
Japan: Placer platinum	51	34	(1)	(i)	(1)
Japan: Placer platinum Netherland India (probably placer platinum)				21	(1)
New Zealand: Placer platinum	14		55	1	(1)
Panama: Placer platinum	16	19	267		
Papua:					
Placer platinum	46	21	20	41	2
Placer osmiridium	9	17	308	180	4 83
Sierra Leone: Placer platinum	750	484	308	190	80
Union of South Africa: Platinum (content of platinum metals)4	19, 954	19, 751	17, 776	18, 256	18,067
Concentrates (content of platinum metals)4	11, 317	13, 163	21, 849	35, 124	41, 218
Osmiridium 5	5,047	5, 431	5, 790	5, 354	6, 568
U. S. S. R.: Placer platinum 6	100,000	100,000	100,000	100,000	100,000
United States:	200, 000	200,000	1,	,	240,000
Placer platinum	9,069	9, 785	10, 803	40, 932	7 35, 060
Ore (content of platinum metals)		110	124	90	66
From refineries: 8			1		
Platinum Other platinum metals	1, 361	4, 443	4, 761	3, 761	5, 270
Other platinum metals	1, 122	4, 541	5, 817	3, 486	3, 364
	390, 000	456, 000	9 473, 000	9 537, 000	(1)

¹ Data not available.

Canada.—Recoveries of platinum metals from the nickel-copper ores of the Sudbury district, Ontario, were 148,877 ounces of platinum and 135,402 ounces of other platinum-group metals in 1939 compared with 161,310 ounces of platinum and 130,893 ounces of other platinumgroup metals in 1938.4 Residues from the Port Colborne and Copper Cliff refineries are shipped to the International Nickel Co. precious-

Recovered from nickel-copper mattes. 4 Produced from platinum ores.

³ Year ended June 30 of year stated.
4 Produced from treatment of gold ores on the Rand.
7 Subject to revision. New platinum metals recovered in gold and copper refining of domestic materials.

Exclusive of Ethiopia and Japan.

⁴ Dominion Bureau of Statistics, Preliminary Report on the Mineral Production of Canada During the Calendar Year 1939: Ottawa, 1940.

metals refinery at Acton, England, for the recovery of platinum, palladium, iridium, rhodium, and ruthenium. The platinum and palladium contained in the ore of the Falconbridge Nickel Mines, Ltd., are recovered at the precious-metals separating plant at Kristiansand, Norway. It is announced that this plant is now ready for separation of iridium, rhodium, and ruthenium. The Sudbury copper-nickel ore does not contain enough osmium to make recovery of this metal commercially important. Placers in British Columbia yielded 25 ounces of stream platinum in 1939 compared with 16 ounces in 1938.

Sales of platinum metals by the International Nickel Co. of Canada, Ltd., were 240,778 ounces in 1939 compared with 193,195 ounces in 1938. The metals were sold principally in the United States and the

United Kingdom.

Colombia.—Colombia exported 39,070 ounces of crude platinum in 1939 (34,549 ounces in 1938). Of the 1939 exports, apparently about 64 percent went to the United States and 36 percent to Germany; a small amount went to Japan.

The South American Gold & Platinum Co. produced 27,975 ounces of crude platinum and 59,416 ounces of crude gold in 1939 compared with 20,714 ounces of crude platinum and 63,622 ounces of crude gold

in 1938.

Union of South Africa.—According to the Department of Mines and Industries, the estimated content of platinum metals produced in the Union of South Africa was 65,853 ounces in 1939 compared with 58,734 ounces in 1938.

The enlarged Rustenburg plant of Potgietersrust Platinum, Ltd., for handling sulfidic ores, which was brought into operation in July 1938, was operated at capacity in 1939. The output, in the form of crude platinoids and matte, was shipped to England for treatment.⁵

Sales of platinum metals from South Africa were 47,914 ounces valued at £302,370 (£6.31 an ounce) in 1939 compared with 38,862 ounces valued at £223,776 (£5.76 an ounce) in 1938. The average composition of the product sold in 1938 was platinum 78.20 percent, palladium 16.33 percent, iridium 0.13 percent, osmium and osmiridium 0.08 percent, ruthenium 1.20 percent, and gold 4.06 percent.

Sales of osmiridium were 6,094 ounces valued at £36,665 (£6.02 an ounce) in 1939 compared with 5,884 ounces valued at £36,523 (£6.21 an ounce) in 1938. The average composition of the product sold in 1938 was osmium 28.90 percent, iridium 26.56 percent, ruthenium 13.81 percent, platinum 10.78 percent, gold 2.37 percent, rhodium 0.52 percent, and undetermined 17.06 percent.

0.52 percent, and undetermined 17.06 percent.

⁵ South African Mining and Engineering Journal, vol. 50, pt. 2, December 16, 1939, p. 505.

MINOR METALS

By PAUL M. TYLER

SUMMARY OUTLINE

	Page	1	Page
General statement	759	Rare earths	76
Imports		Rhenium	
Beryllium	761	Selenium and tellurium	76
Boron		Thorium	
Columbium and tantalum		Titanium	770
Gallium, germanium, and indium		Zirconium	
Radium			• • •

In Minerals Yearbook, 1937, brief references were made to the commercial status and utilization of all metallic elements, but space limitations have restricted subsequent annual reviews of the minor metals to the presentation of such information as seemed timely and important enough to include in the record for a given year. Therefore, the following review makes no reference to certain elements that are more important commercially and even scientifically than those discussed at some length.

A glance backward shows that most of the metals falling within

the purview of this chapter had little or no commercial significance until a relatively few years ago. As recently as 1919 a compendium on Our Mineral Supplies 1 grouped the minor elements in a single chapter, and the only commodities discussed therein were antimony, arsenic, bismuth, molybdenum, nickel, tin, tungsten, and vanadium. Attesting the wider variety of materials demanded by modern industry, all of these items are now considered important enough to be discussed elsewhere in this volume; and most of those now included in the coverage of the present chapter as "minor metals"—even those that now have well-established commercial uses-were deemed quite unimportant laboratory curiosities only 20 years ago.

At the threshold of a new decade, one wonders how many more obscure metals may emerge from the laboratory and be put to work. Even more beguiling speculations are the possible harnessing of atomic energy and the refabrication of elements. The accomplishments of nuclear physicists have been amazing, particularly in view of the few short years in which they have been aided in their researches by massive, modern atom-smashing devices. Natural transmutation of radioactive elements was discovered in 1898, when Mme. Curie identified the element that she named polonium. Artificial transmutation has been accomplished on an accelerated scale in various laboratories for more than a decade, but not until January 1939 did we know that it could do more than modify existing atoms to make them slightly heavier or slightly lighter. As noted in the chapter of this series for 1938, news of the actual splitting of an atom surprised

¹ Hess, Frank L., Our Mineral Supplies-the Rarer Metals: Geol. Survey Bull. 666-U, 1919, 13 pp.

the world of physics and, more important, opened new vistas of research. It is premature to assume that these disclosures will enable man to utilize atomic energy. The implications of such a revolutionary development, however, are indicated by Princeton's Prof. Malcolm C. Henderson, who calculated that if one could split economically the atoms of 8 pounds of uranium, enough energy would be released to drive the largest ocean liner across the Atlantic, in substitution for 6,300 tons of oil.² Discouraging is the statement that 16 times as much energy is needed to split a uranium atom as can be obtained from it; there is the further possibility that the only one of the various uranium isotopes that can be split is present to the extent of only about 1 percent; its atomic weight is 235. On the other hand, it is possible that one or more new neutrons actually are released by the initial splitting and that these in turn may make the disintegration

continue, once it is initiated.

More immediate practical results are being obtained by less violent transmutations. Common table salt may be made artificially radioactive, so that for a time it will emit rays similar to those from natural Neutron yields equivalent to what would be obtained by using 50,000 grams of radium are obtained by allowing the accelerated positive ion (proton) beam from the Cyclotron to bombard beryllium, which is thereby transmuted to boron and an ejected neutron. Another important use of the products of nuclear transformation, as recently described by Prof. John R. Dunning, of Columbia University, arises from the artificially radioactive isotopes produced. Isotopes of iodine are being investigated for the treatment of malignant diseases. Single atoms—such as those of phosphorus, sulfur, and carbon may be made radioactive and then used for biological tracer work. Sensitive detecting apparatus makes it possible to follow them wherever they go in the body. Radioactive copper has been used in research on the diffusion of metals. The dream of the alchemists to transmute common elements into precious metals no longer seems impossible. Already precious metals have been converted into more common ones, accomplishing the transmutation in reverse; for example, silver has been changed into cadmium.

The rarer metals used in only small amounts commercially and needed chiefly for scientific or academic purposes hitherto have been produced principally in Germany and so were virtually eliminated by wartime blockade after September 1939. In contrast with the conditions that followed similar elimination of German laboratory products and supplies in 1914, the substances most needed are now being produced in American laboratories, and necessary readjustments in price have been surprisingly few. Hafnium, however, has proved an exception and even small orders for experimental purposes are almost impossible to fill. Enough cyrtolite raw material is available, but extraction of the metal has proved overdifficult. On the other hand, a prominent dealer reports that a new process has been worked out in the United States for obtaining rhenium, another German specialty, but that it could not be commercialized owing to lack of

domestic raw materials.

Imports of specified rare metals and alloys during the last 3 years are summarized in the accompanying table.

 ² Jeffries, Zay, Rare Metals and Minerals: Min. and Met., vol. 21, No. 397, January 1940, p. 12.
 ³ Mining and Metallurgy, vol. 21, No. 397, January 1940, p. 23.

Imports of minor metals for consumption in the United States, 1937-39 1

Commodity	193	37	19	938	19	39
	Quantity	Value	Quantity	Value	Quantity	Value
Barium, boron, columbium or niobium, strontium, tantalum, thorium, tita- nium, uranium, vanadium, and zir- conium:						
Metals pounds Alloys of the foregoing with one	258	\$748	610	\$1, 553		
another pounds Alloys of the foregoing with aluminum, chromium, cobalt, copper, manganese, nickel, or silicon	5, 106	3, 004	4, 056	2, 434	2, 291	\$1,610
Beryllium caesium lithium and no	388, 801	22, 510	79, 357	5, 113	715, 881	39, 264
tassium metal pounds Beryl or beryllium ore do	567	881	1, 475	2, 383	198	454
Boron carbidedo	364, 463	8, 031	291, 415	5, 990	917, 447	14, 574
Calcium:	1	7, 973	2, 165	3, 243	5, 064	5, 849
Calcium metal do do Calcium silicide do Cerium:	23, 767 3, 751, 918	10, 087 205, 173	41, 299 1, 402, 314	16, 144 77, 003	41, 718 3, 972, 571	17, 758 225, 312
Cerium metal	1					
Ferrocerium and other cerium al-				12		
lovs nounde	809	2, 367	468	1, 255	585	1, 184
Cerite or cerium oredo				1, 200	000	1, 104
Cerium compoundsdo						
Columbium and tantalum:			1	1		
Ductile columbium, tantalum, and alloyspounds_					1	
Columbium oredo		555-555-	49	357		
Tantalum oredo	922, 654 20, 897	306, 086	645, 141	228, 078	109, 132	37, 062
Radium salts grams	15. 29	40, 742 377, 659	41, 706 38. 75	80, 092	56, 561	82, 990
Radioactive substitutes		7711	38.75	787, 025 5, 746	78.631	1, 953, 820
Selenium and salts pounds	92 523	161, 382	101, 034	163, 598	124, 830	966 193, 168
Selenium and salts pounds Sodium metal do	Ģ 2 , 626	101, 002	101, 001	100, 000	124, 000	195, 108
Thorium nitratedo						
Titanium:						
Ilmenitedo	344, 944, 588	770, 757	451, 462, 220	1, 018, 430	573, 152, 770	1, 126, 200
Rutiledo	1 330 738	67. 643	460, 446	26, 533	883, 674	23, 170
Ferrotitaniumdo	4, 500	608			350	77
Uranium oredo					5	10
	17 000 100					
Zirconium ore do Ferrozirconium, zirconium ferro-		129, 576	4, 183, 506	62, 111	2, 965, 026	49, 919
Other ferro-alloys, not specially pro-	230, 449	13, 085	244, 126	13, 520	799, 269	50, 169
vided for pounds						
Ores, metallic, not elsewhere specified	170 500	1 000		i		
pounds	172, 577	1, 966				

¹ Compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

BERYLLIUM

The beryllium industry was featured on the front pages of newspapers throughout the country as the result of the open hearings by the Temporary National Economic Committee which began on February 28, 1939. The reports of these hearings, minutes of which were subsequently printed, tended to show an international interest entirely out of proportion to the small size of this infant industry.

Definite progress was made commercially in 1939, however, and the gradual expansion in sales (interrupted in 1938) was resumed. For several years the metal or its compounds has been produced in the United States by two companies, both of which are prepared to supply master alloys for fabrication by other companies. Early in 1939 the Beryllium Corporation of Pennsylvania undertook to integrate its operations and subsequently has produced not only master alloys but castings, low-spark tools, fabricated products, and mis-

⁴ Temporary National Economic Committee, 76th Cong., 1st sess., Hearings; Investigation of Concentration of Economic Power: Part 5, 1939, pp. 2011-2163, 2276-2304.

The fabricated products include beryllium-copper cellaneous items. rod available in diameters up to 3 inches, strip up to 8 inches wide, and wire drawn to a minimum of 10/1000 inch. Arrangements have been made with another metal-fabricating company to produce drawn tubing in desired sizes. An interesting new development is the use of beryllium copper in cast-setting diamond core bits and reaming shells. J. K. Smit & Sons, Inc., has in recent years developed a mechanical setting method that permits a very large number of small diamonds to be set in drill bits at perfectly spaced intervals. This is one phase of the general trend away from former methods of using a few large, high-priced carbonados for core drilling and toward the employment of a large number of smaller stones, including bort or ordinary diamonds of nongem quality. A typical bit may contain 178 stones having an aggregate weight of 7 carats or, roughly, 25 stones to a carat. Instead of setting stones by hand, methods for casting metal around the stones have been developed. Alloys with high melting points must be avoided, as excessive heat may harm the diamonds. The new bit composition, "Vankolite," is a berylliumcopper alloy and is claimed to have, among other advantages, increased tensile strength and improved holding qualities.

The main advantages of beryllium copper are the combination of extraordinary high-fatigue properties with good electrical conductivity. In contrast with certain competitive materials, it has the further advantage that it can be worked soft and hardened later instead of its hardness being rolled into it at the mill. Several new applications

in electrical devices and office machines are reported.

Hitherto reductions in the price of the beryllium content of master alloys have not been made available to consumers. Some years ago, when beryllium content of the alloy was quoted at \$30 a pound, a 96-cent base price on strip was established, but later when the price was cut to \$15 the base price of the fabricated product was held at \$1.15. The 96-cent price has been reestablished on the basis of copper at 10 cents (98 cents at 12-cent copper) for strip 2 to 8 inches wide and No. 16 gage or heavier; this applies to the standard alloy containing 2 to 2½ percent Be. Alloys containing smaller percentages are offered, including a No. 70 at 65 cents base. Base prices on wire and tubing are higher, and new lists of extras have been established to cover smaller sizes and orders under 1,000 pounds.

In addition to alloys, the Brush Beryllium Co., 3714 Chester Avenue, Cleveland, Ohio, produces the pure metal and various beryllium compounds, such as the oxide, sulfate, nitrate, and fluoride. Notable commercial progress has been made with its high-fired flux-free oxide for use in ceramic materials, where good electrical resistance and thermal conductivity may be required. This company first put pure beryllium metal on the market in 1939, after several years, experimentation. A certain amount of somewhat impure metal was made several years ago in Germany and sold in this country for experimental purposes. With domestic metal available at a substantial reduction below the \$100 heretofore asked for imported beryllium, commercial applications may be developed.

Beryl, the only ore of beryllium, nominally is quoted unchanged at \$30 to \$35 a short ton at the mine or around \$45 to \$55 at consuming plants. However, imported ore can be bought for around \$3.25 or \$3.50 per short ton unit f. o. b. United States Atlantic ports. The

blockade of Germany has diverted South American supplies to the United States, and one distress lot was offered at \$30 a ton delivered in New York. A little beryl is used in ceramics, and small quantities are consumed in England, Italy, Japan, and France, but with Germany cut off the two American beryllium companies are the only consumers of any substantial tonnage and their consumption is far from large. Imports of beryl into the United States rose to 459 short tons valued at \$14,574 in 1939 compared with 146 tons valued at \$5,990 in 1938, 182 tons (\$8,031) in 1937, and 162 tons (\$6,681) in 1936. No data are available as to shipments of domestic beryl, but probably they have not exceeded about 100 or at most 150 short tons a year, and the consumption in the United States has been supplied principally by imports.

BORON

Boron alloys are supplied by domestic manufacturers, small quantities being used in the nonferrous-metals industries and in steel making. In cast iron, boron opposes graphitization on solidification and exerts an energetic whitening effect, producing a hard, strong iron but reducing malleability. The Metallurgical Division of the Bureau of Mines recently investigated the electrometallurgical production of calcium boride, metallic boron, and boron alloys from colemanite.

COLUMBIUM AND TANTALUM

The world's meager needs of columbite continue to be supplied mainly from Nigeria and of tantalite from the Pilbarra district of Australia. However, Geomines, the important tin producer at Manono, Katanga (Belgian Congo), reported an output of 105 metric tons of tantalum-columbium ore during the fiscal year ended June 30, Shipments of columbite in Nigeria dropped to 530 long tons in 1938 compared with 707 tons in 1937; exports declined to 324 tons. According to official statistics, the output of tantalite in Uganda was less in 1938 than during the preceding year, owing to a drop in price and the rather low tantalum content of the ores from that colony; the hope was expressed, however, that 60 percent Ta₂O₅ concentrates might be produced from alluvial workings in the Buhwezu district. Two occurrences of columbite are reported in Chosen; and the European press reported active development during 1939 of loparite deposits in the Kola Peninsula, from which columbium and tantalum as well as thorium and various rare-earth metals may be separated. Tantalite deposits and operations in Northern Territory of Australia were described recently.7

Tantalum is used in pure wrought form for a variety of purposes, and the hard carbide is used in cutting tools. The bulk of the domestic production of tantalite hitherto has come from the Black Hills of South Dakota. The Fansteel Mining Corporation, a wholly owned subsidiary of the Fansteel Metallurgical Corporation which is the leading manufacturer of tantalum metal and compounds, has a

⁵ Bastien, P., Propriétés des fontes au titane et des fontes au bore: Chim. et ind., vol. 41, No. 5, May 1939, pp. 835-852.

⁶ Hata, S., and Iimori, T., Columbite from Korea: Phys. Chem. Research, Tokyo, vol. 17, 1938, pp. 642-643; Chem. Abs., vol. 33, No. 16, Aug. 20, 1939, p. 6201.

⁷ Williams, A. E., Tantalite in the Northern Territory: Chem. Eng. and Min. Rev., vol. 31, No. 367, Apr. 10, 1939, pp. 285-289.

property at Tinton, S. Dak. The deposit and the mill on this property have been described by Guiteras.⁸

Shipments of	tantalum-	bearing	ores in the	United States,	1935-39	
Voor	Pounds	Value		Vaor	Pounde	Volt

Year	Pounds	Value	Year	Pounds	Value
1935 1936 1937	7, 681	\$4, 521 13, 317	1938 1939	36, 189 340	\$35, 127 200

Ferrocolumbium, 50 to 55 percent Cb, has been quoted recently at \$2.25 to \$2.35 a pound. Ore prices are subject to negotiation between buyer and seller. For tantalite, nominal quotations by Engineering and Mining Journal at the end of 1939 were \$1.50 to \$2.50 a pound of contained Ta_2O_5 in 60-percent concentrate.

GALLIUM, GERMANIUM, AND INDIUM

As noted in previous volumes of Minerals Yearbook, gallium, germanium, and indium could be produced in substantial quantities as byproducts of the zinc industry and from other sources, provided commercial outlets were available. In 1939, J. W. Whittemore and P. S. Dean, professors in the ceramic department of Virginia Polytechnical Institute, were credited with the discovery of a mineral containing 0.2 percent gallium, which is probably the richest "ore" of this metal known so far.

No use at all has been found for germanium. Gallium has been made in Germany by the Vereinigten chemischen Fabriken in Leopoldshall from metallurgical residues of the Mansfeld copper-slate ores, but the total output has been reported as being only 50 kilograms a year and used mainly for experimental purposes. Prices have been quoted usually at more than \$2.00 \$3 a gram, although manufacturers of medium-high-temperature thermometers, which seem to be almost the only quasicommercial outlet, may have made purchases at \$1.50 a gram. According to a usually well-informed dealer, however, the metal could be had in quantities at 60 to 80 cents a gram. The German press reported that the price was 10 RM. a gram (about \$4) in 1939 compared with 200 RM. some years ago, also that gallium was used in the manufacture of optical reflectors and dental alloys.

Uses for indium have been investigated in many laboratories, and a long list of possible applications may be compiled. But aside from its use in silverware by one or more companies, in quite small quantities in dental and certain other alloys, and for contact points for certain electrical apparatus, no commercial consumption has developed. There are still promising possibilities for indium in superquality automobile bearings but not at more than about half the present "bottom" price of say \$20 an ounce for fairly large quantities. Similar bearings are used in at least one airplane engine. Small quantities of indium for laboratory requirements are quoted in dollars per gram. The Belgochimie in Belgium and the Furukawa Mining Co. in Japan were understood to have undertaken the production of indium in 1939. Domestic supplies could be developed by the

⁸ Guiteras, J. R., Mining and Milling Methods and Costs at the Black Hills Tin Co., Tinton, S. Dak.: Bureau of Mines Inf. Circ. 7084, 1939, 16 pp.

Grasselli Chemical Co., the Anaconda Copper Co., the American Smelting & Refining Co., and other smelting concerns or producers of lithopone.

RADIUM

Imports of radium salts into the United States, after jumping to an all-time record of 38.75 grams valued at \$787,025 in 1938, more than doubled in 1939, reaching 78.631 grams valued at \$1,953,820. Undoubtedly much of the increased imports went into stock; nevertheless, in 1939, the National Bureau of Standards under the supervision of Dr. L. F. Curtiss tested 2,448 radium preparations containing 21.95 grams compared with 1,280 preparations containing 10.5 grams in 1938 and 1,703 preparations containing 9 grams in 1937. As noted in Minerals Yearbook, 1939, a marketing agreement was concluded early in the year between the two leading producers, and during 1939 virtually all the imports (except 2.797 grams valued at \$70,753) came from Belgium. The New York office of the Eldorado Gold Mines, Ltd. (Canada), was discontinued and the syndicate's sales to the United States subsequently have been handled by the Radium Chemical Co., Inc., 570 Lexington Avenue, New York, N. Y.

The price of radium, after reaching \$135 a milligram during the World War, was cut to \$70 in 1923 and to \$50 in 1930. The quotation since August 1936 has been nominally \$40, but competition resulted in sales at \$20 or even less in 1937, after which the price became firmer and at the end of 1939 was around \$27.50 a milligram for orders of 1 to 5 grams. For hospital use, radium salts can be leased at 40 cents a milligram a month. Radon or emanation implants are sold on a sliding scale ranging from \$2.50 for those having a radium content of 1 millicurie (at hour used) to \$7.50 for those containing 3.0

millicuries.

The Eldorado mine in the Great Bear Lake district of Canada, which currently produces nearly 40 percent of the world's radium, yielded 1,100 tons of concentrate during the year ended August 31, 1939. Ore reserves are increasing; and as the capacity of the refinery at Port Hope, Ontario, was doubled in 1939 the radium output is understood to be in the neighborhood of 8 grams monthly. After completing a 100-ton mill building, Canada Radium Mines, which owns property in the Wilberforce area in Ontario, began construction of a chemical plant and was reported to be planning to start actual production in 1940 from ore reserves estimated to be adequate

for 2 years milling.9

The St. Joachimsthal mines, formerly part of Czechoslovakia, were incorporated in the German Reich in October 1938. These deposits are estimated to contain more than 300 grams of radium still unmined and at the time of their incorporation into Germany were producing about 180 to 190 metric tons of pitchblende ore yielding about 5 grams of radium a year. Operations were under control of the Czech Government; and the output, ranging from 2 to 10 grams annually in recent years, has been purchased principally in England. In March 1939 the Auergesellschaft A. G., Berlin, Germany's leading manufacturer of radioactive metals (one of its products being mesothorium from gas-mantle residues) obtained a concession from the German Government to operate the Joachimsthal mines under lease

[•] Jeffries, Zay, Work cited in footnote 2, pp. 11-12.

and extract the radium at its works in Berlin. Henceforth the entire product doubtless will be used in Germany, and under the stimulus of Germany's Four-Year Plan it was thought that production would be increased to cover not only Germany's own needs (3 grams in 1935) but possibly exports, even though production costs exceed the world Before the radium mines were acquired, the only German source of radium, apart from imports, was an annual accumulation of about 20 metric tons of radioactive silt at Bad Kreuznach, yielding about 1.75 milligrams of radium per ton in addition to certain quantities of thorium and actinium.10

Uranium and radium are byproducts of the vanadium-mining operations of the Union Carbide & Carbon Corporation. Nearly 8 grams of radium came from this source in 1938 and 3\(\frac{1}{2}\) grams in 1937.

World production of radium since the earliest experiments by Mme. Curie in 1898 probably has aggregated almost 1,000 grams. A statement posted at the New York World's Fair credited 800 grams to the following sources: United States, 338; Belgium, 160; Czechoslovakia, 55; France, 51; England, 42; Sweden, 8; Denmark, 4; Argentina, 2; unaccounted for, 140. It will be noted that these figures do not include Canada, which has produced at least 180 grams; according to the meager data available in the files of the Bureau of Mines the output of the United States probably has not exceeded 300 grams so far, whereas the Belgian output from ores mined in the Belgian Congo since 1922 undoubtedly has exceeded that amount. The production of radium in France and England and probably in Sweden and Denmark as well has been derived in large part from ore mined elsewhere. no substantial production has been reported in these countries except in the Cornwall district of the United Kingdom, additional sources of of radium-bearing ores include, in the order named, Portugal, Madagascar, the U. S. S. R., Australia, and South Africa, although the total production from these minor sources probably has not been 5 percent of the world total.

The dangers accompanying actual manipulation of bare radium salts are well known to most of those who have worked in this field. Lead usually has been the principal means of protecting the medical operator or investigator from actual exposure to the damage-dealing radiations, but in certain procedures lead may restrict the work. avoid danger to the operator a new technique of protection has been described by De Ment 12 which depends on electromagnetic diversion of the rays from their normal paths, positive particles being absorbed upon a negatively charged magnetic pole and negative particles by a positive pole. The operator then can station himself in the field of minimal radiation.

The National Bureau of Standards has undertaken to prepare a series of radium standards covering the weakly radioactive range equivalent to between 10⁻⁴ and 10⁻¹¹ grams of radium. These standards are needed by investigators of the radioactive content of geological specimens, particularly those used for determining the age of the earth. They are also needed in standardizing equipment for measuring artificial radioactivity.

¹⁹ Redecker, Sydney B., American consul, Frankfort on the Main, Germany, German Chemical Notes: Consular Rept., February 25, 1939, 13 pp.; abs. in Bureau of Mines Mineral Trade Notes: Vol. 8, No. 4, April 20, 1939, pp. 11–12.

¹¹ Engineering and Mining Journal, vol. 140, No. 11, November 1939, p. 78.

¹² De Ment, Jack, Electrical Protective Devices in Radium Work: Am. Jour. Roentgenology and Radium Therapy, vol. 42, No. 6, December 1939, pp. 930–933.

Uranium.—Increased output of radium has raised again the question of disposing of the jointly recoverable uranium. At present the chief use of uranium is in the form of oxides which produce golden glazes on pottery and yellow- and orange-colored glasses. In small amounts uranium oxide produces luster or irridescence. At the close of 1939 sodium uranate, Na₂UO₄, was quoted unchanged at \$1.75 and \$1.80 a pound; uranium oxide, 96 percent U₂O₆, in 100-pound lots at \$2.65 a pound for the black and \$1.75 for the yellow or orange product.

Ionium.¹³—The Canadian National Research Council has investigated extraction of radioactive substances other than radium from Great Bear Lake pitchblende, which contains the amazing number of 53 different elements. Ionium, the product intermediate between uranium and radium, has a much slower break-down (100,000 years) than radium (2,500 years). Under equilibrium conditions an ore carrying about 120 milligrams of radium a ton should contain about 4,800 milligrams of ionium. As ionium gives off only alpha rays, it would not be useful like radium for therapeutic purposes, but it should be serviceable for such uses as the preparation of luminous paints. Although it is less potent, weight for weight, the total ionium content of the ore would equal in value the total radium content, insofar as production of luminous paints is concerned.

Polonium. 14—Polonium has an average life of about 6 months, so the equilibrium amount present in the ore is very small, although very potent. Like ionium, it is lost in the present Port Hope refinery process; but radium D, which accompanies and is inseparable from the lead isolated in the process, continually generates polonium during its entire 24-year life, so that by the time a given quantity of polonium disappears a corresponding amount may be generated from a stock of radium lead. Polonium emits only alpha rays, but unlike ionium it is afterward "dead," a distinct advantage for some purposes. The chief established use of polonium is in meteorological stations for measuring the electrical potential of the air, and the meager supply

needed for the purpose is obtained from old radon seeds.

RARE EARTHS

To encourage research in the field of rare earths and illumination the Auer Research Foundation, named for the Austrian chemist who invented the Welsbach mantle, posted in 1939 a 10,000-RM. (\$4,000) prize for the best process submitted for better utilization of gases and more effective lighting with mantles containing thorium and cerium oxides. Although the use of Welsbach mantles has declined in Europe, as in America, they are still used extensively in Germany for portable lanterns and street lighting. Another Auer prize of similar amount was put up for the development of new commercial uses of lanthanum compounds. So far no practical use has been found for lanthanum, although its suggested use in compounds for loading silk and rayon is being reconsidered now that the patent has expired. Lanthanum oxide is the major rare-earth constituent of the residues from the extraction of thorium and cerium oxides from monazite, and the quantities of such residues have increased owing to the greater pro-

Whitby, G. S., Some New Metals: Canadian Min. and Met. Bull. 333, January 1940, pp. 56-64.
 Whitby, G. S., work cited in footnote 13, pp. 56-64.

duction of thorium, especially for use as a catalyst in the Fischer-

Tropsch benzine synthesis.15

Cerium, praseodymium, and neodymium compounds, which also occur in Welsbach mantle residues, have been used extensively in the glass and ceramic industries for coloring and glazing. A recent patent (United States 2,150,694) covers nonsilicate glasses formed by the fusion of rare earth and other metallic oxides without silica. search for more rapid and efficient photographic lenses, Dr. George W. Morey of the Carnegie Institution, to whom this patent is issued, has created an entirely new series of optical glasses with indexes of refraction roughly midway between that of the best ordinary flint glass and that of the diamond. As these new glasses combine low dispersion with high index of refraction they can be used for camera lenses of greater light-gathering power and afford better corrections for chromatic aberration. One glass, with 60 percent lanthana and 40 percent boron oxide, has a refractive index of 1.72 and dispersion index of 54. Another, with 33 percent lanthana, 41 percent thoria. and 26 percent boron oxide, has a refractive index of 1.76 and dispersion index of 52.

A pure oxide of cerium, called aline, recently has been developed for the production of gray nickel or cobalt ground enamels for sheet metal and is claimed to have remarkable opacity and to be unaffected by furnace atmospheres. 16 Misch metal, though hitherto used almost exclusively in making sparking alloys and lighter flints, often has been proposed for use in the iron and steel industry. In cast iron, cerium opposes graphitization, and misch-metal additions in small amounts afford interesting possibilities for making malleablized iron. According to a French authority, 17 cerium and allied metals have even more affinity than manganese for sulfur; moreover, they form harmless

rounded particles.

One of the important uses of rare-earth compounds at present is in the textile industry, wherein they are used in printing and dyeing and also, to an increasing extent, for mothproofing and rotproofing fabrics.

RHENIUM

A little rhenium finds its way into radio and power tubes, but the consumption is very small and hitherto Germany has been the only commercial source. According to Wm. G. Rinehart, who collected the samples, Dr. Clarence F. Hiskey, University of Wisconsin, found rhenium in 30 out of about 150 manganese-bearing samples from the Batesville-Cushman district, Arkansas, but the content is only about 1 part in 10 million.

SELENIUM AND TELLURIUM

Selenium finds its chief use in glassmaking; a few ounces added to clear glass batches neutralize the greenish cast imparted by traces of iron in the sand. Ruby signal lenses carry 0.25 percent Se. uses are for photoelectric cells, to improve machinability of stainless steel, in rubber goods, and in red-paint pigments containing

¹⁵ Chemical and Metallurgical Engineering, German Industrial Groups Push Research in Field of Rare Earths: Vol. 46, No. 6, June 1939, p. 387.

16 Esme, A., Cerium and Its Compounds: Argile, No. 95, 1939, pp. 5-11; Ceramic Abs., vol. 18, No. 10, October 1939, p. 278.

17 Guillet, Leon (fils), Les Fontes au cobalt et au cerium: Chim. et ind., vol. 41, No. 5, May 1939, pp. 822, 260

^{853-860.}

cadmium and barite. It also has been employed in antiknock compounds for gasoline, in insecticides and bactericides, in certain organic syntheses, and to protect magnesium metal from corrosion—but never in any substantial amounts.

Tellurium is used to toughen rubber and to harden lead.

Prices of selenium (black, powdered, 99.5 percent) and of tellurium remained at \$1.75 a pound. To offset declining exchange the London prices at the end of the year had risen to 8s. 6d. and 7s. to 7s. 6d. respectively.

Production, sales, and imports of selenium and production and sales of tellurium in the United States, 1935-39

		Selei	Tellurium				
Year	Production		Imp	orts	Production	Sales 1	
	(pounds)	(pounds)	Pounds	· Value	(pounds)	(pounds)	
1935. 1936. 1937. 1938. 1939.	244, 710 352, 480 435, 821 225, 674 227, 131	232, 831 226, 402 282, 598 166, 494 345, 726	179, 331 122, 806 92, 523 101, 034 124, 830	\$322, 332 215, 835 161, 382 163, 598 193, 168	37, 096 57, 956 51, 409 11, 076 25, 234	22, 610 25, 453 23, 365 26, 944 63, 431	

¹ Bureau of Mines not at liberty to publish value.

THORIUM

Welsbach's invention of an incandescent gas mantle composed of 99 percent thorium oxide created after 1890 a world-wide demand for thorium, which was furnished by working monazite sands produced successively in North Carolina, Brazil, Ceylon, and Travancore. The wider use of electric lighting, following introduction of ductile tungsten filaments in 1910, virtually eliminated gas mantles, except for liquid-fuel equipment in remote regions. In 1890 thorium oxide cost \$125 a pound; by 1910 it had dropped to \$2.50 a pound. It can be made from thorium nitrate, which recently averaged a little over \$2 a pound. Monazite, the ore of thorium, has recently been quoted at

\$60 a ton for 8-percent grade.

Thorium metal is soft and malleable and probably could be produced at prices not greatly exceeding that of platinum. It has been used to eliminate brittleness in the manufacture of ductile filaments. Other alloys might be developed; those with aluminum, chromium, cobalt, copper, molybdenum, tungsten, and vanadium already have been briefly investigated. An alloy claimed to be suitable for neon-sign electrodes contains copper plus 0.005 to 10 percent thorium and a third element (United States Patent 2,136,918, November 15, 1938, F. R. Hensel and Earl I. Hensel, assigned to P. R. Mallory & Co., Indianapolis, Ind.). Some thoria is used in high-quality refractories, and diminishing quantities are employed in gas mantles. Monazite is the chief source. Mesothorium is also obtained from monazite residues. No data are available as to domestic production, but in 1939 the National Bureau of Standards tested only three specimens containing 49 milligrams of mesothorium compared with 18 specimens and 373 milligrams during the preceding year.

¹⁸ Fink, Colin, Thorium and Chemical Research: Ind. Eng. Chem., News ed., vol. 17, No. 24, December 20, 1939, p. 775.

TITANIUM

The Bureau of Mines is not at liberty to publish figures for domestic production of ilmenite and rutile. As in former years, Virginia was the leading producing State for both these minerals, but in 1939 Arkansas furnished a substantial quantity of rutile-brookite concentrate and could have produced more had the concentrating plant been able to operate steadily during the prolonged drought. According to the California State mineralogist, Harry R. Smith shipped ilmenite sand, containing over 30 percent TiO₂ and valued at \$10 a ton, for use as roofing granules. The duPont interests continued to develop titanium deposits in the San Gabriel Mountains, Los Angeles County, Calif.

The bulk of the ilmenite used in the United States is imported from British India and is consumed in the manufacture of titanium pigments. Domestic production of rutile exceeds imports, but both The principal uses of domestic and imported rutile is sold abroad.

rutile are in welding-rod coatings and ceramics.

Imports of ilmenite rose in 1939 to still another all-time record. Early in the year the second unit of the National Lead Co. titanium pigment plant at Sayreville, N. J., was opened, and a third unit is expected to begin producing in 1940, tripling the capacity of the original unit completed in 1935. The first commercial production of titanium white was probably in 1919, and in 1922 Travancore made its first shipment of ilmenite. As recently as 1926 the British Indian output of ilmenite was only about 5,000 tons, and the 50,000-ton mark was not approached until 1932. The mining of ilmenite and associated minerals in India has been described by the vice president of the Foote Mineral Co.19 who presents the following composite analysis of recent shipments: TiO₂, 60.35; Fe, 22.69; SiO₂, 0.41; S, 0.01; and P, 0.03 percent.

Imports of rutile were almost twice as large in 1939 as in the preceding year but failed to equal the high record of 665 tons valued at \$67,643 in 1937. Australia is the leading foreign source, with Brazil However, rutile has also been separated from mineral concentrates imported from British India. Actually the import figures reveal little, because, on the one hand, some of the rutile so reported has to be reconcentrated after arrival in the United States and, on the other hand, rutile is recovered from ores imported under other statistical classifications, chiefly as "Zirconium ore." Other countries that have produced rutile are Norway, Cameroons, and South Africa. Brazilian rutile has been exported to other countries besides the United States, notably Germany and the United Kingdom. Australian operations, which lie along the coast of New South Wales, some 300 miles from Sydney, have been described by Poole.²⁰

Kennametal, a tungsten-titanium carbide, is a new, high-priced, ultrahard carbide used in cutting tools, valve seats, and other wearing surfaces.

Engineering and Mining Journal quotations in 1939 were the same as in 1938: Ilmenite, 45 to 55 percent TiO2, f. o. b. Atlantic seaboard,

¹⁹ Chambers, G. H., Zircon, Ilmenite, and Monazite Mining in India: Foote-Prints, vol. 12, No. 1, Philadelphia, June 1939, pp. 1-11.

10 Poole, W. R., Zircon and Rutile from Beach Black Sand Deposits: Chem. Eng. and Min. Rev., vol. 31, Nos. 365-366, February-March 1939.

\$10 to \$12 per gross ton according to grade and impurities; rutile, guaranteed minimum 94 percent concentrate, 10 cents per pound (nominal); 88 to 90 percent, \$55 per ton, c. i. f. New York; ferrocarbontitanium, \$142.50 per short ton f. o. b. producer's plant. of titanium dioxide after dropping to 14 cents at the beginning of the year was reduced further to 13 cents a pound. Barium- or magnesiumbase titanium pigment was quoted at 51/4 cents and calcium-base pigment at 5 cents early in 1940.

ZIRCONIUM

Domestic consumption of zirconium compounds is growing but falls far short of the quantity indicated by the importation of zirconium ores as officially reported. It is common knowledge that the bulk of the imports so classified comprises rutile-bearing concentrates from Australia, which are not all zircon. Moreover, not all the zircon content of the concentrates after separation of rutile is utilized currently but goes into stock pile.

An important outlet for zirconium compounds is as opacifier in all kinds of vitreous enamels, replacing tin oxide. The potential size of this market is indicated roughly by the world output of tin oxide, which the International Tin Research and Development Council estimates as averaging 3,500 to 4,000 short tons a year for 1929-37.

According to Chambers: 21

A composite analysis of many shipments from F. X. Pereira and Company to Philadelphia is given below: $\rm ZrO_2$ 66.80 percent, $\rm SiO_2$ 31.50 percent, $\rm TiO_2$ 0.84 percent, Fe 0.08 percent, P₂O₅ 0.07 percent.

One of the first commercial uses for zircon was in refractory crucibles and for this purpose it has some excellent properties. It has the lowest linear thermal expansion among the usual ceramic raw materials, having even less expansion than sillimanite and fused aluminum oxide. It has a melting point of about 4622° F. and a softening point of approximately 3272° F. For these reasons zircon refractories show excellent resistance to spalling and fusion except in the presence of iron oxide and certain basic fluxes.

Zircon is of even greater interest in the field of specialized porcelains. Vitreous porcelain bodies containing 30 to 70 percent zircon have a long firing range, exceptional mechanical strength, good heat shock resistance and remarkable dielectric strength at high temperatures. All of these properties are particularly necessary in electrical appliances as well as in sand molds for stainless steel and

alloy castings.

Considerable quantities of zircon sand are also employed in refractory insulating cements for electrical appliances as well as in sand molds for stainless steel and

Zircon is now used in certain types of heat-resisting glass and it is possible that the glass industry will eventually be the largest market for this versatile mineral. The most desirable feature of zirconia glasses is their greater impact strength The most desirable feature of zirconia glasses is their greater impact strength and thermal endurance. In other words, the addition of zircon to the batch produces tougher glass which is less likely to break in use. It also increases the chemical durability of glass, particularly its resistance to caustic soda. Until recently these advantages were outweighed by the cost, but the present low-market price of zircon now puts it approximately on a parity with alumina. Zircon is also the usual raw material for manufacturing zirconium oxide and zirconium salts. The most important of these are the zirconium opacifiers which to a large extent have supplanted tin oxide in vitreous enamels and ceramic glazze. Other zirconium compounds such as the pure oxide tetrachloride and

glazes. Other zirconium compounds such as the pure oxide, tetrachloride and tetraiodide are used in producing zirconium metal. The metal is used in photoflash bulbs, radio transmitting tubes, ammunition primers, spot welding electrodes, and a number of other unusual applications.

²¹ Chambers, G. H., Work cited in footnote 19, pp. 8-10.

Engineering and Mining Journal quotations during 1939 were still nominal: Zircon ore, 55 percent ZrO₂, f. o. b. Atlantic seaboard, carloads, \$55 a short ton; crude granular zircon, \$70 f. o. b. Suspension Bridge, N. Y., milled, \$90. Zirconium metal, commercially pure, powdered, \$7 a pound. Zirconium alloys, 12 to 15 percent Zr, 39 to 43 percent Si, \$97.50 to \$102.50 a gross ton; 35 to 40 percent Zr, 42 to 52 percent Si, 14 and 16 cents a pound.

PART III. NONMETALS

BITUMINOUS COAL¹

By M. E. McMillan, R. L. Anderson, and W. H. Young

SUMMARY OUTLINE

	Page	"	Page
Survey of the bituminous industry in 1939	773	Final bituminous statistics for 1938—Continued.	
Production	774	Production—Continued	
Imports and exports		Number and size of mines	795
Changes in stocks		Trend of average value per ton	796
Consumption		Spot prices	797
Distribution		Labor statistics	799
Freight rates		Men employed	799
Trend of prices			800
Mechanization		Man-days of labor	800
Stripping operations	776	Length of working day	800
Trend of employment		Methods of recovery	801
Trend of capacity	777	Fuel efficiency	802
Trend of fuel efficiency		Stocks held by consumers	802
Competing sources of energy		Coal loaded for shipment by individual	
Statistical tables—1939		railroads and waterways	803
Sources of data and acknowledgments		Imports and exports	807
Relative rate of growth of coal, oil, and water		Shipments to Alaska, Canton and Eader-	
power, 1889–1939			
Final bituminous statistics for 1938	790	Rico, and the Virgin Islands	809
Production	791	World production	810
Summary by States	791	Detailed statistics, by States and counties	812
Total production since beginning of		Statistics of lignite and of anthracite and	
mining Production by weeks and months	792 793	semianthracite outside of Pennsylvania	829

Bituminous-coal production in 1939 was considerably greater than in 1938. During the first quarter production was high to fill orders purchased for storage by consumers in anticipation of possible suspension of mining when the wage contract expired on March 31. Output declined sharply in April and May when work ceased pending the signing of a new wage contract. The outbreak of war in Europe in September stimulated general business, particularly the heavy industries, and the production of coal increased substantially.

During the year the Bituminous Coal Division, United States Department of the Interior (formerly the National Bituminous Coal Commission), proceeded with the task of building a minimum price structure that would comply in detail with requirements of the law.

¹ The collection of production statistics of the bituminous-coal industry previously conducted by the Bureau of Mines was transferred to the National Bituminous Coal Commission July 1, 1937. The coperation of the Coal Commission (now the Bituminous Coal Division, U. S. Department of the Interior) in contributing this chapter to Minerals Yearbook to maintain the continuity of the bituminous-coal series is gratefully acknowledged.

Data for 1939 are preliminary; detailed statistics with final revisions will be released later. Data for 1938

Production.—The output of soft coal in 1939 was 393,065,000 tons, a 13-percent increase over 1938. The coal industry made substantial gains in common with general business activity during the latter half of the year, and the total output for the year was 27 percent above the record low of 1932, although 27 percent below the 534,989,000 tons (See figs. 1, 2, and 4.)

Imports and exports.—Exports of bituminous coal rose from 10,490,-269 tons in 1938 to 11,590,478 in 1939, a 10-percent increase. same time imports, which are relatively insignificant, rose 47 percent from 241,305 tons in 1938 to 355,115 in 1939. As in the past, virtually all these imports and more than 90 percent of the exports represented

trade with Canada. (See fig. 10.)

Changes in stocks.—The reserve supply of coal in the hands of industrial consumers and retail coal yards rose from a total of 40,720,000 tons at the beginning of the year to 44,571,000 at the close. Between the same periods, stocks on the upper Lake docks declined 295,000

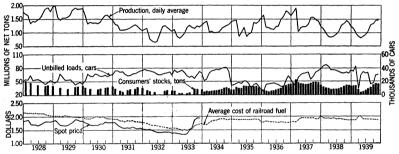


FIGURE 1.-Trends of production, stocks, and prices of bituminous coal, 1928-39.

tons, and unbilled coal in cars at the mines or classification yards fell

74,000 tons. (See fig. 1 and table 18.)

Consumption.—After allowances have been made for foreign trade and changes in consumers' stocks the consumption of bituminous coal in 1939 totaled 377,978,637 tons, an increase of 33,328,837 from 1938. Each of the more important classes of consumers shared the increase, which ranged from 69 percent for beehive coke ovens to 7 percent for railroads. (See fig. 3 and table 4.)

Distribution.—Shipments of bituminous coal during 1939 rose substantially above the 1938 level in each of the primary channels of distribution. Changes in the monthly volume of the more important

movements are shown in figure 4.

Freight rates.—The average railroad freight charge per net ton of revenue bituminous coal amounted to \$2.23 in 1939 compared with \$2.27 in 1938.

Trend of prices.—Spot market quotations indicate that producers averaged less per ton for their coal in 1939 than in 1938. (See tables 1 and 15.)

Mechanization.—Data available early in 1940 indicate continuation of the sharp advance in mechanical loading of bituminous coal.

Sales of mechanical loading equipment for use in bituminous-coal mines, in terms of total capacity, increased 21.4 percent in 1939 over

² Coal Age, February 1940, p. 63, and Mining Congress Journal, February 1940, p. 23.

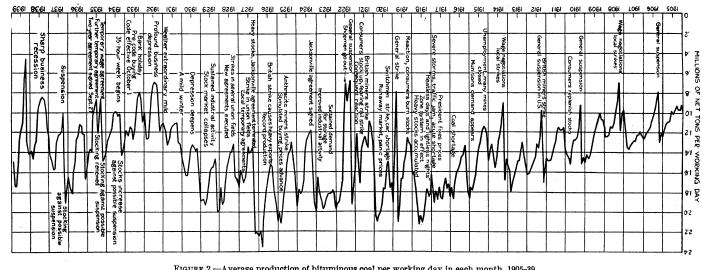


FIGURE 2.—Average production of bituminous coal per working day in each month, 1905-39.

1938. Reports from 31 manufacturers show sales of 292 mobile loaders for the current year as against 241 in 1938 and 344 in the peak year 1936. Conveyor sales totaled 1,095 in 1939 compared with 749 in 1938 and 682 in 1936.

Stripping operations.—The volume of bituminous coal produced by stripping decreased from 31,750,853 tons in 1937 to 30,406,855 in 1938.

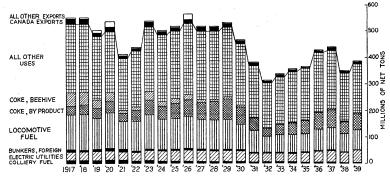


FIGURE 3.—Tonnage of bituminous coal absorbed by the principal branches of consumption, 1917-39.

However, the percentage of total production represented by strip coal rose from 7.1 percent in 1937 to 8.7 percent in 1938.

Trend of employment.—Estimates of the number of men employed at bituminous-coal mines in 1939 indicate a slight drop from the 1938 figure (441,333). Indexes compiled by the Bureau of Labor Statistics

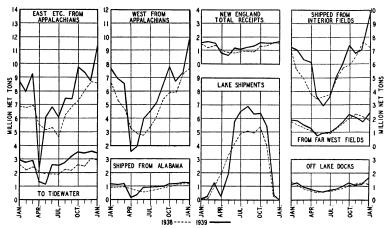


FIGURE 4.—Monthly movement of bituminous coal in the major channels of distribution, 1938-39.

upon the basis of a sample that includes more than half the workers in the industry show a 1-percent drop in employment for 1939 if normal operations during the April-May suspension are assumed. Reports from the mining departments of nine States with more than 60 percent of the bituminous-coal employees in the United States indicate an average decline of 0.4 percent for the same period. These data suggest an estimate of 437,000 employees for 1939. In com-

parison with 1929, when the average number of men at bituminous-coal mines totaled 502,993, the 1939 figure represents a decrease of

66,000.

Statistics of employment for bituminous-coal workers cannot be interpreted properly without considering the intermittent operations that characterize most coal mines. In 1938, for instance, the bituminous mines were operated an average of 162 days out of the 261 possible under the 5-day week of the union wage agreement. Consequently, a substantial proportion of the manpower on the rolls of the industry was idle throughout the year, the number depending on the market and the season.

Trend of capacity.—The potential full-time output of active mines in the bituminous-coal industry decreased 7 percent between 1937 and 1938. The coal industry reached its peak capacity in 1923 when, upon the basis of 308 operating days, the potential output was 970,-000,000 tons. Subsequent liquidations forced the closing or abandonment of thousands of mines and reduced the indicated capacity to 622,000,000 tons in 1934. The potential output upon a 308-day basis was 663,000,000 tons in 1938. Under the 5-day week full-time operations are limited to approximately 261 days. The potential capacity of operating mines upon a 261-day basis was 562,000,000 tons in 1938 compared with the total actual production of 348,544,764 tons.

Trend of fuel efficiency.—Since the World War period, improvements in the technology of fuel application have contributed to a continuing decline in the demand for coal for industrial uses. Although the effect of such improvements is cumulative from year to year, the rate of decline is smaller in recent years as the remaining margin of possible

increase in fuel efficiency becomes progressively less.

The class I steam railroads reduced the average coal consumption by coal-fired locomotives from 117 pounds per 1,000 gross ton-miles of freight service in 1938 to 115 pounds in 1939. For all railroad freight service, including oil-burning and electric locomotives, the average energy consumption, converted to coal equivalent, was reduced from 115 pounds per 1,000 gross ton-miles in 1938 to 112 pounds in 1939. During the same period, public utility power plants lowered the average fuel consumption from 1.41 to 1.39 pounds per kilowatt-hour. In the iron and steel industry, the average consumption of coke in iron blast furnaces was reduced from 1.801 in 1938 to 1.778 pounds in 1939 per net ton of pig iron produced, representing a drop from 2,583.9 to 2,547.3 pounds of coking coal per net ton (2,894 and 2,853 pounds per gross ton) of pig iron for 1938 and 1939, respectively.

Improvements in combustion practice among domestic consumers and small industrial and commercial establishments also are helping to decrease the aggregate volume of fuel consumption. Furthermore, increasing economy in combustion methods is being supplemented by improvements in space-heating methods and by progress in building

construction and insulation.

Competing sources of energy.—While improvements in fuel technology have acted to lessen the demand for coal in the industries affected, these same improvements have constituted a defense of coal against the spread of other sources of energy into the previous markets for coal. In the electric utility field, for example, consumption of coal has increased coincident with the development of hydroelec-

tric projects. During the past five years, production of public utility electrical energy by steam power plants increased from 54,649,829,000 kilowatt-hours in 1935 to 85,006,941,000 in 1939, an increase of 45 percent. Statistics of current and projected expenditures for new steam plant construction indicate a continuation of this trend in the near future. Edison Electric Institute reports expenditures in 1939 of \$70,560,000 for steam plants, and budget estimates for 1940 indicate a probable expenditure of \$183,700,000, which will add approximately 1,650,000 kilowatt-hours to the total steam-generating

capacity in 1940.

Despite the improvements in fuel economy in the utilities industry, the total coal consumption for power generation has continued to increase since 1933 except in 1938, when there was a 10-percent decrease compared with the previous year, attributable to the general slump in industrial activity and total power consumption. The upward trend was resumed in 1939 with a total coal consumption of 46.223.000 tons, an all-time high record for this industry. In addition, the utilities steam power plants used 17,423,000 barrels of fuel oil (approximately equivalent to 4,356,000 tons of coal) and 191,131,-000,000 cubic feet of natural gas (equivalent to 8,310,000 tons of During the past 20 years the growth of the utilities industry has approximately offset the effect of improved fuel technology in relation to aggregate coal consumption, and the annual tonnage used has moved up and down from the low of 30,000,000 to the high of 46,000,000 as general industrial activity varied. Use of fuel oil also has followed an irregularly horizontal course during this period, but the consumption of gas in utility electric power plants has increased from 22 billion feet in 1920 to 191 billion in 1939.

In the field of domestic heating comparable figures are available for mechanical firing equipment only. In this category, the use of oil and gas appears to be growing more rapidly than coal, basing estimates upon sales of new equipment. Sales of oil burners for domestic use rose from 106,933 units in 1938 to 165,711 in 1939, a 55-percent increase, whereas sales of domestic stokers (under 61 pounds per hour capacity) using bituminous coal, rose from 71,978 units in 1938 to 78,332 in 1939, a 9-percent increase. However, this does not entirely represent the relative positions of the two competing fuels in new plants because the oil-burner sales cover virtually all installations in which oil is used, while the sales of coal cover only mechanical stokers and do not consider new installations of hand-fired equipment. During the same period sales of natural gas for domestic use increased from 352,949,000,000 to 367,733,000,000 feet, a 4-percent gain (not including natural gas in mixtures sold by manufactured-gas

companies).

The use of coal for locomotive fuel by railways decreased 17 percent in 1938 compared to 1937 and came back 7 percent in 1939, while the use of fuel oil followed an almost identical course, decreasing 13 percent in 1938 and increasing 3 percent in 1939. The consumption of railroad fuel varies with the fluctuations in volume of traffic.

The use of Diesel fuel increased rapidly, rising from 25,470,248 gallons in 1937 to 34,842,982 in 1938 and 48,754,423 in 1939. In the aggregate, however, Diesel fuel constitutes as yet only about a quarter of

1 percent of the total railroad fuel.

Statistics for 1939 show that the use of coal and oil by railroads, electric utility power plants, and steamships exceeded that in 1938 by 10 percent, while the oil consumption increased 7 percent. In the same period, consumption of natural gas by all industrial, commercial, and domestic consumers increased 7 percent.

Statistical tables—1939.—Tables 1 to 5 give a statistical record of the bituminous-coal industry in 1939, as indicated by available pre-They also show comparative statistics for the indiliminary data. cated earlier years, including final figures for 1938. (See fig. 5.)

Table 1.—Salient statistics of the bituminous-coal industry, 1938-39

[All tonnage figures represent r	et tons]		
	1938	1939 (pre- liminary)	Change in 1939
Production Exports to Canada and Mexico ¹ Exports overseas and all other ¹ Imports ¹ Consumption in the United States (calculated) ² Stocks at end of year: Industrial consumers and retail yards	929, 552 241, 305 344, 649, 800 40, 720, 000	393, 065, 000 9, 975, 919 1, 614, 559 355, 115 377, 978, 637 44, 571, 000	+47. 2% +9. 7% +9. 5%
Stocks on upper Lake docks. Unbilled loads, at mines or in classification yards ? Price indicators (average per net ton): Average cost of railroad fuel purchased, f. o. b.mines 4	7, 885, 516 1, 607, 200 \$1, 92	7, 590, 254 1, 533, 100 \$1, 91	
A verage cost of coking coal at merchant byproduct ovens \$ A verage cost of bunker coal to vessels in foreign trade \$ A verage value of exports to all countries (at port) \$ 7 A verage retail price—38 cities \$ A verage railroad freight charge per net ton \$	\$4, 61 \$4, 85 \$3, 63	\$4. 57 \$4. 83 \$3. 69 \$8. 52	-16 -46 -26 +66 -96
A verage railroad freight charge per net ton 9 Underground loading machinery sold to bituminous mines: 10 Mobile loading machines (number) Scrapers (number) Conveyors, including those with duckbills (units)	241 6	\$2. 23 292 18 1, 095	$-4\mathfrak{c}$ +21. 2% +200. 0% +46. 2%
Pit-car loaders (units) Average number of men employed at mines operating 11 Fuel-efficiency indicators: Pounds coal per kwhr. at electric power plants 12 Pounds per 1.000 gross ton-miles—railroads 13	139 441, 333 1. 41	437, 000 1. 39	-98.6% -1.0% -1.4%
Lorings hor 1'000 81022 fort-miles-Lautoags 19	115	112	-2.6%

Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.
 Production plus imports minus exports plus or minus net changes in consumers' stocks.
 Association of American Railroads.
 Interstate Commerce Commission. Excludes freight charges.

As reported by coke operators to the Bureau of Mines.
Computed from records of the Bureau of Foreign and Domestic Commerce.
Computed from records of the Bureau of Foreign and Domestic Commerce.
Computed from records of the Bureau of Foreign and Domestic Commerce.
The figure the average value at the point of export of shipments to all foreign countries including Canada.
Bureau of Labor Statistics. The figure represents

Average receipts per net ton of revenue bituminous coal originated, as reported by the Interstate Commerce Commission.

merce Commission.

10 Fraser, Thomas, Tryon, F. G., Gallagher, J. J., and van Siclen, M., Mechanization Sales: Coal Age, February 1940, pp. 63-65, and Mining Congress Journal, February 1940, pp. 23-27.

11 The figure for 1938 is based upon reports of mine operators producing over 1,000 tons. The figure for 1939 is estimated from the employment index of the Bureau of Labor Statistics, which covers about half of the men employed in the industry, and from current monthly reports of 9 State mine departments which represent approximately 60 percent of all the bituminous-coal-mine workers in the United States.

11 Federal Power Commission.

13 Interstate Commerce Commission; includes coal equivalent of fuel oil consumed.

Table 2.—Salient trends in bituminous mine operation, 1913-38

	1913	1923	1929	1932	1934	1936	1937	1938
Production: Loaded at mines for shipment by rail. net tons. Loaded at mines for shipment by water. do. Made into coke at mines. do. Used at mines for colliery fuel. do. Commercial sales by truck or wagon. do. Other local sales, used by employees, etc. do.	392, 743, 412 10, 690, 834 49, 458, 320 11, 670, 903 } 13, 871, 828	488, 974, 496 16, 884, 799 27, 859, 316 8, 765, 011 22, 081, 040	474, 868, 165 23, 066, 289 9, 128, 607 4, 662, 974 23, 262, 558	276, 142, 037 9, 365, 782 1, 028, 458 2, 780, 889 20, 392, 706	313, 303, 729 15, 127, 968 1, 647, 805 3, 175, 057 {118, 739, 320 7, 374, 143	370, 762, 901 24, 867, 683 2, 728, 577 3, 227, 447 27, 929, 298 9, 571, 997	}399, 237, 575 4, 884, 054 3, 052, 095 } 37, 762, 612	{295, 336, 027 16, 902, 969 1, 359, 876 2, 493, 017 {25, 592, 058 6, 860, 817
Total productiondo	478, 435, 297	564, 564, 662	534, 988, 593	309, 709, 872	359, 368, 022	439, 087, 903	2 445, 531, 449	348, 544, 764
Number of active mines of commercial size: number Class 1 (200,000 tons or more) number Class 2 (100,000 to 200,000 tons) do Class 3 (50,000 to 100,000 tons) do Class 4 (10,000 to 50,000 tons) do Class 5 (1,000 to 10,000 tons) do	694 837 959 1,558 1,728	748 935 1, 176 2, 742 3, 730	827 660 668 1, 361 2, 541	465 477 469 1, 111 2, 905	551 485 479 1,072 3,671	660 452 460 1,085 4,218	661 469 448 1,117 3,853	526 402 415 1,042 3,392
	5, 776 75. 4	9, 331 70. 4	6, 057 83. 1	5, 427 77. 5	³ 6, 258 80. 5	³ 6, 875 83. 8	³ 6, 548 84. 1	5, 777 81. 1
Average number of men employed at mines active: Underground	494, 238 77, 644	600, 305 104, 488	433, 999 68, 994	345, 905 60, 475	384, 947 73, 064	399, 367 77, 837	(4) (4)	370, 004 71, 329
Totaldo	571, 882	704, 793	502, 993	406, 380	458, 011	477, 204	491, 864	441, 333
A verage number of days mines operateddays. Nominal length of established full-time week 5hours Capacity of active mines with existing labor force:		179 48. 4	219 48. 5	146 48. 6	178 40.0 and 35.1	199 35. 1	193 35. 1	162 35. 1
Per year of 308 days (full time before October 1933) net tons. Per year of 261 days (5-day week basis) do. Output per man per day 6 do. Output per man per year do. Underground output cut by machine percent. Underground output mechanically loaded do. Quantity mined by stripping net tons. Quantity cleaned by wet or pneumatic processes 8 do.	3. 61 837 50. 7	970, 000, 000 823, 000, 000 4, 47 801 68, 3 .3 11, 940, 134 20, 140, 385	752, 000, 000 638, 000, 000 4. 85 1, 064 78. 4 20, 268, 099 32, 271, 950	653, 000, 000 554, 000, 000 5, 22 762 84, 1 12, 6 19, 641, 128 27, 357, 599	622,000,000 527,000,000 4,40 785 84.1 12.2 20,789,641 35,853,714	680,000,000 576,000,000 4.62 920 84.8 16.3 28,125,857 53,332,040	710, 000, 000 601, 000, 000 4, 69 906 (4) 20. 2 31, 750, 853	663, 000, 000 562, 000, 000 4. 89 790 87. 5 (4) 30, 406, 855 (4)

¹ The earliest year in which figures were collected in strictly comparable form was 1933, when commercial sales by truck and wagon were 15,462,739 tons.

2 The total production differs from the sum of the items shown by the amount of the changes in inventory and of tonnage not accounted for in the distribution analysis.

3 The increase in number of mines shown for 1934-37 over preceding years is due partly to more complete coverage of small trucking mines (producing over 1,000 tons a year). See Minerals Yearbook, 1936, pp. 561-564.

⁴ Data not available.

^{*}Data not available.

*The figures represent the full-time week as reported by the operator, not the hours actually worked by the men.

*Affected by changes in length of working day.

*Figures for 1914, the year of earliest record.

*Exclusive of central washeries operated by consumers.

Table 3.—Preliminary statistics of coal production in 1939, by States, with final figures for earlier years

		т	Production	on, in the	ugonde (of not ton						Porco	nt of to	tal bitui	ninous		
			Toducuc	л, ш ш	usanus (и пет топ		-	Change			r erce.	110 101 101	iai Ditui	mnous		
State	1913	1923	1929	1932	1936	1937	1938	1939 (prelim- inary)	in 1939 (per- cent)	1913	1923	1929	1932	1936	1937	1938	1939 (prelim- inary)
Alaska. Alabama Arkansas. Oklahoma Colorado. Georgia. North Carolina. Illinois. Indiana. Iowa. Kansas Missouri. Kentucky: Eastern. Western Maryland. Michigan. Montana 3	8, 518 4, 780 1, 232 3, 241	120 20, 458 1, 297 2, 885 10, 346 76 36 79, 310 26, 229 5, 711 4, 443 3, 403 33, 887 10, 890 2, 286 1, 172 1, 172 1, 172	101 17, 944 1, 695 3, 774 9, 921 52 60, 658 18, 344 4, 241 2, 976 4, 030 46, 025 14, 437 2, 649 805 3, 408	103 7,857 1,033 1,255 5,599 27 2 33,475 3,862 1,953 4,070 25,760 9,540 1,429 9,540 2,125	137 12, 229 1, 623 1, 540 6, 812 24 50, 927 17, 821 3, 985 39, 152 8, 370 1, 702 2, 988 2, 988	132 12, 440 1, 511 1, 600 7, 187 { (2) 51, 602 17, 765 3, 637 2, 893 4, 091 38, 523 8, 563 1, 549 2, 965	155 11,062 1,197 1,245 5,663 (2) 41,912 14,759 3,103 2,654 3,436 31,177 7,368 1,281 49,494 2,732	146 11, 995 } 2, 300 5, 890 (2) 	-5.8 +8.4 -5.8 +4.0 (2) +10.8 -1.7 +1.7 +1.7 +1.4 -12.1 +2.9	(1) 3.69 { .47 .87 1.93 } .05 12.88 3.59 1.51 .90 2.32 1.78 1.00 .26 .68	0. 02 3. 62 23 .51 1. 83 { .01 14. 05 4. 65 1. 01 .79 .60 6. 00 1. 93 .40 .21	0. 02 3. 35 .32 .71 1. 85 .01 11. 34 3. 49 .56 .75 8. 60 2. 70 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5	0. 03 2. 54 . 33 . 41 1. 81 } . 01 10. 81 4. 30 1. 25 . 63 1. 31 8. 32 3. 08 . 46 . 14 . 69	0.03 2.78 .37 .35 1.55 .01 11.60 4.06 .90 .67 .91 8.92 1.91 .39 .14	0. 03 2. 79 34 .36 1. 61 { (2) 11. 58 3. 99 .82 .65 .92 8. 65 1. 92 .35 .67	0. 05 3. 17 34 36 1. 63 (2) 12. 03 4. 23 . 89 . 76 . 99 8. 95 2. 11 . 37 . 14 . 78	0.04 3.05 } .58 1.50 (2) 11.82 4.24 .78 } 1.58 8.84 2.05 .37 .11
New Mexico North Dakota 3 South Dakota 3 Ohio. Pennsylvania (bituminous) Tennessee Texas 3 Utah Virginia Washington West Virginia Wyoming Other States 4. Total bituminous	495 11 36, 200 173, 781 6, 860 2, 429 3, 255 8, 828 3, 878 71, 254	6, 040 1, 187 4, 720 11, 762 2, 926 107, 900 7, 575 20	2, 623 1, 862 13, 689 143, 516 5, 406 1, 101 5, 161 12, 748 2, 521 138, 519 6, 705 20 534, 989	1, 263 1, 740 49 13, 909 74, 776 3, 538 637 2, 852 7, 692 1, 591 85, 609 4, 171 23 309, 710	1, 597 2, 215 41 24, 110 109, 887 5, 108 843 3, 247 11, 662 1, 812 117, 926 5, 781 15 439, 088	1, 715 2, 251 47 25, 178 111, 002 5, 213 910 3, 810 13, 795 2, 002 118, 646 5, 918 24	1, 239 2, 050 48 18, 591 77, 705 4, 472 879 2, 947 12, 283 1, 567 93, 288 5, 204 34	1, 206 2, 089 50 19, 632 92, 190 5, 280 810 3, 340 13, 230 1, 690 107, 938 5, 383 34 393, 065	-2.7 +1.9 +4.2 +5.6 +18.6 +18.1 -7.8 +13.3 +7.7 +7.8 +15.7 +3.4	. 78 . 10 (1) 7. 57 36. 32 1. 43 . 51 . 68 1. 85 . 81 14. 89 1. 55 . 01	. 52 .25 (1) 7. 18 30. 45 1. 07 .21 .84 2. 08 . 52 19. 11 1. 34 (1)	. 49 . 35 (1) 4. 43 26. 83 1. 01 . 20 . 97 2. 38 . 47 25. 89 1. 25 (1)	.41 .56 .02 4.49 24.14 1.14 .21 .92 2.48 .51 27.64 1.35 .01	. 36 . 50 . 01 5. 49 25. 03 1. 16 . 19 . 74 2. 66 . 41 26. 86 1. 32 (1)	. 38 . 50 . 01 5. 65 24. 91 1. 17 . 20 . 85 3. 10 . 45 26. 63 1. 33 . 01	. 36 . 59 . 01 5. 33 22. 30 1. 28 . 25 . 85 3. 52 . 45 26. 76 1. 49 . 01	31 .53 .01 4.99 23.45 1.34 .21 .85 3.37 .43 27.46 1.37 .01
			<u>-</u>					<u> </u>		100.00	100.00		100.00	100.00	100.00	100.00	100.00
Pennsylvania anthracite	91, 525	93, 339	73, 828	49, 855	54, 580	51, 856	46, 099	51, 487	+11.7								
Grand total	569, 960	657, 904	608, 817	359, 565	493, 668	497, 387	394, 644	444, 552	+12.6								

³ Lignite figures from Bureau of Mines.

Less than 0.01.
 Included in "Other States."
 Includes Arizona, California, Georgia, Nebraska, Nevada, and Oregon. The States reporting are not identical from year to year.

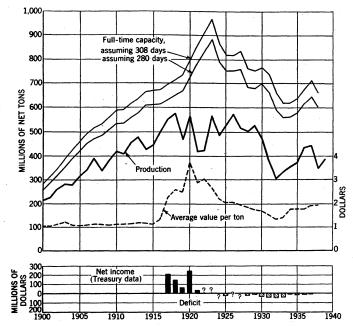


FIGURE 5.—Trends of bituminous-coal production, realization, mine capacity, and net income or deficit in the United States, 1900-39.

Table 4.—Changes in the United States consumption of bituminous coal by such classes of consumers as report currently, and by all other consumers, 1929 and 1934-39, in thousands of net tons 1

[Information on several other classes of consumers is available for certain years. The items shown in this table are selected because they are available in strictly comparable form for each year]

			Cons	umed in	the Unit	ted State	S		Expo	rted 3	m 1
Year	Col-	Elec- tric	Bunk-	Loco- motive	Co	ke ⁵		Total	То	To other	of con- sump-
	liery fuel	power utili- ties 2	ers, foreign trade ³	fuel, class I roads 4	Bee- hive ovens	By- product ovens	All other uses ⁶	con- sump- tion 7	Canada and Mexico	coun- tries (sea- borne)	tion and ex- ports ⁸
1929	4, 663 3, 175 3, 103 3, 227 3, 052 2, 493 2, 810	44, 937 33, 555 34, 807 42, 025 44, 766 40, 212 46, 223	4, 287 1, 321 1, 576 1, 622 1, 832 1, 352 1, 477	113, 894 70, 496 71, 335 81, 130 82, 667 68, 794 73, 833	10, 028 1, 635 1, 469 2, 698 4, 927 1, 360 2, 298	76, 759 44, 343 49, 046 63, 244 69, 575 45, 266 61, 216	264, 987 192, 518 198, 956 228, 850 221, 678 185, 173 190, 122	519, 555 347, 043 360, 292 422, 796 428, 497 344, 650 377, 979	14, 727 10, 213 9, 044 9, 912 12, 052 9, 561 9, 976	2, 702 656 698 743 1, 093 929 1, 614	536, 984 357, 912 370, 034 433, 451 441, 642 355, 140 389, 569

Bureau of Mines.

6 Obtained by subtracting the known items from the calculated total consumption. Includes general manufacturing, domestic, and many miscellaneous uses.

7 Production plus imports minus exports, plus or minus changes in consumers' stocks.

8 Includes imports.

6 Subject to revision.

Comparable data for other earlier years in Minerals Yearbook, 1937, p. 799.
 Geological Survey and Federal Power Commission. Represents all coal consumed by public utility power plants in power generation, including a small amount of anthracite.
 Bureau of Foreign and Domestic Commerce.
 Interstate Commerce Commission. Represents bituminous coal consumed as locomotive fuel by class I steam railways, excluding switching and terminal companies.
 Bureau of Mines.
 Obtained by subtracting the brown items from the calculated of the companies.

Table 5.—Trends in distribution of bituminous coal, 1923, 1929, 1934, 1936-39

[For details and sources of data see Monthly Report on Distribution of Coal Shipments; tonnage figures shown in thousands of net tons]

	19	1923		29	19	34	19	36.	19	37	19	38	1939 (p nai	
	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent
New England receipts: Via rail across the Hudson Via tidewater from northern ports Via tidewater from southern ports	9, 634 3, 703 9, 671	41. 9 16. 1 42. 0	6, 781 1, 570 12, 875	31. 9 7. 4 60. 7	5, 422 1, 089 10, 662	31. 6 6. 3 62. 1	5, 078 755 11, 774	28. 8 4. 3 66. 9	4, 885 364 12, 553	27. 5 2. 0 70. 5	4, 104 125 9, 808	29. 2 . 9 69. 9	4, 626 222 11, 390	28. 5 1. 4 70. 1
Total New England	23, 008	100.0	21, 226	100.0	17, 173	100.0	17, 607	100.0	17, 802	100.0	14, 037	100.0	16, 238	100.0
Tidewater loadings: By ports: At New York and Philadelphia	14, 693 22, 828	39. 2 60. 8	12, 226 25, 825	32. 1 67. 9	9, 120 19, 623	31. 7 68. 3	9, 203 21, 823	29. 7 70. 3	9, 683 23, 467	29. 2 70. 8	8, 565 19, 018	31. 1 68. 9	9, 404 23, 083	28. 9 71. 1
Total	37, 521	100.0	38, 051	100.0	28, 743	100.0	31, 026	100.0	33, 150	100.0	27, 583	100.0	32, 487	100.0
By fields of origin: From Pennsylvania and northern West Virginia. From southern low-volatile fields. From southern high-volatile fields.	19, 760 13, 619 4, 142	52. 7 36. 3 11. 0	15, 516 17, 103 5, 432	40.8 44.9 14.3	10, 647 13, 745 4, 351	37. 1 47. 8 15. 1	11, 344 15, 021 4, 661	36. 6 48. 4 15. 0	11, 859 16, 180 5, 111	35. 8 48. 8 15. 4	10, 394 13, 274 3, 915	37. 7 48. 1 14. 2	12, 165 16, 012 4, 310	37. 4 49. 3 13. 3
Total	37, 521	100.0	38, 051	100.0	28, 743	100.0	31, 026	100.0	33, 150	100.0	27, 583	100. 0	32, 487	100.0
By destinations: To New England Foreign Bunkers Inside capes and other tonnage	13, 374 5, 122 5, 442 13, 583	35. 6 13. 7 14. 5 36. 2	14, 445 2, 852 5, 507 15, 247	38. 0 7. 5 14. 5 40. 0	11, 751 715 1, 545 14, 732	40. 9 2. 5 5. 4 51. 2	837 1, 648	40. 4 2. 7 5. 3 51. 6	12, 916 1, 249 1, 758 17, 227	39. 0 3. 8 5. 3 51. 9	9, 933 1, 029 1, 280 15, 341	36. 0 3. 7 4. 7 55. 6	11, 612 1, 691 1, 453 17, 731	35. 7 5. 2 4. 5 54. 6
Total	37, 521	100.0	38, 051	100.0	28, 743	100.0	31, 026	100. 0	33, 150	100.0	27, 583	100.0	32, 487	100.0
Laxe Erie loadings (cargo and fuel): By fields of origin: From Ohio. From Pittsburgh and other Pennsylvania. From Moundsville, Fairmont, and Cumberland- I Piedmont. From southern West Virginia, high-volatile. From east Kentucky, Tennessee, and Virginia.	3, 277 4, 994	20. 9 32. 4 10. 7 16. 2 9. 3 10. 5	3, 734 8, 586 2, 184 10, 233 7, 656 6, 991	9. 5 21. 8 5. 5 26. 0 19. 4 17. 8	2, 625 10, 941 1, 313 7, 779 6, 864 6, 449	7.3 30.4 3.7 21.6 19.1 17.9	2, 908 11, 222 1, 648 10, 459 10, 103 9, 101	6. 4 24. 7 3. 6 23. 0 22. 3 20. 0	3, 231 11, 763 2, 319 10, 975 8, 428 8, 530	7. 1 26. 0 5. 1 24. 3 18. 6 18. 9	2, 390 8, 019 1, 389 8, 329 7, 612 7, 392	6.8 22.8 4.0 23.7 21.7 21.0	2, 356 9, 259 1, 963 10, 883 8, 665 7, 998	5. 7 22. 5 4. 8 26. 5 21. 1 19. 4
Total	30, 768	100.0	39, 384	100. 0	35, 971	100.0	45, 441	100.0	45, 246	100. 0	35, 131	100.0	41, 124	100.0

Table 5.—Trends in distribution of bituminous coal, 1923, 1929, 1934, 1936-39—Continued

	1923		19	29	19	34	19	36	198	37	193	38	1939 (pr nar	
	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent	Quan- tity	Per- cent
Lake Erie loadings (cargo and fuel)—Continued. By destinations (cargo only): To American points To Canadian points	24, 172 5, 475	81. 5 18. 5	31, 943 6, 007	84. 2 15. 8	28, 399 6, 440	81. 5 18. 5	37, 184 6, 835	84. 5 15. 5	35, 123 8, 479	80. 6 19. 4	27, 656 6, 510	80. 9 19. 1	33, 188 6, 672	83. 3 16. 7
Total	29, 647	100. 0	37, 950	100.0	34, 839	100.0	44, 019	100.0	43, 602	100. 0	34, 166	100. 0	39, 860	100. 0
Across Lake Michigan car ferry	1, 373		1, 282		680		799		650		588		592	
West-bound rail to Mississippi Valley (revenue all-rail shipments, excluding railroad fuel, Lake coal, and movement to Kentucky points): From Ohio fields. From Pennsylvania fields. From northern West Virginia and Cumberland-Piedmont. From southern West Virginia, high-volatile. From southern West Virginia, low-volatile. From east Kentucky, Tennessee, and Virginia. Total from Appalachian fields From Illinois. From Indiana. From west Kentucky 1.	13, 535 17, 789 90, 181 48, 401 14, 549 3, 569	30. 9 9. 3 2. 3	12, 912 21, 885 5, 464 25, 148 23, 691 24, 057 113, 157 34, 863 10, 589 6, 175	7. 8 13. 3 3. 3 15. 3 14. 4 14. 6 68. 7 21. 2 6. 4 3. 7	11, 321 12, 125 3, 271 13, 800 14, 916 13, 463 68, 896 20, 208 8, 879 2, 208	11. 3 12. 1 3. 3 13. 8 14. 9 13. 4 68. 8 20. 2 8. 8 2. 2	15, 593 3, 425 17, 641 19, 140 17, 659 85, 269 26, 362 9, 822 1, 873	9. 6 12. 6 2. 8 14. 3 15. 5 14. 3 69. 1 21. 4 8. 0 1. 5	11, 861 15, 091 3, 521 17, 293 19, 575 17, 963 85, 294 26, 625 10, 589 1, 859	9. 5 12. 1 2. 8 13. 9 15. 8 14. 5 68. 6 21. 4 8. 5 1. 5	20, 719 8, 501 1, 661	8. 7 10. 4 2. 8 14. 8 14. 5 15. 3 66. 5 22. 5 9. 2 1. 8	9, 052 12, 200 3, 227 15, 099 15, 946 15, 749 71, 273 24, 879 9, 455 1, 917	8. 4 11. 4 3. 0 14. 0 14. 8 14. 7 66. 3 23. 1 8. 8 1. 8
Total from Middle West fields	66, 519	42. 5	51, 627	31. 3	31, 295	31. 2	<u>-</u>	30. 9	39, 078	31. 4	30, 881	33. 5	36, 251	33.7
Grand total. Total shipments from other groups (all shipments including, in this case, nonrevenue railroad fuel): From Michigan fields. From Upper Lake commercial docks, all deliveries. From Iowa, Missouri, and Kansas. From Arkansas, Oklahoma, and Texas. From far western fields. From Alabama field.	12, 222 5, 125 30, 286	3.2 3.2 3.2 3.5 3.5	745 16, 689 9, 488 6, 337 29, 705 17, 503	3.1 3.1 3.1 3.1 3.1 3.2 5.6 3.3	325 11, 535 7, 007 2, 692 16, 368 8, 812	3.1 33.2 31.9 3.7 34.6 32.5	7, 647 3, 784 20, 849	(4) 3 3. 1 3 1. 7 8 . 9 3 4. 7 2 2. 6	181 13, 518 7, 202 3, 739 21, 867 11, 771	(3 4) 3 3.1 3 1.6 8.8 3 4.9 8 2.7	6, 528 3, 126	(3 4) 3 3. 1 3 1. 9 3 . 9 3 5. 1 3 3. 0	120 11, 111 6, 278 3, 006 18, 432 11, 075	(3 4) * 2.9 * 1.6 * .8 * 4.7 * 2.8

¹ The figures for west Kentucky cover in recent years a much smaller percentage of the field's production than do those for Illinois and Indiana and may not be fully comparable with earlier years.

2 Excluding commercial sales by truck and wagon, except from upper Lake docks.

3 Percent of total national shipments from all mines, all destinations.

4 Less than 0.1 percent.

5 Data not available.

SOURCES OF DATA AND ACKNOWLEDGMENTS

Bituminous-coal production statistics for 1939 are preliminary estimates based upon (1) weekly or monthly reports of railroad carloadings of coal and beehive coke by all the important carriers, (2) shipments by river as reported by the United States Army Engineers, (3) direct reports from a number of mining companies, and (4) monthly production statements compiled by various local operators' associations, including the following: Central Pennsylvania Coal Producers Association, Georges Creek and Upper Potomac Coal Association, Hazard Coal Operators Association, Kanawha Coal Operators Association, Eastern Ohio Operators Association, North Dakota Board of Railroad Commissioners, Utah Coal Operators Association, Virginia Operators Association, Winding Gulf Operators Association, and Operators Association of the Williamson Field. Especial acknowledgment for detailed monthly production reports is made to: Thomas Allen, Colorado inspector of coal mines; James McSherry, director, Illinois Department of Mines and Minerals; Jonas Waffle, managing director, Coal Trade Association of Indiana; J. I. Thomas, secretary, Pennsylvania Department of Mines; N. P. Rhinehart, chief, West Virginia Department of Mines; J. E. Bergin, chief inspector, Washington Department of Mines.

In the estimates for 1939 allowance has been made for commercial truck shipments, local sales and colliery fuel, and small trucking or wagon mines producing over 1,000 tons a year. Production of mines on the border between two States has been credited to the State from which the coal is extracted rather than that in which the tipple is situated. If the coal is mined from lands in both States the tonnage has been apportioned accordingly.

Valuable assistance was rendered in the preparation of this chapter by the following members of the research section of the Bituminous Coal Division: L. H. Barber, E. M. Hall, M. S. Kengla, and J. G.

Kirby.

The data in this report on the output of bituminous coal in 1938 are based upon detailed annual reports of production and mine operation courteously furnished by the producers. As in previous years, all but a small percentage of the output was covered by the reports submitted. For the remaining output not directly reported, consisting chiefly of small mines, it has been possible to obtain data of reasonable accuracy from the records of the State mine departments, which have statutory authority to require such reports, or in a few instances, from railroad carloadings.

Acknowledgment is made to the many individuals and agencies both public and private that have cooperated generously in making the

survey possible.

RELATIVE RATE OF GROWTH OF COAL, OIL, AND WATER POWER, 1889-1939

According to preliminary data, the total supply of available energy in the form of coal, oil and natural gas, and water power in 1939 was 24,415 trillion B. t. u., an increase of 7.2 percent over the preceding year. (See fig. 6.)

The figures are expressed in British thermal units, because some common denominator is necessary for such unlike quantities as tons

of coal, barrels of oil, and cubic feet of gas. Table 6 summarizes the equivalent of each of the fuels in British thermal units. Water power is represented by the equivalent fuel required to perform the same work. The table covers the years since 1933, but corresponding data are given in graphic form for the entire period back to 1890. Details for 1889 to 1932 are given in Minerals Yearbook, 1937, page 807.

In converting water power into its fuel equivalent, two alternative assumptions have been made. The first, as in previous issues of these tables, assumes a *constant* fuel equivalent of 4.02 pounds of coal for each kilowatt-hour of water power produced throughout the

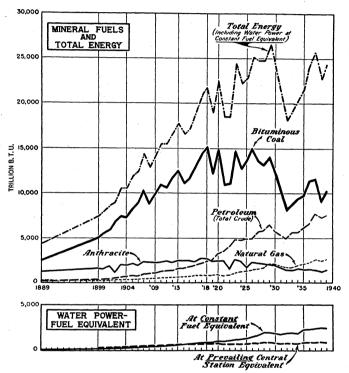


FIGURE 6.—Annual supply of energy from mineral fuels and water power in the United States, 1889-1939.

entire period from 1889 to 1939. This factor was selected because it represents, in round numbers, the average efficiency of all central stations generating steam-electric power in 1913, the midpoint of the period under review. The usefulness of the constant factor lies in showing the rate at which water power is being developed. It permits direct comparison between the relative increase in kilowatt-hours of water power and the corresponding increase (or decrease) in tons of coal, barrels of oil, or cubic feet of gas produced. On the other hand, the constant factor makes no allowance for the fact that coal and other fuels produced today are used more efficiently than formerly.

To throw light on the influence of improving fuel efficiency, a second computation of the energy equivalent of water power has therefore been made. This assumes a *prevailing* fuel equivalent, diminishing

year by year, which represents the average performance of all fuel-burning central electric stations for the year in question. This average has declined from about 7.05 pounds of coal per kilowatt-hour in 1899 to 1.39 pounds in 1939. (The prevailing factor is thus much above the constant factor in 1899 and much below it in 1939.) The prevailing fuel equivalent indicates more nearly the amount of fuel that would have been needed in any one year to generate the same power in a steam-electric station. It should be noted, however, that the ultimate uses to which the water power generated is put often displace fuel burned much less efficiently than in central stations and that in any instance no other important branch of fuel consumption has made advances in fuel efficiency approaching that of the central stations.

As these tables attempt to determine the total energy from all fuels and from water power, the ideal factor for converting water power into fuel equivalent would be the average efficiency of all forms of fuel consumption in each year. No basis for determining such an all-embracing average exists at present, but enough is known to make certain that it would show much less reduction from 1899 to 1939 than did the central stations. For the present, a just comparison of the changing contributions of water power and of fuel to the national energy supply would lie somewhere between the results shown by the constant equivalent and the prevailing central-station equivalent in

these tables.

As in earlier issues of these tables, the figures for oil and natural gas represent the entire production of crude petroleum and of gas. Most of this production does not come into direct competition with coal. Much of the supply of both oil and gas is used in regions of the country, such as California and portions of the Southwest, where coal is available only at unusually high cost because of heavy transport charges. Nearly half of the natural gas is used in the field for drilling or operating oil and gas wells and pipe lines, or for the manufacture of carbon black. More than half the oil is used in the form of gasoline, kerosene, and lubricants, for which purposes coal cannot well compete, except at very much higher levels of oil prices. Even these refined products, however, involve a certain measure of indirect competition with coal, for the energy market of the country is becoming more fluid and competitive, and a demand that cannot be met by one source of supply tends to fall back on the others.

The subject of interfuel competition is exceedingly complex, and an elaborate analysis and the accumulation of data not now available would be required to determine even approximately how much of any one fuel actually has been displaced either by other fuels or by water power. The present tables do not permit determination of such displacement; their purpose is rather to measure the long-time trends in

the total demand for energy.

The figures for anthracite represent the output from established operations only and do not include bootleg or stolen coal, the amount of which is not accurately known. The bootleg tonnage has been estimated by the Commonwealth of Pennsylvania Anthracite Coal Industry Commission at the rate of 2,400,000 tons a year during 1936 and 1937, which is equivalent to 5 percent of the output of the legitimate operations. (Trade estimates place the figure as high as 3,000,000 to 3,500,000 tons.) The Pennsylvania Department of Mines estimates the bootleg tonnage at 2,500,000 tons in 1938 and 3,500,000

in 1939. If the additional item of 2,500,000 tons were included, the total energy from anthracite in 1938 would be 1,323 trillion B. t. u. and the total energy from all sources 22,833 trillion B. t. u. If the additional item of 3,500,000 tons were included, the total energy from anthracite in 1939 would be 1,492 trillion B. t. u. and the total energy from all sources 24,510 trillion B. t. u.

Table 7 compares the relative increase in the several sources of energy by means of index numbers in which production for 1918 is represented by 100. Production of anthracite in 1939 was 48 percent below 1918 (44 percent if bootleg coal is included) and of bituminous coal 33 percent below 1918. Production of domestic petroleum increased 255 percent and natural gas 238 percent over 1918.

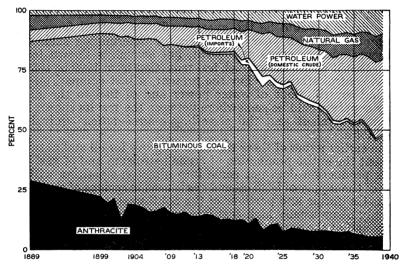


FIGURE 7.—Percent of total B. t. u. equivalent contributed by the several sources of energy, counting water power at constant fuel equivalent, 1889-1939. If water power is counted at the prevailing fuel equivalent of central stations in each year, its proportion is 3.2 percent in 1899 and 3.7 percent in 1939, and the proportions of the other sources of energy are affected accordingly.

There was a 189-percent increase in the amount of water power

developed (represented by the constant fuel equivalent).

Table 8 gives the percentage composition of the total energy supply, on the alternative assumptions of water power at constant and at prevailing central-station equivalents in fuel. On the assumption of constant equivalent, the proportion contributed by water power has increased from 1.8 percent in 1899 to 9.9 in 1939. On the assumption of prevailing central-station equivalent, it has remained substantially unchanged at 3 to 4 percent. As already noted, the truth lies somewhere between the two assumptions. Upon either basis, water power furnishes a relatively small fraction of the total energy budget of the Nation, although, of course, a much larger fraction of the electric power produced by public utilities.

Coal remained the largest source of energy in 1939, contributing 47.5 percent with water power counted at constant fuel equivalent and 50.7 percent with water power at prevailing central-station

equivalent.

Table 6.—Annual supply of energy from mineral fuels and water power in the United States, 1933–39,1 in trillions of B. t. u.²

•	Penn-			Petro (total inclu that re	crude, ding	Natu-			(fuel e	power equiva- nt)		d total ergy
Year	syl- vania an- thra- cite	Bitu- minous coal	Total coal	Do- mestic pro- duc- tion	Im- ports	ral gas (total pro- duc- tion)	petro- leum and natu- ral gas	Total mineral fuels	At constant fuel equivalent 3	central	at con- stant	Water power at pre- vailing central station equiva- lent
1937 1938	1, 348 1, 555 1, 419 51, 485 51, 410 51, 255 51, 397	8, 741 9, 415 9, 756 11, 504 11, 673 9, 132 10, 192	10, 089 10, 970 11, 175 12, 989 13, 083 10, 387 11, 589	5, 434 5, 448 5, 980 6, 598 7, 675 7, 286 7, 586	191 213 193 194 165 158 199	2,468	7, 297 7, 565 8, 233 9, 122 10, 428 9, 912 10, 403	17, 386 18, 535 19, 408 22, 111 23, 511 20, 299 21, 992	1, 931 1, 896 2, 207 2, 256 2, 446 2, 466 2, 423	711 698 806 812 871 866 838	19, 317 20, 431 21, 615 24, 367 25, 957 22, 765 24, 415	18, 097 19, 233 20, 214 22, 923 24, 382 21, 165 22, 830

Table 7.—Index numbers for relative rate of growth of coal, oil, and water power in the United States ¹

[The figures are expressed as a percentage of the 1918 rate]

					oleum crude)				Water	Gran	d total
Year	Penn- syl- vania anthra- cite	Bitu- minous coal	Total coal	Domes- tic produc- tion	Im- ports	Natural gas (total produc- tion)	petro- leum	Total min- eral fuels	power (at con- stant fuel equiva- lent)	With water power at con- stant fuel equiva- lent	With water power at pre- vailing central station equiva- lent
1983	50 58 53 55 2 52 2 47 2 52	57 62 64 76 77 60 67	56 61 63 73 73 58 65	252 255 280 309 359 341 355	90 94 85 86 73 70 88	205 246 266 301 334 318 338	229 241 262 291 332 316 332	82 88 92 105 112 97 105	231 227 264 270 292 295 289	87 94 99 112 119 104 112	83 89 93 106 112 98 105

¹ Comparable data for earlier years in Minerals Yearbook, 1937, p. 809.

1 If illicit or bootleg anthracite were included, the index for 1937 would be 55, that for 1938, 49, and for Subject to revision.

¹ Comparable data for earlier years in Minerals Yearbook, 1937, p. 807.

2 The unit heat values employed are: Anthracite, 13,600 B. t. u. per pound; bituminous coal, 13,100 B. t. u. per pound; petroleum, 6,000,000 B. t. u. per barrel; natural gas, 1,075 B. t. u. per cubic foot. Water power includes installations owned by manufacturing plants and mines, as well as Government; and privately owned public utilities. The fuel equivalent of water power is calculated from the kilowatt-hours of power produced wherever available, as is true of all public utility plants since 1919. Otherwise the fuel equivalent is calculated from the reported horsepower of installed water wheels assuming a capacity factor of 20 percent for manufactures and mines and of 40 percent for public utilities.

3 Assuming 4.02 pounds per kilowatt-hour, which is the average of central electric station practice in 1913, the midpoint of the period for which data are available.

4 Assuming the average central-station practice for each of the years for which data are available, which declined from about 7.05 pounds per kilowatt-hour in 1899 to 1.39 pounds in 1939.

5 Does not include an unknown amount of bootleg or stolen coal. If this were included, the energy for anthracite would be approximately 1,550 trillion B. t. u. in 1936, 1,476 in 1937, 1323 in 1938, and 1,492 in 1939, and the total energy would be increased accordingly.

Table 8.—Percent of total B. t. u. equivalent contributed by the several mineral fuels and water power in the United States, 1933-39 1

Year	Penn- sylvania anthra- cite	sylvania minous To			oleum crude) Imports	Natural gas (total produc- tion)	Total petro- leum and natural	Total mineral fuels	Water power, fuel equiva- lent	Grand total, includ- ing water power
· ·	Water	power co	unted at	duction		lent of ap	gas proximate	ely 4 lb. p	er kilowat	
1933 1934 1935 1936 1937 1938 1939 3	7.0 7.6 6.6 6.1 25.4 25.5 25.7	45. 2 46. 1 45. 1 47. 2 45. 0 40. 1 41. 8	52. 2 53. 7 51. 7 53. 3 50. 4 45. 6 47. 5	28. 1 26. 7 27. 7 27. 1 29. 6 32. 0 31. 1	1.0 1.0 .9 .8 .6 .7	8.7 9.3 9.5 9.5 10.0 10.8 10.7	37. 8 37. 0 38. 1 37. 4 40. 2 43. 5 42. 6	90. 0 90. 7 89. 8 90. 7 90. 6 89. 1 90. 1	10.0 9.3 10.2 9.3 9.4 10.9 9.9	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0
		Wate	r power c	ounted at	prevailing	central s	tation equ	ivalent fo	or year	
1933 1934 1935 1936 1937 1938 1939 ³	7. 4 8. 1 7. 0 6. 5 2 5. 8 2 5. 9 2 6. 1	48. 4 49. 0 48. 3 50. 2 47. 8 43. 2 44. 6	55. 8 57. 1 55. 3 56. 7 53. 6 49. 1 50. 7	30. 0 28. 3 29. 5 28. 8 31. 5 34. 4 33. 2	1.1 1.1 1.0 .8 .7 .7	9. 2 9. 9 10. 2 10. 2 10. 6 11. 7 11. 5	40. 3 39. 3 40. 7 39. 8 42. 8 46. 8 45. 6	96. 1 96. 4 96. 0 96. 5 96. 4 95. 9 96. 3	3.9 3.6 4.0 3.5 3.6 4.1 3.7	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0

¹ Comparable data for earlier years in Minerals Yearbook, 1937, p. 810. ² If bootleg coal were included the proportion from anthracite would be 5.7 percent in 1937, 5.8 in 1938, and 6.1 in 1939 at *constant* and 6.0 in 1937, 6.2 in 1938, and 6.5 in 1939 at *prevailing* water power equivalents. 3 Subject to revision.

FINAL BITUMINOUS STATISTICS FOR 1938

Tables 9 to 34 give the final detailed statistics of bituminous mine operations in 1938. The subjects covered include production, number and size of mines, employment, fuel economy, stocks, foreign trade, and world production.

In accordance with the practice followed by the Bureau of Mines in previous years the statistics in this report relate to mines having an output of 1,000 tons a year or more and do not attempt to include many small mines producing less than 1,000 tons per year that sell their output by wagon or truck. Unless otherwise indicated, the net or short ton of 2,000 pounds has been used as a standard unit of

These statistics include for convenience and historical comparison the small output of anthracite and semianthracite produced outside Pennsylvania and the production of lignite. Details regarding these coals are given in tables 26 to 34, inclusive. In the standard statistics of the American coal trade they have ordinarily been combined

with bituminous coal.

PRODUCTION

SUMMARY BY STATES

Table 9.—Production, men employed, days operated, man-days of labor, and output per man per day at coal mines in the United States in 1938, by States

[Exclusive of product of wagon mines producing less than 1,000 tons]

		norder to or p				,						-
			Net tons	· .		N	umber of	employe	es			Aver-
	Loaded at mines for	Chinned	Coal used by employees or taken by	Used for power and		.l	Sur	face		Average number of days	Man-days	age tons per
State	shipment by rail or water	Shipped by truck or wagon	locomotives at tipple or other uses at mines	heat or made into coke at mines ¹	Total quantity	Under- ground	In strip pits	All	Total	mines operated	of labor	man per day
Alaska	10, 355, 746 151, 656 25, 636	539, 048 8, 357	109, 524 231 50	57, 175 2, 795	11, 061, 493 154, 682 34, 043	18, 339 100 82	91	2, 680 44 17	21, 110 144 99	180 204 122	3, 795, 822 29, 413 12, 059	2. 91 5. 26 2. 82
Arkansas	3 899 117	20, 678 1, 468, 725 6, 281, 452	1, 723 90, 636 363, 901	7, 406 1 204, 666 703, 890	1, 197, 047 5, 663, 144 41, 912, 085	3, 215 6, 897 29, 217	65 10 1,698	541 1, 378 7, 448	3, 821 8, 285 38, 363	112 169 149	429, 619 1, 400, 088 5, 704, 535	2,79 4.04 7.35
Illinois. Indiana. Iowa. Kansas	1 1.642.445	1, 813, 808 1, 412, 311 246, 435	309, 599 31, 853 6, 266	151, 124 16, 578 10, 601	14, 758, 484 3, 103, 187 2, 654, 141	6, 244 6, 234 1, 861	1, 935 322 680	2, 350 816 545	10, 529 7, 372 3, 086	149 136 170	1, 570, 984 1, 000, 795 525, 115	9. 40 3. 10 5. 05
Kansas Kentuck y Maryland Michigan	. 100, 143	1, 039, 787 214, 817 292, 572	450, 115 8, 648 8, 978	144, 804 7, 121 26, 788	38, 545, 218 1, 281, 413 494, 481	45, 096 2, 083 1, 099	60	7, 007 288 106	52, 163 2, 371 1, 205	160 171 163	8, 351, 492 405, 209 195, 825	4. 62 3. 16 2. 53
Missouri	2, 494, 752	888, 002 191, 291 87, 099	24, 452 13, 000 13, 579	28, 912 3, 614 34, 587	3, 436, 118 2, 732, 050 1, 239, 037	3, 677 1, 126 1, 968	750 40	786 359 506 359	5, 213 1, 525 2, 474 1, 370	151 174 153 174	787, 220 265, 784 378, 011 237, 751	4. 36 10. 28 3. 28 8. 62
New Mexico North Dakota 2 Ohio	. 1 1. 124. 858	416, 904 3, 311, 408 103, 575	160, 075 328, 913 2, 805	7, 746 101, 599 13, 494 1 1, 288, 579	2, 050, 099 18, 590, 618 1, 244, 732 77, 704, 537	667 23, 306 1, 756 99, 067	344 920 200 613	3, 167 373 13, 819	27, 393 2, 329 113, 499	174 145 139 156	3, 984, 353 323, 471 17, 679, 250	4. 67 3. 85 4. 40
Pennsylvania South Dakota Tennessee Texas	4,060,006	4, 768, 568 20, 570 320, 884 28, 892	2, 890, 374 340 50, 835 6, 287	1 40,678 9,997	48, 058 4, 472, 403 878, 685	7, 094 645	23 4 22	15, 819 9 1, 168 109	8, 266 776	170 167 195	8, 507 1, 383, 487 151, 050	5. 65 3. 23 5. 82
UtahVirginia	2, 591, 922 11, 726, 660	314, 075 220, 247 383, 249	18, 942 72, 457 13, 881	1 22, 012 1 263, 672 19, 934	2, 946, 951 12, 283, 036 1, 566, 973	2, 338 14, 559 1, 990		738 2, 202 601	3, 076 16, 761 2, 591	156 174 163	479, 733 2, 918, 100 423, 119	6. 14 4. 21 3. 70
Washington West Virginia Wyoming	4, 850, 881	985, 303 214, 001	1, 849, 829 33, 524	1 579, 650 105, 471	93, 288, 172 5, 203, 877	87, 852 3, 474	56 44	15, 131 905	103, 039 4, 423	175 181	18, 082, 703 801, 879	5. 16 6. 49
	312, 238, 996	25, 592, 058	6, 860, 817	1 3, 852, 893	348, 544, 764	370, 004	7, 877	63, 452	441, 333	162	71, 325, 374	4.89

¹ Includes coal made into beehive coke at mines in the following States in 1938: Colorado, 84,172; Pennsylvania, 765,253; Tennessee, 10,000; Utah, 15,667; Virginia, 234,765; and West Virginia, 250,019; grand total, 1,359,876 tons.

¹ Includes figures on lignite compiled by L. Mann, Bureau of Mines; see lignite tables, 1938.

TOTAL PRODUCTION SINCE BEGINNING OF MINING

Table 10.—Coal produced, by States, 1928-38, with production of maximum year and cumulative production from the earliest record to the end of 1938, in thousands of net tons

State		ximum luction			· · · · · · · · · · · · · · · · · · ·	-	Prod	uction by	years				·	Total pro- duction from earli-
State	Year	Quantity	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	est record to end of 1938
Alabama Arkansas Colorado Georgia Illinois Indiana Iowa Kansas Kentucky Maryland Mishigan Mishigan Missouri Montana New Mexico North Carolina North Dakota Ohio Oklahoma Pennsylvania bituminous Teumessee Texas Utah Virginia Washington West Virginia Wyoming Other States	1926 1907 1917 1918 1918 1918 1917 1918 1927 1907 1907 1918 1922 1936 1920 1918 1913 1920 1918 1913 1920 1918 1913 1920 1918 1918	21, 001 2, 670 12, 483 416 89, 291 30, 679 8, 966 69, 124 5, 533 2, 036 5, 671 4, 533 4, 023 79 2, 215 45, 878 4, 849 178, 551 7, 121 2, 429 6, 005 14, 133 4, 082 145, 122 9, 630	17, 621 1, 661 9, 848 55, 948 16, 379 3, 684 2, 617 3, 733 3, 324 2, 712 61 1, 650 15, 641 3, 611 1, 182 4, 843 11, 901 2, 520 132, 952 6, 572 182, 962 6, 167	17, 944 1, 695 9, 921 45 60, 658 18, 344 2, 241 2, 976 60, 463 2, 649 8, 2, 623 3, 72 1, 862 2, 3, 689 3, 7, 740 11, 5, 161 12, 748 2, 521 138, 519 6, 05 134	15, 570 1, 533 8, 197 53, 731 16, 490 3, 893 2, 430 51, 209 2, 271 611 3, 853 3, 022 2, 799 1, 700 22, 552 2, 794 124, 463 5, 130 4, 258 10, 907 2, 302 121, 473 6, 088 160	11, 999 1, 154 6, 604 4, 303 14, 295 3, 388 1, 987 39, 984 2, 006 3, 621 2, 378 1, 553 1, 553 20, 411 1, 908 3, 716 7, 659 4, 721 716 3, 350 9, 699 1, 846 101, 473 4, 994 4, 994 4, 918	7, 857 1, 033 5, 6899 27 33, 4755 13, 324 3, 862 1, 953 35, 300 1, 429 4, 070 2, 1255 1, 263 2, 1, 263 1, 255 74, 776 3, 538 2, 852 7, 692 1, 591 85, 609 4, 171 175	8, 760 883 5, 230 137, 413 13, 761 13, 195 2, 218 36, 100 1, 531 432 2, 152 1, 226 1, 288 1, 288 1, 288 1, 288 1, 288 1, 288 1, 298 3, 775 8, 179 4, 344 4, 013 173	9, 142 857 5, 211 33 41, 272 14, 794 3, 367 2, 508 38, 525 1, 627 3, 352 2, 566 1, 259 2, 566 1, 259 4, 136 89, 826 4, 136 9, 377 1, 383 98, 134 4, 368	8, 505 1, 133 5, 911 (4) 24, 525 15, 754 3, 650 2, 886 40, 761 1, 678 628 3, 646 2, 759 1, 389 (1) 1, 956 21, 133 1, 229 91, 405 4, 138 758 2, 947 9, 667 1, 559 99, 179 5, 177	12, 229 1, 623 6, 812 (4) 50, 927 17, 822 3, 961 2, 944 47, 522 1, 704 626 3, 985 2, 988 1, 597 (1) 2, 215 24, 110 1, 540 109, 887 5, 108 843 3, 247 11, 662 1, 812 117, 926 5, 781	12, 440 1, 511 7, 187 (1) 51, 602 17, 765 3, 637 2, 893 47, 086 47, 091 2, 965 1, 715 (1) 2, 251 1, 100 111, 000 111, 00	11, 062 1, 197 5, 663 (1) 41, 912 14, 759 3, 103 2, 654 38, 545 1, 281 494 494 2, 732 1, 239 2, 732 1, 245 77, 705 4, 472 879 2, 947 12, 283 1, 567 93, 288 5, 204 237	639, 028 73, 541 396, 922 (1) 2, 447, 803 735, 849 311, 842 231, 718 1, 248, 514 241, 228 44, 410 216, 722 117, 800 (1) 106, 009 (1) 254, 669 58, 242 134, 551 361, 357 126, 678 3, 343, 619 280, 860 61, 695
Total bituminous Pennsylvania anthracite	1917	99, 612	500, 745 75, 348	534, 989 73, 828	467, 526 69, 385	382, 089 59, 646	309, 710 49, 855	333, 631 49, 541	359, 368 57, 168	372, 373 52, 159	439, 088 54, 580	445, 531 51, 856	348, 545 46, 099	18, 922, 234 4, 282, 457
Grand total			576, 093	608, 817	536, 911	441, 735	359, 565	383, 172	416, 536	424, 532	493, 668	497, 387	394, 644	23, 204, 691

¹ Included under "Other States."

PRODUCTION BY WEEKS AND MONTHS

The following tables summarize the statistics of weekly and monthly production of bituminous coal first published in the Bituminous Coal Division Weekly Coal Reports. The figures are estimates based on daily and weekly statements of cars of coal and beehive coke loaded by the principal railroads and of shipments over the more important originating rivers. The estimates are revised afterward to agree with the results of the annual statistical reports from the coal producers; therefore, the figures given here differ slightly from those issued originally in the weekly reports.

For the method used in counting holidays, see chapter on Coal in

Mineral Resources of the United States, 1930, page 631.

Table 11.—Estimated weekly production of bituminous coal in 1938

Week ended	Production (net tons)	of work-	Average production per working day (net tons)	Week ended	Production (net tons)	Number of work-	Average production per working day (net tons)
Jan. 1 Jan. 8 Jan. 15 Jan. 22 Jan. 29 Feb. 5 Feb. 12 Feb. 19 Feb. 26 Mar. 5 Mar. 19 Mar. 26 Apr. 2 Apr. 9 Apr. 2 Apr. 3 Apr. 30 May 14 May 21 May 21 May 28 June 4 June 18 June 18 June 18 June 18 June 25 July 2	6, 842, 000 7, 750, 000 7, 755, 000 7, 938, 000 7, 938, 000 6, 982, 000 6, 751, 000 6, 564, 000 6, 564, 000 5, 441, 000 4, 639, 000 5, 144, 000 4, 763, 000 5, 118, 000 5, 118, 000 5, 143, 000 5, 143, 000 5, 143, 000 5, 143, 000 5, 143, 000 5, 143, 000 5, 143, 000 5, 143, 000 5, 143, 000 5, 128, 000 5, 434, 000 4, 772, 000 5, 028, 000	10.1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 1, 221, 000 1, 140, 000 1, 222, 000 1, 233, 000 1, 323, 000 1, 164, 000 1, 189, 000 1, 199, 000 1, 091, 000 1, 094, 000 983, 000 997, 000 982, 000 982, 000 981, 000 982, 000 982, 000 983, 000 984, 000 885, 000 885, 000 885, 000 886, 000	July 9 July 16 July 23 July 30 Aug. 6 Aug. 13 Aug. 20 Aug. 27. Sept. 23 Sept. 10. Sept. 17. Sept. 24. Oct. 1. Oct. 8 Oct. 15. Oct. 22. Oct. 22. Oct. 22. Nov. 5. Nov. 12. Nov. 19. Nov. 26. Dec. 3. Dec. 17. Dec. 24. Dec. 31.	4, 767, 000 5, 829, 000 6, 914, 000 6, 910, 000 6, 120, 000 6, 131, 000 6, 120, 000 6, 395, 000 6, 611, 000 7, 034, 000 8, 100, 000 8, 100, 000 8, 144, 000 8, 287, 000 8, 233, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 297, 000 8, 341, 000 8, 414, 000 8, 610, 000 8, 111, 000	5 6 6 6 6 6 6 6 6 5 5 6 6 6 5 5 6 6 6 5 5 6 6 6 6 5 5 6 6 6 6 6 6 5 5 6	953, 000 972, 000 986, 000 989, 000 1, 002, 000 989, 000 1, 102, 000 1, 172, 000 1, 322, 000 1, 343, 000 1, 350, 000 1, 367, 000 1, 377, 000 1, 497, 000 1, 487, 000 1, 482, 000 1, 472, 0
•	, ,		Í		348, 545, 000	306. 0	1, 139, 000

¹ Figures represent output and number of working days in that part of the week included in the calendar year shown. Total production for the week of January 1, 1938, was 6,225,000 net tons.
² Average daily production for the entire week and not for the working days in the calendar year shown.

Table 12.—Monthly production of coal in 1938, by States, in thousands of net tons

The totals for the year are based upon final complete returns to the Bituminous Coal Division from all operators known to have produced more than 1,000 tons a year. The apportionment of the known yearly total among the 12 months is based upon the best information available, in some States upon direct tonnage reports by operators to the State mine department, in most cases upon current records of railroad carloadings and waterway shipments.]

State	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
Alabama Alaska Arkansas Colorado Illinois Indiana Iowa Kansas Kentucky:	980 12 153 625 4, 672 1, 474 368 338	998 10 98 548 3, 809 1, 445 294 272	1,003 14 38 439 3,152 1,286 270	890 12 24 353 2,470 960 197 158	745 16 23 265 2,210 840 193 116	652 14 34 274 2,432 896 181 157	674 11 63 250 2, 522 898 160 143	840 12 133 330 3,100 1,060 202 224	896 13 163 522 3, 773 1, 226 250 266	1, 046 15 149 553 4, 084 1, 328 298 250	1, 098 13 163 754 4, 513 1, 520 342 232	1, 240 13 156 750 5, 175 1, 826 348 308	11, 062 155 1, 197 5, 663 41, 912 14, 759 3, 103 2, 654
Eastern Western Maryland Michigan Missourl Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania bituminous South Dakota Tennessee Texas Utah Virginia Washington West Virginia Wyoming Other States 1	2, 570 802 109 70 413 286 109 264 1, 618 6, 688 6 364 71 280 923 142 7, 574 456	2, 048 635 114 60 360 233 97 238 1, 403 6, 036 67 243 935 124 6, 979 373 3	1, 980 579 110 62 252 192 88 125 1, 538 1, 538 2 303 66 66 66 60 208 934 17, 277 405	1, 875 429 429 212 2149 82 79 1, 259 5, 023 2 312 67 154 744 744 90 6, 019 318	2, 220 417 80 15 174 154 1, 169 1, 160 1, 33 4, 987 1 343 821 92 6, 170 317	2, 250 398 92 15 200 162 100 57 1, 242 5, 140 309 73 108 864 93 6, 801 302	2, 468 444 93 13 192 168 86 55 1, 274 50 5, 325 1116 920 95 7, 073 304	2,998 568 110 118 253 195 100 81 1,549 105 6,436 82 203 1,207 145 8,253 439	3, 222 717 146 280 214 96 161 1, 692 155 7, 196 3 450 83 298 1, 220 144 9, 095 468	3, 393 722 115 52 302 314 125 318 1, 988 148 7, 963 10 470 78 348 1, 298 9, 627 577 4	3, 113 766 122 56 375 347 144 341 1, 950 165 8, 204 73 413 1, 217 182 9, 419 642 44	3, 040 891 135 60 423 318 131 262 1, 918 171 8, 112 6 435 74 448 1, 200 9, 001 603 5	31, 177 7, 368 1, 281 494 3, 436 2, 732 1, 239 2, 050 18, 591 1, 245 77, 705 48 4, 472 879 12, 283 1, 567 13, 288 5, 204
Total bituminous coal	31, 535 5, 019	27, 925 4, 169	27, 280 3, 652	22, 027 5, 367	21, 739 5, 141	22, 898 3, 577	23, 763 2, 951	29, 030 3, 883	32, 769 4, 840	35, 740 4, 985	36, 611 3, 989	37, 228 3, 914	348, 545 51, 487
Grand total	36, 554	32, 094	30, 932	27, 394	26, 880	26, 475	26, 714	32, 913	37, 609	40, 725	40, 600	41, 142	400, 032

¹ Arizona, Georgia, Idaho, and Oregon.
2 Pennsylvania anthracite figures from Bureau of Mines. Includes Sullivan County, washery and dredge coal, local sales, colliery fuel, and coal shipped by truck from authorized operations.

NUMBER AND SIZE OF MINES

TABLE 13.—Number and production of commercial bituminous-coal mines in the United States in 1938, classified by size of output in each State [Exclusive of product of truck and wagon mines producing less than 1,000 tons]

	Class 1.4	, over 500,000 et tons	Class 500,0	1B, 200,000- 00 net tons		2, 100,000- 0 net tons	Class 100,00	3, 50,000- 0 net tons		4, 10,000- 0 net tons	Class 4 10,000	i, less than net tons	Total	alt classes
State	Num- ber of mines	Quantity	Num- ber of mines	Quantity	Num- ber of mines	Quantity	Num- ber of mines	Quantity	Num- ber of mines	Quantity	Num- ber of mines	Quantity	Num- ber of mines	Quantity
AlabamaAlaska		2, 708, 945	12	3, 927, 901	13	1, 810, 192	23 1	1, 594, 784 95, 509	22 2	567, 250 57, 557	156	452, 421 1, 616	230	11, 061, 493 154, 682
Arkansas. Colorado. Illinois. Indiana. Iowa.	2 <u>4</u> 6	19, 072, 209 4, 027, 318	1 40 18 3	243, 293 14, 062, 567 5, 720, 356 885, 859	18 21 11	2, 630, 985 2, 973, 303 1, 629, 174	4 16 31 19 6	266, 941 1, 213, 571 2, 023, 073 1, 330, 775 406, 424	33 51 121 63 53	795, 431 1, 160, 684 2, 686, 427 1, 358, 916 1, 158, 606	32 126 327 184 199	134, 675 414, 611 1, 094, 506 691, 945 652, 298	69 212 564 301 261	1, 197, 047 5, 663, 144 41, 912, 085 14, 758, 484 3, 103, 187
Kansas. Kentucky: Eastern. Western. Maryland	9	7, 376, 634 549, 915	5 42 9	1, 324, 621 11, 894, 403 2, 533, 029	45 17 3	745, 996 6, 321, 040 2, 300, 308 469, 900	1 47 16 3	73, 859 3, 626, 680 1, 158, 421 181, 248	55 23 20	1, 661, 900 568, 552 463, 081	95 83 56	275, 224 296, 815 257, 521 167, 184	105 293 149 82	2, 654, 141 31, 177, 472 7, 367, 746 1, 281, 413 494, 481
Michigan Missouri Montana, North Dakota, South Dakota, and	1 1	500, 146	3	1, 014, 350	1 2	165, 449 303, 766	2 5	150, 083 340, 706	8 37	178, 949 815, 359	138	461, 791	11 186	3, 436, 118
Texas 1	1 1	1, 099, 106	7 2 14	2, 606, 224 520, 302 4, 247, 302	5 2	762, 901 256, 110	4 2 22	265, 723 166, 353 1, 625, 480	23 9 88	470, 861 221, 559 2, 000, 619	230 24 447	504, 077 74, 713 1, 402, 200	270 39 599	5, 708, 892 1, 239, 037 18, 590, 618
Oklahoma Pennsylvania	39	6, 866, 673 29, 657, 898	77	237, 548 24, 783, 891	18 1 68 13	2, 448, 344 122, 036 9, 638, 978	85	179, 678 6, 224, 830	21 220	517, 587 4, 893, 773	67 701	187, 883 2, 505, 167	93 1, 190 119	1, 244, 732 77, 704, 537 4, 472, 403
Tennessee Utah Virginia	4	2, 728, 708	4 3 15	1, 043, 107 1, 119, 227 5, 206, 706	6 20	1, 863, 673 814, 005 2, 796, 668	10 8 12	792, 386 708, 843 917, 361	24 9 12	573, 203 185, 250 355, 423	68 32 63	200, 034 119, 626 278, 170	58 126	2, 946, 951 12, 283, 036
Washington West Virginia Wyoming Other States 2	39 1	27, 978, 480 544, 241	120 10	212, 268 37, 725, 893 3, 002, 439	119 8	762, 261 17, 183, 094 1, 076, 620	91 2	133, 806 6, 694, 233 108, 051	16 107 12	354, 144 3, 034, 307 368, 845 25, 636	29 215 32 4	104, 494 672, 165 103, 681 8, 407	53 691 65 5	1, 566, 973 93, 288, 172 5, 203, 877 34, 043
Other States	139	103, 110, 273	387	122, 311, 286	402	57, 074, 803	415	30, 278, 818	1,042	24, 708, 360	3, 392	11, 061, 224	5, 777	348, 544, 764

¹ Includes lignite figures from Bureau of Mines.

² Arizona, Georgia, Idaho, and Oregon.

TREND OF AVERAGE VALUE PER TON, F. O. B. MINES, 1929 TO 1938

Before the Bituminous Coal Act of 1937 was passed the most valuable single index of the trend of prices at the mines was the "average value per ton, f. o. b. mines," as given in the familiar annual coal reports of the Bureau of Mines, United States Department of the Interior. This series was referred to in the Bureau of Mines reports as representing "bituminous coal," and it covered all coal other than Pennsylvania anthracite produced in the United States. It represented the bituminous-coal industry as the term ordinarily was used in the trade and included the lignite of the Dakotas, Texas, and Montana, as well as any small tonnages of hard coal produced outside of Pennsylvania.

With the passage of the Coal Act the Bureau of Mines relinquished the collection of statistics relating to bitumonous coal, effective June 30, 1937, though continuing to compile data regarding lignite. Effective on the same date, the Coal Commission became responsible for the compilation of data on bituminous coal, though not attempting to collect data regarding lignite, which was specifically exempted by the act. The records of the Commission (now Bituminous Coal Division, United States Department of the Interior), relate to all coal other than Pennsylvania anthracite and lignite, no exemptions other

than lignite having been approved under the act.

To permit comparison of the old and new series, therefore, it is necessary to separate the lignites from the bituminous coals, though for convenience of the student the combined average for the two is continued in a form as nearly comparable as possible to the old series.

A more important change in the two series relates to the treatment of selling expenses. The old Bureau of Mines series of "value at the mines" excluded the selling cost. The reporting operator was asked to state the "Amount received at the mines f. o. b. cars less the selling expense." No details were asked regarding the items included in the value, and no systematic effort was made to follow up the exclusion of selling expenses. It was realized at the time that some producers might find it impractical to exclude selling costs and that some part of the selling expenses of the industry might be included in the results. Nevertheless, the reports were checked for consistency from year to year, the questions were retained in the same form without change, and the results are believed to have been comparable from one year to the next. The new series of the Coal Commission represents the total or gross realization on all coal produced and specifically includes the selling cost.

It is also possible that the two sets of data are not precisely comparable with respect to coal produced but not sold on the commercial market. In the Bureau of Mines series the reporting operator was instructed that the "value of coal not sold but used by producer, also mine fuel and coal made into coke should be estimated at average prices that might have been received." The instructions of the Coal Commission regarding such items were in effect similar, though given

in greater detail.

A comparison of the two series is possible for 1936. In that year the average value per ton on the old (Bureau of Mines) basis amounted

to \$1.761 per ton for bituminous coal excluding lignite. The average gross realization, as collected by the Coal Commission, was \$1.831 per ton. The difference amounts to \$0.07 per ton, an amount somewhat less than the average selling expenditure computed per ton of all coal produced, as reported to the Coal Commission. The comparison confirms previous indications that the great majority of operators reporting in earlier years had followed instructions and omitted selling expenses in computing the average value but that some of them had included the selling expense. The change in method of reporting should be kept in mind in comparing the two sets of data. reports to the Commission were submitted on a detailed accounting return and made under oath they are to be accepted. The returns of earlier years, on a voluntary basis and not in all instances uniform as to treatment of selling costs, seem to have been thoroughly comparable from one year to the next and afford the best available index to the rise and fall of the mine prices received by the operator down to 1936

Table 14.—Trend of average value of bituminous coal and lignite per ton, f. o. b. mines, 1929-38

Year	Bituminous ¹ coal (subject to regulation under 1937 Act)	Lignite 2	Total
A verage value per ton less selling expense (Bureau of Mines series): 1929	\$1. 782 1. 702 1. 542 1. 313 1. 337 1. 751 1. 772 1. 761	\$1. 548 1. 556 1, 410 1. 313 1. 188 1. 387 1. 120 1. 061	\$1. 781 1. 701 1. 541 1. 335 1. 749 1. 767
1936	1, 831 1, 946 1, 955	3 1. 061 3 1. 080 3 1. 071	1. 826 1. 939 1. 947

¹ Includes all coal produced other than Pennsylvania anthracite and the lignite included in the second column.

SPOT PRICES

Spot prices afford a basis for measuring the relative strength of the forces of demand and supply in the competitive market for bituminous coal. The market quotations published in the leading trade magazines usually are based upon posted prices of larger producers, and oftentimes represent "asked" rather than "actual" prices.

Spot prices are not to be confused with sales realization, as the latter includes a large volume of coal either sold at relatively stable prices under long-term contracts or consumed by producers and their

affiliates at purely nominal prices.

The following table of average spot prices is offered as an indication of trends in 1937, 1938, and 1939.

North Dakota, South Dakota, and the lignite counties of Montana and Texas.
 Figures of the Bureau of Mines, excluding selling expense as before. Data on sales realization were not collected from lignite mines by the Coal Commission.

Table 15.—Trend of spot prices of bituminous coal per net ton, f. o. b. mines, as indicated by trade journal quotations, 1937-39 1

[Based upon 130 series of comparable quotations currently published in the Black Diamond, Saward's Journal, and Chicago Journal of Commerce. These have been grouped into prepared sizes, run-of-mine, and screenings or slack, and simple averages obtained. The 3 groups have then been combined into a weighted average, counting prepared sizes at 43 percent, run-of-mine at 27 percent, and screenings or slack at 30 percent. The resulting average for all coal is not intended to show the actual realization obtained, but gives a ready comparison of the trend of prices in the 3 years.]

Month	Prepared sizes			Run-of-mine			Screenings or slack			All coal			Change
	1937	1938	1939	1937	1938	1939	1937	1938	1939	1937	1938	1939	in 1939 (percent)
January ¹ February ² March. April May June ³ July August. September October November December ² A verage: 12 months	\$2. 49 2. 39 2. 30 2. 30 2. 33 2. 38 2. 38 2. 39 2. 44 2. 45 2. 49 2. 40	\$2. 58 2. 54 2. 48 2. 22 2. 21 2. 22 2. 23 2. 28 2. 34 2. 47 2. 45 2. 37	\$2. 37 2. 35 2. 23 (3) 2. 21 2. 22 2. 24 2. 28 2. 48 2. 45 2. 35 2. 32	\$2.06 2.07 2.06 2.11 2.13 2.07 2.10 2.10 2.11 2.16 2.10	\$2, 22 2, 21 2, 07 2, 08 2, 07 2, 07 2, 06 2, 10 2, 10 2, 07 2, 06 2, 10	\$2. 06 2. 01 (*) 2. 01 1. 99 2. 00 2. 01 2. 27 2. 25 2. 22 2. 09	\$1. 49 1. 54 1. 70 1. 77 1. 77 1. 77 1. 74 1. 72 1. 64 1. 60 1. 59 1. 71	\$1. 81 1. 77 1. 50 1. 51 1. 51 1. 47 1. 41 1. 37 1. 38 1. 33 1. 34	\$1, 40 1, 37 (3) 1, 51 1, 50 1, 49 1, 69 1, 65 1, 60	\$2. 07 2. 09 2. 09 2. 10 2. 10 2. 08 2. 11 2. 09 2. 10 2. 10 2. 17 2. 10	\$2. 25 2. 22 2. 08 1. 99 1. 96 1. 96 1. 96 1. 98 2. 04 2. 01 2. 00	\$2. 02 •2. 01 1. 91 (3) (4) 1. 94 1. 94 1. 95 1. 97 2. 19 2. 16 2. 09 2. 02	-10.2 -9.5 -8.2 (3) (3) -1.5 -1.0 5 +7.5 +4.5

¹ Except as noted, these averages are based upon the following number of quotations: Prepared sizes: Chicago market, 25 quotations; Cleveland market, 29 quotations; Norfolk market, 18 quotations; Pittsburgh market, 3 quotations; Norfolk market, 7 quotations; Pittsburgh market, 0; total, 16 quotations. Screenings or slack: Chicago market, 19 quotations; Cleveland market, 11 quotations; Norfolk market, 7 quotations; Pittsburgh market, 2 quotations; Total, 38 quotations. Total of all quotations used, 130.

Quotations for Cleveland and Pittsburgh in January and February and for Pittsburgh in June and December have been excluded from the computed averages due to lack of comparable data.

Insufficient quotations during the greater part of April and May 1939, owing to suspension of mining operations pending the completion of a new wage agreement.

LABOR STATISTICS

MEN EMPLOYED

An average of 441,333 men was employed at bituminous-coal mines in 1938, a 10-percent decrease from the total of 491,864 for 1937. (See fig. 8.) Statistics of men employed in 1938 represent annual averages of the number of workers on the rolls on the days when the mines were in operation. Except for the slight discrepancy in comparability with 1937, the figures of employment for 1938 are comparable with similar date for earlier years. (See Minerals Yearbook, 1939, pp. 776 and 787–788.)

The method used here in calculating employment gives an accurate measure of the working force in the coal industry, but it does not consider the time lost by men on the rolls through intermittent opera-

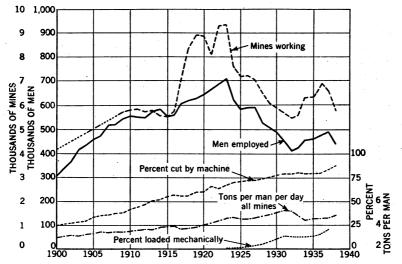


FIGURE 8.—Trends of employment, mechanization, and output per man at bituminous-coal mines, 1900–1938.

tions. To measure the influence of intermittency upon employment the factor of mine activity as indicated by the average number of days of plant operation was recorded separately. The average number of men employed when the mines were in operation was then used, in conjunction with the average number of days of operation, as a measure of the total volume of employment in the industry.

In recent years a special problem has arisen in recording employment through the adoption of local "share-the-work" agreements, by which the employees of a mine are divided into two crews or groups who work on alternate days. Such agreements for "staggering" or alternating the work are not to be confused with the practice of operating both a day and a night shift but relate rather to division of the available work between two groups of workers on the same shift, usually the day shift.

Specific inquiries regarding such agreements by the Illinois Department of Mines and Minerals in 1938 indicated that 45 mines in that State were operating with alternate crews under share-the-work agreements. If the number of men on the pay rolls had been used as

a measure of employment instead of the average number of men working, the employment figures for Illinois would have been increased approximately 8 percent. A small number of employees was

involved in similar reports from Indiana.

The figures on "number of men employed" as given in this report are therefore somewhat less than the total number of men on the rolls in the States where there were mines that followed the practice of spreading employment by means of share-the-work agreements. No formal agreements for dividing work have been reported to the authors from mines outside of Illinois and Indiana in 1938; however, local share-the-work agreements may have existed in other fields, which were not reported, and occasionally at still other mines a certain amount of work sharing may have been practiced without written agreement between operators and their employees.

DAYS OPERATED

The average number of days of operation at bituminous-coal mines in 1938 was 162. This represents a decline from the average of 193 days for 1937. All statistics on days of mine operation included in this report are weighted averages, in which the operating time of each mine has been weighted by the number of its employees. Several coal-mining States publish series on the number of days worked that are simple averages of the figures for each reporting mine regardless of size. As these unweighted averages are likely to be unduly depressed by small mines, which generally operate fewer days than the larger ones, they tend to understate the working time of the typical mine employee.

MAN-DAYS OF LABOR

Only a small proportion of the bituminous-coal-mine operations, however, keep an accurate record of man-days or man-hours worked. Consequently, man-days have been computed by multiplying the number of workers employed by the number of operating days. Although these computations were made for each individual mine the combined total is necessarily only an approximation.

Until the American coal industry arranges to keep an accurate record of man-days or man-hours of employment all computations of accident rates, daily earnings, and output per man will remain subject to qualification. Meanwhile, the method of multiplying men by days

must be accepted as the best available procedure.

Data for 1938 indicate that bituminous-coal-mine employees performed 71,325,374 man-days of labor during the year. Table 9 gives a summary record of men employed, days operated, and output per man per day at bituminous-coal mines by States in 1938. Details by counties for 1938 are shown in table 25.

LENGTH OF WORKING DAY

Data for computing the number of hours in the average working day of bituminous-coal miners have not yet been completed for 1938. As there was no change in the provision of the union wage agreement regarding hours of work it can be assumed that the 7.02-hour-per-day average for 1935 and 1936 also would apply to 1937 and 1938. For further discussion of length of working day and detailed statistics of earlier years see Minerals Yearbook, 1937, pages 821–823.

METHODS OF RECOVERY

Table 16.—Bituminous coal mined by different methods in the United States in 1938, by States

				From un	derground wo	orkings				From strip pits		
	Mined by hand Sho		Shot off th	Shot off the solid		achines	Not sp	ecified				Grand total production
State	Net tons	Percent of total under- ground	Net tons	Percent of total under- ground	Net tons	Percent of total under- ground	Net tons	Percent of total under- ground	Total un- derground (net tons)	Net tons	Percent of grand total	(net tons)
Alabama	1, 311, 878 18, 266	11. 9 11. 8	1, 605, 453 136, 416	14. 5 88. 2	8, 098, 747	73. 5	8, 925	0. 1	11, 025, 003 154, 682	36, 490	0.3	11, 061, 493 154, 682
Alaska Arkansas Colorado Illinois Indiana Iowa Kansas		20. 5 2. 1 1. 8 12. 9 14. 8	128, 450 264, 975 2, 064, 178 546, 956 1, 182, 356 416, 603	11. 0 4. 7 6. 6 7. 5 44. 8 57. 4	1, 023, 453 4, 190, 492 28, 548, 160 6, 602, 264 1, 099, 182 188, 819	87. 5 74. 1 91. 1 90. 6 41. 7 26. 0	17, 516 37, 610 53, 916 9, 812 14, 733 12, 962	1. 5 .7 .2 .1 .6 1. 8	1, 169, 419 5, 651, 475 31, 341, 793 7, 286, 302 2, 637, 332 726, 113	27, 628 11, 669 10, 570, 292 7, 472, 182 465, 855 1, 928, 028	2. 3 . 2 25. 2 50. 6 15. 0 72. 6	1, 197, 047 5, 663, 144 41, 912, 085 14, 758, 484 3, 103, 187 2, 654, 141
Kentucky: Eastern	189, 832 726, 997	3. 7 2. 8 56. 7	365, 058 129, 424	1. 2 1. 9	29, 643, 789 6, 438, 633 544, 345 494, 481	95. 0 95. 2 42. 5 100. 0	18, 768 5, 677 10, 071	.1 .1 .8	31, 177, 472 6, 763, 566 1, 281, 413 494, 481	604, 180	8.2	31, 177, 472 7, 367, 746 1, 281, 413 494, 481
Missouri Montana and Texas ¹ New Mexico North Dakota ¹ Ohio Oklahoma Pennsylvania South Dakota ¹	270, 077 136, 335 384, 623 53, 708 370, 386 30, 094	24. 1 5. 6 31. 0 6. 8 2. 3 3. 8 17. 1 35. 4	53, 514 774, 218 435, 840 175, 461 125, 127 91, 969 2, 042, 122	4.8 31.6 35.2 22.3 11.6 2.7	769, 953 1, 529, 428 411, 994 535, 696 15, 516, 393 669, 788 61, 381, 208	68. 8 62. 3 33. 3 68. 0 96. 6 84. 1 80. 2	26, 256 12, 707 6, 580 22, 426 49, 908 4, 214 27, 587 2, 589	2.3 .5 .5 2.9 .3 .5	1, 119, 800 2, 452, 688 1, 239, 037 787, 291 16, 061, 814 796, 065 76, 572, 910 4, 009	2, 316, 318 1, 158, 047 1, 262, 808 2, 528, 804 448, 667 1, 131, 627 44, 049	67. 4 32. 1 61. 6 13. 6 36. 0 1. 5 91. 7	3, 436, 118 3, 610, 735 1, 239, 037 2, 050, 099 18, 590, 618 1, 244, 732 77, 704, 537 48, 058
South Dakota ' Tennessee	123, 907 217, 972 226, 266 4, 769, 638	13.3 4.2 1.8 14.4 5.1 3.3 3.9	475, 076 55, 216 678, 046 643, 657 561, 667 161, 118 28, 874	10.6 1.9 5.5 41.1 .6 3.2 84.8	3, 384, 155 2, 762, 751 11, 381, 055 697, 050 87, 700, 862 4, 698, 826 3, 841	75. 7 93. 7 92. 7 94. 5 94. 3 93. 4 11. 3	19, 007 5, 077 5, 963 29, 501 4, 525	.1	4, 470, 114 2, 946, 951 12, 283, 036 1, 566, 973 93, 061, 668 5, 032, 459 34, 043	2, 289 226, 504 171, 418	.1	4, 472, 403 2, 946, 951 12, 283, 036 1, 566, 973 93, 288, 172 5, 203, 877 34, 043
	26, 274, 440	8.3	13, 141, 774	4.1	278, 315, 365	87. 5	406, 330	.1	318, 137, 909	30, 406, 855	8.7	348, 544, 764

Includes lignite figures compiled by Bureau of Mines.

² Includes Arizona, Georgia, Idaho, and Oregon.

FUEL EFFICIENCY

Table 17.—Indicators of the effect of fuel economy on consumption of coal per unit of performance since the World War

	Pounds	Reduction from base period (percent)
Steam railroads:		
Pounds per 1,000 gross ton-miles freight service:	l	· ·
Average, 1919-20	170	
Average, 1938	115	32. 4
Average, 1939	112	34.1
Pounds per passenger-train car-mile:		
Average, 1919-20	18.5	
Average, 1938	14.9	19.5
Average, 1939	14.8	20.0
Electric public utility power plants:		1
Pounds per kilowatt-hour, 1919		
Pounds per kilowatt-hour, 1938	1.4	56.2
Pounds per kilowatt-hour, 1939	1.4	56. 2
Iron and steel—pounds coking coal per gross ton of pig: 1		l
1918.	3, 577	
1958	2,894	19. 1
1939	2,853	20.2
Coke manufacture: Savings of heat values through recovery of gas, tar, light oils,		1
and breeze by extension of byproduct in place of beehive coking, 1913-1939, ex-	1	
pressed as percent of coal used for all coke in 1939 3		20.6

¹ Includes only savings through higher yields of merchantable coke per ton of coal charged and lower consumption of coke per ton of iron. Excludes economies through recovery of byproducts, which are treated in next item.
¹ These byproducts are used in part for boiler fuel, in part for metallurgical purposes, in part for domestic heating and cooking, and to a small extent for automotive fuel.

STOCKS HELD BY CONSUMERS

Table 18.—Stocks of bituminous coal in hands of commercial consumers and of anthracite and bituminous coal in retail dealers' yards, 1938-39

	umi-	Days'	supply	at cur	rent ra	te of co	nsump	tion on	dateo	f stock	taking
Date	Total stock of bituminous coal estimated (net tons)	Byproduct coke plants	Steel plants	Otherindustrials	Coal-gas plants	Electric utilities	Retail yards, bi- tuminous	Railroads	Cement mills	Total bitumi- nous	Retail yards, an-
1938 Jan. 1	36, 507, 000	56 51 46 43 43 47 51 54 49 47 46 47	44 41 35 33 36 37 35 31 29 26 24 25	42 37 33 33 35 40 43 41 42 42 39	61 53 51 50 57 63 68 68 61 60 57	79 82 83 87 97 91 85 81 73 72 71 71	25 22 22 22 23 36 53 64 69 52 39 40 34 25	32 28 28 28 29 28 27 26 25 24 24 24	39 49 53 47 27 22 21 18 19 22 21 24 32	40 37 35 36 41 45 46 47 43 41 40 38	36 27 26 25 44 58 57 58 63 44 44 59
1939 Jan. 1	39, 887, 000 40, 505, 000 31, 746, 000 25, 413, 000 26, 991, 000 29, 725, 000 33, 624, 000	49 48 48 46 32 24 24 30 34 35 38 37	25 27 32 40 29 25 23 24 23 22 20 19 21	35 34 31 33 32 32 32 39 40 43 42 42 40	54 49 45 47 41 32 41 48 55 58 62 58	71 72 78 86 81 69 61 61 61 59 58 60	25 23 19 21 22 33 54 56 49 32 33 34 26	24 25 29 34 32 27 23 22 20 21 22 23	32 51 46 35 24 20 16 19 20 24 26 29 32	35 35 34 37 35 34 34 37 38 35 35 36 34	37 29 25 22 35 61 71 61 58 47 57 58

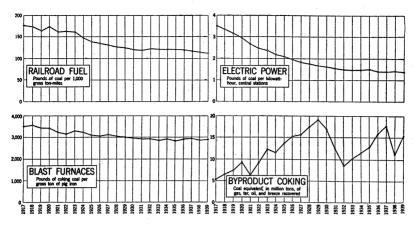


FIGURE 9.—Trends in fuel efficiency in the United States, 1917-39.3

COAL LOADED FOR SHIPMENT BY INDIVIDUAL RAILROADS AND WATERWAYS

Table 19 shows the quantity of bituminous coal originated on each railroad and waterway in 1938, as reported by mine operators in answer to the following inquiry:

a. List raintoads of waterway	s on which product wa	s arst loaded for snipment
(Name of road or	waterway)	(Net tons loaded on each)

b. On coal hauled by truck, report below:	if any, to railroad sidi	ng or to river for shipment
Name of railroad	Shipping point	Distance hauled miles.
Name of river	Loading point	Distance hauled miles.

As these statistics include nonrevenue railroad fuel they may differ from those compiled by the railroad companies, which often show only revenue freight and include coal received from connecting lines or coal shipped off the Lakes docks, as well as that originating at mines on the lines reporting.

In general, the figures are given under the name reported by the operator, and the Bituminous Coal Division does not attempt to combine them under the name of the larger system, believing that such combination can best be made by those using the figures, as they are probably familiar with coal-traffic problems. If such combination is made, the total usually will be found to check reasonably well with the statistics issued by railroads that keep records of total coal originated.

Where the road serving the district is a subsidiary of a larger road some operators may report their coal as loaded on the subsidiary and others as loaded on the parent system (a few subsidiaries have been consolidated under the name of the parent road).

Table 19.—Bituminous coal loaded for shipment in 1938 by individual railroads and waterways, as reported by operators, in net tons

		Quantity		
Route	State	By State	Total for route	
RAILROADS				
Alabama Central	Alabama	9, 298 140, 381	9, 298 140, 38	
Alabama Great Southern	do	151, 656	151, 65	
Alaska Algers, Winslow & Western	Indiana	151, 656 1, 652, 298 704, 755 42, 288	1, 652, 29	
Alton	{ Illinois Missouri	704, 755	} 747,04	
	Missouri	42, 288 373, 595	373, 59	
Artemus-Jellico	Kentucky Colorado	173, 496) 310,08	
	Tilimaia	647, 061	!	
Atchison, Topeka & Santa Fe	Kansas	647, 061 394, 912	2, 191, 53	
	Missouri New Mexico	106, 009 870, 059	ļ	
	Illinois	285, 415	{	
	Indiana	406, 598		
Baltimore & Ohio	Maryland	97,827	21,011,13	
Daiminote & Onto	Ohio Pennsylvania	2, 264, 637	1,,	
	West Virginia	7, 675, 869 10, 280, 789	l ·	
Bessemer & Lake Erie	Pennsylvania	2, 359, 640	2, 359, 64	
Bevier & Southern	Missouri	422, 405	422, 40	
Birchwood Lumber Co	West Virginia	1,636	1,63	
Birmingham SouthernBuffalo Creek & Gauley	Alabama West Virginia	11, 244 641, 404	11, 24 641, 40	
Cambria & Indiana	Pennsylvania	3, 152, 415	3, 152, 41	
Campbell's Creek	West Virginia	3, 152, 415 889, 739	3, 152, 41 889, 73 256, 64	
Carbon County	Utah Illinois	256,648	256, 64 124, 19	
		124, 197 649, 644	`	
Central of Georgia	\Georgia	25,636	675, 28	
	(Kentucky	6,834,646		
Chesapeake & Ohio	Ohio	450, 326	38, 303, 09	
Cheswick & Harmar	West Virginia	31, 018, 122 747, 104	747, 10	
Chicago & Eastern Illinois	fIllinois	982, 675	2, 494, 06	
Chicago & Eastern Innois	{Indiana	982, 675 1, 511, 391 3, 554, 393	j ·	
Chicago & Illinois Midland		3, 554, 393 2, 101, 092	3, 554, 39	
Chicago & North Western	{Wyoming	22, 663	2, 123, 75	
	(Colorado	22, 663 276, 301	ĺ	
a	Illinois	5, 619, 660	0 707 00	
Chicago, Burlington & Quincy	Iowa Missouri	66 593	6, 797, 02	
	Wyoming	5, 619, 660 151, 166 66, 593 683, 308)	
Chicago, Indianapolis & Louisville	Indiana		1, 207, 40	
	(Illinois	52, 571 3, 487, 038 595, 743)	
	IndianaIowa	595 743		
Chicago Milmouhee St. Doul & Decide	II Miccouri	4,389	4, 870, 09	
Chicago, Milwaukee, St. Paul & Pacific		677, 478	1 4,010,00	
	North Dakota	1 46, 994 (1)	1	
	Washington	5, 881)	
	(Arkansas	6,326	ì	
China Dan Lateral & Design	Illinois	655, 449	1, 464, 93	
Chicago, Rock Island & Pacific	lowa Missouri	549, 635 146, 490	1, 404, 93	
	Oklahoma	146, 490 107, 036 123, 457	J	
Chicago, Springfield & St. Louis	Illinois	123, 457	123, 45	
Cleveland, Cincinnati, Chicago & St. Louis	[do	3, 233, 646	4, 053, 59	
	(Kentucky	819,953 87,535	}	
Clinchfield		1,724,884	1,812,41	
Colorado & Southeastern	Colorado	150, 972	150, 97	
		379, 253 241, 464	379, 25 241 46	
Colorado & Wyoming Conemaugh & Black Lick	Pennsylvania	241, 464 26, 700	241, 46 26, 70	
Crystal River & San Juan	Colorado	530	53	
Cumberland & Pennsylvania	Maryland	455, 127	455, 12	
Dardanelle & Russellville		37, 069 106, 478	37, 06 106, 47	
Den act of the commental in	[do	1, 103, 507) 100, 41	
Denver & Rio Grande Western	{New Mexico	15, 747	2,744,29	
	Utah	1, 625, 040	700 70	
Denver & Salt Lake Des Moines & Central Iowa	Colorado	700,760	700, 76 94, 83	
TO THOUSE OF CETTINGS TOMS	: AV 17 G	. 61,001	, 92,00	

Table 19.—Bituminous coal loaded for shipment in 1938 by individual railroads and waterways, as reported by operators, in net tons—Continued

		Quantity			
Route	State	By State	Total for route		
RAILROADS—continued		·			
Detroit, Toledo & Ironton East Broad Top Railroad & Coal Co	Ohio Pennsylvania	10, 253 411, 896	10, 253 411, 896		
Eastern Railway & Lumber Co	Washington	865	865		
Erie	[[Onio]	178	1,061,132		
	PennsylvaniaIndiana	1,060,954 8,245	8, 245		
Evansville, Suburban & Newburgh	do	8, 245 178, 383	8, 24 5 178, 383		
Fort Dodge, Des Moines & Southern. Forth Smith & Western Fort Smith, Subiaco & Rock Island. Galesburg & Great Eastern	IowaOklahoma	5, 259 113, 615	5, 259 113, 615		
Fort Smith, Subiaco & Rock Island	Arkansas	10, 073 499, 309	113, 615 10, 073 499, 309		
Galesburg & Great Eastern	Illinois	499, 309	499, 309 4, 905		
Grand Trunk	Michigan (Montana	4, 905 2 788, 334	4, 900		
Great Northern	North Dakota		912,033		
	Washington Tennessee	ì23, 699	240, 177		
Harriman & Northeastern	Temnessee	240, 177	240,177		
Coal Co.	Pennsylvania	107, 849 195, 901 7, 047, 791 152, 454 4, 238, 361 594, 372 243, 215 813, 096	107, 849		
	Alabama Illinois	195,901			
Illinois Central	Indiana	152, 454	11, 634, 507		
	Indiana Kentucky	4, 238, 361	*********		
Illinois Terminal	Illinois Indiana	594, 372 243 215	594, 372 243, 215 813, 096		
Indiana International-Great Northern	Texas.	\$ 813, 096	813, 096		
Interstate		44, 895 1, 735, 812	1, 780, 707		
Iowa Southern Utilities Co	(Virginia	1, 785, 812)	145, 542		
Iowa Southern Utilities Co Johnstown & Stony Creek	Iowa Pennsylvania	145, 542 88, 852	88, 852		
Joplin-Pittsburg	Kansas	278, 545	278, 545		
Joplin-Pittsburg Kanawha Central Kanawha, Glen Jean & Eastern	West Virginia	278, 545 155, 602 425, 293	278, 545 155, 602 425, 293		
•	Kansas Missouri	19, 599 507, 095 37, 606 20, 818			
Kansas City Southern	Missouri Oklahoma	507, 095 } 37, 606	564, 300		
Kansas, Oklahoma & Gulf	do	20, 818	20, 818		
Kellev's Creek & Northwestern	West Virginia	756, 612 621, 915 45, 136	756, 612 621, 915 45, 136		
Kentucky & Tennessee Lake Erie, Franklin & Clarion Laramie, North Park & Western Ligonier Valley	Kentucky Pennsylvania	45, 136	45, 136		
Laramie, North Park & Western	Colorado	0 294 1	9.824		
Ligonier Valley Litchfield & Madison	Pennsylvania Illinois	174, 704 358, 478 1, 800, 125	174, 704 358, 478		
Dittiment & Wadison	Alabama	1, 800, 125	300, 110		
	Illinois	20, 189 11	00 518 508		
Louisville & Nashville	Kentucky Tennessee	19, 871, 740 682, 589	22, 517, 797		
	Virginia	143, 154			
Mary Lee	Alabama Michigan	878, 258	878, 258 6, 037		
	Arkansas	6, 037 279, 754 132, 633	412, 387		
Midland Valley	() Oklahoma	132, 633			
Minneapolis & St. Louis Minneapolis, St. Paul & Sault Ste. Marie	Illinois North Dakota	690, 165 524, 438	690, 165 524, 438 13, 411		
Missouri-Illinois	IIIIIOIS	13, 411	13, 411		
	Kansas	241, 092 60, 077 182, 663			
Missouri-Kansas-Texas	Missouri Oklahoma	182, 663	483, 832		
	(Texas				
	Arkansas Illinois	700, 693 3, 980, 749 834, 560			
Missouri Pacific	Kansas	834, 560	5, 901, 685		
	[Missouri	380,083 []			
Mobile & Ohio	Alabama Illinois	73, 372 431, 096	504, 468		
Monongahela	(Pennsylvania	1, 915, 475 (8, 257, 009		
Montana	West Virginia	0.341.534 []	13, 231		
Montana, Wyoming & Southern	Montana	13, 231 298, 433	298, 433		
Montour	Pennsylvania	4 DAR ARI	4, 046, 461		
Nashville, Chattanooga & St. Louis New York Central (includes coal shipped over Kanawha & Michigan, Kelley's Creek, Toledo & Ohio Central, and Zanesville & Western)	Tennessee	681, 193 4, 408, 038 3, 523, 819	681, 193		
Konowho & Michigan Kallay's Creak Toledo &	Ohio Pennsylvania	3, 523, 819 758, 741	8, 690, 598		
Rahawha & Michigan, Reney 5 Orock, Tologo &	West Virginia				

See footnotes at end of table.

Table 19.—Bituminous coal loaded for shipment in 1938 by individual railroads and waterways, as reported by operators, in net tons—Continued

*		Quantity			
Route	State	By State	Total for route		
RAILROADS—continued					
Norfolk & Western	Kentucky	3, 574, 816 4 7, 018, 344	21 400 100		
	Virginia West Virginia	20, 904, 967	31, 498, 127		
Northern Alabama	Alabama(Montana	216 835 1	216, 835		
Northern Pacific	North Dakota	1, 098, 293 582, 697 774, 788	2, 455, 778		
Oneida & Western	Washington Tennessee	774, 788	, ,		
Pacific Coast	Washington	18, 739 214, 704	18, 739 214, 70		
	Illinois Indiana	152, 115 1, 584, 475 3, 822, 069]		
Pennsylvania (includes Pittsburgh, Cincinnati, Chicago & St. Louis)	KOhio	1, 584, 475 3, 822, 069	30, 104, 73		
Chicago & St. Louis)	Pennsylvania West Virginia	24, 114, 101			
Peoria & Pekin Union	Illinois	431, 977 24, 555	24, 55		
Peoria Terminal	l do l	24, 555 878, 146	878, 140		
Pere Marquette Pittsburg & Shawmut	Michigan Pennsylvania	155, 201 698, 844	155, 20 698, 84		
Pittsburg & Shawmut Pittsburg County Pittsburgh & Lake Erie	Oklahoma	7, 290	7, 29		
Pittsburgh & Lake Erie	Pennsylvania (Ohio	2, 498, 076 269, 919	2, 498, 070		
Pittsburgh & West Virginia	KPennsylvanial	1, 463, 452	1, 733, 47		
	West Virginia	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Pittsburgh, Lisbon & Western	Ohio Pennsylvania	46, 828 7, 489	54, 31		
Pittsburg, Shawmut & Northern Quincy, Omaha & Kansas City	do_ Missouri	7, 489 411, 769	411, 769		
Rio Grande & Eagle Pass	Texas	27, 017 12, 717	27, 01 ¹ 12, 71 ¹		
Rio Grande Southern	Colorado	19 490	12, 420		
Rockdale, Sandow & Southern St. Louis & O'Fallon	Texas Illinois	(3) 286, 625 833, 146 120, 094	(8)		
of. Louis & O Fanon	(Alabama	833, 146	286, 62		
Nt. Tamin Gam Thomasian	Arkansas				
St. Louis-San Francisco	Kansas Missouri	611, 053	2, 491, 35		
	(Oklahoma	403, 860 523, 197			
St. Louis Southwestern of Texas Seaboard Air Line	Texas	(³) 99, 895	(³) 99, 89		
Soundard III IIII	II do I	1, 436, 428 42, 423)		
	Illinois Indiana	42, 423 1, 232, 503	j		
Southern	Kontucky	1, 050, 185	6, 462, 93		
	Tennessee Virginia	1 596 929			
Southern Pacific	New Mexico	1, 104, 466 217, 966 273, 753	, 217, 96		
Southern Pacific Springfield Terminal Susquehanna & New York	Illinois	273, 753	217, 96 273, 75		
Ponnoggo	Pennsylvania Tennessee	11, 324 640, 852	11, 32 640, 85		
Tennessee Central Tennessee Coal, Iron & Railroad Co	100	199, 527	199, 52		
Tennessee Coal, Iron & Railroad Co Texas & Pacific	Alabama Texas	199, 527 2, 536, 353 7, 696	2, 536, 35 7, 69		
Texas Short Line	do	(3)	(3)		
Thomas & Sayreton Toledo, Peoria & Western	Alabama	528, 622	528, 62		
Uintah	Illinois Colorado	21, 822 5, 003	21, 82 5, 00		
Union	Colorado Pennsylvania	5, 003 97, 545	97, 54		
	Colorado Kansas	739, 109 11, 078	1		
Union Pacific	KUtah	7, 540 29, 972	4, 932, 60		
	Washington	29, 972 4, 144, 910	1		
Unity Utah	Pennsylvania	703, 335	, 703, 33		
	Utah	702, 694	702, 69		
Virginian	Virginia West Virginia	9, 974, 240	9, 974, 24		
Wahash	[Illinois	9, 974, 240 1, 079, 251 100, 269	1		
Wabash	Iowa Missouri	100, 269 322, 846	1, 502, 36		
Western Allegheny	Pennsylvania	88, 880	88,88		
Western Maryland	Maryland Pennsylvania	497, 873	3, 693, 93		
TO COULT THE YIGHU	West Virginia	308, 474 2, 887, 587	2, 093, 93		

See footnotes at end of table.

Table 19.—Bituminous coal loaded for shipment in 1938 by individual railroads and waterways, as reported by operators, in net tons—Continued

		Quan	tity
Route	State	By State	Total for route
RAILROADS—continued			-
West Virginia Northern		75, 339	75, 339
West Virginia Pulp & Paper Co Wheeling & Lake Erie	do	17, 160	17, 160
Wheeling & Lake Erie	Ohio	2, 871, 988	2, 871, 988
Winfield	Pennsylvania	1, 134	1, 134
Winifrede	West Virginia	89, 452	89, 452
Woodward Iron Co	Alabama	868, 951	868, 951
Youngstown & Suburban	Ohio	10, 950	10, 950
Total railroad shipments		295, 336, 027	295, 336, 027
WATERWAYS	D	000 140	000 140
Allegheny River	Pennsylvania	963, 140	963, 140
Black Warrior River	Alabama	77, 293	77, 293
Green River	Kentucky	2, 168	2, 168
Illinois River	Illinois	82, 266	82, 266
Kanawha River	West Virginia	1, 819, 117	1, 819, 117
Mississippi River	Illinois	1, 955	1, 955
Monongahela River	{Pennsylvania	12, 042, 824	12, 535, 515
	(West Virginia	492, 691	1
Muskingum River	Ohio	691, 572	691, 572
	Kentucky	210, 656	l
Ohio River	Ohio	1, 940	721, 438
	Pennsylvania	1, 250	
	West Virginia	507, 592	, , ,
Youghiogheny River	Pennsylvania	8, 505	8, 505
Total waterway shipments		16, 902, 969	16, 902, 969
Grand total, loaded at mines for shipment by railroads and waterways.		312, 238, 996	312, 238, 996
Chinned by truck or waren	*	25, 592, 058	25, 592, 058
railroads and waterways. Shipped by truck or wagon		6, 860, 817	6, 860, 817
tipple or other uses at mines.		0,000,011	5, 500, 511
Used for power and heat or made into coke at mines		3, 852, 893	3, 852, 893
Total production		348, 544, 764	348, 544, 764

South Dakota included with North Dakota.
 Includes Missouri-Kansas-Texas, Rockdale, Sandow & Southern, St. Louis Southwestern of Texas, and Texas Short Line for Texas lignite mines.
 Includes Virginian Railroad in Montgomery and Pulaski Counties.

IMPORTS AND EXPORTS 3

Table 20.—Bituminous coal imported for consumption in the United States, 1938-39, by countries and customs districts, in net tons

	1938	1939		1938	1939
Country			Customs district—Continued		
North America: Canada Europe: France United Kingdom	240, 729 437 139 241, 305	296, 701 58, 414 355, 115	Los Angeles Maine and New Hampshire Michigan Montana and Idaho New Orleans New York	1, 131 88, 314 95, 511 437	127, 325 80 103, 408 40, 365
Customs district Alaska Buffalo Chicago Dakota Duluth and Superior	11, 634 	8, 163 101 2 124 253	Rhode Island. St. Lawrence. Vermont. Virgin Islands. Washington	242 2, 313 139 41, 344 241, 305	8, 238 6, 796 11, 740 9, 811 38, 709 355, 115

Includes slack, culm, and lignite.
 Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Table 21.—Exports of bituminous coal to Canada and Mexico, the West Indies and Central America, and "overseas" destinations, 1935-39, in thousands of net tons

			-	"01	verseas''	(all other	countrie	es)		
Year	Canada and Mexico	West Indies and Central Amer- ica ¹	New- found- land, Mique- lon, and Ber- muda	South Amer- ica	Europe	Asia	Africa	Oceania	Total "over- seas"	Grand total
1935 1936 1937 1938 1939	9, 044 9, 912 12, 052 9, 561 9, 976	456 470 732 619 599	31 44 51 23 76	197 163 265 247 681	9 50 10 11 165	5 (2) 24 29 91	(³) 11 2	16	242 273 361 310 1,015	9, 742 10, 655 13, 145 10, 490 11, 590

¹ Includes Bahamas and Panama.

Table 22.—Bituminous coal exported from the United States, 1938–39, by countries, in net tons ¹

Country	1938	1939	Country	1938	1939
North America:			South America—Continued.		
Bermuda	5, 253	3, 923	Guiana: Surinam	4, 532	3, 379
British Honduras	722	467	Peru		3, 381
Canada	9, 559, 726	9, 974, 908	Uruguav	20, 876	9, 193
Central America:	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Venezuela	46	81
Costa Rica		39			
Guatemala		217	l e e	247, 302	680, 821
Honduras		327	Europe:	1	
Nicaragua	26	75	Denmark		3, 035
Panama:			France	11, 192	
Canal Zone		153, 278	Italy		38, 612
Republic of	11,651	6	Norway Portugal		42,057
Salvador	76	44	Portugal		4, 883
Mexico Miquelon and St. Pierre	991	1, 011	SpainSweden		25, 739
Miquelon and St. Pierre	1	· 1	Sweden		26, 516
Islands	1	4, 344	Switzerland		24, 549
Newfoundland and Lab-	ı		United Kingdom	(2)	
rador	17, 703	67, 869			ļ
West Indies:	•			11, 192	165, 391
British:			i .		
Barbados	609	1, 284	Asia:	ļ.	
Jamaica	83, 637	77, 786	China	21, 363	53, 726
Trinidad and		1	Indochina (French)		7, 516
Tobago Other British	42, 779	38, 581	Iran	6	
Other British	19, 206	10, 630	Netherland India		12, 234
Cuba	347, 565	292, 191	Philippine Islands		18, 089
Dominican Repub-		1 1			
_lic	74	310	i	28, 436	91, 565
French	13, 241	20, 204			
Haiti	28	47	Africa:		
Netherlands	3, 218	3, 401	Canary Islands		1, 701
			Union of South Africa		58
	10, 203, 339	10, 650, 942			
Countly A					1,759
South America: Argentina					
Argentina	15, 193	232, 406	Grand total	10, 490, 269	11, 590, 478
Bolivia	51	2, 136			
Brazil	204, 294	425, 022	1		
Chile	 <u>-</u>	5, 011			I
Colombia	12	46			1
Ecuador	49	166			1

¹ Amounts stated do not include fuel or bunker coal loaded on vessels engaged in the foreign trade which aggregated 1,352,480 tons in 1938 and 1,476,556 tons in 1939.

² Less than 1 ton.

^{2 1} ton.

^{3 3} tons.

Table 23.—Bituminous coal exported from the United States, 1938-39, by customs districts, in net tons

District	1938	1939	District	1938	1939
North Atlantic: Maine and New Hampshire. Massachusetts. New York Philadelphia. South Atlantic: Maryland South Carolina Virginia Gulf Coast: Florida Mobile New Orleans	189 2 3, 397 9, 116 45, 171 77, 267 781, 287 14 1, 318 1, 649	219 1, 157 13, 330 244, 444 82, 369 1, 243, 397 3, 540 6, 687 1, 204	Pacific Coast—Continued. San Francisco. Washington. Northern border: Buffalo. Dakota. Duluth and Superior. Michigan. Montana-Idaho. Ohio. Rochester. St. Lawrence. Vermont.	295, 341	25, 535 4, 389 619, 911 7, 494 41, 273 1, 238, 218 466 6, 519, 949 1, 153, 914 381, 796 152 101
Mexican border: Arizona. El Paso. San Antonio. Pacific Coast: Los Angeles. San Diego.	280 253 31 2 76	598 102 26 1 84	Miscellaneous: Alaska. Puerto RicoVirgin Islands	26 2 1 10, 490, 269	114 7 1 11, 590, 478

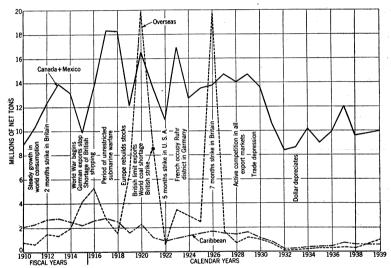


FIGURE 10.—Exports of bituminous coal to Canada and Mexico, the Caribbean, and "overseas" destinations, 1910-39.

Shipments to Alaska, Canton and Enderbury, Hawaii, Midway Islands, Puerto Rico, and the Virgin Islands.—In addition to export trade proper the United States supplies a small tonnage of anthracite and bituminous coal to Alaska, Canton and Enderbury, Hawaii, the Midway Islands, Puerto Rico, and the Virgin Islands. Shipments of bituminous coal to each of these possessions in 1939 were as follows: Alaska, 17,587 net tons; Canton and Enderbury, 3 net tons; Hawaii, 1,540 net tons; Midway Islands, 81 net tons; Puerto Rico, 14,709 net tons; and Virgin Islands, 69,751 net tons. Comparative shipments for 1938 were: Alaska, 23,465; Canton and Enderbury, none; Hawaii, 773; Midway Islands, none; Puerto Rico, 19,967; and Virgin Islands, 93,065.

WORLD PRODUCTION

Table 24.—World production of coal and lignite, 1935–39, by countries, in thousands of metric tons $^{\rm 1}$

[Compiled by R. B. Miller, Bureau of Mines]

Country	1935	1936	1937	1938	1939
North America:					
Canada:		i	1		1
Coal	9, 358	10,308	11,014	9, 815	10, 985
Lignite	3, 241	3,508	3, 352	3, 153	3,094
Greenland	6	5	6	7	(2)
Mexico	990	1,072	912	893	(2)
United States:			1		, , ,
Anthracite	47, 317 335, 315	49, 513	47,043	41,820	46, 708
Bituminous	335, 315	395, 511	401, 257	313, 473	353, 885
Lignite	2, 495	2,821	2,920	2,720	2,696
South America:				f	
Brazil	757	648	763	883	1,030
Chile	1,900	1,875	1,988	2,044	1,882
Colombia	200	282	330	331	(2)
Peru	85	90	99	75	63
Venezuela	- 6	6	7	6	3
Europe:	_				(0)
Albania: Lignite	2 2	3	4	00.707	(2) 29, 847
Belgium	26, 506	27, 867	29, 859	29, 585	29,847
Bulgaria: Coal	00	100		1.0	/ / / /
Lignite	93	102	120	142	(2)
	1,566	. 1,576	1,732	1,855	· (2)
Czechoslovakia: Coal	10 004	10 000	10	15 000	/03
	10, 894	12, 233	16, 778	15, 800	(2)
Lignite Faroe Islands: Lignite	15, 114	15, 949	17, 895	14,717	(2)
France:				8	(2)
Coal	46, 213	47 000	44 010	40.400	.
Lignite		45, 228	44, 319	46, 498	51,000
Germany: 3	907	943	1,015	1,057	,
Coal	132, 379	146, 707	1771 140	171 700	(9)
Lignite	146, 033	160, 276	171, 148	171, 788	(2)
Austria:	140, 000	100, 270	183, 538	195, 312	(9)
Coal	261	244	230	227	(2)
Lignite	2, 971	2, 897	3, 242	3, 342	(2)
Saar 4	10, 624	11, 673	13, 365	14, 389	
Greece: Lignite	83	106	131	14, 389	(2)
Hungary:	00	100	101	100	(-)
Coal	823	827	917	1,042	(2)
Lignite	6,718	7, 105	8, 055	8, 320	(2) (2)
Irish Free State	115	127	128	120	120
Italy:		1		120	
Coal	443	806	964	1,480	1,091
Lignite	545	769	1, 059	873	1, 410
Netherlands:			_,		-,,-
Coal	11,878	12, 803	14, 321	13, 488	12,861
Lignite	86	89	143	171	197
Poland:					
Coal	28, 545	29, 748	36, 218	38, 104	(3)
Lignite	18	14	19	10	(1)
Portugal:	- 1				
Coal	211	217	259	299	313
Lignite	20	21	23	15	35
Rumania:]				
Coal	278	293	303	299	(2) (2)
Lignite	1,667	1,672	1,880	2,097	(2)
Spain:	. i				
Coal	7, 016	(5)	(5)	5, 289	6, 753
Lignite	304	(5)	(8)	68	204
Svalbard (Spitsbergen)	709	784	766	627	(2)
Sweden	424	456	460	444	449
Switzerland	4	3	4	3	3
United Kingdom:			i		
Great Britain	225, 816	232, 115	244, 268	230, 659	236, 700
Northern Ireland	4	5	1	(6)	(2)
U. S. S. R.:	. [ł		1	
Coal	76, 998	93, 685	94, 525	98, 627	(2)
Lignite	10,000	00,000	04, 020	30, 027	(-)
Yugoslavia:	.000			[
Coal	390	441	428	450	443
Lignite	4,002	4,035	4, 574	5, 287	5, 604

See footnotes at end of table.

Table 24.—World production of coal and lignite, 1935-39, by countries, in thousands of metric tons—Continued

Country	1935	1936	1937	1938	1939
Asia:					
British Borneo	(6)	(6)	(6)	(6)	(6) (2) (2)
China	7 26, 125	7 27, 116	(8)	(8)	(2)
Chosen	1,999	2, 282	2, 348	(4)	(2)
Federated Malay States	383	511	638	486	` 402
India, British:		1			
Coal	23, 540	23, 129	25, 586	28, 972	(2)
Lignite	430	419		545	(2)
Indochina:		1		1	, ,
Coal	1,775	2, 186	2, 308	2,340	2,600
Lignite	1,,,,,	2,100	2,000	2,010	(2)
			·	*	(9)
Japan:	[i		i	
Japan proper:	0= 0=4	47 000	(8)	/B	/m
Coal	37, 674	41,803	(5)	1 92	92
Lignite	109	109	1 (2)	(2)	(3)
Karafuto		2,010	(5)	(5) (5) (5)	(2) (2) (3)
Taiwan	1, 597	1, 744	(6)	(9)	(3)
Levant: Lignite		(6)	1 5	(6)	1
Netherland India	1, 111	1, 147	1, 364	1,457	1,755
Philippine Islands		25	22	(5)	(1)
Turkey:	1			1 ''	
Coal	2,340	2, 299	2, 307	2,589	2,696
Lignite	73	95	116	129	151
U. S. S. R.:		1			-0-
Coal	h				
Lignite	32,062	32, 785	32, 616	34, 261	(2)
	ין	1			
Africa:	38	7	14	13	(2)
Algeria Belgian Congo: Coal	11	14	36	42	(2) (2)
	53	49	107	123	116
Morocco, French	262	296	369	368	(2)
Nigeria					
Portuguese East Africa	16	8	19	10	8
Southern Rhodesia	695	705	1,029	1,044	1, 118
Union of South Africa	13, 574	14,842	15, 491	16, 284	16, 888
Oceania:				1	
Australia:					
New South Wales	8, 838	9, 347	10, 213	9,725	11, 376
Queensland	1,069	1,064	1, 138	1, 131	1, 339
Tasmania	126	134	93	85	99
Victoria:			ł	1	
Coal	484	434	262	312	371
Lignite	2, 257	3,094	3, 448	3,734	3, 710
Western Australia	546	574	562	614	566
Now Zeeland					
Coal	838	873	986	994)
Lignite	1, 311	1,302	1, 329	1, 264	} 2,380
THEM.C	1,011	2,002			
Total, all grades	1 323 000	1, 453, 000	1, 550, 000	1, 466, 000	(2)
Total, all grades	1, 020, 000	1, 200, 000	1, 100, 000	±, ±00, 000	(-)
Lunder (Artel of Henry champs about	004 000	00E 000	254, 000	264,000	(3)
dignite (total of items shown above)	204,000	225,000 1,228,000	1, 296, 000	1, 202, 000	(3)

¹ Coal is also mined in Argentina, Iran, and Italian East Africa. Production figures for these countries are not available, but estimates are included in the totals. All figures for 1939 are to be considered as preliminary and subject to revision.

2 Data not yet available.

3 Exclusive of mines in the Saar.

4 Mines under French control until Mar. 1, 1935

4 Estimate included in total.

5 Production less than 1,000 tons.

7 Production of most important coal mines.

DETAILED STATISTICS, BY STATES AND COUNTIES

Detailed production and employment statistics are given in table 25 for each coal-producing county in the United States from which three or more operators submitted reports in 1938. Statistics for counties with less than three reporting producers have been combined with data for other counties in the same State to avoid disclosing individual returns, unless permission to publish has been granted by

the operators.

In this series the reported production is classified according to the principal methods of distribution or use. Beginning with 1932 the series was expanded to include data on the growing volume of coal moving from mine to consumer by truck. For 1933-36 this tonnage was shown as "commercial sales by truck or wagon." In 1937 this tonnage was shown as "truck deliveries, including local sales." (See Minerals Yearbook, 1939, p. 813.) In 1938 the truck tonnage was shown as "shipped by truck or wagon." The truck figures for 1933

to 1936, inclusive, and 1938 are reasonably comparable.

The data in this report, like those published for many years by the Bureau of Mines, relate only to mines with an annual output of 1,000 tons or more. Although all mines, regardless of size, are subject to regulation under the provisions of the National Bituminous Coal Act of 1937, it seemed advisable to maintain the continuity of the old series by excluding the very small mines that sell by truck or wagon. This fact should be borne in mind when the statistics in this report are compared with similar data compiled by State mine departments. Differences arise largely from variations in coverage of the State reports, some of which include data for all mines regardless of size and others only data for mines employing more than a specified minimum number, which ranges from 2 to 10 men.

Because of a change in the method of reporting, the statistics of average production per man per day for 1932 to 1936 and 1938 are not precisely comparable with those for earlier years. Before 1932 they were based upon the calculated number of man-shifts, obtained by multiplying the average number of men employed at each mine by the number of days worked at the mine. Since 1932 operators have been asked to make a special report of the number of man-shifts actually worked if possible. The number of operators able to furnish this information has been small, although it is increasing from year to year. These reports were utilized to improve the accuracy of the record. Otherwise, the man-shifts were calculated by multiplying the number employed underground and on the surface by the

number of days worked by the mine and tipple, respectively.

Table 25.—Production, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1938

[Note that figures relate only to active mines of commercial size, excluding truck and wagon mines producing less than 1,000 tons. Waste and refuse are not included in tonnage]

ALABAMA

	Net tons					Number of employees						
County	Loaded at		Coal used by employees or	USec for			Surface			Average number	Man-days	Aver- age tons
	mines for shipment by rail or water	Shipped by truck or wagon	taken by locomotives at tipple or other uses at mines	power and heat or made into coke at mines	Total quantity	Under- ground	In strip pits	All	Total	of days mines operated	of labor	man per day
Bibb Blount Cullman Etowah Jefferson Marion St. Clair Shelby Tuscaloosa. Walker Other counties (Fayette, Jackson, Madison, and Winston)	749, 539 289, 391 56, 549 1, 977, 237	5, 609 30, 931 26, 441 26, 347 154, 744 52, 544 32, 325 72, 782 49, 553 77, 840 9, 932	1, 656 110 10 117 65, 360 1, 475 6, 984 2, 050	12, 650 180 	463, 887 122, 697 26, 451 42, 899 6, 693, 349 252, 320 817, 366 364, 991 106, 102 2, 087, 915 83, 516	1, 028 306 79 90 10, 536 640 1, 146 665 260 3, 357	3 	157 48 16 12 1,459 96 101 136 33 586	1, 185 378 95 102 11, 995 739 1, 247 801 307 3, 993	153 174 199 205 190 149 194 185 174 161	181, 392 65, 687 18, 906 20, 889 2, 273, 151 110, 300 241, 311 148, 411 53, 497 641, 040 41, 238	2. 56 1. 87 1. 40 2. 05 2. 94 2. 29 3. 39 2. 46 1. 98 3. 26 2. 03
Total Alabama	10, 355, 746	539, 048	109, 524	¹ 57, 175	11, 061, 493	18, 339	91	2, 680	21, 110	180	3, 795, 822	2, 91
				ALASKA								Manager Manage
Total Alaska	151, 656		231	1 2, 795	154, 682	100		44	144	204	29, 413	5. 26
		ARIZO	NA, GEORG	IA, IDAHO	, AND OR	EGON		·				
Total Arizona, Georgia, Idaho, and Oregon.	25, 636	8, 357	50		34, 043	82		17	99	122	12, 059	2.82

ARKANSAS

Franklin	152, 847 150, 111 394, 720 37, 069 432, 493 1, 167, 240	2, 711 3, 274 443 1, 498 12, 752 20, 678	761 60 710 102 90	2, 384 1, 321 560 6 3, 135	158, 703 154, 766 396, 433 38, 675 448, 470 1, 197, 047	354 440 1, 162 152 1, 107 3, 215	10 55 65	51 84 182 24 200 541	415 524 1, 344 176 1, 362 3, 821	140 96 111 105 112	58, 150 50, 527 149, 482 18, 434 153, 026 429, 619	2. 73 3. 06 2. 65 2. 10 2. 93 2. 79
COLORADO												
Boulder Delta El Paso Fremont Garfield Gunnison Huerfano Jefferson La Plata Las Animas Mesa. Moffat Rio Blanco Rout Weld	13, 120 649, 788 21, 023 14, 886	374, 156 24, 151 180, 442 289, 149 24, 260 16, 980 61, 478 50, 087 18, 926 52, 207 40, 975 18, 359 4, 198 20, 304 255, 666	6, 777 3, 200 36, 121 4, 609 705 8, 455 3, 855 1, 134 167 3, 994 586 1, 960 56 4, 653 12, 771	9, 630 1, 024 6, 582 2, 247 365 12, 214 1, 859 2, 516 2, 97, 659 2, 532	590, 351 54, 984 264, 308 471, 012 44, 912 522, 071 160, 215 32, 533 803, 648 65, 116 35, 205 4, 254 741, 331 1, 231, 371	618 555 221 705 37 529 815 115 44 1, 321 24 7 1, 001 1, 267		113 23 39 134 8 103 203 27 9 225 16 4	731 78 260 839 45 632 1,018 142 53 1,546 107 28 7 7 1,301 1,432	212 154 228 187 239 169 163 211 185 144 180 242 242 200 127 183	154, 742 12, 014 59, 399 156, 503 10, 738 106, 945 29, 950 0, 791 223, 335 19, 309 6, 765 1, 462 165, 724 262, 310	3. 82 4. 58 4. 45 3. 01 4. 18 4. 83 3. 57 5. 35 3. 32 3. 60 3. 37 5. 20 2. 91 4. 47 4. 69
Weld. Other counties (northern) (Elbert, Jackson, and Larimer). Other counties (southern) (Montezuma,	9, 824	9, 181	170	732	19, 907	14 33	10	4 5	28	196 255	5, 487 9, 678	3. 63 3. 12
Montrose, and Pitkin)	3, 899, 117	28, 206 1, 468, 725	90, 636	² 204, 666	30, 159 5, 663, 144	6, 897	10	1,378	8, 285	169	1, 400, 088	4.04

See footnotes at end of table.

Table 25.—Production, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1938—Continued

ILLINOIS

		,	Net tons			Number of employees						
County	Loaded at		Coal used by employees or	Used for				Surface		Average number	Man-days	Aver- age tons
	mines for shipment by rail or water	Shipped by truck or wagon	taken by locomotives at tipple or other uses at mines	power and heat or made into coke at mines	Total quantity	Under- ground	In strip pits	All others	Total	of days mines operated	of labor	per man per day
Bureau Christian Clinton Edgar Franklin Franklin Fulton Gallatin Grundy Henry Jackson Knox La Salle Macoupin Madison Menard Morter Mortgomery Peoria Perry Randolph Rock Island St. Clair Saline Sangamon Schuyler Shelby Stark	27, 713 52, 571 7, 613, 537 2, 990, 634 4, 27, 750 556, 326 1, 179, 432 500, 634 134, 557 2, 918, 481 683, 524 533, 892 889, 485 2, 848, 802 926, 154 795, 559 2, 971, 723 1, 351, 799	52, 442 116, 371 89, 182 28, 862 65, 802 330, 035 47, 746 117, 644 103, 090 102, 294 136, 188 204, 005 146, 126 584, 044 110, 554 18, 803 37, 516 341, 558 62, 886 97, 975 28, 964 1, 377, 225 64, 497 533, 918 41, 376 6, 700 17, 422	2, 288 11, 436 2, 603 200 26, 328 5, 417 30 512 2, 105 5, 660 1, 844 47, 084 47, 084 13, 124 676 129 5, 007 11, 854 25, 288 8, 667 348 27, 252 13, 207 12, 865 182 102	2, 758 17, 760 8, 724 2, 511 117, 891 14, 601 3, 472 2, 260 6, 210 5, 077 5, 747 10, 323 126, 915 4, 239 1, 027 37, 767 2, 747 33, 311 18, 322 10, 927 11, 927 11, 927 11, 927 11, 927 11, 927 11, 927 11, 927 11, 927 11, 927 11, 927 12, 747 12, 747 13, 311 18, 322 14, 923 150, 927 17, 741 10, 923 11, 927 11, 927 11, 927 12, 747 12, 747 13, 311 14, 923 15, 927 17, 92	59, 091 3, 773, 618 128, 222 84, 144 7, 823, 558 120, 486 667, 731 1, 292, 463 644, 410 354, 899 3, 238, 606 1, 331, 864 115, 469 20, 019 20, 019 21, 245, 644, 182 1, 245, 644, 192 1, 245, 644, 192 1, 245, 644, 192 1, 250, 195 29, 312 2, 249, 459 3, 100, 354 1, 915, 992 42, 560 6, 228 17, 439	1, 304 152 66 469 1, 408 800 383 63 1, 869 2, 789	7	18 583 57 26 1, 556 437 12 12 11 211 98 81 440 260 30 12 144 142 175 8 439 569 311 569 311 57	261 2, 422 436 836 6, 508 1, 423 90 197 479 479 367 674 2, 449 1, 564 1, 552 1, 600 622 2, 380 3, 443 2, 818 87 34 44	115 165 69 129 142 189 210 151 192 178 190 180 181 148 202 150 117 157 144 157 146 130 148 219	29, 979 398, 664 30, 010 11, 226 2926, 309 14, 502 29, 766 92, 199 151, 152 69, 740 121, 352 444, 013 230, 737 36, 703 11, 685 244, 909 231, 110 97, 557 11, 388 244, 224 416, 983 19, 988 6, 610 9, 300	1. 97 9. 47 4. 27 7. 7. 50 8. 45 10. 92 4. 05 7. 24 8. 55 9. 24 2. 92 2. 7. 29 5. 77 3. 15 1. 71 2. 48 6. 93 4. 59 2. 22 1. 03 1. 18

Tazewell Vermilion. Wabash. Washington. Williamson Other counties 3. Total Illinois.	1, 167, 786 157, 537 1, 716, 463	173, 623 271, 041 9, 820 62, 633 366, 753 534, 287 6, 281, 452	97, 372 125 19, 589 7, 028 9, 301 363, 901	553 25, 291 130 17, 985 37, 972 30, 327 1 703, 890	219, 761 1, 561, 490 10, 075 257, 744 2, 128, 216 1, 842, 409 41, 912, 085	401 1,811 21 302 1,538 1,327 29,217	104 294 1,698	63 242 8 72 477 348 7,448	464 2, 090 29 374 2, 119 1, 969 38, 363	160 138 143 132 118 137	74, 312 288, 228 4, 141 49, 203 250, 462 269, 456 5, 704, 535	2. 96 5. 42 2. 43 5. 24 8. 50 6. 84
Clay	910, 764 1, 774, 539 1, 338, 212 88, 017 2, 579, 329 68, 295 1, 803, 735 390, 987 2, 419, 507 842, 479 59, 292	414, 942 63, 139 19, 095 44, 006 111, 348 115, 480 235, 639 10, 639 4, 544 113, 336 24, 083 46, 407 17, 773 63, 291 124, 425 167, 223 180, 542 48, 996	873 400 150 6, 193 8, 138 6, 362 85 579 25 6, 266 130 2, 714 991 272, 707 3, 907 12	7, 822 2, 494 20 673 22, 409 10, 215 19, 369 4, 315 2 17, 043 120 23, 775 7, 990 30, 561 4, 099 217	1, 137, 434 66, 033 19, 265 44, 746 1, 050, 714 1, 908, 571 1, 590, 582 19, 624 92, 561 118, 230 24, 110 2, 649, 045 81, 318 1, 393, 515 524, 393 1, 031, 027 108, 517 14, 758, 484	244 666 29 455 614 439 804 42 4 187 43 134 20 1,083 613 1,433 285 159	428 111 	208 18 9 24 143 2275 232 29 9 38 7 336 143 384 195 24 2, 350	880 95 38 69 757 1, 055 51 104 225 209 992 807 2, 000 659 183	148 161 183 164 147 163 178 80 173 164 173 162 119 103 166 154 150	120, 984 15, 252 6, 970 11, 330 111, 013 172, 216 161, 897 9, 055 8, 310 38, 908 8, 211 171, 161 10, 207 172, 138 82, 794 332, 770 101, 398 27, 370	8. 75 4. 33 2. 76 3. 95 9. 46 11. 08 9. 88 2. 17 11. 14 3. 04 2. 94 15. 48 7. 97 8. 10 6. 33 8. 63 10. 17 3. 96

See footnotes at end of table.

Table 25.—Production, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1938—Continued

TOWA

			-	IOWA								
			Net tons			N	umber o	employe	es			
County	Loaded at		Coal used by employees or	Used for power and			Sur	face		Average number	Man-days	Aver- age tons
Country	mines for shipment by rail or water	Shipped by truck or wagon	taken by locomotives at tipple or other uses at mines	heat or made into coke at mines	Total quantity	Under- ground	In strip pits	All others	Total	of days mines operated	of labor	per man per day
Adams Appanoose Boone Dallas Davis and Taylor	289, 930 280, 350 202	21, 341 106, 606 77, 843 78, 352 24, 027 19, 001	100 1, 985 5, 663 6, 130 529	105 83 2,082 1,302 16 5	21, 546 393, 503 375, 518 366, 134 24, 774 19, 006	117 1, 403 773 613 39 48	14	10 190 89 48 5	127 1, 593 862 661 58 68	146 113 162 152 158 68	18, 579 179, 447 139, 695 100, 220 9, 158 4, 612	1. 16 2. 19 2. 69 3. 65 2. 71
Guthrie- Jasper Jefferson and Keokuk Lucas Mahaska	415, 432 91, 466	18, 462 27, 841 12, 692 13, 369 111, 043	118 486 203 4,893 2,908	25 262 51 2, 135 1, 391	18, 605 28, 589 12, 946 435, 829 206, 808	79 93 21 672 81	11	8 12 6 63 39	87 105 38 735 227	161 72 117 148 173	13, 998 7, 581 4, 462 108, 819 39, 380	4. 12 1. 33 3. 77 2. 90 4. 01 5. 25
Marion Monroe Page Polk Van Buren	75, 169 62, 128 64	326, 871 59, 446 32, 247 223, 043 18, 613	2, 375 2, 693 225 2, 781 223	1, 264 1, 292 15 2, 048 35	442, 978 138, 600 32, 487 290, 000 18, 935	659 289 94 738 28	107 3	121 41 13 68 9	887 333 107 806 50	130 133 186 124 170	114, 884 44, 276 19, 896 99, 889 8, 521	3. 86 3. 13 1. 63 2. 90 2. 22
Wapello Warren Wayne Wayne Total Iowa		116, 358 79, 132 18, 426 27, 598 1, 412, 311	160 40 310 31 31,853	1, 992 2, 422 53	148, 917 81, 594 18, 736 27, 682 3, 103, 187	190 171 82 44 6, 234	12 23 	35 35 10 9 816	237 229 92 70	161 105 154 158	38, 186 23, 963 14, 177 11, 052	3. 90 3. 40 1. 32 2. 50
I Oval Towa	1, 012, 110	1, 412, 611		KANSAS	5, 105, 157	0, 234	044	810	7, 372	136	1,000,795	3. 10
							 	,			·	
Bourbon. Oherokee. Crawford Labette Linn	136, 102 479, 669 1, 693, 873	23, 841 33, 001 83, 747 10, 006 19, 808	236 1, 454 3, 886 1	938 1, 293 7, 010 650 710	161, 117 515, 417 1, 788, 516 10, 657 27, 554	62 1, 044	54 144 455 15 8	25 89 262 3	79 295 1, 761 18	210 150 157 179	16, 589 44, 124 276, 638 3, 222	9. 71 11. 68 6. 47 3. 31
OsageOther counties (Franklin and Leavenworth)_	73, 859	66, 630 9, 402	689		67, 619 83, 261	64 315 376	4	13 43 110	85 362 486	122 141 254	10, 411 50, 868 123, 263	2. 65 1. 33 . 68
Total Kansas	2, 390, 839	246, 435	6, 266	1 10, 601	2, 654, 141	1,861	680	545	3, 086	170	525, 115	5. 05

KENTUCKY

											1	
Eastern district:	1	1								1		
Bell	1, 620, 438	73, 125	68, 175	6, 116	1, 767, 854	2, 332		359	2, 691	176	474, 382	3. 73
Boyd	6, 222	16, 823	300		23, 345	99		17	116	125	14, 519	1.61
Breathitt	6, 222 5, 587	3, 636	31, 901	362	41, 486	132		23	155	113	17, 582	2. 36
Carter		38, 214			38, 214	66		11	77	180	13, 830	2.76
Clay	145, 200	12, 463	1,056		158, 719	273		46	319	193	61, 516	2. 58
Floyd	4, 035, 311	1, 767	10, 921	15, 722	4, 063, 721	4, 558		768	5, 326	173	921, 803	4.41
Greenup		3, 565			3, 565	13		3	16	59	950	3.75
Harlan	10, 734, 586	17, 103	67, 933	12, 502	10, 832, 124	12, 075		1,601	13, 676	179	2, 454, 104	4. 41
Jackson		142, 213		3, 745	145, 958	344		64	408	174	71, 153	2,05
Johnson	732, 369	1, 515	5, 398	5, 308	744, 590	1, 045		132	1, 177	155	182, 659	4.08
Knott	174, 679		1, 174		175, 853	384		59	443	72	31, 870	5. 52
Knox	533, 795		3, 233	2, 190	539, 218	614		106	720	210	151, 010	3. 57
Laurel		33, 829			33, 829	98		17	115	221	25, 420	1. 33
Lee		12, 706	35	10	12, 751	41		7	48	133	6, 394	1. 99
Letcher	3, 654, 423	1,060	29, 680	3, 547	3, 688, 710	4, 696		582	5, 278	160	843, 976	4. 37
Magoffin	67, 697	846	757		69, 300	108		19	127	145	18, 352	3. 78
Martin	187, 504		159		187, 663	244		41	285	104	29, 745	6.31
Perry	3, 545, 557	3, 371	91, 023		3, 639, 951	4, 243		797	5,040	141	710, 139	5. 13
Pike Pulaski	4, 034, 429	26, 367	24, 890	6, 078	4,091,764	4, 401		650	5, 051	169	853, 496	4. 79
Rockcastle		21, 618 17, 653	30		21, 618 17, 683	38 41		7	45	140	6, 295	3. 43
Whitley		370	2, 607	7, 965		554		106	50 660	128	6, 423	2. 75 2. 87
Other counties (Fillett McCroper	222, 000	870	2,007	7, 900	233, 507	004		100	. 900	123	81, 233	2.87
Other counties (Elliott, McCreary, Morgan, Owsley, Wayne, and Wolfe)	621, 915	14, 590	9, 544	1	646, 049	818	1	130	948	146	120 040	4.66
Morgan, Owsiey, Wayne, and Wone).	021, 810	14,000	<i>8</i> , 011		040, 049	919		190	940	140	138, 640	4.00
Total Eastern	30, 322, 277	442, 834	348, 816	63 545	31, 177, 472	37, 217		5, 554	42, 771	166	7, 115, 491	4.38
1000 1000011111111111111111111111111111	00, 022, 277	112,001	010,010	00, 010	01, 111, 112	01, 211		0, 004	32, 111	100	1, 110, 451	7.00
Western district:												
Christian	28, 177	26, 182	161		54, 520	97	11	20	128	102	13, 109	4, 16
Da viess		75, 586	228	2,022	77, 836	116		23	139	131	18, 164	4, 29
Henderson		80, 874	5, 299	11, 764	111, 356	180		45	225	145	32, 583	3, 42
Hopkins	3, 043, 181	167, 095	58, 910	12, 990	3, 282, 176	2, 670	49	534	3, 253	151	490, 365	6.69
Muhlenberg	1, 783, 532	80, 238	10, 700	32, 088	1, 906, 558	2, 502		434	2, 936	121	356, 667	5. 35
Ohio	204, 192	19, 509	3, 791	844	228, 336	392		68	460	98	44, 873	5.09
Union	443, 102	95, 334	17, 098	18, 669	574, 203	620		106	726	141	102, 324	5, 61
Webster	1, 072, 358	32, 619	5,092	2, 724	1, 112, 793	1, 239		204	1, 443	113	163, 716	6.80
Other counties (Butler, Hancock, and	1 ' '	1 '			1 ' '	,			1			
McLean)	274	19, 516	20	158	19, 968	63		19	82	173	14, 200	1.41
							<u> </u>		ļ			
Total Western	6, 588, 235	596, 953	101, 299	81, 259	7, 367, 746	7, 879	60	1, 453	9, 392	132	1, 236, 001	5. 96
Total Kentucky	36, 910, 512	1, 039, 787	450, 115	1 144, 804	38, 545, 218	45, 096	60	7, 007	52, 163	160	8, 351, 492	4. 62
	-5,525,522	1 3,000,000	200, 220	1	1 3, 020, 220	1 25,000	"	,,,,,,,,	1 02, 200	1	J, 002, 202	

See footnotes at end of table.

Table 25.—Production, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1938—Continued

MARYLAND

			Net tons			N	umber of	employ	ees			
County	Loaded at		Coal used by employees or	Used for power and			Sur	face		Average number of days	Man-days	Aver- age tons
County	mines for shipment by rail or water	Shipped by truck or wagon	taken by locomotives at tipple or other uses at mines	heat or made into coke at mines	Total quantity	Under- ground	In strip pits	All others	Total	mines operated	of labor	per man per day
AlleganyGarrett	593, 859 456, 968	165, 657 49, 160	5, 476 3, 172	844 6, 277	765, 836 515, 577	1, 338 745		178 110	1, 516 855	170 172	258, 330 146, 879	2. 96 3. 51
Total Maryland	1, 050, 827	214, 817	8, 648	1 7, 121	1, 281, 413	2, 083		288	2, 371	171	405, 209	3. 16
			M	IICHIGAN								
Bay Saginaw Other counties (Shiawassee and Tuscola)	45, 590 6, 037 114, 516	49, 468 100, 460 142, 644	2, 571 1, 798 4, 6 0 9	6, 308 9, 388 11, 092	103, 937 117, 683 272, 861	288 280 531		24 35 47	312 315 578	132 176 172	41, 145 55, 463 99, 217	2. 53 2. 12 2. 75
Total Michigan	166, 143	292, 572	8, 978	1 26, 788	494, 481	1,099		106	1, 205	163	195, 825	2. 53
			N	MISSOURI								
Adair	60, 563	93, 970	2, 400	2, 832	159, 765	311		51	362	172	62, 378	2. 56
Barton Bates Baone		5, 676 16, 038 9, 579 12, 407 112, 896	10 257 168 32 10	80 1, 285 1, 573 4 400	5, 766 245, 583 586, 203 12, 443 113, 306	21 5 27 33	2 125 162 6 44	5 53 71 9	28 183 260 48 52	98 106 152 119	2, 736 19, 405 39, 442 5, 730	2. 11 6 12. 66 6 14. 86 2. 17
Callaway Chariton, Monroe, and Schuyler Clay Dade, Jasper, and St. Clair		9, 131 78, 753 8, 847	127 1, 363 15	56 1, 812 510	9, 314 81, 928 9, 372	38 313 6	7	8 9 50 7	51 363 20	233 178 128 203	12, 140 9, 090 46, 593 4, 068	6 9. 33 1. 02 1. 76 2. 30

Daviess, Grundy, and Platte	492, 473 177, 907 17, 395 441, 179 380, 012 100, 739 20, 016	24, 999 12, 883 82, 057 11, 944 75, 110 58, 706 24, 434 28, 615 14, 660 68, 312 98, 367 40, 618	539 169 870 3, 620 406 3, 262 200 25 4, 007 6, 624 358 24, 452	3, 502 628 6, 815 6, 813 3, 508 28 1, 906 48 10 343 2, 939 1 28, 912	30, 622 13, 670 582, 215 12, 577 280, 145 76, 535 470, 781 28, 633 14, 695 452, 331 206, 073 63, 931	140 46 28 965 302 123 119 34 255 856 55	203 13 61 4 72 47 750	18 13 83 6 71 55 63 17 8 80 92 17	158 59 314 19 1, 036 887 247 136 46 407 948 119	142 156 165 187 139 176 178 131 221 221 221 129 126	22, 481 9, 281 51, 859 3, 552 144, 483 62, 710 44, 086 17, 865 10, 154 81, 731 122, 494 15, 012 787, 220	1. 36 1. 48 6 11. 23 3. 54 1. 80 1. 62 6 10. 68 1. 62 1. 65 5. 53 1. 68 4. 26 4. 36
Blaine and Phillips Carbon Cascade. Chouteau Daniels, McCone, and Valley ⁷ Dawson ⁷ Flathead and Pondera Hill Musselshell and Rosebud Richland ⁷ Roosevelt ⁷ Sheridan ⁷ Other lignite counties (Custer and Wibaux) ⁷ Other bituminous counties (Gallatin, Park, Powder River, and Stillwater)	30 1, 775, 771 3, 939	4, 114 8, 693 31, 982 8, 272 6, 582 14, 204 7, 697	2, 742 2, 073 20 20 10 17 45 5, 089 700 972 893	467 4 100 2,865 5 59 114	12, 616 331, 118 490, 587 8, 021 8, 784 1, 438 4, 261 8, 738 1, 815, 707 12, 911 7, 559 15, 156 7, 697 7, 457 2, 732, 050	24 180 288 21 7 5 19 24 482 22 10 18 5	33 3	5 82 42 5 1 1 1 4 5 5 189 5 4 7 1 8 8 359	29 262 330 26 12 6 23 29 704 25 6 29	180 183 191 197 205 86 142 213 163 163 145 172 182	5, 226 47, 867 62, 883 5, 110 2, 464 515 3, 274 6, 178 114, 503 4, 688 4, 289 1, 092 5, 662 265, 784	2. 41 6. 92 7. 80 1. 57 3. 56 2. 79 1. 30 1. 41 6 15. 86 2. 75 3. 72 3. 53 7. 05 1. 32

See footnotes at end of table.

Table 25.—Production, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1938—Continued

NEW MEXICO

			-1	W MILAIC								
			Net tons			N	umber o	employ	ees			1
County	Loaded at		Coal used by employees or	Used for power and			Sur	face		Average number of days	Man-days	Aver- age tons per
Country	mines for shipment by rail or water	Shipped by truck or wagon	taken by locomotives at tipple or other uses at mines	heat or made into coke at mines	Total quantity	Under- ground	In strip pits	All others	Total	mines operated	of labor	man per day
Colfax. McKinley. Rio Arriba. Arriba. Arriba. Arriba. Arriba. Arriba. Arriba. Arriba. Arriba. Arriba. Arriba. Arriba. Arriba. Arriba.	15.747	24, 025 43, 730 4, 469	4, 966 5, 176 129	2, 641 24, 208	636, 530 466, 691 20, 345	808 853 23		191 215 9	999 1, 068 32	138 167 232	137, 540 178, 395 7, 427	4. 63 2. 62 2. 74
Other counties (Bernalillo, Sandoval, Santa Fe, San Juan, and Socorro)	89, 550	14, 875	3, 308	7, 738	115, 471	284		91	375	146	54, 649	2. 11
Total New Mexico	1, 103, 772	87, 099	13, 579	1 34, 587	1, 239, 037	1,968		506	2, 474	153	378, 011	3. 28
			NORTH D	AKOTA (L)	GNITE) 7							
Adams	14, 207	25, 860 4, 496 5, 636	1, 600 125	15	41, 682 4, 621 5, 704	59 5 7	2 6 2	23 5 2	84 16 11	139 149 138	11, 654 2, 380 1, 515	3. 58 1. 94 3. 77
Burke Burleigh Divide Dunn	184, 442 199, 326	53, 822 28, 063 8, 114 3, 153	3, 800 100	100 20 702 100	238, 424 227, 433 166, 381 3, 353	33 12	49 30 39 5	33 21 17	82 84 68 6	168 226 168 125	13, 812 19, 002 11, 455 750	6 17. 26 6 11. 97 6 14. 52 4. 47
Grant Hettinger McKenzie	5, 151 420	17, 176 16, 271 5, 549	108 614	600 210	23, 035 17, 515 5, 549	16 7 3	17 8	5 7 4	25 31 15	148 155 156	3, 700 4, 809 2, 340	6. 23 3. 64 2. 37
McLean Mercer Morton Mountrail	103, 611 463, 044 8, 580	22, 477 2, 352 17, 038 12, 975	2, 523 77, 674 130	188 2, 310 2, 626 21	128, 799 545, 380 28, 374 12, 996	80 149 19 19	54 60 14 5	27 107 11 4	161 316 44 28	134 175 127 195	21, 563 55, 195 5, 575 5, 470	5. 97 9. 88 5. 09 2. 38
Oliver Stark Ward Williams	80 331, 930 770	7, 490 17, 168 121, 470 47, 794	87 73, 052 178	70 652 97 35	7, 647 90, 932 453, 675 48, 599	57 152 49	29 6	6 62 20	18 63 243 75	95 239 208 148	1, 711 15, 046 50, 648 11, 126	4. 47 6. 04 6. 96 4. 37
Total North Dakota	1, 465, 374	416, 904	160, 075	1 7, 746	2, 050, 099	667	344	359	1, 370	174	237, 751	8. 62

Athens.		1											
Total Ohio	Belmont Carroll Columbiana Coshocton Gallia Guernsey Harrison Hocking Holmes Jackson Jefferson Lawrence Mahoning Medina Meigs Morgan and Washington Muskingum Perry Stark Summit Tuscarawas Vinton	5, 405, 411 89, 725 89, 893 32, 126 424, 053 1, 778, 444 94, 956 73, 439 3, 627, 362 11, 128 42, 528 75, 141 700, 818 545, 544 31, 020 87, 114 10, 321	149, 411 179, 139 269, 211 141, 541 26, 165, 665, 905 29, 178 30, 861 113, 848 30, 673 52, 576 6, 683 59, 707 13, 452 214, 668 195, 343 404, 863 10, 668 609, 873 59, 755	57, 058 15, 508 16, 508 685 766 40 4, 272 1, 341 413 40 63, 872 9, 616 10, 666 3, 806 134 822 312 1, 717 6, 872 14, 119	16, 572 185 8, 308 819 1, 080 12, 118 80 23, 781 186 39 275 660 8, 488 195	5, 628, 452 284, 557 368, 097 175, 252 26, 445 555, 310 1, 821, 081 209, 217 30, 981 210, 463 3, 967, 498 63, 267 7, 003 103, 057 88, 905 917, 242 748, 034 450, 662 10, 668 827, 231 76, 367 19, 825	7, 107 328 304 44 4225 44 823 1, 127 286 39 212 212 22 434 716 1, 350 331 251 1, 272 57	102 15 83 4 9 31 280 52 27 111	734 39 52 41 8 87 295 49 7 37 607 22 31 3 3 26 63 88 107 181 72 4 215 29	7, 841 409 458 281 910 1, 505 55 280 4, 359 139 237 15 148 472 846 1, 558 514 29 1, 570 139 15 148 56 15 15 16 17 18 18 18 18 18 18 18 18 18 18	156 169 174 174 186 131 196 143 199 180 174 183 226 176 201 62 205 129 177 134 138 140	1, 223, 162 68, 983 79, 581 48, 912 9, 690 119, 511 294, 254 48, 405 10, 951 50, 482 758, 986 25, 497 29, 805 29, 192 173, 762 201, 490 90, 948 3, 890 216, 289 19, 469 9, 370	4. 2: 4. 66 4. 1: 4. 63 3. 55 2. 77 4. 66 6. 1: 5. 24 4. 3: 2. 8: 4. 1: 5. 24 4. 8: 2. 64 3. 00 5. 2. 77 4. 90 2. 77 3. 82 3. 92 2. 77 4. 93 3. 92 3. 93 3.
Coal 13, 171 127 14 13, 312 44 11 55 143 7, 885 Haskell and Le Flore 334, 186 3, 763 333 3248 341, 530 827 21 164 1,012 119 120, 723 Latimer 3, 927 2, 202 36 170 6, 153 35 6 41 71 2, 921 Muskogee 3, 209 6, 067 60 250 9, 586 18 12 7 37 98 3, 635 Okmulgee 204, 923 17, 928 418 1, 046 224, 315 347 54 401 140 56, 116 Pittsburg 170, 202 22, 902 689 5, 986 198, 969 398 72 470 172 80, 740 Tulsa 30, 846 6, 270 141 25 37, 282 80 16 96 154 14, 825 Other counties (Craig, Rogers, and Wagoner) 377, 565 32, 264 1, 001	Total Ohio	14, 848, 698	3, 311, 408	328, 913	1 101, 599	18, 590, 618	23, 306	920	3, 167	27, 393	145	3, 984 353	4. 6
Haskell and Le Flore 334, 186 3, 763 333 3, 248 341, 530 827 21 164 1, 012 119 120, 723 Latimer 3, 207 2, 020 36 170 6, 153 35 6 41 71 2, 921 Muskogee 3, 209 6, 067 60 250 9, 586 18 12 7 37 98 3, 635 Okmulgee 204, 923 17, 928 418 1, 046 224, 315 347 54 401 140 56, 116 Pittsburg 170, 202 22, 092 689 5, 986 198, 989 398 72 470 172 80, 740 Tulsa 30, 846 6, 270 141 25 37, 282 80 16 96 154 14, 825 Other counties (Craig, Rogers, and Wagoner) 377, 565 32, 264 1, 001 2, 755 413, 585 7 167 43 217 169 36, 626 4				0	KLAHOMA								<u> </u>
Total Oklahoma 1, 124, 858 103, 575 2, 805 1 13, 494 1, 244, 732 1, 756 200 873 2, 329 139 323, 471	Haskell and Le Flore Latimer Muskogee Okmulgee Pittsburg Tulsa Other counties (Craig, Rogers, and Wagoner)	3, 927 3, 209 204, 923 170, 202 30, 846	3, 763 2, 020 6, 067 17, 928 22, 092 6, 270	333 36 60 418 689 141	3, 248 170 250 1, 046 5, 986 25	341, 530 6, 153 9, 586 224, 315 198, 969 37, 282	827 35 18 347 398	12	164 6 7 54 72 16	1, 012 41 37 401 470 96	119 71 98 140 172 154	120, 723 2, 921 3, 635 56, 116 80, 740 14, 825	1. 69 2. 83 2. 11 2. 64 4. 00 2. 46 2. 51 6 11. 29
	Total Oklahoma	1, 124, 858	103, 575	2, 805	1 13, 494	1, 244, 732	1, 756	200	373	2, 329	139	323, 471	3. 8

See footnotes at end of table.

Table 25.—Production, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1938—Continued.

PENNSYLVANIA (BITUMINOUS)

			LEMMSIEVE									
			Net tons			Nı	ımber of	employe	es			Aver-
	Loaded at		Coal used by employees or	Used for			Sur	face		Average number of days	Man-days	age tons
County	mines for shipment by rail or water	Shipped by truck or wagon	taken by locomotives at tipple or other uses at mines	power and heat or made into coke at mines	Total quantity	Under- ground	In strip pits	All others	Total	mines operated	of labor	per man per day
Allegheny Armstrong Beaver Bedford Blair Butler Cambria Center Clarion Clearfield Clinton Crawford and Venango Elk Fayette Greene Huntingdon Indiana Jefferson Lawrenee Lycoming Mercer Somerset Tioga Washington Westmoreland Westmoreland Westmoreland Westmoreland Cother counties (Bradford, Fulton, and Mc	61, 227 7275, 296 10, 843, 998 218, 625 1, 108, 520 2, 243, 963	1, 763, 612 45, 267 253, 234 60, 721 264, 368, 660 110, 889 150, 197 33, 323 31, 344 32, 409 176, 743 4, 543 59, 865 38, 359 83, 508 81, 384 49, 813 109, 108 84, 651 77, 929 261, 806 485, 759	907, 845 42, 493 388 181, 706 946 6, 205 919, 115 18, 867 16, 696 42, 454 42, 454 203	68, 673 737 4, 663 631 3, 109 8 175, 464 160 22, 421 3, 810 17, 225 8 364, 505 13, 810 6, 299 8 197, 777 10, 329 8 197, 227 481 469 1, 967 62, 152 3, 997 22, 740 8 307, 980	11, 988, 561 2, 884, 642 416, 292 320, 266 122, 894 548, 918 12, 333, 025 323, 712 1, 236, 145 2, 459, 035 3, 564 31, 344 634, 837 10, 095, 831 3, 474, 274 5, 676, 797 1, 844, 797 1, 844, 990 202, 610 61, 866 111, 760 3, 895, 244 189, 359 12, 595, 645 6, 169, 524	11, 714 3, 396 161 539 274 1, 283 17, 073 600 1, 402 4, 232 47 47 8, 150 844 46, 492 2, 295 438 118 252 6, 112 334 16, 259 8, 683	77 148	1, 746 475 58 78 32 182 2, 378 101 170 508 7 7 7 7 7 7 7 7 7 4 1 1 84 60 19 41 1884 60 1,848 1,848 1,402	13, 537 3, 871 306 1, 470 19, 451 701 1, 592 4, 748 65 1, 009 14, 132 3, 727 918 7, 224 2, 676 502 139 303 303 6, 996 4, 996 4, 132 139 139 139 139 130 130 130 130 130 130 130 130	178 147 185 161 163 126 164 147 208 163 212 163 184 139 168 145 173 175 185 186 172 136 155 186 155 186 152	2, 406, 107 568, 279 67, 866 93, 235 46, 756 184, 825 3, 197, 957 102, 728 330, 554 725, 606 12, 504 10, 606 185, 250 1, 970, 888 626, 125 132, 787 1, 247, 072 468, 407 468, 407	4. 98 4. 20 6. 13 3. 44 2. 63 2. 97 3. 86 3. 18 3. 74 3. 39 2. 68 2. 96 3. 43 5. 12 5. 55 5. 2. 98 4. 55 2. 60 2. 41 4. 00 2. 97 4. 57 4. 77
Kean)	128, 045	7, 194	966	2, 912	139, 117	229	2	21	252	159	40, 036	3. 4
Total Pennsylvania	68, 757, 016	4, 768, 568	2, 890, 374	⁸ 1, 288, 579	77, 704, 537	99, 067	613	13, 819	113, 499	156	17, 679, 250	4.4

SOUTH DAKOTA (LIGNITE) 7

Corson, Dewey, and Harding Meade	1	15, 826 1, 076 3, 668	190 100 50		43, 164 1, 176 3, 718	5 6 7	20	7 2	32 8 10	199 93 141	6, 353 740 1, 414	6, 79 1, 59 2, 63
Total South Dakota	27, 148	20, 570	340		48, 058	18	23	9	50	170	8, 507	5. 65
			T	ENNESSEE	2		·····	•			I	!
Anderson Campbell Claiborne Cumberland Fentress Hamilton Morgan Overton Scott Van Buren Other northeastern counties (Putnam and Roane) Other southeastern counties (Bledsoe, Grundy, Rhea, Sequatchie, and White) Total Tennessee	214, 921 359, 588 240, 177	48, 697 27, 000 24, 177 8, 124 5, 825 23, 915 38, 309 20, 750 13, 831 20, 560 13, 110 15, 791 60, 795	5, 551 19, 932 10, 993 15 5, 2, 927 3, 019 2, 410 821 5, 167 50, 835	7, 178 967 2, 883 175 5, 876 1, 030 8, 696 2, 588 156 • 11, 129 • 40, 678	886, 667 1, 225, 308 869, 114 8, 314 229, 549 23, 915 401, 946 272, 033 13, 831 110, 628 13, 927 19, 136 398, 035	1, 215 1, 940 1, 357 21 391 64 588 600 29 159 38 37 655	4	197 315 203 5 99 111 115 94 4 26 7 7 85	1, 412 2, 255 1, 560 26 490 694 33 189 45 44 740	166 167 143 172 146 177 181 239 171 205 126 220 146	234, 514 375, 5223, 971 4, 471 71, 475 13, 279 126, 962 165, 845 5, 658 38, 743 5, 679 9, 667 108, 198	3. 78 3. 26 3. 90 1. 86 3. 21 1. 80 3. 17 1. 64 2. 44 2. 45 1. 98 3. 68
				TEXAS					•			
Bituminous: Palo Pinto, Webb, and Wise	20, 413	7, 590	42	4, 421	32, 466	199		71	270	149	40, 282	. 81
Lignite: ⁷ Bastrop and Milam Henderson, Titus, and Wood	104, 718 708, 378	3, 800 17, 502	1, 000 5, 245	761 4, 815	110, 279 735, 940	88 358	22	12 26	122 384	150 241	18, 266 92, 502	6.04 7.96
Total lignite	813, 096	21, 302	6, 245	5, 576	846, 219	446	22	38	506	219	110, 768	7.64
Total Texas	833, 509	28, 892	6, 287	1 9, 997	878, 685	645	22	109	776	195	151, 050	5. 82
Contrate at 12									<u> </u>			

See footnotes at end of table.

Table 25.—Production, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1938—Continued

T	7	r	A	H	

											1		
,			Net tons			N	umber of	employe	ees				
County	Loaded at		Coal used by employees or	Used for			Sur	face		Average number of days	Man-days	A ver- age tons per	
County	mines for shipment by rail or water	Shipped by truck or wagon	taken by locomotives at tipple or other uses at mines	heat or made into coke at mines	Total quantity	Under- ground	In strip pits	All others	Total	mines operated	of labor	man per day	
Carbon	2, 288, 757 255, 869 7, 540	180, 155 88, 795 7, 095 24, 886	16, 996 1, 480 5 141	10 19, 907 2, 023	2, 505, 815 348, 167 7, 100 32, 567	1, 961 270 10 29		611 99 6 8	2, 572 369 16 37	157 138 155 253	403, 616 50, 885 2, 487 9, 352	6. 21 6. 84 2. 85 3. 48	
SummitOther counties (Grand, Iron, and Uintah)	39, 756	13, 144	320	82	53, 302	68		14	82	163	13, 393	3. 98	
Total Utah	2, 591, 922	314, 075	18, 942	10 22, 012	2, 946, 951	2, 338		738	3,076	156	479, 733	6.14	
VIRGINIA													
Buchanan Dickenson Lee Montgomery and Pulaski ¹¹ Russell and Scott Tazewell Wise	3, 731, 544 1, 355, 970 943, 814 109, 642 430, 904 2, 726, 515 2, 428, 271	4, 865 6, 926 32, 922 23, 384 69, 117 47, 952 35, 081	5, 941 6, 863 10, 684 1, 441 5, 222 20, 271 22, 035	120 747 401 5, 265 4, 311 5, 711 12 247, 117	3, 742, 470 1, 370, 506 987, 821 139, 732 509, 554 2, 800, 449 2, 732, 504	3, 209 1, 543 1, 454 400 892 3, 045 4, 016		406 246 261 127 124 547 491	3, 615 1, 789 1, 715 527 1, 016 3, 592 4, 507	189 225 163 135 140 205 134	684, 298 402, 324 278, 913 71, 058 142, 567 736, 023 602, 917	5. 47 3. 41 3. 54 1. 97 3. 57 3. 80 4. 53	
Total Virginia	11, 726, 660	220, 247	72, 457	¹² 263, 672	12, 283, 036	14, 559		2, 202	16, 761	174	2, 918, 100	4. 21	
			WA	SHINGTO	N						,		
King	339, 213 630, 092 8, 791 19, 827 151, 986	259, 568 33, 265 22, 679 17, 004 50, 733	4, 499 7, 744 72 240 1, 326	1, 405 12, 282 443 100 5, 704	604, 685 683, 383 31, 985 37, 171 209, 749	853 780 43 64 250		250 280 10 13 48	1, 103 1, 060 53 77 298	166 162 134 165 164	182, 699 171, 753 7, 099 12, 734 48, 834	3. 31 3. 98 4. 51 2. 92 4. 30	
Total Washington	1, 149, 909	383, 249	13, 881	1 19, 934	1, 566, 973	1, 990		601	2, 591	163	423, 119	3. 70	

WEST VIRGINIA

	ī	1		1		1	1	1	1	1	1	1
Barbour	1, 196, 417	6, 788	2, 104	90	1, 205, 399	1, 265		158	1, 423	152	215, 846	5.58
Boone	2, 752, 576	3,887	14, 647	631	2, 771, 741	2,885		436	3, 321	161	535, 074	5. 18
Braxton and Gilmer	4, 209	5,059	10, 069	4	19, 341	58		12	70	69	4, 831	4.00
Brooke	303, 042	131,002	661, 268	109	1, 095, 421	1,027	30	157	1, 214	140	170, 494	6.42
Clay	661, 422	1, 469	20, 274	17, 981	701, 146	698	1	152	850	184	156, 092	4.49
Fayette	10, 252, 273	15, 047	152, 012	13 285, 127	10, 704, 459	10, 533		1, 551	12, 084	206	2, 486, 347	4.31
Grant		21, 405	88	73	21, 566	57		9	66	242	16,001	1.35
Greenbrier	1, 403, 696	30, 615	9, 490	221	1, 444, 022	1,628		233	1,861	155	288, 913	5.00
Hancock	35, 313	99, 834	87	5	135, 239	52	26	22	100	232	23, 193	5. 83
Harrison	3, 077, 742	20, 527	57, 237	5, 144	3, 160, 650	2, 294		384	2,678	164	439, 563	7. 19
Kanawha	5, 767, 708	58, 406	55, 661	5, 404	5, 887, 179	6, 144		770	6,914	185	1, 277, 327	4. 61
Lewis		3, 768	7, 144		10, 912	13		4	17	228	3, 880	2. 81
Lincoln and Wayne		23, 149	6		23, 155	40		7	47	179	8,400	2. 76
Logan	11, 841, 896	5, 772	97, 038	10, 041	11, 954, 747	9, 300		1,877	11, 177	171	1, 907, 852	6. 27
McDowell	15, 217, 558	48, 442	192, 294	86, 057	15, 544, 351	15, 446		3, 272	18, 718	160	2, 988, 616	5. 20
Marion		25, 828	212, 548	39, 400	6, 762, 249	5, 327		819	6, 146	176	1, 079, 801	6. 26
Marshall	253, 717	73, 180	123, 638	2,077	452, 612	569		99	668	142	94, 543	4. 79
Mason	11, 772	67, 845	886	3,748	84, 251	163		22	185	156	28, 905	2. 91
Mercer	2, 540, 152	5, 044	23, 756	1, 232	2, 570, 184	3,045		718	3, 763	155	583, 911	4.40
Mineral	195, 604	28, 310	1, 990	80	225, 984	386		62	448	186	83, 528	2. 71
Mingo	2, 999, 420	3, 193	28, 535	28	3, 031, 176	2, 767		453	3, 220	162	522, 480	5. 80
Monongalia.	5, 291, 800	24, 621	18, 176	71	5, 334, 668	3, 120		671	3, 791	179	680,000	7.85
Nicholas	1,636	23, 857	191	448	26, 132	57		10	67	123	8, 267	3. 16
Ohio	1, 334, 264	118, 778	220	190	1, 453, 452	1, 341		128	1, 469	258	379, 151	3.83
Preston	310, 235	18, 560	12, 975	13 7, 938	349, 708	840		111	951	95	90, 217	3.88
Putnam	573, 554	4, 266	4, 490	179	582, 489	614		83	697	250	174, 233	3. 34
Raleigh		44, 492	111, 676	56, 603	12, 775, 260	12, 582		2, 016	14, 598	188	2, 739, 523	4.66
Randolph	810, 809	36, 176	4, 518	17, 020	868, 523	927		168	1, 095	163	178, 684	4.86
Taylor	395, 091	14, 486	994	73	410, 644	616		74	690	125	86, 328	4. 76
Tucker	385, 207	1, 283	6, 360	16, 358	409, 208	460		58	518	167	86, 745	4.72
Upshur	30, 816	4, 569	122	1, 409	36, 916	178		45	223	41	9, 173	4.02
Webster	894, 240	3, 817	1, 296	1, 647	901,000	980		156	1, 136	175	199, 314	4. 52
Wyoming	2, 284, 259	11, 828	18, 039	20, 262	2, 334, 388	2, 440		394	2, 834	189	535, 471	4. 36
Total West Virginia	89, 873, 390	985, 303	1, 849, 829	¹³ 579, 650	93, 288, 172	87, 852	56	15, 131	103, 039	175	18, 082, 703	5. 16

See footnotes at end of table.

Table 25.—Production, men employed, days operated, and output per man per day at bituminous-coal mines in specified States and counties in 1938—Continued

WYOMING

			Net tons			N	umber of	employe	es			
County	Loaded at	Chinned	Coal used by employees or	Used for power and			Sur	face		Average number of days	Man-days	Aver- age tons per
Cashon	mines for shipment by rail or water	Shipped by truck or wagon	taken by locomotives at tipple or other uses at mines	heat or made into coke at mines	Total quantity	Under- ground	In strip pits	All others	Total	mines operated	of labor	man per day
CarbonConverse	528, 594	37, 350 10, 952	3, 155	20, 445	589, 544 10, 952	246 2	13 10	108	367 14	221 187	80, 957 2, 624	7. 28 4. 17
Fremont Hot Springs Johnson	22 663	10, 796 15, 951 7, 639	121 1, 187	4, 733 6, 659	38, 313 61, 744 7, 639	. 28 183 10		10 54	38 237 13	115 103 187	4, 358 24, 507	8. 79 2. 52
Lincoln. Sheridan. Sweetwater Uinta. Other counties (Campbell, Natrona, and	377, 609 558, 790 3, 230, 729 7, 978	35, 982 63, 321 8, 223 8, 484	3, 819 2, 992 21, 574 114	9, 080 2, 481 55, 285 68	426, 490 627, 584 3, 315, 811 16, 644	461 274 2, 248 16		101 92 518 5	562 366 2, 766 21	154 162 190 277	2, 428 86, 497 59, 137 526, 068 5, 817	3. 15 4. 93 10. 61 6. 30 2. 86
Teton)	86, 571	15, 303	562	6, 720	109, 156	6	21	12	39	243	9, 486	11. 51
Total Wyoming	4, 850, 881	214, 001	33, 524	1 105, 471	5, 203, 877	3, 474	44	905	4, 423	181	801, 879	6, 49

¹ No coal was made into beehive coke at mines in 1938.

² Includes 84,172 tons made into beehive coke at mines in Las Animas County, Colo., in 1938.

Other counties include Adams, Bond, Crawford, Greene, Hancock, Jasper, Livingston, Logan, Macon, Marion, Marshall, Morgan, Putnam, Warren, White, Will, and Woodford.

Much of the output of the State is obtained from strip pits or by the use of loading machines, in which types of operations the production per man per day is large.

Production of Home Riverside and Alston mines is credited to Missouri rather than to Kansas.

The output is obtained chiefly from strip pits in which the production per man per day is large.

Data on lignite compiled by L. Mann, Bureau of Mines: see Lignite tables, 1938.
Includes coal made into beehive coke at mines in the following counties in Pennsylvania in 1938: Cambria, 38,777; Fayette, 333,216; Indiana, 121,489; and Westmoreland, 271,771 a grand total of 765,253 tons.

9 Includes 10,000 tons made into beehive coke at mines in Grundy County, Tenn., in 1938.

10 Includes 15,667 tons made into beehive coke at mines in Carbon County, Utah, in 1938.

11 Figures compiled by L. Mann, Bureau of Mines; see Anthracite and Semianthracite Outside of Pennsylvania tables, 1938.

13 Includes 234,765 tons made into beehive coke at mines in Wise County, Va., in 1938.
13 Includes 250,019 tons made into beehive coke at mines in Fayette and Preston Counties, W. Va., in 1938.

STATISTICS OF LIGNITE AND OF ANTHRACITE AND SEMI-ANTHRACITE OUTSIDE OF PENNSYLVANIA 4

PRODUCTION OF LIGNITE

In addition to the study of Pennsylvania anthracite, the Bureau of Mines canvasses the operators of lignite properties included in the areas mapped as "lignite" in Geological Survey Professional Paper 100-A, The Coal Fields of the United States. Subbituminous coal,

sometimes known as "black lignite," is not included.

Fewer lignite mines were active in 1938 than in 1937, and output, number of employees, and days of operation decreased. The length of the working day in most mines was 8 hours, but many smaller operations failed to reply to the request for this information. Mechanical loading underground was not practiced to any extent, as only one or two operators in North Dakota recorded the use of mobile loaders in the year. No labor disturbances were reported.

Detailed data of production in 1938 are presented in the following tables. An historical table of world output of lignite is also given.

Table 26.—Summary of production, value, men employed, days operated, man-days of labor, and output per man per day at lignite mines in the United States in 1938, by States ¹

			Net tons			v	alue
State	Loaded at mines for shipment	Commer- cial sales by truck or wagon	Other sales to local trade, used by em- ployees, or taken by locomotives at tipple	Usea	Total quan- tity	Total (thou- sands of dollars)	Average per
Montana North Dakota South Dakota Texas	3, 939 1, 465, 374 27, 148 813, 096	46, 943 416, 904 20, 570 21, 302	2, 595 160, 075 340 6, 245	68 7, 746 5, 576	53, 545 2, 050, 099 48, 058 846, 219	88 2, 380 65 679	\$1. 64 1. 16 1. 35 . 80
Total: 1938 1937	2, 309, 557 2, 437, 702	505, 719 569, 266	169, 255 195, 600	13, 390 15, 851	2, 997, 921 3, 218, 419	3, 212 3, 477	1. 07 1. 08
1		Number of	employees				Aver-
State	Under-	Sur	rface	Total	Average number of days mines operated	Man- days of labor ²	age tons per man per
	ground	In strip pits	All others		oporatou		day 2
Montana North Dakota South Dakota Texas	67 667 18 446	7 344 23 22	19 359 9 38	93 1, 370 50 506	162 174 170 219	15, 081 237, 751 8, 507 110, 768	3. 55 8. 62 5. 65 7. 64
Total: 1938 1937	1, 198 1, 239	396 462	425 429	2, 019 2, 130	184 189	372, 107 403, 510	8. 06 7. 98

¹ Includes 212 active mines of commercial size; excludes wagon mines producing less than 1,000 tons.
² Based upon the "reported" number of man-shifts where the operator keeps a record thereof; otherwise upon the "calculated" number of man-shifts obtained by multiplying the average number of men employed underground and on the surface at each mine by the number of days worked by the mine and tipple, respectively. Using the "calculated" man-shifts throughout as developed before the year 1932, the average output per man per day was 8.51 in 1937 and 8.59 in 1938.

⁴ Compiled by L. Mann, Coal Economics Division, Bureau of Mines.

Table 27.—Production, value, men employed, days operated, man-days of labor, and output per man per day at lignite mines in the United States in 1938, by States and counties

MONTANA

			Net tons			Va	lue	N	umber of	employe	es			
			Other sales to local trade.	Used		Total			Sur	face		Average number of days	Man- days	Average tons per
County	at mines for ship- by truck or wagon locomotives at tipple	mines for power and heat	Total quantity	(thou- sands of dol- lars)	Aver- age per ton	Under- ground In strip pits	All others	Total	mines operated	of labor 1	man per day i			
Daniels, McCone, and Valley Dawson Richland Roosevelt Sheridan Other counties (Custer and Wibaux)	3, 939	8, 760 1, 428 8, 272 6, 582 14, 204 7, 697	20 10 700 972 893	5 59	8, 784 1, 438 12, 911 7, 559 15, 156 7, 697	17 2 25 10 23 11	\$1.94 1.39 1.94 1.32 1.52 1.43	7 5 22 10 18 5	3	1 1 5 4 7 1	12 6 30 14 25	205 86 156 145 172 182	2, 464 515 4, 688 2, 033 4, 289 1, 092	3. 56 2. 79 2. 75 3. 72 3. 53 7. 05
Total: 1938	3, 939 4, 000	46, 943 49, 299	2, 595 910	68 102	53, 545 54, 311	88 92	1. 64 1. 69	67 63	7 6	19 12	93 81	162 167	15, 081 13, 567	3. 55 4. 00
				NORTE	H DAKOT	`A								
Adams Billings, Golden Valley, and Slope Bowman Burke Burleigh Divide Dunn Grant Hettinger McKenzie McLean Mercer	14, 207 68 184, 442 199, 326 153, 765 5, 151 420 103, 611 463, 044	25, 860 4, 496 5, 636 53, 822 28, 063 8, 114 3, 153 17, 176 16, 271 5, 549 22, 477 2, 352	1, 600 125 60 24 3, 800 100 108 614 	15 	41, 682 4, 621 5, 704 238, 424 227, 433 166, 381 3, 353 23, 035 17, 515 5, 549 128, 799 545, 380	56 6 8 269 274 206 4 29 21 8 186 573	1. 34 1. 30 1. 40 1. 13 1. 20 1. 24 1. 19 1. 26 1. 20 1. 44 1. 44	59 5 7 33 12 16 7 3 80 149	2 6 2 49 30 39 5 4 17 8 54 60	23 5 22 33 21 17 1 5 7 4 27	84 16 11 82 84 68 6 25 31 15 161	139 149 138 168 226 168 125 148 155 156 134	11, 654 2, 380 1, 515 13, 812 19, 002 11, 455 750 3, 700 4, 809 2, 340 21, 563 55, 195	3. 58 1. 94 3. 77 2 17. 26 2 11. 97 2 14. 52 4. 47 6. 23 3. 64 2. 37 5. 97 9. 88

Morton Mountrail Oliver Stark Ward Williams Total: 1938 1937	331, 930 770 1, 465, 374	17, 038 12, 975 7, 490 17, 168 121, 470 47, 794 416, 904 470, 778	130 87 73, 052 178 160, 075 193, 033		28, 374 12, 996 7, 647 90, 932 453, 675 48, 599 2, 050, 099 2, 250, 837	34 18 7 100 516 65 2, 380 2, 639	1. 20 1. 39 . 92 1. 10 1. 14 1. 34 	19 19 57 152 49 667 689	14 5 14 29 6 344 407	$ \begin{array}{r} 11\\ 4\\ 4\\ 6\\ 62\\ 20\\ \hline 359\\ 379 \end{array} $	28 18 63 243 75 1,370 1,475		5, 575 5, 470 1, 711 15, 046 50, 648 11, 126 237, 751 267, 522	5, 09 2, 38 4, 47 6, 04 2, 8, 96 4, 37 8, 62 8, 41
	<u></u>			SOUTE	I DAKOT	A				1	,		'	
Corson, Dewey, and Harding		15, 826 1, 076 3, 668	100		1, 176	57 2 6	1.32 1.70 1.61	5 6 7	20	7 2	32 8 10	199 93 141	6, 353 740 1, 414	² 6. 79 1. 59 2. 63
Total: 1938	27, 148 26, 444	20, 570 20, 426	340 104	5	48, 058 46, 979	65 63	1.35 1.34	18 18	23 22	9 7	50 47	170 165	8, 507 7, 769	5. 65 6. 05
				T	EXAS									
Bastrop and Milam Henderson, Titus, and Wood	104, 718 708, 378	3, 800 17, 502	1,000 5,245	761 4, 815	110, 279 735, 940	81 598	. 73 . 81	88 358	22	12 26	122 384	150 241	18, 266 92, 502	6. 04 7. 96
Total: 1938	813, 096 830, 042	21, 302 28, 763	6, 245 1, 553	5, 576 5, 934	846, 219 866, 292	679 683	. 80 . 79	446 469	22 27	38 31	506 527	219 218	110, 768 114, 652	7. 64 7. 56

¹ Based upon the "reported" number of man-shifts where the operator keeps a record thereof; otherwise upon the "calculated" number of man-shifts obtained by multiplying the average number of men underground and on the surface at each mine by the number of days worked by the mine and tipple, respectively. Using the "calculated" man-shifts throughout as developed before 1932, the average output per man per day in 1938 was 3.55 in Montana, 9.57 in North Dakota, 5.17 in South Dakota, and 7. 67 in Texas.

² Output obtained chiefly form strip pits in which the production per man per day is large.

NUMBER AND SIZE OF LIGNITE MINES

There were 212 active lignite mines in 1938, as reported to the Bureau of Mines (exclusive of many small mines in Montana and North Dakota producing less than 1,000 tons annually). Of these, 24 were in Montana, 165 in North Dakota, 15 in South Dakota, and 8 in Texas. In the field as a whole the classification by size of output is as follows:

Table 28.—Number and production of lignite mines in 1938, classified by size of output

	Mi	nes		Production	
Net tons	Number	Percent of total	Total (net tons)	Average per mine (net tons)	Percent of total
Over 200,000 100,000 to 200,000. 50,000 to 100,000. 10,000 to 50,000. Under 10,000.	4 3 3 19 183 212	1. 9 1. 4 1. 4 9. 0 86. 3	1, 511, 698 511, 222 210, 723 391, 957 372, 321 2, 997, 921	377, 925 170, 407 70, 241 20, 629 2, 035	50. 4 17. 1 7. 0 13. 1 12. 4

LENGTH OF WORKING DAY IN LIGNITE MINES

The following table summarizes the replies of mine operators to the question, "Number of hours operated per shift."

Reports from mines in the lignite field in 1938, including those reporting a day of irregular length, indicate that 77 percent of the men employed were in 8-hour mines and that the weighted average working shift was 8 hours.

The established working day does not necessarily measure the length of time actually worked or the time underground, because a miner may work overtime, the mine may shut down before the full day is over, the miner may go home before work at the mine stops, and he may spend considerable time in going to and from his place of work underground. As interpreted in the wage agreements, the day means the hours of labor at the usual working place, exclusive of any time for lunch and exclusive of the time spent in going from the entrance of the mine to and from his working place (see Coal chapter in Mineral Resources, Bureau of Mines, 1930, p. 656).

Table 29.—Number of lignite mines in the United States having established working shift of certain length and number of men employed therein, in 1938, by States

State			8 hours		9 hours		rs Not reporting and all others 1		Total	
	Mines	Men	Mines	Men	Mines	Men	Mines	Men	Mines	Men
Montana North Dakota South Dakota Texas	10	104	12 121 5 8	59 983 11 506	1 3 1	3 88 3	11 31 9	31 195 36	24 165 15 8	93 1, 370 50 506
	10	104	146	1, 559	5	94	51	262	212	2, 019

¹ Includes mines in which the day was more than 9 or less than 7 hours, was irregular, or was changed during the year; also mines where the operator has included time when the men were entering or leaving the mine, where the operator has reported the time of men in occupations in which the workday is longer than for other employees (as in stripping overburden), or where the work is staggered and two crews of men overlap.

LIGNITE LOADED FOR SHIPMENT BY INDIVIDUAL RAILROADS

Table 30.—Lignite loaded for shipment by individual railroads in 1938, as reported by operators, in net tons

Railroad	State	Quantity
Chicago, Milwaukee, St. Paul & PacificGreat Northern	(South Dakota	} 46, 994
International-Great Northern	North Dakota Texas	342, 33
Rockdale, Sandow & Southern St. Louis Southwestern of Texas Texas Short Line	dodo	813, 096
Minneapolis, St. Paul & Sault Ste. Marie Northern Pacific	NT41- TO-1	524, 438 582, 697
		2, 309, 557

METHODS OF RECOVERY

Table 31.—Lignite mined by different methods in 1938, by States

	Fr	om underg	round wor	kings (net	tons)	From str	rip pits	
State	Mined by hand	Shot off the solid	Cut by machines	Not speci- fied	Total un- derground	Net tons	Percent of grand total	Grand total pro- duction
Montana North Dakota South Dakota Texas	¹ 78, 281 53, 708 1, 420 (¹)	¹ 756, 588 175, 461	² 535, 696	5, 954 22, 426 2, 589	1 840, 823 787, 291 4, 009	1 58, 941 1, 262, 868 44, 049 (¹)	1 6. 6 61. 6 91. 7	53, 545 2, 050, 099 48, 058 846, 219
	133, 409	932, 049	² 535, 696	30, 969	1, 632, 123	1, 365, 798	45. 6	2, 997, 921

¹ Texas included with Montana. 2 22 machines were used—15 "permissible" and 7 of other types.

STRIPPING OPERATIONS

Table 32.—Statistical summary of stripping operations that produced lignite in 1938, by States

		Shovels, dragline		Va	lue	Num	ber of er	nploy-	Aver-		Aver-
State	Strip pits 1	excava- tors, and coal-load- ing ma- chines ²	Production (net tons)	Total (thou- sands of dol- lars)	Average per ton	In strip pits	All others	Total	ber of days mines oper- ated	Man- days of labor ³	tons
Montana and Texas North Dakota South Dakota	58 5 67	2 31 2 35	58, 941 1, 262, 808 44, 049 1, 365, 798	35 1, 452 59 1, 546	\$0. 59 1. 15 1. 34 1. 13	29 344 23 396	1 142 7 150	30 486 30 546	224	3, 454 87, 288 6, 718 97, 460	17. 06 14. 47 6. 56 14. 01

¹ Includes some pits in which the stripping is done by hand.
2 In some operations the same equipment was used for stripping or excavating and for loading the coal; this duplication has been eliminated. In others the coal was excavated by machine and loaded by hand.
3 Based upon the "reported" number of man-shifts where the operator keeps an accurate record thereof, otherwise upon the "calculated" number of man-shifts obtained by multiplying the number of men employed at the tipple, in loading coal, etc., and in stripping overburden by the number of days worked in each department, insofar as separately reported by the operator.

WORLD PRODUCTION OF LIGNITE

Table 33.—World production of lignite (including brown coal), 1934-39, in metric

[Compiled by R. B. Miller]

Country	1934	1935	1936	1937	1938	1 1939
North America:			0 707 007	0.050.010	0 150 055	9 009 514
Canada	2, 915, 589	3, 241, 118	3, 507, 895	3, 352, 316	3, 153, 377	3,093,514
United States	2 2, 337, 000	2, 494, 907	2, 821, 048	2, 919, 685	2, 719, 654	2, 696, 000
Europe:			0.100	2 500	3,866	/8)
Albania	1,824	2,000	3, 130	3,500		(3) (3) (3) (3) (3) (3) (3)
Bulgaria	1, 567, 956	1, 565, 971	1, 576, 098	1, 732, 119	1, 855, 198	(%)
Czechoslovakia	15, 070, 706	15, 113, 576	15, 948, 767	17, 895, 411	14, 716, 693	(%)
Faroe Islands					8,000	. (%)
France	1,025,480	906, 730	943, 230	1,015,000	1,057,250	(2)
Germany	136,003,366	146, 032, 747	160, 276, 036	183, 538, 054	195, 312, 067	(%)
Austria	2, 850, 931	2, 970, 683	2, 897, 203	3,241,770	3, 341, 730	(3)
Greece	104, 193	83, 325	105, 621	131,083	108, 010	(3)
Hungary	6, 199, 085	6, 717, 677	7, 105, 004	8, 055, 123	8, 320, 000	(3)
Italy	408, 616	545, 482	768, 563	1, 059, 231	872, 950	1, 410, 000
Netherlands	92, 493	86, 204	88,779	143, 057	170, 637	197,000
Poland	26, 403	18, 288	13, 518	18, 915	9, 526	(3)
Portugal	15, 391	19, 738	20,677	23, 098	14,854	35, 113
Rumania	1,623,858	1,666,761	1,671,825	1, 880, 477	2, 096, 698	(3)
Onein	298, 643	303, 827	(4)	(4)	68, 099	204, 259
U. S. S. R	11, 383, 000	13, 820, 000	(4)	(4)	(4)	(3)
Yugoslavia	3, 926, 333	4,002,193	4,034,577	4, 574, 232	5, 286, 781	5, 604, 310
Asia:	, ,	1			1	
India, British	385, 914	430, 316	419, 110	488, 408	545, 283	(3)
Indochina					4, 200	27,000
Japan	124,786	108, 526	109,494	(4)	(4)	(3)
Levant	540		493	4,658	700	1,000
Turkey	52,777	73,355	95, 234	116, 397	129, 315	151, 267
Oceania:	,	1		1		
Australia (Victoria)	2,659,545	2, 257, 170	3,093,768	3, 448, 391	3, 734, 441	3,709,613
New Zealand	1, 248, 333	1, 310, 660	1, 301, 895	1, 328, 805	1, 264, 208	(3)
	190, 323, 000	203, 771, 000	224, 853, 000	254, 442, 000	264, 170, 000	(3)

¹ Lignite is also mined in Italian East Africa, but complete production figures are not available. Figures | Lightlet is also limited in tradial base Africa, of for 1939 are preliminary and subject to revision.
| Approximate production.
| Data not available.
| Estimate included in total.

Table 34.—Production, value, men employed, days mines operated, and output per man per day at the principal hard-coal mines outside of Pennsylvania in 1938

[Includes coal classified as anthracite and semianthracite in Geol. Survey Prof. Paper 100-A, The Coal Fields of the United States]

	Arkansas	Virginia	Colorado and New Mexico	Total
Production (net tons): Loaded at mines for shipment	192, 145	109, 642	29, 475	331, 262
	2, 634	23, 384	989	27, 007
	73	1, 441	3, 013	4, 527
	1, 333	5, 265	1, 271	7, 869
Total production	196, 185	139, 732	34, 748	370, 665
	\$531, 000	\$373, 000	\$145, 000	\$1, 049, 000
	\$2. 71	\$2. 71	\$4. 17	\$2. 83
Number of employees: Underground Surface	586 147	400 127	92 46	1, 078 320
Total employees	733	527	138	1, 398
	96	135	115	113
	2.78	1. 97	2. 20	2, 35

PENNSYLVANIA ANTHRACITE

By M. van Siclen, L. Mann, and J. R. Bradley

SUMMARY OUTLINE

	Page	•	Page
General summary	835	Production	847
Salient statistics	838	By weeks and months	848
Anthracite Institute	841	Illicit coal	848
Anthracite Industries, Inc.	841	By regions, fields, and counties	850
Nonfuel uses of anthracite and anthracite		Fresh-mined and culm-bank coal, breaker,	000
refuse		and washery product.	852
Technologic developments	841	Shipments, by regions and sizes	853
Weather	841	Average sales realization	857
Distribution	841	Number of operations	858
Freight rates	842	Labor statistics	859
Competitive fuels in the United States and		Equipment and methods of mining	860
in the principal markets	842	Mechanical loading	860
Principal markets	843	Cutting machines	862
Stocks	845	Strip-pit mining	
Consumption	845	Dredge operations	
		Foreign trade	
Pennsylvania anthracite industry	847	The Canadian market	864
Sources and acknowledgments	847		

The anthracite industry is of great economic importance in the 500 square miles comprising the Pennsylvania anthracite region. Regardless of the fact that production in the anthracite industry has suffered drastic reductions in recent years, in 1938—when production was the lowest since about the turn of the century—freight-commodity statistics of the Interstate Commerce Commission showed that anthracite ranked second in tonnage originated by class I railways and fourth in revenue produced. In 1939 the value of anthracite production at the mines was \$187,175,000, and the gross revenue accruing to the railroads was \$102,180,268.

Prices at the mines in 1939 were lower than in 1938; wholesale prices continued to decline, and retail prices in the leading markets remained at about 1938 levels. The index of employment also decreased, although average weekly earnings advanced. Freight rates on intrastate shipments were increased. The Anthracite Institute and Anthracite Industries, Inc., continued their cooperative and trade-promotion activities, and State legislation intended to promote stabilization of the industry was defeated by a narrow margin.

Increasing competition of other fuels, unfavorable weather in several recent years, the production of illicit or "bootleg" anthracite, and competition within the industry have combined to undermine the price structure. Early in 1940 virtually the entire industry agreed to a voluntary scheme of allocation of production that apparently has brought some relief. The fairly low temperatures in the early months of 1940, together with improved business conditions and higher

coastwise freight rates on bituminous coal from Hampton Roads to New York and New England, promise further increase in consumption of anthracite in 1940.

More favorable weather conditions, an increase in exports, and improved business conditions resulted in an increase in the output of anthracite in 1939. Production was 51,487,000 tons, a gain of 12 percent over 1938. Commercial shipments (excluding illicit or "bootleg" coal) were 41,063,869 tons in 1938 and 45,992,282 in 1939.

Shipments of anthracite from breakers and washeries in the first quarter of 1939 were less than in the corresponding period of 1938. In the second quarter, however, shipments advanced 13 percent over the second quarter of 1938; in the third quarter they were 32 percent

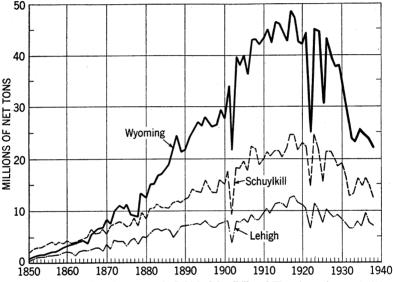


FIGURE 1.—Anthracite shipped from the Lehigh, Schuylkill, and Wyoming regions, 1850–1938.

higher; and in the last quarter shipments were 5 percent above 1938. Receipts of anthracite at the upper Lake docks increased 8 percent in 1939 over 1938, and stocks declined 2 percent during the year.

in 1939 over 1938, and stocks declined 2 percent during the year.

Completion of the Huber central breaker of the Glen Alden Coal
Co. denotes optimism for the future of the industry. The Huber
breaker is one of the first to use Menzies cone separators to treat sized
feed. The plant is expected to prepare 7,000 tons of anthracite daily.

The production of anthracite increased steadily from the early years of the nineteenth century to 1924, the last normal year under old competitive conditions. The peak was reached in 1917 at 99,611,811 tons. Since 1924 competitive fuels have increased in importance. Figure 1 shows shipments of Pennsylvania anthracite by regions since 1850.

The second annual anthracite conference of Lehigh University was held at Bethlehem, Pa., April 28–29, 1939, and the third annual conference was held May 9–10, 1940. The papers presented covered a wide field and contained much new and valuable information for

both the producer and consumer of anthracite. Research, new uses of anthracite, modern mechanical burning equipment, and problems of the industry arising from the general trend toward smaller sizes were discussed. Papers also were presented on combustion, economics, marketing, mining, and preparation of anthracite. The conferences were attended by persons interested in all phases of the anthracite industry. The following papers presented at the conferences are of economic interest:

CONFERENCE OF 1939

Paper 10. Use of Anthracite Ash in Building Materials and in Agriculture, by Dr. Raymond C. Johnson, Anthracite Industries fellowship, Mellon Institute of Industrial Research, Pittsburgh, Pa.
Paper 13. Some Economic Aspects of Anthracite, by Dr. Neil Carothers, dean of the College of Business Administration, Lehigh University.

CONFERENCE OF 1940

Paper 2. The Present Status of Anthrafilt Illustrated by Case Histories, by

Paper 2. The Fresent status of Anthracite Institute.

Homer G. Turner, filtration consultant, Anthracite Institute.

Paper 4. Mineral Wool from Anthracite Colliery Refuse and Anthracite Ashes, by H. J. Rose and R. C. Johnson, Anthracite Industries fellowship, Mellon Institute of Industrial Research, Pittsburgh, Pa.

Paper 8. Effect Upon the Economy of the Anthracite Industry of Grinding Large Sizes to Pea and Smaller, by Cadwallader Evans, Jr., vice president and general manager and Harold G. Royd engineering statistician Hudson Coal Co.

general manager, and Harold G. Boyd, engineering statistician, Hudson Coal Co.

Table 1.—Statistical trends of the Pennsylvania anthracite industry, 1935-39

	1935	1936	1937	1938	1939
Production:					
Loaded at mines for shipment:	,				
Breakersnet tons	44, 369, 285	46, 256, 132	44, 016, 915 1, 837, 879	39, 010, 935	1 43, 660, 662
Washeriesdo	1, 794, 402	2, 066, 973	1,837,879	1, 679, 509	1, 766, 384 565, 236
Washeries do Dredges do Sold to local trade and used by employees	374, 142	324, 895	348, 350	373, 425	500, 250
Sold to local trade and used by em-	0.074.070	9 996 997	2, 981, 391	2, 722, 206	3, 081, 073
ployeesnet tons Used at collieries for power and heat	2, 874, 970	3, 226, 887	2, 961, 591	2, 122, 200	3, 001, 016
used at comeries for power and near net tons	2, 745, 984	2, 704, 648	2, 671, 898	2, 312, 952	2, 414, 022
Total productiondo	52, 158, 783	54, 579, 535	51, 856, 433	46, 099, 027	51, 487, 377
Value at breaker, washery, or dredge	\$210,131,000	\$227,004,000	\$197,599,000	\$180,600,000	\$151, 110, UU
Average sales realization per net ton on					
breaker shipments:	05 10	85.05	\$5.08	\$5, 24	\$4.6
Lump and broken	\$5.16	\$5.05 \$5.60	\$5.06	\$5.18	\$4. 73
Egg	\$5.44		\$5. 00 \$5. 21	\$5.33	\$4.8
Stove Chestnut	\$5.87	\$6.09	\$5. 23	\$5.36	\$4.8
Chestnut	\$5.64	\$5. 91 \$4. 30	\$4.01	\$3.88	\$3.6
Pea	\$4. 16 \$5, 45	\$5.67	\$5.01	\$5.10	\$4.6
Total domestic	\$2.88	\$2.91	\$2.95	\$3.03	\$2.9
Buckwheat No. 1	\$2.88	\$2.91	\$2. 95 \$2. 26	\$2.35	\$2.2
Buckwheat No. 2 (Rice)	\$1.74	\$1.23	\$1.45	\$1.61	\$1.6
Buckwheat No. 3 (Barley)	\$1.08	\$1.20	\$. 78	φ1. U1	ψ1.0.
Buckwheat No. 1 (Rice) Buckwheat No. 3 (Barley) Buckwheat No. 3 (Barley) Boiler Other, including Buckwheat No. 4	\$. 57	\$.68	\$. 79	\$.87	\$. 9
Other, including Buckwheat No. 4	\$2.03	\$2.10	\$2. 21	\$2.33	\$2. 2
		\$4.42	\$4.03	\$4.16	\$3.8
Total, all sizes Percentage by sizes in total breaker ship-	\$4.29	. pr. 12	φ1. 00	φ1.10	ψο. ο.
rercentage by sizes in total breaker simp-			•	1	
ments:	0.3	0.3	0.4	0.3	0.0
Lump and brokenpercent_	7.0	6.5	5. 7	5. 4	5.
Eggdo	21.8	21.3	22. 1	23. 7	24.
Stove do do do do do do do do do do do do do	26.1	26.4	26. 2	26.0	25.
Cnestnutdo	10.7	10.4	10.8	10.6	11.
Peado	65. 9	64.9	65. 2	66.0	66.
Total domesticdo	15.1	15.1	14.7	14.8	14.
Buckwheat No. 1	9.3	8.4	7.9	7.7	7.
Duckwheat No. 2 (Nice)do	7.8	8.8	8.9	8.6	8.
Total domestic.	1.0	0.0	(2)	0.0	
Other including Puckwheet No. 4					
Boiler	1.9	2.8	3.3	2.9	2.
Total steem do	34.1	35.1	34.8	34.0	33.
Producers' steels on Dec 218 net tons	1, 911, 000	2, 259, 000	2.154,000	1, 458, 000	994,00
Exportsdo	1,609,000	1, 678, 000	2, 154, 000 1, 914, 000	1, 909, 000	2, 590, 00
Exports do	571,000	615,000	396,000	1, 909, 000 363, 000	298,00
Consumption (colorleted) do	51, 100, 000	53, 200, 000	50, 400, 000	45, 200, 000	49, 700, 00
Imports do	84,000,000	87, 000, 000	83, 000, 000	82,000,000	(4)
Average number of days worked	189	192	189	171	(4)
Man-days lost on account of strikes and			-		
lock-outs	763, 307 26, 127 103, 269 2, 68	407, 372	580, 462	579, 457	(4)
Number of men on strike during year	26 127	27, 574 102, 081 2, 79	34, 346	27, 435	(4)
A verage number of men employed	103 269	102, 081	99, 085	96, 417	5 93, 00
Output per man per daynet tons_	2 68	2.79	2.77	2.79	(4)
O	1 505	535	523	478	(4)
Output per man per yeardo	1, 848, 095	2, 162, 744	1, 984, 512	1, 588, 407	1, 881, 88
Quantity mined by stripping do	5, 187, 072		5, 696, 018	5, 095, 341	5, 486, 47
Output per man per year Quantity cut by machines do Quantity mined by stripping do Quantity loaded by machines under- ground net tons	0, 20., 012	0,200,201	1, 111, 010	1 / / /	1 ' '
ground not tone	9, 279, 057	10, 827, 946	10, 683, 837	10, 151, 669	11, 773, 83
Distribution:	5, 2, 5, 001]	1, 111, 001	1	1 ' '
Total receipts in New England 6	1		1	1	
net tons.	5, 402, 000	5, 287, 000	4, 761, 000	4, 468, 000	4, 907, 00
Exports to Canadado			1, 893, 000	1, 896, 000	
Loaded into vessels at Lake Erie 7	1, 302, 300	_, 502, 500	_, _, _, _,	1	1 ' '
net tons.	559,000	689,000	674,000	450,000	531, 00
		309,000		155, 000	
Receipts at Duluth-Superior 8do					

Includes a small quantity of washery coal.
 Less than 0.1 percent.
 Anthracite Institute. Figures represent prepared coal on the ground at the breaker.
 Data not yet available.
 Estimated from the report of the Pennsylvania Department of Mines; Bureau of Mines data not yet available.
 Commonwealth of Massachusetts, Division on the Necessaries of Life.
 Ore and Coal Exchange.
 U. S. Engineer Office, Duluth, Minn.

Table 2.—Statistical summary of monthly developments in the Pennsylvania anthracite industry in 1939

[All tonnage figures represent net tons]

N															
244615						<u> </u>	1939	· .	_					Change from	1938
5	January	Febru- ary	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total	1938 (percent)	(total)
Production, including mine fuel, local sales, and dredge coal: Monthly total. Average per working day. Shipments, breakers and washeries only: Monthly total, all	5, 019, 000	4, 169, 000 177, 400	3, 652, 000 135, 300	5, 367, 000 223, 600	5, 141, 000 197, 700	3, 577, 000 137, 600	2, 951, 000 118, 000	3, 883, 000 143, 800	4, 840, 000 193, 600	4, 985, 000 199, 400	3, 989, 000 166, 200	3, 914, 000 156, 600	51, 487, 000 170, 200	+11.7 +12.0	46, 099, 000 151, 900
Sizes	4, 046, 821	3, 381, 642	3, 231, 929	4, 841, 771	4, 205, 564	2, 959, 303	2, 611, 299	3, 146, 744	4, 286, 905	4, 333, 105	3, 329, 218	3, 434, 898	43, 809, 199	+10.5	39, 648, 026
Lake Erie loadings 2				8,745	100, 783	96, 534	77, 538	95, 190	42, 949	60, 281	49,077	238	531, 335	+18.0	450, 324
Receipts at Duluth-Supe-				,	27, 506	44 000	34, 391	35, 554	18, 258	32, 372	9, 579		201, 726	+29.8	155, 462
rior 8 Upper Lake dock trade:4					21,500	44, 066	34, 381	30, 004	10, 200	32,312	9,019		201, 120	1 20.0	100, 102
Receipts: Lake SuperiorLake Michigan	447	400	1, 414	11, 478	20, 147 40, 863	62, 522 41, 051	34, 402 36, 213	35, 565 54, 055	18, 368 17, 377	35, 654 30, 042	9, 782 37, 764	328	216, 440 271, 432	+21.7 -1.4	177, 788 275, 358
Deliveries (reloadings): Lake SuperiorLake Michigan Retail yards—183 selected	19, 403 22, 195	17, 062 22, 306		18, 680 17, 674	15, 367 21, 455	22, 527 32, 581	11, 041 30, 778	13, 312 28, 276	26, 343 33, 829	28, 641 27, 324	18, 146 18, 245	17, 392 17, 176		$+1.2 \\ -1.5$	
dealers: Deliveries 4 New England receipts: 6 By tide (including im-	367, 284	329, 162	316, 797	275, 109	221, 047	200, 275	251, 936	264, 116	324, 352	298, 621	257, 652	333, 401	3, 439, 752	(5)	53,638,835
ports) By rail Exports ⁷ Imports ⁷	51, 325 387, 299 185, 239 27, 717	68, 442 343, 515 173, 032 34, 312	290, 356 160, 662	376, 304 153, 792	376, 176	96, 812 252, 589 216, 768 24, 151	179, 692	145, 741	365, 884 447, 956	439, 817 292, 408			4,041,926 2,590,000		3, 490, 700 1, 908, 911
Industrial comsumption by: Railroads (class I only) ⁸ Electric power utilities ⁹	138, 818 187, 886						110, 143 172, 467				136, 320 203, 133		1, 681, 665 2, 244, 028		
Other industrial con- sumers 10	118, 476	124, 902	128, 964	91, 934	80, 310	87, 796	60, 893	85, 893	87, 755	98, 574	115, 554	91, 214	1, 172, 265	+.8	1, 162, 866

See footnotes at end of table.

Table 2.—Statistical summary of monthly developments in the Pennsylvania anthracite industry in 1939—Continued [All tonnage figures represent net tons]

		1939—Continued											Change from	1938	
	January	Febru- ary	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total	1938 (percent)	(total)
ocks at end of period shown:															
Railroads (class I only)8	126, 307	99, 896	80,604	147, 123	111,007	81,655	96, 482	116, 797	129, 162	142, 315					
Electric power utilities 9	1, 158, 188	1, 155, 559	1, 138, 115	1, 144, 083	1, 199, 910	1, 242, 902	1, 230, 017	1, 206, 468	1, 185, 397	1, 239, 136	1, 169, 209	1, 113, 839	1, 113, 839	-8.0	1, 210, 76
Other industrial con- sumers 10	234, 974	260, 403	212, 551	225, 169	255, 256	246, 390	172,644	218, 600	237, 639	246,010	232, 037	165, 842	165, 842	-22.1	212, 79
Stocks on upper Lake	201,011	200, 100	212,001	220, 100	200, 200	210,000	1,2,011	210,000	201,000		202,001	200,022	200,012		,
docks: 4					00.000	100.010	155 000	150 011	150 005	177 040	100 070	151 475	151 475	ار و ا	140.0
Lake Superior Lake Michigan	129, 936 130, 189	112, 868 108, 151	107, 223 92, 959	87, 856 86, 742				178, 211 154, 644		177, 243 140, 909					149, 34 151, 81
Retail stocks—183 selected	100, 100	100, 101	94, 909	00, 142	101, 514	111, 000	120, 120	101,011	100, 101	110,000	<i>'</i>	,	.,		
dealers 4	357,083	304, 547	225, 643				529, 988		547, 992				445, 354		421, 09
Producers' stocks 1	1,046,429	761, 174	407, 814	85, 867	238, 194	558, 638	715, 572	1, 129, 005	1, 172, 298	1, 218, 871	1, 364, 516	993, 848	993, 848	-31.8	1, 457, 5
holesale prices: 11 On tracks, destination:										1				ļ	
Chestnut	\$9.73	\$9.70		\$9.08	\$9.15	\$9.15	\$8.67	\$8.60	\$8.65	\$9.03	\$9. 16	\$9. 16	\$9.14	-2.2	\$9.4
Pea	\$8.30	\$8. 25		\$7.67	\$7.75		\$7.70				\$7.95 76.1	\$7.97 76.1	\$7.91 75.8	-2.2 -2.8	\$8. (78.
Index numbers (1926=100)	80.3	79. 9	79. 4	74.7	75. 3	75. 5	72.6	72. 1	72. 5	75. 3	70, 1	70. 1	10.8	-2.8	10.
A verage weekly earnings	\$24.74	\$28, 20	\$21. 55	\$27.08	\$35. 84	\$23, 30	\$18.65	\$23. 13	\$26.64	\$33.03	\$26,90	\$17. 16	\$25. 52	+9.1	\$23.4
Index of employment (1929	[.	·	,					40.5	40.4	** 0			70 0		*0
average=100)	50.0	52. 2	51.7	53.0	52. 6	51. 2	44.7	48. 5	49. 4	51. 9	51. 3	51.0	50.6	-3.3	52.
Index of pay rolls (1929 average=100)	38.0	45, 2	34. 2	43, 4	57.0	36. 1	25, 2	33. 8	40.1	52, 2	42.0	26.6	39. 5	+3.4	38.

¹ Anthracite Institute.
2 Ore and Coal Exchange, Cleveland, Ohio.
3 U. S. Engineer Office, Duluth, Minn. 4
Bituminous Coal Division, U. S. Department of the Interior.
5 Data for 1938 not comparable with 1939.
6 Commonwealth of Massachusetts, Division on the Necessaries of Life.

Bureau of Foreign and Domestic Commerce.
 Association of American Railroads.
 Federal Power Commission.
 National Association of Purchasing Agents.
 Bureau of Labor Statistics.

Anthracite Institute.—The usual functions of the Anthracite Institute were carried on during the year, and especial attention was given to proposed Pennsylvania legislation to regulate the industry and to the Canadian market.

Anthracite Industries, Inc.—Laboratory tests of new anthracite-burning equipment were continued by Anthracite Industries, Inc.; approval was given to equipment meeting its requirements; and efforts were redoubled to promote the use of such equipment. Schools in anthracite merchandising were conducted, as well as a series of stoker schools, and a summer selling plan was presented to anthracite dealers. Exhibits of equipment were maintained at Boston, Philadelphia, and New York. Manufacturers cooperated with Anthracite Industries, Inc., in its exhibit at the New York World's Fair where stokers, furnaces, boilers, cooking stoves, thermostats, and other equipment were on display. It is reported that 1,152,330 persons visited the exhibit in 1939, thousands of whom saw anthracite as a thoroughly modern fuel for the first time.

There is little doubt that increased efficiency and the rapid strides made in the modernization of anthracite-burning equipment such as stokers, hand-fired boilers, and water heaters have created a favorable

impression on the consuming public.

Nonfuel uses of anthracite and anthracite refuse.—The nonfuel use of anthracite, especially anthrafilt used in the purification of water, continued to expand. During the year attention was also given to the use of anthracite ashes as a soil conditioner and, after processing,

as an insulating material.

Technologic developments.—There were no important technologic developments during 1939. The Pennsylvania General Assembly appropriated funds, which were matched by the anthracite industry, for a program of research, and the Secretary of Mines appointed a committee to consider a program to be conducted by the School of Mineral Industries of the Pennsylvania State College. Two specific problems will be studied: The gasification of anthracite and the production of carbon products from anthracite. Certain technologic developments, present or prospective, were discussed at the Third

Annual Conference of Lehigh University in May 1940.

Weather.—According to the Monthly Weather Review, the year 1939 was slightly cooler than 1938 but was still warmer than normal in most regions. Departures from normal temperatures in some of the chief anthracite-consuming States were: New England States—January -0.8, February +2.7, March -4.5, April -3.4, October normal, November -3.1 and December +0.5; New York—January +0.2, February +4.1, March -2.2, April -2.5, November -3.0, and December +1.4; Pennsylvania—January +1.8, February +5.3, March +0.9, April -1.9, October +1.0, November -1.6, and December +2.6; New York City (one of the leading anthracite markets)—January +1.4, February +6.1, March +1.1, April -1.6. October +0.1, November -1.0; and December +1.2.

Distribution.—According to the Pennsylvania Department of Mines, rail, tide, and truck shipments of Pennsylvania anthracite to destinations in the United States totaled 44,869,453 tons in 1939 compared with 35,292,731 tons in 1938. In 1939 truck shipments were 4,824,537 tons, or 11 percent of total shipments, as against 9 percent in 1938. Virtually all truck shipments go to the Middle Atlantic States. Rail

and tide shipments in 1939 totaled 40,044,916 tons, 63 percent domestic sizes and 37 percent steam sizes. Of the total steam sizes shipped by rail and tide, 95 percent went to the Middle Atlantic States.

Details covering distribution of shipments of Pennsylvania anthracite by rail and tide (truck shipments excluded) for 1937–39 are shown in table 3.

Table 3.—Shipments of Pennsylvania anthracite, 1937-39, by States of destination, in net tons ¹

[Truck shipments exclude	16a1		
	1937	1938	1939
New England States	4, 128, 408	3, 551, 572	4, 489, 970
New York	16, 388, 675	13, 214, 996	16, 251, 195
New Jersey Pennsylvania	7, 533, 475	6, 180, 129	8, 494, 964 8, 407, 564
Pennsylvania	8, 797, 836 213, 493	6, 827, 437 168, 316	194, 759
Delaware		545, 454	592, 627
Maryland	290, 524	248, 577	256, 936
Virginia	1 107, 744	103, 580	108, 418
Ohio	_ 168, 565	91, 017	112, 833
Indiana	90, 200	80, 153	98, 090
Illinois Wisconsin	358, 054 429, 965	254, 193 345, 445	277, 166 355, 291
Wisconsin	120, 930	77, 461	93, 367
Minnesota Michigan		214, 768	245, 519
Other States	04'044	65, 873	66, 217
		01 000 071	40,044,016
Total United States		31, 968, 971	40, 044, 916 2, 441, 070
Canada	1, 773, 086	1, 631, 489 4, 476	2, 441, 070 4, 456
Other foreign countries		1, 110	1, 100

¹ Department of Mines, Harrisburg, Pa.

Freight rates.—Increases in freight rates ranging from 3 to 12 cents a gross ton were granted the railroads by the Interstate Commerce Commission on intrastate movement of coal. The so-called motor-compelled railway freight rates initiated in 1935 were extended to June 20, 1940. The trucking of anthracite to market, which became important about 1930, has expanded until it is now estimated at 4,000,000 tons annually, not including several million tons trucked from illicit or "bootleg" operations.

41, 406, 889

33, 604, 936

42, 490, 442

Competitive fuels in the United States and in the principal markets.—Sales of liquefied petroleum gases for domestic purposes throughout the United States totaled 2,084,047 barrels in 1939 compared with 1,376,952 in 1938. Sales for domestic use in 1939 represented 39 percent of total deliveries for all purposes compared with 35 percent in 1938. At the end of 1939, according to the American Gas Association, liquefied petroleum gas was being delivered through mains to consumers in 178 communities in 30 States by 82 companies supplying 49,800 customers.

According to the American Gas Association, sales of natural gas in the United States in 1938 and 1939, respectively, were as follows:

Sales for domestic use, including house heating, 349,285,000,000 and 367,731,500,000 cubic feet, an increase of 5 percent; commercial sales, 99,845,000,000 and 107,769,900,000 cubic feet, an increase of 8 percent; and industrial sales, 565,674,000,000 and 626,096,400,000 cubic feet, an increase of 11 percent.

Shipments of oil burners (for all uses other than ranges, stoves, water heaters, and space heaters) within the United States gained 56 percent over 1938 and to Canada 84 percent. Factory sales of anthracite stokers for domestic purposes were 7 percent less than in

1938.

Sales of heating and range oils in the United States increased about 13 percent in 1939 over 1938. An unusual feature of the sales of heating and range oils in 1938, as revealed in a study by the Petroleum Economics Division of the Bureau, is the fact that in New England

46 percent of the total sales represented range oil.

Principal markets.—In 1939 shipments of Pennsylvania anthracite to the principal markets (New England, New York, New Jersey, Pennsylvania, Delaware, Maryland, and the District of Columbia) were only 5 percent less than in 1936, whereas in 1938 they were 26 percent lower. New England, New Jersey, and Delaware received larger tonnages than in 1936, but receipts in the other States declined. Although these principal markets continue to take by far the greater part of the anthracite produced, their percentage of the total production declined steadily until 1939, when it was slightly greater than in 1936. In 1936, 1937, 1938, and 1939, the respective percentages were 84.2, 80.2, 73.9, and 84.5. Imports of anthracite, virtually all into New England, have declined each year since 1936.

Of the total fuels represented in this study (which do not include bituminous coal, petroleum coke, or wood because of lack of statistics showing the necessary break-down), Pennsylvania anthracite comprised 64 percent in 1936, 60 percent in 1937, and 55 percent in 1938. In the same years coke for domestic use was 7, 6, and 6 percent, and heating and range oil 28, 33, and 38 percent, respectively. Imports of anthracite, briquets, and coke were only about 1 percent in each

year. Imported fuel oils are included in the totals.

Of the principal anthracite markets, only New York and Pennsylvania consume much natural gas. In 1939 natural-gas sales in these States for domestic use and home heating (by utility companies making 93 percent of the sales in New York and 56 percent in Pennsylvania) totaled 42,161,945,000 cubic feet, the equivalent of about 1,730,000 tons of coal.

Shipments of briquets to these markets (including imports which declined to 1 ton in 1939) have decreased steadily since 1936, but in 1939 shipments of briquets of domestic origin were slightly higher

than in 1938.

Deliveries of coke of domestic and foreign origin for domestic use also declined in 1937 and 1938 but improved in 1939.

Details showing the apparent consumption of anthracite and selected competitive fuels in the principal anthracite markets, 1936-39, are shown in table 4.

Table 4.—Apparent consumption of anthracite and selected competitive fuels in the principal anthracite markets, 1936–39

[Thousands of net tons]

·		[THO	usands o	i net tor	18]				
	New	New	New	Dela-	Mary-	Penn-	District	То	tal
Fuel	Eng- land	York	Jersey	ware	land	syl- vania	of Co- lumbia	Quan- tity	Percent of total fuels
Anthracite:									
All users:1		I							
1936	4, 479	218, 217	28,482	250	713	13, 478	348	45, 967	64. 1
1937	4, 129	2 16,695	2 7, 796	238	655	11,777	296	41,586	60.0
1938	3, 553	2 13,452	2 6, 421	198	574	9,603	254	34, 055	55.0
1939		2 16,716	2 9, 060	259	634	12,077	264	43, 502	
Imports: 3	1, 102	10,110	0,000			,		,	
1936	612	1 1						613	.9
1937	395	1						395	. 6
1938	363							363	.6
1939	298							298	
Briquets:									1
Domestic use:									1
1936	60	57	3	1	4	21	1	147	.2
1937	40	36	2		2	14	1	95	.1
1938	38	27	1		3	11		80	.1
1939	46	23	1		2	11	1	84	
Imports: 3									l
1936	20				- -			20	(4) (4)
1937	7							7	(4)
1938	14					l		14	(4)
1939	1	l						1	
Coke:		i .	!			-			
Domestic use:			ļ.				_		1
Domestic use: 1936	1,420	2,234	550	7	9	783	2	5, 005	7.0
1937 5	1, 144	1,800	443	6	7	631	2	4,033	5.8
1938 5	1,018	1,604	395	5	7	563	1	3, 593	5.8
1939 5	1,077	1,696	413	5	7	596	2	3,796	
Imports:3		1	ļ		i		!	200	
1936	83	120						203	.3
1937	43	77						120	.2
1938	21	7						28	.1
1939	12	19						31	
Oil: Heating and range: 6			0 401	0=	455	1 740	949	10 751	27. 5
1936		6, 370	2,731	87	477	1,740	343 390	19, 751 23, 057	33.3
1937	9, 358	7, 457	3, 179	110	578	1, 985		23, 745	38. 4
1938	9, 649	7,677	3, 269	101	591	2,052	406	(7)	35.4
1939	(7)	(7)	(7)	(7)	(7)	(7)	(1)	(.)	
Total fuel: 8	14.05-	00.000	11 700	245	1 000	16 000	604	71, 706	100.0
1936	14,677	26, 999	11,766	345	1, 203 1, 242	16, 022 14, 407	694 689	69, 293	100.0
1937		26, 065	11, 420	354	1, 242	12, 229	661	61, 878	100.0
1938	14,656	22, 767	10,086	304		14, 449			
1939	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)

¹ Pennsylvania Department of Mines, illicit coal not included.

² An important but undetermined part of anthracite shown as shipped to New Jersey is reshipped to New York City.

³ Bureau of Foreign and Domestic Commerce.

⁴ Less than 0.05 percent.

⁵ Estimated on the basis of distribution in 1936.

⁶ Converted to coal equivalent on the basis of 4 barrels of fuel oil equaling 1 ton of coal.

⁷ Date not yet available.

⁸ Does not include bituminous coal.

Receipts of Pennsylvania anthracite in the New England States declined nearly 61 percent from 1917 to 1939; receipts by rail decreased 44 percent and by tide 80 percent. The drop in total receipts between 1917 and 1927 was 23 percent and between 1927 and 1937, 52 percent. Table 5 gives details of receipts of anthracite in New England.

Table 5.—Receipts of anthracite in New England, 1917, 1920, 1923, and 1927-39, in thousands of net tons

			Receip	ts by tide	1		<u> </u>		Total receipts	
Year	Maine	New Hamp- shire	Massa- chusetts	Rhode Island	Con- necticut	Total	Re- ceipts by rail ¹	Im- ports 2	of Penn- sylvania anthra- cite ³	
1917	432 307 437 242 205 237 275 164 148 195 168 121 127 81 93 (4)	47 6 27 33 35 17 17 18 10 7 20 7 14 11 2	2, 222 2, 015 2, 216 1, 220 1, 373 1, 227 1, 236 1, 125 1, 014 1, 027 946 802 792 604 554 (4)	555 450 511 301 329 271 282 212 202 190 205 198 152 137 (4)	1, 165 743 891 615 528 450 422 348 275 259 266 237 267 200 191 (4)	4, 421 3, 521 4, 082 2, 421 2, 442 2, 260 2, 221 1, 659 1, 659 1, 372 1, 398 1, 048 977 865	7, 259 7, 804 8, 102 6, 725 6, 934 6, 781 6, 169 5, 125 3, 980 3, 562 4, 030 3, 889 3, 713 3, 491 4, 042	1 145 106 369 483 658 611 574 443 477 559 612 395 363 298	11, 679 11, 324 12, 039 9, 040 9, 007 8, 558 7, 732 6, 451 5, 065 4, 809 5, 495 4, 843 4, 675 4, 366 4, 105 4, 609	

According to a survey of the Commonwealth of Massachusetts, Division on the Necessaries of Life, the consumption of domestic sizes of anthracite in Massachusetts in the coal year 1938-39 (2,320,000 tons) decreased about 7 percent compared with 1937-38 and that of Buckwheat (176,000 tons) declined about 8 percent. Consumption of bituminous coal, coke, and briquets also declined, but that of fuel oil increased slightly.

Stocks.—Stocks of anthracite in the hands of railroads, electricpower utilities, and other industrial consumers at the end of 1939 were 10 percent (148,000 tons) less than at the end of December 1938. Producers' stocks declined 32 percent (464,000 tons) during the year.

Consumption.—Calculated consumption of anthracite—production, plus imports, minus exports, and plus or minus changes in producers; stocks at the beginning and end of the year—was 49,700,000 tons in 1939, a 10-percent increase over 1938. Illicit coal has not been considered in either year.

Consumption of anthracite by railroads in 1939 was 20 percent above 1938; consumption by electric power utilities rose 14 percent and other industrial consumption 1 percent over 1938.

Commonwealth of Massachusetts, Division on the Necessaries of Life.
 Bureau of Foreign and Domestic Commerce.
 Total receipts by rail and by tide less imports.
 Data not availab 4 Data not available.

Labor.—A new 2-year labor contract (expiring April 30, 1941) was concluded between the anthracite-mine operators and the United Mine Workers of America. The contract provides for recognition of the United Mine Workers of America as the exclusive bargaining agency and continues the 35-hour workweek, the prevailing rates of pay, and the general provisions of the previous agreement.

Favorable relations between the anthracite-producing companies and labor have resulted in closer cooperation on matters vitally

affecting the industry.

Table 6.—Total supplies of fuels commonly used for domestic purposes in the United States, 1924 and 1936-39

[Wherever available the figures represent the quantity actually consumed for domestic heating or for heating offices, apartments, hotels, schools, hospitals, etc. Where such figures are not available but where the fuel is known to be used chiefly for domestic purposes, the total production (or imports) is shown to indicate the trend of growth]

-			ı	<u> </u>	
	1924	1936	1937	1938	1939
SOLID FUELS (NET TONS)					
Anthracite: Production: Shipments of domestic sizes. Shipments of Buckwheat No. 1 1. Shipments of smaller steam sizes. Local sales. Total commercial production. Exports. Imports for consumption (chiefly from United Kingdom and U. S. S. R.) Fuel briquets 2. Packaged-fuel production. Coke: Byproduct sales for domestic use. Beehive sales for domestic use. Imports for consumption. Gas-house-coke sales 4. Petroleum-coke production Anthracite and semianthracite production outside of Pennsylvania. Lignite production? Bituminous-coal sales for domestic use.	9, 510, 508 11, 160, 695 3, 043, 939 80, 291, 438 4, 017, 785 117, 951 580, 508 2, 812, 771 139, 886 82, 833 1, 400, 000 761, 100 704, 513 2, 255, 385	30, 472, 986 7, 507, 767 10, 667, 247 3, 226, 887 51, 874, 887 1, 678, 024 614, 639 3 1, 145, 323 66, 427 9, 643, 507 377, 836 329, 959 403, 600 1, 378, 200 520, 452 3, 109, 689	29, 092, 974 6, 859, 707 10, 250, 463 2, 981, 391 49, 184, 535 1, 914, 173 395, 737 977, 254 146, 037 7, 807, 792 299, 726 286, 364 350, 700 1, 306, 600 468, 852 3, 218, 419	26, 206, 508 6, 159, 006 8, 698, 355 2, 722, 206 43, 786, 075 1, 908, 911 362, 895 868, 382 160, 952 7, 129, 384 93, 306 135, 240 1, 602, 200 370, 665 2, 997, 921	29, 504, 632 6, 569, 902 9, 917, 748 3, 081, 073 49, 073, 355 2, 590, 000 298, 153 880, 981 215, 507 7, 549, 937 88, 204 141, 911 362, 000 5 1, 666, 400 (6) 5 2, 972, 000
OIL (BARRELS OF 42 GALLONS)	(8)	(8)	(8)	(9)	. (9)
Oil sales for heating buildings: Range oil 9 Heating oils. ¹¹ Domestic Commercial Liquefied petroleum gases, domestic	(6)		1 ' '		10 36, 500, 000 10 135,125,000 2, 084, 000
GAS (MILLION CUBIC FEET)					
Natural-gas consumption for domestic and commercial use ¹² Manufactured-gas sales for: ¹³ Domestic use House heating	285, 152 (6) (6)	454, 969 197, 240 41, 146	489, 234 194, 350 45, 525	482, 068 197, 052 47, 918	5 510, 000 194, 014 56, 048

¹ A considerable part of the Buckwheat No. 1 is used for domestic purposes.
2 Production plus imports less exports.
3 Revised figures.
4 Partly estimated.
5 Subject to revision.
5 Data not available.
7 An estimated two-thirds is used for domestic purposes.
5 Exact data not available: estimated between 55,000,000 and 77,000,000 tons a year, including lignite and anthracite and semianthracite outside of Pennsylvania, which are shown separately.
9 Range oil is a light distillate used for house heating, hot-water heating, and cooking.
11 Includes all grades of fuel oil used for heating buildings.
12 Subject was for booting office bots!

¹² Includes gas used for heating offices, hotels, apartments, schools, hospitals, and stores and other large buildings, as well as houses

¹³ American Gas Association. Data revised as of March 1940.

Pennsylvania anthracite industry.—Trade practice and historical usage recognize two major divisions in the coal industry of the United States—bituminous coal and Pennsylvania anthracite. Anthracite and semianthracite also are mined in parts of Virginia, Arkansas, Colorado, and New Mexico. Locally these coals represent distinct and important industries, but the tonnages involved are small and for statistical convenience usually are grouped with the totals of the bituminous-coal industry. Tables in the chapter on Bituminous Coal in this volume record the 1938 production of anthracite and semi-anthracte outside of Pennsylvania; data for 1939 are not yet available.

The Pennsylvania anthracite industry, as here defined, includes all nonbituminous fields of that State. Trade usage commonly includes with Pennsylvania anthracite the output of the Bernice Basin in Sullivan County, although the coal of this basin is classified officially

as semianthracite.

SOURCES AND ACKNOWLEDGMENTS

Annual statistics of the Pennsylvania anthracite-mining industry are prepared from a canvass by mail of all known anthracite operations, including over 400 active producers. About 95 percent of the tonnage is reported directly by producers, and the remaining 5 percent is estimated on collateral evidence. The data on individual operations furnished by the producers are voluntary and confidential, as is customary in the statistical services of the Bureau of Mines.

The standard form of report, as developed by the Bureau and its predecessor in mineral statistics, the Geological Survey, provides for data on production, shipments, mine realization of products, mine

stocks, plant and equipment, and employment.

In assembling available detailed information free use has been made of the pertinent figures prepared by the Anthracite Institute, the American Association of Railroads, and the Pennsylvania Department of Mines, to all of whom thanks are extended for their cordial and continued cooperation. Thanks are due especially to the producers for reporting so promptly and, in general, so fully upon their operations in 1939, when the year as a whole was so critical for the industry.

PRODUCTION

By weeks and months.—The following tables summarize the statistics of weekly and monthly production of anthracite. Statistics of current output are estimated from tonnage reports from trade sources and from records of car loadings. The weekly and monthly figures in tables 7 and 8 have been adjusted to the annual total ascertained by direct canvass of the operators.

Table 7.—Estimated weekly production of Pennsylvania anthracite in 1939, in net tons

Week ended—	Weekly pro- duction	Number of work- ing days	Daily aver- age	Week ended—	Weekly pro- duction	Number of work- ing days	Daily average
Jan. 7	927, 000 779, 000 802, 000 800, 000 814, 000 997, 000 1, 228, 000 1, 575, 000 1, 497, 000 1, 483, 000 936, 000 836, 000 767, 000 839, 000	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	188, 600 120, 600 221, 500 224, 000 186, 800 179, 300 154, 500 129, 800 133, 300 162, 800 166, 200 204, 700 262, 500 247, 200 247, 200 153, 400 153, 500 155, 400 156, 500 157, 400 158	July 15 July 22 July 29 Aug. 5 Aug. 12 Aug. 19 Aug. 26 Sept. 2 Sept. 9 Sept. 16 Sept. 33 Oct. 7 Oct. 14 Oct. 21 Oct. 21 Nov. 4 Nov. 11 Nov. 18 Nov. 25 Dec. 2 Dec. 9 Dec. 9 Dec. 16 Dec. 23	773, 000 768, 000 768, 000 7758, 000 7768, 000 833, 000 856, 000 832, 000 1, 215, 000 1, 262, 000 1, 271, 000 1, 262, 000 1, 210, 000 1, 210, 000 1, 149, 000 1, 149, 000 1, 149, 000 1, 149, 000 1, 149, 000 1, 149, 000 1, 149, 000 1, 149, 000 1, 149, 000 1, 149, 000 1, 149, 000 1, 149, 000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	128, 800 126, 300 129, 300 130, 500 142, 700 154, 800 202, 500 227, 000 211, 800 211, 800 210, 300 206, 700 191, 500 161, 200 151, 800 161, 200 161, 200 163, 800 161, 200 163, 800 163, 800 161, 200 163, 800 163, 800 163, 800 164, 800 165, 800 161
June 24 July 1 July 8		6 6 5	124, 300 146, 300 98, 200	Calendar year	1, 034, 000 51, 487, 000	302. 5	206, 800

Table 8.—Estimated monthly production of Pennsylvania anthracite, 1936-39 ¹

[Production figures represent thousands of net tons]

	1936				1937		1938 1939			1939		
Month	Month- ly pro- duction	Num- ber of work- ing days	Daily aver- age	Month- ly pro- duction	Num- ber of work- ing days	Daily	Month- ly pro- duction	Num- ber of work- ing days	Daily	Month- ly pro- duction	Num- ber of work- ing days	
January February March April May June July August September October November December	5, 315 6, 952 3, 051 4, 757 5, 104 4, 292 3, 912 3, 492 3, 861 4, 593 4, 320 4, 931	26 24. 5 26 25 26 26 26 26 26 22 26 23 26 23 26	204 284 117 190 204 165 151 134 177 188 190	4, 236 3, 671 4, 795 6, 779 4, 361 4, 635 2, 748 2, 903 3, 682 4, 848 4, 439 4, 759 51, 856	25 23. 5 27 25 25 26 26 26 25 25 24 26 303. 5	169 156 178 271 174 178 106 112 147 194 185 183	4, 978 3, 646 4, 257 3, 149 4, 400 4, 450 2, 580 2, 735 3, 388 4, 180 3, 803 4, 533	25 23. 5 27 25 26 25 27 25 27 25 26 25 27 25 24 26 303. 5	199 155 158 126 176 171 103 101 136 167 159 174	5, 019 4, 169 3, 652 5, 367 5, 141 3, 577 2, 951 3, 883 4, 840 4, 985 3, 989 3, 914	25 23. 5 27 24 26 26 25 27 25 25 24 25 302. 5	135 224 198 138 118 144 194 199 166 157

¹ Production is estimated from weekly car loadings as reported by the Association of American Railroads and includes mine fuel, coal sold locally, and dredge coal. Does not include an unknown amount of "bootleg" production. In computing the average rates per working day, New Year's, Eight-hour Day (Apr. 1), Memorial Day, Independence Day, Labor Day, Mitchell Day (Oct. 29), Thanksgiving Day, Christmas, and, since the war, Armistice Day, have been counted as holidays. Beginning with 1927, Washington's Birthday is counted as a half holiday. No allowance, however, has been made for church holy days, which are observed by many of the miners. Monthly statistics from 1905 to 1925 will be found in Coal in 1925, pp. 427–428, and from 1926 to 1930 in Coal in 1930, p. 741.

Illicit coal.—A survey by the Pennsylvania Department of Mines shows that, in the latter part of 1939, 2,500 illicit or "bootleg" holes were in operation in the Pennsylvania anthracite region and that 9,000 men were employed. November production is shown as 340,000 tons. There were 337 breakers in the region, and 1,353 truckers hauled coal to the breakers. The estimated illicit production of coal in the region in 1939 was between 3,500,000 and 4,000,000 tons, or about 8 percent of the total Pennsylvania anthracite output. Competition resulting from the production of illicit coal is out of all proportion to the tonnage produced. Low market prices are possible because the capital invested is small and nothing is paid for the coal. Wages are well below the regular scale. Safety measures are inadequate, and 58 lives were reported lost during the year.

Regions, fields, and counties.—The main anthracite region covers an elongated area of about 480 square miles in eastern Pennsylvania, with its longer axis running northeast and southwest. It embraces three subregions as follows, from the northeast to the southwest: The Wyoming region, which covers a single geologic anthracite basin and is about 54 miles long by 6 miles wide at its widest point; the Lehigh region, which comprises the anthracite lands tributary to the Lehigh River that forms its eastern boundary and contains the Eastern Middle field and the section of the Southern field lying east of Tamaqua; and the Schuylkill region, which consists of the Western Middle field

and the section of the Southern field lying west of Tamaqua.

The area may also be divided into four fields, using the grouping of the anthracite geologic basins as a framework, as follows: The Northern field, which is the same as the Wyoming region; the Eastern Middle or Lehigh field, which consists of a group of at least 10 small basins; the Western Middle field, a single basin about 36 miles long by 4½ miles at its widest point; and the Southern field, also a single basin, about 54 miles long by 6 miles at its widest point, which breaks into a long "fishtail" toward its western ends.

Both classifications (by regions and by fields) are used in the

Bureau tables.

In order of magnitude of present production, the Northern field comes first, followed by the Western Middle, the Southern, and the Eastern Middle.

In order of length of life, based upon estimated minable reserves, the Southern field comes first, followed by the Western Middle, the Northern, and the Eastern Middle fields.

Table 9.—Pennsylvania anthracite shipped, sold locally, and used as colliery fuel in 1939, by regions

Region	Shipi	nents	Local	sales	Collie	ry fuel	To	tal
Region	Net tons	Value ¹	Net tons	Value	Net tons	Value	Net tons	Value 1
Lehigh: Breakers ² . Dredges.	8, 034, 425 48, 054	\$30, 639, 000 55, 000	265, 076 14, 080	\$1, 219, 000 18, 000	376, 432	\$655, 000	8, 675, 938 62, 134	\$32, 513, 000 73, 000
Total Lehigh	8, 082, 479	30, 694, 000	279, 156	1, 237, 000	376, 432	655, 000	8, 738, 067	32, 586, 000
Schuylkill: Breakers. Washeries. Drodges.	11, 376, 935 1, 675, 510 517, 182	41, 468, 000 3, 652, 000 530, 000	523, 311 51, 642 106, 317	1, 536, 000 186, 000 110, 000	306, 430 35, 499 1, 160	464, 000 48, 000 1, 000	12, 206, 676 1, 762, 651 624, 659	43, 468, 000 3, 886, 000 641, 000
Total Schuylkill	13, 569, 627	45, 650, 000	681, 270	1, 832, 000	343, 089	513, 000	14, 593, 986	47, 995, 000
Wyoming: Breakers. Washeries. Dredges.	24, 242, 243 90, 874	95, 849, 000 235, 000	1, 971, 337 105, 505 17, 067	8, 202, 000 347, 000 32, 000	1, 592, 887 98, 724	1, 731, 000 102, 000	27, 806, 467 295, 103 17, 067	105, 782, 000 684, 000 32, 000
Total Wyoming	24, 333, 117	96, 084, 000	2, 093, 909	8, 581, 000	1, 691, 611	1, 833, 000	28, 118, 637	106, 498, 000
Total, excluding Sullivan County: Breakers ² . Washeries ² Dredges	43, 653, 603 1, 766, 384 565, 236	167, 956, 000 3, 887, 000 585, 000	2, 759, 724 157, 147 137, 464	10, 957, 000 533, 000 160, 000	2, 275, 749 134, 223 1, 160	2, 850, 000 150, 000 1, 000	48, 689, 076 2, 057, 754 703, 860	181, 763, 000 4, 570, 000 746, 000
Total Sullivan County: 3 Breakers	45, 985, 223 7, 059	172, 428, 000 17, 000	3, 054, 335 26, 738	11, 650, 000 76, 000	2, 411, 132 2, 890	3, 001, 000 3, 000	51, 450, 690 36, 687	187, 079, 000 96, 000
Grand total: 1939	45, 992, 282 41, 063, 869 +12. 0	172, 445, 000 166, 839, 000 +3. 4	3, 081, 073 2, 722, 206 +13. 2	11, 726, 000 10, 682, 000 +9, 8	2, 414, 022 2, 312, 952 +4, 4	3, 004, 000 3, 079, 000 -2. 4	51, 487, 377 46, 099, 027 +11. 7	187, 175, 000 180, 600, 000 +3. 6

¹ Value given is value at which coal left possession of producing company, f. o. b. mines, and does not include margins of separately incorporated sales companies.

² Small quantity of washery coal included with breaker.

³ For purposes of historical comparison and statistical convenience the mines of Sullivan County are grouped with the Pennsylvania anthracite region, although the product is classified as semianthracite according to the American Society for Testing Materials Tentative Standard.

Table 10.—Pennsylvania anthracite produced, by fields, 1935-39, in net tons

[The figures of breaker product include a certain quantity of culm-bank coal, which amounted to 585,564 tons in 1938. Data for 1913–25 will be found in Coal in 1925, p. 517, and for 1926–30 in Coal in 1930, p. 747]

Field	1935	1936	1937	1938	1939
Eastern Middle: Breakers	5, 248, 176	6, 102, 979	6, 045, 813	5, 217, 169	1 5, 444, 335
Western Middle: Breakers Washeries Dredges	10, 231, 664 1, 483, 023 231, 711	11, 469, 078 1, 510, 913 221, 800	10, 381, 521 1, 456, 505 264, 588	8, 877, 485 940, 938 223, 961	9, 242, 223 906, 992 253, 819
Total Western Middle	11, 946, 398	13, 201, 791	12, 102, 614	10, 042, 384	10, 403, 034
Southern: Breakers Washeries Dredges Total Southern	6, 091, 307 99, 204 339, 529 6, 530, 040	6, 439, 213 438, 465 303, 984 7, 181, 662	5, 849, 381 218, 541 468, 386 6, 536, 308	5, 447, 804 625, 335 317, 572 6, 390, 711	6, 196, 051 855, 659 432, 974 7, 484, 684
Northern: Breakers Washeries Dredges	27, 700, 235 524, 742 19, 227	27, 448, 035 405, 615 20, 900	26, 707, 743 347, 959 27, 500	24, 059, 598 310, 491 29, 491	27, 806, 467 295, 103 17, 067
Total Northern	28, 244, 204	27, 874, 550	27, 083, 202	24, 399, 580	28, 118, 637
Total, excluding Sullivan County: Breakers Washeries Dredges	49, 271, 382 2, 106, 969 590, 467	51, 459, 305 2, 354, 993 546, 684	48, 984, 458 2, 023, 005 760, 474	43, 602, 056 1, 876, 764 571, 024	1 48, 689, 076 1 2, 057, 754 703, 860
Sullivan County: Breakers	51, 968, 818 189, 965	54, 360, 982 218, 553	51, 767, 937 88, 496	46, 049, 844 49, 183	51, 450, 690 36, 687
Grand total	52, 158, 783	54, 579, 535	51, 856, 433	46, 099, 027	51, 487, 377

¹ Small amount of washery coal included with breaker.

Table 11.—Pennsylvania anthracite produced in 1939, by counties

	Ship	ments	Loca	l sales	Collie	ry fuel	Т	otal
County	Net tons	Value ¹	Net tons	Value	Net tons	Value	Net tons	Value ¹
Carbon Columbia Dauphin and Lebanon Lackawanna Luzerne Northumberland Schuylkill Sullivan Susquehanna and Wayne Berks, Northampton, and York 2	2, 016, 250 206, 692 517, 076 7, 403, 435 20, 519, 161 4, 755, 164 10, 327, 279 7, 059 155, 240 84, 926	778, 000 1, 878, 000 29, 150, 000 81, 339, 000 16, 512, 000 34, 901, 000 17, 000 595, 000	32, 181 61, 515 801, 767 1, 444, 803 326, 028 280, 764 26, 738 3, 692	45, 000 92, 000 3, 367, 000 5, 938, 000 836, 000 988, 000 76, 000 15, 000	6, 023 4, 413 512, 466 1, 382, 402 48, 437 377, 706 2, 890 3, 886	7, 000 7, 000 659, 000 1, 517, 000 81, 000 543, 000 3, 000	244, 896 583, 004 8, 717, 668 23, 346, 366 5, 129, 629 10, 985, 749 36, 687	830, 000 1, 977, 000 33, 176, 000 88, 794, 000 17, 429, 000 36, 432, 000 96, 000 617, 000
	45, 992, 282	172, 445, 000	3, 081, 073	11, 726, 000	2, 414, 022	3, 004, 000	51, 487, 377	187, 175, 000

Value given for shipments is value at which coal left possession of producing company, f. o. b. mines and does not include margins of separately incorporated sales companies.
 Counties producing dredge coal only.

Fresh-mined and culm-bank coal, breaker, and washery product.— Anthracite is now produced from three sources—from mines, from old culm banks, and from the rivers that drain the anthracite region. As the three sources contribute to the country's supply, it is important to consider all of them to ascertain the total production. No difficulty is experienced in assembling the figures of production by dredges, as these are separate, distinct operations. A statistical detail requiring especial attention is the occasional practice of putting culm-bank coal through a breaker, either directly from the bank or after preliminary treatment in a washery. Table 14 shows the aggregate annual tonnages of culm-bank coal so treated.

Table 12.—Pennsylvania anthracite produced in 1939, classified as fresh-mined, culm-bank, and river coal and as breaker, washery, and dredge product, by regions, in net tons

[Exclusive of change in stock]

		From mines				
Region and type of plant	Underg	ground		From culm	From river	Total
	Mechani- cally loaded	Hand- loaded	Strip pits	banks	dredging	
Lehigh: Breakers 1 Dredges	701, 710	5, 693, 188	2, 217, 799	64, 180	62, 134	8, 676, 877 62, 134
Total Lehigh	701, 710	5, 693, 188	2, 217, 799	64, 180	62, 134	8,739,011
Schuylkill: BreakersWasheriesDredges	1, 519, 048	7, 848, 985	2, 337, 985 60, 188	451, 499 1, 708, 049	624, 659	12, 157, 517 1, 768, 237 624, 659
Total Schuylkill	1, 519, 048	7, 848, 985	2, 398, 173	2, 159, 548	624, 659	14, 550, 413
Wyoming: BreakersWasheriesDredges	9, 553, 075	17, 218, 855	853, 937 16, 570	69, 885 290, 201	17, 067	27, 695, 752 306, 771 17, 067
Total Wyoming	9, 553, 075	17, 218, 855	870, 507	360, 086	17, 067	28, 019, 590
Total, excluding Sullivan County: Breakers 1 Washeries Dredges	11,773,833	30, 761, 028	5, 409, 721 76, 758	585, 564 1, 998, 250	703, 860	48, 530, 146 2, 075, 008 703, 860
TotalSullivan County: Breakers	11, 773, 833	30, 761, 028 36, 687	5, 486, 479	2, 583, 814	703, 860	51, 309, 014 36, 687
Grand total: 1939	11,773,833 10,151,669 +16.0	30, 797, 715 27, 990, 628 +10. 0	5, 486, 479 5, 095, 341 +7. 7	2, 583, 814 2, 340, 444 +10. 4	703, 860 571, 024 +23. 3	51, 345, 701 46, 149, 106 +11. 3

¹ Small quantity of washery coal included with breaker.

Table 13.—Pennsylvania anthracite produced in 1939, classified as fresh-mined, culm-bank, and river coal and as breaker, washery, and dredge product, by fields, in net tons

[Exclusive of change in stock]

	From mines					
Field and type of plant	Underground			From culm banks	river	Total
	Mechani- cally loaded	Hand- loaded	Strip pits	Danks	dredging	
Eastern Middle: Breakers 1	701, 710	3, 241, 003	1, 486, 049	16, 517		5, 445, 279
Western Middle: Breakers Washeries Dredges	1, 438, 763	5, 969, 632	1, 584, 437 60, 188	203, 947 846, 804	253, 819	9, 196, 779 906, 992 253, 819
Total Western Middle	1, 438, 763	5, 969, 632	1, 644, 625	1, 050, 751	253, 819	10, 357, 590
Southern: Breakers Washeries Dredges	80, 285	4, 331, 538	1, 485, 298	295, 215 861, 245	432, 974	6, 192, 336 861, 245 432, 974
Total Southern	80, 285	4, 331, 538	1, 485, 298	1, 156, 460	432, 974	7, 486, 555
Northern: Breakers Washeries Dredges	9, 553, 075	17, 218, 855	853, 937 16, 570	69, 885 290, 201	17, 067	27, 695, 752 306, 771 17, 067
Total Northern	9, 553, 075	17, 218, 855	870, 507	360, 086	17, 067	28, 019, 590
Total, excluding Sullivan County: Breakers 1	11, 773, 833	30, 761, 028	5, 409, 721 76, 758	585, 564 1, 998, 250	700.000	48, 530, 146 2, 075, 008
	11, 773, 833	30, 761, 028 36, 687	5, 486, 479	2, 583, 814	703, 860	703, 860 51, 309, 014 36, 687
Grand total	11, 773, 833	30, 797, 715	5, 486, 479	2, 583, 814	703, 860	51, 345, 701

¹ Small quantity of washery coal included with breaker.

Table 14.—Culm-bank coal put through breakers, 1935-39, by fields, in net tons

Year	Northern	Eastern Middle	Western Middle	Southern	Total 1
1935.	236, 000	143, 000	61,000	177, 000	617, 000
1936.	122, 000	84, 000	148,000	633, 000	987, 000
1937.	95, 000	67, 000	102,000	606, 000	870, 000
1938.	52, 000	11, 000	44,000	455, 000	562, 000
1939.	70, 000	17, 000	204,000	295, 000	586, 000

¹ No culm-bank coal is put through breakers in Sullivan County.

SHIPMENTS, BY REGIONS AND SIZES

Shipments of anthracite, by regions and sizes, are given in table 15.

Table 15.—Pennsylvania anthracite shipped in 1939, by regions and sizes 1

			Breaker sh	ipments					
Size					Tot	al	Washery	Dredge	Grand total
	Lehigh region	Schuylkill region	Wyoming region	Sullivan County	Excluding Sullivan County	Including Sullivan County	shipments	shipments	
Net tons Lump ² and broken Egg Stove Chestnut Pea	1, 854, 824	45, 811 440, 720 2, 168, 049 2, 715, 965 1, 319, 876	162, 669 1, 509, 589 6, 503, 860 6, 569, 994 2, 536, 587	993 1, 365 952	248, 890 2, 273, 676 10, 526, 733 11, 286, 603 4, 798, 004	248, 890 2, 273, 676 10, 527, 726 11, 287, 968 4, 798, 956	1 316	383	248, 890 2, 274, 992 10, 557, 681 11, 456, 640 4, 966, 429
Total domestic	5, 160, 786	6, 690, 421	17, 282, 699	3, 310	29, 133, 906	29, 137, 216	367, 033	383	29, 504, 632
Buckwheat No. 1 Buckwheat No. 2 (Rice) 3 Buckwheat No. 3 (Barley) Buckwheat No. 4 Boiler	668, 822 670, 342 249, 721	1, 794, 366 1, 010, 288 1, 333, 274 395, 436	3, 185, 426 1, 731, 591 1, 701, 841 251, 046	640 1, 046	6, 226, 261 3, 410, 701 3, 705, 457 896, 203	6, 226, 901 3, 411, 747 3, 705, 457 896, 203	331, 589 297, 990 450, 330 289, 983	11, 412 27, 920 182, 626 219, 066 12, 300	6, 569, 902 3, 737, 657 4, 338, 413 1, 405, 252 12, 300
Other	33, 691	153, 150	89, 640	2, 063	276, 481	278, 544	34, 053	111, 529	424, 126
Total steam 4	2, 869, 045	4, 686, 514	6, 959, 544	3, 749	14, 515, 103	14, 518, 852	1, 403, 945	564, 853	16, 487, 650
Grand total	8, 029, 831	11, 376, 935	24, 242, 243	7, 059	43, 649, 009	43, 656, 068	1, 770, 978	565, 236	45, 992, 282
Value Lump ³ and broken Egg Stove Chestnut Pea	\$199, 000 1, 528, 000 9, 031, 000 9, 911, 000 3, 515, 000	\$241, 000 2, 180, 000 10, 795, 000 13, 530, 000 4, 868, 000	\$713,000 7,049,000 31,146,000 31,482,000 9,123,000	\$4,000 6,000 3,000	\$1, 153, 000 10, 757, 000 50, 972, 000 54, 923, 000 17, 506, 000	\$1, 153, 000 10, 757, 000 50, 976, 000 54, 929, 000 17, 509, 000	\$6,000 136,000 741,000 578,000	\$1,000	\$1, 153, 000 10, 763, 000 51, 112, 000 55, 670, 000 18, 088, 000
Total domestic	24, 184, 000	31, 614, 000	79, 513, 000	13, 000	135, 311, 000	135, 324, 000	1, 461, 000	1, 000	136, 786, 000
Buckwheat No. 1 Buckwheat No. 2 (Rice) 3 Buckwheat No. 3 (Barley)	3 657 000	5, 095, 000 2, 228, 000 2, 007, 000	9, 315, 000 3, 821, 000 2, 893, 000	2, 000 1, 000	18, 067, 000 7, 497, 000 6, 007, 000	18, 069, 000 7, 498, 000 6, 007, 000	897, 000 615, 000 660, 000	28, 000 45, 000 178, 000	18, 994, 000 8, 158, 000 6, 845, 000

Buckwheat No. 4.	215, 000	358,000	235, 000		808, 000	808, 000	239, 000	141,000	1, 188, 000
Other	20, 000	166, 000	72, 000	1,000	258, 000	259, 000	23, 000	12, 000 180, 000	12, 000 462, 000
Total steam 4	6, 447, 000	9, 854, 000	16, 336, 000	4, 000	32, 637, 000	32, 641, 000	2, 434, 000	584, 000	35, 659, 000
Grand total	30, 631, 000	41, 468, 000	95, 849, 000	17, 000	167, 948, 000	167, 965, 000	3, 895, 000	585, 000	172, 445, 000
Average value per ton									
Lump ² and broken	\$4. 92 4. 73	\$5. 26 4. 95			\$4. 63 4. 73	\$4.63 4.73			\$4.63
Chestnut	4.87 4.95	4. 98 4. 98	4. 79 4. 79	\$4. 03 4. 40	4.84 4.87	4. 84 4. 87			4. 73 4. 84 4. 86
Total domestic.	3. 73	3.69	3. 60	3. 15	3. 65	3. 65	3. 46	\$2.61	3. 64
- · · · · · · · · · · · · · · · · · · ·	4. 69	4.73	4.60	3.93	4. 64	4. 64	3.98	2. 61	4.64
Buckwheat No. 1 Buckwheat No. 2 (Rice) 3 Buckwheat No. 3 (Barley) Buckwheat No. 4 Boiler	1. 65 . 86	2. 84 2. 21 1. 51 . 91	2. 92 2. 21 1. 70 . 94	3. 13 . 96	2, 90 2, 20 1, 62 , 90	2. 90 2. 20 1. 62 . 90	2. 71 2. 06 1. 47 . 82	2. 45 1. 61 . 97 . 64	2, 89 2, 18 1, 58 , 85 , 98
Other	. 59	1. 08	. 80	. 48	. 93	. 93	. 68	1. 61	1.09
Total steam 4	2. 25	2. 10	2. 35	1. 07	2. 25	2. 25	1. 73	1. 03	2. 16
Grand total	3. 81	3. 64	3. 95	2. 41	3. 85	3. 85	2. 20	1. 03	3. 75

Figures of shipments from breakers include 585,564 tons of culm-bank coal handled in the breakers.
 The quantity of lump included is insignificant.

Includes Birdseye.
 Includes all steam sizes.

Table 16 reveals an interregional variation in the breaker production of domestic sizes as related to that of steam sizes and to total production. In 1939 the Wyoming region produced 71 percent domestic sizes and 29 percent steam sizes from a given tonnage of breaker feed; the Lehigh region, 64 percent domestic and 36 percent steam sizes; and the Schuylkill region, 59 percent domestic and 41 percent steam sizes. These percentages are relatively constant from year to year. The variations among the regions are due to differences in the physical situation and condition of the anthracite beds.

Table 16.—Sizes of Pennsylvania anthracite shipped from breakers, 1937-39, by regions, in percent of total

[Note that shipments of dredge and washery coal are not included]

			Per	cent of	total s	shipme	nts		
Size of coal	Leh	nigh reg	gion	Schu	ylkill r	egion	Wyoming region		
	1937	1938	1939	1937	1938	1939	1937	1938	1939
Lump ¹ and broken	0.5 4.8 21.0 25.6 11.5	0. 4 4. 5 23. 0 24. 7 12. 0	0. 5 4. 0 23. 1 24. 9 11. 8	0. 5 4. 9 18. 1 23. 0 11. 0	0. 4 4. 2 19. 3 23. 6 11. 0	0. 4 3. 9 19. 0 23. 9 11. 6	0.3 6.5 24.7 28.1 10.4	0. 2 6. 3 26. 2 27. 6 10. 0	0. 7 6. 2 26. 8 27. 1 10. 5
Total domestic	63.4	64.6	64.3	57. 5	58. 5	58.8	70.0	70.3	71. 3
Buckwheat No. 1 Buckwheat No. 2 (Rice) ² Buckwheat No. 3 (Barley)	15. 9 8. 4 9. 2	15. 6 8. 3 8. 5	15. 5 8. 3 8. 4	15.8 8.7 11.2	16. 3 8. 8 10. 7	1,5.8 8.9 11.7	13. 7 7. 2 7. 7	13. 7 7. 1 7. 5	13. 2 7. 1 7. 0
BoilerOther, including Buckwheat No. 4	3. 1	3.0	3.5	6.8	5.7	4.8	1.4	1.4	1.4
Total steam 3	36. 6	35. 4	35.7	42. 5	41.5	41. 2	30.0	29.7	28. 7

				Total						
Size of coal	Sulli	van Co	unty	Excluding Sullivan County			Including Sulliva County			
Lump ¹ and broken Egg. Stove	1.8 15.9 15.8 9.5	11. 3 10. 8 26. 4 16. 6	14. 1 19. 3 13. 5	0. 4 5. 7 22. 2 26. 2 10. 7	0.3 5.4 23.7 26.0 10.6	0.6 5.2 24.1 25.8 11.0	0. 4 5. 7 22. 1 26. 2 10. 8	0.3 5.4 23.7 26.0 10.6	0. 6 5. 2 24. 1 25. 8 11. 0	
Total domestic	43.0	65. 1	46. 9	65. 2	66.0	66. 7	65. 2	66.0	66.7	
Buckwheat No. 1 Buckwheat No. 2 (Rice) 2 Buckwheat No. 3 (Barley)	10. 2 12. 8	10.6 14.7	9.1 14.8	14.7 7.9 9.0	14. 8 7. 7 8. 6	14.3 7.8 8.5	14.7 7.9 8.9	14.8 7.7 8.6	14. 3 7. 8 8. 5	
Boiler Other, including Buckwheat No. 4	2.3 31.7	9.6	29. 2	(4) 3. 2	2.9	2.7	(4) 3.3	2.9	2.7	
Total steam 3	57.0	34.9	53. 1	34.8	34. 0	33. 3	34.8	34.0	33. 3	

¹ The quantity of lump included is insignificant.

Includes Birdseye.
Includes all steam sizes.
Less than 0.1 percent.

AVERAGE SALES REALIZATION

The valuation figures in this study represent value at the breaker or washery reported by the operating companies. The company is requested to "estimate value of the product not sold" and to "exclude selling expenses" in making its report.

From this it will be seen that when a producing company sells its output to a separately organized sales company (the practice of many, including certain larger producers) the value reported will exclude the margin of the sales company and may therefore be somewhat less than the circular price at which the coal is placed on the general market. This fact should be borne in mind in considering the variations in value between different regions shown in the tables for the same sizes of coal.

The average sales realization per net ton on breaker shipments only fell to \$3.85 in 1939 from \$4.16 in 1938, or 7 percent. By far the greater decrease was in the domestic sizes—9 percent. The drop in steam sizes was only 3 percent.

If local sales, colliery fuel, and washery and dredge coal are included, the average value per net ton on the total 1939 production was \$3.64 compared with \$3.92 in 1938. (See table 18.)

Table 17.—Average sales realization per net ton on Pennsylvania anthracite shipments from breakers, 1937-39, by regions and sizes

[Value does not include margins of separately incorporated sales companies]

Size	L	ehigh reg	ion	Sch	uylkill r	egion	Wyoming region		
	1937	1938	1939	1937	1938	1939	1937	1938	1939
Lump ¹ and broken Egg Stove Chestnut Pea	\$4. 96 5. 01 5. 25 5. 25 4. 04	\$5. 17 5. 11 5. 36 5. 43 3. 93	\$4. 92 4. 73 4. 87 4. 95 3. 73	\$5. 24 5. 14 5. 26 5. 31 3. 96	\$5. 50 5. 27 5. 39 5. 41 3. 80	\$5. 26 4. 95 4. 98 4. 98 3. 69	\$5. 01 5. 04 5. 19 5. 20 4. 02	\$5. 16 5. 16 5. 31 5. 32 3. 91	\$4. 38 4. 67 4. 79 4. 79 3. 60
Total domestic	5. 01	5. 10	4. 69	5. 02	5.09	4.73	5. 00	5. 10	4. 60
Buckwheat No. 2 (Rice) ² Buckwheat No. 3 (Barley)	2. 98 2. 29 1. 43	3. 06 2. 36 1. 61	2. 93 2. 17 1. 65	2.87 2.17 1.33	2. 93 2. 27 1. 50	2. 84 2. 21 1. 51	3. 00 2. 31 1. 55	3. 08 2. 39 1. 69	2. 92 2. 21 1. 70
Total steam 3	2. 24	2, 35	2. 25	1.99	2. 13	2. 10	2. 37	2.47	2, 35
Total all sizes	3. 99	4. 13	3. 81	3. 73	3.86	3. 64	4. 21	4.32	3.95

~.	Sullivan County			Total						
Size	Sull	ivan Co	unty		iding Su County	llivan	Inclu	Including Sullivan County		
Lump ¹ and broken Egg Stove Chestnut Pea Total domestic Buckwheat No. 1 Buckwheat No. 2 (Rice) ² Buckwheat No. 3 (Barley) Total steam ³	\$3. 97 4. 46 3. 07 2. 56 3. 51 2. 00 . 75	\$3.00 3.00 3.00 2.52 2.88 1.50 .50	\$4.03 4.40 3.15 3.93 3.13 .96	\$5. 08 5. 06 5. 21 5. 23 4. 01 5. 01 2. 95 2. 26 1. 45 2. 21	\$5. 28 5. 18 5. 33 5. 36 3. 88 5. 10 3. 03 2. 35 1. 61 2. 33	\$4. 63 4. 73 4. 84 4. 87 3. 65 4. 64 2. 90 2. 20 1. 62 2. 25	\$5. 08 5. 06 5. 21 5. 23 4. 01 5. 01 2. 95 2. 26 1. 45	\$5. 24 5. 18 5. 33 5. 36 3. 88 5. 10 3. 03 2. 35 1. 61 2. 33	\$4. 63 4. 73 4. 84 4. 87 3. 65 4. 64 2. 90 2. 20 1. 62 2. 25	
Total all sizes	2. 10	2. 13	2, 41	4. 03	4. 16	3. 85	4. 03	4. 16	3. 85	

¹ The quantity of lump included is insignificant. ² Includes Birdseye. ³ Includes all steam sizes.

Table 18.—Average value per net ton of Pennsylvania anthracite shipped, local sales, colliery fuel, and total production, 1938-39, by regions ¹

		19	38		1939				
Region	Ship- ments	Local sales	Colliery fuel	Total produc- tion	Ship- ments	Local sales	Colliery fuel	Total produc- tion	
Lehigh Schuylkill Wyoming	\$4. 11 3. 63 4. 31	\$4. 65 3. 00 4. 35	\$1.80 1.56 1.13	\$4. 01 3. 51 4. 12	\$3. 80 3. 36 3. 95	\$4. 43 2. 69 4. 10	\$1.74 1.50 1.08	\$3, 73 3, 29 3, 79	
Total, excluding Sullivan County Sullivan County	4. 06 2. 13	3. 93 2. 92	1. 33 . 83	3. 92 2. 49	3. 75 2. 41	3. 81 2. 84	1. 24 1. 04	3. 64 2. 62	
Grand total	4.06	3. 92	1. 33	3. 92	3. 75	3. 81	1. 24	3. 64	

¹ Value given for shipments is value at which coal left possession of producing company, f. o. b. mines, and does not include margins of separately incorporated sales companies.

NUMBER OF OPERATIONS

The total number of active plants reporting increased from 390 in 1937 to 442 in 1938. (See table 19.) Figures for 1939 are not yet available, but indications are that the upward trend continued.

Table 19.—Number of active operations in the Pennsylvania anthracite industry in 1938 1

Region and type of product	Total active plants report- ing 2	Breakers ³	Other prepara- tion plant 4	Wash- eries ⁵	Culm banks operated in conjunction with breakers	Dredges	Reporting strip-pit tonnage
Lehigh: Breakers or mines Dredges	41 2	26	1 1		6	2	39
Total Lehigh	43	26	2		6	2	39
Schuylkill: Breakers or mines Washeries Dredges	76 20 31	34	12	9	6	31	35 1
Total Schuylkill	127	34	33	9	6	31	36
Wyoming: Breakers or mines Washeries Dredges	254 12 1	76	3	3	. 3	1	36 2
Total Wyoming	267	76	4	3	3	1	38
Total, excluding Sullivan County: Breakers Washeries Dredges	371 32 34	136	16	12	15	34	110
Sullivan County: Breakers	437 5	136 4	39	12	15	34	113
Grand total	442	140	39	12	15	34	113

Figures for 1939 not yet available.
 The number of active plants contains numerous duplications, that is, successions known and unknown, and leases and subleases. Each report received which was tabulated for production or for employment has

and reases and subsects.

Bearing-port control which are the separately.

Equipped to prepare standard sizes of fresh-mined coal.

For preliminary crushing, screening, or cleaning. Usually old breakers are used for this purpose. The number reported for dredges represents reports showing men employed at tipple.

Preparation plant for the sizing and cleaning of culm-bank coal.

LABOR STATISTICS

According to the Pennsylvania Department of Mines about 93,000 men were employed in the anthracite region in 1939. The number employed in 1938, as based upon direct reports to the Bureau of Mines from operators and including the employees of dredges and strip contractors, was 96,417.

Man-days lost on account of strikes were 0.2 percent less in 1938 than in 1937, and suspension of work owing to strikes and the number of men involved also declined. Comparable statistics covering 1939 are not yet available, but there were no widespread labor disputes

during the year.

According to the Bureau of Labor Statistics, average weekly earnings ranged from a low of \$17.16 in December to a high of \$35.84 in May and averaged \$25.52 during 1939, or 9 percent above the 1938 average. The index of employment (1929 average equals 100) fluctuated between 44.7 in July and 53 in April and averaged 3.3 percent below 1938. The index of pay rolls reached a low of 25.2 in July and a high of 57 in May and averaged 3.4 percent above 1938.

Table 20.—Men employed and days worked at operations producing Pennsylvania anthracite in 1938 1

	[In	cludes	operati	ons of	strip c	ontract	ors]				
		Av	erage 1	numbe	r of me	n emp	loyed		days		per
	Uı	dergro	und		Su	rface					man
Region	Miners and their laborers	Other	Total under- ground	In strip pits	In preparation plant	Other	Total surface	Grand total	Average number of	Man-days of labor	Average tons per day
Lehigh: Breaker Dredge	6, 936	4, 254	11, 190	1, 604	1, 393	2, 929 12				2, 817, 785 2, 653	
Total Lehigh	6, 936	4, 254	11, 190	1,604	1, 397	2, 941	5, 942	17, 132	165	2, 820, 438	2.75
Schuylkill: Breaker Washery Dredge	9, 694	6, 626			1, 726	3, 604 554	6, 78 3 815	23, 103 815	180 178	4, 159, 058 145, 393	2. 85 2 10.77
Total Schuylkill	9, 694	6, 626	16, 320	1, 485	2,043	4, 325	7, 853	24, 173	180	4, 339, 099	3. 20
Wyoming: Breaker Washery Dredge	31, 134	13, 570	44, 704	542 11		6, 768 97	10, 019 133		204		2. 58
Total Wyoming	31, 134	13, 570	44, 704	553	2, 752	6, 871	10, 176	54, 880	170	9, 351, 985	2. 61
Total, excluding Sullivan County: Breaker Washery Dredge	47, 764	24, 450	72, 214	3, 599 43						16, 296, 749 172, 576 42, 197	2. 68 2 10.88 13. 53
Sumvan County: Breaker	47, 764 128	24, 450 45	72, 214 173	3, 642	6, 192 13	14, 137 46	23, 971 59	96, 185 232	172 95	16, 511, 522 22, 011	2. 79 2. 23
Grand total	47, 892	24, 495	72, 387	3, 642	6, 205	14, 183	24, 030	96, 417	171	16, 533, 533	2. 79

Figures for 1939 not yet available.

² Represents washeries for which both production and employment were separately reported.

The men shown at breakers include a number of washery employees who could not be separated from breaker employees.

Table 21.—Men employed at operations producing Pennsylvania anthracite in 1938, by counties 1

[Includes operations of strip contract
--

County	Men	County	Men
Carbon Columbia Dauphin Lackawanna Luzerne Northumberland	4, 207 1, 032 1, 090 17, 091 45, 680 7, 327	Schuylkill	19, 317 232 388 53 96, 417

¹ Figures for 1939 not yet available.

Table 22.—Strikes, suspensions, and lock-outs in the Pennsylvania anthracite region in 1938 1

					To	tal
	Lehigh	Schuylkill	Wyoming	Sullivan County	Excluding Sullivan County	Including Sullivan County
Total number employed Men on strike	17, 132 10, 194	24, 173 13, 743	54, 880 3, 498	232	96, 185 27, 435	96, 417 27, 435
Man-days lost on account of strike	127, 477	235, 052	216, 928		579, 457	579, 457
Average days lost— Per man employed Per man on strike	7. 4 12. 5	9. 7 17. 1	4. 0 62. 0		6. 0 21. 1	6. 0 21. 1

¹ Figures for 1939 not yet available.

EQUIPMENT AND METHODS OF MINING

Mechanical loading.—The percentage of total deep-mined production of anthracite loaded mechanically continued to increase. In 1939 the 11,773,833 tons so loaded were 27.7 percent of the total underground output compared with 26.6 percent (10,151,669 tons) in 1938 and 25.1 percent (10,683,837 tons) in 1937. The total tonnage loaded mechanically underground increased 16 percent from 1938 to 1939; hand-loading advanced 10 percent.

There were 8 scrapers and 216 conveyors (including hand-loaded conveyors and conveyors equipped with duckbills or other self-loading heads) sold in the anthracite region in 1939; some were installed late in the year. No sales of mobile loading machines were reported. Returns direct from operators indicated that 535 scrapers and 1,997 conveyors were in use during the year.

² Counties producing dredge coal only.

 $\begin{array}{lll} {\it Table~23.--Relative~growth~of~mechanical~loading,~hand~loading,~and~stripping~in} \\ {\it Pennsylvania~anthracite~mines,~1935-39} \end{array}$

[Mechanical loading includes coal handled on pit-car loaders and hand-loaded face conveyors]

	Net tons			Index numbers, 1927=100		
Year	Year Mechanical loading underground		Hand loading	Mechani- cal loading under- ground	Stripping	Hand loading
1935	9, 279, 000 10, 828, 000 10, 684, 000 10, 152, 000 11, 774, 000	5, 187, 000 6, 203, 000 5, 696, 000 5, 095, 000 5, 486, 000	34, 400, 000 33, 899, 000 31, 883, 000 27, 990, 000 30, 798, 000	417 487 481 457 530	241 288 265 237 255	48 47 45 39 43

Table 24.—Pennsylvania anthracite loaded mechanically underground, 1935-39

Year	Se	rapers	Conveyors and pit- car loaders ¹		Total loaded me- chanically	
	Number of units	Net tons loaded	Number of units	Net tons handled	Number of units	Net tons handled
1935 1936 1937 1938 1939	² 508 ² 504 539 545 535	² 2, 662, 026 ² 2, 966, 407 2, 873, 289 2, 589, 954 3, 088, 956	1, 615 1, 790 2 1, 855 2 1, 831 1, 997	6, 617, 031 7, 861, 539 2 7, 810, 548 2 7, 561, 715 8, 684, 877	2, 123 2, 294 2, 394 2, 376 2, 532	9, 279, 057 10, 827, 946 10, 683, 837 10, 151, 669 11, 773, 833

¹ Includes duckbills and other self-loading conveyors, which account for only a small part of the total.
² Includes mobile loaders.

Table 25.—Pennsylvania anthracite handled by mobile loaders and scrapers and by all types of conveyors in 1939, by fields, in net tons

Field	Scraper loaders	Pit-car loaders	Hand- loaded face con- veyors, all types ¹	Total me- chanically loaded under- ground
Northern Eastern Middle Western Middle Southern	2, 518, 347 150, 922 419, 687 3, 088, 956	17, 368 67, 680 85, 048	7, 034, 728 533, 420 1, 031, 681 8, 599, 829	9, 553, 075 701, 710 1, 519, 048 11, 773, 833

¹ Shaker chutes, etc., including those equipped with duckbills.

Cutting machines.—The number of cutting machines in use in 1939 was less than in 1938, but a larger tonnage was cut by machines.

Table 26.—Pennsylvania	anthracite cut be	, machines,	<i>1938–39</i>
------------------------	-------------------	-------------	----------------

	-	1938		1939			
Region	Cutting machines Net tons			Cutting	Net tons		
	Permis- sible	All other types	cut by machines	Permis- sible	All other types	cut by machines	
Lehigh Schuylkill Wyoming	150	89	1, 583, 907	} 145	80	1, 881, 884	
Total, excluding Sullivan County Sullivan County	150	89 3	1, 583, 907 4, 500	145	80	1, 881, 884	
Grand total	150	92	1, 588, 407	145	80	1, 881, 884	

Strip-pit mining.—The percentage of fresh-mined anthracite produced from strip pits remained virtually constant—11.4 percent in 1939 and 11.8 percent in 1938. The tonnage mined by this method in 1939 rose in all regions. Table 27 gives the figures for several years.

Table 27.—Relative growth of Pennsylvania anthracite mined from strip pits, 1915, 1920, 1925, 1930, and 1937–39, in net tons

	Number of				Percent of fresh-mined Number of	
Year	shovels in use ¹	Total	Average per shovel	total that was stripped	was employed 0	of days worked
1915	57 96 97 108 351 331	1, 121, 603 2, 054, 441 1, 578, 478 2, 526, 288 5, 696, 018 5, 095, 341\$	19, 677 21, 400 16, 273 23, 484 16, 228 15, 394	(2) 2. 5 2. 7 3. 7 11. 9 11. 8	(2) (3) (2) (2) (4, 585 3, 642	(2) (2) (2) (2) (2) 184 186
1939: Lehigh region Schuylkill region Wyoming region	134 121 91	2, 217, 799 2, 398, 173 870, 507	16, 551 19, 820 9, 566	25. 8 20. 4 3. 2	(2) (2) (2)	(2) (2) (2)
Total, 1939 3	4 346	5, 486, 479	15, 857	11. 4	(2)	(2)

¹ Certain of the equipment reported by stripping contractors may have been counted twice when moved from one small job to another during the year. The amount of such double counting is unknown but pre sumably is not great.

² Data not available.
3 There was no strip-pit mining in Sullivan County during 1939.
4 Includes 109 gasoline, 15 steam, 47 electric, 166 Diesel, and 9 other types of shovels.

Dredge operations.—Both the tonnage and average value of anthracite produced by dredges increased in 1939 compared with 1938.

Table 28.—Pennsylvania anthracite produced by dredges, 1938-39, by rivers

River (including tributaries)		1938		1939			
River (including tributaries)	Dredges	Net tons	Value	Dredges	Net tons	Value	
Lehigh Schuylkill Susquehanna	} 5 29	123, 452 447, 572	\$124, 795 445, 784	$\left\{egin{array}{c} 3 \ 3 \ 25 \end{array} ight.$	62, 134 67, 539 574, 187	\$73,000 62,000 611,000	
	34	571,024	5 70, 5 79	31	703, 860	746, 000	

Table 29.—Average receipts per net ton on all dredge coal sold, 1935-39

Year	Average receipts	Year	Average receipts
1935	\$0.88 1.06 1.11	1938 1939	\$1.00 1.06

FOREIGN TRADE 4

Exports of anthracite in 1939 increased 36 percent over 1938 and comprised 5 percent of the domestic production. Imports declined 18 percent and were equivalent to 0.6 percent of United States output; the U. S. S. R. supplied 71 percent, Great Britain 23 percent, French Indochina 4 percent, and Canada (reexports) 2 percent.

Table 30.—Anthracite imported for consumption in the United States, 1938-39, by countries, in net tons

Country	1938	1939	Country	1938	1939
Canada China Indochina (French)	2, 487 5, 824	7, 111 20 11, 794	U. S. S. R United Kingdom	200, 480 154, 104	212, 444 66, 784
Andooning (Lichter)	0,024	11, 154		362, 895	298, 153

Table 31.—Anthracite imported for consumption in the United States, 1938-39, by customs districts, in net tons

Customs district	1938	1939	Customs district	1938	1939
Connecticut Maine and New Hampshire Massachusetts Michigan	11, 320 32, 436 264, 465 29	6, 655 21, 354 221, 883	New YorkRhode IslandVermont.	54, 642 3	20 48, 240 1
**************************************	20			362, 895	298, 153

⁴ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Table 32.—Anthracite exported from the United States, 1938-39, by countries, in net tons

Country	1938	1939	Country	1938	1939
North America: Bermuda Canada. Central America: British Honduras. Guatemala. Honduras. Nicaragua. Panama Mexico. Miquelon and St. Pierre Islands Newfoundland and Labrador. West Indies: British: Jamaica. Trinidad and Tobago. Other British. Dominican Republic.	22 1 179 45 7,471 11 22 268	1, 541 2, 577, 157 259 90 1 8 150 62 9, 349	North America—Continued. West Indies—Continued. Haiti. Netherland. South America: Bolivia. Brazil. Chile. Colombia. Ecuador. Venezuela Europe: France. United Kingdom Asia: Japan. Netherland India. Saudi Arabia. Other Asia.	6 265 672 3 15 8 149 1,908,911	778

Table 33.—Anthracite exported from the United States, 1938-39, by customs districts and ports of export, in net tons

Customs district	1938	1939	Customs district	1938	1939
North Atlantic: Maine and New Hampshire. Massachusetts. New York. Philadelphia South Atlantic: Maryland Virginia Gulf Coast: Florida New Orleans. Mexican Border: Arizona El Paso. San Antonio.	20 294 33, 756 34, 908 459 2, 865 81 6	703 86 44, 846 48, 000 353 47 371 37 33 22	Pacific Coast: Alaska Los Angeles San Diego San Francisco Northern Border: Buffalo Dakota Duluth and Superior Michigan Ohio Rochester St. Lawrence Vermont	269 149 12 8 1, 273, 807 379 4, 234 5, 068 165, 853 385, 011 1, 561 1, 908, 911	270 20 20 11 1, 564, 952 117 4, 556 14, 501 283, 465 625, 239 2, 369 2, 590, 000

The Canadian market.—The United States strengthened its position in the important Canadian anthracite market further in 1939, notwithstanding obstacles such as an import duty, the depreciated Canadian dollar in terms of United States currency, and Canadian subventions to aid its own coal industry. In 1939 the United States supplied 66 percent of Canada's total imports of anthracite compared with 53 percent in 1938. On the other hand, of the bituminous coal available in 1939 (production, plus imports, minus exports), the United States supplied 47 percent as against 49 percent in 1938. This decline indicates Canada's efforts to make greater use of its bituminous-coal resources. The tonnage of all coal available in 1939 (29,028,000 tons) was 6 percent more than in 1938. Details of the coal and coke industry and foreign trade of Canada are given in table 34.

Table 34.—Coal and coke industry and foreign trade of Canada, 1938-39 1

[Thousands of net tons]

		Coal										
	Anth	racite	Bitur	ninous		bitu- nous	Lig	nite	То	otal		from pal
	1938	1939	1938	1939	1938	1939	1938	1939	1938	1939	1938	1939
Production			10, 289	11, 597	489	512	3, 470	3, 410	14, 248	15, 519	2, 356	2, 388
Imports: United States Great Britain Germany Belgium	1, 974 1, 199 407 34	1, 035 294	66	68			3	3	11, 621 1, 265 442 34	12, 445 1, 103 294	3	434 2
French Indochina Netherlands U. S. S. R. Morocco	30 37 15 20	43							30 37 15 20	43		
Total importsExports	3, 716	3, 978	9, 745 344				3 9	3	13, 464 353	13, 885 376	415 31	436 48
Available for consumption	3, 716	3, 978	19, 690	21, 133	489	512	3, 464	3, 405	27, 359	29, 028	2, 740	2, 776

¹ Quarterly Report on Coal and Coke Statistics for Canada, October-December 1938 and 1939. Canadian coal charged to ovens in 1938, 1,064,302 tons; 1939, 1,104,371 tons. Imported coal charged to ovens in 1938, 2,215,469 tons; 1939, 2,207,707 tons.

Imports of anthracite into Canada in 1939 were 3,977,805 tons, a gain of 7 percent over 1938. Of the total imports into Canada in 1938 and 1939, respectively, 60 and 64 percent were received from January to August, inclusive, before the outbreak of war in Europe. Of the total tonnage supplied by the United States in 1938 and 1939, respectively, 68 and 61 percent were received from January to August.

Canadian official statistics for 1939 show that of the total imports of anthracite into Canada 24 percent (941,017) tons were steam sizes—44 percent from Great Britain, 40 percent from the United States, 13 percent from Germany, and 3 percent from French Indochina.

The upward trend in the use of hydroelectricity, natural gas, and doubtless fuel oil continued. Although coal production in 1939 was 1,224,746 tons greater than in 1938, hydroelectric power, in terms of coal, increased 1,623,000 tons. Excluding 1937, coal production was greater in 1939 than in any year since 1929.

The tonnage of Canadian coal moved under assisted (railroad)

rates continued to increase.

The additional subvention (not to exceed 50 cents a ton) granted November 8, 1938, by the Canadian Government to aid shipments of Nova Scotia bituminous coal to central Canada was withdrawn effective December 8, 1939.

In 1939 the Canadian Government appointed a coal administrator, and effective December 1, the coal industry and trade were required to

operate under license.

The outlook for anthracite in Canada in 1940 is obscured by the international situation and developments that may result therefrom.

Among the possible developments is further depreciation of the Canadian dollar, which would facilitate the purchase of British anthracite. On the other hand, the increased cost of coal production in Britain and high ocean-freight and insurance rates should much more than offset the lower value of the Canadian dollar; however, as Britain will require Canadian timber and grain it seems probable that Canada will continue to receive British anthracite in order to conserve foreign exchange.

The trade agreement between the United States and U. S. S. R. was renewed in August for another year, during which period U. S. S. R. agreed not to ship more than 400,000 tons of anthracite to the United

States.

World anthracite production.—Because of the international situation, anthracite production data for 1939 were not released in a number of countries. Available data for 1934–39 are presented in table 35.

Table 35.—World production of anthracite, 1934-39, in metric tons

[Compiled	bу	R. B.	Miller]
-----------	----	-------	---------

Country	1934	1935	1936	1937	1938	1939
Belgium Bulgaria China Chosen France Germany Indochina Irish Free State Italy Japan ³ Morocco, French Peru Portugal Rumania Snain	5, 823, 787 6, 921 5, 309, 810 982, 370 5, 990, 000 1, 554, 600 91, 171 84, 547 (2) 36, 070 3, 600 196, 587 18, 010	5, 241, 026 2, 223 (2) 1, 079, 330 5, 000, 000 4, 886, 000 1, 740, 606 87, 114 70, 150 (2) 52, 696 2, 461 205, 373 17, 207 701, 789	6, 077, 907 2, 323 (2) 1, 051, 853 8, 227, 000 5, 511, 000 2, 150, 654 96, 742 79, 972 (2) 49, 388 3, 535 207, 890 3, 708	6, 694, 049 2, 542 (1) 1, 101, 500 2, 264, 978 106, 651 195, 060 (2) 107, 150 2, 918 241, 163 3, 646 (1)	6, 874, 520 4, 000 (1) (1) (2) (2) (2) (2) (3) (4) (1) (2) (4) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (8) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(1) (1) (1) (1) (1) (1) (2) 2,547,000 90,455 100,000 (1) 115,600 1,450 294,081 (1) 663,593
Switzerland U. S. S. R.: Asiatic European	3, 000 243, 000 22, 003, 000	3, 500 350, 000 25, 200, 000	3, 000 410, 000 28, 100, 000	(1) (1)	3, 000 (1) (1)	2, 500
United Kingdom United States		6, 907, 530 47, 317, 405	6, 629, 955 49, 513, 463	6, 437, 465 47, 043, 119	6, 378, 904 41, 820, 115	46, 708, 319
World total Total, exclusive of United States	106, 767, 930 54, 906, 000	104, 089, 405 56, 772, 000	113, 843, 463 64, 330, 000	(1)	(1) (1)	(1)

¹ Data not available.

 ² Estimate included in total.
 3 The anthracite production of Japan is said to average about 225,000 tons a year. Production figures are not available.

COKE AND BYPRODUCTS

By M. van Siclen, M. M. Otero, and M. F. Cooke

SUMMARY OUTLINE

	Page	1	Page
Summary	. 867	Coke and coke breeze—Continued.	
Salient statistics	. 869	Furnace, foundry, domestic, and other coke_	899
Statistical trends	872	Stocks of coke and coking coal	
Scope of report		Value and price	905
Coke and coke breeze	. 884	Shipments by rail	908
Monthly and weekly production	874	Exports and imports	908
Production by furnace and nonfurnace		World production	910
plants	. 876	Coke-oven byproducts	911
Production by States and districts		Summary of byproducts	
Number and type of ovens		Coke-oven gas-	913
Capacity of byproduct ovens		Tar	816
Quantity and cost of coal charged		Ammonia	918
Preparation and source of coal	888	Light oil and its derivatives	920
Yield of coke per ton of coal	895	Naphthalene	921
Coke breeze	896	Byproduct coke ovens owned by city-gas	
Consumption of coke	898	companies	921

The coke industry in 1939 on the whole recovered strongly from the recession noted in 1938, but output still fell short of that in 1937 and 1936.

The total production of beehive and byproduct coke increased about 36 percent—from 32,495,815 net tons in 1938 to 44,326,641 tons in 1939. The output from beehive ovens in 1939 increased 72 percent over 1938, rising to 1,444,328 tons from the near-all-time low of 837,412 tons in the preceding year. Byproduct coke, representing 97 percent of the total, increased 35 percent in 1939 and totaled 42,882,313 tons compared with 31,658,403 in 1938. Whereas in 1938 the production of byproduct coke at furnace plants declined 43 percent when total byproduct output dropped 36 percent, in 1939 the production from furnace coke plants increased 54 percent, with an attendant gain of 35 percent in all byproduct coke.

Accompanying the upturn in the industry during 1939, producers' stocks of byproduct coke dropped 29 percent—from 3,631,623 net tons on January 1, 1939, to 2,569,690 tons at the beginning of 1940. At beehive plants the decrease in stocks was from 44,931 to 32,409

tons.

The calculated consumption of all coke in 1939 was 44,953,082 net

tons, a 45-percent increase over 1938.

Export trade increased 21 percent in 1939; shipments totaled 589,925 net tons compared with 486,571 tons in 1938. Canada again was by far the leading customer, taking nearly one-half million tons. Coke imports into the United States comprised 24 percent of coke exports in tonnage and 36 percent in value.

Fluctuations in price quotations for byproduct foundry coke at various markets included increases of 11 to 12 cents and decreases

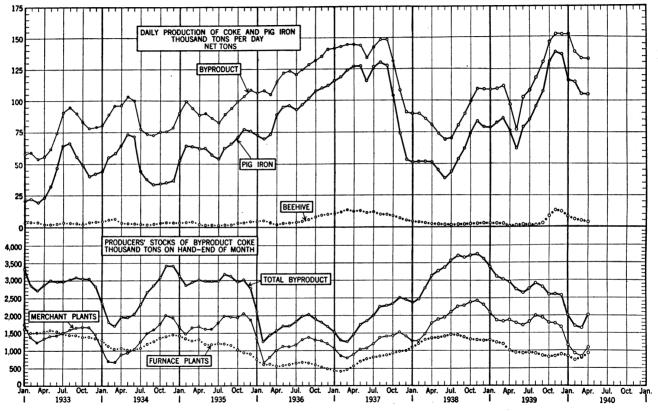


FIGURE 1.—Average daily production of beehive and byproduct coke and pig iron; and producers' stocks of byproduct coke, 1933-40, by months.

ranging from 13 to 35 cents. Connellsville prices rose 16 cents for

foundry coke and 23 for furnace coke.

The byproduct-coke industry followed the 1937–39 curve for coke. Except for the tar derivative ("creosote oil, distillate as such," output of which rose to 18,479,962 gallons in 1939—20 percent above the 1937 figure) the yield of all coke byproducts dropped rather sharply in 1938 but recovered a good proportion of the production losses in 1939.

Of special interest is toluol, an important ingredient of TNT, which is obtained as a light-oil derivative from coke-oven operations and tar refineries. The output in 1939 as a byproduct from coke operations was 19,767,200 gallons compared with 13,021,080 in 1938 and 20,896,724 in 1937. These figures do not include toluol obtained from tar refineries. Sales of toluol in 1939 were 20,484,568 gallons valued at \$3,974,367, an average of \$0.194 per gallon. The tradejournal quotation of \$0.27 per gallon advanced 3 cents at the beginning of 1940.

Table 1.—Salient statistics of the coke industry in the United States, 1938-39

	Byproduct	Beehive	Total
1938			
Coke produced:	1	1	
At merchant plants:	10 000 505		10 000 505
Quantitynet tons_	10, 989, 525 \$70, 225, 977		10, 989, 525 \$70, 225, 977
Value	\$10, 225, 911		\$10, 220, 811
At furnace plants: Quantitynet tons	20, 668, 878		20, 668, 878
Value	\$93, 253, 062		\$93, 253, 062
Total:			
Quantitynet tons_	31, 658, 403	837, 412	32, 495, 815
Value	\$163, 479, 039	\$3, 702, 795	\$167, 181, 834
Screenings or breeze produced:	0.000.000	40.011	0.000.004
Quantitynet tons_	2, 653, 653	46, 211	2, 699, 864 \$6, 048, 797
Value	\$5, 995, 267	\$53, 530	\$0,040,191
Coal charged into ovens: Quantitynet tons	45, 266, 344	1, 359, 876	46, 626, 220
Value		\$2,790,978	\$180, 121, 894
Average value per ton		\$2.05	\$3, 86
A vergge yield in percent of coal charged:	1		
Coke	69. 94	61.58	69. 69
Coke Breeze (at plants actually recovering)	5. 91	5. 34	5. 90
Ovens:	1		
In existence January 1	12, 718	12, 194	24, 912
In existence December 31	12, 724 201	10, 816	23, 540
Dismantled during year	146	1, 261	1, 462 146
Daily capacity of ovens December 31	167, 868	(1)	(1)
Coke used by producer:	101,000	(-)	()
In bleet furnaces:			
Quantitynet tons	16, 689, 105	102, 853	16, 791, 958
Value	\$74,061,231	\$555, 812	\$74, 617, 043
To make producer or water gas:			
Quantitynet tons_	1, 314, 370		1, 314, 370
Value	\$7,418,916		\$7, 418, 916
For other purposes:	401 000	700	401 050
Quantitynet tons_	401, 066 \$2, 069, 263		401, 852 \$2, 072, 609
Value Disposition of coke:	\$2,009,200	φυ, υπο	φ2, 012, 009
Sold to financially affiliated corporations:	1		
Ti - hi- at forme on sugar			
Quantitynet tons_	1, 116, 376	41, 567	1, 157, 943
Value	\$4, 852, 525	\$179, 687	\$5, 032, 212
For all other purposes:	1 ''	, , , , , , , , , , , , , , , , , , , ,	
Quantitynet tons_	773, 336	158	773, 494
Value	\$4,668,821	\$869	\$4, 669, 690
Sold to other consumers:	I		
For blast-furnace use:	050 500	100 777	1 100 007
Quantitynet tons_	950, 508 \$4, 192, 197	169, 777	1, 120, 285
Value	P1, 192, 191	\$688, 504	\$4, 880, 701
For foundry use: Quantitynet tons	1, 051, 143	164, 637	1, 215, 780
Value	\$8, 815, 581		\$9, 624, 611
v 04.UV	., +0,0-0,001	. 4555, 500	· · · · · · · · · · · · · · · · · · ·

See footnotes at end of table.

Table 1.—Salient statistics of the coke industry in the United States, 1938-39—Continued

	Byproduct	Beehive	Total
1938—Continued			
Disposition of coke—Continued.			
Sold to other consumers—Continued. For manufacture of water gas: Ouantity net tons	397, 563	68, 427	465.00
Quantitynet tons	\$2, 537, 307	\$258, 106	\$2, 795, 41
Quantitynet tons Value	790, 699 \$4, 215, 669	215, 651 \$953, 040	1, 006, 35 \$5, 168, 70
Oughtity not tone	7, 129, 384	93, 306	7, 222, 69
Value. Disposition of screenings or breeze: Used by producer:	\$44,000,938	\$328, 255	\$44, 329, 19
For raising steam:	1, 957, 323	122	1, 957, 44
ValueTo make producer or water gas:	1, 957, 323 \$4, 248, 698	\$533	\$4, 249, 23
Quantitynet tons Valuenet	76, 089 \$302, 092		76, 08 \$302, 09
For other purposes: Quantity net tons Value	241, 806 \$452, 382	76 \$151	241, 88
Sold: Quantitynet tons	445, 180	39, 463	\$452, 53 484, 64
Value	\$1, 125, 035	\$47, 206	\$1, 172, 24
Furnace coke (merchant sales) Foundry coke.	\$8 30	\$4.06 \$4.91	\$4.3 \$7.9
Domestic coke For manufacture of water gas Other industrial coke	\$6. 17 \$6. 38 \$5. 33	\$3. 52 \$3. 77 \$4, 42	\$6. 1 \$6. 0
Screenings or breeze	\$2. 53	\$1. 20	\$5. 1 \$2. 4
Furnace net tons Foundry do Domestic and other do	931, 644 88, 334	7, 228 8, 336	938, 87 96, 67
Breezedodo	273, 285	29, 367 1, 775	2, 641, 01 275, 06
Exports			486, 57 135, 24
syproducts produced:			31, 063, 21 499, 692, 52
Gas M cubic feet. Wasted -percent. Burned in coking process. do. Surplus sold or used do. Tar gallons. Ammonium sulfate or equivalent. pounds. Crude light oil. gallons. Zield of byproducts per ton of coal: Morbic feet.	1. 45 33. 91		1. 4
Surplus sold or used do Tar gallons	64. 64 419, 579, 649		64. 6 419, 579, 64
Ammonium sulfate or equivalent pounds Crude light oil gallons	1, 036, 765, 357 123, 559, 610		1, 036, 765, 35
Gas	11.07		11.0
Tar gallons Ammonium sulfate or equivalent pounds Crude light oil gallons 'alue of byproducts sold:	9. 27 23. 36 2. 99		9. 2 23. 3 2. 9
Gas (surplus)	\$60, 364, 983		\$60, 364, 98
Tar: Sold			\$14, 904, 50 \$5, 780, 77
Used by producer	\$14, 904, 501 \$5, 780, 776 \$12, 043, 251		\$12,043,25
Other byproducts ² Otal value of coke, breeze, and byproducts ³	\$12, 946, 483 \$3, 412, 631 \$278, 926, 931	\$3, 756, 325	\$12, 946, 48 \$3, 412, 63 \$282, 683, 25
1939	·\$210, 920, 931	90, 700, 320	\$202, 000, 20
Oke produced: At merchant plants:			
Quantity net tons Value	11, 070, 506 \$68, 432, 660		11, 070, 50 \$68, 432, 66
At furnace plants: Quantitynet tons Value	31, 811, 807 \$138, 025, 213		31, 811, 80 \$138, 025, 21
Total:			ψ100, 020, 21
Quantitynet tons	42, 882, 313 \$206, 457, 873	1, 444, 328 \$6, 426, 177	44, 326, 64 \$212, 884, 05
Quantitynet tons	3, 354, 374	51, 543	3, 405, 91
Value See footnotes at end of table.	\$7, 271, 050	\$62.170	\$7, 333, 22

Table 1.—Salient statistics of the coke industry in the United States, 1938-39—Continued

Coal charged into ovens: Quantity	61, 215, 899 \$229, 785, 713 \$3. 75 70. 05 5. 52	2, 297, 785 \$4, 584, 041 \$1. 99	Total
Coal charged into ovens: Quantity	\$229, 785, 713 \$3. 75 70. 05	\$4, 584, 041	63, 513, 684
Quantity net tons. Value	\$229, 785, 713 \$3. 75 70. 05	\$4, 584, 041	63, 513, 68
A verage yield in percent of coal charged: Coke. Breeze (at plants actually recovering). Ovens: In existence January 1. In existence December 31. Dismantled during year. In course of construction December 31.	\$229, 785, 713 \$3. 75 70. 05	\$4, 584, 041	63, 513, 684
A verage yield in percent of coal charged: Coke. Breeze (at plants actually recovering). Ovens: In existence January 1. In existence December 31. Dismantled during year. In course of construction December 31.	\$3. 75 70. 05		
Coke Breeze (at plants actually recovering) Ovens: In existence January 1 In existence December 31 Dismantled during year In course of construction December 31	70. 05	φ1. σσ	\$234, 369, 754 \$3, 69
Breeze (at plants actually recovering) Ovens: In existence January 1. In existence December 31. Dismantled during year. In course of construction December 31.	70. 05 5. 52		Φυ. Ο
Ovens: In existence January 1 In existence December 31. Dismantled during year. In course of construction December 31.	0. 02	62. 86 3. 73	69. 79
In course of construction December 31		0.75	5. 49
In course of construction December 31	12, 724	10, 816	23, 540
In course of construction December 31	13, 010	10, 934 453	23, 944 453
		. 4	
Daily capacity of ovens December 31 Coke used by producer: In blast furnaces:	172, 479	(1)	(1)
In blast furnaces:	OT 400 TOT		
Quantity net tons. Value \$1 To make producer or water gas: Quantity net tons.	27, 438, 565 3117, 637, 251	219, 696 \$1, 137, 103	27, 658, 261 \$118, 774, 354
To make producer or water gas:		φ1, 101, 103	ф110, 774, 304
	1, 409, 081 \$7, 693, 450		1, 409, 081
For other purposes: Quantity net tons Value: net tons			\$7, 693, 450
Quantitynet tons	416, 595	1, 124	417, 719
Disposition of coke:	\$2, 184, 305	\$4,626	\$2, 188, 931
Sold to financially affiliated corporations: For blast-furnace use:			
Quantitynet tons	2, 063, 898	196, 956	2, 260, 854
value	\$8, 682, 688	\$855, 858	\$9, 538, 546
For all other purposes: Quantity net tons	877, 580	16, 260	893, 840
Quantity net tons. Value	\$5, 229, 032	\$79, 349	\$5, 308, 381
Sold to other consumers: For blast-furnace use:			
	1, 137, 757 \$4, 981, 942	441, 685	1, 579, 442
Value For foundry use:	\$4,981,942	\$1,909,857	\$6, 891, 79 9
Quantitynet tons	1, 482, 846	199, 354	1, 682, 200
Value \$ For manufacture of water gas:	1, 482, 846 \$12, 087, 253	\$949, 269	\$13, 036, 522
Quantitynet tons_	506, 857	85, 191	592, 048
Quantity net tons Value. For other industrial use:	\$3, 203, 509	\$315, 429	\$3, 518, 938
Quantitynet tons_	999, 826	192, 113	1, 191, 939
Quantitynet tons Value	\$5, 292, 213	\$836, 557	\$6, 128, 770
For domestic use: Quantitynet tons	7, 549, 937	88, 204	7, 638, 141
Value \$	\$44, 511, 672	\$311, 135	\$44, 822, 807
Disposition of screenings or breeze: Used by producer:			
For raising steam:			
Quantitynet tons	2, 455, 057 \$5, 108, 827	1, 798 \$2, 855	2, 456, 855 \$5, 111, 682
To make producer or water gas:		\$2,000	\$5, 111, 082
Quantitynet tons	53, 283 \$169, 687		53, 283
FOR Other purposes:			\$169, 687
Quantitynet tons	355, 294 \$783, 921	100	355, 394
Sold:		\$448	\$ 784, 369
Quantitynet tons Value	512, 375 \$1, 264, 743	25, 981	538, 356
verage receipts per ton soid:	\$1, 204, 743	\$35, 441	\$1, 300, 184
Furnace coke (merchant sales)	\$4.38	\$4.32	\$4.36
Foundry coke Domestic coke	\$8. 15 \$5. 90	\$4. 76 \$3. 53	\$ 7. 7 5 \$ 5. 87
For manufacture of water gas	\$ 6.32	\$3. 70	\$5.94
Other industrial coke Screenings or breeze	\$5. 29 \$2. 47	\$4. 35 \$1. 36	\$5. 14 \$2. 42
Screenings or breezetocks on hand January 1, 1940:			•
Furnace net tons foundry do do do do do do do do do do do do do	597, 550 49, 771 1, 922, 369 335, 709	16, 402 8, 312	613, 952 58, 083
Domestic and otherdo	1, 922, 369	7,695	1, 930, 064
Breeze do do do do do do do do do do do do do	335, 709	451	336, 160
mports do acculated consumption do do			589, 925 141, 911
Calculated consumptiondododo			44, 953, 082
GasM cubic feet 67	75, 143, 201		675, 143, 201
Wastedpercent_	75, 143, 201 1. 27		675, 143, 201 1. 27
Burned in cooking processdo Surplus sold or useddo			34. 49 64. 24

See footnotes at end of table.

244615-40-56

Table 1.--Salient statistics of the coke industry in the United States, 1938-39—Continued

	Byproduct	Beehive	Total
Byproducts produced—Continued. Tar	554, 406, 216 1, 353, 604, 372 170, 963, 199 11. 03 9. 06 22. 33 2. 99 \$71, 876, 455 \$16, 585, 734 \$10, 081, 205 \$14, 634, 521		554, 406, 216 1, 353, 604, 372 170, 963, 199 11. 03 9. 06 22. 33 2. 99 \$71, 876, 455 \$16, 585, 734 \$10, 081, 205 \$14, 634, 521
Crude light oil and derivatives	\$17, 034, 214 \$4, 683, 510		\$17, 034, 214 \$4, 683, 510 \$355, 112, 909

Table 2.—Statistical trends of the coke industry in the United States, 1923 and 1936–39

	1923	1936	1937	1938	1939
Coke produced: Beehivenet tons_Byproductdo	19, 379, 870	1, 706, 063	3, 164, 721	837, 412	1, 444, 328
	37, 597, 664	44, 569, 121	49, 210, 748	31, 658, 403	42, 882, 313
Totaldodo	56, 977, 534	46, 275, 184	52, 375, 469	32, 495, 815	44,326,641
orrong	66. 0	96. 3	94. 0	97.4	96. 7
Stocks of producers, end of year, all coke net tons. Exports, all coke	1 1, 221, 737	1, 732, 066	2, 595, 287	3, 676, 554	2, 602, 099
	1, 237, 342	670, 312	526, 683	486, 571	589, 925
	85, 002	329, 957	286, 364	135, 240	141, 911
	55, 173, 457	47, 032, 147	51, 271, 929	31, 063, 217	44, 953, 082
Furnace coke (including coke used by producer) net tons. Foundry coke do. Other industrial (including water gas)	47, 774, 408	30, 772, 156	36, 751, 969	19, 070, 186	31, 498, 557
	3, 600, 719	1, 921, 817	2, 038, 822	1, 215, 780	1, 682, 200
Domestic cokedo	2, 283, 888	2, 032, 774	2, 047, 140	1, 472, 340	1, 783, 987
	2, 733, 414	10, 021, 343	8, 107, 518	7, 222, 690	7, 638, 141
Ovens: Beehive, in existence, end of year Byproduct, in existence, end of year	62, 349	13, 012	12, 194	10, 816	10, 934
	11, 156	12, 849	12, 718	12, 724	13, 010
Byproduct under construction, end of	629	305	259	146	0
yearCost of coal charged, byproduct ovens, average per ton	\$4.76	\$3.69	\$3.74	\$3.92	\$3.75
Prices of coke: Average spot price of Connellsville fur- nace coke, f. o. b. ovens. Average realization on byproduct coke sold:	\$5. 33	\$3. 68	\$4. 29	\$3.86	\$4.09
Furnace coke (merchant sales) Foundry coke Other industrial (including water gas)	\$9.06 \$9.05	\$5. 09 \$7. 44 \$5. 51 \$6. 07	\$4. 34 \$8. 47 \$6. 08 \$6. 53	\$4. 41 \$8. 39 \$5. 68 \$6. 17	\$4. 38 \$8. 15 \$5. 64 \$5. 90
Yield of byproducts per ton of coal charged: Targallons	8.1	8.86	8: 67	9. 27	9.06
Ammonium sulfate or equivalent pounds Light oil	21. 2	22. 14	21. 84	23. 36	22. 33
	2. 7	2. 91	2. 86	2. 99	2. 99
	5. 9	6. 85	6. 66	7. 14	7. 08
ton of coke produced: Tar sold and used	\$0. 51	\$0. 541	\$0. 588	\$0. 654	\$0. 622
	\$0. 84	\$0. 287	\$0. 326	\$0. 380	\$0. 341
naphthalene) Surplus gas sold or used Total byproducts, including breeze	\$0. 51	\$0. 438	3 \$0.443	\$0. 423	\$0. 414
	\$1. 37	\$1. 589	\$1.483	\$1. 907	\$1. 676
	\$3. 48	\$3. 057	3 \$3.068	\$3. 647	\$3. 315

<sup>Data not available.
Includes naphthalene and tar derivatives.</sup>

³ Includes value of tar used by the coke plants.

Furnace and foundry coke only.
 Before 1934 the figures represent general imports; beginning with 1934 they represent imports for consumption only.
 Revised figures.

SCOPE OF REPORT

This report contains final figures covering production of both beehive and byproduct coke, and the major byproducts of the latter, for 1938 and 1939. Inclusion of the 1939 statistics in final form marks resumption of an earlier custom, made possible through a slight increase in funds allotted to Coal Economics Division. To complete the record by including 1938 final figures, which were lacking in the previous chapter in this series, it has been necessary throughout the report to complete the permanent record by publishing tables covering both years. Preliminary statistics of coke production and the byproducts obtained in 1939 were published as a 2-page supplement on February 26, 1940, to Monthly Coke Report 143. Salient statistics, giving final data on the coke industry and the byproducts obtained, were published as a 2-page supplement to Monthly Coke Report 146 on May 24, 1940.

Coke is produced by four different industries in the United States. In addition to that made in the familiar beehive and byproduct ovens, it is obtained in refining petroleum and tar, and in manufacturing coal gas. Moreover, within the last few years production of a smokeless fuel by low-temperature carbonization of coal has been established commercially in the United States. The commodity produced by each of these processes, however, differs greatly from other cokes in character, and the problems affecting the several industries

are quite distinctive.

About 1,666,400 tons of petroleum coke were produced in 1939 compared with about 1,602,200 tons in 1938. A small tonnage of coke from coal tar is also produced commercially. Only coke from byproduct and beehive ovens is adapted to blast-furnace and foundry uses, which consume the larger part of all the coke produced. Practically, therefore, the coke trade is concerned only with byproduct and beehive coke, and the statistics of this report are confined to these two types.

For reasons explained in a later section, the statistics on byproduct coke in this chapter cover operations of all byproduct coke ovens, including those installed and operated by public utilities engaged

primarily in manufacturing gas for city supply.

The standard unit of measurement in the coke industry is the short or net ton of 2,000 pounds, and unless otherwise specified that unit is employed throughout this report.

COKE AND COKE BREEZE

MONTHLY AND WEEKLY PRODUCTION

Table 3.—Byproduct, beehive, and total coke produced in the United States, 1936–39. by months, and average per day, in net tons

	1930	6	193	7	193	8	1939)
Month	Total	Daily average	Total	Daily average	Total	Daily average	Total	Daily average
Byproduct: January February March April May June July August September October November December	3, 262, 100 3, 471, 400 3, 758, 800 3, 700, 300 3, 723, 200 3, 871, 400 3, 836, 800 4, 077, 200 4, 054, 400 4, 354, 400	106, 900 108, 500 105, 200 115, 700 121, 300 120, 100 124, 900 127, 900 131, 500 140, 500	4, 360, 700 3, 992, 900 4, 495, 500 4, 350, 900 4, 479, 700 4, 024, 800 4, 423, 900 4, 427, 800 4, 035, 100 3, 222, 300 49, 210, 800	140, 700 142, 600 145, 000 145, 000 144, 500 134, 200 147, 500 147, 600 130, 200 107, 400 91, 100	2, 749, 100 2, 481, 600 2, 661, 700 2, 424, 100 2, 272, 100 2, 166, 100 2, 166, 100 3, 081, 200 3, 266, 300 3, 350, 800 31, 658, 400	88, 700 88, 600 85, 900 80, 800 73, 300 68, 500 69, 900 80, 100 88, 800 108, 900 108, 100	3, 355, 200 3, 066, 800 3, 425, 700 2, 903, 800 2, 387, 100 3, 378, 500 3, 354, 100 4, 512, 300 4, 512, 300 4, 703, 400	108, 200 109, 500 110, 500 96, 800 102, 600 108, 200 117, 800 129, 700 145, 600 151, 700 117, 500
Beehive: January February March April May June July August September October November December	144, 500 103, 000 85, 200 80, 600 87, 300 104, 200 120, 300 153, 900 222, 700 225, 800 245, 300	121, 700 4, 900 5, 800 4, 000 3, 300 3, 100 4, 600 5, 900 9, 400 5, 500 9, 400	274, 300 294, 600 357, 300 309, 700 286, 500 274, 800 285, 100 259, 000 253, 900 253, 900 253, 900 326, 500 336, 800 36, 800 36, 800 37, 800 37, 800 38, 800 38, 800 38, 800	10, 600 12, 300 13, 200 11, 900 12, 600 10, 600 10, 000 9, 800 5, 200	31, 658, 400 114, 100 102, 200 95, 200 73, 100 56, 700 49, 800 47, 700 60, 700 66, 700 75, 600 837, 400	4, 400 4, 300 3, 500 2, 800 2, 200 1, 900 1, 700 1, 800 2, 100 2, 300 2, 600 2, 900	78, 400 72, 000 69, 600 20, 000 24, 700 52, 300 47, 100 44, 900 77, 000 266, 800 362, 700 328, 800	3,000 3,000 2,600 900 900 1,900 1,700 3,000 10,300 14,000 13,200
Total coke: January February March April May June July August September October November December	3, 290, 100 3, 365, 100 3, 556, 600 3, 839, 400 3, 787, 600 3, 827, 400 3, 991, 700 4, 299, 900 4, 280, 200	5,500 111,800 114,300 109,200 119,000 124,400 126,700 124,100 129,500 133,800 139,700 144,100 149,900 127,200	4, 635, 000 4, 287, 500 4, 852, 800 4, 806, 200 4, 709, 000 4, 808, 200 4, 709, 000 4, 832, 400 4, 881, 700 4, 260, 600 3, 391, 100 2, 959, 000	151, 300 154, 900 158, 200 156, 900 157, 100 144, 800 157, 500 157, 400 138, 900 113, 900 96, 300	2, 863, 200 2, 583, 800 2, 756, 900 2, 497, 200 2, 328, 800 2, 106, 100 2, 208, 100 2, 531, 700 2, 718, 700 3, 141, 900 3, 426, 400	93, 100 92, 900 89, 400 83, 600 75, 500 70, 400 71, 600 81, 900 90, 900 101, 700 111, 500 111, 000	3, 433, 600 3, 138, 800 3, 495, 300 2, 923, 800 2, 411, 800 3, 401, 200 3, 697, 800 4, 779, 100 4, 914, 600 5, 032, 200	111, 200 112, 500 113, 100 97, 600 77, 900 104, 600 110, 100 132, 700 155, 900 164, 900

Table 4.—Beehive coke produced in the United States in 1939, by weeks [Estimated from railroad shipments]

Week ended—	Net tons	Week ended—	Net tons	Week ended—	Net tons
January 7	17, 500	May 13	2, 400	September 16	12,000
14	17, 100	20	5,000 f 10,200	23	
21 28		June 3	11, 700	October 7	50, 200
February 4	18, 300	10	11,600	14	50,500
11		17 24	12, 600 13, 000	21	
18 25		July 1		November 4	72, 800
March 4	17, 500	8	11,600	11	
11 18		15	11, 300 11, 500	18	83, 300
25	16, 300	29	9,900	December 2	80, 400
April 1	14,800	August 5	9, 300	9	
8 15	6, 100 3, 700	12		23	
22	3, 300	26	10,000	30	65, 500
29	5,000	September 2	10, 600 10, 800		1, 444, 300
May 6	2, 300	9	10, 800	_	1, 111, 000

Table 5.—Byproduct coke produced in the United States, 1938-39, by months and States, in net tons

				no produc						ma State	, 010 1000 0		
State	January	February	March	April	Мау	June	July	August	September	October	November	December	Total
Alabama Colorado Illinois Indiana Maryland Massachusetts Michigan Minnesota New Jersey New York Ohio Pennsylvania Tennessee Utah West Virginia Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin	332, 800 16, 500 201, 600 203, 100 86, 300 98, 500 151, 500 87, 300 350, 300 282, 500 595, 100 15, 900 110, 900	299, 500 15, 900 156, 900 182, 200 96, 700 89, 900 128, 000 78, 000 317, 200 261, 300 541, 700 6, 400 13, 200 107, 100	320, 100 16, 900 158, 900 210, 700 93, 700 100, 300 135, 200 48, 500 86, 400 327, 500 277, 600 602, 500 6, 400 8, 500 113, 900	302, 400 13, 000 149, 800 200, 100 68, 000 92, 700 129, 900 46, 000 84, 000 303, 600 228, 400 540, 800 6, 000 8, 600 107, 200	221, 200 12, 000 141, 200 193, 200 64, 900 78, 100 139, 800 87, 000 325, 500 505, 000 6, 300 6, 300 101, 300	181, 400 11, 900 130, 200 157, 600 66, 800 74, 600 134, 300 81, 900 294, 600 190, 500 463, 400 6, 100 7, 500 94, 400	183, 700 21, 600 121, 300 186, 900 81, 000 75, 600 137, 200 41, 100 83, 700 290, 300 490, 700 6, 300 7, 100 104, 600	248, 500 24, 800 121, 900 223, 900 101, 900 74, 600 138, 100 42, 400 83, 000 291, 000 318, 800 554, 400 7, 800 116, 000	282, 900 17, 400 128, 200 272, 300 92, 500 74, 500 138, 900 82, 600 310, 900 601, 000 6, 200 9, 500 108, 300	321, 700 12, 200 137, 100 329, 800 108, 600 85, 100 162, 300 44, 900 85, 200 370, 400 6, 400 13, 500 120, 100	335, 800 13, 500 351, 900 125, 400 83, 500 169, 800 43, 100 82, 600 767, 000 6, 200 14, 300 130, 500	348, 000 11, 100 150, 900 393, 100 119, 500 91, 900 177, 800 43, 700 85, 700 394, 600 472, 200 746, 500 18, 300 132, 500	3, 378, 000 186, 800 1, 734, 500 2, 904, 800 1, 105, 300 1, 019, 300 1, 742, 800 1, 007, 400 3, 945, 000 76, 100 132, 500 1, 346, 800
•	2, 749, 100	2, 481, 600	2, 661, 700	2, 424, 100	2, 272, 100	2, 056, 300	2, 166, 100	2, 484, 000	2, 665, 100	3, 081, 200	3, 266, 300	3, 350, 800	31, 658, 400
At merchant plants	1, 038, 600	937, 500	989, 500	930, 300	897, 200	832, 200	815, 900	838, 700	866, 800	943, 100	927, 700	972, 000	10, 989, 500
At furnace plants		1, 544, 100	1, 672, 200	1, 493, 800	1, 374, 900	1, 224, 100	1, 350, 200	1, 645, 300	1, 798, 300	2, 138, 100	2, 338, 600	2, 378, 800	20, 668, 900
Alabama. Colorado Illinois. Indiana Maryland Massachusetts. Michigan Minnesota. New Jersey New York Ohio Pennsylvania. Tennessee Utah West Virginia. Connecticut, Kentucky, Missouri, Rhode Island. and Wisconsin	15, 400 152, 900 395, 600 113, 400 91, 000 183, 900	311, 900 19, 600 136, 700 340, 500 102, 400 81, 300 76, 600 341, 900 411, 000 748, 100 5, 400 17, 500 123, 400	332, 800 34, 000 135, 000 401, 000 113, 100 92, 000 199, 700 42, 800 371, 700 481, 600 826, 500 6, 000 18, 900 133, 200	263, 000 33, 400 123, 700 326, 900 113, 200 85, 200 38, 900 80, 800 80, 800 337, 900 383, 100 676, 700 6, 300 13, 200 111, 500	189, 900 37, 400 115, 500 227, 400 116, 900 73, 700 143, 300 38, 800 82, 100 279, 500 6, 400 11, 000 91, 200	296, 100 23, 000 117, 800 329, 900 134, 800 85, 200 203, 200 38, 800 82, 300 416, 000 6, 300 16, 300 114, 000	326, 500 30, 900 123, 500 362, 300 148, 700 76, 600 212, 200 38, 300 85, 000 465, 600 811, 100 6, 700 16, 000 134, 800	329, 800 34, 100 126, 200 425, 300 146, 500 81, 300 197, 500 40, 900 86, 700 549, 600 936, 900 7, 000 18, 200 138, 900	338, 500 32, 300 135, 700 463, 800 94, 600 212, 000 41, 900 83, 400 77, 300 585, 800 1, 054, 300 77, 000 18, 800 140, 200	372, 200 41, 500 197, 100 521, 900 97, 600 245, 400 46, 200 86, 400 4, 290, 200 681, 500 1, 290, 200 17, 100 159, 400	359, 600 51, 500 247, 600 532, 700 97, 300 238, 600 43, 500 83, 000 709, 900 1, 278, 000 7, 400 13, 700 154, 600	386, 500 44, 900 272, 500 550, 500 150, 000 101, 400 246, 200 45, 300 87, 100 733, 500 1, 301, 800 7, 800 9, 300 157, 300	3, 854, 500 398, 000 1, 884, 200 4, 878, 000 1, 579, 000 2, 430, 700 497, 100 1, 003, 200 4, 468, 400 6, 136, 000 10, 994, 300 79, 400 1, 598, 200 1, 598, 200
	3, 355, 200	3, 066, 800	3, 425, 700	2, 903, 800	2, 387, 100	3, 078, 500	3, 354, 100	3, 652, 900	3, 890, 600	4, 512, 300	4, 551, 900	4, 703, 400	42, 882, 300
At merchant plantsAt furnace plants	967, 200 2, 388, 000	867, 800 2, 199, 000	930, 700 2, 495, 000	858, 100 2, 045, 700	761, 200 1, 625, 900	848, 300 2, 230, 200	873, 500 2, 480, 600	893, 000 2, 759, 900	930, 200 2, 960, 400	1, 049, 000 3, 463, 300	1, 025, 500 3, 526, 400	1, 066, 000 3, 637, 400	11, 070, 500 31, 811, 800

Table 6.—Beehive coke produced in the United States in 1939, by months and States, in net tons

Based up	on railroad	shipments
----------	-------------	-----------

State		January	Febru- ary	March	April	Мау	June
Colorado	5, 700 47, 600 1, 300 17, 400 6, 400	5, 100 45, 200 1, 400 16, 000 4, 300	5, 300 42, 500 1, 200 16, 000 4, 600	5, 700 9, 700 600 700 3, 300	4, 900 12, 500 500 4, 900 1, 900	4, 300 28, 400 100 12, 500 7, 000	
		78, 400	72,000	69, 600	20,000	24, 700	52, 300
State	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
Colorado	3, 600 30, 800 200 10, 400 2, 100 47, 100	2,600 29,700 500 10,900 1,200 44,900	4, 100 54, 900 600 15, 200 2, 200 77, 000	5, 400 226, 200 900 22, 600 11, 700 266, 800	4, 700 311, 500 800 21, 000 24, 700	5, 400 287, 000 200 17, 700 18, 500	56, 800 1, 126, 000 8, 300 165, 300 87, 900 1, 444, 300

PRODUCTION BY FURNACE AND NONFURNACE PLANTS

The terms "furnace" and "merchant" operators originated in the Connellsville beehive-coke trade. As the name implies, the beehive-furnace interests are those affiliated with the producers of iron and steel whose output does not ordinarily enter the open market. There are, however, a number of byproduct plants financially affiliated with iron furnaces, in which most of the product is nevertheless foundry and domestic coke that must be sold on the competitive market. Inasmuch as the beehive-coke trade has dwindled during the past decade to an insignificant position in the coke industry (supplying only 3.3 percent of the total production in 1939) the statistics presented in the two following tables cover byproduct coke only.

A "furnace" plant is defined herein as one that has for its main business the production of furnace coke and that has an assured outlet for such coke either through financial affiliation with or direct ownership by an ironworks or through long-time contracts. Under this definition the class designated as "other" plants includes a few plants affiliated with local iron furnaces but producing much more coke than the furnaces can absorb and therefore depending chiefly on the foundry and domestic trade or on merchant sales of furnace coke. It also includes merchant producers of furnace coke who have to sell their output on the competitive market; the plants affiliated with alkali works; and, in addition, a number of plants that, although not public utilities, were constructed primarily to supply city gas and that must sell their coke where they can for domestic and industrial as well as metallurgical use.

In 1939, 45 furnace plants produced 31,811,807 tons of byproduct coke and 39 "other" plants produced 11,070,506 tons. The relative proportion furnished by furnace plants has remained fairly constant, except in the years of iron and steel depression. Thus, in 1913 and again in 1918, furnace plants produced approximately 73 percent of the total byproduct coke output. In 1932, a year of great recession in the steel industry, the proportion fell to 54 percent; it rose to 73

percent in 1937, fell again to 65 percent in 1938, and increased to 74 percent in 1939.

Table 7.—Number and production of byproduct coke plants connected with iron furnaces and of other byproduct plants in the United States, 1913, 1918, and 1937-39

Year	Number pla	of active nts	Coke produc	ed (net tons)	Percent of pro- duction	
ı ear	Furnace plants	Other plants	Furnace plants	Other plants	Furnace plants	Other plants
1913 1918 1937 1938 1939	20 36 43 44 45	16 24 42 40 39	9, 277, 832 19, 220, 342 36, 134, 209 20, 668, 878 31, 811, 807	3, 436, 868 6, 777, 238 13, 076, 539 10, 989, 525 11, 070, 506	73. 0 73. 9 73. 4 65. 3 74. 2	27. 0 26. 1 26. 6 34. 7 25. 8

Table 8.—Monthly and average daily production of byproduct coke by plants associated with iron furnaces and by all other plants in the United States, 1937-39, in net tons

	19	37	19	38	19	39
Month	Furnace plants	Other plants	Furnace plants	Other plants	Furnace plants	Other plants
Monthly production:						
January	3, 241, 600	1, 119, 100	1,710,500	1,038,600	2, 388, 000	967, 200
February		996, 400	1, 544, 100	937, 500	2, 199, 000	867, 800
March	3, 355, 000	1, 140, 500	1, 672, 200	989, 500	2, 495, 000	930, 700
April	3, 310, 300	1,040,600	1, 493, 800	930, 300	2,045,700	858, 100
May	3, 375, 600	1, 104, 100	1, 374, 900	897, 200	1,625,900	761, 200
June	2, 917, 500	1, 107, 300	1, 224, 100	832, 200	2, 230, 200	848, 300
July	3, 316, 100	1, 107, 800	1, 350, 200	815, 900	2, 480, 600	873, 500
August	3, 469, 300	1, 104, 100	1, 645, 300	838, 700	2, 759, 900	893, 000
September	3, 334, 700	1,093,100	1, 798, 300	866, 800	2,960,400	930, 200
October	2, 910, 500	1, 124, 600	2, 138, 100	943, 100	3, 463, 300	1,049,000
November	2, 142, 700	1,079,600	2, 338, 600	927, 700	3, 526, 400	1, 025, 500
December	1, 764, 400	1,059,400	2, 378, 800	972,000	3, 637, 400	1, 066, 000
	36, 134, 200	13, 076, 600	20, 668, 900	10, 989, 500	31, 811, 800	11, 070, 500
4 5.22 3 17	00, 101, 200	20, 01 0, 000	20, 000, 000	10, 000, 000	01,011,000	11,070,000
Average daily production:						
January	104,600	36, 100	55, 200	33, 500	77,000	31, 200
February	107,000	35, 600	55, 100	33, 500	78, 500	31,000
March	108, 200	36, 800	54,000	31, 900	80, 500	30,000
April	110, 300	34, 700	49, 800	31,000	68, 200	28, 600
May	108,900	35, 600	44, 400	28, 900	52, 400	24, 600
June	97, 300	36, 900	40,800	27, 700	74, 300	28, 300
July	107,000	35, 700	43,600	26, 300	80,000	28, 200
August		35, 600	53, 100	27,000	89,000	28, 800
September	111, 200	36, 400	59, 900	28, 900	98, 700	31, 000
October	93, 900	36, 300	69,000	30, 400	111, 700	33, 900
November		36,000	78,000	30, 900	117, 500	34, 200
December	56, 900	34, 200	76, 700	31, 400	117, 300	34, 400
Average	99,000	35, 800	56, 600	30, 100	87, 200	30, 300

PRODUCTION BY STATES AND DISTRICTS

Except in Minnesota and New Jersey, the losses sustained in 1938 production were recovered to a considerable extent in 1939; in Maryland and Michigan the 1939 output even slightly exceeded that of 1937. The total output of byproduct coke (exclusive of screenings and breeze) in 1939 was 36 percent greater than in 1938 and 13 percent less than in 1937.

As in previous years, Pennsylvania was the leading producing State, contributing 26 percent of the byproduct-coke output, 78 percent of beehive, and 27 percent of the United States total. Next in importance is Ohio, followed by Indiana, New York, and Alabama, in the order named.

Table 9.—Coke produced, value, number of ovens, coal charged, and average yield in the United States in 1938, by States
[Exclusive of screenings or breeze]

				Byprod	uct					В	eehive			То	tal
State			Coal used	Yield of coke from	Coke pro-	Value of cover			Coal used	Yield of coke from	Coke	Value of c		Coke pro-	Value of coke at
	Plants	Ovens	(net tons)	coal (per- cent)	duced (net tons)	Total	Perton	Ovens	(net tons)	coal (per- cent)	produced (net tons)	Total	Perton	(net tons)	ovens
Alabama	8 1	1, 254 189	4, 762, 433 279, 691	70. 93 66. 79	3, 378, 044 186, 805	\$9, 888, 292	\$2.93 (1) (2)	188	84, 172	65, 01	54, 721	(1)	(1)	3, 378, 044 241, 526 (2)	\$9, 888, 292 (1) (2)
Connecticut Illinois Indiana Kentucky	1 8 5 1	896 1,588 120	2, 587, 012 4, 131, 092 (2)	(2) 67. 05 70. 32 (2) 72. 14	1, 734, 511 2, 904, 779 (2)	11, 706, 788 18, 278, 201	6.75							1, 734, 511 2, 904, 779 (2) 1, 105, 262	11, 706, 788 18, 278, 201 (2)
Maryland Massachusetts Michigan Minnesota	1 2 10 3	361 215 621 196	1, 532, 049 1, 447, 392 2, 519, 488 770, 010	72. 14 70. 42 69. 17 70. 19	1, 105, 262 1, 019, 302 1, 742, 787 540, 447	(1) (1) 10, 135, 722 4, 495, 555	(1) (1) (1) 5. 82 8. 32							1, 019, 302 1, 742, 787 540, 447	(1) 10, 135, 722 4, 495, 555
Missouri New Jersey New York	1 2 8	64 244 978	(2) 1, 402, 239 5, 546, 010	(2) 71.84 71.14	1, 007, 394 3, 945, 358	(2) (1) 23, 529, 138	(2) (1) 5, 96							1, 007, 394 3, 945, 358 3, 699, 995	(2) (1) 23, 529, 138 18, 413, 808
Ohio Pennsylvania Rhode Island Tennessee	1	1, 862 3, 348 65 24	5, 209, 653 10, 399, 653 (2) 110, 798	71. 02 68. 46 (2) 68. 70	3, 699, 995 7, 119, 328 (2) 76, 123	18, 413, 808 30, 070, 706 (2) 480, 336	4. 98 4. 22 (2) 6. 31	7, 567	10,000	63, 00	482, 105 5, 500	\$1, 945, 790 28, 435	\$4.04 5.17	7, 601, 433 (2) 81, 623	32, 016, 496 (2) 508, 771
Utah Virginia Washington	1	56	228, 175	58. 08	132, 513	(1)	(1)	93 1, 312 58	15, 667 234, 765	48. 94 57. 04	7, 668 133, 905	645, 630 675, 969	4. 82 4. 40	140, 181 133, 905 1, 500, 247	(1) 645, 630 4, 820, 199
West Virginia Wisconsin Combined States Undistributed	4 2	387 195	1, 980, 047 (2) 2, 360, 602	68. 02 (3) 72. 82	1, 346, 734 (3) 1, 719, 021	4, 144, 230 (2) 11, 755, 364 20, 580, 899	3. 08 (2) 6. 84 5. 96	1, 458	250, 019	61. 40	153, 513	406, 971	6. 52	1,719,021	(2) 11, 755, 364 20, 987, 870
O naistributea	87	12, 724	45, 266, 344	69. 94	31, 658, 403	163, 479, 039	5. 16	10, 816	1, 359, 876	61. 58	837, 412	3, 702, 795	4.42	32, 495, 815	167, 181, 834

¹ Included under "Undistributed."

Included under "Combined States."

Table 9A.—Coke produced, value, number of ovens, coal charged, and average yield in the United States in 1939, by States
[Exclusive of screenings or breeze]

				Byprod	uct					В	eehive			Т	otal
State	Plants	Ovens	Coal used	Yield of coke from	Coke pro-	Value of c		Ovens Coal used			Coke	Value of over		Coke pro-	Value of
			(net tons)	coal (per- cent)	(net tons)	Total	Perton	Ovens	(net tons)	coal (per- cent)	(net tons)	Total	Perton	(net tons)	coke at ovens
Alabama Colorado Connecticut Illinois Indiana Kentucky Maryland Massachusetts Michigan Minnesota Missouri New Jersey New York Ohio Pennsylvania Rhode Island Tennessee Utah Virginia Washington West Virginia Wisconsin Combined States Undistributed	8 1 1 1 9 5 1 1 2 2 10 3 3 1 1 2 8 8 15 5 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 254 189 61 1916 1, 728 120 361 215 747 196 64 244 978 1, 862 3, 348 65 24 56	5, 427, 742 602, 787 (2) 2, 765, 927 6, 942, 767 (2) 166, 522 1, 494, 835 3, 505, 312 710, 910 1, 412, 019 6, 279, 848 8, 631, 389 15, 999, 842 (2) 108, 832 324, 100 	71. 01 66. 03 (2) 68. 12 70. 26 (2) 88. 70. 72 69. 34 69. 92 (2) 71. 05 68. 71 (2) 73. 00 58. 38	3, 854, 505 398, 033 (2) 1, 884, 240 4, 878, 033 (2) 1, 578, 973 1, 057, 158 2, 430, 688 497, 079 1, 003, 197 4, 468, 437 6, 135, 949 10, 994, 259 79, 448 189, 194	\$10, 917, 559 (1) (1) (2) 11, 963, 932 28, 532, 944 (1) (1) 12, 408, 881 3, 684, 811 (2) (2) 525, 526, 646 28, 502, 924 44, 214, 472 (2) 527, 535 (1) 11, 757, 652 24, 138, 507	\$2, 83 (1) (2) (6, 35 5, 85 (2) (1) (5, 11 7, 41 (2) (1) 5, 71 4, 65 4, 02 (2) (3) 6, 64 (1) 2, 68 (2) 6, 64 (1)	7, 836 140 50 1, 312 58 1, 350	1,775,307 13,825 290,676 131,082			(1) \$4,801,086 (1) 783,512 417,830	\$4.26 (1) 4.74 4.75	3, \$54, 505 454, 869 1, 884, 240 4, 878, 033 (2) 1, 578, 973 1, 057, 158 2, 430, 688 497, 079 1, 003, 197 1, 003, 197 4, 468, 437 6, 135, 949 12, 120, 225 79, 448 197, 526 165, 317 1, 686, 070 (2) 1, 884, 927	\$10, 917, 559 (1) 11, 963, 932 28, 532, 944 (2) 12, 408, 881 3, 684, 811 (1) 25, 526, 646 28, 502, 924 49, 015, 558 527, 535 (2) 783, 512 4, 699, 840 11, 757, 652
	88	13, 010	61, 215, 899	70. 05	42, 882, 313	206, 457, 873	4. 81	10, 934	2, 297, 785	62. 86	1, 444, 328	423, 749 6, 426, 177	6. 50 4. 45	44, 326, 641	24, 562, 256 212, 884, 050

¹ Included under "Undistributed."

^{&#}x27;Included under "Combined States."

Table 10.—Byproduct and beehive coke produced in the United States, 1918 and 1936-39, by States, in net tons

[Exclusive of screenings or breeze]

State	1918	1936	1937	1938	1939
Byproduct:					
Alabama	2, 634, 451	3, 089, 622	4, 259, 771	3, 378, 044	3, 854, 505
Colorado	230, 663	337, 341	486, 945	186, 805	398, 033
Connecticut		(1)	(1)	(1)	(1)
Illinois	2, 285, 610	2, 082, 516	2, 998, 663	1, 734, 511	1, 884, 240
Indiana	3, 898, 215	5, 449, 755	5, 467, 061	2, 904, 779	4, 878, 033
Kentucky	517, 749	(1)	(1)	(1)	(1)
Maryland	474, 368	1, 217, 039	1, 513, 651	1, 105, 262	1, 578, 973
Massachusetts	556, 397	1, 108, 219	1, 130, 620	1, 019, 302	1, 057, 158
Michigan	(1)	2, 293, 653	2, 283, 518	1, 742, 787	2, 430, 688
Minnesota	784, 065	521, 518	704, 631	540, 447	497, 079
Missouri	(1)	(1)	(1)	(1)	(1)
New Jersey	682, 148	1, 007, 500	1, 015, 073	1, 007, 394	1, 003, 197
New York	1, 069, 587	4, 835, 921	4, 946, 964	3, 945, 358	4, 468, 437
Ohio	5, 226, 334	6, 242, 300	6, 737, 881	3, 699, 995	6, 135, 949
Pennsylvania	4, 586, 981	12, 570, 816	13, 701, 262	7, 119, 328	10, 994, 254
Rhode Island	:::::::	(1)	(1)	(1)	(1)
Tennessee	124, 469	83, 305	89, 451	76, 123	79, 448
Utah		124, 346	149, 659	132, 513	189, 194
Washington	30, 129	28, 368	14, 656		
West Virginia	603, 393	1, 702, 792	1, 817, 993	1, 346, 734	1, 598, 198
Wisconsin	(1)	(1)	(1)	(1)	(1)
Combined States	2, 293, 021	1, 874, 110	1, 892, 949	1, 719, 021	1, 834, 927
	25, 997, 580	44, 569, 121	49, 210, 748	31, 658, 403	42, 882, 313
Reehive:					
Alabama	1, 717, 721				
Colorado	758, 784	61, 293	64, 222	54, 721	56, 836
Georgia	22, 048				
Kentucky	301, 036				
New Mexico	597, 072				
Ohio	138, 909				
Oklahoma	(1)				
Pennsylvania	22, 136, 664	1, 213, 294	2, 559, 048	482, 105	1, 125, 971
Tennessee	302, 637	3, 567	14, 982	5. 500	
Utah	(1)	5, 617	6, 657	7, 668	8, 332
Virginia	1, 234, 256	191, 331	240, 425	133, 905	165, 317
Washington	93, 659	312			
West Virginia	2, 716, 613	230, 649	279, 387	153, 513	87, 872
Combined States	461, 393				
	30, 480, 792	1, 706, 063	3, 164, 721	837, 412	1, 444, 328
Grand total	56, 478, 372	46, 275, 134	52, 375, 469	32, 495, 815	44, 326, 641

¹ Included under "Combined States."

Table 11.—Byproduct and beehive coke produced in Pennsylvania, 1938-39, by districts

[Number of plants and ovens includes those idle during the year]

District	Plants	Ovens	Coal used	Yield of coke from coal	Coke pro- duced	Value of o	
			(Het tons)	(percent)	(net tons)	Total	Per ton
1938							
Byproduct:	} .						
Eastern Pennsylvania 1 Western Pennsylvania 2	5 7	734 2, 614	2, 176, 790 8, 222, 863	69. 45 68. 19	1, 511, 857 5, 607, 471	\$9, 425, 789 20, 644, 917	\$6. 23 3. 68
	12	3, 348	10, 399, 653	68.46	7, 119, 328	30, 070, 706	4. 22
Beehive:							
Allegheny Mountain and						•	· .
Allegheny Valley	2	242	38, 777	55. 59	21, 556	114, 462	5. 31
Connellsville	20	2,971	167, 366	63. 73	106, 669	399, 034	3. 74
Lower Connellsville	17	2, 570 728	248, 202	66, 25 63, 73	164, 431 41, 424	622, 974 186, 942	3.79 4.51
Upper Connellsville Pittsburgh and other dis-	5	128	65, 003	05. 75	41, 424	100, 842	4.01
tricts 3	6	1,056	245, 905	60. 20	148, 025	622, 378	4. 20
	50	7, 567	765, 253	63.00	482, 105	1, 945, 790	4. 04
Grand total	62	10, 915	11, 164, 906	68. 08	7, 601, 433	32, 016, 496	4. 21
1939							
Byproduct:							
Eastern Pennsylvania 1	5	734	2, 628, 745	70.31	1,848,399	11, 422, 918	6.18
Western Pennsylvania 2	7	2, 614	13, 371, 097	68. 40	9, 145, 864	32, 791, 554	3. 59
	12	3, 348	15, 999, 842	68. 71	10, 994, 254	44, 214, 472	4.02
D. 1.2							
Beehive: Allegheny Mountain and							
Allegheny Valley	2	242	43, 886	51, 27	22, 502	123, 311	5, 48
Connellsville	27	3, 186	685, 777	65, 61	449, 967	1, 855, 956	4. 12
Lower Connellsville	15	2,506	622, 631	63. 99	398, 405	1, 727, 290	4.34
Upper Connellsville	5	728	47, 685	65. 86	31, 407	122, 849	3. 91
Pittsburgh and other dis-							
tricts 3	6	1, 174	375, 328	59. 60	223, 690	971, 680	4. 34
	55	7, 836	1, 775, 307	63. 42	1, 125, 971	4, 801, 086	4. 26
Grand total	67	11, 184	17, 775, 149	68. 19	12, 120, 225	49, 015, 558	4. 04
	1	<u> </u>	<u> </u>	1		<u>' </u>	!

Table 12.—Byproduct coke produced in Ohio, 1938-39, by districts

District	Plants	Ovens Coal used		Yield of coke from	Coke pro- duced	Value of cover	
District	1 202105	0.1020	(net tons)	coal (percent)	(net tons)	Total	Per ton
1938							
Canton, Cleveland, and Massillon	5 3 7	595 602 665	1, 160, 421 1, 347, 949 2, 701, 283	70.86 69.38 71.91	822, 248 935, 207 1, 942, 540	\$4, 140, 148 4, 196, 309 10, 077, 351	\$5. 04 4. 49 5. 19
	15	1,862	5, 209, 653	71, 02	3, 699, 995	18, 413, 808	4.98
1939							
Canton, Cleveland, and Massillon	5 3 7 ——————————————————————————————————	595 602 665 1,862	2, 356, 096 2, 466, 038 3, 809, 255 8, 631, 389	70. 90 70. 49 71. 59 71. 09	1, 670, 575 1, 738, 227 2, 727, 147 6, 135, 949	7, 889, 660 7, 339, 136 13, 274, 128 28, 502, 924	4.72 4.22 4.87 4.65

¹ Includes plants at Hamilton, Ironton, Lorain, Painesville, Portsmouth, Toledo, and Warren.

Includes plants at Bethlehem, Chester, Philadelphia, Steelton, and Swedeland.
 Includes plants at Aliquippa, Clairton, Erie, Johnstown, Midland, Neville Island, and Pittsburgh.
 Includes Bedford and parts of Indiana and Westmoreland Counties.

NUMBER AND TYPE OF OVENS

In the byproduct branch of the coke industry 286 new byproduct ovens were completed and put into operation during 1939; of these, 20 were in Illinois, 140 in Indiana, and 126 in Michigan. At the close of the year no ovens were reported under construction, and none had been abandoned; the number in existence at the 88 plants totaled about 13.010.

Beehive coke ovens have been dismantled steadily during the past 3 decades and in 1937 were exceeded in number by byproduct ovens for the first time. In 1910 there were 100,362 beehive ovens; in 1920, 75,298; and in 1930, 23,907. In 1939, only 10,934 remained. Byproduct ovens rose during the same period from 4,078 in 1910 to 10,881 in 1920, to 12,831 in 1930, and 13,010 in 1939, the net change during the past 9 years being slight. There is of course no basis of comparison between a byproduct and a beehive oven with respect to operating capacity, but the figures show the changing trend of coking practices.

The 76 beehive coke plants in existence at the close of 1939 comprised 10,934 ovens. Fifty-eight plants with a total of 8,857 ovens were active. The survey, inaugurated in 1938, covering the average number of ovens active during each month, was continued, and showed a high of 6,408 in November and a low of 990 in April. The average for the year was 2,711 ovens compared with 1,846 in 1938.

Table 13.—Coke ovens completed and abandoned in the United States, 1938-39, and total number in existence at end of year, by States

resident of the second of the					Ovens			
State	Plants in ex- istence	In exist	ence Dec. 31]	New	Aban-	Under tion	construc- Dec. 31
	Dec. 31	Num- ber	Capacity per day (net tons of coke)	Num- ber	Capacity per day (net tons of coke)	doned during year	Num- ber	Capacity per day (net tons of coke)
1938								
Byproduct:								
Alabama	- 8	1, 254	14, 654					
Colorado Connecticut	1	189	2,916	41	710	1		
Illinois	1 8	61 896	(1) 12, 352				20	
Indiana.	5	1. 588	21, 413			19	20	186
Kentucky	i	120	(1), 110	12	(1)	19		
Maryland	1	361	`ź, 088					
Massachusetts	2	215	3, 553					
Michigan	10	621	7, 617	65	1,275	120	126	2, 359
Minnesota Missouri	3	196 64	2, 572					
New Jersey	1	244	(1) 2, 793	5	(1)			
New York	2 8	978	14, 750	٥	(1)			
Ohio	15	1,862	25, 397	2 84	² 1. 440	61		
Pennsylvania	12	3, 348	41, 895		-,			
Rhode Island	1	65	(1)					
TennesseeUtah	1	24	473					
West Virginia	1	56 387	705 5, 383					
Wisconsin	4 2	195	(1)					
Undistributed			6, 307		190			
	87	12, 724	167, 868	207	3, 615	201	146	2, 545
At merchant plants	41	3, 417	42, 487	17	190	19	20	186
At furnace plants	46	9, 307	125, 381	190	3, 425	182	126	2, 359

See footnotes at end of table.

Table 13.—Coke ovens completed and abandoned in the United States, 1938–39, and total number in existence at end of year, by States—Continued

					Ovens			
State	Plants in ex- istence	In exist	ence Dec. 31		New	Aban-		construc- Dec. 31
	Dec. 31	Num- ber	Capacity per day (net tons of coke)	Num- ber	Capacity per day (net tons of coke)	doned during year	Num- ber	Capacity per day (net tons of coke)
1938—Continued								
Beehive:								
Colorado	2	188	1	1				
Pennsylvania	50	7, 567				534		
Tennessee	2	140	11					
Utah	1	93]		726		
Virginia	7	1, 312	(8)	K				
Washington	1	58	1					
West Virginia	9	1, 458	11			1		
	72	10, 816				1, 261		
	14	10, 610	/	1		1, 201		
1939								
D					-			
Byproduct: Alabama	8	1, 254	14, 654					
Colorado	î	1, 234	2, 916					
Connecticut	î	61	(1)					
Illinois.	9	916	12, 547	20	195			
Indiana	5	1,728	23, 557	140	2, 120			
Kentucky Maryland	1	120	(1)					
Maryland	1	361	5, 088					
Massachusetts	2	215	3, 553					
Michigan	10	747	9, 992	126	2, 292			
Minnesota	3	196	2, 572					
Missouri New Jersey	2	64 244	2, 793					
New York	8	978	14, 738					
Ohio	15	1, 862	25, 397					
Pennsylvania	12	3, 348	41, 917					
Rhode Island	1	65	(1)					
Tennessee	1	24	360					
Utah	1	56	705					
West Virginia	4	387	5, 511					
Wisconsin	2	195	(1)					
Undistributed			6, 179					
•	88	13, 010	172, 479	286	4,607			
		0.405	40 505					
At merchant plants At furnace plants	42 46	3, 437 9, 573	42, 581 129, 898	20 266	195			
At furnace plants	40	9, 575	129, 898	200	4, 412		-	
Beehive:								
Colorado	2	188	1	1				
Pennsylvania	55	7, 836	11	244	(3)	310	4	(3)
Tennessee	2	140	H					
Utah	1	50	11			43		
Virginia	7	1, 312	(3)	{				
Washington	1	58	11					
West Virginia	8	1, 350				100		
	76	10, 934	(1	244	(3)	453		

¹ Included under "Undistributed."
2 Includes 69 new ovens, 1,150 tons capacity, replacing 61 old ovens reported as abandoned.
3 Data not available.

Table 14.—Beehive ovens active in the United States in 1939, by months

Month	Number	Month	Number	Month	Number
January February March April	1,642 1,725 1,541 990	May	1, 239 1, 418 1, 223 1, 307	September October November December	3, 076 5, 909 6, 408 6, 048

Table 15.—Byproduct ovens of each type in the United States at end of 1938 and 1939, by States

State	Kop- pers 1	Semet- Solvay	Wil- putte	Cambria	Roberts Mor- rissey	Ameri- can Foun- dation	All others 2	Total
1938								
Alabama	774	420	60					1, 254
Colorado	189							189
Connecticut	61							61
Illinois	662	120 161	88 260				26	896
Indiana	1, 107	120	200					1, 588 120
Kentucky Maryland	361	120						361
Massachusetts	160		55					215
Michigan	253	281					87	621
Minnesota	196							196
Missouri	56						8	64
New Jersey	244							244
New York	743	180				55		978
Ohio	1, 569	293	97					1, 862
Pennsylvania	3, 018 65	88	97	120	25			3, 348
Rhode Island	00	24						65 24
Tennessee Utah	56	24						56
West Virginia	316		71					387
Wisconsin	115	80						195
	10.005	1 707	631	120	25		101	10.704
	10,005	1, 767	031	120		55	121	12, 724
At merchant plants	1,924	1,046	246		25	55	121	3, 417
At furnace plants	8, 081	721	385	120				9, 307
1939 Alabama	774	420	60				1	1 054
Colorado	189	420	90					1, 254 189
Connecticut	61							61
Illinois	662	120	88				46	916
Indiana	1, 167	161	400					1, 728
Kentucky		120						120
Maryland	361							361
Massachusetts	160		55					215
Michigan	314	346					87	747
Minnesota	196						8	196
Missouri	56 244						•	64 244
New Jersey	743	180				55		978
New York Ohio	1, 569	293				30		1. 862
Pennsylvania	3, 018	88	97	120	25			3, 348
Rhode Island	65							65
Tennessee		24						24
Utah	56							56
XX7 4 X72	316		71					387
west virginia	115	80						195
West Virginia Wisconsin								
West Virginia Wisconsin	10, 066	1, 832	771	120	25	55	141	13, 010
Wisconsin		1, 832	771	120		55	141	3, 437

Includes the Koppers-Becker type.
 Includes 26 Curran-Knowles, 27 Parker-Russell, 60 Improved Equipment Co., and 8 Piette ovens in 1938 and 46 Curran-Knowles, 27 Parker-Russell, 60 Improved Equipment Co., and 8 Piette ovens in 1939.

CAPACITY OF BYPRODUCT OVENS

The reported maximum capacity of the byproduct ovens in existence is seldom attained, for various practical reasons that may be due to operating, economic, or labor conditions. It has been stated that the efficient life of a coke oven is limited to 20 years, as radiation losses after that period are high; other claims have been made that ovens built 25 years ago still can operate efficiently. Had it not been for the depression years much replacement building probably would have been done. The closing of ovens over an extended period added to their life and made replacement unnecessary in many instances.

The maximum daily capacity of the 88 byproduct coke plants in existence December 31, 1939, was 172,479 tons compared with 167,868 tons for the 87 plants at the end of 1938. The daily capacity at the 42 merchant plants was 42,581 tons, an average of 1,014 tons per plant, while at the 46 furnace plants the capacity was 129,898 tons (2,824) tons per plant); the furnace plants as a rule carry larger batteries of ovens.

Production of byproduct coke in 1939 was 69 percent of the calculated capacity of all byproduct ovens compared with 51 percent in 1938 and 91 percent in the peak year 1929. Furnace plants operated at 68 percent of capacity, while merchant plants operated at 72 percent.

Table 16.—Estimated annual potential production of coke and coal required for charge of byproduct coke overs in the United States, 1938-39, when operated at different percentages of maximum capacity, in millions of net tons

		19	1939 1				
Percent of maximum capacity	Ovens co	mpleted	Includir	ng ovens	Ovens completed		
	Dec.	31	under cor	astruction	Dec. 31		
	Coke	Coal 2	Coke	Coal 2	Coke	Coal 2	
100	61. 3	87. 6	62. 2	88. 9	63. 0	90. 0	
	55. 2	78. 8	56. 0	80. 0	56. 7	81. 0	
	52. 1	74. 5	52. 9	75. 6	53. 6	76. 5	
	46. 0	65. 7	46. 7	66. 7	47. 3	67. 5	
	30. 7	43. 8	31. 1	44. 5	31. 5	45. 0	

¹ No ovens under construction at end of 1939.

² Coal for charge estimated on basis of 70-percent yield in coke.

Table 17.—Relationship (percent) of production to maximum capacity at byproduct coke plants in the United States, 1929 and 1936-39, by months

Month	1929	1936	1937	1938	1939	Month	1929	1936	1937	1938	1939
JanuaryFebruaryMarchAprilMayJuneJuly	88. 6 91. 3 93. 0 92. 8 94. 0 93. 9 93. 0	62. 4 63. 3 61. 5 67. 6 70. 8 72. 1 71. 5	83. 0 83. 5 84. 9 84. 9 84. 6 78. 6 83. 2	52. 4 52. 3 50. 7 47. 7 43. 2 40. 4 41. 3	62. 8 63. 5 64. 1 56. 2 44. 4 59. 2 64. 4	AugustSeptemberOctoberNovemberDecemberThe year	93. 6 91. 9 92. 3 89. 0 83. 1	74. 2 76. 0 78. 1 80. 3 83. 4 71. 6	86. 0 86. 1 76. 0 62. 8 53. 1	47. 3 52. 4 57. 9 63. 3 62. 8	70. 2 77. 2 86. 6 90. 3 89. 7

QUANTITY AND COST OF COAL CHARGED

Although the quantity of coal used in the manufacture of coke has fluctuated widely during the past decade, the proportion of the total output of bituminous coal carbonized each year has remained remarkably constant, ranging from 10.3 to 16.8 percent during the past 10 years. In 1939, coke ovens consumed 63,513,684 tons—about 16 percent of the total output of bituminous coal. Of this quantity, 61,215,899 tons were used in byproduct ovens.

The cost of coal constitutes the chief item of expense in the manufacture of coke. In 1939 the cost of raw coal f. o. b. ovens ranged from \$1.81 in Virginia, where all the coke is made in beehive ovens at the mines, to \$5.49 in Minnesota, where the cost includes heavy

freight charges from distant mines.

The average cost of coal in byproduct ovens in 1939 was \$3.75 a ton, and the cost of the coal equivalent of 1 ton of merchantable coke was \$5.36. The corresponding figures for beehive coke were \$1.99 and \$3.16, respectively.

Table 18.—Coal consumed in coke ovens in the United States, 1937-39, by months in net tons

		1937	:	1938			1939			
Month	Byprod- uct	Beehive	Total	Byprod- uct	Beehive	Total	Byprod- uct	Beehive	Total	
January February March April May June July September October November December	6, 198, 700 5, 679, 900 6, 387, 000 6, 183, 800 6, 368, 500 5, 729, 200 6, 217, 200 6, 220, 700 5, 664, 800 4, 527, 000 3, 972, 800	458, 500 556, 800 480, 800 509, 700 430, 500 441, 700 401, 100 392, 800 351, 600 264, 000 212, 700	6, 138, 400 6, 943, 800 6, 664, 600 6, 878, 200 6, 159, 700 6, 658, 900 6, 826, 900 6, 613, 500 4, 791, 000 4, 185, 500	3, 560, 700 3, 818, 100 3, 477, 500 3, 255, 500 3, 104, 000 3, 555, 600 3, 792, 600 4, 386, 700 4, 650, 100 4, 770, 500	153, 200 117, 600 92, 000 81, 500 68, 700 78, 900 87, 700 99, 700 109, 100 122, 400	3, 725, 400 3, 971, 300 3, 595, 100 3, 347, 500 3, 030, 100 3, 172, 700 3, 634, 500 3, 880, 300 4, 486, 400 4, 759, 200	4, 377, 200 4, 890, 000 4, 143, 400 3, 407, 500 4, 392, 300 4, 782, 900 5, 214, 200 5, 556, 700 6, 446, 900 6, 503, 500 6, 716, 100	116, 800 113, 200 32, 700 40, 900 85, 400 72, 700 123, 900 421, 200 570, 500 516, 800	5, 003, 200 4, 176, 100 3, 448, 400 4, 477, 700 4, 859, 200 5, 286, 900 5, 680, 600 6, 868, 100 7, 074, 000 7, 232, 900	

Table 19.—Total quantity and value at overs of coal used in manufacture of coke in the United States, 1938-39, by States

	Coal used	Cost of c	oal	Coal per cok	ton of
State	(net tons)	Total	Per ton of coal	Net tons	Cost
1938					
Byproduct plants: Alabama	4, 762, 433	\$12, 059, 891	\$2. 53	1.41	\$3. 57
Colorado	279, 691 2, 587, 012 4, 131, 092 1, 532, 049 1, 447, 392	(1)	(1)	1.50	(1) 6. 84
Illinois Indiana	2, 587, 012	11, 862, 615 20, 246, 011	4.59 4.90	1. 49 1. 42	6. 84 6. 96
Maryland	1, 532, 049	(1)	(1)	1.39	(1)
Massachusetts	1, 447, 392	(1)	(1)	1.42	(1)
Michigan	2, 519, 488 770, 010	10, 238, 913 4, 258, 388	4. 06 5. 53	1. 45 1. 42	5. 89 7. 88
Minnesota. New Jersey. New York. Ohio. Pennsylvania.	1, 402, 239	(1)	(1)	1.39	(1) 6. 64
New York	5, 546, 010	26, 098, 012	4.71	1.41	
Pennsylvania	5, 209, 653 10, 399, 653	19, 931, 132 33, 266, 478	3, 83 3, 20	1. 41 1. 46	5. 4° 4. 67
Tennessee	110, 798	370, 546	3. 34	1.46	4, 88
Utah West Virginia	228, 175 1, 980, 047	(1) 4 , 870, 499	(1) 2, 46	1.72 1.47	(1) 3, 62
Connecticut, Kentucky, Missouri, Rhode	1, 500, 011			1.71	
West Virginia Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin Undistributed	2, 360, 602	10, 827, 869 23, 300, 562	4. 59 4. 77	1.37	6. 29 6. 77
	45, 266, 344	177, 330, 916	3.92	1.43	5. 61
At merchant plants	15, 454, 786	71, 317, 182	4, 61	1.41	6, 50
At merchant plants	29, 811, 558	106, 013, 734	3. 56	1.44	5. 13
Beehive plants:					
Colorado and Utah Pennsylvania	99, 839 765, 253	334, 242	3, 35 1, 96	1.60 1.59	5. 36 3. 12
Tennessee	10,000	1, 496, 472 18, 300 433, 239	1.83	1.82	3, 33
Virginia West Virginia	234, 765	433, 239	1.85	1.75	3. 24 3. 31
west virginia	250, 019 1, 359, 876	2, 790, 978	2.03	1,63	3. 32
1939	1, 500, 570	2, 180, 818	2.00		0.02
Byproduct plants:					
Alabama	5, 427, 742	12, 987, 943	2. 39	1.41	3. 37
ColoradoIllinois	2 765 927	(1) 12, 593, 351	(1) 4, 55	1.51 1.47	(1) 6, 69
Illinois Indiana Maryland	602, 787 602, 787 2, 765, 927 6, 942, 767 2, 166, 522 1, 494, 835	32, 468, 533	4.68	1.42	8 6
Maryland Massachusetts	2, 166, 522	i (t)	(1) (1)	1.37 1.41	(1) (1) 5. 88 7. 88
Michigan		14, 295, 364	4.08	1.44	5.88
Michigan Minnesota New Jersey New York Ohio Pennsylvania	710 010	3, 901, 992	5.49	1.43	7.8
New York	1, 412, 019	(1) 28 056 540	(1) 4.61	1.41 1.41	(1) 6. 50
Ohio	1, 412, 019 6, 279, 848 8, 631, 389 15, 999, 842	28, 956, 540 32, 889, 965 46, 896, 676 380, 623	3.81	1.41	5. 37
Pennsylvania	15, 999, 842	46, 896, 676	2.93	1.46	4. 2
Tennessee Utah	108, 832 324, 100	380, 623	3. 50 (1)	1.37 1.71	4.80 (1)
West Virginia	2, 346, 287	5, 476, 936	2.33	1.47	3.4
Connecticut, Kentucky, Missouri, Rhode	2, 496, 780	11 159 941	4.47	1.36	6.08
Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin Undistributed	2, 180, 780	11, 152, 241 27, 786, 449	4.63	1. 30	6. 57
	61, 215, 899	229, 785, 713	3.75	1. 43	5. 36
At merchant plants	15, 512, 875	70, 897, 931	4. 57	1.40	6. 40
	45, 703, 024	158, 887, 782	3. 48	1.44	5. 01
Beehive plants: Colorado and Utah	100 700	225 017	3, 33	1 55	E 14
Pennsylvania	100, 720 1, 775, 307	335, 017 3, 475, 476	1.96	1.55 1.58	5. 16 3. 10
Virginia	290, 676	525, 962	1.81	1.76	3. 19
West Virginia	131, 082	247, 586	1.89	1.49	2.82
	2, 297, 785	4, 584, 041	1.99	1.59	8. 16

¹ Included under "Undistributed."

²⁴⁴⁶¹⁵⁻⁴⁰⁻⁵⁷

Table 20.—Average cost per net ton of coal charged into byproduct coke ovens in the United States, 1929 and 1936-39, by States

State	1929	1936	1937	1938	1939	State	1929	1936	1937	1938	1939
Alabama	\$2. 49 4. 29 4. 61 4. 70 4. 29 5. 04 4. 22 3. 31	4. 43 4. 60 4. 98 4. 28 5. 28 4. 45	4. 62 4. 71 (1) 4. 16 5. 24 4. 55	4. 59 4. 90 (1) 4. 06 5. 53 4. 71	4. 68 (1) 4. 08 5. 49 4. 61	Pennsylvania. Tennessee	\$2. 73 3. 02 5. 26 2. 41 3. 50 5. 04	3. 35 4. 81 2. 37 3. 69	3. 42 4. 87 2. 54 3. 74	3. 34 2. 46 3. 92	3. 75

¹ Bureau of Mines not at liberty to publish data.

PREPARATION AND SOURCE OF COAL

The coal used for coking in Colorado and Tennessee, as well as in certain parts of Alabama, Illinois, New York, Ohio, Pennsylvania, and West Virginia, is washed before it is charged in the ovens. The washing sometimes is done by the operator at the mines and sometimes by the coke producer at the plant. For the country as a whole in 1939, 26 percent of the coal used in byproduct ovens and 21 percent of that in beehive ovens was washed before charging. In 1938, 30 percent of the coal for byproduct ovens and 31 percent of that for beehive ovens was washed.

Table 21.—Washed and unwashed coal used in the manufacture of byproduct and beehive coke in the United States, 1938-39, by States in which used, in net tons

State	Washed	Unwashed	Total
1938			
Byproduct plants: Alabama Colorado	4, 632, 422 279, 691	130, 011	4, 762, 433 279, 691
Illinois Indiana	509, 938	2, 077, 074 4, 131, 092	2, 587, 012 4, 131, 092
Maryland Massachusetts		1, 532, 049 1, 447, 392	1, 532, 049 1, 447 392
Michigan Minnesota		2, 519, 488 770, 010	2, 519, 488 770, 010
New Jersey New York Ohio	713, 888 897, 596	1, 402, 239 4, 832, 122 4, 312, 057	1, 402, 239 5, 546, 010 5, 209, 653
PennsylvaniaTennessee.	5, 825, 378	4, 574, 275	10, 399, 653 110, 798
Utah West Virginia	535, 006	228, 175 1, 445, 041	228, 175 1, 980, 047
Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin	18, 269	2, 342, 333	2, 360, 602
	13, 522, 986	31, 743, 358	45, 266, 344
At merchant plants	1, 199, 778 12, 323, 208	14, 255, 008 17, 488, 350	15, 454, 786 29, 811, 558
Beehive plants: Colorado	84, 172		84, 172
Pennsylvania Tennessee	333, 686 10, 000	431, 567	765, 253 10, 000
Utah Virginia West Virginia		15, 667 234, 765 250, 019	15, 667 234, 765 250, 019
	427, 858	932, 018	1, 359, 876

Table 21.—Washed and unwashed coal used in the manufacture of byproduct and beehive coke in the United States, 1938-39, by States in which used, in net tons—Continued

State	Washed	Unwashed	Total
1939			
Byproduct plants:			
Alabama		3, 646	5, 427, 742
Colorado	602, 787	0.000 570	602, 787
Illinois		2, 226, 570	2, 765, 927 6, 942, 767
Indiana		6, 942, 767 2, 166, 522	2, 166, 522
Maryland Massachusetts		2, 100, 522 1, 494, 835	2, 100, 322 1, 494, 835
Massachusetts		3, 505, 312	3, 505, 312
Michigan Minnesota		710, 910	710, 910
New Jersey		1, 412, 019	1, 412, 019
New York		5, 499, 975	6, 279, 848
Ohio		7, 353, 819	8, 631, 389
Pennsylvania		9, 677, 205	15, 999, 842
Tennessee		0, 0, 200	108, 832
Utah	1	324, 100	324, 100
West Virginia.	775, 998	1, 570, 289	2, 346, 287
Connecticut, Kentucky, Missouri, Rhode Island,		, ,	, ,
and Wisconsin	38, 232	2, 458, 548	2, 496, 780
	15, 869, 382	45, 346, 517	61, 215, 899
At merchant plants	1, 204, 895	14, 307, 980	15, 512, 875
At furnace plants	14, 664, 487	31, 038, 537	45, 703, 024
Beehive plants:			
Colorado	86, 895		86, 895
Pennsylvania	382, 297	1, 393, 010	1, 775, 307
Utah		13, 825	13, 825
Virginia		290, 676	290, 676
West Virginia	14, 502	116, 580	131, 082
	483, 694	1, 814, 091	2, 297, 785

Pennsylvania and West Virginia are the leading sources of coal used in byproduct coke manufacture. In 1938 each of these States supplied approximately 38 percent; in 1939 Pennsylvania led with 42 percent followed by West Virginia with 36 percent. Next in order of importance are Kentucky and Alabama with 10 and 9 percent, respectively, and Virginia with 2 percent. Colorado and Utah together furnished nearly a million tons of coal for that purpose in 1939, and smaller tonnages were obtained from Illinois, Ohio, and Tennessee.

Table 22.—Coal used in manufacture of byproduct coke in the United States, 1938–39, by fields of origin, in net tons

[Based upon detailed reports from each coke plant. The difference between these totals and those shown in tables 1, 9, 19, etc., is due to change in stock, loss of weight in handling, and the fact that these sometimes represent purchases during the year rather than actual consumption]

State and district where coal was pro- duced	Total used	States where coal was consumed—in order of importance
1938	4 770 040	47-1
Alabama Colorado:		Alabama.
Canon, Crested Butte, and Walsen	52, 830 228, 465	Colorado. Do.
Illinois: Franklin County	106, 667	Illinois.
Kentucky, Eastern: Elkhorn (including Hazard)	1, 504, 735	Indiana, Michigan, New York, New Jersey, Ken tucky, Minnesota, Missouri, Ohio, Illinois, and
Harlan Kenova-Thacker ¹	2, 415, 488 1, 160, 615	Wisconsin. Indiana, Illinois, Ohio, Minnesota, and Michigan Michigan, Ohio, Wisconsin, New York, Wes Virginia, and Missouri.
Miscellaneous	31, 621	Missouri, indiana, and Onio.
OhioPennsylvania:	238	Ohio.
Central Pennsylvania: Medium-volatile	570, 855	New York and Pennsylvania.
Low-volatile	736, 966	Pennsylvania and New York.
Connellsville	7, 681, 177	Pennsylvania, Ohio, West Virginia, Illinois, Min- nesota, Michigan, and New York.
Freeport	1, 267, 950	West Virginia, Ohio, New York, Pennsylvania, and Michigan
Pittsburgh	6, 375, 832	Pennsylvania, New York, Ohio, Michigan, Illi- nois, Minnesota, and Wisconsin. Pennsylvania and West Virginia.
Somerset Westmoreland	266, 965 468, 591	Pennsylvania and West Virginia. Maryland, New York, and Pennsylvania.
'ennessee	79, 695	Tennessee.
Jtah: Carbon County	228, 175	Utah.
and the second of the second o	315, 682	New Jersey, New York, Pennsylvania, and Massa chusetts.
West Virginia: ³ Coal and Coke ³ Kanawha and Logan (including Coal River).	149, 628 6, 857, 522	Pennsylvania, Minnesota, and New York. Massachusetts, Ohio, Illinois, New York, Indiana, New Jersey, Michigan, West Virginia, Pennsyl vania, Wisconsin, Kentucky, Connecticut, Min- nesota, Rhode Island, and Missouri. New York, New Jersey, Connecticut, Massachu- setts, and Pennsylvania. New York, Massachusetts, New Jersey, Illinois, Rhode Island, West Virginia, Minnesota, Ken- tricky: and Missouri.
New River, high-volatile	923, 805	New York, New Jersey, Connecticut, Massachusetts, and Pennsylvania.
New River, low-volatile (including Winding Gulf).	1, 539, 972	New York, Massachusetts, New Jersey, Illinois Rhode Island, West Virginia, Minnesota, Ken- tucky, and Missouri.
Northern	2, 035, 601	Maryland, Pennsylvania, Ohio, West Vriginia,
Pocahontas 3	5, 871, 901	Indiana, Ohio, New York, Michigan, Illinois, Wis consin, Maryland, Pennsylvania, Minnesota, Kentucky, Connecticut, Alabama, Missouri, Massachusetts, Tennessee, and West Virginia.
Webster-Gauley Miscellaneous	209, 537 10, 316	Pennsylvania and Massachusetts. Indiana.
	45, 843, 671	
1939		•
Alabama	5, 283, 591	Alabama.
Canon, Crested Butte, and Walsen	97, 022	Colorado.
Trinidadllinois: Southern	97, 022 507, 273 124, 491	Do. Illinois and Missouri.
Kentucky, Eastern: Elkhorn (including Hazard)	1, 516, 089	
Harlan	3, 310, 488	Indiana, New York, New Jersey, Ohio, Michigan Minnesota, Illinois, Wisconsin, and Kentucky Indiana, Illinois, Ohio, Minnesota, Michigan, New
Kenova-Thacker 4	1, 406, 177	York, and Wisconsin. Michigan, Ohio, Wisconsin, West Virginia, New York, and Missouri.
Miscellaneous	10, 679 1, 296	Missouri, Ohio, and Indiana. Ohio.

Table 22.—Coal used in manufacture of byproduct coke in the United States, 1938-39, by fields of origin, in net tons—Continued

State and district where coal was produced	Total used	States where coal was consumed—in order of importance
1939—Continued		
Pennsylvania:		
Central Pennsylvania:	İ	
Medium-volatile	523, 153	New York and Pennsylvania.
Low-volatile	1, 123, 597	Pennsylvania and New York.
Connellsville	1 ' '	Pennsylvania, Ohio, West Virginia, New York, Illinois, and Minnesota.
Freeport	1, 354, 891	West Virginia, Ohio, Michigan, New York, and Pennsylvania.
Pittsburgh	8, 675, 795	Pennsylvania, New York, Ohio, Michigan, Illi- nois and Wisconsin.
Somerset	471, 923	Pennsylvania and West Virginia.
Westmoreland	485, 505	Maryland, New York, Minnesota, Ohio, and Wis- consin.
Miscellaneous.	37,000	Pennsylvania.
Tennessee		Tennessee.
Utah: Carbon County		Utah.
Virginia: Southwestern 3	758, 998	Michigan, New Jersey, Ohio, Illinois, Minnesota, New York, and Pennsylvania.
West Virginia: 2 4		
Coal and Coke 3	199, 327	Pennsylvania, Minnesota, and New York.
Kanawha and Logan	7, 228, 279	Massachusetts, Ohio, Illinois, Indiana, New York Kentucky, West Virginia, Michigan, New Jersey Wisconsin, Pennsylvania, Connecticut, Rhod Island, Minnesota, and Missouri.
New River, high-volatile	1, 266, 674	New York, New Jersey, Connecticut, Massachu setts, Michigan, and Pennsylvania.
New River, low-volatile (including Winding Gulf).	2, 006, 606	New York, Massachusetts, New Jersey, Illinois Maryland, Michigan, Missouri, Rhode Island Pennsylvania, Kentucky, West Virginia, Min nesota, and Ohio.
Northern	3, 103, 359	Maryland, Pennsylvania, Ohio, Michigan, West
Pocahontas 3	8, 936, 553	Maryland, Pennsylvania, Ohio, Michigan, West Virginia, New York, and Massachusetts Indiana, Ohio, New York, Michigan, Illinois, Maryland, Pennsylvania, Wisconsin, Minne- sota, Kentucky, Connecticut, Massachusetts, Alabama, Tennessee, and West Virginia.
Webster-Gauley	133, 557	Pennsylvania.
	62, 062, 052	
	l	

Coal from the extension of Thacker field in Virginia is included under Kenova-Thacker (Kentucky).
 Coal from the extension of the Pocahontas field in Virginia is included under Pocahontas (West Virginia).
 Includes coal from all Bituminous Coal Division field 24a-b-c except Webster-Gauley.
 Coal from the extension of Thacker field in West Virginia is included under Kenova-Thacker (Kentucky).

Table 23.—Coal used in the manufacture of byproduct coke in the United States, 1938-39, by States where produced and consumed, and by merchant and furnace plants, in net tons

	Coal produced in—													
State where coal was used	Alabama	Colorado	Illinois	Kentucky	Ohio	Pennsyl- vania	Tennes- see	Utah	Virginia	West Virginia	Total			
1938														
Alabama: Merchant plantsFurnace plants	612, 297 4, 140, 545									80, 800 7, 104	693, 097 4, 147, 649			
Total Alabama Colorado: Furnace plants	4, 752, 842	281, 295								87, 904	4, 840, 746 281, 295			
Illinois: Merchant plants				109, 118 388, 343		78, 389 407, 660				1, 327, 648 121, 341	1, 621, 822 917, 344			
Total Illinois			106, 667	497, 461		486, 049				1, 448, 989	2, 539, 166			
Indiana: Merchant plantsFurnace plants				2, 101, 029					172, 272	570, 207 1, 401, 076	570, 207 3, 674, 377			
Total Indiana. Maryland: Furnace plants. Massachusetts: Merchant plants.		į.	1	ł .	1	319, 399			172, 272 1, 443	1, 971, 283 1, 247, 091 1, 445, 431	4, 244, 584 1, 566, 490 1, 446, 874			
Michigan: Merchant plants Furnace plants				287, 362		186, 090 28, 717			(1)	893, 269 210, 820	² 1, 366, 721 1, 025, 145			
Total Michigan				1, 072, 970		214, 807			(1)	1,104,089	2 2, 391, 866			
Minnesota: Merchant plants Furnace plants				54, 195 206, 921		128, 210				357, 394 92, 109	411, 589 427, 240			
Total Minnesota New Jersey: Merchant plants				261, 116 71, 630		128, 210			159, 726	449, 503 1, 148, 941	838, 829 1, 380, 297			
New_York: Merchant plants Furnace plants				235, 712		1, 354, 427 2, 106, 920			224, 550	1, 538, 827 552, 741	3, 353, 516 2, 659, 661			
Total New York				235, 712		3, 461, 347			224, 550	2, 091, 568	6, 013, 177			
Ohio: Merchant plants Furnace plants				371, 577	238	2, 537, 728			(1)	723, 719 1, 504, 134	² 723, 719 4, 413, 677			
Total Ohio				371, 577	238	2, 537, 728			(1)	2, 227, 853	2 5, 137, 396			

Pennsylvania: Merchant plants									13, 501	647, 964 955, 581	664, 108 9, 726, 712
Total PennsylvaniaTennessee: Merchant plantsUtah: Furnace plants							79,695	228, 175	13, 501 26, 565	1, 603, 545	10, 390, 820 106, 260 228, 175
West Virginia: Merchant plants						40, 701				505, 969 4, 895	546, 670 1, 398, 956
Total West Virginia		 				1, 428, 753 18, 269			3, 105	510, 864 2, 062, 384	1, 945, 626 2, 352, 167
Undistributed: Merchant plants		281, 295	106, 667	4, 885, 913	238	17, 368, 336	79, 695	228, 175	139, 903 741, 065	17, 399, 445	139, 903 45, 843, 671
Merchant plantsFurnace plants	612, 297	281, 295	106, 667	1, 026, 426 3, 859, 487	238	1, 680, 519 15, 687, 817	79, 695	228, 175	568, 793 172, 272	11, 302, 553 6, 096, 892	15, 376, 950 30, 466, 721
1939											
Alabama: Merchant plants Furnace plants	451, 022 4, 832, 569									58, 114 14, 159	509, 136 4 , 846, 728
Total AlabamaColorado: Furnace plants	5, 283, 591	604, 295								72, 273	5, 355, 864 604, 295
Illinois: Merchant plants Furnace plants			123, 248	36, 192 537, 971		94, 312			7, 490	1, 257, 842 363, 985	1, 519, 084 1, 338, 276
Total Illinois			123, 248	574, 163		530, 632			7, 490	1, 621, 827	2, 857, 360
Indiana: Merchant plants Furnace plants				3, 221, 576					408, 323	628, 706 2, 812, 119	628, 706 6, 442, 018
Total Indiana						268 677				3, 440, 825 2, 038, 667 1, 496, 908	7, 070, 724 2, 307, 344 1, 496, 908
Michigan: Merchant plants Furnace plants				92, 161		175, 385 236, 755			(1) 155, 335	815, 507 732, 986	1, 083, 053 2, 158, 838
Total Michigan				1, 125, 923		412, 140			155, 335	1, 548, 493	3, 241, 891
Minnesota: Merchant plants Furnace plants				(1) 166, 999		32, 979 22, 000			7, 030	276, 313 75, 927	316, 322 264, 926
Total Minnesota				166, 999 95, 104		54, 979			7, 030 176, 306	352, 240 1, 146, 991	² 581, 248 1, 418, 401

See footnotes at end of table.

Table 23.—Coal used in the manufacture of byproduct coke in the United States, 1938-39, by States where produced and consumed, and by merchant and furnace plants, in net tons—Continued

					- O o	al produced	in—				
State where coal was used	Alabama	Colorado	Illinois	Kentucky	Ohio	Pennsyl- vania	Tennes-	Utah	Virginia	West Virginia	Total
1939—Continued											
New York: Merchant plants Furnace plants				264, 771		1, 559, 456 2, 090, 848			140, 441	1, 590, 850 719, 449	3, 555, 518 2, 810, 297
Total New York				264, 771		3, 650, 304			140, 441	2, 310, 299	6, 365, 815
Ohio: Merchant plants Furnace plants				(1) 615, 586	1, 296	4, 668, 902			(1)	715, 460 2, 647, 547	² 715, 460 7, 933, 331
Total Ohio				615, 586	1, 296	4, 668, 902			(1)	3, 363, 007	3 8, 648, 791
Pennsylvania: Merchant plants Furnace plants						1, 873 14, 476, 704			1, 500	648, 197 1, 200, 677	651, 570 15, 677, 381
Total Pennsylvania Tennessee: Merchant plants Utah: Furnace plants						14, 478, 577	90, 902	324, 100	1, 500 30, 300	1, 848, 874	16, 328, 951 121, 202 324, 100
West Virginia: Merchant plantsFurnace plants				13, 464		23, 947 1, 630, 201				668, 266 24, 265	692, 213 1, 667, 930
Total West Virginia Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin:				13, 464		1, 654, 148				692, 531	2, 360, 143
Merchant plantsUndistributed: Merchant plants			1, 243	89, 010 76, 720		38, 232			405, 846	2, 367, 964	2, 496, 449 482, 566
Grand total	5, 283, 591	604, 295	124, 491	6, 243, 316	1, 296	25, 756, 591	90, 902	324, 100	1, 332, 571	22, 300, 899	62, 062, 052
Merchant plants Furnace plants	451, 022 4, 832, 569	604, 295	124, 491	653, 958 5, 589, 358	1, 296	1, 926, 184 23, 830, 407	90, 902	324, 100	768, 913 563, 658	11, 671, 118 10, 629, 781	15, 686, 588 46, 375, 464

Included under "Undistributed."

^{*} Excludes items included under "Undistributed."

YIELD OF COKE PER TON OF COAL

Table 24.—Percentage yield of coke from coal in byproduct and beehive ovens in the United States, 1936-39, by States

	19	36	19	37	19	38	1939		
State	State Byprod-uct Beehive		Byprod- uct	Beehive	Byprod- uct	Beehive	Byprod- uct	Beehive	
AlabamaColorado	69. 66 66. 68 68. 62	65. 25	72. 37 67. 36 70. 54	,55.71	70. 93 66. 79 67. 05	65. 01	71. 01 66. 03 68. 12	65. 4	
Indiana Maryland Massachusetts Michigan	73. 54 72. 28 70. 74 71. 91		72. 04 72. 62 69. 99 71. 05		70. 32 72. 14 70. 42 69. 17		70. 26 72. 88 70. 72 69. 34		
Minnesota New Jersey New York	69. 22 71. 08 71. 85		70. 27 70. 78 71. 75		70. 19 71. 84 71. 14		69. 92 71. 05 71. 16		
Ohio Pennsylvania Fennessee	71. 25 68. 39 68. 95	64. 56 51. 80	71. 61 68. 83 69. 00	65, 50 53, 89	71. 02 68. 46 68. 70	63. 00 55. 00 48. 94	71. 09 68. 71 73. 00 58. 38	63. 4	
UtahVirginiaWashington	56. 88 60. 38 70. 19	57. 59 57. 96 62. 28 61. 06	56. 67 56. 11 70. 67	54. 25 58. 33 61. 74	58. 08 	57. 04 61. 40	68. 12	56. 8 67. 0	
West Virginia United States average	70. 19	63. 23	70. 77	64. 23	69. 94	61. 58	70. 05	62. 8	

COKE BREEZE

Table 25.—Coke breeze recovered at coke plants in the United States, 1938–39, by States

		Prod	luced		Used by	producer		s	old		
State	Yield per ton of coal (percent)	Net tons	Value	For stea	m raising	For other including	purposes, water gas	Net tons	Value	Wasted (net tons)	On hand Dec. 31 (net tons)
				Net tons	Value	Net tons	Value				
Byproduct plants: Alabama Colorado Illinois Indiana Maryland Massachusetts Michigan Minnesota New Jersey New York Ohio Pennsylvania Tennessee Utah West Virginia Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin Undistributed	4. 61 5. 66 7. 51 6. 13 7. 24 8. 27 5. 53 6. 77 5. 03 6. 18 3. 77 5. 29 9 5. 87	219, 586 15, 841 194, 385 253, 296 110, 912 119, 935 52, 162 84, 783 264, 467 262, 123 643, 104 4, 172 12, 075 95, 685	\$356, 509 (1) 486, 695 601, 982 (1) (1) 655, 220 156, 013 (1) 745, 357 526, 163 1, 060, 071 6, 258 (1) 123, 773 599, 973 677, 253	97, 565 12, 146 159, 925 123, 522 104, 212 79, 685 119, 931 34, 148 76, 511 177, 675 225, 576 537, 276 4, 096	\$138, 124 (1) 427, 314 274, 159 (1) (1) 591, 432 86, 058 (1) 479, 113 444, 382 832, 500 6, 144 116, 298 344, 690 508, 484	25, 843 22, 417 75, 241 20, 333	\$38, 170 56, 509 150, 003 (1) (24, 677 17, 478 162, 010 48, 280 66, 856 (1) 6, 272 131, 374 52, 845	105, 349 3, 695 37, 615 35, 254 13, 390 29, 504 16, 228 17, 014 43, 703 15, 418 66, 171 42 7, 867 2, 146 36, 410	\$193, 957 (1) 72, 621 128, 188 (1) 52, 789 63, 650 (1) 738, 567 159, 556 63 4, 700 110, 777	8, 130	35, 355 37, 278 35, 522 1, 062 7, 164 11, 463 13, 235 3, 196 45, 307 39, 994 23, 873 1, 407 387 4, 308 13, 734
	3 5. 91	2, 653, 653	5, 995, 267	1, 957, 323	4, 248, 698	317, 895	754, 474	445, 180	1, 125, 035	8, 220	273, 285
At merchant plants	2 6. 61 5. 55	998, 925 1, 654, 728	2, 753, 917 3, 241, 350	688, 324 1, 268, 999	1, 857, 648 2, 391, 050	87, 122 230, 773	297, 555 456, 919	246, 495 198, 685	667, 503 457, 532	90 8, 130	137, 209 136, 076
Beehive plants: Colorado and Utah Pennsylvania. Virginia. West Virginia.	2 6. 62 2 5. 34 2 4. 52 2 3. 37	6, 610 33, 048 6, 258 295	9, 893 25, 219 18, 336 82	122	533	54 22	54 97	6, 462 26, 938 5, 793 270	9, 764 20, 615 16, 767 60	148 9,678	1, 181 141 341 112
	2 5. 34	46, 211	53, 530	122	533	76	151	39, 463	47, 206	³ 9, 876	1, 775

1939	1	1		1	1	1	1			1 1	1
Byproduct plants:	4 61	000 050	401 000	140 750	100 040	10 000	10 404	104 101	000 701		20 040
AlabamaColorado	4. 81 5. 96	260, 956 35, 947	421, 086	142, 756 29, 229	199, 846 (1)	10, 202	13, 464	124, 101 6, 718	(1)		36, 646
Illinois	7. 10	196, 337	485, 913	143, 349	386, 690	12, 512	34, 086	55, 727	120, 867		37, 258
Illinois Indiana	5. 16	358, 144	905, 895	200, 375	443, 610	136, 362	354, 661	44,079	154, 835		32, 925
Maryland	7.04	152, 454	(1)	86, 359	(1)	28, 048	(1)	37	(1) (1)		43, 303
Massachusetts Michigan	7. 62 5. 57	113, 959 195, 216	778, 056	75, 065 131, 928	545, 210	5, 820 15, 453	(1) 58, 737	21, 462 43, 995	137, 984		18, 776 8, 666
Minnesota.	6.09	43, 292	129, 757	30, 864	79, 675	5, 287	16, 865	16, 552	60 780		10, 145
New Jersey	6. 23	87, 927	(1)	79, 413	(1)	9, 237	(1)				2, 473
New York	4.45	279, 219	775, 994	184, 757	508, 234	46, 344	134, 185	58, 125	162, 579		48, 382
Ohio	4.92	424, 955	862, 983	335, 539	671, 992	70, 090	137, 714	20, 130	52, 262		54, 268
Pennsylvania Tennessee	5. 83 4. 00	933, 427 4, 352	1, 573, 102 6, 528	797, 742 905	1, 288, 869 1, 358	57, 437	91, 027	78, 636 5, 275	195, 189		21, 218 287
Tītah	5. 42	17, 551	(1)	3, 403	(1)	5, 394	(1)	7, 631	(1)		1,691
West Virginia	3 4. 69	89, 384	104, 638	83, 573	96, 942	6, 391	` ś , 807	52	82		2,664
West Virginia Connecticut, Kentucky, Missouri, Rhode							,				
Island, and Wisconsin	6.46	161, 254	479, 365	129, 800	384, 239			29, 855			
Undistributed			747, 733		502, 162		104, 062		55,007		
	3 5, 52	3, 354, 374	7, 271, 050	2, 455, 057	5, 108, 827	408, 577	953, 608	512, 375	1, 264, 743		335, 709
At merchant plants	² 6. 29	947, 946	2, 477, 413	682, 987	1, 793, 547	60, 335	171, 350	254, 808	674, 075		130, 789
At furnace plants	5. 27	2, 406, 428	4, 793, 637	1, 772, 070	3, 315, 280	348, 242	782, 258	257, 567	590, 668		204, 920
Beehive plants:											
Colorado and Utah	3 4.78	4, 810	5, 871		·			4, 810	5, 871	1	224
Pennsylvania	3 3, 73	38, 129	37, 767	1,666	2, 330			14, 471	11,601	22,664	93
Virginia	3 3. 65	6, 390	17, 978	132	525	100	448	6, 480	17, 914	30	134
West Virginia	2.65	2, 214	554					220	55	1,994	
	2 3. 73	51, 543	62, 170	1,798	2, 855	100	448	25, 981	35, 441	³ 24, 688	451
	l				<u> </u>	1	<u> </u>			1	1

¹ Included under "Undistributed." ² Yield computed by dividing production of breeze at the few plants reporting by the quantity of coal charged at these plants. ³ As reported; quantity produced but not used was undoubtedly greater. See Mineral Resources of the United States, 1922, part 2, pp. 726-727.

CONSUMPTION OF COKE

Allowing for imports and exports and for changes in producers' stocks the indicated consumption of coke in 1939 was 44,953,082 tons. Of this amount 31,422,272 tons (about 70 percent of the total) were, according to figures compiled by the American Iron and Steel Institute, consumed by blast furnaces in the manufacture of pig iron and ferro-alloys. The remainder—13,530,810 tons (30 percent)—was used in foundries, in smelting nonferrous metals, manufacturing water gas, miscellaneous other industrial uses, and domestic heating.

The noteworthy improvement in efficiency of fuel utilization in blast-furnace operations during recent years is shown clearly by the fact that the quantity of coking coal required to make 1 ton of pig iron dropped from an average of 3,247.5 pounds in 1913 to 2,547.3 in 1939.

Table 26.—Coke consumed in manufacture of pig iron and for other purposes in the United States, 1913, 1918, and 1937-39, in net tons

Year	Total production	Imports	Exports	Net changes	Indicated United States con-	Consumed iron furna		Remainder con sumed in other ways	
	of coke			in stocks	sumption 1	Quantity	Per- cent	Quantity	Per- cent
1913 1918 1937 1938 1939	46, 299, 530 56, 478, 372 52, 375, 469 32, 495, 815 44, 326, 641	101, 212 30, 168 286, 364 135, 240 141, 911	987, 395 1, 687, 824 526, 683 486, 571 589, 925	(3) +863, 221 +1, 081, 267 -1, 074, 455	45, 413, 347 54, 820, 716 51, 271, 929 31, 063, 217 44, 953, 082	37, 192, 287 45, 703, 594 33, 571, 349 19, 035, 270 31, 422, 272	81. 9 83. 4 65. 5 61. 3 69. 9	8, 221, 060 9, 117, 122 17, 700, 580 12, 027, 947 13, 530, 810	18. 1 16. 6 34. 5 38. 7 30. 1

¹ Production plus imports minus exports, plus or minus the decrease or increase, respectively, of the net changes in stocks.

From Report of American Iron and Steel Institute. Figures include coke consumed in the manufacture of ferro-alloys.
 Data not available.

Table 27.—Pounds of coke and coking coal consumed per net ton of pig iron made in the United States, 1913, 1918, and 1937-39

Year	Pounds of coke per net ton of pig iron and ferro- alloys ¹	Percent yield of coke from coal	Calculated pounds coking coal per net ton of pig iron and ferro- alloys	Year	Pounds of coke per net ton of pig iron and ferro- alloys ¹	Percent yield of coke from coal	Calculated pounds coking coal per net ton of pig iron and ferro- alloys
1913 1918 1937	2, 172. 6 2, 120. 7 1, 830. 6	66. 9 66. 4 70. 3	3, 247. 5 3, 193. 8 2, 604. 0	1938 1939	1, 801. 0 1, 778. 0	69. 7 69. 8	2, 583. 9 2, 547. 3

¹ From report of American Iron and Steel Institute; the consumption per ton of pig iron only, excluding the furnaces making ferro-alloys, was 2,172.6 in 1913, 2,120.7 in 1918, 1,806.7 in 1937, 1,774.6 in 1938, and 1,760.0 in 1939.

FURNACE, FOUNDRY, DOMESTIC, AND OTHER COKE

The terms "furnace coke" and "foundry coke," as used in the trade, refer to the size and grade of the coke as well as to the use for which it may be intended. Byproduct furnace coke ordinarily is run-of-oven coke from which the breeze and all small coke less than, say, three-fourths-inch diameter have been removed. Byproduct foundry coke ordinarily is a blocky coke of maximum size much greater than that of furnace coke, from which all sizes under $2\frac{1}{2}$ to 3 inches are screened out. Coke of smaller size than furnace or foundry (exclusive, however, of breeze) often is called domestic coke. It may result from the screening of foundry or furnace coke, or, where the principal demand is for domestic coke, may be obtained by crushing the larger fragments. Other special sizes and grades may be prepared for special purposes. Thus, not all furnace coke finds its way to blast furnaces or all foundry coke to iron foundries proper, for either grade may be purchased by other classes of consumers.

Coke enters the domestic fuel market mainly under two conditions: (1) In or near areas of surplus metallurgical coke production and (2) in localities where the manufacture and distribution of large quantities of city gas result in the yield of correspondingly large quantities of coke. As this fuel is, on the average, not transported as far as coal, its consumption for domestic purposes tends to be localized in regions near the centers of production. In recent years the majority of the coke operators have reported that their plants are

equipped to screen and size coke for domestic use.

TABLE 28.—Byproduct coke produced and sold or used by producers in the United States, 1938-39, by States
[Exclusive of screenings or breeze]

					ĺ				Sc	old						
State	Prod	luced	Used by producer in blast furnace ¹		Furnace 2		Foundry		Domestic use		Industrial and other use (includ- ing water gas) ³		To	tal		
	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value		
Alabama. Colorado. Illinois. Indiana. Maryland Massachusetts Michigan Minnesota. New Jersey New York Ohio. Pennsylvania. Tennessee Utah West Virginia. Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin	186, 805 1, 734, 511 2, 904, 779 1, 105, 262 1, 019, 302 1, 742, 73 540, 447 1, 007, 394 3, 945, 358 76, 123 132, 513 1, 346, 734	11, 706, 788 18, 278, 201 (4) 10, 135, 722 4, 495, 555 23, 529, 138 18, 413, 808 30, 070, 706 480, 336 (4)	161, 931 626, 559 2, 451, 423 1, 067, 071 80, 151 347, 406 118, 823 198, 915 1, 299, 798 2, 831, 527 5, 313, 682 1, 634 85, 835 1, 057, 995	(4) 4, 103, 965 15, 332, 499 (4) 2, 011, 447 798, 111 (4) 7, 416, 092 13, 894, 381 20, 913, 831 6, 536 (4) 3, 007, 694	87, 939 (4) 72, 638 (4) 47, 255 886, 709 166, 011 936, 641	(4) 4, 904, 072 793, 979 3, 705, 741	126, 767 	\$1, 085, 062 1, 141, 738 (4) (4) (4) (4) (4) 1, 107, 184 1, 086, 043 151, 503	287, 724 20, 509 794, 622 950, 326 263, 766 512, 741 1, 420, 604 462, 141 520, 367 19, 386 2, 469 160, 539	(4) 4, 348, 096 1, 508, 486 (4) 5, 613, 033 2, 368, 235 (4) 8, 984, 465 2, 074, 457 3, 080, 551 110, 501 (4) 488, 885	20, 508 40, 172 (4) 26, 392 43, 911 56, 795 (1) 218, 027 (2) 86, 160 128, 945 13, 671 42, 936 28, 997	(4) 258, 354 (4) (3) 330, 310 (4) (4) (4) 422, 483 729, 356 69, 452 (5) 107, 341	27, 562 897, 644 426, 374 46, 901 936, 690 1, 382, 609 277, 535 805, 718 2, 470, 353 870, 473 1, 706, 900 53, 547 45, 405 225, 275	6, 131, 475 2, 733, 001 (4) 8, 057, 087 2, 474, 990 (5) 15, 088, 964 4, 398, 103 8, 601, 691 331, 456 (4) 838, 717		
Undistributed		20, 580, 899		8, 530, 837		2, 964, 893	267, 487	1, 717, 393 2, 526, 658		8, 613, 693	134, 672	3, 092, 063		12, 070, 211		
	31, 658, 403	163, 479, 039	18, 404, 541	83, 549, 410	2, 840, 220	13, 713, 543	1, 051, 143	8, 815, 581	7, 129, 384	44, 000, 938	1, 188, 262	6, 752, 976	12, 209, 009	73, 283, 038		
At merchant plantsAt furnace plants	10, 989, 525 20, 668, 878	70, 225, 977 93, 253, 062	1, 520, 201 16, 884, 340	8, 732, 624 74, 816, 786	1, 432, 438 1, 407, 782	7, 782, 540 5, 931, 003	820, 905 230, 238	7, 135, 702 1, 679, 879	5, 555, 753 1, 573, 631	36, 009, 365 7, 991, 573	834, 893 353, 369	4, 914, 282 1, 838, 694	8, 643, 989 3, 565, 020	55, 841, 889 17, 441, 149		
Alabama	398, 033 1, 884, 240 4, 878, 033 1, 578, 973 1, 057, 158 2, 430, 688	28, 532, 944 (4) (4) 12, 408, 881	356, 808 938, 665	(4) 5, 929, 136 25, 829, 576 (4) (4) 4, 721, 370 1, 137, 103	103, 771 (4) 16, 745	(4)	6,499	(4) (4) (4) (4)	339, 819 19, 656 793, 868 1, 169, 895	(4) 3, 877, 186 1, 605, 682 (4) (4) 6, 035, 355 2, 556, 983	24, 110 54, 972 (4) 22, 138 34, 831	300, 725 (4) (4) (4) (4) (4) 86, 361	31, 512 965, 820 581, 846 41, 794 883, 609 1, 499, 185	6, 161, 451 3, 593, 572 (4) (4) 8, 021, 391 2, 664, 495		

New York Ohio Pennsylvania	6, 135, 949	25, 526, 646 28, 502, 924 44, 214, 472	4, 872, 903	22, 173, 365	556, 530	2, 707, 629	212,021	1, 350, 535	452, 718	9, 043, 546 1, 981, 016	105, 404	(4) 525, 157 1, 425, 262	1, 326, 673	16, 758, 044 6, 564, 337 11, 937, 615
Tennessee Utah	79, 448 189, 194	527, 535 (4)	2, 999 126, 998	11, 996 (4)	34	(4)	27, 445		25, 174 2, 959	(4)	18, 700 47, 195	98, 854 (4)	71, 319 50, 188	481, 288 (4)
West Virginia Connecticut, Kentucky, Missouri, Rhode Island, and Wis-	1, 598, 198	4, 282, 010	1,397,824	3, 478, 461	(4)	(4)	(4)	(4)	113, 593	354, 842	(4)	(4)	270, 112	1, 102, 436
consinUndistributed	1, 834, 927	11, 757, 652 24, 138, 507		911, 674 12, 399, 300		2, 128, 101 1, 762, 178		1, 843, 644 2, 180, 971		6, 347, 165 8, 579, 401				11, 340, 372 12, 184, 178
	42, 882, 313	206, 457, 873	29, 264, 241	127, 515, 006	4, 079, 235	18, 893, 662	1, 482, 846	12, 087, 253	7, 549, 937	44, 511, 672	1, 506, 683	8, 495, 722	14, 618, 701	83, 988, 309
At merchant plantsAt furnace plants	11, 070, 506 31, 811, 807	68, 432, 660 138, 025, 213	1, 766, 776 27, 497, 465	9, 810, 773 117, 704, 233	1, 590, 080 2, 489, 155	8, 528, 097 10, 365, 565	1, 144, 278 338, 568	9, 738, 821 2, 348, 432	5, 982, 976 1, 566, 961	37, 166, 465 7, 345, 207	1, 095, 418 411, 265	6, 333, 119 2, 162, 603	9, 812, 752 4, 805, 949	61, 766, 502 22, 221, 807

Includes coke used for other purposes than in blast furnaces as follows: To make producer or water gas—1938, 1,314,370 tons, valued at \$7,418,916; 1939, 1,409,081 tons \$7,693,450.
 For other purposes than in blast furnaces—1938, 401,066 tons, \$2,069,263; 1939, 416,595 tons, \$2,184,305.
 Includes coke sold as follows: To financially affiliated corporations—1938, 1,116,376 tons valued at \$4,852,525; 1939, 2,063,898 tons, \$8,682,688.
 For other purposes—1938, 773,336 tons, \$4,668,821; 1939, 877,580 tons, \$5,229,032.
 Merchant sales—1938, 950,508 tons, \$4,192,197; 1939, 1,137,757 tons, \$4,981,942.
 Includes coke sold for manufacture of water gas as follows: 1938, 397,563 tons valued at \$2,587,307; 1939, 506,857 tons, \$3,203,509.
 Included under "Undistributed."

Table 29.—Beehive coke produced and sold or used by producers in the United States in 1939, by States

			Used by	producer	Sold				
State	Prod	uced	in blast		Furi	ace 2	Foundry		
4	Net tons	Value	Net tons	Value	Net tons	Value	Net tons	Value	
Colorado Pennsylvania Utah	56, 836 1, 125, 971 8, 332	(3) \$4,801,086 (3)	56, 296 164, 341	(3) \$769, 076	548, 499	\$2,368,692	143, 248 2, 987	\$637, 468	
Virginia West Virginia Undistributed	165, 317 87, 872	783, 512 417, 830 423, 749	183	(3) 372, 653	67, 920 38, 482	304, 316 172, 056	31, 229 21, 890	(3) 131, 886 179, 915	
·	1, 444, 328	6, 426, 177	220, 820	1, 141, 729	654, 901	2, 845, 064	199, 354	949, 269	

	Sold—Continued										
State	Domes	tic use	Industrial at	nd other use water gas) 4	Total						
	Net tons	Value	Net tons	Value	Net tons	Value					
Colorado Pennsylvania Utah Virginia West Virginia Undistributed	86, 402 792 410 600	\$303, 695 (3) (3) (3) (7, 440	335 184, 247 4, 553 64, 555 23, 614	(3) \$716, 604 (2) 311, 256 (3) 124, 126 1, 151, 986	335 962, 396 8, 332 164, 114 84, 586	(3) \$4,026,459 (3) 777,965 402,188 50,842 5,257,454					
	88, 204	311, 135	277, 304	1, 151, 986	1, 219, 763	0, 257, 454					

¹ Includes coke used for other purposes than in blast furnaces as follows: 1,124 net tons, valued at \$4,626.

² Includes coke sold as follows: 196,966 net tons valued at \$855,858 to financially affiliated corporations for blast furnace use; 16,260 tons, \$79,349 for other purposes; and 441,685 tons, \$1,909.857 as merchant sales.

³ Included under "Undistributed."

4 Includes coke sold for manufacture of water gas as follows: 85,191 net tons valued at \$315,429.

STOCKS OF COKE AND COKING COAL

The plotted monthly curve of producers' stocks of byproduct coke takes a typical shape as related to the corresponding monthly curves of byproduct-coke and pig-iron production for the 2 years 1938 and 1939. That is to say, as pig-iron and coke production increases stocks of coke decrease, and vice versa. (See fig. 1). On January 1, 1939, producers' stocks of byproduct coke had risen by 1,112,303 net tons (44 percent) over the January 1, 1938, figure to a total of 3,631,623 tons but by January 1, 1940, had fallen again by 1,061,933 tons to 2,569,690 tons, or nearly to the January 1, 1938, figure. Of the totals on January 1, 1939 and 1940, 72 percent (2,611,645 tons) and 75 percent (1,922,369 tons) were for domestic and general industrial use, respectively. Beehive plants as a rule carry but low stocks on hand, partly because of sporadic activity of the ovens during the year. At the close of 1939, 32,409 tons of coke were in inventory.

Table 30.—Stocks of furnace, foundry, and domestic coke and of breeze in the United States on January 1, 1939-40, by States, in net tons

State	Furnace	Foundry	Domestic and other	Total coke	Breeze
January 1, 1939					
Byproduct plants: Alabama	286, 902	32, 126	71, 111	390, 139	35, 355
Colorado	2, 311	237	57	2,605	
Illinois	20, 617	3, 562	318, 542	342, 721	37, 278
Indiana	49, 342	1, 533	129, 471	180, 346	35, 522
Maryland	37, 328			37, 328	1, 062 7, 164
Massachusetts Michigan	154 1, 631	106	321, 034 130, 279	321, 188 132, 016	7, 164 11, 463
Minnesota	17, 534	100	266, 378	283, 912	13, 235
New Jersey New York	2.,001		165, 319	165, 319	3, 196
New York	1 69, 357	(1)	394, 816	464, 173	45, 307
Onio	172, 202	19, 031	97, 682	288, 915	39, 994
Pennsylvania	195, 637	15, 028	290, 507	501, 172	23, 873
Tennessee Utah	22, 620	541	20, 401	43, 562	1, 407
West Virginia	851	15 075	1,865	2, 716 121, 725	387
Connecticut Kontucky Missouri Phode	54, 708	15, 675	51, 342	121,725	4, 308
Island and Wissonsin	1 945	(1)	352, 841	353, 786	19 794
West Virginia Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin					13, 734
	1 932, 139	1 87, 839	2, 611, 645	3, 631, 623	273, 285
At merchant plants	53, 714	71, 539	2, 195, 793	2, 321, 046	137, 209
At furnace plants	877, 930	16, 795	415, 852	1, 310, 577	136, 076
Beehive plants:	005				
Donnaylyonio	265 3, 382	4 601		265	
Colorado Pennsylvania Tennessee	1, 237	4, 681 298	28, 289	36, 352 1, 535	141
Utah	1, 201	439	141	580	1, 181
Virginia	1,845	1, 479	***	3, 324	341
West Virginia	499	1, 439	937	2,875	112
	7, 228	8, 336	29, 367	44, 931	1, 775
January 1, 1940					
Byproduct plants:					
Alabama	59, 831	5, 952	22, 224	88, 007	36, 646
Colorado	11, 961	350	7	12, 318	00,010
Illinois	7, 329	11, 696	280, 568	200 503	37, 258
Indiana	7, 329 81, 320	1, 898	76, 561	159, 779	32, 925
Maryland	36, 514			159, 779 36, 514 223, 329 70, 771	32, 925 43, 303 18, 776
Massachusetts	265		223, 064	223, 329	18, 776
Michigan	1 6, 371	(1)	64, 400	70, 771	8,000
Minnesota	8, 719		256, 163	264, 882	10, 145
New York	1 26, 740	(1)	78, 866 320, 001	78, 866 346, 741	2, 473 48, 382
Ohio.	130, 663	10, 424	75, 459	216, 546	54, 268
Pennsylvania	180, 075	7, 192	204, 124	391, 391	21, 218
Tennessee	21, 470	443	25, 465	47, 378	287
Utah	9, 257		5, 286	14, 543	1, 691
West Virginia	19, 889	909	12, 096	32, 894	2, 664
Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin	468	7, 585	278, 085	286, 138	17, 007
	1 600, 872	1 46, 449	1, 922, 369		
				2, 569, 690	335, 709
At merchant plants	29, 531 568, 019	40, 659 9, 112	1, 594, 427 327, 942	1, 664, 617 905, 073	130, 789 204, 920
Beehive plants:					
Colorado	470			470	
Pennsylvania	8, 897	4, 299	7, 468	20, 664	93
Utah		353	53	406	224
Virginia	4, 272	1,969		6, 241	134
West Virginia	2, 763	1, 691	174	4, 628	
		8, 312			

¹ A small amount of foundry coke is included with the furnace.

Table 31.—Summary of total stocks of coke on hand at all byproduct and beehive plants in the United States on Jan 1, 1929 and 1936–1940, in net tons

	1929	1936	1937	1938	1939	1940
Byproduct plants: Furnace Foundry Domestic and other	750, 318	697, 699	282, 144	610, 840	931, 644	597, 550
	24, 426	15, 504	8, 981	29, 828	88, 334	49, 771
	1, 018, 205	2, 070, 544	1, 408, 350	1, 878, 652	2, 611, 645	1, 922, 369
	1, 792, 949	2, 783, 747	1, 699, 475	2, 519, 320	3, 631, 623	2, 569, 690
Beehive plants: Furnace Foundry Domestic and other	38, 446	2, 211	5, 622	13, 542	7, 228	16, 402
	8, 020	11, 146	8, 508	13, 264	8, 336	8, 312
	8, 511	32, 280	18, 461	49, 161	29, 367	7, 695
	54, 977	45, 637	32, 591	75, 967	44, 931	32, 409
Total: Furnace Foundry Domestic and other	788, 764	699, 910	287, 766	624, 382	938, 872	613, 952
	32, 446	26, 650	17, 489	43, 092	96, 670	58, 083
	1, 026, 716	2, 102, 824	1, 426, 811	1, 927, 813	2, 641, 012	1, 930, 064
	1, 847, 926	2, 829, 384	1, 732, 066	2, 595, 287	3, 676, 554	2, 602, 099

Table 32.—Total stocks of coke at all furnace and nonfurnace byproduct plants in the United States on first of each month, 1938–39

[Includes furnace, foundry, and domestic, but not breeze]

Month	Furnace	plants	Other	plants	Total		
<u></u>	1938	1939	1938	1939	1938	1939	
January February March April May June July August September October November December	1, 044, 489 1, 086, 980 1, 195, 691 1, 305, 298 1, 347, 919 1, 375, 558 1, 411, 437 1, 460, 435 1, 453, 007 1, 391, 947 1, 333, 895 1, 306, 719	1, 310, 577 1, 306, 506 1, 241, 895 1, 198, 286 1, 090, 811 950, 989 930, 706 945, 242 916, 256 867, 744 806, 097 835, 525	1, 474, 831 1, 279, 690 1, 278, 773 1, 471, 773 1, 785, 929 1, 899, 317 1, 963, 565 2, 103, 738 2, 255, 990 2, 282, 596 2, 382, 003 2, 438, 396	2, 321, 046 2, 088, 995 1, 874, 450 1, 839, 050 1, 876, 078 1, 799, 755 1, 726, 356 1, 826, 656 2, 004, 807 1, 793, 611 1, 770, 993	2, 519, 320 2, 366, 670 2, 474, 464 2, 777, 070 3, 133, 848 3, 274, 875 3, 375, 002 3, 564, 173 3, 708, 997 3, 674, 543 3, 715, 898 3, 745, 115	3, 631, 623 3, 395, 501 3, 116, 345 3, 037, 336 2, 966, 744 2, 657, 062 2, 771, 898 2, 921, 063 2, 812, 431 2, 599, 708 2, 606, 518	

Stocks of bituminous coal closely follow fluctuations in the trend of monthly coke production. In 1939 the highest reserves of coking coal were built up in November; and at the end of May stocks were at the lowest level of the year. The low month in coke production was May 1939, and highest production was reached in December.

Table 33.—Stocks of bituminous coal at byproduct coke plants in the United States at end of each month, 1936-39

Month	1936	1937	1938	1939
January February March April May June July August September October November December	3, 844, 535 3, 431, 228 3, 514, 922 4, 064, 263 4, 565, 229 5, 302, 189 5, 982, 093 6, 562, 018 7, 295, 700	8, 030, 871 8, 687, 389 9, 638, 317 8, 543, 774 8, 187, 883 7, 770, 256 7, 432, 741 7, 455, 932 7, 760, 533 8, 066, 938 8, 114, 094 7, 273, 403	6, 469, 457 5, 822, 943 5, 231, 300 4, 934, 840 4, 867, 332 4, 999, 856 5, 364, 442 5, 539, 623 5, 951, 617 6, 459, 196 7, 172, 900 7, 462, 163	7, 373, 871 7, 372, 654 7, 221, 632 4, 434, 124 2, 598, 470 3, 548, 326 4, 534, 922 5, 631, 984 6, 220, 015 7, 250, 436 8, 111, 807 7, 992, 848

VALUE AND PRICE

Reference has been made in previous chapters to the varying accounting practices of coke operators financially affiliated with iron and steel plants, by which the coke sometimes is charged to the furnace department at cost and sometimes at a price that includes a percentage of profit or at the prevailing market price.

According to trade-journal quotations published currently during 1939, prices on byproduct foundry coke advanced in four markets, decreased in six other markets, and remained stationary in New England. The increases ranged from 11 to 12 cents per ton, and decreases ranged from 13 cents at Birmingham and Indianapolis to 35 cents at Detroit. Connellsville prices, which have until recent years been regarded as basic reference prices for the entire industry, rose 16 cents for foundry coke and 23 cents for furnace coke.

Price cutting, long-time contracts, and other factors, however, materially affect the prices at which coke operators actually dispose of coke on the open market. According to sales data furnished by operators, average receipts for byproduct coke declined in 1939 from those of 1938 by as much as 27 cents for domestic coke; sales realizations for beehive coke varied from 1938, as follows: An increase of 22 cents for furnace, and a decrease of 15 cents for foundry and 11

cents for other industrial.

Table 34.—Average receipts per net ton for coke sold in the United States, 1938-39, by States

-		Ву	product			В	eehive	
State	Fur- nace 1	Foun- dry	Domes- tic	Other in- dustrial, including water gas	Fur- nace 1	Foun- dry	Domes- tic	Other industrial, including water gas
1938								
Alabama	\$ 2. 53	\$6.76	\$3.71	\$3.97				
Colorado, Utah, and Wis- consin		10.07	7. 37	7.75		(2)	(2)	(2)
Connecticut, Massachusetts,		7 07	000	7. 10		}		
and Rhode IslandIllinois	5.00	7. 97 9. 58	6.80	7. 18 6. 43				
Indiana	0.00	9.01	5. 24	(2)				
Kentucky, Michigan, and Missouri			1					
Missouri	5. 02	8.36	5.64 6.71	5. 60 5. 98				
Maryland and New Jersey Minnesota		(2) 9, 17	8.98	5. 98 7. 74				
New York	5. 02	(2)	6.32	(2)				
Ohio	4. 20	7.09	4.49	4.90				
Pennsylvania.		8.98	5. 92	5. 66	\$3,85	\$4.56	\$3.49	\$4.00
Tennessee Virginia		7. 39	5. 70	5. 08	(2) 4.40	(2)		4, 93
West Virginia	4. 32	7. 77	3, 05	3, 70	(2)	6. 15	(3)	4.04
Undistributed		9.38		6. 18	4. 20	5. 35	4.44	6. 15
Average	4. 38	8. 39	6. 17	5. 68	4. 11	4. 91	3. 52	4. 26
At merchant plants	4.72	8, 69	6, 48	5, 89				
At furnace plants	4, 21	7. 30	5.08	5. 20				
•								
1939	/e\			4.05				
Alabama. Colorado, Utah, and Wis-	(3)	6.64	3. 54	4.05				
consin	(2)	9.89	6.95	7. 15		(2)	(2)	(3)
Connecticut, Massachusetts,	``				1			4 1 1 1 1
and Rhode Island		7.80	6.72	7.02				
Illinois	4. 14	9. 40 8. 80	6.04 4.73	5. 47 (2)				
Kentucky, Michigan, and	(-)	0.00	2. 10	(5)		1		
Missouri Maryland and New Jersey	4. 21	8, 34	5.06	5. 02				
Maryland and New Jersey		(1)	6.53	6. 13				
Minnesota New York	(2) 4, 42	8, 36	8. 04 6. 23	6. 93 (2)				
Ohio		6.37	4.38	4.98				
Ohio Pennsylvania	3. 95	8.86	5. 80	6. 24	4.32	4.45	3. 51	3. 89
Tennessee		8. 32	6. 12	5. 29				
Virginia West Virginia	3. 72	7. 72	3. 12	3. 44	4.48	(2) 6, 02	(2)	(1) 4.82
Undistributed	4. 95	9.76	0.12	5. 89	4. 17	5. 26	4.13	4. 35
Average	4. 27	8. 15	5. 90	5. 64	4, 33	4. 76	3, 53	4. 15
•								
At merchant plants		8. 51	6. 21	5. 78				- -
At furnace plants	4.17	6. 94	4. 69	5. 26				

¹ Includes coke sold to affiliated corporations and merchant sales. ² Included under "Undistributed."

Table 35.—Average monthly prices per net ton at ovens of spot or prompt Connellsville furnace and foundry coke, 1929 and 1936-39 ¹

3543		Fu	rnace co	ke	Foundry coke					
Month	1929	1936	1937	1938	1939	1929	1936	1937	1938	1939
January February March April May June July August September October November December Average	\$2. 75 2. 90 2. 98 2. 78 2. 75 2. 75 2. 75 2. 65 2. 65 2. 65 2. 64	\$3. 65 3. 65 3. 65 3. 65 3. 65 3. 65 3. 65 3. 67 3. 75 3. 75 3. 92	\$4.00 4.06 4.25 4.51 4.60 4.58 4.35 4.35 4.27 4.25 4.00	\$4. 00 4. 00 4. 00 4. 00 4. 00 3. 85 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75	\$3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 4. 25 4. 90 5. 00 4. 09	\$3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75 3. 75	\$4. 25 4. 25 4. 25 4. 25 4. 25 4. 25 4. 00 4. 00 4. 05 4. 25 4. 25 4. 25 4. 25	\$4. 50 4. 50 4. 50 5. 00 5. 25 5. 25 5. 00 5. 00 5. 00 5. 00 5. 00	\$5. 00 5. 00 5. 00 5. 00 5. 00 5. 00 4. 85 4. 75 4. 75 4. 75 4. 75 4. 75	\$4. 75 4. 75 4. 75 4. 75 4. 75 4. 75 4. 75 5. 12 5. 65 5. 75 5. 75

^{&#}x27;Iron Age.,

Table 36.—Average monthly prices per net ton of byproduct foundry coke, in 11 markets, 1935-39, as quoted by Steel

1100					. yac		<i>y</i> 50		,				
	January	February	March	April	May	June	July	August	September	October	November	December	Average for year
Birmingham, Ala. (at ovens): 1936	6. 00	6. 00	6. 00	6. 00	6. 00	6. 00	6. 00	6. 00	6. 00	6. 00	6. 00	6. 00	6. 00
	6. 50	6. 50	6. 50	6. 50	6. 50	6. 50	6. 50	6. 50	6. 50	6. 50	6. 50	6. 50	6. 50
	6. 50	6. 50	6. 50	6. 95	7. 25	7. 25	7. 25	7. 25	7. 30	7. 50	7. 50	7. 50	7. 10
	7. 50	7. 50	7. 50	7. 50	7. 50	7. 50	7. 00	7. 00	7. 00	7. 00	7. 00	7. 00	7. 25
	7. 00	7. 00	7. 00	7. 00	7. 00	7. 00	7. 00	7. 00	7. 00	7. 00	8. 05	7. 50	7. 12
Builalo, N. Y. (delivered at consumers' works): 1 1935	7. 50	7. 50	7. 50	7. 50	7. 50	7. 50	7. 50	7. 50	7. 50	7. 50	7. 50	7. 50	7. 50
	7. 50	7. 50	7 50	7. 50	7 50	7. 50	7. 50	7. 50	7. 50	9. 15	10. 50	10. 50	8, 14
	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50
	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50
	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10 50	10. 50	10. 50	10. 50	11. 25	11. 25	10. 62
1935	8. 50	8. 50	8. 50	8. 50	8. 50	8. 50	8. 50	8. 50	8. 50	9. 00	9 00	9. 00	8. 63
	9. 00	9 00	9. 00	9. 00	9. 00	9. 00	9. 00	9. 00	9. 00	9. 00	9.00	9. 00	9. 00
	9. 50	9 50	9 50	10. 25	10. 25	10. 25	10. 25	10. 25	10. 25	10. 25	10.25	10. 25	10. 06
	10. 25	10. 25	10. 25	10. 25	10. 25	10. 25	10. 10	9. 75	9. 75	9. 75	9.75	9. 75	10. 03
	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 95	10.50	10. 50	9. 89
1935	9. 30	9. 30	9. 30	9. 30	9. 30	9. 30	9. 30	9. 15	9. 00	9. 50	9. 50	9. 50	9. 31
	9. 50	9. 50	9. 50	9. 50	9. 50	9. 50	9. 50	9. 50	9. 50	9. 50	9. 50	9. 50	9. 50
	9. 70	9. 75	9. 75	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 31
	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	9. 90	9. 75	9. 75	9. 75	9. 75	9. 75	10. 14
	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	10. 50	10. 50	9. 88
1935	9. 25	9. 25	9. 25	9. 25	9. 25	9. 25	9. 25	9. 25	9. 25	9. 75	9. 75	9. 75	9. 38
	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 75	9. 90	10. 30	10. 30	9. 85
	10. 30	10. 30	10. 30	10. 80	11. 00	11. 00	11. 00	11. 00	11. 00	11. 00	11. 00	11. 05	10. 81
	11. 05	11. 05	11. 05	11. 05	11. 05	11. 05	10. 75	10. 30	10. 30	10. 30	10. 30	10. 30	10. 71
	10. 30	10. 30	10. 30	10. 30	10. 30	10. 30	10. 30	10. 30	10. 30	10. 30	11. 05	11. 05	10. 42
1935	8. 50	8. 50	8. 50	8.50	8. 50	8. 50	8. 50	8. 50	8. 50	8. 90	9. 00	9.00	8. 62
	9. 00	9. 00	9. 00	9.00	9. 00	9. 00	9. 00	9. 00	9. 00	9. 64	10. 70	10.70	9. 34
	10. 50	10. 70	10. 70	10.89	11. 10	11. 10	11. 10	11. 10	11. 10	11. 10	11. 10	11.10	10. 97
	11. 10	11. 10	11. 10	11.10	11. 10	11. 10	10. 90	10. 25	10. 25	10. 25	10. 25	10.25	10. 73
	10. 25	10. 25	10. 25	10.25	10. 25	10. 25	10. 25	10. 25	10. 25	10. 25	11. 00	11.00	10. 38
1935	8. 75	8. 75	8, 75	8. 75	8. 75	8. 75	8.75	8. 75	8.75	9. 15	9. 40	9. 40	8.89
	9. 40	9. 40	9, 40	9. 40	9. 40	9. 40	9.40	9. 40	9.40	9. 40	9. 40	9. 40	9.40
	9. 60	9. 65	9, 65	10. 33	10. 50	10. 50	10.50	10. 50	10.50	10. 50	10. 50	10. 50	10.27
	10. 50	10. 50	10, 50	10. 50	10. 50	10. 50	10.00	10. 00	10.00	10. 00	10. 00	10. 00	10.25
	10. 00	10. 00	10, 00	10. 00	10. 00	10. 00	10.00	10. 00	10.00	10. 00	10. 75	10. 75	10.12
1935	8.83	9. 20	9. 20	9. 20	9. 20	9. 20	9. 20	9. 20	9. 20	9. 20	9. 20	9. 20	9. 17
	9.60	9. 70	9. 70	9. 70	9. 70	9. 70	9. 70	9. 70	9. 70	10. 20	10. 20	10. 20	9. 82
	10.17	10. 17	10. 17	10. 85	10. 85	10. 85	10. 85	10. 85	10. 85	10. 85	10. 85	10. 88	10. 68
	10.88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88
	10.88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88	10. 88	11. 25	11. 38	11. 38	10. 99
1935	11. 00 11. 50 12. 00 12. 50 12. 50	11.00 11.50 12.00 12.50 12.50	11. 00 11. 50 12. 00 12. 50 12. 50	11.00 11.50 12.50 12.50 12.50	11. 00 11. 50 12. 50 12. 50 12. 50	11. 00 11. 50 12. 50 12. 50 12. 50	11.00 11.50 12.50 12.50 12.50	11. 00 11. 50 12. 50 12. 50 12. 50	11. 00 11. 50 12. 50 12. 50 12. 50	11. 40 11. 70 12. 50 12. 50 12. 50	11. 50 12. 00 12. 50 12. 50 12. 50	11. 50 12. 00 12. 50 12. 50 12. 50 12. 50	11. 12 11. 60 12. 38 12. 50 12. 50
1935	9. 00	9. 00	9. 00	9. 00	9. 00	9. 03	9. 03	9. 03	9. 03	9. 03	9. 03	9. 03	9. 02
	9. 38	9. 38	9. 38	9. 38	9. 38	9. 38	9. 38	9. 38	9. 38	9. 88	9. 88	9. 88	9. 50
	9. 85	9. 85	9. 85	10. 40	10. 60	10. 60	10. 60	10. 60	10. 60	10. 60	10. 60	10. 60	10. 40
	10. 62	10. 63	10. 63	10. 65	10. 65	10. 65	10. 65	10. 65	10. 65	10. 65	10. 65	10. 65	10. 64
	10. 65	10. 65	10. 65	10. 65	10. 65	10. 65	10. 65	10. 65	10. 65	11. 02	11. 15	11. 15	10. 76
1935.	9, 25	9, 25	9. 25	9. 25	9. 25	9. 25	9. 25	9. 25	9. 25	9.80	10. 00	10.00	9. 42
1936.	10, 00	10, 00	10. 00	10. 00	10. 00	10. 00	10. 00	10. 00	10. 00	10.00	10. 00	10.00	10. 00
1937.	10, 10	10, 50	10. 50	10. 80	11. 00	11. 00	11. 00	11. 00	11. 00	11.00	11. 00	11.00	10. 83
1938.	11, 00	11, 00	11. 00	11. 00	11. 00	11. 00	11. 00	11. 00	11. 00	11.00	11. 00	11.00	11. 00
1939.	11, 00	11, 00	11. 00	11. 00	11. 00	11. 00	11. 00	11. 00	11. 00	11.00	11. 75	11.75	11. 12

¹ Up to October 26, 1936, quotations are "at ovens."

SHIPMENTS BY RAIL

Table 37.—Beehive coke loaded for shipment on originating railroads and waterways in the United States in 1939, by routes, as reported by coke producers

Post.	514-4-	Net	tons	Percent
Route	State	By States	Total	of total
Railroads: Baltimore & Ohio Chesapeake & Ohio Denver & Rio Grande Western Huntingdon & Broad Top Interstate Ligonier Valley Louisville & Nashville Monongahela New York Central Norfolk & Western Pennsylvania Pittsburgh & Lake Erie Total railroad shipments Waterway: Ohio River	Virginia Pennsylvania Virginia Pennsylvania West Virginia Virginia Virginia Pennsylvania	217, 480 7, 817 22, 439 56, 631 10, 094 316, 480 14, 118 315, 340 23, 438 59, 166 3, 888 1, 432, 081 4, 592 1, 436, 673	} 225, 297 22, 439 } 66, 725 300 146, 480 14, 118 350 315, 340 54, 540 523, 438 559, 166 3, 888 1, 432, 081 4, 592 1, 436, 673	15.7 1.6 4.6 (1) 10.2 1.0 (2) 22.0 3.8 1.6 38.9 0.3 99.7 0.3

¹ Less than 0.1 percent.

EXPORTS AND IMPORTS 1

Exports of coke from the United States totaled 589,925 net tons valued at \$3,878,235 in 1939, an increase of 103,354 tons from the 1938 total of 486,571 tons. As usual, the principal export movement was to Canada, which received 495,389 tons (84 percent of the total), the bulk going through the gateways of Buffalo and Michigan. Outside of Canada the export market for American coke is small, although France took 45,901 tons in 1939, a vast increase over the 6,013 tons bought the year before. Between 5,000 and 10,000 tons were exported in 1939 to Cuba, to British West Indies, to Brazil, and to Japan.

Table 38.—Coke exported from the United States, 1937-39, by customs districts

Dintalet	1	937	1	938	19	939
District	Net tons	Value	Net tons	Value	Net tons	Value
Buffalo		\$1, 406, 897 84, 472	222, 484 22, 813	\$1, 431, 715 100, 381	224, 900	\$1, 358, 559
Dakota Duluth-Superior	10, 120 3, 697	77, 714 32, 144	7, 254 3, 214	57, 958 27, 745	7, 031 3, 171	51, 749 25, 639
Florida	3, 750	76, 125	2, 199	53 10, 995	409	4, 041
Maine and New Hampshire Maryland	3, 829	7, 297 20, 9 89	94 1, 993	831 13, 025	64 1, 379	643 16, 972
Michigan Mobile	1 13, 847	1, 459, 913 100, 470	169, 293 7, 127	975, 592 109, 810	247, 192 8, 202	1, 333, 605 135, 756
New Orleans New York	4, 623	35, 152 70, 082	2, 461 12, 517	21, 244 89, 905	8, 989 27, 685	103, 103 337, 0 31
OhioPhiladelphia	12, 597	72, 877 80, 358	20, 974 11, 255	110, 857 51, 770	11, 050 40, 369	61, 053 331, 175
St. Lawrence	1, 107 2, 257	6, 364 25, 200	1, 440	394 16, 590	573 1, 049	2, 048 11, 774
San Francisco	36 364 708	746 3, 651	567	839 5, 266	1, 324 5, 617	30, 940 64, 856
Other	526, 683	7, 377 3, 567, 828	486, 571	3, 035, 105	921 589, 925	9, 291 3, 878, 235

¹ Includes values under \$5,000.

¹ Figures on exports and imports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Coke imports supply an insignificant part of the requirements of the country and are a factor in the home market in restricted localities only. In 1939, 141.911 tons were received in the United States, nearly all supplied by four countries—Canada, Belgium, the United Kingdom, and Germany—in order of importance.

Table 39.—Coke exported from the United States, 1937-39, by countries

a installa	1	937	1	1938	1	939
Country	Net tons	Value	Net tons	Value	Net tons	Value
North America:						
Canada	488, 880	\$3, 185, 966	461, 310	\$2, 760, 529	495, 389	\$2, 848, 584
Central America: Panama	153	3, 693	100	1, 162	100,000	2, 329
Mexico	488	4, 706	790	10, 287	875	8, 761
West Indies:	100	2,100	100	10, 201	010	0, 101
Cuba	14, 853	81, 347	2, 168	17, 299	5, 929	49, 503
Trinidad and Tobago	3, 198	27, 483	213	2, 223	6, 523	67, 642
Other	391	6, 568	353	4, 729	535	7, 291
South America:	001	0,000	000	1, 120	000	1, 201
Bolivia			445	6, 638	133	1, 177
Brazil			281	2, 393	8,000	101, 158
Chile	3, 818	20, 833	1, 750	9, 679	2, 181	18, 878
Peru	73	3, 401	1, 100	3,013	879	10, 359
Other	42	837	214	3, 279	547	9, 037
Europe:	1.2			0,210	011	•, 001
Denmark					3, 345	35, 087
France	605	7, 441	6, 013	53, 108	45, 901	413, 578
Germany	000	•, •••	1, 417	10, 628	10,001	110,010
Italy	9, 156	156, 196	2,760	40, 861	1, 176	19, 550
Netherlands	1, 247	10, 006	_,	10,001		20,000
Norway	564	10, 080	2, 198	10, 995	4, 480	31, 000
Switzerland	2, 800	42, 090	5, 880	90, 703	3, 229	57, 660
United Kingdom	336	5, 866	679	10, 592	844	15, 742
Other	000	0,000	0.0	10,002	i	10, 110
Asia:					1 1	
Japan			1	1	7, 923	136, 791
Philippine Islands	34	565			J, 861	42, 984
Other.	45	750		1	73	1, 099
Africa: Gold Coast					ĭil	15
	526, 683	3, 567, 828	486, 571	3, 035, 105	589, 925	3, 878, 235
	, 555	-,, 020		1 ., 230, 100	1, 0	-, -, 0, -00

Table 40.—Coke imported for consumption in the United States, 1937-39, by customs

District	1	937	1	938	1939	
District	Net tons	Value	Net tons	Value	Net tons	Value
BuffaloDakota	42, 827 (1)	\$650, 182 5	24, 527	\$496, 159	55, 425	\$956, 814
Hawaii	556	7, 528	726	6, 436		
Los Angeles	40, 826	183, 274	23, 752	130, 187	11, 392	64, 458
Maine and New Hampshire	390	1,506	252	1,866	350	2, 590
Massachusetts	37, 738	169, 021	19,852	76, 212	10,976	43, 871
Michigan	27	207			11	65
Montana and Idaho	28, 833	157, 051	28, 902	162, 154	26,688	148, 183
New York	76, 489	315, 443	6, 983	32, 683	19, 211	69, 44 5
Oregon	3, 340	11, 528	2, 259	14, 085	1, 156	6, 418
Rhode Island	4, 749	28, 808	1, 120	6, 005		
St. Lawrence	1,628	10, 424	61	446	76	486
San Francisco	30, 701	144, 037	19,983	125, 245	9,849	53, 879
Vermont	360	2, 690	260	1, 910	278	1, 775
Washington	17, 900	97, 798	6, 563	40, 758	6, 499	39, 188
	286, 364	1, 779, 502	135, 240	1, 094, 146	141, 911	1, 387, 172

¹ Less than 1 ton.

Table 41.—Coke imported for consumption in the United States, 1937-39, by

Country	1	937	1	938	1939	
Country	Net tons	Value	Net tons	Value	Net tons	Value
Belgium	91, 698 83, 033 57, 322 20, 517	\$401, 516 882, 061 239, 457 90, 063	35, 772 58, 065 21, 907	\$165, 724 691, 611 108, 327	37, 080 85, 818 4, 321 10	\$152,606 1, 129, 337 26, 126 80
United Kingdom	33, 794	166, 405	19, 496	128, 484	14, 682	79, 023
•	286, 364	1, 779, 502	135, 240	1, 094, 146	141, 911	1, 387, 172

WORLD PRODUCTION

With 14 of the 27 countries listed in the following world table involved in the European war, production figures for 1939 are few, and any world total would be meaningless. Of the 6 countries whose 1939 output is reported, only the Union of South Africa shows a consistently rising quantity during the past four years. Production in the U.S.S.R. dropped from 20,700,000 metric tons in 1938 to 16,670,000 metric tons in 1939, or a decrease of 19 percent.

TABLE 42.—Coke produced in principal countries of the world, 1929 and 1936-39, in metric tons 1

Country 2	1000	1000	100#	1000	
Country -	1929	1936	1937	1938	1939
Australia:					
New South Wales	471, 813	907, 537	955, 030	1, 153, 670	(3)
Queensland	4, 144	23, 701	30, 949	31, 481	31, 057
Belgium		5, 252, 360	6, 083, 910	4, 894, 980	5, 176, 650
Bulgaria		1,683	4, 550	3, 923	(3)
Canada	1 008 529	1, 830, 101	1. 984. 581	1, 808, 588	1, 825, 178
China (exports)	13, 467	11, 422	9,062	11,630	(3)
Czecnosiovakia	3, 170, 029	1, 955, 515	3, 279, 864	4 2, 367, 000	(3) (3) (3)
France		7, 101, 380	7, 900, 000	7, 785, 000	(8)
Germany	39, 421, 033	35, 832, 617	40, 920, 357	43, 511, 082	
Saar	2, 423, 000	י (ו		40, 011, 082	(*)
Great Britain	13, 637, 421	13, 972, 181	15, 171, 482	13, 031, 396	(3)
Hungary	2,092	24, 133	35, 092	53, 092	(3)
Hungary India, British 6	843, 504	1, 840, 362	1, 900, 413	1, 738, 178	(3)
indochina	637	109	128	3, 503	(8)
Italy		1, 210, 714	1, 693, 024	1, 739, 417	(3)
Mexico	493, 777	(3)	(3)	(3)	(8)
Netherlands	2, 402, 566	3, 053, 451	3, 364, 885	3, 158, 065	(8)
New Caledonia				43, 317	(3)
Peru	35, 899		3, 607		(8)
Poland	1, 858, 052	1, 615, 598	2, 125, 519	2, 523, 290	(3)
Rhodesia, Southern	100, 001	20, 115	56, 029	49, 987	(8)
Rumania		63, 214	78, 010	86, 030	(3)
Spain	768, 040	(3)	(3)	(3)	000000000000000000000000000000000000000
Straits Settlements		9, 619	10, 634	10, 400	(8)
Sweden		112, 497	121, 630	112, 107	
Turkey		37, 411	74, 792	84, 930	(3)
Union of South Africa	99, 297	75, 459	109, 133	163, 315	184, 480
U. S. S. R.	4, 700, 000	19, 883, 000	20, 000, 000	20, 700, 000	16, 670, 000
United States	54, 325, 427	41, 979, 921	47, 513, 978	29, 479, 553	40, 212, 242
	142, 941, 000	7 137, 000, 000	7 153, 000, 000	7 135, 000, 000	(3)

¹ Gas-house coke is not included.

In addition to countries listed above, coke is produced in Chosen and Japan, but data of production are not available.
Data not available.

Data not available.

4 Excluding Sudetenland since October.

5 In Great Britain the production of gas-house coke (including breeze), not included above, is especially important and was as follows: 1936, 12,935,933 tons; 1937, 13,151,057 tons; 1938, 13,049,139 tons;

6 Figures for 1929 represent "hard" and "soft" coke made at collieries only (73,616 tons of "hard" coke and 769,838 tons of "soft" coke). Data for other years shown represent total "hard" coke manufactured. In addition, the following quantities of "soft" coke were made at collieries: 1936, 932,534 tons; 1937, 850,581 tons; 1938, 921,479 tons.

7 Exclusive of Mexico and Spain;

COKE-OVEN BYPRODUCTS

The statistics in the following tables are confined to the major products obtained in high-temperature byproduct ovens, which fall into five general groups, some of which are subdivided further. They are (1) gas, by far the most valuable byproduct, followed by (2) light oil and derivatives, (3) tar, (4) ammonia, and (5) miscellaneous products. In recent years an increasing number of operators have installed equipment at their plants for making tar derivatives on the premises. The sales value of such derivatives during 1938 and 1939 totaled \$2,438,075 and \$3,270,208, respectively, including phenol and sodium phenolate (except for phenol and tar acids produced at Clairton, Pa.). and the tar that went into the distilling of these products totaled 111,782,843 gallons, reported from 9 plants in 1939. Total sales values of all byproducts in 1938 and 1939 were \$103,671,849 and \$124,814,434. If to these amounts are added values for the tar used by the producer (\$5,780,776 in 1938 and \$10,081,205 in 1939) and the values of the breeze production (\$5,995,267 in 1938; \$7,271,050 in 1939), the ratio of the value of byproducts to the value of coke produced was 71 percent in 1938 and 69 percent in 1939.

Of particular interest at present is toluol, a light-oil derivative from coke-oven operations and tar refineries. The output in 1939 as a byproduct from coke operations was 19,767,200 gallons compared with 13,021,080 in 1938 and 20,896,724 in 1937. These figures do not include toluol obtained from tar refineries. Sales of toluol in 1939 totaled 20,484,568 gallons valued at \$3,974,367—an average of \$0.194 a gallon. At the beginning of 1940 the trade-journal quotation of

\$0.27 a gallon advanced 3 cents.

Statistics covering the production and sales of coke-oven byproducts during 1938 and 1939 are shown in the following tables:

Table 43.—Byproducts obtained from coke-oven operations in the United States, 1938-39 ¹

[Exclusive of screenings or breeze] Sales Product Production Value Quantity Total Average 1938 419, 579, 649 302, 321, 022 \$14,904,501 \$0.049 Ammonia: Sulfate.....pounds.....do....do.....do.... 873, 863, 077 40, 725, 570 916, 619, 707 41, 452, 920 10, 712, 947 1, 330, 304 012 . 032 12,043,251 Sulfate equivalent of all forms....do... 1, 036, 765, 357 1, 082, 431, 387 19, 039, 377 1, 205, 661 .063 14, 813, 680 42, 023, 525 2, 322, 117 143, 598, 923 141, 700, 942 18, 671, 749 . 103 ² 499, 692, 522 Sold for industrial use _____do___ . 124 ² 499, 692, 522 323, 010, 991 60, 364, 983 . 187

See footnotes at end of table.

Table 43.—Byproducts obtained from coke-oven operations in the United States, 1938-39—Continued

		-	Sales	
Product	Production		Valu	e
		Quantity	Total	Average
1938—Continued				
Light oil and derivatives: gallons Crude light oil gallons Benzol, crude and refined do Motor benzol do Toluol, crude and refined do Solvent naphtha do Xylol do Other light-oil products do	3 123, 559, 610 17, 744, 657 56, 349, 589 13, 021, 080 3, 706, 258 2, 900, 243 5, 450, 045	9, 558, 969 17, 175, 742 55, 675, 783 12, 884, 734 3, 462, 836 2, 732, 697 3, 617, 721	\$805, 807 2, 317, 420 5, 373, 407 2, 819, 431 633, 330 677, 311 319, 777	\$0. 08 . 13 . 09 . 21: . 18: . 24: . 08:
	4 99, 171, 872	105, 108, 282	12, 946, 483	. 12
Naphthalene, crude and refinedpounds_ Tar derivatives:	24, 943, 014	25, 456, 400	437, 654	. 017
Creosote oil, distillate as suchgallons Creosote oil in coal-tar solutiondo Pitch of tar	12, 986, 940 773, 669 187, 989 107, 778 180, 347	9, 784, 554 120, 679 3, 595 	1, 079, 392 21, 722 38, 701 1, 243, 363 41, 986 12, 911	. 110 . 180 10. 768 . 427 . 071
Value of all byproducts sold			536, 902 6 103, 671, 849	======
1939			100, 071, 049	
Targallons_	554, 406, 216	344, 534, 382	16, 585, 734	.048
Ammonia: Sulfatepounds Ammonia liquor (NH3 content)do	1, 160, 548, 288 48, 264, 021	1, 153, 901, 833 48, 034, 809	13, 153, 642 1, 480, 879	.01
Sulfate equivalent of all formsdo	1, 353, 604, 372	1, 346, 041, 069	14, 634, 521	
Gas: Used under boilers, etc	675, 143, 201	28, 714, 866 237, 890, 694 144, 876, 573 22, 229, 157	1, 967, 142 24, 301, 060 42, 891, 370 2, 716, 883	. 069 . 102 . 296 . 122
	² 675, 143, 201	433, 711, 290	71, 876, 455	. 16
Light-oil and derivatives: Crude light oil gallons Benzol, crude and refined do Motor benzol do Toluol, crude and refined do Solvent naphtha do Xylol do Other light-oil products do	* 170, 963, 199 25, 305, 714 79, 607, 150 19, 767, 200 4, 788, 836 4, 089, 090 6, 247, 201	9, 383, 907 24, 621, 650 75, 082, 362 20, 484, 568 4, 660, 311 4, 393, 400 4, 193, 125	727, 765 3, 248, 548 6, 934, 550 3, 974, 367 794, 323 1, 018, 589 336, 072	. 078 . 133 . 093 . 194 . 176 . 233 . 086
	4 139, 805, 191	142, 819, 323	17, 034, 214	. 119
Naphthalene, crude and refined pounds Tar derivatives:	48, 460, 171	46, 551, 432	727, 947	. 01
Creosote oil, distillate as such gallons Creosote oil in coal-tar solution do Pitch of tar net tons Other tar derivatives Phenol gallons Sodium phenolate do Other products b	18, 479, 962 975, 887 215, 414 99, 365	13, 573, 393 2, 109 71, 080	1, 470, 608 13, 905 1, 734, 810 28, 949	6.59
Sodium phenolate gallons do Other products 5	288, 974	286, 949	28, 949 21, 936 685, 355	. 07
Value of all byproducts sold			6 124, 814, 434	

¹ Includes products of tar distillation conducted by coke-oven operators under same corporate name, except, however, phenol and other tar acids produced at Clairton, Pa.

¹ Includes gas wasted and gas used for heating retorts.

² Refined on premises to make the derived products shown: 1938, 117,248,545 gallons; 1939, 163,947,167

[•] Remed on products.

• Total gallons of derived products.

• Ammonia thiocyanate, asphalt paint, cyanogen sludge, calcium ferrocyanide, light carbolic oils, pyridine oil, sodium carbolate, sodium prussiate, spent soda solution, sulfur, and vented vapors.

• Exclusive of value of breeze, which was \$5,995,267 in 1938 and \$7,271,050 in 1939.

Table 44.—Coal equivalent of byproducts of byproduct coking in the United States, 1913, 1914, 1918, and 1938-39

	Qı	lantity	of byprod	lucts	Rough equivalent in heating value (billion B. t. u.)			Coal equi	ivalent		
	1	2	3	4	5	6	7	8	9	10	11
Year	Coke breeze (thou- sand net tons)	Sur- plus gas (bil- lion cubic feet)	Tar pro- duced (thou- sand gallons)	Light oil pro- duced (thou- sand gallons)	Coke breeze (1×20)	Surplus gas (2×550)	Tar (3 × 0.150)	Light oil (4 ×0.130)	Total (5+6 +7+8)	Net tons 9 ÷ 0.0262)	Percent this forms of coal made into coke
1913 1914 1918 1938 1939	735 667 1, 999 2, 654 3, 354	64 61 158 323 434	115, 145 109, 901 263, 299 419, 580 554, 406	3, 000 8, 464 87, 562 123, 560 170, 963	14, 700 13, 340 39, 980 53, 080 67, 080	35, 200 33, 550 86, 900 177, 650 238, 700	17, 272 16, 485 39, 495 62, 937 83, 161	390 1, 100 11, 383 16, 063 22, 225	67, 562 64, 475 177, 758 309, 730 411, 166	2, 600, 000 2, 461, 000 6, 785, 000 11, 822, 000 15, 693, 000	3. 8 4. 8 8. 0 25. 4 24. 7

COKE-OVEN GAS

Table 45.—Coke-oven gas produced and sold in the United States, 1938–39, by States

			Used in	Surp	lus sold or us	ed	
State	Active	(M cubic	heating ovens	M cubic	Value)	Wasted (M cubic
-		feet)	(M cubic feet)	feet	Total	Aver-	feet)
1938							
Alabama	- 7	54, 132, 681	23, 313, 720	28, 274, 030	\$2, 209, 461	\$0.078	2, 544, 931
Colorado	- 1	3, 292, 183	1, 875, 164	1, 395, 066	(1)	(1)	21, 953
Illinois Indiana	- 8	26, 392, 799	6, 018, 934	20, 279, 580	4, 523, 593	. 223	94, 285
Maryland	: 1 i	44, 366, 419 15, 430, 937	18, 208, 118 6, 494, 580	25, 504, 616	5, 993, 085	. 235	653, 685
Massachusetts	2	16, 279, 971	3, 723, 645	8, 936, 357 12, 512, 352	(1)	(1)	43, 974
Michigan	9	28, 800, 580	6, 494, 393	22, 037, 351	3, 164, 628	.144	268, 836
Minnesota	. 3	8, 903, 220	3, 633, 599	5, 257, 022	1, 438, 536	. 274	12, 599
New Jersey	_ 2	16, 371, 899	3, 355, 583	13, 016, 316	(1)	(1)	12, 000
New York	. 8	59, 664, 055	12, 427, 730	46, 162, 273	14, 900, 318	.323	1,074,052
Ohio	- 14	54, 845, 691	23, 716, 505	29, 707, 773	3, 618, 400	. 122	1, 421, 413
Pennsylvania Tennessee	12	118, 591, 838	47, 981, 230	70, 155, 151	9, 026, 204	. 129	455, 457
Utah		1, 042, 877 3, 056, 842	462, 765 1, 449, 075	580, 112	154, 068	. 266	
West Viriginia	1 4	22, 374, 452	6, 047, 801	1, 518, 236 16, 313, 901	1, 370, 531	(1)	89, 531
West Viriginia Connecticut, Kentucky, Missouri, Rhode Is-	-	22, 011, 102	0,041,001	10, 515, 901	1, 570, 551	. 084	12, 750
Missouri, Rhode Is-	ı	i		1	1	İ	i
land, and Wisconsin_	.16	26, 146, 078	4, 212, 250	21, 360, 855	6, 450, 296	. 302	572, 973
Undistributed	.				7, 515, 863	. 201	0.2,0.0
	84	499, 692, 522	169, 415, 092	323, 010, 991	60, 364, 983	. 187	7, 266, 439
At merchant plants		169, 717, 382	35, 155, 300	132, 498, 828	37, 137, 781	. 280	2, 063, 254
At furnace plants	44	329, 975, 140	134, 259, 792	190, 512, 163	23, 227, 202	. 122	5, 203, 185
1939							
Alabama Colorado	6	60, 865, 445	26, 259, 841	33, 045, 531	2, 560, 642	. 077	1, 560, 073
Illinois	1 9	7, 171, 893	3, 512, 390	3, 626, 584	(1)	(1)	3 2, 9 1 9
Indiana	5	27, 821, 287 74, 992, 074	6, 635, 165 29, 833, 498	20, 640, 374	4, 740, 237	. 230	545. 748
Maryland	i	20, 722, 806	8, 483, 222	43, 530, 778 12, 239, 584	8, 314, 922 (1)	. 191	1, 627, 798
Massachusetts	2	16, 873, 695	3, 975, 145	12, 862, 883	1 2 1	(1) (1)	35, 667
Michigan	9	40, 704, 449	6, 386, 903	33, 951, 687	4, 152, 266	. 122	365, 859
Minnesota	3	8, 619, 175	3, 183, 412	5, 423, 516	1, 461, 090	. 269	12, 247
New Jersey	2	16, 570, 792	3, 589, 092	12, 981, 700	(1)	(1)	
New York	.8	67, 991, 560	15, 679, 866	51, 426, 272	15, 337, 889	. 298	885, 422
Ohio Pennsylvania	15 11	90, 969, 431 181, 809, 635	38, 430, 434	50, 484, 575	5, 779, 642	. 114	2, 054, 422
Tennessee	11	1, 071, 727	71, 978, 547 450, 277	109, 162, 063	12, 919, 071	. 118	669, 025
Utah	l il	4, 364, 810	1, 880, 847	621, 450 2, 239, 994	160, 312	. 258	
Wast Viriginia	4	26, 265, 390	7, 187, 371	19, 046, 273	1, 670, 165	(1) . 088	243, 969 31, 746
Connecticut, Kentucky, Missouri, Rhode Is- land, and Wisconsin		., 50, 000	., .51, 011	-5, 520, 210	2, 0.0, 100	. 000	31, 740
Missouri, Rhode Is-					1	I	
land, and Wisconsin	6	28, 329, 032	5, 398, 046	22, 428, 026	6, 542, 010	. 292	502, 960
Undistributed				<u></u>	8, 238, 209	. 187	
	84	675, 143, 201	232, 864, 056	433, 711, 290	71, 876, 455	. 166	8, 567, 855
At merchant plants	39	172. 077, 078	36, 004, 338	134, 485, 966	37, 717, 223	. 280	1, 586, 774
At furnace plants	45	503, 066, 123	196, 859, 718	299, 225, 324	34, 159, 232	. 114	±, 000, 113

¹ Included under "Undistributed."

Table 46.—Disposition of surplus coke-oven gas in the United States, 1938–39, by States

			Used by	producer			
State	Ur	nder boilers		In steel or other affiliated plants			
State	M cubic	Value		M cubic	Value		
	feet	Total	Average	feet	Total	Average	
1938 Alabama	7, 124, 974	\$363, 498	\$0, 051	16, 410, 937	\$1, 238, 121	\$0.075	
Colorado				1, 395, 066	(1)	(¹) . 145	
Illinois	195, 868	19, 778	. 101	1, 752, 254 17, 256, 100	254, 657 2, 319, 179	. 134	
Indiana	1, 104, 360	92, 902	.084	3, 503, 821	2, 319, 179 (1)	(1)	
Maryland Massachusetts	13, 494	(1)	(1)	0,000,021			
Michigan	1, 061, 300	53, 065	. 050	12, 202, 760	1, 826, 549	. 150	
Minnesota	7, 694	891	. 116	1, 162, 053	168, 851	. 145	
New Jersey						. 123	
New York	1, 386, 398	93, 604	.068	9, 025, 740	1, 109, 154 1, 901, 776	.098	
Ohio	2, 524, 148	232, 687 200, 874	.092	19, 403, 205 47, 283, 281	4, 300, 922	.09	
Pennsylvania Tennessee	3, 462, 080 114, 470	4,006	.035	11, 200, 201	4, 000, 022		
Utah	836, 118	(1)	(1)	20, 195	(1)	(1)	
Wast Windings	526, 180	25, 587	`.049	14, 183, 511	1, 078, 329	``.070	
Connecticut, Kentucky, Missouri,	,	•	•	, ,		ł	
Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin	682, 293	70, 914	. 104				
Undistributed		47, 855	.056		616, 142	. 12	
	19, 039, 377	1, 205, 661	. 063	143, 598, 923	14, 813, 680	. 103	
At merchant plants	5, 994, 451	455, 706	.076	5, 312, 043 138, 286, 880	452, 145 14, 361, 535	.08	
At furnace plants	13, 044, 926	749, 955	. 057	100, 200, 000	14, 001, 000		
1939							
Alabama	6, 298, 948	244, 856	. 039	21, 596, 775	1, 716, 123	07	
Colorado				3, 626, 584	265, 701	(1)	
Illinois	617, 125	49,643	.080	2, 074, 026 31, 977, 597	4, 168, 691	.13	
Indiana	3, 660, 242	327, 045	.009	6, 531, 192	4, 100, 051	(1)	
Maryland	13, 479	(1)	(1)	2,047	l is	(1)	
Michigan	3, 999, 774	392, 465		22, 212, 620	2, 552, 950	.11	
Minnesota	7, 197	772	. 107	1, 303, 909	193, 965	. 14	
New Jersey		l				.11	
New York	2, 087, 238	138, 863	.067	12, 306, 754 38, 281, 890	1, 450, 555 3, 735, 941	.09	
Ohio Pennsylvania	2, 996, 306 6, 463, 999	280, 908 388, 209	.060	80, 757, 946	7, 579, 899	.09	
Tennessee	92, 590	3, 241	.035	00,101,010	., 0, 0, 000		
Utah	1, 469, 753	(1)	(1)	31, 347	(1)	(1)	
West Virginia	172, 642	8, 975	.052	17, 188, 007	1, 386, 236	.08	
Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin		50.000	000	1	1		
Rhode Island, and Wisconsin	835, 573	53, 655	.064		1, 250, 999	.12	
Undistributed		78, 510	. 000		1, 200, 000		
	28, 714, 866	1, 967, 142	. 069	237, 890, 694	24, 301, 060	. 10	
At merchant plants	5, 958, 426	417, 313	.070	6, 416, 013	566, 038	.08	
A LIBERCHAID DIAMES	22, 756, 440	1, 549, 829	.068	231, 474, 681	23, 735, 022	.10	

¹ Included under "Undistributed."

Table 46.—Disposition of surplus coke-oven gas in the United States, 1938-39, by States—Continued

			. 80	old			
State	Distribute	ed through ci	ty mains	Sold for industrial purposes			
	M cubic	Val	10	M cubic	Value		
	feet	Total	Average	feet	Total	Average	
1938—Continued							
AlabamaColorado	3, 700, 366	\$511,907	\$0.138	1, 037, 753	\$95, 935	\$0.09	
IllinoisIndiana	5 709 201	4, 246, 432 3, 144, 945	. 23 2 . 551	26, 855 1, 434, 865	2, 726 436, 059	. 102 . 304	
Maryland Massachusetts	1 12, 467, 724	(1) (1)	(1)	31, 134	(1)	(1)	
Michigan Minnesota	4, 087, 275	864, 295 1, 268, 794	. 243 . 310	5, 213, 820	420, 719	. 081	
New York	34, 109, 008	(1) 13, 404, 910	(1) .393	1, 641, 127	292, 650	. 178	
Ohio Pennsylvania	5, 173, 698 16, 513, 689	1, 192, 269 4, 253, 110	. 230 . 258	2, 606, 722 2, 896, 101	291, 668 271, 298	.112	
Tennessee Utah	465, 642 524, 965	150, 062	(1)	136, 958			
West Virginia				1, 604, 210	266, 615	(¹) . 166	
Rhode Island, and Wisconsin Undistributed	18, 636, 358	6, 152, 335 6, 834, 466	. 330 . 217	2, 042, 204	227, 047 17, 400	. 111	
	141, 700, 942	42, 023, 525	. 297	18, 671, 749	2, 322, 117	. 124	
At merchant plantsAt furnace plants	107, 016, 255 34, 684, 687	34, 404, 089 7, 619, 436	. 321 . 220	14, 176, 079 4, 495, 670	1, 825, 841 496, 276	. 129	
1939—Continued							
AlabamaColorado	4, 430, 055	533, 580	. 120	719, 753	66, 083	. 092	
Illinois Indiana	17, 554, 864 6, 080, 129	4, 386, 825 3, 284, 366	. 250 . 540	394, 359	38, 068	.097	
Maryland	5, 708, 392	3, 264, 300 (1)	(1)	1, 812, 810	534, 820	. 295	
Massachusetts Michigan	12, 814, 242 3, 437, 471	827.631	(1) . 241	33, 115 4, 301, 822	379, 220	(1) • 088	
Minnesota New Jersey	4, 112, 410 12, 981, 700	1, 266, 353	.308				
New YorkOhio	35, 369, 561 6, 113, 841	13, 519, 838 1, 423, 622	. 382	1, 662, 719 3, 092, 538	228, 633 339, 171	. 138	
Ohio Pennsylvania Tennessee	16, 584, 194 528, 860	4, 441, 151 157, 071	. 268 . 297	5, 355, 924	509, 812	. 095	
Utah West Virginia	554, 694	(4)	(1)	184, 200 1, 685, 624	(1) 274, 954	(¹) . 163	
Connecticut, Kentucky, Missouri, Rhode Island, and Wisconsin Undistributed	18, 606, 160	6, 165, 714 6, 885, 219	. 331 . 215	2, 986, 293	322, 641 23, 481	. 108	
	144, 876, 573	42, 891, 370	. 296	22, 229, 157	2, 716, 883	. 122	
At merchant plantsAt furnace plants	107, 542, 354 37, 334, 219	34, 835, 122 8, 056, 248	. 324	14, 569, 173 7, 659, 984	1, 898, 750 818, 133	. 130	

¹ Included under "Undistributed."

TAR

Table 47.—Coke-oven tar produced and sold in the United States, 1938-39, by States

	Produced 1	(gallons)			Sold		
State	Per tor		For use as	For refin- ing into tar	Total sold	Valu	ıe
	Total	coked	(gallons)	products (gallons)	(gallons)	Total	Average
1938 Alabama	42, 748, 599 3, 294, 2411, 913 22, 411, 913 28, 742, 105 12, 861, 568 11, 980, 547 22, 375, 650 5, 942, 375, 650 10, 983, 131 54, 045, 612 45, 580, 107 113, 151, 706 749, 467 2, 619, 366	8. 98 11. 78 8. 66 6. 96 8. 40 8. 28 8. 88 7. 72 7. 83 9. 74 8. 75 10. 88 6. 76 11. 48	5, 193, 994 4, 786, 358 2, 564, 116 571, 536 694, 288 3, 278, 149 8, 334, 399 9, 495, 699 2, 931, 117	27, 570, 561 27, 570, 561 14, 281, 866 12, 366, 415 11, 525, 822 20, 571, 149 5, 637, 733 7, 925, 727 43, 315, 910 26, 356, 910 750, 024 2, 506, 818	32, 764, 555 215, 488 22, 728, 973 16, 845, 982 12, 536, 415 12, 097, 358 21, 265, 487 51, 650, 301 11, 203, 876 51, 650, 301 41, 958, 488 29, 288, 027 750, 024 2, 506, 818	\$1, 699, 004 1, 094, 335 928, 460 (1) 959, 235 309, 286 (1) 2, 498, 594 2, 498, 594 1, 300, 083 35, 251 (4)	\$0. 05: (4) . 04: . 05: (4) (4) . 04: . 04: . 04: . 04: . 04: . 04: . 04:
West Virginia Connecticut, Kentucky, Missouri, Rhode Is- land, and Wisconsin Undistributed	23, 759, 175 18, 333, 473 	7. 77 9. 27	37, 849, 648	22, 332, 113 18, 539, 434 	22, 332, 113 18, 539, 434 	1, 098, 249 881, 703 1, 968, 698 14, 904, 501	. 04
·	133, 922, 293 285, 657, 356	8. 67 9. 58	9, 872, 971 27, 976, 677	122, 818, 171 141, 653, 203	132, 691, 142 169, 629, 880	6, 384, 802 8, 519, 699	.04
Alabama Colorado Illinois Indiana Maryland Massachusetts Michigan Minnesota New Jersey New York Ohio Pennsylvania Tennessee Utah West Virginia Connecticut, Kentucky,	6, 576, 129 23, 053, 501 44, 856, 319 17, 954, 024 12, 646, 193 31, 168, 837 6, 158, 582 11, 420, 692 60, 145, 449 73, 781, 686	8. 64 10. 91 8. 33 6. 46 8. 29 8. 46 8. 89 9. 58 8. 55 10. 57 7. 25 11. 50 11. 07	9, 902, 390 5, 952, 631 2, 574, 144 637, 413 8, 518, 487 3, 150, 946 10, 250, 106 15, 213, 762 9, 942, 820	18, 025, 540 218, 615 15, 066, 955 21, 126, 373 17, 701, 420 11, 998, 797 21, 339, 872 5, 946, 203 8, 062, 611 44, 511, 837 42, 712, 362 21, 790, 639 779, 643 3, 757, 069 25, 265, 149	27, 927, 930 218, 615 21, 019, 586 23, 700, 517 17, 701, 420 12, 636, 210 29, 586, 203 11, 213, 557 5, 946, 203 11, 213, 557 54, 761, 943 57, 926, 124 31, 733, 459 779, 643 3, 757, 250 25, 265, 149	1, 446, 341 (1) 1, 002, 347 1, 166, 383 (4) 1, 353, 874 317, 974 (4) 2, 901, 568 1, 991, 046 36, 643 (4) 1, 151, 505	. 052 (4) . 044 (4) . 044 . 053 (4) . 044 . 055 . 044 . 054 (4) . 044
Missouri, Rhode Island, and Wisconsin_Undistributed	20, 201, 603	8. 09		20, 088, 417	20, 088, 417	983, 416 2, 191, 178	. 04 . 04
	554, 406, 216	9. 06	66, 142, 880	278, 391, 502	344, 534, 382	16, 585, 734	. 04
At merchant plants	136, 417, 322 417, 988, 894	8. 79 9. 15	9, 735, 980 56, 406, 900	122, 367, 243 156, 024, 259	132, 103, 223 212, 431, 159	6, 259, 509 10, 326, 225	.04

¹ Includes 79,863,885 gallons of tar "refined at plant" in 1938 and 111,782,843 gallons in 1939.

³ Includes the following sold: To affiliated corporations—1938, 130,913 gallons; 1939, 630,473 gallons.

To other purchasers—1938, 37,718,735 gallons; 1939, 65,512,407 gallons.

⁴ Included in "Undistributed."

Table 47.—Coke-oven tar produced and sold in the United States, 1938-39, by States—Continued

	Used b	y producer 3	(gallons)	
State	As fuel under boilers	In open hearth or affiliated plants	Otherwise	On hand Dec. 31 (gallons)
1938—Continued				
Alabama	117, 932	10, 624, 119	138, 219	3, 576, 413
Colorado			14,606	387, 413
Illinois			12, 265	2, 367, 097
Indiana			56, 643	3, 319, 161
Maryland		28, 195		1, 461, 873
Massachusetts				294, 211
Minnesota			3, 960	3, 415, 613
New Jersey				676, 359 667, 332
			100	3, 709, 013
Ohio	187, 017	1, 228, 766	308, 120	3, 549, 963
		8 864 469	5, 781, 443	12, 466, 314
Tennessee	1			19, 401
Utah		1, 150		216, 373
West Virginia Connecticut, Kentucky, Missouri, Rhode Island, and		1, 388, 108		520, 855
Wisconsin	ĺ			
Undistributed			44, 942	685, 905
O Hambild Waller Committee				
	771, 949	25, 162, 853	6, 360, 298	37, 333, 296
At merchant plants			47, 055	7, 403, 905
At merchant plantsAt furnace plants	771, 949	25, 162, 853	6, 313, 243	29, 929, 391
1939—Continued			=======================================	=======================================
Alabama		17, 664, 450	92, 434	4, 760, 859
Colorado		2, 049, 257	3, 617	620, 023
Illinois			169	4, 406, 448
Indiana			146, 565	4, 179, 114
Maryland Massachusetts		6, 793		1, 707, 684
Michigan	983, 500	651, 934		304, 194 3, 113, 223
Minnesota	200, 000	001, 904	8, 270	888, 738
New Jersey				874, 467
New York		1, 192, 540	22, 378	6, 119, 922
Ohio Pennsylvania	799, 418	11, 322, 890	594, 190	5, 158, 560
Pennsylvania	2, 873, 945	42, 467, 152	5, 295	10, 769, 542
Tennessee				28, 622
Utah		650		186, 807
West Virginia Connecticut, Kentucky, Missouri, Rhode Island, and		207, 082	1,000	1, 022, 676
Wisconsin			2 221	705 700
Undistributed			3, 331	795, 760
	4, 656, 863	85, 363, 841	877, 249	44, 936, 639
At merchant plants			26, 709	9, 969, 047
At furnace plants				

Excludes 79,863,885 gallons of tar "refined at plant" in 1938 and 111,782,843 gallons in 1939 that cannot be shown by States without disclosing individual operations.

AMMONIA

 $\mathbf{T_{ABLE}}$ 48.—Ammonia produced at coke-oven plants in the United States and sold, 1938–39, by States

		Sulfate equiva all forms (po		Produce	d as—
State	Active plants	Total	Perton of coal coked	Sulfate (pounds)	Liquor (NH ₃ content) (pounds)
1938					
Alabama	7	120, 933, 088	25.39	111, 531, 488	2, 350, 400
Colorado	1	6, 935, 000	24.80	6, 935, 000 40, 516, 913	4, 212, 531
Illinois	7 5	57, 367, 037 87, 830, 453	23. 13 21. 26	79, 831, 213	1, 999, 810
Indiana Maryland	1	31, 211, 440	20. 37	31, 211, 440	1, 888, 010
Massachusetts		34, 252, 268	23.66	30, 724, 960	881, 827
Michigan	2 9	57, 330, 116	22.75	23, 085, 588	8, 561, 132
Minnesota	3	15, 965, 639	20.73	15, 965, 639	
New Jersey	2	27, 228, 843	19.42	27, 228, 843	
New York	8 14	128, 028, 778	23.08	105, 537, 390 93, 353, 653	5, 622, 847 7, 332, 427
Ohio Pennsylvania	12	122, 683, 361 253, 618, 391	23. 55 24. 39	237, 586, 527	4, 007, 966
Tennessee	1	3, 007, 613	27.15	3, 007, 613	1,001,000
Titah	ī	6, 384, 974	27. 98	6, 384, 974	
West Virginia	3	42, 521, 709	26.08	42, 521, 709	
West Virginia Connecticut, Kentucky, Missouri,			l	********	
Knode Island, and wisconsin	5	41, 466, 647	21.47	18, 449, 127	5, 756, 630
Undistributed					
	81	1, 036, 765, 357	23. 36	873, 863, 077	40, 725, 570
At merchant plants	37	327, 412, 794	22, 47	203, 108, 698	31, 076, 024
At furnace plants	44	709, 352, 563	23. 79	670, 754, 379	9, 649, 546
· · · · · ·					
1939	١ .	400 404 000		105 000 000	1 004 000
Alabama	6	133, 436, 377 14, 232, 800	24. 58 23. 61	125, 977, 737 14, 232, 800	1, 864, 660
ColoradoIllinois	1 7	55, 871, 447	23. 61	39, 758, 927	4, 028, 130
Indiana		127, 694, 635	18.39	116, 621, 203	2, 768, 358
Maryland	i	48, 126, 547	22, 21	48, 126, 547	
Massachusetts	2	34, 306, 064	22.95	30, 286, 760	1,004,826
Michigan	9	73, 705, 126	21.03	28, 457, 486	11, 311, 910
Minnesota		15, 887, 708	22.35	15, 887, 708	
New Jersey		29, 620, 771	20.98	29, 620, 771	F OOF 709
New York		140, 357, 716 192, 178, 308	22.35 22.27	117, 054, 904 153, 907, 344	5, 825, 703 9, 567, 741
Ohio Pennsylvania		378, 404, 833	23, 65	364, 074, 677	3, 582, 539
Tennessee	1 1	2, 835, 006	26.05	2, 835, 006	0,002,000
Utah		8, 612, 058	26. 57	8, 612, 058	
West Virginia	3	46, 946, 124	24.61	46, 946, 124	
Connecticut, Kentucky, Missouri, Rhode Island, and WisconsinUndistributed	5	51, 388, 852	20.83	18, 148, 236	8, 310, 154
O IIIIIII II III II II II II II II II II	80	1, 353, 604, 372	22. 33	1, 160, 548, 288	48, 264, 021
At marshaut plants	25	220 644 071	99 00	202 500 275	32, 261, 249
At merchant plants	35 45	332, 644, 271 1, 020, 960, 101	22. 29 22. 34	203, 599, 275 956, 949, 013	32, 261, 249 16, 002, 772

Table 48.—Ammonia produced at coke-oven plants in the United States and sold, 1938-39, by States—Continued

	Sold as—						
State	Sulfa	ite	Liquor (N	Liquor (NH ₂ content)			
	Pounds	Value	Pounds	Value			
1938—Continued							
Alabama	130, 185, 239	\$1,625,010	2, 486, 490	\$84, 087			
ColoradoIllinois	9, 464, 827 47, 744, 142	(1) 481, 922	4, 287, 715	(1)			
Indiana	93, 876, 155	1, 098, 397	2, 056, 548	54, 915			
Maryland		(1)					
Massachusetts		(1) 373, 889	881, 074 8, 981, 858	(1) 268, 014			
Minnesota	16, 179, 321	171, 702	0, 901, 000	208, 014			
New Jersey		(1)					
New York	108, 293, 453 93, 147, 572	1, 281, 744 1, 075, 648	5, 560, 271 7, 441, 415	178, 989			
Pennsylvania	224, 985, 740	2, 465, 624	4, 084, 353	258, 143 148, 026			
Tennessee		53, 946					
Utah West Virginia		(1)					
Connecticut, Kentucky, Missouri, Rhode Island.	40, 927, 118	482, 371					
and Wisconsin	21, 430, 432	263, 859	5, 673, 196	167, 165			
Undistributed		1, 338, 835		170, 965			
	916, 619, 707	10, 712, 947	41, 452, 920	1, 330, 304			
At merchant plants	220, 046, 874	2, 634, 587	31, 571, 479	1, 002, 809			
At furnace plants	696, 572, 833	8, 078, 360	9, 881, 441	327, 495			
1939—Continued							
AlabamaColorado	124, 387, 618	1, 537, 643	1, 810, 089	60, 783			
Illinois	9, 907, 686 32, 651, 753	342, 259	4, 039, 180	·····			
Indiana	117, 470, 487	1, 272, 189	2, 645, 513	75, 971			
Maryland	49, 567, 691	(1)					
Massachusetts Michigan	30, 854, 980 28, 710, 408	(1) 277, 500	1, 000, 794 11, 369, 266	(1)			
Minnesota	17, 947, 079	189, 062	11, 509, 200	264, 307			
New Jersey	29, 045, 660	(1)					
New York Ohio	118, 889, 070	1, 409, 880	5, 812, 278	207, 382			
Pennsylvania.	149, 571, 584 366, 372, 413	1, 692, 664 4, 024, 338	9, 544, 326 3, 558, 348	323, 083 128, 589			
Tennessee	2, 989, 500	35, 874	J, 000, 040	120,009			
Utah	10, 355, 685	(1)					
West Virginia Connecticut, Kentucky, Missouri, Rhode Island,	46, 676, 719	553, 032					
and Wisconsin	18, 503, 500	223, 872	8, 255, 015	250, 494			
Undistributed		1, 595, 329		170, 270			
	1, 153, 901, 833	13, 153, 642	48, 034, 809	1, 480, 879			
At merchant plants	200, 216, 061	2, 313, 495	32, 202, 538	1 097 510			
At furnace plants	953, 685, 772	10, 840, 147	15, 832, 271	1, 027, 510 453, 369			

¹ Included under "Undistributed."

LIGHT OIL AND ITS DERIVATIVES

Table 49.—Crude light oil produced at coke-oven plants in the United States and derived products obtained and sold, 1938-39, by States

		Produced (gallons)	Defined on	Derived products obtained and sold				
State	Active plants	Total	Per ton of coal coked	Refined on premises (gallons)	Produced (gallons)	Sold ¹ (gallons)	Value 1		
1938 Alabama									
Alabama	7	14, 583, 352	3.06	14, 257, 422	12, 388, 307	11, 771, 038	\$1, 322, 970		
Colorado	1	952, 313	3.40	960, 082	750, 693	675, 915	(2)		
Illinois Indiana	5 4	5, 442, 431 10, 321, 347	2.46 2.80	1, 765, 950 10, 842, 068	1, 422, 046 9, 063, 236	1, 492, 643 8, 486, 672	207, 354 1, 180, 445		
Maryland	i	4, 644, 712	3.03	4, 661, 672	3, 871, 645	3, 781, 915	(2)		
Michigan		6, 500, 213	2.94	4, 223, 996	3, 806, 010	3, 836, 091	447, 773		
New York	7	12, 609, 098	2.64	19, 481, 911	16, 163, 973	15, 553, 582	2, 226, 043		
Ohio	14	15, 309, 633	2.94	13, 274, 301	10, 922, 955	10, 628, 751	1, 388, 846		
Ohio Pennsylvania	10	33, 350, 074	3.52	32, 957, 066	27, 706, 005	26, 244, 892	2, 972, 206		
Tennessee	1	260, 637	2.35	256, 944	200, 600	205, 818	25, 173		
Utah	1	961, 445	4. 21	964, 840	703, 778	701, 843	(2)		
West Virginia Connecticut, Kentucky, Massachusetts, Minne-	4	6, 864, 799	3.47	6, 833, 182	5, 836, 381	5, 697, 890	853, 384		
sota, Missouri, New Jersey, and Wisconsin Undistributed	7	11, 759, 556	2.39	6, 769, 111	6, 336, 243	6, 472, 263	956, 519 559, 963		
	66	123, 559, 610	2.99	117, 248, 545	99, 171, 872	95, 549, 313	12, 140, 676		
At merchant plantsAt furnace plants	25 41	30, 380, 658 93, 178, 952	2. 49 3. 19	24, 999, 437 92, 249, 108	21, 625, 957 77, 545, 915	21, 440, 715 74, 108, 598	3, 109, 074 9, 031, 602		
1939									
Alabama	6	16, 287, 270	3.00	16, 231, 054	14, 029, 044	13, 567, 774	1, 546, 260		
Colorado	ľ	2, 034, 917	3.38	2, 012, 251	1, 596, 217	1, 410, 753	(2)		
Illinois	5	6, 091, 171	2.55	1, 922, 013	1, 515, 744	1, 420, 658	194, 562		
[ndiana	4	16, 847, 246	2. 59	17, 745, 926	16, 127, 640	15, 849, 451	1, 995, 638		
Maryland	1	7, 174, 031	3. 31	7, 174, 031	6, 013, 942	5, 988, 302	(2)		
Michigan	4	9, 446, 308	2.95	7, 401, 533 21, 002, 798	6, 558, 330	3, 417, 003	461, 781		
New York	7 15	14, 051, 684 25, 183, 749	2. 55 2. 92	21, 002, 798	17, 576, 292 18, 650, 345	17, 500, 173 18, 022, 004	2, 462, 650 2, 222, 550		
Ohio Pennsylvania	9	51, 853, 145	3:44	51, 116, 312	42, 878, 665	41, 851, 493	4, 707, 133		
Tennessee	ı	266, 023	2.44	267, 875	216, 142	209, 778	24, 964		
Utah	î	1, 342, 700	4. 14	1, 352, 030	1, 037, 461	1, 042, 067	(2)		
West Virginia Connecticut, Kentucky, Massachusetts, Minne-	4	8, 106, 539	3.46	8, 073, 908	6, 945, 723	6, 692, 847	948, 194		
sota. Missouri, New		1		1	1				
Jersey, and Wisconsin Undistributed	7	12, 278, 416,	2. 45	7, 268, 247	6, 659, 646	6, 463, 113	822, 314 920, 403		
	65	170, 963, 199	2. 99	163, 947, 167	139, 805, 191	133, 435, 416	16, 306, 449		
At merchant plants At furnace plants	23 42	30, 279, 965 140, 683, 234	2. 48 3. 12	25, 905, 491 138, 041, 676	22, 323, 665 117, 481, 526	22, 363, 499 111, 071, 917	3, 034, 641 13, 271, 808		

¹ Excludes 9,558,969 gallons valued at \$805,807 of crude oil sold as such in 1938 and 9,383,907 gallons, \$727,765 in 1939.

3 Included_under "Undistributed."

NAPHTHALENE

Table 50.—Crude and refined naphthalene sold by byproduct-coke operators in the United States, 1935-39

		Va			
Year	Pounds	Total	Average receipts per pound (cents)	Receipts per ton of coke (cents)	
1935 1936 1937 1938 1939	13, 214, 108 34, 946, 890 60, 315, 581 25, 456, 400 46, 551, 432	\$167, 632 570, 295 1, 182, 992 437, 654 727, 947	1. 3 1. 6 2. 0 1. 7 1. 6	. 5 1. 3 2. 4 1. 4 1. 7	

BYPRODUCT COKE OVENS OWNED BY CITY-GAS COMPANIES (PUBLIC UTILITY PLANTS)

Adaptation of byproduct coke ovens to the needs of city-gas manufacture has led a number of gas companies to install batteries of byproduct ovens to supplement or even to replace their coal or watergas plants. From the point of view of ownership and accounting, these installations are part of the gas utility system, and the Bureau of the Census therefore groups them with the manufactured-gas industry under the title "The Gas and Coke Industries."

From other points of view, however, these installations belong to the byproduct coke industry. The coke produced is superior to gashouse coke. In practical operation of a byproduct coke plant the fact that the gas may be distributed through city mains has less consequence than the fact that the coke must be marketed for foundry, furnace, or household use. Considered with reference to oven design and the technique of manufacture, and still more with reference to the supply and demand for coke, these ovens should be included with other byproduct coke plants; they are so included in the statistics published by the Bureau of Mines.

These differences in classification are followed by the Bureau of the Census and the Bureau of Mines after consultation with leaders of the gas and coke industries, and the two offices have collaborated in the collection and analysis of the statistics.

The following table presents salient features of the byproduct coke industry separated with respect to plants owned by city-gas companies and those not so owned.

That the public utility plants have been increasing in number and volume of output is evidenced by the fact that the number rose from 9 in 1918 to 21 in 1929. In the latter year the coke produced from the 21 active plants amounted to 3,232,307 tons, or 6 percent of the total output of byproduct coke. In 1939, with only 17 plants active, the coke output was 3,159,129 tons, or 7 percent of national byproduct production.

Table 51.—Production of coke, breeze, gas, and byproducts at byproduct coke plants owned by city gas companies (public utilities) and included by Bureau of the Census in manufactured-gas industry, and at all other byproduct coke plants, 1938–39

,		1938		1939				
Product	Plants not owned by city gas companies	Plants owned by city gas companies (public utilities) ¹	Total	Plants not owned by city gas companies	Plants owned by city gas companies (public utilities) ¹	Total		
Number of active plants	66	18	84	67	17	84		
Productionnet tons_ Value	28, 430, 014 \$142, 501, 302 \$5. 01	3, 228, 389 \$20, 977, 737 \$6. 50	31, 658, 403 \$163, 479, 039	39, 723, 184 \$186, 275, 463 \$4. 69	\$20, 182, 410	42, 882, 313 \$206, 457, 873		
Average Screenings or breeze: Productionnet tons_	2, 355, 317	298, 336	\$5, 16 2, 653, 653	1	1	\$4. 81 3, 354, 374		
Salesdo Value A verage	421, 504 \$1, 066, 519 \$2. 53	23, 676 \$58, 516 \$2, 47	445, 180	470, 586 \$1, 159, 829	41, 789 \$104, 914	512, 375 \$1, 264, 743 \$2, 47		
Quantitynet tons_ Coke:	40, 654, 801	4, 611, 543	45, 266, 344	l		61, 215, 899		
Used by producer: Quantitynet tons_ Value	17, 701, 093 \$79, 114, 103	703, 448 \$4, 435, 307	18, 404, 541 \$83, 549, 410	28, 527, 680 \$122, 872, 502	736, 561 \$4, 642, 504	29, 264, 241 \$127, 515, 006		
Sales: Quantitynet tons_ Value Byproducts:	9, 934, 102 \$58, 386, 977	2, 274, 907 \$14, 896, 061	12, 209, 009 \$73, 283, 038	12, 107, 076 \$67, 877, 767	2, 511, 625 \$16, 110, 542	14, 618, 701 \$83, 988, 309		
Gas: ProductionM cubic feet Sales of surplus:	446, 157, 227	53, 535, 295	499, 692, 522	622, 399, 116	52, 744, 085	675, 143, 201		
Used under boilers: Quantity_M cubic feet Value	19, 024, 471 \$1, 203, 972	14, 906 \$1, 689	19, 039, 377 \$1, 205, 661	28, 696, 140 \$1, 963, 902	18, 726 \$3, 240	28, 714, 866 \$1, 967, 142		
Used in steel or affiliated plants: Quantity_M cubic feet	143, 581, 124	17, 799	143, 598, 923	237, 875, 390	15, 304	237, 890, 694		
Value	\$14, 808, 600 94, 885, 014	\$5, 080 46, 815, 928	\$14, 813, 680 141, 700, 942					
Value Sold for industrial use: Quantity_M cubic feet	\$23, 406, 848 16, 631, 150	\$18, 616, 677 2, 040, 599	\$42,023,525	\$24, 024, 630	\$18, 866, 740 1, 901, 514	144, 876, 573 \$42, 891, 370 22, 229, 157		
Value Tar: Productiongallons_	\$1, 675, 194 374, 660, 061	\$646, 923 44, 919, 588	\$2, 322, 117 419, 579, 649	\$2, 107, 883	\$609,000 44,520,848	\$2, 716, 883 554, 406, 216		
Sales: Quantitydo ValueAverage	257, 646, 294 \$12, 805, 834	44, 674, 728 \$2, 098, 667	302, 321, 022 \$14, 904, 501	300, 488, 889	44, 045, 493	344, 534, 382		
Ammonia: Production (NH3 equivalent	\$0.050	\$0.047	\$0.049	\$0.048	\$0.046	\$0.048		
of all forms)pounds Liquor (NH2 content): Production pounds	235, 178, 959 36, 986, 054	24, 012, 380 3, 739, 516			23, 562, 139 3, 169, 567	338, 401, 093 48, 264, 021		
Production pounds Sales do Value Sulfate:	37, 717, 784 \$1, 259, 717	3, 739, 516 3, 735, 136 \$70, 587	41, 452, 920 \$1, 330, 304	44, 915, 616	3, 119, 193	48, 034, 809		
Productionpounds Salesdo Value	792, 771, 623 826, 102, 787 \$9, 701, 695	81, 091, 454 90, 516, 920 \$1, 011, 252	873, 863, 077 916, 619, 707 \$10, 712, 947	1,078,978,000 1,075,488,293 \$12,269,765	81, 570, 288 78, 413, 540 \$883, 877	1,160,548,288 1,153,901,833 \$13,153,642		
Productiongallons_ Salesdo	119, 226, 736 6, 187, 242 \$516, 725	4, 332, 874 3, 371, 727	123, 559, 610 9, 558, 969	167, 279, 063 6, 525, 552	3, 684, 136 2, 858, 355	170, 963, 199 9, 383, 907		
ValueLight oil derivatives: Productiongallons Salesdo	08 423 768	i	1	1	1	139, 805, 191		
Sales do Value Naphthalene, crude and refined: Production pounds. Sales do Value	\$12, 031, 361 24, 338, 427	1	1	1	696, 361	48, 460, 171		
Salesdo Value All other products, value	24, 848, 013 \$430, 385 \$2, 825, 690	\$7,269	24, 943, 014 25, 456, 400 \$437, 654 \$2, 974, 977	45, 850, 071 \$720, 216 \$3, 848, 597	701, 361 \$7, 731	46, 551, 432 \$727, 947		

¹ Includes all byproduct ovens built by city gas companies, some of which are operated in conjunction with coal, oil, and water gas plants. Does not include independent byproduct plants, which may sell gas to public utility companies for distribution.

FUEL BRIQUETS AND PACKAGED FUEL 1

By G. S. GOODMAN

SUMMARY OUTLINE

I	Page	1 I	age
Summary Technologic developments. Fuel briquets. Salient statistics. Production Value Number of plants Size of plants Raw fuels Binders and recarbonization. Weight and shape.	923 924 925 925 925 927 928 928 928 930	Fuel briquets—Continued. Distribution. Imports and exports. World production. Packaged fuel. Processes. Production and value. Number of plants. Size of plants. Raw fuels.	930 931 932 932 933 934 935 935

The domestic production of fuel briquets in the past 33 years has risen from 66,524 net tons in 1907 (the first year of record) to 1,107,720 2 net tons in 1939; the potential annual capacity of the 31 fuel-briquet and 103 packaged-fuel plants active in 1939 is three times this amount.

Compared with the production of Germany and France—the most important fuel-briquetting countries of the world, producing 56 million and 8 million net tons, respectively, in 1938—the United States production seems small. Conditions that favor the successful operation of briquetting plants in Germany are the abundant supplies of brown coal, which can be briquetted without a binder to make

a product that finds a ready domestic market.

The gradual development of the briquetting industry in the United States is significant because it reveals definite progress in utilization for domestic heating of the enormous stocks of slack and culm produced in mining operations and also that accumulated at the large Lake dock distribution centers. These coal fines were formerly wasted or sold at less than actual cost. The current trend of thought toward conservation of our National resources has directed attention ³ to the vast deposits 4 of low-rank bituminous and subbituminous coals and lignite in the United States, and to the rapidly diminishing known reserves of petroleum—which in the past 20 years has become such an important source of fuel and of energy. Because of its convenience, fuel oil has replaced coal in the heating of many homes, but raw coal and coal processed into briquets remain cheaper and therefore are likely to continue as the chief fuels.

¹ Directories of fuel-briquetting and packaged-fuel plants operating in 1939 and names of manufacturers of equipment will be furnished on request by the Coal Economics Division, Bureau of Mines, Washington, D. C.

D. C. Data on the principal expenses in the manufacture of fuel briquets may be obtained from the Bureau of the Census, which collects and publishes such data in alternate years.

Briquets made from charcoal, wood wastes, and fruit pits are not included in the Bureau of Mines review.

Includes 215,507 net tons of packaged fuel (treated separately in this report).

Fieldner, A. C., Tryon, F. G., and Yancey, C. F., Energy Resources and National Policy, Nat. Resources Committee, Pt. III, see. III, Conservation in Use, H. Doc. 160, 76th Cong., 1st sess... 1939, p. 376.

Hendricks, T. A., Coal Reserves (with map showing coal fields of the United States): Reprint from Energy Resources and National Policy, 1939, Nat. Resources Committee, pp. 281-286.

Tryon, F. G., and Simons, K. E., Relative Rate of Growth of Coal, Oil, and Water Power, 1889-1937: Bureau of Mines Minerals Yearbook, 1938, pp. 701-705.

Briquets are made in this country mostly from high-quality, lowvolatile bituminous screenings or slack; of the lower-grade fuels, lignite has been used successfully, particularly by one briquetting company in North Dakota since 1929.

The production of packaged fuel in the past 5 years has risen from 25,244 tons in 1935 (first canvass made by the Bureau of Mines) to 215,507 tons in 1939, an eightfold increase in tonnage over 1935 and 34 percent over 1938. In 1937 it became a million-dollar industry, and in 1939 it rose to nearly 2 million.

Technologic developments.—Fieldner 6 states that public policy in the

conservation of fuels should center on stimulation of research and wide dissemination of technological improvements. He ⁷ summarizes recent experimental work on fuel briquetting as follows:

Experimental work in the United States showed that a binder of sodium silicate for anthracite culm, if modified by the addition of silicic acid gel, gave much greater resistance to disintegration by water. Some Alabama lignites were successfully briquetted experimentally without a binder by preheating to 900° F., adding 8 percent water, and pressing at 13,500 pounds per square inch for 30 seconds. Not all Alabama lignites could be so treated with like results, the state of the results and pressing the property of the pressing the property and pressing the pr but with modification of the preheating and pressing treatments they gave satisfactory results. In Germany one of the large briquet plants, at the Hohenzollern mine at Beuthen, Upper Silesia, by using the Fohr-Kleinschmidt process, has reduced the amount of pitch required, eliminated cancer among the workmen, and made stronger briquets. Soft molten pitch instead of the powdered hard pitch previously used is atomized and sprayed under a pressure of 20 atmospheres on the coal, which has been preheated to 50° to 60° C. 10 At another plant an automatic apparatus for continuously recording the moisture content of coal for briquetting was installed; this is measured by means of variations in the capacity of an electrical condenser. The principal factors affecting the mechanical strength and stability of brown-coal briquets and modern methods of manufacture are receiving special attention in Germany in view of the use of such carbonized briquets for the production of synthesis gas used in the manufacture of liquid fuels by the Fischer-Tropsch method.¹² Differences in the capillary networks of different coals have been found to influence the strengths of the briquets.¹³ The nature of the capillary network is determined by vapor-pressure measurements. Trials of compounds of calcium, magnesium, barium, etc., mixed with coal in briquets for the purpose of fixing sulfur and preventing its emission during combustion showed that barium oxide was the best fixing agent.¹⁴ The Canadian Department of Mines has published a comprehensive review of fuel briquetting which includes history, processes, binders, and the results of experimental work.15

The General Assembly of Illinois appropriated \$85,000 in 1937 to demonstrate the feasibility of the Piersol 16 process of making smokeless

⁶ Fieldner, A. C., Tryon, F. G., and Yancey, C. F., Energy Resources and National Policy: Nat. Resources Committee, Pt. III, sec. III, Conservation in Use; H. Doc. 160, 76th Cong., 1st sess., 1939, pp. 376-377. 7 Fieldner, A

sources Committee, Pt. III, sec. III, Conservation in Use; H. Doc. 160, 76th Cong., 1st sess., 1939, pp. 376-377

7 Fieldner, A. C., Developments in Coal Research and Technology in 1937 and 1938: Bureau of Mines Tech. Paper 613, 1940, pp. 29-30.

8 Snell, F. D., and Kimball, C. S., Briquetting Coal with Sodium Silicate: Ind. Eng. Chem., vol. 29, 1937, pp. 724-726.

8 Basore, C. A., Fuel Briquets from Alabama Lignite by Destructive Distillation at Low Temperatures and Briquetting the Residue without a Binder: Alabama Polytech. Inst., Eng. Exp. Sta. Bull. S, 1937, 23 pp.; Chem. Abs., vol. 32, 1938, col. 1900.

10 Brennstoff-Chemie (Improvements in Briquetting Bituminous Coal by the Fohr-Kleinschmidt Process): Vol. 18, 1937, pp. 75-76.

11 Velten, O (Moisture Recorder for Briquet Coal): Braunkohle, vol. 36, 1937, pp. 555-569.

12 Fritzsche, A. (Modern Methods for the Manufacture of Stable Brown-coal Briquets): Braunkohle, vol. 36, 1937, pp. 643-658, 665-676.

13 Agde, G., and Vetter, K. E. (Influence of the Capillary Network of Crude Brown Coal on Its Briquetting Properties): Braunkohle, vol. 37, 1938, pp. 421-427; Chem. Abs., vol. 32, 1938, col. 9443.

14 Yamada, K., and Sawamura, T., Fixation of Sulfur in Briquetts: Jour. Fuel Soc. Japan, vol. 16, 1937, pp. 1309-1326; vol. 17, 1938, pp. 15-17; Chem. Abs., vol. 32, 1938, col. 3123, 8107.

18 Strong, R. A., Swartzman, E., and Burrough, E. J., Fuel Briquetting: Canada Dept. Mines and Resources, Mines and Geol. Branch, No. 775, 1937, 100 pp.

Knight, J. L., What Factors Are Important in Briquetting?: Coal Age, vol. 43, September 1938, pp. 34-35.

16 Piersol, R. J., Briquetting Illinois Coals Without a Binder by Compression and by Impact: Illinois State Geol. Survey Rept. of Investigations 31, 1933, 70 pp.; Briquetting Illinois Coals Without a Binder by Impact: Illinois State Geol. Survey Rept. of Investigations 37, 1935, 750. Snokeless Briquets Impacted Without Binder from Partially Volatilized Illinois Coals: Illinois State Geol. Survey Rept. of Investigations 31, 41, 1936, 30 pp.

briquets on a commercial scale from Illinois coals. A further appropriation of \$95,000 was allotted for an applied research laboratory. The laboratory is expected to be completed by September 1940, and demonstrations of briquetting by the Piersol process are scheduled immediately thereafter. Comments on these proposed experiments

have appeared in the various trade journals.17

A new type of briquet for heating orchards has been patented under the name of "Briquette Frost Fighter;" 18 this is unique in that the "briquette" is manufactured complete with container and kindling charge, making it immediately available in emergencies. Another advantage claimed is elimination of refilling—as the entire container, except the metal cover, is consumed, thus eliminating the necessity of refilling and considerably reducing labor costs. It is understood that plans are already under way for the construction of a plant for making these briquets on the Pacific coast.

Smoke tests 19 of packaged fuel made from high-volatile bituminous screenings from various sources are said to indicate a considerable reduction in smoke. Some of these experiments have been made with the thought of furnishing an answer to the smoke problem of

St. Louis and other cities.

FUEL BRIQUETS

The salient statistics of the fuel-briquetting industry from 1935 to 1939 are summarized in the following table. Similar data for earlier years are to be found in annual issues of Mineral Resources and Minerals Yearbook, which include chapters on briquetting, beginning with 1907.

Salient statistics of the fuel-briquet industry in the United States, 1935-39 [Data regarding packaged fuel are given separately at end of this chapter]

Year	Production				T	70-	Con-	Value of pro-		Aver- age out-	Average value per net ton, f. o. b. plant		
	East- ern States	Cen- tral States	Pacific Coast States	Total	1 -	Ex- ports ¹	sump- tion 2	duc- tion (thou- sands of dol-	Plants in opera- tion	put per plant (thou- sands	ern	Cen- tral States	Pacific Coast States
	Thousands of net tons						lars)		of net tons)	Diates	States	States	
1935 1936 1937 1938 1939	310 351 271 251 243	485 702 636 546 574	66 72 89 74 75	861 1, 125 996 871 892	17 20 7 14 1	(1) (1) 25 17 13	1 878 1 1,145 978 868 880	5, 476 7, 043 6, 394 5, 702 5, 802	29 32 31 35 31	30 35 32 25 29	\$4. 48 4. 19 4. 19 4. 34 4. 23	\$7. 16 6. 95 7. 01 7. 18 7. 15	\$9. 29 9. 64 8. 94 9. 38 8. 96

¹ Exports not reported separately by Bureau of Foreign and Domestic Commerce prior to 1937. 2 Production plus imports minus exports.

Production.—The production of fuel briquets in 1939 showed a total increase in tonnage of 2 percent for the entire country, principally in the Central States, where the production was 5 percent greater than in 1938 although there were fewer plants operating in 1939 in this region. This increase is notable when it is realized that 1939 temperatures averaged above normal yearly everywhere in the

<sup>Mining and Metallurgy, January 1940, p. 35.
Beck, C. V., Smoke Abatement and Its Pitfalls: Coal Heat, vol. 37, No. 3, March 1940, pp. 8-10.
Business Week, Coal Mustn't Smoke: April 20, 1940, p. 49.
Lamkin, William Lester. Portable Heater: U. S. Patent 2,165,390, July 11, 1939.
Mitten. Ray F., Reducing Smoke by Means of Packaged Fuel: Coal Heat, vol. 37, No. 4, April 1940, p. 34; Can Smoke and Soot be Reduced when Bituminous Coals Are Hand-fired?: Mim. rept., 6 pp.</sup>

United States. Of the 16 States producing fuel briquets in 1939, all but 4 showed increases in production despite the fact that 4 less plants were operating than in the preceding year.

Reports received by the Bureau also indicate that several plants

expect to start operations in 1940 or 1941.

A few fuel-briquet operators, making pillow and cube briquets, are selling part or all of their product in bags or cartons as an experiment; some 6,000 tons was so marketed in 1939. One operator re-

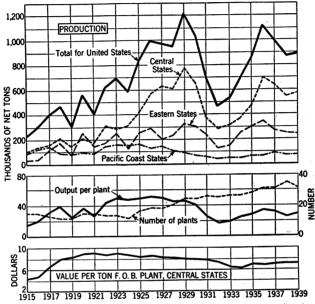


FIGURE 1.—Production of fuel briquets, number of plants in operation, and average value per ton, f. o. b. plant (Central States), 1915-39.

ported that his experiment in bagging briquets had not proved successful, owing to deterioration of the bags by mildew.

Fuel briquets produced in the United States, 1938-39

-			i i					
		1938		1939				
						***	Perce	ent of e in—
	Plants	Net tons	Value	Plants	Net tons	Value	Ton- nage	Value
Eastern States Central States Pacific Coast States	4 25 6	251, 443 545, 848 73, 969	\$1,090,055 3,917,936 693,899	4 21 6	243, 429 574, 108 74, 676	\$1,028,852 4,103,496 669,318	-3.2 +5.2 +1.0	-5.6 +4.7 -3.5
	1 35	871, 260	5, 701, 890	1 31	892, 213	5, 801, 666	+2.4	+1.7

i 1938: 10 plants in Wisconsin; 3 each in Minnesota, North Dakota, and Washington; 2 each in California, Michigan, Nebraska, and West Virginia; and 1 each in Arkansas, Illinois, Massachusetts, Missouri, Ohio, Oregon, Pennsylvania, and Wyoming; 1939: 10 plants in Wisconsin; 3 in Washington; 2 each in California, Minnesota, Nebraska, and West Virginia; and 1 each in Arkansas, Illinois, Massachusetts, Michigan, Missouri, North Dakota, Ohio, Oregon, Pennsylvania, and Wyoming.

Wisconsin again produced about half of the annual output; the 10 plants in this State, 1 in Pennsylvania, and 2 in West Virginia produced 76 percent of the total tonnage of the country.

Fuel briquets produced in Wisconsin, 1934-39

Year	Plants	Net tons	Value	Year	Plants,	Net tons	Value
1934	5	329, 942	\$2, 174, 168	1937	10	507, 462	\$3, 639, 183
1935	6	410, 715	2, 986, 847	1938	10	422, 281	3, 085, 873
1936	9	588, 163	4, 178, 981	1939	10	430, 554	3, 158, 859

In Washington 3 plants produced a total of 20,067 tons valued at \$153,202. Output for each of the other 14 States producing briquets in 1939 cannot be published, as to do so would reveal operations of individual companies. However, in relative order of importance the States producing more than 20,000 tons in 1939 are Wisconsin, West Virginia, Pennsylvania, Oregon, Missouri, North Dakota, Minnesota, and Washington.

Monthly production of fuel briquets in the United States, 1937-39, in net tons

Month	1937	1938	1939	Month	1937	1938	1939
January February March April May June July	140, 969 92, 816 47, 872 36, 541 71, 777 57, 936 40, 208	141, 397 79, 414 36, 556 28, 806 49, 599 61, 531 37, 283	113, 698 99, 195 58, 840 34, 001 51, 354 71, 273 42, 184	August	43, 389 87, 153 128, 266 113, 809 135, 894	51, 098 78, 128 87, 446 99, 651 120, 351 871, 260	57, 267 78, 012 113, 315 89, 465 83, 579

January and October were the months of highest production in 1939, but the output did not fluctuate as markedly from month to month as in former years. Production in October normally is high in anticipation of winter demand; the marked decreases in November and December are directly traceable to the abnormally warm winter weather, particularly in the north-central sections, where departures from normal were as high as 13.7°. Of the 31 active plants, 18 operated every month in the year, 10 between 8 and 11 months, and 3 less than 5 months.

Value.—The sales realizations on briquets in the scattered producing centers in a given year vary considerably. An average value per ton for the entire industry therefore is of doubtful significance because of the different conditions under which briquets are manufactured in various parts of the country. The most important factors that influence the value per ton at any plant are probably cost of raw materials and prices of competing fuels. Hence, the general trend of fuel-briquet prices ²⁰ from year to year is indicated best in this review by the average values in the Eastern, Central, and Pacific Coast States, as shown in the last three columns of the foregoing table of salient statistics.

These figures are not the prices paid by the consumers. Some plants are distant from the markets they serve, and to the value at

^{**} Retail fuel-briquet prices for certain cities are issued by the Retail Price Division, Bureau of Labor Statistics, Department of Labor, Washington, D. C., in their releases entitled "Retail Fuel Prices by Cities."

the plant must be added transportation charges and the margin of the wholesaler or retailer, sometimes both.

The total value of fuel briquets manufactured in 1939 was \$5,801,666 f. o. b. plant, an increase of \$99,776 or 2 percent compared with 1938.

In the eastern part of the country the average value of \$4.23 per ton is relatively low because the entire output comes from plants in the low-volatile bituminous fields of West Virginia and in the anthracite region of Pennsylvania, where the freight charges are not an important item in the cost of the raw fuel. In the Central States most of the raw fuel comes from the Lake docks, and the average value of \$7.15 per ton reflects the freight charges. In the Pacific Coast States, where carbon residue from the manufacture of oil gas forms the greater part of the raw fuel used, the average value dropped from \$9.38 in 1938 to \$8.96 in 1939.

Number of plants.—Thirty-one plants reported commercial production in 1939; of these, one (in Michigan) reported for the first time. A plant in Minnesota, idle for several years, resumed operations in December. Three plants—one in Texas (in experimental operation in 1939), one in Minnesota, and one in North Dakota—expect to start

commercial operations in the near future.

Fifteen plants were idle in 1939; 9 of these were also idle in 1938. Five went out of business in 1939, although one was active part of

the year.

Size of plants.—The following table classifies the plants according to actual production as well as actual capacity; however, a better indication of the size of the plants is gained from their capacity, even though the latter is affected by seasonal variations in production.

The total annual capacity of the 31 active plants operating in 1939, as reported by the operators, is 3,161,000 net tons, well over three

times the 1939 production of 892,213 tons.

Although fewer plants operated in 1939, the output of the individual plants generally increased. Eighteen plants, which operated every month in the year, produced 765,330 tons or 86 percent of the total production.

Classification of briquetting plants in the United States, 1938-39, by size of output and annual capacity

	Plants		A consists (not tong)		nts
Output (net tons)	1938	1939	Annual capacity (net tons)	1938	1939
Less than 2,000	11 4 5 5 8 2	6 8 6 3	Less than 5,000 5,000 and less than 10,000 10,000 and less than 25,000 25,000 and less than 100,000 100,000 and less than 200,000 200,000 and less than 400,000 400,000 and over	3 5 8 12 2 3 2	3 6 13 2 3 2 3 2

Raw fuels.—The briquetting process is now applied to a wide variety of raw fuels ranging from North Dakota lignite (after carbonization at low temperature) to Pennsylvania anthracite, petroleum coke, and the carbon residues of oil gas and natural gas.

In the Eastern States low-volatile bituminous slack and Pennsylvania anthracite fines are the raw fuels used in briquet manufac-

ture. Plants in the Central States use virtually all the fuels, their selection depending on their availability to the point of manufacture.

In the Pacific Coast States petroleum coke and the carbon residues from the manufacture of oil gas and from the pyrolysis of natural gas are the raw fuels now used. In previous years considerable bituminous coal was used in this region, particularly by the Pacific Coast Coal Co. of Scattle, Wash., which had been engaged in briquet manufacture from 1914 till May 1939, when it closed its plant permanently. The operations of this plant at one time reached an annual tonnage of over 100,000 tons.

The decrease in briquetting operations in the Pacific Northwest during the past 20 years may be attributed to changing conditions in the fuel market owing to the consumer trend toward cheaper grades of coal, to the introduction of coal stokers and oil burners, and to competition with new types of briquets made from oil and gas residues.

Ten operators reported washing a total of 359,605 net tons of Pennsylvania anthracite and bituminous coal before making it into briquets.

One large plant in Wisconsin reported making two kinds of briquets—one of Pennsylvania anthracite exclusively and the other a mixture of low-volatile bituminous and Pennsylvania anthracite. Another operator in Nebraska also makes two kinds—one of petroleum coke and the other of semianthracite.

Classification of fuel-briquetting plants in the United States in 1939, by kinds of raw fuel used

Kind of raw fuel used:	Plants
Anthracite or semianthracite fines exclusively	5
Mixture of anthracite and bituminous	5
Bituminous:	-
Low-volatile	12
High-volatile	9
Semicoke (lignite char)	1
Mixture of petroleum coke with semianthracite	- 1
Residual carbon from pyrolysis of natural gas	·- i
Residual carbon from manufacture of oil gas	- 5
Petroleum coke	- 4
	*
	1 21

¹ Two plants made two kinds of briquets; hence the sum of these items exceeds the total number of plants.

Raw fuels used in making fuel briquets in the United States, 1938-39

	Net	tons	Percent of total	
	1938	1939	1938	1939
nthracite and semianthracite culm and fine sizes	200, 347 505, 917 130, 143	196, 758 503, 431 136, 213	23. 9 60. 5	23. 5 60. 2 16. 3
	836, 407	836, 402	100. 0	100. 0

The success of a briquetting plant depends largely on its location with relation to the source of the raw-fuel supply and to the consuming market for the finished product, freight rates, cost of raw fuel, and prices of competing fuels to the consumer. In 1939 the plants drawing upon the nearby Lake docks for their raw fuel produced about 450,000

tons or about half of the total output; those near coal mines, about 280,000 tons; and those near petroleum refineries and gas plants,

about 100,000 tons.

Binders and recarbonization.—Asphaltic pitch continues to be the preferred binder in the briquetting of coal and petroleum coke. Two plants briquetting the carbon residue from the manufacture of oil gas and one plant using low-volatile bituminous coal used no binder. The percentage of binder by weight ranged from less than 5 to more than 9 percent; the majority of plants used 5 to 7 percent.

Partial recarbonization to drive off smoke caused by the binder was reported by one operator using Pennsylvania anthracite as raw

fuel.

Classification of briquetting plants in the United States in 1939, by type and percent of binder used

Type of binder	Plants	Ratio of binder to raw fuel (by weight)	Plants
Asphaltic pitch Mixed pitches Petroleum asphalt Asphalt and starch Starch No binder	22 2 2 1 1 1 3	Less than 5 percent	17 4 3 13 31

¹ Two plants use residual carbon from manufacture of oil gas, and one uses bituminous coal as raw fuel.

Weight and shape.—In 1939 all but 2.2 percent of the total production was made in pillow-shape and cylindrically briquets weighing

less than 5 ounces.

Pillow-shape briquets seem to be the most popular in the United States; 24 of the 31 active plants made briquets of this type. Of the other plants, three made large cubes, two cylindrical briquets, one 3 types—pillow, cube, and cylindrical; and one both pillow and cube.

Prevailing weight of briquets produced in the United States in 1939

	Production		uction			Production		
Weight (ounces)	Plants	Net tons	Percent of total		Plants	Net tons	Percent of total	
Less than 2 2 and under 3 3 and under 4 4 and under 5	4 12 5 6	55, 254 496, 773 220, 225 100, 393	6. 2 55. 7 24. 7 11. 2	5 and under 6 6 and under 10 10 and under 16 16 and under 25	1 1 4	19, 568	2. 2	
- unu unu unu unu unu unu unu unu unu un					1 31	892, 213	100.0	

¹⁴ plants made briquets of more than 1 size; hence the sum of the items exceeds the number of active

Distribution.—In 1939 fuel briquets were shipped into 38 States, Alaska, the District of Columbia, and Canada. Wisconsin was the largest consumer of fuel briquets in 1939; other States consuming more than 50,000 tons in 1939 were, in order of importance: Minnesota, North Dakota, South Dakota, and Michigan.

Fuel briquets of domestic manufacture consumed in the United States and exported to Canada, 1938-39, in net tons

Shipped into—	1938	1939	Shipped into—	1938	1939
Alaska Arkansas California Connecticut Delaware District of Columbia Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Maine Maryland	7, 551 1, 218 163 418 492 28 1, 340 30, 914 11, 985 23, 618 4, 212 2, 571 786 2, 602	70 147 12, 829 1, 467 249 651 368 123 28, 139 14, 175 22, 580 4, 888 3, 416 3, 810 2, 442	New Hampshire New Jersey New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Texas Vermont Virginia Washington	1, 798 1, 025 26, 804 8, 706 56, 728 27, 637 36, 189 11, 015 4, 792 16, 654 35, 542 330 13, 553 21, 210	1, 794 992 22, 807 9, 373 60, 475 27, 791 135 32, 606 10, 706 4, 305 1, 827 56, 961 155 290 13, 965 25, 048
Massachusetts Michigan Minnesota Missouri	195, 222 7, 961	34, 615 54, 051 189, 421 9, 341	West Virginia		192 198, 084 1, 455 14, 132
Montana Nebraska		34 24, 476		867, 399	890, 385

¹ As reported by the operators to the Bureau of Mines; official figures on imports and exports are given in following tables.

Imports and exports.—Imports of fuel briquets have ceased since the beginning of the war in September 1939. One shipment of 1,344 net tons, valued at \$5,572, from Belgium to Massachusetts, was received in February. Exports dropped in 1939 to 12,756 net tons valued at \$97,725—all but 201 tons destined for Canada.

Briquets (coal and coke) and other composition coals for fuels imported for consumption in the United States, 1935-39

Year	Net tons	Value	Year	Net tons	Value
1935 1936 1937	16, 779 20, 350 6, 674	\$73, 992 80, 210 28, 549	1938 1939	13, 814 1, 344	\$67, 366 5, 752

Briquets (coal and coke) exported from the United States, 1938-39, by countries and customs districts

	1	938	1939			1	938	1939	
Country	Net tons	Value	Net tons	Value	Customs district	Net tons	Value	Net tons	Value
Asia. Bermuda. Canada Chile. Mexico. Netherland West Indies. Peru. Venezuela.	16, 690		28 24 34 112 1	574 338 438 1, 485 13	Dakota Duluth and Superior Maine and New Hampshire Michigan New York St. Lawrence San Diego Washington	11, 832 (1) 79 30 941 1 3, 482 2 325 16, 692	10 699	36 222 589 177 2, 770 2 158	3, 752 2, 535 22, 204 25 1, 466

¹ Less than 1 ton.

World production.—Owing to the war, official data for 1938 and 1939 are less complete than usual; such revisions as are possible will be made in forthcoming issues of this series.

The world production of fuel briquets in 1938 reached a high of about 65 million metric tons, of which about 51 million were produced by Germany, about 7.5 million by France, 1.7 million by Belgium, 1.3 million by The Netherlands, and about 1 million by the United States.

United States production, as compared with world production of fuel briquets, has risen from less than 0.50 percent in 1913 to nearly 1.5 percent in 1938.

World production of fuel briquets, 1935-39, by countries, in metric tons [Compiled by M. T. Latus]

Country 1	1935	1936	1937	1938	1939
AlgeriaAustralia: Victoria 3	73, 200	60, 885	68, 682	(2)	(2)
Australia: Victoria 3	292,866	363, 340	396, 760	420,704	(2)
Belgium	1, 368, 610	1, 559, 890	1, 849, 280	1,712,280	4 1, 525, 79
Bulgaria	43,015	41,802	47, 106	85,770	(2)
Czechoslovakia:	1		1	1	1
Coal	408, 539	414, 896	459, 680	(2)	(2)
Lignite	188, 466	189, 304	264, 482	(2)	(2)
Lignite Eire (Irish Free State)	(2)	2,745	10, 725	20, 501	(2)
France	7, 998, 500	8, 518, 480	8, 321, 000	7, 475, 000	(2) (2) (2) (2)
Germany:	1 ' '	1 ' '	.,.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(' '
Coal	5, 567, 508	6, 044, 310	6, 785, 537	6, 897, 245	(2)
Lignite	32, 837, 070	36, 074, 489	41, 951, 141	44, 007, 268	(2) (2) (3) (2) (2) (2)
Hungary	334, 766	317,916	373, 519	441, 081	1 725
Indochina		104, 644	132, 225	131, 558	25
Italy.	38, 710	46, 533	58, 860	51, 047	25
Netherlands:	1	,	1 00,000	02,021	, ,
Coal	1, 087, 349	1, 119, 585	1, 277, 305	1, 262, 716	1, 269, 00
Lignite	31, 352	31, 190	49, 539	60, 543	68,00
Netherland India	46, 263	56, 347	55, 349	82, 123	
New Zealand	10, 669	21, 445	31, 582	29, 947	1 25
Poland	192, 288	167, 416	209, 347	222, 531	2
Portugal	170	850	7, 772	19, 865	25
Rumania	239, 033	220, 461	262, 330	245, 568	25
Spain	814, 316	(2)	(2)	(2)	(2) (2) (2) (2) (2) (2) (2)
Tunisia	58, 696	79, 138	82, 805	86, 478	2
Turkev	(2)	(2)	14, 761	37, 285	(2)
United Kingdom	870, 786	725, 234	826, 600	507, 415	(2)
United Kingdom United States 6	803, 717	1,080,814	1,035,970	936, 402	1,004,902
Yugoslavia	18, 365	13, 350	61, 323	100, 945	(2)
Total 7	53, 395, 372	57, 255, 064	64, 633, 680	64, 834, 272	(2)

¹ In addition to the countries listed, briquets are produced in Canada and New Caledonia, but data of output are not available.

² Data not available.

PACKAGED FUEL 21

Packaged fuel consists of 3- to 4-inch cubes (usually six to a package), wrapped tightly in heavy paper and sealed with gummed tape. It is made from various types of high-quality coal or coke screenings, usually mixed with a neutral binder. The majority of packaged-fuel manufacturers use shipped-in coal from the mines or Lake docks; some, however, use the accumulated screenings in coal dealers' yards and others both shipped-in and "yard" screenings.

This fuel has achieved popularity because of its cleanliness and convenience in handling and its appeal to the purchaser, who finds it

Data for available.

Data for year ended Mar. 31 of year stated.

Incomplete figures.

From domestic coal only.

Includes packaged fuel as follows: 1935, 22,901 tons; 1936, 60,261 tons; 1937, 132,482 tons; 1938, 146,012 tons; 1939, 195,504 tons.
7 Totals incomplete, representing sum of figures given in table only.

²¹ For results of research and technologic developments in the fuel-briquetting and packaged-fuel industries see Technologi. Developments, in first section of this report.

especially adapted to the home equipped with stoves or central The success of the industry is due in no small degree to the close cooperation between the machine manufacturers and the

operators.

At the request of the American Institute of Mining and Metallurgical Engineers, Ray F. Mitten, 22 of the C. M. Eberling Co., Cleveland, Ohio, reviewed briefly the packaged-fuel industry before members of the Coal Division of the Institute at its February (1940) meeting in New York City.

This industry, which began in 1932, has been canvassed by the Bureau of Mines each year since 1935. The results of these canvasses are included in the chapters on Fuel Briquets and Packaged Fuel in

the Minerals Yearbooks since 1936.

The first canvass, covering 1935, revealed 25 packaged-fuel plants, which produced 25,244 net tons. The canvass for 1939 showed 103 plants in operation, with a production of 215,507 net tons valued at \$1,866,751. This represents an eightfold increase in tonnage over 1935 and a 34-percent increase over 1938. The production in 1939 probably would have been even greater if it had not been for the abnormally mild winter of that year. These plants were reported to

be equipped to produce an annual output of 700,000 tons.

The National Association of Packaged Fuel Manufacturers, whose membership is open to owners of all kinds of packaged-fuel equipment,23 held several meetings in June and August 1939 in Chicago, The association plans to compile and disseminate information on technical methods and costs of manufacture of packaged fuel, general publicity, group and national advertising to broaden the field and further stimulate sales. In July 1939 the association issued a new organ called "Sales-Merchandizing Bulletin" and is pursuing an energetic program for the handling of trade problems. Late in 1939 it introduced a thermostat control, the "Packaged Fuel Comfort Regulator," for users of packaged fuel; this is being distributed by several members of the association.

Processes.—The Eberling process,24 introduced about 5 years ago for the briquetting and wrapping of slack or screenings with a starch binder and further described in previous reports of this series, was used by 85 operations in 1939. This type of briquet is adapted primarily for local consumption. The processes used by the other

operations are described briefly in the following paragraphs.

The Johnson Coal Cubing Co., 25 of Detroit, Mich., uses a process and equipment of its own design, producing cubes bearing the trade-mark "Koal Pak," eight to a package, wrapped in heavy paper; in 1939 it also produced pillow-shape fuel briquets in bulk known as "Black

Knight Fire Quets."

In the Glenn Smith process,26 used in the manufacture of both bulk briquets and packaged fuel, the heated mixture of raw fuel and liquid binder is poured into molds under very high pressure. The resulting cubes are cooled on a conveyor that feeds them to the wrapping machine; this automatically wraps and labels the packages (eight

²² Mitten, Ray F., The Development of the Packaged-fuel Industry: Presented before the American Institute of Mining and Metallurgical Engineers, New York meeting, February 14, 1940. (Mimeographed copies available upon application to Mr. Mitten.)

²³ Saward's Journal, August 19, 1939, vol. 22, No. 20, p. 307.

²⁴ Packaged Fuel by the Eberling Process: 1938 catalog issued by C. M. Eberling, 6002 Ellen Avenue, Cleveland, Ohio.

²⁵ Black Diamond, vol. 102, No. 7, April 8, 1939, p. 23.

²⁶ Black Diamond, vol. 100, No. 6, March 12, 1938, p. 60.

cubes to each package). Packaged-fuel operators using this process in 1939 sold part of their product unwrapped. A similar installation, completely automatic throughout, was completed in 1939 for the Cleveland Cliffs Iron Co. at Green Bay, Wis.; ²⁷ commercial operations are scheduled for January 1940. This process also is used by four fuel-briquet companies in the Central States.

The Leemon process 28 was introduced commercially in 1939 by 13 packaged-fuel operators in Michigan, Wisconsin, and Ohio. Equipped with a mixture of slack and volatile binder, the machine produces under tremendous pressure 3- to 4-inch cubes, which are wrapped six

to a package, averaging 190 to 200 packages to the net ton.

Production and value.—The 103 plants, most of them in the Central States, produced 215,507 net tons of packaged fuel in 1939. Michigan again led in tonnage, the number of plants in operation increasing from 21 in 1938 to 41 in 1939. Ohio, Wisconsin, and Minnesota followed in order.

Packaged fuel produced in the United States, 1938-39, by States [The plants and production in this table are not included in the preceding fuel-briquet tables]

Q ₁₋₁		1938		1939			
State	Plants	Plants Net tons		Plants	Net tons	Value	
Central States: Idaho Illinois Indiana Iowa Miehigan Minnesota Missouri Nebraska Ohio Wisconsin	5 2 21 6	(1) 4, 133 12,060 (1) 60, 676 14, 304 (1) 31, 522 24, 662	(1) \$42, 555 87, 667 (1) 509, 779 162, 746 (1) 256, 489 210, 473	1 5 5 2 41 8 1 1 19	(1) 3, 998 12, 234 (1) 86, 903 22, 763 (1) (1) 45, 646 28, 637	(1) \$40, 487 99, 909 (1) 716, 851 250, 397 (1) (1) 369, 692 241, 946	
Undistributed ² Total Central States Eastern and Pacific Coast States	67 8 9	4, 959 152, 316 8, 636	49, 880 1, 319, 589 85, 664	95 4 8	6, 732 206, 913 8, 594	64, 201 1, 783, 483 83, 268	
Total United States	76	160, 952	1, 405, 253	103	215, 507	1, 866, 751	

I Included under "Undistributed"; Bureau of Mines not at liberty to publish figures.
Includes States entered as "(!)" above.
Maine 2, Pennsylvania 1, Virginia 4, Oregon 1, and Washington 1.
Maine 2, Pennsylvania 1, Virginia 4, and Washington 1.

The peak season of production is from October through April. In 1939 March and July, respectively, were the high and low months of production. In making comparisons between spring and fall production in 1939, one should remember that 13 new plants began operations in the fall.

Monthly production of packaged fuel in the United States, 1938-39, in net tons

Month	1938	1939	Month	1938	1939
January February March April May June	22, 095 17, 124 15, 710 13, 673 7, 074 789 772	27, 722 28, 047 28, 532 25, 621 5, 417 1, 180 855	AugustSeptember October November December	2, 252 13, 198 19, 671 23, 271 25, 323 160, 952	4, 605 14, 743 26, 280 25, 524 26, 981 215, 507

²⁷ Retail Coalman, vol. 76, No. 1, January 1940, pp. 14-15; Black Diamond, vol. 104, No. 3, February 10, 1940, pp. 14-15.

18 Black Diamond, vol. 102, No. 12, June 17, 1939, p. 15.

Number of plants.—There were 103 active packaged-fuel operations in 1939, of which 29 reported for the first time; 13 of the new operations started in the fall of the year. All but one of the new plants are in the Central States. Several of the smaller operators reported using their plants only to utilize accumulated yard screenings and to take up labor slack.

Eleven plants were idle in 1939 (eight of these were also idle in 1938). Nine companies—all in the Central States—went out of business in 1939; of these, seven sold their equipment to new entrants in this field

and one is experimenting in research work on binders.

Five additional plants were under construction in 1939 and expect

to start commercial operations in 1940.

Size of plants.—Eighty-five plants produced less than 3,000 tons each during the year. A number of plants, however, produced a considerably larger tonnage, the Johnson Coal Cubing Co., of Detroit, Mich., leading with the highest recorded production since 1937.

Reports submitted on individual capacities indicate that the 103 active plants were equipped to produce about 700,000 tons if operated

at full capacity throughout the year.

Classification of packaged-fuel plants in the United States, 1938-39, by size of output and annual capacity

Annual capacity (net tons)	-	
	1938	1939
2,000 and less than 5,000 5,000 and less than 10,000 10,000 and less than 15,000 15,000 and less than 25,000 25,000 and less than 40,000 40,000 and less than 60,000	38 26 6 2 3	58 31 5 5 3 1 103
40	,000 and less than 60,000	,000 and less than 60,000

¹ Thirteen of these are new plants, which started operations in the fall of 1939.

Raw fuels.—Low-volatile bituminous slack (194,023 net tons) was the principal raw fuel used by 93 operators; 18,018 tons of petroleum coke, high-volatile bituminous, Oklahoma semianthracite, and Pennsylvania anthracite were used by the other operators, several reporting the use of mixtures of these various fuels.

The use of shipped-in slack from the mines and Lake docks by the majority of the operators appears to be definitely established, its exclusive use being reported by 60 operators; however, 26 plants used both shipped-in slack and yard screenings; and 17 plants utilized only yard screenings.

Binders.—Cornstarches, averaging about 15 pounds per ton of packaged fuel produced, are the principal binders. Eight plants reported the use of cement, asphalt, or glue; one, starch and cement;

and one, starch and asphalt.

Several operators indicated an interest in obtaining more effective and cheaper binders.

244615-40-60

PEAT

By Joseph A. Corgan and A. L. Richardson

SUMMARY OUTLINE

Production 93	United States Government specifications 93 Imports 95 World production 95	38
Uses	0	ΙU

The total production of peat in the United States in 1939, as reported by producers to the Bureau of Mines, was 55,483 short tons valued at \$362,066—a substantial increase over 1938, when 45,933 tons valued at \$286,127 were produced. Imports of peat moss in 1939 amounted to 78,611 short tons valued at \$1,204,883, an increase over 1938 of approximately 13 percent in quantity and 11 percent in value. No exports were reported. Thus, the total quantity available for domestic consumption in 1939 (domestic production plus imports) was 134,094 tons, a gain of 18,652 tons compared with 1938. In this country peat is used primarily for soil improvement. As in past years, producers reporting in 1939 showed no record of the use of peat as fuel.

Every effort has been made to cover all commercial operations. A list showing the names and addresses of operators who reported production in 1939 to the Bureau of Mines has been prepared and will

be furnished upon request to those who may be interested.

Reserves.—The known peat reserves in the United States are extensive. The total, calculated as air-dried peat, has been estimated to be 13,827,000,000 short tons,¹ centered chiefly in the Great Lakes region, in New England, and in the Atlantic and Pacific Coast States. Three of the Great Lakes States—Minnesota, Wisconsin, and Michigan—together contain 75 percent of the reserves, while 14 percent of the country's total is in Florida. In the Pacific Coast region, California contains most of the known deposits.

About half of the States in the Union contain some peat reserves. All are not workable and vary in composition and characteristics. Taken together, however, they constitute an important asset to the

natural resources of the country.

Production.—Commercial production of peat in 1939 was reported by 39 producers, in 15 States. As the following table indicates, the total output was 55,483 short tons valued at \$362,066—an increase over 1938 of 21 percent in quantity and 27 percent in value. The average per-ton value, at the plant, in 1939 was \$6.53, while in 1938 it was \$6.23. The trend of peat production and value from 1908 to 1939 is shown graphically in figure 1.

¹ Soper, r., α., and Osbon, C. C., The Occurrence and Uses of Peat in the United States: Geol. Survey Bull. 728, 1922, p. 92.

Peat produced in the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	37, 060 46, 126 51, 223	\$199, 377 266, 883 305, 156	1938 1939	45, 933 55, 483	\$286, 127 362, 066

The producing States, in order of output, were: New York, New Jersey, Michigan, California, Connecticut, Florida, Iowa, Ohio, Maine, Colorado, Minnesota, Washington, Pennsylvania, Massachusetts, and New Hampshire.

Peat humus comprised 51 percent of the total production; reed or sedge peat, 38 percent; and peat moss and other, 11 percent. Peat humus was produced in 10 States, reed or sedge peat in 7 States, and peat moss in 6 States.

One plant reported production of kiln-dried peat, 1 of air-dried peat, 8 of cultivated peat, 28 of shredded peat, and 17 of raw peat.

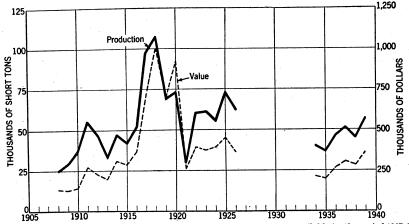


FIGURE 1.—Quantity and value of peat production, 1908-39. No data are available for the period 1927-33.

Uses.—The principal use of peat in the United States is for improving soil. Of the sales in 1939, 90 percent (41,964 tons) was used for this purpose. Two percent of the sales went for mixed fertilizers and 8 percent for other uses, such as improving lawns and golf courses, and in nurseries and greenhouses. Peat also is used as litter for barns; as packing material for plants, eggs, shrubs, vegetables, fruits, and fragile articles; and as an insulating material. No sales of peat for fuel were reported. In European countries, especially in Eire, peat is used extensively for fuel and power purposes, owing to lack of a plentiful supply of other fuels. In this country, with its ample supplies of higher-grade fuels available at reasonable cost, peat has been unable to compete successfully in the fuel market.

United States Government specifications.—There is a great difference in the kinds of peat, both in character and value, for specific uses. In

939 PEAT

purchasing its peat requirements, the Federal Government has certain specifications that must be met. These are shown below: 2

Peat.—Reed muck or sedge muck (peat humus); dark brown to black; granulated; uniform in composition and size; slightly acid to slightly alkaline in reaction (pH 5.0 to 7.5); free of lumps; low in ash content (8 to 15 percent); low in content of woody material, and mineral matter such as sulfur and iron; water-absorbing capacity ranging from 100 to 350 percent; water content not to exceed 60 percent by weight on oven-dried basis; moisture content in excess of 60 percent may be accepted, but settlement will be made on basis of weights corrected to

60 percent moisture content.

Reed peat or sedge peat; brown; raw, shredded or granulated; low ash content (5 to 10 percent); low in mineral material such as iron and sulfur; low in content of woody material; water-absorbing capacity ranging from 350 to 800 percent; water content not to exceed 50 percent by weight on oven-dried basis; if satisfactory in other respects, moisture content in excess of 50 percent may be accepted, but settlement will be made on basis of weights corrected to 50 percent moisture content: Acid grade; reaction may vary from 4.5 to 5.5 pH; slightly acid to slightly alkaline grade, reaction may vary from 5.5 to 7.5 pH.

*Imports.*³—The quantity of peat moss imported in 1939 was 78,611 tons, an increase over 1938 but 10 percent less than the record year 1937, when 86,871 tons was imported. Germany, as for many years in the past, was the chief source of imports, supplying 28,127 tons (36 percent of the total). It should be noted, however, that in 1936 and 1937 Germany contributed 60 and 61 percent, respectively, of our total peat imports. The Netherlands was next in order of importance, with 17,824 tons, a gain of 166 percent over 1938. and Canada were third and fourth.

Peat moss was imported into Continental United States through 27 customs districts, indicating the wide distribution of its use in this The New York district received 25 percent of the total country.

imports.

For the first time in several recent years, the average per-ton value of imported peat moss has declined from the preceding year. \$15.33 in 1939 compared with \$15.72 in 1938, evidently owing to the decrease in imports of German peat, whose reported value is comparatively high, and the increase in supplies from the Netherlands, which are lower in value. The average value varies considerably with the country of origin.

Peat moss imported for consumption in the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935	54, 547 75, 066 86, 871	\$677, 513 955, 807 1, 219, 127	1938 1939	69, 509 78, 611	\$1, 092, 942 1, 204, 883

² Procurement Division, General Schedule of Supplies, Agricultural Implements and Materials (Class 70), for the period Nov. 1, 1939, to Oct. 31, 1940, prepared under direction of the Secretary of the Treasury, Washington, D. C., p. 5.

³ Figures on imports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Peat moss imported for consumption in the United States, 1938-39, by countries

Garantee.	19	38	1939			
Country	Short tons	Value	Short tons	Value		
Canada Denmark Estonia Finland Germany i India, British Latvia Mexico Netherlands Newfoundland and Labrador Norway Poland and Danzig i Sweden U. S. S. R. i	6, 709	\$91, 167 17, 293 26, 514 1, 659 525, 564 34, 166 65, 968 13, 325 3, 145 282, 284 25, 455	6, 922 2, 396 1, 424 153 28, 127 110 1, 701 1, 701 15 17, 824 1 625 764 17, 247	\$147. 342 44, 971 28, 566 2, 949 389, 597 873 33, 820 564 185, 828 27 16, 262 11, 436 322, 285 9, 563		
United Kingdom	69, 509	6. 402	785	10, 770		

¹ For statistical purposes, trade with Danzig and that part of Poland occupied by Germany has been included with Germany and trade with that part of Poland occupied by U. S. S. R. has been included with U. S. S. R., after Nov. 16, 1939.

World production.—The following table would seem to indicate that the world production of peat is increasing. Several countries show a material increase since 1936. Complete data regarding world production of peat are difficult to obtain. Some countries evidently do not have information on quantities produced. The data in this table are the latest available and may be of interest to those concerned with world production of peat.

World production of peat, 1936-38, by countries [Compiled by M. T. Latus]

Country 1	1936	1937	1938
Canada (fuel) metric tons		434	454
Eire 2do		3, 646, 603	(3)
Estoniado	106, 659	169, 779	185, 600
Finlandbales_	231, 661	294, 913	(3)
Docubic meters_		7, 653	(3)
_ Dometric tons_		21, 560	(3)
Francedo		(8)	(3)
Italydo	. 3, 194	3, 385	(3)
Latvia:	1	1	
Littercubic meters_		97, 718	90, 369
Wastedo	. 15, 876	22, 484	14, 901
Insulationdo		2, 455	2, 440
Lithuaniametric tons_		142,000	180, 000
Netherlandsdodo	. (³)	(8)	800, 000
Sweden:	1		
Fueldo		34, 277	25, 711
Litter, baleddo	109, 349	115, 034	99, 998
Litter and "mull," unbaledcubic meters_	. 37, 067	38, 511	36, 578
"Mull" baledmetric tons.		32, 767	31, 959
Switzerlanddo		8,000	10,000
<u>U. S. S. R.</u> do		23, 822, 000	26, 460, 700
United Statesdo	. 41,845	46, 468	41, 669

¹ In addition to the countries listed Argentina, Austria, Germany, Hungary, Norway, and Poland produce

peat, but data of production are not available.

About 60 percent of the farmsteads in the country depend entirely on peat fuel, the annual consumption of which is estimated at 6 to 8 million tons. About 50,000 tons of peat-moss litter and peat mull are manufactured annually in Eire, and some 10,000 tons of air-dried turf are used annually for power purposes. (The Mineral Position of the British Empire, London, 1937, p. 30.)

Data not available. Estimated.

CRUDE PETROLEUM AND PETROLEUM PRODUCTS 1

By A. G. WHITE, G. R. HOPKINS, AND H. A. BREAKEY

SUMMARY OUTLINE

	Page		Page
General review	941	Refined products—Continued.	-
Salient statistics	943	Motor fuel	992
Reserves		Demand	992
Legislation and proration	949	Production.	995
Employment and labor productivity	950	Yields	997
Crude petroleum	951	Prices.	
Supply and demand	951	Aviation.	1000
Production	951	Stocks	1001
General	951	Production and consumption by States	1005
By States	954	Distribution	
Wells	968	Kerosene and range oil	1007
Stocks	970	Fuel oils	
Consumption and distribution	974	Lubricants	1022
Runs to stills.	974	Other products	1024
Distribution	976	World production	
Prices and value	979	Foreign trade	1030
Royalties on Indian and Federal lands	981	Imports	1030
Refined products	981	Exports	1034
General review	981	Intercoastal shipments	1039

World production of crude petroleum increased to 2,077 million barrels in 1939, a gain of 89 million barrels compared to 1938 and 38

million above the previous peak, attained in 1937.

The domestic petroleum industry improved in all its principal branches during 1939. Production of crude petroleum increased by 50 million barrels, but the relative position of the United States remained virtually unchanged at 61 percent of the world total. ever, owing to a decrease of some 37 million barrels in domestic crude stocks, the available supply of domestic crude oil was relatively greater than the production figures would indicate.

The principal changes in world production in 1939 outside of the United States were an increase of 18 million barrels in Venezuela, a 4-million-barrel gain in Netherland India, and an increase of 8 million barrels in Soviet Russia. Production in Rumania continued to decline and was 15 million barrels less in 1939 than in 1935. duction in Mexico increased by over 4 million barrels, although it was still substantially below the 1937 level. The completion of new pipe lines in Colombia and eastern Venezuela promises to increase the production of these countries substantially in 1940.

The tremendous expansion in world oil production since 1914-18 has materially altered the character and sources of world supply. Russia and Rumania are still the chief producers in Europe, but other available sources have expanded. In 1914 war requirements had to be met mainly from the United States and Mexico, with the newly developed Persian fields furnishing minor amounts. Today Venezuela, Colombia, Trinidad, Iran (Persia), Iraq, Bahrein Island,

and Saudi Arabia offer greatly augmented supplies.

¹ Data for 1939 are preliminary: detailed statistics with final revisions will be released later.

The opening of the European war in September 1939 had less effect on the oil industry of the United States than was anticipated. Industrial operations in the last quarter were stimulated by a rush of domestic orders to anticipate any war inflation in costs and prices, and this situation was evidenced by a very active fuel-oil market. The comparatively small decrease in total exports in 1939 was due primarily to reductions in crude exports earlier in the year. Possibly the most significant factor was that large foreign war demands did not materialize as many had anticipated and that refinery operations proved to be too optimistic and resulted in a large excess production of gasoline in the last quarter, although additions to fuel-oil stocks

proved inadequate.

Operations during the first quarter of 1940 have, however, clarified the complexity of the changes in world oil consumption and in the sources of world oil supply in relation to our foreign trade in oil. World consumption of oil products has expanded so universally that much of the increase in war demands apparently may be met by restrictions of civilian consumption. Furthermore, important markets were cut off by blockade, and consumption in many neutral countries was reduced by scarcity of tankers and by a severalfold rise in tanker rates that increased the delivered cost of oil 2 to 3 cents per gallon. Legislative restrictions affecting credit and movement of American registry ships into the war zones have tended to divert the demand for oil to Caribbean sources, where new production in both Venezuela and Colombia has become available. As a result of these varied influences, our total oil exports were over 9 million barrels (23 percent) less in the first quarter of 1940 than in the same period of 1939.

The trend of domestic demand in the first quarter of 1940 also is significant in interpreting oil-industry operations during 1939. The lack of balance in the last quarter between refinery production and vields of gasoline and distillate fuel oils on the one hand and demand on the other resulted in an increase of over 11 million barrels for the year in gasoline inventories. This situation was accentuated further by unusually cold weather in the first quarter of 1940. All sources of heating-oil supply were strained to the utmost, including larger runs to stills, and on March 31, 1940, total inventories of finished and unfinished gasoline reached the all-time peak of 103.7 million barrels—16.6 million barrels above the level of the previous year. The proper seasonal balance between production of gasoline and heating oil and stocks has become one of the most acute problems of the industry and probably was the most important disturbing factor in 1939, a record year in the total demand for oil products.

The total demand for all oils in 1939—1,418 million barrels—set a new record some 87 million barrels above that in 1938 and 75 million above the previous high in 1937. Total exports—189 million barrels—were 5 million barrels less than in 1938 but still 16 million above 1937. The major factor in 1939 was the 8-percent increase in the domestic demand for all oils, which rose to 1,229 million barrels—92 million barrels greater than in 1938 and 59 million above the

previous peak in 1937.

Total demand for all oils 1930-39

[Millions of barrels]

Year	Domestic demand	Exports	Total demand	Year	Domestic demand	Exports	Total demand
1930	926. 4	156. 5	1, 082. 9	1935	983. 7	129. 0	1, 112. 7
1931	903. 2	124. 4	1, 027. 6		1, 092. 7	132. 0	1, 224. 7
1932	835. 5	103. 3	938. 8		1, 169. 7	172. 8	1, 342. 5
1933	868. 5	106. 7	975. 2		1, 137. 1	193. 7	1, 330. 8
1934	920. 2	114. 5	1, 034. 7		1, 228. 8	189. 0	1, 417. 8

¹ Subject to revision.

Total stocks of all oils were reduced by over 42 million barrelsfrom 567 million at the close of 1938 to 525 million at the end of 1939. The major factor in this decline was the reduction of about 34 million barrels in refinable domestic crude stocks, caused primarily by a 2week curtailment in State production allowables for the first half of August in the more important States east of California that had proration laws.

The total stocks of all oils probably were close to an economic minimum at the end of the year, although stocks of specific products were out of balance in some districts. A large excess of fuel-oil stocks, accumulated in 1938, remained unliquidated in California, while such stocks were relatively low east of California. Stocks of finished and unfinished gasoline generally were considered excessive and increased by over 11 million barrels during the year. Of this increase, 3 million were accumulated in California and over 8 million in districts east of California.

Salient statistics of crude petroleum, refined products, and natural gasoline, 1935-39

	1935	1936	1937	1938	1939 1
Crude petroleum:					
Domestic productionthousands of barrels 2 World productiondododo	996, 596 1, 654, 951	1, 099, 687 1, 804, 925	1, 279, 160 2, 041, 715	1, 214, 355 1, 987, 723	1, 264, 256 2, 076, 772
Imports s thousands of barrels s tooks, end of period:	20 020	32, 327 50, 313	27, 484 67, 234		
Refinable crudedo	5 314, 855	5 288, 579	\$ 306, 826 \$ 305, 091	274, 958	238, 910
California heavy crudedo Runs to stillsdo Total value of domestic production at wells		(7) 1, 068, 570	14, 505	16, 467 1, 165, 015	13, 330 1, 237, 840
thousands of dollars. Average price per barrel at wells. Total producing oil wells in the United States,	961, 440 \$0. 97	1, 199, 820 \$1. 09	1, 513, 340 \$1. 18	1, 373, 060 \$1. 13	8 1, 265, 000 8 \$1.00
Dec. 31	340, 990	349, 450	363, 030	369, 640	(7)
during year	15, 108	17, 800	22, 143	18, 433	17, 485
Importsthousands of barrels *dodo	20, 396 77, 557	24, 777 81, 681	29, 673 105, 600	27, 896 116, 474	25, 804 116, 909
Stocks, end of perioddo	⁸ 223, 361	⁸ 226, 595	\$ 253, 413 \$ 239, 632	259, 665	256, 249
Output of motor fueldo	468, 021	516, 266	571, 727	569, 162	607, 941
Yield of gasolinepercent_ Completed refineries, end of year Daily crude-oil capacity of refineries	44. 2 632	44. 1 572	43. 9 551	44. 3 538	(7)
thousands of barrels 1.4. Average tank-wagon price (excluding tax) of gasoline in 50 United States cities	4, 117	4, 295	4, 351	4, 509	(T)
cents per gallon 9	12.02	12, 63	10 10. 53	10 10. 43	10 9. 58
Natural gasoline: Productionthousands of barrels * Stocks, end of perioddo	39, 333 3, 698	42, 770 4, 055	49, 177 4, 758	51, 347 4, 830	49, 896 4, 421

Subject to revision.
 42 gallons.
 As reported to the Bureau of Mines.
 Bureau of Foreign and Domestic Commerce; exports include shipments to Alaska, Hawaii, and Puerto Rico.

d'California heavy crude and fuel oil included under refined products.
 For comparison with succeeding year. † Figures not available.
 American Petroleum Institute.
 Dealer's net; comparable tank-wagon prices no longer available.

The domestic production of crude petroleum in 1939—1,264 million barrels—was supplemented by the importation of 33 million barrels of foreign crude and a reduction of 38 million barrels in the stocks of all crude oils. The resultant figure shows a total demand for all crude oils of 1,335 million barrels, comprising 72 million for export and 1,263 million for domestic requirements. As 5 million barrels less crude were exported in 1939 than in 1938, the increase in domestic demand was about 70 million barrels. The total demand for California crude oil being 228 million barrels—12 million less than in 1938—the increase in the demand for crude produced east of California and imported was 77 million barrels. The outstanding domestic factor, as regards sources of supply, was an increase of 66 million barrels in the demand for Illinois crude, or from a total demand of 23 million in 1938 to 89 million in 1939.

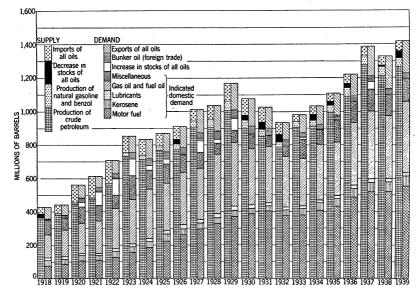


FIGURE 1.-Supply and demand of all oils, 1918-39

The total demand for motor fuel reached a new peak of 597 million barrels in 1939, an increase of 24 million barrels (4 percent). As exports declined by 5.5 million barrels, the increase in domestic

demand was 29.5 million barrels (5 percent).

The total demand for distillate-fuel oils in 1939 increased to a new record of 171 million barrels. Exports increased over 2 million barrels and domestic demand by 22 million barrels. The domestic demand figure includes about 6 million barrels of transfers from crude oil and the net change in terminal stocks east of California, for which no corresponding data were available in 1938. With data for both years on the old basis, an increase of about 11 percent in domestic demand is indicated.

The total demand for residual fuel oils, including transfers from crude, increased from about 310 million barrels in 1938 to over 338 million in 1939. As exports decreased slightly, all of the gain was in domestic demand and amounted to about 29 million barrels (9

percent).

The total demand for kerosene rose from approximately 64 million barrels in 1938 to 69 million in 1939, a gain of almost 8 percent. The relative increase in exports was somewhat greater than in domestic demand. The growing demand for kerosene can be attributed largely to its uses for range oil and tractor fuel.

The total demand for lubricants increased by 16 percent, indicating a recovery from the decline in 1938 and an actual increase in demand over 1937. The export market was very strong, with an increase of

about 28 percent over the previous year.

The variation in the relative rate of increase in demand for the several major products created a problem in the adjustment of refinery operations, with the net result of high gasoline inventories and low fuel-oil stocks at the end of the year.

The long-term trends in supply and demand are shown in figure 1.

Supply and demand of all oils in 1939, by months

[Including wax, coke, and asphalt in thousands of barrels]

							1939 1							1938
	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total	(total)
New supply: Domestic production: Crude petroleum Natural gasoline Benzol	102, 490 4, 264 185	93, 475 3, 747 170	106, 768 4, 232 192	105, 510 4, 232 162	110, 541 4, 280 130	104, 607, 4, 095 174	110, 937 4, 175 191	80, 865 3, 400 210	108, 168 4, 132 225	114, 198 4, 481 259	111, 887 4, 388 267	114, 810 4, 470 275	1, 264, 256 49, 896 2, 440	1, 214, 355 51, 347 1, 764
Total production Imports: 3	106, 939	97, 392	111, 192	109, 904	114, 951	108, 876	115, 303	84, 475	112, 525	118, 938	116, 542	119, 555	1, 316, 592	1, 267, 466
Crude petroleum Refined products	1,868 1,657	1, 598 1, 821	1, 630 2, 229	2, 932 1, 841	3, 928 2, 659	3, 664 2, 609	2, 934 2, 637	2,898 2,785	3, 084 1, 771	3, 099 2, 205	3, 132 1, 833	2, 328 1, 757	33, 095 25, 804	26, 412 27, 896
Total new supply, all oils Change in stocks, all oils	110, 464 -990	100, 811 -1, 128	115,051 -1,696	114,677 +4,580	121, 538 +1, 156	115, 149 -1, 108	120, 874 +3, 588	90, 158 -35, 546	117, 380 -7, 343	124, 242 -2, 641	121, 507 -1, 294	123, 640 +146	1, 375, 491 -42, 276	1, 321, 774 9, 077
Demand: Total demand Exports: 2 Crude petroleum Refined products	111, 454 4, 477 8, 494	101, 939 4, 810 7, 335	116, 747 4, 966 10, 849	110, 097 6, 222 9, 243	120, 382 8, 643 12, 128	116, 257 5, 831 10, 834	117, 286 7, 304 9, 622	125, 704 5, 969 11, 429	124, 723 6, 925 10, 797	126, 883 6. 947 9. 805	122, 801 5, 323 7, 816	123, 494 4, 656 8, 557	1, 417, 767 72, 073 116, 909	1, 330, 851 77, 254 116, 474
Domestic demand: Motor fuel Kerosene Gas oil and distillate fuels ³ Residual fuel oils ³ Lubricants Wax Coke Asphalt Road oil Still gas (production) Miscellaneous Losses and crude as fuel	37, 767 5, 980 16, 963 28, 443 1, 609 74 530 1, 061 1, 73 5, 081 173 629	34, 595 5, 901 14, 767 25, 589 1, 653 97 605 833 180 4, 629 153 792	42, 520 5, 201 13, 923 28, 436 1, 987 73 646 1, 269 228 5, 376 187 1, 086	43, 977 5, 042 10, 856 24, 472 1, 770 52 394 1, 840 267 5, 386 181 395	49, 547 4, 368 7, 523 25, 047 2, 132 102 587 2, 714 695 5, 798 214 884	49, 812 3, 570 7, 187 23, 923 1, 902 578 2, 834 1, 210 5, 768 205 2, 533	50, 508 3, 710 6, 938 23, 442 1, 982 454 3, 048 1, 585 5, 920 182 2, 529	53, 828 4, 436 8, 157 25, 407 1, 963 73 844 3, 532 1, 576 5, 925 211 2, 354	49, 347 4, 638 10, 010 26, 966 2, 207 116 433 3, 326 1, 072 5, 609 171 3, 106	49, 687 5, 019 10, 908 28, 323 2, 656 144 793 2, 986 577 5, 970 173 2, 895	47, 275 6, 023 14, 417 29, 453 1, 927 142 628 2, 022 212 5, 756 167 1, 640	43, 694 6, 613 17, 168 31, 436 1, 825 158 618 1, 413 71 5, 761 206 1, 318	552, 557 60, 501 138, 817 320, 937 23, 613 1, 163 7, 110 26, 878 7, 846 66, 979 2, 223 20, 161	523, 003 56, 360 117, 449 291, 833 21, 233 995 5, 589 24, 155 7, 847 65, 890 1, 776 20, 993
Total domestic demand	98, 483	89, 794	100, 932	94, 632	99, 611	99, 592	100, 360	108, 306	107,001	110, 131	109, 662	110, 281	1, 228, 785	1, 137, 123

Stocks:	ı	ı	1	1	1		I	1.	I	I	ı	1	l	l
Refinable crude petroleum in U. S	272, 346	273, 416	276, 355	278, 565	278,087	273, 314	270, 570	238, 479	234, 555	230, 854	234,027	238, 910	238, 910	274, 958 4 273, 560
Heavy crude petroleum in Calif Natural gasoline	16, 356 4, 647	16, 360 4, 708	15, 814 4, 721	15, 198 5, 484	14, 492 6, 212	14, 207 6, 749	14,375 7,123	14, 253 6, 624	14,085 5,891	14,070 5,140	13, 664 4, 579	13, 330 4, 421	13, 330 4, 421	16, 467 4, 830
Refined products 3	272, 707	270, 444	266, 342	268, 565	270, 177	273, 590	279, 380	276, 546	274, 028	275, 854	272, 354	268, 109	268, 109	259, 665 272, 189
Total, all oils	566,056	564, 928	563, 232	567, 812	568, 968	567,860	571,448	535, 902	528, 559	525, 918	524, 624	524,770	524,770	555, 920 567, 046

Subject to revision.
 Imports of crude petroleum as reported to Bureau of Mines; all other imports and exports from Bureau of Foreign and Domestic Commerce.
 For figures to compare with 1938 see pages 1014 and 1016, respectively.
 For comparison with 1939.

RESERVES

The proved oil reserves of the United States as of January 1, 1940, were estimated at 18,483 million barrels in a report prepared by the Committee on Petroleum Reserves of the American Petroleum Institute. This estimate may be subject to later revision. It presents only the quantity of crude oil that may be extracted by present known methods from fields completely developed or drilled or explored thoroughly enough to permit reasonably accurate calculations. The following table shows the previous estimates of reserves by this committee, the data for January 1, 1935, 1937, 1938, and 1939, being final and those for 1940 preliminary.

Estimates of proved oil reserves in the United States on January 1, 1935 and 1937-40, by States ¹

[Millions of barrels]

State	1935 2	1937 2	1938 2	1939 2	1940 3
Eastern States:					
Illinois.	37	28	59	432	382
Indiana	5	3	7	6	14
Kentucky	50 64	39 63	38 46	49 74	44
Michigan New York	75	66 66	46 45	40	51 35
Ohio	40	32	30	33	32
Pennsylvania	340	307	218	200	183
West Virginia	40	32	28	50	46
	651	570	471	884	787
Central and Southern States:					
Arkansas	103	87	171	332	320
Kansas	390	590	607	763	726
Louisiana	513	657	1,049	1. 180	1, 173
New Mexico	451	581	739	703	687
Oklahoma	1, 235	1, 384	1,311	1, 206	1,063
Texas	6, 643	8, 343	9, 692	10, 180	9, 768
	9, 335	11, 642	13, 569	14, 364	13, 737
Mountain States:					
Colorado	16	19	19	22	20
Montana	102	115	109	99	94
Wyoming	267	260	280	327	306
•	385	394	408	448	420
Pacific Coast States: CaliforniaOther States	3, 261	3, 251	3, 303	3, 710	3, 532 7
Total United States	13, 632	15, 857	17, 751	19, 406	18, 483

¹ From reports of Committee on Petroleum Reserves, American Petroleum Institute.
² Final revised estimates of the amount of crude oil which may be extracted by present methods from fields completely developed or sufficiently explored to permit reasonably accurate calculations.
³ Subject to revision.

Other estimates of reserves published by trade journals or made by individuals have been considerably above or below these estimates. The main factor of importance, however, is that the rapidly growing demand for oil products tends to offset the increase in reserves, in terms of years' supply. The known reserves of oil are smaller than for any of our other major sources of fuel and power, and future domestic supply depends more on the extent of new exploration and the rate of discovery.

LEGISLATION AND PROPATION

Several developments of national importance in the legislative field occurred during 1939. Michigan passed a proration law and joined the compact, which had included Texas, Oklahoma, Illinois (not properly registered), Kansas, New Mexico, and Colorado. Mississippi has had oil-conservation laws for a number of years, but on September 25, 1939, it issued its first proration order, which covered the Tinsley field.

State allowables and Bureau of Mines estimates of market demand,1 compared with actual production 2 in the United States, in 1939

[Daily averages, in thousands of barrels]

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Texas:												
State allowable 3	1 246	1, 322	1 200	1 464	1 420	1, 336	1 400	753			1 404	4 447
Bureau of Mines esti-	1, 040	1, 022	1, 300	1, 404	1, 400	1, 330	1,400	100	1, 414	1, 410	1, 434	1,447
mate	1, 333	1. 298	1, 364	1 419	1, 406	1. 427	1. 427	1, 428	1.408	1, 445	1 444	4 400
Actual production	1,000	1, 298			1, 400			810			1, 444	1.438
California:	1, 514	1, 298	1, 303	1, 424	1, 403	1, 313	1, 377	810	1, 401	1, 408	1, 418	1, 415
State allowable 4	605	605	602	577	578	595	595	598	598	700		
Bureau of Mines esti-	000	000	002	011	0/8	999	999	989	598	598	599	599
	588	580	588	592	583	595	595					
mate								595	596	595	596	595
Actual production	622	622	622	614	615	607	607	611	615	616	613	613
Oklahoma:		400	400	400		400						
State allowable	428	428	428	428	428	428	428	428	385	424	429	438
Bureau of Mines esti-					١							
mate	500	483	473	473	456	450	456	448	429	424	429	438
Actual production	450	474	477	469	478	475	450	237	420	440	450	450
Louisiana:	l						1			1		
State allowable 6	251	255	254	258	264	263	264	242	235	259	259	255
Bureau of Mines esti-					١.	١.	i	1	ì	1	1	
mate	242	247	260	262	262	265	265	259	256	260	259	255
Actual production	259	266	259	270	267	268	270	177	243	268	273	268
Kansas:	ł	1	1		l	1	1	1	l	1	l	1
State allowable 7	154	154	157	157	170	166	166	164	166	171	171	168
Bureau of Mines esti-	I	i	1				l	l	I .		l	1
mate	154	149	150	153	160	174	160	169	166	171	169	168
Actual production	159	152	177	174	173	174	177	102	169	176	188	176
New Mexico:	ł	l	l	l	1	Į	l	l	ļ	l	i	l
State allowable 8	101	104	115	114	117	117	116	111	100	114	111	110
Bureau of Mines esti-	1		i		1			ł		1		
mate	96	100	110	115	116	117	116	111	109	114	111	110
Actual production	99	98	106	105	107	107	109	56	101	114	114	112
Arkansas:	1	i	1	1			1	1	1			
State allowable 9	51	53	53	53	55	58	58	65	65	66	69	69
Bureau of Mines esti-		1		1		1		1	1			
mate	49	48	50	53	53	55	54	52	51	56	57	56
Actual production	51	53	54	51	55	59	61	46	63	64	69	69
Other States:		-			"	"			"	-		- 00
Bureau of Mines esti-	į	l	i	l		ļ	1	l	ļ	ļ		
mate	309	315	345	373	389	408	440	460	496	525	555	560
Actual production	352	375	396	410	468	484	528	570	594	598	605	601
acound productions												
United States:												
Bureau of Mines esti-		l	l	1			l .	1	[,
mate	3, 271	3 220	3 340	3 434	3 425	3 401	3, 513	3 522	3, 511	3 500	3, 620	3, 620
Actual production	3 306	3 338	3 444	3 517	3 566	3 487	3 570	2 600	3 606	3 684	3 730	3, 704
ai production	ارم	, 555	0, 111	3, 017	٥, ٥٥٥	0, 201	0,0.0	2,003	0, 000	J., 00±	0, 100	3, 103

¹ Beginning November 1936, the State figures have been estimates of demand rather than required production as formerly; hence in comparing the demand data with actual production due regard should be given to changes in stocks by States of origin. (Changes in stocks and demand are given elsewhere in this chapter.)
2 Comparisons of actual production with State allowables are complicated further by variations in the method of applying pipe-line deductions for B. S. and water. Thus it is believed that the allowables in Texas and California are on a 100-percent basis, in Oklahoma and Kansas on a 97-percent basis, in New Mexico on a 98-percent basis, and in Louisiana on a 99-percent basis. The bases used in reporting production to the Bureau of Mines are not definitely known, but indications are that the average for the United States is about 99 percent.
3 Railroad Commission of Texas.
4 Central Committee of California Oil Producers.
5 Corporation Commission of Oklahoma. State allowable figures as shown do not include a state of the commission of Oklahoma.

Railroad Commission of Texas.
 Corporation Commission of Oklahoma. State allowable figures as shown do not include production permitted in accordance with "underage" and other special provisions of State orders.
 Department of Conservation, Louisiana. State allowable figures shown do not include production permitted under special orders of said Department.
 State Corporation Commission of Kansas.
 Oil Conservation Commission of New Mexico. State allowable figures as shown do not include production permitted in accordance with "underage" and other special provisions of State orders.
 Oil and Gas Commission.

Hearings on the oil industry before the Temporary National Economic Committee and before the Cole Committee of Congress, pursuant to H. Res. 290 and H. R. 7372, were held in 1939. A reciprocal trade agreement with Venezuela became operative late in the year. Under this treaty an import quota (5 percent of crude runs of preceding year) was assigned at half of the regular excise taxes.

The Bureau of Mines forecasts of demand by States were issued monthly throughout the year. As indicated in the table, actual production averaged about the same as the estimates of demand. The Bureau estimate of domestic demand for motor fuel in 1939 was about 0.25 percent too low, but because of the collapse of exports to Europe the estimate of total demand was about 0.5 percent too high.

EMPLOYMENT AND LABOR PRODUCTIVITY

Lower prices, less drilling, and a smaller output were the primary factors leading to a decrease in the average number of oil-field workers from 121,371 in 1937 to 117,570 in 1938. These figures include part-time workers, who averaged 12,321 and 10,120, respectively, in the 2 years.

Most of the States had fewer workers in 1938 than in 1937, Illinois

and Louisiana being the chief exceptions.

The total man-hours worked was 237,857,000 compared with 239,834,000 in 1937. Estimating part-time hours as 800 for 1938, the average number of hours per week for full-time workers increased from 40.5 in 1937 to 40.8 in 1938. The labor-productivity average was influenced by the decreased production and fell from 5.33 barrels per man-hour in 1937 to 5.11 barrels in 1938.

Employment at wells, crude petroleum produced, and average output per man in the United States, 1937-38, by States ¹

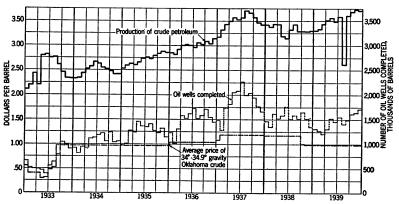
State	Average n work		Crude petr duction of barrels	oleum pro- (thousands	Labor productivity (barrels per man-hour)		
	1937	1938	1937	1938	1937	1938	
Arkansas. California. Colorado Illinols. Indiana Kansas Kentucky Louisiana Michigan Montana New Mexico New York Ohio. Okiahoma Pennsylvania Texas West Virginia Wyoming Other States 3	1, 940 19, 640 110 1, 920 230 9, 470 1, 425 7, 640 1, 705 590 1, 190 2, 350 2, 350 31, 100 7, 420 35, 600 3, 220 2, 100	1, 980 18, 800 130 3, 090 240 8, 520 1, 530 7, 890 1, 640 1, 600 2, 190 21, 250 7, 050 34, 950 2, 990 1, 850 80	11, 764 238, 521 1, 605 7, 499 70, 761 5, 484 90, 924 16, 628 5, 805 38, 854 5, 478 3, 559 228, 839 19, 189 510, 318 3, 845 19, 166	18, 180 249, 749 1, 412 24, 975 60, 064 5, 821 95, 208 18, 745 4, 946 35, 759 3, 288 174, 994 17, 426 475, 850 3, 684 18, 022 28, 82	2. 79 6. 68 7. 20 1. 65 1. 91 3. 81 1. 92 6. 50 4. 67 4. 94 16. 7 1. 40 81 1. 34 7. 24 6. 50 8. 81 8. br>81 81 81 81 81 81 81 81 81 81 81 8	4. 44 6. 55 5. 00 3. 19 2. 19 3. 55 1. 77 6. 19 4. 19 5. 55 11. 22 - 88 4. 11 6. 86 4. 81	
Total United States	121, 371	117, 570	1, 279, 160	1, 214, 355	5. 33	5. 1	

¹ Figures for 1939 not yet available.

² Mississippi, Missouri, Nebraska, Tennessee, and Utah.

CRUDE PETROLEUM

SUPPLY AND DEMAND


The increased domestic demand for refined products in 1939 not only absorbed the 50-million-barrel gain in production but caused a larger withdrawal from crude-oil stocks. The total demand for 1939 was 1,335,138,000 barrels or 5 percent above 1938. all of the gain went into the consumption of domestic crude at refineries as exports, transfers, other fuel, and losses showed minor decreases. Imports of foreign crude made a material relative gain, but the proportion to the total demand was less than 3 percent.

Supply of and demand for crude petroleum, 1935-39 [Thousands of barrels]

	1935	1936	1937	1938	1939 1
Production Imports 3. Changes in stocks 3.	996, 596 32, 239 —22, 399	1, 099, 687 32, 327 -26, 276	1, 279, 160 27, 484 +18, 247	1, 214, 355 26, 412 -28, 913	1, 264, 256 33, 095 -37, 787
Total demand	1, 051, 234	1, 158, 290	1, 288, 397	1, 269, 680	1, 335, 138
Runs to stills: Domestic Foreign Exports Transfers to fuel-oil stocks 4 Consumed as fuel on producing properties 9 Consumed as fuel in operation of pipe lines 6 Other fuel and losses	933, 659 32, 131 51, 430 13, 067 1, 338 1, 931 17, 678	1, 034, 637 33, 933 50, 313 15, 732 1, 664 2, 138 19, 873	1, 157, 444 25, 996 67, 234 17, 423 1, 308 2, 178 16, 814	1, 138, 828 26, 187 77, 254 10, 660 1, 452 1, 930 13, 369	1, 204, 350 33, 490 72, 073 \$ 8, 832 1, 452 2, 125 12, 816
Total demand	1, 051, 234	1, 158, 290	1, 288, 397	1, 269, 680	1, 335, 138

PRODUCTION

As indicated in figure 2, the general trend of crude-oil production in 1939 was upward; the daily average in January was 3,306,000 barrels and in December 3,704,000 barrels. The upward trend was

.—Daily average production of crude petroleum, total number of oil wells completed, and average price per barrel of a selected grade of Oklahoma crude petroleum, 1933-39, by months. 244615-40-

Subject to revision.
 As reported to the Bureau of Mines.
 Exclusive of changes in stocks of heavy crude in California, 1935-37.
 California only, 1935-38.
 Includes 2,298,000 barrels used for industrial purposes east of California, 616,000 barrels transferred to gas oil, etc., in California, and 5,918,000 barrels transferred to residual fuel oil in California.
 East of California.

not uninterrupted, as there was a marked slump in June (when the number of shut-down days in Texas was increased to 8) and in August, when most of the important producing States instituted a 15-day shut-down. The leading factor in the general upward trend of output in 1939 was the gain of more than 200,000 barrels in the daily average for Illinois.

About half the producing districts increased in output in 1939 over 1938. The most notable gain was that for the Illinois-Southwest Indiana district. The Gulf Coast region continued to reach new high levels. The most important decline in 1939 was in California.

Production of crude petroleum in the United States in 1939, by districts, States, and months [Thousands of barrels]

							1	939 1						1938
District and State	Janu- ary	Febru- ary	March	April	Мау	June	July	August	Sep- tember	Octo- ber	No- vember	De- cember	Total	(total)
DISTRICT														
Pennsylvania Grade Other Appalachian (including Kentucky) Lima-Northeastern Indiana-Michigan Illinois-Southwestern Indiana North Louisiana and Arkansas West Texas and Southeastern New Mexico East Texas Oklahoma, Kansas, North Texas, etc Gulf Coast Rocky Mountain California	1, 676 4, 503 3, 838 9, 557 12, 205 30, 512 16, 137	1, 981 490 1, 579 4, 601 3, 578 8, 571 10, 682 27, 979 14, 715 1, 880 17, 419	2, 261 564 1, 810 5, 437 3, 939 10, 025 12, 389 32, 256 16, 564 2, 239 19, 284	2, 195 - 532 1, 862 5, 473 3, 796 9, 717 13, 407 31, 572 16, 259 2, 293 18, 404	2, 417 624 1, 993 6, 924 3, 957 10, 162 13, 447 32, 519 16, 836 2, 588 19, 074	2, 276 626 2, 017 7, 171 3, 922 9, 551 11, 712 30, 920 15, 726 2, 465 18, 221	2, 207 622 2, 115 8, 850 4, 070 10, 673 12, 413 31, 601 16, 988 2, 595 18, 803	2, 316 667 2, 157 9, 986 3, 056 5, 958 6, 251 17, 645 11, 341 2, 554 18, 934	2, 225 540 1, 938 10, 582 3, 872 10, 402 12, 353 29, 597 15, 621 2, 575 18, 463	2, 426 569 2, 067 10, 779 4, 113 10, 901 14, 022 30, 768 16, 768 2, 686 19, 099	2, 367 594 2, 088 10, 442 4, 203 10, 534 13, 313 30, 804 16, 546 2, 614 18, 382	2, 386 558 2, 099 10, 977 4, 309 10, 744 13, 275 31, 466 17, 408 2, 581 18, 997	27, 175 7, 034 23, 401 95, 725 46, 653 116, 795 145, 469 357, 639 190, 909 29, 102 224, 354	27, 316 7, 415 19, 352 25, 046 46, 758 108, 114 152, 116 370, 533 182, 217 25, 739 249, 749
Total United States	102, 490	93, 475	106, 768	105, 510	110, 541	104, 607	110, 937	80, 865	108, 168	114, 198	111, 887	114, 810	1, 264, 256	1, 214, 355
Arkansas. California Colorado Illinois Indiana. Kansas Kentucky Louisiana Michigan Montana New Moxico New York Ohio Oklahoma Pennsylvania Texas West Virginia Wyoming Other States *	19, 274 103 4, 446 57 4, 931 520 8, 014 1, 630 435 3, 062 402 252 13, 951 1, 346 40, 726 40, 726	1, 483 17, 419 82 4, 542 4, 250 386 7, 456 1, 530 236 2, 744 363 236 1, 265 36, 281 1, 255 36, 281 1, 387 5	1, 679 19, 284 90 5, 380 5, 59 5, 489 4, 337 1, 757 418 274 14, 777 1, 432 41, 936 3, 277 1, 432 1, 675 6	1, 526 18, 404 124 5, 415 60 5, 221 418 8, 086 1, 811 479 3, 142 406 255 1, 4069 1, 406 42, 732 288 1, 662 6	1, 719 19, 074 132 6, 849 7, 359 494 8, 267 1, 935 508 3, 318 439 288 14, 811 1, 153 43, 484 3, 200 1, 908 6	1, 764 18, 221 7, 983 90 5, 218 503 8, 035 1, 962 505 3, 204 435 272 14, 241 1, 432 39, 381 39, 381 1, 823 7	1, 881 18, 803 126 8, 737 115 5, 488 5, 503 8, 382 2, 063 416 269 13, 960 1, 400 42, 700 42, 700 6	1, 419 18, 934 127 9, 852 136 3, 156 539 5, 499 2, 105 441 266 7, 343 1, 474 25, 109 1, 876 6	1, 874 18, 463 127 10, 443 15, 056 423 7, 277 1, 894 434 247 12, 586 1, 409 42, 2033 1, 921 1, 12	1, 993 19, 099 141 10, 601 180 5, 456 443 8, 308 2, 016 3, 551 448 276 13, 634 1, 565 43, 657 30 1, 951 23	2, 071 18, 382 107 10, 222 5, 652 472 8, 197 2, 045 3, 427 453 260 13, 502 1, 532 42, 545 2, 545 2, 938 1, 938 3, 38	2, 141 18, 997 110 10, 732 5, 447 449 8, 311 2, 051 3, 468 443 261 13, 933 43, 1533 43, 873 31, 583 43, 873 59	21, 143 224, 354 1, 391 94, 302 1, 443 60, 723 5, 581 93, 869 22, 799 5, 961 37, 323 5, 098 3, 156 160, 072 17, 337 484, 527 3, 580 21, 417	18, 180 249, 749 1, 412 24, 075 60, 064 5, 821 95, 208 18, 745 4, 946 35, 759 5, 045 3, 298 174, 994 475, 850 3, 684 17, 426 475, 850 3, 684 19, 022
Total United States: 1939	102, 490 106, 152 3, 306	93, 475 94, 733 3, 338	106, 768 106, 679 3, 444	105, 510 102, 975 3, 517	110, 541 98, 829 3, 566	104, 607 94, 472 3, 487	110, 937 102, 914 3, 579	80, 865 106, 363 2, 609	108, 168 98, 516 3, 606	114, 198 101, 793 3, 684		114, 810 102, 447 3, 704	1, 264, 256 3, 464	1, 214, 355 3, 327

¹ Subject to revision. ² Mississippi, Missouri, Tennessee, and Utah.

Petroleum produced in the United States, 1935-39, and 1859-1939 total, by States 1 [Thousands of barrels]

	1935	1936	1937	1938	1939 3	1859-1939 (total)
Arkansas California Colorado Illinois Indiana Kansas Kentucky Louisiana Michigan Montana New Mexico New York Ohio Oklahoma Pennsylvania Texas West Virginia Wyoming Other States ⁸	777 54, 843 5, 258 50, 330 15, 776 4, 603 20, 483 4, 236 4, 082 185, 288 15, 810 392, 666 3, 902	10, 469 214, 773 1, 650 4, 475 822 58, 317 5, 633 80, 491 11, 928 5, 868 27, 223 4, 663 3, 847 206, 555 17, 070 427, 411 3, 847 14, 582	11, 764 238, 521 1, 605 7, 499 844 70, 761 16, 628 5, 805 38, 854 5, 478 3, 559 19, 189 510, 318 3, 845 19, 166	18, 180 249, 749 1, 412 24, 075 995 60, 064 5, 821 95, 208 18, 745 4, 946 35, 759 5, 045 3, 298 174, 494 177, 426 475, 850 3, 684 19, 022 82	21, 143 224, 354 1, 391 94, 302 1, 443 60, 723 5, 581 93, 869 22, 799 5, 961 37, 323 5, 098 3, 156 160, 072 17, 337 484, 527 3, 580 21, 417	480, 547 5, 346, 197 38, 257 551, 415 125, 864 4 161, 933 956, 628 8 124, 690 76, 765 6 235, 316 7 113, 778 585, 218 34, 650, 118 7 979, 670 6, 087, 597 407, 326 475, 230 1, 135
Total United StatesValue at wells:	996, 596	1,099,687	1, 279, 160	1, 214, 355	1, 264, 256	22, 452, 498
Total (thousands of dollars)Average per barrel	961, 440 \$0. 96	1, 199, 820 \$1.09	1, 513, 340 \$1, 18	1, 373, 060 \$1. 13	1, 265, 000 \$1. 00	26, 728, 469 \$1. 19

For detailed figures by States, 1859-1935, see Minerals Yearbook, 1937, p. 1008.

The percentage of total crude petroleum produced by each of the three leading States—Texas, California, and Oklahoma—dropped in 1939, and the three States combined contributed 68.7 percent of the total, which was 5.5 percent below the combined percentage for 1938; it is noteworthy that Illinois' share rose in the same proportion, or from 2.0 percent in 1938 to 7.5 percent in 1939. Michigan and Arkansas were the only other States that made an appreciable gain in

The relative rank of the producing States is shown graphically in figure 3.

Percentage of total crude petroleum produced in the United States, 1931-39, by principal States

. State	1931	1932	1933	1934	1935	1936	1937	1938	1939 1
Texas California Oklahoma	39. 1 22. 2 21. 2	39. 8 22. 7 19. 5	44. 5 19. 0 20. 1	42.0 19.2 19.9	39. 4 20. 9 18. 6	38. 9 19. 5 18. 8	39. 9 18. 6 17. 9	39. 2 20. 6 14. 4	38. 3 17. 7 12. 7
Total, 3 States Louisiana Kansas New Mexico Illinois Michigan Arkansas Pennsylvania All other	82. 5 2. 6 4. 4 1. 8 . 6 . 4 1. 7 1. 4 4. 6	82.0 2.8 4.4 1.6 .6 .9 1.5 1.6 4.6	83.6 2.8 4.6 1.6 .5 .9 1.3 1.4 3.3	81. 1 3. 6 5. 1 1. 9 . 5 1. 2 1. 1 1. 6 3. 9	78.9 5.0 5.5 2.1 1.5 1.1 1.6 3.9	77. 2 7. 3 5. 3 2. 5 .4 1. 1 .9 1. 6 3. 7	76. 4 7. 1 5. 5 3. 1 .6 1. 3 .9 1. 5 3. 6	74. 2 7. 8 5. 0 2. 9 2. 0 1. 5 1. 5 1. 4 3. 7	68. 7 7. 4 4. 8 2. 9 7. 5 1. 8 1. 7 1. 4 3. 8
Total United States	100.0	100. 0	100.0	100. 0	100.0	100. 0	100. 0	100. 0	100.0

¹ Subject to revision.

¹ For detailed figures by States, 1859-1935, see Minerais Yeardook, 1937, p. 1008.
2 Subject to revision.
3 Oklahoma included with Kansas in 1905 and 1906.
4 Includes Tennessee, 1833-1907.
5 Figures represent 1924-39 production only; earlier years included under "Other States."
6 Figures represent 1924-39 production only; earlier years included under "Other States."
7 Early production in New York included with Pennsylvania.
8 Includes Alaska, 1912-33; Arkansas, 1920; Michigan, 1900-1919; Mississippi, 1933-35, 1939; Missouri, 1889-1911, 1913-16, 1919-23, 1932-39; New Mexico, 1913, 1919-23; Tennessee, 1916-39; Utah, 1907-11, 1920, 1924-39.

The East Texas field easily retained first place both in production in 1939 and in total output since discovery. The Oklahoma City field, which ranked second in 1938, fell to third in 1939, being displaced by the Salem (Ill.) field.

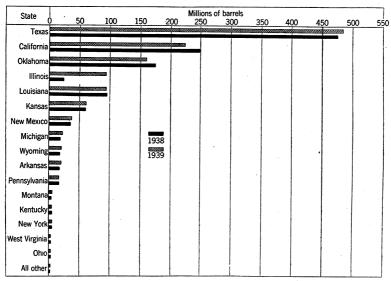


FIGURE 3.—Production of crude petroleum, 1938-39, by States.

Production of crude petroleum in leading fields in the United States, 1938-39,1 with total production since discovery

[Thousands of barrels]

Field	State	1938	1939	Total since discovery
Salt Creek Huntington Beach Wilmington Kettleman Hills. Crane-Upton. Gray County. Caddo Conroe Rodessa. Hobbs. Fitts. Salem Eunlee.	California. Oklahoma. California. Oklahoma California. Pennsylvania-New York. Arkansas California. Oklahoma Texas Kansas. Wyoming California. do do Texas. do Louisiana Texas Arkansas-Louisiana-Texas New Mexico. Oklahoma Illinois. New Mexico. do	22, 900 4 23, 100 20, 600 40, 900 12, 600 8, 500 6, 500 3, 900 3, 900 11, 900 11, 900 11, 900 410, 300 410, 300 410, 300 5, 700 5, 700 11, 600 2, 700 11, 600 2, 700 9, 000 9, 000	* 145,500 18,900 30,700 110,100 18,100 7,100 5,700 3,400 10,000 10,000 25,300 10,000 25,300 10,000 25,200 10,000 20,400 4,400 4,200 50,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200 7,900 8,200	1, 431, 000 877, 000 820, 000 638, 000 458, 000 458, 000 410, 000 361, 000 294, 000 281, 000 281, 000 281, 000 281, 000 164, 000 152, 000 107, 000 103, 000 41, 000 41, 000 32, 000
				l

¹ Oil and Gas Journal, except as noted. ² Bureau of Mines. ³ Subject to revision. ⁴ Revised figures.

The production of Pennsylvania Grade oil dropped again in 1939, but the decrease was much less than in the previous year. Of the four States yielding this type of crude oil, only New York increased its output in 1939. The average price of Pennsylvania Grade oil increased about 15 cents per barrel in 1939, but the higher postings came just too late to prevent output from declining to 27,175,000 barrels in 1939 from 27,316,000 in 1938.

Pennsylvania Grade crude oil produced, 1930-39, by States
[Thousands of barrels]

State	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939 1
New York Pennsylvania West Virginia Central and eastern Ohio	3, 647 12, 786 5, 068 2, 742	3, 363 11, 876 4, 470 2, 184	3, 508 12, 396 3, 875 1, 741	3, 181 12, 607 3, 815 1, 594	3, 804 14, 462 4, 095 1, 597	4, 236 15, 794 3, 901 1, 547	4, 663 17, 053 3, 846 1, 510	5, 478 19, 173 3, 844 1, 367	5, 045 17, 407 3, 684 1, 180	5, 098 17, 318 3, 580 1, 179
•	24, 243	21, 893	21, 520	21, 197	23, 958	25, 478	27, 072	29, 862	27, 316	27, 175

¹ Subject to revision.

Arkansas.—The Magnolia field of Columbia County, discovered in 1938, proved to be of major importance and yielded about 3,600,000 barrels in 1939 compared with 68,000 barrels in 1938. This gain was the principal factor in the rise in State production from 18,180,000 barrels in 1938 to 21,143,000 in 1939. The number of oil wells completed decreased from 204 in 1938 to 183 in 1939; furthermore, the average initial production of the oil wells declined materially.

Attempts to find new Smackover lime fields similar to Magnolia were continued, and two commercial discoveries were made—Dorcheat, the deepest (nearly 9,000 feet) producing field in the State, and Big Creek, a distillate field. Lewisville, the only other discovery

worth noting, was a small Glen Rose field.

The Arkansas Oil and Gas Commission was established early in 1939, replacing the Arkansas Conservation Board. The commission has concentrated on proration plans in several of the newest fields, with acreage and bottom-hole pressure the dominant factors in the allocation formulas.

Production of crude petroleum in Arkansas, 1934-38, by districts ¹
[Thousands of barrels]

	,												
Year	Buck- ner	Cham- pag- nolle	El Do- rado	Irma	Mag- nolia	Ro- dessa	Schu- ler	Smack- over	Ur- bana	Vil- lage	Other	Total	
1934 1935 1936 1937 1938	21 340	486 872 900 522 452	991 862 811 747 709	300 391 383 433 578	68	1, 252 2, 317	1, 153 6, 359	7, 916 7, 368 7, 126 6, 751 6, 406	826 793 651 446 422	119	663 722 598 439 410	11, 182 11, 008 10, 469 11, 764 18, 180	

¹ Figures by districts for 1939 not yet available.

California.—In 1939 production decreased in California for the first time since 1933. Although exports were materially lower, the domestic demand for all oils rose roughly 11 percent, hence a 30-million-

barrel increase in stocks of all oils for 1938 was transformed into a withdrawal of several million barrels in 1939. The daily average production of crude oil in 1939 was 615,000 barrels compared with the proration "objective" of 600,000 barrels. However, as the trend in stocks indicated, efforts at curtailment were much more successful in 1939 than in 1938. The voters defeated a bill that would have established compulsory regulation.

Drilling declined nearly 15 percent from 1938, and 852 oil wells were completed compared with 993 in 1938. The successful completions in 1939 had the high average initial production of 909 barrels compared

with an average of 927 barrels in 1938.

Production in all three producing districts—Valley, Coastal, and Basin—was lower in 1939 than in 1938. In the San Joaquin Valley the Canal and Coalinga fields were about the only ones where output increased in 1939. The important Kettleman Hills field slipped in production from 25,609,000 barrels in 1938 to 19,568,000 in 1939, but again ranked second to the Wilmington field in production. In the Coastal district, Ventura Avenue had an important extension, and the output was slightly above that in 1938. In the Los Angeles Basin the only important increase was in the Montebello field, where drilling was active on the edge of the structure.

New reserves discovered declined materially from 1938, but exploration was far from barren of results, as four new fields were discovered—South Mountain View (Arvin), Palima, and Strand, in Kern County;

and Northeast Coalinga, in Fresno County.

Production of crude petroleum in California, 1935–39, by districts ¹
[Thousands of barrels]

District 1035 1936 1937 1938 1939 San Joaquin Valley: 6, 332 4, 781 1, 855 5, 731 Belridge..... Canal.... 3,629 4.648 5, 312 Canal Coalinga 31 7, 249 6,067 5, 759 1, 577 3,898 1,102 3,887 3,078 4,590 25,609 1,297 1,289 22,873 6,235 1,945 5,473 285 2, 023 3, 194 838 3, 830 3, 216 1, 848 3, 787 3, 246 Fruitvale.... 2,903 2, 377 Greeley Kern River Kettleman Hills 527 4, 133 19, 568 1, 222 1, 326 4, 518 5, 163 5, 639 27, 607 1, 762 1, 394 29, 287 29, 132 1, 414 1, 308 26, 485 6, 843 Lost Hills McKittrick 1,347 777 21, 482 9, 713 6, 747 Midway-Sunset 20, 240 9, 229 18, 960 2, 983 4, 314 2, 875 Mountain View Mount Poso----5, 540 6,677 Rio Bravo. 128 Round Mountain 2, 327 3, 955 4, 835 932 3, 528 3, 247 1, 678 Other San Joaquin Valley 153 321 120 Total San Joaquin Valley..... 89, 691 97, 627 104, 772 95, 395 84,057 Coastal district: Capitan ... 522 571 918 Elwood. 4, 560 670 296 1, 545 1, 238 952 6, 305 4, 479 754 3, 203 1, 058 2, 247 1, 395 Rincon... 1, 044 6, 128 12, 926 2, 089 1, 147 3, 893 San Miguelito..... 580 Santa Maria.... Ventura Avenue.... 1,531 1,668 10, 979 2, 653 12, 610 2, 239 12, 685 2, 113 12, 935 2, 449 Other Coastal.... Total Coastal.... 21, 211 22, 901 25,017 26, 896 26, 300

¹ American Petroleum Institute.

Production of crude petroleum in California, 1935-39, by districts-Continued

District	1935	1936	1937	1938	1939
Los Angeles Basin: Brea Olinda Coyote Dominguez	3, 612 4, 540 7, 916	2, 961 3, 944 9, 712	2, 659 4, 269 9, 839	2, 125 4, 354 9, 756	2, 063 4, 013 7, 131
El Segundo	15, 133 4, 477 26, 563	149 13, 247 4, 547 24, 994	3, 632 13, 255 5, 530 21, 872	3, 872 11, 917 5, 337 20, 599	1, 168 9, 983 4, 605 17, 004
MontebelloPlaya del ReyRichfieldRosecrans	2, 287 5, 696 2, 804 993	3, 205 4, 644 2, 443 804	3, 167 3, 181 3, 158 1, 259	4, 147 2, 305 3, 333 3, 732	7, 455 1, 801 3, 134 4, 459
Santa Fe Springs Seal Beach Torrance Wilmington		16, 460 3, 463 2, 860	15, 745 3, 416 2, 833 14, 186	12, 630 3, 198 5, 203 34, 168	10, 050 2, 641 6, 418 31, 100
Other Los Angeles Basin Total Los Angeles Basin	96, 930	94, 245	731 108, 732	782 127, 458	972 113, 997
Total California	207, 832	214, 773	238, 521	249, 749	224, 354

Colorado.—Production in Colorado fell from 1,412,000 barrels in 1938 to 1,391,000 in 1939—a small decline compared to that in 1938. Drilling continued at a low ebb, and only seven oil wells were completed, the same number as in 1938. No new fields were discovered, but deeper sand production (in the Dakota) was found in the Fort Collins field.

Production of crude petroleum in Colorado, 1934-38, by districts 1

[Thousands of barrels]

Year	Florence ²	Fort Collins 3	Grease- wood	Iles	Moffat	Price	Rangely	Tow Creek	Total
1934 1935 1936 1937 1938	83 72 73 57 64	186 145 119 90 109	37 222 19 6 10	529 1, 067 1, 176 1, 040 819	173 150 161 149 126	173 185	4 60 4 36 5 37 6 33 5 43	71 68 65 57 56	1, 139 1, 560 1, 650 1, 605 1, 412

Figures by districts for 1939 not yet available.
 Includes Canon City.
 Includes Berthoud, Boulder, and Walden.
 Includes Berthoud and Boulder.
 Includes Berthoud.

Illinois.—Production in Illinois continued to rise sensationally during 1939; in 1938 it trebled, but in 1939 it nearly quadrupled. The output was 94,302,000 barrels compared with 24,075,000 in 1938. Daily average production established new records in every month except October and November.

The Salem pool (Marion County) became second only to the East Texas field as a producer in 1939. Its output was about 50 million barrels in 1939, or more than half the State total. The Louden field (Fayette County) was second with about 18,000,000 barrels.

In every month of 1939, 200 to 300 oil wells were completed in Illinois, the total for the year being 2,943 compared with 1,806 in 1938. The average initial production per well per day rose from 271 barrels in 1938 to 285 in 1939.

About two dozen new fields were discovered in Illinois during 1939. These were quite well scattered over the south half of the State, several extending the oil-producing basin much farther than had been thought possible from the standpoint of geology. One of these was the Junction pool in Gallatin County. Some of the new discoveries were in the extreme eastern edge of the State in "old" territory—for example, Griffin and Keensburg in Wabash County. In addition to new fields, important discoveries of new zones and extensions were being made continually. Most important of these was the finding of "deep" production in the Devonian formation in the Salem field late in November. Devonian production was largely responsible for the gains in output in the first quarter of 1940, although the formation "does not hold up well."

Production of crude petroleum in Illinois, 1935-39, by months
[Thousands of barrels]

Year Jan. Feb. Mar. May June July Aug. Sept. Total Apr. Oct. Nov. Dec. 372 396 380 4, 322 4, 475 7, 499 324 297 340 384 360 382 373 393 371 368 346 392 294 343 347 386 385 747 325 383 407 391 368 410 416 463 530 849 912 990 1, 108 4, 542 1, 128 1, 336 5, 380 1, 393 5, 415 1, 450 6, 849 1, 478 7, 083 1,704 2,083 9,852 2, 558 10, 443 2, 773 10, 601 3, 072 10, 222 4, 446 8, 737

¹ Subject to revision.

Indiana.—The successful developments in Illinois and Michigan have caused a great revival of interest in the oil and gas possibilities of Indiana. In 1939, 176 oil wells were brought in compared with 46 in 1938. The production rose from 995,000 barrels in 1938 to 1,443,000 in 1939, the highest total since 1911. The Griffin field (Gibson and Posey Counties) discovered late in 1938, was the most active region in 1939. The New Harmony field (Posey County) was the most promising new discovery.

Kansas.—In 1939 the demand for Kansas crude oil continued to be influenced adversely by the expansion in Illinois, although not to the extent generally predicted. In any event drilling fell again, and 977 oil wells were brought in compared with 1,108 in 1938. Production in 1939 was 60,723,000 barrels, slightly higher than in 1938

but about 10 million barrels below the record of 1937.

In 1939, as usual, numerous discoveries were made in Kansas; the number of new fields ranges from 20 to 40, depending on whether some of the new areas are connected to older fields later. The Hittle, Bemis, Silica, and Trapp pools were among the most active in drilling in 1939. Silica and Trapp are reported to rank second and third, respectively, to Eldorado in point of proved acreage.

respectively, to Eldorado in point of proved acreage.

Three new counties—Norton, Phillips, and Sherman—were added to the producing column in 1939; Northeast Kansas shared in the Forest City basin drilling activity, but Nebraska achieved the most

tangible result—a small oil well near Falls City.

Production of crude petroleum in Kansas, 1935-39, by counties 1

[Thousands of barrels]

County	1935	1936	1937	1938	1939
Barton Butler:	738	1, 195	3, 519	3, 490	3, 490
Eldorado district	3, 920	3, 508	3, 340	3,023	2,710
Other districts	2,792	2,656	2,649	2,668	2, 354
Cowley	1, 154	1,804	1, 973	2,318	3, 264
Ellis	167	758	2,629	3, 116	3, 468
Ellsworth.	2, 596	3,014	2, 121	1, 248	1, 124
Greenwood-Woodson	4, 089	4,001	4,007	3,834	3, 578
Harvey	2, 916	1, 592	1, 559	1,081	981
McPherson:	2,010	2,002	-, 000	2,002	001
Graber district	191	442	1, 233	1,082	965
Ritz Canton district	2,974	2,346	1,872	1,650	1, 753
Voshell district	1,670	1, 104	931	765	574
Other districts	750	572	415	343	437
Reno	7. 584	5, 985	6,812	4. 287	3,958
Rice	8,069	11, 427	15, 487	10,629	10, 516
Russell	4, 146	7,074	11,379	9, 446	9, 822
Sedgwick	2,973	2,002	1,545	1,418	1, 247
Sumner	2, 077	3, 231	2, 342	1.698	1, 495
Other counties	4, 558	4, 373	5, 345	6,038	7, 427
	53, 364	57, 084	69, 158	58, 134	59, 163

¹ Oil and Gas Journal.

Kentucky.—Lower prices and Illinois competition had adverse effects on developments in western Kentucky, where most of the output is produced, and the total production fell from 5,821,000 barrels in 1938 to 5,581,000 in 1939. Only 275 oil wells were completed in 1939 compared with 484 in 1938. The eastern part of the State witnessed a revival of interest; production increased owing to repressuring, and many thousands of acres were leased, chiefly on prospects for deeper production.

Louisiana.—Production in Louisiana declined in 1939, largely because the decrease for the Rodessa field was not matched by gains in the coastal district. The output for the year was 93,869,000 barrels

compared with 95,208,000 in 1938.

The output in the northern fields in 1939 was 25,403,000 barrels, about 3 million barrels less than in 1938. All of the decrease was at Rodessa, which was quiet after active years in 1937 and 1938. The Cotton Valley and Cross Lake fields were the only ones to show substantial gains over production in 1938. Cross Lake, the only important discovery during 1938, yielded 1,875,000 barels in 1939, but the output was dropping rapidly as the year closed. Drilling fell sharply in 1939 and total initial production even more. No new fields were found in the northern district in 1939, and virtually all deep test wells, particularly the deepest (11,419 feet)—that at Pine Island (Caddo)—were disappointing.

The coastal district continued to set new production records; in 1939 the output was 68,466,000 barrels compared with 66,630,000 in

1938.

A dozen or more new fields were discovered in the Louisiana Gulf coast in 1939, in addition to numerous extensions. The Eola field, Avoyelles Parish, was the most interesting of the new discoveries. The Ville Platte and University fields were extended and made rapid gains in output. The Jennings field retained its top rank, although its production slumped rapidly in the latter half of the year.

Production of crude petroleum in Louisiana, 1934-38, by districts 1 [Thousands of barrels]

District	1934	1935	1936	1937	1938
Gulf Coast:					
Black Bayou	422	564	1,087	1, 313	1, 285
Bosco	1,036	6, 355	4,661	3,020	2,085
Caillou Island	1,748	3, 288	5, 504	6,402	6, 249
Cameron Meadows	419	1,046	1,848	1,490	1, 279
Charenton	1		17	236	1,085
Choctaw	324	276	346	440	442
Darrow	(2)	263	526	717	1.015
Dog Lake	l	(2)	227	674	518
English Bayou		`′713	2, 511	2.871	2, 176
Gibson			-,	453	984
Gillis	(2)	1, 492	3, 262	2, 217	973
Guevdan	110	82	58	7, 299	189
Hackberry	1.911	2, 580	3, 125	4, 592	3,728
Iowa	5, 300	7, 363	6, 626	6, 383	5, 641
Jeanerette	0,000	(2)	985	2, 277	2, 485
Jennings	444	686	754	2,996	7, 537
Lafitte	777	635	2, 709	4, 136	5, 862
	1,894	2, 792	2, 709	1, 368	
Lake Barre		3 5, 388			657
Leeville	4, 487		4,679	2,629	1,867
Lockport	714	655	474	528	378
New Iberia		(3)	2, 191	6, 231	5, 339
Port Barre	937	ì, 250	797	600	612
Roanoke	241	1,631	2, 282	1,890	1,339
Sulphur	1, 256	944	1, 793	1,414	1, 244
Sweet Lake	385	403	350	294	307
Tepetate		(2)	1,456	2, 158	1,985
Valentine				968	1,691
Ville Platte				3	850
Vinton	1, 168	906	650	470	472
White Castle	191	196	336	490	593
Other Gulf Coast	807	1,268	1,788	2,682	5, 763
	00.704	40.770			
Total Gulf Coast	23, 794	40, 776	53, 574	62, 041	66, 630
Northern:					
Caddo	2, 200	2,630	2, 554	2,353	2,659
Cotton Valley	290	233	207	1, 151	3, 527
Havnesville	1,379	1, 266	1, 216	1, 143	1, 107
Homer	980	977	950	932	952
Lisbon	l			2,490	3,368
Rodessa		1.364	19, 220	18,050	13, 443
Urania	1.077	1,062	1,060	1, 085	1,003
Zwolle	1,675	626	393	266	752
Other Northern	1, 474	1,396	1,317	1, 413	1,767
Total Northern	9,075	9, 554	26, 917	28, 883	28, 578
Total Louisiana	32, 869	50, 330	80, 491	90, 924	95, 208

Figures by districts for 1939 not yet available.
 Included under "Other Gulf Coast."
 Leeville includes New Iberia.

Michigan.—Production in Michigan reached a new peak of 22,799,-000 barrels in 1939 compared with the previous record of 18,745,000 barrels in 1938. Prices improved materially, with the result that drilling increased; 813 oil wells were completed in 1939 compared with 566 in 1938. The most active fields were Walker, Kent County, and Bloomingdale, Van Buren County. The Freeman-Redding (Temple) field in Clare County assumed the rank of the leading field, displacing Buckeye.

In spite of active wildcatting, few discoveries were made; the two most promising were the Bangor field in Van Buren County and the Wyoming Park field in Kent County. New reserves discovered increased over 1938 but did not equal production, hence net reserves

declined.

A new conservation law was passed, and the first order thereunder became effective June 1. Under this law new wells are prorated, but as the wells generally decline rapidly actual curtailment is limited to the newest fields.

Production of crude petroleum in Michigan, 1934-38, by districts ¹
[Thousands of barrels]

Year	Buck- eye	Clay- ton	Crys- tal	Mount Pleas- ant	Mus- kegon	Porter	Sher- man	Ver- non	West Branch	Yost- Jasper	Other dis- tricts	Total
1934 1935 1936 1937 1938	10 6, 428 7, 385	58 1,030 1,071	3, 605 2, 449 573 238	1, 513 1, 130 880 801 583	159 102 93 77 60	7, 168 8, 317 4, 620 2, 707 1, 798	32 1, 532 1, 152	907 633 469 388 256	524 772 862 758	276 875 1, 625 1, 158 833	580 590 920 1,072 4,611	10, 603 15, 776 11, 928 16, 628 18, 745

¹ Figures by districts for 1939 not yet available. Data from Department of Conservation, Michigan.

Mississippi.—Mississippi, which produced a few thousand barrels of low-grade oil from the edge of the Jackson gas field some years ago, really entered the ranks of the oil-producing States in 1939 with discovery of the Tinsley field, Yazoo County. By the close of the year nine oil wells had been brought in, and interest in the area was at a high pitch. The output for 1939 was 107,000 barrels.

Missouri.—Interest in Missouri, particularly in the northwest corner, was stimulated by the discovery of oil near Falls City, Nebr., but the production, all from the stripper area south of Kansas City,

remained several thousand barrels monthly.

Montana.—Although the producing branch of the industry in Montana appeared to have had a very successful year in 1939, with the output increasing about a million barrels, no new discoveries of importance were made, and reserves declined. The output was 5,961,000 barrels (second only to 1926) compared with 4,946,000 in 1938. There were 114 oil wells completed, compared with 69 in 1938. Most of the 1939 completions were in or near the Cut Bank field, which was extended several times.

Production of crude petroleum in Montana, 1934-38, by districts ¹
[Thousands of barrels]

Year	Border	Cat Creek	Cut Bank	Dry Creek	Elk Basin	Kevin- Sun- burst	Lake Basin	Pon- dera	Other districts	Total
1934 1935 1936 1937 1938	70 40 43 41 23	236 311 258 227 211	1, 204 2, 321 3, 332 3, 332 2, 809	(2) (2) 214 102 365	16 11 12 12 8	1, 628 1, 371 1, 543 1, 634 1, 290	16 (2) (2) (2) (2) 18	363 441 433 418 210	70 108 33 39 12	3, 603 4, 603 5, 868 5, 805 4, 946

¹ Figures by districts for 1939 not yet available. ² Included under "Other districts."

Nebraska.—Leasing activity in the Forest City Basin in the extreme southeast corner of Nebraska yielded a discovery well near Falls City, rated at 130 barrels daily. The well decreased rapidly in output but produced about 2,000 barrels before the close of the year.

New Mexico.—Although production in New Mexico increased from 35,759,000 barrels in 1938 to 37,323,000 in 1939, it failed to attain the peak of 38,854,000 barrels achieved in 1937. The Eunice and Monument fields (Lea County) continued to be the leading producing areas. A gain for the Vacuum field was an important factor in the rise in total output in 1939 over 1938. Several new fields were discovered; of these the Loco Hills field, Eddy County, was the most The light-oil area in the northwest corner of the State was quiet, with little activity outside the Rattlesnake field.

Production of crude petroleum in New Mexico, 1934-38, by districts 1 [Thousands of barrels]

Year	Artesia	Hobbs	Hogback	Lea ²	Rattle- snake ³	Total
1934	898	12, 628	76	2, 962	300	16, 864
1935	867	11, 276	69	7, 970	301	20, 483
1936	1,056	9, 169	84	16, 592	322	27, 223
1937	2,000	7, 300	71	29, 166	317	38, 854
1938	2,216	5, 304	70	27, 882	287	35, 759

Figures by districts for 1939 not yet available.
 Includes Cooper, Eunice, Jal, Monument, and other pools in Lea County.
 Includes Aztec and Table Mesa in 1934-35; Aztec, Bloomfield, Red Mountain, and Table Mesa in 1936; Aztec, Bloomfield, Hospah, and Table Mesa in 1937; Aztec, Bloomfield, and Table Mesa in 1938.

New York.—Drilling increased in New York following the price advances of 1939, and the output rose to 5,098,000 barrels from 5,045,000 in 1938. The price of Bradford crude rose in six steps from \$1.68 per barrel on January 1 to \$2.50 on December 1; this substantial gain, occasioned largely by the increased demand for lubricants, gave the producers great encouragement for successful operations in 1940.

Ohio.—Nothing occurred in Ohio in 1939 to arrest the receding production, which fell from 3,298,000 barrels in 1938 to 3,156,000 in The number of oil wells completed increased from 189 in 1938 to 216 in 1939, but the total initial production dropped. During 1939 a bill was passed legalizing water-flooding in Ohio. The first horizontal well was drilled in Ohio in 1939.

Oklahoma.—Further losses of markets to Illinois and falling potentials featured the general picture in Oklahoma in 1939. The output

was 160.072.000 barrels compared with 174,994,000 in 1938.

In an effort to maintain reserves, drilling was speeded in 1939, and 1,045 oil wells were brought in compared with 986 in 1938; however, the total initial production was less than in 1938, and the percentage of dry holes increased. Active areas in drilling were Creek County and the Cement and Sac and Fox fields.

The performance in the Seminole district was about the only encouraging feature of production in Oklahoma. The output in that district in 1939 was 30,700,000 barrels compared with 28,073,000 in 1938 and 30,704,000 in 1937. Most of the credit for the showing belongs to the St. Louis-Pearson field. Production of Oklahoma City, the leading field of the State, declined from 40,905,000 barrels in 1938 to 37,554,000 in 1939. Production at Fitts showed another drastic decline—from 16,655,000 barrels in 1938 to 9,120,000 in 1939. Big wells continued to be completed in the Ramsey field, which produced about 1,500,000 barrels in 1939 compared with about 500,000 in 1938.

About a score of new pools were opened in Oklahoma in 1939, but most of them were on "pimples" passed over in previous years. The Hobart field (Kiowa County) probably was the most important discovery. A well was drilled to 14,582 feet in Washita County but was a failure after experiencing mechanical difficulties. Interest in the extreme southern and northwestern parts of the State was quite active as the year closed.

Production of crude petroleum in Oklahoma, 1935-39, by districts ¹

[Thousand	of barrels	l			
District	1935	1936	1937	1938	1939
Allen Billings Bristow Burbank Cleveland County Crescent Cushing-Shamrock Edmond Fish Fitts Healdton Keokuk-South Keokuk Lucien Nowata County Oklahoma City Okmulgee County Olympic Osage (outside Burbank-South Burbank) Ramsey	77 3, 329 3, 102 2, 003 4, 738 1, 478 3, 422 6, 901 3, 397 852 3, 744 2, 414 53, 386 1, 796	3, 076 204 3, 186 2, 827 543 2, 301 4, 129 4, 370 3, 114 19, 908 3, 436 2, 113 4, 542 3, 179 51, 232 1, 692 2, 711 8, 293	2, 511 2, 349 2, 790 2, 871 3, 896 3, 851 3, 908 5, 884 2, 077 30, 977 5, 047 3, 450 54, 776 1, 752 4, 315 7, 626	2, 475 2, 108 2, 389 2, 814 1, 778 1, 687 3, 848 2, 030 1, 224 16, 655 3, 401 1, 713 3, 524 4, 390 38, 796 1, 753 1, 889 6, 438 528	2, 289 2, 178 2, 403 2, 689 1, 013 983 3, 446 1, 675 1, 376 9, 120 3, 236 1, 176 3, 017 4, 348 35, 728 1, 034 6, 063 1, 489
Seminole field: Bowlegs. Carr City Earlsboro Little River. St. Louis-Pearson. Seminole City. Other Seminole districts. Total Seminole field. Sholem-Alechem-Tatums. South Burbank. Tulsa. Other districts.	2, 003 7, 414 5, 587 8, 365 4, 062 3, 347 34, 623	4, 335 2, 216 6, 601 5, 068 8, 543 3, 810 4, 150 34, 723 2, 561 1, 308 36, 043	4, 178 1, 973 5, 596 4, 222 7, 528 3, 428 3, 779 30, 704 3, 129 5, 579 1, 721 37, 261	3, 200 1, 294 3, 751 3, 040 7, 766 2, 842 6, 180 28, 073 1, 691 3, 938 1, 513 34, 652	2, 678 922 3, 590 2, 865 11, 303 2, 618 6, 724 30, 700 1, 553 3, 150 1, 073 32, 198
Total Oklahoma	182, 597	200, 881	223, 107	169, 307	153, 414

¹ Oil and Gas Journal.

Pennsylvania.—Higher posted prices revived production in Pennsylvania during the last quarter of 1939, but the total output for the year failed by a small margin to equal that of 1938—17,426,000 and 17,337,000 barrels in 1938 and 1939, respectively. Fewer oil wells were completed in 1939, but the total initial production increased, probably owing to the addition of a number of exceptional wells in the Music Mountain pool of the Bradford field.

Tennessee.—No important discoveries were made in Tennessee in 1939, and production continued to be around 3,000 barrels monthly.

Texas.—The Saturday and Sunday shut-downs instituted by the Texas Railroad Commission in 1938 were continued into 1939. In addition, most of the fields were shut in during the latter half of August. In spite of this curtalment, production in every important area of the State except East Texas increased during 1939, and the total for the State rose from 475,850,000 barrels in 1938 to 484,527,000 in 1939.

No new discoveries were made in the Texas Panhandle in 1939, and fewer wells were drilled; but the potential of the wells increased, and the output rose from 23,556,000 barrels in 1938 to 24,165,000 in 1939.

The North Texas district experienced another satisfactory year in 1939. Production increased to about 40,000,000 barrels from about 37,000,000 in 1938 and reserves were augmented by the discovery of a score or more new pools. Fewer wells were drilled in 1939, mostly because the drilling program in the K-M-A field reached its peak in 1938. The Hull-Silk field, a 1938 discovery, lived up to expectations and became an important producer in 1939. Clay, Cooke, and Montague Counties led in new discoveries in 1939.

In the North-Central Texas district, sometimes called West-Central Texas but included in North Texas by the Bureau of Mines, wild-catting was active, and a dozen or more new productive spots were found. Most of the drilling was on the Palo Pinto lime trend in Jones and Shackelford Counties. The Griffin and Guitar pools (Jones County) were active; in the latter a deeper lime zone—the Hope—was

discovered.

Production in the West Texas district recovered from its slump in 1938 and established a new record of 79,793,000 barrels in 1939. The gain of 1939 over 1938 was related closely to the State's allowable program, as drilling declined again. Ector County continued to lead in drilling, but Yoakum County showed the largest gain over 1938.

The number of new discoveries was again small in West Texas, and only two deserved special mention—the Apco pool (the first Ordovician discovery of Pecos County) and Cedar Lake, Gaines County. A deeper lime zone was found in the North Cowden pool, which opened a large

area for similar exploration.

Production in the East Texas field proper decreased from 152,116,000 barrels in 1938 to 145,469,000 in 1939; it would have been about the same, except for the 2-week shut-down in August. Drilling continued to decrease rapidly in the East Texas field, and only 365 oil wells were brought into production during 1939 compared with 1,599 in 1938. Abandonments began to exceed new completions in 1939, but the number of producing wells increased from 25,700 on January 1 to 26,000 on December 31. The average bottom-hole pressure dropped from 1,110 pounds the first of the year to about 1,060 at the close. Production in the other fields of the East Texas district fell from

nearly 33,000,000 barrels in 1938 to about 31,000,000 in 1939. In 1939 the Talco and Rodessa (Texas portion) fields produced nearly 10 million barrels each, followed by Van with 5 to 6 million barrels New discoveries in 1939 were few and of little apparent consequence.

The Central Texas district, including chiefly the fault-line pools, passed another year of declining production and there were no important discoveries. The output was about 11,700,000 barrels approximately 1 million barrels less than in 1938.

Production in the South Texas (Laredo) district showed another slight decrease; the total for 1939 was about 29,400,000 barrels com-

pared with 29,597,000 in 1938.

Routine drilling declined in 1939, but interest in the area continued high and several dozen new discoveries were made. The chief activity was along the Frio-Vicksburg trend in Jim Wells, Brooks, Hidalgo, and Starr Counties and along the Cockfield trend in Duval County. Prominent new fields were Reynolds, Ben Bolt, Chiltipin, Muralla, Sejita,

and Southland. The new Adami field of Webb County was active in drilling. Two deep Wilcox tests were drilled during the year, and whereas both had mechanical troubles and were plugged back, they

showed considerable promise.

Although in 1939 the Texas coastal district had a comparatively poor year from the standpoint of new fields and reserves, production rose to a new high point of 122,443,000 barrels from 115,587,000 in 1938. Nearly as many oil wells were completed in 1939 as in 1938-1.663 against 1,728—but the average daily initial production of the 1939 completions was only 256 barrels compared with 518 in 1938.

About 15 new fields were discovered in the Texas Gulf Coast field during 1939, several of which were distillate producers. The most promising of the new fields were Anchor (Angleton), Brazoria County, and Caplen, Galveston County. Important new sand discoveries were made in the Ace and Thompsons fields; and the West Ranch field in Jackson County, discovered in 1938, was greatly extended. Conroe easily retained its rank as the leading field of the district,

though its output fell from 11,606,000 barrels in 1938 to about 9,200,-

000 in 1939.

Production of crude petroleum in Texas, 1934-38,1 by districts

[7]	Thousands of	barrels]		
District	1934	1935	1936	1937

District	1934	1935	1936	1937	1938
Gulf Coast:					
Anahuac.		358	2, 606	4,318	2, 887
Barbers Hill	6,820	6, 765	5, 461	4, 366	3, 413
Batson	246	588	638	630	597
Boling	209	182	348	545	540
Conroe	17, 761	15, 276	15, 229	15, 191	11,606
Dickinson	(2)	280	719	1, 432	2, 227
Esperson	452	395	630	601	496
Flour Bluff			93	1,607	1,736
Frindswood				88	1,078
Goose Creek	1, 203	1,069	1,038	. 860	596
Greta	3, 936	4, 769	5, 481	6, 635	4, 190
Hankamer	378	565	779	576	450
Hardin			135	241	1,621
Hastings		689	2, 408	5, 835	6, 940
Hevser			120	1, 515	3,051
High Island	2,747	2, 513	2,069	1, 183	900
Hull	3, 453	2,311	1,950	2, 492	2, 899
Humble	1, 188	1, 230	1, 163	1, 217	1, 202
Luby				80	1, 578
Manvel	1.020	2, 467	3,014	3, 458	3, 222
Markham	389	459	540	612	594
Mykawa	133	705	1, 161	632	511
Old Ocean	(2)	104	159	447	1,782
Orange	289	263	250	248	483
Pierce Junction	1.196	1,093	1, 298	1, 243	1, 117
Placedo	_,	143	1, 393	3,082	3,088
Plymouth		650	3, 400	5,056	4,467
Raccoon Bend	1, 489	1, 681	1,922	2,002	1, 206
Refugio	1, 489	1,641	3, 228	2,307	2,093
Saxet-Saxet Heights		1,336	7, 245	15, 763	13, 130
Segno .				472	708
Silsbee			6	464	605
Sourlake	484	602	561	569	441
Spindletop	1	962	858	912	837
Sugarland		2,098	1.715	1, 322	1, 222
Thompsons.	7 - 1 -	4, 123	3, 523	4, 147	3,998
Tomball	, , , , ,	1, 899	2,611	3,060	2, 635
West Columbia	1.038	857	7773	825	1,600
	2,000	1	229	570	F 925
Withers Other Gulf Coast	4, 990	6, 841	12, 235	18,099	22, 916
Other Gun Coast	1,000	0,011	22, 200	20,000	
Total Gulf Coast	60, 155	64, 914	86.988	114, 702	115, 587

¹ Figures by districts for 1939 not yet available.

Included under "Other Gulf Coast."

Production of crude petroleum in Texas, 1934-38, by districts—Continued

District	1934	1935	1936	1937	1938
East Texas:		·			
East Texas proper 3	181, 540	176, 859	167, 512	170, 673	152, 116
Cavuga	580	1, 333	2, 137	3, 195	3, 191
Long Lake	(4)	(4) [']	374	549	721
Rodessa		. 12	3, 144	12, 626	11. 373
Sulphur Bluff		.		1,627	1,653
Talco		.	1,344		9, 593
VanOther East Texas	14, 621	14,062			5, 630
Other mast reass	311	813	726	589	611
Total East Texas	197, 061	193, 079	187, 745	210, 325	184, 888
Central Texas:					======
Darst Creek	3, 374	3, 298	3, 201	2,802	2, 816
Luling Lytton Springs	2, 187	2,055	2, 154	2, 260	2, 810
Lytton Springs	557	341	328	120	1,057
MAYIQ 5	1 1 042	1,902	1,847	1.678	1, 635
Sait Flat (Bruner)	1,637	1, 495	1, 448	1,586	1,419
Other Central Texas	2,334	4, 356	4,896	5, 125	3, 263
Total Central Texas	12, 036	13, 447	13, 874	13, 571	12, 687
North Texas 6	31, 558	31, 098	33, 041	37, 580	36, 823
Panhandle 7	20, 280	21, 369	22, 357	27, 617	23, 556
South Texas 8	10, 154	13, 342	21, 367	30, 780	29, 597
West Texas:					
Andrews.	217	628	857	1, 318	1, 309
Big Lake	4, 476	3, 610	2,859	2,648	2, 381
Chalk-Roberts	6, 563	8, 163	9,345	8,663	8, 030
Crans-Upton Ector	6, 145	6, 384	7,843	10,078	9, 938
ECIOF.		3, 591	5, 759	10, 121	14, 817
Fisher Hendricks	1, 633	1,954	1,640	1, 164	1, 208
Ward County	7, 612 3, 479	7,670	9,801	15, 411	13, 361
Yates	3, 479 15, 991	5, 883 15, 935	8,992	12, 561	8,878
Other West Texas	1, 531	1, 599	13, 414 1, 529	11, 388 2, 391	8, 590 4, 200
Total West Texas	50, 272	55, 417	62, 039	75, 743	72, 712
Total Texas	381, 516	392, 666	427, 411	510, 318	475, 850

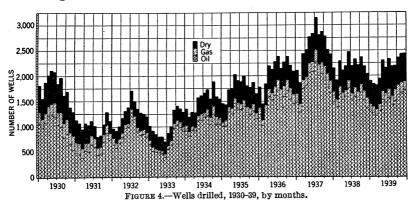
Utah.—No wells were drilled in Utah in 1939, and the production of oil continued negligible.

West Virginia.—Despite a slight decline in number of oil wells completed in 1939, the total initial production increased; however, this was not enough to compensate for the natural decrease in the output of the many old wells, and it dropped from 3,684,000 barrels in 1938 to 3,580,000 in 1939.

Wyoming.—Deeper drilling and extensions in the Lance Creek field increased the output from 4,846,000 barrels in 1938 to about 6,700,000 This was about the proportion by which the State production increased—from 19,022,000 barrels in 1938 to 21,417,000 in 1939. The reliable Salt Creek field was displaced by Lance Creek as the leading producer for the first time in about a score of years, but its production of 5,331,000 barrels was creditable considering its age.

Drilling in 1939 proceeded at about the same pace as in 1938, 99 and 95 oil wells having been completed in the respective years. Exploratory drilling was not especially successful; no new fields were found, and deeper sands at Lance Creek and Wertz were the only important discoveries.

Joiner, Kilgore, Lathrop, and other pools in Cherokee, Gregg, Rusk, Smith, and Upshur Counties.
 Included under "Other East Texas."
 Includes other fields in Falls, Freestone, Limestone, and Navarro Counties.
 Includes the districts in and between Wilbarger, Wichita, Clay, Montague, and Cooke Counties on the north and Runnels, Coleman, Brown, and Comanche Counties on the south.
 Carson, Gray, Hutchinson, Moore, Potter, and Wheeler Counties.
 Includes fields in Duval, Hidalgo, Jim Hogg, Jim Wells, Starr, Webb, and Zapata Counties.
 Includes Westbrook and other fields in Glasscock, Howard, and Mitchell Counties.


Production of crude	petroleum in	wyoming,	1933–38,	by districts 1
	[Thomas	da of homeolal		

							-							
Year	Big Mud- dy	Byron	Elk Basir	Fran- nie	Gar- land	Grass Creek	D. W	amil- ton ome- arm rings	L Bai		Lanc Cree		Lander- Dallas- Derby Dome	Lost Sol- dier- Ferris
1933	650 634 570 522 484 441	(2) (2) (2) (2) (2) 404 533	203 177 133 159 104 94	615 114 310 358	2 181 2 364 2 784 2 318 844 303	274 356 727 559 654 513		254 322 470 426 437 346	4	349 488 493 471 423 395	4 12 73 1,89 4,24 4,84	5 2 7	330 316 334 330 329 306	632 605 563 471 511 1,037
Year	Medic Boy		egon asin	Osage	Poison Spider- South Casper	Quea	ly	Rocl Cree			alt eek		Other istricts	Total
1933 1934 1935 1936 1937	1,	167 344	252 880 1,638 1,733 1,407	241 289 174 143 261	167 177 131 206 230	1 :	268 271		164 540 544 522 748 640	. · 6	7, 009 6, 520 6, 257 6, 070 5, 874 5, 705		95 145 88 183 239 173	11, 227 12, 556 13, 755 14, 582 19, 166 19, 022

¹ Figures by districts for 1939 not yet available.

WELLS

In consequence of the price recession of October 1938 drilling entered 1939 at a much lower level than prevailed the first of 1938. The drilling rate accelerated gradually in 1939, so that by the end of

the year it was running ahead of 1938. However, the number of oil wells completed decreased 5 percent—from 18,433 in 1938 to 17,485 in 1939. The percentage of failures (dry holes) again increased materially—from 22.8 percent in 1938 to 24.6 in 1939 (see fig. 4); this trend is largely a result of the decline in drilling in the East Texas field, where less than 2 percent of the holes drilled since discovery to the end of 1939 (26,355) have been failures.

There were 369,640 producing wells in the United States on December 31, 1938; this was 6,610 more than were producing at the beginning of the year. Allowing for somewhat more than the usual percentage of abandonments on account of the lower prices, there probably were somewhat less than 375,000 producing oil wells at the end of 1939. However, the average daily production per well, which declined materially in 1938, rose to 9.3 barrels from 9.1 in 1938.

² Garland includes Byron.

Wells drilled for oil and gas in the	e United States, 1938-39, by months 1
--------------------------------------	---------------------------------------

													То	tal
Wells	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.		Num- ber	Per- cent
1938 ² Oil	1, 474 209 464	168	1, 620 173 506	129		1, 753 154 572	145			168		197	18, 433 31, 985 6, 043	69. 7 7. 5 22. 8
	2, 147	1,914	2, 299	2, 105	2, 191	2, 479	2, 195	2,327	2, 212	2,368	2, 186	2, 038	26, 461	100.0
1939 OilGasDry	1, 311 135 447	1, 2 63 133 444	1, 204 137 473			180	183	1, 411 183 592				165	17, 485 2, 046 6, 357	67. 5 7. 9 24. 6
	1,893	1,840	1,814	1,940	2,302	2, 152	2,328	2, 186	2, 198	2,356	2, 439	2, 440	25, 888	100.0

¹ Oil and Gas Journal. Water-intake wells not included. ² Revised figures. ² Total by months does not agree with total by States published elsewhere in the Yearbook, as latter has been revised on basis of annual data from State officials.

Because of rapid decline in drilling in the East Texas field, the Bradford-Allegany district became the leader in completions in 1939. Completions in Wichita County, one of the leaders in 1938, dropped nearly 50 percent in 1939. Increases in field activity in the Central States (Illinois, Michigan, and Indiana) were leading developments during 1939.

Wells drilled in the United States and estimated average daily initial oil production per well, 1938-39, by States and districts ¹

			1938 2				. •	1939		
	(Dil .				(Oil			
State and district	Num- ber	Average initial (barrels)	Gas	Dry	Total	Num- ber	Average initial (barrels)	Gas	Dry	Total
Arkansas	204 993 7 1,806 46 1,108 484	683 927 135 271 37 581 89	3 7 1 23 43 200 91	44 265 10 408 69 402 314	251 1, 265 18 2, 237 158 1, 710 889	183 852 7 2,943 176 977 275	483 909 128 285 156 432 54	6 15 1 18 44 150 110	65 251 17 621 156 309 312	254 1, 118 25 3, 582 376 1, 436 697
Louisiana: Gulf Coast Northern	329 361	388 465	10 116	186 145	525 622	582 289	317 236	11 87	242 161	835 537
Total, Louisiana Michigan Montana New Mexico Ohio Oklahoma Pennsylvania and New York	690 566 69 494 189 986 1,690	429 451 78 370 23 218 5	126 28 21 19 433 160 166	331 406 27 67 288 545 95	1, 147 1, 000 117 580 910 1, 691 1, 951	871 813 114 525 216 1,045 1,586	290 534 85 385 16 197 25	98 52 26 18 497 151 200	403 527 37 63 319 603 148	1, 372 1, 392 177 606 1, 032 1, 799 1, 934
Texas: Gulf Coast East Texas proper West Texas Rest of State	1, 728 1, 599 1, 788 3, 777	378 1, 282 877 332	66 1 16 258	322 45 241 1,969	2, 116 1, 645 2, 045 6, 004	1, 663 365 1, 703 2, 952	256 1, 167 860 348	105 4 205	300 20 163 1,845	2, 068 385 1, 870 5, 002
Total, Texas	114	618 13 480	341 484 19 71	2, 577 126 43 26	11, 810 724 157 97	6, 683 110 99 10	500 18 874 573	314 419 10 16	2, 328 90 41 67	9, 325 619 150 93
Total, United States	18, 433	474	42, 236	6, 043	26, 712	17, 485	386	42, 145	6, 357	25, 987

Oil and Gas Journal, except California. Revised figures. American Petroleum Institute.
Total by States does not agree with total by months published elsewhere in the Yearbook, as former has been revised upon basis of annual data from State officials.

Producing oil wells in the United States and average production per day in 1938, by
States and districts 1

	Producin	ng oil wells		Producin	g oil wells
State and district Approximate number, Dec. 31 Aver prod tion well day (rels			State and district	Approxi- mate number, Dec. 31	A verage produc- tion per well per day (bar- rels)
Arkansas California Colorado Illinois Indiana Kansas Kentucky Louisiana: Gulf Coast Northern Total, Louisiana Michigan Montana New Mexico New York	13, 930 200 15, 800 1, 260 20, 900 13, 900 1, 400 3, 500 4, 900 2, 140 1, 620	18. 2 50. 0 19. 3 4. 4 2. 2 7. 7 1. 2 145. 5 23. 9 57. 6 26. 2 8. 4 45. 4	Ohio_Oklahoma_Pennsylvania_Pennsylvania_ Texas: Gulf Coast_East Texas proper_West Texas_Rest of State_ Total, Texas_West Virginia_Wyoming_Other States \$\frac{3}{2}\$ Total wells	9,500 25,700 9,300 41,100 85,600 17,700	36. 5 16. 7 23. 5 9. 4 16. 0 15. 7 9. 1

¹ Figures for 1939 not yet available. ² American Petroleum Institute. ³ Missouri, Tennessee, and Utah.

Drilling activity in leading districts of the United States, 1938-39 1

District	District State			District	State		nple- ons
		1938	1939			1938	1939
Archer County Bradford-Allegany Caddo Charenton Columbia County Daviess County Bast Texas Ector County Eddy County Eddy County Fairbanks Fayette County	Texas	215 1, 480 134 38 120 135 145 1, 645 70 129 518	265 89 103 206 181 385 489 163 144	Gibson County Kent County Lea County Marion County Montebello Pottswatomie County Rice County Russell County Van Buren County Wichita County Wilmington Yoakum County	Indiana Michigan New Mexico Illinois California Oklahoma Kansas do Michigan Texas California	5 5 469 693 33 174 167 201 133 1,033 263 161	326 413 1, 245 130 267 203 237 375 524

¹ Oil and Gas Journal, except Michigan.

STOCKS

Crude-oil stocks increased moderately in the first 4 or 5 months of 1939, followed by material reductions in June and July; however, these were small compared with that in August in consequence of the 2-week shut-down. Thus stocks of refinable grades decreased about 32,000,000 barrels or from 270,570,000 barrels on July 31 to 238,479,000 on August 31. The net change over the remaining 4 months was unimportant. Virtually all the 35-million barrel reduction in refinable grades in 1939 was in pipe-line and tank-farm stocks, as producers' stocks gained slightly and refinery stocks showed a relatively minor decline. Stocks of heavy crude in California, kept separate

Department of Conservation, Michigan.

from statistics of refinable grades to maintain comparisons, were reduced by about 3 million barrels in 1939, or from 16,467,000 barrels on January 1 to 13,330,000 on December 31.

Stocks of crude petroleum, natural gasoline, and refined products in the United States at end of year, 1935-39

[Thousands of barrels]

	1935	1936	1937	1938	1939 1
Crude petroleum (refinable): At refineries Pipe line and tank farm Producers	² 47, 533 ² 256, 793 10, 529	46, 846 230, 499 11, 234	51, 041 { 244, 545 { 243,552 11, 240	51, 551 211, 931 211, 138 211, 476 11, 476	49, 215 } 178, 546 } 11, 149
Total refinableCalifornia heavy crude 4	314, 855 (4)	288, 579 (4)	306, 826 3 305,833 14, 505	274, 958 273, 560 16, 467	} 238, 910 13, 330
Total crude petroleum	314, 855 3, 698 223, 361	288, 579 4, 055 226, 595	\$\begin{cases} 306, 826 \\ \$\ 320,338 \\ 4,758 \\ 253,413 \\ \$\ 239,901 \end{cases}\$	291, 425 290, 027 4, 830 259, 665 259, 613	} 252, 240 4, 421 } 256, 249
Grand total	541, 914	519, 229	564, 997	\$ 555, 920 \$ 554,470	512, 910

Subject to revision.
 Revised figures.
 For comparison with succeeding year.
 California heavy crude included under refined products as residual fuel oil from 1923 to end of 1937.
 Includes also equivalents for wax, coke, and asphalt in barrels.

An important factor in the rise of Pennsylvania Grade prices was a drop of just over a million barrels (about 20 percent) in stocks of that crude. The data on stocks of crude oil by States of origin for 1939 show that most of the figures trended downward; in fact, a gain of about 5,500,000 barrels of Illinois crude was the chief exception. The most important decreases were about 20 million barrels in stocks of Texas crude and nearly 10 million of Oklahoma crude.

New lows in days' supply for recent years were set continuously in 1939 as demand increased and stocks were reduced. The low point of 64 days' supply for all crudes, including California heavy, was

reached on September 30.

Stocks of refinable crude petroleum 1 in the United States in 1939, by States of location and origin and by months 2 [Thousands of barrels]

Illinois. Indiana Kansas. Louisiana and Alabama Maryland ³ Michigan and Kentucky Missouri ⁴ Montana and Colorado. New Jersey New Mexico. New York Ohio. Oklahoma. Pennsylvania Texas. West Virginia. Wyoming ⁵	36, 271 3 11, 752 1 3, 190 7, 936 1 11, 622 1 2, 347 2, 320 4 402 2, 064 5, 842 1, 149 8, 105 5 1, 238 1, 149 8, 6, 6, 630 92, 403 8	2, 373 36, 818 12, 130 3, 300 3, 7, 757 12, 047 2, 369 2, 515 4, 416 1, 912 1, 350 1, 292 1, 356 52, 917 6, 423 52, 917 6, 628 89, 666 82, 335	2, 220 38, 182 12, 088 2, 875 7, 370 12, 609 2, 480 2, 593 4, 620 1, 906 6, 469 1, 202 7, 964 52, 717 6, 226 90, 414 2, 246	2, 279 39, 193 11, 918 3, 192 7, 373 12, 686 2, 631 4, 544 1, 955 5, 923 1, 160 1, 064 8, 116 54, 668 8, 116 6, 080 91, 073	2, 343 39, 515 12, 195 3, 144 7, 617 12, 051 2, 298 2, 676 4, 459 2, 063 5, 456 1, 142 1, 061 1, 142 1, 065 93, 543	2, 332 39, 819 12, 720 3, 105 7, 545 12, 511 1, 972 2, 719 4, 417 2, 089 6, 426 1, 067 1, 068 8, 600 54, 555 6, 933 91, 068	2, 099 38, 804 13, 303 3, 156 7, 394 12, 616 2, 702 2, 781 4, 320 2, 057 6, 160 1, 045 1, 079 8, 237 54, 811 6, 939 87, 156	2, 025 38, 204 13, 612 3, 172 7, 805 12, 590 2, 588 2, 609 4, 526 2, 042 5, 799 1, 104 1, 129 8, 359 54, 146 7, 155 85, 057	1, 783 37, 886 14, 026 3, 449 6, 807 9, 435 2, 329 2, 556 4, 620 1, 908 5, 429 1, 130 8, 301 47, 130 6, 930 65, 770	1, 884 37, 104 13, 881 3, 312 7, 210 9, 404 2, 261 2, 407 4, 682 1, 797 4, 913 1, 162 1, 143 8, 700 44, 714 6, 569 65, 903	1, 826 35, 374 13, 824 2, 917 7, 701 7, 988 1, 908 2, 715 4, 410 1, 765 5, 169 1, 262 8, 915 44, 165 6, 754	1, 896 34, 976 13, 123 3, 209 8, 549 8, 548 2, 424 2, 645 4, 225 1, 763 1, 108 1, 367 6, 395 68, 419	1, 907 35, 298 12, 983 3, 698 9, 091 9, 295 2, 683 2, 861 4, 367 1, 458 5, 208 1, 453 1, 453 6, 580 70, 683 2, 053
Wyoming 5	92, 403 8	2, 335			93, 543	91, 058			65, 770	65, 903		68, 419	70, 683
	17, 948 1	18, 143	18, 036	2, 219 17, 665	2, 283 17, 344	2, 224 16, 929	2, 311 16, 344	2, 318 16, 330	2, 347 15, 746	2, 267 15, 252	2, 269 15, 038	2, 150 15, 022	15, 048
	273, 560 27	72, 346	273, 416	276, 355	278, 565	278, 087	273, 314	270, 570	238, 479	234, 555	230, 854	234, 027	238, 910
Illinois and Indiana. Kansas. Louisiana Michigan and Kentucky. Montana and Colorado. New Mexico. Ohio. Oklahoma. Pennsylvania, New York, and West Virginia. Texas Wyoming. Foreign	36, 400 3 1 6, 861 13, 806 2, 377 1, 1909 7, 358 70, 073 6, 422 91, 565 91, 920 3, 521	3, 180 36, 927 12, 126 7, 075 13, 745 2, 595 1, 666 6, 619 66, 619 68, 5, 439 90, 442 19, 429 3, 451 72, 346	3, 054 38, 323 12, 696 6, 752 14, 579 2, 772 1, 625 6, 556 784 67, 757 5, 336 90, 476 19, 408 3, 298	3, 157 39, 383 12, 705 7, 339 14, 378 2, 836 1, 652 6, 473 689 69, 162 5, 255 91, 455 19, 061 2, 810	3, 217 39, 699 13, 183 7, 537 14, 386 2, 892 1, 753 6, 149 656 69, 282 5, 365 92, 346 18, 623 3, 472	3, 377 39, 878 13, 982 7, 218 13, 770 2, 963 1, 859 6, 360 693 69, 370 5, 344 91, 667 18, 193 3, 413	3, 309 38, 902 14, 573 6, 310 14, 032 3, 012 1, 815 6, 059 740 69, 553 5, 501 88, 774 2, 987	3, 404 38, 427 15, 203 6, 170 14, 068 2, 911 1, 777 5, 489 485 70, 290 5, 487 86, 590 17, 595 2, 674	2, 966 38, 072 18, 299 5, 259 10, 853 3, 115 1, 700 4, 150 592 63, 484 5, 212 67, 252 17, 013 2, 507	2, 885 37, 372 16, 584 5, 083 10, 342 2, 966 1, 584 5, 022 673 62, 068 4, 935 66, 375 16, 566 2, 100	2, 555 35, 533 17, 041 5, 605 9, 825 3, 071 1, 647 5, 586 686 60, 097 4, 798 66, 265 16, 092 2, 053	2, 874 35, 129 16, 341 6, 381 10, 208 2, 594 1, 636 6, 006 667 59, 886 4, 634 68, 729 16, 032 2, 910	2, 846 35, 478 16, 932 6, 831 10, 826 2, 501 1, 721 5, 841 670 60, 493 4, 433 71, 450 2, 815

¹ Excludes stocks of California heavy crude. ⁴ Includes Iowa and Nebraska pipe-line.

² Subject to revision.

Includes Delaware, Georgia, Massachusetts, Rhode Island, South Carolina, Tennessee, and Virginia.
Includes South Dakota, Utah, and Nebraska refinery.

													
District	Jan. 1	Jan. 31	Feb. 28	Mar. 31	Apr. 30	May 31	June 30	July 31	Aug. 31	Sept. 30	Oct. 31	Nov. 30	Dec. 31
At refineries, by fields of origin: Appalachian:													
Pennsylvania Grade Other Appalachian (including	765	903	869	768	781	661	751	762	645	556	571	524	448
Kentucky) Lima-Northeastern Indiana-Michi-	496	488	435	440	426	399	502	501	512	423	389	417	498
gan Illinois-Southwestern Indiana North Louisiana and Arkansas.	515 659 2, 244	504 775 2, 094	622 979 2, 464	694 860 2, 910	741 1, 140 3, 148	675 1, 265 3, 146	799 1, 466 2, 969	874 1, 620 2, 833	1, 164 1, 741 2, 054	1,061 1,904 1,958	1, 174 2, 072 1, 643	1, 900 2, 013	640 2, 436 2, 039
West Texas and Southeastern New Mexico East Texas. Oklahoma, Kansas, North Texas, etc.	3, 800 3, 061 14, 130 10, 000	5, 056 3, 882 14, 133 9, 383	5, 196 3, 696 12, 975 9, 488	4, 881 3, 667 12, 587 9, 785	4, 122 3, 719 11, 875 8, 989	4, 369 4, 197 11, 387 9, 040	4, 317 4, 300 11, 614 9, 740	4, 523 3, 906 11, 269 10, 652	3, 974 2, 874 10, 290 9, 691	4, 153 2, 683 10, 858 8, 057	4, 945 3, 017 10, 250 8, 767	4, 738 3, 786 11, 662 8, 715	4, 590 3, 834 11, 302 9, 287
Gulf Coast Rocky Mountain California Foreign	2, 030 10, 330 3, 521	1, 871 9, 844 3, 451	1, 755 11, 036 3, 298	1, 752 11, 612 2, 810	1, 767 11, 495 3, 472	1, 893 11, 254 3, 413	2, 018 10, 393 2, 987	2, 203 10, 593 2, 674	1, 989 10, 641 2, 507	2, 028 10, 095 2, 100	2, 041 9, 751 2, 053	1, 938 9, 734 2, 910	2, 144 9, 182 2, 815
Total at refineries	51, 551	52, 384	52, 813	52, 766	51, 675	51, 699	51, 856	52, 410	48, 082	45, 876	46, 673	49, 161	49, 215
Pipe-line and tank-farm stocks, by fields of origin: Appalachian:													
Pennsylvania Grade Other Appalachian (including	4, 678	4, 500	4, 446	4, 459	4, 556	4, 696	4, 714	4, 560	4, 436	4, 263	4, 096	3, 990	3, 871
Kentucky) Lima-Northeastern Indiana-Michi-	726	750	863	782	777	836	798	844	866	895	1,088	904	812
gan Illinois-Southwestern Indiana North Louisiana and Arkansas West Texas and Southeastern New	880 10, 484 5, 521	1, 055 11, 071 5, 809	1, 142 11, 427 5, 872	1, 129 11, 545 5, 565	1, 122 11, 728 5, 552	1, 223 12, 392 5, 497	1, 124 12, 805 5, 634	837 13, 263 5, 411	796 14, 221 4, 487	876 14, 353 4, 338	737 14, 617 3, 995	746 14, 092 3, 979	842 14, 135 3, 877
Mexico. East Texas. Oklahoma, Kansas, North Texas, etc. Gulf Coast. Rocky Mountain. California.	19, 757 15, 698 93, 921 17, 776 18, 478 23, 219	18, 578 15, 289 90, 380 18, 356 18, 806 23, 900	17, 902 16, 215 89, 780 18, 840 18, 834 24, 109	17, 811 16, 821 92, 323 18, 890 18, 600 24, 509	17, 389 17, 991 93, 391 20, 012 18, 228 24, 939	17, 544 17, 017 93, 623 19, 318 17, 688 25, 195	16, 933 15, 619 92, 186 18, 088 17, 098 25, 137	16, 927 14, 681 90, 149 18, 341 16, 728 24, 206	12, 796 8, 923 78, 842 13, 814 16, 363 23, 803	14, 370 9, 922 74, 920 13, 896 15, 727 23, 628	14, 344 9, 731 73, 090 13, 655 15, 304 22, 051	14, 997 10, 237 73, 460 14, 022 15, 310 21, 769	15, 843 10, 849 75, 224 15, 133 15, 217 22, 743
Total pipe-line and tank-farm Producers' stocks	211, 138 10, 871	208, 494 11, 468	209, 430 11, 173	212, 434 11, 155	215, 685 11, 205	215, 029 11, 359	210, 136 11, 322	205, 947 12, 213	179, 347 11, 050	177, 188 11, 491	172, 708 11, 473	173, 506 11, 360	178, 546 11, 149
Total United States: 1939 1938 ³	273, 560 305, 833	272, 346 306, 937	273, 416 307, 076	276, 355 310, 125	278, 565 307, 999	278, 087 299, 668	273, 314 293, 304	270, 570 289, 324	238, 479 286, 270	234, 555 282, 756	230, 854 277, 422	234, 027 273, 770	238, 910 274, 958

¹ Excludes stocks of California heavy crude; for 1939 figures see p. 947. ² Subject to revision. ³ Revisions of preliminary figures for 1938 (Minerals Yearbook, 1939, p. 957) are as follows (thousands of barrels): Pipe-line stocks, Jan. 31, N. Louisiana and Arkansas, 6041, and producers' stocks, Jan. 1, 11,240, Jan. 31, 12,124; Feb. 28, 12,453; Mar. 31, 13,220; Apr. 30, 11,777; May 31, 11,822; June 30, 11,957; July 31, 11,853; Aug. 31, 11,690; Sept. 30, 11,434; Oct. 31, 11,873; Nov. 30, 12,045; Dec. 31, 11,476.

CONSUMPTION AND DISTRIBUTION

Runs to stills.—Crude run to stills in 1939 totaled 1,238 million barrels, an increase of 73 million over 1938 and 54 million above the previous record figure of 1937. Foreign crude runs were 7 million barrels greater in 1939 than in 1938 but represented less than 3 percent of the total.

The outstanding change in refinery operations by districts was the further increase in runs in the Texas Gulf Coast and Illinois-Indiana districts. Crude runs in the Texas Gulf Coast district have risen from 282 million barrels in 1937 to 308 million in 1938 and 334 million in 1939. These increases represent a continuation of long-term trends that favor refining in the Gulf ports as convenient points for distribution of finished products via water to East Coast markets and for export. Crude runs in the Illinois-Indiana district were 164 million barrels in 1937, declined to 163 million in 1938, and rose to almost 192 million in 1939. The growth of refining in this district illustrates the advantage of the pipe-line movement of crude over rail movements of finished products to the important markets of the North Central States and has been stimulated further by the rapidly expanding production of crude in Illinois.

Crude runs of 192 million barrels in the East Coast district during 1939 were substantially above 1938 but not as large as in 1937. In the California district runs of 199 million barrels represented an additional small decline. Compared to 1938 there were minor changes in the amount of crude run in the Oklahoma-Kansas-Missouri district and in the Texas Inland district, but in both instances runs remained

substantially below the 1937 level.

The increase in crude runs to stills in 1939 can be ascribed to improvement in domestic demand, as exports of refined products were substantially the same as in 1938. A small decrease of about 4 million barrels in total stocks of refined oils indicated that refinery operations as a whole closely approximated market demand for the year. Excess inventories for particular products represented the failure to liquidate previous accumulations or lack of balance in refinery yields.

Runs to stills of crude petroleum in the United States in 1939,1 by districts and months

[Thousands of barrels]

District	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
East Coast: Domestic	13, 460	12, 323	13, 484	13, 040	12, 140	12, 584	14, 154	14, 416	13, 521	14, 637	14, 536	14, 978	163, 273
	1, 719	1, 476	1, 924	2, 064	3, 687	3, 57 3	2, 678	2, 561	2, 899	2, 532	1, 913	2, 082	29, 108
Total East Coast	15, 179	13, 799	15, 408	15, 104	15, 827	16, 157	16, 832	16, 977	16, 420	17, 169	16, 449	17, 060	192, 381
Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri Texas Inland	3, 310	3, 131	3, 476	3, 265	3, 382	3, 460	3, 713	3, 853	3, 835	3, 857	4, 223	4, 262	43, 767
	14, 370	13, 544	14, 919	14, 818	15, 908	15, 675	15, 990	16, 030	16, 431	17, 842	18, 259	17, 848	191, 634
	8, 977	8, 080	8, 559	9, 497	10, 226	9, 917	9, 724	9, 704	9, 538	9, 647	9, 228	9, 312	112, 409
	5, 529	5, 091	5, 181	5, 424	5, 658	5, 655	6, 085	5, 414	5, 197	5, 563	5, 322	5, 313	65, 432
Texas Gulf Coast: Domestic Foreign	27, 585	23, 581	27, 275	27, 106	29, 011	28, 038	28, 696	28, 920	27, 634	28, 713	26, 181	27, 241	329, 981
	199	250	147	145	253	419	529	400	507	494	225	252	3, 820
Total Texas Gulf CoastLouisiana Gulf Coast:	27, 784	23, 831	27, 422	27, 251	29, 264	28, 457	29, 225	29, 320	28, 141	29, 207	26, 406	27, 493	333, 801
DomesticForeign	3, 861 20	3, 211 23	3, 985 34	4, 021 55	4, 211 36	3, 977 66	4, 357	4, 300 61	3, 943 77	4, 745 61	3, 838 96	3, 588 33	48, 037 562
Total Louisiana Gulf Coast	3, 881	3, 234	4, 019	4, 076	4, 247	4, 043	4, 357	4, 361	4, 020	4, 806	3, 934	3, 621	48, 599
Arkansas and Louisiana Inland	2, 094	1, 565	2, 004	1, 949	2, 039	2, 065	2, 003	2, 255	2, 148	2, 370	2, 166	2, 199	24, 857
Rocky Mountain	2, 112	1, 807	2, 012	2, 022	2, 259	2, 228	2, 268	2, 567	2, 437	2, 263	2, 273	2, 058	26, 306
California	16, 378	13, 715	15, 917	15, 897	16, 945	17, 030	16, 702	17, 151	17, 338	18, 256	16, 656	16, 669	198, 654
Total domestic Total foreign	97, 676	86, 048	96, 812	97, 039	101, 779	100, 629	103, 692	104, 610	102, 022	107, 89 3	102, 682	103, 468	1, 204, 350
	1, 938	1, 749	2, 105	2, 264	3, 976	4, 058	3, 207	3, 022	3, 483	3, 087	2, 234	2, 367	33, 490
Total United States. Daily average.	99, 614	87, 797	98, 917	99, 303	105, 755	104, 687	106, 899	107, 632	105, 505	110, 980	104, 916	105, 835	1, 237, 840
	3, 213	3, 136	3, 191	3, 310	3, 411	3, 490	3, 448	3, 472	3, 517	3, 580	3, 497	3, 414	3, 391

¹ Subject to revision.

Distribution.—Receipts of domestic and foreign crude petroleum at refineries in the United States totaled 1,167 million barrels in 1938 and 1,237 million in 1939. In 1939, receipts of foreign crude were 33 million barrels (less than 3 percent of the total); interstate receipts of domestic crude were 450 million barrels (36 percent of the total); and intrastate receipts were 754 million barrels (61 percent of the total). The interstate movement of crude declined further in relative importance in 1939, and the intrastate movement increased. The relative importance of the increase in intrastate deliveries in Illinois, Texas, Louisiana, and Michigan was offset to a considerable extent by a slight actual decrease in California and by the total increase in runs in districts receiving their supply mainly by interstate movement.

Refinery receipts of crude in 1939, by methods of transportation,

Refinery receipts of crude in 1939, by methods of transportation, indicated that 73 percent of the total was delivered by pipe lines, 24 percent by boat, and 3 percent by tank car and truck. These data show only fractional variations from the 1938 figures. The most important boat movement of crude is from Gulf ports to the East coast. These shipments increased from 151 million barrels in 1938 to 158 million in 1939.

Receipts of crude petroleum at refineries in the United States, 1935–39, by methods of transportation

	[Millions of l	barrels]			
	1935	1936	1937	1938	1939 1
By boat:	== 4	eo e	70 E	74.1	70.5
IntrastateInterstate	55. 4 164. 9	68. 6 184. 9	78. 5 201. 8	74.1 182.8	72. 7 188. 6
Foreign	32. 2	32.3	27. 5	26.4	33.1
Total by boat	252. 5	285. 8	307.8	283.3	294. 4
By pipe lines:					
Intrastate	466. 2	517.3	569.6	600.1	651. 3
Interstate	220.9	247. 2	276. 7	254.3	250. 5
Total by pipe lines	687. 1	764. 5	846.3	854.4	901.8
By tank car and truck:					
Intrastate	15.7	14.6	28. 2	21.9	29. 5
Interstate	9.7	7.6	8.5	7.8	10. 9
Total by tank car and truck	25. 4	22, 2	36. 7	29.7	40. 4
Grand total	965. 0	1, 072. 5	1, 190. 8	1, 167. 4	1, 236. 6

¹ Subject to revision.

The total demand for domestic crude in 1939 was 1,301 million barrels, an increase of 58 million over 1938. The amount of domestic crude run to stills rose to over 1,204 million barrels in 1939, an increase of 65 million.

The total market demand for crude by States of origin is computed from production and changes in stocks of State origin. This demand includes deliveries to domestic refineries, crude transferred to fuel oils, losses, and exports.

The most important changes in total market demand by States of origin in 1939 compared to 1938 were an increase of 66 million barrels in the demand for Illinois crude, a recession of 26 million barrels in the demand for Oklahoma crude, an increase of 15 million in the demand for Texas crude, and a drop of 12 million barrels in the demand for California crude. The increase in the demand for Louisiana crude was 3 million barrels, for Michigan crude 4 million, for Kansas crude 1 million, and for Wyoming crude 1 million. The demand for New Mexico crude was about the same.

Distribution of crude petroleum in the United States in 1939,1 by States [Thousands of barrels]

					Re	finery recei	ipts			Runs to		Transfers
	Production	Imports	Illinois	Kansas	Louisiana	New Mexico	Okla- homa	Texas	Other	stills	Exports	to fuel
Arkansas. California. Colorado.	21, 143 224, 354 1, 391					6			10, 680 197, 455 2, 552	10, 696 198, 654 2, 563	526 21, 661	60 6,534 32
Georgia ³ Illinois Indiana Kansas	94, 302 1, 443 60, 723	1,367	4 37, 408 8, 233	3, 717 18, 116 34, 007	230	90 5,064 2,730	8, 853 39, 240 12, 844	1, 966 4, 104 8	450 613 3,086	1, 679 4 57, 651 75, 536 46, 913	9, 365	422 187
Kentucky ¹	5, 618 68, 466 25, 403	549	4, 239		28, 675 7, 125 2, 266	598	668	6 14, 098 4, 545 5, 855	6, 250 7 4, 269 2, 468 330	10, 359 6 7 48, 599 14, 161 12, 614	4, 538	859 168
Massachusetts Michigan Missouri Montana	22, 799 (°) 5, 961	2, 981	2, 269 78	796	318	17	1, 555 2, 610	11,849	15, 180 3, 815 7, 010	13, 984 18, 711 7, 319 7, 090	252	232
New Jersey New Mexico New York: East	37, 323	8, 826 3, 257	1, 184		7, 417	6,832 1,452	4,831	38, 835 395 6, 172	4, 673	72, 896 1, 848 9, 328	693	72
WestOhio:	5, 098 2, 576 580		9, 953 12, 091		5		841 671 11, 063	527	4, 562 2, 724 5, 881	8, 316 13, 377 29, 377		
Oklahoma. Pennsylvania; East. West.	160, 072 17, 337	10, 352	85	3,826	6,654	4,848	53, 789 6, 842 1, 962	592 53, 325	234 16, 789	58, 177 81, 880 18, 837	4,002	340
Texas: Gulf. Inland Utah	122, 443 362, 084 (°)	3, 693			36, 772 615	14, 337 2, 188 8	16, 310 1, 449	260, 041 60, 800 102	1, 665 412 2, 675	333, 801 65, 432 2, 804	31, 036	1, 514 1, 656
West Virginia. Wyoming. Other	3, 580 21, 417 11 143		289				583		2, 365 10 12, 236	3, 237 10 12, 001		259
U. S. total	1, 264, 256	33, 095	78, 570	60, 462	90,077	38, 170	164, 591	463, 250	308, 374	1, 237, 840	72,073	12, 409

¹ Subject to revision.
² Includes Washington.
³ Includes Delaware, South Carolina, and Virginia.
⁴ Includes Minnesota.
⁵ Includes Tennessee.
⁶ Includes Alabama.
⁷ Includes Mississippi,
⁸ Includes Rhode Island.
⁹ Includes Includes Idaho, Nebraska, and South Dakota.
¹¹ Includes Mississippi, Missouri, and Utah.

Data on receipts of crude petroleum at refineries represent the principal bases for determining the trends of distribution of the market demand by States of origin. In 1939 Texas, Oklahoma, California, Louisiana, Illinois, Kansas, and New Mexico supplied about 91 percent of the total refinery receipts of domestic crude, or approximately the same percentage as in 1938. As the relative standing of these seven States as a whole remained the same, the principal factor of interest was the competitive change in individual position.

The total demand for California crude fell from 240 million barrels in 1938 to 228 million in 1939. California crude is primarily refined in California or exported, as shipments to Eastern States totaled only about 1 million barrels in both 1938 and 1939. The 12-million-barrel decrease in the demand for California crude in 1939 represented a reduction of 6 million barrels in exports, of 2 million in the amount run to stills, and of 4 million in crude transfers to fuel and losses.

The total demand for Texas crude was about 505 million barrels in 1939, almost 15 million barrels more than in 1938 but only 3 million greater than in 1937. All of the increase in demand in 1939 can be attributed to deliveries to intrastate refineries, as exports were less and deliveries to refineries in other States declined by 4 million barrels. Deliveries to the East Coast district totaled 116 million barrels—a gain of 4 million—while shipments to Louisiana fell to 18 million—a loss of 6 million barrels.

The total demand for Louisiana crude was 97 million barrels in 1939, a gain of less than 3 million over 1938. Intrastate deliveries increased by 6 million barrels, but there was a decrease in shipments of crude to other States, mainly the Texas Gulf district. Total deliveries to the East Coast district remained the same at about 17 million barrels.

The total demand for New Mexico crude was about 39 million barrels, essentially the same as in 1938. The major part of the production was marketed in other States, as intrastate deliveries were less than 2 million barrels. Shipments to the East Coast district totaled 12 million barrels in 1939, an increase of about 2 million that was offset by a reduction in shipments to the Illinois-Indiana district.

The total demand for Illinois crude increased from 23 million barrels in 1938 to 89 million in 1939, a rise of 66 million barrels. Intrastate deliveries to refineries increased by 29 million barrels—from 8 million in 1938 to 37 million in 1939. Deliveries to refineries in other States rose from 12 million in 1938 to 41 million in 1939, a gain of 29 million. Interstate deliveries represented an increase of 8 million barrels to refineries in Indiana, of 12 million to Ohio, of 3 million to western New York, of 2 million to Kentucky, and of 2 million to Michigan. Pipe-line shipments to East Coast refineries totaled over 1 million barrels and will increase materially in 1940. Exports to Canada gained about 8 million barrels, replacing Oklahoma crude in the movement across the northern border. A considerable part of the increased demand for Illinois crude was due to the cheaper transportation costs from fields close to refinery centers and to a greater relative increase in total refinery operations in the Illinois-Indiana district.

The total demand for Oklahoma crude dropped from 195 million barrels in 1938 to 169 million in 1939, a decline of 26 million. The major part of this decrease was in interstate and export movements, as

intrastate deliveries declined by only 1 million barrels. The major changes in deliveries to refineries in other States were a decline of 12 million barrels in Illinois, of 6 million in Ohio, of 2 million in Indiana, and of 2 million in Michigan. On the other hand, deliveries to the Gulf Coast district increased 3 million barrels and to the East Coast district 2 million.

The total demand for Kansas crude was 61 million barrels in 1939, an increase of about 1 million. Intrastate deliveries were about the same, at 34 million barrels. The interstate market is restricted primarily to Indiana, Illinois, Oklahoma, and Missouri. Combined deliveries to Indiana and Illinois amounted to 22 million barrels in 1939, a decline of 1 million, while total shipments to Oklahoma and

Missouri increased by almost 2 million barrels.

The demand for Wyoming crude increased by about 1 million barrels (largely in pipe-line shipments to Missouri and Indiana) to a total of 24 million. Deliveries to refineries in Wyoming and other Mountain States remained about the same. The total demand for Michigan crude rose from less than 19 million barrels in 1938 to about 23 million in 1939, most of this increase being in deliveries to refineries within the State. The demand for Arkansas crude increased by over 2 million barrels in 1939 to a total of 21 million. About half of this crude was delivered to refineries in the State.

PRICES AND VALUE

The average value of crude petroleum at wells receded in 1939, although most postings remained unchanged throughout the year. The average in 1938 was \$1.13, whereas that in 1939 is estimated at \$1.00. The final figure for 1939 may be several cents lower, as under-

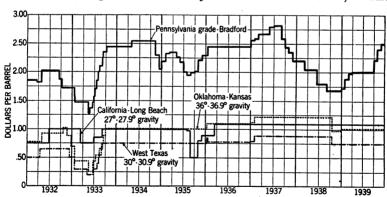


FIGURE 5.—Posted prices of selected grades of crude petroleum, 1932-39, by months.

selling was reported rife in Illinois and a few other States. This underselling weakened some quotations, which were restored after the August shut-down. The only active price was that for Pennsylvania Grade, which advanced from \$1.68 on January 1 to \$2.50 on December 31, in six steps; it rose 25 cents more on January 1, 1940.

Details of price changes for selected grades of crude petroleum are

presented in the tables that follow and in figure 5.

Average monthly prices per barrel for selected grades of crude petroleum at wells in 1939

,	Pennsy Gra				Panhan- dle, Tex.			Gulf-	a
Month	Brad- ford	South- west Penn- syl- vania	Illinois Basin	Okla- homa- Kansas 36°-36.9°	(Carson and Hutch- inson Counties, 35°-35.9°)	West Texas 30°- 30.9°	East Texas	Coast Grade, 30°- 30.9°	Califor- nia (Long Beach 27°-27.9°)
-	\$1,72	\$1.37	\$1.15	\$1,02	\$0.81	\$0.75	\$1.10	\$1.08	\$1.10
January	1.88	1.53	1. 15	1.02	.81	.75	1.10	1.08	1.10
February	1.98	1.63	1. 15	1.02	.81	.75	1.10	1.08	1.10
March	2.00	1.65	1. 15	1.02	.81	.75	1.10	1.08	1.10
April	2.00	1.65	1. 15	1.02	.81	.75	1.10	1.08	1, 10
May	2.00	1.65	1. 13	1.02	.81	.75	1.10	1.08	1.10
June	2.00	1.65	1.05	1.02	.81	.75	1.10	1.08	1, 10
July	2.00	1.65	1.05	1.02	.81	.75	1.10	1.08	1.10
August	2.00	1.65	1.05	1.02	.81	.75	1.10	1.08	1, 10
September	2.00	1.86	1.05	1.02	.81	.75	1.10	1.08	1.10
October	2.40	2.05	1.05	1.02	.81	.75	1.10	1.08	1.10
November	2. 50	2. 15	1.05	1.02	.81	.75	1.10	1.08	1.10
December	2. 30	2.10	1.00	1.02					
Average for year.	2.06	1.71	1.09	1.02	.81	. 75	1.10	1.08	1.10

Posted price per barrel of petroleum at wells in 1939, by grades, with dates of change

		Pe	nnsy Gra	lvan de	ia.										ahoma- nsas 6	
Date	Bradford and Alle- gany dis- tricts ¹		Alle- dis-	In South- west Pennsyl- vania pipe lines 2		Gr Br	orning rade in ickeye Pipe ne Co. ²		West- ern Ken- ucky ³	-	Illinois Basin 4	1	Mid- land, Mich. ⁵	34°- 34.9°	36°- 36.9°	
Jan. 1 Jan. 21			1.68		31. 34 1. 43		\$0.97		\$1.10		\$1.15		\$0. 925	\$0.98	\$1.02	
Jan. 24 Feb. 1			1.88		1. 53 1. 65		1.02			- -		-			-	
Apr. 17			2. 25		1. 90				1.00	- -	1.05			-		
Oct. 9			2. 40 2. 50		2. 05 2. 15		1.12	.		-1-		-	1.02	1		
Dec. 1			2. 06		1.71		1.03	-	1.04	-	1.09	-	. 97	. 98	1.02	
	Pa						043							Gulf Coa	st	
Date	hand (Car (Car an Hut inse Coun 35°-35	as son d ch- on	Wes Tex 30° 30.9	as -	Hobb N. Mex	•	South west Texas Duve Count 22°- 22.9°	s, al ty,	Van, Texas 34°– 34.9°	3,	East Texas		onroe, Tex. ⁸	30°- 30.9° 7	20°- 20.9° 7	
Jan. 1	\$0). 81	\$0.	. 75	\$0.	75	\$0.8	33	\$0.9	3	\$1.10		\$1.27	\$1.08	\$0.82	
-		. 81		75		75		83	. 9	3	1. 10		1. 27	1.0	. 82	
													Californ	fornia 10		
Date			iessa,		nack- ver,	C	Salt Freek, Vyo.,	8	evin- Sun-		Cettle- man	Lo	ng	Mid- way-	Santa Fe	

						Califo	rnia 10	
Date	Rodessa, La., 36°-36.9° 9	Smack- over, Ark.9	Salt Creek, Wyo., 36°- 36.9° 6	Kevin- Sun- burst, Mont.4	Kettle- man Hills, 38°- 38.9°	Long Beach, 27°– 27.9°	Mid- way- Sunset, 19°- 19.9°	Santa Fe Springs, 33°–33.9°
Jan. 1	\$0. 97 . 77 . 97	\$0.73 .60 .73	\$1.02	\$1.20	\$1.39	\$1.10	\$0. 74	\$1.20
	. 96	. 72	1.02	1. 20	1.39	1.10	. 74	1. 20

¹ The Tide-Water Pipe Co., Ltd. 2 The Joseph Seep Purchasing Agency.
3 Fordsville Gathering Line until May 1; Owensboro Ashland Co., May 1 to Dec. 31.
4 The Ohio Oil Co. 5 The Pure Oil Co.
6 Stanolind Oil & Gas Co. 7 Humble Oil & Refining Co.
6 Stanoland Oil Co. of Louisiana.
6 Standard Oil Co. of California.

Value of crude petroleum at wells in the United States, 1937-38, by States 1

	1937	,	1938	3
State	Total (thou- sands of dol- lars)	Average per barrel	Total (thou- sands of dol- lars)	Average per barrel
Arkansas. California Colorado Illinois Indiana Kansas Kentucky	11, 400	\$0. 97	16, 900	\$0. 93
	242, 100	1. 02	257, 250	1. 03
	1, 800	1. 12	1, 540	1. 09
	9, 970	1. 33	30, 100	1. 25
	1, 140	1. 35	1, 260	1. 27
	88, 100	1. 25	72, 100	1. 20
	7, 680	1. 40	7, 570	1. 30
Louisiana: Gulf Coast Northern	75, 800	1, 22	77, 100	1. 16
	34, 500	1, 19	33, 000	1. 15
Total Louisiana Michigan Montana New Mexico New York Ohio Oklahoma Pennsylvania	110, 300	1. 21	110, 100	1. 16
	21, 950	1. 32	19, 300	1. 03
	7, 300	1. 26	5, 190	1. 05
	36, 600	. 94	33, 250	. 93
	14, 140	2. 58	9, 550	1. 89
	5, 820	1. 64	3, 860	1. 17
	283, 500	1. 24	209, 500	1. 20
	49, 300	2. 57	32, 760	1. 88
Texas: Gulf Coast East Texas proper West Texas. Rest of State	139, 600	1. 22	137, 250	1. 19
	223, 700	1. 31	194, 700	1. 28
	71, 800	. 95	65, 500	. 90
	159, 400	1. 07	141, 700	1. 05
Total Texas	594, 500	1. 16	539, 150	1. 13
	8, 800	2. 29	5, 600	1. 52
	18, 860	. 98	18, 000	. 95
	80	1. 04	80	. 98
Total United States	1, 513, 340	1. 18	1, 373, 060	1, 13

¹ Figures for 1939 not yet available. ² Missouri, Tennessee, and Utah.

ROYALTIES ON INDIAN AND FEDERAL LANDS

Minerals Yearbook, 1938 (p. 853), presented data up to 1937 on royalty receipts, bonuses, etc., concerning Indian and Federal lands. Minerals Yearbook, 1939 (p. 966), gave similar data for 1938. Corresponding information for 1939 is as follows: Acreage of leases on Indian lands for the fiscal year 1939, 59,360; bonuses from sale of these leases, \$170,215; royalty from production of oil and gas, \$3,938,056; and advance royalty and annual rentals, \$535,245. For the calendar year 1939, the production of crude petroleum on Government lands was 42,331,057 barrels, of which 5,093,276 barrels (valued at \$5,168,248) was royalty.

REFINED PRODUCTS

Crude oil run to stills increased from 1,165 million barrels in 1938 to 1,238 million in 1939, but production of natural gasoline fell from 51,347,000 barrels to 49,896,000. In response to increased activity in the steel industry, benzol production recovered from 1,764,000

barrels in 1938 to 2,440,000 in 1939.

The new record of 552,557,000 barrels for domestic motor-fuel demand is 5.7 percent higher than the 1938 demand. Gas-oil and distillate fuel-oil consumption at 131,935,000 barrels (old basis) was 12 percent above the 1938 demand, while that for residual fuel oil at 321,228,000 barrels (old basis) was 10 percent higher. The demand was also higher for kerosene, lubricants, wax, coke, asphalt, road oil, and still gas.

Comparative analyses of statistics for the major refined products, 1935-39

[Thousands of barrels, except as otherwise indicated]

	1935	1936	1937	1938	1939 1
Motor fuel:					
Production	468, 021	516, 266	571, 727	569, 162	607, 94
Imports Exports	30, 613	28,646	144 38, 306	79 50, 109	113 44, 55
Exports Stocks, end of period Domestic demand	54, 345	60, 437	74, 650	70, 779	82, 86
Domestic demand	434, 810	481,606	519, 352	523, 003	552, 55
Kerosene:					
Production	55, 813	56,082	65, 308	64, 580 7, 504 7, 799	68, 52 8, 24 7, 576
Exports_ Stocks, end of period	6,651 7,915	6, 936 5, 633	8,886	7,504	8,24
Domestic demand	47,645	51, 428	8, 886 7, 083 54, 972	56, 360	60, 50
as oil and distillate fuel oils:					
Production.	100, 235	125, 906	146, 706	151, 774	161, 670
Transfers :	(3)	(3)	(3)	623	6, 49
ImportsExports	15 16 , 2 49	182 20, 448	30, 129	29, 641	32, 021
Stocks, end of period.	19,930	1	22, 566	27,873	i) .
Domestic demand	86,028	22, 813 102, 757	116, 841	4 36, 224	33,718
	80,028	102, 757	110,841	117, 449	⁵ 138, 817
Residual fuel oils: Production	259, 826	287, 968	312,064	294, 890	306, 896
Transfers 2	13, 067	15, 732	17, 423	10, 037	5, 918
Imports	16, 115	18,801	22, 114	21, 065	15, 932
Transfers *	12,699	14, 435	15, 304	17, 920	17, 490
Stocks, end of period	6 84, 054	6 84, 236	{ \$95,019 781,507	97, 746 101, 971	92, 290
Domestic demand	280, 695	307, 884	325, 514	291, 833	\$ 320, 937
ubricants:					
Production	27, 853	30, 927	35, 321	30, 826	35, 036
ImportsExports	8, 499	8, 691	10,975	9, 417	11.981
Stocks, end of period	7,025	6,942	1		,
Domestic demand	19, 661	8 6, 482 22, 323	7, 512 23, 323	7, 695 21, 233	7, 142 23, 613
*			20,020	21, 200	20,010
Wax (thousands of pounds): Production	450, 240	472, 920	521, 640	435, 400	464, 520
Imports	19, 557	16, 669	36, 929	28, 927	39, 912
ExportsStocks, end of period	229, 905	187, 342	231, 723	201, 447	232, 664
Stocks, end of period	114, 675	115, 434	144, 992	129, 340	75, 648
Domestic demand	261, 353	301, 488	297, 288	278, 532	325, 460
Coke (thousands of short tons): Production	1, 458. 0	1, 378. 2	1, 306. 6	1, 602, 2	1 000 4
Exports	133.5	124.6	164.3	155.6	1, 666. 4 285, 8
ExportsStocks, end of period	388.9	389.4	378.6	707. 5	666.0
Domestic demand	1, 340. 7	1, 253. 1	1, 153. 1	1, 117. 7	1, 422. 1
Asphalt (thousands of short tons):	0 115 1	2 000 0	4 100 0	4.041.4	4.054.4
Production Imports	3, 115. 1 54. 0	3, 868. 8 21. 6	4, 182. 0 34. 1	4, 341. 4 33. 2	4, 954. 4 44. 2
Exports	232, 8	211.4	45. 5	49.9	42.6
ExportsStocks, end of period	429.7	364. 2	557.4	490.4	550.0
Domestic demand	2, 845. 8	3, 744. 5	3,977.4	4, 391. 7	4, 887. 0
Road oil:	0.000				
ProductionStocks, end of period	6, 030 732	7, 398 851	8, 087 984	7, 543 680	7, 868 702
Domestic demand	5,962	7, 279	7,954	7,847	7,846
Other finished products:					
Production	1,888	2, 148	2, 382	1,921	2, 359
Imports	150				
Exports Stocks, end of period Domestic demand	76 220	71 198	101 230	112 263	123 276
Domestic demand	1,973	2,099	2, 249	1,776	2, 223
	_,,,,,	_,	<i>2</i> , 213€	2,110	<i>2,22</i> 0

¹ Subject to revision.

Net transfers from crude oil to fuel oil; California only, 1935-38; in 1939 all transfers east of California included in gas oil, etc.

Figures not available.

Includes terminal stocks; compares with succeeding years.

On new basis; see p. 1011.

California heavy crude included.

For comparison with succeeding year; California heavy crude included in crude-oil stocks.

For comparison with succeeding years.

The total refinery output of gasoline in 1939—of about 596 million barrels—included about 261 million barrels of straight-run gasoline, 295 million of cracked gasoline, and 40 million of natural gasoline.

The yield of gasoline again increased comprising 44.9 percent of the crude oil run to stills in 1939 compared with 44.3 percent in 1938. The yield of gas oil and distillate fuel oil remained virtually the same as in 1938 at 13.1 percent, while the yield of residual fuel oil declined further from 25.3 percent in 1938 to 24.8 in 1939. (See fig. 6.)

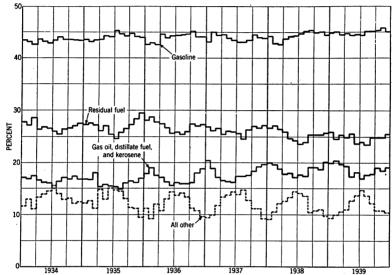


FIGURE 6.—Yields of principal petroleum products from crude oil run to stills, 1934-39, by months.

Runs to stills and production at refineries of the various refined products, 1935-39

[Thousands of bar	rels, except	as otherwise	e indicated]		
	1935	1936	1937	1938	1939 1
Input:					
Crude petroleum:					
Domestic	933, 659	1, 034, 637	1, 157, 444	1, 138, 828	1, 204, 350
Foreign	l	33, 933	25, 996	26, 187	33, 490
Total crude petroleum	965, 790	1, 068, 570	1, 183, 440	1, 165, 015	1, 237, 840
Natural gasoline	31, 025	33, 817	39, 381	39, 961	40, 320
Total input	996, 815	1, 102, 387	1, 222, 821	1, 204, 976	1, 278, 160
Output:	===				
Gasoline	457, 842	504, 811	559, 141	556, 012	595, 925
Kerosene	55, 813	56, 082	65, 308	64, 580	68, 521
Gas oil and distillate fuel oils	100, 235	125, 906	146, 706	151, 774	161, 670
Residua fuel oils	259, 826	287, 968	312,064	294, 890	306, 896
Lubricants	27, 853	30, 927	35, 321	30, 826	35, 036
Wax	1,608	1, 689	1,863	1, 555	1, 659
Coke.	7, 290	6, 891	6, 533	8,011	8, 332
Asphalt	17, 133 51, 184	21, 278 57, 046	23, 001 64, 218	23, 878 65, 890	27, 248 66, 979
Still gasthousands of pounds	01, 104				
Waxthousands of pounds_	450, 240	472, 920	521, 640	435, 400	464, 520
Cokethousands of short tons		1, 378. 2	1, 306. 6	1, 602. 2	1, 666. 4
Still gog millions of subjector	3, 115, 1 197, 220	3, 868. 8 226, 466	4, 182. 0 241, 981	4, 341. 4 250, 382	4, 954. 4 254, 520
Still gasmillions of cubic feet					
Road oil	6, 030	7, 398	8, 087	7, 543	7, 868
Other finished products	1, 888 1, 032	2, 148 486	2, 382 128	1, 921	2, 359 167
Crude gasoline (net) Other unfinished oils (net)	1, 032 1 2, 412	3 8, 962	7, 931	² 1, 616 ² 4, 530	111. 511
Shortage	11, 493	8, 719	6, 256	4.242	7, 345
Total output					
Toest onehne	990, 815	1, 102, 387	1, 222, 821	1, 204, 976	1, 278, 160

Subject to revision.
 Negative quantity; represents net excess of unfinished oils rerun over unfinished oils produced.

Runs to stills and production at refineries in the United States of the various refined products, 1938-39, by months
[Thousands of barrels, except as otherwise indicated]

	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
1938 Input: Crude petroleum ¹	97, 900	88, 179	95, 885	95, 675	99, 238	93, 880	99, 856	101, 352	96, 990	100, 787	97, 309	97, 964	1, 165, 015
	3, 557	2, 728	3, 233	2, 856	2, 799	2, 635	2, 935	2, 950	3, 329	4, 432	4, 222	4, 285	39, 961
Total input	101, 457	90, 907	99, 118	98, 531	102, 037	96, 515	102, 791	104, 302	100, 319	105, 219	101, 531	102, 249	1, 204, 976
Crude oil charged to cracking stills 3	12, 645	11, 632	12, 312	11, 128	12, 523	10, 916	12, 075	12, 582	11, 392	13, 377	12, 256	12, 919	145, 757
Other oils charged to cracking stills	43, 944	38, 824	42, 576	43, 642	45, 881	45, 571	48, 009	48, 660	46, 860	46, 792	44, 674	44, 961	540, 394
Output: Gasoline Kerosene Gas oil and distillate fuel oils Residual fuel oil Lubricants Wax Coke Asphalt Still gas	26, 148 2, 785 149 631	40, 495 5, 167 12, 144 23, 935 2, 468 124 610 1, 043 4, 718	44, 175 5, 798 12, 294 25, 269 2, 697 142 570 1, 544 5, 191	44, 667 5, 445 11, 577 24, 748 2, 530 113 635 1, 819 5, 363	46, 581 5, 649 12, 160 24, 456 2, 595 127 689 2, 403 5, 832	44, 247 5, 235 10, 784 22, 760 2, 378 135 685 2, 412 5, 677	47, 607 4, 889 12, 688 23, 542 2, 631 108 688 2, 604 6, 020	48, 662 4, 933 12, 691 24, 230 2, 576 114 742 2, 817 6, 043	47, 312 5, 348 13, 074 24, 551 2, 615 130 554 2, 475 5, 577	49, 677 5, 320 13, 820 25, 477 2, 632 150 734 2, 499 5, 646	47, 998 5, 419 12, 793 24, 573 2, 535 134 764 1, 755 5, 373	47, 780 5, 739 13, 873 25, 201 2, 384 129 709 1, 344 5, 223	556, 012 64, 580 151, 774 294, 890 80, 826 1, 555 8, 011 23, 878 65, 890
Wax thousands of pounds Coke thousands of short tons Asphalt do Still gas millions of cubic feet	41,720	34, 720	39, 760	31, 640	35, 560	37, 800	30, 240	31, 920	36, 400	42,000	37, 520	36, 120	435, 400
	126.2	122. 0	114. 0	127. 0	137. 8	137. 0	137. 6	148. 4	110. 8	146.8	152. 8	141. 8	1, 602. 2
	211.5	189. 6	280. 7	330. 7	436. 9	438. 5	473. 4	512. 2	450. 0	454.4	319. 1	244. 4	4, 341. 4
	19,863	17, 928	19, 726	20, 379	22, 162	21, 573	22, 876	22, 963	21, 193	21,455	20, 417	19, 847	250, 382
Road oil Other finished products Crude gasoline (net) Other unfinished oils (net) Shortage	162	155	229	429	667	1, 214	1,385	1,427	958	554	195	168	7, 543
	150	157	201	167	187	160	160	142	137	152	143	165	1, 921
	4 462	504	7	69	4 151	4 354	4 352	4 245	4 440	4 188	4 283	279	4 1, 616
	4 1, 184	4 711	631	435	378	729	377	4 269	4 2, 235	4 1,775	4 28	4 878	4 4, 530
	363	98	370	534	464	453	444	439	263	521	160	133	4, 242
Total output	101, 457	90, 907	99, 118	98, 531	102, 037	96, 515	102, 791	104, 302	100, 319	105, 219	101, 531	102, 249	1, 204, 976

1939 6				1									Í
Input: Crude petroleum Natural gasoline	99, 614 3, 637	87, 797 3, 229	98, 917 3, 243	99, 303 2, 983	105, 755 2, 646	104, 687 2, 682	106, 899 2, 909	107, 632 3, 092	105, 505 3, 237	110, 980 4, 358	104, 916 4, 286	105, 835 4, 018	1, 237, 840 40, 320
Total input	103, 251 13, 561 44, 899	91, 026 11, 988 40, 464	102, 160 13, 266 45, 081	102, 286 12, 525 44, 663	108, 401 12, 432 47, 406	107, 369 10, 885 49, 784	109, 808 10, 506 50, 461	110, 724 10, 898	108, 742 9, 786	115, 338 10, 286	109, 202 10, 072	109, 853 11, 140	1, 278, 160 137, 345 322, 758
Output: Gasoline Kerosene Gas oil and distillate fuel oils Residual fuel oil Lubricants Wax Coke	48, 308 5, 702 14, 122 25, 813 2, 527 126 630 1, 344 5, 081	42,721 5,174 12,709 21,564 2,522 119 586 1,041 4,629	47, 186 5, 900 13, 539 25, 040 2, 664 160 640 1, 695 5, 376	47, 426 5, 813 13, 301 24, 750 2, 672 125 710 2, 062 5, 386	49, 620 5, 909 12, 353 27, 022 2, 856 123 661 2, 628 5, 798	49, 274 5, 439 13, 530 24, 836 2, 800 141 711 2, 672 5, 768	50, 439 5, 390 12, 688 25, 644 2, 755 103 726 2, 802 5, 920	51, 643 5, 783 13, 246 25, 299 3, 056 111 716 3, 175 5, 925	50, 770 5, 806 12, 975 26, 302 2, 854 144 554 3, 027 5, 609	54, 592 6, 141 15, 017 27, 594 3, 575 161 826 2, 980 5, 970	52, 322 5, 642 13, 757 26, 088 3, 277 173 796 2, 152 5, 756	51, 624 5, 822 14, 433 26, 944 3, 478 173 776 1, 670 5, 761	595, 925 68, 521 161, 670 306, 896 35, 036 1, 659 8, 332 27, 248 66, 979
Wax thousands of pounds. Coke thousands of short tons. Asphalt do Still gas millions of cubic feet.	35, 280 126. 0 244. 4 19, 308	33, 320 117. 2 189. 3 17, 590	44, 800 128. 0 308. 2 20, 429	35, 000 142. 0 374. 9 20, 467	34, 440 132, 2 477, 8 22, 032	39, 480 142. 2 485. 8 21, 918	28, 840 145. 2 509. 4 22, 496	31, 080 143. 2 577. 3 22, 515	40, 320 110. 8 550. 4 21, 314	45, 080 165. 2 541. 8 22, 686	48, 440 159, 2 391, 4 21, 873	48, 440 155, 2 303, 7 21, 892	464, 520 1, 666. 4 4, 954. 4 254, 520
Road oil. Other finished products. Crude gasoline (net). Other unfinished oils (net). Shortage.	112 4 1, 155	173 174 181 4 996 429	312 168 132 1, 011 359	408 238 · 24 4 996 415	866 241 4 50 4 219 593	1, 183 192 35 9 779	1, 478 195 126 499 1, 043	1, 476 212 4 132 4 518 732	878 218 4 393 4 1, 071 1, 069	501 164 4 291 4 2, 654 762	151 198 4 32 4 1, 520 442	119 194 393 4 1, 879 345	7, 868 2, 359 4 167 4 11, 511 7, 345
Total output	103, 251	91, 026	102, 160	102, 286	108, 401	107, 369	109, 808	110, 724	108, 742	115, 338	109, 202	109, 853	1, 278, 160
Detail by districts and months in sec Includes 1,349,000 barrels run through	etion on "C	onsumptio	n and dist	ribution of	crude petr	oleum."					<u>' </u>	·	

Includes 1,349,000 barrels run through pipe lines in California in 1938 and 1,147,000 barrels in 1939.
 Included above in crude-petroleum input.
 Negative quantity; represents net excess rerun over production.
 Subject to revision.
 Not available after July 1939.

Runs to stills and production at refineries in the United States of the various refined products, 1938-39, by districts [Thousands of barrels, except as otherwise indicated]

	East Coast	Appa- lachian	Indiana, Illinois, Kentucky, etc.	Oklahoma, Kansas, and Missouri	Texas Inland	Texas Gulf Coast	Loui- siana Gulf Coast	Arkansas and Loui- siana Inland	Rocky Mountain	Cali- fornia	United States
Input: Crude petroleum ¹ Natural gasoline ²	180,606	39, 180	163, 140	111, 143	66, 923	307,906	46, 903 382	24,089	24, 791 803	200, 334 13, 624	1, 165, 015
Natural gasoline * Total input Crude oil charged to cracking stills * Other oils charged to cracking stills *		39, 449 5, 268 13, 629	167, 628 19, 188 97, 667	116, 915 2, 814 58, 468	73, 548 2, 169 32, 793	313, 969 76, 446 117, 494	47, 285 7, 975 22, 199	24, 826 1, 563 6, 669	25, 594 1, 960 9, 566	213, 958 5, 531 94, 368	39, 961 1, 204, 976 145, 757 540, 393
Output: Gasoline Kerosene Gas oil and distillate fuel oils Residual fuel oils Lubricants Wax Coke Asphalt Still gas	73, 547 9, 208 28, 559 50, 803	19, 380 2, 769 2, 446 4, 725 5, 763 296 100 623 2, 187	95, 511 7, 096 17, 397 23, 319 2, 609 113 4, 889 3, 331 12, 244	65,719 6,960 11,163 19,101 2,962 110 1,068 1,878 6,495	42, 764 2, 985 4, 217 15, 871 213 7 507 1, 077 3, 959	139, 663 22, 357 47, 529 73, 774 7, 628 215 705 1, 156 20, 959	17, 206 6, 037 7, 450 10, 643 1, 097 70 303 1, 264 2, 290	10,775 2,139 2,341 5,697 452 1 6 1,064 1,512	13, 919 810 1, 689 4, 916 205 41 329 863 1, 347	77, 528 4, 219 28, 983 86, 041 2, 284 85 3, 319 6, 909	556, 012 64, 580 151, 774 294, 890 30, 826 1, 555 8, 011 23, 878 65, 890
Wax thousands of pounds Coke thousands of short tons Asphalt do Still gas millions of cubic feet	196, 560 3. 8 1691. 5 30, 354	82, 880 20. 0 113. 2 8, 311	31, 640 977. 8 605. 7 46, 527	30, 800 213. 6 341. 4 24, 681	1, 960 101. 4 195. 8 15, 044	60, 200 141. 0 210. 1 79, 644	19, 600 60, 6 229, 8 8, 702	280 1, 2 193, 5 5, 746	11, 480 65, 8 157, 0 5, 119	17. 0 603. 4 26, 254	435, 400 1602. 2 4341. 4 250, 382
Road oil Other finished products Crude gasoline (net) Other unfinished oils (net) Shortage	907 790 4 94 4 6, 978 563	140 170 4 8 4 45 903	1,714 295 4 952 258 6 196	703 120 386 4 986 1, 236	2 58 4 83 853 1, 118	233 104 4 590 543 4 307	171 47 4 372 463 616	75 1 4 6 687 82	1, 114 97 2 78 184	2, 484 239 101 597 1, 169	7, 543 1, 921 4 1, 616 4 4, 530 4, 242
Total output	181, 804	39, 449	167, 628	116, 915	73, 548	313, 969	47, 285	24, 826	25, 594	213, 958	1, 204, 976

1939; Input:											
Crude petroleum ¹ Natural gasoline ³	192, 381 2, 140	43, 767 297	191, 634 4, 516	112, 409 5, 112	65, 432 6, 189	333, 801 6, 115	48, 599 330	24, 857 533	26, 306 711	198, 654 14, 377	1, 237, 840 40, 320
Total input	194, 521 18, 353	44, 064 5, 198	196, 150 22, 392	117, 521 2, 250	71, 621 3, 812	339, 916 70, 602	48, 929 4, 591	25, 390 2, 146	27, 017 2, 151	213, 031 5, 850	1, 278, 160 137, 345
Output: Gasoline. Kerosene. Gas oll and distillate fuel oils. Residual fuel oils. Lubricants. Wax. Coke. Asphalt. Still gas.	78, 625 9, 120 30, 638 55, 392 9, 055 678 34 10, 130 10, 214	21, 805 2, 847 2, 868 5, 415 6, 128 347 116 782 2, 289	109, 447 8, 476 18, 963 28, 962 3, 111 136 4, 600 5, 330 13, 769	65, 494 7, 073 10, 813 19, 011 3, 100 114 924 1, 949 5, 883	43, 156 2, 977 2, 903 14, 769 221 10 510 905 3, 412	153, 475 23, 224 54, 362 78, 391 8, 454 254 901 1, 599 20, 446	18, 399 6, 898 7, 706 12, 076 1, 504 80 2 1, 429 2, 244	10, 684 2, 470 1, 585 6, 170 538	15, 066 782 1, 809 5, 728 180 40 308 362 1, 291	79, 774 4, 654 30, 023 80, 982 2, 745 	595, 925 68, 521 161, 670 306, 896 35, 036 1, 659 8, 332 27, 248 66, 979
Wax thousands of pounds. Coke thousands of short tons. Asphalt do Still gas millions of cubic feet.	189, 840 6. 8 1, 841. 9 38, 814	97, 160 23. 2 142. 2 8, 698	38, 080 920. 0 969. 2 52, 321	31, 920 184. 8 354. 3 22, 354	2,800 102.0 164.6 12,966	71, 120 180. 2 290. 9 77, 694	22, 400 . 4 259 8 8, 528	179. 5 1, 997	11, 200 61. 6 65. 8 4, 906	187. 4 686. 2 26, 242	464, 520 1, 666. 4 4, 954. 4 254, 520
Road oil. Other finished products Crude gasoline (net). Other unfinished oils (net) Shortage	370 823 223 4 9, 345 • 1, 436	123 233 118 14 979	2, 206 556 4 19 914 4 301	1,006 129 174 4 750 2,601	286 82 22 622 1,746	125 147 4 352 4 1, 522 412	1 103 4 12 4 1,971 470	471 1 17 888 1,053	819 74 4 19 4 156 733	2, 461 211 4 319 4 205 1, 088	7, 868 2, 359 4 167 4 11, 511 7, 345
Total output.	194, 521	44, 064	196, 150	117, 521	71, 621	339, 916	48, 929	25, 390	27, 017	213, 031	1, 278, 160

Detail by districts and months in section on "Consumption and distribution of crude petroleum."
Includes 1,349,000 barrels run through pipe lines in California in 1938 and 1,147,000 barrels in 1939.
Included above in crude petroleum input.
Regative quantity; represents net excess rerun over production. Negative quantity (overage).
Data on "other" oils charged to cracking stills not available after July 1939.

Heating-oil requirements jumped the demand for distillate fuel on 11 percent above that for 1938, and high-capacity industry and transportation operations raised the demand for residual fuel 9 percent compared with an increase of only 4 percent in total motor-fuel demand. The lack of adjustment between yields and the relative demand for products, particularly in the last quarter of 1939, resulted in an abnormal increase in gasoline stocks, which stood at 82,865,000 barrels (including unfinished) at the end of 1939 compared

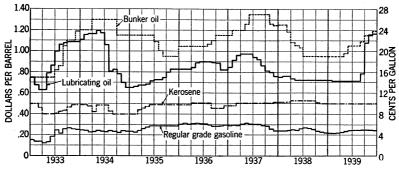


FIGURE 7.—Prices of refined petroleum products, 1933-39, by months.

with 71,680,000 barrels at the end of 1938. This is equivalent to a 60-day supply on December 31, 1939, and a 54-day supply on December 31, 1938.

As indicated in figure 7, prices moved from weakness to strength during the year; in spite of the large inventories, those for gasoline were higher at the close of the year than at the end of 1938, although the average for the year was lower. Lubricating-oil prices were high, many having gained over 100 percent during the year, while Pennsylvania-wax prices almost tripled. Although the average 1939 price for fuel oils in general was lower than the 1938 average, most grades were selling higher at the end of the year than at the beginning.

Stocks of refined products in the United States, 1938-39, by months

[Thousands of barrels, except as otherwise indicated]

													
	Jan. 1	Jan. 31	Feb. 28	Mar. 31	Apr. 30	May 31	June 30	July 31	Aug. 31	Sept. 30	Oct. 31	Nov. 30	Dec. 31
Gasoline	69, 892	79, 114	85, 018	85, 035	82, 684	80, 987	73, 725	70, 224	64, 599	63, 163	63, 542	64, 083	65, 949
	7, 083	6, 523	5, 986	6, 093	6, 394	7, 627	9, 202	10, 112	10, 149	10, 497	9, 949	9, 676	7, 799
	22, 566	21, 543	19, 885	18, 882	19, 972	22, 385	24, 699	26, 620	28, 841	30, 860	33, 017	32, 069	27, 873
	81, 507	83, 902	85, 753	86, 920	90, 893	93, 753	95, 690	99, 363	100, 431	102, 831	103, 423	101, 569	97, 746
	7, 512	8, 006	8, 363	8, 210	8, 290	8, 255	8, 114	8, 194	7, 969	7, 605	7, 718	7, 817	7, 695
	518	520	532	537	517	503	494	485	479	461	461	471	462
	1, 893	1, 948	2, 094	2, 342	2, 611	2, 808	2, 872	3, 049	3, 253	3, 113	3, 269	3, 392	3, 537
	3, 066	3, 268	3, 412	3, 482	3, 650	3, 909	3, 681	3, 483	3, 115	2, 591	2, 455	2, 528	2, 697
Waxthousands of pounds	144, 992	145, 629	148, 823	150, 465	144, 626	140, 826	138, 260	135, 911	134, 103	129, 018	128, 926	131, 772	129, 340
Cokethousands of short tons	378. 6	389. 5	418. 8	468. 5	522. 3	561. 6	574. 3	609. 8	650. 6	622. 6	653. 8	678. 4	707. 5
Asphaltdo	557. 4	594. 2	620. 4	633. 2	663. 7	710. 7	669. 3	633. 2	566. 4	471. 1	446. 3	459. 6	490. 4
Road oil. Other finished products. Crude gasoline. Other unfinished oils.	984	894	850	955	1, 155	1, 164	1, 130	1, 075	966	827	686	660	680
	230	230	250	299	296	326	319	295	274	265	265	260	263
	7, 098	6, 759	7, 262	7, 285	7, 375	7, 160	6, 806	6, 508	6, 363	5, 923	5, 735	5, 452	5, 731
	37, 552	36, 621	36, 432	37, 344	38, 051	38, 781	39, 792	40, 661	41, 601	40, 001	38, 816	39, 461	39, 233
	239, 901	249, 328	255, 837	257, 384	261, 888	267, 658	266, 524	270, 069	268, 040	268, 137	269, 336	267, 438	259, 665
Gasoline	65, 949	73, 847	79, 691	81, 189	81, 623	78, 342	74, 395	71, 824	66, 448	65, 498	68, 116	71, 619	77, 301
	7, 799	6, 711	5, 452	5, 605	5, 663	6, 551	7, 949	8, 855	9, 361	9, 952	9, 967	9, 019	7, 576
	27, 873	24, 650	21, 731	20, 115	21, 058	22, 088	25, 659	27, 581	29, 282	30, 018	30, 951	30, 179	26, 374
	8, 351	7, 650	6, 996	5, 784	5, 413	5, 725	6, 218	7, 759	8, 344	8, 120	9, 142	7, 709	7, 344
	97, 746	95, 548	92, 594	89, 768	90, 411	92, 485	93, 322	96, 305	95, 897	95, 051	94, 757	91, 466	87, 774
	4, 225	4, 163	3, 691	3, 326	3, 660	4, 259	5, 083	4, 859	5, 464	5, 012	5, 164	5, 230	4, 516
Lubricants Wax Coke Asphalt	7, 695	7, 762	7, 951	7, 800	7, 886	7, 630	7, 427	7, 179	7, 069	6, 704	6, 639	6, 799	7, 142
	462	459	420	420	426	407	399	390	386	320	290	291	270
	3, 537	3, 585	3, 525	3, 470	3, 670	3, 580	3, 550	3, 665	3, 410	3, 340	3, 260	3, 235	3, 330
	2, 645	2, 926	3, 146	3, 575	3, 784	3, 696	3, 531	3, 278	2, 912	2, 612	2, 596	2, 733	3, 025
Waxthousands of pounds	129, 340	128, 627	117, 711	117, 537	119, 301	113, 925	111, 604	109, 322	108, 173	89, 584	81, 147	81, 369	75, 648
Cokethousands of short tons	707. 5	717. 0	705. 0	694. 0	734. 0	716. 0	710. 0	733. 0	682. 0	668. 0	652. 0	647. 0	636. 0
Asphaltdo	480. 9	532. 0	572. 0	650. 0	688. 0	672. 0	642. 0	596. 0	529. 5	475. 0	472. 0	497. 0	550. 0
Road oil	680	830	823	907	1, 048	1, 219	1, 192	1, 085	985	791	715	654	702
Other finished products	263	250	263	235	283	301	280	285	282	315	289	302	276
Crude gasoline	5, 731	5, 619	5, 800	5, 932	5, 908	5, 858	5, 893	6, 019	5, 887	5, 494	5, 203	5, 171	5, 564
Other unfinished oils	39, 233	38, 707	38, 361	38, 216	37, 732	38, 036	38, 692	40, 296	40, 819	40, 801	38, 765	37, 947	36, 915
Total ⁹	272, 189	272, 707	270, 444	266, 342	268, 565	270, 177	273, 590	279, 380	276, 546	274, 028	275, 854	272, 354	268, 109
	259, 613	260, 894	259, 757	257, 232	259, 492	260, 193	262, 289	266, 762	262, 738	260, 896	261, 548	259, 415	256, 249

¹ Subject to revision.

² Includes bulk-terminal stocks of fuel oil not available prior to 1939.

^{*} For comparison with 1938.

Summary of percentage yields of refined products in the United States, 1932-39 [Computed on total crude runs to stills]

Product	1932	1933	1934	1935	1936	1937	1938	1939 1
Finished products: Gasoline 2 Kerosene Gas oil and distillate fuel oils Residual fuel oils Lubricants Wax Coke Asphalt Road oil Still gas Other Unfinished products: Gasoline Other Shortage	27. 5 2. 7 . 2 1. 1 1. 7 . 8 5. 0 . 2	43.7 5.7 9.2 27.6 2.8 .2 .9 1.5 .6 5.2 .2 .2 .5 1.9	43. 4 6. 0 10. 6 26. 8 2. 9 2. 7 1. 8 5. 0 2 2 3. 3 2 1. 8	44. 2 5. 8 10. 4 26. 9 2. 9 2. 7 1. 8 6. 5 3 . 2 1. 2 100. 0	44. 1 5. 2 11. 8 27. 0 2. 9 2. 6 2. 0 5. 3 2 (4) 8 8	43. 9 5. 5 12. 4 26. 4 3. 0 2 .6 1. 9 .7 5. 4 .2 (3 4) 3. 7 5. 1 100. 0	44. 3 5. 5 13. 0 25. 3 2. 6 17 2. 1 6. 7 2. 1 3. 4 100. 0	44. 9 5. 5 13. 1 24. 8 2. 8 2. 7 2. 2 2. 6 5. 4 2. 2 (34) 3. 9 6 100. 0

Subject to revision.

Based upon total gasoline production less natural gasoline used.
Negative percentage; represents excess percentage rerun over percentage produced.
Less than 0.1 percent.

Refinery capacity including that of refineries under construction, was 4,650,805 barrels a day on January 1, 1939 (16,634 barrels more than on January 1, 1938), even though the number of refineries had

dropped from 561 to 545.

The number of shut-down plants decreased from 120 to 103, but their capacity increased from 380,955 to 574,770 barrels a day, leaving the capacity of 3,933,785 barrels for the operating plants 36,411 barrels less than in 1938. The new Illinois plants, some of which were moved from Texas, and the new "pot-still" plants in Montana were largely responsible for this. The number of operating refineries in the Rocky Mountain district increased from 73 to 85, the greatest of any district, yet their daily capacity was 1,000 barrels less than in 1938, while the growth from 49 to 56 operating refineries in the Indiana-Illinois district raised the capacity only 11,000 barrels. In contrast with this, the Texas Gulf Coast district, with two additional plants operating, had an increased capacity of 64,000 barrels.

The operating ratio, or the proportion of crude runs to capacity, was 82 percent compared with 78 in 1938 and 83 percent in 1937.

Although more than half the capacity being built at the beginning of the year was for replacement, much of the construction during the year represented additions of newer-type refining equipment, such as catalytic polymerization units, catalytic cracking plants, and alkylation plants. However many refiners, particularly in the Midwest, have been postponing such additions because rapid developments in these processes made some plants obsolete soon after they were put in operation.

The principal advances in refinery technology during 1939 were expansion in catalytic cracking and in catalytic polymerization and

progress in catalytic cracking and alkylation.

A number of catalytic cracking plants were put in operation during 1939, and some of the operators are claiming to produce a better grade of motor fuel than they formerly marketed. Likewise, a number of new catalytic polymerization units were installed during 1939.

Summary of refinery capacity in th	United States.	January 1, 1935-39 1
------------------------------------	----------------	----------------------

		Nur	nber		Capacity (barrels per day)						
Year	Oper- ating	Shut down	Build- ing	Total	Operating	Shut down	Building	Total			
1935 1936 1937 1938	435 422 423 431 435	196 210 149 120 103	7 15 11 10 7	638 647 583 561 545	3, 614, 749 3, 749, 835 3, 966, 616 23, 970, 196 3, 933, 785	443, 751 367, 212 328, 265 2 380, 955 574, 770	13, 900 46, 899 81, 200 2 283, 020 142, 250	4, 072, 400 4, 163, 946 4, 376, 081 4, 634, 171 4, 650, 805			

Alkylation is a development akin to polymerization. Whereas polymerization unites 2 molecules of the paraffin series to produce 1 unsaturated molecule, which must be hydrogenated to obtain isooctane, alkylation unites 1 molecule of the paraffin series with 1 molecule of the olefin series to produce 1 saturated molecule of isooc-Both processes are being used almost entirely for the production of high-octane aviation fuel.

The sulfuric-acid alkylation process, in which isooctane is produced by using sulfuric acid as a catalyst at low temperature and pressure, was the principal development in alkylation in 1939.2 In addition to this a process was announced for producing neohexane by thermal alkylation, although this process was not in commercial operation

during the year.

Although isooctane has a knock rating of 100 octane compared with a 95-octane rating for neohexane, the boiling range is so high-225°-263° F.—that it is necessary to blend it with other motor fuels, usually isopentane and a high-octane straight-run gasoline. blend, when treated with 3 cc. of etraethyl lead per gallon, will produce a 100-octane aviation fuel. Although thermally cracked gasoline produces a high-octane motor fuel its knock rating is improved but little by the addition of lead, and for that reason selected straightrun gasoline is used in the blend.

The boiling range of neohexane is only 120°-122° F.; it can be blended with isooctane and isopentane, and with the addition of tetraethyl lead it produces an aviation fuel with an octane rating

considerably above 100.

High-octane fuel is important in military aircraft because of the greater power it gives and the smaller engine needed per unit of power as the compression ratio increases. One hundred-octane fuel, which is now required for all new Army and Navy airplanes, gives an increase of 20 to 30 percent in power over that of 87-octane fuel and adds the advantages of quicker take-off, more rapid climbing, greater cruising radius, and increased speed.

No. 29, p. 70.

For data on 1914-34 see Minerals Yearbook, 1938, p. 863.
 New basis; for complete information see Bureau of Mines Information Circular 7034.

² Anglo-Iranian Oil Co., Ltd., Humble Oil & Refining Co., Shell Development Co., Standard Oil Development Co., and Texas Co., High-octane Aviation Fuel by the Sulfuric Acid Alkylation Process: Am. Petrol. Inst. 20th ann. meeting, Chicago, Ill., November 13-17, 1939; pub. in Oil and Gas Jour., vol. 38, No. 27, 1939, p. 104.

³ Oberfell, G. G., and Frey, F. E., Thermal Alkylation and Neohexane: Am. Petrol. Inst. 20th ann. meeting, Chicago, Ill., November 13-17, 1939; pub. in Oil and Gas Jour., vol. 38, No. 28, 1939, p. 50, and

The principal source of charging stock for both polymerization and alkylation is gas from the cracking stills, although some is obtained from natural gas; thus, the gasoline made by these processes creates a net addition to the output of gasoline without any additional consumption of crude oil. Furthermore, the gasoline so produced is superior as fuel to that obtained by other methods.

Other progress in refinery technology includes improved methods for

desulfurization and cyclization.

The presence of sulfur in gasoline not only gives it a lower knock rating but also makes it less susceptible to tetraethyl lead. A number of recent developments have contributed to the facility and reduced

the expense of extracting sulfur from gasoline.

Cyclization, or aromatization of straight-run gasolines, converts straight-chain paraffins into benzol, toluol, and xylols. These products have an octane rating of over 100 and can raise the quality of motor fuel, although they cannot at present be used as aviation fuel.⁴

MOTOR FUEL

Demand.—The domestic demand for motor fuel in 1939 was 552,557,000 barrels, a 5.7-percent increase over the 1938 record of

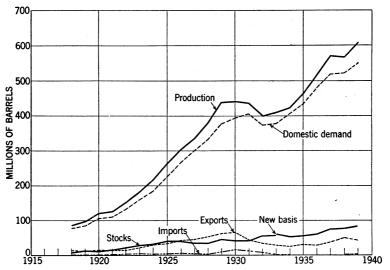


FIGURE 8.—Trends in production, domestic demand, exports, imports, and stocks of motor fuel, 1918-39.

523,003,000 barrels. Exports, however, declined from 50,109,000 barrels in 1938 to 44,559,000 in 1939, making the total demand 597,116,000 barrels, a 4-percent increase over the 1938 demand. (See fig. 8.)

⁴ Egloff, Gustav, Gasoline Grading Laws Will Penalize Motorists: Am. Petrol. Inst. 20th ann. meeting, Chicago, Ill., Nov. 14, 1939; abs. in Nat. Petrol. News, vol. 31, No. 39, 1939, p. 21.

Comparative analyses of statistics for motor fuel in 1939,1 by months

[Thousands of barrels]

							193	39						1020
	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total	1938 (total)
Production	49, 120 1, 585	43, 409 1, 550	48, 367 1, 560	48, 837 1, 628	51, 384 1, 658	50, 861 1, 695	51, 896 1, 674	52, 161 1, 683	51, 890 1, 730	54, 974 1, 773 23	52, 691 1, 756 86	52, 351 1, 689 3	607, 941 1, 666 118	569, 162 1, 559 79
Exports. Daily average. Stocks, end of period. Domestic demand Daily average.	3, 638 117 78, 494 37, 767 1, 218	2, 909 104 84, 399 34, 595 1, 236	4, 336 140 85, 910 42, 520 1, 372	3, 663 122 87, 107 43, 977 1, 466	4, 390 142 84, 554 49, 547 1, 598	4, 459 149 81, 144 49, 812 1, 660	3, 585 116 78, 947 50, 508 1, 629	4, 208 136 73, 072 53, 828 1, 736	4, 232 137 71, 389 49, 347 1, 645	3, 443 111 73, 256 49, 687 1, 603	2, 560 85 76, 198 47, 275 1, 576	3, 136 101 81, 722 43, 694 1, 409	44, 559 122 81, 722 552, 557 1, 514	50, 109 137 70, 779 523, 003

¹ Subject to revision.

Domestic demand for motor fuel per motor vehicle in use, 1937-39

	1937	1938	1939 1
Domestic demand for motor fuel		² 523, 003 ² 28, 168, 500 ² 18. 57 ² 21. 86 ² -3. 29 77	552, 558 28, 607, 400 19. 32 22. 57 -3. 25 86

Distribution of domestic motor-fuel demand, 1936-39

[Thousands of barrels]

	1936	1937	1938	1939 1
Passenger cars: Highway	150, 896	161, 302	161, 821	171, 204
	170, 128	182, 614	186, 459	195, 659
Total passenger cars	321, 024	343, 916	348, 280	366, 863
Trucks: HighwayCity	35, 462	39, 723	40, 757	43, 120
	57, 643	63, 084	61, 136	66, 293
Total trucksBusses	93, 105	102, 807	101, 893	109, 413
	14, 500	15, 500	15, 300	15, 500
Total automotive demand 2	428, 629	462, 223	465, 473	491, 776
Other demand	52, 977	57, 129	57, 530	60, 781
Grand total	481, 606	519, 352	523, 003	552, 557

¹ Subject to revision.

The 11-percent recession in exports for the year 1939 may be ascribed chiefly to the European war; during the last quarter alone exports were 33 percent less than in the corresponding quarter in 1938 compared with a 3-percent loss for the first 9 months of the year. This decrease was unexpected, as many persons had predicted that the immense demand for aviation gasoline and gasoline for powering the mechanized units of the armies would create a large draft on American sources. However, gasoline-rationing policies for neutral countries as well as belligerents, the small amount of actual fighting, the large supplies of gasoline and oil that the warring countries had been accumulating during recent years, and the tremendous risk of ocean transportation cut deeply into United States exports of petroleum and its products during the last quarter of 1939. More detailed information on exports and imports is given in another section of this chapter.

Subject to revision.
 Revised figures.
 Least squares straight-line trend based on 1924-31 data. Depression years have been omitted because they are not normal.
 Federal Reserve Bank of New York; computed normal=100.

²⁸⁹ percent of total motor-fuel demand.

There were 3,140,000 new motor-vehicle registrations in 1939, according to R. L. Polk & Co., compared with 2,256,000 in 1938 and 4,100,000 in 1937. Preliminary estimates of cars in use on July 1, as shown in the accompanying table, indicate an increase of approximately 420,900 vehicles and a total of 28,607,400. Gasoline consumption per motor vehicle in use responded to improved business conditions by rising from 18.57 barrels in 1938 to 19.32 in 1939.

The effect of weather on motor-fuel demand was discussed in another publication of the Bureau,⁵ which also included the gasoline-temperature index; this index is calculated by weighting the departures of temperature from normal for the various sections of the country (as reported in the Monthly Weather Review) by the quantity of gasoline consumed in the individual sections. The gasoline-temperature indexes for 1939 and the estimated influence of weather upon motor-fuel demand are given below.

Gasoline-temperature index and estimated influence of weather on motor-fuel demand in 1939, by months

Month	Gasoline- tempera- ture index ¹	Influence on motor-fuel demand (thousands of barrels)	Month	Gasoline- tempera- ture index 1	Influence on motor-fuel demand (thousands of barrels)
January February March April May June July August	4.1 1.9 1.5 7 2.5 1.8 1.0 2.1	996 46 	September October November December Average index Total influence	3. 2 1. 8 . 0 3. 4 1. 9	646 -3 -482 732

¹ In degrees departure from 46-year normal.

Although temperatures have averaged 1 degree above normal for the past 12 years, it can be seen from the table that the weather in 1939 was even milder. It is estimated that motor-fuel demand was

1,542,000 barrels greater because of the favorable weather.

Production.—Motor-fuel production in 1939 of 607,941,000 barrels was 38,779,000 barrels more than that in 1938—569,162,000 barrels. The 1939 production comprised 260,463,000 barrels of straight-run gasoline, 295,142,000 barrels of cracked gasoline, 2,440,000 barrels of benzol, and 49,896,000 barrels of natural gasoline, the latter being made up of about 40 million barrels of blended natural and about 10 million barrels of unblended natural. The ratio of straight-run gasoline to total motor-fuel production continued its downward trend, falling from 43.1 percent in 1938 to 42.8 in 1939, while that of cracked gasoline followed its rising trend, increasing from 47.5 percent in 1938 to 48.6 in 1939. The ratio of natural gasoline declined from 9.0 percent in 1938 to 8.2 in 1939.

Breakey, Herbert A., Trends and Seasonal Factors Influencing Domestic Motor-fuel Demand: Bureau of Mines Econ. Paper 21, 1940, 65 pp.

Production of gasoline in the United States in 1939, by methods of manufacture, districts, and months

[Thousands of barrels]

Method and district	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Straight run: East Coast	5,025 755 620	2, 040 706 3, 320 2, 485 1, 608 4, 083 623 434 552 2, 604	2, 190 789 3, 726 2, 670 1, 709 4, 600 776 544 644 3, 015	2, 278 652 3, 645 2, 862 1, 818 4, 830 585 520 613 2, 819	2, 308 683 3, 861 3, 073 1, 886 5, 585 980 492 655 3, 244	2, 185 710 3, 867 2, 951 1, 889 5, 365 691 557 597 2, 970	2, 439 7777 3, 711 2, 852 2, 016 5, 325 773 478 636 3, 495	2, 889 850 3, 982 2, 767 1, 507 5, 039 821 544 761 3, 211	2, 428 791 4, 075 2, 779 1, 591 4, 994 811 500 699 3, 165	2, 788 887 4, 406 2, 859 1, 374 5, 481 579 700 3, 618	2, 974 990 4, 287 2, 778 1, 220 4, 944 701 594 652 3, 275	2, 604 928 4, 185 2, 743 1, 201 5, 239 706 583 608 3, 220	29, 470 9, 491 46, 646 33, 517 19, 525 60, 510 9, 441 6, 445 7, 763 37, 655
Total straight run Percent yield	21, 125 21. 2	18, 455 21. 0	20, 663 20. 9	20, 922 21, 1	22, 767 21. 5	21, 782 20. 8	22, 502 21, 1	22, 371 20. 8	21, 833 20. 7	23, 611 21. 3	22, 415 21. 4	22, 017 20. 8	260, 463 21. 0
Cracked: East Coast Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri Texas Inland Texas Gulf Coast Louisiana Gulf Coast Arkansas and Louisiana Inland Rocky Mountain California	930 4,356 2,101 1,373 7,221 568 310	3, 401 873 4, 093 1, 907 1, 186 6, 060 572 224 423 2, 298	3,798 830 4,279 1,973 1,201 7,311 691 242 521 2,434	3, 702 969 4, 424 2, 183 1, 251 7, 226 714 285 484 2, 283	3, 787 997 4, 554 2, 348 1, 366 7, 383 751 339 578 2, 104	3, 939 985 4, 919 2, 316 1, 405 7, 316 750 318 554 2, 308	4, 323 1, 069 5, 040 2, 248 1, 377 7, 304 812 319 549 1, 987	4, 035 1, 061 5, 030 2, 410 1, 551 7, 982 848 335 600 2, 328	4, 119 958 5, 215 2, 401 1, 626 7, 368 760 278 614 2, 361	4, 282 1, 117 5, 412 2, 418 1, 666 7, 746 723 328 566 2, 365	3,748 1,097 5,665 2,208 1,699 7,089 766 358 644 2,347	4, 121 1, 131 5, 298 2, 352 1, 741 6, 844 673 370 540 2, 519	47, 015 12, 017 58, 285 26, 865 17, 442 86, 850 8, 628 3, 706 6, 592 27, 742
Total cracked Percent yield	23, 546 23. 6	21, 037 24. 0	23, 280 23. 5	23, 521 23. 7	24, 207 22. 9	24, 810 23. 7	25, 028 23. 4	26, 180 24. 3	25, 700 24. 4	26, 623 24. 0	25, 621 24. 4	25, 589 24. 2	295, 142 23. 9
Total production including natural gasoline: East Coast. Appalachian. Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri. Texas Inland. Texas Inland. Texas Gulf Coast. Louisiana Gulf Coast. Arkansas and Louisiana Inland. Rocky Mountain. California. Total United States: 1939.	1, 681 8, 306 5, 257 3, 674 12, 799 1, 361 963 1, 242 6, 747	5, 583 1, 597 7, 710 4, 777 3, 298 10, 611 1, 214 697 1, 038 6, 196	6, 124 1, 657 8, 315 5, 021 3, 397 12, 311 1, 488 228 1, 236 6, 809	6, 102 1, 639 8, 338 5, 382 3, 486 12, 708 1, 629 837 1, 149 6, 156	6, 225 1, 694 8, 778 5, 788 3, 699 13, 268 1, 754 1, 263 6, 289	6, 270 1, 713 9, 113 5, 631 3, 712 12, 916 1, 474 913 1, 178 6, 354	6, 964 1, 863 9, 106 5, 465 3, 831 12, 927 1, 618 846 1, 209 6, 610	7, 100 1, 927 9, 305 5, 591 3, 480 13, 457 1, 698 918 1, 399 6, 768	6, 748 1, 773 9, 737 5, 583 3, 548 12, 847 1, 602 821 1, 363 6, 748	7, 290 2, 037 10, 341 5, 823 3, 832 14, 106 1, 671 1, 348 7, 169	6, 988 2, 123 10, 467 5, 515 3, 613 12, 764 1, 493 1, 015 1, 399 6, 945	6, 953 2, 101 9, 931 5, 661 3, 586 12, 761 1, 397 1, 009 1, 242 6, 983	78, 625 21, 805 100, 447 65, 494 43, 156 153, 475 18, 399 10, 684 15, 066 79, 774
Total United States: 19391938	48, 308 46, 811	42, 721 40, 495	47, 186 44, 175	47, 426 44, 667	49, 620 46, 581	49, 274 44, 247	50, 439 47, 607	51, 643 48, 662	50, 770 47, 312	³ 54, 592 49, 677	² 52, 322 47, 998	² 51, 624 47, 780	595, 925 556, 012

¹ Subject to revision. ² Includes aviation gasoline (thousands of barrels): October 859, November 811, December 909.

Yields.—Gasoline produced from crude oil run to stills increased for the second consecutive year to establish a new record of 44.9 percent in 1939 compared with 44.3 percent in 1938. This increase probably is attributable in part to various new technologic improvements, including polymerization, alkylation, and catalytic cracking, discussed elsewhere in this chapter.

Most of these new processes utilize still gases as raw material; consequently the yield of still gas decreased from 5.7 percent in 1938 to 5.4 percent in 1939, whereas the yield of gasoline increased 0.6 percent. The remainder of the rise in gasoline yield (0.3 percent) probably was taken out of residual fuel-oil yield, which declined 0.5

percent.

Nearly all of the higher yield of gasoline was incident to the production of cracked gasoline, which increased from 23.2 percent in 1938 to 23.9 in 1939, while the yield of straight-run gasoline was

virtually unchanged.

The yield of gasoline in 1939 did not experience the usual slump during the early part of the year, probably because the mild winter (see gasoline-temperature index) did not require the diversion of cracking stock to heating oil. Otherwise it conformed to the usual seasonal pattern, except that the summer sag was only slight, while

the November yield (45.8 percent) established a new record.

One of the paradoxes of the industry is that in the autumn, when it is logical to expect a decline in the yield of gasoline because motor-fuel demand is decreasing rapidly and heating-oil demand is increasing, gasoline yield actually has reached its peak. During the warmer months of the year unfinished heavy oil is stored, and as cool weather approaches it is rerun, most of it probably being cracked to increase the winter supply of heating oil. The gasoline and heating oil resulting from such reruns constitute net additions to the products from the crude oil run to stills, but they are in no sense products of that particular oil. However, yields are computed on the basis of the ratio of the total products produced to quantity of crude oil run. Hence, when the actual yields of gasoline probably are declining in the fall, they appear to be increasing.

Net unfinished oil rerun during the last 4 months of 1939 amounted to 7,124,000 barrels—1.7 percent of crude-oil runs—compared with

229,000 barrels for the 4 preceding months.

Rerunning of imported unfinished oil also will cause yields to appear higher than they actually are. Imports of unfinished oils in 1939 totaled 9,193,000 barrels, 5,798,000 barrels of which were designated for domestic use.

Among the districts Inland Texas continued its upward trend, the output mounting to 56.5 percent in 1939 compared with 54.0 percent in 1938 and 51.2 percent in 1937. The yield of 45.1 percent for the Texas Gulf Coast district also was materially higher than its 1938 production of 43.4 percent.

Prices.—The average Group 3 refinery price per gallon of regular-grade gasoline for 1939 was 4.76 cents compared with 4.90 cents for 1938. After a gradual decline since 1936 it reached its lowest point early in February 1939—3.88 cents. From that point it improved

until it met the usual seasonal weakness in the winter but kept considerably stronger than during the winter of 1938, in spite of the

larger accumulation of stocks.

The 50-city average service-station price of regular-grade gasoline (ex-tax), as compiled by the American Petroleum Institute, dropped further in 1939 to an average of 13.30 cents from the 14.07-cent average for 1938. The general trend during the year, however, was upward. The lowest price was 13.04 cents on March 1, from which it rose to a high of 13.65 cents on October 1 and then relapsed to 13.51 cents on December 1. The prices for these 2 months were almost the same as during the same months in 1938, but the January 1, 1940, price of 13.53 cents was % cent higher than that at the beginning of 1939.

It is extremely difficult to determine service-station prices in States that have the dealer-marketing plan. As the dealer sells at whatever price will give him enough profit, posted prices often vary considerably throughout a city. Frequently discounts are given from

the posted prices either generally or to selected customers.

The greatest change in price was at Cheyenne, Wyo., where the increase from January 1, 1939, to January 1, 1940, was 3.0 cents (12.0 to 15.0 cents ex-tax). The price change in Omaha, Nebr., ranked next, but in the opposite direction, falling from 13.0 to 10.5 cents from the beginning to the end of the year. The price in Salt Lake City, Utah, which dropped from 18.5 cents on January 1, 1938, to 15.0 on January 1, 1939, dropped another 3.5 cents to 11.5 cents by June 20, 1939. It recovered, however, to 14.5 cents on September 18 and was only 0.5 cent lower at the end of the year than at the beginning.

The highest prices prevailed in the Rocky Mountain area as usual, where the average increased from 15.85 cents per gallon (revised) at the beginning of the year to 16.66 cents at the end of the year. Boise, Idaho, after a short period of lower price, again recovered the distinction, along with Twin Falls, Idaho, of having the highest price—25.1 cents, including 6 cents for State and Federal taxes and 1 mill as a toll-bridge tax. Helena, Mont., with a price of 24.5 cents including 6 cents in taxes, was next highest at the end of the year. Bristol, Tenn., with a price of 23.75 cents including 8 cents in taxes, and Montgomery, Ala. with a price of 23.5 cents including 9 cents in Federal, State, county, and city taxes, were next highest.

Providence, R. I., supplanted Wichita, Kans., in attaining the distinction of having the lowest price at the end of the year; it was 14.0 cents a gallon compared with 14.6 cents at Wichita. Detroit, Mich., however, had a price of 13.9 cents for a few days in November. Motorists in the New England and North Atlantic States continued to enjoy the lowest prices for gasoline, although the average rose from 11.7 cents (revised) per gallon at the beginning of the year to 12.2

cents at the end of the year.

There were no price changes in the principal cities on the Pacific coast throughout the year, and the only price changes in important places in the California marketing area were in Spokane, Wash.,

where the price fell from 18.0 cents at the beginning of the year to 16.5 cents at the end of the year, and in Phoenix, Ariz., where the price dropped from 16.5 to 15.0 cents.

price dropped from 16.5 to 15.0 cents.

The 12-month average of the 50-city average dealer's net price of 9.58 cents was 0.46 cent lower than that for 1938. The average on January 1, 1940 (9.78 cents), was 0.22 cent higher than the January

1, 1939, average.

A State gasoline-tax increase from 4 to 5 cents for North Dakota in July was the first change in tax rates for 2 years, the average rate for the country having remained at 4.44 cents for 25 months. Excepting a 1-mill toll-bridge tax in Idaho there were no other changes in State taxes on gasoline, but an event heralded by the oil industry was the repeal in New Orleans, effective October 1, of the 2-cent city tax. Although a 5-cent State tax, a 2-cent Parish tax, and the 1-cent Federal tax remain, the distinction of having the highest gasoline tax in the country has passed from New Orleans to Mobile and Montgomery, Ala., and to Pensacola, Fla., each of which pays a total tax of 9 cents a gallon on its gasoline. Only Alabama, Missouri, New Mexico, and Wyoming have no restrictions on the levying of gasoline taxes by cities. A small number of selected cities in Florida and Nevada also are permitted to levy a gasoline tax.

Average monthly prices of gasoline, 1938-39, in cents per gallon

									•				
	January	February	March	April	May	June	July	August	September	October	November	December	Average for year
1938													
67-69 octane at refineries in Oklahoma ¹ . Dealer's net at 50 cities ² . Service-station at 50 cities (in- cluding State tax) ³ .	10. 18	10. 16	10. 09	10. 22	10. 17	10. 14	10. 13	10. 18	10. 05	4. 68 9. 82 18. 20	9. 70		310.04
67-69 octane at refineries in Oklahoma ¹ . Dealer's net at 50 cities ² . Service-station at 50 cities (including State tax) ² .	4. 38 9. 56 18. 76	9.40	9. 35	9.37	9. 45	9.49	9. 67	9.61	9. 69	5. 00 9. 79 18. 94	9.87	9. 75	9. 58

¹ National Petroleum News. ² American Petroleum Institute. ³ Revised figures.

During 1939 one State (Missouri) and the District of Columbia had a tax rate of 2 cents, 10 States a tax rate of 3 cents, 17 States a tax rate of 4 cents, 10 States a tax rate of 5 cents, 1 State a tax rate of 5.1 cents, 5 States a tax rate of 6 cents, 1 State a tax rate of 6½ cents, and 3 States a tax rate of 7 cents.

In addition to the State taxes a Federal tax of 1 cent per gallon and numerous municipal and county taxes prevailed throughout the

vear.

Although there was no increase in octane number in the general price quotations for gasoline in 1939, the quality of gasoline, particu-

larly during the last few months of the year, was generally improved,

especially along the Atlantic coast.6

A dissatisfaction with octane rating as a means of describing the quality of gasoline, which has been developing for a number of years, reached the point during 1939 where many refiners have stopped mentioning octane in connection with their gasoline and instead emphasize quality to meet the needs of the individual driver. quality of the various gasolines depends on so many factors—such as the type of crude oils from which they were refined, the proportions of straight-run and cracked gasolines, the quantity of tetraethyl lead, and practical operating conditions under which the gasoline will be used—it is difficult to describe the relative quality of any gasoline by one number, as well as to devise a method for determining that Some gasolines have an advantage when the octane number is determined in one way, while others obtain a higher rating by a different method. There has been considerable confusion as to just what an octane number means, because, when making claims for their gasoline, refiners sometimes use that method by which their product receives the best rating, whether or not it is standard.

The method now known as the C. F. R. (Cooperative Fuel Research Committee) research method was the one first generally accepted for rating octane number. After practical tests had disclosed weaknesses in this method a new one—the C. F. R. motor method—was published as tentative in 1933, revised in 1934, 1936, 1937, 1938, and adopted as standard in 1939; it has been officially designated as D357-39, but is generally known as the A. S. T. M. method. At the same time the research method, which has been used as a check method for research purposes, was revised for adaption to the equipment used for the motor (D357-39) method. The motor method is at present most

widespread throughout the world.7

The L-3 method is a compromise method used by the Ethyl Gasoline Corporation in dealing with its licensees. Although it is not standard and is official only between the corporation and its licensees, published price quotations at present usually are based upon ratings

by this method.

Other methods of octane rating, generally used in connection with aviation fuel, include the United States Army Air Corps, the British Air Ministry, and the low-temperature methods, while a number of others for rating aviation fuel do not use octane number at all.

The near future probably will see some agreement upon octane rating, with consequent elimination of much of the confusion now existing, as well as even better grades of motor fuel than are being sold.

Aviation gasoline.—Late in 1939 the Bureau of Mines began to collect statistics on production and stocks of aviation gasoline. Data on exports of this grade of gasoline had been published by the Bureau of Foreign and Domestic Commerce since the first of 1939.

⁶ Miller, Walter, Petroleum Refining: Min. and Met., vol. 21, No. 397, January 1940, p. 51; also Lane, E. C., Cooperative Fuel Research Motor Gasoline-Survey, Summer 1939: Bureau of Mines Rept. of Investigation 3492, 1939, p. 2.
⁷ Phillippovich, Alexander, Engine Fuel Testing and Proposals for Its Further Development: Nat. Petrol. News, vol. 31, No. 50, December 13, 1939, p. R-526.

The first report, a press release of December 21, 1939, gave total aviation-gasoline production in October 1939 as 859,000 barrels, of which 265,000 barrels was in California. The average octane was 84 (A. S. T. M.) and the average vapor pressure 6.6 pounds. The returns indicated that there were about 25 producing companies, with a monthly capacity for producing about 1,500,000 barrels of aviation gasoline. The next report (total given in Bureau of Mines Monthly Petroleum Statement for November 1939) showed that the indicated domestic demand for this grade of gasoline was 411,000 barrels compared with exports of 274,000 barrels. In December exports increased to 372,000 barrels, but domestic demand declined to 292,000.

Stocks.—The seasonal pattern for gasoline stocks in 1939 was just the opposite of that for 1938. During the early months of the year stocks were lower than in 1938, and during the middle of the year were comparable with them. During October, however, they began to rise rapidly, and by December 31 finished gasoline on hand had reached 77,301,000 barrels or 11,352,000 barrels more than on December 31, 1938. Unfinished stocks, however, declined from 5,731,000 barrels to 5,564,000 making a total of 82,865,000 barrels for finished

and unfinished gasoline on December 31, 1939.

Finished stocks were higher in all districts at the end of 1939 than at the end of 1938. Those in the Texas Gulf Coast district increased the most, with a 41-percent gain from 9,626,000 to 13,609,000 barrels. While the generally higher stocks in excess of what might be required because of the greater gasoline demand are attributable largely to expanded runs to stills to meet heating-oil requirements, part of the stocks in Texas Gulf Coast district probably resulted from the lack of tankers to move both the gasoline and fuel oil to the East coast, where finished stocks were only 8 percent more at the end of 1939 than at the end of 1938.

Finished stocks in California increased from 13,192,000 barrels to 16,121,000 (22 percent). As California had stocks of all products adequate, under ordinary refinery operations, to meet the most optimistic demands, such inflation can be ascribed to maladjustment in refinery operation, considering that the increment in total motor-

fuel demand for that area was only 4 percent.

Stocks of gasoline in the United States in 1939, by districts and months [Thousands of barrels]

			(* 220	usanus VI	varreisj							
District	Jan. 31	Feb. 28	Mar. 31	Apr. 30	May 31	June 30	July 31	Aug. 31	Sept. 30	Oct. 31	Nov. 30	Dec. 31
Finished gasoline:												
Refinery:	1					1	1		1	l .	!	1
East Coast	5, 739	6, 895	7, 844	7, 358	7, 267	7, 031	6, 235	6, 260	6, 038	6, 213	6, 085	6, 618
Appalachian	1,501	1.811	1, 863	2,003	1, 899	1, 637	1, 645	1, 385	1, 133	1, 150	1, 273	1, 634
Indiana, Illinois, Kentucky, etc	8, 671	10, 638	11, 334	10, 960	9, 172	8, 191	7, 218	6, 409	6, 145	6,066	6,006	7, 133
Oklahoma, Kansas, and Missouri	4, 647	5, 049	5, 015	5, 081	4,778	4, 135	3, 601	2, 982	3, 131	3, 418	3, 661	4, 170
Texas Inland	2, 173	2, 297	2, 059	2,012	1, 898	1, 793	1,819	1, 665	1, 673	1, 713	2,008	2, 148
Texas Gulf Coast	10, 800	11,041	10,037	11, 339	10, 739	9, 830	9, 484	8, 762	9, 780	9, 968	11, 915	13, 277
Louisiana Gulf Coast	1, 481	1, 682	1, 562	1,574	1, 583	1, 426	1, 322	1, 153	1, 104	1, 481	1, 525	1, 438
Arkansas and Louisiana Inland	473	495	528	444	411	434	439	420	370	373	398	478
Rocky Mountain California	1,814	2,079	2, 169	2,099	2, 028	1, 803	1. 510	1, 301	1. 294	1. 243	1, 409	1, 524
California	12, 120	12, 582	13, 053	12, 302	12, 301	11, 692	10, 923	10, 709	10, 755	11, 891	12, 618	13, 500
						11,002	10,020	10,700	10,100	11,001	12,010	10,000
Total United States	49, 419	54, 569	55, 464	55, 172	52, 076	47, 972	44, 196	41, 046	41, 423	² 43, 516	² 46, 898	2 51, 920
Bulk terminal and pipe line:												
East Coast	11.957	12, 499	13, 708	13, 735	13, 902	13, 661	13, 923	12, 673	11, 590	11, 868	11, 194	11, 319
Appalachian	1,786	1, 594	1, 550	1,709	1,716	1, 641	1,806	1,620	1, 283	1, 494	1,804	1, 853
Indiana, Illinois, Kentucky, etc	4, 720	4, 287	3, 789	3, 856	3, 944	4, 556	5, 227	4, 735	5, 042	5, 401	5.877	5, 874
Oklahoma, Kansas, and Missouri Texas Inland	2, 624	3, 268	2, 903	2,944	2,884	2,868	2, 737	2, 628	2, 421	2, 193	2, 388	2, 581
Texas Inland	51	45	46	47	49	54	52	50	51	50	45	48
Texas Gulf Coast	365	245	227	229	293	346	285	270	310	280	311	332
Louisiana Gulf Coast	642	650	669	596	597	692	594	651	608	744	563	623
Arkansas and Louisiana Inland	1 141	132	152	243	139	165	146	147	73	116	144	130
California	2, 142	2,402	2, 681	3,092	2,742	2, 440	2,858	2, 628	2, 697	2, 454	2, 395	2, 621
				<u> </u>				<u> </u>	<u> </u>			
Total United States	24, 428	25, 122	25, 725	26, 451	26, 266	26, 423	27, 628	25, 402	24, 075	24, 600	24, 721	25, 381
Unfinished gasoline:									-			
East Coast	983	1,002	1,087	1, 111	1,077	1,063	1, 122	1, 113	1,025	987	811	931
A nnalachian	929	226	259	269	255	240	248	236	299	292	296	357
Indiana, Illinois, Kentucky, etc.	535	565	657	650	885	706	803	777	591	519	529	614
Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri	398	392	385	419	449	464	477	480	455	486	434	508
rexas imand	1 242	263	246	256	227	217	217	230	195	230	256	298
Texas Gulf Coast	1, 330	1, 485	1, 526	1, 484	1, 317	1, 428	1, 591	1, 473	1, 349	1, 207	1, 323	1, 327
Louisiana Gulf Coast	262	405	451	366	334	340	312	281	276	350	354	379
Arkansas and Louisiana Inland Rocky Mountain	33	32	31	33	49	24	36	36	45	36	42	47
Rocky Mountain	95	96	102	110	106	- 100	91	89	82	77	71	71
California	1, 409	1, 334	1, 188	1, 210	1, 159	1, 311	1, 122	1, 172	1, 177	1,019	1,055	1, 032
Matal Timitad States	F 610	F 000	F 000	F 000	F 050	P. 000						
Total United States	5, 619	5, 800	5, 932	5, 908	5, 858	5, 893	6, 019	5, 887	5, 494	5, 203	5, 171	5, 564
Total finished and unfinished gasoline stocks,												
United States:	l											
1939	79, 466	85, 491	87, 121	87, 531	84, 200	80, 288	77, 843	72, 335	70, 992	73, 319	76, 790	82, 865
1938	88, 845	92, 253	3 92, 277	3 89, 995	88, 147	80, 531	76, 732	70, 962	69, 086	69, 277	69, 535	71, 680
	,	, -,	, ,	,	,==,==	,	1.5,102	,	11,000	55,211	35,000	, 000

¹ Subject to revision. ¹ Includes aviation gasoline (thousands of barrels): October 31, 2,400; November 30, 2,526; December 31, 2,771. ¹ Revised figures (thousands of barrels)—stocks of unfinished gasoline, Louisiana Gulf January 31, 555; February 28, 414; March 31, 498; April 30, 516.

The smallest additions to inventories were in the Rocky Mountain and Inland Louisiana-Arkansas districts, where they amounted to 6

and 7 percent, respectively.

The table of days' supply of gasoline shows that stocks increased relatively as well as actually. At the end of the year they amounted to 56.2 days of finished gasoline compared with 49.4 days at the end of 1938.

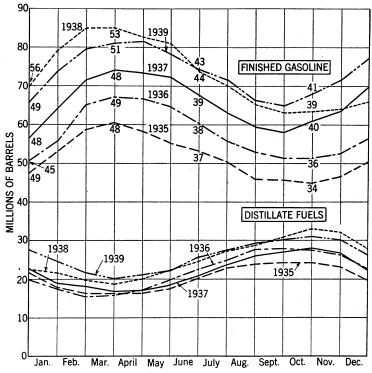


FIGURE 9.—Stocks of finished gasoline and distillate fuels, 1935-39, by months.

Days' supply of motor fuel on hand in the United States at end of month, 1937-391

		1937			1938 3			1939 \$				
Month	Finished gasoline	Natural gasoline	Total motor fuel	Finished gasoline	Natural gasoline	Total motor fuel	Finished gasoline	Natural gasoline	Total motor fuel			
January February March April May June July August September October November December	48. 2 46. 6 42. 0 39. 1 36. 6 34. 5	3.11 3.14 3.4 3.6 4.0 4.8 3.5 3.8 9	55. 2 54. 6 51. 3 50. 0 45. 4 42. 7 40. 6 38. 6 40. 5 43. 4 51. 0	61, 7 58, 6 53, 2 51, 8 46, 1 44, 1 39, 3 39, 0 38, 5 39, 1 42, 1 49, 4	3.5558813991186 3.44.991186	65. 5 62. 1 56. 7 55. 6 49. 9 48. 2 43. 6 43. 4 43. 2 45. 9 53. 0	55. 1 52. 7 51. 1 46. 9 43. 3 42. 6 38. 4 37. 2 41. 0 47. 4 56. 2	5102449875102 333333333333333333333333333333333333	58. 6 55. 8 54. 1 50. 1 46. 7 46. 5 42. 2 40. 9 41. 7 44. 1 50. 4			

Stocks divided by the daily average total demand (domestic demand plus exports) for succeeding month.
 Revised_figures.

Seasonal variations in gasoline stocks in recent years appear in figure 9, which gives the quantity of finished gasoline stocks in millions of barrels for the last day of each month for December 1934 to December 1939, together with equivalent days' supply at certain periods.

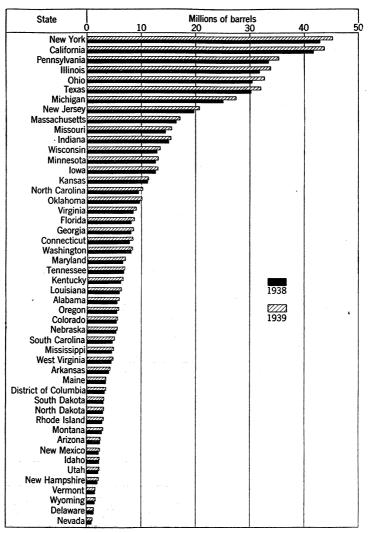


FIGURE 10-Gasoline consumption, 1938-39, by States.

The figures for days' supply on the chart represent the quantity of finished gasoline on hand at the end of a month divided by the total demand for the succeeding month.

Figure 9 also includes stocks of distillate fuels for the same period to stress the contrast in seasonal variations in stocks of the two products. It will be seen that at the end of 1939 there were 1½ million barrels less distillate fuel oil than at the end of 1938 to meet a 2,287,000-barrel (14-percent) increase in total demand for the succeeding month.

Production and consumption by States.—Texas ranked highest in gasoline production, furnishing 33 percent of the gasoline output. Other important States were: California, 13 percent; Pennsylvania, 8

percent; and Oklahoma and Illinois, 6 percent each.

The principal gasoline-consuming States maintained the same relative position in 1939 as for the past several years. (See fig. 10.) The 45,255,000 barrels (8.4 percent) consumed in New York, however, were only slightly more than the 43,760,000 barrels (8.1 percent) consumed in California. Pennsylvania followed with 6.5 percent and Illinois, Ohio, and Texas came next with 6 percent each.

Production and consumption of gasoline in the United States, 1937-39, by States [Thousands of barrels]

	19	37	193	18 1	193	39 2
State						
51410	Produc- tion	Consump- tion 3	Produc- tion	Consump- tion 2	Produc- tion	Consump- tion 3
Alabama	(4)	5, 378	(4)	5, 483	(4)	5, 869
Arizona		2, 473		2, 441	l	2, 550
Arkansas		3, 908	3, 028	4,040	3, 452	4, 332
California	79, 967	41, 853	77, 528	41, 722	§ 79, 774	43, 760
Colorado	752	5, 263	1, 170	5, 404	1,720	5, 659
Connecticut		7,784		7, 768		8, 394
Delaware District of Columbia		1, 302		1,328		1, 391
District of Columbia		3, 262		3, 316		3, 571
Florida		7,831		8,062		8, 710
Georgia	6 5, 332	7,899	4, 990	8,066	6 4, 646	8, 531
Idaho		2, 253	(7)	2, 255	(7)	2, 387
Illinois		30, 794	28, 309	31, 703	8 33, 538	33, 803
Indiana		15,091	40, 737	15, 032	44, 490	15, 496
Iowa	0.00 401	11,807	9 31, 231	12, 574 11, 162	0 21 506	13, 103 11, 353
Kansas	9 32, 481 10 4, 287	11, 195 5, 996	10 4, 729	6, 108	9 31, 596 10 6, 021	6, 545
Kentucky Louisiana	4 26, 405		4 24, 953	5, 890	4 25, 631	6, 220
		5, 679 3, 463	- 24, 905	3, 449	- 20, 001	3, 575
Maine Maryland	(6)	6, 433	(6)	6, 475	(6)	6, 945
Massachusetts	11 5, 586	16, 583	11 4, 625	16, 433	11 4, 959	17, 170
Michigan	5, 672	26, 443	6, 822	25, 094	7, 932	27, 455
Minnesota	0,012	12,140	. 0,022	12, 613	(8)	13, 111
Mississippi		4,519		4, 616		4, 988
Missouri	(9)	14,060	(9)	14, 489	(9)	15, 590
Montana	(9) 2, 317 (12)	2,760	2, 562	2, 800	(9) 3, 313	3, 012
Nebraska	(12)	5, 455	(7)	5, 368	(7)	5, 607
Nevada		890		920		1, 045
New Hampshire		2,031		2, 028		2, 204
New Jersey	30, 302	19, 538	26, 214	19, 748	28, 267	20, 776
New Mexico	13 3, 148	2, 111	13 3, 100	2, 294	18 3, 056	2, 427
New York	5, 833	43, 228	5, 515	42, 910	6, 355	45, 255
North Carolina		9, 272		9, 546		10, 229
North Dakota		2,899		3, 031		3, 137
Ohio	22, 323	31, 161	21, 517	30, 448	24, 943	32, 649
Oklahoma		9, 284	34, 488	9, 732	33, 898	10, 159
Oregon		5, 401		5, 469		5, 826
Pennsylvania	46, 164	33, 749	43, 353	33, 419	47, 014	35, 296
Rhode Island	1 (11)	2, 913	(11)	2, 881	(11)	3, 092
South Carolina	(6)	4, 480	(6)	4,656	(6) (7)	5, 055
South Dakota	(12)	2, 708	(7)	3, 080	8	3, 174
Tennessee	(10)	6, 355	(10)	6, 687	196, 631	6, 875
Texas	170, 279 (18)	29, 054	182, 427 (13)	30, 247 2, 213	(18)	31, 926 2, 375
Utah		2, 169	(10)	2, 213 1, 531	(10)	1, 619
Vermont		1, 567		1, 531 8, 457		9, 098
Virginia		8, 158 7, 964		8, 457 8, 057	(4)	8, 320
Washington	1, 598	7, 964 4, 672	1, 627	8, 057 4, 533	(5) 1, 712	4, 879
West Virginia	1, 598	12, 883	1,027	12, 916	1, 112	13, 494
West Virginia Wisconsin Wyoming	17 7, 247	1, 524	77,087	1, 472	7 6, 977	1, 619
				509, 966		539, 656
Total United States	559, 141	505, 635	556, 012	509, 966	595, 925	000,000

¹ Revised figures. 2 Subject to revision. 3 American Petroleum Institute.
4 Alabama included with Louisiana. 4 Washington included with California.
6 Maryland and South Carolina included with Georgia.
7 Idaho, Nebraska, and South Dakota included with Wyoming.
8 Minnesota included with Illinois. 6 Missouri included with Kansas.
10 Tennessee included with Kentucky. 11 Rhode Island included with Massachusetts.
11 Nebraska and South Dakota included with Wyoming. 13 Utah included with New Mexico.

Distribution.—Motor fuel in the United States moves by pipe line,

tanker, barge, tank car, and truck.

Pipe lines take the gasoline from refining centers and marine terminals to shipping points and consuming areas. The longest originates in Texas and transports Mid-Continent gasoline as far north and east as Minneapolis and Detroit. Others carry gasoline from Inland Texas and Louisiana to the Gulf coast, while a number of lines operate from the vicinity of New York City and Philadelphia as far west as Cleveland and as far north as Buffalo and Rochester, N. Y. One line runs from Providence, R. I., to Worcester, Mass., and thence to Hartford, Conn.

The quantity of motor fuel transported by pipe lines rose from 85,297,000 barrels in 1938 to 94,708,000 in 1939, an increase of 11 percent compared with the 6-percent increase in domestic demand.

Shipments of motor fuel by pipe lines in the United States in 1939, by months
[Thousands of barrels]

							1939							
	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total	1938 (total
Motor fuel turned into lines		ı	Í		8, 285 8, 469	}	'	1) ·	· ·	l '	1	1	1 '
Stocks in lines and working tanks,	22	11	24	23	3, 730	27	19	33	42	33	19	6	262	330

1 Overage.

The tanker movement is almost entirely from the Gulf coast to the Atlantic coast, with a small amount moving from California. Boat shipments from the Gulf coast to the East coast, which include virtually all gasoline transportation between these points, rose from 105,036,000 barrels in 1938 to 114,633,000 in 1939. Tanker shipments from California to the East coast partly recovered from their slump to 2,965,000 barrels in 1938 by rising to 3,665,000 in 1939.

Tanker rates from the Gulf to North Atlantic ports, which were as low as 14.5 cents per barrel several times during the year, began rising rapidly during the fall and stood at 60 cents per barrel at the

end of the year.

Except for a movement along the coast of the Gulf of Mexico, shipments by barge are principally up the Mississippi River and its tributaries, where domestic transportation of gasoline (without adjustment for duplications) rose from 46,060,000 barrels in 1937 to 51,808,000 in 1938.8

Tank cars are necessary for inland movement where pipe lines are not available, while tank trucks, although used to some extent in long hauls, function principally in short-haul distribution.

⁸ Chief of Engineers, U. S. Army, Annual Report: Pt. 2, table 38, 1938, p. 43, 1939, p. 45.

KEROSENE AND RANGE OIL 9

Refinery statistics for kerosene in 1939 compared with 1938 reveal gains in the indicated domestic demand as well as in exports; these increased markets were supplied by a greater production, supplemented by a nominal draft on stocks. The higher production of 68,521,000 barrels of kerosene in 1939 compared with 64,580,000 barrels in 1938 was due to the larger runs to stills, as the kerosene yield remained at 5.5 percent or the same level as in 1938. The domestic demand for kerosene increased 7 percent—from 56,360,000 barrels in 1938 to 60,501,000—the largest increment in the domestic market in several years. The improved demand for kerosene in 1939 was confined largely to the first half of the year; it slackened noticeably in the third and fourth quarters, as indicated by actual losses in July, October, and December 1939 compared with the corresponding months of 1938.

Comparative analyses of statistics for kerosene the in United States, 1938-39, by months and districts

			w w/00//	010					
	(thou	sands of (percent)			mand	stic de- (thou- of barrels	1	s (thou- of barrels)	
	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 1	
By months:								<u> </u>	
January	5,638	5,702	5.8	5.7	5, 361	5, 980	6, 523		
repruary	5.167	5, 174	5.8	5.9	5,017	5, 901	5, 986	6, 711	
March	1 5 708	5, 900	6.0	6.0	5, 150	5, 201	6,093	5, 452	
April	5 445	5, 813	5.7	5.9	4, 333	5, 042	6, 394	5, 605 5, 663	
May	5, 649	5,909	5.7	5.6	3, 637	4. 368	7, 627	6, 551	
May June	5, 235	5, 439	5.6	5. 2	3, 257	3, 570	9, 202	7, 949	
July	4 880	5, 390	4.9	5.0	3, 760	3,710	10, 112	8, 855	
A momet	4 000	5, 783	4.9	5.4	4, 292	4, 436	10, 149	9, 361	
September October	5,348	5,806	5.5	5.5	4, 187	4, 638	10, 497	9, 952	
October	5,320	6, 141	5.3	5.5	5, 185	5, 019	9.949	9, 967	
November	5,419	5,642	5.6	5.4	5, 368	6,023	9, 676	9,019	
December	5, 739	5, 822	5.9	5.5	6, 813	6, 613	7, 799	7, 576	
Total United States	64, 580	68, 521	5. 5	5. 5	56, 360	60, 501	7, 799	7, 576	
By districts:									
East Coast	9, 208	9, 120	5.1	4.7					
A nnalachian	9 760	2,847	7.1	6.5	11	1	1,356	1,318	
Indiana, Illinois, Kentucky, etc.	7,096	8, 476	4.3	4.4	11	1 .	184 702	297	
Oklahoma, Kansas, and Mis-	1	0,1.0	1.0	7.7	11		102	1,089	
_souri	6,960	7,073	6.3	6.3	11	ł	743	686	
Texas Inland	2,985	2,977	4.5	4.6	(2)	(2)	189	149	
TAXAS (+IIIIf (:)nast	99 257	23, 224	7.3	7.0	ll ''	`'	2,722	1, 917	
Louisiana Gulf Coast	6, 037	6,898	12.9	14. 2	H		527	773	
Arkansas and Louisiana Inland	2, 139	2,470	8.9	9.9	11		192	184	
Rocky Mountain		782	3.3	3.0	1		79	105	
California	4, 219	4, 654	2.1	2. 3)		1, 105	1,058	
Total United States	64, 580	68, 521	5. 5	5. 5	56, 360	60, 501	7,799	7, 576	
		L							

¹ Subject to revision.

Year-end stocks of kerosene for 1939—7,576,000 barrels—are below the 1938 final inventory—7,799,000 barrels. The decline in stored kerosene during 1939 contrasts with pronounced gains in stocks of 716,000 barrels in 1938 and 1,450,000 barrels in 1937. Kerosene held in storage at the end of 1939 represented 46 days' supply compared with 51 days' supply at the end of 1938 and 47 days' supply at the end of 1937. Kerosene stocks held in the Texas Gulf Coast refinery district declined by 805,000 barrels to a year-end total of 1,917,000 barrels during 1939, while noticeable increases of 387,000 and 246,000 barrels are indicated in the Indiana-Illinois and Louisiana Gulf districts, respectively. The Indiana-Illinois district moved from fifth

Figures not available.

By A. T. Coumbe, Petroleum Economics Division, Bureau of Mines.

to third place in importance as a kerosene storage area in 1939, sup-

planting California, which dropped to fourth place.

Exports of kerosene increased from 7,504,000 barrels in 1938 to 8,243,000 in 1939, a gain of 10 percent; this expansion is in contrast to a decline of 16 percent in the 1938 overseas demand compared with the 1937 total. Netherlands, Sweden, Brazil, the Philippine Islands, and China, including Hong Kong and Kwantung, all important markets for American kerosene, required increased quantities in 1939 compared with 1938, while kerosene exports to the Netherland West Indies and the United Kingdom in 1939 were below the 1938 totals.

Sales of kerosene in the United States 1937-38, by regions, States, and uses

Revised figures.

The annual survey of the Bureau covering distribution of kerosene by principal uses showed total sales of 55,570,000 barrels in 1938 compared with 54,548,000 in 1937. Kerosene deliveries in 1938 were reported as follows: Range oil 30,805,000 barrels, comparable with 29,512,000 in 1937; tractor fuel 3,955,000 barrels in 1938, a slight decline from the 1937 total of 4,251,000 barrels; and all other uses, 20,810,000 barrels in 1938 and 20,785,000 in 1937. The growing market for range oil absorbs an ever-increasing proportion of kerosene deliveries each year and made up 55.4 percent of the total in 1938 compared with 54.1 percent in 1937 and 53.1 percent in 1936. Furthermore, the available kerosene does not entirely satisfy the market for range fuel, and the distributors make up the difference with No. 1 fuel oil; 2,902,000 barrels of the latter product were delivered as range oil in 1938 and 2,747,000 barrels in 1937. The total demand for range oil, including both kerosene and No. 1 fuel oil, was reported as 33,707,-000 barrels in 1938 compared with 32,259,000 barrels in 1937.

The upward trend of recent years in refinery kerosene prices, as measured by the quotations for 41°-43° gravity water-white grade in Oklahoma, was reversed in 1939, and the average for the year declined to 3.97 cents per gallon compared with 4.19 cents in 1938. The average monthly price of 4.09 cents per gallon for December 1938 dropped to 4.06 cents in January 1939 and remained at that quotation until May, when the average decreased further to 4.05 cents per gallon. Summer prices for Oklahoma kerosene trended downward until they reached an average of 3.88 cents per gallon in September and remained at that point until the middle of December 1939, when a slight increase brought the average to 3.91 cents per gallon for the final month of the vear.

The tank-wagon price of kerosene, as represented by the quotations at Chicago, dropped from an average of 10.31 cents per gallon in 1938 to 10 cents per gallon in 1939. A price of 10 cents a gallon, effective October 8, 1938, remained unchanged at that level throughout all of 1939.

Sales of range oil in the United States, 1936-38, by States 1 [Thousands of barrels]

1938 State 1936 1937 Percent of Total total 8, 219 4, 811 2, 511 2, 210 9, 645 5, 817 2, 972 2, 722 2, 079 1, 108 9, 959 5, 951 3, 191 2, 854 2, 127 1, 174 Massachusetts... 29. 5 17. 7 9. 4 8. 5 6. 3 3. 5 2. 9 2. 1 1. 9 1. 3 New York. Connecticut New Jersey 1, 744 981 Rhode Island Maine.....Illinois 595 762 708 977 701 New Hampshire... 639 Pennsylvania.... 538 639 641 vermont______ Maryland_____ North Carolina____ Florida_____ Missa____ 480 443 312 411 357 268 224 437 331 1.3 271 325 ĩ.ŏ 260 294 306 4,007 Other States 3, 515 4.285 12.7 Total United States..... 27, 292 32, 259 33, 707 100, 0

¹ Figures for 1939 by States not yet available.

¹Revised figures.

FUEL OILS 10

The domestic market for fuel oils recovered from its 1938 losses and reached a new all-time high in 1939. Exports of fuel oils in 1939 continued the upward trend of recent years and established a record for the second consecutive year, while imports declined noticeably in 1939 compared with 1938. Fuel-oil stocks at the end of 1939 were considerably below comparable quantities held on December 31, 1938.

Salient statistics of fuel oils in the United States, 1938-39 [Thousands of barrels]

		1938		1939 1					
	Gas oil and dis- tillate fuel oils	Residual fuel oils	Total	Gas oil and dis- tillate fuel oils	Residual fuel oils	Total			
Stocks at beginning of year: Refinery Bulk terminal Production Transfers from crude oil to fuel oil Imports: Bonded Duty paid Exports Stocks at end of year: Refinery Bulk terminal Indicated domestic demand: Class I railroads, purchases 7 Public utility power plants 8 Bunker oil, foreign trade All other demands	29, 641 27, 873 8, 351 (2) (2) (3) (4) (2)	81, 507 (4) 294, 890 4 10, 037 18, 390 2, 675 17, 920 97, 746 4, 225	104,073 (*) * 446,664 * 4 10,660 18,390 2,675 47,561 125,619 12,576 57,758 13,077 34,849 303,598	27. 873 8, 351 161, 670 8 6, 491 171 32, 021 26, 374 7, 344 (2) (2) (3) (4)	97, 746 4, 225 306, 896 6 5, 918 14, 972 960 17, 490 87, 774 4, 516	125, 619 12, 576 2 468, 566 12, 409 14, 972 1, 131 49, 511 114, 148 11, 860 62, 235 17, 331 35, 841 344, 347			
	117, 449	291, 833	409, 282	10 138, 817	11 320, 937	459, 754			

¹ Subject to revision. ² Figures not available.

1 Subject to revision. 2 Figures not available.
3 Includes production by cracking: 1938, 252,252,000; 1939, 260,441,000.
4 California only. 5 Includes 616,000 barrels in California.
6 All in California—no transfers to residual fuel oil east of California.
7 Interstate Commerce Commission; total includes Diesel fuel.
8 Federal Power Commission. 9 337,756,000 on old basis, comparable with 1938.
10 131,935,000 on old basis, comparable with 1938.
11 321,228,000 on old basis, comparable with 1938.

There are two sets of refinery statistics for fuel oils in 1939, one on the old basis comparable with 1938, and one on a new basis, which considers transfers of light grades of crude petroleum to the gas-oil and distillate fuel-oil account in refinery districts east of California and changes in bulk-terminal stocks, also in refinery districts east of California. Bulk-terminal stocks of fuel oil in California have been included in refinery stocks since 1924. The crude petroleum transferred to distillate fuel oil has previously been part of the fuel-and-loss item of the crude-oil account. The transfer of 5,875,000 barrels of crude oil to the distillate fuel-oil total on the new basis reduces "fuel and losses" under crude oil by that quantity and increases the indicated domestic demand for distillate fuel oils by the same amount. Furthermore, the changes in bulk-terminal stocks of distillate fuel oils in refinery districts east of California in 1939 adds an additional 1,007,-000 barrels (the net reduction in these stocks in 1939) to the indicated domestic demand for distillate fuel oils. Bulk-terminal stocks of residual fuel oil held east of California increased by 291,000 barrels in

¹⁰ By A. T. Coumbe, Petroleum Economics Division, Bureau of Mines.

1939, therefore the indicated domestic demand for residual fuel oil is reduced by the same quantity on the new basis. The following table, in thousands of barrels, shows the transition from the old to the new basis in 1939 and the crude-oil and fuel-oil items involved in the change.

Domestic demand for fuel oil on old and new bases, 1938-39.

	1938	19	939
	1938	Old basis	New basis
Gas oil and distillate fuel oil: Transfers in California Transfers east of California Change in terminal stocks. Domestic demand Residual fuel oil: Transfers in California 1 Change in terminal stocks. Domestic demand Crude oil: Losses and other crude used as fuel	623 (3) 117, 449 10, 037 (2) 291, 833 2 16, 751	616 (2) (3) 131, 935 5, 918 (1) 321, 228 18, 691	5, 875 -1, 007 138, 817 5, 918 +291 320, 937 12, 816

All transfers east of California classified as light fuel oil.
 Available only for lease and pipe-line fuel totaling 3,382,000 barrels in 1938 and 3,577,000 barrels in 1939.
 These amounts included as "Losses and crude used as fuel" in this table.

Generally improved economic conditions resulted in higher domestic requirements for fuel oils, and deliveries increased from 409,282,000 barrels in 1938 to 453,163,000 (459,754,000 on the new basis) in 1939, a gain of 11 percent. The domestic demand for distillate or light fuel oils, which changed little in 1938 over 1937, moved upward to a new high of 131,935,000 barrels (138,817,000 on the new basis) in 1939, an increase of 12 percent over the 1938 total of 117,449,000 barrels. more active market for residual or heavy fuel oils, associated with higher industrial consumption, brought the domestic requirements to 321,228,000 barrels (320,937,000 on the new basis) in 1939, a 10-percent gain over the 291,833,000 barrels credited in 1938 and but little below the record demand of 325,514,000 barrels reported in 1937.

Sales of gas oil, and fuel oil 1 and of range oil 1934-38, by uses 2 [Thousands of barrels]

Use	1934	1935	1936	1937	1938
Gas oil and fuel oil: Railroads. Ships' bunkers (including tankers). Gas and electric power plants. Smelters and mines. Manufacturing industries. Heating oils. Fuel oil (#1) sold as range oil. U. S. Navy, Army transports, etc. Oil-company fuel. Miscellaneous uses. Total United States. Exports and shipments to noncontiguous Territories. Total. Range oil.	23, 143 2, 682 54, 260	55, 651 74, 581 23, 647 2, 448 61, 128 76, 853 (*) 10, 428 48, 116 13, 133 365, 985 28, 948 394, 933 21, 526	61, 727 80, 324 26, 799 3, 768 67, 558 99, 257 (2) 9, 241 46, 021 13, 714 408, 409 34, 883 443, 292 27, 292	69, 458 84, 990 26, 510 } 474, 798 4 116, 617 2, 747 9, 135 42, 924 4 14, 624 4 441, 803 45, 433 4 487, 236 4 32, 259	57, 829 74, 266 27, 567 60, 038 118, 332 2, 902 11, 756 43, 517 11, 652 407, 850 47, 561 455, 411 33, 707

Includes some crude oil burned as fuel. Figures for 1939 not yet available. Figures not available. · Revised figures.

The market for distillate fuel oils was at the same level in the final quarter of 1938 as in the corresponding period of 1937; however, a review of light fuel-oil deliveries in 1939 by quarters shows a marked upward trend in demand. In the first two quarters of 1939, sales of distillate fuel oils were approximately 20 percent above the requirements in the first half of 1938. The market slumped sharply in the third quarter of 1939, yet the total for the period is 4 percent above that for the same months of 1938. There was some improvement as the heating season opened, and the final quarter of 1939 closed with a 7-percent gain compared with the year-end period of 1938. An expanding market for residual fuel oils, noticeable in the final quarter of 1938, gained momentum in the early months of the new year and reached gains as high as 13 percent in the second and third quarters of 1939 over similar periods of 1938. The year closed with a 7-percent rise in the fourth quarter of 1939 over the same quarter of 1938.

Preliminary statistics released by several Government agencies indicate a higher demand for fuel oils in 1939 compared with 1938. Bunker loadings of 35,841,000 barrels for vessels in foreign trade are 3 percent above the 1938 total, according to the Bureau of Foreign and Domestic Commerce, Department of Commerce, while reports of the Interstate Commerce Commission indicate fuel-oil and Dieselfuel purchases of 62,235,000 barrels by class I railroads, a gain of 8 percent over 1938 requirements (57,758,000 barrels). Public utility electric-power plants bought 17,331,000 barrels of fuel oil in 1939, a total nearly a third greater than the 1938 purchases of 13,077,000 barrels, as revealed by figures compiled by the Federal Power Com-If these known items are deducted from the indicated domestic demand of 453,163,000 barrels (459,754,000 barrels on the new basis) there remain 337,756,000 barrels to supply the various other fuel-oil markets, such as manufactured-gas plants, bunkers for coastwise vessels, oil fuel for mines, smelters, and manufacuring establishments, space heating, Government requirements for the Army and Navy, and oil-company fuel, a total comparable to 303.-598,000 barrels for the same group of consumers in 1938. tribution of fuel-oil deliveries for 1939 will not be available until the annual survey of fuel-oil sales by distributors is completed; it is believed, however, that all principal use items will show a gain for the year.

Figure 11 shows graphically the fluctuations in fuel-oil sales by principal uses during 1929-38. The sales cover all grades of light and

heavy fuel oils, including kerosene delivered as range oil.

Exports of fuel oils, including shipments to noncontiguous Territories of the United States, were of record volume in 1939 for the second consecutive year, when the overseas trade totaled 49,511,000 barrels, a gain of 4 percent over the 1938 quantity (47,561,000 barrels). Expansion in the fuel-oil export trade was confined to the distillate grades, which increased 8 percent from 29,641,000 barrels in 1938 to 32,021,000 in 1939. Exports of 17,490,000 barrels of residual fuel oils in 1939 show little change from the 1938 quantity—17,920,000 barrels.

Larger exports of distillate fuel oils in 1939 compared with 1938 are associated with increased takings by the United Kingdom, Netherlands, Sweden, Canada, Panama Canal Zone, Japan, and the Philippines. The larger light-fuel-oil purchases by the above-named countries were partly offset by smaller consignments in 1939 to Belgium, Denmark, Germany, and the Netherland West Indies. Japan re-

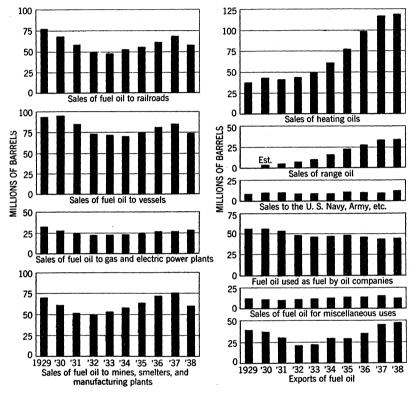


FIGURE 11.-Sales of fuel oils and range oil, 1929-38, by uses.

tained first place as the most important export customer for distillate fuel oils, receiving 6,020,000 barrels in 1939 compared with 5,297,000 in 1938.

Gains made in residual or heavy fuel oil exports in 1939 over 1938 to Italy, Spain, Japan, and the Philippines were wiped out by the smaller quantities required in 1939 by the United Kingdom, Netherlands, Canada, Cuba, Mexico, and Chile. Exports of residual fuel oil to Cuba had increased from 247,000 barrels in 1937 to 1,356,000 in 1938, and the larger share probably was intended for reexport; these declined to 322,000 barrels in 1939.

Comparative analyses of statistics for gas oil and distillate fuel oils in the United States, 1938-39, by months and districts [Thousands of barrels]

			Viola	. (na=	Tı	ansfer	S										
·	Prodi	iction	Ce	l (per- nt)	East of Calif. ²	California		Imports		Exports		Dom	estic den	nand .		Stocks	
	1938	1939 1	1938	1939 1	1939 1	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 1 3	1939 1 4	1938	1939 1 3	1939 1 8
By months: January February March April May June July August September October November December	13, 876 12, 144 12, 294 11, 577 12, 160 10, 784 12, 688 12, 691 13, 074 13, 820 12, 793 13, 873	14, 122 12, 709 13, 539 13, 301 12, 353 13, 530 12, 688 13, 246 12, 975 15, 017 13, 757 14, 433	14. 2 13. 8 12. 8 12. 1 12. 3 11. 5 12. 7 12. 5 13. 5 13. 7 13. 1 14. 2	14. 2 14. 5 13. 7 13. 4 11. 7 12. 9 11. 9 12. 3 12. 3 13. 5 13. 1 13. 6	535 401 407 438 478 482 467 513 515 565 551 523	94 101 55 110 28 117 80 38	13 88 73 34 38 78 103 45 47 37 20 40		44 127	2, 257 2, 151 2, 810 2, 687 2, 561 2, 980 2, 896 2, 614 2, 428 1, 574 2, 270 2, 413	1, 675 2, 131 2, 924 2, 345 4, 004 2, 839 2, 857 3, 361 3, 015 2, 756 2, 116 1, 998	12, 642 11, 651 10, 487 7, 800 7, 280 5, 591 7, 926 7, 966 8, 655 10, 206 11, 551 15, 694	15, 727 13, 712 12, 304 10, 047 7, 357 7, 198 8, 012 8, 229 9, 271 11, 365 12, 433 16, 280	16, 963 14, 767 13, 923 10, 856 7, 523 7, 187 6, 938 8, 157 10, 010 10, 908 14, 417 17, 168	21, 543 19, 885 18, 882 19, 972 22, 385 24, 699 26, 620 28, 841 30, 860 33, 017 32, 069 27, 873	24, 650 21, 731 20, 115 21, 058 22, 088 25, 659 27, 581 29, 282 30, 018 30, 951 30, 179 26, 374	32, 300 28, 727 25, 899 26, 471 27, 813 31, 877 35, 340 37, 626 38, 138 40, 093 37, 888 33, 718
Total United States	151,774	161, 670	13.0	13. 1	5, 875	623	616		171	29, 64,1	32, 021	117, 449	131, 935	138, 817	27, 873	26, 374	33,718
By districts: East Coast Appalachian Ind., Ill., etc. Okla., Kans., etc. Tex. Inland Tex. Gulf Coast La. Gulf Coast Ark. & La. Inland Rocky Mountain California	2, 446 17, 397 11, 163 4, 217 47, 529 7, 450 2, 341 1, 689 28, 983	30, 638 2, 868 18, 963 10, 813 2, 903 54, 362 7, 706 1, 585 1, 809 30, 023	15. 8 6. 2 10. 7 10. 0 6. 3 15. 4 15. 9 9. 7 6. 8 14. 5	15. 9 6. 6 9. 9 9. 6 4. 4 16. 3 15. 9 6. 4 6. 9 15. 1	655 527 1,656 1,514 859 228 436	623	616		91	140 15 4 2,828 12,024 3,331 34 11,265	146 48 5 3, 628 13, 736 2, 238 47 12, 173	(6)	(6)	(0)	5,821 270 3,427 1,443 395 5,462 1,043 268 271 9,473	4, 493 234 3, 681 1, 532 348 5, 044 908 194 278 9, 662	10, 381 387 4, 372 1, 544 348 5, 608 935 203 278 9, 662
Total United States	151, 774	161, 670	13. 0	13. 1	5, 875	623	616		171	29, 641	32, 021	117, 449	131, 935	138, 817	27, 873	26, 374	33, 718

Subject to revision. Not available prior to 1939.
 For comparison with 1938.
 New basis including transfers east of California and changes in bulk-terminal stocks east of California.
 Includes bulk-terminal stocks east of California—bulk-terminal stocks in California included in refinery stocks since 1924.
 Not available.

Larger production of both distillate and residual fuel oils can be credited almost entirely to the running of more crude oil to stills in 1939 compared with 1938. The refinery throughput of crude petroleum increased from 1,165,015,000 barrels in 1938 to 1,237,-840,000 in 1939, a gain of over 6 percent, in contrast to a decline of nearly 2 percent in 1938 from 1937. The distillate fuel-oil output of 161,-670,000 barrels in 1939 is 6 percent above the 1938 yield—151,774,000 barrels. Only a small portion (about 1.2 million barrels) of the 9.9-million-barrel increase in production in 1939 over 1938 can be attributed to a change in the percentage of yield, as this factor varied only slightly, or from 13.0 percent in 1938 to 13.1 percent in 1939. Refiners, with a more active market for residual fuel oils, increased the production from 294,890,000 barrels in 1938 to 306,896,000 in 1939, or 4 percent, in contrast to a contracted output of over 5 percent in 1938 compared with 1937. The pressure for light heating oils in recent years explains in part the declining yield for residual fuel oils. which dropped to 24.8 percent in 1939 compared with 25.3 percent in 1938.

The California production of 30,023,000 barrels of distillate fuel oil during 1939 was about 4 percent over the 1938 quantity, while east of California the yield of 131,647,000 barrels of light fuel oil in 1939 was 7 percent above the 1938 output. In districts that make important quantities of light fuel oils, refineries in the Texas Gulf increased their production from 47,529,000 barrels in 1938 to 54,362,000 in 1939, a gain of 14 percent, while plants in the Indiana-Illinois and East Coast districts reported greater yields of distillate fuel oils by 9 and 7 percent, respectively, in 1939 compared with 1938. The output of light fuel oil declined in the Oklahoma-Kansas, Texas Inland, and Arkansas-Louisiana Inland refinery districts in 1939 over 1938. output of residual fuel oils in California continued the downward trend of recent years and dropped from 86,041,000 barrels in 1938 to 80,982,000 in 1939, a loss of 6 percent. All refinery areas east of California turned out more heavy fuel oil in 1939 than in 1938 except the Oklahoma-Kansas and Texas Inland districts, where the declines were nominal. The production of residual fuel oil in the Indiana-Illinois district, where there was a great expansion in crude petroleum production and in refinery runs in 1939, increased from 23,319,000 barrels in 1938 to 28,962,000 in 1939, a gain of 24 percent. The yield of 55,392,000 barrels of heavy fuel oil in the East Coast area during 1939 represents an increase of 9 percent over the 1938 total, while a gain of 6 percent in the Texas Gulf Coast district to a total output of 78,391,000 barrels in 1939 places the latter area very near California in importance as a source of residual fuel oil.

Comparative analyses of statistics for residual fuel oil in the United States, 1938-39, by months and districts

[Thousands of barrels]

	Prod	uction	Yield (Percent)	Trans Calif	fers in fornia	Im	ports	Ex	ports	Don	nestic de	mand		Stocks	
	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 1	1939 1 8	1938	1939 1 8	1939 1 4
By months: January February March. April May. June. July. August. September. October. November. December. Total United States.	24, 748 24, 456 22, 760 23, 542 24, 230 24, 551 25, 477 24, 573 25, 201	25, 813 21, 564 25, 040 24, 750 27, 022 24, 836 25, 644 25, 299 26, 302 27, 594 26, 088 26, 944	26. 7 27. 1 26. 4 25. 9 24. 6 24. 2 23. 6 23. 9 25. 3 25. 3 25. 3 25. 7	25. 9 24. 6 25. 3 24. 9 25. 6 23. 7 24. 0 24. 9 24. 9 24. 9 25. 5	1, 230 1, 285 1, 047 843 752 714 775 552 638 765 814 622	792 540 915 871 448 497 188 195 351 244 562 5, 918	1, 635 1, 454 1, 971 2, 016 1, 598 2, 223 1, 616 1, 605 1, 932 1, 617 1, 561 1, 837	957 984 1, 337 1, 316 2, 104 1, 935 1, 513 1, 723 1, 532 1, 012 844 15, 932	869 911 1, 521 1, 473 1, 690 1, 613 1, 790 1, 723 1, 680 1, 643 1, 270 1, 737	1, 379 925 2, 047 1, 488 1, 854 1, 144 1, 613 1, 624 1, 296 1, 116 1, 320	25, 749 23, 912 25, 599 22, 161 22, 256 22, 147 20, 470 23, 596 23, 041 25, 624 27, 532 29, 746 291, 833	28, 381 25, 117 28, 071 24, 806 25, 646 24, 747 23, 218 26, 012 26, 514 28, 475 29, 519 30, 722 321, 228	28, 443 26, 589 28, 436 24, 472 25, 047 23, 923 23, 442 25, 407 26, 966 28, 323 29, 453 31, 436 320, 937	83, 902 85, 753 86, 920 90, 893 93, 753 95, 690 99, 363 100, 431 103, 423 101, 569 97, 746	95, 548 92, 594 89, 768 90, 411 92, 485 93, 322 96, 305 95, 897 95, 051 94, 757 91, 466 87, 774	99, 711 96, 285 93, 094 94, 071 96, 744 98, 405 101, 164 101, 361 100, 063 99, 921 96, 696 92, 290
By districts: East Coast Appalachian Ind., Ill., etc Okla., Kans., etc. Tex. Inland Tex. Gulf Coast La. Gulf Coast Ark. & La. Inland Rocky Mountain California			28. 1 12. 1 14. 3 17. 2 23. 7 24. 0 22. 7 23. 6 19. 8 42. 9	28. 8 12. 4 15. 1 16. 9 22. 6 23. 5 24. 8 24. 8 40. 8	10, 037	5, 918	1, 576		741 6, 716 268	58 1, 931 3, 857 193 11, 451	(8)	(5)	(5)	7, 413 568 4,025 3,527 2,113 6,978 1,162 586 619 70,755	3, 930 494 2, 964 2, 733 2, 301 6, 462 916 566 515 66, 893	7, 976 494 3, 020 2, 733 2, 301 6, 579 1, 213 566 515 66, 893
Total United States	294, 890	306, 896	25. 3	24.8	10, 037	5, 918	21, 065	15, 932	17, 920	17, 490	291, 833	321, 228	320, 937	97, 746	87, 774	92, 299

Subject to revision.
 For comparison with 1938.
 New basis including changes in bulk-terminal stocks east of California.
 Includes bulk-terminal stocks east of California, bulk-terminal stocks in California included in refinery stocks since 1924.
 Not available.

Transfers of non-gasoline-bearing crude oil to the residual fuel-oil account in California continued downward in 1939 for the second consecutive year, or from 10,037,000 barrels in 1938 to 5,918,000 in Virtually the same conditions, such as lack of active market demand, absence of price incentive, and ample heavy fuel-oil stocks, which governed these transfers in 1938, held in 1939. There was some which governed these transfers in 1938, held in 1939. improvement in the domestic demand for heavy fuel oil in the California marketing area, from 68 million barrels in 1938 to 76 million in 1939, but with ample refinery production and stocks of heavy fuel oil on hand, transfers of crude oil to the fuel-oil account were unnecessary during 1939 in the same volume as in recent years. Furthermore, there was also lack of inducement for transfers of crude from the price angle in 1939, although the quotation for heavy fuel oil moved upward from 80 cents to 87.5 cents per barrel in the 2 closing months of the

Although transfers of heavy crude oil to the residual fuel-oil account date back to 1932 in California, light crude used as fuel does not appear in refinery statistics of that area until 1938, when 623,000 barrels were transferred to the distillate fuel-oil supply, followed by a comparable total of 616,000 barrels in 1939. Distillate fuel-oil statistics for 1939 on a new basis include transfers of 5,875,000 barrels of crude oil used as fuel in refinery districts east of California, and the domestic demand of that area is increased correspondingly. transfers of light crude oils east of California consist of the following items: 1,452,000 barrels used as fuel on leases, 2,125,000 barrels used by pipe lines, and 2,298,000 barrels consumed as industrial fuel.

Sales of gas oil and fuel oils 1 in the United States, 1934-38, by regions and States 2

ŢŢ	housands of	barrels]			
Region and State	1934	1935	1936	1937 8	1938
Pacific Coast:					
Washington	8, 485	8, 976	9, 331	11, 352	9, 241
Oregon	6,079	7, 773	9, 918	10, 879	9,308
California	63, 801	66, 627	65, 895	70, 952	59, 316
Arizona	729	2, 545	2, 585	3, 994	2,838
Nevada	664	2, 182	2, 791	3, 790	2,690
Rocky Mountain:	i				
Idaho	82	140	223	520	420
Montana	1, 221	1,676	1,652	1,802	1, 451
Wyoming	1, 264	1,418	1,549	1,799	1,654
Utah	254	260	404	508	471
Colorado.	400	464	581	644	636
New Mexico	753	835	715	561	502
North Central:					
North Dakota	199	269	294	416	442
South Dakota	353	474	536	613	777
Minnesota	2, 796	2, 986	4, 093	5, 184	4.974
Nebraska	1, 152	1, 315	1, 743	1, 955	1, 982
Iowa.	1,032	1, 378	1, 873	2, 261	2, 325
Wisconsin	2, 415	2, 992	4, 022	4, 823	4, 748
Illinois.	13, 206	15, 037	18, 351	20, 964	19, 930
Indiana	6, 199	6, 935	7, 450	7, 905	7. 824
Michigan	7, 631	8, 634	9, 000	9, 847	8, 228
Ohio.	5, 393	5, 826	7, 173	8, 030	7, 105
Kentucky	749	815	799	973	840
Tennessee	500	328	387	593	557
South Central:	000	020	٠. ا	000	001
Missouri	5, 456	6, 583	7, 605	8, 980	8, 502
Kansas	6, 693	7, 394	7, 764	7. 364	6,687
Texas	38, 368	39, 382	41, 841	43, 231	37, 672
Oklahoma	9, 836	9, 581	9, 461	9, 083	8, 269
Arkansas	2, 345	2, 544	2, 876	2,658	2, 056
Louisiana	2, 545 8, 585	10, 481	11, 614	12, 350	10, 871
		476	593	796	529
Mississippi	265 1, 174	1, 294	1, 545	1, 889	
Alabama	1, 1/4	1, 494	7 040 1	-> 00A 7	2, 113

Includes some crude oil burned as fuel.
 Figures for 1939 not yet available.
 Revised to include 2,481,000 barrels of No. 1 fuel oil sold as range_oil.

Sales of gas oil and fuel oils in the United States, 1934-38, by regions and States—Continued

Region and State	1934	1935	1936	1937	1938
New England:					
Maine	1,487	1,756	2, 328	2, 490	2, 150
New Hampshire	885	1, 176	1, 363	1, 513	1, 431
Vermont	353	393	458	566	539
Massachusetts	14, 394	17, 187	18, 829	21, 798	21, 362
Rhode Island	6,412	6, 591	6,894	7, 283	6, 839
Connecticut	4,862	5,742	7,047	7, 822	7, 482
Middle Atlantic:	7	-,	.,	.,	.,
New York	30, 367	36, 087	42, 215	43, 428	43, 389
New Jersey	30, 646	32, 554	41, 458	44, 232	42, 862
Pennsylvania	21, 871	23, 452	26, 098	26, 320	26. 213
Delaware	865	914	1, 335	1,666	1, 400
		7, 715	8, 423	9, 549	9,003
Maryland District of Columbia	1, 190	1, 509	1, 911	2, 108	2, 137
South Atlantic:	1, 100	1,000	2,011	2, 200	2, 10.
	1,808	2, 575	3, 420	3, 638	4, 824
Virginia West Virginia	576	919	840	807	912
North Carolina	334	402	504	591	699
South Carolina	549	509	591	679	757
	1, 280	1, 497	1,744	1, 787	2, 022
Georgia	7, 310	7, 387	8, 287	8,810	8, 871
Florida	7, 510	1,001	0, 201	0, 010	0,011
Total, United States	330, 321	365, 985	408, 409	441, 803	407, 850

There has been an excise tax of 21 cents a barrel on imported crude petroleum, topped crude petroleum, residual fuel oil, and gas oil since June 21, 1932. A new reciprocal trade agreement signed with Venezuela and effective December 16, 1939, lowers the tax on the above petroleum products imported from that country to 10½ cents a barrel; however, the quantity imported at the lower rate in any 1 year is limited to 5 percent of the crude oil run to stills in American refineries in the previous year. Runs to stills were 1,237,840,000 barrels in 1939; consequently 61,892,000 barrels of crude and fuel oil can be imported in 1940 at the reduced tariff, but quantities exceeding this amount are subject to the usual tax of 21 cents a barrel. Other nations as well as Venezuela are allowed the benefit of the lower excise tax on our imports of crude and fuel oil; and allotments based upon their respective shares of this trade during the first 10 months of 1939 are approximately as follows: Venezuela, 72 percent; Netherlands and colonies, 20 percent; Colombia, 4 percent; and all other foreign countries, 4 percent.

At this time it is impossible to foresee the effect of the lower tariff on fuel oil—10½ cents per barrel—on the quantity brought into this country for domestic use. Imports of duty-paid residual fuel oil rose sharply in December 1939 and in January and February 1940, but it is uncertain whether this expansion was due to the lower rate of duty or to the unusually heavy winter demand and greatly depleted stocks in eastern refinery areas. Dwindling American exports are now forcing a larger portion of the fuel-oil production on local markets.

No distillate fuel oils were received from foreign sources in 1938; however, small quantities totaling 171,000 barrels were imported in January and February 1939. Imports of residual fuel oil decreased from 21,065,000 barrels in 1938 to 15,932,000 in 1939. Heavy fuel oil brought into the country under bond for ships' bunkers or for refining into products for reexport decreased from 18,390,000 barrels in 1938

to 14,972,000 in 1939, or 19 percent, while duty-paid fuel oils intended for domestic consumption dropped from 2,675,000 barrels in 1938 to 960,000 in 1939, or nearly two-thirds in volume. Most of the imported heavy fuel oil in 1939, as well as in 1938, was shipped from refineries in the Netherland West Indies and was entered in the New

York customs district.

Data covering fuel oils held at bulk terminals for refinery districts east of California are not available before 1939, but beginning January 1, 1939, this information was reported and calculations of the indicated domestic demand for fuel oils on a new basis consider changes in bulk-terminal stocks as well as in refinery stocks. A net decline of 1,007,000 barrels in bulk-terminal stocks held east of California, plus a transfer of 5,875,000 barrels from crude oil to the fuel-oil account previously mentioned, increases the indicated domestic demand for distillate fuel oils in 1939 from 131,935,000 barrels, as originally reported, to 138,817,000 barrels on the present basis. Residual fuel oils stored at bulk terminals increased by 291,000 barrels during 1939; consequently the domestic demand for heavy grades in 1939 is decreased correspondingly or from 321,228,000 barrels on the old basis to a revised total of 320,937,000 barrels.

Increased domestic requirements and exports were instrumental in reducing refinery fuel-oil stocks by nearly 11.5 million barrels in 1939, or from 125,619,000 barrels held at the end of 1938 to 114,148,000 on December 31, 1939. Distillate fuel-oil inventories declined 1.5 million barrels (5 percent) during 1939, or from 27,873,000 barrels at the close of 1938 to 26,374,000 reported 1 year later. Residual fuel-oil stocks were drawn upon at a relatively greater rate in 1939 and were reduced by 10 percent (nearly 10 million barrels), or from 97,746,000

barrels in 1938 to 87,774,000 in 1939.

Monthly totals show that light fuel-oil stocks for January 1939—24,650,000 barrels—were higher by over 3 million barrels than in the first month of 1938. May 1939 stocks dipped below quantities reported in the same month of 1938, but after the heating-oil season the usual summer build-up raised the June-through-August 1939 inventories again above those in the same months of 1938. In the fall of 1939 the demand for heating oils forced stocks of light fuel oils down below the comparative totals reported for the final 4 months of 1938. Stocks of residual fuel oils in the first quarter of 1939 exceeded quantities in storage in the same period of 1938; but beginning in April 1939 heavy fuel-oil inventories were consistently liquidated, and the year's change netted a reduction of 9,972,000 barrels in stocks.

The great reduction in stocks of fuel oil was limited to refinery districts east of California, where inventories declined by 7.8 million barrels (17 percent) in 1939 compared with the quantities held at the end of 1938. Heavy fuel oils stored in eastern areas were reduced by 6.1 million barrels (nearly 23 percent) in 1939, while light grades declined 1.7 million barrels (over 9 percent). All eastern refinery districts reported diminished residual fuel-oil stocks in 1939 except

Texas Inland, where the increase was relatively small. The most pronounced decline in residual stocks in 1939 was reported for the East Coast, where heavy grades contracted nearly one-half or from 7,413,000 barrels in 1938 to 3,930,000 in 1939. The Indiana-Illinois, Oklahoma-Kansas, and Rocky Mountain refinery districts netted minor gains in light fuel-oil stocks during 1939, but all other eastern areas showed losses. As with residual grades, declines in stocks of distillate fuel oils were most outstanding in the East Coast, where year-end supplies in 1939 were about 23 percent below the comparable 1938 total. The California marketing area reported a 2-percent gain in stocks of light fuel oil during 1939, while residual fuel-oil inventories were reduced by 5 percent or from 70,755,000 barrels in 1938 to 66,893,000 at the end of 1939.

Shipments of heavy fuel oil from California to the Atlantic coast, revived in October 1938 after a lapse of about 4 years, continued throughout 1939, although California prices plus tanker rates did not seem to favor this traffic. West coast residual fuel oils reaching eastern markets totaled 2,289,000 barrels received in 1939 compared with 338,000 barrels in 1938. The movement of California light fuel oils to the East coast is unimportant; however, it increased from

321,000 barrels in 1938 to 633,000 in 1939.

Active demand and dwindling stocks in eastern markets during 1939 noticeably stimulated the shipments of fuel oils from the Gulf area to Atlantic ports, and this expanded trade held in spite of greatly increased tanker rates during the closing months of the year. The Gulf-to-Atlantic movement of light fuel oils increased from 29,187,000 barrels in 1938 to 34,701,000 in 1939, a gain of 19 percent, while the traffic in residual fuel oils over the same route in 1939 (65,446,000 barrels) is 15 percent above the 1938 total (56,987,000 barrels).

In sympathy with rapidly rising quotations by tankers entering the European war zone, Gulf coast to North Atlantic tanker rates increased severalfold from August to the close of 1939. The tanker rate per barrel for light fuel oils rose from a normal slack-season quotation of 17 cents in August 1939 to 34 cents by the end of September and then moved rapidly upward to an average of 65.5 cents by the end of December, a rate more than double the 30.5 cents quoted for December 1938. Tanker rates for heavy fuel oils in the same movement went from 17 cents per barrel in August to an average of 53 cents in December 1939 compared with 25.5 cents in December 1938.

The average price for crude petroleum dropped from \$1.15 per barrel in 1938 to \$1.00 in 1939; this lower value for crude oil was indicated in the average quotation for representative grades of fuel oils, which although in better demand show lower average prices for 1939 than for 1938. Light distillate fuel oils at Oklahoma refineries, Bunker C fuel oil in California, and Diesel oil for ships' bunkers in all marketing areas were at lower annual averages in 1939 than in 1938. The initial price of \$0.95 per barrel, for Bunker C at New York, influenced by smaller stocks and rising tanker rates, turned upward in May to an annual average of \$1.04 or to the same level as for 1938. Quotations for Bunker C at Gulf ports in 1939 averaged \$0.83 per barrel or 2 cents above the 1938 price.

Monthly average prices of kerosene and fuel oil in the United States, 1938-39 1

								-	<u> </u>	·	ы		Į.
	January	February	д					st	September	je.	November	December	Average year
	na	pl	March	April	May	June	July	August	l ad	October	000	8	Zer.
	Ja	F	Σ	4	Z	r r	r.	Ā	SZ .	ŏ	Z	Ã	Ā
1938													
41°-43° gravity w. w. kerosene at refineries, Oklahoma													
cents per gallon Kerosene, tank-wagon at Chi-	4.31	4. 28	4.22	4. 19	4. 19	4. 23	4.31	4. 20	4.09	4.04	4.06	4.09	4. 19
cagocents per gallon No. 1 straw distillate at refineries.	1			1			1	1	1	10. 10	10.00	10.00	10.31
Oklahomacents per gallon 28°-30° gravity-zero distillate at refineries, Oklahoma				3.81		(2)	(2)	(2)	(2)	3.75		3. 77	
cents per gallon Bunker C for ships:	3.69	3. 66	3.56	3.39	3. 31	3.31	3. 31	3.34	3.38	3.38	3.38	3. 31	3.42
New York dollars per barrel Gulf coast do do	1. 25 . 95	1. 25 . 95			1.05 .80			.95 .75			.95 .75		
California do Diesel oil for ships:	.99	.99			.91		.89	.84			.80		
New York dollars per barrel Gulf coast do do	2.14	2. 10 1. 90			1.75 1.63	1.73 1.65	1.66	1.73 1.59					
Californiado				1.64	1.58	1.54	1.54	1.54	1.54				
1939													
41°-43° gravity w. w. kerosene at refineries. Oklahoma													
cents per gallon Kerosene, tank-wagon at Chi-	4.06	4.06	4.06	4.06	4.05	4.00	3.96	3.89	3.88	3.88	3.88	3.91	3. 97
cagocents per gallon	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
No. 1 straw distillate at refineries. Oklahoma													
cents per gallon 28°-30° gravity-zero distillate at	3. 63	3. 53	3. 50	3. 50	3. 50	3. 38	3.38	3. 33	3. 25	3, 25	3. 39	3. 44	3. 42
refineries, Oklahoma cents per gallon	3. 30	3.06	. 3. 03	3.00	2. 93	2. 88	2.88	2. 94	3.06	3.06	3. 10	(3)	
Bunker C for ships: New York_dollars per barrel	. 95	. 95	. 95	. 95	. 98	1.05	1.05	1.05	1.09	1. 15	1, 15	1. 19	1.04
Gulf coastdo	. 75	. 75	. 75	. 75	. 79	. 83	. 83	.81	. 86	. 95	. 95	.95	. 83
Californiado Diesel oil for ships:	.80	. 80	. 80	. 80	. 80	. 80	. 80	.80	. 80	. 80	. 84	. 88	. 81
New York_dollars per barrel	1.75	1. 68	1.65	1.65	1.66	1.68	1.68	1.68	1.70	1.86			1.74
Gulf coastdo	1.55	1.48 1.45	1.45	1.45	1.45	1.45	1.45		1.51	1.70	1.70		
Californiado	1.45	1, 45	1. 45	1. 40	1.40	1. 40	1. 59	1. 55	1. 40	1.40	1. 40	1.40	1.41

¹ National Petroleum News.

Scarcity of Bunker C fuel oil on the Gulf and Atlantic coasts forced up the New York and Boston prices 10 cents a barrel in early May. Suppliers were slow in adopting the higher quotation, and it was well into June before the new price of \$1.05 for North Atlantic points and of \$0.80 to \$0.85 per barrel for the Gulf area was in full effect. Uncertain supplies, some improvement in crude prices, oil-field shut-downs, and the unsettled conditions in Europe moved fuel-oil prices upward at Gulf ports late in August 1939, and a top quotation of \$0.90 per barrel for Bunker C was general by the middle of September. Prices for heavy oil at North Atlantic supply points responded, and a price of \$1.15 per barrel gradually became established. The price of Bunker C in the Gulf district increased again, and by the second week in October 1939 was quoted at an average of \$0.95 per barrel; it remained at this level to the end of the year. Gulf to North Atlantic tanker rates, which advanced from 17 cents per barrel in August to about 55 cents in December 1939, were responsible for an increase from \$1.15 to

Figures not quoted.
Quotations discontinued Nov. 13.

\$1.50 per barrel in Bunker C prices at New York during the closing week of the year. Bunker C at California seaboard points remained at \$0.80 per barrel until early November 1939, when increased demand forced the price to \$0.85-\$0.90 per barrel by the end of the year.

Average retail prices for heating oils, as represented by quotations for No. 2 grade on the Chicago and New York markets, show net fractional advances in 1939 over 1938, according to data compiled by the Bureau of Labor Statistics, United States Department of Labor. The price of No. 2 heating oil in Chicago, which was 7.15 cents per gallon in December 1938, averaged 7.44 cents in the spring and summer months of 1939 and advanced to 7.62 cents for the quarter closed September 15. A lower average price of 7.47 cents per gallon for December 1939 represents only a slight net change for the year. The average retail price of No. 2 heating oil in New York dropped from 6.22 cents per gallon in March to 5.87 cents in June 1939. Some tightness in the supply, higher tanker rates, and better demand pushed the average price to 6.38 cents in September and to 6.69 cents in December 1939 compared with 6.60 cents in December 1938.

LUBRICANTS

Domestic demand for lubricants increased 11 percent, or from 21,233,000 barrels in 1938 to a new record of 23,613,000 in 1939. Exports increased 27 percent—from 9,417,000 to 11,981,000 barrels. These increases, amounting to 16 percent for the total demand, resulted in material advances in the prices of all lubricants, as well as Pennsylvania Grade crude oils. The increase in domestic demand is attributable largely to the expanded industrial activity in 1939, which carried the consumption of lubricants for industrial purposes well above the 1937 record.

The distribution of domestic demand for lubricants, by uses, has been revised on the basis of new studies by the American Petroleum Institute of the ratio of oil to gasoline consumption by automobiles.¹¹

Estimates based upon the American Petroleum Institute study indicate that the types of lubricants used in 1939 were divided as follows:

Automotive consumption of lubricants in 1939 1

[Thousands of barrels]

Use	Passenger cars	Trucks	Busses
Crank case oil	7 , 650 550	2 , 036 197	219 39
Total lubricating oilsChassis greases	8, 200 477	2, 233 98	258 11
Total lubricants	8, 677	2, 331	269

¹ Subject to revision.

¹¹ American Petroleum Institute, Statistical Bulletin: Vol. 21, No. 7, February 7, 1940.

Domestic demand for lubricating oils, 1930-39 1 [Thousands of barrels]

Year		Auton				
I ear	Passenger cars	Trucks	Busses	Total	Industrial	Total demand
1930	9, 708 9, 599 8, 340 7, 852 7, 995 7, 950 8, 297 8, 453 8, 152 8, 200	2, 192 2, 144 1, 839 1, 805 1, 922 1, 993 2, 165 2, 285 2, 168 2, 233	216 225 220 212 227 241 254 267 259 258	12, 116 11, 968 10, 399 9, 869 10, 144 10, 184 10, 716 11, 005 10, 579 10, 691	9, 473 8, 100 6, 215 7, 283 8, 280 9, 477 11, 607 12, 318 10, 654 12, 922	21, 586 20, 066 16, 614 17, 155 18, 429 19, 666 22, 329 23, 329 21, 235 23, 613

^{1 1930-38} revised; 1938 and 1939 subject to revision.

The production of lubricating oils rose from 30,826,000 barrels in 1938 to 35,036,000 in 1939, somewhat less than the 1937 figure of 35,321,000 barrels. The East Coast district produced 25.8, the Texas Gulf Coast district 24.1, and the Appalachian district 17.5 percent. The Louisiana Gulf Coast district is noteworthy because its 4.3 percent of total production is the highest reached so far in an upward trend that started from a 1.3-percent share in 1932.

Stocks of lubricating oils responded to the heavy demand by dropping from 7,695,000 barrels on December 31, 1938, to 7,142,000 on December 31, 1939. The decrease in stocks was striking in the Inland Texas and the Appalachian districts, where it was 67 and 36 percent, respectively, bringing lubricating-oil inventories to the lowest levels in a decade, while Texas Gulf Coast stocks fell 15 percent. Lubricating-oil stocks increased in the Oklahoma-Kansas, Louisiana Gulf Coast, Inland Louisiana-Arkansas, and California districts.

Comparative analyses of statistics for lubricants in the United States, 1938–39, by months and districts

	Production (thousands of barrels)			ield cent)	der (thou	nestic nand usands arrels)	(thou	ocks isands arrels)
	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 1
By months: January January March April May June July August September October November December Total United States	2, 468 2, 697 2, 530 2, 595 2, 378 2, 631 2, 615 2, 632 2, 535 2, 384	2, 527 2, 522 2, 664 2, 672 2, 850 2, 755 3, 056 2, 854 3, 575 3, 277 3, 478	2.8 2.8 2.6 2.6 2.5 2.7 2.6 2.5 2.7 2.6 2.6 2.5	2.5 2.9 2.7 2.7 2.7 2.6 2.8 3.1 3.3	1, 471 1, 305 2, 195 1, 587 1, 723 1, 605 1, 844 2, 002 2, 127 1, 805 1, 738 1, 831	1, 609 1, 653 1, 987 1, 770 2, 132 1, 902 1, 982 1, 963 2, 207 2, 656 1, 927 1, 825 23, 613	8, 006 8, 363 8, 210 8, 290 8, 255 8, 114 8, 194 7, 969 7, 605 7, 718 7, 817 7, 695	7, 762 7, 951 7, 800 7, 886 7, 630 7, 427 7, 179 7, 069 6, 704 6, 639 7, 142 7, 142
By districts: East Coast Appalachian Indiana, Illinois, Kentucky, etc. Oklahoma, Kansas, and Missouri Texas Inland Texas Gulf Coast Louisiana Gulf Coast Arkansas and Louisiana Inland Rocky Mountain California	5, 763 2, 609 2, 962 213 7, 628 1, 097 452 205 2, 284	9, 055 6, 128 3, 111 3, 100 221 8, 454 1, 504 538 180 2, 745	4. 2 14. 7 1. 6 2. 7 . 3 2. 5 2. 3 1. 9 . 8 1. 1	4.7 14.0 1.6 2.8 .3 2.5 3.1 2.2 .7	(3)	(2)	2, 230 910 577 565 64 1, 810 192 44 101 1, 202	2, 237 579 529 602 21 1, 545 233 62 88 1, 246
Total United States	30, 826	35, 036	2.6	2.8	21, 233	23, 613	7, 695	7, 142

Subject to revision.

² Figures not available.

The skyrocketing of lubricating-oil prices was one of the sensational developments during 1939. Quotations for many Pennsylvania Grade oils advanced more than 100 percent in distinct contrast with their lethargy during 1938. The advance in prices of Mid-Continent grades, although not as large as in Pennsylvania, was material. The two grades quoted in the accompanying table rose 37 and 60 percent. The Gulf Coast oils benefited least, the range of their price advances being only between 17 and 24 percent. Nearly all these increases were attained during the latter part of the year, as prices remained dormant or even decreased until August.

Increased prices for lubricants were shown in prices for Pennsylvania Grade crude oil; Bradford crude, for example, rose more than a dollar—

from \$1.68 to \$2.75 per barrel.

Average monthly refinery prices of five selected grades of lubricating oils, 1938-39, in cents per gallon ¹

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Av- er- age
1938 Oklahoma:													
200 viscosity, No. 3 color, neu- tral	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 50	10. 25	10. 25	10. 25	10. 44
150-160 viscosity at 210°, bright stock, 10-25 pour test Pennsylvania:	15. 10	15. 25	15. 25	14. 75	14. 50	14. 50	14. 50	14. 50	14. 50	14. 50	14. 50	14. 50	14. 70
200 viscosity, No. 3 color, neutral, 420-425 flash, 25 pour test	17. 2 5	17. 2 5	17. 2 5	16. 31	14. 40	13. 00	13. 00	14. 15	15. 50	16. 05	16. 00	15. 63	15. 48
600 steam-refined, cylinder stock, filterable	1	4	1	1	I .		1		8. 25 7. 75	l .	1	i	1
2½-3½ color, neutral	8.50	8. 25	8. 19	8.00	8.00	1.73	1. 10	"."				"	
Oklahoma: 200 viscosity, No. 3 color, neu- tral		10, 25	10. 25	10. 25	10. 25	10. 25	10. 25	10. 13	10. 59	13. 25	14. 00	14. 00	11. 14
stock, 10-25 pour test Pennsylvania:	14. 50	14. 25	14. 25	14. 25	14. 25	14. 25	14. 25	14. 25	15. 69	21. 55	23.06	23. 25	16. 48
200 viscosity, No. 3 color, neutral 420-425 flash, 25 pour test	15. 20	15. 44	15. 81	16. 41	16. 75	16. 75	16. 70	17. 50	22. 13	28. 10	28. 88	30. 75	20. 03
600 steam-refined, cylinder stock, filterable	1		1	1	1			ı	12. 13	1	1		1
2½-3½ color, neutral	7. 68	7. 63	7.63	7. 6	7. 6	7. 63	7. 63	7.50	7.94	8.83	9. 13	9. 13	7.9

¹ National Petroleum News.

OTHER PRODUCTS

WAX

Domestic demand for wax rose 46,928,000 pounds, or from 278,532,000 pounds in 1938 to 325,460,000 in 1939—the greatest demand since 1933. Exports also increased 31,217,000 pounds to 232,664,000, while production increased only 29,120,000 pounds to 464,520,000; in consequence, stocks dropped from 129,340,000 pounds to 75,648,000, the lowest (except for 1933) in more than a decade.

Paraffin wax is one of the most widely used petroleum products; it is employed in numerous ways by cosmeticians and confectioners and has many functions in munitions plants. The largest quantities, however, are consumed in the manufacture of waxed paper, paper

cartons, and candles. The practice of marketing milk and other products in waxed-paper cartons, which has seen rapid development

recently, is one of the factors in the increased demand for wax.

Prices responded to the expanding demand and depleted stocks of wax; for Pennsylvania Grade crude scale wax these almost tripled during the year. Early in January the quotations for this wax were 2.32 cents per pound and in December had risen to 6.75 cents. The gain in price for fully refined wax on the Chicago market was not so great, being only 1.90 cents for most grades, although the 122°–124° rose from 4.00 to 6.10 cents.

Comparative analyses of statistics for wax in the United States, 1938-39, by months and districts

[Thousands	of	pounds]	
------------	----	---------	--

	Produ	Production		estic and		Stocks			
	1000		1000	10001	Crude	scale	Refi	ned	
	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 1	
By months: January. February. March April May. June. July. August. September. October. November December. Total United States.	34, 720 39, 760 31, 640 35, 560 37, 800 30, 240 31, 920 36, 400 42, 000 37, 520 36, 120	35, 280 33, 320 44, 800 35, 000 34, 440 28, 840 31, 080 40, 320 45, 080 48, 440 48, 440	32, 148 23, 130 25, 272 28, 339 25, 755 24, 132 20, 743 22, 619 19, 303 20, 163 19, 865 17, 063	20, 642 27, 166 20, 495 14, 597 28, 533 19, 589 16, 897 20, 503 32, 651 40, 567 39, 849 43, 971	104, 462 110, 562 112, 123 107, 903 107, 540 107, 611 105, 492 102, 690 97, 775 92, 900 93, 618 90, 251	87, 729 79, 747 79, 803 80, 396 77, 218 81, 592 78, 155 77, 229 67, 552 61, 860 60, 343 56, 527	41, 167 38, 261 38, 342 36, 723 33, 286 30, 649 30, 419 31, 413 31, 243 36, 026 38, 154 39, 089	40. 898 37, 964 37, 734 38, 905 36, 707 30, 912 31, 167 30, 944 22, 032 19, 287 21, 026 19, 121	
By districts: East Coast	196, 560 82, 880 31, 640 30, 800 1, 960 60, 200 19, 600	189, 840 97, 160 38, 080 31, 920 2, 800 71, 120 22, 400	(2)	(2)	30, 790 14, 975 19, 076 1, 649 260 774 642 22, 085	22, 636 14, 096 8, 275 2, 555 207 774 871 7, 113	15, 447 1, 824 2, 674 1, 261 15, 489 1, 175 1, 219	6, 363 872 1, 703 1, 207 5, 743 1, 986	
Total United States	435, 400	464, 520	278, 532	325, 460	90, 251	56, 527	39, 089	19, 121	

¹ Subject to revision.

Average monthly refinery price of 122° to 124° white crude scale wax at Pennsylvania refineries, 1935-39, in cents per pound 1

Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Average for year
1935	3. 08	2. 83	2. 28	2. 13	2. 13	2. 13	2. 13	2. 00	2. 07	2. 13	2. 88	2. 33	2. 29
1936	2. 33	2. 40	2. 57	2. 58	2. 41	2. 34	2. 38	2. 39	2. 43	2. 43	2. 43	2. 45	2. 43
1937	2. 53	2. 65	2. 68	2. 69	2. 73	2. 88	2. 95	2. 96	2. 95	2. 98	2. 98	2. 91	2. 82
1938	2. 52	2. 13	2. 02	1. 93	1. 93	2. 17	2. 29	2. 37	2. 40	2. 39	2. 33	2. 32	2. 23
1939	2. 39	2. 49	2. 60	2. 73	2. 96	3. 00	2. 95	2. 88	3. 47	4. 95	6. 56	6. 75	3. 64

¹ National Petroleum News.

⁹ Figures not available.

COKE

Domestic demand for petroleum coke totaled 1,422,100 short tons in 1939 compared with 1,117,700 in 1938. Exports established a record of 285,800 tons, which was 130,200 tons (84 percent) above the 1938 figure—155,600 tons. Somewhat more than half of the coke exports go to Canada, and Japan, France, and Norway come next in order of importance. By far the greatest proportion of the domestic coke demand is consumed as fuel, and the next largest proportion (probably 10 to 15 percent) is employed in the manufacture of carbon electrodes, brushes, and such products. The latter uses probably are more important for exported coke, except that going to Canada, where it is used mostly as fuel.

The most significant changes in production of coke occurred in the California and Louisiana Gulf Coast districts. The output in California, which was only 400 tons in 1937 and 17,000 in 1938, leaped to second place with 187,400 tons in 1939. Production in the Louisiana Gulf Coast district, after mounting from 16,600 tons in 1937 to 60,600 in 1938, virtually disappeared in 1939, when it dropped to 400 tons. The Indiana-Illinois district still ranked first, contributing 55 percent of the national total, while the California, Oklahoma-Kansas, and Texas Gulf Coast districts came next, in close order.

Comparative analyses of statistics for petroleum coke in the United States, 1938-39, by months and districts

	(thous	uction ands of tons)	Yield (1	percent)		stic de- housands t tons)		cks ands of tons)
	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 ι
By months:								
January	126. 2 122. 0	126.0 117.2	0.6	0.6	107.0	106.0	389. 5	717. (
February	114.0	128.0	.7	.6	83. 2	121.1	418.8	705.0
April	127.0	142.0	.6 .7	.6 .7	61. 6 62. 6	129. 2 78. 9	468.5	694.
May	137. 8	132. 2	.7	.6	84.4	117.4	522. 3 561. 6	734.
June	137. 0	142.2	. 7	.7	114.7	115.6	574.3	716. 710.
July	137. 6	145. 2	7	.7	89.0	90.7	609.8	733.
August	148. 4	143. 2	.7	.7	94. 5	168.8	650.6	682.
September		110.8	.6	. 5	127.3	86.6	622.6	668.
October	146. 8	165. 2	.7	.7	88. 3	158. 5	653. 8	652.
November	152. 8	159. 2	.8	.8	104.0	125.7	678.4	647.
December	141.8	155. 2	.7	.7	101.1	123.6	707. 5	666. (
Total United States	1, 602. 2	1, 666. 4	.7	.7	1, 117. 7	1, 422. 1	707. 5	666,
By districts:								2000
East Coast	3.8	6.8	(2)	(3)			1 5.3	2.
Appalachian Indiana, Illinois, Kentucky,	20.0	23. 2	``.2	`.3	1		9.2	15.
Indiana, Illinois, Kentucky,							0.2	10.
etc	977.8	920.0	3.0	2, 4			407.4	191.
Oklahoma, Kansas, and Mis-					1			,
souri	213.6	184.8	1.0	.8			31.4	29. (
Texas Inland	101.4	102.0	.7	.8) (³)	(8)	93.2	80. (
Texas Gulf Coast Louisiana Gulf Coast	141. 0 60. 6	180.2	.2	.3	1		49.8	87.
Arkansas and Louisiana In-	00.0	.4	.6	(2)	1		30.4	7.1
land	1. 2		(2)	(2)	1			
Rocky Mountain	65. 8	61.6	1.3	1.2			62. 4	50.
California	17. 0	187. 4	(3)	.5)		18.4	195.0
Total United States	1, 602. 2	1, 666, 4	.7	.7	1, 117, 7	1, 422. 1	707. 5	666.

¹ Subject to revision.

² Less than 0.1 percent.

³ Figures not available.

ASPHALT AND ROAD OIL

Domestic demand for asphalt was 4,887,000 tons in 1939, 495,300 tons greater than in 1938. Production (4,954,400 tons) was 613,000 tons more than in 1938, while stocks (550,000 tons) were 59,600 tons higher. Imports of 44,200 tons represented an 11,000-ton gain, while exports of 42,600 tons involved a 7,300-ton loss.

The 1939 domestic demand for road oil remained virtually the same as the 1938 demand at 7,846,000 barrels. The production of 7,868,000 barrels, however, was 325,000 barrels above that in 1938 and is shown in an increase in stocks from 680,000 to 702,000 barrels.

Detailed statistics on asphalt and road oil appear in the chapter on

Asphalt and Related Bitumens.

STILL GAS

The production of still gas in 1939 was 254,520 million cubic feet, or 66,979,000 barrels. The increase of 4,138 million cubic feet over production in 1938 (250,382 million cubic feet) is the smallest since 1931 and probably can be attributed to the use of refinery gases as raw materials in the polymerization and alkylation processes.

Refineries used 233,791 million cubic feet of still gas for fuel in 1938, constituting 49.5 percent of the British thermal units supplied

by all refinery fuels.

The Texas Gulf Coast district still leads in the production of still gas; the Indiana-Illinois and East Coast districts follow in order.

				, ,		
		1937		1938	19)39 1
District	Millions of cubic feet	Equivalent in thou- sands of barrels	Millions of cubic feet	Equivalent in thou- sands of barrels	Millions of cubic feet	Equivalent in thou- sands of barrels
East Coast Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, Missouri. Texas Inland Texas Guli Coast Louislana Guli Coast Arkansas and Louisana Inland Rocky Mountain California	31, 835 8, 836 46, 710 26, 721 15, 990 70, 240 7, 413 3, 894 5, 106 25, 236	10, 339 2, 301 12, 377 6, 968 3, 537 17, 893 1, 993 899 1, 344 6, 567	30, 354 8, 311 46, 527 24, 681 15, 044 79, 644 8, 702 5, 746 5, 119 26, 254	7, 988 2, 187 12, 244 6, 495 3, 959 20, 959 2, 290 1, 512 1, 347 6, 909	38, 814 8, 698 52, 321 22, 354 12, 966 77, 694 8, 528 1, 997 4, 906 26, 242	10, 214 2, 289 13, 769 5, 883 3, 412 20, 446 2, 244 525 1, 291 6, 906
Total United States	241, 981	64, 218	250, 382	65, 890	254, 520	66, 979

Production of still gas in the United States, 1937-39, by districts

MISCELLANEOUS PRODUCTS

The domestic demand for miscellaneous products recovered from its slump to 1,776,000 barrels in 1938 and increased to 2,223,000 barrels in 1939, approximately what it was in 1937. Exports rose from 112,000 barrels in 1938 to 123,000 in 1939, and production recovered to 2,359,000 barrels from the 1938 figure of 1,921,000.

The principal products in 1938 were liquefied petroleum gas (591,000 barrels), petrolatum (311,000 barrels), medicinal oil (172,000 barrels), and absorption oil (169,000 barrels). There are many other products that are much more important economically than quantitatively.

Subject to revision.

Production of miscellaneous oils in the United States, 1937-38, by districts and classes 1

[Thousands of barrels]

District	Petro- latum	Absorp- tion oil	Medici- nal oil	Special- ties	Lique- fied petro- leum gas	Other	Total
East Coast	147	18	130	12	388	73	768
Appalachian Indiana, Illinois, Kentucky, etc Oklahoma, Kansas, and Missouri	200 37 32	9 74		14	140	39 207 46	248 398 152
Texas Inland Texas Gulf Coast Louisiana Gulf Coast	12	59 2		25	5 37 4	104 220 36	168 296 40
Arkansas and Louisiana Inland Rocky Mountain	6	1 1 37	32	6 41	3	9 101 75	10 117 185
Cumuland		•					

201

162

98

577

910

2,382

139 10 376 140 790 170 East Coast 10 137 24 108 Appalachian_ 295 $1\overline{2}$ 149 Indiana, Illinois, Kentucky, etc... 26 Oklahoma, Kansas, Missouri Texas Inland Texas Gulf Coast $\tilde{25}$ 31 120 58 104 47 1 97 50 3 7 17 32 32 48 Louisiana Gulf Coast_ 15 Arkansas and Louisiana Inland ... Rocky Mountain ... ī 239 33 California... 36 93 525 1,921 Total United States..... 311 169 172 153 591

Total United States ..

1938

WORLD PRODUCTION 12

434

The world production of crude petroleum resumed its upward trend, increasing 4 percent in 1939 over 1938. There was no change in the rank of the 10 leading countries. As the United States likewise increased its production 4 percent from 1938 to 1939, its share in the total output remained fixed at 61 percent in both 1938 and 1939.

North and South America together continued to supply more than three-fourths of the world total. Peru and Bolivia were the only exceptions to the general increase in petroleum production in the Western Hemisphere. In Venezuela larger yield in the Maracaibo fields, in Quiriquire, and in the newer fields of Temblador, Oficina, and Jusepin raised the national total 9 percent from 1938 to 1939. Greater output in Mexico, chiefly from Poza Rica, was due primarily to a 30-percent increase in the export market, principally for crude petroleum to be refined in the United States for export, in Italy, and in Germany. In Colombia the opening of the new pipe line from the Barco concession to Covenas in October 1939 permitted a small increase in the total crude production from 1938 to 1939. In Argentina both Government enterprise and private companies enlarged their output at Comodoro Rivadavia, at Plaza Huincul, and in In Canada continued increase in production in Alberta along the eastern front of the Rocky Mountains raised the petroleum production of the Dominion from 1938 to 1939.

Two countries in eastern Europe supplied 98 percent of the petroleum production of the Continent in 1938 and 96 percent in 1939. The U.S.S.R. increased its output 4 percent from 1938 to 1939 but fell 14 percent short of its quota for 1939 under the Third Five-year Plan. In Rumania production decreased 5 percent from 1938 to

¹ Figures for 1939 not yet available.

¹² By A. H. Redfield, Petroleum Economics Division, Bureau of Mines.

1939 owing to the lower yield in the Dambovitza district and the reluctance of most major producers to engage in new drilling under the existing petroleum laws, the currency restrictions, and the prevailing political situation. Of the minor European producers, Germany was able to increase its petroleum production not only in its original area but also in the former Austria and to add to its 1939 output about 227,000 barrels from former Polish territory. The Hungarian petroleum production more than trebled, and Italian engineers succeeded in increasing the yield of the Albanian fields but not of Italy. The nations of northern and western Europe and of the Mediterranean area continued to depend on imports of crude and refined oils from the United States, from Latin America, from Rumania, from the Near East, and from the Netherland East Indies to meet their requirements.

Crude petroleum produced in principal countries of the world, 1935-39, in thousands of barrels [Compiled by R. B. Miller]

1937 1938 1939 1 1935 1936 Country North America: 1,500 41,028 13,237 7, 838 42, 779 19, 270 1, 447 40, 241 2.944 6,966 Canada..... Mexico..... 46, 690 15, 503 38, 279 17, 737 Trinidad United States 11, 671 1, 264, 256 996, 596 1,099,687 1, 279, 160 1, 214, 355 62 Other North America 1, 277, 415 1, 334, 227 Total North America..... 1,050,002 1, 155, 514 1.344.330 SouthAmerica: 18, 486 215 22, 037 2, 313 13, 508 15, 458 105 18, 756 17,076 14, 297 16, 355 122 Argentina ... 226 164 Bolivia. Colombia 17, 598 20,599 21, 582 2, 246 15, 839 Ecuador 1,732 17,067 1, 942 17, 593 2, 161 17, 457 188, 174 148, 254 154, 794 186, 230 205, 956 199, 112 208, 648 242, 924 245, 143 262, 515 Total South America Europe: Albania 273 619 752 934 Czechoslovakia 127 130 120 500 503 502 513 France 4, 487 3, 176 221 3, 861 Germany..... 2,996 3, 115 383 693 44 50 318 1,055 Hungary.... 101 3, 763 48, 366 91 123 110 Italy_____Poland 3, 898 3, 812 61, 310 3, 789 63, 659 3, 716 52, 452 45, 996 Rumania U. S. S. R.² 186, 206 193, 241 204, 956 212,500 182, 386 Other Europe 257, 846 254, 180 263, 152 270, 283 251, 384 Total Europe 2..... 8, 298 7, 538 2, 488 78, 372 7, 589 7, 396 2, 164 78, 151 7,762 Bahrein Island 7, 181 2, 038 57, 273 27, 408 7, 588 1, 978 62, 718 30, 406 7,848 2,162 77,804 Burma India, British Iran (Persia) 32, 643 2, 511 57, 318 3 3, 821 31,836 30, 791 Irag_ Japan (including Taiwan) 2, 488 56, 724 3, 656 2,654 2, 249 2, 440 47, 171 2, 545 50, 025 3, 212 61, 580 Netherland India 8 4, 000 7, 104 oaknalin Sarawak and Brunei Sandi Arabio 6, 913 5, 546 5, 209 6,009 495 3,855 Saudi Arabia.... 205, 284 196, 354 200, 397 Total Asia 4 152,676 168, 241 Africa: 4, 415 1,301 1,196 1,581 1,278 Other Africa.... 4 22 27 27 1,608 4, 442 Total Africa 1.305 1, 282 1,218 Australia and New Zealand..... 5 4 4 17 4 Undistributed..... 2, 039, 014 1, 987, 723 1,654,488 1,791,540

¹ Approximate production. Derived in part from World Petroleum, vol. 11, No. 2, February 1940, pp. 42-43

<sup>42-43.

2</sup> Includes fields in Russian Asia other than Sakhalin.

3 Approximate production.

4 Exclusive of U. S. S. R. fields in Asia, other than Sakhalin, which are included with U. S. S. R. in Europe.

In Asia the petroleum production of Iran, controlled by a single enterprise, remained virtually static, while that of Iraq, equally closely controlled, declined 6 percent from 1938 to 1939 owing to disruption of tanker schedules by the outbreak of the war during the last 4 months of 1939. Increased output in Sumatra, in eastern Borneo, and in Ceram raised the production of the Netherland East Indies 5 percent, in spite of declines in Java and in the Tarakan heavy-oil field. The production of Burma and of British India, destined chiefly for consumption in peninsular India, was less in 1939 than in 1938. The opening of a pipe line and of a terminal at Ras Tanura on May 1, 1939, permitted the production of Saudi Arabia to rise sharply, while production on nearby Bahrein Island was reduced in 1939. Japanese wells in Japan proper and in Taiwan increased their output in 1939 over 1938 but made no significant contribution to the requirements of a predominantly importing country. The small indicated increase in the production of northern Sakhalin was due to the activity of the local Soviet "Trust" rather than to that of the Japanese concessionnaire.

Discovery of a new field at Ras Gharib nearly trebled the small production of Egypt but left the country still dependent on imports

to meet its mineral-oil requirements.

FOREIGN TRADE 13

Imports.—An 8-percent increase in the domestic demand for mineral oils in continental United States in 1939 over 1938 was duplicated by a corresponding 8-percent increase in imports of mineral oils, crude and refined, as well as in greater production of crude petroleum in the United States and larger withdrawals from stocks from 1938 to 1939. Imports constituted, however, only 4 percent of the total new supply of mineral oils in continental United States in 1939, as in 1938. Although the excise taxes on imported oils were halved by the Venezuelan Trade Agreement of November 6, 1939, and the reduction was generalized to other nations through the most-favored-nation clause, this reduction had no appreciable effect on mineral-oil imports during 1939, as it did not become effective until December 16, 1939.

The increase was due principally to imports of crude petroleum, which were 25 percent larger in 1939 than in 1938. Eighty-four percent of these imports in 1939 were for direct consumption on payment of excise tax; of these, Venezuela supplied 90 percent. More crude was also imported, chiefly from Mexico, for refining in bond and

export of the finished products.

More unfinished oils were imported in 1939 than in 1938, both for direct consumption in continental United States and in bond for refining and export of the finished products. The Netherlands West

Indies supplied most of these products in 1939.

On the other hand, imports of residual fuel oil were 24 percent less in 1939 than in 1938. There was a marked decrease in receipts of fuel oil in bond in continental United States for the supplies of vessels. Imports of fuel oil into continental United States for direct consumption declined to insignificance in 1939. The Netherland West Indies furnished 97½ percent of the bonded fuel oil and 94 percent of the fuel oil for direct consumption in continental United States in 1939.

¹³ By A. H. Redfield, Petroleum Economics Division, Bureau of Mines.

f - monomina or contraint															
244615 40	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total	For direct con- sump- tion	In bond
2 Crude petroleum	2, 095	1,883	2, 569	1, 827	2, 081	2, 192	2, 565	1,714	1, 574 79	2, 693	2, 359	2,860	26, 412 79	22, 761	3, 651 79
Gasoline, unfinished Residual fuel oil Lubricating oil	95 1,635	1, 454	1,971	2,016	1,598	2, 223	54 1,616	100 1,605	1,932	1,617	1,561	1,837	249 21,065	100 2,675	149 18, 390
Paraffin wax Asphalt Unfinished oils, other	10 62 281	8 7 521	9 10 2 97	9 9 293	19 9 288	12 12 282	10 7 492	10 15 1, 209	6 11 635	6 9 590	1 19 673	3 12 650	103 182 6, 211	103 182 4, 088	2, 123
	4, 178	3,873	4, 856	4, 155	3,996	4, 721	4, 745	4, 654	4, 237	4, 916	4, 614	5, 363	54, 308	29, 916	24, 392
Crude petroleum		1, 598	1,630	2, 932	3, 928	3,664	2, 934	2, 898	3,084	3,099	3, 132 86	2, 328	33, 095	28, 447	4, 648
Gas oil and distillate fuel oils	957	127 984	1,337	1,316	2, 104	1,935	1,513	1,723	675	1,532	1,012	844	171 15, 932 5	44 960	127 14,972
Paraffin wax Asphalt Unfinished oils, other	11	7 53 650	7 18 866	5 8 512	17 14 523	10 17 647	9 9 1, 105	11 9 1,041	14 23 1,053	22 9 618	14 19 702	16 47 847	143 242 9, 193	138 242 5, 798	3,395
	3, 525	3, 419	3, 859	4, 773	6, 587	6, 273	5, 571	5, 683	4, 855	5, 304	4, 965	4,085	58, 899	35, 657	23, 242

¹ Imports of crude as reported to the Bureau of Mines; imports of refined products compiled from data of the Bureau of Foreign and Domestic Commerce; figures may differ slightly from those used throughout other sections of this report.

Crude petroleum imported into and exported from continental United States in 1939, by countries 1

[Thousands of barrels]

. •		1939												
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Tota!	(total)
Imports: For direct consumption:														
Canada		ĺ												1 1
Colombia					860	307							1. 167	
Mexico					70	70	288	227	206	190	348	289	1,688	1,602
Saudi Arabia							1						1	1
Trinidad and Tobago											61		61	
Venezuela	1,371	1, 343	1, 417	2, 401	2, 627	2,902	2, 241	2, 162	2, 467	2, 197	2, 244	2, 273	25, 645	20,846
							l	l			·			
D - 1.11.	1, 371	1, 343	1,417	2, 401	3, 557	3, 279	2, 530	2, 389	2,673	2, 387	2, 653	2, 562	28, 562	22, 449
Bonded for manufacture and export:	203	000	110	100	900	410	90"	400	405	404	01		0.050	000
MexicoVenezuela		229 161	110 209	126 261	328 301	410 277	385 146	430 122	465 98	494 212	91	88	3, 359	882
v enezueia	294	101	209	201	301	211	140	122	98	212	104		2, 185	2,717
Tetal imports	1,868	1,733	1, 736	2, 788	4, 186	3, 966	3, 061	2, 941	3, 236	3, 093	2, 848	2, 650	34, 106	26, 048
Ti-manka.														
Exports: North America:						1			ŀ	1				ļ
Canada	1, 189	1, 201	1, 165	1,887	3, 172	2,804	2,992	2, 853	3, 881	3, 297	2, 383	1, 297	28, 121	24, 845
Cuba		116	43	152	72	79	152	2,000	159	3, 297	73	74	1, 141	905
Mexico		110	9	5	12	11	102	7	142	12	12	68	290	143
South America:	T		"	. 0	8	*1		'	142	12	12	00	290	140
Argentina	87	194	191	226	437	104	446	161	108	69	102		2, 125	1,504
Brazil		102	84	220	201	101	110	89	100	00	102		173	1,007
Europe:			01]		}			1.0	1
Belgium	46		70				79	1		84	1		279	349
Czechoslovakia							1			0.			2.0	71
Denmark			32	40		48	33		22				211	94
France		1, 186	1, 254	1,884	2, 051	793	1,622	1, 214	842	875	742	1.407	14, 955	16,743
Germany			104	82	156	74			l	1	l	_,,	416	1, 287
Italy	652	520	330	312	708	378	308	586	211	344	212	424	4, 985	6, 751
Netherlands		51		60	62		43	41					276	326
Sweden		86	52	84	50	144		65	71	13			639	930
Switzerland														280
United Kingdom	40	l	24	127	82		68		. 96		65	58	560	89

য়ে
PETI
PETROLEUM
AND
PETR(
PETROLEUM
PRODUCTS
SIL

Asia: China Japan	990	1,360 91	89 1, 351	1, 362	1,754 90	1,028	1,468	570	1, 381	1, 934	1, 636	1, 252	89 16, 086	166 21, 272
Kwantung Thailand (Siam)	100	91	168		90	190 78	78			90	89	76	818 232	917
Africa: Union of South Africa								84					84	217
Other countries	15			1	1	100		298	11	149	9		584	364
Noncontiguous Territories	3						9		1				13	
Total exports	4, 480	4,810	4, 966	6, 222	8, 643	5, 831	7, 305	5, 969	6, 925	6, 947	5, 323	4, 656	72, 077	77, 254
Net exports	2. 612	3, 077	3, 230	3, 434	4, 457	1,865	4, 241	3, 028	3, 689	3, 854	2, 475	2,006	37, 971	51, 206

¹ Bureau of Foreign and Domestic Commerce; figures may differ slightly from those used throughout other sections of this report.

Exports.—Continental United States continued to be a net exporter of mineral oils. Exports and shipments of mineral oils to noncontiguous Territories in 1939 were more than three times as large as imports. They constituted 13 percent of the total demand for mineral oils in 1939 compared with 15 percent in 1938. Although imports obtained from neighboring countries of North and South America consisted almost entirely of crude and semirefined oils for processing and bunker oil for supplies of vessels, exports included both crude petroleum to be refined in other countries and refined oils shipped for consumption to all parts of the world.

The outbreak of the war in Europe on September 1, 1939, had little appreciable effect on the petroleum export trade of continental United States, as a whole, although individual products were variously affected. The expected increase in demand, based upon analogy to the World War of 1914–18, failed to materialize; the defensive type of warfare waged by both sides after the brief Polish campaign did not call for the large quantities of gasoline and fuel oil required in a comparable period of the last war, and the drastic restrictions imposed on civilian consumption of mineral oils not only in belligerent but also in nonbelligerent countries kept down the total demand and conserved supplies for military and naval purposes. In fact, exports and territorial shipments of mineral oils from continental United States were 2 percent lower in 1939 than in 1938. The decrease occurred principally during the first 8 months of 1939, before the outbreak of the war. During the last 4 months of 1939 outward shipments changed little from their level during the corresponding months of 1938 and 1937.

Exports of crude petroleum were 7 percent lower in 1939 than in 1938. The decrease occurred during the first 8 months of 1939; during the last 4 months of the year the exports of crude were 4 percent larger than in the corresponding period of 1938. In contrast to the general trend, exports to Canada were 5 percent larger during the first 8 months of 1939 and 30 percent larger during the last 4 months of 1939 than in the corresponding periods of 1938. France, which had maintained its 1938 level of imports of American crude during the first 8 months of 1938, reduced its receipts 31 percent during the last 4 months in comparison with the corresponding period of 1938. Japan, lacking dollar exchange for purchases of American crude, curtailed its purchases 45 percent during the first 8 months of 1939 in comparison with the first 8 months of 1938 but increased its purchases 59 percent during the last 4 months of 1939. Italy took less American crude throughout the year, replacing it in part with petroleum from Mexico, Venezuela, and Albania. Germany, because of exchange difficulties, bought less crude petroleum from the United States and substituted, at least in part, crude obtained from Mexico on a barter basis and from the Netherland West Indies through clearing agreements.

Mineral oils, crude and refined, shipped from continental United States and including shipments to noncontiguous Territories, 1938-39, by months 1

[Thousands of barrels]

							· · · · · · · · · · · · · · · · · · ·						
	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1938 Crude petroleum	5, 953	5, 321	6, 121	7, 549	7, 791	7, 424	7, 250	7, 003	5, 577	6, 780	5, 602	4, 883	77, 254
Refined products: Motor fuel 3 Kerosene Gas oil and distillate fuel oils Residual fuel oil Lubricating oils Paraffin wax Coke Asphait Miscellaneous oils	3,090 837 2,257 869 820 42 41 17	3, 929 687 2, 151 911 806 38 48 34 5	3, 562 541 2, 810 1, 521 655 55 14 28 15	4, 474 811 2, 687 1, 473 864 41 53 24	4, 576 779 2, 561 1, 690 908 68 70 22 14	4, 284 403 2, 980 1, 613 914 70 48 16	4, 190 219 2, 896 1, 790 708 52 66 23 7	4, 829 604 2, 614 1, 723 800 49 65 11	3, 528 813 2, 428 1, 680 852 86 58 27 15	4, 526 683 1, 574 1, 643 715 84 136 24	3, 698 324 2, 270 1, 270 699 54 121 18 4	5, 423 803 2, 413 1, 737 676 80 58 30 17	50, 109 7, 504 29, 641 17, 920 9, 417 719 778 274 112
Total refined	7, 986	8, 609	9, 201	10, 431	10, 688	10, 338	9, 951	10, 700	9, 487	9, 388	8, 458	11, 237	116, 474
Total crude and refined	13, 939	13, 930	15, 322	17, 980	18, 479	17, 762	17, 201	17, 703	15, 064	16, 168	14, 060	16, 120	193, 728
1939 Crude petroleum	4, 477	4, 810	4, 966	6, 222	8, 643	5, 831	7, 304	5, 969	6, 925	6, 947	5, 323	4, 656	72, 073
Refined products: Motor fuel 3. Kerosene. Gas oil and distillate fuel oils. Residual fuel oil. Lubricating oils. Paraffin wax. Coke Asphalt. Miscellaneous oils. Total refined.	3, 638 810 1, 675 1, 379 851 66 52 18 5	2, 909 532 2, 131 925 680 68 41 41 8	4, 336 546 2, 924 2, 047 829 94 49 15 9	3, 663 713 2, 345 1, 488 816 72 116 21 9	4, 390 653 4, 004 1, 854 981 57 164 16 9	4, 459 471 2, 839 1, 684 1, 101 89 163 20 8	3, 585 774 2, 857 1, 144 1, 022 59 157 16 8	4, 208 841 3, 361 1, 613 1, 204 53 127 18 4	4, 232 577 3, 015 1, 624 1, 012 108 191 24 14	3, 443 1, 107 2, 756 1, 296 985 69 113 19 17	2, 560 567 2, 116 1, 116 1, 190 44 193 12 18	3, 136 652 1, 998 1, 320 1, 310 52 63 12 14	44, 559 8, 243 32, 021 17, 490 11, 981 831 1, 429 232 123
	8, 494	7, 335	10, 849	9, 243	12, 128	10, 834	9, 622	11, 429	10, 797	9, 805	7, 816	8, 557	116, 909
Total crude and refined	12, 971	12, 145	15, 815	15, 465	20, 771	16, 665	16, 926	17, 398	17, 722	16, 752	13, 139	13, 213	188, 982

¹ Compiled from records of the Bureau of Foreign and Domestic Commerce; figures may differ slightly from those used throughout other sections of this report.

I Includes benzol and natural gasoline.

Europe remained the premier foreign market for American refined oils, taking 47 percent of the major liquid products exported from the United States in 1938 and 48 percent in 1939. Asiatic countries increased their share in the total trade from 16 percent in 1938 to 19 percent in 1939. On the other hand, the share of North American countries in the entire trade decreased from 20 percent in 1938 to 18 in 1939 and of South American countries from 5.3 percent in 1938 to 4.6 in 1939.

Decreased purchases by countries of northern and western Europe, notably the United Kingdom, France, Germany, and Belgium, were chiefly responsible for the 11-percent decline in exports and Territorial shipments of motor fuel from continental United States from 1938 to 1939. Less motor fuel was sold to Canada, Brazil, Japan, the U. S. S. R., the Union of South Africa, Australia, and New Zealand in 1939 than in 1938. The total included 4,111,000 barrels of natural gasoline and 4,234,000 barrels of aviation gasoline. The Netherland West Indies received 36 percent of the natural gasoline and 21 percent of the aviation gasoline for blending with gasoline produced in the refineries of Curação and Aruba and exported principally to Europe. Canada, the United Kingdom, France, Japan, and Italy took an additional 58 percent of the natural gasoline; and France, Japan, the United Kingdom, Italy, and Canada bought 50 percent of the aviation gasoline shipped from continental United States in 1939.

Gulf coast refineries of Texas and Louisiana furnished 61 percent and California refineries 25 percent of the motor fuel shipped from continental United States in 1939.

Major petroleum products shipped from continental United States, by countries of destination, and shipments to and exports from noncontiguous Territories, 1938-39 ¹
[Thousands of barrels, except wax, which is in thousands of pounds]

	Motor	fuel 2	Kero	sene	Gas o fuel		Lubri 0	cating il	w	ax
	1938	1939 3	1938	1939 3	1938	1939 3	1938	1939 3	1938	1939 3
Exports to foreign countries: North America: Canada Cuba Mexico Netherland West Indies. Panama (including Canal Zone) Other North America	3, 276 778 238 4, 852 235 284	2, 963 534 387 5, 126 249 465	229 22 1, 209 48 128	189 1 25 561 44 224	1, 528 1, 473 1, 268 5, 111 1, 798 446	1, 180 390 456 4, 843 1, 880 684	486 37 87 12 9 65	524 55 99 19 17 68	11, 016 2, 414 16, 831 135 6, 312	13, 380 2, 939 21, 833 1 205 7, 596
	9, 663	9, 724	1, 636	1,044	11, 624	9, 433	696	782	36, 708	45, 954
South America: Argentina Brazil Chile Colombia Other South America	26 1, 460 216 16 174	1, 280 246 13 110	401 28 29	415 9 1	482 2, 546 2 195		29 243 59 17 109	23 302 90 28 123	4, 013 1, 860 3, 770 6, 540 9, 805	3, 325 2, 840 4, 885 7, 193 12, 245
	1,892	1, 654	458	436	3, 225	2, 550	457	566	25, 988	30, 488
Europe: Belgium Denmark Finland France Germany	1, 383 660 267 3, 831 2, 313	1, 273 813 211 2, 646 761	51 496 67 9	10 495 50	715	782 104 133	205 21 529	975 477 27 480 1, 106	15, 271 2, 243 1, 236 1, 101 4, 219	190

See footnotes at end of table.

Major petroleum products shipped from continental United States, by countries of destination, and shipments to and exports from noncontiguous Territories, 1938-39—Continued

	Moto	r fuel ³	Ker	osene		oil and el oil		icating oil	W	ax
	1938	1939	1938	1939	1938	1939	1938	1939	1938	1939
Exports to foreign countries— Continued. Europe—Continued. Ireland	10, 031 197	320 1, 670 360 488 2, 127 3, 207 9, 060 459	696 104 115 12 421 1, 555 90	14 991 188 225 22 464 1, 467	1, 201 3, 065 414 98 771 908 4, 044 334	1, 553 3, 089 663 243 1, 691 1, 498 4, 616 429	306 192 33 38 106 159 2, 459 114	483 362 80 79 377 268 2,832 131	5, 897 1, 052 1, 761 2, 018 7, 403 45, 232 2, 632	7, 904 2, 729 2, 122 17, 239 16, 705 39, 306 2, 852
	26, 749	23, 590	3, 637	4, 053	17, 020	19, 587	6, 202	7, 684	114, 610	142, 188
Asia: India, British (including Burma) China, Hong Kong, and Kwantung Japan Philippine Islands U. S. S. R. Other Asia	87 • 741 1, 484 953 1, 547 728	33 1, 150 1, 381 1, 228 884 586	12 337 509 259	534 105 578 343	8, 327 1, 210	9,909	163 307	443 180 514 129	, ,	413 6, 292 3 498 66 1, 290
	5, 540	5, 262	1, 117	1,641	10, 485	12, 736	1,047	1, 591	8, 815	8, 562
Africa: Union of South Africa Other Africa	619 556	270 659	20 150	29 628	78 1, 129	10 1, 029	117 323	173 360		2, 447 2, 449
Oceania: Australia New Zealand Other Oceania	2, 001 873 65	929 756 388 50	169 62 12	108 29 26	1, 207 22 196 54	35 139 71	415 69 2	533 600 106 3	556 149	334 97
	2, 939	1, 194 =====	243	163	272	245	486	709	705	431
Shipments to noncontiguous Territories: Alaska	225 1, 258 697 21	240 1, 240 846 19 24	7, 261 8 147 108 4 2	7, 994 9 142 129 3	1, 090 2, 400 261 4	1, 259 2, 449 235 5	9, 328 ————————————————————————————————————	11, 865 19 66 31 2	201, 402 5 9 28 3	232, 519 8 54 80
	2, 216	2, 369	269	285	3, 757	3, 951	92	118	45	142
Exports from noncontiguous Territories: Alaska. Puerto Rico Virgin Islands	12 53 	11 71 	25 1 26	36	16 13 	12 22 34	1 2 3	3	45	142
Particions 4										
Revisions 4	50, 109	⁸ 81 44, 559	7, 504	8, 243	47, 561	4 49, 511	9, 417	1 11, 981	201, 447	3 232, 664

Bureau of Foreign and Domestic Commerce.
 Includes natural gasoline, naphtha, and benzol.
 Subject to revision.
 By Bureau of Foreign and Domestic Commerce through March 20, 1940.
 Negative quantity.

More kerosene was exported to eastern Asia and to the smaller countries of northern and western Europe and to Africa in 1939 than in 1938. These increases offset the declines in shipments to the Netherland West Indies and to the United Kingdom and raised the total outward shipments of kerosene 10 percent in 1939 over 1938.

The growing use of the Diesel motors for ships, motortrucks, industrial machinery, and even airplanes is evidenced by the continued increase in exports and Territorial shipments of gas oil and distillate fuel, which were 8 percent larger in 1939 than in 1938. More gas oil and distillate fuel oil were shipped to Japan, to the United Kingdom, to the Netherlands, to the Canal Zone, to Canada, and to the Philippine Islands; less to the Netherland West Indies for reshipment chiefly to Europe; and less to Germany and to Belgium, especially after the outbreak of the war in September.

Outward shipments of residual fuel oil were slightly lower in 1939 than in 1938 but 14 percent higher than in 1937. Marked increases in exports to Japan, to Italy, to Spain, and to the Philippine Islands were offset by decreases in shipments to Cuba, Chile, Canada, Spanish

Africa, Sweden, and the Netherlands.

The outbreak of the war in Europe dislocated the export trade in residual fuel oil. During the first 8 months of 1939 they were 5 percent higher than in the corresponding months of 1938; but in the last 4 months of 1939 they were 15 percent lower than in the corresponding period of 1938. The increase in foreign and Territorial shipments of lubricating oils from continental United States was general but was greatest in shipments to Europe (except to France and Germany). The outbreak of the war stimulated exports of lubricating oils; during the first 8 months of 1939 they exceeded the exports of the corresponding period of 1938 by 15 percent, but in the last 4 months of 1939 they were 53 percent larger than in the last 4 months of 1938.

Motor fuel exported and shipped to noncontiguous Territories from continental United States in 1939, by refinery districts and months 1

	[Thousar	nds of b	arrels]				
Refinery district	Januar	y Feb	ruary	Ma	reh 1	April	May	June
East Coast Appalachian Indiana, Illinois, Kentucky, etc. Texas Inland Texas Gulf Coast Louisiana Gulf Coast Rocky Mountain California Total United States	2, 02 28 1	20 33 16 04	156 11 41 211 1, 245 98 13 1, 134 2, 909		57 12 8 85 762 142 23 047	• 65 6 12 154 2,259 174 39 954 3,663	156 12 14 540 2,793 181 46 648	120 129 28 200 2, 643 201 36 1, 102
Refinery district	July	Au- gust		otem- oer	Octo- ber	Novem ber	Decem- ber	Total
East Coast Appalachian Indiana, Illinois, Kentucky, etc Texas Inland Texas Gulf Coast Louisiana Gulf Coast Rocky Mountain California Total United States	2, 267 106	294 56 14 104 2, 742 79 69 850 4, 208		157 77 30 190 2, 137 233 57 1, 351 4, 232	151 119 20 132 1,829 158 42 992	251 76 38 300 777 272 33 813	79 3 11 10 164 7 1,559 2 365 3 26 3 735	597 265 2, 716 25, 033 2, 292 449 11, 146
Total Office States	3,000		1	-, -02	0,110	1 2,000	, 0,100	1 -1,000

¹ Compiled from data of Bureau of Foreign and Domestic Commerce as of March 20, 1940; figures may differ slightly from those used throughout other sections of this report.

Considerably more wax was shipped from continental United States in 1939 than in 1938. The increase was greatest in exports to Europe, especially to the Mediterranean countries and to the smaller nations of northern Europe bordering the North Sea and the Baltic. Canada and in general Latin America bought more paraffin wax from United States refineries in 1939 than in 1938. Decreased shipments to Africa and to the Far East were not adequate to offset the greater demand from Europe. Increased exports of paraffin wax from Burma and from the Netherlands East Indies would appear to explain the decrease of United States exports of wax to Africa and the Far East.

INTERCOASTAL SHIPMENTS 14

Receipts of mineral oils, crude and refined, on the East coast from Gulf coast ports were nearly 10 percent larger in 1939 than in 1938. Crude petroleum was the largest single item in this movement, constituting 39 percent of the total shipments in 1939. In keeping with a 7-percent increase in 1939 over 1938 in runs to stills in East coast refineries, receipts of Gulf coast and Mid-Continent crude were 5 percent larger in 1939 than in 1938. They constituted 82 percent of the total runs of crude petroleum in 1939 compared with 83 percent in 1938. Receipts of refined oils from Gulf coast ports were 13 percent larger in 1939 than in 1938, in response to the improved demand in the marketing area of the East coast refineries.

Receipts of California mineral oils at East coast ports were larger in 1939 than in 1938; but they contributed relatively little to the supply of mineral oils in the East coast territory. The increases were

chiefly in fuel oil, gas oil, and crude petroleum.

Mineral oils, crude and refined, shipped from Gulf coast to East coast ports of the United States, 1938-39 1

	Т]	housands o	f barrels]				
				1939			
	January	February	March	April	May	June	July
Crude petroleum Gasoline Kerosene Gas oil and distillate fuel oils Residual fuel oils Lubricating oils Miscellaneous oils	14, 184 8, 164 2, 601 4, 699 6, 346 502 35 36, 531	11, 743 7, 409 2, 349 3, 343 5, 415 351 15	12, 847 10, 026 1, 821 3, 137 5, 763 492 81 34, 167	11, 818 8, 807 1, 622 1, 998 4, 239 446 66	12, 785 10, 674 1, 683 2, 085 5, 285 564 50	12, 991 10, 535 1, 174 1, 737 4, 414 552 68 31, 471	13, 772 10, 518 1, 191 2, 421 4, 742 588 39 33, 271
				1 25,000	00,120	01,111	00,2/1
			1939—Co	ntinued			
	August	Septem- ber	Oc- tober	Novem- ber	Decem- ber	Total	1938 (total)
Crude petroleum	12, 981 11, 017 1, 567 2, 233 5, 016 538 30	12, 177 9, 160 1, 806 2, 319 4, 629 548 21 30, 660	14, 651 10, 396 1, 851 2, 992 5, 888 679 35	13, 274 8, 760 2, 009 3, 228 6, 668 676 37	14, 596 9, 167 2, 730 4, 509 7, 041 619 8	157, 819 114, 633 22, 404 34, 701 65, 446 6, 555 485	150, 716 105, 036 19, 915 29, 187 56, 987 4, 451 494
	00, 082	au, 000	36, 492	34, 652	38, 670	402, 043	366, 786

¹ Petroleum Conservation Division, U. S. Department of the Interior.

¹⁴ By A. H. Redfield, Petroleum Economics Division, Bureau of Mines.

Mineral oils, crude and refined, shipped from California to East coast ports of the United States, 1938-39

[Thousands of barrels]

		1939												al)
	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total	1938 (total)
Crude petroleum Gasoline Kerosene Gas oil and distillate	129	61 67 57	126 245 65	629	62 385	61 611	199 236	131 291 142	217 309	191 62	90 243	329 65	947 3, 665 391	923 2, 965 350
fuel oils	230 63 6	264	124 75 5	271 66 2	226 140 5	351	61 73 7	300 73	84 209 8	73 211 3	88 140 75 1	158 69	633 2, 289 502 43	321 338 491 33
	428	450	640	968	818	1,028	576	937	827	540	637	621	8, 470	5, 421

NATURAL GAS¹

By F. S. LOTT AND G. R. HOPKINS 2

SUMMARY OUTLINE

	Page	1	Page
Summary Salient statistics Legislative and legal review Employment and productivity Gross production Marketed production Wells Review of field developments, by States Consumption Treated for natural gasoline Domestic and commercial	1041 1042 1043 1044 1045 1046 1048 1049 1065	Consumption—Continued. Field. Carbon black Petroleum refineries. Electric public-utility power plants. Portland-cement plants Other industrial Mixed gas	1069 1069 1069 1069 1069 1072 1072

Marketed production of natural gas in the United States resumed its customary upward trend in 1939, after a temporary set-back in 1938. The estimated total was 2,437,200 million cubic feet, exceeding volume in 1938 by 6 percent and representing a new peak for the

industry.

All types of demand except field use responded vigorously to improved business conditions, particularly in the Eastern States. In the last 4 months of 1939 abrupt expansion of operations in the steel and related industries, induced by the war in Europe, was responsible for conspicuous gains in the industrial use of gas in Pennsylvania, Ohio, and West Virginia. Western New York industrial plants were forced to reduce their consumption of natural gas because of inade-

quate supply.

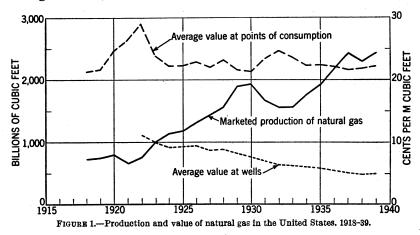
Consumers in the United States used an estimated 2,434,154 million cubic feet (marketed production less net exports of 846 million cubic feet) in 1939 compared to 2,294,097 million in 1938. The average value at points of consumption, which had declined in 1938 to 21.8 cents per thousand cubic feet, is estimated to have increased to 22.2 cents in 1939. Higher average values are indicated for each of the three major classes of consumption, with industrial showing the greatest increase—from 9.4 cents in 1938 to 9.9 cents in 1939. Miscellaneous demand, the industrial component of greatest average value and economic significance, expanded most (13 percent) in 1939 and was the chief cause of the large gain in value of industrial gas. Domestic and commercial average values are estimated to have increased 0.2 cent each to 74.4 and 49.4 cents, respectively.

On the basis of the average values mentioned, the total value at points of consumption of natural gas consumed in the United States was \$539,431,000 in 1939, an 8-percent increase over the 1938 total of

¹ Data for 1939 are preliminary; detailed statistics with final revisions will be released later.
² Tables compiled by H. Backus, Petroleum Economics Division, Bureau of Mines.

\$500,550,000. The 1939 total was the greatest ever attained by the natural-gas industry. The total industrial value was slightly below its 1937 peak, but domestic and commercial sales were substantially above any previous levels, both in value and volume.

Salient statistics of natural gas in the United States, 1935-39


	1935	1936	1937	1938	1939 1
Marketed production:					
California millions of cubic feet.	284, 109	320, 406	329, 769	315, 168	320, 000
Louisianado	249, 450	290, 151	315, 301	283, 899	310,000
Oklahomado	274, 313	280, 481	296, 260	263. 164	255, 000
Texasdo	642, 366	734, 561	854, 561	882, 473	945, 000
West Virginia dododo	115, 772	138, 076	149, 084	134, 342	148,000
Other Statesdodo	350, 585	404, 127	462, 645	416, 516	459, 200
Total productiondo	1, 916, 595	2, 167, 802	2, 407, 620	2, 295, 562	2, 437, 200
Exports:	-,,	_, ,	/		
To Canadadodo	73	84	78	94	77
To Mexicodo	6, 727	7, 352	4,790	1, 743	3, 100
Imports from Canadadodo	106	152	289	372	131
Consumption: Domesticdodo	313, 498	343, 346	371, 844	367, 772	388, 000
Commercial	100, 187	111, 623	117, 390	114, 296	122, 000
	100, 101	111,020	111,000	111, 200	122, 000
Industrial: Fielddodo	580, 414	618, 468	651, 320	659, 203	650, 000
Fielddo	241. 589	283, 421	341, 085	324, 950	348, 000
Carbon-black plantsdo	80, 175	93, 183	113, 005	109, 741	119,000
Petroleum refineriesdo	00, 170	99, 109	110,000	100, 141	110,000
Electric public-utility power plants?	105 000	156, 080	170, 567	169, 988	191, 131
millions of cubic feet	125, 239	36, 923	40, 450	37, 336	40, 233
Portland-cement plants 3do	26, 752		597, 380	510, 811	575, 790
Other industrialdo	442, 047	517, 474	097, 500	310, 811	010, 190
Total consumption do	1 000 001	2, 160, 518	2, 403, 041	2, 294, 097	2, 434, 154
Total consumption do Domestic percent of total	17	16	15	16	16
Commercial percent of total do	- 5	5	5	5	-1
Industrialdo	78	79	80	79 l	79
Number of consumers:					
Domesticthousands_	7, 391	8, 017	8, 348	8, 634	(4)
Commercialdo	613	657	680	704	(4) (4) (4)
Uommercasi	36	39	• 39	39	45
Industrial ⁵ do	53, 790	54, 500	6 55, 050	53, 770	(4)
Number of producing gas wells	33, 790	31,000	- 50,000	00, 110	()
Value (at wells) of gas produced:	110, 402	119, 193	123, 457	113, 571	121, 750
Totalthousands of dollars Average per M cubic feetcents	5.8	5. 5	5.1	4.9	5.0
Average per M cubic leetcents	0.0	3.0	0.1	4. 0	J. (
Value (at points of consumption) of gas consumed:		1			
Domesticthousands of dollars	233, 940	251, 617	273, 577	273, 070	288, 672
Commercialdodo	49, 386	53, 693	57, 161	56, 247	60, 26
Industrialdodo	144, 748	170, 129	196, 791	171, 233	190, 49
Total value do	428, 074	475, 439	527, 529	500, 550	539, 43
Total valuedododo	,	1	,		· ·
Domesticcents_	74.6	73.3	73.6	74. 2	74.
Commercialdo	49. 3	48.1	48.7	49. 2	49.
Industrialdo		10.0	10.3	9.4	9.
Domestic and commercialdodo	68. 5	67. 1	67. 6	68. 3	68.
Domestic, commercial, and industrial	1	1 "	1	1	1
pomestic, commercial, and industrial	22.4	22.0	22.0	21.8	22.
	22.4	1 22.0	1		
Treated for natural gasoline: Quantity millions of cubic feet	1 822 000	1, 815, 000	2, 108, 800	2, 035, 562	2, 080, 00
	11,044,000	12, 010, 000		_, 000, 002	
Percent of total consumption	95	84	88	89	8

Subject to revision.
 Federal Power Commission.
 Chapters on Cement in Minerals Yearbook and Statistical Appendix to Minerals Yearbook.
 Figures not yet available.
 Exclusive of oil- and gas-field operators.
 Revised figures.

Steady growth in domestic and commercial gas business has been accomplished by developing many market areas as the network of gas pipe lines extended into new territory. Construction was at very low ebb in 1938 but revived in 1939, when approximately 1,500 miles of line were laid. Large gas and utility holding companies built almost all of these lines; small organizations seldom are in a position to solve the many problems involved in carrying to successful completion a new gas pipe-line project of major proportions.

The most important movement of natural gas across the national boundaries is in export to Mexico; however, political considerations have caused it to dwindle rapidly since 1936. Little information is available regarding the extent of this movement in 1939, but it is estimated at approximately 3,100 million cubic feet, almost 80 percent less than the 1938 volume of 1,743 million. Exports to Canada were 77 million and imports 131 million cubic feet in 1939. The import movement ceased in June 1939.

As shown in figure 1, the average value of natural gas at the wells is estimated to have increased from 4.9 cents per thousand cubic feet in 1938 to 5.0 cents in 1939. The total indicated value of marketed production was \$113,571,000 in 1938 and \$121,750,000 in 1939. Although total value at the wells in 1939 was 25 percent larger than the depression low point in 1933 it was 23 percent smaller than the 1929 figure.

LEGISLATIVE AND LEGAL REVIEW

The Federal Power Commission has been active in a large number of proceedings initiated or pending in 1939 in connection with its administration of the 1938 Federal law to regulate interstate shipment of natural gas. Actions affecting gas rates have been brought by State regulatory bodies, municipalities, distributing companies, gas-producing companies, and the Power Commission on its own initiative. These actions deal with the sale or transmission of natural gas in at least 12 States, including most of the important producing areas.

On November 3, 1939, the Federal Power Commission adopted a ruling that prescribes a uniform system of accounts for natural-gas companies subject to the act; it became effective as of January 1, 1940. It requires the original cost of the plant to be stated within 2 years of the effective date, with the purpose of establishing this cost as a basis for calculating depletion, depreciation, and retirements.

Recent decisions of the Supreme Court of the United States indicate the probability of higher taxes on interstate gas operations. They have weakened the old, established doctrine which held that strictly interstate commerce was free from the burden of State taxes. Certain operations recognized as essential to and exclusively concerned with interstate transmission of natural gas are now taxable by States, provided duplication of taxes does not result.

Conservation laws applying to oil and gas production were enacted early in 1939 by the State legislatures of Arkansas and Michigan.

EMPLOYMENT AND PRODUCTIVITY

The average number of workers employed at gas wells declined 11 percent to 8,090 in 1938 from 9,073 in 1937. Curtailment of producing operations was widespread because of the generally reduced market demand for gas. Against the general trend, employment increased in New York, Illinois, New Mexico, and California, where new gas areas were expanding.

The total man-hours of labor required in gas-well production decreased less than the number employed (only 5 percent) in 1938 from 1937, especially in West Virginia, Pennsylvania, and Kansas, as many of the men laid off were part-time employees.

Average labor productivity increased 2 percent for the entire country chiefly because production of gas wells was better maintained in States with high productivity factors than in those where production per man-hour is small. As a group, the four States of highest productivity per man-hour—Louisiana, New Mexico, Texas, and Wyoming—increased their "dry"-gas production 44.4 billion cubic feet in 1938. Marked declines in output were common in the Eastern States, whose multitude of small wells require a large expense for labor per unit volume of gas produced.

In general, average annual employment at gas wells varies with the volume of gas produced but is characteristically more stable from year to year; hence the factor of labor productivity tends to increase with expanding production, and vice versa.

Employment at gas wells, natural gas produced from gas wells, and average output per man-hour in the United States, 1937-38, by States

State .	Average num- ber of workers		hours	man- (thou- ids)		production (cubic feet)	Labor productivity (thousands of cubic feet per man-hour)		
	1937	1938	1937	1938	1937	1938	1937	1938	
Arkansas	35	30	73	60	5. 700	5, 300	78. 1	88. 3	
California	18	23	36	51	1 10, 000	13, 000	1 277. 8	254. 9	
Colorado	9	7	19	13	3, 050	1, 775	160. 5	136. 5	
Illinois Indiana Kansas Kentucky	97 566	12 86 480 375	15 164 1,062 775	22 145 1,050 780	30 1. 700 57, 000 55, 500	150 1,350 54,000 46,000	2. 0 10. 4 53. 7 71. 6	6. 8 9. 3 51. 4 59. 0	
Louisiana Michigan Montana New Mexico	230	200	411	365	290, 000	260, 000	705, 6	712. 3	
	60	57	109	84	7, 900	7, 900	72, 5	94. 0	
	104	85	240	190	24, 600	20, 900	102, 5	110. 0	
	10	13	22	29	1 20, 000	30, 000	1 909, 1	1, 034. 5	
New York	530	625	989	1, 155	21, 900	40, 910	22. 1	35. 4	
Ohio	1,030	925	1, 894	1, 727	42, 300	35, 800	22. 3	20. 7	
Oklahoma	530	420	965	852	112, 000	76, 000	116. 1	89. 2	
Pennsylvania	35	1, 955	4, 413	4, 133	1 118, 000	80, 000	1 26. 7	19. 3	
Texas		420	837	884	650, 000	715, 000	776. 6	808. 8	
West Virginia		2, 300	5, 100	4, 750	1 152, 500	136, 000	1 29. 9	28. 6	
W yoming		30	55	50	23, 000	22, 400	418. 2	448. 0	
Other States 2	9, 073	8, 090	17, 245	76 16, 416	17, 400 11, 612, 580	20, 490 1, 566, 975	263. 6 1 93. 5	269. 6 95. 5	

Revised figures.
 Mississippi, Missouri, North Dakota, South Dakota, Tennessee, Utah, and Washington.

GROSS PRODUCTION

Gross production of natural gas in the United States, as estimated in the accompanying table, increased slightly in 1938 over 1937. although the demand from established gas markets contracted 5 percent. The output of gas wells, which is habitually responsive to consumers' requirements, declined 3 percent (45.6 billion cubic feet). The volume of gas withdrawn from oil wells, however, was 4 percent larger (61.4 billion cubic feet) in 1938 than in 1937, causing an increase in the total production of gas. These changes suggest the contrasting economic and physical conditions that chart the separate courses of the two classes of gas-producing activity. The position of natural gas in oil production is incidental economically, under methods of operation still in common use, even where the gas output per bar-rel of oil produced is very high. However, much convincing evidence is now available of the great value of natural gas for increasing recovery of oil and reducing production expense and economic waste. This rapidly growing fund of knowledge may be expected to strengthen the sentiment among oil operators continually in favor of methods that retard the uneconomic dissipation of reservoir energies.

The practice of returning natural gas to oil sands for repressuring has expanded slowly. Fifteen States reported gas so used in 1938, an addition of 1 since 1937 and 4 since 1935. The volume of gas returned was the largest in 1938 of any year recorded, reflecting moderate growth in a number of States, notably in Texas. Reported repressuring in Oklahoma has declined over 50 percent since 1935, a trend in conformity with that of casing-head gas production in the State.

The storage of gas in depleted natural reservoirs has increased somewhat in recent years because this method of "delayed marketing" has been adopted in several eastern fields. Excess productive capacity was developed in several deep Oriskany-sand fields, and some of this gas was moved to storage points near important market areas to await periods of peak demand or eventual decline in productive capacity of the high-pressure fields.

Gross production and disposition of natural gas in the United States, 1937-38, by
States, in millions of cubic feet

	Estin	nated produc	etion 1	I	Estimated	disposition	
State	From gas wells	From oil wells	Total	Marketed production	Repres- suring	Stored in ground	Losses and wastage ²
1937							
Arkansas California Colorado Illinois Indiana Kansas	5,700 10,000 3,050 30 1,700 57,000	6, 800 3 413, 000 250 1, 170 100 3 69, 700	12,500 3 423,000 3,300 1,200 1,800 3 126,700	9, 690 329, 769 3, 186 1, 040 1, 551 83, 890	220 34, 120 	1, 589	2, 590 57, 522 114 160 248
Kentucky Louisiana Michigan Mississippi Missouri	55, 500 290, 000 7, 900 14, 300 460	5, 000 70, 000 1, 500	60, 500 360, 000 9, 400 14, 300	55, 719 315, 301 9, 080 13, 348	1, 200 1, 000 3, 922	4 5, 358 51	\$ 40, 517 3, 199 40, 777 320 952 26
Montana New Mexico New York Ohio	24, 600 20, 000 21, 900 42, 300	\$ 92,000 100 3,200	25, 500 \$ 112, 000 22, 000 45, 500	24, 765 46, 337 21, 325 42, 783	195 1, 087	4 5.5, 010	540 4 64, 576 671 1, 183
Oklahoma Pennsylvania	112,000 118,000	328, 000 3 7, 000	440, 000 * 125, 000	296, 260 115, 928	24, 624 293	56 770	116, 806 * 8, 009

See footnotes at end of table.

Gross production and disposition of natural gas in the United States, 1937-38. by States, in millions of cubic feet—Continued

	Estin	ated produc	tion 1	E	Estimated d	lisposition	
State	From gas wells	From oil wells	Total	Marketed production	Repres- suring	Stored in ground	Losses and wastage
1937—Continued							
Texas	650, 000 * 152, 500 23, 000 2, 640	390, 000 14, 500 16, 600	1, 040, 000 * 167, 000 39, 600 2, 640	854, 561 149, 084 31, 023 2, 536	6, 734 3, 870 7, 593	868	⁸ 176, 634 ⁸ 10, 227 984 104
	³ 1, 612, 580	³ 1, 419, 830	3 3, 032, 410	2, 407, 620	84, 925	13, 706	³ 526, 159
1938 7							
Arkansas	5, 300 13, 000 1, 775	18, 900 419, 000 225	24, 200 432, 000 2, 000	11, 301 315, 168 1, 904	108 40, 000	2, 144	12, 791 74, 688 96
IllinoisIndiana	150 1, 350	4, 850 150	5, 000 1, 500	1, 169 1, 299	500 6		3, 331 195
Kansas Kentucky	54, 000 46, 000	62, 000 5, 300	116, 000 51, 300	75, 203 46, 163	1,655 800 6,000	⁸ 5, 443 61	38, 249 3, 530
Louisiana Michigan Mississippi	260, 000 7, 900 14, 300	100, 800 2, 700	360, 800 10, 600 14, 300	283, 899 10, 165 13, 656	0,000		70, 901 435 644
Missouri	1, 490 20, 900	10 800	1, 500 21, 700	1, 369 21, 216	188		131 296
New Mexico	40, 910	138, 000 90	168, 000 41, 000	50, 706 39, 402	452		116, 842 1, 539
OhioOklahoma	35, 800 76, 000 80, 000	3, 200 254, 000 6, 200	39, 000 330, 000	35, 257 263, 164 76, 547	90 18, 656 563	9 3, 532 822 10 2, 360	2, 632 45, 578
Pennsylvania Texas West Virginia	715,000	435, 000 14, 000	86, 200 1, 150, 000 150, 000	882, 473 134, 342	20, 000 3, 360	619	7, 741 244, 757 8, 962
Wyoming Other States 6	22, 400 4, 700	16, 000	38, 400 4, 700	26, 678 4, 481	9, 173		2, 549 219
	1, 566, 975	1, 481, 225	3, 048, 200	2, 295, 562	101, 551	14, 981	636, 106

¹ Marketed production plus quantities used in repressuring, stored in the ground, lost, and wasted (see

Losses and waste comprised 21 percent of estimated gross production in 1938, 17 percent in 1937, 15 percent in 1936, and 19 percent in 1935. The percentage increase in 1938 over 1937 is attributable in part to curtailment of gas-well production in 1938, but its principal cause is to be found in oil-production operations in several active areas where high gas-oil ratios are common. The most important of these were in New Mexico, Texas, California, Louisiana, and Arkansas.

MARKETED PRODUCTION

Marketed production of natural gas in the United States is estimated to have increased 6 percent in 1939 to 2,437 billion cubic feet, exceeding the 1937 peak. Expansion appears to have been general in almost all the leading producing States. Among States of secondary importance in gas output, sharp upward trends in natural-gas utilization

footnote 2).

* Includes gas (mostly residue gas) blown to the air, shrinkage at natural-gasoline plants, and transportation losses but does not include direct waste on producing properties.

³ Revised figures. 4 Produced approximately as follows: 2,071 million cubic feet in Texas, 2,254 million in Oklahoma, 1,033 million in Kansas.

million in Kansas.

§ Produced approximately as follows: 2,951 million cubic feet in West Virginia, 531 million in Kentucky,
1,528 million in Ohio.

§ North Dakota (1938 only), South Dakota, Tennessee, Utah, and Washington. 7 Subject to revision.

§ Produced approximately as follows: 2,770 million cubic feet in Texas, 1,780 million in Oklahoma, 893

million in Kansas

[•] Produced approximately as follows: 1,981 million cubic feet in West Virginia, 530 million in Kentucky, 1,021 million in Ohio.

 ¹⁰ Produced approximately as follows: 736 million cubic feet in West Virginia, 216 million in Kentucky,
 59 million in New York, 1,349 million in Pennsylvania.

have been evident for several years in Arkansas, Kansas, Kentucky, Michigan, Mississippi, Montana, New Mexico, New York, and

Pennsylvania.

The dearth of available reserves may soon reverse the trend in Mississippi, New York, and Pennsylvania unless important new discoveries are promptly made. In the other States named and in all the States whose 1938 marketed production exceeded 100 billion cubic feet, known gas supplies appear adequate for a number of years.

Final 1938 data indicate that marketed production declined in most States. The only sharp increase occurred in New York through rapid withdrawal of gas from the recently developed Oriskany-sand

fields.

The average price of gas at the wells declined to a new low of 4.9 cents per thousand cubic feet in 1938. Of 24 States reporting production in 1937 and 1938, however, 13 reported higher average values, 7 were lower, and 4 were unchanged. The average value at points of consumption of the gas produced dropped in 1938 to 21.8 cents, the lowest price in recent years.

Natural gas produced in the United States and delivered to consumers, 1934–38, by States, in millions of cubic feet

Year	Arkan- sas	Cali- fornia	Colo- rado	Illi- nois	Indi- ana	Kan- sas	Ken- tucky		uisi- na	Michi- gan	Missi sipp		New Mexico
1934	7, 024 6, 167 8, 500 9, 690 11, 301	268, 122 284, 109 320, 406 329, 769 315, 168	2, 843 3, 687 3, 186	1, 448 865 1, 040	1, 802 1, 777 2, 241 1, 551 1, 299	46, 909 57, 125 69, 178 83, 890 75, 203	33, 124 39, 738 43, 903 55, 719 46, 163	249 29 31	5, 713 9, 450 0, 151 5, 301 3, 899	2, 789 4, 203 7, 167 9, 080 10, 165	9, 6 11, 8 13, 3	13 19,870 21 23,003 48 24,76	27, 931 33, 928 46, 337
Year	New York	Ohio	Okla- homa	Penn- syl- vania	Texas	West Vir- ginis	W T		Other States		otal	Value a of consu Total (thousands of dollars)	
1934 1935 1936 1937 1938	6, 278 8, 288 12, 431 21, 325 39, 402	49, 592 46, 994 42, 783	274, 313 280, 481	94, 464 110, 362 115, 928	642, 366 734, 561 854, 561	115, 7 138, 0 149, 0	72 26 76 29 84 31	, 148 , 643 , 322 , 023 , 678	85 85 72 2, 98 5, 85	3 1, 91 5 2, 16 0 2, 40	70, 721 6, 595 7, 802 7, 620 5, 562	395, 378 429, 374 476, 813 528, 354 500, 698	22. 3 22. 4 22. 0 21. 9 21. 8

Natural gas produced and consumed in the United States in 1938, by States

	Produce	d and de	delivered t liveries in o	Consumed, including receipts from other States						
State	Quantit	У	Estimated at we		Value at p		Quantit	У	Value at points of consumption	
	M cubic feet	Per- cent of total	Total	Average per M cubic feet (cents)	Total	Average per M cubic feet (cents)	M cubic feet	Percent of total	Total	Average per M cubic feet (cents)
Ala Ariz							14, 796, 000 12, 660, 000	0.6	3, 790, 000	29.9
Ark	11, 301, 000	0.5	\$451,000	4.0	\$2, 168, 000	19.2	34, 833, 000	1.5	6, 682, 000	
Calif	315, 168, 000		21, 778, 000 70, 000	6. 9 3. 7	88, 225, 000 464, 000		315, 168, 000 19, 212, 000	13.7 .8		28.0 36.3
Colo	1, 904, 000	.1	70,000	3.7	404,000	24.4	3, 826, 000	.2	2, 785, 000	
Fla							1, 469, 000	.1	377,000	25.7
Ga							14, 783, 000	. 6	5, 737, 000	38.8
П	1, 169, 000		49,000		616,000		66, 500, 000	2.9		
[nd	1, 299, 000	.1	188, 000	14.5	734, 000	56. 5	26, 706, 000 20, 109, 000	1.2 .9	8, 357, 000 7, 306, 000	
lowa	75, 203, 000	3.3	3, 249, 000	4.3	27, 485, 000	36. 5	86, 105, 000	3.8	18, 997, 000	22.1
Kans Ky		2.0	5, 641, 000	12.2			15, 350, 000	3.8	6, 811, 000	
La	283, 899, 000		9, 681, 000		47, 991, 000		162, 260, 000	7.1	19, 904, 000	12.3
Md							1, 247, 000	.1	877,000	70.3
Mich		.4	975, 000	9.6	6, 387, 000	62.8	24, 697, 000	1.1	22, 789, 000	92.3
Minn							14, 641, 000	.6	7, 013, 000	
Miss	13, 656, 000	.6	653, 000 122, 000	4.8 8.9	3, 210, 000 819, 000	23. 5 59. 8	12, 785, 000 42, 505, 000	.6 1.8	3, 482, 000 16, 124, 000	
Mo Mont	1, 369, 000 21, 216, 000	.1	883,000		6, 132, 000			1.8	4, 907, 000	26.9
Nebr	21, 210, 000		000,000	1	0, 102, 000	20.0	17, 539, 000	l .š		35. 3
N. Mex	3 50, 706, 000	2. 2	791,000	1.6	7, 715, 000	15. 2	32, 890, 000	1.4	3, 514, 000	10.7
N. Y	4 39, 402, 000		5, 713, 000	14.5				2.1	20, 283, 000	
N. Dak	71,000		2, 100	3.0	27,000		1, 533, 000	.1 4.7	594,000	
Ohio	35, 257, 000 263, 164, 000	1.5 11.5	5, 916, 000 5, 237, 000	16.8 2.0		49.8 10.4		10.7		49. 9 8. 2
Okla Pa	5 76, 547, 000	3.3	13, 947, 000					4.2	40, 959, 000	42.5
S. Dak	10, 000		1,000				5, 354, 000	.2		
Tenn	6,000	(1)	600	10.0	2,000	33.3	14, 047, 000	.6	4, 400, 000	31.3
Tex	6 882, 473, 000	38.4	19, 767, 000		133, 486, 000	15.1	729, 603, 000	31.8		
Utah	4, 277, 000	.2	147, 000	3.4	937, 000	21.9	11, 699, 000	5		22.1
Va	117 000		9, 300	7.9	91,000	77. 8	615, 000 117, 000	(1)	608, 000 91, 000	
Wash W. Va		(1) 5.9	9, 300 17, 478, 000				57, 478, 000	2.5		
Wyo			822, 000	3.1				.8		
Total: 1938	2,295,562,000	100. 0	113, 571, 000		500, 698, 000		2,294,097,000		500, 550, 000	
1937	2,407,620,000	100.0	123, 457, 000	5.1	528, 354, 000	21.9	2,403,041,000	100.0	527, 529, 000	22.0

Less than 0.05 percent.
 Includes 372,000 M cubic feet piped from Canada.
 Includes 332,000 M cubic feet piped to Mexico.
 Includes 34,000 M cubic feet piped to Canada.
 Includes 911,000 M cubic feet piped to Mexico.

WELLS

During 1939, 2,145 gas wells were completed in the United States a 4-percent reduction from 1938, which in turn was 21 percent below 1937. Curtailment of drilling for gas was general in the Southwestern States, whose developed reserves greatly exceed current needs. Development increased, however, in all important Eastern States except West Virginia, where there was a material decline as drilling in the prolific Oriskany-sand fields passed its peak.

The number of producing gas wells in the country dropped from 55,050 on December 31, 1937, to 53,770 in 1938. The sum of this decline (1,280) and the 2,236 gas-well completions indicates that 3,516 gas wells were abandoned in 1938, a sharp increase over the total in any recent year. Abandonments exceeded completions in 13 States and were especially numerous in the old fields of Ohio, Pennsylvania, New York, Kansas, and West Virginia. The number of gas wells in

Michigan, Mississippi, Missouri, and Wyoming is comparatively small, but an unusually large percentage of them was abandoned in 1938.

Gas wells in the United States, 1937-39

State	Producing Dec. 31, 1937	Drilled during 1938 ¹	Producing Dec. 31, 1938	Drilled during 1939 !
Arkansas. California Colorado Illinois Indiana. Kansas. Kentucky. Louisiana. Mishigan Mississippi. Missouri Montana. New Mexico New York Ohio Oklahoma. Pennsylvania South Dakota, Utah, and Washington Tennessee. Texas. West Virginia Wyoming.	60 20 70 970 2,500 2,510 1,600 350 90 150 380 70 2,090 6,340 2,630 19,130	3 7 7 1 23 43 2000 991 1266 28 6 6 00 21 19 (3) 433 1600 3 166 5 5 3441 484 19 2 2 236	190 70 20 80 1,010 2,290 2,340 1,560 60 120 350 70 2,480 8,540 3,160 12,840 3,160 12,840 5,70 5,70	6 15 1 1 18 44 150 110 98 52 26 18 (3) 497 151 2 200
	- 55, 050	2, 236	53, 770	2, 145

From Oil and Gas Journal and State sources.
 New York included with Pennsylvania.

In 1931 total gas wells in the United States reached a peak of 55,756, which has not been equaled since, although gas production has risen to new highs about 25 percent above the earlier record of 1930. Modern practices of wider spacing of wells and deeper drilling have increased the average recoverable gas per well and reduced the cost per unit volume of producing natural gas, despite rising costs of labor and material.

REVIEW OF FIELD DEVELOPMENTS, BY STATES

Arkansas.—Production of natural gas in Arkansas in 1939 declined 9 percent to 18,770 million cubic feet, according to records of the Arkansas Department of Revenue furnished by Geo. C. Branner, State geologist. Production in the old gas fields in the northwestern part of the State increased 12 percent over 1938 to 4,061 million cubic feet in response to greater industrial demand. In the southern fields, however, where most gas is produced with oil, gas withdrawals were 14,710 million, about 14 percent less than in 1938. The greatest decline—2,100 million cubic feet—occurred in Miller County coincident with a marked recession in production of oil from the Rodessa field. Production and waste of casinghead gas were no doubt reduced by administration of a comprehensive proration and conservation law, which was enacted by the Arkansas Legislature on February 20, 1939.

Some of the casinghead gas produced in the Village, Atlanta, and Schuler fields was provided with pipe-line outlets in 1939 and utilized for drilling and refinery fuel. As most of the gas from southern Arkansas fields is rather high in sulfur, its distribution for general use has been restricted in favor of the abundant supplies of "sweet" gas from

² Tennessee included with Kentucky. ⁴ Revised figures.

northern Louisiana. An estimated 40 million cubic feet daily of gas

capacity in southern Arkansas fields is awaiting markets.

Six gas-well completions were reported in 1939. Three of these, with a total capacity of 7,460,000 cubic feet, were in secs. 33 and 34, T. 10 N., R. 26 W., Franklin County. Sebastian County had one completion in sec. 16, T. 8 N., R. 29 W., which produced 1.5 million cubic feet mitially from a total depth of 2,709 feet; and a shallow well (1,275 feet) in sec. 6, T. 9 N., R. 32 W., Crawford County, had a capacity of 250 thousand cubic feet. In southern Ouachita County the No. 1 Cook Estate, sec. 27, T. 15 S., R. 18 W., found an estimated 20 million cubic feet of gas in the Nacatoch sand at 1,588 feet; it is several miles west of the abandoned McDonald (Mt. Holly) field.

The Big Creek and Dorcheat fields, Columbia County, were discovered in 1939. They appear to have the general characteristics of "gas-condensate" fields and are substantial additions to available gas reserves. Extensions to several oil fields in 1939 increased further the available gas supplies. Three structures, which were tested in 1939 in Nevada, Ouachita, and Faulkner Counties, gave some indica-

tions of gas reserves of commercial value.

California.—Natural-gas production in California during 1939 was about 370 billion cubic feet, a small reduction from that of 1938. Information has been received from E. F. McNaughton, California Railroad Commission, and F. F. Doyle, Pacific Gas & Electric Co. Of the total production, 198 billion cubic feet were taken from San Joaquin Valley fields, 48 billion from Coastal fields, and 124 billion from the Los Angeles Basin. Twenty-six billion cubic feet came from the "dry"-gas fields, and the remainder was casinghead gas. "Dry"-gas production is becoming a more important factor in California operations. Almost 99 percent of all gas sold in the State is now natural gas, very little manufactured gas being delivered.

In the first half of 1939, 17,285 million cubic feet of gas were blown to the air, representing 9 percent of the total production during that period. State agencies are attempting to reduce this waste through cooperative action. Serious waste still occurs, however, in some fields of the Los Angeles Basin, where town-lot development and highly divided ownership are common. Losses in the Montebello field were

approximately half those for the entire State.

Preliminary data indicate that gasoline plants processed 370 billion

cubic feet of gas in 1939, 7 percent less than in 1938.

Fifteen gas wells were completed in 1939. Their location by fields, with total initial capacity, was as follows: Trico, 11 wells with 219 million cubic feet; Rio Vista, 1 with 20.3 million; Woodland (Yolo County), 1 with 14.1 million; Marysville Buttes, 1 with 20.9 million; and Eureka, 1 with 75 thousand. Producing gas wells in California totaled 63 at the end of 1938 and 70 on December 31, 1939.

Pipe-line deliveries of gas were begun in 1939 from the Trico and Marysville Buttes gas fields. Drilling at Trico was stimulated by its

new market outlet.

Additional supplies of casinghead gas were developed in the new Paloma and Arvin fields, Kern County, and by extensions in the Coalinga, Fruitvale, Strand, Canal, Coles Levee, and Wasco fields in the San Joaquin Valley. In the Los Angeles Basin extensions were made to the Montebello, Rosecrans, and Aliso Canyon fields.

Sales of gas for domestic, commercial, and miscellaneous industrial use increased moderately in 1939. Sales to power plants for electric

generation increased sharply from 9 billion cubic feet in 1938 to 22.5 billion in 1939.

Colorado.—The total production of gas in Colorado in 1939 was 1,719 million cubic feet, an increase of 16 percent over 1938, according to H. J. Duncan, supervisor, Federal Geological Survey, Casper, Wyo. Output was moderately higher from all fields except Berthoud, which fell 10 percent. The production by fields was as follows: Berthoud, 50,396,000 cubic feet; Craig, 4,659,000; Garcia, 57,500,000; Hiawatha, 1,517,693,000; Thornburg, 89,142,000.

No new gas wells were completed in 1939, the only drilling being the deepening of one well at Hiawatha and recompletion for 2 million

cubic feet at 2,420 feet (old total depth, 2,232 feet).

About 3 million cubic feet of gas were wasted through leakage in the Hiawatha and Powder Wash (shut-in) fields and 32,500,000 at Garmesa (shut-in) owing to leakage at an old well that is being plugged. About 32,600,000 cubic feet of gas, produced with oil with a gas-oil ratio of 252 cubic feet per barrel, were wasted in the Wilson Creek oil field.

Illinois.—Gas was marketed from two Illinois fields in 1939—Russellville in Lawrence County and Ayers in Bond County. The source of information is a report by A. H. Bell and G. V. Cohee, Illinois Geological Survey.

Russellville produced 964 million cubic feet from 920 productive acres. The old Ayers field produced 13,600,000, making its total pro-

duction since 1922, 180,600,000 cubic feet.

Large gas reserves were found by the Storms Heirs No. 1, completed in July 1939 in sec. 14, T. 6 S., R. 9 E., White County, as a gas well in the Waltersburg sand of the Chester series at a depth of 2,215 feet, with an open flow of 12,300,000 cubic feet. By March 5, 1940, 5 gas and 30 oil wells had been drilled in the Storms field, with an initial capacity ranging from 4 to 30 million cubic feet of gas per day. It is reported that 100 million cubic feet per day of gas from the oil wells are being burned in flares, only a small amount being used for field purposes.

It is estimated that an output of 250 million cubic feet of 1,600 B. t. u. gas per day was being produced early in 1940 in the Salem oil field, Marion County, from five different producing horizons and that approximately half the ultimate gas production from this field already has been withdrawn from the ground. About 1 million cubic feet per day are being injected in 11 input wells for repressuring, a small amount is used in field operations, and the remainder is wasted by burning in

fiares

In the Louden field, Fayette County, a daily yield of approximately 30 million cubic feet of gas is being produced along with oil. In the north end of the field where there is a "gas cap," gas is passed through absorbers that extract 1.3 to 1.5 gallons of natural gasoline per thousand cubic feet. About 1 million cubic feet of gas per day are used for repressuring, 3 million for lease operations, and 3.5 million as fuel; the remaining 22.5 million are burned in flares.

In other new oil fields in Illinois small amounts of natural gas are

produced and used on leases or burned in flares.

In late 1938 and early 1939, five shallow gas wells were completed in Hillyard Township near Plainview, Macoupin County. Their average depth is 440 feet in basal Pennsylvanian sandstone, and initial production ranged from 125,000 to 750,000 cubic feet of 806 B. t. u.

gas per day; there is no market outlet as yet. Three abandoned gas fields, which produced 1.2 billion cubic feet in all, are situated in

Macoupin County.

Indiana.—Production of natural gas in Indiana decreased from 1,244 million cubic feet in 1938 to 875 million in 1939, according to a report from G. F. Fix, State gas supervisor. Part of the decline was due to depletion in old fields and part to the fact that Oaktown, the largest gas-producing field in the State, was shut in during most of the year. It produced only 92 million cubic feet in 1939 compared to 299 million in 1938.

Gas-well completions in 1939 totaled 44; five were in unproved or wildcat territory and 39 in old areas. Completions in the active fields were: Rockport, 13; Old Trenton, 6; Greensburg, 5; Shelburn-Graysville (Sullivan County), 5; and Alford, 4. The total initial capacity was 112 million cubic feet, including 100 million from the

13 wells in the new Rockport field, Spencer County.

Production at Rockport (discovered in the summer of 1939) is from the Palestine sandstone of Upper Chester age at an average depth of 900 feet. Well capacity has ranged from 3 to 15 million

cubic feet, with a rock pressure of 390 pounds.

A new gas area was discovered in sec. 19, T. 6 S., R. 12 W., Posey County, by a well that made 2.2 million cubic feet from a Pennsylvanian sand lens at 368 feet, with a rock pressure of 200 pounds. Another interesting development was the discovery of gas in a new horizon (Eden or Cynthiana) at a depth of 473 feet in Wayne County.

Several million cubic feet of gas per day are being produced from new oil wells, chiefly in the Griffin oil field developed in 1939; this

gas is not marketed.

A pipe-line outlet was provided for the Rockport gas in December 1939, but no production was marketed until 1940. Gas production in Indiana is expected to increase in 1940 because of this and other new developments. The current active search for new oil reserves increases the prospect of developing new gas supplies in the near future.

Kansas.—Gas production in Kansas increased substantially in 1939 over 1938 in response to heavier market demand. The fields of largest production, as recorded by the Kansas Corporation Commission, were as follows: Hugoton, 28,964.5 million cubic feet; Otis, 8,062.9 million; Burrton, 6,387.1 million (chiefly casinghead gas); Medicine Lodge, 6,380.6 million; Lyons, 2,838.7 million; and Cunningham, 2,453.1 million. The total accumulated production of the great Hugoton field through 1939 was 188,964 million cubic feet; of Otis, 44,426 million; of Medicine Lodge, 36,437 million; of Cunning-

ham, 8,525 million; and of Lyons, 5,051 million.

A total of 96 new gas wells (68 in western Kansas and 28 in the eastern fields) was reported in 1939, according to R. P. Keroher, geologist, Kansas Geological Survey. The total reported daily initial capacity of new wells was 1,168,500 thousand cubic feet, including 69,500 thousand (5 per cent) in eastern Kansas. Seventy-three percent of the total new production was in two large fields in western Kansas—the Hugoton (with 202 million cubic feet) and the Cunningham-Cairo-Lunt-Gilcrist area (with 643 million). Twenty-two percent (254 million cubic feet) was distributed among pools in Barton, Barber, Harvey, McPherson, and Sherman Counties in descending importance.

Probably the most important addition to gas reserves was developed in the Cunningham field of Kingman and Pratt Counties, where active drilling in 1939 proved an estimated 100 billion cubic feet of new gas reserves from the Viola limestone. Twenty-eight wells in this area had a daily open-flow capacity of over 600 million cubic feet.

A gas discovery in the Kansas City-Lansing limestone, which usually does not produce dry gas, was made by the No. 1 Oeser well in sec. 17, T. 16 S., R. 11 W., Barton County, called the Prusa field. It was completed March 14, 1939, with an initial capacity of 11.6 million cubic feet. Another discovery was made in T. 8 S., R. 29 W., near Goodland in Sherman County, in the far northwestern portion of Kansas. Two wells were drilled, with a total daily capacity of about 100,000 cubic feet of gas from a depth of 1,100 feet; they are currently supplying gas to the town of Goodland. Other additions to known gas reserves were reported in Barber, Franklin, Greenwood, Jefferson, Johnson, and Woodson Counties. A wildcat in sec. 4, T. 10 S., R. 20 E., Jefferson County, found 8.5 million cubic feet of gas in the Bartlesville sand at 1,443 feet. The discovery is of particular interest because it opened the first production of apparent commercial value in the Kansas portion of the Forest City Basin.

Six wells were drilled in the Medicine Lodge gas field, Barber County, with open flows ranging from 2 to 25 million cubic feet. In the Hugoton field five wells were drilled in Stevens County, four in Haskell County, and two in Grant County, with an initial production of 2.5 to 39.5 million cubic feet per well. A large gas well (24.5 million cubic feet) was completed in the Albert pool, Barton County, and one (60 million cubic feet) in the nearby Otis area. New gas capacity of minor importance, principally associated with oil, was developed in 1939 in the Beaver, Kruckenburg, Ritz-Canton, Wherry,

Hall, Gurney, Coralena, and Burrton fields.

Approximately 275 gas wells were plugged during 1939 compared

to 320 m 1938.

A new carbon-black plant was under construction at Ryus as the year ended. It will use about 3 million cubic feet of gas daily from the Hugoton field in manufacturing high-grade carbon blacks.

Gas pipe-line construction in 1939 is discussed in the pipe-line

section.

Kentucky.—Gas developments in Kentucky in 1939 were routine, according to information from C. D. Hunter, I. B. Browning, R. N. Thomas, and G. M. Stranghan of Ashland and R. E. Stouder of Louisville.

In eastern Kentucky about 50 gas wells were drilled, the most active counties being Floyd, Knott, Martin, and Pike. With excess reserves already developed in this area there has been little incentive to drill for gas. Heavy demand during the past winter, however, is expected to cause more active development during 1940. Repressuring is now playing an important role in production of the eastern oil fields.

An extensive leasing campaign is in progress in the eastern counties, involving several hundred thousand acres on all known structures. The intention is to seek production from deeper horizons, particularly from the top of the "Corniferous" down to the St. Peter sandstone.

Gas activity in western Kentucky was unimportant and probably on a reduced scale in 1939. Geologic information was obtained from several wells drilled in the deeper parts of the Western Coal Basin, making available for the first time accurate data on the Pennsylvanian and Devonian formations.

Louisiana.—Gas and "gas-condensate" well completions in northern Louisiana declined further in 1939, the total being 86 against 137 in 1938, according to data supplied by Cyril K. Moresi, State geologist. Of the new wells, 66, with a total capacity of 454 million cubic feet per day, produced dry gas; the remaining 20 produced condensate with gas. Drilling in the Cotton Valley and Rodessa fields fell sharply in 1939, and activity in the Monroe area declined slightly from 53 new wells in 1938 to 49 in 1939. Completions were reported from 13 fields in 1939 and from 10 in 1938.

Reports for 1939 covering south Louisiana for the first time indicate that 53 gas and high gas-oil ratio wells were completed; of these, 5 were dry gas wells. Six completions were in the Ville Platte field, 5 in North Tepetate, and 4 at Lake Arthur; the remainder were scattered

through 24 other fields.

Gross reported production of natural gas in 1939 was 402,751 million cubic feet, a 12-percent increase over 1938 and the highest on record. Production at gas wells rose to 284,895 million cubic feet in 1939 from 259,946 million in 1938, and casinghead-gas output increased to 117,857

million cubic feet from 100,849 million the year before.

The northern fields produced 313,333 million cubic feet, including 273,933 million from gas wells. The output of the Monroe field in 1939 was 189,557 million cubic feet, 10 percent higher than in 1938. Rodessa gas wells produced 33,149 million, an increase of 25 percent over 1938. Cotton Valley and Sligo, the next largest producers, supplied slightly less gas than in 1938, with 18,816 million and 13,718 million cubic feet, respectively. Most of the casinghead gas from northern fields in 1939 came from Rodessa, which produced 27,101 million cubic feet, followed by Cotton Valley with 4,562 million and Shreveport with 2,836 million. Markets for northern Louisiana gas doubtless will be expanded somewhat by a new line to Jackson, Miss., built in 1939.

Gas production in the southern part of the State totaled 89,418 million cubic feet, including only 10,962 million from gas wells. Small amounts of gas are obtained from gas wells in many fields, the most important of which are Bosco (3,915 million cubic feet) and North Tepetate (2,393 million). The most important sources of casinghead gas in 1939, with volumes in millions of cubic feet, were: Ville Platte, 10,045; Tepetate, 9,799; English Bayou, 6,978; Lafitte, 5,784; Bancroft, 4,504; Roanoke, 4,157; Iowa, 3,937; Lake Long, 3,399; Jennings, 2,880; Bosco, 2,816; and Lake Arthur, 2,608. The output at Ville Platte for 1939 increased from 1,193 million cubic feet in 1938. Other fields showing important growth in output were Bancroft, Lake Arthur (south Roanoke), Lake Long, and English Bayou. In all, 82 south Louisiana fields reported casinghead-gas production in 1939, 12 more than in 1938.

Field development in northern fields ordinarily was limited to routine drilling, and no new discoveries were reported. In the coastal area, however, active exploration led to the finding of several new fields and many new pay zones in older fields, with potentially important gas reserves. The Perkins field, Calcasieu Parish, was a new gas discovery, and deeper sands productive of gas or gas-condensate were opened at North Tepetate, Baton Rouge, Ville Platte, Leeville, Lake

Mongoulois, and Bateman Lake.

Michigan.—Production of natural gas in Michigan in 1939 was 10,137 million cubic feet, a 10-percent increase over 1938, as reported by F. R. Frye, petroleum engineer, Michigan Department of Conservation. The total included 1,147 million cubic feet of casinghead gas; the remainder was from gas wells.

Gas-well completions in 1939 totaled 56—about double the 1938

total of 27. Nineteen gas wells were abandoned during the year.

The principal new gas field discovered in 1939 was in Lincoln township (T. 18 N., R. 5 W.), Clare County. A considerable supply of gas was developed from an upper sand (Berea) in the Clayton oil field, Arenac County, at a depth of about 1,200 feet. New pipe lines were built to market gas from both these fields.

During development of the Wise oil field commercial amounts of gas were found in the Michigan Stray sand, and approximately 1,400 acres were considered proved at the end of 1939. Gas was discovered in the Berea sand at 1,100 feet in the Walker oil field near Grand Rapids.

In December 1939 a well in Wright township (T. 8 N., R. 13 W.), Ottawa County, found 3.5 million cubic feet of gas from the Berea sand. Two older wells in this area had shown about one-half million cubic feet of capacity. A wildcat in Monroe County produced 108 thousand cubic feet of gas from the Trenton limestone.

Projects are reported for marketing residue gas from two new gasoline plants. From the Walker oil field, Kent County, gas will go through 22 miles of 8-inch pipe to connect with an existing trunk line. Another line is contemplated from a gasoline plant in the Redding oil field, Clare County, to a chemical plant at Midland.

The Six Lakes field produced 4,868 million cubic feet of gas in 1939—almost 50 percent of the State total. The Austin field, with 800 million cubic feet, was the next largest producer, followed by New

Haven, Home, and Broomfield.

Mississippi.—Production from the Jackson gas field, which continued to be the only commercial source of gas in Mississippi, in 1939 reached an all-time peak of 15,233 million cubic feet—almost 7 percent above the 1938 record. Data have been supplied by H. M. Morse,

supervisor, State oil and gas board.

However, the field is approaching exhaustion, as is indicated by the rapid encroachment of salt water in the producing formation. The strong water drive sustains gas pressures as the size of the productive area diminishes. At the end of 1939 only 30 productive gas wells remained, in contrast to 60 and 90, 1 and 2 years before. Twenty of the remaining wells are producing salt water. One gas well and three dry holes were drilled on the Jackson structure in 1939.

In December 1939 a well was started in the old Amory gas field in an attempt to bring that area back into production. Wildcatting over a wide area of Mississippi was stimulated by discovery of oil in

Yazoo County in September 1939.

Anticipating reduced gas supply from the Jackson field, an 18-inch line was laid from northern Louisiana fields to connect with the trunk

gas line south of the city of Jackson.

Missouri.—Fifteen gas wells with a total daily initial open flow of 6,383,150 cubic feet were completed in Missouri in 1939, according to records prepared by Frank C. Greene, geologist, Missouri Geological Survey. This is a sharp reduction from 1938, when intensive development of a gas field was in progress in Jackson County. Completions,

by counties, were as follows: Jackson, 6; Platte, 3; Cass, 2; Clay, 2; Bates and Clinton, 1 each.

One new gas pool was opened in Platte County but remained undeveloped at the end of the year. Wildcatting increased markedly in the northern half of the State. Drilling operations were begun

in Bollinger, Butler, and Wayne Counties in the southeastern portion of the State, but no completions were reported.

Montana.—The natural-gas industry in Montana recovered somewhat in 1939 from the curtailed operations of 1938 but remained less active than in 1937, according to information supplied by H. J. Duncan, supervisor, Geological Survey, United States Department of the Interior, Casper, Wyo. Gas-well completions increased to 26 from the 1938 total of 21. The combined daily open-flow capacity of the new wells was 201,485,000 cubic feet, 65 percent more than the capacity developed in 1938 and a larger total than that of any recent year. Two gas wells of unusual size were drilled in the Cut Bank field and shut in. Spruce Oil Co. No. 1, in sec. 24, T. 37 N., R. 5 W., about 3 miles south of the international boundary, had an initial gaged production of 43 million cubic feet from the Sunburst sand at 2,552 to 2,601 feet and a shut-in pressure of 725 pounds. Glacier Production Co. No. 2, in sec. 35, T. 36 N., R. 6 W., 13 miles north of the town of Cut Bank, had an estimated daily capacity of 80 million cubic feet from the Sunburst sand at 2,905 to 2,959 feet. No new gas fields were discovered in 1939.

All gas production, except part of that from the Cedar Creek field, is used within the State. Importations from the Rogers Imperial well in Canada were 131,244,000 cubic feet in 1939 to June 1, when the importation permit expired and was not renewed. The rock pressure of the well had dropped below the pressure maintained in the trunk line from the Whitlash field to Great Falls. The only other gas piped into Montana is from the Wyoming side of the Elk Basin field, which supplied 1,609,848,000 cubic feet to the Billings region.

Gas withdrawals increased nearly 2 billion cubic feet in northwestern Montana owing to increased demand from beet-sugar refineries and copper smelters and a reduction of rates at Great Falls. In southern Montana withdrawals decreased about 45 million cubic feet, showing the influence of milder weather and curtailed industrial operations, which were partly offset by increased demand from electric power plants.

Wastage of gas is estimated at 65 million cubic feet from gas fields and 15 million from oil fields, exclusive of about 300 million lost from Glacier No. 2 well mentioned above, which blew wild for 4 days before being brought under control.

Source and distribution of natural gas in Montana in 1
--

			Uti	lization	Location of principal markets		
Field	Total pro- duction (M cubic	Domestic		Industrial			
	feet)	mercial (M cubic feet)	M cubic feet	Consumer			
Bowdoin	673, 059	504, 794	168, 265	Steam boilers	Glasgow, Malta, Fort Peck		
Bowes Box Elder	628, 404 311, 671			Sugar refinerydo	Havre and Chinook. Do.		
Cedar Creek	7, 107, 335	2, 617, 335	R	Cement and sugar fac- tories. Electric power plants	Miles City, Sydney, Glen- dive, Montana; Rapid City, S. Dak.; Bismarck Bowman, Williston, N. Dak., etc.		
Cut Bank	9, 025, 820	3, 610, 328	5, 415, 492	Smelter and steam boilers.	Anaconda, Butte, Helena		
Dry Creek	911, 844	911, 844			Big Timber, Bozeman, Liv- ingstone, etc.		
Hardin Kevin-Sunburst	71, 475 2, 976, 039		1, 488, 524	Smelters, steam boilers.	Hardin. Great Falls, Shelby, etc.		
Whitlash	639, 360	415, 584	223, 776	do	Great Falls, etc.		
	22, 345, 007	10, 166, 830	12, 178, 177				

¹ Data supplied by H. J. Duncan, supervisor, Geological Survey, U. S. Department of the Interior.

New Mexico.—Only 10 gas wells were completed in southeastern New Mexico fields during 1939 compared to 19 in 1938, and the total open-flow capacity was 52,072 thousand cubic feet, a decline of 80 percent from 1938, according to E. A. Hanson, supervisor, Geological Survey, United States Department of the Interior, Roswell, N. Mex. As is usual in this area, most gas wells were incidental to the development of oil-bearing formations.

One discovery was made in April in Eddy County by Smith No. 1, which produced 750 thousand cubic feet of gas from the Permian at

a total depth of 2,436 feet.

Dry-gas production increased 11 percent in 1939 to 27,106 million cubic feet—26,356 million from Lea County and the remainder from Eddy County. The quantity of gas processed at gasoline plants declined slightly to 88,671 million cubic feet from 91,800 million in 1938. The use of gas lift in oil production increased consumption 20 percent in 1939 over 1938 to 3 billion cubic feet, and field consumption for fuel and miscellaneous purposes was 10 percent greater in 1939 (2,750 million cubic feet).

Slight drilling activity continued in the fields that produce carbon dioxide gas in Harding, Torrance, and Mora Counties. Completion

of six wells was reported.

In the northwestern gas fields output increased 13 percent in 1939 to 2,577 million cubic feet owing to increased withdrawals from the Kutz Canyon field, which totaled 1,869 million cubic feet. The other two active fields produced in 1939 as follows: Ute Dome, 676 million, and Blanco, 32 million cubic feet. Three gas wells were completed at Kutz Canyon in 1939.

State records indicate that the total production of gas in New Mexico was 142.5 billion cubic feet in 1939 compared with 167.6 billion in 1938—the peak year. The most important producing fields in 1939 were Eunice (46.3 billion), Monument (26.4 billion), and

Cooper (19.7 billion).

New York.—The initial production of gas wells in New York during 1939 dropped sharply compared with the previous year, according to information compiled by C. A. Hartnagel, assistant State geologist. Intensive drilling was conducted in the southern New York Oriskany-sandstone area, where existing gas pools were being depleted rapidly. A total of 56 wells was drilled, including 18 producers with a total initial capacity of 104,793,000 cubic feet.

Eight producers and two dry holes were completed in the Woodhull field, Steuben County, making 46 gas wells and 4 dry holes for this area. Four producers with a combined daily open flow of 39,000,000 cubic feet were drilled in the Beach Hill and State Line pools, Alle-

gany County.

A wildcat well in Andover, Allegany County, came in with an initial daily production of 12 million cubic feet and a rock pressure of 2,000 pounds. This well is now making salt water, and three of the four wells being drilled near by will be abandoned. Six other Oriskany tests in Allegany County were failures.

In Cameron, Steuben County, a wildcat located 13,900,000 cubic feet of gas in the Oriskany, but eight wells drilled in the immediate vicinity were failures. Other productive wells in Steuben County included one each in the towns of Jasper (4,200,000), Troupsburg (1,400,000), and Tuscarora (115,000).

The most easterly Oriskany production in New York was discovered in Danby, Tomkins County, by a well that made 5,000,000 cubic feet daily and was followed by four dry holes in the area. Dry holes also

were drilled in Baldwin and Erin, Chemung County.

The discouraging results of exploration and the depletion of present active fields are rapidly causing a local scarcity of gas reserves that may threaten the life and usefulness of certain existing gas lines.

The use of gas for industrial purposes has been curtailed.

Ohio.—Drilling in Ohio in 1939 increased about 12 percent over that in 1938 and resulted in the completion of 501 gas wells—68 more than in 1938—as reported by J. E. Schaefer, geologist, East Ohio Gas Co. The average initial volume was 596,000 cubic feet per well in 1939 compared with 459,000 in 1938. The higher average was due to numerous completions in the Clinton (170) and Newburg (33) sands, whose average capacity was 1,071 and 1,367 thousand cubic feet per

well, respectively.

Gas wells completed in the most active counties were: Licking, 67; Athens, 57; Noble, 52; Washington, 41; Cuyahoga, 26; Guernsey, 25; Meigs, 25; Knox, 24; Stark, 24; and Monroe, 22. In 1939 the combined initial open flow of all gas wells was 298,564,000 cubic feet—50 percent larger than in 1938 and 34 percent above 1937. The Clinton sand continued to be the dominant source of new gas, contributing 182,199,000 cubic feet of the total open-flow capacity in 1939. The Newburg sand had 45,098,000 cubic feet, the Berea sand 42,027,000 feet from 179 new wells, and shallow sands 26,977,000 feet from 105 wells. Small amounts of new gas were found in the Devonian shale (seven wells), Oriskany sand (four wells), and Trenton limestone (three wells).

Gas production in Ohio has followed a declining trend for many years. It seems probable, however, that in 1939 there was a moderate increase over the 1938 marketed production (35,257 million cubic feet).

Although most of the Clinton-sand wells were drilled as extensions to productive areas, one important new pool was developed in 1939 in the contiguous corners of Mary Ann, Newton, Newark, and Madison Townships, Licking County. The discovery well was completed on December 1, 1938, in Newark Township, with an open flow of one-half million cubic feet. Interest was greatly stimulated by a well on the Van Wey farm in south Mary Ann Township, which began producing at 6,500,000 cubic feet daily in February 1939, with a rock pressure of 725 pounds. In 1939, 48 gas wells, 1 oil well, and 11 dry holes were drilled in this pool in the Clinton sand. During the drilling campaign, six Newburg-sand gas wells also were completed.

The only important development in the shallow-sand fields of eastern Ohio was the Yoker Valley gas field in Wayne and Beaver Townships, Noble County. The discovery well was drilled late in 1938, and during 1939, 34 gas wells and 4 dry holes were completed in the Berea sand at a depth of 1,500 to 1,700 feet. The initial openflow capacity in this pool averaged less than 1 million cubic feet, but some wells were making as high as 3½ million. Rock pressure was

about 600 pounds.

Ten dry holes were drilled in 1939 in searching for a producing zone from the "Green Sand" of western Ohio, which lies 500 to 700 feet below the Trenton. These holes ranged from 1,443 to 2,513 feet in

depth.

Oklahoma.—The total output of natural gas in Oklahoma declined further in 1939 from the peak attained in 1937, according to Oklahoma Tax Commission records. The production of 275 billion cubic feet during 1939 was 16 percent less than that of 1938. The output of gas wells was unchanged at 75 billion cubic feet, but casinghead-gas production dropped to 200 billion cubic feet from 252 billion in 1938, owing chiefly to continued depletion and reduction of reservoir pressures in the Oklahoma City, Fitts, and Edmond pools, which have been major sources of casinghead gas in recent years. The domestic and commercial use of gas increased moderately over 1938 in 1939.

In 1939, 151 gas wells were completed—about the same as in 1938. Their total daily open-flow capacity was about 857 million cubic feet. In addition, the completion of 69 combination oil and gas wells was reported, with a total gas capacity of 252 million cubic feet. Fifteen gas and combination wells in the Cement field, Caddo County, comprised about 25 percent of the new-gas potential for the entire State. Other fields in which important additions to gas-producing capacity were made were: Chickasha, Meridian, Kellyville, Carter-Hamilton, Jesse, Fitts, South Stroud, Lafoon North, Weleetka, Onapa, Cushing, and Seminole County. About 150 gas- or water-injection wells were drilled in connection with projects for secondary recovery of oil.

From the standpoint of new gas reserves, perhaps the most important development of 1939 was the opening of gas production from deeper sands in the Chickasha field, Grady County. On April 4, 1939, the No. 1 Smith well, in sec. 26, T. 5 N., R 8 W., was completed with an output of 13.2 million cubic feet of gas daily from a depth of 5,330 to 5,350 feet. The No. 4 Carlson, an old gas well in sec. 22, T. 5 N., R. 8 W., was deepened from 2,398 to 3,968 feet and completed with an open flow of 72 million cubic feet and a rock pressure of

1,880 pounds.

In sec. 8, T. 5 N., R. 10 E., Hughes County, new gas reserves were discovered by the No. 1 Shemwell, which found about 30 million cubic feet of gas in the Calvin sand at 4,505 to 4,525 feet, with a rock pressure of 1,650 pounds. A rank wildcat well in Kingfisher County—No. 1

Geis in sec. 15, T. 18 N., R. 9 W.—gaged 2.5 million cubic feet of gas daily, with about 12 barrels of condensate, from a depth of 7,365 feet,

plugged back from 8,507 feet (total depth).

Tests of gas wells in the Oklahoma City field indicate that in October 1939 there were 101, with a total daily capacity of 422 million cubic feet from 8 different horizons. The most important formations were: Oswego-Prue, with 66 wells having 265 million cubic feet of potential capacity; Hoover, with 10 wells having 73 million; Layton, with 10 wells and 34 million; and Oolitic, with 7 wells and 20 million cubic feet.

At the year end a new carbon-black plant was under construction in the Fitts field, Pontotoc County. Initially it will burn 3 million cubic feet of stripped casinghead gas a day and may later be enlarged to handle 7 million.

Gas pipe-line construction in 1939 was limited to a few very small projects, the largest being a 10-inch line from the Doyle area in eastern Stevens County, which runs southeastward 11 miles to connect with a 12-inch main line, which carries gas southward into Texas.

Pennsylvania.—The most important gas development in Pennsylvania during 1939 was in the Oriskany-sand fields of Potter County where 27 producing wells with a total daily open-flow volume of 365,410,000 cubic feet were completed. The capacity of these wells ranged from 175,000 to 50,000,000 cubic feet and the rock pressure from 230 to 2,235 pounds. Information is taken from a report by J. G. Montgomery, Jr., vice president, United Natural Gas Co. of the wells opened a new field near Brookland, but their small productive capacity (500,000 and 175,000 cubic feet) does not give great promise to the area. All other wells were in proved fields. Twentytwo dry holes were drilled; 11 wells were being drilled at the end of

Dry holes as follows were drilled in the Oriskany sand: In Armstrong County, 1; Beaver County, 2; Butler County, 1; Clarion County, 1; and McKean County, 3. No new fields of commercial importance were discovered during 1939. A test of the Medina sand in Mercer

County was dry and was abandoned at 5,485 feet.

The first output from the Oriskany in Fayette County was found by a well which produced 1,500,000 cubic feet from that formation and 747,000 from the cherty zone of the overlying Onondaga lime. Another well located 926,000 cubic feet of gas in this cherty zone and a third well was a failure through these horizons. The depth of the wells ranged from 7,115 to 7,826 feet. Two additional wells were being drilled at the end of the year.

Gas was discovered in the Bradford sand in Cowanshannock Township, Armstrong County, at a depth of 3,637 feet. Sixteen producing wells and 2 dry holes were drilled in 1939. The average open flow was 1,650,000 cubic feet and the original rock pressure 1,140 pounds. The

total area of the pool is reported to be small.

The use of rotary equipment for drilling deep holes in Pennsylvania apparently has been abandoned by operators after experimental drilling by this method in 1938 and early 1939. After the last rotary hole was completed in 1939 the material was shipped away.

Oriskany production totaled about 30 billion cubic feet in Potter and Tioga Counties, a 5-billion increase over 1938, owing chiefly to larger output of the Sharon and State Line fields. A marked decrease in the production from these areas was experienced during

the latter part of the year. To offset this decline, shallow-sand

production was increased.

South Dakota.—A small production of gas (estimated at 8 million cubic feet) by the cities of Pierre and Fort Pierre, S. Dak., continued in 1939. According to a statement by E. P. Rothrock, State geologist, there were no important new gas developments. The possibility of increased gas production was indicated by a well drilled on a good structure near Pierre, which struck a considerable quantity of dry gas.

A sample of gas from an old well at the Lacy Post Office was tested in the laboratory of the Bureau of Mines, Amarillo (Tex.) helium

plant and found to contain 0.02 percent helium.

Texas.—The gross production of natural gas in Texas during 1939 continued the upward trend that has persisted without interruption since 1932. According to records of the Texas Railroad Commission, 1,298 billion cubic feet of gas were produced, an 18-percent increase over 1938. Of this total, 872 billion were from gas wells and 426 billion from oil wells. The gas output of both types of wells has increased consistently in recent years, as suggested by the fact that casinghead gas equaled 32 percent of the total gas produced in 1936 and 33 percent in 1939. Increases in production over 1938 were: Casinghead gas, 7 percent; sour (high-sulfur) gas, 8 percent; and

sweet gas, 32 percent.

Utilization of gas increased in all major classifications, but by far the greatest growth was that incident to repressuring and gas-lift operations, which rose from 44.3 billion in 1938 to 155.3 in 1939, This was due chiefly to the phenomenal growth in or 251 percent. throughput at recycling plants, which process natural gas and vapors at very high pressures and return stripped gas to the natural reservoirs. Data concerning them first were made available for January 1939, when 10 plants extracted liquid condensate from a daily average of 116,444,000 cubic feet of gas. In December, 22 plants reported an average gas volume of 470,442,000 cubic feet processed daily. About 90 percent of the volume withdrawn from the ground usually is forced back into the producing sand to maintain pressure. Several additional plants are under construction, and others are planned. A large number of high-pressure condensate reservoirs have been discovered and await exploitation in the South Texas, Gulf Coast, and East Texas districts, and new discoveries are being made, hence the rapid expansion of recycling promises to continue for a considerable time.

A total of 462 billion cubic feet of gas was delivered to gas pipe lines in Texas during 1939—13 percent more than in 1938. Carbon-black plants burned 317 billion cubic feet (9 percent over 1938), and plant fuel and lease operations required 171 billion (a 1-percent increase). Extraction loss of 51 billion cubic feet at gasoline plants also represented a 1-percent increase, and waste of gas through blowing to the air rose to 142 billion cubic feet—a 4-percent increase. The reported waste, which includes only tail gas from gasoline plants, is greatest in the South Texas, West Texas, and Gulf Coast districts. The volume of gas processed at gasoline plants was 870 billion cubic feet in 1939 and 821 billion in 1938. The Panhandle district furnished

64 percent of the 1939 total—525 billion.

Gas wells completed in Texas numbered 314 in 1939 and 341 in 1938. The most active districts again were Southwest Texas (87) and the Panhandle (81), despite reduced operations. Completion of 62 gas wells on the Gulf Coast in 1939 was a sharp gain over the 36

completed in 1938. Activity in other areas was changed little from 1938, except in West Texas, where only 4 new wells were reported in

contrast to 16 in 1938.

From the standpoint of discoveries of new gas reserves, South Texas overshadowed other districts, with 8 new fields in as many counties and 13 new productive horizons in old fields. Graham No. 1, in Survey 572, Duval County, opened the Chiltipin field in June 1939, producing 10 million cubic feet of gas from the Pettus formation at 4,795 feet. Pettus production was discovered in Karnes County in December by No. 1 Newberry, which made 3 million cubic feet from a depth of 2,949 feet. Gas discoveries were completed in the Catahoula formation in Calhoun, Goliad, and Victoria Counties, the largest (that in Goliad County) having an initial capacity of 15.5 million cubic feet. Other new fields in Bee, Live Oak, and San Patricio Counties produced from the Vicksburg, Hockleyensis, and

Frio sands, respectively.

The West Texas district reported a small discovery of gas by the Hopper No. 1 well in Taylor County. In Limestone County, East Texas district, Barron No. 1 was drilled to the Pettit zone, and at 5,611 feet the well flowed 13.7 million cubic feet of gas daily. A new area was opened in Shackelford County and one new "pay" horizon in Stephens County, West Central Texas. A new source of gas was developed in Young County, North Texas, from the Strawn formation, and in the Panhandle a new gas area producing from the Permian lime was opened by Freeman No. 1 in Sherman County. The Gulf Coast district reported a discovery in Matagorda County which produced gas from the Miocene at 4,143 feet and a large well completed at 6,520 feet from a new sand—the Yegua—in the Fairbanks field, Harris County, which showed an initial daily flow of 55 million cubic feet.

Utah.—Following an 89-percent increase in 1938, Utah gas production in 1939 rose an additional 11 percent to 4,180,000,000 cubic feet, according to data supplied by H. J. Duncan, supervisor, Geological Survey, Casper, Wyo. The output of the Clay Basin field was 4,133,000,000 cubic feet and of the Ashley Valley field 47,000,000. The Farnham dome produced 51,172,000 cubic feet of carbon dioxide.

which was used in the manufacture of dry ice.

It is estimated that of the 11,938 million cubic feet of gas produced in the Baxter Basin-Clay Basin-Hiawatha areas near the Colorado-Utah-Wyoming border, 11,498 million were delivered to Utah markets.

No gas-well completions were reported in 1939.

Virginia.—In June 1939 natural gas was first supplied to consumers in the city of Bristol, on the Virginia-Tennessee line. Output is from four gas wells in a small field about 10 miles northwest of Bristol in Scott County, Va., and is the only commercial production of natural gas in the State.

Washington.—The Rattlesnake Hills field, Benton County continued during 1939 to produce the only natural gas in commercial quantities in Washington. Its output dropped 45 percent from 1938 to 67 million cubic feet valued at \$53,563. Of this quantity, 7 percent was used in the field and the remainder sold to consumers.

The Shallow gas field, Whatcom County, produced a little gas from the Chuckanut formation, which was consumed locally. No gas wells were completed during 1939, and prospecting generally was less active than in 1938. Carbon dioxide production from wells near Klickitat, Klickitat County, continued to increase. In 1939, 22 million cubic feet of this gas was used to produce 2,149,195 pounds of dry ice valued at \$60,786.

This information was supplied by Sheldon L. Glover, of the Department of Conservation and Development, State of Washington.

West Virginia.—Gas-well completions in West Virginia declined in

1939 to 366 from the 1938 total of 504 as a result of the slowing of Oriskany-sand development in Kanawha County and a general decline in activity in other fields. Information is taken from a report by David B. Reger, consulting geologist, Morgantown, W. Va.

A total of 68 Oriskany-sand gas wells was completed in 1939; of these 55, with an initial daily open flow of 349 million cubic feet, were in Kanawha County; and 13, with an open flow of 86 million cubic feet, were in Jackson County. The proved areas in Kanawha County are approaching full development. Most of the completions in Jackson County are in Ripley and Washington districts and are northwestern outposts of the Elk-Poca pool of Kanawha County. One of the new wells (Parsons No. 1) in Ripley district is 15 miles north of this pool and may therefore open a new field. It was completed in the Oriskany sand for 328,000 cubic feet, with a rock pressure of 1,870 pounds and a total depth of 5,139 feet. Another well far removed from older production—the Currey No. 1 at the northern edge of Ravenswood district—showed an initial daily flow of 2,534-000 cubic feet in the Oriskany with a rock pressure of 1,900 pounds and a total depth of 4,707 feet. Two other wells completed near Ravenswood City seem to indicate another productive area. These scattered wells are expected to stimulate an extensive drilling campaign in the central and southern parts of Jackson County.

In Kanawha County, Oriskany-sand drilling was largely routine in proved territory. A number of wells started for this objective were completed in upper sands, chiefly the Salt Sand, Big Lime (Mississippian), and Devonian Brown Shale. The Maxton No. 2 in Poca district had a Big Lime open flow of 17.3 million cubic feet. About 50 active rigs were reported in the two counties at the end of the year.

Reger estimates that about 200 billion cubic feet of gas have been withdrawn from the three Oriskany fields of the Charleston area and that an approximately equal volume of gas remains to be produced, indicating a total recovery of about 6 million cubic feet per acre. Rock pressures in the Campbell-Davis Creek and Cooper Creek pools have declined to around 275 pounds, suggesting that compression plants soon may be required to maintain production against prevailing

line pressures of 200 to 250 pounds.

Drilling outside Jackson and Kanawha Counties failed to discover additional production from the Oriskany sand. Testing of strata below the Oriskany resulted in two productive gas wells in the Newburg sand (Silurian) in Butler district, Wayne County. A well in Peytona district, Boone County, on the western slope of the Warfield anticline was drilled to 6,004 feet and found gas in the Big Lime (249,000 cubic feet), Newburg (99,000 cubic feet), and Clinton (Silurian) sand (70,000 cubic feet). This is the first Clinton-sand production recorded in West Virginia and may stimulate deep drilling over a large area.

Three new areas producing from the Devonian Brown Shale were opened in Cabell County, two in Putnam, and one in Wayne. The Villa Nova gas pool in Clay and Braxton Counties was developed into

an important reserve in 1939. The discovery well, drilled in late 1938, was first thought to be producing from the Webster Springs sand. Later information indicates the productive sand is Edray, just above the Big Lime of the Greenbriar series. About 1,500 acres have been proved by 17 wells, 1,500 to 1,800 feet deep and with an average open flow of 1.1 million cubic feet. Limits of the pool are not defined, and 16 wells were being drilled at the end of 1939.

Gas wells were drilled in 27 counties in 1939, the most active areas with number of wells completed being: Boone, 12; Braxton, 11; Cabell, 30; Calhoun, 27; Clay, 24; Gilmer, 32; Jackson, 13; Kanawha, 73; Lincoln, 17; Ritchie, 27; Roane, 20; Wayne, 21; and Wetzel, 15. The total open-flow capacity of new gas wells was 602.4 million cubic feet, a sharp reduction from the 1938 aggregate. Production for the year is estimated as 147 billion cubic feet. Available gas reserves in the State probably were increased during 1939.

Four treating plants were built to remove sulfur and moisture from the gas being produced in the northern part of the Elk-Poca pool. They are designed to handle 110 million cubic feet of gas per day.

The laying of two small pipe lines was reported in Kanawha County. Wyoming.—According to a report by H. J. Duncan, supervisor, Geological Survey, Casper, Wyo., gross gas production in Wyoming in 1939 was 37,779 million cubic feet, almost the same as in 1938, including estimated field use of 918 million cubic feet and waste of 740 million, in addition to metered gas. A total of 19,532 million cubic feet of metered gas was delivered to gas companies for distribution, 11,647 million being used in recycling and repressuring and 4,942 million in other field operations.

In repressuring and recycling the following quantities of gas were used, by fields: Salt Creek, 6,510 million cubic feet; Lance Creek, 3,171 million; Rock Creek, 1,928 million (including 1,427 million purchased from Big Medicine Bow); and LaBarge, 38 million.

Gas production from the most important fields in 1939 was as follows, in millions of cubic feet: Salt Creek, 9,590; Baxter Basin, North and South, 5,798; Lance Creek, 4,556; Big Sand Draw, 3,410; Big Medicine Bow, 3,156; Muskrat, 2,210; Little Buffalo Basin, 1,797; and Elk Basin, 1,610. Changes up or down from 1938 were minor. The largest increase—936 million—occurred at Lance Creek.

Gas processed in Wyoming in 1939 for extraction of natural gasoline totaled 18,027 million cubic feet, which included virtually all gas produced from the Salt Creek, Lance Creek, and Big Sand Draw fields and that of the Rock Creek field (501 million).

About 600 million cubic feet of gas were wasted in 1939 in the Lance Creek field owing to inadequate gathering facilities. These were improved after September 1939 and reduced waste to 500,000 cubic feet per day. In gas fields waste was negligible, except for 100 million lost at three wellheads during drilling.

Only 7 gas wells were reported as completed in 1939 compared to 14 in 1938. Six wells completed with a total initial capacity of 26,200,000 cubic feet were in old fields, and one was a new discovery with a capacity of 2,500,000. It was drilled on the Horne structure in sec. 22, T. 22 N., R. 78 W., and shut in for lack of pipe-line connection. Gas supplies in old fields were augmented by new wells in Big Sand Draw, Garland, Billy Creek, and Baxter Basin and by deepening wells at Elk Basin and Little Buffalo Basin. In the Muskrat field a new well was reported in December to have gaged

75 million cubic feet. The reserves of the Billy Creek field appear to be nearly exhausted, and as there is no other developed gas production in the northeast quarter of the State supplies for Buffalo and Sheridan probably will be piped from Big Sand Draw and Musk-

rat by means of an extension from Casper.

The Allen Lake-Laramie pipe line was extended 5.2 miles, with a 6-inch line to the Oil Springs field in secs. 2 and 3, T. 23 N., R. 79 W. (a 1938 discovery), from which production was begun in November. The Mahoney dome-Rawlings gas line was connected to the Bunker Hill field in secs. 29 and 32, T. 27 N., R. 89 W., with 10 miles of 6-inch and 2 miles of 4-inch welded line.

CONSUMPTION

The decline in natural-gas consumption to 2,294 billion cubic feet in 1938 from 2,403 billion in 1937 was caused by less demand from all classes of consumers except those in oil fields. The "other industrial" load fell most sharply and comprised 79 percent of the total decline.

load fell most sharply and comprised 79 percent of the total decline. Domestic consumption was 1 percent less in 1938 than in 1937, despite an increase in the number of consumers to 8,634 thousand from 8,348. Consumption per domestic meter declined 4 percent to 42,600 cubic feet in 1938, reversing an upward trend of the preceding 3 years. The average value at points of consumption of all gas sold in 1938

The average value at points of consumption of all gas sold in 1938 was 21.8 cents per thousand cubic feet, 0.2 cent below the 1937 average. The sharp reduction in industrial-gas value more than offset the increase in average value of domestic and commercial gas.

Natural gas consumed in the United States, 1934-38

	Domestic and commercial consumption										
Year	Consum	ers (thous	ands) 1	Billio	ns of cubic	Average number of	Average				
	Domestic	Com- mercial	Total	Domestic	Com- mercial	Total	M cubic feet used per domes- tic and commer- cial con- sumer	value at points of consumption per M cubic feet (cents)			
1934 1935 1936 1937 1938	6, 984 7, 391 8, 017 8, 348 8, 634	582 613 657 680 704	7, 566 8, 004 8, 674 9, 028 9, 338	288 314 343 372 368	91 100 112 117 114	379 414 455 489 482	50. 2 51. 7 52. 5 54. 2 51. 6	68. 6 68. 5 67. 1 67. 6 68. 3			

Year		Total con- sumption								
			Billio	Average value at		Aver-				
	Field	Carbon black	Petro- leum refin- eries	Elec- tric public utility power plants ³	Port- land cement plants ³	Other indus- trial	Total indus- trial	points of con- sump- tion per	Bil- lions of cubic feet	value at points of consumption per M cubic feet (cents)
1934 1935 1936 1937 1938	555 580 619 651 659	230 242 283 341 325	80 80 93 113 110	128 125 156 171 170	27 27 37 41 37	366 442 518 597 511	1, 386 1, 496 1, 706 1, 914 1, 812	9. 7 9. 7 10. 0 10. 3 9. 4	1, 765 1, 910 2, 161 2, 403 2, 294	22. 3 22. 4 22. 0 22. 0 21. 8

Includes consumers served with mixed gas,
 Federal Power Commission.
 Chapters on Cement in Minerals Yearbook and Statistical Appendix to Minerals Yearbook.

Natural gas consumed in the United States, 1934-38, by States, in millions of cubic feet

State	1934	1935	1936	1937	1938	
Alabama	7, 932	10, 563	16, 630	16, 593	14, 796	
Arizona	4,729	5, 603	8, 232	12,857	12,660	
Arkansas	25, 075	26, 476	30, 986	35, 074	34, 833	
California.	268, 122	284, 109	320, 406	329, 769	315, 168	
Colorado	16, 449	17, 233	19, 713	20, 816	19, 212	
District of Columbia	2,640	2, 707	3, 104	3, 458	3, 826	
Florida	554	692	1,005	1,389	1, 469	
Georgia	5, 357	8,082	11, 575	13, 893	14, 783	
Illinois	45, 084	57, 319	72, 516	78, 650	66, 500	
Indiana	12, 864	15, 613	18, 564	23, 551	26, 706	
Iowa	16, 636	19, 077	20, 918	21, 354	20, 109	
Kansas	65, 599	72, 806	82,025	96, 822	86, 105	
Kentucky	14, 106	15, 826	18, 159	18, 154	15, 350	
Louisiana	137, 413	151, 934	166, 485	174, 153	162, 260	
Marvland	752	784	915	1,011	1, 247	
Michigan	2, 789	4, 203	11, 142	24, 112	24, 697	
Minnesota	7, 125	10, 579	11, 918	13, 111	14, 641	
Mississippi	7, 219	8, 765	11, 368	13, 327	12, 785	
Missouri	29, 792	33, 060	40, 124	46, 898	42, 505	
Montana 1	12,444	16, 832	19, 894	21, 594	18, 225	
Nebraska	12, 789	14, 310	16, 780	17, 263	17, 539	
New Mexico	15, 625	18, 419	19, 814	28, 056	32, 890	
New York	31, 209	35, 705	40, 638	50, 080	47, 950	
North Dakota	1, 112	1, 382	1, 578	1, 641	1, 533	
	94, 998	105, 896	121, 381	125, 133	108, 013	
	249, 721	258, 598	260, 120	269, 604	244, 443	
Oklahoma		91, 601	110, 195	119, 501	96, 285	
Pennsylvania	3, 901	4,656	5, 061	5, 519	5, 354	
South Dakota	8,062		11, 913	13, 353	14.047	
Tennessee		9,479			729, 603	
Texas	501, 047	525, 697	598, 088	706, 120		
Utah	6,776	8,747	10, 552	12, 449	11,699	
Virginia	292 104	343 138	447	550 143	615 117	
Washington			141			
West Virginia	52, 353	53, 763	57, 978	65, 395	57, 478	
Wyoming	16,844	18, 904	20, 153	21,648	18,654	
Total United States	1, 764, 988	1,909,901	2, 160, 518	2, 403, 041	2, 294, 097	

¹ Includes natural gas piped from Canada.

Treated for natural gasoline.—Gasoline plants processed an estimated 2,080 billion cubic feet of natural gas in 1939, 2 percent more than the 1938 total of 2,035,562 million. The recovery of gasoline, in gallons per thousand cubic feet of gas treated, is estimated to have declined about 4 percent in 1939 from the 1938 average of 1.06, chiefly because of reduced yields in Texas. The 1939 volume of gas treated equaled about 85 percent of total consumption of natural gas compared to 89 percent in 1938.

Although total 1938 throughput of gasoline plants was 3 percent less than in 1937, there were sharp increases in volume in Arkansas, New Mexico, and California. Important declines occurred in Louisi-

ana, Oklahoma, and West Virginia.

Natural gas treated at natural-gasoline plants in the United States, 1934–38, by States, in millions of cubic feet

State	1934	1935	1936	1937	1938
Arkansas California Colorado Illinois Kansas Kentucky Louisiana Michigan Montana New Mexico New York Ohio	69, 859 21, 704 70, 534 4, 114 11, 904 375 25, 100	3, 371 310, 016 222 1, 076 87, 669 29, 772 81, 868 1, 755 6, 382 11, 786 27 29, 622	2, 955 372, 118 223 971 106, 230 35, 493 115, 606 1, 419 8, 238 29, 489 22 33, 103	4, 031 381, 568 1, 568 1, 027 153, 416 34, 981 144, 474 1, 381 9, 062 61, 625 33, 625	21, 377 398, 187 145 1, 110 144, 631 38, 446 116, 331 1, 395 7, 126 97, 830 65 28, 488
Öklahoma Pennsylvania Texas West Virginia Wyoming Percent of total consumption	299, 183 29, 346 787, 078 108, 097 17, 566 1, 776, 172	260, 757 33, 348 828, 570 118, 789 16, 970 1, 822, 000 95	255, 433 34, 168 673, 483 128, 488 17, 561 1,815,000 84	338, 007 31, 508 754, 696 140, 512 18, 684 2, 108, 800 88	265, 746 22, 600 752, 784 122, 301 17, 000 2, 035, 562 89

 $^{^1}$ Exceeds 100 percent, as part of the natural gas treated for natural gasoline is blown to the air and not neluded in total consumption.

Domestic and commercial.—After the small decline in domestic consumption in 1938 the demand for natural gas for home use is estimated to have expanded over 5 percent in 1939 to 388 billion cubic feet. The average value at points of consumption was approximately 74.4 cents per thousand cubic feet, indicating that the total revenue from domestic customers was \$288,672,000 in 1939 compared to \$273,070,000 in 1938.

Commercial establishments consumed about 122 billion cubic feet of natural gas in 1939, a 7-percent increase over 1938. With the average value of commercial gas estimated at 49.4 cents per thousand

cubic feet in 1939, the total sales value was \$60,268,000.

In recent years commercial markets have been expanding more rapidly than domestic, doubtless as a result of intensive cultivation of this type of load by gas-utility organizations. Since 1933 domestic consumption has increased 37 percent, while commercial has grown 43 percent. Trends in rates for the two classes of consumption have been slightly more favorable to commercial customers.

Domestic and commercial consumption of natural gas in the United States in 1938, by States 1

	Domestic				Commercial				Total			
State	_	M cubic feet	Value at points o		Consumers	M cubic feet	Value at points of consumption		Consumers		Value at points of consumption	
	Consumers	WI CUDIC ICE	Total	Average (cents)	Consumers	WE CUDIC TOOL	Total	Average (cents)	Consumers	M cubic feet	Total	Average (cents)
Alabama Arizona Arkansas California. Colorado. District of Columbia. Florida Georgia. Illinois. Indiana Ilowa. Kansas Kentucky. Louisiana Maryland Michigan Minesota Mississippi Montana Nebraska. New Mexico New York North Dakota Ohio Oklahoma. Pennsylvania South Dakota. Tennessee. Texas Utah Virginia. Washington West Virginia. Wyoming	65, 860 1, 541, 220 93, 830 (?) 3, 580 76, 320 1, 182, 990 121, 150 202, 920 161, 410 168, 120 199, 930 367, 550 37, 530 37, 530 388, 460 (2) 1, 160, 250 235, 380 668, 250 40, 430 649, 460 29, 490 (1) (2) (3) (4) (5) (6) (7) (7) (8) (9) (9) (9) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (1) (2) (3) (4) (4) (4) (4) (5) (6) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9	1, 231, 000 876, 000 5, 002, 000 69, 141, 000 5, 117, 000 109, 000 3, 663, 000 17, 224, 000 2, 566, 000 14, 469, 000 14, 469, 000 15, 227, 000 4, 119, 000 2, 629, 000 16, 504, 000 17, 000 14, 882, 000 18, 691, 000 18, 691, 000 18, 691, 000 18, 891, 000 22, 209, 000 23, 578, 000 (3) 17, 083, 000 3, 185, 000 3, 185, 000 3, 185, 000	\$1, 390, 000 1, 264, 000 2, 782, 000 2, 782, 000 55, 595, 000 4, 104, 000 (2), 754, 000 3, 417, 000 3, 68, 000 4, 066, 000 4, 516, 000 4, 516, 000 4, 516, 000 4, 516, 000 4, 443, 000 17, 516, 000 4, 443, 000 1, 173, 100 1, 200, 100 1, 173, 100 1, 200, 100 1, 200, 100 1, 200, 100 1, 200, 100 1, 200, 100 1, 200, 100 1, 200, 100 1, 200, 100 1, 200, 100 1, 200, 100 1, 200, 100 1, 200, 200, 200 1, 200, 200 1, 200, 200 1, 200, 200 1, 200, 200 1, 200, 200 2, 233, 000 1, 398, 000 1, 398, 000 1, 398, 000 1, 398, 000 1, 398, 000 1, 398, 000	112.9 144.3 55.6 80.4 80.2 (a) 143.1 93.3 137.9 119.6 107.6 61.9 56.4 71.4 79.3 115.6 68.5 87.3 45.9 79.3 73.0 82.7 (a) 60.3 75.4 86.8 76.4 88.5 76.4 88.5 76.4 88.5 76.4	3, 460 2, 950 11, 520 89, 850 6, 350 64, 750 6, 470 9, 110 23, 880 17, 100 21, 010 21, 010 23, 190 21, 010 21,	581, 000 706, 000 3, 282, 000 15, 959, 000 1, 623, 000 (1) 975, 000 5, 027, 000 4, 31, 000 1, 968, 000 1, 988, 000 1, 980, 000 1, 302, 000 1, 302, 000 1, 302, 000 1, 112, 000 2, 042, 000 1, 112, 000 1, 112, 000 1, 112, 000 1, 112, 000 1, 150, 000 1, 721, 000 1, 721, 000 1, 721, 000 1, 721, 000 1, 721, 000 1, 159, 000 1, 159, 000 1, 194, 000 1, 194, 000 1, 194, 000	\$321, 000 419, 000 1, 119, 000 8, 494, 000 939, 000 (2), 000 764, 000 989, 000 989, 000 2, 918, 000 9, 1780, 000 1, 780, 000 1, 780, 000 1, 780, 000 1, 123, 000 631, 000 631, 000 631, 000 631, 000 427, 000 2, 123, 000 437, 000 2, 123, 000 414, 000 2, 547, 000 4, 308, 000 414, 000 720, 000 5, 610, 000 3, 414, 000 (1) (2) 1, 482, 000 360, 000	55. 2 59. 3 34. 1 53. 2 57. 9 90. 3 38. 7 86. 8 99. 5 67. 9 32. 2 50. 0 171. 0 107. 1 62. 2 32. 4 61. 8 31. 2 53. 8 63. 9 75. 4 (2) 64. 0 107. 1 62. 2 108. 1 109. 3 109. 3	31, 170 30, 740 77, 380 1, 631, 070 102, 700 (2) 82, 670 1, 247, 740 130, 670 130, 680 178, 510 189, 130 1299, 030 545, 420 149, 440 44, 810 401, 580 42, 250 121, 240 24, 640 431, 720 (3) 1, 272, 620 265, 650 724, 020 16, 830 729, 850 31, 050 (9) (1) 196, 410 23, 110	1, 812, 000 1, 582, 000 8, 284, 000 85, 100, 000 6, 740, 000 22, 251, 000 22, 251, 000 23, 537, 000 9, 989, 000 12, 289, 000 14, 935, 000 17, 269, 000 18, 4576, 000 29, 718, 000 21, 718, 000 21, 788, 000 21, 788, 000 22, 788, 000 23, 783, 000 24, 788, 000 24, 788, 000 25, 785, 000 26, 551, 000 26, 551, 000 27, 101, 000 28, 781, 000 29, 781, 000 21, 101, 000 21, 101, 000 22, 101, 000 23, 930, 000 42, 788, 000 24, 788, 000 29, 101, 000 21, 473, 000 42, 788, 000 21, 473, 000 44, 379, 000	\$1, 711, 000 1, 683, 000 3, 901, 000 64, 089, 000 5, 043, 000 (2) 184, 000 4, 181, 000 28, 115, 000 5, 055, 000 11, 873, 000 5, 506, 000 2, 431, 000 12, 431, 000 14, 182, 000 14, 183, 000 15, 243, 000 16, 100, 000 11, 133, 000 11, 133, 000 11, 133, 000 11, 134, 000 11, 134, 162, 000 11, 11, 14, 000 12, 676, 000 22, 676, 000 27, 919, 000 2, 2676, 000 27, 919, 000 2, 27, 919, 000 2, 27, 919, 000 2, 27, 919, 000 2, 7, 715, 000 1, 758, 000	94. 4 106. 4 47. 1 75. 3 74. 8 (2) 131. 4 74. 2 126. 4 116. 7 96. 6 50. 4 55. 1 60. 7 2 78. 4 114. 1 175. 3 11 7 2 8. 6 50. 1 60. 1 60. 5 60. 1 65. 2 2 56. 1 (2) (3) 40. 1
Total: 1938 1937	8, 633, 970 8, 348, 390	367, 772, 000 371, 844, 000	273, 070, 000 273, 577, 000	74. 2 73. 6	704, 240 679, 790	114, 296, 000 117, 390, 000	56, 247, 000 57, 161, 000	49. 2 48. 7	9, 338, 210 9, 028, 180	482, 068, 000 489, 234, 000	329, 317, 000 330, 738, 000	68. 3 67. 6

¹ Includes natural gas used with manufactured gas.

¹ Maryland includes District of Columbia and Virginia.

³ Utah includes North Dakota and Washington.

Field.—Oil-field operations are thought to have consumed slightly less gas in 1939 than in 1938, the estimated total being 650 billion cubic feet—a decline of 9.2 billion from 1938. There was a substantial decrease in drilling in California and Texas and a small increase in Oklahoma. These three States report such great amounts of field gas that their activities largely control the trend for the United States. The field uses and handling of natural gas have become increasingly complex, particularly in high-pressure areas. As a result, the statistical treatment of these functions has grown more difficult. Problems have been introduced by expansion of such activities as pressure maintenance, repressuring, gas lift, and recycling that tend to enlarge the field use of gas substantially above the amounts used in routine drilling and pumping.

Carbon black.—Carbon-black plants burned 348 billion cubic feet of natural gas in 1939, an increase of 7 percent over 1938 and a new all-time high for this type of gas use. The previous peak (in 1937) was

341,085 million cubic feet.

Consumption of gas for carbon-black manufacture increased in Texas and Oklahoma-Kansas, offsetting the continued decline in Louisiana. No carbon black was manufactured in Wyoming in 1939, as the single plant in that State was closed permanently on February 23, 1938. New plants were constructed or definitely planned in

Texas (Gulf Coast district), Oklahoma, and Kansas.

Petroleum refineries.—The quantity of natural gas employed as fuel at petroleum refineries is estimated to have increased 8 percent in 1939 to 119 billion cubic feet. Of the 19 States reporting this type of consumption in 1938, four (Colorado, Indiana, Michigan, and Tennessee) have been added to the list since 1935. In the same interval increased refinery consumption of gas was indicated in eight States, notably in Texas, California, and Louisiana. Important declines occurred in New York, Oklahoma, West Virginia, and Wyoming. In 1938 Texas used 40 percent and California 30 percent of the United States total of natural gas consumed at refineries.

Electric public utility power plants.—Greater output of electrical energy and dry weather in some localities in 1939 caused a 12-percent increase in consumption of natural gas by public utility power plants. The 1939 total was 191,131 million cubic feet compared to 169,988

million in 1938.

The accompanying table indicates that in 1938 power plants in 29 States utilized natural gas for at least part of their fuel requirements. As might be expected, the largest consumption usually is in States having abundant supplies of cheap gas. Indiana is perhaps the outstanding exception. In 1938 power plants in that State consumed 10,153 million cubic feet of natural gas, despite the relatively high gas rates.

Portland-cement plants.—Portland-cement production increased 16 percent in 1939, and consumption of natural gas in cement manufacture increased to 40,233 million cubic feet from 37,336 million in 1938. Consumption of gas usually follows the trend in cement production rather closely. However, over a period of years the increasing thermal efficiencies of modern equipment have tended to reduce the amount

of fuel consumed per barrel of product.

Industrial consumption of natural gas in the United States in 1938, by States and uses

		g, and g gasoline-	Manufe	acture of ca black	rbon	Fuel at petroleum refineries, electric public utility power plants, portland- cement plants, and other industrial								Total industrial		
State		Value at		Value at of consu			M cubic feet Value at points of consumption						Value at of consum			
	M cubic feet (esti- mated)	points of consump- tion (esti- mated)	M cubic feet	Total	Average (cents)	Petro- leum re- fineries	Electric public utility power plants	Portland- cement plants	Other in- dustrial	Total	Total	Aver- age (cents)	M cubic feet	Total	Average (cents)	
Alabama							1, 222, 000 2, 013, 000		111, 762, 000	12, 984, 000	\$2, 176, 000	16.8				
Arizona Arkansas California Colorado	11 582 000	\$896 000				3 585 000	2, 013, 000 1, 770, 000		1 0 612 000	11, 078, 000 14, 967, 000	2, 107, 000 1, 885, 000			2, 107, 000 2, 781, 000		
California	132 223 000	8 952 000				32 624 000	9, 111, 000		156 110 000	97, 845, 000	15 184 000	15. 5				
Colorado	253,000	12,000				1,000	1, 463, 000	K	1 10, 755, 000	12, 219, 000	1, 925, 000	15.8		1, 937, 000		
								1		12, 210, 000	1, 520, 000			1, 201, 000	10.0	
lumbia	Í	l	lI					l	(2)	(2)	(2)	(2) 14. 5	(2)	(2)	(2)	
Florida									1, 329, 000	(²) 1, 329, 000	193, 000	14.5	1, 329, 000	193, 000	(2) 14. 5	
Georgia							4, 400, 000		4, 745, 000	9, 145, 000	1, 556, 000	17. 0	9, 145, 000	1, 556, 000	17. 0	
Florida Georgia Illinois	1, 296, 000	79,000				20,000	2, 195, 000		40, 738, 000 12, 839, 000	42, 953, 000	8, 785, 000	20. 5	44, 249, 000	8, 864, 000	20. 0	
Indiana	148,000	15,000				1 569, 0001	10, 153, 000	ł	1-12, 839, 0001	23, 561, 000	4 845 000	20.6	23, 709, 000	4, 860, 000	20. 5	
Iowa							5, 315, 000	(1)	1 9, 560, 000 3 21, 872, 000	14, 875, 000	2, 251, 000	15. 1	14, 875, 000	2, 251, 000	15. 1	
Kansas	16, 464, 000	1, 179, 000	(3)	(8)	(8)	2, 937, 000	15, 463, 000	5, 832, 000	321, 872, 000	346, 104, 000	\$ 5, 945, 000	8 12. 9	62, 568, 000	7, 124, 000	11. 4	
Kentucky	1, 444, 000	183, 000						1	3. 917. 000	3, 917, 000	1, 122, 000	28. 6	5, 361, 000 149, 971, 000	1, 305, 000	24. 3	
Louisiana	41, 254, 000	2, 164, 000	24, 143, 000	\$625,000	2.6	9, 536, 000	21, 832, 000	(1)	1 53, 206, 000		9, 660, 000	11.4	149, 971, 000	12, 449, 000	8.3	
Maryland									² 753, 000	2 753, 000	\$ 400.000	³ 53. 1	² 753, 000	² 400, 000	³ 53. 1	
Michigan	2, 109, 000	202,000				2,000	1,000		5, 316, 000	5, 319, 000	2, 883, 000	54.2	7, 428, 000	3, 085, 000	41.5	
Maryland Michigan Minnesota Mississippi Missouri							1, 474, 000		7, 746, 000	9, 220, 000 8, 210, 000	1, 770, 000	19. 2	9, 220, 000	1, 770. 000	19. 2	
Missonri	201 000	27 000					10 484 000	71	6, 774, 000 117, 875, 000	28, 339, 000	1, 051, 000 4, 767, 000	12.8	8, 210, 000 28, 640, 000	1, 051, 000 4, 794, 000	12. 8 16. 7	
Montana	898, 000	52,000				202 000	806 000	(+)	7, 147, 000	8, 226, 000	1, 203, 000	16. 8 14. 7	9, 124, 000	1, 260, 000	13. 8	
Nebraska	600,000	32,000				300,000	3, 963, 000	(1)	17.841.000	11, 804, 000	2, 028, 000	17. 2	11, 804, 000	2, 028, 000	17. 2	
New Mexico	19, 475, 000	383 000				103 000	3 852 000	(•)	6, 742, 000	10, 697, 000	1, 521, 000	14. 2	30, 172, 000	1, 904, 000	6.3	
New York	237, 000	35,000				1 656 000	3 307 000		24, 964, 000	30 017 000	5, 811, 000	19. 4	30, 254, 000	5, 846, 000	19.3	
North Dakota	1 '						(4)		(4)	(4)	(4)	(4)	(4)	(4)	(4)	
Ohio Oklahoma Pennsylvania	1, 004, 000	189, 000				21,000	3, 812, 000		35, 756, 000	39 589 000	13, 494, 000	(4) 34. 1	40. 593, 000	13, 683, 000	33.7	
Oklahoma	165, 884, 000	4, 503, 000	(8)	(8)	(3)	8, 203, 000	11, 310, 000	(1)	1332,495,000	\$ 52 008 000	3 4, 515, 000	3 8. 7	217, 892, 000	9, 018, 000	4.1	
Pennsylvania	4, 744, 000	1, 126, 000	` '		()	2, 325, 000	3, 256, 000	9 1	43, 393, 000	48 974 000	14, 082, 000	28. 8	53, 718, 000	15, 208, 000	28. 3	
South Dakota	2, , 500	_,, 500				ے, نہیں, نامن	984, 000	(1)	1 2, 269, 000	3, 253, 000	568, 000	17. 5	3, 253, 000	568, 000	17. 5	
Tennessee						10,000	5, 128, 000		4, 979, 000	10, 117, 000	1, 724, 000	17.0			17. 0	
Texas	242 106 000	7 522 000	280 656 000	2 100 000	7	43 764 000	44 116 000	0 742 000	57 240 000	154 062 000	17 978 000	11.5			4.0	

Utah Virginia	48,000	5, 000				16, 000	4 224, 000	 	4 9, 110, 000	4 9, 350, 000	4 1, 042, 000	4 11. 1 (2)	4 9, 398, 000	4 1, 047, 000	(2)
West Virginia 1 Wyoming 1	0, 991, 000 6, 652, 000	1, 892, 000 212, 000	(3)	(8)	(8)	448, 000 3, 538, 000			24, 483, 000 3 3, 230, 000			22. 6 11. 1			21. 0 7. 4
Miscellaneous			11, 151, 000	167, 000	1.5			21, 761, 000							
Total: 1938 65			324, 950, 000 341, 085, 000						510, 811, 000 597, 380, 000				1,812,029,000 1,913,807,000		9. 4 10. 3

¹ Gas used at portland-cement plants included under "Miscellaneous" for United States total and under "Other industrial" for State total to avoid disclosing figures of individual operators.

operators.

Maryland includes District of Columbia and Virginia.

Maryland includes District of Columbia and Virginia.

Gas used in manufacture of carbon black included under "Miscellaneous" for United States total and under "Other industrial" for State total to avoid disclosing figures of individual operators.

Utah includes North Dakota.

Other industrial.—A higher rate of manufacturing operations caused increased demand for natural gas in industry in 1939. The outbreak of war in Europe on September 1 started a boom, particularly in steel and metal-working industries in eastern cities, that sharply expanded industrial gas markets in the region of the Ohio Valley. The total quantity of natural gas used by miscellaneous industries in 1939 is estimated to have been 575,790 million cubic feet, exceeding the comparable 1938 figure by 13 percent.

Among recent applications of natural gas to industrial processes may be mentioned the production of inert atmospheres from products of gas combustion. These inert gases are useful in the manufacture and storage of a number of materials, notably paints and varnish, to prevent or reduce oxidation. Gas has been widely adopted for melting type metal in the newspaper industry, replacing electricity as the source of heat. Gas-operated air-conditioning equipment, which is still in the development stage, appears to offer possibilities as a new

type of natural-gas market.

The greatest potentialities for the future, however, are indicated by new chemical techniques and discoveries that will utilize natural gas as raw material. The manufacture of such bulk products as fabrics, a variety of plastics, and synthetic rubber is emerging on a commercial scale. Immediate construction of a plant in Louisiana with the capacity to produce 10,000 pounds per day of synthetic rubber has been announced.

A brief summary of the principal chemical methods employed in treating natural gas and the classes of products obtained has been published by the Bureau of Mines as Information Circular 7108, Utilization of Natural Gas for Chemical Products, by Harold M.

Smith.

Mixed gas.—The amount of natural gas used as a blend with manufactured gas in 1938 was 55,825 million cubic feet, less than 1 percent below the 1937 total. Declines in most States indicated the reduced demand incident to unsatisfactory general business conditions. However, the sharp decline in Michigan (79 percent) was due chiefly to the transfer of all domestic and commercial meters (46,990 in 1937), which had been using mixed gas, to other types of gas service. Only a small industrial load remained. Mixed-gas sales in California, which were 338 million cubic feet in 1937, were eliminated in 1938 by a similar change.

In Ohio almost four times as much natural gas was sold with manufactured gas in 1938 as in 1937, apparently owing to the use of a larger proportion of natural gas in the mixed gas sold, with the effect of in-

creasing the heating value per unit volume.

Average value at points of consumption of the natural gas used in mixed gas was 91.8 cents per thousand cubic feet in 1938 and 90.7 cents in 1937.

Consumption of natural gas used with manufactured gas in the United States in 1938, by States

	Dor	nestic	Com	nercial		То	tal
State	Consumers M cubic feet		Consum- ers	M cubic feet	Industrial (M cubic feet)	M cubic feet	Value at points of consumption
District of Columbia Illinois Indiana Iowa Kentucky Maryland Michigan Minnesota Missouri Nebraska New York Ohio Pennsylvania Virginia Total: 1938 1937	147, 400 1, 049, 450 29, 440 52, 230 70, 940 16, 900 121, 330 223, 650 54, 340 266, 120 151, 330 54, 110 15, 010	3, 063, 000 14, 287, 000 388, 000 1, 260, 000 2, 574, 000 373, 000 2, 915, 000 683, 000 7, 751, 000 1, 443, 000 1, 443, 000 39, 517, 000	6, 480 55, 130 1, 220 3, 520 7, 060 320 5, 720 10, 400 21, 790 15, 250 1, 790 420 129, 460 127, 570	299,000 4,302,000 69,000 221,000 689,000 9,000 306,000 37,000 1,563,000 511,000 144,000 7,000 8,579,000 7,985,000	464, 000 4, 486, 000 90, 000 672, 000 14, 000 220, 000 195, 000 82, 000 1, 045, 000 107, 000 10, 000 8, 242, 000 8, 599, 000	3, 826, 000 23, 075, 000 489, 000 1, 571, 000 3, 935, 000 396, 000 3, 557, 000 3, 557, 000 802, 000 10, 349, 000 1, 694, 000 1, 694, 000 55, 825, 000 56, 101, 000	\$2, 785, 000 25, 041, 000 1, 674, 000 2, 088, 000 350, 000 4, 010, 000 3, 083, 000 4, 98, 000 8, 144, 000 1, 187, 000 202, 000

NEW MARKETS

Natural gas was brought in 1939 to more than 80 towns and cities, with a total population of over 250,000, that formerly had not enjoyed this service. The largest number of new markets was connected in Minnesota and Iowa adjacent to the new trunk line built from Sioux City, Iowa, to Minneapolis in 1939. In southern Minnesota about 20 communities with a total population of about 60,000 and in Iowa about 10 communities with population of about 25,000 were added. Several Michigan towns were first supplied in 1939, the largest being

Ann Arbor, whose approximate population is 30,000.

Other communities of substantial size that began consuming natural gas in 1939 may be summarized as follows: In Ohio, 8 towns (population, 28,000); in Arizona, 7 towns (population, 19,000); in California, 10 towns (population, 22,000); in Illinois, 5 towns (population, 10,000); in Louisiana, 3 towns (population, 11,000); and in Tennessee-Virginia, the city of Bristol (population, 21,000). Smaller additions to domestic and commercial markets were reported in Indiana, Kansas, Mississippi, New Mexico, Oklahoma, Texas, and Wyoming. The new markets mentioned do not include extensions to distribution systems in communities served with natural gas before 1939. Important new industrial markets were acquired in Arizona, New Mexico, Texas, and California.

INTERSTATE SHIPMENTS

In 1938, for the first time since 1931, the total movement of natural gas in interstate commerce declined appreciably, falling to 636,626 million cubic feet from 687,428 million in 1937, or 7 percent.

Declines in interstate movements from producing States were general, and the most severe affected Oklahoma, Pennsylvania, and Louisiana.

ana. The outstanding exception was New York, whose shipments more than doubled—from 9,954 million in 1937 to 22,384 million in

1938. Virtually all this gas went into Pennsylvania. Slightly increased movements were reported from Indiana, Mississippi, Missouri, and Utah. Illinois and North Dakota were added to the interstate list in 1938. Marketed production exceeded consumption in 1938 in Texas by 153 billion cubic feet, in Louisiana by 122 billion, and in West Virginia by 77 billion, indicating that these three leading States supplied the major portion of the total interstate movement.

The States with the largest interstate receipts continued in 1938 to be Ohio, with 72.9 billion cubic feet, and Illinois, with 65.4 billion. There has been particularly rapid growth in recent years in shipments from Kentucky to West Virginia, Texas to Louisiana, and Texas to

Michigan.

Interstate transportation of natural gas in 1938 1

State from which gas was transported	State through which gas was transported	State to which gas was trans- ported	M cubic feet
Colorado	Wyoming	Utah Wyoming	1, 456, 000 91, 000
Illinois		Indiana	1, 547, 000 101, 000
Indiana		Illinois	42, 000 120, 000
			162, 000
Kansas	Missouri	ColoradoIllinois	457, 000 2, 176, 000
	Illinois]Indiana	2, 691, 000
	Nebraskado	[Iowa] }do	6, 009, 000 6, 000
	South Dakota Missouri Illinois Indiana	Michigan	4, 842, 000
	Nebraska Iowa	Minnesota	6, 691, 000
•	10wa	MissouriNebraska	6, 288, 000 8, 498, 000
	Nebraska Iowa	}do	3, 000
	Nebraska	OklahomaSouth Dakota	547, 000 887, 000
			39, 095, 000
Kentucky	West Virginia Virginia Maryland	District of Columbia	3, 826, 000
	Indiana	IllinoisIndiana	135, 00 833, 00
	West VirginiaVirginia		101, 00
	West Virginia Virginia Maryland District of Columbia	}do	397, 00
		Unio	1, 586, 00 4, 307, 00
	West Virginiadodo	Pennsylvania	10, 196, 00
	Virginia		21,00
	West Virginiadodo	Virginia	429, 00
	Virginia Maryland	- do	186, 00
	District of Columbia		15, 203, 00
			37, 220, 00

¹ Includes exports to Canada and Mexico

NATURAL GAS

Interstate transportation of natural gas in 1938—Continued

State from which gas was transported	State through which gas was transported	State to which gas was transported	M cubic feet
Louisiana	Mississippi	AlabamaArkansas	13, 582, 000 23, 028, 000
	Mississippi Alabama	Georgia	14, 783, 000
	Arkansas	}Пlinois Mississippi	15, 168, 000 3, 227, 000
	Arkansasdodo.	Missouri	2, 164, 000 10, 987, 000
	Arkansas	Tennessee	14, 041, 000 41, 284, 000
•			138, 264, 000
Mississippi	Alabama	Alabama Florida Louisiana	1, 214, 000 1, 469, 000 3, 579, 000
			6, 262, 000
Missouri	IllinoisdoIndiana	Illinois Indiana Michigan	140, 000 169, 000 306, 000
			615, 000
Montana	North Dakota	North Dakotadodo	1, 466, 000 3, 314, 000 75, 000
			4, 855, 000
New Mexico	Texas	}Arizona	12, 660, 000
	Texas New Mexico	Colorado	164, 000 832, 000
	Arizona	Texas	5, 767, 000
			19, 423, 000
New York		Canada Pennsylvania	34, 000 22, 350, 000
North Dakota		South Dakota	22, 384, 000 4, 000
Ohio		Indiana West Virginia	5, 000 141, 000
			146, 000
Oklahoma	Kansas Missouri	Arkansas }Illinois	504, 000 89, 000
	Kansas	Indiana	102, 000
Oklahoma	Illinois Kansas	Kansas	18, 965, 000 201, 000
	Missouri Illinois Indiana Kansas	Michigan	•
	Kansasdo	Missouri Nebraska Texas	7, 908, 000 408, 000 1, 173, 000 29, 350, 000
Pennsylvania	New York	Canada New York Ohio	60,000 30,932,000 52,000 380,060
	West Virginia	West Virginia.	380, 060 1, 845, 000
	·		33, 269, 000

Interstate transportation of natural gas in 1938—Continued

State from which gas was transported	State through which gas was transported	State to which gas was trans- ported	M cubic feet
Texas	New Mexico	Colorado	18, 210, 00
	Oklahoma Kansas Missouri.	}lllinois	4, 131, 00
	Oklahoma Kansas Nebraska	}do	43, 551, 00
	Oklahoma Kansas Missouri	Indiana	5, 091, 00
	Illinois Oklahoma Kansas Nebraska	}do	16, 577, 00
	Illinois Oklahoma Kansas Nebraska	} }lowa	14, 087, 00
	Oklahoma Kansas Nebraska South Dakota	}do	7,00
	Oklahoma	Kansas Louisiana Mexico	31, 032, 00 13, 046, 00 911, 00
	Kansas	Michigan	9, 183, 00
	Oklahoma Kansas Nebraska Iowa	Minnesota	7, 950, 00
	Oklahoma Kansas	Missouri	16. 568, 00
	Oklahoma Kansas Oklahoma	Nebraska	7, 512, 0
	Kansas Nebraska Iowa	}do	4,0
	Oklahoma	New MexicoOklahoma	1,607,0 10,082,0
	Kansas Nebraska	South Dakota	1,064,00
	New Mexico	Wyoming	201, 094, 0
Utah		do	201, 094, 0 93, 0
West Virginia		Kentucky Maryland Ohio	6, 287, 0 749, 0
	Kentucky	Ohio do Pennsylvania	6, 287, 0 749, 0 64, 266, 0 2, 311, 0 20, 440, 0
			94, 053, 0
Wyoming		Colorado Montana Nebraska Utah	24, 0 1, 492, 0 1, 114, 0 6, 059, 0
			8, 689, 0
			636, 626, 0

PIPE-LINE DEVELOPMENTS

Construction of pipe lines for transmitting natural gas revived sharply in 1939 from the unusually low level of 1938. About three times as many projects were completed in 1939, and their aggregate mileage exceeded 1,500 in contrast to less than 400 miles laid in 1938.

Except for a few small lines, all the construction was in States west

of the Mississippi River.

The largest new line was of 16-inch pipe running from Sioux City, Iowa, to Minneapolis, Minn., a distance of about 240 miles; it will augment the supply of gas for Minneapolis-St. Paul and bring natural-gas service to towns in northwestern Iowa and south-central Minnesota. Another large line was laid from the Monroe field, La., eastward to connect with existing trunk lines near Jackson, Miss. It consists of 125 miles of 18-inch pipe and 50 miles of various sizes from 4-inch to 20-inch. The approaching depletion of the Jackson (Miss.) gas field made necessary a new source of gas supply to serve growing markets in Mississippi and States to the east.

A new line consisting of 73 miles of 8%-inch and 117 miles of 6%-inch pipe was laid from a main-line connection near Gage, N. Mex., to supply fuel to smelters at Miami and Globe, Ariz. Two loops—62 miles of 16-inch and 56 miles of 12%-inch—were installed on the main line east of Gage, N. Mex., to provide the additional capacity required by the growing demand for gas in Arizona and adjacent territory.

In California a number of short additions to the gas-utility systems were reported, with a total length of a little over 100 miles, mostly of 8- and 10-inch pipe. New outlets for gas were provided for the Rio Bravo, Kettleman Hills, Sutter Buttes, and Delano fields. One of the new 8-inch lines brought gas to a pottery at Lincoln, Calif., and a line along the crest of the San Bernardino Mountains supplied 11 communities with natural-gas service for the first time.

Nine new gas lines were laid in Texas, none of which, however, was of major proportions. Their total length was about 250 miles. New lines were built to transport gas from the Spanish Camp, Page, Buffalo, Joaquin, Katy, and Wasson fields. Additional supplies of gas were piped to Beaumont and Houston for industrial use, and new lines brought gas to McNeil and Carlsbad, Tex., and several other small towns.

A few short lines were built in Louisiana, and one 50-mile, 6-inch line was run from the Joaquin (Tex.) gas field to Natchitoches, La. New connections were made with the Sibley, Sligo, and Lake Bastineau fields.

About 40 miles of 20-inch line were laid in Clay and Washington Counties, Kans., as a loop to increase the capacity of a main line. In addition, an 8-inch line 35 miles long was built from the Cunningham field to Hutchinson, Kans., and a small 10-mile line from the Wackerle gas field to Oswego, Kans. There was very little gas-line construction in Oklahoma in 1939. The largest of three projects consisted of 11 miles of 10-inch and 8-inch pipe running from the Doyle area in northeastern Stevens County southeastward to connect with a 12-inch trunk line 20 miles north of Healdton.

In Mississippi 32 miles of 18-inch line were installed, extending an existing system from the town of Onward to the new Tinsley oil field near Yazoo City. The chief demand for this gas is from drilling and

oil-production operations.

Michigan was the most active of the Eastern States in gas pipe-line construction, three lines having been built as follows: 22 miles of 6-inch from the trunk line at Milan to Ann Arbor; 45 miles of 6-inch from the Arenac field to Midland; and 30 miles of 4½-inch from the Austin field to Claire. Two 24-inch loops with a total length of 16.2

miles were added to the Texas-Detroit line at points in Indiana. A line was laid in Illinois from Streator to Pontiac, a distance of 23 miles; and about 15 miles of 6- and 8-inch line were run from Lawrence County fields, Ill., eastward to connect with a trunk line in Indiana. Point Marion, Pa., obtained a new gas supply through a new 4½-inch line laid from the Wasson No. 1 gas well in West Union Township, 19 miles away.

Eight miles of 12-inch line were laid to replace old 8-inch pipe in the line from the Elk Basin field to Billings, Mont.; and in Wyoming, 11 miles of 8-inch were laid in the James Lake area, Carbon County.

At the end of 1939 several large loops were being added to the Texas-Detroit line involving a reported 140 miles of 22- and 24-inch pipe. A 75-mile, 8%-inch line was under construction from the Cotton Valley (La.) field northward to Hope and Okay, Ark., and in New Mexico a 31-mile extension of a line from Albuquerque to Belen and other towns was progressing.

NATURAL GASOLINE

AND LIQUEFIED PETROLEUM GASES.1

By G. R. HOPKINS

SUMMARY OUTLINE

	Page	1	Page
Natural gasoline	1079	Natural gasoline—Continued.	
Summary	1079		1089
Salient statistics	1080	Technical developments	1089
Prices and market conditions	1080	Recycling plants	1089
Employment and productivity	1081	Yields	1090
Production	1082	Production by processes	1090
Consumption and movements	1085	Trends in vapor pressures	
Refinery utilization	1087	Technical improvements	
"Direct" sales		Liquefied petroleum gases	
Water-horne chinmente	1097		

NATURAL GASOLINE

The natural-gasoline industry appeared headed for another drab year in 1939 until the oil fields were shut down for 2 weeks during August. This shut-down, which affected all the important producing States except California and Illinois, caused production in 1939 to fall below that in 1938 but also entailed a scarcity of supplies sufficient to raise the price 1 cent or more per gallon. The market situation continued strong for several months, or long enough to insure a small profit for most companies; but price declines in December placed the industry in States east of California in an uncomfortable position, which grew worse during the first 4 months of 1940. Prices in California, however, have shown remarkable steadiness.

The proportion of natural gasoline in refinery gasoline, which increased in both 1937 and 1938, declined from 7.2 percent in 1938 to 6.8 in 1939. Although the shut-down brought about a net decrease in stocks of natural gasoline for 1939 the apathy in refinery demand

quickly reversed this trend during the first quarter of 1940.

Owing principally to the war abroad, exports of natural gasoline fell about a third, or to 172,662,000 gallons in 1939. Direct sales to

iobbers and retailers also decreased materially during the year.

No spectacular advances were made in established production methods in 1939, but use of the recycling process continued to expand rapidly, and much progress was made in producing high-octane gasoline from the lighter hydrocarbons. Most of this research was at refineries, but the natural-gasoline industry played an important role.

¹ Data for 1939 are preliminary; detailed statistics with final revisions will be released later.

Salient statistics of the natural-gasoline industry in the United States, 1935-39, in thousands of gallons

wastel to the state of the stat						
7	1935	1936	1937	1938	1939 1	Percent of change in 1939 from 1938
Production: Appalachian Illinois, Kentucky, and	. 61, 315	65, 669	72, 056	68, 541	70, 268	+2.5
Michigan	10, 106	10, 361	12, 319	13,057	15, 264	+16.9
Oklahoma City	120, 127	128, 783	166, 188	141, 516	103, 608	-26.8
Seminole	97, 599	115, 557	121, 839	122, 144	120, 259	-1.5
Texas Panhandle East Texas	276, 602 78, 210	218, 703 140, 091	230, 405 185, 313	249, 968 188, 117	242, 020 188, 260	-3.2 +.1
Rocky Mountain	53, 965	65, 337	74, 868	82, 397	87, 701	+6.4
Kettleman Hills	153, 936	171, 052	182, 894	186, 780	156, 484	-16.2
Long Beach	83, 653	89, 366	84, 297	92, 675	86, 745	-6.4
All other districts	716, 473	791, 421	935, 255	1, 011, 379	1, 025, 023	+1.3
Total production	1, 651, 986	1, 796, 340	2, 065, 434	2, 156, 574	2, 095, 632	-2.8
Stocks:						
Total at plants, terminals, and refineries, Jan. 1 Total at plants, terminals,	177, 086	155, 316	170, 310	199, 836	202, 860	
and refineries, Dec. 31	155, 316	170, 310	199, 836	202, 860	185, 682	-8.5
Net change	-21,770	+14,994	+29,526	+3,024	-17, 178	
Total supply 2	1, 673, 756	1, 781, 346	2, 035, 908	2, 153, 550	2, 112, 810	-1.9
Distribution:						
Used at refineries 3	1, 271, 760	1, 367, 814	1, 596, 294	1, 621, 704	1, 645, 266	+1.5
Run through crude-oil	, ,				, i	•
_ pipe lines in California	31, 290	52, 500	57, 708	56, 658	48, 174	-15.0
Exports Direct shipments to con-	135, 366	107, 058	148, 428	256, 914	172, 662	-32.8
sumers	116, 340	139, 230	143, 640	137, 970	121, 128	-12.2
Losses	119,000	114, 744	89, 838	80, 304	125, 580	+56.4
Total distribution	1, 673, 756	1, 781, 346	2, 035, 908	2, 153, 550	2, 112, 810	-1.9

1 Subject to revision.

Production plus or minus changes in stocks.
 Including quantities run through crude-oil pipe lines east of California.

PRICES AND MARKET CONDITIONS

Although natural-gasoline prices in 1939 were far below the 20-cent quotations of 20 years ago, there was some improvement over 1938. The price of a representative grade of natural gasoline (26-70 in Oklahoma) was just under 4 cents as the year opened and dropped to 2.50 cents in the slack months of April and May, but was 4.25 cents during most of September, October, and November, the months of heaviest consumption. The rapid decline of this quotation in December was disappointing as it made prospects for 1940 discouraging.

Figure 1 shows that the average value of natural gasoline (estimated for 1939) remained below the refinery price of United States motor gasoline in Oklahoma, although the gap was not as wide as in 1938.

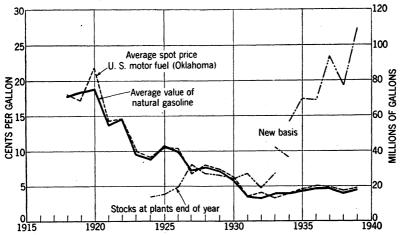


FIGURE 1.—Trends in average value of natural gasoline, spot price of gasoline, and stocks of natural gasoline, 1918-39.

Spot price of Oklahoma natural gasoline, grade 26-70, on specified dates in 1939, with monthly and yearly averages, in cents per gallon
[National Petroleum News]

Date	Cents	Date	Cents	Date	Cents
Jan. 1	2. 50 2. 50	May 1	1 2.50 1 2.50 1 2.50 1 2.50 2.50 2.50 1 2.75 1 2.75 1 2.75	Sept. 5	14.00 14.25 14.25 4.13 24.25 14.25 14.25 14.25 14.25
27	2, 50-2, 63 2, 50-2, 63 2, 50-2, 63	Average July 3	1 2.75 1 2.75	Average Nov. 6	4. 25 1 4. 25 2 4. 25 1 4. 25 1 4. 25
Average Apr. 3	1 2. 50 1 2. 50–2. 63 1 2. 50 1 2. 50	A verage	3 3. 00 3 4. 00 3 4. 00	Average Dec. 4	

¹ Sales.

2 Quotations.

EMPLOYMENT AND PRODUCTIVITY

The average number of workers at natural-gasoline plants dropped from 9,429 in 1937 to 9,205 in 1938. Most of the decrease was in part-time workers, who averaged 595 in 1938 compared with 734 in 1937.

Man-hours for 1938 totaled 18,818,000, assuming 1,000 hours per year for each part-time worker. The hours per week for full-time

workers accordingly declined from 41.3 in 1937 to 38.1 in 1938. Average productivity increased again as less efficient plants were weeded out; in 1938 the average was 114.6 gallons per man-hour compared with 106.6 in 1937.

Employment at natural-gasoline plants, natural gasoline produced, and average output per man-hour in the United States, 1937-38, by States ¹

State	Average n work			soline pro- (thousands)	Labor productivity (gallons per man hour)		
	1937	1938	1937	1938	1937	1938	
Arkansas California Colorado Illinois Kansas Kansas Kentucky Louisiana Michigan Montana New Mexico Ohio Oklahoma	120 92 2, 660	90 1,800 10 55 210 55 280 20 10 135 95 2,520	11, 285 623, 894 404 2, 567 57, 026 7, 344 106, 415 2, 408 2, 296 38, 253 7, 704 492, 290	25, 648 660, 890 386 2, 436 55, 988 7, 040 95, 634 3, 581 1, 768 49, 596 7, 382 468, 499	62. 7 183. 8 18. 4 24. 2 113. 6 65. 0 185. 7 57. 3 88. 3 154. 9 36. 2 88. 8	139. 4 186. 8 17. 5 18. 7 127. 5 60. 7 164. 3 81. 4 61. 0 179. 7 38. 9	
Texas	3, 125 520 190 208	3, 070 500 180 175	615, 281 50, 379 13, 973 33, 915	685, 920 50, 398 10, 761 30, 647	94. 7 46. 6 33. 3 82. 3	106. 9 52. 0 31. 1 88. 6	
Total, United States	9, 429	9, 205	2, 065, 434	2, 156, 574	106. 6	114.6	

¹ Figures for 1939 not yet available.

PRODUCTION

Trends in total output.—As most natural gasoline is made from casinghead gas there is close relationship between its output and that of crude oil; however, in 1939, the production of crude petroleum increased 4 percent whereas the output of natural gasoline probably

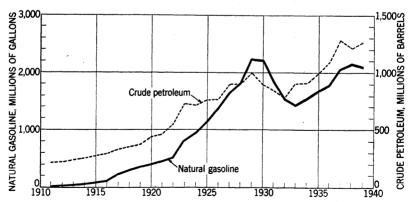


FIGURE 2.—Annual production of natural gasoline and crude petroleum, 1911-39.

declined 1 or 2 percent, depending on revisions in the preliminary figures. This discordant trend is due primarily to developments in Illinois, which were largely responsible for the gain in crude-oil production but which, as explained more fully elsewhere, were not conducive to a proportionate increase in the output of natural gasoline. (See fig. 2.)

Monthly production of natural gasoline in the United States, 1938–39, by fields, in millions of gallons

					-	,	,		,	,			,
Field	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
1938													
Appalachian Illinois, Kentucky, and Mich-	7.4	1		5.8	5. 1	4.1	3.9	4.2	4.7	5.6		7.7	68.5
igan	1.1	1.0	1.0	.9	1.1	1.1	1.0	1.0	1.1	1.2	1.2	1.4	13. 1
Oklahoma: Oklahoma City Osage County Seminole Rest of State	13. 8 4. 7 10. 9 13. 2	4.1 10.3	4. 7 10. 9		4. 5 10. 4	11.5 4.4 9.2 11.6	9.2	11.0 4.7 10.3 11.8	10. 5 4. 9 10. 3 11. 9	12.3 5.4 10.7 12.8	4.6 9.6	10.0 4.9 9.7 13.2	141. 5 55. 9 122. 1 149. 0
Total, Oklahoma Kansas	42.6 5.2	38. 1 4. 8	42. 5 4. 5	39. 2 4. 9	40.0 4.4	36. 7 4. 3	37. 1 3. 8	37. 8 4. 0	37. 6 4. 3	41. 2 4. 9	37. 9 5. 2	37. 8 5. 7	468. 5 56. 0
Texas: Gulf Coast East Texas North Texas Panhandle West-Central. Rest of State	3.3 15.1 2.2 23.3 6.3 5.8	13. 6 2. 0 19. 6 5. 6	16. 4 2. 2 21. 5	2. 3 21. 1	2.3 20.3	5. 7 15. 7 2. 2 18. 9 5. 8 6. 7	6. 4 18. 5 2. 2 19. 0 6. 2 7. 6	6.9 17.6 2.2 20.0 6.2 7.9	6. 4 14. 8 2. 3 19. 4 5. 8 7. 2	6. 5 16. 0 2. 4 20. 9 6. 4 7. 5	14.5 2.2 22.2 6.4	5. 8 14. 6 2. 2 23. 8 6. 4 7. 1	65. 3 188. 1 26. 7 250. 0 73. 4 82. 4
Total, Texas Louisiana Arkansas Rocky Mountain	56. 0 8. 5 1. 9 6. 4	7.8	7. 4 2. 1	56.8 7.7 2.2 6.2	56. 0 8. 1 1. 9 6. 9	55. 0 7. 9 1. 9 6. 7	59. 9 7. 9 2. 0 7. 1	60. 8 7. 5 2. 5 7. 1	55. 9 7. 8 2. 4 7. 0	59. 7 8. 2 2. 5 7. 9	2.2	59. 9 8. 7 2. 3 7. 4	685. 9 95. 6 25. 7 82. 4
California: Huntington Beach Kettleman Hills Long Beach Santa Fe Springs Ventura Avenue Rest of State	16. 0 6. 8 5. 6 5. 6 19. 0	14. 0 6. 5 5. 0 5. 0 17. 4	16. 0 7. 5 5. 5 4. 8 19. 0	7. 7 5. 3 4. 8 18. 5	8. 2 5. 6 5. 0 18. 2		3. 7 14. 8 8. 5 5. 3 4. 7 17. 2	3.7 16.2 8.2 5.2 4.8 18.1	3. 4 15. 8 7. 8 5. 0 4. 8 17. 4	5. 2 5. 3 18. 0	5. 4 17. 6	3. 5 15. 9 7. 8 5. 0 5. 5 17. 5	42. 6 186. 8 92. 7 63. 0 60. 6 215. 2
Total, California	56.6	51. 2	56. 5	55.1	56. 3	53.9	54. 2	56, 2	54. 2	56. 2	55. 3	55. 2	660. 9
Total, United States	185. 7 6. 0	167. 0 6. 0	185. 3 6. 0	178. 8 6. 0	179. 8 5. 8	171. 6 5. 7	176. 9 5. 7	181. 1 5. 8	175. 0 5. 8	187. 4 6. 0	181. 9 6. 1	186. 1 6. 0	2, 156. 6 5. 9
Appalachian	7.5	6.8	7. 0 1. 1	6.0	5. 0 1. 1	3. 7 1. 0	3. 7 1. 1	4. 0 1. 1	4. 5 1. 2	6. 2 1. 4	7. 6 1. 7	8.3 1.8	70, 3 15. 2
Oklahoma: Oklahoma City Osage County Seminole Rest of State	14.7	3. 5 8. 9 12. 9	9. 4 4. 3 10. 4 14. 3	9. 1 4. 4 10. 8 13. 6	9. 2 4. 5 11. 5 14. 1	9. 2 4. 6 11. 0 13. 2	8. 5 4. 6 10. 8 13. 5	5.8 3.0 7.0 9.5	7. 9 4. 3 9. 7 12. 6	9. 3 4. 4 10. 3 14. 1	8. 6 4. 4 9. 8 13. 6	8.9 4.7 10.1 13.8	103. 6 51. 0 120. 3 159. 9
Total, Oklahoma Kansas	38. 6 5. 5	33. 4 4. 9	38. 4 4. 8	37. 9 5. 1	39. 3 4. 9	38. 0 4. 3	37. 4 4. 0	25. 3 3. 9	34. 5 4. 5	38. 1 5. 5	36. 4 6. 1	37. 5 6. 1	434. 8 59. 6
Texas: Gulf Coast East Texas North Texas Panhandle West-Central. Rest of State	5. 1 14. 4 2. 2 20. 8 5. 9 7. 1	17. 5 5. 1 6. 2	5. 5 15. 2 2. 3 19. 6 5. 9 7. 3	6. 2 17. 0 2. 3 20. 2 5. 7 8. 4	6.3 17.7 2.4 19.4 5.2 8.7	6. 9 17. 1 2. 1 18. 4 5. 2 8. 7	7. 6 18. 4 2. 2 19. 0 5. 3 9. 1	5. 4 9. 4 2. 0 16. 9 4. 6 5. 4	9. 0 16. 7 2. 3 20. 5 5. 3 9. 0	8. 9 18. 4 2. 3 23. 1 5. 7 9. 4	8. 5 16. 0 2. 2 24. 1 5. 6 8. 9	11. 0 15. 1 2. 2 22. 5 5. 4 9. 7	85. 1 188. 3 26. 5 242. 0 64. 9 97. 9
Total, Texas	55. 5 7. 5 2. 1 7. 0	48. 4 6. 4 1. 9 6. 2	55. 8 6. 7 2. 5 7. 6	59. 8 6. 9 2. 2 7. 5	59. 7 7. 1 2. 2 8. 0	58. 4 7. 6 2. 0 7. 9	61. 6 7. 8 2. 2 7. 9	43. 7 7. 1 2. 0 5. 4	62.8 8.3 2.1 7.4	67. 8 8. 7 2. 0 8. 2	65. 3 9. 2 1. 7 7. 4	65. 9 8. 8 1. 7 7. 2	704. 7 92. 1 24. 6 87. 7
California: Huntington Beach Kettleman Hills Long Beach Santa Fe Springs Ventura Avenue Rest of State	1	6. 5 4. 6 4. 8 16. 0	3. 0 15. 0 7. 5 5. 0 5. 3 18. 0	4.8 17.3	3. 1 14. 2 7. 3 4. 9 5. 0 18. 0	2.7 12.6 7.1 4.8 5.1 16.8	2.8 12.6 7.2 4.9 5.1 17.1	2.8 12.6 7.3 4.9 5.1 17.6	2. 7 10. 9 7. 4 4. 7 5. 0 17. 5	2. 8 11. 5 7. 5 4. 9 5. 6 18. 0	7. 0 4. 7 5. 5 17. 5	2. 7 11. 7 7. 3 4. 8 5. 6 18. 3	34. 1 156. 5 86. 7 58. 1 62. 0 209. 2
Total, California	54.0	48. 2	53. 8	51. 2	52. 5	49. 1	49. 7	50. 3	48. 2	50. 3	48. 9	50. 4	606.6
Total, United States Daily average	179. 1 5. 8	157. 4 5. 6	177. 7 5. 7	177. 7 5. 9	179. 8 5. 8	172. 0 5. 7	175. 4 5. 7	142. 8 4. 6	173. 5 5. 8	188. 2 6. 1		187. 7 6. 1	2, 095. 6 5. 7

¹ Subject to revision.

The monthly trend of production was fairly uniform over the first 7 months of 1939 but slumped drastically in August owing to the shutdown. An upward trend was discernible over the last 4 months.

California.—Production of natural gasoline in California decreased from 660,890,000 gallons in 1938 to 606,631,000 in 1939. This, the first decrease in output since 1933, reflects the downward trend in crude-oil production through proration rather than a declining gas supply.

The output of all the important fields or districts (except Ventura Avenue, in which new oil zones were opened), was less in 1939 than in the preceding year. Despite a 30-million gallon decrease in output, the Kettleman Hills field still ranks first among the producing fields; it produced slightly more than a fourth of the State total in 1939.

Louisiana.—With the decline of casinghead-gas production in the Rodessa field the output of natural gasoline continued to trend downward, although the decrease in 1939 was not as large as in 1938 because of the gain in production in the coastal district. The output in 1939 was 92,066,000 gallons compared with 95,634,000 in 1938 and with 106,415,000 in the peak year 1937.

Oklahoma.—The production of natural gasoline in Oklahoma during 1939 continued to fall more or less in consonance with the decline in crude-oil production. The output was 434,797,000 gallons compared with 468,499,000 gallons in 1938. As in the preceding year, production at Oklahoma City declined materially, Seminole held up remarkably well, and "Other districts" besides Osage County made the only gain.

Texas.—Production in Texas increased in 1939, the gain being relatively higher than in crude-oil production because of the increased use of recycling. The output reached a new record of 704,707,000 gallons compared with 685,920,000 in 1938. A year ago the statement was made that Texas probably would pass California as the leading producer of natural gasoline in 1939. Actually, final figures for 1938 show that Texas took first place in that year.

Natural gasoline produced in the United States, 1935-39, by States, in thousands of gallons

Year	Arkar	n- Califo	or- Colorado		is Kans	as Ken tuck		i- Mich- igan	Mon- tana	New Mexico
1935 1936 1937 1938 1939 1	11, 957 11, 288 25, 648	7 593, 41 5 623, 89 8 660, 89	6 45 4 40 0 386	2, 337 2, 567 3 2, 436	7 37, 77 7 57, 02 3 55, 98	32, 507 5, 614 49, 732 37, 775 6, 009 72, 687 57, 026 7, 344 106, 415 55, 988 7, 040 95, 634 59, 567 8, 464 92, 066		7 2,015 5 2,408 4 3,581	1, 739 2, 071 2, 296 1, 768 2, 161	19, 563 28, 921 38, 253 49, 596 54, 555
									Total	
Year	New	Ohio	Okla-	Penn- syl-	Texas	West Vir-	Wyo-		Value a	at plant
1 voi	York	Onio	homa	vania	10205	ginia	ming	Thou- sands of gallons	Thou- sands of dollars	Average per gallon (cents)
1935	27 22	6, 232 6, 991	379, 913 418, 591		516, 748 520, 547	42, 433 44, 389	32, 246 33, 894	1, 651, 986 1, 796, 340	70, 940 84, 572	4.3 4.7
1937 1938 1939 1	33 27 34	7, 704 7, 382	492, 290 468, 499 434, 797	13, 940 10, 734	615, 281 685, 920 704, 707	50, 379 50, 398	² 33, 915 ² 30, 647	2, 065, 434 2, 156, 574 2, 095, 632	97, 125 87, 266 94, 300	4.7 4.0 4.5

¹ Subject to revision.

¹ Includes Utah.

The output of the Texas Panhandle, the leading producing district of the country, declined slightly in 1939, but that of the East Texas field gained, passing Kettleman Hills as the second ranking field. However, the largest gains in Texas were in the Gulf Coast—the result of rapidly expanding recycling operations—and in "Other districts."

Other States.—Arkansas did not continue the substantial gain in output attained during 1938; in fact, output declined slightly in 1939. There was a material increase in Illinois although the general character of the gas production in the new fields of that State is not particularly attractive to plant operators. Kansas and New Mexico reached new peaks in production in 1939. West Virginia and Wyoming made slight gains, the former because of the Oriskany gas development, the latter as a consequence of the gain in crude-oil production.

Natural gasoline produced and natural gas treated in the United States in 1938, by States 1

			Natural	gasoline pr	oduced	Natural ga	s treated
State	Number of opera-	Number of plants		Value a	t plants		Average yield per
•	tors 2	operating	Thousands of gallons	Thou- sands of dollars	Average per gallon (cents)	Millions of cubic feet	M cubic feet (gallons) 1. 20 1. 66 2. 19 39 1. 82
Arkansas California Colorado Illinois Kansas Kentucky Louisiana Michigan Montana New Mexico New York Ohio Oklahoma Pennsylvania Texas West Virginia Wyoming Utah	6 17 1 1 5 1 7 57 58 70	8 96 2 51 19 7 28 1 1 12 137 95 146 79 7	25, 648 660, 890 386 2, 436 55, 988 7, 040 95, 634 3, 581 1, 768 49, 596 10, 734 685, 920 50, 398 30, 624	905 41, 085 10 124 1, 603 364 3, 026 107 113 1, 415 2 377 14, 373 526 19, 781 2, 063 1, 364	526192204941199155 362525336275344945	21, 377 398, 187 145 1, 110 144, 631 38, 446 116, 331 1, 395 7, 126 97, 830 97, 830 265, 786 22, 600 752, 784 122, 301 17, 000	1. 20 1. 66 2. 66 2. 19 . 39 . 18 . 82 2. 57 . 25 . 51 . 42 . 26 1. 76 6 . 47 . 91 1. 1, 77
Total, 1938 1937	² 266 ² 249	696 696	2, 156, 574 2, 065, 434	87, 266 97, 125	4. 0 4. 7	2, 035, 562 2, 108, 800	1.06 .98

CONSUMPTION AND MOVEMENTS

The indicated demand for natural gasoline in 1939 may reach 2,130,000,000 gallons, or about 1 percent below that in 1938. The refinery utilization probably will exceed 1,700,000,000 gallons. represents about 80 percent of the total, or about the same proportion as in 1938. Exports and "direct" shipments declined in relative importance; this loss automatically raises the percentage for "Losses."

¹ Complete figures for 1939 not yet available.

² A producer operating in more than 1 State is counted only once.

Distribution of natural gasoline in the United States, 1938-39, by months, in thousands of gallons

	January	Febru- ary	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
Production 1938 Production Decrease in all stocks	185, 724	166, 950	185, 304	178, 794	179,844	171, 654	176, 904	181, 062	175, 014	187, 362 58, 296	181, 860 43, 218	186, 102 38, 304	2, 156, 574
	185, 724	166, 950	185, 304	178, 794	179, 844	171, 654	176, 904	181, 062	175, 014	245, 658	225, 078	224, 406	2, 156, 574
Used at refineries ¹ Run through pipe lines in CaliforniaExports ² . Direct shipments to consumers	145, 950 3, 444 10, 878 12, 096 8, 106	111, 174 3, 402 26, 418 11, 928 2, 772	130, 158 5, 628 16, 758 13, 020 21, 588	114, 576 5, 376 21, 588 10, 206 27, 216	112, 140 5, 418 26, 712 11, 130 15, 498	105, 630 5, 040 16, 380 11, 508 16, 926	119, 574 3, 696 20, 832 9, 702 27, 846	115, 962 7, 938 31, 500 10, 164 17, 136	135, 534 4, 284 11, 298 12, 054 5, 754	181, 734 4, 410 30, 618 12, 600	173, 040 4, 284 14, 406 12, 684	176, 232 3, 738 29, 526 10, 878	1, 621, 704 56, 658 256, 914 137, 970 3, 024
Losses	5, 250	11, 256	-1,848	-168	8,946	16, 170	-4,746	-1,638	6, 090	16, 296	20, 664	4,032	80, 304
1939 3	185, 724	166, 950	185, 304	178, 794	179,844	171, 654	176, 904	181,062	175, 014	245, 658	225, 078	224, 406	2, 156, 574
Production	179, 088 7, 686	157, 374	177, 744	177, 744	179, 760	171, 990	175, 350	142, 800 20, 958	173, 544 30, 786	188, 202 31, 542	184, 296 23, 562	187, 740 6, 636	2, 095, 632 17, 178
	186, 774	157, 374	177, 744	177, 744	179, 760	171, 990	175, 350	163, 758	204, 330	219, 744	207, 858	194, 376	2, 112, 810
Used at refineries ¹ Run through pipe lines in California Exports ³ Direct shipments to consumers Increase in stocks. Losses.	149, 226 3, 528 21, 924 9, 240 2, 856	132, 090 3, 528 5, 880 8, 904 2, 562 4, 410	131, 838 4, 368 24, 570 12, 138 546 4, 284	121, 254 4, 032 20, 748 9, 996 32, 046 -10, 332	106, 680 4, 452 9, 366 10, 962 30, 576 17, 724	108, 780 3, 864 14, 952 9, 450 22, 554 12, 390	118, 188 3, 990 19, 614 10, 122 15, 708 7, 728	125, 916 3, 948 16, 422 8, 694	131, 418 4, 536 18, 732 9, 660	179, 298 3, 738 12, 810 11, 214	176, 148 3, 864 3, 864 11, 130	164, 430 4, 326 3, 780 9, 618	1, 645, 266 48, 174 172, 662 121, 128
	186, 774	157, 374	177, 744	177, 744	179, 760	171, 990	175, 350	163, 758	204, 330	219, 744	207, 858	194, 376	2, 112, 810

Includes quantities run through pipe lines east of California.
 Figures compiled by the Bureau of Foreign and Domestic Commerce.

³ Subject to revision.

Refinery utilization.—The proportion of natural gasoline in refinery gasoline, an important index as to whether natural gasoline is maintaining its relative importance, dropped to 6.8 percent in 1939 from 7.2 percent in 1938, bringing the percentage to about the level that prevailed during 1935 and 1936.

Blending of natural gasoline increased in 1939 in the East Coast, Appalachian, Indiana-Illinois, Texas Gulf Coast, and California districts, but of these only the first and last gained in the percentage of

total refinery-gasoline production.

Percent of natural gasoline in refinery gasoline in the United States, 1935-39, by districts

Year	East Coast	Appa- lachian	Indiana, Illinois, Kentucky	Okla- homa, Kansas, Mis- souri	Texas Inland	Texas Gulf Coast	Louisi- ana Gulf Coast	Arkan- sas and Louisi- ana Inland	Rocky Moun- tain	Cali- fornia	Total
1935	2. 0	1.6	4. 1	10. 1	12. 5	2.7	1. 8	5. 7	7. 9	16. 1	6. 7
1936	1. 6	1.6	4. 4	9. 7	11. 5	3.9	1. 8	5. 4	7. 8	15. 5	6. 7
1937	1. 9	1.8	4. 3	8. 5	13. 1	5.3	4. 6	6. 5	6. 1	15. 7	7. 0
1938	1. 6	1.4	4. 7	8. 8	15. 5	4.3	2. 2	6. 8	5. 8	17. 6	7. 2
1939 1	2. 7	1.4	4. 1	7. 8	14. 3	4.0	1. 8	5. 0	4. 7	18. 0	6. 8

¹ Subject to revision.

"Direct" sales.—The sale of low-pressure natural gasoline directly to consumers, attractive in theory, has proved generally uneconomic in practice, probably because of the difficulty of meeting certain motor-fuel specifications. Anyway, sales to jobbers and retailers dropped from 137,970,000 gallons in 1938 to 121,128,000 in 1939; however, this decline may be halted in 1940, as more complete reports on recycle plants may reduce "Losses" and raise direct shipments.

Texas led in total direct sales, although shipments from Oklahoma to Illinois constituted the largest single interstate movement. Direct sales from Louisiana made the largest relative increase in 1939.

Water-borne shipments.—Exports of natural gasoline, as reported to the Bureau of Foreign and Domestic Commerce and as used in this publication, dropped from 256,914,000 gallons in 1938 to 172,662,000 in 1939. Bureau of Mines export figures, formerly used in this publication, were 202,230,000 and 167,806,000 gallons, respectively. The largest export movement continued to be that to the Netherland West Indies, with exports to United Kingdom, Canada, and France following in that order. Japan took about 7,600,000 gallons, or less than half as much as in 1938. Germany took none, but exports of about 4,250,000 gallons to Italy represented a substantial rise over 1938. Although the war-risk situation apparently should have favored movement from the West coast, that movement declined more than 40 percent in 1939 (from 54,000,000 gallons in 1938 to 30,000,000 in 1939), whereas movement from points east of California was only about 30 percent less than in 1938.

Natural gasoline utilized at refineries in the United States, 1938-39, by districts and months, in thousands of gallons

District	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber	Total
1938 East Coast	5, 754 1, 176 15, 414 21, 882	3, 654 966 12, 348 19, 614	4, 620 798 14, 658 21, 966	2, 520 672 12, 348 15, 036	1, 932 714 13, 104 15, 162	2, 772 756 11, 970 15, 540	2, 310 924 14, 448 16, 464	3, 360 1, 092 12, 474 17, 598	5, 712 966 18, 060 24, 444	5, 544 966 20, 748 28, 560	5, 628 1, 092 23, 352 24, 318	6, 510 1, 176 19, 572 21, 840	50, 316 11, 298 188, 496 242, 424
Texas: Gulf Coast Inland	29, 064 23, 226	12, 768 24, 276	17, 430 22, 092	20, 496 20, 748	17, 976 22, 470	15, 540 21, 462	19, 278 20, 034	17, 808 19, 950	14, 364 21, 084	27, 720 26, 460	29, 274 29, 400	32, 928 27, 048	254, 646 278, 250
Total, Texas	52, 290	37, 044	39, 522	41, 244	40, 446	37, 002	39, 312	37, 758	35, 448	54, 180	58, 674	59, 976	532, 896
Louisiana-Arkansas: Louisiana Gulf CoastArkansas and Louisiana Inland	2, 142 2, 478	1, 764 2, 688	2, 310 2, 478	1, 554 2, 016	1, 008 2, 310	630 2, 352	714 2, 982	1, 008 2, 898	1, 302 2, 856	840 3, 192	1, 470 2, 814	1, 302 1, 890	16, 044 30, 954
Total, Louisiana-Arkansas Rocky Mountain California	4, 620 3, 696 44, 562	4, 452 3, 318 33, 180	4, 788 3, 192 46, 242	3, 570 2, 100 42, 462	3, 318 1, 302 41, 580	2, 982 966 38, 682	3, 696 1, 344 44, 772	3, 906 1, 344 46, 368	4, 158 2, 436 48, 594	4, 032 4, 200 67, 914	4, 284 5, 040 54, 936	3, 192 4, 788 62, 916	46, 998 33, 726 572, 208
Total, United States	149, 394	114, 576	135, 786	119, 952	117, 558	110, 670	123, 270	123, 900	139, 818	186, 144	177, 324	179, 970	1, 678, 362
1939 ¹ East Coast	7, 182 966 15, 498 19, 236	5, 964 756 12, 474 16, 170	5, 712 1, 596 13, 020 15, 876	5, 124 756 11, 298 14, 154	5, 460 588 15, 246 15, 414	6, 132 756 13, 734 15, 288	8, 484 714 14, 910 15, 330	7, 392 672 12, 306 17, 388	8, 442 1, 008 18, 774 16, 926	9, 240 1, 386 21, 966 22, 932	11, 172 1, 512 21, 630 22, 218	9, 576 1, 764 18, 816 23, 772	89, 880 12, 474 189, 672 214, 704
Texas: Gulf Coast Inland	23, 226 24, 990	19, 656 21, 168	16, 800 20, 454	27, 384 17, 514	12, 600 18, 774	9, 870 17, 556	12, 516 18, 396	18, 312 17, 724	20, 370 13, 902	36, 918 33, 264	30, 702 29, 148	28, 476 27, 048	256, 830 259, 938
Total, Texas	48, 216	40, 824	37, 254	44, 898	31, 374	27, 426	30, 912	36, 036	34, 272	70, 182	59, 850	55, 524	516, 768
Louisiana-Arkansas: Louisiana Gulf Coast Arkansas and Louisiana Inland	1, 596 1, 386	798 1, 638	882 1, 764	1, 260 1, 344	966 1, 302	1, 386 1, 596	1, 386 2, 058	1, 218 1, 638	1, 302 1, 806	1, 218 2, 856	1, 092 2, 646	756 2, 352	13, 860 22, 386
Total, Louisiana-Arkansas Rocky Mountain California	2, 982 3, 234 55, 440	2, 436 2, 646 54, 348	2, 646 2, 982 57, 120	2, 604 2, 184 44, 268	2, 268 1, 260 39, 522	2, 982 1, 134 45, 192	3, 444 1, 008 47, 376	2, 856 1, 596 51, 618	3, 108 2, 100 51, 324	4, 074 3, 444 49, 812	3, 738 4, 326 55, 566	3, 108 3, 948 52, 248	36, 246 29, 862 603, 834
Total, United States	152, 754	135, 618	136, 206	125, 286	111, 132	112, 644	122, 178	129, 864	135, 954	183, 036	180, 012	168, 756	1, 693, 440

¹ Subject to revision.

Shipments of natural gasoline to jobbers, retailers, and refinery-owned bulk plants in the United States in 1939, by States, in thousands of gallons ¹

State from which		State to which natural gasoline was transported								
natural gasoline was transported	Texas	Okla- homa	Illinois	Ohio	Arkansas	Minne- sota	Other States	Total		
Texas_Oklahoma West Virginia	37, 789 508	203 14, 020	1, 694 12, 537 98	170 167 6, 470	120	6, 040 2, 092	11, 324 7, 080 18, 249	57, 220 36, 524 24, 817		
Arkansas Louisiana Kansas Other States	3, 277	900 1, 512	8 57 438	7, 780	11, 426 208	62 2, 206	1, 194 7, 554 1, 614 14, 269	12, 620 12, 009 5, 389 22, 487		
	41, 574	16, 635	14, 832	14, 587	11, 754	10, 400	61, 284	171, 066		

¹ Subject to revision.

STOCKS

Unlike the situation in the gasoline industry, stocks of natural gasoline declined during 1939—from 202,860,000 gallons on January 1 to 185,682,000 on December 31. The monthly trend of stocks in 1939 followed the usual seasonal pattern, with sharp increases in the second quarter and material decreases in the last quarter. It is noteworthy that if there had been no shut-down of crude-oil production in August the usual increase in stocks probably would have occurred during that month, and stocks would have increased over the year.

The relationship of the trends of stocks and posted prices was quite close in 1939, particularly in August, when the shut-down caused a rise of 1 cent per gallon.

Stocks of natural gasoline in the United States, 1938-39, by months, in thousands of aallons

		At refineries				At plants and terminals				
Date	Cali	fornia	Other	States	Te	exas	Other	States	To	otal
	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 1	1938	1939 1
Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30 Oct. 31	81, 774 86, 604 98, 196 103, 362 108, 780 118, 398 129, 360 134, 358 136, 752 138, 726 123, 732 120, 624 108, 696	108, 696 102, 942 92, 022 83, 958 87, 570 96, 852 95, 298 93, 156 88, 200 81, 270 73, 416 64, 512 59, 136	24, 654 20, 874 25, 746 28, 518 26, 964 24, 570 24, 696 25, 284 27, 090 26, 544 23, 268 18, 732 17, 136	17, 136 16, 044 12, 348 17, 262 19, 572 22, 260 24, 234 26, 082 26, 712 26, 040 22, 932 22, 680 17, 430		48, 397 46, 306 61, 095 58, 597 72, 316 81, 413 97, 068 110, 681 106, 680 96, 022 82, 896 72, 800 78, 492	35, 420 39, 231 39, 613 40, 797 49, 174 54, 638 60, 291 63, 390 62, 384 54, 824 39, 104 29, 912 28, 631	32, 271 38, 465 50, 870 60, 379 66, 858 69, 247 56, 616 44, 090 36, 636 32, 326	199, 836 207, 942 210, 714 232, 302 259, 518 275, 016 291, 942 319, 788 336, 924 342, 678 284, 382 241, 164 202, 860	202, 860 195, 174 197, 736 198, 282 230, 328 260, 904 283, 458 299, 166 278, 208 247, 422 215, 880 192, 318 185, 682

¹ Subject to revision.

TECHNICAL DEVELOPMENTS

Recycling plants.—Facilities for the recovery of "condensate" from high-pressure reservoirs were expanded rapidly during 1939.

Better understanding of "retrograde condensation" and of the phase relations of the lighter hydrocarbons (under varying reservoir conditions) indicated the need for maintaining pressure during condensate-producing operations. It was found that there were material underground losses of the recoverable liquid fractions if reservoir pressures were allowed to fall below certain critical points. Hence recycling plants were developed to remove condensate by absorption and refrigeration at very high pressures (usually above 1,000 pounds) and to return the stripped gas to the reservoir to maintain its pressure.

In January 1939, 8 such plants were operating in Texas, recovering 2,235 barrels per day of condensate from an average of 116.4 million cubic feet of gas; in December 1939, 22 plants reported daily recovery of 6,612 barrels from a volume of 470.4 million cubic feet. About 90 percent of the volume of gas withdrawn from the producing sands was returned. The data above are based upon reports of

the Railroad Commission of Texas.

As a large number of gas-condensate fields have been discovered and await exploitation, much additional expansion of recycling activi-

ties is in prospect.

There is great diversity in the manner of marketing condensate from the various plants. The principal factors that control the method of disposing of the product are situation of plants, specifications of the liquid produced, and facilities owned or available to plant owners. Some plants are equipped with stabilizing or fractionating units and produce a finished motor fuel that is sold wholesale or retail. Others sell raw condensate, which is mixed with crude oil or natural gasoline in pipelines or shipped by tank cars and trucks to refineries or natural-gasoline terminals.

Yields.—As predicted a year ago the average yield of natural gasoline increased in 1938, when it was 1.06 gallons per thousand cubic feet compared with 0.98 gallon in 1937. This increase was related to the gain in the relative importance of the East Texas field, a high-yield area. In 1939 the yield is expected to fall to about 1.00 gallon, as State figures for Texas indicate a sizable decrease, owing both to enlarged pipeline takings in the Panhandle and to the spread of recycling. Yields from recycling are relatively low, and probably the average is

less than 0.75 gallon per thousand.

Production by processes.—In 1939 the number of compression plants again declined, and the number of absorption plants again increased, but the number of charcoal plants remained at 9. Production by the absorption process increased and by the other two processes decreased

during 1939.

Trends in vapor pressures.—The weighted average vapor pressure of all shipments of natural gasoline, which had been dropping steadily, increased from 19.6 pounds in 1938 to 20.1 in 1939. This gain was all in refinery shipments, as the weighted average for "direct" shipments fell from 15.6 pounds in 1938 to 14.6 in 1939 and for exports

from 17.2 pounds to 16.7.

Technical improvements.—The year 1939 probably witnessed as many activities in the chemistry of the lighter hydrocarbons as any previous 12 months. Although most of the work on alkalization, isomerization, and similar problems was done at refineries, the natural-gasoline industry is bound to play a large part in any program involving use of the fractions generally termed "liquefied petroleum gases" as the base for motor-fuel production.

Natural gasoline produced in the United States in 1938, by States and by methods of manufacture 1

a.	Number	of plants o	perating	Production (thousands of gallons)			
State	Com- pression	Absorp- tion 2	Charcoal	Com- pression	Absorp-	Charcoal	
Arkansas. California Colorado. Illinois. Kansas. Kentucky Louisiana Michigan Montana. New Mexico. New York Ohio Oklahoma. Pennsylvania Texas West Virginia Wyoming Utah	1 51 4 3 3 3 3	8 94 1 15 3 25 1 6 6 103 14 120 222 4	1 1 6	2, 200 176 2, 436 2, 058 4 2, 731 27 48 47, 752 2, 682 111, 997 10, 456 26, 331	25, 648 658, 690 53, 930 6, 552 92, 903 3, 581 1, 768 49, 596 5, 820 420, 787 7, 787 7, 787 7, 787 7, 873 35, 281 3, 693 3, 693 3, 693	1, 514	
Total: 1938 1937	264 277	423 410	9	208, 898 228, 419	1, 940, 845 1, 828, 421	6, 831 8, 594	

Figures for 1939 not yet available.
 Includes combination of absorption process with compression and charcoal processes.

Drip gasoline.

LIQUEFIED PETROLEUM GASES 2

The trend in sales of liquefied petroleum gases, which had showed some slackening in 1938, again turned sharply upward in 1939 with domestic sales totaling 223,580,000 gallons. The improved demand for liquefied petroleum gases in 1939 is indicated by the 35-percent gain over the 1938 total of 165,201,000 gallons, which in turn was 17 percent above domestic requirements in 1937. The expansion in the market in 1939 measures up to gains of 33 and 39 percent, respectively, in 1937 and 1936. All important uses of these gases showed marked advances in 1939 over 1938, with the exception of chemical manufacturing. Sales of "bottled gas," which makes it possible to employ modern kitchen equipment in rural districts beyond the city gas mains, rose over 50 percent in 1939. Gas companies, which use liquefied petroleum gases for enriching manufactured gas or for direct distribution through their mains, increased their purchases of these gases 37 percent in 1939. Industrial demand, which declined in 1938 compared with 1937, made an outstanding gain of 59 percent in 1939, as manufacturing activities again advanced. The spread in their use as motor fuel, especially in western areas, is evidenced by a 37-percent increase in deliveries for this purpose in 1939. quantity of liquefied petroleum gases required for chemical manufacturing was reported as 20 percent below the 1938 total.

Exports of liquefied petroleum gases, which have fallen steadily since 1936, again turned upward in 1939, and the total—1,570,000 gallons—is approximately double the quantity in 1938. Distributors supplied a domestic and export demand of 225,100,000 gallons in 1939, a 36-percent gain over the 1938 total of 166,026,000 gallons.

By A. T. Coumbe, Petroleum Economics Division, Bureau of Mines.

Sales of liquefied petroleum gases in the United States, 1933–39, in thousands of gallons

Year	Propane	Butane	Propane- butane mixtures	Pentane	Total
1933	15, 835	19, 056	3, 226	814	38, 931
1934	18, 681	25, 553	10, 271	1, 922	56, 427
1935	26, 814	34, 084	13, 493	2, 464	76, 855
1936	36, 502	40, 200	27, 375	2, 575	106, 652
1937	46, 474	45, 399	46, 694	2, 833	141, 400
1937	54, 130	52, 768	56, 050	2, 253	165, 201
1938	79, 323	71, 351	69, 020	3, 886	223, 580

¹ Subject to revision.

Sales of liquefied petroleum gases in the United States, 1938-39, by uses, by methods of transportation, and regional distribution, in thousands of gallons

				•	•	
	Propane	Butane	Propane- butane mixtures	Pentane	Total	Percent
1938 By uses:						
Domestic Gas manufacturing	37, 556 1, 491	13, 194 8, 270	6, 316 1, 538	766 8	57, 832 11, 307	35. 0 6. 8
Industrial fuel Chemical manufacturing	14, 316 347	23, 405 43	1, 404 30, 496	16 1,413	39, 141 32, 299	23. 7 19. 6
Internal-combustion-engine fuel	380 40	5, 025 2, 831	16, 296	50	21, 701 2, 921	13. 1 1. 8
Percent of total	54, 130 32. 8	52, 768 31, 9	56, 050 33, 9	2, 253 1, 4	165, 201 100, 0	100. 0 100. 0
By methods of transportation:						100.0
Bulk Cylinders and drums	22, 420 31, 710	50, 050 2, 718	53, 665 2, 385	1, 926 327	128, 061 37, 140	77. 5 22. 5
	54, 130	52, 768	56, 050	2, 253	165, 201	100.0
Regional distribution:	2.000					
Pacific Coast area All other areas	6, 983 47, 147	8, 072 44, 696	20, 083 35, 967	2, 253	35, 138 130, 063	21. 3 78. 7
	54, 130	52, 768	56, 050	2, 253	165, 201	100.0
1939 1						
By uses: Domestic	52, 533	17, 881	16, 093	1,023	87, 530	39, 2
Industrial fuel	2, 083 23, 685	9, 796 36, 388	3, 483 2, 155	73 112	15, 435 62, 340	$\frac{6.9}{27.9}$
Chemical manufacturing Internal-combustion-engine fuel	249	5, 850	23, 957	2, 644	26, 892	12.0
All other uses	663 110	1, 394	23, 279 53	34	29, 792 1, 591	13. 3 . 7
Percent of total	79, 323 35. 5	71, 351 31. 9	69, 020 30. 9	3, 886 1. 7	223, 580 100. 0	100. 0 100. 0
By methods of transportation:						
Bulk Cylinders	36, 218 43, 105	69, 453 1, 898	61, 695 7, 325	3, 447 439	170, 813 52, 767	76. 4 23. 6
	79, 323	71, 351	69, 020	3, 886	223, 580	100.0
Regional distribution:	- 05					
Pacific Coast area. All other areas	7, 891 71, 432	12, 916 58, 435	27, 690 41, 330	3, 886	48, 497 175, 083	21. 7 78. 3
	79, 323	71, 351	69, 020	3, 886	223, 580	100.0

¹ Subject to revision.

Domestic deliveries of liquefied petroleum gases in 1938 comprised approximately equal portions of propane, butane, and propane-butane mixtures; however, in 1939 (probably owing to the large increase in the demand for "bottled gas," which is predominantly propane) the proportion of total sales accredited to propane increased from 33 to about 36 percent, and there was a corresponding drop in propane-butane mixtures from 34 percent of total sales in 1938 to 31 percent in 1939. The proportion of pentane in domestic deliveries is comparatively small; however, the percentage gained slightly in 1939 over 1938.

Except for the larger sales of the relatively unimportant pentane, sales of propane made the greatest proportionate gain in 1939, increasing 47 percent, or from 54,130,000 gallons in 1938 to 79,323,000 in 1939. Deliveries of butane, reported as 71,351,000 gallons in 1939, were 35 percent above the 1938 total, while the demand for propane-butane mixtures was 23 percent above, rising from 56,050,000 gallons in 1938 to 69,020,000 in 1939. Sales of pentane, a petroleum gas of chief importance to chemical manufactures, increased greatly in 1939 to 3,886,000 gallons, a 72-percent gain over the quantity in 1938.

The rapid growth in demand for "bottled gas" is revealed in the constantly increasing proportion of total liquefied-petroleum-gas sales required for this trade. In 1937 about 29 percent of the total deliveries of liquefied petroleum gases was reported for domestic consumption; this share increased to 35 percent in 1938 and to over 39 percent of all requirements in 1939. Gas companies absorbed about 7 percent of deliveries in 1938 and 1939 compared with 8 percent in 1937. The use of these gases as industrial fuel declined from 31 percent of the total demand in 1937 to 24 percent in 1938 but, with increased manufacturing activities, rose to 28 percent in 1939. About 20 percent of the sales were credited to chemical plants in 1937 and 1938; however, this share dropped to 12 percent in 1939. Sales items for recent years show a slowly increasing proportion consumed as fuel for internal-combustion engines, a use that has increased from 12 percent of total deliveries in 1937 to over 13 percent in both 1938 and 1939.

The demand for propane increased from 54,130,000 gallons in 1938 to 79,323,000 in 1939. As in former years, the larger share of propane deliveries was reported for domestic or household use; deliveries for industrial fuel use ranked second. The proportion credited to domestic sales was 66 percent in 1939 compared to 69 percent of the total in 1938 and 65 percent in 1937. It is believed that the percentage sold for domestic use during 1938 was larger because of the slackened industrial fuel demand in that year. This shift likewise is shown in the percentages of total propane sales reported for industrial consumption in the corresponding years, as follows: 31 percent in 1937, 26 percent in 1938, and an increase to 30 percent of all propane sales in 1939.

The marketed production of butane increased from 52,768,000 gallons in 1938 to 71,351,000 in 1939. The larger part of marketed production of butane is consumed as an industrial fuel; however, the percentage of total sales reported under that classification dropped from 62 percent in 1937 to 44 percent in 1938 and then reverted to 51 percent in 1939, as manufacturing activities expanded. Twenty-five percent of the total butane deliveries was accredited to domestic consumption in 1938 and 1939, or about double the 1937 share

employed for the same purpose. This upward trend is due largely to mounting consumption of butane as a household fuel in south central areas, where natural gas is not readily available. The percentage of the butane total sold to gas-manufacturing companies has decreased gradually from over 16 percent in 1937 to 14 percent in 1939.

Sales of propane-butane mixtures reported totaled 69,020,000 gallons in 1939 compared with 56,050,000 in 1938. In 1937 and 1938 slightly more than half of all deliveries of propane-butane mixtures were made to manufacturers of chemicals, but in 1939 this proportion declined to about one-third of the total. Liquefied petroleum gases used as motor fuel are predominantly a mixture of propane and butane. Propane-butane mixtures consumed as internal-combustion-engine fuel constitute about one-third of all such sales; however, the proportion declined to 29 percent in 1938 and then returned to 34 percent of the total demand during 1939. The domestic or "bottled-gas" market is taking a rapidly expanding share of total deliveries of propane-butane mixtures. The percentage of all sales of propane-butane mixtures credited to domestic use has increased from about 8 percent in 1937 to over 23 percent in 1939.

The demand for pentane increased from 2,253,000 gallons in 1938 to 3,886,000 in 1939. Most of the marketed production of pentane is used as solvents and raw material in the manufacture of chemicals, and the quantity diverted to this trade rose from 63 percent of all sales

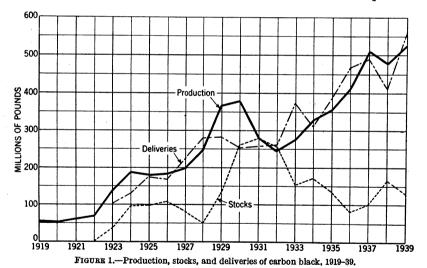
of pentane in 1938 to 68 percent in 1939.

The American Gas Association is the source of the following statistics covering the distribution of liquefied petroleum gases by manufactured-gas companies:

At the end of 1939, liquefied petroleum gas was being delivered through mains to consumers in 178 communities in 30 States by 82 companies supplying 49,800 customers.

Butane-air gas with heating value ranging from 520 to 1,000 B.t.u. per cu. ft. was supplied to 125 communities in 30 States by 72 companies. A mixture of undiluted butane and propane gas with a heating value of 2,800 to 3,000 B.t.u per cu. ft. was supplied to 12 communities in California by 5 companies. Undiluted propane gas with a heating value of 2,550 B.t.u. per cu. ft. was supplied to 41 communities in Maryland, Minnesota, New Jersey, North Dakota, Virginia, and Wisconsin by 6 companies.

The rapidly expanding household demand for liquefied petroleum gases is again indicated in the mounting percentage of shipments in cylinders and drums compared to corresponding losses in the share of bulk distribution. Gases handled in cylinders comprised 23.6 percent of the marketed production in 1939 compared to 22.5 percent in 1938 and 21.2 percent in 1937. It is noted from a second angle that 96.5 percent of all shipments in cylinders during 1939 were reported for domestic use compared to 95.4 percent of the 1938 total so shipped.


CARBON BLACK

By G. R. HOPKINS AND H. BACKUS

SUMMARY OUTLINE

	Page		Page
Summary Salient statistics	1096	Total deliveries	1099
Production By States By months	1096	Exports and imports	1100
Methods and yields	1098	StocksPrices and values	1102
Producers			

Under the stimulus of the war and the recovery in rubber production the carbon-black industry reached record levels in all phases of

production and consumption in 1939. The output was 525,166,000 pounds, 10 percent more than in 1938, and sales totaled 560,533,000 pounds, 36 percent more than in 1938. The position of stocks improved considerably, but prices continued distressingly low. domestic price rallied slightly, but the trend of export quotations continued downward. The average f. o. b. price rose from 2.41 cents per pound in 1938 to 2.45 cents in 1939—about enough to cover the increase in the average price of gas from 0.89 cent per thousand cubic feet in 1938 to 0.94 cent in 1939. Increases up to a quarter of a cent on domestic quotations on April 1, 1940, were heartening.

Figure 1 shows the sharp recovery in production and deliveries

from the slump of 1938.

Salient statistics of carbon black produced from natural gas in the United States, 1935-39

	1935	1936	1937	1938	1939
Number of producers reporting	21	20	24	24	22
Number of plants	54	54	57	55	49
Quantity produced: By States and districts: Louisianapounds_	64, 875, 000	59, 201, 000	66, 381, 000	39, 534, 000	51, 734, 000
Texas: Panhandle districtdo Rest of Statedo	263, 361, 000	321, 576, 000	405, 247, 000	382, 369, 000	410, 130, 000
	1 24, 513, 000	12, 330, 000	15, 821, 000	34, 735, 000	43, 044, 000
Total Texasdo	¹ 287, 874, 000	333, 906, 000	421, 068, 000	417, 104, 000	453, 174, 000
Other Statesdo		18, 238, 000	23, 157, 000	20, 401, 000	20, 258, 000
Total United Statesdo	352, 749, 000	411, 345, 000	510, 606, 000	477, 039, 000	525, 166, 000
By processes: Channel processdo Other processes 2do	316, 284, 000	366, 876, 000	444, 427, 000	441, 284, 000	464, 588, 000
	36, 465, 000	44, 469, 000	66, 179, 000	35, 755, 000	60, 578, 000
Stocks held by producers Dec. 31 pounds_ Lossesdo	136, 086, 000 926, 000	79, 582, 000 113, 000	100, 497, 000 76, 000	166, 159, 000 3 65, 000	130, 792, 000
Quantity sold: Domestic deliveries: To rubber companiesdo To ink companiesdo To paint companiesdo For miscellaneous purposes_do	213, 708, 000	278, 018, 000	269, 584, 000	217, 231, 000	316, 621, 000
	15, 177, 000	17, 787, 000	18, 116, 000	14, 131, 000	21, 929, 000
	6, 550, 000	6, 914, 000	6, 159, 000	4, 229, 000	6, 382, 000
	9, 916, 000	10, 299, 000	11, 503, 000	7, 883, 000	11, 773, 000
Total domestic solddo	245, 351, 000	313, 018, 000	305, 362, 000	243, 474, 000	356, 705, 000
Exportdo	142, 185, 000	154, 718, 000	184, 253, 000	167, 968, 000	203, 828, 000
Total solddo Value (at plants) of carbon black pro- duced:	387, 536, 000	467, 736, 000	489, 615, 000	411, 442, 000	560, 533, 000
Total	\$13, 755, 000	\$16, 110, 000	\$17, 389, 000	\$11, 486, 000	\$12, 857, 000
	3. 90	3. 92	3. 41	2. 41	2. 45
Estimated quantity of natural gas used M cubic feet Average yield of carbon black per M	241, 589, 000	283, 421, 000	341, 085, 000	324, 950, 000	347, 270, 000
cubic feetpounds_ Average value of natural gas used per M cubic feetcents_	1.46 1.57	1. 45 1. 30	1. 50 1. 26	1. 47	1. 51 . 94

¹ Oklahoma and Wyoming included with "Texas: Rest of State." ² Lewis, roller, "Special," and thermatomic. ³ Gain.

PRODUCTION

By States.—Production in Louisiana, which declined so materially in 1938 as to foreshadow disappearance of the industry in a few years, scored a notable come-back in 1939, rising to 51,734,000 pounds compared with 39,534,000 in 1938. Production in Kansas and Oklahoma continued at about 20 million pounds. Texas production rose to a new peak of 453,174,000 pounds—9 percent (36,070,000 pounds) above 1938. In 1939 the output in the Panhandle was 410,130,000 pounds, equivalent to 91 percent of the State total compared with 92 Wyoming, which has been a producer since the percent in 1938. first statistics were collected in 1919, ceased to produce in 1939.

By months.—According to estimates based upon monthly figures of the National Gas Products Association, the monthly output of carbon black averaged just above 40 million pounds until the last quarter, when under the stimulus of the war it increased to nearly 50 million pounds.

Carbon black produced from natural gas in the United States, 1935-39, by States

	Prod	luction (thou	ısands of pou	nds)	Average
Year	Louisiana	Texas	Other States	Total	value per pound (cents)
1935. 1936. 1937. 1938. 1939.	64, 875 59, 201 66, 381 39, 534 51, 734	1 287, 874 333, 906 421, 068 417, 104 453, 174	(1) 2 18, 238 3 23, 157 3 20, 401 4 20, 258	352, 749 411, 345 510, 606 477, 039 525, 166	3. 90 3. 92 3. 41 2. 41 2. 45

Oklahoma and Wyoming included with Texas.
 Oklahoma and Wyoming.
 Kansas, Oklahoma, and Wyoming.
 Kansas and Oklahoma.

Carbon black produced from natural gas in the United States in 1939, by States and by major producing districts

			Pr	oduction		N	atural	gas used	
	Producers reporting	plants		Value at	plant		per	Val	ue
State and district		Number of pl	Pounds	Total	Av erage cents	M cubic feet	A verage yield M cubic (pounds)	Total	Average per M cubic feet (cents)
Kansas Louisiana: Monroe-Richland dis- trict (Morehouse and Ouachita Parishes) Oklahoma	6 3	7	(2) 51, 734, 000	(²) \$1, 871, 000	(²) 3. 62	(²) 21, 777, 000	(³) 2. 38	(²) \$631, 000	(2)
Texas: Panhandle district (Carson, Gray, Hutchinson, Moore, and Wheeler Counties) Rest of State (Nueces, Stephens, Ward, and Winkler Counties)	18	31	220, 258, 000 410, 130, 000 43, 044, 000	9, 492, 000	2. 31	287, 880, 000	1. 42	2, 324, 000	. 81
Total, Texas	1 18	38	453, 174, 000			25, 741, 000 313, 621, 000	1.67	145, 000 2, 469, 000	. 56
Total United States	1 22	49	525, 166, 000	12, 857, 000	2. 45	347, 270, 000		3, 263, 000	. 94

¹ In counting the total number of producers a producer operating in more than 1 State, district, or county is counted only once.
² Kansas included with Oklahoma.

Carbon black produced from natural gas in the United States in 1939, by months, in pounds

Month	National Gas Prod-	Bureau of	Mines 1		National	Bureau of Mines		
	ucts Asso- ciation	Total	Daily average	Month	Gas Prod- ucts Asso- ciation	Total	Daily average	
January February March April May June July	37, 313, 345 34, 124, 815 39, 729, 197 38, 329, 668 40, 317, 963 37, 396, 775 39, 748, 355	41, 593, 147 38, 074, 535 44, 324, 010 42, 748, 512 44, 954, 210 41, 698, 181 44, 324, 010	1, 341, 714 1, 359, 805 1, 429, 807 1, 424, 950 1, 450, 136 1, 389, 939 1, 429, 807	August September _ October November _ December	35, 948, 558 40, 028, 362 42, 450, 401 42, 294, 448 43, 254, 022 470, 935, 909	40, 070, 166 44, 639, 110 47, 317, 457 47, 159, 907 48, 262, 755 525, 166, 000	1, 292, 586 1, 487, 970 1, 526, 370 1, 571, 997 1, 556, 863 1, 438, 811	

 $^{\rm 1}$ Monthly figures obtained by allocating the Bureau's annual total proportionately to the association's monthly data.

Methods and yields.—Production by processes other than channel increased materially in 1939, nearly compensating for the loss in 1938. The output by "other" processes in 1939 amounted to 60,578,000 pounds, equivalent to 12 percent of the total, compared with 35,755,000 pounds comprising only 7 percent of the total in 1938.

The yield of carbon black rose from 1.47 pounds per thousand cubic feet in 1938 to a new peak of 1.51 pounds in 1939. This gain was due to the rise in relative importance of "other" processes, several of which

give unusually high yields.

Despite the low price level, research in the fundamentals of carbon-black production and consumption continued, as it is quite generally recognized that the behavior of different blacks under varying conditions is a fertile field for experiment. One of the products of this research ("dustless" carbon black) increased steadily in popularity in 1939; it is doubtful if more than 10 percent of the present output is of the old nongranular type.

Number and capacity of plants.—New construction continued at a low ebb in 1939. About a half dozen plants were dismantled, and

only two new ones were added to the operating list.

The total daily capacity of the operating plants, which remained virtually at a standstill in 1938, declined from about 1,736,000 pounds in 1938 to about 1,714,000 in 1939. The capacity in Texas increased about 30,000 pounds, but this was outweighed by a decline of about 70,000 pounds in Louisiana. The operating ratio, or the ratio of daily average production to average capacity, increased from 75 percent in 1938 to 84 percent in 1939.

Number and daily capacity of carbon-black plants operated in the United States, 1938-39, by counties or parishes

State	County or parish	Num pla		Total daily capacity (pounds)		
State	County of parish	1938	1939	1938	1939	
Kansas	Grant	1	1	(1)	(1)	
Louisiana	MorehouseOuachita	2 9	1 6	23, 850 225, 775	12, 000 168, 995	
		11	7	249, 625	180, 995	
Oklahoma	Beckham Seminole Texas	1 1	1 1 1	1 76, 750	1 91, 750	
		2	3	1 76, 750	1 91, 750	
Texas	Carson Moore Wheeler	2	³ 1 6 2	413, 700	411, 500	
	Gray Hutchinson Eastland	1	114	340, 360 3 548, 120	311, 150 2 567, 670	
	Nueces	4	1 4 1 1	107, 300	150, 80	
Wyoming	Niobrara	40	38	1, 409, 480 (¹)	1, 441, 12	
•		. 55	49	1, 735, 855	1, 713, 86	

^{1 1938:} Kansas and Wyoming included with Oklahoma; 1939: Kansas included with Oklahoma.
2 1 plant, in both Carson and Hutchinson Counties, counted in Hutchinson County.

Producers.—The latest complete list of carbon-black producers (as of December 31, 1937) was given on page 967 of Minerals Yearbook, 1938. Changes in the list for 1938 were given on page 1073 of Minerals Yearbook, 1939. The changes in 1939 are as follows: The Southern Carbon Co. discontinued operations, and its three Louisiana plants at Fowler, Perryville, and Swartz were dismantled; the J. M. Huber Corporation closed its plants in Louisiana and Wyoming permanently; the Columbian Carbon Co. closed its plant at Pampa but opened one at Corpus Christi; and the General Atlas Carbon Co. began operations at its plant near Guymon, Okla.

DEMAND

Total deliveries.—Sales of carbon black in 1939 totaled 560,533,000 pounds—36 percent more than in 1938. Domestic sales in 1939 were

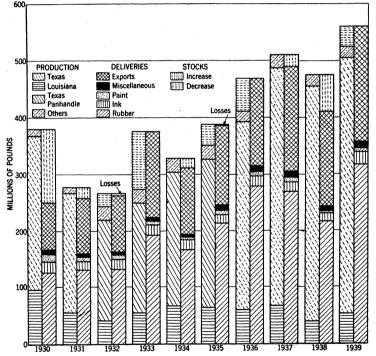


FIGURE 2.—Production and consumption of carbon black, 1930-39.

356,705,000 pounds and exports 203,828,000 pounds, both figures new records, with domestic deliveries showing the largest increase. (See

Domestic consumption.—Domestic sales in 1939 (356,705,000 pounds) were 47 percent higher than in 1938 and 14 percent above the previous high of 1936. Reports from producers indicate that they were divided as follows: Rubber companies, 316,621,000 pounds (89 percent); ink companies, 21,929,000 pounds (6 percent); paint companies, 6,382,000 pounds (2 percent); and miscellaneous purposes, 11,773,000 pounds (3 percent). These data indicate that all four classes of consumption maintained their relative positions in 1939.

According to E. G. Holt, of the Bureau of Foreign and Domestic Commerce, who has again supplied data on rubber consumption, the total consumption of rubber in the United States reached the recordbreaking total of 763,700 long tons, or 37 percent above the total of 558,800 tons consumed in 1938. Of the 1939 total, 592,000 tons was crude rubber, 170,000 tons reclaimed rubber, and 1,700 tons synthetic According to statistics of the Rubber Manufacturers Association 57,078,000 casings were produced in 1939 compared with the revised figure of 40,907,000 for 1938. Returns from the Federal excise tax on tires and tubes indicate that the total weight of casings sold in 1939 was 56 percent greater than in 1938. The production of camelpack for retreads has expanded rapidly in recent years and may have reached 50,000,000 pounds in 1939. This type of rubber utilizes more carbon black per pound of rubber than the average casing. far as carbon-black consumption is concerned, these data indicate chiefly that an increase in the average size of casings outweighed a larger increase in the use of reclaimed (which uses relatively little carbon black) than in crude rubber.

The apparent world consumption of crude rubber was 1,090,000 long tons compared with the revised figure of 942,000 long tons in 1938. As the gain in consumption in the United States was somewhat larger than in the rest of the world, this country greatly strengthened its

position as the leading rubber manufacturer.

The pick-up in business in 1939 was attended by a marked increase in advertising; consequently the apparent consumption of newsprint increased materially over 1938, though it fell far short of the 1937 total. According to data supplied by B. M. Frost, of the Bureau of Foreign and Domestic Commerce, the supply of newsprint available for domestic consumption in 1939 was 3,541,000 short tons compared with 3,089,100 in 1938. Sales of carbon black to ink companies increased 55 percent—from 14,131,000 pounds in 1938 to 21,929,000 in 1939. Possibly a higher percentage of carbon black is being used in inks, although probably further additions to manufacturers' stocks were made at the favorable prices.

Sales of carbon black to paint companies also rose materially—from 4,229,000 pounds in 1938 to 6,382,000 in 1939. According to E. C. Wood, of the Bureau of Foreign and Domestic Commerce, paint production in 1939 probably was about 15 percent higher than in 1938, with perhaps a much larger increase for black paints alone.

Sales of carbon black for miscellaneous purposes increased sharply; the 1939 total of 11,773,000 pounds was about 50 percent higher than in 1938 and slightly above the previous record (11,503,000 pounds) of 1937. No data are available as to which of the many miscellaneous uses expanded in 1939.

Exports and imports.\(^1\)—Exports of carbon black passed the 200-million-pound mark for the first time in 1939, when the total was 203,828,000 pounds compared with 167,968,000 in 1938. Shipments to Germany declined in 1939, but this decrease was far outweighed by larger exports to British possessions.

The average export value continued to decline—4.36 cents per

pound compared with 4.51 cents in 1938.

¹ Figures on exports and imports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce

Exports of carbon black to the United Kingdom increased about 50 percent in 1939 to a total of 66,215,000 pounds. Exports to France (still second in importance) gained moderately in 1939, reaching 29,391,000 pounds, while those to Germany declined although the total (19,661,000 pounds) was third most important. There were notable increases in shipments to Brazil and China in 1939.

No particular trend was apparent in exports of carbon black by months, even after the war started. The highest monthly total was in April, the month of lowest exports in 1938. About 70 percent of the exports was shipped from the Galveston customs district, a slightly

lower ratio than in 1938.

Carbon black exported from the United States, 1937-39, by countries

Country	193	7	19	38	1939		
Country	Pounds	Value	Pounds	Value	Pounds	Value	
Argentina Australia Belgium Brazil Canada China Czechoslovakia ¹ France Germany ¹ India, British Italy Japan Mexico Netherland India Netherlands Norway Poland and Danzig ¹ Spain Sweden Union of South Africa United Kingdom Yugoslavia Other countries	5, 164, 255, 723, 933, 17, 171, 885, 1, 529, 855, 2, 187, 100, 29, 913, 980, 210, 6, 956, 079, 11, 929, 498, 1, 229, 597, 441, 114, 33, 302, 175, 159, 512, 200, 1549, 753, 3, 155, 311, 48, 881, 173, 305, 146, 740	\$163, 139 516, 410 234, 743 37, 682 719, 631 76, 878 91, 522 1, 336, 934 44, 198 300, 972 619, 790 56, 438 47, 055 176, 132 23, 018 103, 231 21, 25 88, 637 128, 449 2, 467, 600 270, 521	3, 203, 142 6, 952, 545 5, 459, 202 744, 938 13, 867, 345 673, 498 1, 834, 572 26, 216, 610 949, 455 9764, 699 9, 172, 849 11, 295, 515 36, 43, 185 560, 789 3, 166, 867 1, 132, 22, 714, 415 1, 792, 986 44, 429, 105 44, 429, 105 406, 130	\$151, 669 324, 118 250, 475 35, 935 372, 752 32, 230 84, 395 1, 219, 450 1, 076, 568 440, 881 443, 483 444, 444 57, 142 174, 052 28, 088 151, 361 151, 361 151, 361 151, 361 28, 083 75, 375 210, 083 75, 375 2, 104, 878 39, 803 239, 004	4, 234, 248 9, 665, 979 4, 656, 082 1, 871, 434 17, 933, 916 1, 476, 897 276, 500 29, 390, 582 19, 660, 805 2, 703, 106 8, 260, 281 10, 617, 734 1, 750, 366 1, 422, 234 3, 034, 415 614, 977 2, 368, 187 2, 644, 425, 409 4, 322, 092 4, 322, 092 6, 283, 189	\$200, 463 443, 192 212, 169 86, 351 486, 363 70, 344 11, 425 1, 335, 998 857, 907 123, 530 375, 258 482, 538 55, 466 63, 700 145, 927 30, 936 109, 336 117, 075 213, 870 188, 958 2, 975, 028	
·	184, 252, 882	8, 700, 083	167, 968, 316	7, 579, 883	203, 827, 817	8, 888, 666	

¹ For statistical purposes trade with the Sudeten area, as far as ascertainable, is included with Germany, while trade with the other Czechoslovak Provinces occupied by Germany, Hungary, and Poland has been included with these countries since March 18 or 19, 1939. After November 16, 1939, trade with Danzig and that part of Poland occupied by Germany has been included with Germany, and trade with that part of Poland occupied by the U. S. S. R. has been included with U. S. S. R.

Carbon black exported from the United States, 1938-39, by months and customs districts

3.543	1938 1939		Customs dis-	193	8	1939			
Month	Pounds	Value	Pounds	Value	trict	Pounds	Value	Pounds	Value
Feb Mar Apr June July Aug Sept Oct Nov	14, 869, 135 11, 083, 662 14, 814, 670 10, 904, 372 12, 861, 809 11, 443, 234 12, 421, 213 13, 355, 141 16, 629, 738 14, 668, 039 18, 109, 580 167,968,316	493, 070 654, 988 459, 564 783, 212 553, 249 525, 217 538, 079 607, 181 776, 318 640, 315 781, 926	14, 192, 588 19, 370, 600 19, 935, 052 21, 043, 569 14, 185, 130 17, 371, 802 13, 505, 738 18, 831, 339 17, 200, 319 14, 838, 550 14, 670, 978 203,827,817	847, 358 874, 362 935, 012 830, 584 620, 797 731, 516 579, 460 851, 138 737, 795 641, 986 625, 771	El Paso Galveston Los Angeles Michigan New Orleans New York Sabine San Francisco Vermont Other districts	89, 711 558, 073 1, 344, 900 120, 745, 454 349, 312 13, 453, 512 27, 408, 556 112, 410 2, 369, 513 1, 152, 551 161, 769 167, 968, 316	38, 617 5, 533, 374 14, 496 355, 969 1, 404, 677 36, 746 97, 018 50, 094 4, 488 8, 095	397, 965 1, 649, 717 144, 454, 115 1, 074, 945 17, 338, 956 31, 928, 600 303, 278 2, 158, 650 3, 617, 832 269, 240	19, 110 48, 882 6, 426, 836 40, 332 460, 020 1, 592, 678 26, 888 89, 124 137, 457 7, 285 31, 989

Imports of "gas black and carbon black," as reported by the Bureau of Foreign and Domestic Commerce, totaled 6,901 pounds valued at \$784 in 1939 compared with 390 pounds valued at \$30 in 1938. Imports of acetylene black (all from Canada) nearly doubled in 1939, rising from 1,220,781 pounds valued at \$127,889 in 1938 to 2,381,572 pounds valued at \$248.332 in 1939.

STOCKS

The situation as to stocks of carbon black improved considerably during 1939; in place of a material increase, as in 1938, there was a moderate decline. Stocks on December 31, 1939 totaled 130,792,000 pounds, which was 35,367,000 pounds below stocks of January 1. In terms of quantity present stocks compare with those on hand during the early part of 1936 and in terms of days' supply, with those prevailing in the spring of 1937. Stocks in the form of finished rubber goods changed but slightly in 1939; stocks of casings held by manufacturers increased only from 8,451,000 on January 1,1939, to 8,688,000 at the year end.

PRICES AND VALUES

In general, carbon-black prices in 1939 remained at the low levels reached in the early part of 1938. Although demand, both domestic and export, reached record levels, competitive conditions were such as to prevent any consistent advance.

The weighted average f. o. b. value at plants increased from 2.41 cents per pound in 1938 to 2.45 cents in 1939. This slight change is substantiated by the quotation for Zone A, the standard price in the industry, which has remained at 2.75 cents per pound since April 4, 1938.

In spite of the fact that exports expanded rapidly in the first 2 months of the war on a "seller's market," prices at the close of the year were slightly below those at the beginning. The average export value for 1939 was 4.36 cents per pound compared with 4.51 cents in

Quoted prices on various grades of carbon black, 1938-39, in cents per pound [Oil, Paint, and Drug Reporter]

	Star	ndard r	ubber,	lities	Special grades for varnishes, lacquers, and enamels (cases delivered)									
Date			7	Zone 1							Grade			
	A	в	С	D	E	F	G	1	2	3	4	5	6	7
1939: Jan. 1 Sept. 11	2. 75	3. 10	3, 19	3. 25	3. 41	3. 75	3.00	3. 75	8. 50	13.00	27. 50 29. 00		60.00	110. 00
Average: 1939 1938	2. 75 2. 75	3. 10 3. 09	3. 19 3. 20	3. 25 3. 24	3. 41 3. 40	3. 75 3. 73	3. 00 3. 22	3.75 4.04	8. 50 8. 50					110. 00 110. 00

¹ Zone A: Gulf coast ports: Galveston, Houston, Port Arthur, New Orleans, etc.; for coastwise delivery in North America.

Zone B: Arkansas, Colorado, Kansas, part of Missouri, New Mexico, and Texas except coastal ports. Zone C: Pacific coast.

Zone D: Illinois, Iowa, and Wisconsin.

Zone E: Florida, Georgia, Indiana, Kentucky, Michigan, Ohio, Tennessee, West Virginia, and parts of New York and Pennsylvania.

Zone F: Atlantic Seaboard States: Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, parts of Pennsylvania, Rhode Island, South Carolina, Vermont, and Virginia.

Zone G: Mexico.

HELIUM

By C. W. SEIBEL AND H. S. KENNEDY

SUMMARY OUTLINE

	Page		Page
Cliffside gas field	1103 1104	Government uses	1104

Operation of Amarillo plant.—During the fiscal year 1939 the Bureau of Mines helium plant near Amarillo, Tex., continued to operate on an intermittent schedule and produced 6,281,800 cubic feet of helium. The cumulative production is 90,541,000 cubic feet for the first 10 years of the plant's operation, from April 1929 to June 30, 1939. During the first half of the fiscal year ending June 30, 1940, an additional 3,906,000 cubic feet of helium was produced, making a total production of 94,447,000 cubic feet of helium to December 31, 1939.

Sales of residue natural gas from which the helium was extracted were 318,601,000 cubic feet valued at \$16,727. The cumulative sales of such gas for the 10-year period of operation of the Amarillo helium plant total 4,684,149,000 cubic feet, for which \$245,918 was received.

Cliffside gas field.—In the fiscal year 1939 a total of 383,062,000 cubic feet of helium-bearing natural gas was produced by the Bureau of Mines from the Government's Cliffside gas field to supply the Amarillo plant, giving a cumulative production from the field of

5,436,215,000 cubic feet.

During the year a deep test was made for oil in the Cliffside field, in which the Government owns all gas rights for 50,000 acres covering the entire geologic structure but does not own the oil rights. After drilling to a depth of more than 6,000 feet without finding oil, the company responsible for the work abandoned the test. Under the terms of a "working agreement" between the Government (as owner of the gas rights) and the owners of the oil rights, which was entered into when the Bureau of Mines purchased the gas rights in the land, the Bureau acquired the well with equipment and casing for a fraction of its cost. The casing was "gun-perforated" opposite the gas strata, and a gas well having an open-flow capacity of 12 million cubic feet per day was developed. This well, now known as Bureau of Mines Bush A-2, is about 3,500 feet deep and cased with heavy 10%-inch casing. Its open-flow capacity and closed-in pressure (709 pounds per square inch) compare favorably with those of the best wells in the field, and it cost the Government considerably less than any other well in the field.

Purchase of additional properties.—An amendatory act authorizing the conservation, production, exploitation, and sale of helium gas, approved September 1, 1937 (50 Stat. 885), provided that

the Secretary of the Interior is hereby directed, if possible under the terms hereof, to acquire by purchase all properties developed or constructed by private parties prior to the passage of this Act for helium production * * *.

Pursuant thereto, the helium properties of the Girdler Corporation of Louisville, Ky., were acquired November 3, 1938. These properties comprise helium-production plants at Dexter, Kans., and Thatcher, Colo., with related gas leases and wells to supply helium-bearing natural gas. Both plants had been in a stand-by condition for some time before the purchase and have been maintained in that condition by the Government because the Amarillo plant, completed in 1929, can now supply all Government and private demands for helium when operating at a fraction of its capacity. The purchase places all helium plants under the control of the Government.

Sales.—The act approved September 1, 1937, authorized the sale of helium to the public, and from the time it became effective until the close of the fiscal year ended June 30, 1938, 73,082 cubic feet of helium were sold and delivered to non-Government purchasers. The production for Government agencies in that period was 5,757,680

cubic feet.

During the fiscal year 1939, the first full year of operation under the act, the public took advantage of the opportunity and purchased 1,068,300 cubic feet of helium under 30 contracts with the Bureau. Of this quantity, 265,800 cubic feet were purchased for medical, 9,600 cubic feet for scientific, and 792,900 cubic feet for commercial purposes. In the same period various agencies of the Federal Government obtained 5,213,400 cubic feet of helium. All the helium was produced

in the Amarillo plant.

Government uses.—The United States Army and Navy continue to be the largest users of helium. They employ it for inflating observation and meteorological balloons as well as dirigible lighter-than-air The Navy also uses helium in diving operations. The use of large balloons that carry radio-sonde apparatus has increased the desirability, from the standpoint of safety, of using helium instead of explosive hydrogen in meteorological balloons, so the Weather Bureau is rapidly becoming a large user of helium. The National Bureau of is rapidly becoming a large user of helium. Standards has procured helium from the Bureau of Mines for determination of specific heats and other scientific studies, and the Public Health Service uses helium in research on its medical applications.

In 1925 the Bureau of Mines, in cooperation with the Navy Department, experimented on the use of synthetic mixtures of oxygen and helium in deep-sea diving. The actual use of such mixtures in diving operations was given considerable publicity in connection with the raising of the submarine Squalus, and it has been stated that if helium had not been available the efforts to raise the submarine probably

would have been ineffective.

Non-Government uses.—The present-day medical use of helium in the treatment of asthma and other respiratory diseases is an outgrowth of research on the use of helium in diving. Helium also is being employed in the administration of anesthetics. Other promising medical

uses are being investigated by research workers.

HELIUM 1105

Influenced by growing evidence of the efficacy of helium in medical applications, hospitals and physicians now use about 25 percent of all helium sold for non-Government purposes, and the demands are increasing. Helium also is being used to an increasing extent in technical research, as is indicated by sales of helium to educational and research institutions for scientific studies.

The largest non-Government user of helium in lighter-than-air craft has been the Goodyear Tire & Rubber Co., which maintains small passenger-carrying blimps, filled with helium produced in the Amarillo plant, at the New York and San Francisco Fairs, as well as several other points. These blimps give reserve pilots active training in

airship operation.

Near the end of the fiscal year 1939 the Committee for Organization of the First Polish Flight into the Stratosphere purchased 220,000 cubic feet of helium for filling a stratosphere balloon, but the flight

was prevented by the European War.

Laws or ordinances in some localities prohibit the use of hydrogen or any explosive gas in filling toy balloons. Helium is the only safe gas for such use, and some toy-balloon vendors have purchased helium in considerable quantities. Helium also is being used to some extent in "sky advertising"; by large balloons that hold approximately 1,000 cubic feet and carry advertising on their envelopes or on banners

which they support.

Prices.—As the Government desires to encourage use of helium and to make it generally available for medical purposes, helium is sold at prices near the cost of production. The regulations governing sales of helium to private parties provide that, in accordance with a provision of the act requiring payment in advance, deposits made by purchasers of helium shall be based upon an estimated cost of production prepared by the Bureau of Mines and approved by the Secretary of the Interior. For the fiscal year 1939 the estimate was \$14.25 per thousand cubic feet. As helium is sold virtually at cost, the sales regulations require that, to protect the Government, purchasers of helium for medical and scientific use deposit 120 percent of the estimated cost of the helium, which now is \$17.10 per thousand cubic feet, and that purchasers of helium for commercial use deposit 134.4 percent of the estimated cost, now \$19.15 per thousand cubic feet.

At the end of each fiscal year the actual cost of producing helium is determined and approved as provided for in the regulations. In accordance with the act, the cost used as a basis for determining the price to be paid by non-Government users includes items for depreciation, depletion, and interest on certain investments, whereas the amounts paid by Government agencies are based upon operating costs

only.

For the fiscal year 1939 the prices per thousand cubic feet charged non-Government purchasers of helium, as approved by the Secretary of the Interior, were \$12.80 for helium to be used for medical purposes, \$13.44 for helium for scientific use, and \$15.05 for helium for commercial use. After the total charges against the various purchasers of helium were determined, the surpluses to their credit were refunded.

The refunds for the fiscal year 1939 were \$4.30, \$3.66, and \$4.10 per thousand cubic feet, respectively, for helium sold for medical, scientific, and commercial uses. The price charged Government

agencies was \$11.47 per thousand cubic feet, irrespective of the use to

which the helium was put.

The prices per thousand cubic feet charged non-Government users of helium for the fiscal years 1938 and 1939 are compared in the following table:

	1938	1939
Medical	_ \$13. 471	\$12. 80
Scientific	13. 471	13. 44
Commercial	15. 088	15. 05

The lower rate charged for helium for medical use is in accord with the Government's desire to make helium available to the public for medical use at the lowest practicable cost. There is no difference in the quality of the helium sold for the three classes of use, as it has a purity of about 98.2 percent, and the impurity is largely nitrogen.

Before the act approved September 1, 1937, was passed, helium obtained for private use from non-Government sources sometimes cost as much as \$150 per thousand cubic feet, and even in quantities as large as a million cubic feet it sold for \$75 per thousand cubic feet.

ASPHALT AND RELATED BITUMENS

By A. H. REDFIELD 1

SUMMARY OUTLINE

	Page	1	Page
Sailent statistics. Native asphalts and bitumens. Bituminous rock. Gilsonite and wurtzilite. Sulfonated bitumen	1107 1107 1108 1108 1108	Manufactured or petroleum asphalt	1109 1109 1109 1110 1113
		Road oil	1117

To meet an 8-percent increase in total demand, domestic and foreign, for petroleum asphalt (including small quantities of imported lake asphalt and grahamite), petroleum refineries in the United States increased their output 10 percent from 1938 to 1939. In consequence, their inventories rose 12 percent from December 31, 1938, to December 31, 1939, in contrast to a 12-percent reduction during 1938. The entire increase in demand was on the domestic market, as exports of asphalt were slightly less in 1939 than in 1938. Imports both of petroleum asphalt and natural asphalt advanced from 1938 to 1939, but they constituted 1 percent of the total demand in 1939. Only 4 percent of the petroleum asphalt produced by refineries in the United States was sold to foreign countries in 1939.

Salient statistics of asphalt and related bitumens in the United States, 1938-39

	.,	
	1938	1939
SUPPLY		
Native asphalt and related bitumens:		
Produced short tons morted (chiefly lake asphalt) do Petroleum asphalt (evoluting road oil)	1 477, 741 23, 645	459, 848 26, 586
Produced at refineries	4, 506, 876	4, 954, 400
ImportedStooks, Jan. 1do	9,786	47, 261
	557, 446	1 90, 408
Total supplydo	1 5, 575, 494	5, 978, 503
DISTRIBUTION		
Native asphalt and related bitumens:		
Indicated domestic demand short tons	1 464, 195	446,064
	13, 546	13, 784
Petroleum asphalt (excluding road oil): Indicated domestic demand (including lake asphalt)dodo	4 404 040	
Exportsdo	4, 404, 846 202, 499	4, 768, 960
Stocks, Dec. 31do	490, 408	199, 695 550, 000
Motel distribution		
Total distributiondo	1 5, 575, 494	5, 978, 503
170.1.10		

¹ Revised figures.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Salient statistics of asphalt and related bitumens in the United States, 1938-39—Continued

	1938	1939
VALUES		
Native asphalt and related bitumens: Sales. Imports (chiefly lake asphalt) Exports (unmanufactured)	1 \$2, 874, 803 378, 209 543, 509	\$3, 066, 844 362, 559 577, 031
Petroleum asphalt: Sales (excluding road oil) from— Domestic petroleum Foreign petroleum	25, 948, 928 15, 432, 152	28, 172, 396 12, 719, 680
Total sales Imports Exports	41, 381, 080 38, 883 3, 030, 162	40, 892, 076 189, 052 3, 097, 799

¹ Revised figures.

NATIVE ASPHALT AND BITUMENS

Bituminous rock.—As a result of decreased demand east of the Mississippi River sales of bituminous rock by producers in the United States declined from 449,091 short tons (revised figure) in 1938 to 422,484 tons in 1939. The value of the rock asphalt sold decreased from \$2,219,159 in 1938 (revised figure) to \$2,007,810. Rock-asphalt operators in Kentucky and Alabama sold 215,142 tons valued at \$1,379,138 in 1938 but only 175,602 tons valued at \$1,214,476 in 1939. On the other hand, sales by operators in Texas, Oklahoma, and New Mexico advanced in quantity from 206,443 tons (revised figure) in 1938 to 221,497 tons in 1939 but declined in value from \$727,032 in 1938 to \$684,808 in 1939. Sales by producers in California and Kansas were lower in quantity and value in 1939 than in 1938, but sales in Missouri were slightly higher.

Gilsonite and wurtzilite.—Sales of gilsonite by producers in northeastern Utah increased from 28,574 short tons valued at \$649,724 in 1938 to 37,289 tons valued at \$1,053,192 in 1939. Demand for the better grades was good during the greater part of 1939; prices were firm; and the loss of sales to Germany during the last quarter of the year did not affect the general market for gilsonite.

Sales of wurtzilite totaled 76 tons valued at \$5,920 in 1938 and

75 tons valued at \$5,842 in 1939.

Sulfonated bitumen.—In 1939, as in 1938, a small quantity of natural sulfonated bitumen was produced in Box Elder County, Utah,

near Ogden.

Exports.—Exports of natural asphalt, unmanufactured, changed little from 1938 to 1939. They amounted to 13,546 short tons valued at \$543,509 in 1938 and 13,784 tons valued at \$577,031 in 1939. Of the total exports Europe took 75 percent in 1938 and 74 percent in 1939; Canada 10 percent in 1938 and 8 percent in 1939; South America 2 percent in 1938 and 4 percent in 1939; and Asia, chiefly Japan, 10 percent in 1938 and 1939.

MANUFACTURED OR PETROLEUM ASPHALT

Production.—Petroleum refineries in the United States produced 10 percent more asphalt in 1939 than in 1938. The most marked gains were in the Indiana, Illinois, Kentucky, etc., district, in the East Coast district, and in the Texas Gulf Coast district. On the other hand, decreases were considerable in the Rocky Mountain, Arkansas, and Louisiana Inland, and Texas Inland districts. These decreases were not sufficient, however, to offset the increases east of the Mississippi River, in the Gulf Coast districts of Louisiana and Texas, and in California.

Stocks.—To meet an increase of 364,100 short tons in the indicated domestic demand for asphalt (offset to a slight extent by a decline of 2,800 tons in export demand), petroleum refineries in the United States enlarged their output of asphalt 447,500 tons in 1939, while imports of lake asphalt, grahamite, and petroleum asphalt rose 40,400 tons. Consequently, stocks of asphalt at refineries were 59,600 tons higher on December 31, 1939, than on December 31, 1938, compared to a drop of 67,000 tons during 1938. The principal advances in inventories were in the Illinois, Indiana, Kentucky, etc., district, in the Oklahoma, Kansas, and Missouri district, and in California. In contrast to the general increase, stocks were reduced considerably in the Texas Inland district and to some extent in the Rocky Mountain and East Coast districts during 1939.

Production, receipts, stocks, consumption, transfers and losses, and sales of asphalt (exclusive of road oil) at petroleum refineries in the United States in 1939, by districts, in short tons

			Stoo		Con- sump-	Sales	
District	Produc- tion	Re- ceipts from other sources	Dec. 31, 1938	Dec. 31, 1939	tion by com- panies, trans- fers, and losses	Domestic	Foreign
East Coast	1, 841, 900 142, 200 969, 200 354, 300	56, 900 11, 400 59, 000	134, 100 14, 800 108, 900 40, 200	129, 000 20, 000 148, 000 68, 000	26, 100 7, 200 130, 500 20, 100	1, 840, 300 129, 800 810, 400 365, 400	37, 500 600
Texas: Gulf Coast Inland	290, 900 164, 600	500	15, 400 24, 900	19, 000 8, 000	80, 500	152, 100 182, 000	54, 700
Total, Texas	455, 500	500	40, 300	27, 000	80, 500	334, 100	54, 700
Louisiana-Arkansas: Louisiana Gulf Coast Arkansas and Louisiana Inland	259, 800 179, 500	57, 800	34, 100 16, 500	35, 000 21, 000	14, 200	234, 200 232, 800	10, 500
Total, Louisiana-Arkansas Rocky Mountain California	439, 300 65, 800 686, 200	57, 800 41, 900	50, 600 23, 100 78, 400	56, 000 15, 000 87, 000	14, 200 8, 800 9, 100	467, 000 107, 000 582, 900	10, 500 85, 600
Total: 1939	4, 954, 400 4, 506, 900	227, 500 95, 500	490, 400 557, 400		296, 500 192, 800	4, 636, 900 1 4,476, 600	188, 900 (¹)

Foreign included with domestic.

Sales.—Total sales of petroleum asphalt by refineries increased 8 percent in quantity but decreased 1 percent in value from 1938 to 1939. The average value at the refinery of asphalt sold in 1939 was

\$8.47 per short ton compared with \$9.24 in 1938.

Of the total sales of petroleum asphalt in 1939, 26 percent was manufactured from foreign petroleum, imported chiefly from Venezuela and Mexico, compared with 32 percent in 1938. Although runs of foreign crude to stills rose from 26,187,000 barrels in 1938 to 33,490,000 in 1939, sales of asphalt made from foreign crude declined from 1,449,664 short tons in 1938 to 1,278,786 in 1939. Apparently more of the foreign crude was run to fuel oil in 1939 than in 1938. East Coast refineries sold 96 percent of the asphalt made from foreign crude in 1939 compared with 91 percent in 1938.

Sales of asphalt (exclusive of road oil) at petroleum refineries in the United States, 1938-39, by districts

	19	38	1939		
District	Short tons	Value	Short tons	Value	
East Coast	1, 774, 744	\$18, 840, 860	1, 877, 834	\$18, 417, 699	
	117, 922	1, 489, 664	129, 843	1, 499, 740	
	652, 373	6, 509, 542	810, 985	6, 847, 378	
	358, 246	2, 485, 080	365, 381	2, 121, 986	
Texas: Gulf Coast Inland Total, Texas	159, 295	1, 412, 779	206, 840	1, 570, 306	
	214, 568	1, 402, 950	181, 959	1, 330, 904	
	373, 863	2, 815, 729	388, 799	2, 901, 210	
Louisiana-Arkansas: Louisiana Gulf Coast	228, 619	2, 153, 334	244, 703	2, 108, 695	
	226, 677	1, 553, 073	232, 818	1, 459, 166	
Total, Louisiana-Arkansas	455, 296	3, 706, 407	477, 521	3, 567, 861	
	166, 140	1, 486, 292	106, 960	810, 493	
	578, 043	4, 047, 506	668, 508	4, 725, 709	
Total	4, 476, 627	41, 381, 080	4, 825, 831	40, 892, 076	

Average sales values of asphalt at the refineries decreased in nearly all districts from 1938 to 1939. The only exceptions were the Texas Inland, where the average sales value increased from \$6.54 per short ton in 1938 to \$7.31 in 1939, and the California, where the average sales value rose from \$7.00 in 1938 to \$7.07 in 1939. The general decline was ascribed to overproduction in California and the Texas Inland district of heavy crude that could be run cheaply to asphalt and sold at reduced prices. However, prices became firmer in the last quarter of 1939 as a result of continued improvement in demand.

Statistics of sales of asphalt by varieties in 1939 are not strictly comparable with the corresponding figures for 1938. The 1939 data refer only to sales to domestic consumers, while those for 1938 include export sales; however, as export sales amounted to only 4 percent of the total sales in both 1938 and 1939 the discrepancy is not great, and rough comparisons are possible. Statistics of sales to domestic consumers will give for 1939 and future years a more accurate picture of the type of demand in the major market for asphalt.

Asphalt and asphaltic material (exclusive of road oil) sold at petroleum refineries in the United States in 1939, by varieties

[Value f. o. b. refinery]

	From	domestic	From	foreign	1	
		oleum	petr	oleum	Total	
	Shorttons	Value	Shorttons	Value	Shorttons	Value
Solid and semisolid products of less than 200 penetration: Asphalt for— Paving	603, 834 48, 983 12, 705 62, 114 1, 453 19, 283 21, 989	\$6, 195, 315 4, 827, 630 581, 039 152, 421 324, 858 12, 367 191, 565 222, 006 879, 262	382, 210 203, 478 31, 030 11, 588 6 3, 210 2, 401 7, 357 40, 196	\$3, 776, 412 2, 020, 147 361, 514 139, 791 43 32, 363 30, 330 98, 375 407, 414	1, 176, 534 807, 312 80, 013 24, 293 62, 120 4, 663 21, 684 29, 346 127, 510	\$9, 971, 727 6, 847, 777 942, 553 292, 212 324, 901 44, 730 221, 895 320, 381 1, 286, 676
	1, 651, 999	13, 386, 463	681, 476	6, 866, 389	2, 333, 475	20, 252, 852
Semisolid and liquid products of more than 200 penetration: ¹ Flux for— Paving Roofing Waterproofing Mastic Cut-back asobalts:	330, 374 4, 130	759, 702 2, 309, 622 51, 386 2, 659	83, 614 91, 360 75	779, 399 920, 223 1, 561	195, 802 421, 734 4, 130 204	1, 539, 101 3, 229, 845 51, 386 4, 220
Cut-back asphalts: Rapid-curing Medium-curing Emulsified asphalts and fluxes Paints, enamels, japans, and lacquers Other liquid products	52, 653 24, 095	4, 623, 953 4, 055, 738 605, 097 409, 200 861, 358	321, 906 41, 306 3, 228 13, 484 2, 989	3, 101, 272 388, 565 30, 784 214, 413 35, 586	851, 929 602, 917 55, 881 37, 579 133, 293	7, 725, 225 4, 444, 303 635, 881 623, 613 896, 944
•	1, 745, 507	13, 678, 715	557, 962	5, 471, 803	2, 303, 469	19, 150, 518
Total to domestic consumers	3, 397, 506 149, 539	27, 065, 178 1, 107, 218	1, 239, 438 39, 348	12, 338, 192 381, 488	4, 636, 944 188, 887	39, 403, 370 1, 488, 706
Total: 1939	3, 547, 045 3, 026, 963	28, 172, 396 25, 948, 928	1, 278, 786 1, 449, 664	12, 719, 680 15, 432, 152	4, 825, 831 4, 476, 627	40, 892, 076 41, 381, 080

¹ DEFINITIONS

Paving asphalt.—Refined asphalt and asphaltic cement, fluxed and unfluxed, produced for direct use in the construction of sheet asphalt, asphaltic concrete, asphalt macadam, and asphalt block pavements, and also for use as joint filler, in brick, block, and monolithic pavements.

Roofing asphalt.—Asphalt and asphaltic cement used in saturating, coating, and cementing felt or other fabric and in the manufacture of asphalt shingles.

Waterproofing asphalt.—Asphalt and asphaltic cement used to waterproof and dampproof tunnels, foundations of buildings, retaining walls, bridges, culverts, etc., and for constructing built-up roofs.

Briquetting asphalt.—Asphalt and asphaltic cement used to bind coal dust or coke breeze into briquets.

Mastic and mastic cake.—Asphalt and asphaltic cement for laying foot pavements and floors, waterproofing bridges, lining reservoirs and tanks, capable of being poured and smoothed by hand troweling.

Pipe coatings.—Asphalt and asphaltic cement used to protect metal pipes from corrosion.

Molding compounds.—Asphalts used in the preparation of molded composition, such as battery boxes, electrical fittings, push buttons, knobs, handles, etc.

Miscellaneous uses.—Asphalt and asphaltic cement used as dips and in the manufacture of acid-resisting compounds, putty, saturated building paper, fiber board and floor coverings, and not included in the preceding definitions.

Flux.—Liquid asphaltic material used in softening native asphalt or solid petroleum asphalt for paving, roofing, waterproofing, and other purposes.

Fitte:—Liquid aspirate material used in solutions and in solution of the purposes.

Cut-back asphalt.—Asphalt softened or liquefied by mixing with petroleum distillates.

Emulsified asphalt and fluxes.—Asphalts and fluxes emulsified with water for cold-patching, road laying, and other purposes.

Other liquid products.—Petroleum asphalt, exclusive of fuel oil used for heating purposes, not included in the preceding definitions.

Highway construction absorbed three-fifths of all asphalt sold to domestic consumers in 1939 in the form of paving asphalt, paving flux, cut-back asphalts, and emulsions. In general, such statistics as are available indicate an increase in street and road construction in 1939 According to the Engineering News-Record awards for street and road contracts exceeding \$25,000 increased 1 percent in value (from \$637,862,000 in 1938 to \$643,771, 000 in 1939) and about 1 percent in volume, as construction costs changed little from 1938 to The total highway mileage constructed by State highway departments, according to the same journal, rose from 28,310 in 1938 to 30.428 in 1939. According to the American Association of State Highway Officials, the total mileage completed increased from 30,977 in 1938 to 31,628 in 1939. However, average employment for construction and maintenance of Federal and State highways, as reported to the Bureau of Public Roads, decreased from 273,055 in 1938 to 220.843 in 1939.

The increase in mileage of State highways built during 1939 reported by the Engineering News-Record was in bituminous types, untreated surfacing, and grading and draining operations. Asphaltic types (asphaltic concrete, asphaltic macadam, and low-cost bituminous mixtures) gained 7 percent from 1938 to 1939—they constituted 78 percent of the mileage of higher and intermediate types laid on State

highways in 1938 and 85 percent in 1939.

No comprehensive statistics are available to show the proportions of the various types of surface laid on city and town streets. Apparently there was a small increase in the yardage of municipal street paving, especially in the larger cities, an important but little-recorded field of demand.

Awards of street and road contracts increased in the Middle Atlantic States, in the Ohio Valley and Great Lakes States, and in the States west of the Mississippi River and east of the Rocky Mountains, according to the Engineering News-Record. They decreased considerably in the Rocky Mountain and Pacific Coast States and New England

and to a smaller extent in the Southeastern States.

Increased construction of lighter types of surface, both on State highways and secondary roads, as well as continued use of cut-back asphalts for soil stabilization and revetments, is indicated by a 4-percent gain in sales of cut-back asphalts from 1,392,997 tons in 1938 (includes export sales) to 1,454,846 in 1939 (domestic sales only). A considerable advance in sales by East Coast refineries and smaller increases in sales by refineries of the Appalachian, the Indiana, Illinois, Kentucky, etc., the Texas Gulf Coast and Texas Inland, and the Louisiana-Arkansas Inland districts offset declines in sales by the other districts west of the Mississippi River. The entire increase was in sales in medium-curing cut-backs—from 500,087 tons valued at \$3,828,718 in 1938 to 602,917 valued at \$4,444,303 in 1939, as sales of

rapid-curing cut-backs declined from 892,910 tons valued at \$9,129,262 in 1938 to 851,929 tons valued at \$7,725,225 in 1939.

Petroleum refineries sold 56,953 tons (13,417,238 gallons) of asphalt emulsions valued at \$678,779 in 1938 and 55,881 tons (13,164,691 gallons) valued at \$635,881 in 1939. In addition, 43,928,186 gallons valued at \$3,659,258 were sold in 1938 by major industrial companies that purchased asphalt from petroleum refineries and 49,826,902 gallons valued at \$3,899,958 in 1939. Accordingly, total known sales of emulsified asphalts and fluxes advanced from 57,345,424 gallons valued at \$4,338,037 in 1938 to 62,991,593 gallons valued at

\$4,535,839 in 1939.

Roofing manufacture furnished the second-largest demand for asphalt, absorbing 25 percent of the total sales in 1938 and 26 percent Although shipments of prepared roofing and asphalt siding reported to the Bureau of the Census decreased slightly—from a total of 35,238,029 squares in 1938 to 34,823,305 in 1939—sales of roofing asphalt and roofing flux combined increased from 1,127,635 tons in 1938 to 1,229,046 in 1939. The 1939 figure, it may be noted, includes only domestic sales, whereas the figure for 1938 includes both domestic and export sales. The principal increases occurred in the East Coast district, the Indiana, Illinois, Kentucky, etc., district, and California.

DOMESTIC DEMAND

The indicated domestic demand for petroleum asphalt (including small quantities of imported lake asphalt and grahamite) was 8 percent greater in 1939 than in 1938, increasing from 367,071 short tons per

month in 1938 to 397,413 in 1939.

In terms of the long-term trend the indicated demand was 30 percent above the expected demand for 1939, whereas it was 23 percent above the expected demand for 1938; that is, if the national demand had continued the average rate of growth it manifested from 1908 to 1936. it would have averaged 297,864 tons a month in 1938 and 306,533 in If these averages are used as a standard of comparison, the indicated demand of 367,071 tons a month in 1938 was 123 percent of the expected demand (297,864 tons), and the indicated demand of 397,413 tons a month in 1939 was 130 percent of the expected demand (306,533 tons).

The demand for asphalt is seasonal to a marked degree, reaching its maximum in August and its minimum in February. Normally, 65 percent of the indicated consumption of asphalt occurs in the 6 months from May 1 to October 31; from 1937 to 1939, 69 percent of the annual total apparently was consumed in these months. Consequently, to furnish an adequate standard of comparison the monthly trend values

are multiplied by a "seasonal factor" for each month.

Relation of indicated	asphalt demand in	the United States to	basic trend multiplied
to the state of th	by seasonal factors	, 1938–39, by months	

	·	1938		1939			
Month	Trend. multiplied by seasonal factors	Indicated monthly demand	Relation of indicated monthly demand to trend	Trend multiplied by seasonal factors	Indicated monthly demand	Relation of indicated monthly demand to trend	
January February March April May June July August September October November December	345, 999 385, 228 396, 368 411, 856 395, 950	Short tons 229, 001 153, 342 254, 351 297, 329 398, 654 475, 112 478, 289 581, 820 541, 739 489, 368 310, 373 1195, 468	Percent 131. 4 95. 9 124. 0 105. 7 115. 2 123. 3 120. 7 141. 2 136. 8 126. 2 125. 1 107. 1	Short tons 179, 401 164, 655 211, 130 211, 130 396, 478 407, 943 407, 943 407, 154 399, 053 255, 336 187, 800	Short tons 198, 502 146, 917 230, 997 317, 551 483, 030 499, 270 546, 799 629, 709 594, 823 528, 534 351, 431 341, 403	Percent 110. 6 89. 2 109. 4 109. 7 135. 6 125. 9 134. 0 148. 6 148. 1 132. 4 137. 6 128. 5	

In the first quarter of 1939 the indicated demand averaged 104 percent of the long-time trend multiplied by seasonal factors compared with 118 percent in the first 3 months of 1938. In the second quarter of 1939 it rose to 125 percent of the expected demand for these months compared with 116 percent during the second quarter of 1938. From July to September 1939 the demand was highest, averaging 143 percent of the expected demand compared with 133 percent for the same months of 1938. In the last quarter of 1939 the indicated demand averaged 133 percent of the expected demand compared with 122 percent in the last 3 months of 1938.

DISTRIBUTION BY RAIL

The tonnage of asphalt (natural, byproduct, or petroleum) terminated by class I railroads in the United States rose from 4,295,232 short tons in 1938 to 4,826,245 in 1939, according to freight-commodity statistics compiled by the Interstate Commerce Commission. The increase was general, but more than nine-tenths of the gain occurred on railroads operating principally north of the Potomac and Ohio Rivers and east of Lake Michigan and the Illinois River.

Fifty-one percent of the asphalt (petroleum, lake, and natural-rock) terminated in the continental United States by land carriers and intraport vessels was delivered to consumers in the Northeastern district, lying north of the Potomac and Ohio Rivers and east of the Mississippi and Illinois Rivers. Railroads and minor carriers terminated 2,418,722 short tons of asphalt in this district in 1938 and 2,452,957 in 1939. In the Southeastern district, lying south of the Potomac and Ohio Rivers and east of the Mississippi and Pearl Rivers, land deliveries of asphalt rose from 663,802 tons in 1938 to 697,391 tons in 1939. In the Southwestern district, lying west of the Mississippi and Pearl Rivers and south of St. Louis, Kansas City, and Amarillo, asphalt deliveries by rail and truck increased from 372,610 tons in 1938 to 402,416 in 1939. In the North Central district, lying

between the Great Lakes and the Rocky Mountain front, 677,478 tons were delivered in 1938 and 667,199 in 1939. In the Pacific-Rocky Mountain district, lying west of Great Falls, Cheyenne, Denver, Albuquerque, and El Paso, the tonnage of asphalt terminated dropped from 768,773 in 1938 to 596,053 in 1939.

Supply and distribution of asphalt (petroleum, lake, and natural rock), exclusive of road oil, in continental United States in 1939, by districts, in short tons

	North- eastern district	South- eastern district	South- western district	North Central district	Pacific- Rocky Moun- tain district
Produced within district Imported Received by rail from—	2, 091, 400 60, 983	638, 402 2, 240	1, 476, 512 10, 622		808, 834
Northeastern district	493, 061 46, 264	45,000 479,116		460,000	
Pacific-Rocky Mountain district Net receipts by water Withdrawn from stocks	38,000	40, 781	12, 836 59, 100	49, 463	60,000
Shipped by rail—	3, 101, 659	1, 205, 539	1, 559, 070	669, 463	868, 834
Within district	2, 352, 957 45, 000	617, 391 493, 061	302, 416 46, 264 479, 116	667, 199	536, 053 38, 000
To Southwestern district	460,000		160, 000 60, 000		12, 836 49, 463
Shipped by motortruck, minor railroads, and intra- port. Net shipments by water.	100,000	80,000	100,000 341,785		60, 000 70, 947
ExportedAdded to stocks	39, 202 104, 500	1, 387 13, 700	69, 489	2, 264	101, 035 500
	3, 101, 659	1, 205, 539	1, 559, 070	669, 463	868, 834

FOREIGN TRADE

Imports.—Imports of natural asphalt and bitumens into the United States rose in quantity from 23,645 short tons in 1938 to 26,586 tons in 1939, but declined in value from \$378,209 in 1938 to \$362,559 in 1939. Imports of lake asphalt from Trinidad increased from 19,396 tons valued at \$205,038 in 1938 to 21,440 tons valued at \$227,223 in 1939. Imports of grahamite from Cuba likewise increased—from 3,826 tons valued at \$65,344 in 1938 to 4,676 tons valued at \$83,734 in 1939.

Atlantic Coast ports (chiefly New York) received 23,188 tons of natural asphalt and bitumen and Gulf Coast ports (Mobile, New Orleans, and Galveston) 3,364 tons in 1939.

Imports of petroleum asphalt, including cut-backs, and road oil advanced from 9,786 short tons valued at \$38,883 in 1938 to 47,261 tons valued at \$189,052 in 1939. All the petroleum asphalt imported in 1939 came from the Netherland West Indies; 37,763 tons were received in the customs district of New York and 9,498 tons in the customs district of New Orleans.

Exports.—Exports of petroleum asphalt, manufactured and unmanufactured, were 1 percent less in 1939 than in 1938. The principal decreases were in shipments to Europe, especially the United

Kingdom, France, and Belgium. Less asphalt was exported to other North and South American countries (except Brazil) in 1939 than in 1938. On the other hand, more asphalt was exported to eastern Asia, especially Netherland India, British India, and French Indochina, to Africa (especially the Union of South Africa), and to Australia in 1939 than in 1938; however, these increases were insufficient to offset the decline in shipments to northwestern Europe.

Petroleum asphalt exported from the United States, 1937-39, by countries

	193	7	193	8	1939		
Country	Short tons	Value	Short tons	Value	Short tons	Value	
North America: CanadaOther North America	5, 264 6, 076	\$105, 585 96, 119	11, 565 12, 015	\$120, 589 202, 144	10, 641 8, 099	\$149, 309 126, 468	
	11, 340	201, 704	23, 580	322, 733	18, 740	275, 777	
South America: Argentina Brazil Other South America	268 8, 210 2, 209	6, 361 105, 367 35, 820	451 8, 459 6, 951	9, 400 123, 633 131, 892	121 9, 070 2, 413	3, 760 140, 966 58, 864	
	10, 687	147, 548	15, 861	264, 925	11, 604	203, 590	
Europe: Belgium. Denmark. Finland. France Germany Italy. Netherlands. Spain.	1, 121	24, 018 1, 762 2, 486 68, 441 14, 347 52, 808 17, 585	2, 924 118 65 4, 010 354 32 578 56	38, 928 3, 867 1, 677 52, 187 8, 832 661 8, 331 2, 714	1, 327 289 1, 021 300 253 531 834 32	17, 684 5, 929 19, 246 9, 491 6, 590 8, 020 12, 354 687	
Sweden United Kingdom Other Europe	950 21, 156	16, 049 364, 277 43, 039	738 29, 222 2, 943	12, 151 455, 126 52, 664	2, 241 16, 313 1, 953	34, 620 412, 468 34, 064	
	36, 081	604, 812	41,040	637, 138	25, 094	561, 153	
Asia: British Malaya Ceylon China Hong Kong India, British, and Burma Indochina, French Japan Netherland India Philippine Islands Other Asia	6, 593 7, 956 3, 244 24, 736 5, 621 4, 908 17, 323 11, 627	221, 882 86, 264 123, 054 46, 030 353, 923 54, 989 75, 983 238, 965 143, 973 4, 661	9, 508 3, 453 2, 153 2, 642 10, 427 5, 809 1, 964 13, 022 11, 367 2, 493	174, 017 49, 504 31, 699 38, 788 149, 979 85, 590 30, 172 190, 183 150, 427 42, 878	8, 338 2, 794 2, 400 1, 343 16, 162 8, 286 125 25, 210 11, 946 2, 241	135, 458 35, 689 34, 322 20, 977 227, 575 95, 744 4, 127 367, 810 169, 454 48, 027	
	98, 953	1, 349, 724	62, 838	943, 237	78, 845	1, 139, 183	
Africa: British East Africa Mozambique	6,985	4, 725 124, 046 437	1, 616 5, 391	27, 026 96, 465	2,724 4,209	43, 291 68, 598	
Tunisia Union of South Africa Other Africa	16,079	279, 249 2, 732	11, 567 84	195, 501 3, 394	18, 478 539	290, 752 12, 732	
	23, 483	411, 189	18, 658	322, 386	25, 950	415, 373	
Oceania: Australia New Zealand Other Oceania	21, 977 6, 105 131	299, 079 95, 209 1, 862		436, 460 100, 199 3, 084	33, 114 6, 340 8	435, 739 66, 846 138	
	28, 213	396, 150	40, 522	539, 743	39, 462	502, 72	
	208, 757	3, 111, 127	202, 499	3, 030, 162	199, 695	3, 097, 79	

ROAD OIL

Increased construction of oil-treated macadam, gravel, and sandclay highways resulted in a gain of 5 percent in refinery sales of road oil—from 7,741,843 barrels in 1938 (revised figure) to 8,108,400 in 1939. As a result of lower prices, however, the value at the refineries of sales of road oil decreased 11 percent—from \$9,464,114 (revised figure) in 1938 to \$8,458,600 in 1939.

Increases occurred in the following districts: Indiana, Illinois, Kentucky, etc.; Oklahoma, Kansas, and Missouri; Texas; Louisiana-Arkansas; and California. Declines in the East Coast, Appalachian, and Rocky Mountain districts were inadequate to offset the general

 ${f increase}.$

Of the road oil sold in 1939, only 293,100 barrels valued at \$592,300 were made from foreign petroleum, imported chiefly from Venezuela and Mexico. Of the road oil made from foreign crude, 98 percent was sold by refineries of the East Coast district in 1939.

Road oil sold by petroleum refineries in the United States, 1938-39, by districts

District	19	38	1939		
District	Barrels	Value	Barrels	Value	
East Coast	943, 073 146, 066 1, 751, 411 919, 151 241, 694 1 143, 257 1, 183, 880 2, 413, 311	\$1,544,169 185,542 2,390,213 841,264 363,008 1 193,828 1,492,280 2,453,810	881, 900 121, 400 2, 102, 600 987, 400 369, 200 190, 600 1, 025, 800 2, 429, 500 8, 108, 400	\$1, 208, 100 147, 000 2, 142, 800 735, 300 574, 300 181, 100 1, 373, 400 2, 096, 600 8, 458, 600	

¹ Revised figures.

Petroleum refineries in the United States reported the production of 7,868,000 barrels of road oil in 1939 compared with 7,788,000 barrels (revised figure) in 1938. The refinery output of road oil in 1939 was augmented by 1,222,700 barrels of other petroleum products, chiefly fuel oil, transferred to road-oil stocks compared with 722,100 barrels similarly transferred in 1938. Stocks of road oil and transferred oils rose 22,000 barrels in 1939 and 13,000 in 1938. Consumption of road oil at refineries in operations, transfers, losses, and adjustments were 960,300 barrels in 1939 compared with 755,257 in 1938.

Production, receipts, stocks, consumption, transfers and losses, and sales of road oil in the United States in 1939, in barrels

			Sto	eks	Con- sumption	Sales		
District	Produc- tion	Receipts from other sources	Dec. 31, 1938	Dec. 31, 1939	by com- panies, transfers, and losses	Domestic	For- eign	
East CoastAppalachianIndiana, Illinois, Kentucky,	370,000 123,000	547, 500	39,000 4,000	59, 000 5, 000	15, 600 600	881, 900 121, 400		
etcOklahoma, Kansas, and Mis-	2, 206, 000	19, 100	12,000	26,000	108, 500	2, 102, 600		
Souri	1,006,000 411,000 472,000 819,000	142, 500 267, 100 3, 700 228, 300	38,000 8,000 42,000 244,000	60,000 43,000 34,000 136,000	139, 100 273, 900 293, 100 129, 500	987, 400 357, 200 190, 600 1, 025, 800	12,000	
California	2, 461, 000	14, 500	293, 000	339, 000		2, 422, 000	7, 500	
Total: 1939 1938 ¹	7, 868, 000 7, 788, 000		680,000 667,000	702, 000 680, 000	960, 300 755, 257	8,088,900 27,741,843	19, 500 (²)	

¹ Revised figures.

The average value of road oil sold in the United States f. o. b. refinery fell from \$1.22 (revised figure) in 1938 to \$1.04 in 1939. The principal decreases were in the East Coast district (from \$1.64 in 1938 to \$1.37 in 1939); the Indiana, Illinois, Kentucky, etc., district (from \$1.36 to \$1.02); the Louisiana-Arkansas district (from \$1.35 to \$0.95) the Oklahoma-Kansas-Missouri district (from \$0.92 to \$0.74); and California (from \$1.02 to \$0.86). Gains in Texas (from \$1.50 to \$1.56) and the Rocky Mountain district (from \$1.26 to \$1.34) were too slight to check the general decline.

² Foreign included with domestic.

CEMENT

By OLIVER BOWLES AND E. V. BALSER

SUMMARY OUTLINE

•	Page		Page
General conditions	1119	Portland cement—Continued.	
Salient statistics	1120		1139
Portland cement	1121	Natural, masonry (natural), and puzzolan	
Production, shipments, and stocks	1121	(slag-lime) cements	1140
Domestic consumption	1128	Trends in employment and output per man	1141
Uses		Total employment	1141
Local supplies	1132	Output per man	1141
Transportation		Mill employees	
Prices		Quarry and crusher employees	1143
Plant capacity		Hours per day	1143
Raw materials		District and State tables	1144
New developments		Foreign trade	
Fuels and power		World production	

Production of portland cement in the United States increased from 105,357,000 barrels (376 pounds) in 1938 to 122,259,154 in 1939, a 16-percent gain, according to final annual reports submitted by cement companies to the Bureau of Mines. Shipments increased from 106,324,127 barrels valued at \$153,977,226 to 122,651,459 barrels valued at \$180,893,208, a gain of 15 percent in quantity and 17 percent in value. The preliminary figures on production for 1939, published by the Bureau of Mines in January 1940, were 0.4 percent less and shipments 0.3 percent less than the final figures. There was a consistent gain in shipments each month of 1939 compared with the corresponding month of 1938.

The Federal Reserve Board annual index for cement production in 1939 was 82 compared with 95 for the durable-goods industries and 72 for the construction industries. Corresponding figures for 1938 were cement 70, durable-goods industries 65, and construction industries 64.

In 1939 portland cement was manufactured at 150 plants, and shipments were made from 150 plants compared with 149 producing and 151 shipping in 1938.

The average factory value was \$1.47 a barrel in 1939 compared with \$1.45 in 1938.

Shipments included 3,670,506 barrels of high-early-strength portland cement valued at \$6,910,099 (an average of \$1.88 a barrel) in 1939 compared with 3,385,523 barrels valued at \$6,247,699 (an average of \$1.85 a barrel) in 1938.

The quantity of natural, masonry (natural), and puzzolan cements produced increased 34 percent and shipments 29 percent compared with 1938. The value of shipments of these varieties gained 23 percent.

The preceding data show briefly the condition of the cement industry in the United States as a whole. The accompanying chart, figure 1, shows the percentage gains or losses in shipments from mills into each State in 1939 compared with the shipments in 1938. Unusually large gains generally indicate that demands were heavy for extensive reclamation or other projects and drastic declines reflect the completion of such projects.

The following tables present the outstanding features of the cement industry during recent years.

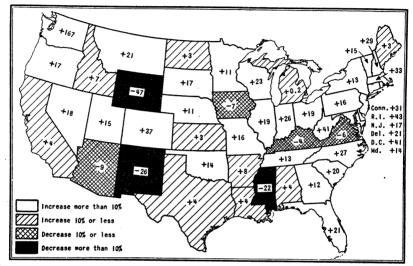


FIGURE 1.—Shipments of portland cement from mills into States in 1939 compared with 1938. The figures represent percent of change based upon preliminary figures for 1939.

Salient statistics of the cement industry in the United States, 1936-39

	1936	1937	1938	1939
Domestic production: Portlandbarrels. Masonry, natural, and puzzolan (slag-lime)	112, 649, 782	116, 174, 708	105, 357, 000	122, 259, 154
barrels_	1, 819, 488	1,900,643	1 1, 820, 795	2, 439, 110
Total productiondoActive plants:	114, 469, 270	118, 075, 351	1 107, 177, 795	124, 698, 264
Portland Masonry, natural, and puzzolan (slag-lime)_	149 13	150 12	151 1 12	150 12
Domestic shipments: Portlandbarrels_ Value Masonry, natural, and puzzolan (slag-lime) barrels	112, 849, 979 \$170, 415, 302 1, 760, 993	113, 804, 782 \$168, 835, 208 1, 873, 400	106, 324, 127 \$153, 977, 226 11, 867, 949	122, 651, 459 \$180, 893, 208 2, 405, 135
Value	\$2,362,396	\$2, 578, 885	1 \$2, 725, 776	\$3, 361, 724
Total shipments barrels	114, 610, 972 \$172, 777, 698 1, 658, 902 334, 673 115, 935, 201	115, 678, 182 \$171, 414, 093 1, 803, 932 378, 554 117, 103, 560	1 108, 192, 076 1 \$156, 703, 002 1, 727, 411 558, 226 1 109, 361, 261	125, 056, 594 \$184, 254, 932 1, 913, 853 1, 146, 339 125, 824, 108
Finished cement do Clinker do Masonry, natural, and puzzolan (slag-lime)	22, 568, 685 5, 564, 000	1 24, 913, 245 6, 342, 000	1 23, 992, 939 1 5, 286, 000	23, 600, 634 5, 165, 000
barrels	230, 788	1 253, 518	1 373, 816	407, 791

¹Revised figures

Principal hydraulic cements produced and shipped in the United States, 1935-39

				Production			
Year	Active plants	Portland cement		, natural, and n (slag-lime) s	Total		
		(barrels)	Active plants	Barrels	Active plants	Barrels	
1935 1936 1937 1937 1938	150 149 150 151 150	76, 741, 570 112, 649, 782 116, 174, 708 105, 357, 000 122, 259, 154	13 13 12 1 12 1 12	1, 006, 064 1, 819, 488 1, 900, 643 1, 820, 795 2, 439, 110	163 162 162 162 163 162	77, 747, 634 114, 469, 270 118, 075, 351 1 107, 177, 795 124, 698, 264	

	Shipments											
Year	Portland	l cement	Masonry, na puzzolan cements	atural, and (slag-lime)	Total							
	Barrels	Value	Barrels	Value	Barrels	Value						
1935	75, 232, 917 112, 849, 979 113, 804, 782 106, 324, 127 122, 651, 459	\$113, 372, 182 170, 415, 302 168, 835, 208 153, 977, 226 180, 893, 208	1, 011, 411 1, 760, 993 1, 873, 400 1, 867, 949 2, 405, 135	\$1, 437, 542 2, 362, 396 2, 578, 885 1 2, 725, 776 3, 361, 724	76, 244, 328 114, 610, 972 115, 678, 182 1 108, 192, 076 125, 056, 594	\$114, 809, 724 172, 777, 698 171, 414, 093 156, 703, 002 184, 254, 932						

¹ Revised figures.

PORTLAND CEMENT

PRODUCTION, SHIPMENTS, AND STOCKS

Although all portland cements had fairly constant and uniform properties some years ago, during recent years the varied demands of construction have led to the development of a variety of portland cements, each adapted to a particular use. These include high-early-strength, masonry, low-heat, and oil-well cements. All varieties are included in the general portland cement tables that follow, and the special types are discussed in more detail, with statistics wherever available, in a later section of this report. The special portland cements are not to be confused with certain other types, such as natural and slag-lime cements, that are quite distinct from portland cement and are covered in a separate section of this chapter.

The following tables present the principal statistics for portland cement. In the first, which relates to production, shipments, and stocks by States and districts, the term "active plant" is applied to a mill or group of mills situated at one place and operated by one company. If a company has establishments at different places, its mill or group of mills at each place is counted as one plant. The districts are groups of States related geographically and commercially.

The tables giving data by months, compiled from monthly reports of the producers, include figures of clinker or unground cement produced and in reserve at the mills awaiting manufacture into finished cement. Although the figures may differ slightly from those based upon annual reports of the producers, they reflect accurately seasonal fluctuations in the industry.

Portland cement produced, shipped, and in stock in the United States, 1938-39, by States and districts

			1	Product on			•	Shipn	ients				Stock 8	at mills (Dec	. 31)
		tive ints	Ba	rrels	crease or de-		1938		1939		Average fac- tory value per barrel		Barrels		In- crease or de-
	1938	1939	1938	1939	crease in 1939 (per- cent)	Barrels	Value	Barrels	Value	1938	1939	crease in quan- tity in 1939 (per cent)	1938	1939 1	crease in 1939 (per- cent)
STATE															
Alabama California Illinois Iowa Kansas Michigan Missouri New York Ohio Pennsylvania Puerto Rico Tennessee Texas Other States 3	6 10 4 5 6 11 5 10 9 25 6 10 44	6 10 4 5 6 9 5 10 9 25 1 6 10 44 15 6	4, 627, 639 10, 513, 067 3, 959, 932 4, 726, 517 3, 264, 350 7, 159, 362 4, 491, 458 5, 807, 731 5, 188, 477 20, 868, 384 3, 318, 797 6, 949, 164 24, 482, 122	5, 038, 400 10, 990, 079 4, 648, 834 4, 718, 024 3, 739, 004 4, 785, 594 6, 867, 614 5, 799, 726 25, 105, 902 324, 243 3, 537, 208 7, 337, 246 31, 148, 520	+9 +5 +17 -2 +15 +15 +17 +18 +12 +20 +7 +6 +27 +16	4, 548, 079 10, 539, 010 4, 387, 119 4, 759, 390 3, 217, 497 7, 192, 511 4, 570, 389 5, 720, 922 5, 258, 603 21, 082, 968 3, 390, 871 7, 116, 545 24, 570, 225 106, 324, 127	\$6, 114, 246 15, 689, 210 5, 993, 644 7, 327, 048 4, 949, 018 8, 767, 859 6, 871, 120 7, 893, 270 7, 994, 745 28, 242, 913 5, 063, 623 11, 885, 494 38, 085, 031	5, 042, 921 11, 293, 989 4, 801, 292 4, 717, 295 3, 746, 370 4, 702, 259 6, 140, 125 24, 870, 343 347, 981 3, 677, 116 7, 207, 001 30, 923, 492	\$6, 690, 765 15, 889, 395 7, 056, 746 7, 771, 503 5, 614, 112 10, 891, 973 7, 420, 013 9, 866, 332, 649 571, 397 5, 613, 477 12, 152, 787 48, 788, 474	\$1. 34 1. 49 1. 38 1. 54 1. 54 1. 22 1. 50 1. 38 1. 35 1. 35 1. 35 1. 35 1. 49 1. 67 1. 55	\$1. 33 1. 41 1. 47 1. 65 1. 50 1. 31 1. 58 1. 44 1. 34 1. 38 1. 64 1. 53 1. 69 1. 58	+11 +7 +10 9 +16 +3 +20 +17 +18 +1 +26 +15	675, 520 2 1, 480, 745 2 1, 681, 951 2 1, 083, 982 2 2, 067, 712 976, 873 2 1, 593, 172 1 1, 670, 082 2 5, 417, 552 2 4, 988 2 533, 386 2 780, 494 2 5, 308, 465 2 3, 992, 939	670, 999 1, 176, 835 680, 559 1, 542, 680 1, 076, 616 1, 958, 993 1, 060, 208 1, 611, 990 1, 329, 683 5, 633, 111 250 393, 478 910, 739 5, 533, 493	$ \begin{vmatrix} -0.7 \\ -21 \\ -18 \\ + 04 \\ -5 \\ +9 \\ +20 \\ +4 \\ -95 \\ -26 \\ +17 \\ +4 \\ -22 \end{vmatrix} $
DISTRICT															===
Eastern Pennsylvania, New Jersey, and Maryland New York and Maine Ohio, western Pennsylvania, and West Virginia Michigan Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida,	22 11 18 11	22 11 18 9	19, 895, 691 6, 245, 193 9, 374, 184 7, 159, 362 9, 930, 734	23, 650, 626 7, 315, 716 11, 339, 742 8, 218, 760 12, 276, 018	+19 +17 +21 +15 +24	19, 825, 160 6, 184, 521 9, 632, 020 7, 192, 511 10, 760, 293	26, 222, 912 8, 631, 618 13, 073, 949 8, 767, 859 15, 454, 526	23, 540, 428 7, 271, 793 11, 541, 643 8, 327, 479 12, 099, 208	32, 391, 372 10, 587, 487 15, 709, 189 10, 891, 978 18, 150, 783	1. 32 1. 40 1. 36 1. 22 1. 44	1. 38 1. 46 1. 36 1. 31 1. 50	+19 +18 +20 +16 +12	2 4, 583, 853 3 1, 707, 862 2 3, 142, 690 2 2, 067, 712 1 2, 107, 696	4, 694, 051 1, 751, 785 2, 940, 789 1, 958, 993 2, 284, 506	+2 +3 -6 -5 +8
and Louisiana	18	18	12, 026, 249	13, 349, 464	+11	12, 020, 082	17, 326, 540	13, 506, 584	19, 753, 173	1. 44	1.46	+12	³ 1, 812, 457	1, 655, 337	-9

Eastern Missouri, Iowa, Min- nesota, and South Dakota. Western Missouri, Nebraska, Kansas. Oklahoma. and	11	11	9, 994, 563	10, 474, 558	+5	10, 190, 025	15, 572, 640	10, 338, 021	16, 730, 452	1. 53	1.62	+1	2 2, 751, 932	2, 888, 469	+5
Arkansas Texas	12 10	12 10	7, 602, 704 6, 949, 164	8, 038, 885 7, 337, 246	+6 +6	7, 442, 529 7, 116, 545	11, 304, 784 11, 885, 494	8, 017, 308 7, 207, 001	12, 128, 812 12, 152, 780	1. 52 1. 67	1. 51 1. 69	+8 +1	² 2, 111, 105 ² 780, 494	2, 132, 682 910, 739	
Colorado, Montana, Utah, Wyoming, and Idaho California	.8 10	8 10	2, 689, 465 10, 513, 067	3, 062, 889 10, 990, 079	+14 +5	2, 705, 161 10, 539, 010	5, 365, 567 15, 689, 210	3, 078, 540 11, 293, 989	5, 865, 025 15, 889, 395		1. 91 1. 41	+14 +7	² 612, 994 ² 1, 480, 745	597, 343 1, 176, 835	
Oregon and Washington Puerto Rico	9	9 1	2, 976, 624	5, 880, 928 324, 243	+98	2, 716, 270	4, 682, 127	6, 081, 484 347, 981	10, 071, 365 571, 397	1.72	1.66 1.64	+124	808, 411 2 24, 988	607, 855	-25
	151	150	105, 357, 000	122, 259, 154	+16	106, 324, 127	153, 977, 226	122, 651, 459	180, 893, 208	1.45	1.47	+15	23, 992, 939	23, 600, 634	-2

Subject to revision.
 Revised figures.
 Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesota, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming.

The accompanying table shows revised figures on stocks of finished portland cement on hand at the mills at the end of 1937.

Producers' stocks of finished portland cement on hand at mills in the United States on Dec. 31, 1937, by States and districts

Colorado, Montana, Utah, Wyoming, and Idaho

¹ Revised figures. ² Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesota, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming.

Summary of monthly estimates of portland cement produced, shipped, and in stock at mills in the United States in 1939, by districts, in thousands of barrels

District	January	February	March	April	May	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
PRODUCTION												
Eastern Pennsylvania, New Jersey, and Maryland New York and Maine Ohlo, western Pennsylvania, and West Virginia Michigan Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida, and Louislana	670 100 294 365 670 822	1, 188 192 229 250 656 903	1, 923 361 567 258 796 1, 143	1, 995 681 821 559 681 1, 058	1, 799 637 953 798 1, 157 1, 134	2, 390 810 1, 172 953 1, 258 1, 094	2, 458 844 1, 370 1, 018 1, 300 1, 289	2, 530 857 1, 496 917 1, 267 1, 097	2, 209 853 1, 264 887 1, 295 1, 227	2, 431 826 1, 357 796 1, 151 1, 269	2, 204 631 1, 100 738 1, 049 1, 235	1, 876 517 658 680 928 1, 094
Eastern Missouri, Iowa, Minnesota, and South Dakota Western Missouri, Nebraska, Kansas, Oklahoma,	261	221	590	858	1, 009	1,030	984	1, 136	1, 166	1, 250	1, 019	946
and Arkansas Texas Colorado, Montana, Utah, Wyoming, and Idaho California Oregon and Washington Puerto Rico	366 673 107 761 212 (1)	343 571 61 678 213	610 499 105 913 406	657 720 208 906 530	860 772 364 1, 092 610	781 537 353 1, 023 552 (1)	904 667 358 840 612	708 485 317 959 600	569 685 283 968 531	837 704 311 1,023 584 (¹)	733 478 334 931 601 (¹)	653 547 267 916 406 (1)
United States: 1939	5, 301 4, 534	5, 505 3, 916	8, 171 5, 879	9, 674 7, 983	11, 185 10, 361	11, 953 10, 535	12, 644 10, 968	12, 369 11, 007	11, 937 10, 559	12, 539 11, 556	11, 053 10, 184	9, 488 8, 066
SHIPMENTS												
Eastern Pennsylvania, New Jersey, and Maryland New York and Maine Ohio, western Pennsylvania, and West Virginia Michigan	956 228 399 277	973 204 351 259	1, 641 365 690 411	1, 956 511 762 530	2, 601 741 1, 247 970	2, 527 800 1, 185 1, 122	2, 316 782 1, 236 853	2, 393 880 1, 493 1, 084	2, 320 937 1, 320 967	2, 343 879 1, 291 879	2, 115 610 948 624	1, 416 334 551 361
Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida, and _Louisiana	393 941	334 810	681 1, 108	793 1, 122	1, 222 1, 271	1, 250 1, 212	1, 339 1, 128	1, 635 1, 178	1, 511 1, 279	1, 399 1, 370	958	584 941
Eastern Missouri, Iowa, Minnesota, and South Dakota	315	236	569	748	1, 086	1, 142	1, 113	1, 323	1, 440	1, 165	784	417
and Arkansas Texas. Colorado, Montana, Utah, Wyoming, and Idaho	466 628 124	342 545 81	601 697 194	673 665 302	851 686 362	822 644 319	726 535 287	806 582 312	826 585 338	816 568 364	636 554 253	451 518 142

¹ Data not available.

Summary of monthly estimates of portland cement produced, shipped, and in stock at mills in the United States in 1939, by districts, in thousands of barrels—Continued

District	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
SHIPMENTS—continued												
CaliforniaOregon and WashingtonPuerto Rico	809 104 (¹)	722 187 (¹)	986 524 (¹)	985 607 (1)	1, 047 664 (¹)	992 700 (1)	886 556 (1)	1, 070 645 (¹)	961 620 (¹)	1,070 685 (¹)	960 558 (¹)	840 230 (1)
United States: 1939 1938	5, 640 4, 390	5, 044 4, 575	8, 467 7, 259	9, 654 8, 691	12, 748 9, 752	12, 715 10, 943	11, 757 10, 164	13, 401 11, 823	13, 104 11, 716	12, 829 12, 357	10, 147 8, 573	6, 785 6, 290
STOCKS (END OF MONTH)												
Eastern Pennsylvania, New Jersey, and Maryland New York and Maine Ohio, western Pennsylvania, and West Virginia Michigan Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida,	4, 297 1, 582 3, 032 2, 166 2, 375	4, 512 1, 570 2, 909 2, 156 2, 697	4, 791 1, 566 2, 787 2, 004 2, 811	4, 832 1, 736 2, 843 2, 033 2, 700	4, 026 1, 633 2, 549 1, 855 2, 623	3, 889 1, 643 2, 536 1, 686 2, 630	4, 031 1, 705 2, 660 1, 848 2, 592	4, 168 1, 681 2, 663 1, 680 2, 219	4, 057 1, 597 2, 607 1, 600 2, 004	4, 145 1, 544 2, 673 1, 518 1, 755	4, 231 1, 565 2, 824 1, 639 1, 846	4, 695 1, 752 2, 904 1, 960 2, 189
and Louisiana Eastern Missouri, Iowa, Minnesota, and South	1,691	1, 784	1, 819	1, 755	1,618	1, 499	1,661	1, 580	1, 528	1, 428	1, 516	1,655
Dakota	2, 698	2, 683	2, 709	2,819	2,742	2, 631	2, 502	2, 315	2,040	2, 125	2, 360	2, 888
and Arkansas Texas Colorado, Montana, Utah, Wyoming, and Idaho California Oregon and Washington Puerto Rico	2, 012 826 596 1, 423 913	2, 032 852 576 1, 380 941 (¹)	2, 041 655 486 1, 307 810	2, 024 709 392 1, 228 766 (¹)	2, 033 795 392 1, 273 712 (¹)	1, 992 688 426 1, 305 564 (¹)	2, 169 820 497 1, 259 617 (¹)	2, 072 722 503 1, 148 575 (1)	1, 815 822 449 1, 155 486 (¹)	1, 835 958 396 1, 108 385 (¹)	1, 931 882 477 1, 079 429 (¹)	2, 133 911 601 1, 155 605
United States: 1939 1938.	23, 611 25, 023	24, 092 24, 361	23, 786 22, 979	23, 837 22, 262	22, 251 22, 875	21, 489 22, 467	22, 361 23, 286	21, 326 22, 534	20, 160 21, 374	19, 870 20, 569	20, 779 22, 179	23, 449 23, 947

¹ Data not available.

Summary of monthly estimates of clinker (unground portland cement) produced and in stock at mills in the United States in 1939, by districts, in thousands of barrels

District	January	February	March	April	Мау	June	July	August	Septem- ber	October	Novem- ber	Decem- ber
PRODUCTION												
New York and MaineOhio, western Pennsylvania, New Jersey, and Maryland Ohio, western Pennsylvania, and West Virginia	688 44 276 411	1, 220 221 271 291	2,002 412 631 333	1, 958 699 852 495	1, 542 540 942 817	2, 398 844 1, 289 892	2, 605 845 1, 366 926	2, 507 830 1, 315 884	2, 179 842 1, 186 853	2, 298 832 1, 255 867	2, 156 643 1, 070 787	1, 844 519 790 693
Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida, and	683	776	963	912	951	1, 159	1, 224	1, 249	1, 201	1,082	1, 174	1, 027
Louisiana Eastern Missouri, Iowa, Minnesota, and South Da- kota	871 246	924 223	1, 197 689	1, 082 832	985 1, 056	1, 104 1, 063	1, 335 1, 019	1, 172 1, 109	1, 216 1, 031	1, 192 1, 182	1, 155 1, 001	1, 080 988
Western Missouri, Nebraska, Kansas, Oklahoma, and Arkansas	345	443	642	711	826	743	811	690	603	847	724	660
Texas. Colorado, Montana, Utah, Wyoming, and Idaho California. Oregon and Washington.	743 105 797 378	510 39 735 277	454 100 904 365	665 176 941 492	744 371 1, 037 498	557 375 1, 039 527	706 347 1, 055 532	465 339 1, 044 532	626 309 992 424	688 343 1, 042 486	566 359 897 542	535 243 904 457
Puerto Rico	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
United States: 1939 1938	5, 587 4, 762	5, 930 4, 062	8, 692 5, 687	9, 815 7, 821	10, 309 10, 064	11, 990 10, 361	12, 771 10, 840	12, 136 10, 910	11, 462 10, 127	12, 114 10, 917	11, 074 10, 203	9, 740 8, 363
STOCKS (END OF MONTH)												-
Eastern Pennsylvania, New Jersey, and Maryland. New York and Maine Ohio, western Pennsylvania, and West Virginia Michigan Wisconsin, Illinois, Indiana, and Kentucky	811 204 620 310 299	850 235 661 351 418	944 289 719 426 586	920 313 747 383 802	676 223 735 403 609	722 266 829 341 507	877 275 820 251 418	874 258 650 214 383	859 255 576 182 287	748 269 475 243 210	709 289 437 275 322	755 292 567 281 415
Virginia, Tennessee, Alabama, Georgia, Florida, and Louisiana. Eastern Missouri, Iowa, Minnesota, and South Da-	478	494	548	557	409	425	472	550	538	465	387	377
kota Western Missouri, Nebraska, Kansas, Oklahoma,	369	372	403	391	440	482	520	498	373	308	258	310
and ArkansasTexas	270 334	371 279	403 234	449 187	416 168	378 191	285 235	265 220	288 167	300 164	290 251	295 243
Colorado, Montana, Utah, Wyoming, and Idaho	114 1, 010	91 1, 052	87 1, 022	55 1, 044	66 969	83 977	74 1, 175	97 1, 254	123 1, 242	155 1, 244	181 1, 205	159 1, 193
Oregon and Washington Puerto Rico	(¹)	(1) 812	786 (1)	(1)	(1)	(1) ⁵⁹⁶	526 (1)	(1)	(1) 364	(1)	(1) 220	(1) 278
United States: 1939	5, 563 6, 589	5, 986 6, 732	6, 447 6, 623	6, 568 6, 497	5, 728 6, 326	5, 797 6, 218	5, 928 6, 089	5, 727 5, 902	5, 254 5, 506	4, 854 4, 927	4, 824 4, 963	5, 165 5, 286

¹ Data not available.

Producers' stocks of portland cement on hand at the mills were 2 percent lower at the end of 1939 than at the end of 1938. The following table gives stocks on December 31 and the seasonal fluctuations in stocks from 1935 to 1939.

Producers' stocks of finished portland cement and clinker (unground cement) on hand at mills in the United States on Dec. 31 and monthly range, 1935-39

		Monthly range									
	Dec. 31 (barrels)	Low		High							
		Month	Barrels	Month	Barrels						
1935 {Cement {Clinker	23, 064, 563 5, 226, 000 22, 568, 685 5, 564, 000 1 24, 913, 245 6, 342, 000 1 23, 992, 939 1 5, 286, 000 23, 600, 634 5, 165, 000	October December October September do October do October do October do October November	20, 501, 000 5, 226, 000 18, 079, 000 4, 838, 000 21, 388, 000 5, 859, 000 20, 569, 000 4, 927, 000 19, 870, 000 4, 824, 000	July	23, 287, 000 6, 849, 000 22, 971, 000 5, 625, 000 25, 747, 000 7, 554, 000 25, 023, 000 6, 732, 000 24, 092, 000 6, 568, 000						

¹ Revised figures.

DOMESTIC CONSUMPTION

Apparent consumption (shipments plus imports minus exports) for a series of years is indicated in the table of salient statistics. The only available gage of consumption by States is the record of shipments into States by manufacturers; it is therefore merely approximate. Cement shipped to destinations within a State in which it is manufactured is of course added to that shipped from other States. Shipments into a State during any 1 year may not equal the consumption during that year but over a series of years should afford a fair index of consumption. The following table shows shipments into States in 1938 and 1939 and per capita consumption in each State.

The official figures for exports of cement differ from those reported by manufacturers in the following table, because cement forwarded from mills and destined to foreign countries and to Alaska, Hawaii, and Puerto Rico is reported by shippers as exported, whether or not it leaves the country during the calendar year, whereas the export figures of the Bureau of Foreign and Domestic Commerce record the cement that actually leaves the country during the period specified. The exports recorded by the Bureau of Foreign and Domestic Commerce include all hydraulic cement exported, whereas the figures supplied by producers relate to portland cement only.

The per capita consumption indicated in the table falls short of the total apparent consumption by the quantity of imports, which slightly affects certain States near the Canadian border and the seaboard.

Shipments of domestic portland cement from mills into States and per capita, 1938-39, in barrels ¹

	193	8	1939		
State	Total	Per capita 1	Total	Per capita ¹	
Alabama	1, 310, 975	0.45	1, 368, 138	0.47	
Arizona ²	702, 045	1.70	639, 754	1, 58	
Arkansas	779, 153	. 38	841, 229	.4	
California	9, 216, 358	1.50	9, 595, 856	1. 50	
Colorado	856, 634	.80	1, 170, 566	1.09	
Connecticut 2	1, 365, 048	. 78	1, 787, 229	1.0	
Delaware 2	298, 784	1.14	356, 843	1. 3	
District of Columbia 2	1,004,861	1.60	1, 423, 195	2. 2	
lorida	1, 236, 370	.74	1, 505, 807	.90	
leorgia	1, 323, 885	. 43	1, 484, 770	.48	
daho	382, 709	. 78	411, 488	.83	
llinois	6, 432, 231	. 82	7, 664, 172	. 9	
ndiana	2, 837, 462	. 82	3, 576, 555	1.03	
owa	3, 226, 718	1.26	2, 994, 325	1. 1	
ansas	1, 645, 844	.88	1, 689, 635	.9	
Centucky	1, 984, 266	. 68	1, 908, 566	.6	
ouisiana	1, 908, 484	.90	1, 978, 083	. 9	
Iaine	411, 716	.48	416, 027	. 49	
faryland	1, 612, 035	. 96	1, 904, 453	1. 13	
Aassachusetts 2	1, 958, 035	.44	2, 606, 866	. 5	
Iichigan	5, 288, 904	1.10	5, 338, 118	1.1	
Innesota	2, 394, 117	. 90	2, 649, 925	1.00	
Aississippi 2	2, 019, 522	1.00	1, 582, 099	. 78	
1issouri	2, 787, 556	.70	3, 225, 022	.8:	
Iontana	391, 573	. 73	469, 511	.83	
lebraska	1, 102, 230	. 81	1, 223, 654	. 90	
[evada ²	127, 842	1.27	153, 351	1. 5	
lew Hampshire 2	289, 235	. 57	374, 609	. 73	
lew Jersey	3, 423, 585	. 79	4, 008, 134	. 9:	
lew Mexico 2	891, 119	2. 11	674, 335	1.60	
lew York	10, 823, 514	.84	12, 224, 290	.9	
Iorth Carolina 2	1, 648, 790	.47	2, 095, 636	. 60	
Iorth Dakota 2	279, 648	.40	284, 346	. 4	
hio	5, 265, 862	.78	6, 308, 706	. 94	
klahoma	1, 900, 253	. 75	2, 165, 556	.8	
regon	669, 471	. 65	795, 363	.7	
ennsylvania	6, 068, 337	. 60	7, 052, 453	. 69	
uerto Rico.	412, 354		690, 306		
hode Island 2	371, 918	. 55	567, 057	.8	
outh Carolina 2	768, 781	. 41	934, 253	. 50	
outh Dakota	393, 566	.57	461, 999	. 6	
ennessee	1, 969, 645	.68	2, 212, 597	. 70	
exas	6, 271, 197	1.02	6, 541, 321	1.0	
[tah	479, 141	.92	551, 629	1.00	
ermont 9	221, 915	. 58	263, 515	.69	
'irginia	2, 307, 481	.85	2, 162, 937	. 80	
Vashington	2, 237, 035	1.35	5, 974, 458	3.60	
Vest Virginia	1, 021, 349	. 55	1, 394, 698	. 7	
visconsin	2, 620, 103	.90	3, 222, 499	1. 10	
yoming	496, 988	2. 11	264, 887	1. 1:	
nspecified	18, 539		148, 737		
	105, 455, 183	. 81	121, 339, 558	. 9	
xports reported by manufacturers but not in- cluded above 3	868, 944		1, 311, 901	·	

Per capita figures based on latest available estimates of population made by the Bureau of the Census.
 Non-cement-producing State.
 Includes shipments to Alaska and Hawaii.

The following table of monthly shipments from portland-cement mills into States in 1939 is based upon monthly reports of producers. Although the totals may vary slightly from figures shown in tables based upon annual reports they reflect seasonal fluctuations with fair accuracy.

Portland cement shipped from mills into States in 1939, by months, in barrels

			-										
Shipped to—	January	February	March	April	Мау	June	July	August	September	October	November	December	
Alabama	116, 667	90,754	121, 614	115, 381	116, 712	126, 267	107, 135	107, 551	101, 917	123, 099	117. 884	100 047	
Arizona	60, 567	31,824	51, 170	45, 944	43, 652	49, 600	27, 819	36,033	54, 763	87, 323	80, 631	122, 047	
Arkansas	77, 885	49,052	75, 756	68, 967	76, 513	85, 180	80, 217	65, 295	57, 894	64, 367	80, 028	69, 365	
California	720, 910	665, 113	876, 346	879, 336	930, 026	875, 390	761, 412	853, 202	750, 932	856, 975		59, 210	
Colorado	47, 549	34, 291	68, 753	106, 334	136, 151	135, 696	114, 745	126, 162	125, 534	124, 694	757, 191	722, 181	
Connecticut	48, 593	45, 605	86,082	140, 433	209, 755	193, 106	189,079	207, 646	222, 181		88, 505	61,096	
Delaware District of Columbia	9, 562	15, 561	22, 524	24, 940	31, 418	28, 778	46,025	54, 564	45, 477	205, 266	162, 105	76, 541	
District of Columbia	51, 768	70,976	99, 267	106, 780	124,046	98, 358	109, 605	118, 869	144, 303	30, 553 161, 941	27, 142	19, 245	
Florida	97, 603	99, 444	119, 846	116, 790	126,009	113, 733	113, 035	127, 485	124,045		195, 296	136, 273	
Georgia	106, 390	84, 430	118, 346	126, 393	129,051	118, 568	123, 990	124, 411		148, 978	168, 858	148, 855	
Hawaii	14,041	15, 230	34, 447	24, 112	26, 329	22, 709	15, 897	37,035	143, 039	166, 143	132, 782	107, 108	
Idaho	19, 539	12, 553	42, 721	42, 351	43, 770	43, 226	29, 956		31,678	12, 905	14, 222	20, 817	
Illinois	248, 190	194, 337	430, 605	500, 305	726, 186	834, 385		54,004	38, 938	37, 529	31, 406	14, 884	
Indiana	115, 259	103, 325	230, 532	247, 531	356, 892		853, 117	985, 126	970, 879	872, 654	652, 047	397, 501	
Iowa	52, 123	35, 052	119, 813	194, 352	344, 923	341, 942 360, 248	372, 992	517, 079	478, 131	388, 771	269, 747	154, 770	
Kansas	109, 530	78, 099	132, 111	170, 354			367, 529	436, 576	480, 912	361, 086	169, 768	71, 271	
Kentucky	85, 271	63, 210	138, 577		178, 603	152, 841	133, 627	148, 228	169, 689	188, 167	135, 706	92, 197	
Louisiana	153, 851	129, 801	177, 195	148, 942	201, 542	170, 592	182, 314	201,076	225, 939	223, 200	160, 120	106, 673	
Maine	14, 567	12, 414		184, 343	187, 282	182, 777	167, 949	144, 419	152, 928	178, 627	180, 711	137, 173	
Maryland	78, 092		13, 473	23, 655	48,680	63, 826	44,087	48, 805	64, 902	56, 905	23, 441	9,746	
Maryland Massachusetts		98, 600	150, 079	163, 744	199, 261	182, 464	189, 210	198, 571	152, 252	155, 248	155, 182	119, 489	
Michigan	117, 513	95, 195	122, 555	204, 333	297, 437	287, 941	293, 605	280, 422	269, 151	266, 227	232, 139	137, 410	
Minnesota	175, 644	160, 428	262, 658	356, 307	631,065	698, 750	516,009	698, 516	594,014	598,050	415, 082	232, 474	
Missinginni	48, 326	37,023	114, 433	180, 303	326, 794	368, 154	294, 968	329, 657	378, 948	314, 799	172, 991	82, 589	
Mississippi Missouri	105, 256	77, 099	138, 530	148, 267	154, 827	150, 875	156, 385	138, 622	149, 836	154, 279	121,079	85, 168	
Montone	146, 216	107, 231	241, 495	248, 205	368, 719	342, 099	332, 231	313, 841	314, 665	356, 151	275, 959	177, 481	
Montana	13, 397	7, 389	32, 961	51, 290	52, 332	47, 722	47, 349	45, 332	47, 682	55, 306	48, 360	22, 794	
Nebraska	40,073	23, 376	74,237	98, 223	125, 627	108, 445	106,064	147, 205	184, 918	145, 552	108, 995	59, 903	
Nevada	7, 381	6, 190	13, 306	12, 733	18, 237	15, 274	15, 214	14, 867	13, 289	12, 216	13, 941	6, 259	
New Hampshire	10, 085	7, 207	16, 239	23, 518	32, 639	34, 033	43, 278	50, 861	57, 175	54, 779	28, 194	15, 591	
New Jersey New Mexico	150, 044	157, 510	278, 678	333, 910	457, 318	472, 922	418, 208	409, 729	389, 170	384, 871	335, 995	224, 060	
New Mexico	98, 099	73, 492	91, 607	64, 117	56, 274	56, 125	44, 099	40, 814	35, 890	43, 215	37, 393	32, 162	
New York	444, 726	423, 704	830, 155	1,009,618	1, 351, 923	1, 376, 473	1, 241, 294	1, 352, 060	1, 277, 707	1, 229, 216	995, 132	687, 817	
North Carolina	110, 841	114, 633	138, 597	179, 349	202, 068	205, 141	206, 413	216, 707	208, 597	208, 952	179, 420	119, 240	
North Dakota	5, 514	2, 599	16, 249	24, 138	46, 205	43, 474	38, 449	30, 076	33, 922	28, 377.	13, 966	4, 859	
Ohio.	218, 308	191, 278	385, 449	410, 398	737, 019	693, 441	631, 068	828, 245	678, 781	687, 211	518, 122	316, 885	
Oklahoma	154, 530	121, 925	198, 814	204, 646	207, 254	200, 982	167, 676	214, 356	192, 481	203, 614	161, 384	142, 282	
Oregon	37, 816	34, 905	60, 611	64, 228	68, 573	78, 905	71, 116	91, 471	84, 016	79, 846	70, 578	40, 514	
Oregon	237, 693	222, 310	413, 940	490, 077	735, 328	760, 194	797, 280	854, 827	795, 298	793, 941	594, 943	323, 582	
Puerto Rico	49, 155	37, 375	25, 375	13, 769	20, 376	14.112	12, 650	12,606	41, 970	66, 485	39, 175	24, 234	
Knode Island	15, 514	13, 866	26, 236	52, 520	68, 761	69, 287	50, 767	74, 401	55, 137	55, 751	42, 115	27, 076	
South Carolina.	79, 227	69, 800	96, 175	87, 001	95, 551	84, 617	75, 389	75, 840	70, 883	61, 865	58, 478	77, 227	
South Dakota	10, 514	9, 063	25, 719	43, 348	58, 514	50, 489	48, 438	54, 349	76, 385	39, 027	27, 349	19, 113	
Tennessee Texas	168, 426	121, 653	177, 629	161, 822	218, 045	180, 132	178, 156	216, 431	231, 086	247, 510	181, 149	128, 864	
	533, 973												

_
$^{\circ}$
茵
y
ㅁ
Œ
Ħ
H
_

55, 376 33, 716

235, 908 670, 091

172, 799

494, 656

29, 806

14, 834

136, 231

12, 967, 769

13, 104, 000

57, 260 32, 226

218, 568

665, 618

177, 985 538, 120

31, 286

8, 989

39, 095

13, 361, 905

13, 401, 000

Utah....

Vermont....

Virginia....

Washington_____ West Virginia_____

Wisconsin

Wyoming....

Unspecified....

Foreign countries

Total shipped from cement plants_____

11, 934 8, 968

114, 051

159, 653

51, 539 90, 425

6,076

16, 159

4, 980, 538 63, 462

5, 044, 000

37, 388

8, 103

185, 543

458, 949

90, 756

111, 733

17,005

61, 061

8, 405, 939

8, 467, 000

2, 354

60,818

16,027

194, 651

568, 238

84, 386 167, 010

22, 968

6,658

50, 033

9,603,967

9,654,000

19, 751

7, 708

119, 509 75, 498

60, 818 89, 643

11, 847 7, 455

41, 543

5, 598, 457

5, 640, 000

73, 309 32, 478

222, 892

614, 045

143, 271 308, 731

34, 054

60,000

12, 681, 481 66, 519

12,748,000

46, 850 29, 816

189, 057

549, 920

133, 313

390, 849

11, 710, 532

11, 757, 000

29, 097 15, 596

46, 468

58,065

38, 641

197, 791

646, 907

132, 552

386, 179

31, 843

11, 943

12, 638, 839 76, 161

12, 715, 000

50, 376 33, 904

202, 871

766, 266

169,651

335, 616

12, 638, 656 190, 344

12,829,000

21,094

6, 484

51, 371 18, 227

159, 517

591, 809

100, 170

199, 307

19, 270 10, 786

9, 913, 013 233, 987

10, 147, 000

26, 133 3, 578

110, 838 207, 060

58, 336

111, 863

6, 645, 090 139, 910

6, 785, 000

9, 993

91

_
_
<u></u>
~

TISES

Portland cement is applied to a multitude of uses that may be grouped in a few general classes. The Bureau of Mines has no facilities for collecting statistics of consumption by uses; but engineers of the Portland Cement Association, who are in touch with construction throughout the country, have estimated the quantities of portland cement used in the principal groups of consuming industries.

Estimated distribution of portland cement in the United States in 1938, by uses 1

Classification	Percent	Barrels
Paving: Roads, streets, and airports. Structural: Buildings (including multiple dwellings), bridges, and railroads Conservation: Reclamation, water supply, and sewerage. Housing (1- and 2-family dwellings), and miscellaneous uses. Farm.	24 29 17 20 10	25, 210, 000 30, 463, 000 17, 857, 000 21, 009, 000 10, 504, 000

¹ Compiled by the Portland Cement Association, based upon limited available data. Not comparable with published distributions for previous years because of changes in classifications.

LOCAL SUPPLIES

The following table compares the shipments from mills within a State or group of States with the estimated consumption (State receipts of mill shipments) and indicates the surplus or deficiency in the supply of cement locally available. Consumption in the States that do not produce cement also is indicated in the table showing consumption per capita.

The surplus in the following table was distributed by years as follows: In 1938, to non-cement-producing States and Puerto Rico 12,359,897 barrels, foreign countries, Alaska, and Hawaii 868,944 barrels, and unspecified 18,539 barrels; in 1939, to non-cement-producing States 13,743,088 barrels, foreign countries, Alaska, and Hawaii 1,311,901 barrels, and unspecified 148,737 barrels.

Estimated surplus or deficiency in local supply of portland cement in cement-producing States, 1938-39, in barrels

		1938			1939	
State or division	Shipments from mills	Estimated consumption	Surplus or deficiency	Shipments from mills	Estimated consumption	Surplus or deficiency
Alabama. California. Illinois. Ilowa. Kansas Michigan. Missouri. Ohio. Pennsylvania. Puerto Rico. Tennessee. Texas. Colorado, Montana, Utah, Wyoming, and Idaho. Oregon and Washington Georgia, Kentucky, Virginia, Florida, and Louisiana Indiana, Wisconsin, Minnesota, Nebraska, Oklahoma, South Dakota, and Arkansas.	4, 548, 079 10, 539, 010 4, 357, 119 4, 759, 390 3, 217, 497 7, 192, 511 4, 570, 389 5, 258, 603 21, 082, 966 3, 390, 871 7, 116, 545 2, 705, 161 2, 716, 270 4, 954, 431	1, 310, 975 9, 216, 358 6, 432, 231 3, 226, 718 1, 645, 844 5, 288, 904 2, 787, 556 5, 265, 862 6, 668, 337 1, 969, 645 6, 271, 197 2, 607, 045 2, 906, 506 8, 760, 486	+3, 237, 104 +1, 322, 652 -2, 075, 112 +1, 532, 672 +1, 571, 653 +1, 903, 607 +1, 782, 833 -7, 259 +15,014,629 +14, 421, 226 +845, 348 +98, 116 -190, 236 -3, 806, 055	5, 042, 921 11, 293, 989 4, 801, 292 4, 717, 295 3, 746, 370 8, 327, 79 4, 702, 259 6, 140, 125 24, 870, 343 347, 981 3, 677, 116 7, 207, 001 3, 078, 540 6, 081, 484 5, 570, 611	1, 368, 138 9, 595, 856 7, 664, 172 2, 994, 325 1, 689, 635 5, 338, 118 3, 225, 022 6, 308, 706 7, 052, 453 690, 306 2, 212, 597 6, 541, 321 2, 868, 081 6, 769, 821 9, 040, 163	+3, 674, 783 +1, 698, 133 -2, 862, 880 +1, 722, 970 +2, 056, 735 +2, 989, 36 +1, 477, 237 -168, 581 +17, 817, 890 -342, 355 +1, 464, 355 +1, 464, 355 +1, 464, 357 -688, 337 -3, 469, 552
West Virginia New York and Maine	3, 115, 611 6, 184, 521	6, 056, 969 11, 235, 230	-2, 941, 358 -5, 050, 709	4, 071, 603 7, 271, 793	7, 307, 285 12, 640, 317	-3, 235, 682 -5, 368, 524
	106, 324, 127	93, 076, 747	+13,247,380	122, 651, 459	107, 447, 733	+15, 203, 726

TRANSPORTATION

As charges for transportation and delivery are large items in the cost of cement to consumers the accompanying table, showing the quantities of portland cement shipped in 1934, 1936, and 1939 from mills by truck, railroad, and boat in bulk and in containers, is of interest. Detailed data as to mode of shipping were not reported in 1934 for 2,982,924 barrels—a little less than 4 percent of the total shipments; in 1936, the detailed data were lacking for 16,870,730 barrels-nearly 15 percent of the total shipments; in 1939, the detailed data are lacking for 5,681,405 barrels—a little less than 5 percent of the total shipments for the year.

The only comparable figures for earlier years are those for 1928, when reports of producers to the Bureau of Mines showed that of the total shipments 2.4 percent were in bulk and 97.6 percent in containers.

Of the plants furnishing detailed information on the methods used in shipping their output for 1934, 131, representing 32 States, reported shipments in bulk; for 1936, 130 plants, representing 33 States, and for 1939, 137 plants, representing 33 States, reported bulk shipments.

Shipments of portland cement from mills in the United States in 1934, 1936, and 1939, in bulk and in containers, by types of carriers

[Unit of measure, barrels of 376 pounds]

				In conta		1				
Type of carrier	In bulk		In	bags	In other	Total in	Mode of shipping not	- 1		
				er Cloth		con- tainers	stated			
TruckRailroadBoatNot stated	Barrels ² 452, 116 13, 270, 738 1, 288, 816 171, 793	87. 4 8. 5	25, 254, 019 761, 596	26, 813, 430 536, 519	151, 539	4, 388, 130 52, 218, 988 1, 299, 567	3	Barrels 4, 840, 246 65, 489, 726 2, 588, 383 3 2, 982, 924	86. 3 3. 4	
Percent of total shipments	15, 183, 463 20. 0	100.0	28, 289, 630 37. 3	, ,		1 ' '	1 .		1	
1936							-			
Truck	² 793, 550 17, 071, 517 165, 820 2, 226, 828	84.3 .8		30, 107, 645 496, 151	4,006	1, 267, 682	725, 809	9, 908, 157 84, 637, 590 1, 433, 502 3 16, 870, 730	75.0 1.3	
Percent of total shipments	20, 257, 715		44, 510, 865 39. 4	39, 242, 952 34. 8	31, 442	83, 785, 259 74. 2		112, 849, 979 100. 0		
Truck Railroad Boat Not stated	² 2, 078, 494 21, 255, 557 600, 446 250, 594	8. 6 87. 9 2. 5 1. 0	7, 325, 535 43, 327, 220 1, 302, 465 439, 221	6, 913, 700 33, 360, 063 631, 450 498, 273	34, 220	76, 721, 503 1, 933, 915		16, 458, 633 97, 977, 060 2, 534, 361 3 5, 681, 405	13. 4 79. 9 2. 1 4. 6	
Percent of total shipments	24, 185, 091 19. 7		52, 394, 441 42. 7	41, 403, 486 33. 8	175, 124 0. 1	93, 973, 051 76. 6	4, 493, 317 3. 7	122, 651, 459 100. 0	100.0	

Includes steel drums and iron and wooden barrels.
 Includes cement used at mills by producers as follows: 1934, 32,200 barrels; 1936, 103,893 barrels; 1939, 132,-

PRICES

The average selling price of portland cement, f. o. b. factories (excluding the price of containers and cash discounts), as reported to the Bureau of Mines, is stated on a preceding page in the table of shipments by States and districts during 1938 and 1939. The average factory value of portland cement may be higher in certain States than it would be if ordinary structural cement were the only kind considered. For these States the average includes certain special cements that command higher prices, including the white portland cement made in California and Pennsylvania and the high-early-strength portland cement now manufactured in many States. The average selling price per barrel, f. o. b. factory, of white portland cement in 1939 was \$3.72; in 1938, \$3.66. The average factory selling price of high-early-strength portland cement was \$1.88 a barrel in 1939 and \$1.85 a barrel in 1938. The sales value of other hydraulic cements is given later in this chapter.

The following table shows the average factory value of portland

cement from 1935 through 1939.

Average factory value per barrel in bulk of portland cement in the United States, 1935-39

1935	\$1. 51	1938 1939	\$1. 45 1 47
1936	1. 51	1939	1. 71
1937	1. 48	· ·	

PLANT CAPACITY

At the end of 1939 the capacity for producing finished portland cement of the 150 plants active and shipping in 1939 and the 9 plants inactive in 1939 but producing or shipping from stock on hand within the 7 previous years is shown in the following table, with similar figures for 1938. Figures for plant capacity are based upon manufacturers' reports, supplemented by a few estimates.

Portland-cement-manufacturing capacity of the United States, 1938–39, by commercial districts

District	Estimated (barr	Percent of capacity utilized		
	1938	1939	1938	1939
Eastern Pennsylvania, New Jersey, and Maryland. New York and Maine. Ohio, western Pennsylvania, and West Virginia. Michigan. Wisconsin, Illinois, Indiana, and Kentucky. Virginia, Tennessee, Alabama, Georgia, Florida, and Louisiana. Eastern Missouri, Iowa, Minnesota, and South Dakota. Western Missouri, Nebraska, Kansas, Oklahoma, and Arkansas. Texas. Colorado, Montana, Utah, Wyoming, and Idaho. California. Oregon and Washington. Puerto Rico.	50, 712, 000 17, 124, 000 28, 447, 000 29, 046, 500 29, 046, 500 22, 917, 000 17, 159, 000 6, 125, 000 6, 125, 000 22, 820, 000 6, 445, 000 25, 856, 697, 000	49, 545, 000 17, 199, 000 28, 627, 000 16, 605, 000 29, 046, 000 25, 778, 000 22, 915, 000 16, 159, 000 5, 765, 000 5, 765, 000 7, 095, 000 350, 000 256, 422, 000	39. 2 36. 5 33. 0 43. 1 34. 2 46. 7 43. 6 44. 3 57. 7 43. 9 46. 1 42. 9	47. 7 42. 5 39. 6 49. 5 42. 3 51. 8 45. 7 49. 7 60. 8 53. 1 43. 5 82. 9 92. 6

CEMENT 1135

The following estimates, based upon the monthly reports of producers, of the relationship between the production of finished portland cement and the manufacturing capacity of the industry for each month in 1938 and 1939 and for the 12 months ended with each month indicate the seasonal changes in capacity utilized.

Ratio (percent) of finished portland cement produced to manufacturing capacity of the United States, 1938-39

Month	Mor	nthly	12 months ended—		Month	Monthly		12 months ended—	
January February March April May June	1938 20. 7 19. 8 26. 9 37. 7 47. 4 49. 8	24. 2 26. 9 37. 3 45. 7 51. 1 56. 4	1938 44. 5 43. 7 42. 7 41. 8 41. 3 41. 0	1939 41. 3 41. 9 42. 8 43. 4 43. 7 44. 3	July August September October November December	1938 50. 2 50. 4 49. 9 52. 9 48. 2 36. 9	57. 8 56. 5 56. 4 57. 3 52. 2 42. 9	1938 40. 8 40. 4 40. 2 40. 2 40. 6 41. 0	1939 44. 9 45. 5 46. 0 46. 4 46. 7 46. 8

The following table gives statistics of capacity, 1937-39, by the two general methods—the "wet" and the "dry"—used in manufacturing portland cement at plants in the United States.

Portland-cement-manufacturing capacity of the United States, 1937-39, by processes

		Esti	mated ca	pacity	Percent of capac-			Percent of total					
Process	ss Thousands of barrels				Percent of total			ity utilized			finished cement produced		
	1937	1938	1939	1937	1938	1939	1937	1938	1939	1937	1938	1939	
Wet Dry	122, 638 132, 585	119, 776 135, 921	121, 337 135, 085	48. 1 51. 9	46. 8 53. 2	47. 3 52. 7	49. 2 42. 1	46. 1 36. 9	51. 8 43. 9	51. 9 48. 1	52. 4 47. 6	51. 4 48. 6	
	255, 223	255, 697	256, 422	100. 0	100.0	100.0	45. 5	41. 2	47. 7	100. 0	100.0	100.0	

RAW MATERIALS

In 1938—the latest year for which data on raw materials were collected—the producers reported that approximately 32,244,000 short tons (revised figure) of raw materials (exclusive of fuels and explosives) entered into the manufacture of 105,357,000 barrels (19,807,116 short tons) of portland cement in the United States, an average of about 612 pounds to a barrel of finished cement (376 pounds).

The totals were as follows: 26,193,000 tons (revised figure) of limestone and cement rock, 3,054,000 tons of clay and shale (including kaolin for the manufacture of white cement), 428,000 tons of blast-furnace slag, 618,000 tons of marl, 93,000 tons of iron ore, 663,000 tons of gypsum, and 1,195,000 tons of other materials, such as oystershells, sandstone, sand, cinders, fluorspar, diatomite, diatomaceous shale, fuller's earth, bentonite, silica, quartz, ashes, pyrite ore, and pyrite cinder. In cements like the puzzolan portlands, which require highly siliceous materials in their manufacture, the use of a wider variety of materials, such as diatomite, diatomaceous earth and shale, pumicite, and tufa, is being reported.

Gypsum and anhydrite.—About 3 percent by weight of gypsum (or gypsum and anhydrite mixtures) is added to the cement clinker at the time of grinding to retard the time of setting. Data ¹ on the uses of gypsum show that 774,982 short tons of gypsum and anhydrite were employed as cement retarder in 1939. This represented 17 percent of the total crude-gypsum supply (domestic and imported) of the country.

NEW DEVELOPMENTS

New plants.—The Permanente Corporation (address, San Jose) has virtually completed its new 7,000-barrel-a-day wet-process plant near Los Altos, Santa Clara County, Calif. Production was begun in December 1939. The limestone used had been rejected by previous cement-plant investigators because of its high chert content, but this impurity is greatly reduced in the new plant by means of froth flotation. The entire output of this modern plant will be used in constructing the Shasta Dam, for which the company has been awarded a contract for 5,800,000 barrels. Addition of a third kiln to increase capacity to 9,000 barrels a day is contemplated.

The new wet-process plant of the Puerto Rico Cement Corporation near San Juan, Puerto Rico, began production in January 1939 and

operated continuously throughout the year.

A new small pilot plant was built by the Carneva Portland Cement Co. at Carrara, Nev., in 1939. It is designed for manufacture of white cement, using marble and white clay as raw materials. If the pilot plant operates successfully and markets are adequate erection of a large mill is planned.

Plant rehabilitation.—The Universal Atlas Cement Co. has entirely rebuilt its Leeds (Ala.) plant, making it a modern wet-process operation. Special mention may be made of its Woodford remote-control rock-haulage system, Dorr thickeners for dewatering slurry, and airquenching of clinker to facilitate grinding. The Lehigh Portland Cement Co. has virtually completed rehabilitation of its Alsen (N. Y.)

plant at a reported expense of about \$3,000,000.

The Louisville Cement Co., Speed, Ind., the Kosmos Portland Cement Co., Kosmosdale, Ky., and the Medusa Portland Cement Co., Wampum, Pa., have put in operation new, highly efficient dust-collecting systems. The last company sells the recovered dust for liming land. The Medusa Portland Cement Co. has added recuperators to conserve heat at its Dixon (Ill.) plant and has equipped its Silica (Ohio) clinker grinding mills with "electric ears." The Keystone Portland Cement Co., Bath, Pa., has put in new clinker coolers, and the Dewey Portland Cement Co., Davenport, Iowa, has adopted truck haulage for its raw materials.

The Lone Star Cement Corporation now operates direct-firing kilns at its Limedale (Ind.) plant. Instead of maintaining an independent coal-grinding plant and holding pulverized coal in storage, as in ordinary practice, coal ranging in size from slack to ¾ inch is fed by automatic control, as required, to bowl mills that pulverize it and

feed it directly to the kilns.

Unburned magnesite brick are being used more and more in cementkiln linings, in some instances in a layer between the magnesite lining and the shell. Their use in the burning zone is new.

¹ Details in chapter on Gypsum in this volume.

CEMENT 1137

Flotation.—Since 1934 the Valley Forge Cement Co., West Conshohocken, Pa., has used froth flotation to improve the composition of its raw materials. An important modification of the method developed during 1939 was the employment of cationic reagents to concentrate and remove excess mica from the raw materials. Froth-flotation equipment has been added to the plant of the National Portland Cement Co., Brodhead, Pa.

Mineralizers and grinding aids.—The National Bureau of Standards has devoted much study to the use of mineralizers to facilitate clinkering and accelerate the rate of silicate formation, thus conserving fuel. Calcium fluoride (fluorspar) and magnesium fluosilicate were

found to be effective and advantageous.

During the grinding of cement clinker to the extreme fineness now demanded, the fine particles tend to flocculate or draw together into masses or lumps that cushion the blows of balls or other grinding mediums and thus retard the rate of disintegration. To overcome this difficulty a way must be devised to counteract the electrical charge that makes the particles attract each other. The Dewey & Almy Chemical Co., Cambridge, Mass., has developed a dispersing agent known in the trade as TDA, a mixture of triethanolamine salts and highly purified soluble calcium salts of modified lignin sulfonic acid. Addition of 1 part in 3,000 is said to increase mill capacity 20 to 40 percent. The material also increases the strength and workability of the concrete. The cost of the dispersing agent is about 1½ cents per barrel of finished portland cement and 3 cents per barrel of highearly-strength cement.

Specifications.—To crystallize the trend toward special cements Committee C-1 of the American Society for Testing Materials has grouped cements under five general types, as follows: (1) Ordinary portland cement requiring no special qualities; (2) cement for use in concrete subject to moderate sulfate action and moderate freezing and thawing; (3) high-early-strength; (4) low-heat; (5) sulfate-resistant. The new or improved specifications covering these five types will, if adopted, tend to increase production costs, for they will demand careful preparation of raw materials with rigid supervision of insoluble material, free lime, and alkali. The tendency toward increas-

ing fineness of finished cement also adds to the cost.

Electric eyes and ears.—Delicate instruments that measure light and sound are winning an important place in the cement industry. Fineness is measured with a turbidimeter that utilizes a beam of light transmitted through a kerosene suspension of the cement particles. Several companies use "electric ears" to control the feed of ball mills. The mills are noisiest when running with a light load. The volume of sound carried through a microphone is converted into electrical energy in a control box, and the mechanism is so adjusted that when the noise is loud the mill feed is increased automatically, while deadening of sound in turn reduces the feed. The latest adaptation of such devices is the "electric eye," which controls the fuel supply upon the basis of the intensity of light in the burning zone of the kiln.

New cements.—A new product known as "Sealithor" supersulfate cement developed in Belgium consists of a mixture of granulated blast-furnace slag, a small quantity of slaked lime, and a larger quantity of calcium sulfate. It contains 26 percent soluble silica, 45 percent calcium oxide, and 7 percent sulfur trioxide. Tests made under

supervision of the Belgian Government show that the new cement is unusually impervious, that it hardens in sea water and expands slightly on setting, is a little stronger than portland cement, and is resistant to chemical attack.

A new type of plastic masonry cement ("Mortar-mix") is now on

the market; dried clay replaces lime in this mixture.

Achievements.—The Margaret Hayden Rorke award for the highest achievement among American Trade Association executives was won in 1939 by the Portland Cement Association for its design of a "farm-to-market" light-traffic soil-cement road surface costing only \$5,000 a mile.

New publication.—In 1939 the Bureau of Mines issued Information Circular 7102, The Cement Industry of Latin America, covering rawmaterial supplies, cement-plant equipment, present and prospective plant capacity, market situation, production, consumption, and imports for each country in South and Central America, Mexico, and the West Indies.

FUELS AND POWER

Fuels.—According to monthly reports of producers, supplemented by a few estimates by the Bureau of Mines, the following quantities of fuel were consumed at portland-cement plants in the United States (including Puerto Rico) in 1939 for making 121,620,000 barrels of clinker (unground cement) and 122,259,154 barrels of finished cement: Coal, 5,227,756 short tons; oil, 2,378,762 barrels (42 gallons); and natural gas, 40,233,089,789 cubic feet. Corresponding figures for 1938 are: Clinker produced, 104,117,000 barrels; and finished cement produced, 105,357,000 barrels. Fuels consumed were: Coal, 4,482,758 short tons (revised figure); oil, 1,927,584 barrels; and natural gas, 37,496,315,988 cubic feet (revised figure).

Electric power.—The accompanying table gives the electric energy produced at portland-cement plants and that purchased from power companies during 1938 and 1939. The cement industry generated 50 percent of its electric-power requirements in 1939 compared with

51 percent in 1938 and 53 percent in 1937.

Electrical energy used at portland-cement-producing plants, 1938-39, by processes, in kilowatt-hours

		E	lectrica	l energy used				Average electrical energy
Process		ated at port- ement plants	Pı	irchased	Total	-	Finished cement produced	used per barrel of cement pro- duced
	Active plants	Kilowatt- hours	Active plants	Kilowatt- hours	Kilowatt- hours	Per- cent	Barrels	Kilo- watt- hours
1938								
Wet	36				1, 250, 498, 306			
Dry	37	749, 733, 662			1, 165, 915, 922			
	73	1, 233, 207, 733	124	1, 183, 206, 495	2, 416, 414, 228	100.0	105, 357, 000	22. 9
Percent of total elec- trical energy used		51.0		49.0	100.0			
1939								
Wet	32			891, 020, 665	1, 417, 935, 193	51.0	62, 894, 829	
Dry	35	859, 576, 415			1, 363, 124, 433			
	67	1, 386, 490, 943	123	1, 394, 568, 683	2, 781, 059, 626	100.0	122, 259, 154	22.7
Percent of total elec- trical energy used		49. 9		50. 1	100.0			

CEMENT 1139

SPECIAL PORTLAND CEMENTS

Although regular or standard portland cements have been improved greatly during recent years and are well-adapted for all ordinary uses, new conditions have arisen in industry that demand cements having special qualities, such as high early strength, unusual plasticity, low or moderate heat of setting, or high resistance to chemical action. Special types of portland cement are discussed in the following paragraphs.

White portland cement.—White cement has been manufactured for many years in Pennsylvania and since 1932 in California. It is simply a standard portland cement, the raw materials of which are unusually pure, with an especially low iron content. To avoid contamination and discoloration from fuel these cements are calcined with gas. They are produced at so few plants that the Bureau is not at liberty to

publish figures of production separately.

Alumina cement.—A product known as alumina or high-alumina cement was first manufactured in France under the name "ciment fondu." Modifications of alumina cement have been made in the United States for many years under patent. The raw materials are bauxite and limestone or lime, which are completely fused in a furnace. The melted product is cooled rapidly and ground to fine powder. Production figures cannot be published separately.

High-early-strength cement.—For street work where traffic is heavy, construction work where one step must follow another rapidly, and similar uses a cement that attains adequate strength in 24 hours or less is much in demand. This has led to the development of special high-early-strength cements that are now manufactured in many

States.

Masonry cement.—Cements suitable for masonry must be plastic

and of low shrinkage.

In addition to "masonry portland" and "masonry natural" (discussed on a following page) producers also report masonry cements, hydraulic but not portland, that evidently are specially prepared from portland-cement clinker and other ingredients. Production of such cements, made at 35 plants in 1939, totaled 1,865,192 barrels and shipments 1,838,820 barrels valued at \$2,473,127—an average of \$1.34 a barrel. Corresponding data for 1938, representing the output of 32 plants, are: Production 1,246,263 barrels and shipments 1,225,960 barrels valued at \$1,589,908—an average of \$1.30 a barrel. To avoid duplication the above figures are not included in the portland-cement totals, because portland-cement clinker evidently is the principal constituent used.

Low and moderate heat-of-hardening portland cement.—Because of the enormous masses of concrete used in large dams, such as those in the Tennessee Valley and the Far West, a demand has arisen for cements that develop little heat in the process of setting. They include Tennessee Valley Authority Type B and other cements that

must conform with Federal specifications.

Portland-puzzolan cement.—Portland-puzzolan cements, including those reported as "high-silica," are especially adapted for resistance to chemical attack, such as the reaction with salts contained in sea water. They are made by adding them to portland cement, pumicite, slag, or other materials that react with the calcium content of the cement.

Oil-well cement.—In the oil-producing States, particularly California, Texas, and Wyoming, special types of portland cement have been developed that are suitable for grouting wells.

Miscellaneous.—Other special portland cements include those suit-

able for resisting high temperatures.

The following table presents statistical data for recent years insofar as they are available. All figures given in this table except those for masonry cement are included in the general tables appearing earlier in this chapter.

Special portland cements produced and shipped in the United States, 1937-39, by kinds

	Active plants	Production (barrels)	Shipments		
Kind and year			Barrels	Value	
				Total	Average
High-early-strength:					
1937	64	4, 192, 959	3, 845, 314	\$7, 134, 468	\$1.86
1938.	72	3, 340, 582	3, 385, 523	6, 247, 699	1.85
1939	79	3, 751, 331	3, 670, 506	6, 910, 099	1.88
Masonry or mortar:					1
1937	10	257, 385	273, 144	362, 807	1.33
1938	5	84, 875	88, 905	124, 239	1.40
1939	3	(1)	(1)	(1)	(1)
Low and moderate heat:			* * * * * * * * * * * * * * * * * * * *		1
1937	29	3, 169, 593	3, 511, 674	5, 008, 217	1.43
1938	3 41	² 4, 231, 663	3 3, 830, 518	² 5, 757, 388	2 1. 50
1939	47	5, 603, 200	5, 789, 202	8, 295, 307	1.43
Portland-puzzolan:					1
1937	6	260, 194	294, 384	417, 130	1.42
1938	6	159, 745	149, 142	229, 441	1.54
1939	10	402, 312	392, 472	558, 917	1.42
Oil-well:		,			ł
1937	3 10	342, 316	313,064	652, 960	2.09
1938	7	226, 769	220, 122	457, 665	2.08
1939	12	372,057	371, 218	703, 647	1.90
Miscellaneous:		, i	,		
1937	13	580, 705	587, 718	928, 856	1.58
1938	16	608, 777	589, 663	965, 970	1.64
1939	12	629, 788	636, 845	868, 643	1.36

¹ Bureau of Mines not at liberty to publish figures separately.

NATURAL, MASONRY (NATURAL), AND PUZZOLAN CEMENTS

The term "masonry cement" is used here to designate certain cements made by calcining argillaceous limestone at a comparatively low temperature and grinding the calcined material to a fine powder. This product is known as "natural" cement. Portland cements that are also used for masonry are discussed under the special portland cements on the previous page.

In addition to portland-puzzolan cements discussed on the previous page, another type known as slag-lime cement is now made at Birmingham and Graystone, Ala., by mixing granulated blast-furnace slag with hydrated lime and grinding them to a fine consistency. The mixture is not subsequently calcined.

Figures for production and shipments of special types of cement

other than portland are presented in the following table.

² Revised figures.

CEMENT 1141

Natural,	masonry	(natural),	and	puzzolan	(slag-lime)	cements	produced,	shipped,
•	an	id in stock	at m	ills in the	United State	es, 1935-	<i>39</i>	

Year	Production		Shipments		Stock (Dec. 31)
1 ear	Active plants	Barrels (376 pounds)	Barrels (376 pounds)	Value	Barrels (376 pounds)
1935. 1936. 1937. 1938. 1939.	13 13 12 1 12 1 2	1, 006, 064 1, 819, 488 1, 900, 643 1, 820, 795 2, 439, 110	1, 011, 411 1, 760, 993 1, 873, 400 1, 867, 949 2, 405, 135	\$1, 437, 542 2, 362, 396 2, 578, 885 1 2, 725, 776 3, 361, 724	172, 572 230, 788 1 253, 518 1 373, 816 407, 791

¹ Revised figures.

TRENDS IN EMPLOYMENT AND OUTPUT PER MAN 2

In Minerals Yearbook, 1935 (pp. 891-905), trends in employment and output per man in the cement industry were traced from 1928 to 1933. It seems desirable at this time to add similar data for the succeeding 5 years and thus reveal significant trends over an 11-year

period.

Total employment.—The Bureau of the Census biennially compiles data on employment at cement plants, but that organization obtains the figures for each year by averaging the monthly totals of employment, whereas Bureau of Mines data represent the total number employed, irrespective of how short a time some of them had worked. In other words, as pointed out in the earlier report, the Bureau of Mines figure is the total number of men actually employed in the cement industry, and the Bureau of the Census figure represents more closely the number of men to whom the industry might have provided full-time employment throughout the year.

It may be observed from the table that follows that the coverage of the study in the earlier years ranged from 87.3 to 89.1 percent, whereas for 1937 and 1938 it was 100 percent. The estimated total number of employees in 1928 was 35,100, and the number recorded in 1938 was

25,036.

Output per man.—Production in 1928 was 176,298,846 barrels, or 5,023 barrels per man; in 1938 it was 105,357,000, or 4,208 barrels per man. Production in this interval declined 40 percent, whereas employment dropped only 29 percent. Maintenance of a relatively larger number of employees for a given tonnage of production shows the results of the shorter week and the fewer hours per day of employment during 1938. In 1928 each employee averaged 324 days of work and was occupied 9.5 hours per day; in 1938 he worked only 256 days and averaged 7.5 hours per day. Although employees worked fewer days and shorter hours in 1938 than in 1928 the productivity per hour of labor increased considerably in 1938 compared with the earlier year. As may be noted in the accompanying table, production per man per hour in 1928 was 1.63 barrels; in 1938 it was 2.21 barrels. This 36-percent increase in output indicates improvements in equipment and increased efficiency of operation.

² Statistics on employment and output per man presented in this discussion were compiled by E. T. Shuey from records of the employment statistics section, Bureau of Mines.

Employment in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1928-38

			Employme	nt		Proc	luction		
•			Time e	mployed				per man rels)	Percent of indus-
Year	Average	Aver-		Man	-hours	Finished portland		······	try repre-
	of men	age number of days	Total man- shifts	Average per man per day	Total	cement (barrels)	Per shift	Per hour	
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938	31, 295 29, 274 27, 775 22, 036 17, 440 19, 536 23, 496 24, 088 25, 406 26, 432 25, 036	324 319 308 279 231 196 237 230 272 279 256	10, 137, 187 9, 345, 890 8, 562, 897 6, 146, 564 4, 020, 861 3, 835, 657 5, 561, 630 5, 548, 809 6, 917, 074 7, 380, 028 6, 398, 178	9.5 9.5 9.2 9.8 8.4 7.3 6.8 7.0 7.3 7.4 7.5	96, 541, 428 88, 528, 269 78, 771, 352 53, 833, 283 33, 799, 409 28, 048, 172 37, 819, 085 39, 007, 631 50, 688, 870 54, 714, 935 47, 729, 779	157, 121, 800 152, 116, 204 140, 771, 728 111, 501, 887 67, 449, 096 56, 463, 620 77, 747, 765 76, 331, 570 111, 238, 300 116, 174, 708 105, 357, 000	15. 50 16. 28 16. 44 18. 14 16. 77 14. 72 13. 98 13. 76 16. 08 15. 74	1. 63 1. 72 1. 79 2. 07 2. 00 2. 01 2. 06 1. 96 2. 19 2. 12 2. 21	89. 1 89. 1 87. 3 88. 9 87. 9 89. 0 100. 0 99. 5 98. 7 100. 0

¹ Calculated for each year by dividing the quantity of finished cement produced at mills included in study by the total production.

Mill employees.—At the average cement plant, mill employees outnumber quarry and crusher employees more than 4 to 1. In 1928 mill employees averaged 9.5 hours a day for 332 days and produced 1.98 barrels of finished cement per man-hour; in 1938 they averaged 7.4 hours a day for only 264 days but produced 2.71 barrels of cement per man-hour. Thus productivity per man per hour increased 37 percent during this 11-year period.

Mill employees in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1928-38

		Employ	ment—cemer	nt mill only	y	Prod	luction		
			Time e	mployed				ge per	Percent
Year	Average number	Aver-		Man	-hours	Finished portland cement	man (oarrels)	of indus- try repre- sented 1
	of men	age num- ber of days	Total man- shifts	Average per man per day	Total	(barrels)	Per shift	Per hour	
1928	25, 122 23, 755 22, 271 17, 309 13, 551 15, 075 18, 524 19, 077 19, 881 20, 925 19, 828	332 328 320 294 243 206 245 238 280 289 264	8, 346, 570 7, 791, 270 7, 132, 322 5, 086, 328 3, 290, 962 3, 103, 654 4, 530, 525 4, 546, 467 5, 564, 582 6, 041, 237 5, 224, 790	9.5 9.4 9.2 8.7 8.4 7.3 6.8 7.3 7.4	79, 226, 232 73, 405, 571 65, 524, 129 44, 502, 808 27, 563, 197 22, 592, 150 30, 626, 050 31, 891, 278 40, 634, 045 44, 553, 173 38, 266, 410	157, 121, 800 152, 116, 204 140, 771, 728 111, 387, 566 67, 402, 383 56, 454, 620 77, 747, 765 76, 186, 064 111, 029, 026 116, 174, 708 105, 357, 000	18. 82 19. 52 19. 74 21. 90 20. 48 18. 19 17. 16 16. 76 19. 95 19. 23 20. 16	1. 98 2. 07 2. 15 2. 50 2. 45 2. 50 2. 54 2. 39 2. 73 2. 61	89. 1 89. 1 87. 3 88. 8 87. 8 88. 9 100. 0 99. 3 98. 6 100. 0

¹ Calculated for each year by dividing the quantity of finished cement produced at mills included in study by the total production.

Quarry and crusher employees.—Data in the accompanying table on quarry and crusher employees are not as complete for recent years as formerly because the tonnage of material handled has not been recorded. The table shows, for 1938 compared with 1929, a moderate decline in the number of men employed and a striking reduction in both the average number of days worked and the hours of employment per day.

Quarry and crusher employees in the cement industry, material (quarry rock and overburden) handled at quarries included in study, and average output of material per man in the United States, 1929-38

	Em	ploym	ent—quarry	and crusl	ner only	Material l	handled— id overbu	-quarry rden	rock	
		·	Time e	employed	[Avera		Percent of
Year	Average num- ber of	Aver-		Ma	n-hours	Short	Percent of over- burden	man (ton		industry repre- sented 1
		num- ber of days	Total man- shifts	Average per man per day	Total	tons	in- cluded	Per shift	Per hour	
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938	5, 123 4, 939 4, 141 3, 480 3, 954 4, 381 4, 470 5, 023 4, 980 4, 442	281 256 225 185 165 204 197 246 242 218	1, 441, 964 1, 264, 000 929, 924 643, 113 651, 458 893, 292 879, 253 1, 233, 219 1, 203, 867 968, 873	9. 6 9. 1 8. 8 8. 6 7. 4 7. 0 7. 1 7. 4 7. 6	13, 779, 252 11, 536, 403 8, 221, 384 5, 505, 342 4, 827, 640 6, 296, 481 6, 248, 681 9, 174, 710 9, 169, 763 7, 384, 387	44, 113, 986 40, 413, 300 32, 991, 564 19, 662, 583 16, 741, 818 23, 303, 057 (2) (3) (2)	15. 3 13. 4 10. 0 7. 8 7. 5 10. 7 (2) (2) (2) (2)	30. 59 31. 97 35. 48 30. 57 25. 70 26. 09 (2) (2) (2) (2)	3. 20 3. 50 4. 01 3. 57 3. 47 3. 70 (2) (2) (2) (2)	78. 1 76. 3 82. 1 83. 2 83. 7 100. 0 99. 5 98. 7 90. 0 90. 3

¹ Calculated for each year by dividing the quantity of finished cement produced at mills included in study by the total production.
² Figures not available.

Hours per day.—From 1928 to 1938 there was a striking decrease in the number of hours in the working day. In 1928 no cement plant maintained for any of its employees a working day of less than 8 hours; in 1938, 49.2 percent of them were in this classification. Those working 8 to 9 hours a day in 1928 comprised 42.2 percent and in 1938, 48.4 percent of the total. In 1928, 57.8 of the employees worked more than 9 hours a day, and in 1938 such workers comprised only 2.4 percent of the total.

Almost invariably the production per man-hour is higher where men work short shifts than where they work longer hours per day. For instance, in 1937 employees working less than 7 hours a day produced 2.3 barrels of cement an hour, while those employed between 11 and 12 hours a day produced only 1.1 barrels during each hour of labor. Factors other than length of the working day may, however, affect productivity per hour. In general, plants that maintain a short working day are more efficient than those that exact long hours, therefore the output per man-hour in the former group will be relatively high. Data at hand are inadequate to show a definite relationship

between man-hour output and length of day; but, from the figures in the accompanying table, one would infer that a relatively high production per man-hour is to be expected when the working day is short.

Number of men employed in the cement industry in the United States and output per man-hour, 1933-38, classified according to hours of labor per day

		1933			1934			1935	
Hours per day	Men er	nployed	Produc-	Men en	nployed	Produc- tion per	Men en	nployed	Produc-
	Num- ber	Percent of total	man- hour (bar- rels)	Num- ber	Percent of total	man- hour (bar- rels)	Num- ber	Percent of total	man- hour (bar- rels)
Less than 6. 6 and less than 7. 7 and less than 8. 8 and less than 9. 9 and less than 10. 10 and less than 11. 11 and less than 12.	6, 802 4, 467 6, 875 1, 006 215 171	34. 8 22. 9 35. 2 5. 1 1. 1 . 9	2. 25 2. 06 1. 89 1. 65 1. 63 . 83	12, 417 4, 936 5, 906 	52. 9 21. 0 25. 1 1. 0	2. 25 1. 86 1. 91 . 63	9, 980 6, 545 7, 308 255 24, 088	41. 4 27. 2 30. 3 1. 1	2. 07 1. 83 1. 94 1. 91
		1936			1937			1938	
Hours per day	Men er	aployed	Produc- tion per	Men en	nployed	Produc- tion per	Men er	nployed	Produc- tion per
	Num- ber	Percent of total	man- hour (bar- rels)	Num- ber	Percent of total	man- hour (bar- rels)	Num- ber	Percent of total	man- hour (bar- rels)
Less than 6. 6 and less than 7. 7 and less than 8. 8 and less than 9. 9 and less than 10. 10 and less than 11. 11 and less than 12.	7, 185 4, 988 13, 112 121	28. 3 19. 6 51. 6 . 5	2. 37 2. 26 2. 08 2. 98	1, 821 5, 198 5, 471 13, 400 162	6. 9 19. 7 20. 7 50. 7 . 6	2.3 2.3 2.2 2.0 1.4	319 6, 375 5, 608 12, 124 610	1.3 25.5 22.4 48.4 2.4	2.7 2.2 2.3 2.2 1.6
11 and less than 12	25, 406	100. 0	2. 19	26, 436	100.0	2.1	25, 036	100.0	2.2

District and State tables.—The following tables show a geographic break-down by districts and States of the statistical record of employment and productivity of labor in the cement industry. These data are primarily of interest in the study of regional relationships. The first table, covering employment in the cement industry as a whole, and the second, relating to mill employees, give data for 1934 to 1938, supplementing similar data for 1928 to 1933 on pages 897 to 902 of Minerals Yearbook, 1935. However, the third table, covering quarry and crusher employees, applies only to 1934, because data for quarry rock and overburden handled during the years since 1934 have not been recorded.

Employment in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1934–38, by districts and by States

4			Employm	ent		Prod	luction		
			Time e	mployed			Ave		Per-
	Aver- age	Aver-		Mai	1-hours	Finished	(bar		cent of indus- try
	num- ber of men	age num- ber of days	Total man- shifts	Average per man per day	Total	portland cement (barrels)	Per shift	Per hour	represented
1934									
DISTRICT									-
Eastern Pennsylvania, New Jersey, and Mary-	4 700	200	1 045 005	- 1	n 457 408	14, 917, 633	14. 26	2.00	100.0
New York and Maine Ohio, western Pennsylvania, and West Vir-	4, 593 1, 822	228 229	1, 045, 807 417, 592	7. 1 6. 9	7, 457, 497 2, 876, 679	5, 015, 615	12.01	1.74	100.0
ginia	3, 062 1, 578	200 184	613, 805 290, 544	7. 2 7. 5		7, 355, 563 4, 103, 902	11. 98 14. 12		100.0 100.0
Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida,	2, 302	270	622, 574	6.3	3, 898, 082	9, 079, 458	14. 58	2. 3 3	100.0
and Louisiana Eastern Missouri, Iowa, Minnesota, and South	2, 143	255	547, 447	6.6	3, 619, 690	7, 560, 020	13.81	2.09	100.0
Dakota Western Missouri, Ne- braska, Kansas, Okla-	2, 229	258	574, 582	6. 6	3, 801, 404	7, 786, 482	13. 55	2. 05	100.0
homa, and Arkansas Texas Colorado, Montana, Utah, Wyoming, and	1, 594 1, 143	269 192	428, 959 219, 235	6. 4 6. 7		5, 837, 914 3, 537, 734	13. 61 16. 14	2. 12 2. 40	100, 0 100, 0
Idaho	590 1, 769 671	244 302 182	144, 185 534, 887 122, 013	6. 4 6. 7 7. 3	3, 567, 241	2, 181, 218 8, 721, 854 1, 650, 372	15. 13 16. 31 13. 53	2.44	100. 0 100. 0 100. 0
	23, 496	237	5, 561, 630	6.8	37, 819, 085	77, 747, 765	13. 98	2.06	100.0
STATE									100.0
Alabama California Illinois Iowa Kansas Michigan Missouri New York	717	282 302 271 247 233 184 271 233	152, 548 534, 887 303, 047 259, 124 166, 939 290, 544 296, 627 383, 844	6. 5 6. 8 5. 5 6. 6 7. 5 6. 4 6. 9	3, 567, 241 1, 657, 232 1, 705, 421 1, 142, 448 2, 165, 712 1, 908, 578	2, 208, 279 8, 721, 854 4, 124, 805 3, 180, 546 2, 497, 911 4, 103, 902 4, 033, 859 4, 760, 609	14. 48 16. 31 13. 61 12. 27 14. 96 14. 12 13. 60 12. 40	2. 44 2. 49 1. 86 2. 19 1. 89 2. 11	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0
New YOR. Ohio. Pennsylvania. Tennessee. Texas. Other States 2.	1, 646 1, 394 4, 965 725 1, 143 5, 759	209 212 253 192 248	383, 844 290, 849 1, 051, 966 183, 621 219, 235 1, 428, 399	7. 1 7. 1 6. 8 6. 7	2, 072, 295 7, 514, 798 1, 241, 521	4, 045, 854 15, 323, 116 2, 481, 379 3, 537, 734 18, 727, 917	13. 91 14. 57 13. 51 16. 14 13. 11	1. 95 2. 04 2. 00 2. 40 1. 92	100, 0 100, 0 100, 0 100, 0 100, 0
	23, 496	237	5, 561, 630	6.8	37, 819, 085	77, 747, 765	13. 98	2, 06	100.0

See footnotes at end of table.

Employment in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1934–38, by districts and by States—Continued

			Employm	ent		Pro	luction		
	Aver-		Time e	mployed Ma	n-hours	Finished	Aver per (barr	man	Per- cent of indus-
	age num- ber of men	Average num- ber of days	Total man- shifts	Average per man per day	Total	portland cement (barrels)	Per shift	Per hour	try repre- sented
			-						
1935 DISTRICT									
Eastern Pennsylvania,									
New Jersey, and Maryland New York and Maine Ohio, western Pennsylvania, and West Vir-	4, 755 1, 662	239 191	1, 135, 869 318, 083	7. 3 6. 8			12. 48 14. 41	1. 72 2. 10	97. 2 100. 0
ginia	2, 983 1, 522	188 212	560, 353 322, 942	7.3		7, 300, 481	13. 03	1.79	100.0
Wisconsin, Illinois, In-	2, 300	262	603, 636	7. 6 6. 8		4, 578, 966 8, 204, 274	14. 18 13. 59	1.86 2.01	100.0
Virginia, Tennessee, Ala- bama, Georgia, Florida, and Louisiana	2, 379	223	531, 243	7.3	3, 897, 567	7, 656, 504	14. 41	1.96	100, 0
Eastern Missouri, Iowa, Minnesota, and South Dakota	2, 290	243	555, 750	7. 2	3, 977, 876	7, 876, 617	14. 17	1. 98	100, 0
Western Missouri, Ne- braska, Kansas, Okla- homa, and Arkansas	1, 572	263	413, 475	6. 6					-
Texas. Colorado, Montana, Utah,	1, 226	207	254, 233	7. 1	1, 807, 741	5, 966, 245 3, 786, 716	14. 43 14. 89	2, 18 2, 09	100. 0 100. 0
Wyoming, and Idaho California Oregon and Washington	684 1, 668 1, 047	262 307 154	179, 315 512, 534 161, 376	6. 1 6. 4 7. 1	3, 286. 235	2, 336, 204 7, 974, 201 1, 896, 934	13. 03 15. 56 11. 75	2. 15 2. 43 1. 66	100, 0 100, 0 100, 0
	24, 088	230	5, 548, 809	7. 0	39, 007, 631	76, 331, 570	13. 76	1.96	99. 5
STATE									
Alabama California Illinois Illinois Lowa Kansas Michigan Missouri New York Ohio Pennsylvania Tennessee Texas Other States ³	632 1, 668 960 1, 117 631 1, 522 1, 067 1, 493 1, 330 5, 198 789 1, 226 6, 455	266 307 273 218 241 212 274 193 203 230 208 207 221	168, 399 512, 534 262, 181 244, 060 152, 297 322, 942 292, 249 288, 508 270, 571 1, 193, 001 164, 483 254, 233 1, 423, 351	7. 4 6. 3 7. 9 7. 0 7. 6 6. 8 7. 5 7. 2 7. 9 7. 1	3, 286, 235 1, 652, 820 1, 921, 792 1, 069, 345 2, 458, 362 1, 835, 800 1, 970, 964 2, 027, 124 8, 555, 766 1, 302, 592 1, 807, 741 9, 877, 751	2, 493, 291 7, 974, 201 3, 387, 512 3, 519, 558 2, 337, 444 4, 578, 966 3, 392, 140 4, 285, 458 3, 876, 172 2, 702, 622 3, 786, 716 18, 925, 404	14. 81 15. 56 12. 84 14. 42 15. 35 14. 18 11. 61 14. 85 14. 33 12. 65 16. 43 14. 89 13. 30	2. 01 2. 43 2. 04 1. 83 2. 19 1. 86 1. 85 2. 17 1. 76 2. 07 2. 09 1. 92	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 97. 4 100. 0 100. 0
	24, 088	230	5, 548, 809	7.0	39, 007, 631	76, 331, 570	13. 76	1, 96	99. 5
1936									
DISTRICT Eastern Pennsylvania,									
New Jersey, and Mary- land	4, 865 1, 677	266 227	1, 295, 192 379, 998	7. 2 7. 5	9, 373, 160 2, 835, 100	19, 948, 866 6, 111, 232	15. 40 16. 08	2. 13 2. 16	93. 4 100. 0
vania, and West Vir- ginia	3, 052 1, 673	264 275	805, 169 460, 116	7. 8 8. 0		10, 640, 605 7, 673, 324	13. 22 16. 68	1.70 2.09	106. 0 100. 0
Wisconsin, Illinois, Indi- ana, and Kentucky	2, 702	290	783, 768	6. 9	5, 396, 929	11, 794, 731	15. 05	2. 19	100.0
Virginia, Tennessee, Ala- bama, Georgia, Florida,	Į.	1	1	ſ	l l		1	}	

Employment in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1934–38, by districts and by States—Continued

			Employm	ent		Pro	duction		
			Time e	mployed	l		Ave	nan	Per-
1.0	A ver- age num-	Aver-		Ma	n-hours	Finished portland	(bar	reis)	cent of indus- try
	ber of men	age num- ber of days	Total man- shifts	Average per man per day	Total	cemen 1 (barrels)	Per shift	Per hour	repre- sented
1936—Continued									
DISTRICT—continued									
Eastern Missouri, Iowa, Minnesota, and South									
Dakota Western Missouri, Nebraska, Kansas, Oklabana and Arkenses	2, 425	277	672, 750	7. 2	4, 816, 399	10, 514, 858	15. 63	2. 18	100.0
braska, Kansas, Oklahoma, and Arkansas. Texas. Colorado, Montana, Utah, Wyoming, and	1, 623 1, 251	307 259	498, 277 327, 135	7. 1 7. 4	3, 523, 931 2, 421, 657	8, 218, 730 5, 839, 983	16. 49 17. 85	2. 33 2. 41	100.0 100.0
IdahoCalifornia Oregon and Washington	563 1,994 1,019	289 315 221		7. 0 7. 3 7. 2	4, 588, 178	3, 016, 457 13, 398, 603 4, 002, 930	18. 55 21. 32 17. 76	2. 65 2. 92 2. 48	100. 0 100. 0 100. 0
STATE	25, 406	272	6, 917, 074	7.3	50, 688, 870	111, 238, 300	16.08	2. 19	98. 7
Alabama California Illinois Iowa Kansas Michigan Missouri New York Ohio Pennsylvania Tennessee Texas Other States 2	1, 132 694 1, 673	318 315 296 254 299 275 297 227 264 266 221 259 271	363, 613 286, 990 207, 209 460, 116 342, 079 347, 396 388, 247	7. 5 7. 3 6. 4 7. 7 8. 0 6. 5 7. 4 7. 7 7. 2 7. 8 7. 4 7. 3	4, 588, 178 2, 326, 838 2, 218, 781 1, 528, 707 3, 678, 199 2, 240, 189 2, 585, 577 2, 988, 726 9, 876, 319 1, 424, 664	3, 912, 290 13, 398, 603 4, 807, 434 4, 099, 121 3, 560, 322 7, 673, 324 4, 954, 851 5, 729, 431 5, 370, 456 21, 459, 207 3, 013, 666 5, 839, 983 27, 419, 613	17. 29 21. 32 13. 22 14. 28 17. 18 16. 68 14. 48 16. 49 13. 83 15. 74 16. 51 17. 85 15. 29	2. 31 2. 92 2. 07 1. 85 2. 33 2. 09 2. 21 2. 22 1. 80 2. 17 2. 12 2. 41 2. 09	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 93. 8 100. 0 100. 0
1937	25, 406	272	6, 917, 074	7. 3	50, 688, 870	111, 238, 300	16.08	2. 19	98. 7
DISTRICT									
Eastern Pennsylvania, New Jersey, and Mary- land	5, 138 1, 579	278 228	1, 426, 778 359, 575	7.4 7.4	10, 557, 973 2, 676, 906	21, 195, 678 6, 370, 647	14.86 17.72	2. 01 2. 38	100. 0 100. 0
ginia	3, 184 1, 806	257 286	819, 778 517, 141	7. 7 8. 0	6, 275, 891 4, 156, 525	10, 787, 616 8, 180, 969	13. 16 15. 82	1. 72 1. 97	100. 0 100. 0
Wisconsin, Illinois, Indi- ana, and Kentucky Virginia, Tennessee, Ala- bama, Georgia, Florida,	2, 702	263	809, 313	8. 1	5, 724, 755	12, 748, 994	15, 75	2. 23	100.0
bama, Georgia, Florida, and Louisiana Eastern Missouri, Iowa, Minnesota, and South	2, 677	2 81	752, 703	7.3	5, 510, 833	11, 017, 080	14. 64	2.00	100.0
Dakota	2, 441	284	694, 444	7.3		10, 675, 595	15. 37	2. 10	100.0
Texas	1, 694 1, 349 612	310 284 294	525, 274 383, 140 179, 676	7. 3 7. 5 7. 4	3, 857, 301 2, 857, 378 1, 331, 666	8, 651, 217 6, 906, 453 3, 056, 597	16. 47 18. 03 17. 01	2. 24 2. 42 2. 30	100. 0 100. 0
California. Oregon and Washington.	2, 134 1, 116	311 223	248, 613	7. 5 6. 9	4, 983, 447 1, 707, 726	11, 953, 986 4, 629, 876	18. 01 18. 62	2. 40 2. 71	100. 0 100. 0
	26, 432	279	7, 380, 028	7.4	54, 714, 935	116, 174, 708	15.74	2. 12	100.0

See footnotes at end of table.

Employment in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1934-38, by districts and by States—Continued

			Employm	ent		Prod	luction		
			Time e	mployed			Aver per 1	nan	Per-
	Aver- age num-	Aver- age		Mai	n-hours	Finished portland	(barı	els)	indus- try repre-
	ber of men	num- ber of days	Total man- shifts	Average per man per day	Total	cement (barrels)	Per shift	Per hour	sented
1937—Continued									
	928 2, 134 1, 225 1, 213 757 1, 806	312 311 301 269 298 286	289, 149 663, 593 368, 274 325, 895 225, 424 517, 141	6. 6 7. 5 6. 6 7. 7 7. 7 8. 0	4, 983, 447 2, 430, 539 2, 518, 884 1, 737, 643	4, 415, 141 11, 953, 986 5, 246, 102 4, 706, 094 3, 696, 507 8, 180, 969	15. 27 18. 01 14. 25 14. 44 16. 40 15. 82	2. 31 2. 40 2. 16 1. 87 2. 13 1. 97	100. 100. 100. 100. 100. 100.
Alabama Zalifornia Illinois Owa Kansas Michigan Missouri New York Ohio Pennsylvania Tennessee Pexas Other States 2	1, 087 1, 435 1, 523 5, 498 782 1, 349	300 227 276 279 262 284	517, 141 326, 133 325, 415 420, 437 1, 532, 202 205, 044 383, 140	6.9 7.4 7.7	11, 106, 884 1, 544, 474	3, 696, 507 8, 180, 969 4, 756, 285 5, 912, 772 5, 699, 695 23, 064, 465 3, 081, 215 6, 906, 453	14. 58 18. 17 13. 56 15. 05 15. 03 18. 03	2. 11 2. 46 1. 76 2. 08 1. 99 2. 42	100. 100. 100. 100. 100. 100.
Other States 2	6, 695 26, 432	269 279	383, 140 1, 798, 181 7, 380, 028	7. 5		28, 555, 024 116, 174, 708	15. 88	2.10	100.
1938	20, 402	210	7, 330, 020		04, 714, 850	110, 114, 100		2.12	100.
DISTRICT									
Eastern Pennsylvania, New Jersey, and Mary- land New York and Maine	5, 011 1, 557	256 222	1, 284, 631 345, 461	7. 3 8. 1		19, 895, 691 6, 245, 193	15. 49 18. 08	2. 12 2. 23	100. 100.
Ohio, western Pennsyl-	2, 904		630, 993	7.7		9, 374, 184	14. 86	1.94	100.
ginia	1,462	282	412, 057	8.0	3, 284, 473	7, 159, 362	17. 37	2.18	100.
ana, and Kentucky Virginia, Tennessee, Ala- bama, Georgia, Florida,	2, 575		649, 394	7.0		9, 930, 734	15, 29	2. 19	100.
ana, and Kentucky Virginia, Tennessee, Ala- bama, Georgia, Florida, and Louisiana Eastern Missouri, Iowa, Minnesota, and South	2,756	254	699, 503	7.5	5, 269, 212	12, 026, 249	17. 19	2. 28	100.
Dakota Western Missouri, Ne- braska, Kansas, Okla-	2, 432	272	660, 343	7.2	4, 738, 607	9, 994, 563	15. 14	2.11	100.
Texas	1, 652 1, 372	283 266	467, 263 364, 563	7.6	2, 782, 132		16. 27 19. 06	2, 19 2, 50	100. 100.
IdahoCaliforniaOregon and Washington	655 1, 721 939	259 313 186	169, 531 539, 384 175, 055	7.0 7.7 7.5	1, 185, 451 4, 140, 796 1, 311, 972	2, 689, 465 10, 513, 067 2, 976, 624	15.86 19.49 17.00	2. 27 2. 54 2. 27	100. 100. 100.
	25, 036		6, 398, 178			105, 357, 000	16.47	2. 21	100.
STATE Alabama California Ullinois Kansas	1, 036 1, 721 1, 164	313	256, 930 539, 384 281, 756	7.3 7.7 6.4	1, 877, 401 4, 140, 796 1, 806, 204	4, 627, 639 10, 513, 067 3, 959, 932	18. 01 19. 49 14. 05	2. 46 2. 54 2. 19	100. 100. 100.
Iowa Kansas Michigan	1, 204 812 1, 462	269 257 282	323, 813 208, 836 412, 057	7.5 7.9 8.0			14.60 15.63 17.37	1.95 1.99 2.18	100. 100. 100.
Kansas Michigan Missouri New York Ohio Pennsylvania Tennessee	1, 086 1, 427 1, 430 5, 301	221 251 244	305, 725 314, 703 358, 285 1, 292, 396	1 7.3	2, 545, 345 2, 761, 709 9, 417, 847	5, 807, 731 5, 188, 477 20, 868, 384	18. 45 14. 48 16. 15	2. 13 2. 28 1. 88 2. 22	100. 100. 100.
Tennessee Texas Other States 2	715 1, 372 6, 306	235 339	168, 286 364, 563 1, 571, 444	7. 9 6. 0 7. 4	1, 333, 206 2, 782, 132 11, 613, 870	3, 318, 797 6, 949, 164 24, 482, 122	19.72 19.06 15.58	2. 49 2. 50 2. 11	100. 100. 100.
	25, 036	256	6, 398, 178	7.5	47, 729, 779	105, 357, 000	16. 47	2. 21	100.

¹ Calculated for each year by dividing the quantity of finished cement produced at mills included in study by the total production.

¹ Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesota, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming.

Mill employees in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1934–38, by districts and by States

	E	mployi	nent—Cəm	ent mill	only	Proc	duction		
			Time e	mployed			Aver	nan	Per
	Aver- age	Aver-		Mai	n-hours	Finished	(barı	reis)	cent of indus- try
	num- ber of men	age num- ber of days	Total man- shifts	Average per man per day	Total	portland cement (barrels)	Per shift	Per hour	repre- sented
1934									
DISTRICT									
Eastern Pennsylvania,									
New Jersey, and Mary- land. New York and Maine. Ohio, western Pennsyl- vania, and West Vir-	3, 840 1, 469	232 242		7.1 6.9		14, 917, 633 5, 015, 615	16. 73 14. 08	2. 35 2. 05	100. 0 100. 0
ainia	2, 235 1, 348	207 188	462, 561 253, 471	7. 2 7. 2	3, 311, 121 1, 834, 144	7, 355, 563 4, 103, 902	15. 90 16. 19	2. 22 2. 24	100. 0 100. 0
Michigan Wisconsin, Illinois, Indi- ana, and Kentucky Virginia, Tennessee, Ala- bama, Georgia, Florida,	1,846	278	513, 403	6.3	3, 217, 083	9, 079, 458	17. 68	2.82	100.0
bama, Georgia, Florida, and Louisiana Eastern Missouri, Iowa, Minnesota, and South	1, 535	273	418, 569	6. 5	2, 719, 302	7, 560, 020	18.06	2. 78	100.0
Minnesota, and South Dakota Western Missouri, Ne- braska, Kansas, Okla-	1,700	270	459, 425	6.6	3, 020, 118	7, 786, 482	16. 95	2. 58	100.0
braska, Kansas, Okia- homa, and Arkansas. Texas. Colorado, Montana, Utah, Wyoming, and	1, 293 971	279 199	361, 026 193, 703	6. 4 6. 7	2, 300, 434 1, 295, 127	5, 837, 914 3, 537, 734	16. 17 18. 26	2. 54 2. 73	100. 0 100. 0
Idaho	453 1, 321 513	244 312 191	110, 649 412, 106 97, 840	6. 5 6. 6 7. 2	2, 708, 661	2, 181, 218 8, 721, 854 1, 650, 372	19. 71 21. 16 16. 87	3. 05 3. 22 2. 33	100. 0 100. 0 100. 0
	18, 524	245	4, 530, 525	6.8	30, 626, 050	77, 747, 765	17. 16	2. 54	100.0
STATE									
Alabama California Illinois Iowa Kansas Michigan Missouri New York Ohio Pennsylvania Tennessee Texas Other States 2	402 1,321 849 818 560 1,348 793 1,310 1,118 4,022 516 971 4,496	299 312 278 246 247 188 301 248 208 222 265 199 256	119, 997 412, 106 235, 964 201, 461 138, 061 253, 4871 238, 4769 232, 931 892, 970 136, 615 193, 703 1, 149, 994	6. 5 6. 6 5. 3 6. 5 6. 8 7. 2 6. 4 6. 8 7. 1 6. 6 6. 7 6. 8	1, 245, 772 1, 318, 326 934, 126 1, 834, 144 1, 516, 048 2, 215, 034 1, 658, 257 6, 383, 082 900, 715 1, 295, 127	2, 208, 279 8, 721, 854 4, 124, 805 4, 198, 546 2, 497, 911 4, 103, 902 4, 033, 859 4, 760, 609 4, 045, 854 15, 233, 116 2, 481, 379 3, 537, 734 18, 727, 917	18. 40 21. 16 17. 48 15. 79 18. 09 16. 19 14. 66 17. 37 17. 16 18. 16 18. 26 16. 29	2. 82 3. 22 3. 31 2. 41 2. 67 2. 24 2. 66 2. 15 2. 44 2. 40 2. 75 2. 73 2. 39	100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0
1935	18, 524	245	4, 530, 525	6.8	30, 626, 050	77, 747, 765	17. 16	2. 54	100.0
DISTRICT									
Eastern Pennsylvania, New Jersey, and Mary- land	3, 93 5	247	973, 357	7. 2	7, 045, 101	14, 171, 492	14. 56	2.01	97. 2
New York and Maine Ohio, western Pennsylvania, and West Vir-	1, 356	200	271, 126	6.8	1, 830, 679	4, 582, 936	16. 90	2.50	100.0
ginia Michigan Wisconsin, Illinois, In-	2, 282 1, 378	195 210	444, 585 289, 780	7. 6	3, 221, 966 2, 213, 228	7, 300, 481 4, 578, 966	16. 42 15. 80	2. 27 2. 07	100.0
Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida, and Louisiana	1, 901	273 241	519, 560		3, 544, 785	8, 204, 274 7, 656, 504	15. 79	2. 31	100.0
See footnotes at end o	1,637 f table.	art I	394, 389	4.41	2, 850, 749	7, 656, 504	19. 41	£. U₩	100.0

Mill employees in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1934-38, by districts and by States—Continued

	E	mployı	nent—cem	ent mill	only	Proc	luction		
			Time e	nployed			Aver per i	nan	Per-
	Aver- age	Aver-		Mai	n-hours	Finished	(barı	reis)	cent of
	num- ber of men	age num- ber of days	Total man- shifts	Average per man per day	Total	portland cement (barrels)	Per shift	Per hour	try repre- sented
1935—Continued									
DISTRICT—continued									
Eastern Missouri, Iowa, Minnesota, and South Dakota Western Missouri, Ne- braska, Kansas, Okla- homa and Arkansas	1, 790	252	450, 22 9	7. 2	3 , 24 5, 309	7, 876, 617	17. 49	2. 43	100.
braska, Kansas, Oklahoma, and Arkansas. Texas. Colorado, Montana, Utah, Wyoming, and	1, 273 1, 005	272 214	346, 330 215, 281	6. 6 7. 2		5, 966, 245 3, 786, 716	17. 23 17. 59	2.60 2.45	100. 100.
Idaho California Oregon and Washington	484 1, 193 843	265 323 153	128, 157 384, 919 128, 754	6. 0 6. 3 7. 1	773, 980 2, 415, 283 911, 285	2, 190, 698 7, 974, 201 1, 896, 934	17. 09 20. 72 14. 73	2.83 3.30 2.08	93. 100. 100.
	19, 077	238	4, 546, 467	7.0	31, 891, 278	76, 186, 064	16.76	2. 39	99.
STATE									
Alabama California Illinois Owa Kansas Michigan Missouri New York Ohio Pennsylvania Pennessee Pexas Other States ²	444 1, 193 753 932 507 1, 378 733 1, 203 1, 037 4, 325 545 1, 005 5, 022	287 323 290 216 251 210 311 203 207 239 218 214 228	127, 337 384, 919 218, 011 200, 945 127, 301 289, 780 227, 767 244, 082 214, 946 1, 032, 495 118, 894 215, 281 1, 144, 709	7.3 6.3 6.3 7.9 6.9 7.6 3 6.7 7.6 7.1 7.9 7.2	933, 764 2, 415, 283 1, 377, 964 1, 583, 424 882, 183 2, 213, 228 1, 442, 932 1, 641, 375 1, 636, 213 7, 331, 011 937, 557 1, 545, 401 7, 950, 943	2, 493, 291 7, 974, 201 3, 367, 512 3, 519, 558 2, 337, 444 4, 578, 966 3, 392, 140 4, 285, 458 3, 876, 172 15, 092, 086 2, 702, 622 3, 786, 716 18, 779, 898	19. 58 20. 72 15. 45 17. 52 18. 36 15. 80 14. 89 17. 56 18. 03 14. 62 22. 73 17. 59 16. 41	2. 67 3. 30 2. 44 2. 22 2. 65 2. 07 2. 35 2. 61 2. 37 2. 06 2. 88 2. 45 2. 36	100.6 100.6 100.6 100.6 100.6 100.6 100.6 97.4 100.6 99.5
1936	19,077	238 =====	4, 546, 467	7.0	31, 891, 278	76, 186, 064	16.76	2.39	99. 3
DISTRICT Eastern Pennsylvania, New Jersey, and Mary- land. New York and Maine. Ohio, western Pennsyl- vania, and West Vir-	3, 999 1, 354	270 238	1, 078, 556 322, 048	7. 2 7. 5	7, 769, 712 2, 401, 837	19, 948, 866 6, 111 , 232	18. 50 18. 98	2. 57 2. 54	93. 4 100. (
ginia Michigan	2, 216 1, 459	270 278	598, 051 406, 274	7.7 8.0	4, 602, 837 3, 250, 195	10, 640, 605 7, 673, 324	17. 79 18. 89	2.31 2.36	100.0 100.0
Wisconsin, Illinois, Indi- ana, and Kentucky Virginia, Tennessee, Ala-	2, 253	297	669, 228	7.0	4, 656, 995	11, 794, 731	17.62	2. 53	100.0
Virginia, Tennessee, Ala- bama, Georgia, Florida, and Louisiana Eastern Missouri, Iowa, Minnesota, and South	1,827	279	509, 272	7.4	3, 743, 902	10, 077, 981	19.79	2. 69	100. (
Dakota Western Missouri, Ne- braska, Kansas, Okla-	1,866	295	549, 683	7.1	3, 922, 614	10, 514, 858	19. 13	2.6 8	100.0
noma, and Arkansas Pexas Colorado, Montana, Utah,	1, 273 966	315 263	401, 262 254, 393	7.1 7.3	2,842,990 1,855,211		20.48 22.96	2.89 3.15	100.0 100.0
Wyoming, and Idaho California Oregon and Washington	443 1,443 782	293 327 222	129, 804 472, 084 173, 927	7.0 7.3 7.1		2, 807, 183 13, 398, 603 4, 002, 930	21.63 28.38 23.02	3. 10 3. 88 3. 26	93. 1 100. 0 100. 0
	19,881	280	5, 564, 582	7.3	40, 634, 045	111, 029, 026	19.95	2.73	98.

Mill employees in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1934–38, by districts and by States—Continued

	E	mployr	nent—cem	ent mill	only	Proc	luction		
	Aver-		Time e	mployed Mar	n-hours	Finished	Aver per i (bari	nan	Per- cent of indus-
	num- ber of men	Average number of days	Total man- shifts	Average per man per day	Total	portland cement (barrels)	Per shift	Per hour	try repre- sented
1936—Continued									
STATE								-	
Alabama. California. Illinois. lowa. Kansas. Michigan. Missouri. New York. Ohio. Pennsylvania. Tennessee. Texas. Other States 2.	508 1,443 975 897 535 1,459 832 1,228 1,170 4,214 592 966 5,062	336 327 303 259 311 278 133 238 274 272 233 263 276	170, 539 472, 054 295, 452 232, 603 166, 528 406, 274 270, 526 292, 438 320, 997 1, 146, 893 138, 042 254, 393 1, 397, 810		3, 456, 148 1, 902, 105 1, 792, 762 1, 223, 498 3, 250, 195 1, 768, 493 2, 177, 905 2, 484, 449 8, 230, 381 1, 076, 047 1, 855, 211 10, 135, 561	3, 912, 290 13, 398, 603 4, 807, 434 4, 009, 121 3, 560, 321 7, 673, 324 4, 954, 851 5, 729, 431 5, 370, 456 21, 459, 207 3, 013, 666 5, 839, 983 27, 210, 339	22. 94 28. 38 16. 27 17. 62 21. 38 18. 32 19. 59 16. 73 18. 71 21. 83 22. 96 19. 47	3. 05 3. 88 2. 53 2. 29 2. 91 2. 36 2. 62 2. 16 2. 61 2. 61 2. 68	100.0 100.0 100.0 100.0 100.0 93.8 100.0 99.2
1937	19, 881	280	5, 564, 582	7.3	40, 634, 045	111, 029, 026	19.95	2. 73	98.6
DISTRICT									
Eastern Pennsylvania, New Jersey, and Mary- land New York and Maine Ohio, western Pennsyl- vania, and West Vir-	4, 218 1, 328	288 237	1, 20 7, 543 314, 214	7. 3 7. 5		21, 195, 678 6, 370, 647	17. 55 20. 27	2. 41 2. 71	100. 0 100. 0
ginia	2, 293 1, 626	268 287	614, 484 467, 239	7. 6 8. 0	4, 700, 318 3, 737, 916	10, 787, 616 8, 180, 969	17. 56 17. 51	2.30 2.19	100. (100. (
Michigan Wisconsin, Illinois, Indiana, and Kentucky Virginia, Tennessee, Alabama, Georgia, Florida,	2, 298	307	704, 740	7. 1	5, 007, 825	12, 748, 994	18. 09	2. 55	100.0
and Louisiana. Eastern Missouri, Iowa, Minnesota, and South	1,948	293	571, 624	7. 2	4, 131, 074	11,017,080	19. 27	2. 67	100. (
Western Missouri, Ne- braska, Kansas, Okla-	1, 900	3 03	576, 459	7. 3		10, 675, 595	18. 52		100.0
homa, and Arkansas Texas	1, 325 1, 043	315 291	417, 968 303, 245	7.3 7.4	2, 241, 419	8, 651, 217 6, 906, 453	20. 70 22. 78	2. 82 3. 08	100. (100. (
IdahoCaliforniaOregon and Washington	477 1,592 877	299 327 229	142, 470 520, 615 200, 636	7. 4 7. 5 6. 8	3, 885, 784	3, 056, 597 11, 953, 986 4, 629, 876	21. 45 22. 96 23. 08	2. 89 3. 08 3. 40	100. 0 100. 0 100. 0
STATE	20, 925	289	6,041,237	7.4	44, 553, 173	116, 174, 708	19. 23	2. 61	100.0
AlabamaCaliforniaIllinois	696 1, 592 972 977 575 1, 626	312 327 310 278 300 287	216, 874 520, 615 301, 774 271, 554 172, 341 467, 239 265, 194	6. 5 7. 5 6. 6 7. 7 7. 7 8. 0	3, 885, 784 1, 992, 489 2, 082, 229 1, 335, 541	4, 415, 141 11, 953, 986 5, 246, 102 4, 706, 094 3, 696, 507 8, 180, 969	20. 36 22. 96 17. 38 17. 33 21. 45 17. 51 17. 94	3. 15 3. 08 2. 63 2. 26 2. 77 2. 19	100.0 100.0 100.0 100.0 100.0
lowa Kansas Michigan Missouri New York Ohio Pennsylvania Tennessee Texas Other States 2	1, 626 795 1, 210 1, 187 4, 416 579	334 235 285 291 279	284,006 338,076 1,284,222 161,277	6. 9 7. 4 7. 7 7. 1 7. 4	2, 110, 838 2, 604, 574 9, 158, 509 1, 188, 642	3, 696, 507 8, 180, 969 4, 756, 285 5, 912, 772 5, 699, 695 23, 064, 465 3, 081, 215	20, 82 16, 86 17, 96 19, 11	2.61 2.80 2.19 2.52 2.59	100.0 100.0 100.0 100.0
Texas Other States 2	1, 043 5, 257	291 277	303, 245 1, 454, 820	7.4	2, 241, 419 10, 990, 362	6, 906, 453 28, 555, 024	22. 78 19. 63	3.08 2.60	100.0 100.0

Mill employees in the cement industry, finished cement produced at mills included in study, and average output per man in the United States, 1934-88, by districts and by States—Continued

tal A'nn-fts a a f in f in f in f in f in f in f in
A. 552 9, 552 9, 311
A. 552 9, 552 9, 311
0, 311 1, 080 1, 377
l, 377
, 231
1,042
7, 023
, 730 8, 867
, 853 3, 363 , 361
, 790
, 761 , 363 , 654 , 731 , 005 , 377 , 141 , 026

¹ Calculated for each year by dividing the quantity of finished cement produced at mills included in study by the total production.
² Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesota, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming.

Quarry and crusher employees in the cement industry, material (quarry rock and over-burden) handled at quarries included in study, and average output of material per man in the United States in 1934, by districts and by States

										<u> </u>	
	Emp	loyme	nt—quar only	ry and	crusher	Materia rock	al handl and ove	ed—qua erburde	arry n		
			Time e	mploye	đ		Average per man (short			rt Per-	
	Aver- age	4		Mar	-hours		Per- cent of	tons)		cent of industry	
ni h	num- ber of men	Average number of days	Total man- shifts	Average per man per day	Total	Short tons	over- bur- den in- cluded	Per shift	Per hour	repre- sented ²	
DISTRICT											
Eastern Pennsylvania, New Jersey, and Maryland New York and Maine	702 321	213 171	149, 284 54, 853	7. 2 7. 1	1, 072, 880 389, 155	4, 530, 078 1, 288, 535	3. 9 5. 5	30. 35 23. 49		100, 0 100, 0	
Ohio, western Pennsylvania, and West Virginia. Michigan Wisconsin, Illinois, Indi-	776 183		140, 572 33, 119		1, 020, 117 299, 936		22. 1 46. 2	20. 57 39. 34	2.83 4.34	100. 0 100. 0	
Wisconsin, Illinois, Indi- ana, and Kentucky Virginia, Tennessee, Al- abama, Georgia, Flor-	423	230	97, 126	6.3	608, 729	2, 226, 221	20.6	22. 92	3.66	100.0	
ida, and Louisiana E astern Missouri, Iowa, Minnesota, and South	543	195	106, 011	7. 1	751, 556	2, 424, 016	5. 6	22.87	3.23	100.0	
Dakota Western Missouri, Ne- braska, Kansas, Okla-	477						12. 2	23. 08		100.0	
homa, and Arkansas Texas	• 262 154		56, 551 22, 095	6.8 7.2	383, 499 159, 984	1,820,742 1,027,508	5. 0	46. 50	6.42	100. 0 100. 0	
IdahoCaliforniaOregon and Washington.	70 337 133	265	13, 575 89, 371 24, 038	6. 6 6. 9 7. 4	620, 875	2, 298, 170	1.6 .8	48. 28 25. 71 15. 59	7. 33 3. 70 2. 10	100. 0 100. 0 100. 0	
	4, 381	204	893, 292	7.0	6, 296, 481	23, 303, 057	10.7	26.09	3.70	100.0	
STATE											
Alabama California Illinois Iowa Kansas Michigan Missouri New York Ohio Pennsylvania Tennessee Texas. Other States 3	183 300 304 267	168 181 194 173 207 172 207	80, 577 89, 371 55, 038 51, 993 22, 890 33, 119 58, 144 52, 507 55, 326 145, 994 35, 955 22, 095 240, 283	9.1 6.8 7.1 7.1 7.3 7.3 7.2	620, 875 339, 190 347, 405 172, 397 299, 936 392, 530 372, 402 393, 302 1, 059, 048 263, 453	1, 298, 278 1, 172, 322 690, 418 1, 302, 810 1, 321, 164 1, 180, 794 1, 107, 704 4, 829, 948 786, 701 1, 027, 508	1. 6 29. 8 14. 5 1. 3 46. 2 9. 8 3. 6 9. 7 14. 5 4. 2 5. 0	22. 55 30. 16 39. 34 22. 72 22. 49 20. 02 33. 08 21. 88 46. 50	3. 70 3. 83 3. 37 4. 00 4. 34 3. 37 3. 17 2. 82 4. 56 2. 99	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	
	4, 381	204	893, 292	7.0	6, 296, 481	23, 303, 057	10.7	26, 09	3.70	100/0	

¹ Comparable figures not available after 1934.

² Calculated by dividing the quantity of finished cement produced at mills included in study by the total production.

³ Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Maine, Maryland, Minnesta, Montana, Nebraska, New Jersey, Oklahoma, Oregon, South Dakota, Utah, Virginia, Washington, West Virginia, Wisconsin, and Wyoming.

FOREIGN TRADE 3

Imports.—The figures in the following table cover imports of hydraulic cements of all kinds. The values assigned are supposed to represent values in the foreign countries from which the materials are exported, including the cost of containers or coverings.

Hydraulic cement imported for consumption in the United States, 1935-39

Year	Barrels	Value	Year	Barrels	Value
1935	619, 404 1, 658, 902 1, 803, 932	\$615, 866 1, 421, 620 1, 392, 633	1938 1939	1, 727, 411 1, 913, 853	\$1, 436, 730 1, 860, 543

The following table of imports by countries of origin and import districts includes all hydraulic cements except "white nonstaining portland cement," which was reported "imported for consumption" as follows: 1939, 22,883 barrels valued at \$75,983, of which 11,029 barrels valued at \$42,864 came from Denmark, 2,323 barrels valued at \$7,405 from Belgium, 4,279 barrels valued at \$7,686 from France, and 1,278 barrels valued at \$4,413 from the United Kingdom; 1938, 12,227 barrels valued at \$38,557, of which 277 barrels valued at \$1,038 came from Denmark, 5,439 barrels valued at \$17,466 from Belgium, 3,262 barrels valued at \$6,394 from France, and 1,555 barrels valued at \$5,892 from the United Kingdom.

Roman, portland, and other hydraulic cements imported for consumption in the United States, 1938–39, by countries and customs districts ¹

	-				
Country and district	19	938	1939		
Country and district	Barrels	Value	Barrels	Value	
COUNTRY					
Belgium	1, 168, 148	\$852, 233	1,041,292	\$895, 170	
Canada	1, 385	3, 372	263	фо 90, 170 549	
Denmark	279, 317	281, 551	466, 553	484, 044	
France	5,053	4,465	13, 334	12, 431	
Germany	78, 365	92, 268	126, 354	170, 598	
Italy	645	2,769	2,088	8,874	
Japan Morico		61, 351	52, 528	44, 121	
Mexico Netherlands	149	312	2, 130	2, 425	
Norway	33, 872 21, 238	26, 169 17, 072	23, 705	33, 331	
Norway Poland and Danzig	30, 062	23, 121	25, 392	18, 492	
United Kingdom	9, 189	18, 526	78, 919 8, 405	53, 490	
Yugoslavia	16, 187	14, 964	50, 007	17, 756 43, 2 79	
	1 515 104	<u> </u>			
	1,715,184	1, 398, 173	1,890,970	1, 784, 560	
CUSTOMS DISTRICT					
Connecticut	5. 146	6,922	1,863	1,641	
El Paso	149	312	615	882	
Florida	344, 238	281,414	365, 071	373, 214	
Galveston	14,702	10,070	18,686	13, 837	
Georgia	44, 131	31,060	30,891	28, 445	
Hawaii	71, 573	61, 351	52, 378	44, 029	
Los Angeles Maine and New Hampshire	50	36	325	997	
Maryland	1, 383	3, 368	228	464	
Massachusetts	67, 363 115, 449	45, 310	88, 170	53, 150	
Mobile		103, 660	72, 171	80, 461	
Montana and Idaho	40, 048	31, 499	53, 475	56, 395	
17312 (61-2)		·	5	21	

¹Excludes "white, nonstaining, and other special cements."

³ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Roman, portland, and other hydraulic cements imported for consumption in the United States, 1938–39 by countries and customs districts—Continued

Country and district	19	38	1939		
Country and displice	Barrels	Value	Barre!s	Value	
CUSTOMS DISTRICT—continued				***************************************	
New Orleans New York North Carolina Oregon Philadelphia Puerto Rico Rhode Island Sabine St. Lawrence San Antonio San Diego San Francisco South Carolina Vermont Virgin Islands Washington	1, 313 9, 750 93, 697 263, 777 13, 939 3, 200	\$6, 565 414, 081 891 6, 811 58, 005 213, 063 9, 047 2, 549 40, 532 1, 234 1, 268 38, 455 9, 294 21, 372	11, 491 647, 857 1, 917 12, 575 116, 676 295, 036 27, 891 2, 013 30 57, 120 150 10, 915 4, 321 19, 100 1, 890, 970	\$8, 421 637, 190 1, 467 8, 974 67, 412 275, 648 38, 518 1, 489 64 64, 525 92 9, 837 13, 120	

Exports.—Although the United States is the major cement-producing country of the world its export trade is small. As indicated in the following table, exports in 1939 were larger than in any other recent year but still comprised less than 1 percent of total domestic shipments. The value of exports is the actual cost at United States ports as indicated by the shippers on the export declarations.

Hydraulic cement exported from the United States, 1935-39

Year	Barrels	Value	Percent of total ship- ments from mills
1935	416, 099 334, 673 378, 554 558, 226 1, 146, 339	\$1, 012, 942 886, 560 1, 044, 161 1, 294, 883 2, 352, 693	0.6 .3 .3 .5

The following table shows exports by country of destination in . 1938 and 1939.

Hydraulic cement exported from the United States, 1938-39, by countries

Country	193	38	1939		
Country	Barrels	Value	Barrels	Value	
North America: Bermuda Canada Central America: British Honduras Costa Rica Guatemala Honduras Nicaragua Panama:	1, 334	\$2,316	10	\$58	
	9, 147	41,052	7, 365	40, 269	
	4, 228	6,088	4, 520	6, 714	
	1, 309	2,886	26, 195	45, 585	
	142	257	3, 630	7, 220	
	7, 100	10,627	18, 323	31, 309	
	1, 837	3,154	3, 470	6, 261	
Canal Zone	89, 840	183,443	199, 431	433, 363	
Republic of	4, 407	12,883	66, 763	121, 814	
Salvador	300	1,312	3, 830	8, 073	

Hydraulic cement exported from the United States, 1938-39, by countries—Continued

	193	8	1939		
Country	Barrels	Value	Barrels	Value	
North America—Continued. Mexico	23,438 676	\$68, 350 1, 506	29,444 4,148	\$65, 666 6, 917	
British: Jamaica Trinidad and Tobago Other British Cuba Dominican Republic French	260 710 1, 220 12, 309 2, 128 10	752 2, 466 3, 357 52, 407 6, 609 11	115 539 5,937 17,579 37,274	516 1,379 11,831 76,385 67,407	
Haiti Netherland	3, 027 10, 428	4,415 26,082	51, 204 19, 629	84, 350 34, 076	
	173, 850	429, 973	499, 406	1, 049, 193	
South America: Argentina Bolivia Brazil Chile Colombia Ecuador Paraguay Peru Surinam Uruguay Venezuela Other South America	35, 181 175 11, 843 5, 413 20, 635 503 75 3, 675 500 1, 887 216, 943	149, 505 881 47, 333 27, 222 55, 817 2, 172 368 16, 667 830 7, 048 377, 301	22, 756 280 24, 410 3, 216 23, 046 11, 372 212 7, 238 3, 000 1, 155 498, 600 500	96, 047 1, 261 93, 516 16, 306 68, 456 25, 665 914 27, 559 5, 795 4, 925 832, 762	
	296, 830	685, 144	595, 794	1, 173, 966	
Europe: Belgium Ireland Netherlands Norway Sweden United Kingdom Other Europe	874 284 458 64 25 5, 964 105	3, 899 1, 479 2, 279 456 121 24,007 763	396 222 120 220 4,230 65	1, 727 1, 061 652 2, 032 15, 246 318	
	7,774	33,004	5, 253	21,036	
Asia: British Malaya. China. India, British Iraq Netherland India Philippine Islands Saudi Arabia	315 7 1,275	1, 193 70 6, 498	165 20 1, 166 532 480	676 180 6, 375 2, 415 2, 011	
Philippine Islands Saudi Arabia Other Asia	70, 327 1, 932 3, 429	104, 538 7, 207 14, 948	30, 213 3, 664 4, 526	2, 011 52, 722 12, 810 12, 029	
	77, 305	134, 557	40,766	89, 218	
Africa: Egypt Liberia Mozambique. Union of South Africa. Other Africa.	140 6 48 1,455 29	913 62 197 7, 383 104	24 2,754 1,818	114 6,989 9,264	
V	1,678	8,659	4,596	16, 367	
Oceania: British: Australia New Zealand Other	499 285 5	2, 178 1, 351 17	462 55 7	2, 600 29 1 22	
	789	3, 546	524	2, 913	
ļ	558, 226	1, 294, 883	1, 146, 339	2, 352, 693	

The following table shows shipments of cement to outlying Territories of the United States in 1938 and 1939.

Domestic hydraulic cement shipped to noncontiguous Territories of the United States, 1938-39

The with a second secon	19	38	1939		
Territory	Barrels	Value	Barrels	Value	
Alaska American Samoa Canton and Enderbury Islands Guam Hawaii Midway Island Puerto Rico Virgin Islands Wake Island	40, 982 (1) 321, 578 28 418, 521 14, 017 10 795, 141	\$112, 692 (1) 14 710, 573 88 574, 033 27, 905 43 1, 425, 354	43, 506 7 2, 200 328, 381 352, 763 20, 354 	\$115, 056 31 6, 094 725, 301 511, 674 38, 905	

¹ Beginning January 1, 1939.

WORLD PRODUCTION .

The following table of world production has been compiled by the Bureau of Mines from consular reports, official statistics, and trade literature. The figures are in metric tons (1 metric ton equals 2,204.622 pounds). The table shows the latest reported plant capacity and the production from 1935 to 1939, inclusive. Although figures for certain countries are still lacking the table presents a reasonably complete picture of the cement industry throughout the world. Figures on capacity are the best estimates that can be made from available data.

World production of cement, 1935-39, and latest reported plant capacity, by countries, in metric tons ¹

G	Latest reported		Production					
Country	plant ca- pacity 2	1935	1936	1937	1938	1939		
North America:								
Canada	2, 390, 000	553, 679	784, 103	975, 231	876, 193	909, 875		
Cuba	(3)	(3)	(3)	(8)	(3)	(4)		
Guatemala	25,000	(3)	(3)	(3)	(3)	(4) (4)		
Mexico	529,000	251, 651	285, 978	344, 693	373, 712	(1)		
United States:	1		1					
Continental	143, 673, 000	13, 259, 847	19, 522, 716	20, 137, 732	18, 279, 156	21, 211, 969		
Puerto Rico	60,000					55, 300		
South America:	į	ĺ	l .	1				
Argentina	1,856,000	721, 564	833, 631	1, 035, 495	1, 160, 706	(4)		
Bolivia	25,000	6,858	10, 547	11, 100	18,600	(4)		
Brazil	830,000	366, 261	485, 064	571, 462	617, 896	(4)		
Chile	(3)	284, 885	248, 424	313, 110	363, 987	447, 992		
Colombia	(3)	77,000	104, 465	123, 175	141, 809	(4)		
Ecuador	20,000	13,674	(3)	(3)	(3)	(4)		
Peru	120,000	60, 296	75, 115	83,048	101, 380	119, 986		
Uruguay	240,000	99, 778	111, 073	147, 773	158, 359	(1)		
Venezuela	50,000	21, 811	37, 583	44, 626	39, 863	39, 130		

[Compiled by R. B. Miller]

See footnotes at end of table.

World production of cement, 1935-39, and latest reported plant capacity, by countries, in metric tons—Continued

Country	Latest reported			Production		
Country	plant ca- pacity	1935	1936	1937	1938	1939
Europe:						
Albania	22,000	(3)	8,000	14,000	(3)	(4)
Belgium	4,000,000	2, 200, 000	2, 350, 000	3,008,016	3, 054, 144	2, 551, 75
Bulgaria	245,000	105,000	113,000	135,000	180,000	(4)
Bulgaria Czechoslovakia	2, 300, 000	958,000	1,050,000	1, 360, 000	(3)	(4)
Denmark	938, 000	756, 823	792, 369	676, 125	639, 957	(4)
Estonia	(3)	37, 990	50, 611	65, 931	79,740	4
Finland		269, 315	332, 557	410, 371	475, 152	(4)
France	H10, 578, 000	4, 403, 800	4, 638, 400	4, 254, 800	(3)	ĊŧŚ
Germany	217,000,000	8, 807, 000	11, 689, 000	12,605,000	15, 6òó, 000	74
Austria	1,000,000	371,000	369,000	430,000	650,000	745
Greece	450,000	273,000	276, 850	290,000	308,000	À
Hungary	876,000	280,000	215,000	392,000	(3)	(4)
Italy	4 6, 689, 000	4, 223, 118	3, 826, 548	4, 359, 112	4, 607, 454	4, 800, 00
Latvia	170,000	72,013	100, 213	117, 591	154, 621	164, 60
Netherlands	(3)	360,000	401,000	441,000	456,000	541, 00
Norway	358,000	263, 127	300, 658	320, 481	331,600	(4)
Poland	1, 850, 000	842, 604	1 048 270	1, 289, 108	1,719,452	(4)
Portugal	(3)	214,000	1, 048, 270 245, 343	254,000	268,000	(4)
Rumania	1, 200, 000	382,000	376, 000	456, 311	(3)	(4)
Spain	2,600,000	5 1, 355, 000	5 600,000	5 650, 000	5 570, 000	1, 000, 0
Sweden	(3)	739, 630	795, 181	875, 541	993,000	(4)
Switzerland	1, 300, 000	(3)	509,000	(3)	5 650, 000	(4)
U. S. S. R	76, 000, 000	4, 470, 000	5, 845, 000	5, 459, 000	5, 696, 000	. (4)
United Kingdom	\$10,000,000	6, 054, 000	6, 700, 000	7, 300, 000	7, 900, 000	- 23
Yugoslavia	1, 680, 000	785,000	643, 072	618, 635	712, 302	\display
Asia:	1,000,000	100,000	010,012	010,000	112,002	(-)
China	1, 170, 000	(3)	6 450, 000	(3)	(3)	(4)
Manchuria	1,010,000	378,000	580,000	6 800, 000	(3)	74
Chosen	1,600,000	460,000	567, 000	665,000	(3)	ÌÝ
Hong Kong	115,000	(3)	(3)	(3)	110, 036	À
Hong KongIndia, British	1, 465, 000	892,000	977, 000	1, 142, 000		(4)
Indochina	300,000	107,000	149, 230	234, 638	(3) 266, 366	(4)
Iran	125 000	(3)	(3)	(3)	(3)	(4)
Japan	313, 100, 000	5, 876, 803	6, 232, 206	6, 703, 328	35	· (4)
Levant	(3)	100,000	120,000	180, 459	162, 245	169, 2
Netherland India	235,000	140,000	136,000	(3)	(3)	170,0
Palestine	(3)	187,000	154,000	161,000	98, 445	(4)
Philippine Islands	336,000	110, 825	132, 910	148,000	166, 921	(4)
Syria	90,000	33, 450	58,000	74,000	80,000	(4)
Thailand (Siam)	120,000	49,000	62,000	77,000	82,000	(4)
Turkey	350,000	131, 175	137, 086	214, 794	267, 568	274, 7
Africa:		,	,	,	,	· ·
Algeria	(3)	64, 700	66, 800	65,000	(3)	(4)
Belgian Congo	40,000	3,800	7, 520	10,723	ì6, 500	(4) (4)
Egynt	700,000	378, 780	335,000	330,000	375, 763	(¥)
Madagascar	70,000	4,000				(¥)
Madagascar Morocco, French Mozambique	(3)	189,000	161, 780	156,000	165,000	(4)
Mozambique	30,000	12, 572	11, 826	14, 957	24, 297	`27, 6
Tunisia	(3)	39, 700	48,600	56, 400	68, 700	(4)
Union of South Africa	1,000,000	527, 000	760, 047	839, 526	878, 206	948, 6
Oceania:	1 ' '		,	.,	1 ' 1	•
Australia 7	1, 323, 000	558, 961	655, 590	731, 650	862, 539	881, 7
New Zealand 8	(3)	124, 414	153, 705	176, 000	(3)	(4)
	147, 088, 000	65, 660, 000	78, 170, 000	84, 140, 000	88, 850, 000	(4)

¹ Table includes all kinds of cement. Few data are available for Afghanistan, Burma, Eritrea, Ethiopia, Hong Kong, Luxemburg, and Taiwan, and they do not permit the establishment of production figures at this time, but estimates of production and capacity of these countries are included in the totals. The present plant capacity of China and war-affected Europe is in reality unknown owing to the destructive effects of military operations.

² Figures are approximate only and are subject to revision.

³ Data not available, estimate included in total.

⁴ Data not yet available.

⁵ Shipments.

⁶ Approximate production.

⁷² months ended June 30 of the year indicated.
8 12 months ended March 31 of the year indicated.

Canada.—According to the Dominion Bureau of Statistics sales of portland cement by Canadian producers increased 4 percent in quantity and 3 percent in value in 1939 compared with 1938. The same plants were in operation both years. The following table presents the principal statistics of the Canadian industry.

Salient statistics of the cement industry in Canada, 1938-39 1

	19	938	19	1939		
	Barrels	Value	Barrels	Value		
Output	5, 558, 047		5, 721, 447			
Sales: Quebec Ontario. Manitoba. Alberta. British Columbia Total sales Stocks, Dec. 31.	2, 730, 320 1, 818, 032 330, 889 304, 373 335, 488 5, 519, 102 1, 875, 288	\$3, 693, 188 2, 555, 214 754, 427 611, 790 626, 731 8, 241, 350	3, 027, 759 1, 709, 263 343, 717 377, 846 272, 679 5, 731, 264 1, 865, 471	\$4, 035, 294 2, 437, 777 773, 363 744, 357 520, 420 8, 511, 211		
Imports: Portland Manufactures	48, 497	105, 326 6, 650	16, 622	58, 316 14, 968		
Total imports	89, 419 5, 478, 180	111, 976 101, 059	156, 556 5, 591, 330	73, 284 159, 579		

¹ Dominion Bureau of Statistics.

STONE

By Oliver Bowles and M. S. Jensen

SUMMARY OUTLINE

	Page	1	Page
General conditions	1161	Crushed and broken stone	
Dimension stone	1164	Salient statistics	1178
Salient statistics	1164	Commercial and noncommercial operations.	1179
Building stone	1166	Methods of transportation	1180
Granite	1166	Granite	1180
Basalt	1168	Basalt	1182
Marble	1169	Marble	1183
Limestone	1170	Limestone	1183
Sandstone	1173	Sandstone	1187
Miscellaneous stone	1175	Miscellaneous stone	1189
Trends in use of building and memorial		Markets	1191
stone	1176		
New developments	1176	Foreign trade	1192

Sales of stone in 1939 attained an all-time record of more than 147,000,000 tons. Their value was the highest since 1930. Sales of crushed and dimension stone combined increased 18 percent in quantity and 14 percent in value over 1938. Sales of dimension stone (exclusive of slate) were 30 percent higher in quantity and 17 percent higher in value. For the crushed-stone industry the corresponding gains were 18 and 13 percent. The smaller proportional increase in value than in tonnage indicates a trend toward lower unit prices.

The present chapter follows the general plan of the chapter on Stone in Minerals Yearbook, 1939, data on dimension stone being separated from that on crushed stone, except in the introductory

general tables.

The tables in this report give the quantities sold or used by producers and the values f. o. b. quarries and mills insofar as these figures are obtainable. Stone quarried and used by the producer is considered as sold and is included in the statistics of sales. The data, however, do not include stone made into abrasives (such as grindstones) or that used in making lime and cement. These materials are reported in terms of finished products in the Abrasive Materials, Lime, and Cement chapters of this volume. The following tables show total sales of stone by kinds, uses, and States.

Stone sold or used by producers in the United States, 1935-39, by kinds

[Quantities approximate]

				-	-	-	_						
	Gr	Granite			Basalt and related rocks (trap rock)				M	arble	Lime	Limestone	
Year	Short	Va	alue			Short va		alue Short tons		Value	Short tons	Value	
1935 1936 1937 1938 1939	6, 013, 990 15, 442, 150 9, 265, 830 10, 432, 980 12, 041, 360	20, 19 20, 9	07, 165 93, 289 92, 882 15, 609 95, 983	9, 671, 950 14, 014, 440 13, 581, 460 13, 908, 790 16, 091, 250		13, 30 12, 50 12, 2	15, 040 132 86, 933 165 08, 276 207 80, 016 219 64, 016 228		760 760 390	\$3, 415, 86 5, 761, 55 5, 456, 19 5, 248, 29 6, 688, 66	4 87, 735, 740 1 94, 577, 270 0 81, 679, 690	82, 286, 555	
				Sandstone				Other stone 1			Tot	Total	
	Year		Short	Short tons V		lue Shor		tons		Value	Short tons	Value	
1936 1937 1938			6, 25 5, 07 6, 31	9, 790 4, 290 2, 660 4, 430 3, 680	7, 51	7, 105 6, 136 6, 200	7, 80 10, 43 12, 28	8, 110 4, 040 8, 260 3, 660 6, 670	8 9 10	, 349, 573 , 207, 114 , 637, 766 , 458, 376 , 549, 742	83, 159, 050 131, 416, 420 133, 143, 240 124, 838, 940 147, 447, 130	\$87, 824, 497 141, 525, 979 146, 213, 128 139, 255, 046 158, 461, 515	

¹ Includes mica schist, conglomerate, argillite, various light-colored volcanic rocks, serpentine not used as marble, soapstone sold as dimension stone, and such other stone as cannot properly be classed in any main

Stone sold or used by producers in the United States, 1938-39, by uses

	199	38	193	39
Use	Quantity	Value	Quantity	Value
Dimension stone: Building stone: Rough construction	463, 720 7, 135, 860 541, 870 370, 060 2, 450, 930 201, 680 4, 300, 38, 220 10, 175, 920 109, 170 488, 340 41, 400	\$905, 536 10, 989, 024 426, 796 7, 359, 184 462, 729 1, 217, 091 417, 802	652, 500 9, 300, 300 700, 510 549, 240 2, 571, 840 2, 797, 560 1 2, 797, 560 2 1, 175, 260 2 94, 290 789, 410 64, 840	\$1, 694, 526 14, 313, 759 525, 173 7, 265, 575 1 246, 084 2 1, 080, 861 427, 048
Total dimension stone (quantities approximate, in short tons)	1, 766, 120	21,778, 162	2, 298, 360	25, 553, 026
Crushed and broken stone: Riprap	4, 367, 410 7, 369, 290 123, 072, 820	6, 943, 429 991, 765 5, 637, 485 8, 141, 566 117, 476, 884	5, 811, 740 103, 891, 020 17, 287, 790 1, 492, 310 5, 459, 260 11, 206, 650 145, 148, 770 147, 447, 130	5, 851, 732 93, 958, 275 12, 632, 243 2, 044, 054 6, 592, 827 11, 829, 358 132, 908, 489 158, 461, 515

¹ To avoid disclosing confidential information, sandstone paving blocks in 1939 are included under "Curbing."

² Includes sandstone paving blocks.

³ Ganister (sandstone), mica schist, soapstone, and dolomite.

⁴ Includes roofing granules as follows: 1938, 171,389 tons, \$666,917; 1939, 158,924 tons, \$743,034. There were also produced slate granules used for roofing as follows: 1938, 258,930 tons valued at \$2,220,306: 1939, 265,830 tons, \$2,312,177.

Stone sold or used by noncommercial producers in the United States in 1939, by uses [Included in total production]

Use	Short tons	Value	Use	Short tons	Value
Dimension stone: Building stone. Rubble Curbing Flagging Total dimension	40, 430 67, 510 1 10, 520 350	\$110, 668 86, 126 1 100, 828 2, 500	Crushed and broken stone: Riprap Crushed stone Agricultural (lime- stone). Other uses	1, 861, 580 44, 374, 750 487, 500 2, 701, 560	\$2, 345, 029 42, 878, 689 513, 508 2, 479, 821
stone	118, 810	300, 122	Total crushed and broken Grand total		48, 217, 047 48, 517, 169

¹ Includes a small quantity of paving blocks.

Stone sold or used by producers in the United States, 1938-39, by States

	193	8	1939			
State	Short tons (approximate)	Value	Short tons (approximate)	Value		
AlabamaAlaska	1, 326, 160 189, 090	\$1, 809, 379 204, 232	1, 855, 990	\$2, 516, 584		
Arizona	431, 310	337, 078	665, 290	626, 28		
Arkansas	2 308, 760	2 293, 497	641, 460	640, 330		
California	7, 634, 260	6, 632, 719	5, 734, 100	4, 673, 75		
Colorado	897, 270	1, 051, 333	900, 460	1, 040, 579		
Connecticut	1, 529, 730	1, 731, 707	1, 816, 650	2, 077, 366		
Delaware	(1)	(1)	(1)	(1)		
District of Columbia	(1)	(1)				
Florida	2 1, 349, 160	1, 223, 438	³ 1, 444, 100	2 1, 462, 730		
Georgia	1, 465, 680	3, 581, 319	1, 988, 530	4, 838, 623		
HawaiiIdaho	515, 140 1, 047, 980	727, 194 795, 896	373, 040 1, 863, 350	573, 813		
Illinois	2 8, 528, 440	² 7, 335, 844	8, 420, 120	1, 238, 73, 7, 820, 589		
Indiana	3, 782, 410	² 6, 486, 996	2 4, 338, 690	2 7, 469, 659		
Iowa	3, 369, 750	3, 782, 480	6, 400, 590	4, 385, 234		
Kansas	2 3, 676, 230	2 4, 958, 723	3, 406, 640	4, 550, 560		
Kentucky	2 3, 361, 600	2 2, 987, 494	4, 802, 280	4, 480, 09		
Louisiana	(1)	(1)	(1)	(1)		
Maine	192, 250	1, 161, 535	2 205, 280	1, 228, 930		
Maryland	2 947, 390	1, 167, 518	1, 024, 130	1, 327, 830		
Massachusetts	2, 188, 820	3, 865, 042	2, 543, 730	4, 459, 797		
Michigan	2 7, 900, 370	² 4, 059, 590	11, 138, 280	5, 890, 728		
Minnesota	941, 050	1, 914, 056	1, 405, 740	2, 339, 774		
Mississippi Missouri	3, 332, 480	A AEQ 701	2 3, 958, 470	14 500 000		
Montana	1, 364, 680	4, 458, 781 1, 717, 417	1, 266, 220	4, 589, 986 1, 714, 718		
Nebraska	² 510, 240	² 780, 664	427, 580	660, 732		
Nevada	344, 760	246, 319	34, 260	40, 207		
New Hampshire	53, 790	444, 537	105, 390	437, 342		
New Jersey	2, 583, 220	2, 678, 766	2, 806, 020	3, 036, 516		
New Mexico	ź 698, 350	i 438, 284	i 287, 190	² 164, 92		
New York	10, 061, 250	10, 527, 452	10, 703, 690	10, 111, 03		
North Carolina	2 4, 552, 120	² 5, 789, 486	² 6, 037, 000	2 6, 979, 420		
North Dakota	20,090	5, 395	(1)	(1)		
Ohio	² 9, 888, 730	2 8, 970, 552 2 1, 338, 858	11, 133, 560	* 10, 140, 272		
Oklahoma	3 1, 101, 320 3 2, 355, 970	2, 025, 335	1, 992, 660 2, 225, 610	1, 820, 409		
Oregon Pennsylvania	12, 134, 290	13, 045, 423	2, 220, 010 15, 743, 790	1, 682, 178 16, 906, 854		
Puerto Rico	239, 610	247, 896	849, 610	531, 867		
Rhode Island	262, 910	2 601, 355	320, 780	558 94		
South Carolina	2 987, 280	2 1, 315, 999	1, 339, 030	558, 94 1, 732, 79		
South Dakota	320, 740	899, 190	408, 730	998.44		
Tennessee	2, 599, 840	4, 237, 351	2 5, 626, 210	8, 312, 97		
Texas	3, 256, 240	2, 625, 281	3, 771, 750	3, 320, 508		
Utah	² 709, 43 0	² 390, 249	² 700, 610	² 444, 856		
Vermont	264, 480	3, 148, 950	232, 770	3, 412, 00		
Virginia	5, 474, 690	5, 606, 470	5, 813, 630	5, 879, 447		
Washington	2, 321, 210	1,849,051	2, 329, 020	2, 020, 44		
West Virginia	3, 194, 980	4, 391, 563	13,808,140	2 4, 477, 82		
Wisconsin Wyoming	3, 097, 230 252, 170	3, 880, 935 346, 018	3, 182, 780 690, 860	3, 564, 049		
Undistributed	1, 273, 990	1, 140, 399	683, 320	668, 069 612, 700		
CHAMPITEMON	1, 210, 000	1, 110, 000	000, 020	014, 104		
	124, 838, 940	139, 255, 046	147, 447, 130	158, 461, 515		

¹ Included under "Undistributed."

² To avoid disclosing confidential information certain State totals are incomplete, the figures not included being combined under "Undistributed."

DIMENSION STONE

The term "dimension stone" is applied to blocks or slabs of natural stone, of which most are cut to definite shapes and sizes. These products are quite distinct from crushed, broken, and pulverized stone, which comprise irregular fragments or grains sized chiefly by mechanical screening or air separation. Crushed and broken stone is

covered in a later section of this chapter.

Dimension-stone producers fall in three main groups upon the basis of plant operation: (1) Those who quarry stone and sell it as rough blocks or slabs; (2) those who quarry stone and manufacture it into finished products; and (3) those who have no quarries but who buy their rough stock and manufacture it into finished products. The Bureau of Mines statistical canvass covers the first and second groups, but as the third group comprises manufacturers rather than quarrymen it is canvassed by the Bureau of the Census. Bureau of Mines statistics are compiled from reports of tonnages and values of original sales, hence they include some material sold as rough blocks and some sold as finished products.

Total sales of dimension stone in 1939 rose 30 percent in quantity and 19 percent in value over 1938. These figures include slate, but details of the slate industry are given in a separate chapter of this volume. All varieties of stone shared the advance except miscellaneous stone, which declined 26 percent in quantity although it gained

22 percent in value.

The following table of salient statistics includes final figures for both 1938 and 1939 and the percentage of change from 1938 for each type of stone by principal products.

Dimension stone sold or used by producers in the United States, 1938-39, by kinds and uses

		1939	
Kind and use	1938	Total	Percent of change
Granite: Building stone: Rough constructionshort tons Value	202, 640	204, 490	+0.9
	\$343, 984	\$410, 395	+19.3
Average per ton Cut stone, slabs, and mill blockscubic feet Value Average per cubic foot	\$1. 70	\$2.01	+18. 2
	967, 410	865, 130	-10. 6
	\$2, 460, 649	\$2, 665, 205	+8. 3
	\$2. 54	\$3, 08	+21. 3
Rubble short tons. Value cubic feet. Value cubic feet.	108, 220	197, 050	+82.1
	\$127, 372	\$226, 675	+78.0
	2, 092, 540	2, 160, 480	+3.2
	\$5, 650, 996	\$5, 664, 543	+.2
Average per cubic foot_ Paving blocks number_	\$2. 70	\$2, 62	-3.0
	4, 165, 230	2, 797, 560	-32.8
	\$452, 542	\$246, 084	-45.6
	894, 970	725, 590	-18.9
Value Total: Quantityapproximate short tons Value	\$742, 489 672, 630 \$9, 778, 032	733, 610 \$9, 837, 553	+9.1 +.6
Basalt and related rocks (trap rock): Building stone: Rough constructionshort tons	7, 970	10, 960	+37. 5
Value	\$11, 654	\$14, 619	+25.4
	\$1, 46	\$1, 33	-8.9
	13, 880	90, 360	+551.0
	\$9, 897	\$38, 405	+288.0
Total: Quantityshort tons Valueshort tons	21, 850	101, 320	+363.7
	\$21, 551	\$53, 024	+146.0

Dimension stone sold or used by producers in the United States, 1938-39, by kinds and uses—Continued

		1939	9
Kind and use	1938	Total	Percent of change
Marble:	207 200		
Building stone (cut stone, slabs, and mill blocks)_cubic feet	687, 290 \$3, 264, 877	1, 046, 830 \$4, 704, 047	+52.3 +44.1
Value	\$4.75 358,390	\$4.49 411,360	-5. 8
	\$1,708,188	\$1,601,032	+14.8 -6.8
Average per cubic foot.	\$4.77	\$3. 89	-18.4
Total: Quantityapproximate short tons_ Value	89,000 \$4,973,065	123, 740 \$6, 305, 079	+39.0 +26.8
Limestone:			
Building stone: Rough construction short tons	166 260	220 640	+92.9
Rough constructionshort tons	166, 260 \$316, 772	320, 640 \$424, 230	+33.9
Average per toncubic feet	9 81 91	\$1.32 6,857,380	-30.9 +35.0
Value	5, 077, 950 \$4, 350, 724	\$5, 978, 450 \$0. 87	+37.4
Cut stone, slabs, and mill blocks cubic feet. Value Average per cubic foot short tons. Value cubic feet. Value cubic feet.	\$0.86 155.370	\$0.87 221,060	+1.2 +42.3
Value	1 \$194,621	\$189, 597	-2.6
Valuecubic feet	95, 880 \$74, 560	168, 480 \$85, 565	+75.7 +14.8
Total:	4.1,000	400,000	714.0
Quantityapproximate short tons_ Value	704, 080	1, 060, 670	+50.6
Value	\$4, 936, 677	\$6,677,842	+35.3
Sandstone:			
Building stone: Rough constructionshort tons	64 200	65 610	
Value	64, 290 \$190, 419 \$2. 96	65, 610 \$190, 940 \$2, 91	+2.1 +.3
Average per toncubic feet	\$2. 96 332, 530	\$2. 91 530, 960	-1.7 +59.7
Value	\$440, 444	\$966, 057	+119.3
Value Average per cubic foot short tons	\$1.32	\$1.82	+37.9
	10, 990 \$23, 703 135, 700	10, 380 \$15, 245	-5.6 -35.7
Paving blocksnumber Value Curbingcubic feet	135, 700 \$10, 187		
Curbingcubic feet	480, 950	² 449, 670	
Value Cubic feet Value Cubic feet	\$474, 602 372, 050	² \$456, 210 503 180	+59. 4
Value	480, 950 \$474, 602 372, 050 \$334, 322	² 449, 670 ² \$456, 210 593, 180 \$327, 743	-2. 0
Total:			
Quantityapproximate short tons Value	166, 120	195, 560 \$1, 956, 195	+17.7
· · · · · · · · · · · · · · · · · · ·	\$1, 473, 677	\$1, 956, 195	+32.7
Miscellaneous stone: 3 Building stone	222 700	601 000	1.00.0
Value	332, 700 \$515, 037	601, 880 \$654, 342 \$1. 09	+80.9 +27.0
Rubble short tone	\$1.55	\$1.09 30,390	-29.7
Value	81, 600 \$71, 203	\$55, 251	-62.8 -22.4
Valuecubic feet	20, 410 \$8, 920	\$55, 251 27, 750 \$13, 740	+36.0 +54.0
Total:	φο, σ20	φ15, 740	+04.0
Quantityapproximate short tons	112 440	83, 460	-25, 8
Value	112, 440 \$595, 160	\$723, 333	+21.5
Total, exclusive of slate:			
Quantityapproximate short tons Value	1, 766, 120 \$21, 778, 162	2, 298, 360 \$25, 553, 026	+30.1
	\$21, 778, 162	\$25, 553, 026	+17.3
Slate as dimension stone 4approximate short tons Value	143, 690 \$3, 165, 351	179, 600 \$4, 101, 125	+25.0 +29.6
Total, including slate:	40, 100, 001	ψ1, 101, 120	T48. 0
Quantityapproximate short tons-	1, 909, 810 \$24, 943, 513	2, 477, 960 \$29, 654, 151	+29.7
Valueapproximate short tons	I BUS ATT		

To avoid disclosing confidential information, paving blocks in 1939 are included under "Curbing."
 Includes paving blocks.
 Includes soapstone, mica schist, volcanic rocks, argillite, and other varieties that cannot be classified in the principal groups.
 Details of production, by uses, are given in the chapter on Slate in this volume.

BUILDING STONE

The largest use of dimension stone is for building. The following table gives the quantity and value of each kind of stone used for construction in 1938 and 1939.

Building stone sold or used by producers in the United States in 1939, by kinds

				Ro	ugh		
Kin	d		Consti	ruction	Architectural		
			Cubic feet	Value	Cubic feet	Value	
GraniteBasalt			2, 241, 800 127, 910	\$410, 395 14, 619	273, 140	\$253, 537	
Marble Limestone Sandstone Miscellaneous			3, 872, 640 836, 130 601, 880	424, 230 190, 940 654, 342	313, 270 3, 367, 550 291, 110	664, 998 1, 426, 020 360, 572	
			7, 680, 360	1, 694, 526	4, 245, 070	2, 705, 127	
		Fini	shed				
Kind	Sav	ved 1	Cı	ıt ¹	- Total		
	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	
GraniteBasalt		\$932, 540	294, 520	\$1, 479, 128	3, 106, 930 127, 910	\$3, 075, 600 14, 619	
Marble Limestone Sandstone Miscellaneous		464, 900 925, 250 153, 332	501, 520 2, 059, 130 118, 850	3, 574, 149 3, 627, 180 452, 153	1, 046, 830 10, 730, 020 1, 367, 090 601, 880	4, 704, 047 6, 402, 680 1, 156, 997 654, 342	
	2, 081, 210	2, 476, 022	2, 974, 020	9, 132, 610	16, 980, 660	16, 008, 285	

¹ For granite, sawed stone corresponds to dressed stone for construction work (walls, foundations, bridges) and cut stone to architectural stone for high-class buildings.

GRANITE

Sales of granite as dimension stone were 9 percent greater in quantity and 1 percent greater in value in 1939 than in 1938. The gains were chiefly in rough monumental and rubble. Both paving blocks and curbing showed large declines in 1939.

Granite (dimension stone) sold or used by producers in the United States in 1939, by States and uses

					Build	ing					Monume	ntal							
		Rough		· n-	Dressed Rubble		D	Rough			Paving blocks		Cur	bing	r	otal			
State	Active		ruction	Archit	ectural	Di	esseu	, Ru	0016	R	Jugu	1	Oressed						
	plants	Short tons	Value	Cubic feet	Value	Cubic feet	Value	Short tons	Value	Cubic feet	Value	Cubic feet	Value	Number	Value	Cubic feet	Value	Short tons (ap- prox- imate)	Value
Arkansas California Colorado Connecticut Delaware	1 13 9 7	(1) (1) (1) (1) (1)	(1) (1) (1) \$3,002 (1)	(1) (1) 1,870	(1) (1) \$4,752	(1) (1)	(1)	(1) 6, 720 (1)	(1) \$10, 513 (1)	14, 410 1, 680 4, 520	\$32, 702 2, 417 18, 053	7, 360 1, 760 (¹)	\$27, 924 5, 251 (¹)			(¹) 11,710	(¹) \$15,304	(1) 3,080 480 10,450	9, 23 126, 62
Georgia Maine Maryland	21 17 8	16, 240 22, 700 49, 270	15, 471	47, 420 (1)	40, 010 (1)	(1) 151, 070	(1) \$644, 290		18, 617	550, 680 11, 390	701, 870 11, 354	68, 600 560	219, 556 1, 750	(¹) 1, 681, 730	(1) \$179,176	67, 490 5, 940 97, 910	84, 584 6, 596 22, 623	105, 750 55, 810	958, 29
Massachusetts Minnesota Missouri Montana	23 25 4	35, 100 4, 190 (1)			65, 908 48, 507 (1)	218, 590 19, 500	595, 237 90, 351		51, 607	31, 920 173, 410 7, 400 2, 260	72, 635 203, 722 15, 360 3, 683	46, 320	(1) 281, 674 3, 697 4, 060		(1)	353, 700	352, 693	135, 470 26, 570 1, 780	1, 320, 73 626, 58 22, 66
New Hampshire New Jersey New York	10 1 5	(1)	(1)	6,740	7, 080	56, 210 7, 560	324, 007 31, 000	2, 730 (1) (1)	7, 693 (1) (1) (1)	5, 850	10, 494		7, 318			6, 640		250 16, 420 (1) 10, 330	384, 14
orth Carolina klahoma regon	9 9	(1)	(1)	(i)	(1) (1) (1)	40, 270	187, 052	(i)		43, 470 16, 960	63, 361 45, 914		42, 708 126, 582	(1) (1)	8	144, 960 (1)	113, 007 (1)		450, 7
ennsylvania hode Island outh Carolina	15 5 3	41, 360	71, 643	(1)	(1) (1) (1)			67, 820 (1) (1)	65, 416 (1) (1)	17, 360 39, 020 (1)	27, 235 137, 941 (1)	28, 200 (1) (1)	116, 984 (1) (1)	(1)	(1)	1,920	968	113, 200 5, 200 12, 700	282, 9 167, 5 229, 4
outh Dakota exas ermont irginia	6 6 10		(1)	17, 500 (¹)	12, 144 (¹)	16, 260 (1) 22, 440	91, 560 (1) 117, 855	(1)	(1)	61, 110 11, 710 685, 600	33, 449 17, 455 2, 031, 251	(1)	425, 947 (1) 20, 000					12,300 3,980 58,640	40, 9 2, 169, 1
Vashington Visconsin Indistributed	4 14	(1) (1) 24, 420	(1) (1) 46, 539	25, 600 74, 610	(1) 18, 092 57, 044	4,000 56,090	38, 974 291, 342	(1) (1) 51, 710	(1) (1) 72, 829	(1) (1) 15, 920 154, 910	(1) (1) 16, 881 227, 424	2, 850 42, 180 23, 820	26, 946 541, 485 139, 460		(1) (1) 66, 917	(1) (1) 35, 320	(1) (1) 19, 773	(1) 940 14, 730 11, 380	645, 6
hort tons (approxi-	238	204, 490	410, 395	273, 140	253, 537	591, 990	2, 411, 668	197, 050		1, 849, 580	3, 673, 201	310, 900	1, 991, 342	2, 797, 560	246, 084	725, 590	624, 651		
mate)		(3)		21,560		48, 820				150, 800		25,600		25, 580		59, 710			

¹ Included under "Undistributed."

^{2 2,241,800} cubic feet (approximate).

The following tables show sales of monumental granite in the Quincy (Mass.) and Barre (Vt.) centers.

Monumental granite sold by the quarrymen at Quincy, Mass., 1935-39 1

Year	Active plants	Cubic feet	Value	Year	Active plants	Cubic feet	Value
1935 1936 1937	3 3 3	63, 450 46, 570 36, 020	\$95, 529 85, 013 80, 248	1938 1939	3 3	33, 360 25, 620	\$73, 832 61, 955

Quincy granite is sold also for construction, curbing, rubble, riprap, and crushed stone.

Monumental granite sold by the quarrymen in the Barre district, Vermont, 1935-39 1

Year	Cubic feet	Value	Year	Cubic feet	Value
1935 1936 1937	676, 820 771, 230 847, 740	\$1,844,006 2,109,526 2,390,377	1938 1939	605, 660 684, 310	\$1, 849, 607 2, 029, 801

¹ Barre granite is sold also for construction, paving blocks, and crushed stone.

Estimated output of monumental granite in the Barre district, Vermont, 1937-39

	1937	1938	1939
Total quarry output, rough stockcubic feet_	765, 390	589, 440	614, 256
Shipped out of Barré district in roughdodo	153, 078	117, 888	122, 852
Manufactured in Barre districtdodo	612, 312	471, 552	491, 404
Light stock consumed in districtdo		294, 720	307, 128
Dark stock consumed in districtdo	287, 021	176, 832	184, 276
Number of cutters in district	1,550	1, 550	1, 550
Average daily wage		\$8.00	\$8.50
Average number of days worked	230	220	220
Total pay roll for man	\$2,852,000	\$2,813,250	\$2, 898, 500
Total pay roll for year Estimated overhead	1, 426, 000	1, 406, 625	
Estimated overhead Estimated value of light stock	1, 554, 699	1, 176, 987	1, 449, 250 1, 247, 714
Estimated value of dark stock.	1, 234, 191	934, 347	990, 49
Estimated value of dark stock	484, 263	372, 938	
Output from saws	161, 421	124, 312	388, 639
Output from saws	101, 421	124, 312	129, 546
Total value of granite	7, 712, 574	6, 828, 459	7, 104, 14

¹ Through the kindness of the Granite Manufacturers' Association, Barre, figures covering the entire granite industry of the Barre district are given in this table to supplement figures of sales reported by quarrymen.

BASALT AND RELATED ROCKS (TRAP ROCK)

Because of its dark color, basalt is not used extensively for building. However, its use as rubble increased substantially in 1939. Some of these dark rocks are used for memorials, but such stones are classed commercially as black granites, therefore they are included with the figures for monumental granite.

Basalt and related rocks (trap rock) (dimension stone) sold or used by producers in the United States in 1939, by States and uses

			Buildir	Total				
State	Active plants	Rough co	nstruction	Rul	oble	Total		
		Short tons	Value	Short tons	Value	Short tons	Value	
California Connecticut Hawaii Idaho Maryland New Jersey Oregon Pennsylvania Washington Undistributed	1 2 3 1 2 3 2 1 2	(1) (1) (1) 1,990 (1) 8,970	(1) (1) (1) \$6, 385 (1) 8, 234	(1) (1) (1) (1) (1) (1) 90, 360	(1) (1) (1) (1) (1) (1) \$38, 405	(1) (1) (1) (1) (1) 18, 190 1, 990 (1) 81, 140	(1) (1) (1) (1) (1) (1) \$9,926 6,385 (1) 36,713	
	17	² 10, 960	14, 619	90, 360	38, 405	101, 320	53, 024	

¹ Included under "Undistributed."

MARBLE

Sales of marble in 1939 increased 39 percent in quantity and 27 percent in value over 1938. The greatest advances were in rough and finished exterior building marble. Much larger quantities of rough monumental stone were sold, but sales of finished memorial stone declined. The principal gains in value of sales were in Tennessee, Georgia, Missouri, Vermont, and Massachusetts.

Marble (dimension stone) sold by producers in the United States, 1938-39, by uses

	19	38	19	39
Use	Cubic feet	Value	Cubic feet	Value
Building stone: Rough:				
ExteriorInterior	13, 880 145, 650	\$24, 424 351, 976	179, 520 1 133, 750	\$358, 053 1 306, 945
Finished: Exterior Interior	258, 030 269, 730	1, 183, 841 1, 704, 636	412, 130 321, 430	1, 945, 441 2, 093, 608
Total exterior	271, 910 415, 380	1, 208, 265 2, 056, 612	591, 650 455, 180	2, 303, 494 2, 400, 553
Total building stone	687, 290	3, 264, 877	1, 046, 830	4, 704, 047
Monumental stone: Rough Finished	69, 850 288, 540	85, 181 1, 623, 007	192, 110 219, 250	241, 828 1, 359, 204
Total monumental stone	358, 390	1, 708, 188	411, 360	1, 601, 032
Total building and monumental	1, 045, 680 89, 000	4, 973, 065	1, 458, 190 123, 740	6, 305, 079

¹ Includes onyx for the manufacture of mantels, lamp bases, desk sets, clock cases, and novelties.

² 127,910 cubic feet, approximate.

Marble (dimension stone) sold by producers in the United States in 1939, by States and uses

		Build	ling 1	Monu	mental		Total		
						Quan	itity		
State	plants	Active plants Cubic feet		Cubic feet	Value	Cubic feet	Short tons (ap- proxi- mate)	Value	
Alabama	3	37, 320 2, 710	\$233, 728 8, 537	18, 350	\$133, 979	55, 670 2, 710	4, 770 220	\$367, 707 8, 537	
ArkansasCalifornia	4	21,890	27, 310 (3)	(3)	(3)	(3)	(3) (3) (2)	(3)	
Colorado	i	(3)	(3)	(3)	(3)	8	(3)	(3)	
Georgia	1	165, 540	677, 747	264, 830	787, 213	430, 370	36, 590	1, 464, 960	
Maryland	. 1	960	8,675	710	5, 546	1,670	150	14, 221	
Massachusetts	2	11, 550 4, 600	24, 478 22, 500	6, 220	50, 565	17, 770 4, 600	1, 510 340	75, 043 22, 500	
Minnesota	4	206, 020	524, 867	8, 410	18, 603	214, 430	17, 910	543, 470	
New York	2	(3)	(3)	(3)	(3)	(3)	(3)	(3)	
North Carolina	1	1,010	7, 250	6, 100	49, 238	7, 110	610	56, 488	
Tennessee			2, 518, 861	3, 300	17, 763	440,070	37, 460	2, 536, 624	
Utah 2	1	1,660	3, 355			1,660	130	3, 355	
Vermont	6	131, 010	530, 215	97, 540	508, 136	228, 550	19, 480 (³)	1, 038, 351	
Virginia Undistributed	1	25, 790	116, 524	5, 900	29, 989	53,580	4, 570	173, 823	
Short tons (approximate)	38	1, 046, 830 88, 740	4, 704, 047	411, 360 35, 000	1,601,032	1, 458, 190	123, 740	6, 305, 079	

¹ Includes 10,540 cubic feet of serpentine marble (verde antique) valued at \$119,797, which was sold as

building and ornamental stone.

Onyx rough blocks for the manufacture of mantels, lamp bases, desk sets, clock cases, and novelties.
Included under "Undistributed."

LIMESTONE

Limestone is used more extensively than any other type of building stone in the United States, and Indiana supplied 77 percent of the total architectural limestone (rough and finished) sold in 1939. All branches of the limestone industry showed decisive gains in 1939 compared with 1938. Sales of rough architectural stone increased 37 percent and sales of cut stone 33 percent. The average price per cubic foot of cut and sawed stone was \$1.30, which was 2 cents lower than in 1938. The total of all products sold in 1939 was 51 percent greater in quantity and 35 percent greater in value than in 1938.

Limestone (dimension stone) sold or used by producers in the United States in 1939, by States and uses

					Buil	ding							
			F	lough		Finished (Rubble		Flagging		Total	
State	Active plants	Constr			sawed) Rubble								
		Short tons	Value	Cubic feet	Value	Cubic feet	Value	Short tons	Value	Cubic feet	Value	Short tons (approxi- mate)	Value
Alabama	2	1 700		(1)	(1)	(1)	(1)		****		40.007	(¹) 3, 210	(1) \$8,717
California Colorado	8	1,720	\$4,844	2, 420	\$4,832			1,090	\$876	5,000	\$2,997	3,210	\$8,717 4,832
Florida	4	(2)	8			(1)	(1)	(1)	(1)	(1)	(1)	7,200	114,873
Georgia Illinois	10	164, 400	191, 979					2 080	2,884	21, 650	12, 234	(1) 170, 520	(1) 207, 097
Indiana	10 23	49, 400	25, 833	2, 462, 860	845, 252	2, 812, 350	\$3, 255, 209	2,080 (1)	(i)			432,040	4, 127, 310
Iowa Kansas	5	(1)	(1)	32, 310	7, 802			2, 510	3, 081 56, 144	95555	955 55	3, 320	4,794
Kentucky	9	4, 160	3, 601	(1)		(1) (1)	(1)	46, 330 6, 540	2, 808	83	8	76, 190 11, 010	146, 563 10, 108
Maryland	. 3	8	(1)	(4)	(1) (1)			(1)	(1)	(1)	(1)	2,970	13,083
Michigan Minnesota	2 7	6, 030	(1) 17, 143	(1)	(1)	46, 100	130,000	(1) 2, 980	(¹) 4,313			(1) 19, 570	(1) 201, 45
Missouri	17	2,290	3, 387			(1)	(1)	44, 650	60, 599	(1)	(1)	49,090	80. 24
Montana	1	25		(1)	(1)							(1)	(1)
Nebraska New York	2 8	(1) 7, 530	(1) 8, 169					1,780	1, 579			(¹) 9, 310	(1) 9,748
Ohio	17	15,800	20, 215					320	212	3,770	3, 415	17, 630	23, 84
Oklahoma Pennsylvania		5, 640	7,702					(1) 4,750	(1) 4,012	4, 100	653	(1) 10, 730	(1) 12, 367
Puerto Rico	í	(1)	(1)					1, 100	7,012			(1)	(1)
South Dakota	1 2								75	(1)	(1)	(2)	(i)
Tennessee Texas	4	(1)	(1) (1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	71, 460	(1) 823, 894
Vermont	i							(1)	(1)			(1)	(1)
Virginia Wisconsin	17	1,280 16,520	641 54, 458	225, 000	164, 701	72, 330		0.000	10 557		19, 205	i, 280	64
Undistributed	1/	45, 870	86, 258	644, 960	403, 433	559, 050	85, 589 1, 081, 632	9, 230 98, 800	18, 557 34, 532	74, 7 50 59, 210	19, 205 47, 061	55, 520 119, 430	342, 510 545, 76
Short tons (approximate)	171	320, 640 (2)	424, 230	3, 367, 550 247, 420	1, 426, 020	3, 489, 830 254, 610	4, 552, 430	221, 060	189, 597	168, 480 16, 940	85, 565	1,060,670	6, 677, 84

¹ Included under "Undistributed."

^{3,872,640} cubic feet, approximate.

The following tables show detailed figures, by uses, for limestone produced near Bedford and Bloomington, Ind.; Carthage, Mo.; and Mankato and Kasota, Minn.

Limestone sold by producers in the Indiana oolitic-limestone district, 1935-39, by classes

								·				
					C	onstr	uction	n				
	Year	I	Rough block	-	Sawed	and s	emifir	nished	Cut			
		Cubic	feet Valu	feet Value		feet	feet Value		Ci	ibic feet	Value	
1935		2, 346 2, 152 2, 090	, 380 698, , 560 727, , 110 619,	698, 231 727, 425 619, 602		591, 850 , 028, 740 957, 240 914, 180 , 277, 730		\$359, 942 577, 368 633, 350 561, 767 784, 247		587, 870 456, 190 332, 330 147, 620 534, 530	\$963, 562 1, 861, 947 2, 168, 229 2, 044, 216 2, 470, 724	
The second secon	Year	Const	ruction—Cor Total	tinu	ed		Othe	r uses	-	То	otal	
	Teal	Cubic feet	Short tons (approxi- mate)	1	/alue		nort	Valt	10	Short tons (approxi- mate)	Value	
1936 1937 1938		2, 764, 870 4, 831, 310 4, 442, 130 4, 151, 910 5, 275, 120	207, 000 350, 270 322, 050 310, 000 383, 000	3, 3, 3,	747, 245 137, 546 529, 004 225, 585 100, 223	178 139 4	0, 000 8, 150 9, 250 1, 610 7, 680	\$107, 0 132, 8 68, 3 26, 4	898 253 595	367, 000 528, 420 461, 300 351, 610 630, 680	\$1, 854, 245 3, 270, 444 3, 597, 257 3, 252, 180 4, 217, 423	

Indiana limestone sold by mills in the district not operated by quarry companies and by mills of quarry companies from stock obtained at quarries other than their own, 1935-39, by classes

Year	Sawed a fin i s	nd semi- hed	С	ut	Total		
Toal	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	
1935	59, 950 461, 560 168, 340 110, 670	\$23, 209 328, 015 93, 815 69, 896	536, 680 1, 392, 150 1, 142, 249 1, 136, 410	\$832, 412 1, 956, 641 1, 931, 488 1, 703, 254	596, 630 1, 853, 710 1, 310, 589 1, 247, 080	\$855, 621 2, 284, 656 2, 025, 303 1, 773, 150	
1939: Mills not operated by quarry companies Mills of quarry companies from stock obtained at quarries other than	38, 550	15, 221	994, 230	1, 613, 772	1 , 0 32 , 780	1, 628, 993	
their own	69, 810	35, 117	845, 290	1, 352, 758	915, 100	1, 387, 875	
	108, 360	50, 338	1, 839, 520	2, 966, 530	1, 947, 880	3, 016, 868	

Limestone and marble sold by producers in the Carthage district, Jasper County, Mo. 1935-39, by classes

		Dim	ension st	one (rou				_				
Year	Buil	ding	Monu	mental		Total		Other	uses	Total		
Year	Cubic feet	Value	Cubic feet	Value	Cubic feet	Short tons (ap- proxi- mate)	Value	Short tons	Value	Short tons (ap- proxi- mate)	Value	
1935 1936 1937 1938 1939	71, 930 116, 970 128, 570 113, 940 180, 040		8, 450	\$9, 246 10, 998 14, 912 18, 831 18, 603	74, 550 122, 470 136, 100 122, 390 188, 440	6, 220 10, 220 11, 380 10, 220 15, 730	352, 952 319, 767	69, 370	\$66, 211 109, 028 128, 617 118, 349 94, 215	79, 590 107, 220 75, 780	481, 569	

Limestone and marble sold by producers at Mankato and Kasota, Minn., 1935-39

	Building st	tone (rough ressed)	Other	r uses	Total		
Year	Cubic feet	Value	Short tons	Value	Short tons (approxi- mate)	Value	
1935	83, 020 157, 130 143, 580 123, 780 122, 030	\$111, 396 332, 699 251, 164 199, 997 175, 772	35, 320 51, 090 36, 860 (1) 14, 720	\$21, 530 54, 163 40, 106 (1) 15, 830	41, 410 68, 570 47, 750 2 9, 990 24, 480	\$132, 926 386, 862 291, 270 199, 997 191, 602	

¹ Bureau of Mines not at liberty to publish figures.

SANDSTONE

Sales of sandstone increased 18 percent in quantity and 33 percent in value in 1939 over 1938. Rubble and stone for rough construction showed little change, but sales of rough architectural stone increased more than fourfold. Dressed stone (sawed and cut) declined 11 percent in quantity but increased 52 percent in value. Sandstone paving stones have receded to such insignificance that a column for them is no longer carried in the table. Sales of sandstone flagging increased considerably in quantity, but the unit value was much lower than in 1938.

Sales of bluestone shown in the second table have declined greatly, particularly in Pennsylvania.

² Exclusive of "Other uses."

Sandstone (dimension stone) sold or used by producers in the United States in 1939, by States and uses

						Buil	ding										
			Ro	ough	,	Dressed				Rubble		Curbing		Flagging		Total	
State	Num- ber of plants	Const	ruction	Archit	ectural	Sav	wed	ď	ut	Ku	ppie						
		Short tons	Value	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	Short	Value	Cubic feet	Value	Cubic feet	Value	Short tons (approx- imate)	Value
Arizona	1 7 3 2	(¹) 1,540 (¹)	\$5,596 (1) (1)	(i)	(1)					(1) 1,460 (1)	(1) \$1,821 (1)			23, 940 (1)	\$10,375	(1) 4,970 2,750 (1)	(1) \$17, 792 14, 108 (1)
IdahoIndianaKansas	1 1 6	(¹) 29, 480	(1)							(1)	(1)			(1) (1) 45, 750	(1) (1) 16, 034	(1) (1) (1) 33, 140	(1) (1) (1) 46, 519
Massachusetts Minnesota New Jersey New York	1 1 1 22	(1) (1) 3,510	(1) (1) 13, 480	(1) 4, 120	(1) \$4, 210	(1)	(1)	(1)	(1)	1, 480	2, 580	2 183,150	2 \$192,486	(1) 	23, 040	(1) (1) (1) 25, 350	(1) (1) (1) 292, 564
North Carolina Ohio Pennsylvania Tennessee	2 8 22 3 8	7, 060 11, 200 (1) 2, 770	76, 635 20, 693	258, 960	324, 960	109,650	\$120, 327	64, 430	\$182,606	470 5, 090 (1)	1,810 5,141 (¹)	242, 300 24, 220	239, 822 23, 902	302, 000 85, 780 31, 720	(1) 112,805 88,470 51,748	78, 390 25, 360 5, 410	(1) 1, 058, 965 138, 206 70, 630
Virginia Washington Wisconsin Wyoming	2 1	2, 770 2, 750 620	3,608 5,500 2,500	7, 030 (1)	7, 032 (¹)			36, 440	187, 374					28, 240 4, 500	5, 675 5, 082	4, 970 6, 080 1, 180	9, 283 197, 956 9, 532
Undistributed		6, 680	32, 443	21,000	24, 370	11, 350	33, 005	17, 980	82, 173	1,880	3,893			29, 760	14, 514	7, 960	100, 640
Short otns (approxi- mate)	94	65, 610 (³)	190, 940	291, 110 21, 340	360, 572	121, 000 8, 910	153, 332	118, 850 9, 110	452, 153	10, 380	15, 245	449, 670 34, 580	456, 210	593, 180 45, 630	327, 743	195, 560	1, 956, 195

¹ Included under "Undistributed."

² Includes a small quantity of paving blocks.

^{836,130} cubic feet, approximate.

Bluestone (dimension stone) sold or used by producers in the United States (all from New York and Pennsylvania) in 1939, by uses 1

	Building		Cur	bing	Flag	ging	Total			
State	Cubic feet	Value	Cubic feet	Value	Cubic feet	Value	Cubic feet	Short tons (approxi- mate)	Value	
New YorkPennsylvania	20, 850 (²) 20, 850	\$60, 059 (2) 60, 059	119, 020 2 9, 220 128, 240	\$148, 121 2 8, 902 157, 023	39, 570 65, 780 105, 350	\$20, 365 81, 958 102, 323	179, 440 75, 000 254, 440	15, 170 6, 340 21, 510	\$228, 545 90, 860 319, 405	

MISCELLANEOUS STONE

The following table gives data on certain types of dimension stone not included in the major groups already discussed. The principal varieties are mica schist, argillite, various light-color volcanic rocks, soapstone, and greenstone.

Miscellaneous varieties of stone (dimension stone) sold or used by producers in the United States in 1939, by States and uses

			Buil	lding					
State	Active plants		h and ssed	Rul	oble	Flag	gging	Total	
		Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Arizona. California. Florida. Georgia. Maryland. New Jersey. New York Ohio. Pennsylvania. Puerto Rico Virginia. Washington Undistributed.	1 6 1 3 5 2 1 1 1 9 1 2 1	(1) 1, 300 4, 880 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(1) \$4, 226 500 13, 658 (1) (1) (2) (45, 130 (1) (1) 590, 828 654, 342	(1) (2) (1) (1) (1) (1) (1) (27, 140 (30, 390	(1) (1) \$5, 154 (1) (1) (1) 50, 097 55, 251	(¹) 1, 280 350 (¹) (¹) 640	(1) \$6, 625 1, 746 (1) 5, 369 13, 740	(1) 1,920 (1) 1,580 8,480 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(1) \$5,023 (1) 7,125 20,558 (1) (1) 45,130 (1) (1) (1) (4),497 723,333

¹ Included in figures for sandstone.
² A small amount of rough blocks included under curbing.

Included under "Undistributed."
 Building stone, approximately 601,880 cubic feet; flagging, approximately 27,750 cubic feet.

TRENDS IN THE USE OF BUILDING AND MEMORIAL STONE

Despite the moderate decline during 1939 in nonresidential building, where stone finds its chief market, all branches of the building-stone industry made encouraging gains, as indicated in figures 1 and 2. Sales of building marble made the most substantial gain, attaining the highest value since 1933. The value of sandstone sales in 1939 was higher than in any year since 1931, and sales of limestone reached the same value as in 1933. Granite recovered its loss of 1938, the value of sales in 1939 being about the same as in 1937. This substantial upward trend in the use of natural stone indicates wider recognition of its endurance, dignity, substantiality, fire resistance, and low

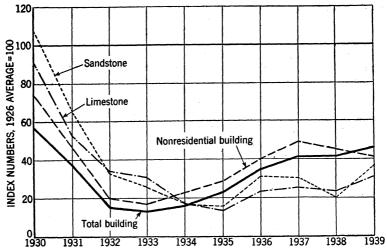


FIGURE 1.—Sales value of limestone and sandstone compared with total building and nonresidential building, 1930-39. To facilitate comparison, unlike units have been reduced to percentages of the 1926 value. Stone figures include rough and dressed stone; building contracts are from F. W. Dodge Corporation.

maintenance expense. Further gains are to be expected if nonresidential building experiences an upward trend.

Sales of memorial granite in 1939 were slightly higher both in quantity and value than in 1938. Sales of memorial marble increased in quantity but declined in value.

NEW DEVELOPMENTS

Prof. George W. Bain, of Amherst College, Amherst, Mass., has developed a new technique for determining the lasting qualities of marbles, for assisting fabricators in obtaining maximum translucence and weather resistance and for studying the effects of fabricating methods on marble endurance and appearance. These studies are based upon knowledge of crystallographic orientation of marble grains,

STONE 1177

size of intergranular spaces, index of irregularity, and other physical phenomena. They illustrate how a skilled geologist, chemist, and physicist may help in the solution of problems relating to utilization and fabrication, not only of marble but of many industrial minerals.

The Shawnee Stone Co., a producer of building limestone near Bloomington, Ind., is employing wire saws successfully in its quarries. Several other companies in the district are considering the use of this equipment.

The Georgia Marble Co. has changed from open-pit to underground operation at one of its quarries. The floor of the new drift will

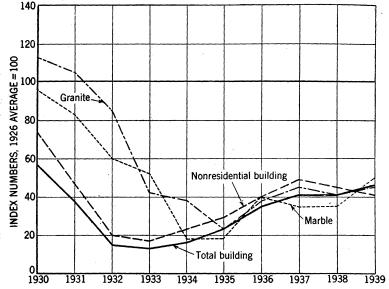


FIGURE 2.—Sales value of building marble and granite compared with total building and nonresidential building, 1930-39. To facilitate comparison, unlike units have been reduced to percentages of the 1926 value. Stone figures include rough and dressed stone; building contracts are from F. W. Dodge Corporation.

parallel the color banding, thus improving the pattern of the finished product and conserving stone. Markets for building marble in the South have improved, but demands for monuments have declined.

CRUSHED AND BROKEN STONE

More than 145,000,000 tons of crushed and broken stone were sold in 1939, exclusive of that used for making cement and lime. Sales increased 18 percent in quantity and 13 percent in value in 1939 compared with 1938. The largest proportional gains were in metallurgical and refractory stone.

The following table of salient statistics shows the quantity and value of crushed and broken stone sold during 1938 and 1939, by uses. Detailed data on asphaltic stone and slate granules and flour are given in the chapters of this volume on Asphalt and Slate.

Crushed and broken stone sold or used by producers in the United States, 1938-39, by principal uses

		1938			1939	Value Separate				
Use		Value			Value	3				
•	Short tons Total		Average	Short tons	Total	Average				
Concrete and road metal	88, 787, 080 5, 975, 970	\$84, 212, 446 4, 554, 775	\$0.95 .76	96, 894, 220 6, 996, 800	\$88, 988, 217 4, 970, 058	\$0. 92				
Metallurgical	9, 702, 860 3, 634, 050	6, 943, 429 1, 743, 173	.72 .48	17, 287, 790 4, 655, 960	12, 632, 243 2, 100, 535	.73				
Riprap Agricultural Refractory (ganister, mica	6, 210, 520 4, 367, 410	6, 995, 418 5, 637, 485	1. 13 1. 29	5, 811, 740 5, 459, 260	6, 592, 827	1.21				
schist, dolomite, soapstone) Asphalt filler Calcium carbide works	659, 690 288, 590 246, 010	991, 765 789, 587 137, 522	1. 50 2. 74 . 56	1, 492, 310 265, 710 274, 890	2, 044, 054 676, 978 233, 085	1. 37 2. 55				
Sugar factoriesGlass factories	619, 910 170, 560	878, 028 290, 297	1. 42 1. 70	621, 730 240, 840	853, 235 394, 727	1. 37 1. 64				
Paper millsOther uses	223, 450 2, 186, 720	373, 207 3, 929, 752	1. 67 1. 80	302, 620 4, 844, 900	7, 082, 719	1. 01				
Portland cement (including	123, 072, 820	117, 476, 884	. 95	145, 148, 770	132, 908, 489	.92				
"cement rock")1	26, 193, 000	(3)		30, 463, 000						
Total stone	6, 694, 000 155, 960, 000	(3)		8, 509, 000 184, 121, 000	(3)					
Asphaltic stoneSlate granules and flour	2 449, 091 349, 000	\$ 2, 219, 159 2, 489, 962	4.94 7.14	422, 484 351, 780	2,007,810 2,581,089	4.75				

¹ Value reported as cement in chapter on Cement.

The following tables show the tonnage and value of stone used for concrete aggregate, road construction, and railroad ballast for a series of years and by States for 1939.

Concrete and road metal and railroad ballast sold or used by producers in the United States, 1935-39

	Concrete an	d road metal	Railroad	l ballast	Total		
Year	Short tons		Short tons	Value	Short tons	Value	
1935	49, 487, 510 79, 336, 740 80, 271, 900 88, 787, 080 96, 894, 220	\$44, 888, 513 76, 095, 094 76, 972, 465 84, 212, 446 88, 988, 217	5, 267, 010 7, 934, 080 8, 160, 670 5, 975, 970 6, 996, 800	\$4, 011, 469 6, 022, 693 5, 852, 143 4, 554, 775 4, 970, 058	54, 754, 520 87, 270, 820 88, 432, 570 94, 763, 050 103, 891, 020	\$48, 899, 982 82, 117, 787 82, 824, 608 88, 767, 221 93, 958, 275	

Revised figures No value available for stone used in manufacture of cement and lime.
 Value reported as lime in chapter on Lime.

Concrete and road metal and railroad ballast sold or used by producers in the United States in 1939, by States

Ø4-4-	Concrete an	d road metal	Railroad	l ballast	То	tal
State	Short tons	Value	Short tons	Value	Short tons	Value
Alabama	477, 270	\$389, 198			477, 270	\$389, 198
Alaska	(1)	(1)	<u> </u>		(1)	(1)
Arizona	589, 780	563, 836	1, 160	\$577	(¹)′ 590, 940	564, 413
Arkansas	2 229, 990	239, 371	2 6, 690	² 4, 486	572,460	505, 191
California	4, 295, 210	2, 785, 444	2 237, 280	² 113, 149	3 4, 532, 490	2 2, 898, 593
Colorado	523, 050	595, 728	(1)	(1)	523,050	² 595, 728
Connecticut		2 1, 524, 691	150, 180	126, 755	2 1, 658, 920	² 1, 651, 446
Delaware		1 007 055			2 1, 186, 410	(1) 2 1, 087, 958
Florida	1, 186, 410	1,087,955	(1) 128, 560	(1) 64, 600	² 1, 643, 530	2 1, 799, 111
Georgia		2 1, 734, 511 566, 952	(1)	(1)	2 362, 360	² 566, 952
Hawaii	1 500 050	1, 109, 691	(-)	(-)	1, 582, 850	1, 109, 691
Illinois		5,728,042	239, 220	161, 044	6, 454, 370	5, 889, 086
Indiana	3,087,540	2,732,149	81, 350	61, 827	3, 168, 890	2, 793, 976
lowa	5 847 660	3,899,875	79, 860	46,010	5, 927, 520	3, 945, 88
Kansas		2 3, 969, 512	122, 410	63, 537	2 3, 035, 690	² 4, 033, 049
Kentucky	3, 488, 020	3, 434, 494	522, 330	258, 654	2 4, 010, 350	² 3, 693, 148
Louisiana		49,048			97, 410	49,048
Maine		79, 880			62,070	79, 880
Marvland	² 720, 600	2 817, 795	61, 460	61, 465	2 782, 060	2 879, 260
Massachusetts	2 1, 808, 200	2 2, 121, 356	61, 460 157, 380	138, 152	2 1, 965, 580	² 2, 259, 508
Michigan	2 1, 988, 710	2 917, 588	97, 760	63,837	2 2, 086, 470	² 981, 42
Minnesota	1, 216, 470	1, 292, 146			1, 216, 470	1, 292, 146
Missouri		3,079,376	11,870	13,069	2 3, 042, 970	2 3, 092, 445
Montana	. 482, 230	307, 615			482, 230	307, 61
Nebraska	² 262, 250	339, 124			262, 250	² 339, 124
Nevada	50, 260	58, 102	(1)	(1)	² 50, 260	² 58, 102 ² 27, 903
New Hampshire	2 21, 250	27, 903	2 00 500	4 00 E00	² 21, 250 ² 2, 480, 810	² 2, 462, 692
New Jersey New Mexico	2, 384, 250 2 174, 020	2,376, 189 112, 181	² 96, 560	² 86, 503	290, 880	171, 771
New York	2 7, 008, 130	112, 101	611,670	426, 094	2 7. 619. 800	2 6, 924, 697
New 1018	5, 456, 570	2 6, 498, 603 6, 029, 262	493, 790	394, 639	5, 950, 360	6, 423, 901
North Carolina North Dakota	3,880	8, 239	200, 100	001,000	3,880	8, 239
Ohio	6, 412, 890	5,347,487	690, 130	504, 223	7 103 020	5, 851, 710
Oklahoma	2 1, 581, 410	1,417,943	210, 270	112, 840	7, 103, 020 3 1, 791, 680	2 1, 530, 783
Oregon	2, 128, 090	1,582,558		,010	2.128.090	1 582 559
Oregon Pennsylvania	5, 635, 340	5, 728, 289	671, 690	604, 709	6, 307, 030	6, 332, 998
Puerto Rico Rhode Island	846, 990	529, 901	(1)	(1)	2 846, 990	2 529, 901
Rhode Island	304,020	364, 741			304,020	364, 741
South CarolinaSouth Dakota	940, 670	1, 155, 539	342, 880	300, 917	1, 283, 550	1, 456, 456
South Dakota	251, 240	321, 595			251, 240	321, 598
Tennessee	. 2 4, 477, 480	2 4, 607, 107	438, 400	319, 680	² 4, 915, 880	² 4, 926, 787
Texas	3, 161, 570	1,952,409	216, 680	128, 881	3, 378, 250	2,081,290
Utah	584, 530	303, 661			584, 530	303, 661
Vermont	2 79, 380	107, 243			3 79, 380	² 107, 243
Virginia	3, 789, 560	3,348,901	³ 413, 490	² 315, 307	2 4, 203, 050	2 3, 664, 208
Washington West Virginia	1, 567, 540 1, 968, 960	2 1, 118, 048 2, 987, 829	160	174	2 1, 567, 700 2, 250, 560	2 1, 118, 222 3, 189, 832
west virginia	1,908,960	4,987,829	281,600	202,003		1, 727, 968
Wisconsin	2, 492, 830 273, 470	1,711,615	20, 440	16, 353 (1)	2, 513, 270 273, 470	² 191, 549
W yoming Undistributed	1,808,570	191, 549 1, 735, 946	611, 530	380, 573	1, 967, 460	1, 795, 595
O HAISHIDHIGA						
	96, 894, 220	88, 988, 217	6, 996, 800	4, 970, 058	103, 891, 020	93, 958, 275

¹ Included under "Undistributed."

² To avoid disclosing confidential information certain totals are somewhat incomplete, the figures not included being combined under "Undistributed."

Commercial and noncommercial operations.—The following table shows production of crushed stone for concrete and road metal and railroad ballast during recent years by Government agencies of various kinds contrasted with that by commercial enterprises. Production by Government agencies increased 29 percent in 1939 compared with 1938, whereas commercial production decreased 1 percent.

Concrete and road metal and railroad ballast sold or used by commercial and noncommercial operators in the United States, 1935-39

[Figures for "noncommercial operations" represent tonnages reported by States, counties, municipalities, and other Government agencies, produced either by themselves or by contractors expressly for their consumption often with publicly owned equipment; they do not include purchases from commercial producers. Figures for "commercial operations" represent tonnages reported by all other producers

	Com	mercial	operation	s	Noncor	nmercia	ıl operatio	ns	Total		
Year	Short tons	Average value per ton	Percent of change in quan- tity from preced- ing year	Per- cent of total quan- tity	Short tons	Average value per ton	Percent of change in quantity from preced- ing year	Per- cent of total quan- tity	Short tons	Percent of change in quan- tity from preced- ing year	
1935 1936 1937 1938 1939	38, 090, 660 57, 494, 430 62, 315, 350 60, 254, 170 59, 516, 270	\$0.90 .93 .88 .88 .86	-11.9 +50.9 +8.4 -3.3 -1.2	69. 6 65. 9 70. 5 63. 6 57. 3	16, 663, 860 29, 776, 390 26, 117, 220 34, 508, 880 44, 374, 750	\$0.87 .95 1.06 1.04 .97	-3.7 +78.7 -12.3 +32.1 +28.6	30. 4 34. 1 29. 5 36. 4 42. 7	54, 754, 520 87, 270, 820 88, 432, 570 94, 763, 050 103, 891, 020	-9.6 +59.4 +1.3 +7.2 +9.6	

Methods of transportation.—The following table shows the quantities of concrete and road metal conveyed by each of the principal methods of transportation during 1938 and 1939.

Concrete and road metal sold or used by commercial producers in the United States, 1938-39, by methods of transportation ¹

	193	8	193	9
Method of transportation	Short tons	Percent of total	Short tons	Percent of total
Truck Rall Waterway Unspecified	32, 779, 040 12, 032, 490 5, 398, 770 4, 067, 900	60. 4 22. 2 9. 9 7. 5	33, 495, 870 11, 712, 330 4, 886, 820 2, 424, 450	63. 8 22. 3 9. 3 4. 6
	54, 278, 200	100.0	52, 519, 470	100.0

¹ For practical purposes the entire output of noncommercial operations commonly is moved by truck. Including noncommercial production, crushed stone for concrete and road metal moved as follows: 1938: Truck 76 percent, rall 13 percent, waterway 6 percent, and unspecified 5 percent; 1939: Truck 80 percent, rail 12 percent, waterway 5 percent, and unspecified 3 percent.

GRANITE

Sales of crushed and broken granite rose 16 percent in quantity and 14 percent in value in 1939 compared with 1938. The principal gain was in stone used for concrete aggregate and highway construction. Sales of both riprap and railroad ballast declined, reversing the trend of 1938.

Noncommercial production, which is a substantial part of the total, is reported by city, county, and State governments, highway commissions, or other Government agencies. From the reports submitted it is impossible to determine the number of plants that supply materials. For instance, the report of a Federal agency such as the W. P. A. may include the output of one or two large plants or 25 to 50 small portable plants. Because the number of individual operations supplying noncommercial crushed stone cannot be determined with any degree of accuracy, the columns indicating the number of active plants, which have appeared in past years in the granite and other tables covering the crushed-stone industry, have been omitted in this report.

Granite (crushed and broken stone) sold or used by producers in the United States in 1939, by States and uses

	70.1-			Crushe	d stone		Othor		Tot	ol.
State	Rip	rap	Concrete and road metal Railroad ballast			Other uses				
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama		****	(1)	(1)					(¹) 145, 520	(1) \$134, 54 3
Arizona California Colorado	107, 600 3, 900	\$75,029 3,000	145, 520 469, 300 100, 350	\$134, 543 399, 549 67, 220	73, 820	\$38, 198	9,820	\$2,800	660, 540 104, 250	5154, 546 515, 576 70, 220
Connecticut Delaware	(1) (1) (1) 67, 350	(1)	(1)	(i)			(1)	(1)	(1) (1)	(1) (1)
Georgia Idaho		90, 205	1, 253, 010 58, 780	1, 487, 679 28, 770	128, 560	64, 600	27, 990	69, 598	1, 476, 910 58, 780	1, 712, 082 28, 770
Maine	4, 940 (1) (1)	7, 361 (1) (1)	41, 610 48, 510 384, 780	53, 276 65, 263 638, 483	(1)		(3)	(1)	46, 550 95, 810 390, 440	60, 637 122, 776 641, 66 1
MinnesotaMissouri	5, 190 1, 200	2,715 851	30, 960 14, 850	35, 161 9, 900			` š, 980	15, 570	42, 130 1, 200 597, 700	53, 446 851 1, 239, 966
Montana New Hampshire New Jersey	582, 850 (1)	1, 230, 066 (¹)	21, 250 (1)	27, 903	(1)	(1)	(1)	(1)	74, 930	33, 681 (1)
New York North Carolina Oklahoma	102, 410 6, 590	79, 792 6, 464	694, 810 3, 568, 410 9, 890	558, 907 4, 070, 434 7, 435	(1) 15, 320 493, 790	ìź, 259 394, 639	3, 760 17, 900	5, 106 11, 028	816, 300 4, 086, 690 9, 890	656, 064 4, 482, 565 7, 435
Okianoma. Pennsylvania Rhode Island		(1)	204, 590	247, 327			6, 280	10, 333	210, 870	257, 66 0
South CarolinaSouth Dakota	4, 230	4, 843 (¹)	788, 960 63, 340	964, 468 64, 921 89, 318		300, 917	11, 230 (¹)	4, 493 (¹)	1, 147, 300 107, 610 72, 730	1, 274, 721 99, 776 89, 318
Tennessee	(1)	(1)	72, 730	(1)					(1) (1)	(1) (1)
Vermont Virginia			6, 500 537, 950	10, 600 507, 777	(1)	(1)	(1)	(1)	6, 500 724, 540	`10, 60 0 610, 45 6
Washington Wisconsin	(1) (1)	83	31, 560 2, 490	24, 966 3, 515			(1) (1) (2)	(1) (1)	49, 090 64, 520	88, 347 84, 15 6 (¹)
Wyoming Undistributed	197, 850	227, 147	262, 800	313, 820	150, 550	109, 388	122, 810	80, 793	(i) 316, 950	383, 229
	1, 084, 110	1, 727, 473	8, 812, 950	9, 811, 235	1, 204, 920	920, 001	205, 770	199, 721	11, 307, 750	12, 658, 430

¹ Included under "Undistributed."

BASALT AND RELATED ROCKS (TRAP ROCK)

Basalt, gabbro, diorite, and other dark igneous rocks, known commercially as trap rock, are used widely for highway construction and concrete aggregate. Sales of crushed and broken trap rock increased 15 percent in both tonnage and value in 1939 compared with 1938, with gains for all major uses. Sales of riprap in the major producing States fluctuate greatly, as they depend chiefly on special reclamation and other projects. Prices per ton at the quarry were virtually the same in 1939 as in 1938.

Basalt and related rocks (trap rock) (crushed and broken stone) sold or used by producers in the United States in 1939, by States and uses

				Crushed s	tone					
State	Rip	rap	Concrete me		Rail: ball		Other	uses	Tot	:8l
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Arizona California Colorado Connecticut Hawaii Idaho Maine Maryland Massachusetts Michigan Minnesota Montana New Jersey New Mexico New York North Carolina Oregon Pennsylvania Rhode Island Texas Virginia Washington Wisconsin Wyoming Undistributed	163, 420 (1) 55, 910 (1) 211, 760 (1) 233, 060 (1) 165, 930 (1) 57, 580 (1) 524, 460 (1) 88, 510	(1) 	109, 530 (1) (2) 2, 196, 100 (1) 86, 890 2, 082, 180 654, 970 (1) 228, 990 1, 535, 980 (1)	113, 511 (1) 2, 169, 909 (1) (1) 104, 245 1, 538, 993 540, 146 (1) (227, 865 1, 093, 082 (1) (1)	150, 180 (1) (1) 157, 380 (1) 96, 560 (1) 195, 040 (1)	126, 755 (1) 138, 152 86, 503 (1) 154, 233 (1)	(1) (2) 5,380 (1) (1)	(1)	371, 020 1, 670, 050 14, 470 226, 130 1, 592, 130 1, 592, 130 273, 200 2, 458, 590 (1) 1, 134, 570 851, 820 (1) 228, 990 2, 060, 600 (1)	1, 127, 544 15, 467 268, 882 1, 439, 944 113, 511 (1) 2, 431, 378 (2) 995, 110 104, 245 1, 576, 896 695, 687 (1) 227, 865 1, 415, 227 (1)
O II CIDOL IO COOL.		i	13, 732, 510						15, 989, 930	14,110,992

¹ Included under "Undistributed."

MARBLE

Manufacturers of marble products find outlets for their waste material in virtually the same fields as those in which limestone is utilized. The great variation in unit value that appears in the accompanying table is due to the diversity in use. Waste blocks may be sold for riprap at only a few cents a ton or may be pulverized to an extremely fine powder and sold for special uses at several dollars a ton.

Marble (crushed and broken stone) sold by producers in the United States in 1939, by States ¹

	1						
State	Active plants	Short tons	Value	State	Active plants	Short	Value
Arkansas Georgia Maryland Massachusetts Missouri Tennessee	1 1 1 2 5	600 23, 030 3, 390 6, 790 9, 900 13, 910	\$3,000 23,025 33,648 3,853 12,544 42,782	Texas. Utah Other States 2.	3 1 12 27	13, 080 5, 170 28, 470 104, 340	\$100, 744 31, 443 132, 544 383, 583

Includes stone used for artificial stone, crushed stone, flux, poultry grit, riprap, stucco, terrazzo, whiting substitute, and uses not specified.
 Alabama, California, New York, Virginia, and Washington.

LIMESTONE

Limestone comprised 69 percent of all crushed and broken stone sold in 1939 (excluding that used for making cement and lime). It is employed more extensively than other rocks because it can be quarried and crushed at moderate cost, is available to a multitude of markets, and is essential to many chemical and manufacturing industries. The following tables show production by States and uses in 1939 and sales for miscellaneous industrial uses in 1938 and 1939.

Limestone (crushed and broken stone) sold or used by producers in the United States in 1939, by States and uses

												,		
						Crushe	d stone							
State	Rig	rap	Fluxin	g stone		and road	Railroac	l ballast	Agric	ulture	Ot	her	То	tal
	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama Arizona	1 715	(1) (1) (1) (1)	1, 121, 700	\$933, 429	382, 550 63, 230	\$296, 728 70, 938	6, 690		(1)	(1)	26, 870	\$143, 3 51	1, 701, 200 105, 800	\$1, 509, 48 98 92
Arkansas California Colorado Connecticut	1	(1)	28, 850 227, 750	54, 153 124, 923	165, 880 49, 280		6,690	\$4,4 86	(1)	(1)	(1) 243, 540 52, 970	(1) 55 3, 578 80, 669	217, 690	262, 52 641, 69 205, 59
Florida Georgia Hawaii	(1)	(1)	(1)	(1)	1, 144, 090 261, 960	(1) 998, 742 246, 832	(1)	(1)	42, 340 41, 450 17, 280	111, 351 26, 702	11, 900 (1) (1)	47, 114 (1) (1)	58, 500 1, 394, 580 342, 100	200, 41 1, 258, 64 462, 34
IGANO. Illinois Indiana Iowa Kansas Kentucky	115, 160 155, 800 219, 440 216, 330	\$104, 099 82, 498 139, 136 273, 902	317, 790 86, 160 (¹)	311, 580 45, 586 (¹)	3, 036, 460 5, 835, 740	33, 237 5, 409, 074 2, 692, 773 3, 888, 734 3, 578, 077 3, 434, 494	239, 220 81, 350 79, 860 122, 410 522, 330	161, 044 61, 827 46, 010 63, 537 258, 654	359, 230	313, 069 186, 431 14, 989	13, 160 109, 410 136, 070 (1) 50, 360 14, 720	26, 301 223, 934 107, 020 (1) 69, 616 38, 223	(1) 59, 650 7, 986, 460 3, 855, 070 6, 385, 350 3, 081, 150	(1) 59, 53 7, 282, 06 3, 302, 77 4, 369, 29 4, 000, 12
Louisiana Maine Maryland Massachusetts			(1) (1) (1)	(1) (1) (1)	(1) (1) 481, 080	(1) (1) 514, 684	(1)	(1)	(1) 18, 300 112, 130	(1) 32, 603	(1) (1) 9, 320	(1) (1) (1) 12, 104 102, 403	(1) 88, 450	(1) 194, 53 565, 79
Massachusetts Michigan Minnesota Mississippi	53, 410	(1) (1) 77, 683	5, 388, 360 (¹)	2, 998, 602 (1)	1, 851, 120 1, 157, 710	782, 471 1, 242, 220	97, 760	63, 837	(1) (1) (1)	(1)	3, 286, 810 22, 090	102, 403 1, 540, 200 54, 728	10, 882, 350 1, 263, 230	513, 85 5, 539, 31 1, 407, 58
Aississippi Aissouri Aontana Vebraska	1	261, 237 174, 968	31, 360 (¹)	34, 559 (1)	3, 008, 900 (1) 262, 250	3, 059, 476 (1) 339, 124	11, 870	13, 069	252, 840	(1) 246, 2 31	197, 190 53, 430	279, 115 70, 933	3, 819, 930 184, 960	3, 893, 68 153, 04
Nevada New Jersey New Mexico	(1)	(1) (1)	(1) (1)	(1) (1)	(1) 48, 420 40, 070	(1) 60, 528			(1)	(1) (1)	(1) (1) (1)	(1) (1) (4)	423, 040 (1) 167, 610	(1) 413, 24
New York	284, 070	298, 957	5, 020	5, 153	5, 847, 080 215, 090	5, 396, 898	(1) 487, 550	302, 486	219, 220 3, 050	438, 542 4, 620	1, 348, 130		153, 240 8, 191, 070 218, 140	236, 63
North Dakota Dhio Dklahoma Dregon	00 490	136, 368 68, 936	2, 753, 240	1, 757, 519	6, 231, 750 1, 499, 860	5, 187, 234 1, 374, 950	690, 130 210, 270	504, 223 112, 840	470, 770 3, 200	479, 638 4, 002	430, 440 10, 790	19, 893	(1) 10, 780, 310 1, 814, 540	(1) 8, 637, 70 1, 580, 62
Oregon Pennsylvania	2, 640	2, 259	5, 264, 170	4, 648, 927	3, 885, 990	4, 006, 475	275, 840	257, 269	390, 910	927 930	1 127 700	(1)	24, 310 10, 947, 340	46 08

ζQ
7
ž
4

Puerto Rico				l	(1)	(1)	(1)	(1)				 	135, 570	137, 762
Rhode IslandSouth Carolina			(1)	(1)	<u>(1)</u>	(1)			8	8	(1)	(1)	(1) 179, 030	(1) 228, 612
South Dakota Tennessee	(1) 85 320	(1) 108, 822	17, 010	18, 030	(1) 4, 355, 570	(1)	438, 400	319, 680	396, 650	365, 033	27, 860	85, 607	56, 310	58, 667
Texas Utah	85, 320 28, 090	18, 653		(3,000	2, 704, 010 378, 280	1,714,961	165, 390			(1)	245, 330			
Vermont			(*)		72, 880	96, 643			(1)	(1)	83	8	120, 910	158, 205
Virginia Washington	2, 780		(1)	(1)					434, 920 (1)	507, 803 (1)	104, 260	201, 645	129, 660	227, 942
West Virginia Wisconsin	(1) 50, 400	(1) 42, 722	1, 221, 660 26, 660		1,008,890 2,358,290				(1) 191, 390	(1) 187, 955	247, 430 31, 220	233, 029 48, 994		2, 841, 330 1, 874, 654
Wyoming Undistributed	(1) 190, 110	(1) 153, 332	(1) 311, 180	(1) 231, 359	9, 370 502 , 810	4, 285 482, 483	(1) 272, 330	(1) 153, 002	574, 850	696, 321	132, 540 675, 120	193, 406 1, 094, 352	196, 210	247, 708 292, 239
					61, 304, 670			2, 924, 840			9, 122, 820		99, 785, 420	
	2, 201, 880	2,000,011	11, 211, 000	12, 010, 800	02, 002, 010	01, 000, 001	2,000, 120	2, 024, 340	0, 200, 200	0,002,021	e, 122, 020	0, 001, 100	00, 100, 120	00, 100, 000

¹ Included under "Undistributed."

Limestone (crushed and broken stone) sold or used by producers in the United States for miscellaneous uses, 1938-39

Use	19	38	19	39
030	Short tons	Value	Short tons	Value
Alkali works Calcium carbide works. Coal-mine dusting. Filler (not whiting substitute): Asphalt. Fertilizer. Other. Filter beds. Class factories. Limestone sand. Magnesia works (dolomite) Mineral food. Mineral (rock) wool. Paper mills. Poultry grit. Refractory (dead-burned dolomite) Stucco, terrazzo, and artificial stone Sugar factories. Whiting substitute ¹ Other uses² Use unspecified.	50, 890 288, 590 121, 130 61, 970 142, 050 170, 560 229, 890 62, 540 65, 570 86, 400 223, 450 31, 260 263, 930 205, 840 23, 360 619, 910 145, 170 80, 350	\$1, 743, 173 137, 522 178, 263 789, 587 202, 189 245, 356 127, 586 290, 297 180, 863 99, 684 85, 378 373, 207 163, 789 274, 624 117, 882 146, 828 671, 842 878, 028 671, 842 89, 447 60, 615	4, 655, 960 274, 890 68, 260 265, 710 116, 080 240, 840 240, 840 270, 430 88, 390 68, 580 123, 720 302, 620 39, 010 824, 930 524, 240 33, 820 621, 730 621, 730 621, 730 621, 730 621, 730 631, 400 632, 990	\$2, 100, 535 233, 085 180, 123 676, 978 185, 844 330, 359 81, 277 394, 727 183, 035 147, 129 267, 269 102, 670 488, 079 180, 529 713, 991 185, 325 948, 528 225, 636 80, 403

Sales of dolomite (calcium-magnesium carbonate) and its primary product of calcination, dolomitic lime, for certain special uses, are covered in the following table:

Dolomite and dolomitic lime sold or used by producers in the United States for specified purposes, 1938-39

-	1938	1939
Dolomite for—		
Basic magnesium carbonate:		
Short tons	62, 540	89, 390
Value	\$99,684	\$147, 129
Dead-burned dolomite or refractory stone:		
Short tons	263, 930	824, 930
Value	\$274, 624	\$713,991
Dolomitic lime for—		
Refractory (dead-burned dolomite):		
Short tons	366, 626	671, 561
Value	\$3,095,355	\$5, 447, 554
Paper mills:		
Short tons	42,000	41,000
Value	\$288,000	\$267,000
Total (calculated as raw stone)short tons	1, 144, 000	2, 339, 000

¹ Includes stone for filler for graphite, calcimine, linoleum, paint, pigments, pottery, putty, regrinding, rubber, sealing wax, soap, and tile.

² Includes stone for acetic acid, acid neutralization, bird gravel, chemicals (unspecified), concrete blocks and pipes, dye works, explosives, fill, fireplace stone, foundry facings, roofing gravel, spalls, and waste rock.

STONE 1187

Limestone is quarried not only for use raw but also for manufacture into cement and lime. The large and important industries manufacturing these products are covered in separate chapters of this volume. It is of interest, however, to show in one table the total tonnage of limestone used for all purposes.

Limestone sold or used for all purposes in the United States, 1937-39, in short tone

Use	1937	1938	1939
Limestone (as given in this report) (approximate) Portland cement (including "cement rock") 2 Natural cement ("cement rock") 2 Lime 2.	94, 577, 000	1 81, 680, 000	100, 846, 000
	29, 547, 000	1 26, 193, 000	30, 463, 000
	8, 250, 000	6, 694, 000	8, 509, 000
	132, 374, 000	1 114, 567, 000	139, 818, 000

Revised figures.
 Value reported as cement in chapter on Cement.
 Value reported as lime in chapter on Lime.

SANDSTONE

The sandstone industry, which made substantial gains in 1938, continued its upward trend in 1939. Production was 41 percent greater in quantity and 48 percent greater in value than in 1938. A gain of 70 percent in sales of refractory stone (ganister) indicates the increased activity of steel plants. Sales of riprap, which are subject to extreme fluctuations, declined greatly, but sales for all other major uses made large gains. The average sales value at the quarry for all crushed sandstone was 6 cents a ton higher in 1939 than in 1938.

Sandstone (crushed and broken stone) sold or used by producers in the United States in 1939, by States and uses

		ory stone	Die	orap		Crushe	ed stone		041-	r uses	, ,	
State	(gan	ister)	, Al		Concrete an	d road metal	Railroa	d ballast	Othe	ruses	TO	tal
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
AlabamaArizonaArkansas		(1)	(1)	(3)	(1) (1) 64, 110	(1) (1) \$63, 477					102, 180	\$103, 892
California Colorado Georgia	(1) 12,960	(1) \$20, 224	21, 260 (¹)	\$19,944 (¹)	430, 990 (1) (1)	424, 775 (1)	(1)		(1)		64, 110 577, 210 162, 020	63, 477 544, 951 154, 138
Idaho Illinois Indiana	480		12, 980 500	8,857 200	223, 100 51, 080	288, 897 39, 376 11, 141					(1) (1) 236, 560 51, 580	(1) 301, 354 39, 576
Iowa_ Kansas Kentucky Maryland	(1)	(1)	(1)	(1)	11, 920 239, 550 (1) (1)	391, 435 (1) (1)			(1)	(1)	11, 920 241, 050 238, 270	11, 141 392, 859 247, 781
Massachusetts Michigan Minnesota Missouri			(1)	(1)	(1) (1) (1)	000					(1)	(1)
Montana Nebraska	(1)	(1)	(1)	(1)	(1)	(1)					X	\mathbb{R}
New York North Carolina	5, 700	7, 750	4,600 25,590	9, 294 25, 591	277, 240 1, 245, 350	358, 599 1, 252, 725					287, 540 1, 270, 940	375, 643 1, 278, 316
OhioOklahoma	,	222, 018	42, 900 10, 360	32, 807 5, 396	181, 140 71, 660	160, 253 35, 558				\$4,685	257, 230 82, 020	419, 763 40, 954
Oregon Pennsylvania South Dakota Tennessee		659, 906	5, 990 80, 870	(1) 13, 312 55, 070	(1) 465, 630 105, 120	(1) 486, 155 143, 042	200, 810	\$193, 207	1, 570, 500	1, 256, 400	2, 649, 680 185, 990	2, 608, 980 198, 112
Texas	1	(1)	(1)	(¹)	(1)	(1)	(1)	(1)			126, 710 (¹)	158, 662 (1)
Utah Vermont Virginia		11,836	(1)	(1)	77, 420 (1) 291, 300	28, 790 (1) 284, 100	27,810	21, 279	9,910	1.982	83,340 (1)	40, 626 (1)
Washington West Virginia Wisconsin	(1)	(1) (1)	600	480	(1) 6, 390	(1) 11. 350		21, 279	9,910	1,982	329, 020 600 957, 970 241, 640	307, 361 480 1, 636, 498
Wyoming Undistributed	183, 120	263, 997	(1) 122, 400	(1) 61, 863	(1) 1, 887, 570	(1) 2, 532, 157	7, 830	6,409	235, 520	371,499	(1) 500, 540	464, 827 (1) 400, 045
	646, 580	1, 189, 331	328, 050	232, 814	5, 629, 570	6, 511, 830	236, 450	220, 895	1,817,470	1, 634, 566	8, 658, 120	9, 789, 436

¹ Included under "Undistributed."

MISCELLANEOUS STONE

Stone other than the five principal varieties already discussed includes light-color volcanic rocks, schists, boulders from river beds, serpentine, and flint. The following table shows sales of stone of these types by uses in 1939. Total sales declined 24 percent in quantity and 21 percent in value compared with 1938.

Miscellaneous varieties of stone (crushed and broken stone) sold or used by producers in the United States in 1939, by States and uses

Complete Com	Rip	rap		Crushe	d stone		Other	uses	То	tal
State	Q14-4	77-1	Concrete an	d road metal	Railroad ballast		Q1	77-1	CI	** 1
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alaska			(1) 82, 250	(1) \$60, 255					(1) 83, 410	(1)
Arizona				\$60, 255 (1)	1, 160	\$577			83, 410	\$60, 832
ArkansasCalifornia	461.000	\$540, 672	2, 957, 080 137, 530	1, 584, 674	158, 950	71, 139	21,010		352, 760 3, 598, 040	(1) \$60, 832 276, 617 2, 224, 806
Colorado Florida Florida		(1)	42, 320	119, 690 89, 213	(1)	(1)	(1)	(1)	161, 670 42, 320	136, 162 89, 213
Idaho Illinois			(1) 26, 580	(1) 30, 071					26, 580	(1) 30, 071
Kansas			((1)	Ω (1)					(1)	(1)
Louislana Maine			1 83	\mathbb{R}						\Re
Maryland			(1) 23, 090	27, 989				321	24, 370	⁽¹⁾ 28, 310
Massachusetts	26, 500	38, 000	226, 530	348, 027					253, 030	386, 027
Michigan Minnesota	(1)	(1)	28,060	21, 606				(1)	140, 920	225, 342
Missouri Montana	(1)	(1)	22, 200 146, 240	19, 900 60, 118				(1)	58, 660	36, 525
Nevada	(1)	(1)	(1)	(1)	(1)	(1)			146, 240 34, 260	60, 118 40, 207
New Hampshire	` ' '		(1)	(1)]	(2)	(1)	14,040	10.515
New Jersey New Mexico			133 050	52, 750			(4)	(₁)	82, 320 133, 950	81, 966
New York	(1)	(1)	133, 950 189, 000	184, 199	(1)	(1)	(1)	(1)	221, 140	81, 066 52, 750 199, 237
North Carolina	1. 200	598	340, 830	369, 846					342, 030	370, 444
North DakotaOklahoma			8	1 83 1						33
Oregon,	(1)	(1)	K K	(4)					30, 480	23, 417

¹ Included under "Undistributed,"

Miscellaneous varieties of stone (crushed and broken stone) sold or used by producers in the United States in 1939, by States and uses—Con.

	Ri	orap		Crushed	i stone		Other uses		Total	
State	01	17 a luna	Concrete and	i road metal	Railroad	i ballast	Chart tone	Value	Short tons	Value
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	value	Short tons	Value
Pennsylvania		\$225	424, 160 (1)	\$448, 186 (1)			475, 420	\$987, 570	899, 730	\$1, 435, 981 (1)
Rhode IslandSouth Carolina	(1)	(1)	2	(1)					177, 490	(1) 241, 236
South Catoma South Dakota Tennessee	(1)	(1)	(i) 49, 180	(i) 48, 736			(1)	(1)	(1) 49, 180	(i) 48, 736
TexasUtah	310	300	423, 730	196, 009	40, 340	\$30, 175	(1)	(1)	464, 380 122, 720	226, 484 68, 176
Virginia Washington West Virginia	(1)	(1)	458, 970	346, 137			8	(1)	60, 980	(1) 45, 828
Wisconsin	(1)	(1)	(1)	(1)					(1)	(1)
Wyoming Undistributed	171, 800	152, 269	129, 650 1, 573, 170	93, 854 1, 280, 031	220, 450	135, 630	224, 240 84, 880	220, 000 239, 321	353, 890 1, 428, 620	313, 854 1, 105, 455
	660, 960	732, 064	7, 414, 520	5, 381, 291	420, 900	237, 521	806, 830	1, 475, 533	9, 303, 210	7, 826, 409

Included under "Undistributed."

MARKETS

As indicated in figure 3, sales of crushed stone used as concrete aggregate or in road construction made gains in 1939 commensurate with the marked increase in portland-cement shipments; however, as in 1938, the gain was of no advantage to the commercial producers whose sales declined more than 700,000 tons from 1938. The increase was due to an advance of nearly 10,000,000 tons in production by noncommercial agencies. In view of the moderate gain in total build-

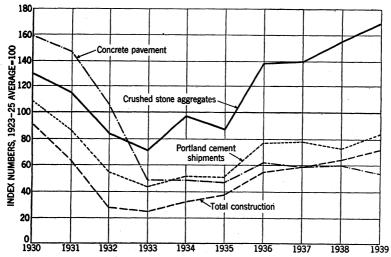


FIGURE 3.—Sales of crushed-stone aggregates (tons) compared with total construction, portland-cement shipments, and contracts for concrete pavements 1930-39. Data are plotted as index numbers with the 1923-25 average as 100. Figures on concrete pavements compiled by Portland Cement Association and on construction contracts by F. W. Dodge Corporation.

ing and the decline in concrete-pavement construction, the disproportionate gain in output of aggregates probably is due to their wide use in secondary roads.

Sales of limestone for use as a flux in blast furnaces producing pig iron rose decidedly in 1939 in consonance with increased furnace activity. Sales of dolomite and ganister for use as refractories in steel furnaces made a much greater proportional gain than sales of steel ingots. The abnormal demand probably was due to the relining of furnaces that were formerly inactive to meet the growing demands of the steel trade. Figure 4 shows the close relationship between sales of fluxing stone and refractories and the output of iron and steel mills.

NEW DEVELOPMENTS

An important contribution to the literature on crushed stone was published in 1939. According to this report the annual production per man employed jumped from 1,200 tons in 1913 to 2,800 tons in 1936.

Further simplification of aggregate specifications (Simplified Practice Recommendation R163-36) involves consolidation of the two original groups of sizes into one, eliminating 12 sizes. Closer tolerances have been fixed for the lower limits of each size, and one size has been added to meet the need for fine seal surface treatment at

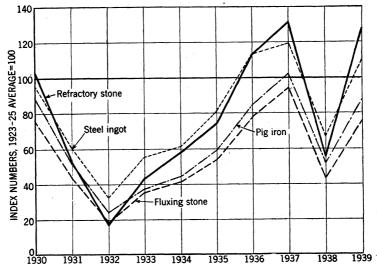


FIGURE 4.—Sales of fluxing stone and refractory stone (tons) compared with production of steel ingot and pig iron, 1930-39. All data are plotted as index numbers, with the 1923-25 average as 100. Statistics of steel-ingot and pig-iron production compiled by American Iron and Steel Institute.

airports. Producers of crushed stone, gravel, and slag have accorded this revision (R163-39) the required degree of acceptance. Another trend in specifications is to combine two diverse sizes of concrete aggregate to obtain maximum density of the mixture. Common requirements are ½ to 1 inch and 1 inch to 2½ inches.

The extensive use of graded aggregates impregnated with bituminous material on secondary roads has led to accumulations of fines (minus %-inch) at crushed-stone plants. Several hundred thousand tons of such aggregates were used in concrete construction in Pennsylvania in 1939. The use of low-price materials including field stone, discarded ganister, mine waste, "red dog" (burned shale), and slag on secondary roads in that State has been growing.

¹ Kantor, Harry S., and Saeger, Geoffrey A., Changes in Technology and Labor Requirements in the Crushed-Stone Industry: Mineral Technology and Output-per-Man Studies, Bureau of Mines in cooperation with the W. P. A., 1939, 169 pp.

FOREIGN TRADE 2

Imports.—Total imports of stone in 1939 dropped 3 percent in value from 1938. Imports of marble increased, those of granite declined, and imports of quartzite and travertine showed little change. The following tables show the quantities and values of stone imports in 1939, by kinds. Imports from Canada were higher in value, whereas those from South America were slightly lower than in 1938.

Stone 1 imported for consumption in the United States in 1939, by classes

Class	Quan- tity	Value	Class	Quan-	Value
Marble, breccia, and onyx: In blocks, rough, etc. Sawed	73, 737 57 188, 396 6, 062 710 26, 482 25, 559	\$236, 746 362 51, 864 44, 957 167 1, 600 335, 696 126, 168 38, 999	Quartziteshort tons_ Travertine stone: Rough cubic feet_ Stone (other): DressedRough (monumental or building stone)cubic feet_ Rough (other)short tons_ Marble chip, or granite_ short tons Grand total	3, 733 33, 004 7, 624	\$199, 454 29, 211 3, 344 5, 162 38, 193 36, 498 83, 197 812, 725
	52, 041	165, 167			

¹ In addition, 98,217 pounds valued at \$1,094 of "Lithographic stones, not engraved" were imported.

² Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Stone 1 imported for consumption in the United States in 1939, by classes and countries

	Marble,	, breccia, a	nd onyx	Gra	nite	Other		Quai	rtzite	Trav	ertine	
Country	Ro	ugh	Manu-	Cubic		building or monu- mental	Other stone, n. e. s.	Short		Cubic		Total value
	Cubic feet	Value	factures (value)	feet	Value	stone (value)	(value)	tons	Value	feet	Value	
North America; Canada Cuba	510 775	\$2,041 1,261	\$142 300	5, 350	\$7,761	\$634	\$37, 483	110, 510				\$247, 161 1, 561
Mexico	11,802	46, 612	139 20			118						46, 869 20
Total North America	13, 087	49, 914	601	5, 350	7, 761	752	37, 483	110, 510	199, 100			295, 611
South America: Argentina Brazil	5, 662	54, 955	48	173	1, 685			3	93			55, 048 1, 733
Total South America	5, 662	54, 955	48	173	1, 685			3	93			56, 781
Europe: Belgium Finland		16, 794	15, 951	35, 124	130,064		7, 315	2	30	581	\$554	40, 644 130, 064
France Germany Italy Sweden	40, 340	17, 834 94, 862	10, 481 465 65, 627 5	6 11 12 10,686	44 76 80 21, 944	106 40 6, 747	234 29, 183 339	8	231	28, 365	28, 657	28, 465 815 225, 156 22, 519
United Kingdom Other Europe	207 788	631 1, 756	1, 729 1, 523	327 316	1, 874 1, 473	305 348	131		201			4, 670 5, 100
Total Europe	54, 988	131, 877	95, 781	46, 482	155, 555	7, 546	37, 202	10	261	28, 946	29, 211	457, 433
Asia; China. India, British Other Asia.			265 269 1, 963	36	166	136 72	6					401 269 2, 207
Total Asia			2, 497	36	166	208	6					2, 877
Africa			23									23
Grand total	73, 737	236, 746	98, 950	52,041	165, 167	8, 506	74, 691	110, 523	199, 454	28, 946	29, 211	812, 725

¹ In addition, 98,217 pounds valued at \$1,094 of "Lithographic stones, not engraved," were imported as follows: Canada, 95,715 pounds valued at \$660; Germany, 2,502 pounds valued at \$434.

1195

Exports.—The export trade in stone is relatively small, and two-thirds of it is with Canada. The following table shows exports by country of destination during 1939.

Stone exported from the United States in 1939, by countries

Country	buildi monu	and other ng and mental one	Other manu- factures of	Country	Marble buildi monu st	Other manu- factures of	
	Cubic feet	Value	stone (value)		Cubic feet	Value	stone (value)
Canada	72,773 1,862 37	\$108, 304 6, 620 503	\$241, 065 14, 770 9, 741 15, 124 7, 643	Newfoundland and Labrador	541 568 335 1,031 77,147	\$3, 339 6, 883 791 7, 976 134, 416	\$534 6, 256 6, 253 64, 618 366, 004

SLATE

By OLIVER BOWLES AND M. S. JENSEN

SUMMARY OUTLINE

	Page		Page
Summary	1197	Prices	1200
Salient statistics	1198	Trends in recent years	1201
Sales	1198	Review by States and districts	1201
Dimension slate	1198	New developments	1202
Trends in roofing slate	1199	Foreign trade	1203
Granules and flour	1200	. •	

Sales of slate as dimension stone increased 25 percent in quantity and 30 percent in value in 1939 compared with 1938. The quantity sold was the highest since 1929 and the value the greatest since 1931.

In general, unit prices were higher than in 1938.

The quantity of roofing slate sold was the highest since 1929 and the value the greatest since 1930. The average value per square in 1939 was \$7.18 whereas in 1938 it was \$6.98. Sales in the Pennsylvania district advanced 21 percent in quantity and 24 percent in value over 1938. In the New York-Vermont district sales increased 26 percent in quantity and 29 percent in value. Virginia sales made a substantial gain of 46 percent in quantity and 49 percent in value. Unusual residential building activity in and near Washington, D. C., has stimulated the Virginia industry. This is the seventh consecutive

year that Virginia sales have increased.

An increase of 37 percent in the value of mill stock compared with a gain of only 13 percent in the quantity indicates marked improvement in the prices of most products. Whereas total building construction advanced from 64 percent of the 1923-25 average in 1938 to 72 percent in 1939, sales of structural and sanitary slate advanced 19 percent in quantity and 33 percent in value. Thus slate is regaining to some extent its former place in interior construction. Sales of electrical slate, which declined so drastically in 1938 that it seemed evident that synthetic products were being substituted for it to an increasing extent, recovered remarkably in 1939. Sales of blackboards, bulletin boards, and billiard-table tops made large gains, while those of vaults and covers declined moderately. Owing chiefly to disruption of foreign markets the quantity of school slates sold dropped to little more than half the 1938 figure. Sales of slate for flagging, cross walks, and stepping stones increased moderately, but average prices were considerably lower than in 1938.

Statistics on slate granules and flour are included in this chapter, although these products have little connection with the dimension-slate industry. Most of the slate used for their manufacture is unsuitable for other slate products. Sales of granules increased

slightly, whereas sales of flour declined. The average sales value of granules, f. o. b. mill, was \$8.70 per short ton in 1939 compared with \$8.57 in 1938. Figures for sales of granules made of rock other than slate are given in the Stone chapter of this volume.

The following table gives the principal statistical data for the slate industry during 1938 and 1939 and is arranged to permit ready com-

parison for the 2 years.

Salient statistics of the slate industry in the United States, 1938-39

		1938				1939		
	Quantity			Qua	ntity		Percent of change in—	
	Unit of measure- ment	Approximate equivalent short tons		Unit of measure- ment	Approxi- mate equiva- lent short tons	Value	Quan- tity (unit as re- ported)	Value
Domestic production (sales by producers): Roofing slate	Squares 322, 040	119, 590	\$2, 247, 910	Squares 399, 320	149, 410	\$2, 868, 961	+24.0	+27.6
Mill stock: Electrical slate Structural and sani-	Sq. ft. 221, 140	1, 830	162, 793	Sq. ft. 324, 590	2, 710	237, 001	+46.8	+45. 6
tary slate Grave vaults and	861, 520	,		1, 022, 510		327, 882	•	+33.4
coversBlackboards and bulletin boardsBilliard-table topsSchool slates	274, 640 1, 637, 570 60, 150 1 520, 200	4, 220 440	347, 486 19, 582	255, 080 2, 065, 830 100, 310 1 276, 210	2, 390 7, 470 740 380	60, 813 500, 809 36, 397 5, 769		
Total mill stock Flagstones, etc.2	3, 575, 220 1, 046, 530	16, 310 7, 790	853, 602 63, 839	4, 044, 530 1, 194, 320	21, 710 8, 480	1, 168, 671 63, 493	+13. 1 +14. 1	+36.9
Total slate as dimension stone Granules and flour		143, 690 349, 000			179, 600 351, 780		+25.0 +.8	
Grand total domestic productionForeign trade:		492, 690	5, 655, 313		531 , 3 80	6, 682, 214	+7.9	+18. 2
Imports for consump- tion Exports:2	Squares		6, 688	Squares .		1, 017		-84.8
Roofing Other dimension slate	660		5, 070 58, 852			5, 244 51, 815	-13.8	+3. 4 -12. 0
Granules and flour	[11, 229	93, 675		13, 316	120, 731	+18.6	

Number of pieces: 1938, 972,780; 1939, 516,280; square feet approximate.
 Includes walkways, stepping stones, and miscellaneous slate.
 Figures obtained by the Bureau of Mines from shippers.

SALES

Dimension slate.—The following table shows sales of dimension slate for several years, that is, slate sold in blocks or slabs cut to specified sizes and shapes. Such a classification excludes granules and flour.

Figure 1 compares sales of slate, except granules and flour, with the value of contracts awarded for residential building and total building from 1930 to 1939. Sales of slate followed closely the trends in building construction until 1938, when they declined drastically. Although the recovery in 1939 is encouraging the value of slate sales is only slightly higher than the point reached in 1937.

Slate (other than granules and flour) sold by producers in the United States, 1935-39

Roofing				Mi	ll stock	Otl	her 1	Total	
Year	Squares	Ap- proxi- mate equiva- lent short tons	Value	Approximate short tons	Value	Approximate short tons	Value	Ap- proxi- mate short tons	Value
1935	221, 630 336, 130 365, 800 322, 040 399, 320	83, 290 138, 190 137, 400 119, 590 149, 410	\$1, 456, 041 2, 607, 402 2, 728, 109 2, 247, 910 2, 868, 961	15, 580 20, 100 21, 480 16, 310 21, 710	\$849, 796 1, 175, 668 1, 225, 645 853, 602 1, 168, 671	4, 820 6, 820 8, 670 7, 790 8, 480	\$35, 333 55, 358 73, 554 63, 839 63, 493	103, 690 165, 110 167, 550 143, 690 179, 600	\$2, 341, 170 3, 838, 428 4, 027, 308 3, 165, 351 4, 101, 125

¹ Includes flagstones, walkways, stepping stones, and miscellaneous slate.

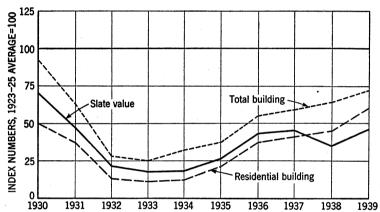


FIGURE 1.—Sales of slate compared with residential building and total building, 1930-39. Data on building from F. W. Dodge Corporation.

Trends in roofing slate.—Roofing slate is used chiefly in residential building for new construction and reroofing. No figures are available as to the proportion used for each, but new construction is the

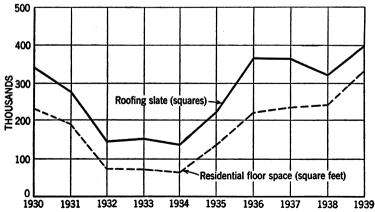


Figure 2.—Sales of roofing slate compared with new residential floor space, 1930-39. Statistics on floor space from F. W. Dodge Corporation.

principal market. Statistics are lacking on the roof area of new residential construction; but roof area bears a fairly definite relation to floor space, for which data are compiled. Floor space may therefore be regarded as a rough index of the area covered with roofing.

Figure 2 compares sales of roofing slate in squares with residential floor space of new construction from 1930 to 1939. The declining trend in sales of roofing slate during 1937 and 1938 was reversed in 1939. Residential building made rapid gains in 1939, and slate sales

almost kept pace with it.

Granules and flour.—Sales of granules, which are used extensively for surfacing prepared roofing, increased slightly in 1939, and sales of slate flour, which is used as a filler, decreased slightly compared with 1938. There were small gains in the average selling price of both products. The following table shows sales of granules and flour by producers from 1935 to 1939.

Crushed slate (granules and flour) sold by producers in the United States, 1935-39

	Grai	nules	Flo	our	Total		
Year	Short tons	Value	Short tons	Value	Short tons	Value	
1935	166, 520 202, 730 193, 950 258, 930 265, 830	\$1, 112, 081 1, 372, 095 1, 309, 549 2, 220, 306 2, 312, 177	59, 990 86, 920 83, 060 90, 070 85, 950	\$196, 264 274, 685 268, 465 269, 656 268, 912	226, 510 289, 650 277, 010 349, 000 351, 780	\$1, 308, 345 1, 646, 780 1, 578, 014 2, 489, 962 2, 581, 089	

PRICES

The average price of roofing slate f. o. b. quarry or mill, as reported to the Bureau of Mines, advanced 20 cents a square in 1939 compared with 1938. In Pennsylvania and in the New York-Vermont area the price increased 18 cents a square and in Virginia 20 cents a square.

Mill-stock prices, which had maintained an average of 29 cents a square foot for several years, dropped to 24 cents in 1938 but rose again to 29 cents in 1939. Average values of blackboards and bulletin boards, billiard-table tops, and structural and sanitary slate

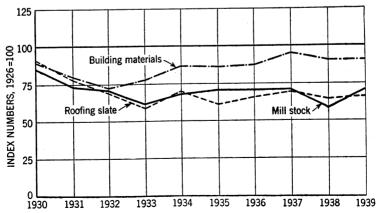


FIGURE 3.—Prices of slate compared with commodity prices of building materials in general, 1930-39. Commodity prices are from the Bureau of Labor Statistics.

SLATE 1201

each advanced 3 cents a square foot; those for electrical slate declined 1 cent; and those for vaults and covers and school slates remained

virtually unchanged.

Trends in recent years .- Figure 3 shows the trend of slate prices over a 10-year period compared with prices of building materials in The price of slate increased more from 1938 to 1939 than that of building materials as a whole.

REVIEW BY STATES AND DISTRICTS

The following table gives sales of slate in 1939 by States and uses.

Slate sold by producers in the United States in 1939, by States and uses

		R	oofing	Mill	stock		
State	Opera- tors	Squares (100 square feet)	Value	Square feet	Value	Other uses 1 (value)	Total value
Arkansas. California. Georgia. Maine. Maryland. New York. Pennsylvania. Tennessee. Vermont. Virginia. Undistributed 4	1 2 1 3 1 12 27 1 44 5	3, 840 2, 020 236, 710 106, 500 50, 250	\$32, 768 15, 740 1, 607, 929 763, 846 448, 678	(²) (3) 3, 648, 690 (2) 162, 470 233, 370 3 4, 044, 530	(²) (3) \$888, 571 (2) 96, 506 183, 594 3 1, 168, 671	(*) (*) (*) (*) (*) (*) (*) (*) * \$450, 097 560, 353 (*) 1, 087, 963 (*) 546, 169	(1) (2) (2) (3) (2) (3) (465, 837 3, 056, 852 (9) 1, 948, 318 (4) (995, 258

Flagging and similar products, granules, and flour.
 Included under "Undistributed."
 A small amount of mill stock in New York included under "Other uses."
 Includes output of States entered as "(3)" above.

Maine.—The principal product of the Maine quarries is electrical slate, for which it is unusually well-adapted. Sales of electrical slate suffered a serious decline in 1938 and although there was a decided recovery in 1939, the quantity of this product now used is still far below that employed a decade ago. The value of slate sales in Maine in 1939 was below the 1935 level.

New York-Vermont.—Sales of the attractively colored roofing slates of the New York-Vermont area that are popular with architects and builders increased 26 percent in quantity over 1938. The quantity of mill stock sold in Vermont advanced 20 percent and the value of other products, chiefly granules and flour, was 4 percent over 1938. The value of all slate products sold in Vermont in 1939 was 13 percent higher than in 1938 and in New York 5 percent higher.

Peach Bottom district.—Granules, slate flour, and roofing slate are manufactured in the Peach Bottom district on the Maryland-Pennsylvania border near Delta, Pa. Some development work has been done on a southern extension of the slate belt in Frederick County,

Md.

Lehigh district.—The Lehigh district, comprising Lehigh and Northampton Counties, Pa., is the most productive slate area in the United States. All types of slate products are manufactured in this district. As separate figures cannot be shown for York County, it is included with Northampton County in the accompanying table.

The value of total sales of slate products in the area was 22 percent higher in 1939 than in 1938. Sales of roofing slate increased 21 percent in quantity and 24 percent in value, and sales of blackboards and bulletin boards increased 26 percent in quantity and 44 percent in Sales of electrical slate were virtually double those of 1938, and sales of structural and sanitary products (including vaults and covers) increased 10 percent in quantity and 19 percent in value. Sales of school slates showed a large decline, and sales of other products, chiefly granules and including billiard tables, increased 6 percent.

Slate sold by producers in Pennsylvania in 1939, by counties and uses

		Roofin	g slate]	Mill s	stoc	k _			
County	Oper- ators	Squares	(100 Value -			Electrical St			Structural and sanitary			Vaults and covers		
		square feet)	Value		uare eet	v	alue	Squ	are et	V	alue	Squa fee		Value
Lehigh	10	14, 730	\$99, 438	29	, 720	\$14	4, 261	9,	750	\$2,	796	(1)		(1)
Northampton and York 2	17	221, 980	1, 508, 491	14	l, 2 50	1	5, 785	912,	340	268,	629	1 240,	280	¹ \$54, 12 5
	27	236, 710	1, 607, 929	43	3, 970	20	0, 046	922,	090	271	425	240,	280	54, 125
			Mill stock	-Continued										
County		boards and tin boards		d-tal	1-table tops Sch			School slates			u	her ses lue)	То	tal value
	Square feet	Value	Squa feet		Valu	ıe	Squ fee		Val	ue				
Lehigh	437, 25	0 \$101,6)2				276,	210	\$5, 7	769	. (3)	1 2	\$223, 866
Northampton and York 3	1, 628, 58	0 399, 2	7 100, 3	10	\$36, 39	97					3 \$560), 353	1 3 2	2, 832, 987
	2, 065, 83	0 500, 8	09 100, 3	10	36, 39	97	276,	210	5, 7	769	56), 353	1	3 , 056, 853

¹ Small amount of slate for grave vaults and covers produced in Lehigh County included under Northampton and York Counties.

York County produced roofing slate, granules, and flour only.

Small amount of flagging produced in Lehigh County included under Northampton and York Counties.

Virginia.—Roofing slate is the principal product of the Buckingham County area. Small quantities of flagging are sold, but no mill-stock products are manufactured. Granules are made at Esmont, Albe-

marle County, and New Canton, Buckingham County,

Other districts.—Small quantities of granules alone, or granules and slate flour, are manufactured 16 miles southeast of Mena, Polk County, Ark.; at Placerville, Eldorado County, and near Jamestown, Tuolumne County, Calif.; and in Bartow County, Ga., near Fair Mount. Structural and sanitary products and flagging are made at Chilhowee, Blount County, Tenn.

NEW DEVELOPMENTS

Parsons Bros. Slate Co., Pen Argyl, Pa., has designed a new method of applying slate to roofs. It simplifies the process, reduces the

1203 SLATE

weight, requires only half as much slate for a given area as the old method, and utilizes small sizes that accumulate around quarries and ordinarily are difficult to market. The small slates are placed edge to edge with no side lap but with a 3-inch head lap. Between the slates and the sheathing are strips of heavy asphalt-impregnated felt with an asphalt coating which also have a 3-inch head lap. Such low-cost roofs are said to be enduring.

Further tests by the Eastern Experiment Station of the Bureau of Mines indicate that waste slate is suitable for making lightweight aggregate. When calcined at a carefully controlled temperature, the slate will expand to more than five times its original volume and still

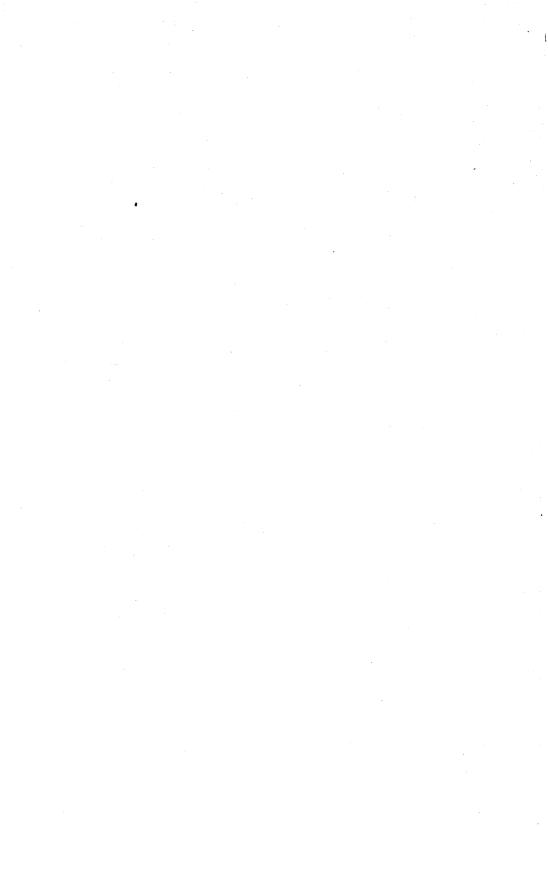
have a fairly high compressive strength.

FOREIGN TRADE 1

Imports.—The value of slate imported for consumption in the United States in 1939 dropped to less than one-sixth the 1938 figure. The drastic decline doubtless is due chiefly to war conditions. Imports are relatively unimportant even when trade is normal. The following table shows the value of imports in 1938 and 1939 by countries.

Slate imported for consumption in the United States, 1938-39, by countries

Country	1938	1939	Country	1938	1939
Canada	\$543 3 1,037	\$570 26	Italy Japan United Kingdom	\$994 68 3, 089	\$356 61
France Hong Kong	895 59	4		6, 688	1,017


Exports.—The following table lists exports of slate products from 1937 to 1939, as reported to the Bureau of Mines by shippers. Exports in 1939 fluctuated greatly from those in 1938, some items increasing and others declining, but there was a net gain of 13 percent in the value of foreign sales.

Slate exported from the United States, 1937-39, by uses 1

	19	37	193	38	193	39
Use	Quantity	Value	Quantity	Value	Quantity	Value
Roofing squares School slates cases ¹ Electrical square feet Blackboards do Billiard tables do Structural do Slate granules and flour short tons.	1, 025 4, 434 3, 986 26, 033 30, 443 26, 462 11, 184	\$9, 382 35, 011 2, 356 6, 853 16, 580 4, 393 77, 576	660 4, 642 1, 885 46, 253 17, 788 18, 188 11, 229	\$5, 070 35, 717 1, 239 10, 400 10, 182 1, 314 93, 675	569 2, 151 2, 672 28, 201 37, 326 15, 202 13, 316	\$5, 244 17, 739 1, 726 8, 448 18, 111 5, 791 120, 731
		152, 151		157, 597		177, 790

Figures collected by Bureau of Mines from shippers of products named.
 Cases weigh 130 to 165 pounds each; average is 135 pounds. They contain 8 to 18 dozen slates, depending on size. Sizes run from 5 by 7 to 9 by 13 inches (inside frame).
 Value includes slate used for pencils and educational toys; quantity not available.
 Includes slate for floors and walkways.

¹ Figures on imports and exports (unless otherwise indicated) compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

SAND AND GRAVEL

By H. HERBERT HUGHES AND G. E. TUCKER

SUMMARY OUTLINE

	Page		Page
Summary	1205 1206	Employment and output per man Prices New developments	1218
Government-and-contractor production	1213 1217	Foreign trade Blast-furnace slag	1222

Despite an 11-percent drop in concrete-pavement contract awards in 1939, the quantity of sand and gravel sold or used by producers for all uses increased substantially over 1938. Virtually the entire advance was due to a 12-percent increase in output of commercial operations, as Government-and-contractor production rose only 1 percent. The slight gain in tonnage at plants operated by or for States, counties,

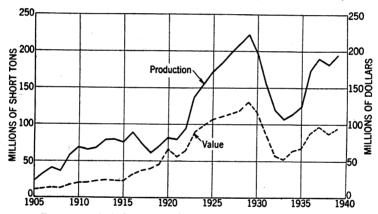


FIGURE 1.—Principal trends in the sand and gravel industry, 1905-39.

municipalities, and other Government agencies halted the recent sharp upward trend in output of this material. The continuous rise in total production and value from the low of 1933 has been interrupted only in 1938. (See fig. 1.)

Except for concrete paving, the construction industry in 1939 showed moderate improvement over 1938. According to the F. W. Dodge Corporation, the total value of construction contracts awarded was 11 percent above 1938. Engineering News-Record data indicated a 7-percent gain in engineering construction. Of especial significance was the 23-percent increase in privately financed construction, whereas public contracts showed no gain. Residential construction was particularly active—35 percent above that in 1938.

Salient statistics of the sand and gravel industry in 1938 and 1939 are summarized in the following table.

¹ Formerly classified as "noncommercial"; details of change in designation given in section headed "Government-and-contractor operations."

Sand and gravel sold or used by producers in the United States, 1938-39, by commercial and Government-and-contractor operations and by uses

		1938			193	9		
		Value			Value		Percer	
	Short_tons	Total	Aver- age	Short tons	Total	Aver- age	Ton- nage	Aver- age value
COMMERCIAL OPERATIONS		,						
Sand: Glass	2, 109, 462 2, 319, 902 22, 939, 683 16, 755, 634	\$3, 601, 734 2, 651, 779 12, 888, 823 9, 388, 865	\$1.71 1.14 .56 .56	2, 468, 290 3, 728, 389 26, 406, 323 19, 468, 018	\$4, 280, 936 4, 039, 082 14, 166, 111 10, 205, 641	\$1.73 1.08 .54 .52	+17.0 +60.7 +15.1 +16.2	+1.2 -5.3 -3.6 -7.1
Grinding and polishing 1 Fire or furnace Engine Filter Railroad ballast 2 Other 3	502, 328 108, 093 1, 378, 450 93, 711 672, 829 1, 453, 162	754, 805 124, 343 786, 639 137, 283 195, 469 1, 142, 205	1.50 1.15 .57 1.46 .29 .79	668, 027 172, 348 1, 469, 562 173, 013 1, 259, 367 1, 799, 537	895, 989 197, 500 854, 939 195, 142 332, 715 1, 417, 617	1. 34 1. 15 . 58 1. 13 . 26 . 79	+33.0 +59.4 +6.6 +84.6 +87.2 +23.8	-10.7 +1.8 -22.6 -10.3
Total commercial sand	48, 333, 254	31, 671, 945	. 66	57, 612, 874	36, 585, 672	. 64	+19.2	-3.0
Gravel: Building Paving Railroad ballast 4 Other 5	19, 014, 937 29, 180, 197 7, 271, 502 1, 959, 896	13, 283, 044 17, 391, 259 2, 179, 462 490, 168	.70 .60 .30 .25	21, 106, 812 27, 387, 327 9, 972, 259 2, 313, 848	13, 785, 942 16, 791, 795 3, 094, 013 925, 136	. 65 . 61 . 31 . 40	+11.0 -6.1 +37.1 +18.1	-7.1 +1.7 +3.3 +60.0
Total commercial gravel	57, 426, 532	33, 343, 933	. 58	60, 780, 246	34, 596, 886	. 57	+5.8	-1.7
Total commercial sand and gravel.	105, 759, 786	65, 015, 878	. 61	118, 393, 120	71, 182, 558	. 60	+11.9	-1.6
GOVERNMENT-AND- CONTRACTOR OPERATIONS ⁶					-			
Sand: Building Paving	2, 157, 501 6, 623, 073	890, 224 1, 373, 556	.41 .21	4, 183, 505 5, 281, 681	1, 565, 613 1, 411, 053	.37	+93. 9 -20. 3	-9.8 +28.6
Total Govern- ment-and-con- tractor sand	8, 780, 574	2, 263, 780	. 26	9, 465, 186	2, 976, 666	.31	+7.8	+19.2
Gravel: BuildingPaving	7, 299, 822 59, 480, 051	2, 454, 783 16, 188, 406	.34	9, 818, 748 57, 141, 479	4, 905, 420 16, 159, 403	.50	+34. 5 -3. 9	+47. 1 +3. 7
Total Govern- ment-and-con- tractor gravel	66, 779, 873	18, 643, 189	. 28	66, 960, 227	21, 064, 823	.31	+0.3	+10.
Total Govern- ment-and-con- tractor sand and gravel	75, 560, 447	20, 906, 969	. 28	76, 425, 413	24, 041, 489	. 31	+1.1	+10.
COMMERCIAL AND GOV- ERNMENT-AND-CON- TRACTOR OPERATIONS								
SandGravel	57, 113, 828 124, 206, 405	33, 935, 725 51, 987, 122	.59 .42	67, 078, 060 127, 740, 473	39, 562, 338 55, 661, 709	.59 .44	+17.4 +2.8	+4.
Grand total	181, 320, 233	85, 922, 847	.47	194, 818, 533	95, 224, 047	. 49	+7.4	+4.

¹ Includes blast sand as follows: 1938, 205,753 tons valued at \$509,178; 1939, 220,240 tons, \$542,915.
² Includes ballast sand produced by railroads for their own use as follows: 1938, 128,079 tons valued at \$25,806; 1939, 152,723 tons, \$21,998.
³ Includes some sand used by railroads for fills and similar purposes as follows: 1938, 113,606 tons valued at \$17,466; 1939, 137,158 tons, \$21,366.
⁴ Includes ballast gravel produced by railroads for their own use as follows: 1938, 3,590,684 tons valued at \$645,133; 1939, 4,617,468 tons, \$752,670.
³ Includes some gravel used by railroads for fills and similar purposes as follows: 1938, 922,742 tons valued at \$75,893; 1939, 824,959 tons, \$80,090.
⁰ By States, counties, municipalities, and other Government agencies directly or under lease.

Sand and gravel sold or used by commercial producers in 1939 for all purposes except gravel for paving increased substantially over 1938. The largest advances were in railroad-ballast, filter, molding, and fire or furnace sand. Sales of railroad-ballast gravel also were appreciably higher.

In general the average value per ton of sand and gravel sold or used by commercial producers in 1939 was slightly below 1938, indicating

somewhat lower prices.

PRODUCTION

Except for small supplies to meet seasonal peaks, stocks are of little consequence in the sand and gravel industry, and the quantity of materials sold or used by producers is virtually equivalent to production. Throughout this report sales and production are used inter-

changeably.

Because of the drop in production of paving gravel the increase in relative importance of gravel was interrupted in 1939. It comprised only 66 percent of the total tonnage compared with 69 percent in 1938 and 67 percent in 1937. Although a large part of the rise in gravel output in recent years represents Government-and-contractor production used in low-type roads there also is evidence that gravel is being used increasingly as coarse aggregate, particularly in bituminous-highway construction.

Complete production data for 1939 are included in this report. Statistics of sand and gravel sold or used by commercial and Government-and-contractor producers from 1935 to 1939 are summarized in

the following table.

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States, 1935-39

Year	ear San		Gravel (inc.	luding rail- allast)	g rail- Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1935	40, 433, 559 60, 303, 394 63, 385, 071 57, 113, 828 67, 078, 060	\$25, 867, 222 35, 926, 994 40, 412, 497 33, 935, 725 39, 562, 338	83, 490, 364 118, 026, 420 126, 275, 352 124, 206, 405 127, 740, 473	\$36, 110, 157 54, 380, 758 57, 060, 500 51, 987, 122 55, 661, 709	123, 923, 923 178, 329, 814 189, 660, 423 181, 320, 233 194, 818, 533	\$61, 977, 379 90, 307, 752 97, 472, 997 85, 922, 847 95, 224, 047	

New York, California, Illinois, Ohio, and Michigan were the leading States in output of sand and gravel by commercial producers in 1939. Pennsylvania, however, ranked second in value because of its large production of glass and other relatively high priced industrial sands.

Details of production in 1939 by States and uses are given in the

following tables.

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1939, by States and uses

[Commercial unless otherwise indicated]

	•				Sand			
			******			Build	ing	
State	Gla	SS	Molo	ling	Comm	ercial	Governme	ent-and- actor
-	Shorttons	Value	Shorttons	Value	Short tons	Value	Shorttons	Value
Alabama			80, 140	\$69,924	173, 148	\$81, 369	4, 616	\$2,898
Alaska					(1) 16, 991	15, 986	108, 757	16,002
Arizona		7		(1)	142, 633	74, 638	295	330
Arkansas California Colorado	\mathbb{R}	(1) (1)	(1) 35, 483	(1) 89, 565	4, 040, 854	1, 882, 534	63, 201	13, 120
Poloredo	(-)		(1)	(1)	222, 641	113, 607	(1)	(1)
Connecticut			()		365, 342	231, 314	202, 500	22, 500
) olowowo			600	350	29,644	18, 041		
Florida					519, 208	343, 186	1,781	66
Jeiaware Florida Jeorgia Jeorgia Ilinois Indiana	9, 344	\$7, 475	(1)	(1)	165, 513	55, 724	75	55
daho					16, 485	9,089	5,483	3,760
Ilinois	(1)	(1)	486, 490	467, 955	1, 405, 244 1, 115, 715	585, 234	4,023	(1) 2, 191
Indiana			189, 043	122, 872	494, 149	495, 575 253, 211	(1)	(1)
owa			(1)	(1)	653, 772	284, 046	19,822	3, 720
Kansas			5, 242	11, 470	70, 235	56, 825	300	300
KentuckyLouisiana			0, 242	11, 410	342, 503	119, 412	75	58
Maine					7, 013	5, 714	1,300	65
Marvland	(1)	(1)			7, 013 924, 794	5, 714 622, 320	400	600
Massachusetts	()	()	(1)	(1)	799, 121	402, 299	11,003	1, 129
Michigan	(1)	(1)	(1) 907 , 438	230, 651	727, 039	296, 084	106, 797	27, 430
Minnesota	(1)	(1)	12, 791	14, 480	770, 214	299, 720	895, 804	56, 698
Mississippi					121, 336 882, 742	51, 304	44, 252	11,648
Missouri	(1)	(1)	34, 900	22, 694	882,742	505, 580	35, 131	5, 740
Montana					84, 860	53, 114 69, 116	2, 857 5, 400	2, 976 320
Nebraska				14 540	230, 392 22, 007	20, 637	7, 927	14, 53
Nevada		(1)	7,840	14, 549	13, 941	5, 348	2,061	300
New Hampshire		337, 519	584, 075	863, 221	1, 023, 053	569, 611	2,001	
New Jersey New Mexico	239, 213	557, 519	004,010	000, 221	(1)	(1)	6, 636	1,659
New York			354, 113	578, 110	4, 700, 137	2, 412, 146	(1)	(1)
North Carolina			301, 110		138, 850	45, 759	563	51.
					9,868	5, 119	378	310
Ohio	(1)	(1)	494, 421	837, 443	1, 347, 031	893, 698	57, 661	21, 28
Oklahoma	(1) (1)	(1) (1)	(1)	(1)	202, 905	98, 612	628	49
Oregon					202, 594	154, 304	14, 220	14, 12
Pennsylvania Rhode Island	(1)	(1)	265, 085	413, 168	1, 429, 983	1, 309, 300	400	1,80
Rhode Island			(1)	(1)	67, 523	25, 367	13, 500	15, 00 1, 48
South Carolina					107, 886	48, 966 14, 283	14, 402 100, 482	5,81
South Dakota				07 007	27, 973 367, 913	340, 143	141, 224	73, 17
Tennessee Texas	(1) (1)	(1) (1)	51, 336 5, 496	87, 807 8, 474	597, 428	355, 575	134 886	58, 98
Trexas	(1)	(()	(1)	(1)	127, 526	57, 662	134, 886 11, 243	6, 14
Utah Vermont			1 (2)		(1)	(1)	2, 375	98
Virginia	(1)	(1)	6, 530	4, 250	338, 508	173, 987	7, 447	95
Virginia Washington West Virginia Wisconsin	()	I	1,081	1,761	364, 814	157, 727 263, 042	1, 741, 406	1, 046, 77
West Virginia	(1)	(1)	(1)	(1)	269, 185	263, 042	1,651	81
Wisconsin	l	l	76,600	48, 078	694, 332	264, 028	259, 778	79,00
Wyoming	l				7, 341	7, 901	9,074	9, 15
Undistributed 2	2, 219, 731	3, 935, 942	129, 685	152, 260	23, 937	17,854	141, 691	40, 09
	2, 468, 290	4, 280, 936	3, 728, 389	4, 039, 082	26, 406, 323	14, 166, 111	4, 183, 505	1, 565, 61

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1939, by States and uses—Continued

			S	and—Conti	nued			
		Pa	ving			_		
State	Comn	nercial		nent-and- actor		ng and hing ³	Fire or	furnace
	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value
Alabama	163, 005	\$83, 833	166, 046	\$70, 712	(1)	(1)		
Alaska Arizona	(1) 38, 224	26, 788	398	885				
Arkansas	123, 031	97, 434	91, 515 2, 777	35, 128 1, 062				
California	1, 475, 201	603, 727	224, 172	42, 841	10, 252	\$24, 702	(1)	(1)
Colorado	39, 386	16, 482	(1)	l as	10, 252 1, 743 (1)	1, 421		
Connecticut	195, 117	115, 593	445, 756	37, 783	(1)	(1)		
Delaware Florida	130, 705	(1) 107, 409	13, 684		3, 218	6, 436	2, 530	\$1,84
Georgia	89, 745	39, 435	1,849	2, 136 812	(1)	(1)		
Idaho	(1)	(1)	86, 396	30, 810	(-)	(-)		
Illinois	879, 337	383, 288	(1)	(1)	(1)	(1)	(1)	(1)
Indiana	660, 182	352, 001	311	185			50,000	15,00
Iowa Kansas	368, 522	147, 534 199, 351	36, 629	(1) 11, 805	(1) 1, 252	(1) 796		
Kentucky	495, 271 400, 284	274, 562	200	11, 303	1, 202	190		
Louisiana	242,012	156, 585	184	136	(1)	(1)		
Maine	6, 716	1,003	22, 748	17, 450				
Maryland Massachusetts	735, 968 896, 681	504, 564 382, 494	9, 700 57, 700	970	(1)	(1) 290	(1)	(1)
Michigan	1, 621, 071	538, 114	96, 956	8, 377 24, 346	428 94, 467	13, 178		
Minnesota	289, 932	110, 278	144, 425	17, 937	440	1, 100	310	930
Mississippi	359, 106	158, 065	405	300	(1)	1, 100 (1)		
Missouri	511, 491	277, 536	15, 893	4, 816	(1)	(1)	(1)	(1)
Montana Nebraska	6, 546	6, 460	4,804	4, 795				
Nevada	143, 274 375	40, 976 267	146, 340 284	38, 762 53	484 312	141 744	1, 350	40.
New Hampshire	40, 207	14, 581	600, 263	38, 444	312	744		
New Jersey	1, 272, 599	670, 994	3, 367	314	51, 269	104, 284	24, 167	32, 262
New Mexico			108, 590	108, 218		l		
New York North Carolina	2, 289, 535	1, 008, 178	1 075 045	(1)	(1)	(1)		
North Dakota	351, 408 (1)	124, 379	1, 275, 345 2, 735	332, 869 1, 146				
Ohio	1, 469, 120	850, 604	705	274	(1)	(1)	(1)	(1)
Oklahoma	109, 523	42,012	53, 844	13, 155				
Oregon	42, 427	30, 272	12, 548	6, 447	-222-22-			
Pennsylvania Rhode Island	1, 504, 760	1, 423, 115	1, 300 46, 651	1, 150 39, 070	190, 564	182, 944	15, 593	25, 220
South Carolina	84, 151	29, 431	72, 970	20, 067	(1)	(1)		
South Dakota	35, 869	19, 304	41, 225	24, 940	(-)			
Tennessee	349, 199	288, 842	596	446	29, 478	49, 254	133	147
Texas	776, 495 48, 939	401, 674 28, 154	26, 456	25, 237	(1)	(1)		
Utah Vermont	48, 939 12, 377	28, 154	89, 588	51, 399				
Virginia	256, 405	11, 087 119, 099	10, 443 224, 888	4,872 44,911	51, 772	3, 766	2,700	1,080
Washington	163, 649	90, 547	76, 568	33, 577	750	288	2, 100	1,000
West Virginia	238, 711	189, 241	2, 332	1,073	(1)	(1)		
Wisconsin	477, 076	203, 610	324, 471	94, 007	29, 486	57, 654		
Wyoming Undistributed 2	74, 386	36, 738	61, 965 675, 659	52, 612 164, 674	202, 112	449 001	75 505	190 600
THE THE THE THE THE THE THE THE THE THE						448, 991	75, 565	120, 609
	19, 468, 018	10, 205, 641	5, 281, 681	1, 411, 053	668, 027	895, 989	172, 348	197, 500

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1939, by States and uses—Continued

				Sand—Co	ontinued			
State	Eng	ine	Filt	ter	Railroad	ballast 4	Oth	er 5
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama	(1)	(1)						
Alaska	4, 588	\$2,758	(1)	(1)	386	\$193	4, 890	\$2,01
Arkansas	(1)	(1) 7, 880						05.00
California	22,019	7, 880 14, 511	(1) 325	\$1, 101	(1) (1)	(1) (1)	61, 002 38, 316	35, 069 11, 749
Colorado	16, 937	(1)	(1) 323	(ا)	(-)	(9)	(1)	(1)
Connecticut Delaware	40, 100	13,325	2,390	4, 780			1,702	í, 19
Florida	(1)	(1)	2,000		10, 117	2,000		-,
Georgia	18, 590	4,832	1,677	5, 031			4, 483	2, 24
daho	(1)	(i)					927	29
Illinois	66, 518	33, 145	(1) (1)	(1) (1)	(1) (1)	(1) (1)	122, 477	201, 86
Indiana	62, 971	23, 745	(1)	(1)	(1)	(1)	39, 554	14, 22
lowa	32, 919	17, 547 13, 208	(1)	(1) (1)	5, 649	1,014	(1) 17, 423	(¹) 5, 33
Kansas	27, 119 27, 567	20, 954	(4)	(.)	(1)	(4)	17,420	0, 00
Kentucky Louisiana	14, 616	4, 422	4,777	764	(1)	(1)	(1)	(1)
Maine	1. 721	513	2,	,01				
Maryland	(1)	(1)						
Massachusetts	(1)	(1)	2, 231	817			141, 166	57,00
Michigan	(1)	(1)			(1) (1)	(1)	136, 886	24, 38
Minnesota	29, 946	5, 867	750	2,062		(1)	38, 138	12, 33
Mississippi	17, 867	6, 468		,	(1) 50, 269	21, 500	5, 260 50, 522	2, 61 55, 34
Missouri	24, 289	13, 028			49, 237	6, 148	50, 522 54, 283	10, 43
Montana	720 39, 683	$\begin{array}{c} 72\\11,782\end{array}$	1, 400	250		(1)	8,719	1, 20
Nebraska Nevada	39, 003	11, 102	1, 100	200	(i) (i)	(1) (1)	(1)	(1)
New Hampshire							(1)	(1)
New Jersey	(1)	(1)	53, 191	63, 505			(1)	(1)
New Mexico	(1)	(1)						
New York	96, 296	44, 493	(1)	(1) 2,000	(1)	(1)	251, 291	91, 53
North Carolina	28, 500	14, 100	2,000	2,000			32, 785 1, 733	15, 06 85
North Dakota		(1)	5, 758	8, 413	(1)	(1)	174, 852	405, 59
OhioOklahoma	23, 223	11, 456	0, 100	0,410	(1)	(1)	(1)	(1)
Oregon	(1)	(1)			4, 489	1,040	9, 074	\ 5, 21
Pennsylvania	215, 603	229, 755	(1)	(1) (1) (1)			139, 767	143, 25
Rhode Island			(1) (1) (1)	(1)				
South Carolina	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
South Dakota								(1)
Tennessee	19, 891	17, 778		(1)	112, 701	23, 748	(1) 94, 582	65, 33
Texas	43, 931	20, 152	(1)	(4)	112, 701	25, 140	(1)	(1)
UtahVermont	(1)	(1)			(1)	(1)	(-)	
Virginia	61.519	24, 906			360	144	63, 316	38, 60
Washington	22, 562	3, 267			1,603	456	41. 447	15, 16
West Virginia	190, 484	148, 627	174	701	(1)	(1)	(i) (1)	(1)
Wisconsin	55, 584	9, 310	(1)	(1)	47, 445	13, 080	(1)	(1)
Wyoming					077		3,822	1,36
Undistributed 2	263, 799	137, 038	98, 340	105, 718	977, 111	263, 392	261, 120	198, 34
	1, 469, 562	854, 939	173. 013	195, 142	1, 259, 367	332, 715	1, 799, 537	1, 417, 61

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1939, by States and uses—Continued

				Gra	vel					
		Build	ling			Pa	ving			
State	Comn	nercial		nent-and- actor	Comr	nercial		nent-and- ractor		
	Short tons	Value	Short tons	Value	Short tons	Vaue	Short tons	Value		
Alabama	209, 643	\$107, 109	42, 139	\$7, 093	318, 955	\$211, 911	58, 850	\$20, 45		
Alaska	(1)	(1)			(1)	(1)	41, 934	22, 22		
Arizona	(1)	(1)	263, 205	99, 828	39, 037	30, 434	25, 741	13, 48: 443, 98		
Arkansas California	55, 702	39, 253	22, 957	8, 478 66, 064	149, 459	113, 153	1, 551, 802 1, 369, 041	443, 98		
Colorado	3, 689, 401 207 334	1, 940, 781	191, 357	06,064	1, 972, 440	1, 051, 647		496, 02		
Connecticut	326, 217	151, 907 269, 168	236, 250	26, 250	78, 843 41, 064	40, 983 22, 840	120 670	(1)		
Delaware	5, 515	5, 100	200, 200	20, 200	(1)	(1)	120, 670	18,98		
Florida	(1)	(1)	246	137		(i)	11, 045	3, 54		
Georgia	445	636	246	137	1, 299	928	24 516	15 46		
Idaho	(1)	(1)	90, 365	22, 190	42, 279	13, 947	1, 228, 174	498, 01		
Illinois	1, 489, 468	726, 724	(1)	(1)	1, 739, 703 1, 996, 421	748, 526	(1)	(1)		
Indiana	861, 114	566, 924	39, 684	21,877	1, 996, 421	1, 281, 591	401, 086	92, 87		
Iowa	273, 194	227, 107	(1)	(1)	1,061,374	507, 109	(1)	(1)		
Kansas Kentucky	85, 640	53, 385	486	54	270, 428	144, 800	315, 993	96, 91		
Louisiana	677, 475	(1) 374, 474	246	137	388, 962 560, 224	289, 412 412, 585	25, 000 38, 045	6, 25		
Maine	(1)	(1)	8, 100	7,500	17 060	10 776	2 000 510	5, 54 803, 18		
Maryland Massachusetts	(1) 773, 743	853, 097	0, 100	1,000	17, 969 668, 191 603, 793	10, 776 772, 996	3, 080, 519 166, 800 230, 233	20, 47		
Massachusetts	504, 008	354, 814	57	6	603, 793	346, 173	230, 233	34, 93		
Michigan	956, 057	557, 579	621, 872	178, 462	1, 847, 062	832, 649	2, 912, 762	922, 36		
Minnagata	504, 214	505, 366	456, 748	128, 627	638, 598	297, 027	3, 693, 752	309, 44		
Mississippi	48, 998	23, 758	69, 427	33, 368	927, 521	459, 881	587, 405	24 03		
Missouri	423, 111	209, 269	5, 144	, 2, 862	866, 023	435, 474 62, 177 294, 605	538, 404	275, 41		
Montana	375, 332	162, 507 168, 461	67, 620	59, 541	94, 594	62, 177	2, 475, 457	275, 41 1, 047, 31		
Nebraska	439, 695	168, 461	14, 850	2,500	811, 965	294, 605	640, 396	244, 346		
Nevada	(¹) 19, 657	(1)	42, 171	28, 567	78, 986	30, 361	1, 141, 411	284, 14		
New Hampshire New Jersey	492, 806	17, 380 325, 653	3, 511	420	58, 658	41, 978	1, 317, 611	99, 04		
New Mexico	(1)	(1)	219, 280	434, 313	488, 742	340, 322	5, 118 1, 498, 227	569		
New York	2, 520, 181	1, 505, 028	(1)	(1)	2 222 875	1 302 435	1. 00	587, 61		
North Carolina	(1)	(1)	246	137	2, 222, 875 262, 640	1, 302, 435 258, 096	86,375	41, 58		
North Dakota	(1)	(1)	352	215	39, 954	23, 411	1, 081, 238	47, 14		
Ohio	1,024,902	737, 644	53, 125	7, 036	2, 484, 264	1, 648, 845	344, 256	65, 07		
Oklahoma	49,935	43,974	2, 205	1,040	137, 041	65, 989	236, 492	70, 34		
Oregon	321, 112	197, 736	74, 233	42,609	494, 945	268 047	1, 684, 532	393, 35		
Pennsylvania	1, 063, 890	952, 811			1, 308, 685	1, 173, 396 19, 773 77, 119	112, 251	18, 41		
Rhode Island	31, 572	17, 739 102, 614	28, 485	30, 165 937	47, 864 78, 108	19,773	91, 572	68, 43		
South Carolina South Dakota	99, 421	102,614	516 15,715	937	78, 108	77, 119	11,045	3, 54		
Tennessee	15, 146 248, 436	14, 439 211, 595	117, 352	1,540	43, 344	14, 565	2, 182, 633	618, 240		
Texas	723, 398	569, 097	277, 147	84, 106 100, 769	643, 905 1, 506, 743	487, 906 1, 178, 604	352,719	95, 75 354, 58		
Utah	166, 298	78, 853	38, 201	19, 417	86, 806	47, 405	2, 219, 779 1, 532, 979	772, 62		
Vermont	414	104	15,385	302	(1)	(1)	336, 639	180, 30		
Virginia	405, 112	351, 491	100,649	76, 426	382, 126	350, 387	697, 561	145, 618		
Washington	420, 915	207, 751	4, 936, 918	2, 963, 815	382, 126 385, 195	260, 120	697, 561 3, 244, 291	1, 218, 79		
West Virginia	252, 321	351, 491 207, 751 232, 867			329, 076	253, 613	122, 889	31,74		
Wisconsin	703, 573	337,658	179,935	63, 483	1,009,489	445, 381	2, 144, 588	792, 95		
Wyoming Undistributed 2	3,316	2,072	14,412	11, 596	97, 020	47, 445	1, 150, 682	560, 88		
Undistributed 2	638, 101	582, 017	1, 567, 911	373, 416	64, 657	74, 913	16,008,966	4, 293, 362		
	21, 106, 812	13, 785, 942	9, 818, 748	4, 905, 420	27 387 327	16 701 705	57, 141, 179	16 150 40		

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1939, by States and uses—Continued

		Gravel—C	ontinued		Sand and gravel					
State	Railroad	l ballast 6	Oth	er 7	Total con	nmercial		vernment- ntractor		
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
Alabama			(1)	(1)	1, 011, 926	\$586, 104	271, 651	\$101, 16		
Alaska					(1)	(1)	42,332	23, 11		
Arizona Arkansas	(1) 502, 068	\$145, 579	4,615	\$5, 888	165, 937	96, 876	489, 218	164, 440		
Arkansas	502, 068	\$145,579	(1)	(1)	1, 068, 962 11, 813, 635	576, 414	1, 577, 831	453, 856		
California	331, 577	50,905	75, 698	56, 499	11, 813, 635	6,093,165	1,847,771	618, 049		
Colorado			(1)	(1)	627, 306	361, 747	(1)	(1)		
Connecticut	(1)	(1)	6, 373	2,028	983, 757	667, 649	1, 005, 176	105, 514		
Delaware	(1)				102, 850 988, 383	61, 556 773, 225				
Georgia	()	(1)			301, 487	129, 891	26, 756	6, 488		
Idaho	46, 008	3, 252	50, 878	5, 469	207, 438	67, 463	26, 686 1, 410, 418	16, 464 554, 777		
Illinois	1 369 190	492, 037	125, 145	16 786	207, 450	4, 686, 487	1,410,418	(1)		
Indiana	680 443	329, 822	96, 977	46, 786 48, 125	8, 755, 193 5, 804, 065	3, 271, 171	(1) 445, 104	117, 126		
Iowa	177, 333	59, 490	(1)	(1)	2, 503, 988	1, 299, 449	(1)	(1)		
Kansas Kentucky	7, 100	3,950	1,873	2, 070	1, 561, 829	709, 811	372, 930	112, 494		
Kentucky	(1)	(1)		1	1, 075, 915	771,002	25, 500	6,600		
Louisiana	231, 477	110, 421	(1)	(1)	1, 075, 915 2, 107, 243	1, 189, 176	25, 500 38, 550	5, 873		
Maine Maryland	114, 032	30, 949	(1)	(1)	199, 497	60, 447	3, 112, 667	828, 199		
Maryland					3, 134, 129	2, 805, 222	176,900	22,046		
Massachusetts	53, 378	7,650	199, 738	66, 354	3, 263, 105	1, 674, 484	298, 993	44, 445		
Michigan	306, 792	110, 104	135, 772	49, 617	7, 009, 620	2, 934, 906	3, 738, 387	1, 152, 602		
Minnesota Mississippi	745, 637 82, 760	126, 051	144, 437	22, 438	3, 310, 482	1, 429, 722	5, 190, 729	512, 708		
Mississippi	82,760	18, 539	62, 277	18, 150	1, 635, 353	741, 585	701, 489	69, 348		
Missouri	127, 384	67, 939	(1)	(1)	3, 262, 834	2, 022, 154	594, 572	288, 841		
Montana Nebraska	904, 774	237, 581	184, 469	24,976	1, 754, 815 1, 687, 156	563, 474	2, 550, 738	1, 114, 624		
Nevada	(1) (1)	(1)	3, 671	4,029	1, 687, 156	592, 439	806, 986	285, 927		
New Hampshire	(-)	(-)		(1)	138, 017	125, 750 81, 087	1, 191, 793	327, 297		
New Jersey			(1) 46, 616	33, 594	144, 548 4, 310, 812	2 261 079	1, 923, 446	138, 209 883		
New Mexico	(1)	(1) 740	40,010	00, 004	(1)	3, 361, 072	8, 485 1, 832, 733	1, 131, 804		
New York North Carolina	(1) 2, 165	740	75, 363	60, 536	12, 608, 128	7, 050, 104	(1)	(1)		
North Carolina	(1)	(1)	10,000	00,000	1, 021, 243	626, 266	1, 362, 529	375, 103		
North Dakota	183, 743	14,901	108, 180	10,944	380, 035	79, 461	1, 084, 703	48, 818		
Ohio	675, 374	319, 360	121, 303	93, 423	8, 204, 738	6, 501, 810	1, 084, 703 455, 747	93, 673		
Oklahoma			626	279	565, 891	315, 449	293, 169	85, 029		
Oregon	262, 700	114, 067	(1)	(1)	1, 359, 384	776, 788	1, 785, 533	456, 532		
Pennsylvania			57, 050	47, 493	6, 665, 641	6, 730, 854	113,951	21,368		
Rhode Island			<u>(i)</u>	(1)	203, 349	112, 959 287, 724	180, 208	152, 672		
South Carolina	26, 318	5, 264	(1)	(1)	447, 495	287, 724	98,933	26, 034		
South Dakota Tennessee	63, 368	7,672	13,662	1,252	199, 362	71, 515	2, 340, 055	650, 531		
Texas	981, 023	(1)	(1)	70, 788	2, 077, 953 4, 964, 041	1, 713, 876 3, 130, 849	611, 891	253, 480		
Utah	74, 120	366, 734 22, 527	89, 041 807	181	546, 667	250, 429	2, 658, 268 1, 672, 011	539, 574		
Vermont.	73, 879	15, 906	807	101	164, 406	51, 772	364, 842	849, 584 186, 460		
Virginia	35, 175	21, 599	(1)	(1)	1, 609, 245	1, 157, 798	1, 030, 545	267, 910		
Virginia Washington	387, 150	33, 391	129, 868	15, 190	1,919,034	785, 658	9, 999, 183	5, 262, 961		
West Virginia	(1)	(1)	52,951	43, 495	1, 841, 980	2, 002, 386	126, 872	33, 634		
Wisconsin.	775, 257	146, 298	225, 861	47, 304	4, 115, 950	1, 586, 755	2, 908, 772	1, 029, 449		
WyomingUndistributed 2	327, 488	52, 990			438, 987	111, 773	1, 236, 133	634, 249		
Undistributed 2	424, 546	178, 295	300, 597	148, 228	129, 309	104, 804	18, 394, 227	4, 871, 546		
,	9, 972, 259	3, 094, 013	2, 313, 848	925, 136	118, 393, 120	71, 182, 558	76, 425, 413	24, 041, 489		

¹ Included under "Undistributed."
2 Includes, in addition to items entered as "1," estimate for sand and gravel produced on W. P. A. projects.
3 Includes 220,240 tons of blasts and valued at \$542,915.
4 Includes 152,723 tons of sallast sand valued at \$21,998, produced by railroads for their own use.
5 Includes 137,158 tons of sand valued at \$21,366, used by railroads for fills and similar purposes.
6 Includes 4,617,468 tons of ballast gravel valued at \$752,670, produced by railroads for their own use.
7 Includes 824,959 tons of gravel valued at \$80,090, used by railroads for fills and similar purposes.

Sand and gravel sold or used by commercial and Government-and-contractor producers in the United States in 1939, by States

State	Short tons	Value	State	Short tons	Value
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Minsesta Mississippi Missouri Motana Nebraska	1, 283, 577 142, 332 655, 155 2, 646, 793 13, 661, 406 2 627, 306 1, 988, 933 102, 850 1, 015, 139 28, 173 1, 617, 856 2 8, 755, 193 6, 249, 169 2 2, 503, 988 1, 101, 415 2, 145, 793 3, 312, 164 3, 311, 029 3, 562, 098 10, 748, 007 8, 501, 211 2, 336, 842 3, 857, 406 4, 305, 553	\$687, 265 1 23, 112 261, 316 1, 630, 270 6, 711, 214 773, 163 61, 556 679, 708 146, 355 622, 240 24, 686, 487 777, 602 1, 195, 049 822, 305 777, 602 1, 195, 049 828, 646 2, 827, 268 1, 718, 929 4, 687, 508 1, 718, 929 2, 10, 933 2, 310, 995 1, 678, 098 878, 366	Nevada New Hampshire New Hersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Undistributed 3	1, 329, 810 2, 067, 994 4, 319, 297 1, 832, 733 212, 608, 128 2, 383, 772 1, 464, 738 8, 660, 485 859, 060 3, 144, 917 2, 683, 844 7, 622, 309 2, 218, 678 2, 539, 417 2, 689, 844 7, 622, 309 2, 218, 678 2, 639, 790 11, 918, 217 1, 968, 852 7, 024, 722	\$453, 047 219, 296 3, 361, 955 11, 131, 804 27, 050, 104 1, 001, 369 128, 279 6, 595, 483 400, 478 1, 233, 320 6, 752, 222 266, 631 1, 967, 356 3, 670, 423 1, 100, 013 238, 232 1, 425, 708 6, 048, 619 2, 036, 020 2, 616, 020 2, 616, 020 4, 976, 350

Output of commercial producers included under "Undistributed."
 Output of Government-and-contractor operations included under "Undistributed."
 Includes items covered by "!" and "2."

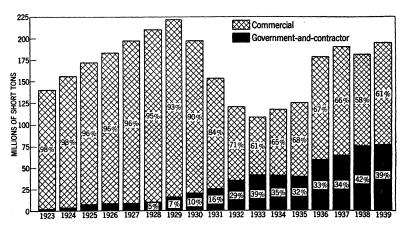


FIGURE 2.—Sand and gravel sold or used by commercial and Government-and-contractor producers, 1923-39.

Government-and-contractor production.—Production of sand and gravel by State highway departments and other similar Government agencies has been largely a development of the depression. (See Before 1929 less than 5 percent of the total tonnage of sand and gravel reported to the Bureau of Mines was from such operations. By 1931, however, this material had increased to 16 percent of the total tonnage, and in the canvass for 1932 it received special attention. As a result there is some upward bias in the "noncommercial" figure

for 1932. Since then, however, the coverage has been reasonably comparable from year to year. The growth of the material included in this category seems to parallel the development of portable plants for production of sand and gravel. It also has been allied closely with secondary-roads programs throughout the United States and various phases of work relief. Production of road materials from wayside sources has been one of the most common forms of relief activity.

This so-called "noncommercial" production comprised 42 percent of the total tonnage in 1938 and 39 percent in 1939. The somewhat astonishing quantity in 1938 brought to a head the growing realization that "noncommercial" is not the proper term to classify this material. In 1939, 52 percent of the material was reported to have been produced directly by construction and maintenance crews of State highway departments, county road supervisors, municipal street departments, and agencies of the Federal Government such as the Forest Service, National Park Service, Bureau of Public Roads, Bureau of Reclamation, and others. The remaining 48 percent, although reported to the Bureau of Mines by these same agencies, actually was produced by contractors for use on specific jobs being done for the State highway departments or other units of local or Federal Governments. It is evident that this contractor production should not be included in a category labeled "noncommercial," even though it represents sand and gravel business that is not a part of the

established commercial industry.

In this report the term "noncommercial" has been eliminated, and material formerly included in this category is referred to as "Government-and-contractor." Considerable thought has been given to the possibility of a direct canvass of contractor-producers, but it is impossible with funds now available to make this enlargement in the scope of the canvass. It is believed, however, after careful scrutiny of the 1938 and 1939 figures, that the reports from the State highway departments are accurate and reasonably complete. The same may be said of the reports from various Federal agencies, although for 1939 it was necessary to include estimates for material produced on W. P. A. projects. The greatest weakness of the coverage is in the county figures, but for the most part it is believed that activities of counties not reporting are limited to production of low-grade pit-run material that possibly should not even be considered part of the sand and gravel industry. As a matter of fact, of the 76,425,413 tons of sand and gravel reported by Government-and-contractor operations in 1939 only 23 percent was washed or screened. The rest was unprepared material having an average reported value of only 26 cents per ton. On the other hand, only 12 percent of the 118,393,120 tons reported by commercial operations was unprepared. The complete record of Government-and-contractor production is summarized in the following table:

Sand and gravel sold or used by Government-and-contractor producers in the United States, 1924-39, by uses

	Sand					Gı	Total Government- and-contractor			
Year	Buil	ding	Pav	ing	Buil	ding	Pav	ing		d gravel
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1924 1925 1926 1927 1928 1930 1931 1933 1933 1935 1936	80, 634 111, 626 69, 741 28, 436 19, 705 9, 889 4, 800 24, 276 147, 636 163, 257 334, 946 543, 457 810, 196	60, 250 16, 435 22, 913 5, 914 3, 939 7, 491 97, 283 84, 131 213, 304 272, 053	1, 189, 860 615, 568 790, 465	393, 617 472, 683 405, 440 819, 179 824, 254 1, 156, 772 1, 013, 337 751, 201 1, 069, 773 497, 781	4, 200 103, 753 5, 304 152, 347 42, 273 106, 284 49, 799 1, 000, 702 650, 873	4, 527 27, 793 2, 981 95, 381 19, 967 16, 057 37, 993 253, 931 253, 529 441, 838 352, 346	5, 805, 913 7, 070, 662 7, 322, 457 8, 487, 044 14, 047, 155 18, 160, 661 22, 369, 373 31, 395, 919 38, 862, 055 36, 857, 090 35, 836, 358	3, 579, 387 4, 397, 088 5, 091, 554 6, 910, 775 6, 963, 814 8, 666, 311 8, 668, 487 12, 589, 022 11, 157, 491 9, 611, 223	7, 011, 599 7, 859, 724 8, 146, 662 9, 599, 231 16, 353, 171 20, 171, 620 24, 540, 355 34, 748, 821 41, 648, 877 41, 288, 780 39, 316, 452	4, 061, 047 4, 889, 187 5, 615, 288 7, 755, 835 7, 808, 064
1937	1, 540, 280 2, 157, 501	595, 953 890, 224	4, 704, 764 6, 623, 073	1, 157, 162 1, 373, 556	2,961,360 7,299,822	1, 396, 202 2, 454, 783	55, 111, 541 59, 480, 051	15, 209, 362 16, 188, 406	64, 317, 945 75, 560, 447	18, 358, 679 20, 906, 969 24, 041, 489

^{&#}x27;Includes a small quantity of filter sand.

The quantity of material reported by State highway departments in 1939 was 47 percent of the total Government-and-contractor output, and 63 percent of it was produced by contractors. Counties reported 21 percent of the total, of which only 27 percent was produced by contractors. Municipalities reported only about 3 percent of the total, and the remaining 29 percent was supplied largely by various Federal agencies. For the most part this material was produced on work projects of all types, reclamation projects, and road construction in the national parks, national forests, and elsewhere in relatively remote localities. Further details are given in the following table:

Sand and gravel sold or used by Government-and-contractor producers in the United States, 1936-39, by types of producers

	1936	1	1937		1938		1939	
Type of producer	Short tons	Aver- age value per ton	Short tons	Aver- age value per ton	Short tons	Aver- age value per ton	Short tons	Average value per ton
Construction and mainte- nance crews	31, 206, 204 27, 203, 215						40, 143, 981 36, 281, 432	
	58, 409, 419	. 31	64, 317, 945	. 29	75, 560, 447	. 28	76, 425, 413	. 31
StatesCountiesMunicipalitiesOther agencies	33, 004, 590 20, 869, 867 2, 126, 985 2, 407, 977	. 23	20, 903, 014 1, 616, 489	. 22 . 29	23, 892, 718 2, 232, 786	.31 .19 .33 .34	35, 769, 724 16, 588, 377 2, 093, 406 21, 973, 906	. 24
	58, 409, 419	.31	64, 317, 945	. 29	75, 560, 447	. 28	76, 425, 413	. 31

The State break-down of sand and gravel production in 1938 shows that the largest centers of production were in the Northeastern and Great Lakes States and that California, Texas, and Washington also were large producers. (See fig. 3.) Government-and-contractor

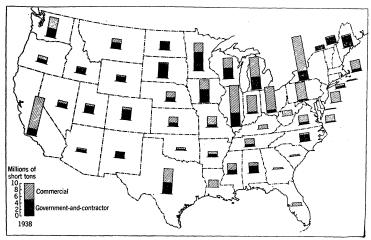


FIGURE 3.—Sand and gravel sold or used by commercial and Government-and-contractor producers in 1938, by States.

production is concentrated in northern New England, the Middle West, and the Rocky Mountain and Pacific Coast States, plus North Carolina and Alabama in the South. In only a few States—Michigan, Wisconsin, Minnesota, Iowa, Illinois, Texas, and Washington—is

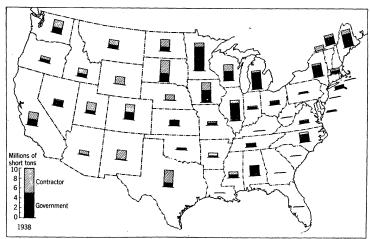


FIGURE 4.—Sand and gravel sold or used by Government and contractor producers in 1938, by States.

both commercial and Government-and-contractor production large. Commercial production predominates in the East and South and Government-and-contractor output in northern New England and the Rocky Mountain States.

Of even greater significance, perhaps, is the break-down between Government and contractor output. (See fig. 4.) Actual production

by Government agencies on a large scale seems to be confined to relatively few States and is concentrated largely in the Middle West. This area, with Texas and the Rocky Mountain and Pacific Coast States, has witnessed the greatest development of contractor production.

tion. In general, data for 1939 show a similar relationship.

Method of transportation.—Shipments of sand and gravel originating on class I railroads in 1939 were 28,990,146 short tons, an increase of only 2 percent over the 28,383,925 tons shipped in 1938. This quantity was only 29 percent of the total commercial production reported in 1939, exclusive of glass and molding sand and nonrevenue railroad ballast, and indicates a continuing gain in sand and gravel moved by other means than rail, as rail shipments were equivalent to 31 percent of commercial production in 1938 and 36 percent in 1937.

Direct reports of methods of transporting sand and gravel were received from producers responsible for 90 percent of the total commercial output. These figures substantiate the drop in rail shipments and show a corresponding increase in shipments by truck. Details

of shipments, by methods of transportation, follow.

Sand and gravel sold or used by commercial producers in the United States, 1938–39, by methods of transportation ¹

	1938	3	1939		
Method of transportation	Short tons	Percent of total reported	Short tons	Percent of total reported	
Truck Rail Waterway	39, 142, 876 37, 675, 155 14, 278, 779	43. 0 41. 3 15. 7	48, 040, 422 42, 118, 042 16, 208, 607	45. 2 39. 6 15. 2	
Total reportedPercent of total commercial production	91, 096, 810	100. 0 86. 1	106, 367, 071	100. 0 89. 8	

¹ For practical purposes the entire output of Government-and-contractor operations commonly is moved by truck. Including Government-and-contractor production, sand and gravel moved as follows—1938: Truck 69 percent, rail 23 percent, and waterway 8 percent; 1939: Truck 68 percent, rail 23 percent, and waterway 9 percent.

Preparation.—The average value per ton of sand and gravel reported by commercial producers is characteristically much higher than that of Government-and-contractor output. This difference is a direct result of the cost of washing, screening, or other preparation, as 88 percent of the commercial production in 1939 was prepared material compared with only 23 percent of the Government-and-contractor output.

Sand and gravel (prepared or unprepared) sold or used by producers in the Unite States, 1938–39, by commercial and Government-and-contractor operations

		1938			1939	
	Quant	ity	Average	Quant	Average value	
	Short tons	Percent	value per ton	Short tons	Short tons Percent	
Commercial operations: PreparedUnprepared	92, 825, 363 12, 934, 423 105, 759, 786	88 12 100	\$0.66 .29	103, 771, 791 14, 621, 329 118, 393, 120	88 12 100	\$0.64 .31
Government-and-contractor op- erations: Prepared Unprepared	13, 833, 539 61, 726, 908	18 82	.49	17, 430, 070 58, 995, 343	23	. 51
	75, 560, 447	100	. 28	76, 425, 413	100	. 31
Grand total	181, 320, 233		. 47	194, 818, 533		. 49

EMPLOYMENT AND OUTPUT PER MAN

Employment in the commercial sand and gravel industry, as well as output per man per hour, fluctuated only moderately from 1933 to 1938, inclusive. Available data for operations reporting about four-fifths of the total production of sand and gravel indicate that employment in the industry averaged about 19,000 men from 1936 to 1938. Before 1936 the total was somewhat lower because of curtailed output.

Production per man per hour likewise has not varied widely from year to year, although there was a definite upward trend from 2.8 tons in 1933 to 3.3 in 1937. The slight recession to 3.2 tons in 1938 ap-

parently was due directly to the drop in production.

The average working day remained fairly constant throughout the period, dropping from 8.7 in 1933 to 8.1 in 1934, then increasing after the demise of the N. R. A. to 8.6 in 1936 and 1937 and 8.5 in 1938. The number of actual working days has fluctuated widely, however, in direct ratio to volume of production. In 1933, the low point of sand and gravel output, the average employee worked only 155 days compared with 215 in 1937.

Employment in the commercial sand and gravel industry, sand and gravel produced at plants included in the study, and average output per man in the United States, 1933-38 1

Year			Employmen	Prod					
	Average number of men		Time en	nployed		Average per man, short		Percent of com-	
				Man	-hours	Commercial sand and gravel,			mercial industry repre-
		Average number of days	Total man- shifts	Average per man per day	Total	short tons	Per shift	Per hour	sented
1933 1934 1935 1936 1937 1938	12, 536 14, 611 11, 926 16, 127 16, 062 14, 971	155 168 197 207 215 201	1, 947, 225 2, 452, 835 2, 351, 453 3, 332, 532 3, 458, 994 3, 001, 796	8. 7 8. 1 8. 3 8. 6 8. 6 8. 5	16, 937, 862 19, 897, 633 19, 578, 368 28, 672, 615 29, 754, 746 25, 578, 807	47, 215, 123 59, 018, 238 60, 826, 691 95, 219, 468 97, 113, 001 81, 742, 896	24. 2 24. 1 25. 9 28. 6 28. 1 27. 2	2.8 3.0 3.1 3.3 3.3 3.2	71. 4 78. 4 75. 4 83. 8 81. 8 81. 1

¹ Does not include plants operated by or directly for States, counties, municipalities, and other Government agencies.

In general the output of sand and gravel per man-hour of employment ranges from a relatively low figure in the Eastern and Southeastern States to much higher production in the Middle Western and Far Western States. The unusually high productivity in region 16 comprising Montana, Washington, Oregon, and Idaho apparently is due largely to the highly mechanized operations in connection with dam construction.

Complete details by regions from 1935 to 1938 are summarized in the following table. Comparable data for 1934 were published in Minerals Yearbook, 1936 (p. 844), and for 1933 in Minerals Yearbook,

1935 (p. 942).

Employment in the commercial sand and gravel industry, sand and gravel produced at plants included in the study, and average output per man in the United States, 1935–38, by regions ¹

			Employn	nent		Proc	luction	1	
			Time e	mploye	d		Aver	age per (short	Percent of com-
Region	Aver- age	Aver-		Ma	in-hours	Commer- cial sand		ns)	mercial indus- try
	num- ber of men	age num- ber of days	Total man- shifts	Average per man per day	Total	and gravel (short tons)	Per shift	Per hour	repre- sented
1935									
1. Maine, New Hamp- shire, Vermont, Rhode Island, Mas- sachusetts, and Con-									·
necticut	250 839	199 182	49, 851 152, 565	9. 1 8. 3	454, 989 1, 260, 704	1, 328, 577 4, 575, 589	26. 7 30. 0	2.9 3.6	75. 2 45. 5
Jersey and Delaware. 4 West Virginia Vir-	1,593	212	337, 681	8.7	2, 942, 240	6, 378, 727	18.9	2. 2	92. 6
ginia, Maryland and District of Columbia 5. South Carolina, Geor-	674	221	148, 604	8.9	1, 326, 504	2, 489, 703	16.8	1.9	51. 2
 South Carolina, Georgia, Alabama, Florida, and Mississippi North Carolina, Ken- 	317	183	58, 136	8, 5	495, 281	1, 289, 006	22, 2	2.6	58. 5
tucky and Tennessee 7. Arkansas, Louisiana,	427	266	113, 694	8.0	911, 327	1, 762, 399	15. 5	1.9	83. 8
and Texas	1, 136 1, 062 1, 498	. 215 194 194	244, 147 206, 129 290, 628	8. 4 8. 5 8. 3	2, 053, 169 1, 760, 309 2, 409, 357	4, 141, 870 4, 280, 653 9, 588, 083	17. 0 20. 8 33. 0	2. 0 2. 4 4. 0	77. 9 92. 0 83. 0
11. North Dakota, South Dakota, and Minne-	798	169	135, 125	8, 6	1, 157, 527	5, 451, 883	40.3	4.7	84. 9
sota 12. Nebraska and Iowa	271 549	146 170	39, 651 93, 146	8. 5 7. 9	335, 432 732, 301	1, 382, 514 3, 040, 840	34.9 32.6	4. 1 4. 2	67. 2 78. 1
 13. Kansas, Missouri, and Oklahoma 14. Wyoming, Colorado, New Mexico, Utah, 	660	215	141,838	7.8	1, 108, 868	3, 585, 586	25.3	3, 2	86. 1
and Arizona	220 784	154 216	33, 984 169, 014	8. 1 7. 9	275, 546 1, 328, 579	866, 623 4, 208, 512	25. 5 24. 9	3. 1 3. 2	97. 2 71. 0
Oregon, and Idaho	848	162	137, 260	7.5	1, 026, 235	6, 456, 126	47.0	6.3	81.6
Total United States.	11,926	197	2, 351, 453	8.3	19, 578, 368	60, 826, 691	25. 9	3. 1	75. 4
1936									
1. Maine, New Hamp- shire, Vermont, Rhode Island, Mas- sachusetts, and Con-									
necticut	497 1, 428	161 215	79, 775 307, 700	8. 4 8. 3	668, 403 2, 544, 173	2, 285, 735 8, 952, 087	28. 7 29. 1	3. 4 3. 5	81. 7 81. 6
Jersey and Delaware. 4. West Virginia, Vir-	2, 176	212	461, 065	8.8	4, 049, 180	8, 825, 112	19. 1	2. 2	91.6
ginia, Maryland, and District of Columbia 5. South Carolina, Geor- gia, Alabama, Flor-	880	24 0	211, 540	9.0	1, 902, 953	4, 444, 613	21. 0	2. 3	61. 4
ida, and Mississippi 6. North Carolina, Ken-	665	181	120, 233	9.3	1, 115, 537	2, 285, 308	19.0	2.0	71. 4
tucky and Tennessee. 7. Arkansas, Louisiana,	805	224	180, 043	8.8	1, 589, 406	2, 871, 476	15.9	1.8	93. 7
and Texas	1, 365 1, 287 2, 104	214 199 207	291, 819 256, 642 436, 529	8. 6 8. 9 8. 3	2, 504, 615 2, 274, 122 3, 638, 942	6, 284, 440 7, 203, 707 16, 853, 798	21. 5 28. 1 38. 6	2. 5 3. 2 4. 6	85. 7 95. 2 94. 2
10. Michigan and Wisconsin	1, 134	180	204, 067	9. 2	1, 872, 606	9, 152, 742	44. 9	4.9	86. 2

 $^{^{\}rm 1}$ Does not include plants operated by or directly for States, counties, municipalities, and other Government agencies.

Employment in the commercial sand and gravel industry, sand and gravel produced at plants included in the study, and average output per man in the United States, 1935-38, by regions—Continued

			Employn	ient		Prod	luction		
			Time e	mploye	đ		Avera	ige per (short	Percent of com-
Region	Aver- age	Aver-		Ma	n-hours	Commer-		ns)	mercial indus- try
	num- ber of men	age num- ber of days	Total man- shifts	Average per man per day	Total	and gravel (short tons)	Per shift	Per hour	repre- sented
1936—Continued									
11. North Dakota, South Dakota, and Minne-		-						}	
12. Nebraska and Iowa	317 407	155 212	49, 245 86, 204	8. 4 9. 2	413, 814 795, 830	1, 872, 325 2, 778, 412	38. 0 32. 2	4. 5 3. 5	68. 2 62. 9
 13. Kansas, Missouri, and Oklahoma 14. Wyoming, Colorado, New Mexico, Utah, and Arizona 	955	210	200, 364	8.3	1, 669, 717	5, 308, 553	26. 5	3. 2	89. 9
and Arizona	161 1, 103	194 237	31, 216 261, 724	8. 4 8. 2	263, 614 2, 156, 404	842, 099 7, 941, 188	27. 0 30. 3	3. 2 3. 7	74. 6 76. 8
16. Montana, Washington, Oregon, and Idaho	843	183	154, 366	7. 9	1, 213, 299	7, 317, 873	47. 4	6.0	83. 8
Total United States.	16, 127	207	3, 332, 532	8.6	28, 672, 615	95, 219, 468	28. 6	3. 3	83. 8
1937	ļ								
1. Maine, New Hamp- shire, Vermont, Rhode Island, Mas- sachusetts, and Con-									
necticut	445 1,414	173 195	77, 000 275, 865	8. 6 8. 5	662, 510 2, 331, 200	2, 637, 040 9, 233, 174	34. 2 33. 5	4.0 4.0	83. 6 85. 2
3 Pennsylvania New Yer-	2, 270	222	503, 289	8.7	4, 383, 893	10, 475, 070	20.8	2.4	92. 2
ginia, Maryland, and	817	255	208, 201	8.7	1, 805, 294	3, 536, 230	17.0	2.0	56. 4
5. South Carolina, Georgia, Alabama, Florida, and Mississippi 6. North Carolina, Kentaly	689	218	150, 219	9. 5	1, 423, 711	3, 661, 903	24.4	2.6	76. 2
tucky, and rennessee.	827	200	164, 987	9.0	1, 478, 480	2, 900, 233	17. 6	2.0	92. 4
7. Arkansas, Louisiana, and Texas	1, 077 1, 470 1, 580	212 254 211	227, 827 372, 701 333, 597	8. 8 8. 5 8. 5	1, 997, 357 3, 182, 330 2, 834, 360	4, 998, 502 7, 949, 568 12, 203, 143	21. 9 21. 3 36. 6	2.5 2.5 4.3	65. 7 93. 4 73. 0
10. Michigan and Wiscon- sin	1, 110	201	223, 509	8.9	1, 991, 101	8, 916, 382	39. 9	4.5	83. 3
11. North Dakota, South Dakota, and Minne- sota	280	171	47, 855	8.4		1, 683, 971	35. 2	4.2	63. 1
12. Nebraska and Iowa	589	168	98, 679	9. 1	402, 423 900, 934	3, 868, 850	39. 2	4.3	70.8
 13. Kansas, Missouri, and Oklahoma. 14. Wyoming, Colorado, New Mexico, Utah, 	874	233	203, 620	8.5	1, 724, 734	5, 182, 965	25. 5	3.0	86.0
and Arizona	283 1, 400	205 241	58, 056 337, 174	8. 1 8. 2	470, 507 2, 778, 888	1, 919, 598 9, 372, 063	33. 1 27. 8	4. 1 3. 4	85. 3 97. 4
 Montana, Washington, Oregon, and Idaho 	937	188	176, 415	7. 9	1, 387, 024	8, 574, 309	48.6	6.2	89.3
Total United States	16,062	215	3, 458, 994	8.6	29, 754, 746	97, 113, 001	28. 1	3.3	81.8
1938									
1. Maine, New Hamp- shire, Vermont, Rhode Island, Mas- sachusetts, and Con-									
2. New York 3. Pennsylvania. New	477 1, 310	159 196	75, 712 257, 037	8.5 8.4	644, 048 2, 161, 059	3, 050, 951 7, 830, 356	40. 3 30. 5	4.7 3.6	84. 8 72. 7
Jersey, and Delaware.	1,954	213	415, 613	8.6	3, 561, 565	8, 250, 247	19.9	2.3	95.6

Employment in the commercial sand and gravel industry, sand and gravel produced at plants included in the study, and average output per man in the United States, 1935-38, by regions—Continued

			Employm	ent		Prod	uction		
			Time e	mploye	I		Average per		Percent
Region	Aver-	Aver-		Man-hours		Commer- cial sand	man (short tons)		mercial indus- try
	num- ber of men	age num- ber of days	age Total man- ber of shifts		Total	and gravel (short tons)	Per shift	Per hour	repre- sented
1938—Continued									
4. West Virginia, Virginia, Maryland, and District of Columbia. 5. South Carolina, Geor-	839	244	204, 818	8.8	1, 810, 840	3, 138, 453	15.3	1.7	55. 2
gia, Alabama, Flor- ida, and Mississippi. 6. North Carolina, Ken-	669	239	159, 563	9.1	1, 459, 781	3, 876, 320	24.3	2.7	83. 7
tucky and Tennessee. 7. Arkansas. Louisiana.	748	217	162, 166	8.8	1, 433, 921	3, 190, 138	19.7	2, 2	95.1
and Texas	882 1, 363 1, 658	210 220 189	185, 104 300, 367 313, 279	8.8 8.4 8.5	1, 625, 423 2, 518, 027 2, 661, 992	4, 012, 442 6, 497, 022 11, 069, 241	21.7 21.6 35.3	2. 5 2. 6 4. 2	60. 7 91. 0 85. 1
10. Michigan and Wisconsin 11. North Dakota, South	1, 059	180	190, 345	8.8	1, 668, 762	7, 559, 898	39.7	4.5	86.6
Dakota, and Minne- sota	471 605	123 167	58, 161 101, 203	8. 4 9. 4	486, 957 951, 0 42	1, 668, 338 3, 589, 801	28.7 35.5	3. 4 3. 8	69. 2 77. 7
Oklahoma 14. Wyoming, Colorado, New Mexico, Utah,	797	219	174, 502	8.3	1, 443, 941	3, 748, 558	21.5	2.6	79.0
and Arizona	318 1, 116	188 221	59, 852 246, 967	7. 7 8. 0	462, 726 1, 966, 950	1, 484, 134 8, 359, 573	24. 8 33. 8	3. 2 4. 3	83. 7 84. 0
Oregon, and Idaho	705	138	97, 107	7.4	721, 773	4, 417, 424	45. 5	6.1	86. 2
Total United States	14, 971	201	3, 001, 796	8. 5	25, 578, 807	81, 742, 896	27. 2	3. 2	81.1

Analysis by the Bureau of Labor Statistics² of the records of 24 sand and gravel plants indicated that the production and distribution of 100 tons of sand and gravel required 94.5 man-hours of labor, distributed as follows:

	Man- hours
Production labor:	per 100 tons
Dry-pit	25. 4
Wet-pit Marine:	26. 3
Processing on dredge	
Processing on land	57. 9
Weighted average of all types	
Fuel and powerHaulage to construction site	
Tradiage to constituction site	
Total labor requirements	94. 5

² Ball, J. A., Labor Requirements in Production and Distribution of Sand and Gravel: Bureau of Labor Statistics Serial R. 944, 1939, 13 pp.

PRICES

The general trend of sand and gravel prices continued slightly downward in 1939. The average value per ton, f. o. b. plant, of all sand and gravel reported by commercial producers dropped only 1 cent per ton—from \$0.61 in 1938 to \$0.60 in 1939—but that of material sold for major uses fluctuated more widely. Building sand declined from \$0.56 to \$0.54 per ton in average value, paving sand from \$0.56 to \$0.52, and building gravel from \$0.70 to \$0.65, whereas paving gravel and railroad-ballast gravel each increased 1 cent. Slightly higher average values were reported for glass and engine sand in 1939, but the values of other industrial sands dropped, the decline of 23 percent for filter sand being the most pronounced. The increase in value per ton of material reported by Government-and-contractor producers is due directly to the higher percentage of prepared material included in this category (18 percent in 1938 and 23 percent in 1939) rather than to actual higher valuation.

Wholesale price indexes for sand and gravel, compiled by the Bureau of Labor Statistics from returns of representative plants throughout the United States, confirm the decreases indicated by reports of commercial producers to the Bureau of Mines. The price index of building sand (1926=100) declined from 102.1 in 1938 to 99.7 in 1939, and that of gravel from 93.2 to 91.4. These decreases are especially significant because the index for all building materials was virtually the same—90.3 in 1938 and 90.5 in 1939. The composite index for all commodities dropped from 78.6 to 77.1 despite the sharp upturn in prices in the last 4 months of 1939 following outbreak of war in Europe.

NEW DEVELOPMENTS

Although the only huge new sand and gravel plant built in 1939 was one to supply aggregates for construction of a large dam, it was reported that producers were spending more money on improvements than at any time in the past decade.3 The research program of the National Sand and Gravel Association was continued actively, and contacts with the University of Maryland were strengthened through establishment of the Stanton Walker fellowship available to graduate students in engineering. Of particular significance was the exemption early in 1940 of the northern branch of the sand and gravel industry from the maximum-hours provisions of the Fair Labor Standards Act. 4 Various phases of labor relations assumed increasing importance in the affairs of the industry during 1939.

The trend in plant construction in 1939, as in recent years, was toward medium and small plants designed for efficiency and flexibility of operation and for serving relatively small market areas. problem of meeting seemingly ever-changing specifications was possibly the outstanding technical topic of the annual convention of the association.⁵ In view of this interest in preparation of aggregates to meet rigid and varying specifications a series of articles begun in 1939

 ³ Pit and Quarry, 1939 in Review—Sand and Gravel: Vol. 32, No. 7, January 1940, pp. 60-69.
 ⁴ Pit and Quarry, Sand and Gravel Industry Gets Provisional Seasonal Exemption: Vol. 32, No. 8, February 1940, pp. 44-46.
 ⁵ Pit and Quarry, Sand and Gravel Convention Draws Hundreds of Producers to St. Louis: Vol. 32, No. 8, February 1940, pp. 29-40, 53.
 Rock Products, Changing Conditions Call for New Methods: Vol. 43, No. 2, February 1940, pp. 34-47, 72.

by Shaw 6 on washing and classifying sand has proved to be most A new plant in Illinois using a sand-dewatering wheel is designed for blending any gradation of sand and gravel desired, as well as for ample storage. Two types of sand and two grades of gravel are produced simultaneously for direct loading into barges by a Diesel-electric dredge operating in Maryland.⁸ Methods of refining and grading sands have been changed completely at a large plant in Ohio.9 At another Ohio plant masons' sand and concrete sand are produced as independent operations through a single blade-type sand washer.¹⁰ Two plants featuring unusual flexibility have been described by Trauffer. 11 Nordberg 12 described a rather unique plant designed to receive pit-run material using large earth movers powered by tractors and to take care of intraplant handling by the same power units fitted with "dozing" attachments. The ingenious use of a suspended flume to dispose of excess fines when the river is below normal is an interesting feature of a Kansas plant.13

Problems of labor relations, research, and Federal and State legislation occupied producers of industrial sands during the year.¹⁴ combination of desliming and tabling methods has reduced the iron

content of glass sand at a Texas plant to 0.06 percent.¹⁵

The eleventh annual accident-prevention contest, conducted by the Bureau of Mines in cooperation with the National Sand and Gravel Association, revealed an accident-frequency rate in 1939 of 26.132 accidents per million man-hours of exposure for the 77 participating This was an improvement of 2 percent compared with the The Van Sciver lake plant, Tullytown, Bucks 1938 rate of 26.715. County, Pa., operated by the Warner Co., worked 142,982 man-hours without a disabling injury and won the trophy for the group of plants operating 100,000 or more man-hours. The trophy for the group operating less than 100,000 man-hours was won by the Oxford drybank plant, Oxford, Oakland County, Mich., operated by Ray Industries, Inc., which had a record of 59,655 man-hours without a disabling injury.

FOREIGN TRADE 16

Except for 23,690 tons of glass sand (30 percent less than in 1938) and virtually all from Belgium consigned to the Pacific coast glass industry) imports of sand and gravel in 1939 were largely movements

⁶ Shaw, Edmund, Washing-classifying Sand: Rock Products, vol. 42, No. 5, May 1939, pp. 23-24; vol. 42, No. 6, June 1939, pp. 41-42, 48; vol. 42, No. 7, July 1939, pp. 34-35; vol. 42, No. 8, August 1939, pp. 65-66; vol. 42, No. 9, September 1939, pp. 35-36; vol. 42, No. 10, October 1939, pp. 43-44; vol. 42, No. 11, November 1939, pp. 37; vol. 42, No. 12, December 1939, pp. 39-41; vol. 43, No. 1, January 1940, pp. 27-28; vol. 43, No. 2, February 1940, pp. 27-28; vol. 43, No. 3, March 1940, pp. 39-40; vol. 43, No. 4, April 1940, pp. 51; vol. 43, No. 5, May 1940, pp. 45-7 Torgerson, R. S., Sand Dewatering Wheel in This New Plant: Rock Products, vol. 42, No. 5, May 1939,

⁷ Torgerson, R. S., Sand Dewatering Wheel in This New Plant: Rock Products, vol. 42, No. 5, May 1939, pp. 28-28.

8 Nordberg, Bror, Produce Two Sand Sizes on Diesel-electric Dredge: Rock Products, vol. 42, No. 4, April 1939, pp. 41-42.

9 Welch, F. M., Change Grading Methods: Rock Products, vol. 42, No. 8, August 1939, pp. 25-27.

10 Nordberg, Bror, Sand Drag Does Double Duty: Rock Products, vol. 42, No. 7, July 1939, pp. 24-25.

11 Trauffer, W. E., An Outstanding Southern California Gravel Plant: Pit and Quarry, vol. 32, No. 8, Sebruary 1940, pp. 41-43, 46; Missouri Portland Cement Co. Builds Outstanding Gravel Plant at Memphis: Pit and Quarry, vol. 32, No. 9, March 1940, pp. 33-40.

12 Nordberg, Bror, A "Push-over": Rock Products, vol. 42, No. 12, December 1939, pp. 32-34.

13 Small, M. M., Suspended Flume Used to Eliminate Excess Fines: Rock Products, vol. 42, No. 6, June 1939, pp. 36-37, 51.

14 Nordberg, Bror, More Research in Sand: Rock Products, vol. 42, No. 7, July 1939, pp. 46-47.

Pit and Quarry, Producers of Industrial Sand Discuss New Laws, Research, Labor Relations: Vol. 32, No. 1, July 1939, pp. 31-32, 81.

15 Trauffer, W. E., Iron, Other Silica-sand Impurities Removed by Concentrating Tables: Pit and Quarry, vol. 32, No. 9, March 1940, pp. 41-43.

16 Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

of construction materials from Canada. As they are important only locally, the 61-percent drop in total imports is of no especial significance to the sand and gravel industry.

Exports of sand and gravel also declined, but the quantity of ma-

terial involved is so small that they too are of little consequence.

Sand and gravel imported for consumption in the United States, 1937-39, by classes

	19	37	198	38	1939		
Class	Short tons	Value	Short tons	Value	Short tons	Value	
Glass sand ¹ Other sand ² Gravel	51, 090 319, 134 163, 406 533, 630	\$79, 112 134, 430 36, 193 249, 735	33, 889 611, 468 55, 619 700, 976	\$68, 315 157, 992 22, 902 249, 209	23, 690 192, 106 60, 147 275, 943	\$33, 604 79, 272 8, 399 121, 275	

Classification reads "Sand containing 95 percent silica and not more than 0.6 percent oxide of iron and suitable for manufacture of glass."
 Classification reads "Sand, n. s. p. f."

Sand and gravel imported into the United States, 1937-39, by countries

	198	37	193	38	1939		
Country	Short tons	Value	Short tons	Value	Short tons	Value	
North America: Canada Mexico	474, 394	\$142,828	655, 742 22	\$160, 707 220	246, 894	\$65,726	
Other North America	32	53			435	493	
Europe: Belgium Denmark	55, 371	80, 248	34, 444	68, 810	23, 979 1, 820	34, 185 200	
FranceGermany	269 1, 101	1,774 $12,640$	585 2, 503	1, 477 10, 219	517 1, 243	1, 291 14, 791	
Netherlands United Kingdom	302 1,655	3, 224 8, 506	(1) 7, 572	6, 827	111 940	1, 249 3, 197	
Asia: JapanOther Asia	2	12			1 3	55 88	
Oceania: Australia	504	450	108	921			
	533, 630	249, 735	700, 976	249, 209	275, 943	121, 275	

¹ Less than 1 ton.

Sand and gravel exported from the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	37, 393 49, 906 67, 141	\$26, 369 58, 453 80, 197	1938 1939 ¹	35, 572 27, 746	\$30, 303 31, 931

¹ Classification reads: "Gravel and building stone."

BLAST-FURNACE SLAG

The principal material competing with gravel is crushed stone, statistics for which appear in the Stone chapter of this and previous volumes of the Minerals Yearbook and Mineral Resources series. Blast-furnace slag is also important in the same markets in some areas.

The National Slag Association continued the canvass inaugurated in 1938 and reported that 36 companies operating 72 plants sold or used 7,920,281 short tons of air-cooled slag valued at \$6,122,718 in This output represents an 8-percent increase in quantity but a 1-percent decrease in value from the 7,321,259 tons valued at \$6,167,892 reported by 34 companies operating 70 plants in 1938. In addition, 1,188,094 tons of granulated and foamed slag valued at \$122,017 were reported in 1939 and 656,807 tons valued at \$78,723 in 1938. Details are given in the following tables.

Air-cooled blast-furnace slag sold or used by producers in the United States, 1938-39, by States 1

		1938		1939			
State	Quan	tity		Quantity			
	Short tons	Percent of total	Value	Short tons	Percent of total	Value	
Alabama. Ohio Pennsylvania. Other States ² .	1, 852, 236 2, 533, 088 1, 247, 101 1, 688, 834 7, 321, 259	25. 3 34. 6 17. 0 23. 1	\$1, 173, 890 2, 403, 341 1, 237, 616 1, 353, 045 6, 167, 892	2, 285, 317 2, 560, 748 1, 125, 748 1, 948, 468 7, 920, 281	28. 9 32. 3 14. 2 24. 6	\$1, 399, 612 2, 205, 144 1, 014, 859 1, 503, 103 6, 122, 718	

Blast-furnace slag sold or used by producers in the United States in 1939, by uses 1

		Air-c	cooled		Granula	Granulated and		
Use	Unscre	ened	Scree	ned	foamed			
	Short tons	Value per ton	Short tons	Value per ton	Short tons	Value per ton		
Concrete (pavements, buildings, bridges, etc.) Roads other than concrete Railroad ballast Mineral wool Roofing	203, 322 395, 325	\$0, 59 . 39	1, 336, 792 3, 884, 052 1, 155, 554 64, 836	\$0.82 .87 .56	23, 432	\$0. 7		
Fill and sub-base cushion courses, etcSewage trickle filter	185, 595	. 44	66, 312 119, 870 64, 121	1.30 .86 1.06	1, 003, 077	. 07		
Airport runways Water filtration Roofing granules	(2)	(2)	23, 224 (²) (²)	1.00				
Agricultural purposes Cement manufacture Other uses Use not given	(2)	(2)	118, 008 264, 744	. 96 . 91	30, 053 (2) (2)	(2) (2)		
Total: 1939	812, 220 1, 202, 754	. 45	7, 108, 061 6, 118, 505	. 83	1, 188, 094 656, 807	. 10		

National Slag Association

National Slag Association.
 Cclorado, Illinois, Kentucky, Maryland, Michigan, New York, Tennessee, and West Virginia.

² Concealed to avoid revealing data of individual company; figures included in total.

GYPSUM

By Forrest T. Moyer

SUMMARY OUTLINE

	Page		Page
General conditions	1227	Prices	1000
Danient Statistics	1000	Recent developments	1000
Domestic production	1990	Koreign frede	1004
riocessing plants and equipment	1230	World production	1225
Distribution of sales	1931	p	1200

Consumption of gypsum and gypsum products in 1939 recovered strongly from the mild set-back in 1938 and resumed the progressive rise that had persisted from 1934 through 1937. Largely because of the high level of residential building construction throughout the year, the value of all gypsum products sold or used in the United States rose to \$45,928,239, representing by a wide margin the highest annual volume of business for the industry in the decade just ended. total value in 1939 was 27 percent above 1938 and, after adjustment for comparability, surpassed the total value in 1930, the next largest of the past decade, by 19 percent. However, the improvement in 1939 does not apply to all parts of the gypsum industry but is derived entirely from an advanced rate of consumption of calcined products, particularly gypsum lath, in building. Sales of uncalcined products in 1939, although the highest in recent years and 15 percent above 1938 were far below sales in 1930. This decline reflects the reduced activity of the portland-cement industry, which was about one-fourth lower in 1939 than in 1930. In contrast to the lower proportion of sales of uncalcined products in 1939, the tonnage of calcined building products surpassed that of 1938 by 26 percent and, after adjustments for canvass changes, was 11 percent over 1930. The net gain in this group more than overcame the decreased consumption of industrial gypsum plasters, so that the tonnage of all calcined products in 1939 was 7 percent higher than the comparable figure for 1930.

The outstanding feature of the gypsum business in 1939 was the spectacular gain in sales of lath, which increased 41 percent over the previous record volume, set in 1938. The increment amounted to 327,944 M square feet, a gain that was larger than the sales of this product in any year from 1930 through 1935. On the comparable base used to compile the chart published as figure 1 in the Gypsum chapter of Minerals Yearbook, 1939 (p. 1184), the index of the record square footage for 1939 was 319 (1928=100). The remarkable increase in demand in recent years, which has made gypsum lath the dominant lathing material, is illustrated best by comparison with the

index of sales for the low year, 1933, which was 32.

There was a strong revival in consumption of gypsum tile, block, and plank in 1939, when sales (square feet) increased 51 percent over 1938. This group of related products, used chiefly in nonresidential

construction, constituted a more important proportion of the total sales of the industry during the 1920's than in recent years. Although sales in 1939 still were well below those 10 to 15 years ago, the substantial gain over 1938 is encouraging when compared with the 4-percent decline in floor area of nonresidential building reported by the F. W. Dodge Corporation.

Salient statistics of the gypsum industry in the United States, 1935-39

	1935	1936	1937	1938	1939
Active establishments 1	81	84	92	90	92
Crude gypsum: Minedshort tons_ Importeddo	1, 903, 880 450, 250	2, 712, 510 676, 990	3, 058, 166 897, 484	2, 684, 205 789, 429	3, 226, 737 1, 308, 078
Apparent supplydo	2, 354, 130	3, 389, 500	2 3, 955, 650	2 3, 473, 634	2 4, 534, 815
Calcined gypsum produced: Short tonsValue	1, 383, 093 (³)	(3)	4 2, 411, 362 4 \$11, 076, 205	4 2, 252, 878 4 \$10, 989, 626	4 2, 881, 269 4 \$14, 620, 597
Gypsum products sold: 5					
Uncalcined: Short tons Value	595, 130 \$1, 329, 140	\$30, 683 \$1, 865, 673	4 860, 825 4 \$1, 920, 706	4 756, 565 4 \$1, 681, 371	4 \$67, 782 4 \$1, 927, 415
Calcined: Short tons Value	1, 552, 968 \$22, 358, 005	2, 210, 338 \$31, 088, 885	4 2, 643, 075 4 \$36, 879, 814	4 2, 556, 296 4 \$34, 574, 937	4 3, 224, 216 4 \$44, 000, 824
Total value	\$23, 687, 145	\$32, 954, 558	4 \$38, 800, 520	4 \$36, 256, 308	4 \$45, 928, 239
Gypsum and gypsum products: Imported for consumption Exported	\$719, 593 \$186, 196	\$891, 932 \$255, 903	\$1, 167, 872 \$271, 142	\$1, 002, 001 \$282, 782	\$1, 364, 867 \$309, 453

Each mine, plant, or combination mine and plant is counted as 1 establishment; beginning in 1937 plants utilizing byproduct gypsum are included.
 To avoid revealing confidential data, byproduct gypsum is excluded.
 Data not collected.
 Includes byproduct gypsum.
 Gypsum products from domestic and imported crude.

Technologically, 1939 may become an important landmark of the industry in that it marks the first commercial utilization in this country of heated hammer mills in a gypsum-processing plant. During the year two units of this revolutionary type were installed in a California plant. These mills grind and calcine the crude gypsum in one operation, replacing the fine-grinding mills and calcining kettles in the usual flow sheet of a gypsum plant. The economies effected

by their use are reported to be substantial.

The apparent supply of crude gypsum, which normally approximates closely actual annual consumption, was nearly one-third greater in 1939 than 1938. However, anomalous conditions caused by the outbreak of the war in Europe distorted the normal situation with respect to imported crude. Data compiled from records of the Bureau of Foreign and Domestic Commerce show that imports during the first three quarters of 1939 were closely in line with current activity but increased markedly in the fourth quarter, when they were The total for more than double those of the similar period of 1938. This disproportionate the year was two-thirds greater than in 1938. gain compares with a 20-percent rise in domestic mine production, which more nearly represents the increased consumption over 1938. A slightly greater than proportional gain in importations of crude had been expected because two newly constructed calcining plants using Canadian crude started operations early in 1939, but the exceptional gain noted indicates that operators of calcining plants on tidewater along the Atlantic coast apparently have built up large GYPSUM 1229

stocks of crude as a precaution against any immediate shortage of Canadian gypsum. A study of the somewhat similar situation during the World War shows that shipments of crude to this country, mostly from Canada, declined about one-third from 1914 to 1917, but in 1918, after the United States entered the war, total importations dropped to 50,653 short tons—86 percent below those of 1914. This rapid decline in 1918 was caused entirely by shipping difficulties, as most of the gypsum boats were commandeered by the Government to transport coal from Middle Atlantic ports to the New England States.

Although the effect of continuation of the present European war upon consumption of gypsum in this country cannot be foreseen, it is interesting to note that during the World War annual consumption, as measured by the apparent supply of crude, continued from 1914 through 1917 at approximately the same average level as from 1910 to 1913 but declined about one-fourth in 1918 after the United States began hostilities.

Thus far the current war has had no appreciable effect on building construction, and the trend early in 1940 has followed that of 1939.

DOMESTIC PRODUCTION

Domestic supplies of crude gypsum in 1939, which were the highest for any year since 1930, were obtained from 28 underground mines, 27 open quarries, and 5 combinations of mines and quarries in 16 States; New York, Michigan, Iowa, and Texas were the leading producers. The tonnage from New York (which with Iowa had the largest number of operations) was 22 percent of the total. In Michigan, mining activity increased more than in the other States, with the result that its production in 1939 comprised 20 percent of the total, contrasted with 18 percent in 1937 and 1938. The average estimated value of the domestic crude produced in 1939 was \$1.37 per ton, a reduction of 22 cents per ton from the 1938 figure. This value, as returned by the producers, is essentially a bookkeeping figure because run-of-mine material is not bought and sold in open market. Data in the following table apply only to natural crude gypsum and do not include byproduct gypsum.

Crude gypsum mined in t	he United States,	1937-39, by	States
-------------------------	-------------------	-------------	--------

		1937			1938			1939		
	Active mines	Short tons	Value	Active mines	Short tons	Value	Active mines	Short tons	Value	
California Colorado Lowa Michigan Nevada New York Oklahoma Texas Utah Other States 1	5 3 8 5 3 10 4 5 3 12	186, 158 28, 586 387, 255 553, 242 160, 347 700, 357 159, 639 280, 807 46, 197 555, 578 3, 058, 166	\$355, 834 50, 034 533, 162 896, 947 268, 638 1, 107, 175 266, 091 313, 563 46, 197 944, 862 4, 782, 503	5 3 8 5 3 10 3 5 3 11	162, 056 21, 591 364, 920 483, 324 168, 515 601, 394 141, 341 246, 990 43, 144 450, 930 2, 684, 205	\$334, 208 41, 080 495, 856 775, 908 366, 869 941, 744 231, 910 260, 094 45, 823 778, 182 4, 271, 674	5 3 9 5 4 9 3 6 4 12	188, 364 24, 013 430, 712 643, 180 205, 762 709, 495 161, 748 283, 912 58, 146 521, 405 3, 226, 737	\$306, 350 40, 694 510, 120 834, 856 484, 621 971, 229 207, 503 266, 265 65, 269 744, 098	

¹ 1937: 1 active mine each in Arizona, Idaho, South Dakota, and Wyoming; 2 each in Kansas, Montana, Ohio, and Virginia. 1938: 1 active mine each in Idaho, South Dakota, and Wyoming; 2 each in Kansas, Montana, Ohio, and Virginia. 1939: 1 active mine each in Arizona and South Dakota; 2 each in Kansas, Montana, Ohio, Virginia, and Wyoming.

PROCESSING PLANTS AND EQUIPMENT

Production of calcined gypsum in 1939 exceeded that in 1938 by 28 percent, a gain that compares favorably with a 20-percent increase over 1938 in the floor area of residential and nonresidential building reported by the F. W. Dodge Corporation. The 1939 tonnage was produced in 56 calcining plants operating in 25 States; 42 plants processed domestic crude, 13 imported crude, and 1 byproduct crude

Although three newly constructed calcining plants, one each in California, Florida, and Georgia, began operations in 1939, the total number of active kettles was nine less than in 1938 because a number of kettles in old plants were withdrawn from service. Moreover, two less rotary kilns were active owing to abandonment of a plant in New York during the latter part of 1938. In the accompanying table the new type of grinding-calcining equipment—the heated-hammer mill is classed arbitrarily with the rotary kilns because its operation is continuous.

Active calcining plants and equipment in the United States, 1937-39, by States

		193	7			1938	3		1939			
	Equipment			7	Equipment				Equipmen		nt	
State	Calcin- ing plants	Ket- tles	Bee- hive kilns	Ro- tary kilns	Calcin- ing plants	Ket- tles	Bee- hive kilns	Ro- tary kilns	Calcin- ing plants	Ket- tles	Bee- hive kilns	Ro- tary kilns
California Iowa Michigan New York Texas Utah Other States 3	3 5 5 8 4 3 26	10 19 22 24 30 6 68 179	2 5 4	8	3 6 5 8 4 3 25	10 21 22 26 29 6 63 177	25 4 29	8 16	4 6 5 7 4 4 26	10 20 21 21 25 8 63 168	5 4	6

¹ Includes 2 grinding-calcining units. ² Revised figures. ³ 1937: 1 calcining plant each in Arizona, Connecticut, Florida, Illinois, Indiana, Massachusetts, Nevada, New Hampshire, Pennsylvania, South Dakota, Vermont, and Wyoming; ² each in Colorado, Kansas, Montana, New Jersey, Ohio, Oklahoma, and Virginia. 1938: 1 calcining plant each in Arizona, Connecticut, Florida, Illinois, Indiana, Massachusetts, Nevada, New Hampshire, Oklahoma, Pennsylvania, South Dakota, Vermont, and Wyoming; ² each in Colorado, Kansas, Montana, New Jersey, Ohio, and Virginia. 1939: 1 calcining plant each in Arizona, Connecticut, Georgia, Indiana, Massachusetts, Nevada, New Hampshire, Oklahoma, Pennsylvania, South Dakota, Vermont, and Wyoming; ² each in Colorado, Florida, Kansas, Montana, New Jersey, Ohio, and Virginia.

According to returns from the producers, 33 gypsum-board and 20 automatic tile machines were active in the country in 1939. productive capacity of individual board machines, which is determined by the capacity of the board drier, varies considerably. Capacity of machines of recent construction commonly ranges between 105,000 and 115,000 square feet of %-inch lath and 90,000 to 100,000 square feet of %-inch wallboard in 8 hours. Older machines operate at a slower rate, so that the average capacity of all active machines in the country is estimated by several technical experts at about 87,500 and 75,000 square feet, respectively, of %-inch lath and wallboard in

The automatic machine for perforating gypsum lath that was introduced in 1938 evidently has been successful; in 1938 three board GYPSUM 1231

machines were equipped with it, and in 1939 five additional units were installed. The machine is placed near the discharge end of the board machine and replaces the old method of bundling the lath and drilling the holes with a battery of augers.

DISTRIBUTION OF SALES

Sales of uncalcined gypsum products in 1939 exceeded those in 1938 by a substantial margin but were only slightly higher than in 1937. Indicated consumption for portland-cement retarder was 15 percent above 1938, a gain that correlates closely with the increased activity in the portland-cement industry. Sales of agricultural gypsum in 1939 gained 10 percent over 1938 compared with a 5-percent increase reported for total cash farm income. Approximately 60 percent of the 1939 total was consumed in the peanut-growing region of southern Tonnages of pulverized raw gypsum sold or used as a fertilizing agent formerly were much larger than at present but declined slowly as the use of superphosphate expanded. The latter commodity, made by treating phosphate rock with sulfuric acid to convert the contained phosphorus into a more available plant food, contains approximately 50 percent by weight of precipitated gypsum formed in the process. As a result, the contained gypsum greatly reduced the agricultural market for natural gypsum, which in recent years has been confined largely to sales for fertilizing certain legume crops and for correcting black alkali soils. During the past few years the use of highly concentrated phosphate fertilizers that contain little or no sulfur or sulfate plant foods has expanded somewhat because the Federal Government has offered this newly developed type of fertilizer to farmers in lieu of cash benefit payments. Should use of this material become more widespread, as appears likely, consumption of natural gypsum in agriculture probably would increase. In addition to supplying an essential plant food, gypsum has several beneficial effects upon soil, and recently investigators 1 have shown that gypsum increases the moisture content of clover and is effective during droughts. Sales of all groups of calcined building products in the Bureau of

Mines classification in 1939 showed gains of varying proportions over 1938 except "Prepared finishes," which declined appreciably in quantity. Consumption of base-coat plasters increased 22 percent in 1939, and that of gaging and molding plasters, used for finish-coat work, rose 24 percent over 1938. The slightly higher than proportional gain for finishing plasters is caused chiefly by the increased use of gypsum lath, which effects a saving in the required quantity of base-coat plasters by furnishing a smooth plastering surface and tending to eliminate droppings. It is claimed that 1 ton of base-coat plaster mixed with 2 tons of sand will plaster 225 square yards of gypsum lath but only 180 square yards of wood lath. In other words, 100 square yards of gypsum lath requires 889 pounds of gypsum plaster for a base coat of proper thickness, whereas a similar area of wood lath requires 1,111 pounds. The gypsum-lath requirements represent a reduction of 20 percent for any given area. In connection with consumption of base-coat plasters, it is interesting to note the development of a 2-inch-thick building partition constructed by applying sanded plaster

¹ Krugel, C., Dreyspring, C., and Heinrich, F., The Importance of Sulfate as Plant Food: Commercial Fertilizer, vol. 58, No. 5, May 1939, pp. 11-15.

to each side of gypsum or metal lath supported by steel channels. This type of solid partition is used extensively in the low-cost housing projects being built by the United States Housing Authority. Federal agency recently estimated 2 that its entire construction program would require approximately 800,000 tons of gypsum plaster.

Gypsum products (made from domestic, imported, and byproduct crude gypsum) sold or used in the United States, 1938-39, by uses

	198	38	193	9
Use	Short tons	Value	Short tons	Value
Uncalcined: Portland-cement retarder Agricultural gypsum Other uses 1 Total uncalcined		\$1, 238, 715 318, 620 124, 036 1, 681, 371	774, 982 75, 091 17, 709 867, 782	\$1,406,129 364,711 156,575 1,927,415
Calcined: For building uses: Plasters: Base-coat. Sanded. To mixing plants. Gauging and molding. Prepared finishes. Insulating and roof-deek Other 2. Keene's cement. Lath 3. Wallboard 4. Tile 5. Total for building uses.	1, 161, 762 106, 355 16, 917 120, 933 26, 424 16, 233 12, 843 23, 496 594, 659 269, 949 112, 477	10, 400, 557 606, 060 102, 821 1, 442, 511 488, 307 143, 877 359, 309 366, 813 10, 287, 935 7, 921, 400 1, 300, 830	1, 413, 291 116, 459 19, 485 150, 175 14, 136 24, 798 14, 169 27, 191 850, 768 308, 569 174, 780	12, 768, 526 662, 211 119, 391 1, 923, 109 491, 788 214, 397 486, 710 424, 341 14, 598, 868 8, 871, 833 2, 066, 086 42, 627, 260
For industrial uses: To plate glass and terra-cotta works. To pottery works. Orthopedic and dental plasters. Other industrial uses 6. Total for industrial uses.	8, 114 47, 235 94, 248			242, 671 234, 725 313, 930 582, 238 1, 373, 564 44, 000, 824
Total calcinedGrand total value		36, 256, 308		45, 928, 23

¹ Includes uncalcined gypsum sold for use as filler and rock dust, in paint manufacturing, and for minor

Sales of gypsum lath (square feet) were 41 percent above the previous annual record set in 1938. Because of the large volume of sales, the value of the lath, which commands a relatively higher price than most other gypsum products owing to the greater degree of fabrication, was the most important single item in the classification shown in the preceding table and, together with the value of wallboard sales, comprised more than half the total of all gypsum products. Shipments of wallboard during 1939 were well above those in 1938 but were still far below annual sales in the late 1920's. Although this product is meeting stiffer competition each year from several other prefabricated materials, such as fiberboard and steel paneling, apparently it is holding its proportional share of the market.

purposes.

Includes joint filler, patching and painter's plaster, and unclassified building plasters.

Includes joint filler, patching and painter's plaster, and unclassified building plasters.

Inspect of the second part

² U. S. Housing Authority, Federal Works Agency, Public Housing Weekly News: Vol. 1, No. 31, March 12, 1940, p. 3.

GYPSUM 1233

Consumption of gypsum tile (square feet) in 1939 showed the remarkable increase of 51 percent over 1938. Contributing to this gain, the square footage of partition tile sold was nearly one-half higher than in 1938, and the volume of all other tile, including roof, shoe, and soffit tiles and gypsum plank, rose more than two-thirds over 1938.

Total shipments of industrial plasters in 1939 were well above the tonnages in 1938 but did not equal those in 1937 when industrial activity was at a higher level. In 1939 consumption increased in all classified groups except "other industrial uses," in which it remained at

the same level as in 1938.

PRICES

Values of gypsum products requested by the Bureau of Mines in its annual survey of the industry are net sales values, including containers, at the producing plants. Although the average values per sales unit do not represent selling prices, they indicate price trends of the various products in the country as a whole. The slight increase in average values in 1939 over 1938 for most of the products shown in the following table suggests a slight stiffening of prices from the general downward trend of the last 4 or 5 years. Values of several important products were lower in 1939 than in 1929, when competition forced prices to the lowest point since before the World War. From values of the few products for which data are available it may be inferred that present prices generally are below those of 1925. similar inference may be drawn from the wholesale prices of the Bureau of Labor Statistics for plaster and %-inch plasterboard, f. o. b. cars at destination, which in 1939 were 91.5 and \$2.4 percent, respectively, of the prices in 1926.

Average values, f. o. b. plant, of gypsum products sold or used in the United States, in selected years, 1925–39 1

Use	1925	1929	1933	1935	1937	1938	1939
Uncalcined: Portland-cement retarder_per short ton	\$2. 66 5. 92 7. 20 13. 75 (2) (2) 10. 34 (2)	\$1. 94 4. 84 (2) 5. 85 14. 67 13. 15 17. 08 6. 50 7. 07	\$1. 78 4. 78 8. 85 7. 12 14. 37 14. 19 26. 10 6. 70 9. 60	\$1. 82 4. 78 9. 86 6. 59 12. 42 15. 00 26. 39 7. 44 9. 79	\$1. 90 4. 43 9. 02 5. 80 15. 50 13. 00 21. 67 7. 56 10. 83	\$1. 84 4. 65 8. 95 5. 70 15. 61 12. 71 21. 31 7. 81 12. 25	\$1. 81 4. 86 9. 03 5. 69 15. 61 12. 84 21. 59 7. 87

¹ Includes products from domestic crude only in 1925; from domestic and imported crude in 1929, 1933, and 1935; and from domestic, imported, and byproduct crude, 1937–39.

² Data not available.

RECENT DEVELOPMENTS

Standard specifications ³ for gypsum plastering and requirements for lathing and furring were approved by the American Standards Association. The specifications cover all materials and operations necessary to complete a gypsum plaster job.

American Standards Association, Standard Specifications for Gypsum Plastering: No. A42.1-1938, September 29, 1938, 11 pp.

New products of gypsum developed in 1939 or recent years include a vermiculite plaster designed particularly for use as a fire-protective covering for steel columns and beams. The most practical mix appears to be 3 parts of neat gypsum plaster to 1 part of fine expanded vermiculite by weight. In Georgia a lime manufacturer 4 utilizes calcined gypsum in making a prepared masonry mortar to control the setting time of the finished product. The gypsum is added just before grinding in a tube mill and comprises about 2 percent by weight of the mixture. A new supersulfate cement made from a mixture of blast-furnace slag, slaked lime, and as much as 15 percent gypsum or anhydrite has been developed in Belgium. It has several desirable properties that may expand its use and thus enlarge the market for gypsum. In 1939 a specially processed, high-strength gypsum plaster that can be used as an oil-well cement was made available commercially.

A grand-jury investigation of the gypsum industry was begun early in 1940 by the Antitrust Division of the Department of Justice as part of its Nation-wide investigation of the reportedly high cost of

abor and materials for building.

FOREIGN TRADE 5

Imports.—The import situation in 1939 was disturbed by the greatly increased quantities of crude gypsum imported during the fourth quarter of the year on account of the present European war. Virtually the entire gain was in crude from Canada and was distributed to the calcining plants along the Atlantic coast as far south as Florida. In contrast to the marked gain in the tonnage of crude, imports of gypsum products remained at essentially the same negligible level as in 1938.

The value of alabaster manufactures imported for consumption during each of the past 5 years is included in the following table for The major part, by far, of the annual imports reported the first time. in this classification is from Italy in which are situated the famed alabaster deposits near Volterra and Castellina. In addition to these imports of manufactured alabaster, a small tonnage of crude alabaster blocks is brought from Italy for working into lamp bases and other objects.

G psum and gypsum products imported for consumption in the United States, 1935–39

	Crude		Ground		Calcined		Keene's cement		Ala- baster	Other	M-4-1
Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	manu- fac- tures 1	manu- factures n. e. s.	Total value
1935	450, 250 2 676, 990 2 897, 484 2 789, 429 21, 308, 078	² 657, 125 ² 854, 835	1,374 1,711 1,486	22, 165 17, 674	450 353 372	7,917 7,649	20 25 9	816 675 223	203, 824 159, 551	78, 456 44, 878	\$719, 593 891, 932 1, 167, 872 1, 002, 001 1, 364, 867

Includes imports of jet manufactures, which are reported to be negligible.
 Includes anhydrite.

August 1939, pp. 22-23.

§ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

⁴ Nordberg, Bror, Masonry Mortar Offers a New Outlet for Lime Plants: Rock Products, vol. 42, No. 8,

Canada customarily supplies 95 percent of the total imports of crude gypsum. The quantity from Mexico represents approximately the normal proportion of imports to total consumption in the Pacific Coast States.

Crude gypsum (including anhydrite) imported for consumption in the United States, 1937-39, by countries

Common to the contract of the	193	17	193	38	1939		
Country	Short tons	Value	Short tons Value		Short tons	Value	
Canada	838, 106	\$7 97, 157	739, 172	\$723, 780	1, 243, 390	\$1, 112, 967	
Italy Mexico United Kingdom	207 59, 166 5	4, 337 53, 146 195	124 50, 133	2, 943 45, 303	116 58, 955 5, 617	2, 942 53, 341 4, 849	
•	897, 484	854, 835	789, 429	772, 026	1, 308, 0:8	1, 174, 117	

¹ Less than 1 ton.

Exports.—The total value of exports of crude gypsum and gypsum products in 1939 gained slightly over 1938 and continued the gradual rise that has persisted since 1933. Exports do not form an appreciable part of the domestic industry.

Gypsum and gypsum products exported from the United States, 1935-39

Year	Crude, crushed, or ground		Plasterbo wallb			calcined, ufactures	Other manu-	Total
I GAI	Short tons	Value	Square feet	Value	Short tons	Value	factures, n. e. s.	value
1935 1936 1937 1938 1938	4, 528 (3) 4, 777 2, 844 10, 342	\$15, 473 (3) 26, 692 17, 762 41, 012	1, 929, 348 (3) 4, 360, 404 3, 658, 647 5, 258, 249	\$42, 465 (8) 96, 019 88, 822 130, 073	1 4, 717 (3) 2, 847 3, 833 2, 913	\$128, 258 (3) 61, 383 71, 914 69, 577	(2) (3) \$87, 048 104, 284 68, 791	\$186, 196 255, 903 271, 142 282, 782 309, 453

WORLD PRODUCTION

In the following table total world production of gypsum is not given because data of several countries that annually produce large quantities are not available for any of the years shown.

In 1939 Germany resumed production 6 of sulfuric acid from a mixture of gypsum or anhydrite, with coke and clay as a substitute for pyrite. This method, developed during the World War when supplies of Spanish pyrite were stopped in a similar manner by the British blockade, has been perfected and is being applied at the Wolfen works of the I. G. Farbenindustrie A. G. Annual capacity of this plant is reported to be 80,000 metric tons of sulfuric acid and 75,000 tons of cement, a byproduct of the process.

Includes "Other manufactures, n. e. s."
 Not separately classified before 1937; included with "Plaster, calcined, and manufactures."
 Data not available; value reported as follows: "Crude, crushed, calcined, or ground," \$107,732; "Plaster-board, wallboard, plaster, and manufactures, n. e. s.," \$148,171.

⁶ Bureau of Mines, Mineral Trade Notes: February 1940, p. 15.

World production of gypsum, 1935-39, by countries, in metric tons

[Compiled by M. T. Latus]

Country 1	1935	1936	1937	1938	1939
Algeria	56, 710	45, 265	46, 175	33, 325	(2)
Inglo-Egyptian Sudan		2, 997			(2)
Argentina 3	49, 773	55, 706	68, 220	70, 813	(2) (2)
ustralia:	, i	′			
New South Wales	1,722	4, 390	9, 300	12, 712	(2) (2) (2)
South Australia	103, 909	108, 871	117, 985	148, 943	(2)
Victoria	8,852	7,581	21, 197	13, 596	(2)
Western Australia	5,450	6,768	9, 219	13, 645	(2)
Brazil 4	2,000	2,000	2,000	2,000	2,00
Danada	510, 262	763, 044	1,044,222	915, 169	(5)
Chile	26, 151	22, 674	24, 080	(2) (2)	22, 20
China	68,000	68, 800	(2)	(2)	(2)
Ovprus 6	14, 851	16, 603	13, 576	9,729	(2)
Egypt	190, 666	256, 211	253, 641	212, 088	(2)
Gire		6,096	11, 647	13, 364	(2) (2) (2)
Estonia	6, 238	13, 849	12,748	13, 915	(2)
France	1, 275, 000	1, 376, 150	1, 320, 400	. (2)	(2) (2) (2) (2) (2) (2)
Jermany	7 855, 000	(2)	(2)	(2)	(2)
Austria 8	46,000	4 7, 000	47,000	(2)	(2)
Freece	3, 612	13, 779	17, 924	16,609	(2)
ndia, British	46, 045	55, 277	46, 830	70, 944	(2)
taly	471, 167	324, 789	416, 198	425, 299	(2)
apan	127, 633	137, 677	(2)	(2)	(2) (2) (2) (2) (2) (2)
Latvia 6	98, 935	123, 503	196, 911	196, 964	(2)
Juxemburg	29, 474	29, 110	19, 722	19, 901	(2)
Mexico		61,711	(2) [']	(2)	(2) (2)
New Caledonia			984	1,070	(2)
Palestine		6, 209	3, 934	3,984	4, 52
Peru		12, 560	12, 895	14,026	(2)
Portugal		6, 850	11, 390	9,036	(2)
Rumania		53, 603	70, 620	(2) [']	(2)
Sweden		93	108	95	(2)
Punisia	11,000	11, 200	22, 800	(2)	(2)
Union of South Africa	21, 590	31, 962	33, 186	38, 849	(2)
United Kingdom	997, 673	1,018,562	1, 111, 669	1, 109, 928	(2)
United States	1, 727, 162	2, 460, 735	2, 774, 307	2, 435, 057	2, 927, 23

¹ In addition to the countries listed, gypsum is produced in Chosen, Cuba, French Morocco, Poland, Spain, Switzerland, U. S. S. R., and Yugoslavia, but production data are not available.

¹ Data not yet available.

¹ Data for crude gypsum mined not available. Shipments of crude (lump, crushed, and ground) and calcined gypsum amounted to 1,277,480 tons.

¹ Exports of crude and calcined gypsum.

¹ Figures supplied by Deutscher Gips-Verein, E. V., Berlin, Germany. Figures are exclusive of rock gypsum from their own quarries used by cement, paint, and other factories.

¹ Estimate furnished by Bundesministerium für Handel und Verkehr.

LIME

By Forrest T. Moyer and A. T. Coons

SUMMARY OUTLINE

Salient statistics 1238 Building lime 12 Production 1239 Chemical and industrial lime 12 By States 1240 Hydrated lime 15 Hydrated lime 1240 Size of plants 15 Shipments 1241 Tronds in writerial lime 16 Tronds in writerial lime 17 Tronds in writerial lime 17	Page	Pag
Shipments 1240 Size of plants 125 Shipments 1241 Tronds in wincipal accounts	Salient statistics 1238 Production 1239 By States 1240	Sales by uses—Continued. Building lime
	Shipments 1240	Size of plants 1248
Hydrated lime	Sales by uses 1244 Agricultural lime and other liming mate-	125

Recovering sharply from the relatively low rate of 1938, consumption of lime in 1939, as indicated by total sales of 4,254,348 short tons, was the highest of any year since 1929. The total quantity sold was 27 percent higher than in 1938 and was only 7 percent below the record volume for 1925 (4,580,823 tons). Sales of quicklime rose 35 percent above 1938, a larger proportional gain than the increase of 13 percent for hydrated lime which customarily is subject to lesser fluctuations

in demand than quicklime.

Generally, demand for lime by most consuming industries was low during the first 6 to 8 months of 1939 but increased materially in the latter part of the year. The improvement was marked in all but a few States in which the apparent consumption was about the same or slightly lower than in 1938. Owing to the probable excess of production over demand in the beginning of the year, prices fluctuated downward and by midyear were well below the averages of 1938. However, with improved demand, they became stable and at the end of the year were slightly above the low point. The average value at producing plants of all lime sold or used in 1939 was \$7.06 per ton, a decline of 15 cents from 1938 and of \$2.24 from the value of \$9.30 received in 1925. According to the operators, production costs in many States were higher than in 1938 owing to higher prices for some fuels and increased wages for labor. Southern operators found the increased labor costs particularly burdensome.

The quantity of lime used in agriculture declined slightly from 1938, despite the reduction in price and a reported increase of 5 percent in total cash farm income. Sales of hydrated lime for this purpose, approximately 60 percent of the total, fell below those of 1938, while the tonnage of agricultural quicklime consumed increased nearly one-fifth. Although hydrated lime is admittedly the best liming agent for soils, the cheaper materials, especially pulverized limestone,

have become increasingly popular with farmers.

In contrast to the general conditions in other sections of the industry demand for building lime was good throughout 1939, and the average value at the plant increased 18 cents per ton. The total quantity of lime sold for construction was the highest of any year since 1930 and surpassed that of 1938 by 17 percent, a gain that correlates fairly well with the increased activity reported in the building industry. Hydrated lime comprised more than two-thirds of all building lime sold during 1939. A further loss of the mason's lime market to prepared masonry mortars was reported by some operators. The prepared mortars containing 10 to 50 percent of lime are made by only a few lime producers who have entered this business to protect their market. The greater part of the annual production of these mortars is said to be made by mixing companies, which purchase the required raw materials, and by cement companies.

Salient statistics of the lime industry in the United States, 1938-39

		1938			198	39			
		Value			Value	,		ent of ge in—	
	Short tons	Total	Aver- age	Short tons	Total	Aver- age	Ton- nage	Aver- age value	
Lime sold or used by pro-									
ducers: QuicklimeHydrated lime	2, 177, 150 1, 169, 804	\$15,026,063 9,111,575	\$6. 90 7. 79	2, 936, 295 1, 318, 053	\$19, 925, 153 10, 124, 241	\$6.79 7.68	$^{+34.9}_{+12.7}$	-1.6 -1.4	
Total lime	3, 346, 954	24, 137, 638	7. 21	4, 254, 348	30, 049, 394	7.06	+27.1	-2.1	
By uses: Agricultural Building	364, 312 854, 461	2, 376, 108 7, 163, 165	6. 52 8. 38	362, 335 1, 000, 498	2, 214, 759 8, 563, 792	6. 11 8. 56	5 +17. 1	-6.3 + 2.1	
Chemical and in- dustrial Refractory (dead-	1, 761, 555	11, 503, 010	6. 53	2, 219, 954	13, 823, 289	6. 23	+26.0	-4.6	
burned dolo- mite) Imports for consumption:	366, 626	3, 095, 355	8.44	671, 561	5, 447, 554	8. 11	+83. 2	-3.9	
Quicklime and hy- drated lime	6, 818	66, 203	9.71	7,694	71, 902	9. 35	+12.8	-3.7	
Dead-burned dolo- mite 1 Exports	2, 875 13, 222	67, 340 121, 662	23. 42 9. 20	186 21, 477	4, 260 236, 497	22.90 11.01	$-93.5 \\ +62.4$	$ \begin{array}{c c} -2.2 \\ +19.7 \end{array} $	

 $^{^{1}}$ Dead-burned basic refractory material containing 6 percent or more lime and consisting chiefly of magnesia and lime.

Total sales of lime for chemical and industrial uses in 1939 surpassed those of 1938 by 26 percent and set an all-time record, exceeding the previous high of 1937 by 68,510 short tons. According to the Bureau of Mines classification, metallurgical-lime consumption, which depends largely on activity in the steel industry, was more than 50 percent greater than in 1938 and reached a new high—8 percent above the previous record of 1937. The sole disturbing factor in the strong lime market for this purpose after July was the marked reduction in price during the second quarter of the year. Sales to the paper industry, the second largest consumer of chemical-grade lime, were

1239 LIME

higher in 1939 than in any other year. Lime sold for purifying water (municipal and industrial) increased materially over sales in 1938 and, like the other two principal chemical uses, reached a new record. Sales in 1939 for nearly all other chemical and industrial uses of lime were higher than in 1938 and compared favorably with those for 1937.

The heavy demand for refractory lime (dead-burned dolomite) was due to the high level of operations in the steel industry and to the reconditioning of the refractory linings in idle furnaces necessitated by rapid expansion in utilization of open-hearth capacity from 54 to 95 percent between July and December. This demand, coupled with an average price decline of 33 cents per ton, pushed sales of refractory lime in 1939 to a new high, surpassing those of 1938 by 83 percent and 1937 (the former record), by 9 percent. In this chapter data on dead-burned dolomite do not represent the entire consumption in the United States, as some steel companies calcine their own refractory material from dolomite purchased raw or obtained from their quarries. Such tonnages of raw dolomite, which are included in the chapter on Stone in this volume, totaled 824,930 short tons, a threefold increase

Exports of lime in 1939 were notably higher than in 1938 and exceeded those of any year since 1916. The total tonnage brought into the country declined from 1938 chiefly because imports of deadburned basic refractory from Canada virtually ceased.

PRODUCTION

As quicklime is a semiperishable commodity and many plants have only small storage facilities, stocks of lime are said to be inconsequential. In this chapter the tonnages of lime sold or used by the producers are considered equivalent to production and are used interchangeably.

The lime industry in 1939, reviving strongly from the recession of 1938, resumed the uptrend in sales that had persisted from 1933 through 1937. The average value per ton was the lowest since 1933.

Lime sold or used by producers in the United States, 1935-39

	Plants in	GT	Value ²			
Year	operation	Short tons 1	Total 1	Average		
1935	301 301 314 321 311	2, 987, 133 3, 749, 383 4, 124, 165 3, 346, 954 4, 254, 348	\$21, 748, 655 26, 933, 719 30, 091, 168 24, 137, 638 30, 049, 394	\$7. 28 7. 18 7. 30 7. 21 7. 06		

¹ Includes lime used by producers (captive tonnage) as follows—1935: 143,716 tons, valued at \$750,155; 1936: 224,693 tons, \$1,179,820; 1937: 270,192 tons, \$1,388,052; 1938: 168,245 tons, \$985,003; 1939: 270,087 tons, \$1,454,285.

¹ Value given represents value of bulk lime f. o. b. at point of shipment and does not include cost of barrel

Production by States.—The total tonnage of lime marketed in 1939 was produced at 311 plants (10 less than in 1938) in 37 States and 2 Territories. Production increased in most States, and the output of the ranking States—Ohio, Pennsylvania, Missouri, and West Virginia—aggregated 60 percent of the total, Ohio alone contributing 26 percent. Production in Missouri, which had been severely curtailed during 1938 by labor difficulties, gained sharply in 1939.

Lime sold or used by producers in the United States, 1938-39, by States

		1938			1939	
State	Active plants	Short tons	Value	Active plants	Short tons	Value
Alabama Arizona Arkansas California Colorado. Connecticut Florida Georgia Hawaii Idaho. Illinois Indiana Kentucky. Maine Maryland Massachusetts Michigan Minnesota Minnesota Missouri Montana Nevada New Jersey New Mexico New Jersey New Mexico New Jersey New Mexico New Jersey New Mexico New Jersey New Mexico New Jersey New Mexico New Jersey New Horic North Carolina Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Dakota Tennessee Texas.	9 3 2 7 3 1 1 2 1 8 6 1 1 2 1 9 6 4 2 2 1 2 2 1 2 2 2 3 1 2 2 1 2 2 2 3 1 2 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1	151, 937 39, 568 (1), 71, 596 9, 564 (1) 19, 638 7, 046 (1) 135, 256 102, 054 (1) (2) 62, 479 91, 453 45, 848 (1) 298, 151 (1) (1) (1) 19, 940 (1) 39, 439 (1) 836, 589 (1) (1) (1) (1) (1) (1) (1) (2) (3) (1) (1) (1) (1) (1) (2) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	\$911, 033 353, 224 (1) 712, 388 95, 207 (1) 185, 286 54, 150 (1) 965, 836 581, 922 (1) 446, 013 741, 975 339, 324 (1) 1, 724, 140 (1) (1) (1) 302, 360 (1) (1) 6, 658, 853 (1) (1) (1) 3, 784, 462 23, 554 (1) 901, 460 429, 664	8 3 3 2 8 4 1 1 4 1 2 1 8 5 5 1 2 18 6 4 4 2 2 1 1 2 2 2 4 2 6 6 1 2 2 1 1 1 1 2 1 0 9	176, 513 57, 233 (1) 87, 407 10, 669 (1) 22, 843 6, 815 (1) 147, 729 94, 741 (1) (1) 59, 504 111, 734 45, 180 (1) 516, 988 (1) (22, 636 (1) 22, 636 (1) (1) 51, 106, 250 (1) (1) 691, 460 (1) (1) (1) 163, 006 62, 048	\$1, 004, 785 448, 860 (1) 833, 326 103, 097 (1) 215, 472 57, 663 (1) 1, 064, 154 534, 688 (1) (1) 2, 800, 379 (1) 2, 800, 379 (1) (1) 314, 565 (1) 314, 457 (1) 8, 907, 195 (1) (1) 893, 161 524, 748
Utah Vermont Virginia Washington West Virginia Wisconsin Undistributed 2	7 5 24 5 12 12	25, 748 58, 149 161, 687 34, 025 163, 064 55, 993 170, 698	184, 390 415, 846 1, 014, 607 348, 332 1, 003, 559 483, 111 1, 331, 866	8 5 23 5 11 12	38, 437 63, 316 166, 542 47, 485 249, 987 64, 290 199, 280	268, 557 452, 045 990, 796 484, 667 1, 461, 002 541, 787 1, 529, 302
	321	3, 346, 954	24, 137, 638	311	4, 254, 348	30, 049, 394

¹ Included under "Undistributed."

Hydrated lime.—Despite the reduced number of active plants in 1939 (11 less than the record number in 1937), production of hydrated lime was higher than in any year since 1930. The average value per ton, following the general downward trend in lime prices during the year, was 11 cents below the 1938 figure. Production in the important producing States was substantially higher than in 1938 and more than offset the small declines reported in more than half

² Includes items entered as "(1)."

of the 34 producing States. The combined output from the ranking States—Ohio, Pennsylvania, and Missouri—comprised 60 percent of the total for the country.

Hydrated lime sold or used by producers in the United States, 1935-39

Year	Plants in	Short tons	Value			
	operation	Short tons	Total	Average		
1935 1936 1937 1938 1939	167 168 170 165 159	1,005,619 1,225,829 1,301,333 1,169,804 1,318,053	\$7, 939, 513 9, 529, 743 10, 344, 470 9, 111, 575 10, 124, 241	\$7.90 7.77 7.95 7.79 7.68		

Hydrated lime sold or used by producers in the United States, 1938-39, by States

State	193	8	193	9	
State	Short tons	Value	Short tons	Value	
Alabama California Florida Georgia Illinois Indiana Maryland Massachusetts Michigan Missouri New York Ohio Pennsylvania Tennessee Texas Virginia West Virginia West Virginia Wisconsin Other States 1	16, 255 9, 952 7, 046 24, 598 32, 845 31, 124 34, 111	\$190, 567 170, 990 95, 784 54, 150 189, 937 206, 290 229, 053 233, 748 82, 340 602, 472 110, 870 3, 247, 112 1, 363, 343 331, 734 235, 445 368, 290 290, 095 112, 088 997, 269	26, 148 17, 142 12, 260 6, 815 26, 417 32, 368 25, 615 39, 757 8, 757 135, 663 12, 809 463, 786 187, 228 41, 331 23, 735 59, 499 54, 003 12, 040 132, 680	\$186, 133 175, 504 117, 643 57, 663 208, 580 206, 262 182, 005 294, 788 63, 655 794, 897 794, 977 94, 728 389, 987 300, 579 94, 728 1, 053, 037	

¹ 1938: Arizona, Arkansas, Colorado, Connecticut, Hawaii, Kentucky, Maine, Minnesota, Montana, Nevada, New Jersey, North Carolina, Oregon, Rhode Island, South Dakota, Utah, Vermont, and Washington. 1939: Arizona, Arkansas, Colorado, Connecticut, Hawaii, Kentucky, Maine, Minnesota, Montana, Nevada, New Jersey, Oklahoma, Rhode Island, South Dakota, Utah, Vermont, and Washington.

SHIPMENTS

Total shipments.—Sales, shipments, and supplies of lime available for consumption in continental United States by States and groups of States that comprise approximate freight zones are listed in the two following tables. Reshipments beyond the original destination from the producing plants are disregarded. These data do not include a small quantity of lime (about 1 percent of the total) produced in Hawaii and Puerto Rico, foreign shipments, and tonnage for which distribution is not recorded.

Lime supplies available in continental United States in 1939, by States, in short tons

	Sales by	Shipments	Shipments		Supply	
State	producers	from State 1	into State	Hydrated	Quicklime	Total
Alabama	176, 513	59, 508	29, 211	13, 653	132, 563	146, 216
Arizona	57, 233	22, 897	1, 430	1,496	34, 270	35, 766
Arkansas	(2)	(2)	(2)	4, 254	10, 207	14, 461
California.	87, 407	9,967	27, 989	24, 010	81, 419	105, 429
Colorado	10, 699	240	6, 377	3, 182	13, 654	16, 836
Connecticut	(2)	(2)	(2)	11, 413	19,669	31, 082
Delaware			35, 441	13, 097	22, 344	35, 441
District of Columbia			17,042	15, 148	1,894	17, 042
Florida	22, 843		32, 568	28, 041	27, 370	55, 411
Georgia	6, 815	1, 495	49, 382	28, 146	26, 556	54, 702
Idaho	(2)		(2)	1, 246	1, 079 204, 137	2, 325 285, 131
Illinois	147, 729	72, 563	209, 965	80, 994	130, 373	164, 601
Indiana	94, 741	62, 258	132, 118	34, 228	41, 498	55, 473
Iowa			55, 473	13, 975	10, 718	19, 472
Kansas			19, 472	8, 754 14, 975	55, 588	70, 563
Kentucky	(2)		(2) 59, 174	10, 634	48, 540	59, 174
Louisiana			(2)	8, 556	50, 675	59, 231
Maine	(2)	(2) 14, 269	86, 710	54. 199	77, 746	131, 945
Maryland	59, 504		32, 924	28, 983	30, 877	59. 860
Massachusetts	111, 734	84, 798 22, 108	178, 553	63, 068	138, 557	201, 625
Michigan	45, 180		(2)	14, 725	25, 875	40, 600
Minnesota	(2)	(2)	15, 374	4, 431	10, 943	15, 374
Mississippi	516, 988	413, 820	16, 024	52, 194	66, 998	119, 192
Missouri	510, 988	410,020	(2)	2, 926	10, 545	13, 471
Montana	(2)		8, 470	6, 254	2, 216	8, 470
Nebraska	(2)	(2)	(2)	26, 337	3, 688	30, 025
Nevada New Hampshire	(-)	()	8, 359	2, 705	5, 654	8, 359
New Jersey	22, 636	6, 357	111, 917	89, 754	38, 442	128, 196
New Mexico		0,00.	(2)	1,771	15, 582	17, 353
New York		5, 675	267, 445	132, 093	171, 902	303, 995
North Carolina		0,010	(2)	32, 537	38, 459	70, 996
North Dakota			4, 763	4, 501	262	4, 763
Ohio		792, 226	151, 438	115, 361	350, 101	465, 462
Oklahoma	(2)		(2)	10,960	28, 380	39, 340
Oregon			9, 164	2, 108	7,056	9, 164
Pennsylvania	691, 460	250, 170	261, 003	161, 613	540, 680	702, 293
Rhode Island		(2)	(2)	5, 871	5, 773	11, 644
South Carolina			22, 155	14,026	8, 129	22, 155
South Dakota	(2)		(2)	2,955	3, 484	6, 439
Tennessee	163,006	133, 057	13,067	23, 990	19,026	43, 016
Texas	62,048	10, 404	2, 811	22, 955	31, 500	54, 455
Utah	38, 437	567	844	3, 909	34, 805	38, 714
Vermont	63, 316	55, 313	972	1, 329	7, 646	8, 975
Virginia	166, 542	111, 903	66, 681	42, 527	78, 793	121, 320
Washington	47, 485	9, 347	1,898	3, 804	36, 232	40, 036
West Virginia	249, 987	220, 743	152, 522	27, 639	154, 127	181, 766
Wisconsin	64, 290	25, 522	59, 468	29, 268	68, 968	98, 236
Wyoming			1,467	1,087	380	1, 467
Undistributed 3	189, 854	55, 498	273, 174			
	4, 244, 922	1 2, 440, 705	2, 422, 845	1, 301, 682	2, 925, 380	4, 227, 062

¹ Includes 17,860 tons exported or unclassified as to destination. ² Included under "Undistributed." ³ Includes items entered as "(²)."

Apparent consumption of lime in the leading consuming States-Pennsylvania, Ohio, New York, Illinois, and Michigan—represented nearly half of the total for the country. Of these ranking States, only in Ohio was production greater than consumption. In Pennsylvania consumption usually is slightly greater than production during years of high-capacity operations in the steel industry and slightly lower than production during years of low-capacity operations. Shipments of lime from Ohio and Missouri in 1939 were considerably higher than from any other State.

Lime shipped (supply) in continental United States in 1939, by origin and destination of shipments, in short tons

			New	York, P	ennsyl-	Massa	chusetts,	Rhode	Florida, Caro	Georgia lina, Vir	, North ginia			
Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total	Hy- drated lime	Quick- lime	Total
241, 782	553, 907	795, 689	6, 507	55, 925	62, 432		4	4	1, 750	12, 490	14, 240	1, 246	13, 062	14, 308
162, 400	212, 250	374, 650	278, 317	646, 391	924, 708	27, 215	60, 984	88, 199	16, 013	53, 486	69, 499	451	4, 224	4,675
20, 432	785	21, 217	1, 220	30,060	31, 280	36, 950	86, 544	123, 494	130	2, 707	2, 837			
44, 056	2, 996	47, 052	11, 293	28, 844	40, 137		155	155	60, 056	50, 523	110, 579	29, 294	94, 881	124, 175
23, 576 4, 136	58, 288 442			79	192				275	20	295	36, 478 22	160, 083	196, 561 22
31, 943	29, 927	61, 870		23	23									
2, 452	1, 853	4, 305												
	Hy-drated lime 241, 782 162, 400 20, 432 44, 056 23, 576 4, 136 31, 943	Michigan, O Hydrated lime 241, 782 553, 907 162, 400 212, 250 20, 432 785 44, 056 2, 996 23, 576 4, 136 31, 943 29, 927	drafted lime Unime Total 241, 782 553, 907 795, 689 162, 400 212, 250 374, 650 20, 432 785 21, 217 44, 056 2, 996 47, 052 23, 576 58, 288 81, 864 4, 136 31, 943 29, 927 61, 870	Hy-drated lime Total lime Hy-drated lime Total lime Hy-drated lime Total lime Hy-drated lime 241, 782 553, 907 795, 689 6, 507 162, 400 212, 250 374, 650 278, 317 20, 432 785 21, 217 1, 220 44, 056 2, 996 47, 052 11, 293 23, 576 58, 288 4, 136 4, 136 4, 136 4, 136 31, 943 29, 927 61, 870	Hydrated lime Total Hydrated lime Total lime Hydrated lime Total lime Hydrated lime 241,782 553,907 795,689 6,507 55,925 162,400 212,250 374,650 278,317 646,391 20,432 785 21,217 1,220 30,060 44,056 2,996 47,052 11,293 28,844 23,576 58,288 81,864 113 79 41,36 422 4,578 31,943 29,927 61,870 23	Michigan, Ohio New New New Virginia Hydrated lime Quick-lime Total Hydrated lime Quick-lime Total lime T	Hydrated lime	Hy-drated lime Total Hy-drated lime Total lime	Hy-drated lime	Hydrated Quick Hydrated lime Total Hydrated lime Indiana	Hy-drated lime Total lime Total lime Total lime Total lime Hy-drated lime Total li	Hy-drated lime Total lime	Hy-drated lime Total lime	Hydrated lime Total lime

Destination	Arkansas, Oklahoma, Texas			Minnesota, Missouri, Wisconsin			Arizona, California, Colo- rado, Idaho, Montana, Nevada, New Mexico, South Dakota, Utah, Washington			United States		
	Hydrated lime	Quick- lime	Total	Hydrated lime	Quick- lime	Total	Hydrated lime	Quick- lime	Total	Hydrated lime	Quick- lime	Total
Illinois, Indiana, Michigan, Ohio Delaware, District of Columbia, Maryland, New Jersey, New	88		88	42, 278	187, 780	230, 058				293, 651	823, 168	1, 116, 819
York, Pennsylvania, West Virginia	51	275	326	9, 096	29, 525	38, 621				493, 543	1, 007, 135	1, 500, 678
Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Florida, Georgia, North Carolina, South Carolina, Virginia Alabama, Kentucky, Louisiana, Mississippi, Tennessee. Arkansas, Kansas, Nebraska, Oklahoma, Texas Iowa, Minnesota, Missouri, Wisconsin Arizona, California, Colorado, Idaho, Montana, Nevada, New	2, 485 34, 837 755	11, 443 63, 741 295	98, 578	14, 182	18, 838	33, 020				58, 857 145, 277 67, 683 53, 177 110, 162	120, 294 179, 307 266, 660 83, 021 203, 339	324, 584 334, 343 136, 198
Mexico, North Dakota, Oregon, South Dakota, Utah, Washington, Wyoming	964	986	1,950	9, 301	7, 620	16, 921	66, 615	231, 997	298, 612	79, 332	242, 456	321, 788

Lime shipped to noncontiguous Territories of the United States, 1938-39

	193	3.	1939		
Territory	Short tons	Value	Short tons	Value	
Alaska.	(1)	\$7	117	\$2, 651	
American Samoa	1, 770 895 97	26, 071 9, 643 1, 902	1, 102 1, 560 43	14, 336 19, 270 527	
	2, 762	37, 623	2,822	36, 784	

¹ Less than 1 ton.

Hydrated lime.—More than one-third of the hydrated lime produced in 1939 was consumed in the Middle Atlantic States. Shipments from all plants and from Ohio plants into various groups of States are shown in the following table.

Shipments of hydrated lime from plants in continental United States and in Ohio in 1939, by destinations

	From all	plants	Fron	o Ohio pl	ants
Destination	Short tons	Distri- bution (per- cent)	Short tons	Distri- bution (per- cent)	Percent of total ship- ments
Illinois, Indiana, Michigan, Ohio	293, 651	22. 4	191,077	41. 2	65. 1
Delaware, District of Columbia, Maryland, New Jersey,	493, 543	37.6	161, 440	34.8	32.7
Connecticut, Maine, Massachusetts, New Hampshire,	58, 857	4.5	20, 417	4.4	34. 7
Florida, Georgia, North Carolina, South Carolina, Virginia	145, 277	11.1	44, 056	9.5	30.3
Alabama Mantuaky Louisiana Mississinni, Tennessee	67, 683	5.2	19,885	4.3	29.4
Arkansas, Kansas, Nebraska, Oklahoma, Texas	53, 177 110, 162	4.1 8.4	4, 136 20, 469	.9 4.4	7. 8 18. 6
New Mexico, North Dakota, Oregon, South Dakota, Utah, Washington, Wyoming	79, 332 9, 122	6.0	2, 025 281	.4	2. 6 3. 1
<u>-</u>	1, 310, 804	100.0	463, 786	100.0	35. 4

SALES BY USES

The only major uses for which the average value of lime increased in 1939 over 1938 were in the building and sugar-refining industries. Prices for lime sold for metallurgical and water-purification purposes showed the largest declines—45 and 49 cents per ton, respectively. Consumption of hydrated lime, which is more stable than that of quicklime, represented a slightly smaller proportion of the total in 1939 than in 1938.

LIME

Lime sold or used by producers in the United States, 1938-39, by uses

•		19	38		1939						
Use	Qu	antity	Valu	ie	Qu	antity	Value				
	Per- cent of total	Short tons	Total	Aver- age	Per- cent of total	Short tons	Total	Aver- age			
Agricultural Building	10. 9 25. 5	364, 312 854, 461	\$2, 376, 108 7, 163, 165	\$6. 52 8. 38	8. 5 23. 5	362, 335 1, 000, 498	\$2, 214, 759 8, 563, 792	\$6.11 8.56			
Chemical and industrial: Glassworks Metallurgy Paper mills Sugar refineries Tanneries Water purification Other uses 1	3.8 14.7 12.0 .7 1.8 5.6 14.0	126, 840 493, 522 402, 021 22, 506 59, 853 186, 211 470, 602	859, 937 3, 073, 625 2, 562, 317 185, 280 411, 374 1, 273, 491 3, 136, 986	6. 78 6. 23 6. 37 8. 23 6. 87 6. 84 6. 67	3. 5 17. 6 10. 9 . 4 1. 7 5. 9 12. 2	148, 102 748, 853 464, 224 18, 831 70, 446 251, 193 518, 305	1, 003, 843 4, 328, 564 2, 904, 160 167, 480 475, 841 1, 594, 214 3, 349, 187	6. 78 5. 78 6. 26 8. 89 6. 75 6. 35 6. 46			
Refractory lime (dead- burned dolomite)	52. 6 11. 0	1, 761, 555 366, 626	11, 503, 010 3, 095, 355	6. 53 8. 44	52. 2 15. 8	2, 219, 954 671, 561	13, 823, 289 5, 447, 554	6. 23 8. 11			
Total lime Hydrated lime (included in above totals)	100. 0 35. 0	² 3, 346, 954 1, 169, 804	² 24,137,638 9, 111, 575	7. 21 7. 79	100.0	² 4, 254, 348 1, 318, 053	² 30,049,394 10, 124, 241	7. 06 7. 68			

Agricultural lime and other liming materials.—Pulverized limestone, by reason of its low price and availability, is by far the most important liming agent. Its effectiveness, however, is not as rapid or subject to as close control as that of lime.

Agricultural lime and other liming materials sold or used by producers in the United States, 1938-39, by kinds

Kind		193	8		1939					
	Shor	t tons	Value Short tons				Valu	ue		
	Gross	Effective lime content 1	Total	Aver- age	Gross Effective lime content		Total	Aver- age		
Lime from limestone: Quicklime Hydrated Lime from oyster shells 2 Oysters shells (crushed) 2 Limestone Calcareous marl	126, 539 237, 773 14, 789 63, 832 4, 367, 410 23, 572	106, 000 166, 000 12, 000 27, 000 1, 878, 000 10, 100	\$666, 550 1, 709, 558 93, 338 223, 986 5, 637, 485 40, 270	\$5. 27 7. 19 6. 31 3. 51 1. 29 1. 71	149, 903 212, 432 (3) (3) 5, 459, 260 22, 114	126, 000 149, 000 (3) (3) 2, 347, 000 10, 000	\$753, 325 1, 461, 434 (3) (3) 6, 592, 827 38, 492	\$5.03 6.88 (3) (3) 1.21 1.74		

Estimated by method described in Mineral Resources of the United States, 1921, pt. II, p. 164.
 Bureau of Fisheries.
 Data not yet available.

Building lime.—Total sales of building lime in 1939 (1,000,498 short tons) reported by operators for the important uses of lime in construction include: Finishing lime, 393,668 short tons; mason's lime, 435,216 short tons; for manufacture of prepared masonry mortars, 72,032 short tons; and unspecified uses, 99,582 short tons.

¹ Details of distribution shown in a following table.
² Includes lime used by producers (captive tonnage) as follows—1938: 168,245 short tons, valued at \$985,003; 1939: 270,087 tons, \$1,454,285.

Average values per ton for these classifications are \$9.37, \$8.10, \$6.73, and \$8.70, respectively. Finishing lime produced in Ohio comprised 87 percent of the total for this purpose. The combined production of mason's lime in the ranking States—Ohio, Massachusetts, and Pennsylvania—was 40 percent of the total.

Chemical and industrial lime.—The quantities and average values of metallurgical lime sold or used in 1939 are reported by the producers as follows: Fluxing lime in open-hearth steel furnaces, 558,678 short tons, \$5.54; fluxing lime in electric steel furnaces, 11,344 short tons, \$7.22; fluxing lime in smelting nonferrous metals, 12,029 short tons, \$6.13; wire drawing, 12,666 short tons, \$8.08; mold paints, foundry uses and unspecified, 1,475 short tons, \$6.29; ore concentration (including cyanidation), 152,661 short tons, \$6.33. In production of fluxing lime for steel furnaces Pennsylvania, West Virginia, Missouri, and Alabama led all other States, and Arizona and Utah outranked other States in production of lime for ore concentration.

The quantity and value of chemical-grade lime, designated as "Other uses" in a previous table, are reported by uses in 1939 as follows:

Chemical and industrial lime sold or used by producers in the United States for "Other uses" in 1939

Use	Short tons	Value	Use	Short tons	Value
Alcohol Alkalies (ammonium, potassium, and sodium compounds) Asphalts and other bituminous materials Bleach, liquid and powder (excludes bleach for paper manufacture). Brick, sand-lime and slag. Brick, sand-lime and slag. Brick, silica (refractory) Calcium carbide and cyanamide. Calcium carbide and cyanamide. Calcium carbonate, precipitated. Coke and gas (gas purification and plant byproducts) Food products: Creameries and dairies Gelatin. Phosphate baking powders. Unspecified Glue. Grease, lubricating.	7, 837 1, 415 10, 573 25, 367 10, 946 85, 218 5, 600 13, 229 682 6, 585 5, 046 1, 910 6, 931	\$5, 878 45, 684 10, 489 57, 002 158, 974 80, 894 418, 061 46, 736 82, 612 12, 210 46, 181 32, 396 18, 880 44, 859 23, 974	Insecticides, fungicides, and disinfectants. Magnesia. Paints (calcimine, pigments, etc.) Petroleum refining. Polishing and buffing compounds. Rubber. Salt refining. Sewage and trade-wastes treatment. Soap and fat. Textiles. Tobacco. Varnish. Wood distillation. Undistributed 1. Unspecified.	16, 562 16, 922 9, 561 1, 253 4, 526 654 1, 477 28, 071 126, 256	\$349, 113 213, 984 138, 747 195, 533 88, 662 110, 123 36, 383 119, 881 43, 366 9, 390 21, 421 4, 577 10, 438 175, 337 847, 402 3, 349, 187

¹ Includes acid neutralization, bromine, cement, chemicals (unspecified), chromates and bichromates, citric acid, depilatories, explosives, ice, medicines and drugs, oxygen, pulp, retarder, starfish control, and sulfur.

Lime sold or used by producers in the United States in 1939, by States and uses

	Agric	ultural	Buil	ding					Cher	nical and	industr	ial					Т	otal
State	Short	Value	Short	Value	Meta	llurgical	Pape	er mills	Refr	actory	Tanı	neries		ater ication	0	ther	Short	
	tons				Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	tons	Value
AlabamaArizonaArkansas	(1)	(1) (1)	46, 185 10, 612 (1)	\$290, 118 136, 241 (1)	69, 799 (1) (1)	\$350, 831 (1) (1)	43, 626 (1) (1)	\$253, 161 (1) (1)	(¹)	(1)			1, 857	\$12, 810	3, 210 (1) (1)	\$20, 830	57, 233	
California Colorado Connecticut Florida	1, 311 (¹) (¹) (¹)	\$11, 468 (1) (1) (1)	24, 776 3, 589	273, 458 36, 029	22, 828 (1)	223, 794 (1)	2, 288	17, 752			629		(1)	(1)	34, 293 (1) (1)	288, 728 (1) (1) (1)	(1) 87, 407 10, 699	(1) 833, 326 103, 097
Georgia Hawaii Idaho			8, 018 6, 815 (1) (1)	(1) (1)									9, 107	84, 200	(i) (i)	(1) (1)	22, 843 6, 815 (1)	215, 472 57, 663
Illinois Indiana Kentucky Maine	(1) 1, 364 (1) (1)	(1) 8, 776 (1) (1)	24, 840 6, 289 (1) (1)	197, 900 41, 285 (1)	51, 256 16, 151	326, 746 85, 876	(1)	(1)	(1)	(1)	(1) (1) (1)	(1) (1)	(1) 18, 627 (1) (1)	(1) 109, 953 (1) (1)		102, 772 188, 158	147, 729 94, 741 (1)	534, 688 (1)
Maryland Massachusetts Michigan Minnesota Missouri	47, 413 8, 647	291, 788 65, 047 (1) (1)	(1) 69, 595 3, 737 (1) 42, 724	(1) 671, 375 30, 377 (1) 288, 469	(1)	(1) (1) (1) (1) 360, 624	(1) (1) 6,872 (1) (1)	(1)			9, 965 (1)	80, 880 (¹)	(1) (1) (1)	(1) (1) (1)	(1) (1) 11, 869 3, 744 (1)	(1) (1) 91, 661 28, 620 (1)	59, 504 111, 734 45, 180	1, 005, 485 324, 765 (1)
Montana Nevada New Jersey New Mexico	(1) (1) (1)	(1) (1) (1)	(1) (1) (1) (1) (1) (1)	(1) (1) (1) (1) (1)	(1) (1)	(1)		369, 105		(1)	(1)	(1)	98, 402 (1) (1)	522, 898 (1) (1)	(1) (1) (1) (1)	844, 188 (1) (1) (1) (1)	516, 988 (1) (1) 22, 636	(1) (1) 148, 605
New York North Carolina Ohio	6, 199 28, 353	42, 541	(1)	(1)	(1)	(1)	(1)	(1)			(1)	(1)	(1)	(1)	(1)	(1)	42, 22 5	314, 457
Ohio Oklahoma Pennsylvania Puerto Rico	(1)	(1)	85, 389	3, 750, 403 696, 963	·	276, 046 1, 005, 582	(1)	(1) 351, 251	(1)	\$3,325,382 (1)	23, 437	156, 679		100, 656	(1)	1, 130, 151 (1) (1)	(1)	8, 907, 195 (1) 4, 744, 197
Rhode Island South Dakota Tennessee	(1)	(1)	(1) (1) 38, 291	(1) (1) 286, 432	(1) 21, 004	(1)							(1)	(1)	(1)	(1) (1)	(1) (1) (1)	(1) (1) (1)
Texas	(1) (1) (1) 9, 942	(1) (1) 55, 836	31, 009 5, 425 13, 377	280, 592 59, 575 108, 767	(¹)	(1)	64, 724 9, 825 (1)		,		1 ''	(1)	16, 118 10, 550	86, 441 87, 277 (1)	(1) 10, 213 (1)	98, 083 (1)	163, 006 62, 048 38, 437	524, 748 268, 557
Virginia Washington West Virginia Wisconsin Undistributed 2	29, 914 (1) 12, 675 1, 441 33, 064	170, 472 (¹) 63, 161 8, 820 198, 357	38, 359 11, 088 11, 216 30, 232 64, 484	265, 171 130, 952	28, 244 5, 099 80, 751 (1)	126, 901 53, 962 401, 614	8, 629 26, 602 23, 500 17, 400	257, 250 129, 649 127, 706	(1)	(¹) 2, 122, 172	10, 200	57, 2 76	(1) 8, 894 1 286	49, 966 (1) 47, 981 10, 178	26, 719 53, 236 (1) (1) 13, 446 147, 773	191, 036 325, 060 (1) (1) 150, 028 1, 061, 195	64, 290	452, 045 990, 796 484, 667 1, 461, 002 541, 787 1, 529, 302
	362, 335	2, 214, 759	1, 000, 498	8, 563, 792	748, 853							'	′ 1		' 1	' '	,	30, 049, 394

Included under "Undistributed."

Includes items entered as "(1)."

Hydrated lime.—Sales of hydrated lime in 1939 were substantially higher than in 1938 for all major uses except agriculture and sugar refining.

Hydrated lime sold or used by producers in the United States, 1938-39, by uses

	19	38	1939			
Use	Short tons	Value	Short tons	Value		
AgriculturalBuilding	237, 773 598, 981	\$1,709,558 4,947,957	212, 432 694, 919	\$1, 461, 434 5, 849, 189		
Chemical and industrial: Glassworks Metallurgy Paper mills Sugar refineries Tanneries Water purification Other uses	867 35, 296 21, 790 14, 379 26, 075 94, 972 139, 671	5, 949 249, 652 161, 371 121, 515 182, 762 694, 103 1, 038, 708	1, 780 48, 656 37, 986 12, 454 30, 336 108, 188 171, 302	10, 904 317, 766 251, 386 119, 412 218, 516 727, 151 1, 168, 483		
Total hydrated lime	333, 050	2, 454, 060 9, 111, 575	1, 318, 053	2, 813, 618 10, 124, 241		

SIZE OF PLANTS

Studies of groups of active commercial companies, arranged by volume of annual sales, indicate that those selling 25,000 to 49,999 short tons each year are growing in number and thus contribute an increasing proportion to total annual sales by the industry. Sales by the smaller groups, although fairly persistent, represent a lower percentage of total sales in 1939 than in 1929. The number of plants in these groups is declining. Sales in the groups over 50,000 tons are the most sensitive to prosperity and depression periods. According to Bowles and Coons, the number of active lime companies, plants, and kilns declined appreciably from 1910 to 1938, individual kiln capacity increased, and production by the industry from 1917 to 1938 averaged about 51 percent of capacity.

Sales of lime (including dead-burned dolomite) by producers in the United States, 1929, 1934, and 1939, by size of companies

		1929			1934		1939				
	~	Sold or	used	Com-	Sold or	used	Com-	Sold or used			
	Com- panies	Short tons	Percent of total	panies	Short tons	Percent of total	panies	Short tons	Percent of total		
Less than 1,000	131 79 37 47 19 16 9	33, 751 213, 383 274, 481 754, 600 677, 935 1, 058, 103 1, 257, 515 4, 269, 768	0.8 5.0 6.4 17.7 15.9 24.8 29.4	131 67 40 27 20 5 4	35, 720 149, 805 275, 627 457, 989 669, 516 371, 713 436, 717 2, 397, 087	1. 5 6. 3 11. 5 19. 1 27. 9 15. 5 18. 2	84 79 29 36 28 10 8	24, 836 202, 130 213, 479 575, 000 1, 019, 512 741, 141 1, 478, 250 4, 254, 348	0. 6 4. 8 5. 0 13. 5 24. 0 17. 4 34. 7		

¹ Bowles, Oliver, and Coons, A. T., Graphic Survey of the Lime Industry, 1910-38: Bureau of Mines Inf. Circ. 7088, 1939, 8 pp.

TRENDS IN PRINCIPAL USES

Largely because of the record consumption of metallurgical lime and dead-burned dolomite in 1939, sales of chemical-grade and refractory lime represented 68 percent of total sales by the industry as

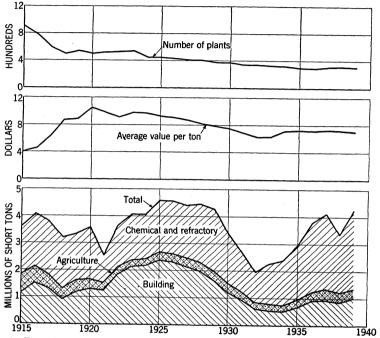


FIGURE 1.—Trends in the number of active plants, average value per ton, and principal uses of lime, 1915-39.

contrasted with 64 percent in 1938. Although sales of building lime increased considerably in 1939, they represented a slightly smaller proportion of the total than in 1938.

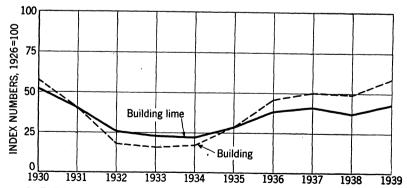


FIGURE 2.—Building-lime (quick and hydrated) sales compared with total floor area of residential and nonresidential building, 1930–39. Index numbers on building computed from F. W. Dodge Corporation data.

The disproportionate gain in consumption of refractory lime in 1939 compared to steel-ingot production probably resulted from extensive repairs required to condition furnaces that had been idle for some time and from substitution of this refractory for other higher-price

Dead-burned dolomite is readily available, as the producing plants are close to the important steel-producing centers of the country.

NEW DEVELOPMENTS

The methods of making and the properties of quicklime and hydrated lime for use in important consuming industries are discussed in a general symposium 2 on lime by the American Society For Testing Materials. Plasticity studies 3 show no correlation between Emley plasticity values and particle-size distribution down to 1 or 2 microns in masonry mortars made with hydrated lime and quicklime Quicklime putties prepared with an excess of water were very much finer than commercial hydrated limes.

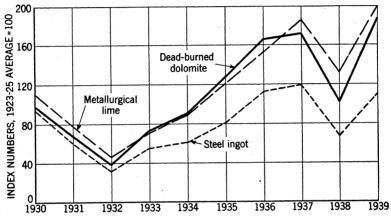


FIGURE 3.—Metallurgical lime and dead-burned dolomite sales compared with steel-ingot production, 1930-39. Index numbers on steel ingots computed by Federal Reserve Board from data of American Iron

Quantity requirements of lime in the paper and pulp industry are given by Rowley 4 as follows: 150 to 200 pounds per ton of pulp made by the sulfite process; 600 to 785 pounds per ton by the soda process; 500 to 550 pounds per ton by the sulfate process; 120 to 250 pounds per ton of rags in pulp; and about 500 pounds for pulping straw. However, new lime requirements are much lower in mills where the calcium carbonate sludge from the causticizing step is recovered and recalcined. For example, new lime requirements in a sulfate-process mill in southern United States are only 85 pounds per ton of pulp produced, although the process needs a total of 540 pounds.

The treatment of waste sulfite liquors from paper mills by the Howard process,⁵ a three-stage precipitating treatment with lime, has resulted in a number of valuable byproducts such as vanillin and lignin plastics and should provide an expanding market for lime. Other newly developed uses for lime are in the manufacture of synthetic fibers of the nylon and polyvinyl acetal resin types and as a control of the starfish invasion, which seriously threatens continuance

of the New England oyster beds.

² American Society for Testing Materials, Symposium on Lime: Philadelphia, 1940, 118 pp.
³ Bishop, Dana L., Particle Size and Plasticity of Lime: Nat. Bureau of Standards Jour. Research, 1939, vol. 23, No. 2, pp. 285–292.
⁴ Rowley, H. J., Limestone in the Pulp and Paper Industry: Trans. Canadian Min. Met. Inst., vol. 42, December 1939, pp. 599–607.
⁵ Skinner, Hervey J., Waste Problems in the Pulp and Paper Industry: Ind. Eng. Chem., November 1939, vol. 21, No. 11, p. 1331.

1251 LIME

The 41 lime plants that entered the fifth annual safety competition ⁶ conducted by the Bureau of Mines in cooperation with the National Lime Association, showed a marked decline in the severity rate of accidents and a slight improvement in frequency rate over the 1938 data.

FOREIGN TRADE 7

Imports.—The marked decline in imports of dead-burned dolomite, composed largely of impure Canadian magnesite, from 13,928 short tons in 1936 to only 186 in 1939, is attributed to the reported manufacture of a similar refractory in the United States from dolomite with additions of brucite and serpentine. Imports of other types of lime in 1939 increased slightly over 1938.

Lime imported for consumption in the United States, 1935-39

Year	Hydrate	Hydrated lime ¹		Other lime 1		Dead-burned dolo- mite 2		Total	
1 eai	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
1935 1936 1937 1938 1939	1, 030 1, 345 1, 174 858 1, 148	\$10, 571 12, 212 13, 885 10, 001 11, 242	3, 413 7, 859 7, 614 5, 960 6, 546	\$36, 032 74, 946 76, 720 56, 202 60, 660	7, 519 13, 928 9, 083 2, 875 186	\$189, 714 349, 678 231, 084 67, 340 4, 260	11, 962 23, 132 17, 871 9, 693 7, 880	\$236, 317 436, 836 321, 689 133, 543 76, 162	

Includes weight of immediate container.
 Classification changed in 1936 to "Dead-burned basic refractory material containing 6 percent or more of lime and consisting chiefly of magnesia and lime."

Lime imported for consumption in the United States, 1938-39, by countries and customs districts 1

		19	38	1939	
Country	Customs district	Short tons	Value	Short tons	Value
Belgium	Florida New York	6	\$53 13	22 228 22	\$101 1,052 103
Canada	Cincago. Los Angeles. Maine and New Hampshire Alichigan. St. Lawrence. San Francisco. Washington.	2, 052	280 19, 392 43, 914	268 1 19 3,383 3,653	2, 590 7 174 33, 360 32, 541
Germany Japan Mexico Norway	New York Pittsburgh Washington San Antonio Los Angeles	16 (2) (2) 44	1, 543 65 10 108	3, 033 7 (2) (2) 43 1	596 66 12 108 38
Sweden Switzerland United Kingdom	{do	7 (²) 23	173 23 629	(2) 41	288 25 841
		3 6, 818	66, 203	3 7, 694	71, 902

Exclusive of dead-burned basic refractory material.
 Less than 1 ton.
 Includes weight of immediate container.

⁶ Bureau of Mines, The National Lime Association Safety Competition, 1939: Health and Safety Statistics Ser. No. 289, 1940, 9 pp.

7 Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Exports.—Larger shipments of lime to several of the Central American countries and Canada resulted in a substantial gain in total quantity of lime exported in 1939.

Lime exported from the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	3, 927 4, 601 11, 300	\$63, 672 71, 109 122, 895	1938 1939	13, 222 21, 477	\$121, 662 236, 497

Lime exported from the United States, 1938-39, by countries

Q constant	19	38	193	39
Country	Short tons	Value	Short tons	Value
Argentina Australia	41	\$1, 481	130 30	\$2,613 444
Canada	6,940	37, 255	8, 714	74, 261
Costa Rica		5, 615	281 1,001	7, 252 10, 067
Ecuador	63	1,641	62	1, 645
FranceGuatemala		881 6, 516	36 2, 434	1, 113 21, 673
Honduras	2	45	3, 146	27, 096
Japan Mexico	171 2, 457	4, 599 21, 516	1, 386 1, 374	32, 042 9, 719
New Zealand	65	846	30	391
Nicaragua Panama	417 155	5, 124 2, 728	276 278	4, 096 5, 261
Peril	602	10, 077	859	10, 526
Philippine Islands Salvador	51 45	1, 993 607	1 57	32 784
Saudi Arabia			100	1,856
SwedenUnion of South Africa	82 59	3, 550 700	117 123	4, 162 2, 013
United Kingdom	101	3, 510	290	9, 719
West Indies: British	310	5, 617	247	3, 111
Cuba	390	4,612	148	1, 908
Haiti Netherland		832 1, 131	$\begin{array}{c} 246 \\ 32 \end{array}$	2, 445 296
Other countries 1		786	79	1, 972
	13, 222	121, 662	21, 477	236, 497

¹ Includes entries of 25 tons and under.

KAOLIN (CHINA CLAY AND PAPER CLAY), BALL CLAY, FIRE CLAY, BENTONITE, FULLER'S EARTH (BLEACHING CLAYS), AND MISCEL-LANEOUS CLAY

By PAUL M. TYLER AND A. LINN 1

SUMMARY OUTLINE

	Page		Page
General summary	1253	Fuller's earth	1000
Sailent statistics	1254	l Miscellangous clay	1004
China clay or kaohn	1255	l Heavy-elay products	1005
Dan clay	1257	Potterv	1007
Fire clay	1258	Consumption and uses	1207
Bentonite	1259		1201

Sales of domestic china clay and paper clay, ball clay, and bentonite attained new high records in 1939. Fire-clay sales, on the other hand, although more than 50 percent above those in 1938, fell below those of several earlier years, including 1937, and failed to pace recovery in iron and steel manufacture, the principal consuming industry. Discouraging, too, was a further decline in the consumption of natural bleaching clays or fuller's earth, which has persisted since 1930 owing to competitive bleaching materials and changes in oil-refining technique. The tonnage of miscellaneous clay sold was only a trifle higher in 1939 than in 1938, and the total value was much lower. Sales of all kinds of clay, as reported to the Bureau of Mines, totaled 3,927,764 tons valued at \$17,046,773 in 1939 compared with 2,901,713 tons valued at \$13,483,441 in 1938 and 4,463,551 tons valued at \$18,004,158 in 1937.

Imports of clay were somewhat higher in 1939 than in 1938 but were less in quantity or value than in any other year since 1934. Total imports of clay of all kinds were 151,420 tons valued at \$1,378,735 in 1939 compared with 113,059 tons and \$1,127,462 in 1938 and 205,304 tons and \$1,950,043 in 1937. During the 5-year period 1925-29 imports averaged 420,310 tons valued at \$3,841,462 annually.

Exports of fire clay, fuller's earth, and other clays totaled 136,480 tons valued at \$1,873,110 in 1939, 132,147 tons valued at \$1,565,567 in 1938, and 168,810 tons valued at \$1,948,425 in 1937. Comparable figures for 1925–29 were 109,344 tons and \$1,217,769 annually.

There were outstanding gains in sales of domestic clay for paper, whiteware pottery, rubber, and high-grade tile, and minor gains in sales of clay for other uses. Compared with 1937, sales for refractory uses show the same unfavorable trend as sales of fire clay alone.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce. Domestic figures for fuller's earth compiled by R. W. Metcalf, of the Bureau of Mines.

These decreases were the principal cause of the decline in the total quantity and value of sales of all clays in 1939 compared with 1937 and a few earlier years, although substantial losses also occurred in apparent consumption of oil-well drilling mud and bleaching clays and minor losses in a few other outlets.

The consumption of paper-filler clay has increased greatly but not as spectacularly as that of domestic paper-coating clays. After exceeding 10,000 tons in only one previous year, 1922 (10,243 tons), sales of domestic paper-coating clays jumped to 33,034 tons in 1929, advanced fairly steadily to 91,146 tons in 1937, and after a slight drop in 1938 rose to 116,980 tons in 1939. The record sales of 94,057 tons of rubber clay in 1939 may be compared with less than 30,000 tons in any year before 1927. The consumption of clay in paint is less now than in the late 1920's, but consumption in the manufacture of oilcloth and linoleum has increased by a large percentage.

Salient statistics of the clay industry in the United States, 1930-34 (average) and 1936-39

	1930-34 (average)	1936	1937	1938	1939
Domestic clay sold by producers: Kaolin, china clay	431, 932	638, 939	732, 282	595, 054	780, 804
	70, 299	101, 324	121, 470	94, 968	128, 601
	1, 487, 364	2, 471, 575	2, 785, 344	1, 458, 941	2, 222, 295
	84, 762	177, 807	194, 768	192, 183	219, 720
	259, 354	230, 814	226, 165	170, 852	167, 070
	305, 973	392, 783	403, 522	389, 715	409, 274
Total domestic: Quantitydo Value	2, 639, 684	4, 013, 242	4, 463, 551	2, 901, 713	3, 927, 764
	\$10, 977, 776	\$15, 688, 434	\$18, 004, 158	\$13, 483, 441	\$17, 046, 773
Imports: Kaolin or china clayshort tons_ Common blue and Gross-Almerode short tons_ Fuller's earthdo Other claydo	11, 306 4, 708	139, 797 32, 166 2, 733 21, 183	146, 523 38, 549 2, 286 17, 946	84, 180 20, 404 1, 506 6, 968	114, 696 28, 872 1, 818 6, 034
Total imports: Quantitydo Value	181, 615	195, 879	205, 304	113, 058	151, 420
	\$1, 595, 101	\$1, 896, 642	\$1, 950, 043	\$1, 127, 462	\$1, 378, 735
Exports: Fire clayshort tons Other clay (including fuller's earth) short tons	39, 709	65, 874	77, 330	55, 764	57, 317
	68, 978	90, 569	91, 480	76, 383	79, 163
Total exports: Quantitydo Value	108, 687	156, 443	168, 810	132, 147	136, 480
	\$1, 323, 744	\$1, 844, 038	\$1, 948, 425	\$1, 565, 567	\$1, 873, 110

Terminology on clays has been notoriously loose. To remedy this lack of uniformity a Committee on Geological Surveys, under the active leadership of H. Ries, has recommended a series of 58 definitions for adoption by the American Ceramic Society.² An Illinois State report shows that a clay from the Goose Lake area, Grundy County, Ill., formerly thought to be bentonite or beidellite, is composed of a distinctive clay mineral of the illite group which is unique in that it combines good oil-bleaching, high bonding, and excellent mud-forming properties. Like bentonite, it is used for rebonding foundry molding sand, for oil-well drilling muds, for setting casing in oil wells, and for special adhesives, and like fuller's earth it is used for refining mineral and edible oils.

¹ Bull. Am. Ceram. Soc., vol. 18, No. 6, June 1939, pp. 213-215.

CHINA CLAY OR KAOLIN

Sales of kaolin or china clay by domestic miners in 1939 totaled 780,804 short tons valued at \$6,200,606, a gain of 31 percent over the quantity shipped in 1938 (595,054 tons, \$4,740,880) and 7 percent above the previous all-time record of 732,282 tons valued at \$5,349,636 in 1937. Imports recovered moderately to 114,696 short tons having a nominal value of \$1,015,813 compared with 84,180 tons valued at \$753,858 in 1938 and 146,523 tons valued at \$1,211,266 in 1937.

As usual Georgia contributed nearly two-thirds of the national output, but South Carolina's share increased to more than 20 percent of the total in 1939 compared with 17 percent in 1938. The Georgia output exceeded the 1937 record, and that of South Carolina was greater than ever before. Pennsylvania, the third ranking State. also managed to break previous records, and California produced more than twice as much as in any previous year. Because of better demand for domestic pottery clays, sales of North Carolina clay likewise rose to an all-time high.

Largely as a result of work done by Frank L. Hess, of the Bureau of Mines, the major residual kaolin deposits of North Carolina are now believed to have been derived from large alaskite granite bodies rather than from pegmatite veins as previously thought. deposits probably are far greater than was previously estimated, approximating 51 million tons in the Spruce Pine district of Avery, Mitchell, and Yancey Counties. The clay is notably low in iron and contains only a trace of titanium. High-grade kaolin for ceramic use is now being produced in the district by two modern plants 3 and several older plants, and the clay is used to an increasing extent also for various fillers and in special products. According to Hunter, 4 50 geologically separate kaolin deposits are associated with the Spruce Pine alaskite. The outcrops range in size up to 100 acres or more. Residual quartz, muscovite mica, and some unkaolinized feldspar accompany the kaolin, but the mixture is easily mined by mechanical methods or hydraulicking. One deposit near the town of Spruce Pine was mined to a depth of 100 feet before the percentage of unaltered feldspar increased enough to discourage mining. centage of recoverable kaolin varies, and many deposits yield 10 percent or more. Mica is recovered as a joint product and is used chiefly for roofing but also as filler. The quartz is milky white and might be employed as high-grade glass sand.

By using a micronizer, it is claimed not only that clay can be ground finer than was previously possible, but also that undesirable

accessory minerals can be eliminated.5

Clay drying and grinding may be conducted simultaneously. At some plants in the South rotary driers remove only part of the moisture, and the drying is completed in the milling equipment. This method is advantageous in preparing paper clays because, when drying is completed before grinding, the temperature may rise too

¹ Grant, J. R., Jr., Better China Clay: Eng. and Min. Jour., vol. 138, No. 7, July 1937, p. 341; New Process North Carolina Kaolin Refining: Bull. Am. Ceram. Soc., vol. 16, No. 10, October 1937, pp. 387-390.

Trauffer, W. E., Processes Kaolin by Foreign Method: Pit and Quarry, vol. 32, No. 6, December 1939,

pp. 41-44.
4 Hunter, C. E., Residual Alaskite Kaolin Deposits of North Carolina: Bull. Am. Ceram. Soc., vol. 19, No. 3, March 1940, pp. 98-103.

§ Wolfram, H. G., An Interesting New Grinding Process: Bull. Am. Ceram. Soc., vol. 18, No. 10, October 1939, pp. 374-375.

high or the clay may remain very hot for too long a period, thereby

impairing the quality of the product.

Further progress has been made in the use of air separators to remove silica sand or other impurities from clay. Wet centrifugal fractionation methods also are employed to separate ultrafine particles from Georgia kaolins used as special paper coatings. The coarser fractions are sold to the ceramic industries.

Kaolin sold by producers in the United States, 1937-39, by States

State	19	1937		38	1939	
State	Short tons	Value	Short tons	Value	Short tons	Value
Alabama California Delaware Florida Georgia Maryland Missouri North Carolina Pennsylvania South Carolina Tennessee Utah Vermont Virginia Washington Undistributed 2	6, 674 (1) 503, 732 (1) (1) 45, 916 129, 120 (1) (1) (1) (1) (2) (1) (1) (2)	\$62, 959 (1) 3, 546, 059 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	7, 057 (1) 412, 632 (1) (1) 44, 312 98, 924 (1) (1) (1) (2) (32, 129	\$50, 771 (1) 3, 314, 918 (1) 146, 289 865, 177 (1) (1) (1) (2) (1) 363, 725	(1) 19, 481 (1) 512, 214 (1) 512, 214 (1) 11, 308 49, 657 158, 629 (1) (1) (1) (1) (2) 29, 515	(1) \$111,719 (1) (1) 4,135,727 (1) 164,562 1,297,813 (1) (1) (1) (1) (2) (1) (2) (3) (2) (3) (4) (5) (1) (1) (1) (1) (2) (3) (4) (5) (6) (7) (8) (8) (8) (9) (1) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
	732, 282	5, 349, 636	595, 054	4, 740, 880	780, 804	6, 200, 606

¹ Included under "Undistributed."
² Includes States indicated by "(1)."

Prices.—Prices were nominally unchanged in 1939, but during the first 8 months there was some softening with the result that virtually all producers reported a lower average realization per ton from their sales than in 1938. In anticipation of an increase of 50 cents a ton on January 1, 1940, the prices of most varieties of clay were firmer during the last quarter, but the average price of all domestic sales throughout 1939 dropped to \$7.94 a ton compared with \$7.97 in 1938 and \$7.31 in 1937. Corresponding figures for South Carolina, where most of the output is paper-filler and rubber clays, were \$8.18, \$8.75, and \$8.16, respectively. These figures do not cover as wide a variety of products, but they fail to measure the actual decline in unit values because the South Carolina clays are much better prepared now than they were even in 1937. In Georgia the average sales realization was \$8.07 in 1939 compared with \$8.03 in 1938, but this average is a composite of clays ranging from the cheapest refractory kaolins worth less than \$2 a ton to the highest-grade paper-coating clays worth \$30 or more a ton. Paper-filler clay, produced principally in Georgia and South Carolina, ranged in price from less than \$6 to \$8 a ton f. o. b. mines, whereas coating clays ranged as high as \$20 and even \$30 or more a ton. The average values as reported by producers were approximately \$7 and \$12 for filler and coating clays, respectively, in 1939 compared with \$8 and \$12 in 1938 and \$7 and \$11 in 1937; however, the comparability of these figures for different years also may be questioned because of the steady improvement in average quality. Sales of rubber clays during 1939 ranged from about \$6 to \$10 a ton f. o. b. Georgia or South Carolina shipping points and averaged \$9.65 compared with \$9.75 in 1938 and \$8.80 in 1937. Carolina potting clays were sold at \$13 to \$15 a ton, Florida clays were slightly cheaper, and Delaware clays somewhat more expensive, f. o. b. mines. Shipments of Georgia and South Carolina clays for ceramic use increased in 1939, but they brought only \$5.50 to \$8.50 a ton, about the same price range as paper-filler or rubber clays. These clays are not white burning, as they contain not only iron and a little titanium but also, as recently discovered, up to 0.08 percent vanadium oxide.

	China clay, paper clay, etc.			Refractory uses			Total kaolin		
Year		Value		Value			Value		
Short tons		Total	Aver- age per ton	Short tons	Total	Aver- age per ton	Short tons	Total	Aver- age per ton
1935	298, 275 367, 463 423, 065 367, 612 450, 121	\$2, 251, 785 2, 764, 065 3, 332, 851 3, 199, 169 3, 956, 344	\$7. 55 7. 52 7. 88 8. 70 8. 79	41, 383 51, 932 80, 667 45, 020 62, 093	\$95, 192 131, 813 213, 208 115, 749 179, 383	\$2. 30 2. 54 2. 64 2. 57 2. 89	339, 658 419, 395 503, 732 412, 632 512, 214	\$2, 346, 977 2, 895, 878 3, 546, 059 3, 314, 918 4, 135, 727	\$6. 91 6. 90 7. 04 8. 03 8. 07

Georgia kaolin sold by producers, 1935-39, by uses

BALL CLAY

Production of domestic ball clay exceeded by a wide margin the 1937 all-time record, advancing to 128,601 short tons valued at \$935,721 in 1939 compared with 94,968 tons worth \$739,691 in 1938. Imports classified as "common blue and ball clay" totaled 28.540 short tons valued at \$233,094 compared with 20,199 tons valued at \$199,523 in 1938, and much larger amounts in earlier years. Virtually all of these imports were ball clay, and all but 1,208 tons (from Germany) were English clay. An increasing number of American potters are substituting Kentucky and Tennessee clays for imported ball clays that they formerly used. The domestic clays are of good quality, carefully prepared, uniform, and much cheaper than English clays.

Ball clay sold by producers in the U	$United\ States.$	1937–39.	bu States
--------------------------------------	-------------------	----------	-----------

Q4-4-	1937		19	38	1939		
State	Short tons	Value	Short tons	Value	Short tons	Value	
California Illinois Kentucky Maryland Missouri New Jersey Tennessee Undistributed 2	(1) 58, 118 (1) (1) 9, 061 49, 196 5, 095	(1) \$441, 316 (1) (1) 52, 142 362, 179 35, 068 890, 705	(1) 45, 494 (1) (1) (1) 3, 496 40, 207 5, 771 94, 968	(1) \$362, 094 (1) (1) 23, 202 295, 587 58, 808 739, 691	66, 461 (1) (1) 3, 245 47, 971 10, 924	\$507, 938 (1) (1) 21, 651 365, 810 40, 322 935, 721	

¹ Included under "Undistributed."
² Includes States indicated by "(1)."

Seventy-four percent of the shipments of domestic ball clay in 1939 was used in white pottery or cream-color ware, 12 percent in high-grade tile, and the remaining 14 percent in a variety of products, including architectural terra cotta, linoleum, refractory brick, enamels, and miscellaneous articles.

FIRE CLAY

The output of fire clay from American mines, which lagged slightly behind recovery in iron and steel manufacture, the main consuming industry, rose to 2,222,295 short tons valued at \$5,801,993 in 1939 compared with 1,458,941 tons valued at \$4,060,160 in 1938. As shown in figure 1, the sales of domestic clay for refractories, chiefly fire clay, after following closely the trends in the iron and steel industry for many years, began to run ahead about 1934 and rose much higher in 1937 but fell back in step in 1938 and 1939. Variable factors are the longer life of modern clay refractories, the substitution of nonclay refractories, and variations in the relative requirements of consumers other than steel makers.

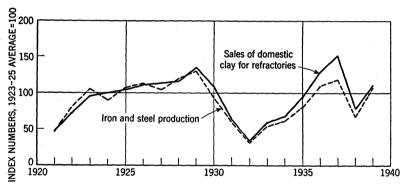


FIGURE 1.—Sales of domestic clay for refractories compared with iron and steel production (Federal Reserve Board Index), 1921-39.

Imports.—Imports of Gross-Almerode glass-pot clay in 1939 did not recover significantly from the sharp decline in 1938, aggregating only 332 short tons valued at \$4,684 compared with 205 tons and \$2,470 in 1938, 1,737 tons and \$21,645 in 1937, and 2,145 tons and \$26,852 Imports of miscellaneous clays decreased further, totaling only 5,330 short tons valued at \$69,056 in 1939 compared with 5,683 tons and \$83,384 in 1938, 15,558 tons and \$203,383 in 1937, and 18,034 tons and \$281,592 in 1936. This group includes imports of specialized products such as pipe clays, pencil clays, emery-wheel clays, and enamel clay (other than kaolin and ball clay), but the largest item probably is fire clay, which includes (among other items) Klingenberg clay, a highly plastic clay produced since 1742 in Bavaria and shipped by barge down the Main River and thence on the Rhine to tidewater. In midyear of 1939 this clay cost \$38.50 a metric ton for No. 1 grade delivered at United States Atlantic ports, exclusive of the 25-percent extra duty recently applied to all imports from Germany into the United States. This grade is considered essential by American graphite-crucible makers. A second grade, which cost \$25 a ton on

the same basis, has been used principally for graphite-clay ladle-stopper heads. During the World War, English (Dorset) bond clay and various domestic clays were substituted for Klingenberg clay, but virtually all crucible makers returned to the German clay as soon as it became available again, even though the price was raised much higher. The main advantage of this clay for making crucibles, especially brass crucibles, seems to be that it becomes dense at a comparatively low temperature, thus sealing the carbon grains and protecting them from oxidation. Consumption has dropped with the decline in production of graphite crucibles and apparently averages only about 1.000 tons a year.

Fire clay, including stoneware clay, sold by producers in the United States, 1937-39, by States

	19	1937		38	1939		
State	Short tons	Value	Short tons	Value	Short tons	Value	
Alabama California Colorado Illinois Indiana Kentucky Maryland Missouri New Jersey New Mexico Ohio Pennsylvania Tennessee Texas Utah Washington West Virginia Other States 3	206, 674 59, 828 156, 674 31, 345 282, 003 23, 634 519, 369 48, 890 446, 999 446, 999	\$94, 054 433, 405 93, 587 306, 897 55, 047 1, 525, 519 462, 529 8, 523 988, 963 2, 038, 524 73, 166 82, 583 19, 256 46, 161 94, 413 49, 200	22, 871 146, 296 48, 702 89, 743 13, 852 102, 836 13, 189 258, 656 69, 944 3, 927 254, 719 338, 864 12, 149 5, 113 12, 520 27, 082 3, 658 6, 820	\$38, 885 338, 072 65, 678 203, 582 30, 172 304, 466 40, 977 904, 522 358, 876 6, 923 566, 439 927, 370 51, 448 33, 414 26, 103 51, 469 68, 687 43, 077	27, 715 162, 244 52, 310 124, 778 40, 393 181, 286 24, 091 384, 567 92, 884 (4) 445, 610 572, 191 13, 836 5, 837 20, 441 20, 356 46, 758 6, 998	\$51, 133 389, 448 72, 644 267, 254 67, 669 495, 818 83, 541 1, 171, 642 499, 720 (1) 898, 422 1, 478, 722 49, 528 5, 801, 998	

¹ Includes diaspore and burley clay as follows—1937: 49,769 tons, valued at \$245,395; 1938: 33,408 tons, \$151,623; 1939: 40,495 tons, \$174,144., ² Included under "Other States." and Arkansas, Connecticut, Idaho, Iowa, Massachusetts. Minnesota, Montana, Nebraska, New York, North Carolina, North Dakota, Oregon, South Carolina, and Virginia.

BENTONITE

Further expansion in consumption of bentonite for miscellaneous uses and recovery in demand for foundry uses boosted sales to new records in 1939. As compiled from producers' reports to the Bureau of Mines, the output of American mines in 1939 rose to 219,720 short tons valued at \$1,702,393 compared with 192,183 tons and \$1,373,182 in 1938 and the previous record of 194,768 tons and \$1,500,758 in 1937. Of the 1939 sales more than 43 percent was used for filtering and decolorizing oils, chiefly after activation with acid; another 16 percent was used by the petroleum and natural-gas industries in rotary-oil-well drilling muds; and almost 25 percent was employed in foundries and steel works, chiefly as a conditioning or revivifying agent for molding Increasing quantities of bentonite are used for sealing dams and reservoirs, in soap making, and for various other purposes.

The largest increase in production was in the Black Hills area of Wyoming and South Dakota. The output in Mississippi also has increased, but outside of Mississippi, which furnishes most of the sub-

bentonite used in the manufacture of acid-treated bleaching clays (activated earths), it would seem that type 2 bentonite has tended to give way to the swelling type of bentonite. On the other hand the American Colloid Co., which has been a leading producer in Wyoming, has begun to produce Mississippi bentonite. It is claimed that this bentonite may supplement the Wyoming type; and for certain foundry uses, particularly small iron castings and cores, may be even better.

Recently a 40-inch layer of high-grade bentonite has been traced a considerable distance in Clarke County, Ala. The deposit is the first one of size and quality suitable for commercial exploitation that has been found in the State.7 Quality Earths, Inc., operating a mill near Thomasville, formerly treated local fuller's earth but is now using this bentonite and producing therefrom a satisfactory bonding clay.

The following notes on the Wyoming industry are digested from a report by Heathman: 8

Bentonite seams occur in all the Upper Cretaceous rocks in Wyoming, but the best grade and the largest quantities are in the lower formations of the series. As a rule the seams thicken and thin from place to place so that one that may be prominent in one area may not be found in another; nevertheless, there is one thick seam at the top of the Mowry formation that is present throughout more than half of the area of the State. The Black Hills and Bighorn Basin areas are likely to continue to be the principal producing areas in Wyoming because of low mining costs and proximity to railroads. An example of a bentonite area presenting favorable conditions is found around Newcastle, Wyo., where the bentonite is of the best grade, the seam averages 30 inches in thickness, the dips are less than 5°, there are large tonnages of bentonite with less than 15 feet of overburden, and transportation costs are low because of good roads and short hauls to the mills on the railroad. In the Newcastle area the overburden (average not over 7 feet) is cleared away by bulldozers and the bentonite loaded into trucks by power shovels. In some cases the bentonite is hauled 25 miles to mills. In the Greybull area there is no overburden, and the material is shoveled into trucks or sacks by hand. This bentonite is hauled approximately 18 miles. As the crude clay freezes in winter, all mining is done in the summer, and large stock piles are accumulated so the mills can run all winter.

According to findings of the Wage and Hour Division, United States Department of Labor, most of the production of bentonite in the Wyoming-Dakota area is furnished by the American Colloid Co., the Wyodak Chemical Co., and the Silica Products Works of the National Lead Co. The first two companies engage in both excavating and milling, but the third buys crude bentonite and engages in milling only. An application for seasonal exemption from the maximum-hours provisions of the Fair Labor Standards Act of 1938 was denied.

The Wyoming type of bentonite is still used principally in manufacturing synthetic molding sand and rebonding old sand. development, however, is the use of southern (nonswelling) bentonites for rebonding molding sands, for which purpose, as previously stated, they may be even better than the Wyoming type. Another new use for bentonite is as a coagulant in the white water at paper mills. bentonite clarifies the water so that it can be used again, and some of it adheres to the fiber and improves the paper. Bentonite is used

⁶ Bechtner, Paul, Manufacturers Record Facts Result in Factory: Manuf. Rec., vol. 108, No. 8, August 1939, p. 54.

⁷ Bowles, E., Bentonite in Southern Alabama: Jour. Alabama Acad. Sci. vol. 11, June 1939, p. 39.

⁸ Heathman, J. H., Bentonite in Wyoming: Wyoming Geol. Survey Bull. 28, June 1939, 20 pp.

for oil-well drilling mud; for bleaching petroleum products; in the manufacture of cement and ceramic products, soaps, refractory materials, paper, cosmetics, water softeners, sealing agents, paints, medicinal emulsions, and roofing; for deinking newsprint and clarifying drycleaner fluids; as the core of earth-fill dams; and as lining for irrigation ditches. Grit-free bentonite (all under 5 microns and 90 percent minus 0.2 micron) may be included in the new National Formulary owing to its important uses in pharmaceuticals. By using bentonite to seal the expansion joints serious leakage was averted in a 10,000,000-gallon municipal water reservoir at Corpus Christi, Tex.

Further work at the Massachusetts Institute of Technology on

Further work at the Massachusetts Institute of Technology on Alsifilm, the proposed substitute for mica, has given much fundamental information as to the general nature of colloids and the action of electrolytes and elevated temperatures on bentonite films. A new and simple device for measuring the yield point of clay suspensions used for oil-well drilling muds and other purposes has been developed by A. George Stern, of the Eastern Experiment Station, Bureau of Mines, College Park, Md. Among the more important functions of an oil-well drilling mud, many of which depend on the "gel" characteristics that can now be measured with the aid of this novel instrument, are: (1) To plaster the sides of the hole to prevent caving of the walls, (2) to prevent loss of fluid by seepage, (3) to carry out sand and cuttings, and (4) to form a gel that will prevent the cuttings from falling down and packing at the bottom of the hole even if circulation stops owing to a shut-down or other unavoidable cause.

Imports and exports.—Imports of bentonite, which have been insignificant since 1930, increased slightly to 62 short tons valued at \$895 in 1939 compared with 8 tons valued at \$228 in 1938. Exports, as reported by producers to the Bureau of Mines, exceeded 20,000 tons, excluding shipments by dealers and the large quantities of acid-treated bentonites shipped to oil refineries throughout the world.

Prices.—Prices have remained virtually unchanged for several years. Processed bentonite sells for \$10.50 a short ton f. o. b. Wyoming mills. In dried, coarsely crushed form shipped in carloads in bulk, quotations run \$7.50 a ton or less, whereas the clay prepared for oil-well drilling brings higher prices than bentonite milled and sold for other purposes. As reported to the Bureau of Mines, crude sales ranged from \$4 to \$8 a ton, and the average returns on all sales ranged from less than \$7 in South Dakota to nearly \$12 a ton in California.

The most widely used bentonite is 200-mesh powder, which currently is worth \$10.25 per ton f. o. b. Black Hills shipping point in 100-pound bags, carload lots. However, Wyoming-type bentonite is prepared also in pellet form (30- to 40-mesh), and a dried and finely crushed product (mostly 4- to 20-mesh) is sold in carload lots at \$7 a ton in bulk and \$8.75 in bags. Bentonite producers, in common with shippers in other industries, had some difficulty in getting bags, as the cost of burlap and kraft paper increased 50 percent or more.

⁹ Hauser, E. A., and Le Beau, D. S., Studies in Gelatin and Film Formation: Jour. Phys. Chem., vol. 43, No. 8, November 1939, pp. 1037-1048 (also vol. 42, No. 7, October 1938, pp. 961-969). □ Stern, A. G., The Eykometer: Bureau of Mines Rept. of Investigations 3495, 1940, 20 pp.

Bentonite sold by producers in the United States, 1930-39 1

Year	Short tons	Value	Year	Short tons	Values
1930	2 82, 593	2 \$827, 912	1935	157, 445	\$1,047,600
	2 52, 293	2 429, 842	1936	177, 807	1,367,420
	2 57, 743	2 489, 803	1937	194, 768	1,500,758
	2 84, 993	2 719, 345	1938	192, 183	1,373,182
	146, 187	977, 208	1939	219, 720	1,702,393

1 Included under "Miscellaneous clay" before 1930.

2 Revised figures.

Bentonite sold by producers in the United States, 1936-39, by States

	1936		19	937	1938		1939	
State	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
Alabama_Arizona_Calitornia Mississippi New Mexico_Oklahoma_South Dakota_Texas_Utah Wyoming_Undistributed 2	(1) 12, 294 (1) (1) (1) 22, 647 (1) 55, 090 87, 776 177, 807	(1) \$144,863 (1) (1) (1) 154,216 (1) 520,852 547,489 1,367,420	(1) 15, 561 (1) (1) (1) (1) (1) 19, 910 (1) 67, 958 91, 339 194, 768	\$204, 672 (1) (1) (1) (1) (1) 144, 661 (1) 659, 111 492, 314 1, 500, 758	(1) 15, 703 (1) (1) (20, 565 21, 744 (1) 58, 911 75, 260 192, 183	(1) \$166, 998 (1) (1) (1) 155, 821 207, 084 (1) 530, 834 312, 445 1, 373, 182	(1) (1) 11, 699 (1) (1) (1) (1) 31, 528 18, 132 (1) 76, 133 82, 228 219, 720	(1) (1) \$143, 314 (1) (1) (2) (1) 217, 622 148, 139 (1) 777, 722 415, 596 1,702, 393

¹ Included under "Undistributed."

FULLER'S EARTH

After declining almost steadily for 9 years, the production of fuller's earth or natural bleaching clays in the United States dropped further in 1939 to 167,070 short tons valued at \$1,691,855 compared with 170,852 tons worth \$1,707,869 in 1938 and a peak of 335,644 tons worth \$4,326,705 in 1930. Until 1930 the output had increased almost in direct proportion to the rapid expansion in petroleum refining, occasional minor set-backs never lasting more than a year; but in 1930, the trends began to diverge and in 1939, when sales of fuller's earth again dropped, the Federal Reserve Board index of petroleum refining rose to 214 compared with 200 in 1938 and only 161 in 1930. Expressed as percentages of the 1930 figures, the domestic output of fuller's earth apparently had fallen 50 percent whereas petroleum refining, once the leading barometer of demand for bleaching clay, had risen 33 percent.

In recent years imports of fuller's earth have amounted to only 1 or 2 percent of domestic production. In 1939 they totaled 1,818 short tons valued at \$22,215, a small increase over the 1938 total of 1,506 tons valued at \$18,951 but less than imports in any other year

since statistics were first available in 1897.

Exports likewise increased. Shipments to foreign countries are not reported separately in the Department of Commerce statistics, but reports to the Bureau of Mines by producers show exports of 11,090 short tons valued at \$90,117 in 1939 compared with 10,046 tons valued at \$81,175 in 1938 and 8,104 tons valued at \$70,985 in 1937.

The decline in the use of fuller's earth is due partly to new methods of oil refining and partly to the substitution of other bleaching and

² Includes States indicated by "(1)."

clarifying agents. Activated earths, made by acid treatment of suitable bentonites, have made deep inroads into the market for natural bleaching clays; although more expensive they are much more efficient. Bauxite came into use in 1937 and has the advantage that it can be reused indefinitely, whereas fuller's earth deteriorates after too many burnings. In 1939 another competitor appeared in the form of Magnesol, a patented product having the composition of a magnesium silicate. The original company making this synthetic product has been acquired by the Westvaco Chlorine Products Corporation (Chrysler Building, New York, N. Y.) and the process is patented (U. S. Patent 2,183,590, Ernest Wayne Rembert, December 19, 1939). Magnesol, in addition to being used in oil refining, is being marketed as a continuous clarification and purification agent for all solvents used by dry-cleaning establishments.

The average value per ton of the fuller's earth produced in the United States in 1939 (\$10.13) was virtually the same as in 1938 (\$10.00) and 1937 (\$10.15). Prices vary according to particle size. Fine material, such as that used in contact-refining processes, is much cheaper than the carefully sized particles used in percolation processes. Recently, however, at least two companies have been converting part of their fines into a granular product that is claimed to be superior

to the grains produced by ordinary crushing and screening.

Technologic developments in the fuller's earth industry have been summarized in a previous review as follows: 11

According to Schroter,12 bleaching clays may be divided into (1) naturally adsorptive, (2) activable, and (3) natural semiadsorptive clays. The first class comprises natural bleaching clays, which hitherto have been classed as "fuller's earth," a term rapidly losing favor because it is not precise. The second group consists mainly of bentonites whose latent adsorptive capacity is increased or improved by drastic chemical treatment (usually leaching with mineral acids). The third class comprises common bauxite. Natural and activable bleaching clays consist mainly of montmorillonite. This mineral may be replaced by saparite which the health of the control of the

onite or beidellite, but the kaolinite group of minerals is usually absent.

Owing to the wider use of colored fuel the use of bleaching clays to produce water-white gasoline has declined, but the big outlet is still in the petroleum-refining industry for percolation or contact processes. Naturally adsorptive clays have been used widely in percolation treatment, and percolation pellets have been made recently from fine fuller's earth by a simple extrusion method that forces the moist clay through perforated dies in spaghettilike strands, which are cut into short lengths and dried. The other principal method of treating petroleum is contact filtration, wherein finely ground clay is agitated with the oil and later removed in a filter press. This method is used not only for lubricating oils but for all manner of edible and nonedible oils, fats, hydrogenated shortening compounds, some oleomargarine, and even inorganic substances. Both methods are being used outside of the oil or fats industry—especially for decolorizing and recovering chemical-plant solvents and dry cleansers' liquids.

Finely ground activated adsorbent clay recently has been used in a patented method of combined fractional distillation and contact filtration, the oil-and-clay slurry being subjected to normal fractionation and the various fractions that pass off through the tower being decolorized and purified on the way. Perhaps the latest and most spectacular application of adsorbent clays is in the catalytic refining of petroleum oils, whereby the heavier hydrocarbons are broken up so as to increase the gasoline yield. With the addition of activated adsorptive clays cracking takes place at slightly lower temperatures and at much lower pressure, and about 50 percent of the heavy residues that would remain in thermal cracking may be converted into gasoline of a natural octane rating equivalent to that of the

best premium motor fuels.

¹¹ Tyler, Paul M., and Bowles, Oliver, Nonmetallic Mineral Industries in 1939: Bureau of Mines, Inf. Circ. 7106, 1940, pp. 10-11.
12 Schroter, G. A., Bleaching Clays Find Increasing Use: Eng. and Min. Jour., vol. 140, No. 11, November 1939, pp. 35-38, 40.

Although most activable clays are bentonites, some definitely are not because they have not been formed by devitrification of ash or tuff. Most activable clays are of the nonswelling type and do not form stable clay-water gels; however, they are soapy and seldom contain under 25 percent free moisture. The structure of the best types reminds one of yeast cake, and the color is commonly white, yellow, or some light pastel tint.¹³

Another comprehensive review of bleaching-clay technology was published by Schroter.¹⁴

Fuller's earth sold by producers in the United States, 1937-39, by States

State	1937		19	38	1939		
State	Short tons	Value	Short tons	Value	Short tons	Value	
Florida and Georgia	131, 100 4, 485 49, 500 41, 080	\$1, 441, 588 51, 718 473, 408 329, 380	91, 031 5, 984 37, 998 35, 839	\$987, 391 57, 499 358, 980 303, 999	91, 947 (¹) 38, 338 36, 785	\$1, 035, 066 (1) 359, 058 297, 731	
N 1	226, 165	2, 296, 094	170, 852	1, 707, 869	167, 070	1, 691, 855	

¹ Included under "Other States."

MISCELLANEOUS CLAY

Although more than half the output of "miscellaneous clays," as reported by the Bureau of Mines in some years, is used in the manufacture of heavy-clay products, the clay utilized for making common brick, sewer pipe, and other clay products ordinarily is not included in statistics either of the Bureau of Mines or the Bureau of the Census. However, the census of mines and quarries for 1939 is expanding its canvass to include this material. Such clay often comprises 90 percent of the clay dug, but only when it is sold to another company or shipped from place to place has it seemed feasible to report the ton-Rotary-drilling mud is another important item in this miscellaneous category, for several fine-grained clays are used alone or admixed with bentonite for this purpose. Additional tonnages of unclassified clays are employed in cement manufacture, in foundries and steel works, and for various minor uses. Most of these clays or shales are not worth more than \$1 a ton, but the average value of the tonnage so classified in recent years has been much higher, occasionally exceeding \$2 a ton. The items that increase the average value are specially prepared clays or shales used for mortar mix and drilling mud that may be worth \$8 to \$10 a ton. This classification also includes slip clay and a few other relatively high-priced specialities.

Miscellaneous clay, including slip clay and shale, sold by producers in the United States, 1930-39

Year	Short tons	Value	Year	Short tons	Value
1930	1 719, 118	1 \$1, 556, 128	1935	207, 718	\$268, 657
	1 410, 268	1 462, 639	1936	392, 783	686, 819
	1 165, 777	1 248, 266	1937	403, 522	786, 027
	1 117, 515	1 153, 243	1938	389, 715	861, 659
	206, 277	264, 296	1939	409, 274	714, 205

¹ Revised figures.

² 1937–38: California, Colorado, Illinois, Mississippi, and Tennessee; 1939: California, Colorado, Illinois, Nevada, and Tennessee.

¹³ Schroter, G. A., and Campbell, Ian, Geological Features of Some Deposits of Bleaching Clays: Am. Inst. Min. and Met. Eng. Tech. Pub. 1139, Metals Technol., January 1940, 31 pp.
14 Schroter, George, Present-Day Technology of Adsorbent Clays: Bull. Am. Ceram. Soc., vol. 18, No. 7, July, 1939, p. 240.

Miscellaneous clay, including slip clay 1 and shale, sold by producers in the United States, 1936-39, by States

	1936		1937		1938		1939	
State	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
California	149, 152 53, 381 12, 980 (2) 43, 211 26, 831 107, 228 392, 783	\$239, 277 47, 643 10, 593 (2) (2) 109, 228 52, 920 227, 158 686, 819	153, 315 65, 190 10, 024 (2) (2) 5, 259 50, 208 21, 071 98, 455 403, 522	\$217, 938 58, 916 6, 405 (2) (2) 12, 380 53, 481 45, 118 391, 789 786, 027	135, 923 54, 115 3, 089 6, 055 16, 009 47, 226 39, 196 11, 901 76, 201	\$374, 166 49, 249 1, 692 36, 725 7, 532 28, 751 23, 136 10, 638 329, 770 861, 659	117, 286 76, 081 17, 402 4, 655 19, 567 23, 542 45, 292 8, 272 97, 177 409, 274	\$250, 328 78, 159 12, 024 40, 081 8, 910 14, 351 31, 728 5, 744 272, 880 714, 205

¹ Includes slip clay as follows: 3,617 short tons (valued at \$23,058) in 1936 from New York and Pennsylvania; 6,087 tons (\$39,889) in 1937, 2,227 tons (\$13,955) in 1938, and 2,564 tons (\$17,654) in 1939 from Michigan and New York.

Included under "Other States."
 Includes States indicated by "(2)," and Alabama, Arkansas, Connecticut, Georgia, Illinois, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Montana, Nevada, New Jersey, New Mexico, New York, North Dakota, Oklahoma, Tennessee, Texas, and Utah.

HEAVY-CLAY PRODUCTS

Monthly statistics of shipments and employment at brick, tile, and terra-cotta works in the United States indicate an improvement of 15 to 20 percent in production and sales of heavy-clay products in 1939 compared with 1938 but perhaps not enough to equal the 1937 figures.

The Bureau of the Census reports that in 1938 the value of all clay products made in the United States, exclusive of pottery and nonclay refractories, was \$117,176,038 compared with \$159,008,896 in 1937 and an all-time record of \$317,930,245 in 1926. The value of common brick alone declined to \$28,373,292 in 1938 from \$34,009,775 in 1937, and the quantity decreased to 2,730 million from 3,253.

A brief survey of the structural-clay-products industry was published in 1939 by the Department of Commerce, ¹⁵ and a comprehensive review of the entire burned-clay-products field with special emphasis on marketing was issued by the Bureau of Business Research Staff, Ohio State University. ¹⁶

Clay-products manufacturers recently have become increasingly interested in pH control as a means of improving the workability, strength, and other properties of their raw materials. This interest is due partly to sales pressure from concerns having for sale materials reputedly superior to the usual sodium compounds employed for pH control and partly to an increase in the use of sodium carbonate and sodium chloride for improving the properties of clays that usually require reasonably close pH control to give satisfactory results.

On the other hand, deairing appears to be on the wane. Some clayproducts plants have discontinued deairing entirely, and others are operating with less vacuum than they originally used.

Palmer, J. J. W., Structural Clay Products: Bureau of Foreign and Domestic Commerce, Trade Inf. Bull. 842, 1939, 19 pp.
 Chute, A. H., Marketing Burned-clay Products: Ohio State Univ., June 1939, 374 pp.

Figure 2 shows graphically the value of pottery and other clay products produced in the United States, 1920–39, compared with contract awards for construction and indices of industrial production. Figure 3 shows the domestic output of specified heavy-clay products, 1920–38.

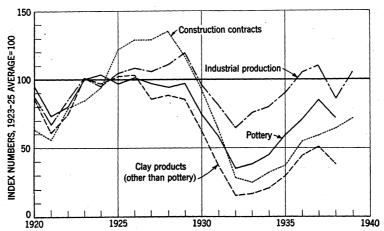


FIGURE 2.—Values of domestic production of pottery and clay products other than pottery compared with construction contract awards and indices of general industrial production, 1920–39. Indexes of industrial production and construction contracts are from the Federal Reserve Board; construction calculated from data of the F. W. Dodge Corporation.

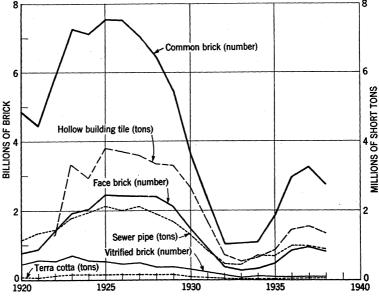


FIGURE 3.—Production of specified heavy-clay products in the United States, 1920-38. Data are from Bureau of the Census.

Light-weight aggregates, weighing only 6% pounds to a cubic foot, have been produced in the laboratory from clay, and the manufacture of processed clay products is becoming increasingly important commercially.

On November 15, 1939, application to the Wage and Hour Division of the United States Department of Labor for exemption from the maximum-hour provisions of the Fair Labor Standards Act was granted to brick manufacturers of Maine, New Hampshire, and Vermont because open-air drying yards and scove kilns could not be operated in freezing weather, but it was found that important plants in southern New England manufactured brick throughout the year.

POTTERY 17

During the last decade the value of the pottery produced in the United States has fluctuated between 40 and 112 million dollars annu-In total value the most important classes are earthenware (socalled semivitreous china type), table and kitchen articles, vitreous china sanitary ware, electrical porcelain, and vitreous china tableware and kitchenware for hotel and restaurant use.

In the 10-year period 1929–38 imports, which are mainly household table and kitchen articles, were about 12 percent of domestic production of all products and about 20 percent of domestic production of tableware and kitchenware only. These percentages are based upon foreign valuations of imports; if based upon values of the imported goods in the United States, imports of table and kitchen articles would correspond to about 40 percent of the domestic output of similar classes.

During the same 10-year period exports, which comprise preponderantly electrical porcelain and sanitary articles, were about 3 percent of production.

Value of production, imports, and exports of pottery in the United States, 1929-391

Year	Production	Imports 2 (for- eign value)	Exports
1929	\$112, 019, 000	\$18, 538, 000	\$5, 036, 000
1931	66, 582, 000	7, 853, 000	2, 150, 000
1933	44, 024, 000	5, 449, 000	955, 000
1937	97, 365, 000	9, 911, 000	2, 704, 000
1938	82, 631, 000	6, 511, 000	2, 488, 000
1939	(3)	6, 736, 000	2, 668, 000

¹ Compiled by U. S. Tariff Commission from reports of the Bureau of the Census and the Bureau of Foreign and Domestic Commerce.

² Class or kind provided for in pars. 210, 211, and 212 of Tariff Act of 1930.

³ Data not yet available.

CONSUMPTION AND USES

The accompanying tables, which give sales of specified domestic clays by kinds and uses in 1939, continue a series begun in 1921. Figure 4 shows graphically data for total clay used by major uses or industrial groups. These figures, however, do not include imported clays, and, as domestic clays have displaced imported clays to an increasing extent, the data for certain items may exaggerate the apparent gain in consumption. This is especially true for china clay used in hotel china, sanitary ware, electrical porcelain, and other whiteware and in coating paper—the industries in which English

¹⁷ Abstracted from pamphlet of U. S. Tariff Commission, Pottery and Reciprocal Trade Agreement April 1940, 15 pp.

clays have been chiefly used. Minor displacements have taken place in other items, such as clays used for refractories and plotted against iron and steel production in figure 1, but these are probably too small to affect general conclusions. Exports likewise are not large enough to affect most items. Exports of fire clay may represent as much as 10 percent of the clay for refractory uses in some years, but a correction of the figures to show domestic consumption alone would have no perceptible effect on apparent trends. Rubber clays also are exported, but domestic demand is so much larger that variations in

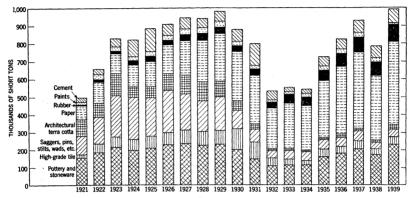


FIGURE 4.—Sales of domestic clay for specified uses, 1921-39.

the percentages of exports would have little effect upon the com-

parability of figures for different years.

Leading items in the list of miscellaneous uses during the past few years have been oil-well drilling muds, which reached a peak of 171,706 tons in 1937, and filtering clays (essentially type 2 bentonites for acid treatment) which reached a peak in 1939 after fluctuating between 82,000 and 91,000 tons annually during the preceding 5 years.

Sales of fuller's earth are shown in a separate table because the quantities used for uses other than refining oils and fats are relatively

small.

Clay (excluding fuller's earth) sold by producers in the United States in 1939, by kinds and uses, in short tons

Use	Kaolin	Ball clay	Fire clay and stoneware clay	Benton- ite	Miscel- laneous clay includ- ing slip clay	Total
Pottery and stoneware: Whiteware, etc Stoneware, including chemical stoneware. Art pottery Flowerpots Slip for glazing	59, 428	95, 522 1, 530 1, 322	1, 682 41, 603 881 4, 076		64 5, 618 829	156, 632 43, 133 2, 686 9, 694 1, 204
Tile, high-grade	59, 847 17, 932	98, 749 15, 261	48, 242 8, 643		6, 511 777	213, 349 42, 613
Kiln furniture, etc.: Saggers, pins, stilts Wads	1,944	98	36, 033 6, 260			38, 075 6, 260
	1,944	98	42, 293			44, 335

Clay (excluding fuller's earth) sold by producers in the United States in 1939, by kinds and uses, in short tons—Continued

Use	Kaolin	Ball clay	Fire clay and stoneware clay	Benton- ite	Miscel- laneous clay includ- ing slip clay	Total
Architectural terra cotta		3, 985	21, 517			25, 502
Paper: FillerCoating	346, 037 116, 980	1,000	653			347, 690 116, 980
Rubber Linoleum and oilcloth	463, 017 90, 287 6, 284	1,000 3,428	653 3, 770 9, 178			464, 670 94, 057 18, 890
Paints: Filler or extender Calcimine	6, 018 3, 642				110	6, 128 5, 148
Cement manufacture	9,660 41,913		1, 506 3, 552	811	110 32, 590	11, 276 78, 866
Refractories: Firebrick and block Bauxite, high-alumina brick Fire-clay mortar, including clay processed for laying fire brick	53, 015 50	800	1, 148, 271 12, 249			1, 202, 086 12, 299
Clay crucibles	1,403	200 167	193, 550 1, 075 698 586			194, 953 1, 275 865 1, 097
Zinc retorts and condensers Foundries and steel works	2, 397		12, 696 451, 654	53, 872	35, 267	12, 696 543, 190
	57, 376	1, 167	1, 820, 779	53, 872	35, 267	1, 968, 461
Miscellaneous: Rotary-drilling mud Filtering and decolorizing oils (activated			946	35, 880	94, 046	130, 872
earths) Artificial abrasives Asbestos products	1, 599	42	832 254	95, 247	(¹) 1, 735	1 95, 247 2, 609 1, 853
Chemicals Enameling Plaster and plaster products	3, 459 3, 846	3, 306	18, 446 7, 583 505			21, 905 10, 889 4, 351
Heavy-clay productsOther uses	23, 195	1, 565	221, 432 12, 164	33, 910	208, 977 1 29, 261	430, 854 1 100, 095
	32, 544	4, 913	262, 162	165, 037	334, 019	798, 675
Grand total: 1939	780, 804 595, 054	128, 601 94, 968	2, 222, 295 1, 458, 941	219, 720 192, 183	409, 274 389, 715	3, 760, 694 2, 730, 861

¹ Miscellaneous clay used for filtering and decolorizing oils included under "Other uses."

Fuller's earth sold or used by producers in the United States, 1935-39, by uses

	Bleaching, clarifying, decolorizing, or filtering—				Other uses		Total	
Year Mineral oi		eral oils	oils Vegetable oils and animal fats		Short		Short	
	Short tons	Value	Short tons	Value	tons Value		tons	Value
1935	202, 525 202, 809 200, 705 150, 062 148, 032	\$1, 977, 056 1, 977, 825 2, 046, 331 1, 542, 459 1, 544, 824	21, 496 22, 489 20, 404 12, 214 10, 534	\$223, 458 238, 354 211, 982 106, 187 88, 704	3, 724 5, 516 5, 056 8, 576 8, 504	\$29, 715 48, 799 37, 781 59, 223 58, 327	227, 745 230, 814 226, 165 170, 852 167, 070	\$2, 230, 229 2, 264, 978 2, 296, 094 1, 707, 869 1, 691, 855

ABRASIVE MATERIALS

By ROBERT W. METCALF

SUMMARY OUTLINE

	Page	1	Page
General conditions	1271	Natural silicate abrasives	
Salient statistics	1271	Pumice and pumicite	1280
Natural silica abrasives	1273	Garnet	1281
Diatomite	1273	Natural alumina abrasives	1282
Tripoli	1275	Corundum	
Quartz	1276	Emerv	1282
Ground sand and sandstone	1277	Natural carbon abrasives	1283
Abrasive sand	1277	Diamond	
Special silica-stone products	1278	Artificial abrasives.	1284
Grindstones and pulpstones	1278	Miscellaneous abrasive materials	1285
Oilstones and related products	1278	Foreign trade	1285
Millstones	1278		1200
Flint lining and minding subbles	1070		

The marked recovery of the natural abrasives industry from 1938 levels ran far ahead of the 22-percent increase in general industrial activity and almost matched the 44-percent increase in the automobile industry. The total value of its products rose about 40 percent over 1938, although unit values for the most part declined. Virtually all classes of natural abrasive materials shared the improvement; the rate of increase in values of production in 1939 over 1938 ranged from 35 percent for ground sand and sandstone to nearly 200 percent for millstones. Sales of pumice and pumicite set an all-time record. The value of exports and imports increased 32 and 117 percent, respectively.

The output of crude artificial abrasives showed a small gain in 1939 only because of an increase in steel shot and grit. Shipments of crude silicon carbide and aluminum oxide were smaller in 1939 than in 1938 and much smaller than in 1937, but the tonnages of these items actually consumed in 1939 increased 55 and 56 percent, respectively, over 1938. Stocks of all three classes of crude artificial

abrasives were reduced considerably in 1939.

Salient statistics of the abrasives industries in the United States, 1938-39

	1938	1939	Percent of change in 1939
Domestic production (sold or used by producers): Natural silica abrasives: Diatomite	1 \$1, 459, 118 329, 081 88, 197 1, 425, 445 240, 006 130, 277 3, 743	(2) \$466, 380 153, 038 1, 930, 301 426, 375 115, 805 11, 084	+41.7 +73.5 +35.4 +77.7 -11.1 +196.1

¹ Average for 1936-38, and not included in totals given; Bureau of Mines not at liberty to publish annual figures.

² Bureau of Mines not at liberty to publish figures.

Salient statistics of the abrasives industries in the United States, 1938-39-Continued

	1938	1939	Percent of change in 1939
Domestic production (sold or used by producers)—Continued. Natural silicate abrasives: Pumice and pumicite	\$312, 886 191, 658	\$424, 780 278, 534 6, 828	+35. 8 +45. 3
Total natural abrasives. Total artificial abrasives 4. Foreign trade: Imports.	3 2, 721, 293 6, 238, 034 4, 727, 004	3 3, 813, 125 6, 504, 403 10, 246, 945	+40.1 +4.3 +116.8 +31.7
Exports	1, 075, 070	1, 415, 589	+31.7

³ Excludes value of diatomite and flint lining and grinding pebbles, which the Bureau of Mines is not at liberty to publish.

4 Includes some material produced in Canada; Bureau of Mines not at liberty to publish United States

data separately.

This chapter includes most of the materials used chiefly as abrasives, although certain oxides, clays, and other substances mentioned later under "Miscellaneous abrasive materials" are not included in the statistics given herein. Some commodities listed as abrasives for which data are presented also have important nonabrasive uses.

Hardness, particle shape, bulking power, and purity are important factors in selection of the proper abrasive for use in soaps and scouring Abrasives used in the soap industry include pumice, pumicite, feldspar, diatomaceous earth, talc, silica, bentonite and other clays, chalk, powdered or dust marble, and sawdust. properties and suitability of each of these are discussed briefly by Roley. Other ingredients added to soap formulas to aid in keeping the abrasive elements from settling include glue, gelatin, albumen, various carbohydrates, glycerin, petrolatum, sodium alginate, sodium silicate, trisodium phosphate, bentonite, and colloidal kaolin.

Collingridge 2 has discussed the trend in composition of metal polishes; the kinds of abrasives used; and the introduction of and changes in type of other ingredients employed as detergents, emulsifying agents, and mechanical buffers to modify abrasive action, as

suspending vehicles, and as coloring or perfuming agents.

Liquid polishes are more in favor now than the once-popular pastes 'putz creams" or pomades; and the older brass polishes, which contained relatively coarse abrasives, have been largely displaced by finer and more carefully graded polishes suitable for chromium, silver, stainless steel, aluminum, and glass. Historically, the trend has been from the earlier tripoli-pumice-oxalic polishes to the diatomite-soap types, thence to ferric oxide and "putz-oil" polishes, and finally to the paraffin-abrasive mixtures and naphtha-soap-abrasive suspensions of the present day.

According to Collingridge 3 the following abrasives have been used in metal polishes: Pumice, emery, diatomite, silica flour, amorphous silica, tripoli, precipitated and prepared chalks or whiting, putty

¹ Roley, Richard J., Abrasives—Their Use in Soaps and Scouring Powders—Their Occurrence and Characteristics: Soap and Sanitary Chemicals, vol. 15, No. 12, December 1939, pp. 24–26, 70; abs. in Canadian Chem. and Process Industries, vol. 24, No. 1, January 1940, p. 16.
² Collingridge, George S., Progress in Metal Polishes and Their Raw Materials: Chem. Age (London), vol. 40, No. 1942, June 17, 1939, pp. 448–450.
³ Collingridge, George S., Work cited in footnote 2.

powder, fuller's earth, china clay, aluminum oxide, chrome oxide, tin oxide, common salt, calcium phosphate, rouges, and heavy magnesium carbonate. The abrasives most used are the silicas and pumicite. Heavy water-base pine-oil polishes require a sharp silica, usually ground quartz. Neutral naphtha-type polishes must use a milder form of silica because they contain nothing to act as a "buffer." Next in popularity to silica flour and pumice as abrasives in metal polishes are tripoli, emery, calcite, and china clay. Precipitated chalk, whiting, rouge, fuller's earth, and diatomite are considered satisfactory for the finer grades of polishes, such as those used for silver and chromium ware. Four leading brands of American silver polishes contained 15 to 19 percent of diatomite as the sole abrasive.

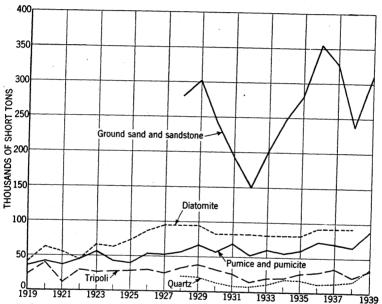


FIGURE 1.—Trends in production of diatomite, tripoli, pumice and pumicite, quartz, and ground sand and sandstone, 1919-39.

The properties of mechanically polished metallic surfaces compared with those of electrolytically polished surfaces were studied by Jacquet. Mechanically polished surfaces show no crystalline properties and, aside from a surficial, probably amorphous layer, have a zone of microcrystals that bear no resemblance to the crystals of the metal. Electrolytic polishing, however, etches the metallic crystal faces and permits study of their properties.

NATURAL SILICA ABRASIVES

Diatomite.—The Bureau of Mines has not been at liberty to publish annual production figures on diatomite since 1926. Production (sales) for 3-year periods, however, may be shown, and these 3-year averages since 1926 are plotted in figure 1. From an all-time peak in 1929

⁴ Jacquet, P. A., Comparative Properties of Metallic Surfaces Polished Mechanically and Electrolytically: Jour. Iron and Steel Inst., vol. 136, No. 2, 1937, p. 42A; Ceram. Abs., vol. 18, No. 7, July 1939, p. 169.

sales fell during the following years but totaled 279,645 short tons in the period 1936-38. Sales in 1939, although much higher than in 1938,

did not quite equal the 1937 figure.

The principal States producing diatomite are California and Oregon. Other Western States where diatomite was produced in 1939 were Idaho, Nevada, and Washington. Eastern States reporting output of diatomite were Florida, Massachusetts, and New York. Although interest was revived in the Maryland deposits along the Patuxent River, no sales were reported to the Bureau of Mines during 1939. The following table presents such recent data on diatomite sales as the Bureau of Mines may publish.

Diatomite sold or used by producers in the United States, 1933-38 1

Year	Short tons	Value	Year	Short tons	Value
1933 1934 1935	244, 342	\$3, 618, 428	1936 1937 1938	279, 645	\$4, 377, 353

¹ Bureau of Mines not at liberty to publish annual figures.

Diatomaceous earths are used principally in polishes and insulation products and as fillers, admixtures, and filter aids. The use of the finely sculptured silica skeletons of diatoms as critical test objects for determining the quality of microscope lenses,5 although minor, is important to laboratory workers. Uses of diatomaceous earth and patents covering many of its special applications have been listed in the trade press.

The behavior of diatomite as a filter aid was investigated by Carman, who worked with a filter cake of rigid quartz particles and determined that, as with compressible filter cake, increase in permeability after the addition of higher proportions of diatomaceous earth is due solely to the resulting greater porosity of the cake. Efficient filtering action therefore requires that high porosity, the chief property of a filter aid, should not be sacrificed by attempting to obtain high

absorptive or high coagulating power.

According to Cummins,8 the use of diatomaceous earth as a filler in synthetic plastics, a relatively new development, increased nearly 100 percent in 1939 over the average of the previous 4-year period. material mixes readily with plastic compositions and can be handled satisfactorily in molding operations. It is available as natural or calcined powders of different degrees of fineness and chemical purity. The density of the powder may also be varied, ranging from those that are very light to those of 25 pounds per cubic foot, loose weight. The high resistance to heat, chemical inertness, low moisture absorption, excellent electrical properties, and surface finish imparted by diatomaceous earth make it suitable for use as a filler in many products, including battery boxes, electrical parts, closures, rubber products, parts requiring a good durable surface finish, phonograph records, and sulfur plastics.

Science News Letter, vol. 36, No. 27, December 30, 1939, p. 421.
 Oil, Paint, and Drug Reporter, vol. 136, No. 9, August 28, 1939, p. 28; No. 10, September 4, 1939, p. 63;
 No. 11, September 11, 1939, p. 61; No. 12, September 18, 1939, p. 63.
 TCarman, P. C., Action of Filter Aids: Ind. Eng. Chem., vol. 31, No. 8, August 1939, pp. 1047-1050.
 Cummins, A. B., Fillers: Asbestos and Diatomaceous Silica: Modern Plastics, vol. 17, No. 2, October 1939, pp. 51, 22.

Tripoli.—Sales of tripoli (including Pennsylvania rottenstone) in 1939 nearly reached those of 1937; the value of sales, however, was 4 percent higher than in 1937. Sales in 1939 totaled 33,474 short tons valued at \$466,380 compared with 22,188 tons worth \$329,081 in 1938, an increase over 1938 of 51 percent in tonnage and 42 percent in value. In 1939, as in 1938, tripoli was produced in Arkansas, California, Illinois, Missouri, Oklahoma, and Tennessee. In addition, output was reported from Texas in 1939. Production for many years has centered largely in two small areas—one in Newton County, Mo., and adjacent Ottawa County, Okla., and the other principally in Alexander County, southern Illinois. Pennsylvania produced only rottenstone. Figure 1 shows the trend in sales of tripoli since 1919.

Tripoli (including Pennsylvania rottenstone) sold or used by producers in the United States, 1935–39

77	Illinois		Other States 1		Total	
Year	Short tons	ns Value Short		Value	Short tons	Value
1935	10, 001 10, 981 11, 647 8, 141 11, 134	\$113, 484 138, 063 151, 154 117, 107 148, 310	17, 374 17, 506 23, 289 14, 047 22, 340	\$269, 932 253, 815 299, 416 211, 974 318, 070	27, 375 28, 487 34, 936 22, 188 33, 474	\$383, 410 391, 878 450, 570 329, 081 466, 380

¹ 1935: Arkansas, California, Georgia, Missouri, Oklahoma, and Pennsylvania; 1936: Arkansas, California Missouri, Oklahoma, and Pennsylvania; 1937-38: Arkansas, California, Missouri, Oklahoma, Pennsylvania, and Tennessee; 1939: Arkansas, California, Missouri, Oklahoma, Pennsylvania, Tennessee, and Texas.

Tripoli sold for abrasive uses in 1939 represented 33 percent of the total sales compared with 36 percent in 1938 and 59 percent in 1936. Sales for filler (the second largest use) increased 61 percent over 1938 and were considerably higher than in 1937. Sales of concrete admixture dropped in volume during 1939, but nearly doubled in realization over 1938. Other uses of tripoli include fair-size tonnages for foundry facing and oil-well drilling mud.

Tripoli (including Pennsylvania rottenstone) sold or used by producers in the United States, 1937-39, by uses

Use	1937		1938		1939	
	Short tons	Value	Short tons	Value	Short tons	Value
A brasives Concrete admixture Filler Other uses 1	15, 235 2, 126 8, 363 9,212	\$228, 373 21, 627 108, 285 92, 285	8, 097 2, 170 5, 584 6, 337	\$138, 807 12, 634 78, 900 98, 740	10, 953 1, 653 9, 016 11, 852	\$169, 370 24, 580 120, 284 152, 146
	34, 936	450, 570	22, 188	329, 081	33, 474	466, 380

¹ 1937: Filter block, filtration, foundry facing, oil-well drilling mud, pottery and enameling, and unspecified; 1938: Filter block, foundry facing, and unspecified; and 1939: Foundry facing, oil-well drilling mud, and unspecified.

The Barnsdall Tripoli Corporation, Seneca, Mo., in 1939 replaced its plant, which was destroyed by fire in 1938, with a modern, all-steel 200-ton mill erected at a reported cost of \$100,000.9 Tripoli is obtained from two quarries owned by the company and from purchases in the district.

Pit and Quarry, vol. 31, No. 10, April 1939, p. 23, and vol. 32, No. 7, January 1940, p. 100.

Quartz.—Sales of crude, crushed, and ground quartz from pegmatite deposits, veins, and quartzite beds in 1939 jumped to 34,959 short tons valued at \$153,038, an increase of 88 percent in tonnage and 74 percent in value over 1938. The volume of sales was the largest for any year since 1920; however, the average value per ton declined to \$4.38 in 1939 compared with \$4.74 in 1938 and \$5.08 in 1937, continuing a steady downward trend in average realization since 1929 which was broken only in 1934 and 1936. Crude quartz sold or used in 1939 more than tripled, and crushed quartz increased by more than half over 1938. The greater relative importance of sales of crude and crushed quartz in 1939 may be due as much to a growing tendency of consumers to purchase crude or semicrude quartz and grind it with their own equipment as to increased demand from sandpaper manufacturers, metallurgical plants, and other large consumers of the unground product.

Quartz (crude, crushed, and ground)1 sold or used by producers in the United States, 1935-39

	Crude		Crushed		Ground		Total	
Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1935 1936 1937 1938 1939	2 7, 586 2 6, 281 3, 252 4, 493 13, 739	2 \$26, 807 2 24, 971 10, 096 17, 023 45, 785	(2) (2) 5, 891 9, 930 15, 504	(2) (2) \$24, 652 27, 941 49, 186	9, 592 6, 705 3, 869 4, 188 5, 716	\$84, 977 71, 621 31, 293 43, 233 58, 067	17, 178 12, 986 13, 012 18, 611 34, 959	\$111, 784 96, 592 66, 041 88, 197 153, 038

¹ To avoid duplication, the ground material shown here is only that ground by the original producers of the crude quartz or by grinders who purchase from small miners not reporting their production.

² "Crushed" included under "Crude."

Quartz was mined in the same States in 1939 as in 1938, except that no sales were reported from New Hampshire in 1939. All States for which comparisons are available show large increases in sales for 1939 over 1938, especially Arizona-California and North Carolina-Virginia. Other States with consistent production records are Maine, Maryland, New York, Ohio, and Tennessee.

Quartz (crude, crushed, and ground)1 sold or used by producers in the United States, 1937-39, by States

	(I		
_	193	37	193	38	1939		
State	Short tons	Value	Short tons	Value	Short tons	Value	
Arizona California Maine New Hampshire Maryland Massachusetts North Carolina Virginia Oregon Undistributed 3	746 67 29 410 792 369 10, 599	\$6, 072 168 75 5, 850 6, 261 1, 063 46, 552 66, 041	(2) 1, 494 243 377 140 763 (2) 15, 594 18, 611	(2) \$20, 809 663 6, 000 840 9, 390 (2) 50, 495	8, 442 {	\$37, 410 1, 724 8, 010 2, 655 22, 82 5, 600 74, 81' 153, 03	

¹ To avoid duplication, the ground material included is only that ground by the original producers of the crude quartz or by grinders who purchase from small miners not reporting their production.

² Included under "Undistributed."

³ 1937: Arizona, New York, Ohio, and Tennessee; 1938: Arizona, New York, Ohio, Oregon, Tennessee, and Wisconsin; 1939: New York, Ohio, Tennessee, and Wisconsin.

Ground sand and sandstone.—Sales of ground sand and sandstone increased 31 percent in 1939 over 1938 to 310,512 short tons valued at \$1,930,301—only slightly below 1937 sales. Illinois, New Jersey, Ohio, and Pennsylvania continued to be the chief producing States.

Ground sand and sandstone sold or used by producers in the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	281, 665 356, 423 328, 156	\$1, 678, 295 2, 146, 464 1, 996, 528	1938 1939	237, 167 310, 512	\$1, 425, 445 1, 930, 301

Ground sand and sandstone sold or used by producers in the United States, 1938-39, by States

State	1938		1939	
State	Short tons	Value	Short tons	Value
Illinois Massachusetts. New Jersey. Ohio Other States¹	66, 583 1, 234 63, 968 28, 540 76, 842 237, 167	\$418, 881 4, 102 338, 195 - 177, 876 486, 391 1, 425, 445	91, 645 1, 374 88, 946 36, 950 91, 597 310, 5 12	\$543, 761 6, 220 577, 811 223, 965 578, 544 1, 930, 301

¹ California, Missouri, Pennsylvania, Virginia, West Virginia, and Wisconsin.

The largest outlet for sales of ground sand and sandstone for several years has been the pottery, porcelain, and tile industry, which in 1939 absorbed 40 percent of the material reported by the producers according to use (89 percent of the total sales). Cleansing and cleaning preparations and other abrasive use comprised 19 percent, followed by foundry consumption with 17 percent. Sizable tonnages also are consumed in enamel manufacture and for fillers.

Ground sand and sandstone sold or used by producers in the United States in 1939, by uses 1

		Value	
Use .	Short tons	Total	Average per ton
Abrasive: Cleansing and scouring compound Other. Enamel. Filler Foundry. Glass Pottery, porcelain, and tile Other uses. Total reported by uses.	52, 942 958 10, 416 5, 071 46, 546 1, 696 109, 417 48, 380 275, 426	\$276, 468 5, 790 57, 256 36, 797 269, 300 9, 075 730, 601 320, 596	\$5. 22 6. 04 5. 50 7. 26 5. 79 5. 35 6. 68 6. 63

¹ Data represent 89 percent of the industry.

Abrasive sand.—Abrasive sands have a high silica content and include all natural sands used for abrasive purposes, such as sawing stone, grinding glass, sandpaper manufacture, and sandblasting. Sales dropped sharply in 1938 to 502,328 short tons valued at \$754,805

compared with 1,067,178 tons valued at \$1,440,736 in 1937. Included in the total for 1938, and undoubtedly contributing largely to the 11-percent increase in average value per ton, were 205,753 tons of blast sand valued at \$509,178. Statistics for abrasive sand in 1939 are shown under the classification "grinding and polishing sand" in the chapter on Sand and Gravel in this volume.

SPECIAL SILICA-STONE PRODUCTS

Grindstones and pulpstones.—The total sales value of grindstones and pulpstones made from quarried stone rose in 1939 to \$426,375, an increase of \$186,369 over 1938. Sales of grindstones increased 70 percent in tonnage and 73 percent in value over 1938, and pulpstones 62 and 86 percent, respectively. Grindstones were quarried in Ohio and West Virginia and pulpstones in Washington and West Virginia in 1939.

Grindstones and pulpstones sold by producers in the United States, 1935-39

	a		Pulpstones			
Year	Grind	stones	Quantity			
	Short tons	Value	Pieces	Equivalent short tons	Value	
1935	11, 476 10, 703 11, 617 4, 653 7, 917	\$342, 864 334, 363 352, 377 149, 019 257, 350	948 685 761 417 672	3, 111 2, 472 2, 924 1, 553 2, 517	\$162, 514 163, 634 220, 331 90, 987 169, 025	

Oilstones and related products.—Sales of natural sharpening stones of various types, including oilstones, whetstones, hones, scythestones, and rubbing stones, were 21 percent higher than in 1938 but were lower than in 1936 and 1937 by a substantial margin. Various States contributed to the total as follows: Arkansas, oilstones and whetstones; Indiana, rubbing stones; New Hampshire, scythestones; Ohio, whetstones, scythestones, lathestones, and holystones.

Oilstones and other whetstones, hones, scythestones, and rubbing stones sold by producers in the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	439 752 810	\$105, 589 121, 196 112, 841	1938 1939	511 620	\$130, 277 115, 805

Millstones.—The value of sales of millstones, chasers, and dragstones in 1939 was \$11,084—more than triple the low established in 1938. Although this value is the highest since 1930, it is much below the levels of the preceding 50 years. New York, North Carolina, and Virginia were the only States from which millstones were obtained in 1939; no output

from North Carolina was reported from 1936 to 1938. In 1939 millstones were produced in the following localities: Ulster County, N. Y. (the "Esopus" stone from the Shawangunk conglomerate); Brush Mountain, Montgomery County, Va. (supplying a fine-grain quartzite known as "Brush Mountain" stone); and Rowan County, N. C., near Salisbury (furnishing granite millstones).

Value of millstones, chasers, and dragstones sold by producers in the United States, 1935-39

Year	New York		Other S	states 1	Total		
1001	Producers	Value	Producers	Value	Producer	s Value	
1935	8 6 6 4 6	\$4,645 5,458 (2) (2) (2) 2,584	3 3 2 2 2 3	\$4, 885 5, 151 (2) (2) (2) 8, 500		\$9,530 10,609 8,305 3,743 11,084	

¹ 1935 and 1939: North Carolina and Virginia; 1936-38: Virginia.
² Bureau of Mines not at liberty to publish figures.

Flint lining and grinding pebbles.—Although steel balls have largely replaced flint pebbles in grinding ores and other materials, a moderate continuous domestic demand for noncontaminating grinding and lining mediums for pulverizing ceramic raw materials in which a minimum of iron is essential has been supplied partly by one or two domes-

tic producers and partly by imports.

Production of domestic flint liners nearly doubled in 1939 but was still considerably below the 1937 level. The average value per ton also increased. In 1939, as in recent years, the only supplier of domestic mill liners in the United States known to the Bureau of Mines was the Jasper Stone Co., Sioux City, Iowa. The material used is quartzite obtained near Jasper, Minn. Sales of quartzite grinding pebbles by this company in 1939 doubled in volume and increased somewhat in average value compared with 1938; they topped 1937 shipments by a wide margin. The King Solomon Mines Co., Black Bear (near Yreka), Calif., again reported the use of local granite

pebbles in ball mills at its gold mill.

Flint liners have been imported largely from Belgium, whereas flint grinding pebbles are imported largely from Denmark and France, although at one time a fair supply was obtained from crude chalk formerly imported in considerable quantities for grinding into whiting. Importations under the classification of "flint, flints, and flint stones unground" were larger in 1939 than in 1938, but shipping and production difficulties occasioned by the present war may curtail future receipts. In addition to the quartzite pebbles and liners quarried by the Jasper Stone Co., near Jasper, Minn., small quantities of true flints were also recovered in former years at Encinitas Beach near San Diego, Calif. Certain companies have utilized pebbles of quartzose ore, granite, or other local rock, and it seems possible that some such natural or artificially rounded material may provide satisfactory substitutes for imported grinding pebbles.

NATURAL SILICATE ABRASIVES

Pumice and pumicite.—Sales of pumice and pumicite in 1939 totaled 89,159 short tons valued at \$424,780, a 36-percent rise in both tonnage and value over 1938. The 1939 sales set an all-time high both in tonnage and value; the tonnage was 22 percent greater than in 1936 (72,915 short tons), the previous record year, while the total value was 20 percent greater than in 1929 (\$353,064), hitherto the record year in sales realization.

Pumice and pumicite sold or used by producers in the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	60, 000 72, 915 71, 007	\$247, 076 328, 406 301, 936	1938. 1939.	65, 742 89, 159	\$312, 886 424, 780

Production of pumice in 1939 was reported in California, Kansas, Nebraska, New Mexico, Oklahoma, and Oregon, and that of pumicite or volcanic ash in Kansas, Nebraska, Nevada, and Oklahoma.

Consumption of pumice and pumicite showed large gains for all uses. Cleansing and scouring compounds and hand soaps, still by far the most important outlet, increased consumption to 52,521 short tons, a 12-percent gain over 1938. Sales for concrete admixture and concrete aggregate expanded to 20,719 tons, nearly 175 percent above 1938 and about 50 percent over 1936 and 1937. Sales for acoustic plaster were 77 percent higher than in 1938. (See fig. 2.)

Pumice and pumicite sold or used by producers in the United States, 1937-39, by uses

	1937		1938		1939	
Use	Short tons	Value	Short tons	Value	Short tons	Value
Abrasive: Cleansing and scouring compounds and hand soaps. Other abrasive uses. Acoustic plaster Concrete admixture and concrete aggregate. Other uses 2	48, 608 1, 442 3, 641 13, 839 3, 477 71, 007	\$193, 559 17, 369 54, 459 23, 650 12, 899 301, 936	47, 013 938 3, 080 7, 596 7, 115 65, 742	\$188, 807 8, 499 54, 055 18, 297 43, 228 312, 886	52, 521 (1) 5, 444 20, 719 10, 475 89, 159	\$227, 447 (1) 97, 181 24, 852 75, 300 424, 780

¹ Included under "Other uses." ² 1937: Asphalt, grading roads, chicken litter, filtering, rock gardens and landscaping, building tiles, floor sweep, and some unspecified uses; 1938: Asphalt, filtering, rock gardens and landscaping, building tiles, and some unspecified uses; 1939: Asphalt, heat or cold insulation, or other abrasive use, insecticide, building tile and blocks, roofing, stucco, and unspecified uses.

Nordberg ¹⁰ described the use of lightweight concrete "Basalite" units made from California pumice for residential construction. Pumice also was utilized for acoustical veneer in the walls and for shingles. Trauffer ¹¹ described the pumicite plant of the California Industrial Minerals Co., Friant, Calif., giving a detailed account of

¹⁰ Nordberg, Bror, Fair Boosts Concrete House: Rock Products, vol. 43, No. 1, January 1949, pp. 117, 120-121

^{120-121.} ¹¹ Trauffer, W. E., Compet California Plant Processes Pumicite for Many Industrial Uses: Pit and Quarry, vol. 32, No. 10, April 1940, pp. 42-44.

the recovery and processing of this material. The Calsilco Corporation is said to have installed a four-roll Williams mill to prepare pumicite from a new deposit about 40 miles north of Mojave, Calif., for acoustic plaster and insulation material.12 The Barnsdall Tripoli Corporation also has installed new equipment, including a 6-foot

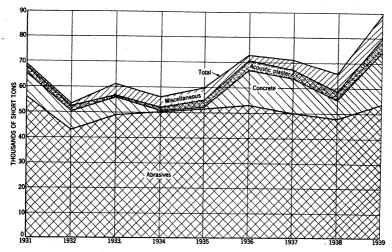


FIGURE 2.—Trend, by uses, of pumice and pumicite sold or used by producers in the United States, 1931-39.

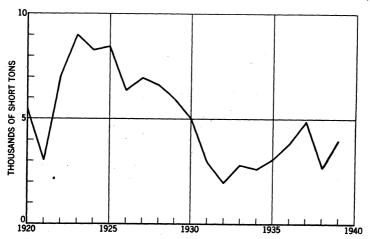


FIGURE 3.—Marketed production of abrasive garnet in the United States, 1920-39.

double-whizzer mechanical air separator, at its Grants (N. Mex.) plant.13 A compilation of data on pumice and pumicite from California Division of Mines publications was published in 1939.14

Garnet.—Paralleling general business activity in 1939 sales of garnet increased moderately, but neither in quantity nor total value were they as high as in 1937 (fig. 3). The Barton Mines Corporation,

Pit and Quarry, vol. 32, No. 6, December 1939, p. 23.
 Pit and Quarry, vol. 32, No. 7, January 1940, p. 102.
 California Division of Mines, Pumice and Volcanic Ash: Mineral Abs., San Francisco, Calif., 1939, 47 pp.

North Creek, Warren County, N. Y.; Davenport Garnet Co., South Danbury, Merrimack County, N. H.; and Celo Mines, Inc., Burnsville, Yancey County, N. C., reported sales during the year. The mines of the Warren County Garnet Mills, Wevertown, N. Y., were idle. Total sales include a small tonnage of combined quartz and garnet produced and sold by the Green Mountain Mica Corporation, Gassett, Windsor County, Vt., for use as an abrasive in sawing marble. No imports of garnet were reported for 1939.

Abrasive garnet sold or used by producers in the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	3, 060 3, 820 4, 863	\$256, 520 315, 913 382, 535	1938. 1939.	2, 669 4, 056	\$191, 658 278, 534

NATURAL ALUMINA ABRASIVES

Corundum.—No corundum has been mined in the United States in recent years. Imports of corundum ore, largely from the Union of South Africa, totaled 1,964 short tons valued at \$104,724, slightly less in tonnage than in 1938 and 1937 and nearly one-fourth less in value. Most of the corundum and emery is imported crude and crushed and graded in this country for domestic consumption. Newly discovered deposits of corundum and garnet are reported in the Union of South Africa. 15

Emery.—Sales of emery in 1939 were 765 short tons valued at \$6,828, the highest in any year since 1933. No sales of domestic emery were made in 1938. Four producers were active in 1939 in the emery district near Peekskill, Westchester County, N. Y., the only locality reporting production in recent years. From the property formerly mined by Smith & Ellis, operated by Gaetano DiRubbo during the first part of 1939 and by the partnership of DiRubbo & Ellis the latter part of the year, shipments were made to the Hamilton Emery & Corundum Co., Chester, Mass. DiRubbo also shipped a carload from another location to the same mill. Joe DeLuca shipped 2 carloads of emery to the Washington Mills Emery Manufacturing Co., North Grafton, Mass., from two locations, one of which was the McCoy mine, well-known as a producer of high-grade emery in former years. The Howard Emery Corporation also mined and sold emery during the year.

Emery sold or used by producers in the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	176 325 320	\$1, 606 2, 900 2, 780	1938. 1939.	765	\$6, 828

¹⁵ Consul General H. Earle Russell, Johannesburg, November 17, 1938, reported in Bureau of Mines Mineral Trade Notes, vol. 8, No. 2, January 20, 1939, p. 30.

Discovery of an emery vein 50 feet wide and nearly a mile long about 3 miles south of Peekskill was reported by Zodac. ¹⁶ The outcrop at one point is 60 feet wide and 30 feet high, and a short distance away it is 60 feet wide and 15 feet high. This is the first large vein located in the Peekskill district where, until the recent discovery of underground veins, ¹⁷ all deposits were held to be comparatively small, scattered surface occurrences.

Figure 4 shows trends in domestic sales and imports of emery and corundum since 1924.

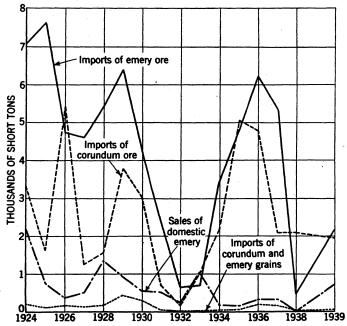


FIGURE 4.—Comparison of sales of domestic emery with imports of emery and corundum in the United States, 1924-39.

NATURAL CARBON ABRASIVES

Abrasive or industrial diamond.—World production of diamonds in 1939, as in 1938, approximated 11 million metric carats, but notwithstanding firmer prices the value of the output declined to about 40 million dollars owing to the larger proportion of industrial stones.

The demand for industrial or abrasive diamonds in the United States is supplied entirely by imports of black diamonds (carbonados), largely from Brazil, and bort, chiefly from the Union of South Africa. The total value of imports of abrasive diamonds in 1939 increased \$5,468,875 to \$9,764,579. Imports of "glaziers' and engravers', unset, and miners'" diamonds, by far the most important classification, rose

¹⁶ Zodac, Peter, Huge Emery Vein Found Near Peekskill: Rocks and Minerals, vol. 15, No. 1, January 1940, p. 13.
¹⁷ Zodac, Peter, New Emery Strike in Peekskill: Rocks and Minerals, vol. 12, No. 12, December 1937, pp. 372-374.

to 3,568,730 carats worth \$9,725,683, more than twice the quantity and value reported for 1938 and 89 percent greater in quantity and 49 percent greater in value than 1937 receipts. Imports of bort increased 20 percent in quantity and 80 percent in value. The average value of bort in 1939 rose sharply to \$25.07 a carat compared with \$16.67 in 1938, although the average value of "glaziers, and engravers', unset, and miners'" diamonds declined to \$2.73 a carat from \$3.02 in 1938 and \$3.47 in 1937.

The substitution of borts for carbonados and the use of smaller and smaller diamonds for industrial purposes continues. One innovation is the employment of beryllium-copper, under the trade name Vankolite, for cast-setting diamond core bits and reaming shells. Drill bits using this tougher and harder metal have increased tensile strength and improved qualities owing to the close bond between the metal and the diamonds. Before the advent of mechanical setting methods diamonds had to be placed in the crown laboriously by hand. The newer technique permits proper spacing of several hundred small stones over a comparatively small circular area at negligible cost.

It is claimed that small borts would be preferable to large stones, even if they were more expensive, as small crystals are said to be sounder and harder than large ones. A typical drilling bit contains 178 stones having an aggregate weight of 7 carats or, roughly, 25 stones to a carat. Abrasive wheels are now made by adding even smaller diamonds to powdered metal or bonded compositions and sintering to a solid mass. Because of the wider use of the extremely hard alloys that are difficult to shape, diamond-bearing tools and grinding wheels are much more in demand. Weslow ¹⁸ describes the use of a tungsten carbide and cobalt matrix impregnated with bort diamonds for drilling crowns.

In the South African fields high-intensity magnetic separators were introduced early in 1939 to remove garnet and other feebly magnetic minerals from the gravity concentrates, thereby facilitating subsequent treatment on grease tables.

ARTIFICIAL ABRASIVES

Owing to a 63-percent gain in sales of metallic abrasives in 1939, the artificial-abrasives industry increased its total sales to 116,689 short tons valued at \$6,504,403, a gain in tonnage of 12 percent and in value of 4 percent over 1938. Production of both silicon carbide and aluminum oxide, however, showed small declines in 1939 compared with 1938.

¹⁶ Weslow, W. C., Use of Diamond-impregnated Cemented Carbide for Core Bits: Am. Inst. Min. and Met. Eng. Tech. Pub. 1172, New York, 1940.

Crude artificial abrasives sold, shipped, or used, from manufacturing plants in the United States and Canada, 1935-39 1

Year	Silicon carbide 2		Aluminum oxide 2		Metallic abrasives		Total	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1935	24, 266 29, 342 430, 365 425, 346 424, 206	4 1, 904, 925	49, 990 69, 825 486, 401 453, 220 450, 468	3 \$3, 784, 726 3, 913, 155 4 4, 749, 497 4 3, 098, 132 4 3, 047, 337	14, 593 24, 667 28, 031 25, 771 42, 015	\$741, 633 1, 221, 912 1, 399, 772 1, 234, 977 1, 743, 859	88, 849 123, 834 144, 797 104, 337 116, 689	\$6, 691, 087 7, 274, 986 8, 364, 587 6, 238, 034 6, 504, 403

Bureau of Mines not at liberty to publish data for United States separately.
 Includes also material used for refractories and other nonabrasive uses.
 Includes value of some grain.

Production of silicon carbide in the United States centers in the Niagara Falls region in New York and that of aluminum oxide in the Niagara Falls region and at Anniston, Ala. Metallic abrasives are manufactured in several Northern States from New Hampshire to Michigan.

Since 1937 producers of silicon carbide and aluminum oxide have been requested to indicate the approximate percentages of their products consumed for refractory or other nonabrasive uses. mates based upon these percentages indicate that about 29 percent of the output of silicon carbide in 1937 was employed for nonabrasive purposes, about 26 percent in 1938, and about 29 percent in 1939; about 4 percent of the output of aluminum oxide in each year was used for nonabrasive purposes.

MISCELLANEOUS ABRASIVE MATERIALS

Besides the materials already discussed many others have abrasive Several oxides, including tin oxide, ferric oxide in the form of rouge and crocus, chromium oxide, magnesium oxide, manganese oxide, and lime, as well as clay, talc, and whiting are used as polishing agents. Silt, clay, and feldspar and other mineral substances also are used as abrasives.

FOREIGN TRADE 11

The increased consumption of smaller diamonds for industrial uses, chiefly as a result of more efficient drilling made possible with the mechanical, cast-set, and diamond-impregnating methods of preparing drilling and grinding agents is reflected in the much larger imports of diamonds in the last 2 or 3 years, particularly of "glaziers' and engravers', unset, and miners'" diamonds which constitute by far the greater part of the total value of abrasive materials imported.

¹¹ Figures on exports and imports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Imports of most types of abrasive materials increased in volume, although receipts of hones, oilstones and whetstones, corundum ore, tripoli and rottenstone, and diamond dust decreased. Imports of tripoli and rottenstone were the lowest since the present classification (excluding diatomaceous earth) was adopted in 1930.

Abrasive materials imported for consumption in the United States, 1937-39, by kinds

	198	37	198	38	1939		
Kind	Quantity	Value	Quantity	Value	Quantity	Value	
Millstones and burrstones: Rough or unmanufactured short tons. Bound up into millstones	29 963 69 5, 357 (2) (3) 123, 106 2, 085 2 329, 121	\$2, 896 32, 445 43, 470 87, 557 (2) 31, 937 72, 925 134, 574 2 29, 445	11 15 657 101 477 (2) (3) 6, 503 2, 098 2 65, 608 3, 696	\$894 1, 318 22, 431 44, 142 7, 796 (2) 67, 062 3, 221 138, 629 2 6, 155 193	(1) 31 838 68 2, 191 (2) (3) 10, 604 1, 964 2 129, 237	1, 552 1, 678 26, 059 48, 261 29, 318 (3) 72, 966 5, 043 104, 724 9, 793	
Pumice: Crude or unmanufactureddo Manufactures of, or of which pumice is the component material of chief	8, 771	12, 207 57, 563	5, 943	9, 826	218 6,656	2, 769 36, 463 29, 221	
value Diamond: Bort carats Dust Glaziers' and engravers', unset, and	4, 203 (4)	34, 855 73, 069 145, 036	(4) 1, 151 (4)	20, 809 19, 187 63, 105	1, 381	34, 618 4, 278	
miners'carats Flint, flints, and flint stones, unground short tons		6, 542, 365 117, 828	1	4, 213, 412 74, 338	3, 568, 730 11, 987	9, 725, 683 116, 019	
		7, 418, 172		4, 727, 004		10, 246, 945	

4 Quantity not recorded.

The value of exports of natural abrasive materials in 1939 rose 32 percent over 1938 to \$1,415,589; all classes of abrasives shared in the upturn. Although the value of exports of grindstones increased 41 percent, the largest absolute gain in value was in the classification, "all other natural abrasives," which increased to \$1,116,711, \$280,817 more than in 1938 and 35 percent higher than in 1937. Both grindstones and abrasive wheels (emery and corundum) showed lower values in 1939 than in 1937, the highest year since 1930.

Value of domestic abrasive materials exported from the United States, 1935-39

Material	1935	1936	1937	1938	1939
Grindstones. Abrasive wheels, emery and corundum. All other natural abrasives, hones, whetstones, etc	\$148, 943	\$140, 614	\$193, 112	\$122,720	\$173, 575
	116, 376	124, 471	140, 022	116,456	125, 303
	250, 228	277, 463	826, 955	835,894	1, 116, 711

¹ Less than 1 ton. ² Emery included with corundum; not separately classified. ³ 3,276 reams in 1937; 2,205 reams in 1938, 2,479 reams in 1939; weight not recorded.

SULFUR AND PYRITES

By Robert H. Ridgway and A. W. Mitchell 1

SUMMARY OUTLINE

	Page	I	Page
Summary	1287	Sulfur—Continued.	
Salient statistics	1288	The industry in 1939, by States	1294
Sulfur	1289	World production	1294
Domestic production	1289	Pyrites	129
Recovery as byproduct	1289	Domestic production	129
Stocks	1291	The industry in 1939, by States	129
Price	1291	Foreign trade	1209
Consumption	1291	World production	1200
Foreign frade	1000		1200

World production of sulfur declined further in 1939 despite war in Europe and improved business conditions in the United States. World markets are supplied largely from American and Italian mines, and in both countries output was at a lower level than in the preceding Italian production, which was relatively low during the early months of the year owing to fires in the Sicilian mines, did not meet the planned program for the fiscal year. Although the Italians encountered further American competition in world markets, stocks of mined sulfur in Italy at midyear reached a new low for this century. The controlling provisions of the international agreement between the Sulphur Export Corporation (American) and the Central Sulfur Sales Bureau (Italian) is inoperative because of war conditions. Spain, Japan, and Norway were the largest producers of pyrites in 1939; but operations in Spain, the largest source, were hampered by the civil war. Of interest in 1939 was the large increase in production and exports of pyrites from Canada.

The domestic sulfur industry reacted to the stimulus of unprecedented expansion of the domestic industry during the last quarter of This improvement in business conditions, which coincided with the outbreak of war in Europe, was felt in both the domestic and foreign sulfur markets; but as the change came near the end of the vear, its effect on the sulfur industry was demonstrated to a greater extent in the rate of shipments rather than in the rate of production. This was due partly to large producers' stocks and partly to the method of extracting sulfur, which is not readily susceptible to change conforming to the market pattern. Thus, although shipments in 1939 increased one-third over 1938, production dropped 13 percent. Most of the increase in shipments went to domestic consumers; but, even though exports of sulfur were only slightly higher in 1939 than in 1938, there was a substantial increase in our foreign business after hostilities were begun abroad. Domestic production for the first three-quarters of 1939 held at the lower rate reached during the latter half of 1938, but in the last quarter there was a sizable increase.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Salient statistics of the sulfur industry in the United States, 1925-29 (average) and 1936-39

	1925-29 (average)	1936	1937	1938	1939
Sulfur:					
Production of crude sulfur_long tons	1, 951, 034	2, 016, 338	2, 741, 970	2, 393, 408	2, 090, 97
Shipments of crude sulfur: For domestic consumption_do For exportdo	1, 397, 411 707, 175	1, 421, 621 547, 199	1, 791, 215 675, 297	1, 049, 740 579, 107	1, 605, 998 627, 819
Total shipmentsdo	2, 104, 586	1, 968, 820	2, 466, 512	1, 628, 847	2, 233, 81
Imports: Ore	1, 896 295 11, 956 2, 413, 000	530 199 19, 708 3, 100, 000	398 230 13, 533 3, 400, 000	51 2, 552 12, 707 4, 200, 000	13, 94 25, 00 4, 000, 000
long ton	\$17.50	\$18	\$18	\$16-\$18	\$10
Pyrites: Productionlong tons Importsdo Price of imported pyrites c. i. f. At-	273, 936 372, 958	547, 236 429, 313	584, 166 524, 430	555, 629 334, 234	516, 408 482, 330
lantic portscents per long-ton unit	12-13	12-13	12-13	12–13	12-1
Sulfuric acid: Production of byproduct sulfuric acid (60° B.) at copper and zinc plantsshort tons	1, 118, 453	732, 620	833, 994	687, 176	(1)

¹ Figures not yet available.

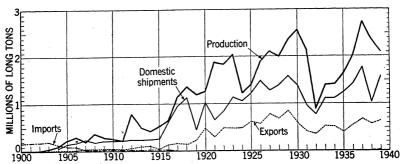


FIGURE 1.—Domestic production, domestic shipments, exports, and imports of crude sulfur, 1900-1939.

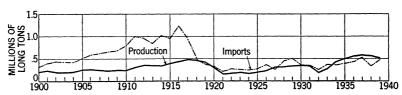


FIGURE 2.-Domestic production and imports of pyrites, 1900-1939.

In connection with its studies on the concentration of economic power the Temporary National Economic Committee held hearings on the sulfur industry on March 14, 1939. During the year the United States Department of Justice, with the full cooperation of the two leading sulfur companies, conducted an investigation of the sulfur industry in connection with its general inquiry into fertilizers and their constituent ingredients. Early in 1940 the Department announced "that in view of certain commitments made by the two principal domestic sulfur companies, the public interest requires no prosecution by the Antitrust Division in the sulfur industry at this time."

¹Temporary National Economic Committee Hearings; Part 5. Investigation of Concentration of Economic Power: Washington, 1939, pp. 1983–2009, 2200–2275.

The production of native sulfur in the United States up to and including 1939 has totaled more than 45 million long tons. Virtually the entire output has been produced since 1900. The principal trends in the sulfur and pyrites industries are shown in figures 1 and 2.

SULFUR

Domestic production.—Production of sulfur in the United States in 1939 decreased 13 percent from 1938; however, shipments from the mines increased 37 percent over 1938, were only 9 percent below the record total in 1937, and were the third largest of record. About a hundred tons of sulfur-bearing ore used for agricultural purposes were produced in 1939 but are not included in the total for 1939. None of this material was reported in 1938.

Sulfur produced	and shipped	in the United	d States, 1935–39

		Shipped				Shi	pped
Year	Produced (long tons)	Long tons	Approxi- mate value	Year	Produced (long tons)	Long tons	Approxi- mate value
1935 1936 1937	1, 632, 590 2, 016, 338 2, 741, 970	1, 634, 990 1, 968, 820 2, 466, 512	\$29, 300, 000 35, 400, 000 44, 300, 000	1938 1939	2, 393, 408 2, 090, 979	1, 628, 847 2, 233, 817	\$27, 300, 000 35, 500, 000

Eighty percent of the domestic output of sulfur reported for 1939 came from Texas and the remainder principally from Louisiana. California and Utah produced only 2,979 long tons. Thus the first two States produced more than 99 percent of the domestic output. Active mines in 1939 are listed in the following table.

Mines that produced sulfur in the United States in 1939

Operating company	Name of mine	Location of mine
California: Various companies Louisiana: Freeport Sulphur Co Texas: Duval Texas Sulphur Co Freeport Sulphur Co Jefferson Lake Oil Co., Inc Texas Gulf Sulphur Co Utah: Utah Sulphur Industries.	Crater Group Gulch Group Grande Ecaille Boling Dome Orchard Dome Hoskins Mound Clemens Dome Boling Pome Utah Sulphur Industries	Bigpine, Inyo County. Do. Port Sulphur, Plaquemines Parish. Boling, Wharton County. Orchard, Fort Bend County. Freeport, Brazoria County. Brazoria, Brazoria County. Newgulf, Wharton County. Beaver, Beaver County.

Recovery as byproduct.—Treatment of copper and zinc ores yields large quantities of sulfur, which is recovered at the mills as a pyrites concentrate or at the smelters as sulfuric acid. Production of pyrites concentrate is discussed in the pyrites section of this report. In the smelting of copper and zinc concentrates, sulfur is driven off as sulfur dioxide gas, which is used at many smelters in the manufacture of sulfuric acid. The equivalent of about 155,000 long tons of sulfur was recovered as sulfuric acid annually from this source during the 5 years ended in 1938. Such sulfur is not included in the sulfur-production figures for the United States, but the following table shows the output of byproduct acid at both copper- and zinc-smelting

plants. The acid reported is only that made from the sulfur content of sulfide ores but does include the relatively small amount of acid made from pyrites concentrate in Wisconsin.

Byproduct sulfuric acid (expressed as 60° B.) produced at copper and zinc plants in the United States, 1934-38, in short tons 1

	1934	1935	1936	1937	1938
Copper plants Zinc plants	168, 676 406, 984	160, 151 443, 476	226, 738 505, 882	² 291, 638 542, 356	² 220, 297 466, 879
	575, 660	603, 627	732, 620	2 833, 994	² 687, 176

Figures for 1939 not yet available.
 Includes a small amount of sulfuric acid produced as a byproduct in the roasting of high-sulfide gold and silver concentrates.

Purification of manufactured gases—that is, the removal of hydrogen sulfide—has long been accomplished by passing the gases through trays of iron hydroxide, which resulted in the formation of iron sulfide. known as spent oxide. Although this material has been used as a source of sulfur in Europe, it has not been to any great extent a source of sulfur in the United States and has been discarded. During the last decade, however, the removal and recovery of sulfur as a useful byproduct from coke-oven gas, water gas, refinery-still gas, natural gas, and other fuel gases have been expanding in this country as a result of developments in various liquid-purification processes. All such processes are not designed to permit recovery of sulfur as a byproduct, but those that do may be divided into two classes, those that recover elemental sulfur and those that give hydrogen sulfide as an end product. The latter has received increasing attention in recent years. Typically, processes that recover elemental sulfur operate on manufactured fuel gases, while those that recover hydrogen sulfide are applied to refinery-still gas and natural gas, and usually these gases are under high pressure. However, investigation has indicated that the phenolate process, at least, is adapted to the removal and recovery of sulfur from low-pressure, low-sulfur gases,3 such as coke-oven gas, and commercial application to such gases may be made in the near future.

Most of the elemental sulfur recovered from gas purification results from operations using the Thylox process; only relatively minor amounts are recovered from Ferrox-process or Nickel-process operations. Production in 1939 (reduced to 100-percent sulfur) totaled 4,307 long tons, of which 3,144 tons valued at \$115,000 was shipped. Output came from Illinois, Maryland, Missouri, New Jersey, New York, Washington, West Virginia, and Wisconsin, with New York the principal producer. The sulfur is produced and marketed either as a paste containing 30- to 57-percent sulfur or as dried, relatively pure sulfur. The fine particle size of the sulfur makes it valuable as a fungicide and insecticide for agricultural purposes, which absorb most of the shipments; some has been exported for such use. Of the 1939 shipments, 1,740 tons was in the form of paste and the remainder dried sulfur.

The hydrogen sulfide gas resulting as the end product in the second class of sulfur recovery is converted to sulfuric acid or burned for

³ Powell, Alfred R., Recovery of Sulfur from Fuel Gases: Ind. Eng. Chem., vol. 31, No. 7, July 1939, p. 795.

fuel. The hydrogen sulfide recovered as a source of sulfur in 1939 came from plants using the phenolate and phosphate processes, while that recovered by the Girbotol process is wasted or burned as fuel. In 1939 the output of sulfur in the form of hydrogen sulfide, which was sold or used in the manufacture of sulfuric acid, was 13,000 long tons and came from California, Indiana, and Pennsylvania.

The figures on the byproduct yield of sulfur from gas purification are not included in the sulfur-production figures for the United States.

Stocks.—As shipments exceeded production in 1939, stocks at the mines decreased during the year. Such stocks, however, are still

large and on December 31 totaled 4,000,000 long tons.

Price.—Sulfur is not quoted on any commodity exchange, and the sellers issue no list prices or statements of similar character; however, the average quoted contract price for sulfur as reported by trade journals was unchanged at \$16 a ton f. o. b. mines throughout 1939. The ex-vessel quotation along the Atlantic seaboard was \$20.50 a long ton. According to the Department of Justice actual prices for various grades, as shown by sales invoices, were substantially lower. Higher prices in foreign markets show the result of increased transportation costs.

Consumption.—The apparent domestic consumption of sulfur in 1939 increased 53 percent over 1938 but was 10 percent below the record level in 1937.

ora iever in 1957.

Apparent consumption of sulfur in the United States, 1935-39, in long tons

	1935	1936	1937	1938	1939
ShipmentsImports	1, 634, 990 1, 978	1, 968, 820 729	2, 466, 512 628	1, 628, 847 2, 603	2, 233, 817 13, 976
	1, 636, 968	1, 969, 549	2, 467, 140	1, 631, 450	2, 247, 793
Exports: Crude	402, 383 10, 916	547, 199 19, 708	675, 297 13, 533	579, 107 12, 707	627, 819 25, 005
	413, 299	566, 907	688, 830	591, 814	652, 824
Apparent consumption	1 1, 223, 669	1 1, 402, 642	1 1, 778, 310	1 1, 039, 636	1, 594, 969

¹ Revised figures.

The consumption of sulfur in various industries from 1935 through 1939 has been estimated by Chemical and Metallurgical Engineering as follows:

Sulfur consumed in the United States, 1935-39, by uses, in long tons 1

Use	1935	1936	1937	1938	1939
Chemicals Fertilizer and insecticides Pulp and paper Explosives Dyes and coal-tar products Rubber Paint and varnish Food products Miscellaneous	555,000 239,000 204,000 42,000 39,000 33,000 48,000 4,000 68,500	620, 000 266, 000 260, 000 53, 000 46, 000 39, 000 54, 000 4, 500 78, 000	777, 000 415, 000 302, 000 68, 000 49, 000 64, 000 64, 000 82, 000	484, 000 220, 000 174, 000 50, 000 40, 000 29, 000 50, 000 5, 500 47, 500	695, 000 370, 000 240, 000 64, 000 49, 000 49, 000 6, 000 82, 000

¹ Figures for 1937 and 1938 are not truly representative of consumption but rather of shipments to these specified industries. In 1938 consumers carried over large stocks from 1937, so that actual consumption in 1937 was less than the figures indicate and consumption in 1938 was larger than the above total.

Production of sulfuric acid, the chief use of sulfur in the United States, rose in 1939 owing to increased industrial activity during the latter half of the year. Consumption of acid by the largest consumers, the fertilizer and petroleum-refining industries, increased moderately (about 10 percent) over 1938. Production of superphosphate was up moderately in 1939 accounting for the increased consumption The Tennessee Valley Authority continued its of acid in fertilizers. work on calcium metaphosphate, and operation of the first full-size unit was continued during part of the year. The plant yielded a product containing about 60 percent P₂O₅. The unit uses lump rock phosphate, or agglomerated fines, and phosphorus condensed from A second process that has been carried through electric furnace gases. the pilot-plant stage uses phosphate fines instead of prepared agglomerates or the less available rock. Continued progress is being made in the use of electric furnaces in supplying phosphorus for phosphate fertilizers.4 During 1939 activities in the petroleum-refining industry the second largest consumer of sulfuric acid, increased about 6 percent over 1938 and explained some of the increase in consumption of Use of the alkalation process, which employs sulfuric acid as a catalyst, may reverse the long-time trend toward reduction of requirements in the refining industry. On the other hand, through application of reversible absorbents, the hydrogen sulfide removed in the purification of oil refinery products is being recovered and converted to sulfuric acid. Continued increase in output of titanium dioxide accounted for a large increase in the use of acid in paints and pigments.

Chemical and Metallurgical Engineering has estimated the consumption of sulfuric acid, by industries, from 1935 through 1939 as follows:

Sulfuric acid (expressed as 50° B.) consumed in the United States, 1935-39, by industries, in short tons

Industry	1935	1936	1937	1938	1939
Fertilizer Petroleum refining Chemicals Coal products Iron and steel Other metallurgical Paints and pigments Explosives Rayon and cellulose film Textiles Miscellaneous	1, 720, 000 980, 000 940, 000 625, 000 520, 000 400, 000 175, 000 90, 000 342, 000	1, 987, 000 1, 100, 000 955, 000 770, 000 770, 000 560, 000 450, 000 222, 000 330, 000 108, 000 380, 000	2, 230, 000 1, 100, 000 1, 020, 000 865, 000 1, 100, 000 625, 000 180, 000 380, 000 112, 000 450, 000	1, 920, 000 1, 100, 000 800, 000 585, 000 590, 000 350, 000 140, 000 140, 000 90, 000 355, 000	2, 100, 000 1, 210, 000 975, 000 740, 000 980, 000 570, 000 190, 000 116, 000 400, 000

Foreign trade.—Exports of crude sulfur in 1939 were 8 percent above those in 1938 and, except for 1937, the largest since 1929. Exports of treated sulfur in 1939, while relatively minor, were nearly double the 1938 figure. Movement was slow during the first half of the year, but there was a substantial rise during the closing months.

Imports, though small, were higher in 1939 and were received in the

Northwestern States from Canada.

⁴ Tennessee Valley Authority, Annual Report for the Fiscal Year Ended June 30, 1939: Washington, D. C., 1939, pp. 25-26.

SULFUR AND PYRITES

Sulfur imported into and exported from the United States, 1935-39

	Imports				Exports				
Year	C	re	In any form, n. e. s. Crude		In any form, n. e. s. Crude grou				refined, ed, and
	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	
1935 1936 1937 1937 1938	1, 763 530 398 51 35	\$26, 164 10, 141 4, 724 562 445	215 199 230 2, 552 13, 941	\$30, 975 27, 437 38, 171 71, 903 250, 422	402, 383 547, 199 675, 297 579, 107 627, 819	\$7, 582, 293 10, 147, 038 12, 155, 253 10, 378, 991 10, 771, 751	10, 916 19, 708 13, 533 12, 707 25, 005	\$418, 532 746, 985 509, 133 469, 773 909, 974	

Sulfur exported from the United States, 1938-39, by countries

		Cr	ude		Crushed	ground and flo	, refined, s owers of	ublimed,
Country	1	1938	1	1939		38	193	39
	Long tons	Value	Long tons	Value	Pounds	Value	Pounds	Value
North America: Canada Central America Mexico Newfoundland and Labra-	5, 946	124, 435	108		282, 469	7.083	284, 818	6, 594
dor West Indies	2, 989 8, 575	53, 802 160, 837			4, 000 211, 715			122 7, 691
	100, 279	1, 829, 169	163, 744	2, 709, 464	7, 291, 641	151, 909	9, 108, 341	195, 394
South America: Argentina. Brazil. Colombia. Other South America	4, 106					2, 777 6, 805 12, 041 4, 118	367, 373 2, 738, 603 803, 125 936, 824	13, 182 48, 359 17, 306 18, 117
	20, 208	371, 684	39, 933	706, 692	1, 127, 728	25, 741	4, 845, 925	96, 964
Europe: Belgium Denmark France	6, 032 98, 751	1, 826, 896	7, 057 39, 811	131, 630 699, 326	101, 798 1, 361, 579 522, 049	1, 390 17, 090 6, 807	126, 069 1, 066, 998 591, 918	1, 840 13, 775 8, 220
Germany Greece Netherlands Sweden United Kingdom	32, 817 21, 663 5, 993 99, 135	610, 750 418, 980 106, 199 1, 615, 032	12, 515 13, 097	232, 283 230, 803	454, 148 1, 009, 701 676, 783	5, 919 12, 672 8, 499	157, 722 18, 739, 160 972, 605 1, 223, 140	2, 079 252, 516 12, 867 15, 495
Other Europe	8, 400	149, 800	112, 810 11, 678	1, 745, 164 192, 558	4, 935, 464 2, 089, 286	65, 730 27, 439	5, 001, 073 1, 364, 243	75, 099 19, 186
Asia	272, 7 91 8, 832	4, 841, 044 180, 468	205, 670 33, 217	3, 380, 173 666, 391	11, 150, 808 2, 986, 877	145, 546 46, 917	29, 242, 928 7, 987, 532	401, 077 118, 798
Africa: Algeria	14, 057	261, 903	5, 500	98, 999				
Mozambique Union of South Africa Other Africa	11, 298 10	203, 364 250	19, 911 750	358, 415 18, 069	359, 267 1, 250, 551 189, 595	6, 444 24, 803 2, 942	1, 019, 840 1, 822, 980 559, 949	18, 877 33, 823 7, 951
	25, 365	465, 517	26, 161	475, 483	1, 799, 413	34, 189	3, 402, 769	60, 651
Oceania: Australia New Zealand Other Oceania	108, 465 43, 167	1, 928, 755 762, 354	109, 341 49, 753	1, 952, 859 880, 689	3, 805, 520 299, 768 1, 200	56, 529 8, 924 18	1, 142, 501 282, 039	29, 501 7, 589
		2, 691, 109	159, 094	2, 833, 548		65, 471	1, 424, 540	37, 090
	579, 107	10, 378, 991	627, 819	10, 771, 751	28, 462, 955	469, 773	56, 012, 035	909, 974

Shipments to Canada, normally the principal market for American crude sulfur, showed the largest quantitative increase, while those to Germany, formerly a large market, dropped to only 8,702 long tons. Australia and the United Kingdom again were large takers of American sulfur. Noticeable in 1939 was the large movement of refined sulfur to Greece, which purchased more than any other nation. The foregoing table shows the distribution of exports by countries of destination for 1938 and 1939.

THE INDUSTRY IN 1939, BY STATES

California.—Several operators, all in Inyo County, reported production in 1939. The output consisted of relatively pure sulfur and concentrates containing about 85 percent sulfur. The largest output came from the Crater Group of claims.

The sulfur deposits in Inyo County have been described by Lynton.⁵
Louisiana.—Production of sulfur in Louisiana in 1939 totaled 422,600 long tons and was made by the Freeport Sulphur Co. from its

operations at Grande Ecaille, Plaquemines Parish.

Texas.—Texas supplied 80 percent of the domestic sulfur output in 1939. Five operations contributed to the total, but by far the largest output came from the Boling Dome property of the Texas Gulf Sulphur Co. The following table, compiled from information issued by the Texas State Comptroller's Office, shows the quarterly production of sulfur in Texas for 1939.

Sulfur produced in Texas in 1939, by companies, in long tons

Company	First quarter	Second quarter	Third quarter	Fourth quarter	Total
Texas Gulf Sulphur Co	200, 210 89, 790 59, 800 55, 463	152, 191 95, 030 72, 080 38, 519	146, 123 91, 565 81, 129 53, 838	319, 799 91, 970 58, 122 60, 156	818, 323 368, 355 271, 131 207, 976
	405, 263	357, 820	372, 655	530, 047	1, 665, 785

The Freeport Sulphur Co., the second largest producer, continued operations at Hoskins Mound. Output at Clemens Dome, Brazoria County, which was begun in 1937 by the Jefferson Lake Oil Co., Inc., continued in 1939 but at a lower rate than in 1938. This company explored, by drilling, certain leases on Long Point Dome during the year but was unsuccessful in developing commercial quantities of sulfur. The Duval Texas Sulphur Co. continued production at Orchard Dome, Fort Bend County, and at Boling Dome, Wharton County.

Utah.—Sulfur production in Utah in 1939 came from the Utah Sulphur Industries plant at Beaver, Beaver County.

WORLD PRODUCTION

World production of sulfur in 1939, including elemental sulfur recovered in the treatment of pyrites and as a byproduct from the treatment of gas and gasoline in Germany, is estimated at 2,900,000 long tons. The following table shows the output of native sulfur for the world from 1935 through 1939.

⁵ Lynton, Edward D., Sulfur Deposits of Inyo County, Calif.: California Jour. Mines and Geol. Division of Mines, Dept. of Natural Resources, State of California, vol. 34, No. 4, October 1938, pp. 563-590.

World production of native sulfur, 1935-39, in long tons 1 [Compiled by R. B. Miller]

Country	1935	1936	1937	1938	1939
Argentina Bolivia (exports) Chile Ecuador France (content of ore) Greece Guatemala Ltaly (crude) 4 Japan 5 Mexico Netherland East India Palestine Peru Taiwan Turkey United States	³ 19, 792 118 64 23	985 \$ 25,525 59 123 150 16 322,396 172,545 6 1,272 11,311 79 1,696 1,207 3,139 2,016,338	1,712 3 16,766 54 157 67 111 338,101 (2) (2) (2) (3) (4) (4) (4) (4) (5) (7) (8) (9) (1) (9) (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (5) (4) (5) (6) (7) (7) (8) (9) (9) (9) (1) (1) (1) (1) (2) (3) (4) (4) (4) (4) (5) (6) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9	1, 632 20, 959 68 140 75 374, 339 (2) 49 15, 986 1, 196 1, 1975 (2) 3, 684 2, 393, 408	(*) 2,126 (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)

¹ Sulfur is also believed to be produced in China, Spain, and the U. S. S. R., but the amount produced is unknown.

² Data not available

Data not available.
 In addition, the following quantities of sulfur rock are reported: 1935, 4,785 tons (77.5 percent sulfur); 1936, 11,612 tons (40-80 percent sulfur); and 1937, 1,050 tons.
 In addition, the following quantities of sulfur rock are reported: 1935, 18,738 tons; 1936, 20,743 tons; 19,793 tons; and 1938, 16,545 tons.
 In addition, the following quantities of sulfur rock are reported: 1935, 20,764 tons; and 1936, 31,576 tons.
 In addition, the following quantities of sulfur rock are reported: 1935, 20,764 tons; and 1936, 31,576 tons.
 Crude sulfur product.

Canada.—Elemental sulfur is being produced in the treatment of base-metal smelter gas at Trail, British Columbia, by the Consolidated Mining & Smelting Co. The plant has a reported capacity of 150 tons of sulfur per day. Late in 1938 the Aldermac Copper Corporation. Ltd., was reported to have begun construction of a plant for the production of elemental sulfur from pyrite concentrates by the Westcott process. Imports of sulfur into Canada increased to 135,907 long tons in 1939 from 83.658 tons in 1938.

Chile.—Chile is the principal sulfur producer in South America. Production data in 1939 are not yet available, but exports for the first 11 months were 7,135 long tons compared with 9,227 for the same period in 1938. The development of sulfur deposits has been listed by the Government as one of the items to be considered in the general

plan of national economic development.

Germany.—Germany does not produce native sulfur, but in recent years the output of byproduct sulfur has been making such rapid progress that the country soon may be self-sufficient. Data on production for 1939 are not available, but increased output is coming from coking plants, low-temperature carbonization plants, gasoline hydrogenation plants. In the past, nearly the entire German output of elemental sulfur came from desulfurization at coke plants, but most of the gain in production recently has resulted from installation of improved recovery methods at gasoline hydrogenation plants, now the main source of supply. Imports of sulfur into Germany for the first 6 months of 1939 were 25,323 long tons (63,856 tons for 6 months in 1938), of which 23,059 tons came from Italy. Much of the sulfur imported into Germany is transshipped to nearby countries; exports for the first 6 months of 1939 were 23,154 tons. A plant for producing sulfuric acid from gypsum was completed and put into

operation at Wolfen in 1939. The annual capacity is reported to be

80,000 tons of acid.

Italy.—Italy, including Sicily, is the world's second largest producer of sulfur, and the output is subsidized with minimum prices to mine operators guaranteed by a central Government sales bureau. The production quota established for the fiscal year ended July 31, 1939, was 393,682 long tons, but only 349,400 tons were placed at the disposal of the sales office; 64 percent came from 99 mines in Sicily and 36 percent from 6 mines in continental Italy. Although continental mines fulfilled their quota, output in Sicily was restricted by the outbreak of fires in several important mines. The guaranteed prices on the grades of sulfur produced in Italy are as follows:

Gialla superiore (guaranteed 99.5 percent of sulfur) 350 lire per metric ton. Gialla inferiore (guaranteed 99.25 percent of sulfur) 340 lire per metric ton. Buona (guaranteed 98 percent of sulfur) 328 lire per metric ton. Corrente (guaranteed 97 percent of sulfur) 318 lire per metric ton.

Prices increased 20 lire per metric ton for the second quarter of 1939 Exports for the first 7 months of 1939 were 144,623 long tons, compared with 135,061 tons for the same period in 1938.

Japan.—Data on the production and exports of sulfur in Japan in 1939, the third largest producer, are not available. Exports were

31,012 long tons in 1938.

Norway.—Production of sulfur in Norway results from the treatment of cupriferous pyrites at the Thamshavn plant of the Orkla Metal Co.; output in 1939 was reported ⁶ to be about 108,263 long tons. Exports in 1939 were 82,422 long tons compared with 75,425 tons in 1938. Although Norway has exported sulfur since 1932, it continues to import sulfur; imports in 1939 were 9,481 long tons.

Portugal.—Production of elemental sulfur from pyrites at the San Domingos mine was begun in 1935. Output during 1939 was 11,221 long tons compared with 11,059 in 1938; imports in 1939 were 3,157

long tons compared with 3,408 in 1938.

Spain.—The output of native sulfur in Spain is supplemented by elemental sulfur obtained in the treatment of pyrites. Figures for

recent years are not available.

Sweden.—Elemental sulfur recovered as a byproduct of smelter gases by the Boliden Co. at Ronskar in North Sweden is the only sulfur produced in Sweden. Output at this plant was 17,512 long tons in 1938. Imports of sulfur for the first 9 months of 1939 were 36,241 long tons compared with 27,531 for the same period in 1938.

PYRITES

Domestic production.—Production of pyrites (ores and concentrates) in the United States in 1939 dropped 7 percent from 1938, but the sulfur content was higher—42.2 percent in 1939 compared with 39.4 percent in 1938—with the result that the available sulfur was nearly the same. Of the 1939 total, only 30,579 tons were lump and the remainder fines; most of the fines were flotation concentrates.

⁶ Mining Journal (London), Norway in 1939: Vol. 208, No. 5455, March 9, 1940, p. 147.

	Qua	ntity			Qua		
Year	Gross weight (long tons)	Sulfur content (percent)	Value	Year	Gross weight (long tons)	Sulfur content (percent)	Value
1935	514, 192 547, 236	39. 5 39. 6	\$1, 583, 074 1, 666, 194	1938 1939	555, 629 516, 408	39. 4 42. 2	\$1, 685, 766 1, 550, 449

1, 777, 787

Pyrites (ores and concentrates) produced in the United States, 1935-39

The quantity of pyrites (ores and concentrates) sold or consumed by producing companies totaled 511,739 long tons in 1939 compared with 524,120 tons in 1938. In 1939, 188,712 tons were sold by producers compared with 163,711 tons in 1938. All sales in both years were to domestic consumers. Prices quoted by the trade journals are for imported pyrites and are given in cents per long-ton unit of sulfur, c. i. f. Atlantic ports; quotations, which are nominal, were unchanged at 12–13 cents per long-ton unit throughout the year.

Tennessee was the principal producing State in 1939; other States producing were California, Colorado, Illinois, Indiana, Kansas, Mis-

souri, Montana, New York, Virginia, and Wisconsin.

THE INDUSTRY IN 1939, BY STATES

California.—The Mountain Copper Co., was the only producer of pyrites in California in 1939; output came from the Hornet mine in

Shasta County.

1937_____

584, 166

Colorado.—The Minnesota Mines, Inc., was the only producer of pyrites in Colorado in 1939. The material is recovered by flotation as an auriferous sulfide concentrate, which is shipped to Denver for manufacture of acid after the gold content has been recovered by cvanidation.

Illinois.—One operator, the Midland Electric Coal Corporation, produced and shipped 13,950 long tons of pyrites (coal brasses) from its coal-cleaning operations at the Atkinson mine in Henry County. The product, which contained about 46 percent sulfur, was shipped to

Indiana for the manufacture of sulfuric acid.

Indiana.—The Snow Hill Coal Corporation produced and shipped 4,403 long tons of pyrites (coal brasses) containing 40 percent sulfur from its Talleydale mine in Vigo County in 1939. The product moved to acid plants in the Chicago area. A considerable additional tonnage was wasted.

Kansas.—The Mineral Products Co. produced 9,838 long tons of pyrites (coal brasses) in 1939 at West Mineral, Cherokee County. Shipments averaging 47 percent sulfur were consigned to St. Louis,

Mo., where they were used in acid making.

Missouri.—In 1939 three operations produced 32,496 long tons of pyrites containing 47 percent sulfur, the total for Missouri. The largest producer was the Moselle No. 10 mine in Phelps County, operated by Thomas & Williams. Other output came from Cherry Valley mine in Crawford County operated by H. H. Lark and from the Kelsey mine in Franklin County operated by Roy C. Libhart. Shipments moved to acid plants in the St. Louis area.

Montana.—The pyrites produced in Montana in 1939 came from the Anaconda Copper Mining Co. at Anaconda, where it is recovered

as a flotation concentrate in copper-plant operation.

New York.—During 1939 the St. Joseph Lead Co. produced 71,176 long tons of pyrites concentrate at its Balmat mill in St. Lawrence County. The pyrites, which ran 49.85 percent sulfur, was produced as a flotation concentrate in the treatment of zinc-bearing ore.

Tennessee.—The pyrites output in Tennessee during 1939 came from the Tennessee Copper Co., Ducktown Basin, Polk County. It is produced as a flotation concentrate but does not enter the market,

as all of it is used by the company in the manufacture of acid.

Virginia.—The only pyrites mined in Virginia in recent years has come from the Gossan mine at Cliffview, Carroll County, and the entire output is concentrated by means of air tables for the manufacture of sulfuric acid in the company plant at Pulaski. The new mill, which was placed in operation late in 1938, has increased the tenor of the product shipped.

Wisconsin.—The one company reporting production in Wisconsin in 1939 was the Vinegar Hill Zinc Co. in Grant County which has been recovering pyrites by selective flotation since the latter part of 1938; previously, magnetic separation was employed. The ore is

produced from several mines in the Platteville district.

FOREIGN TRADE

Imports of pyrites in 1939 increased 44 percent over 1938. Receipts from Spain, normally by far the principal source, dropped moderately, but the striking increase in shipments from Canada made up the difference. Greece, a new source, also supplied a substantial quantity in 1939.

Pyrites, containing more than 25 percent sulfur, imported into the United States, 1935-39, by countries

	1	935	1	936	1	937	19	938	1	939
Country	Long tons	Value	Long tons	Value	Long tons	Value	Long	Value	Long tons	Value
Belgium Canada Greece Mexico Portugal Spain			59, 804 309, 114	286, 974 913, 820	20, 558 549 21, 725 481, 598	1, 473 109, 395 1, 158, 671	202 303, 968	709, 983	22, 800 282, 732	106, 271

Most of the imports of pyrites move into Philadelphia and Baltimore where it is used in the manufacture of sulfuric acid.

Pyrites, containing more than 25 percent sulfur, imported into the United States, 1935-39, by customs districts, in long tons

Customs district	1935	1936	1937	1938	1939
BuffaloChicago	94 2, 704	140	584	5, 130	21, 940
Georgia Los Angeles	4, 002 848	2, 500	4, 795		
Maryland New York Ohio	182, 333 56, 725	172, 290 60, 041	220, 430 64, 621	113, 838 55, 830	176, 982 46, 170
Philadelphia San Diego	129, 793 85	158, 088	194, 680 549	130, 703	2, 000 189, 727
South Carolina Vermont Virginia Washington	7, 681 6, 242 6, 606	9, 429 17, 449 9, 376	9, 519 19, 974 9, 278	5, 265 15, 713 7, 553	4, 396 31, 433 8, 885
	397, 113	429, 313	524, 430	334, 234	482, 336

WORLD PRODUCTION

The following table shows world production of pyrites and its sulfur content. The figures are taken principally from official sources of the countries concerned, supplemented by information from publications of the Imperial Institute and other reliable sources.

World production of pyrites (including cupreous pyrites), 1937-39, in metric tons
[Compiled by M. T. Latus]

	19	937	19	38	19	39
Country 1	Gross weight	Sulfur content	Gross weight	Sulfur content	Gross weight	Sulfur content
Algeria Australia (Tasmania) Canada Chosen Cyprus (exports) Czechoslovakia Finland France Germany Greece Italy Norway Poland Portugal Rumania Sweden United Kingdom United States Uruguay Yugoslavia	108, 370 79, 500 395, 076 18, 361 91, 311 145, 820 447, 345 206, 650 914, 524 1, 048, 300 82, 263 604, 132 20, 342 172, 263 28, 915 4, 701 593, 542	17, 830 (2) 54, 595 (2) 193, 587 7, 712 39, 264 65, 027 193, 050 100, 295 402, 395 402, 395 402, 395 402, 397 36, 195 283, 986 6, 717 8, 128 8, 128 75, 337 12, 931 (2) 235, 520 60, 253	44, 150 51, 084 40, 464 (2) 523, 574 (2) 102, 979 147, 208 465, 267 244, 000 930, 312 1, 027, 776 92, 209 558, 327 11, 205 27, 685 186, 890 31, 017 4, 351 564, 547 70 150, 402	19, 430 (2) 20, 300 (2) 256, 551 (4) 256, 555 200, 064 118, 605 386, 033 36, 883 251, 247 7, 061 10, 900 13, 947 (2) 222, 612 (3) 67, 681	(2) (2) (209, 098 (3) (3) (4) (4) (2) (2) (3) (4) (2) (2) (3) (4) (2) (2) (3) (4) (2) (4) (2) (3) (4) (4) (5) (6) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	(2) (2) (3) (3) (4) (2) (3) (4) (5) (5) (6) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9

¹ In addition to countries listed Belgium, China, Japan, Spain, and the U. S. S. R. produced pyrites, ² Data not available.

Canada.—There was a pronounced increase in Canadian production of pyrites in 1939. Of the year's output, 113,464 metric tons containing 55,249 tons of sulfur came from Quebec and 95,634 metric tons containing 48,056 tons of sulfur from British Columbia. Output in Quebec came from the Aldermac mine in western Quebec and at Eustis in the eastern townships; operations at the latter property ceased in July 1939 after nearly three-quarters of a century. The output of

British Columbia came from the Britannia mill, where pyrites concentrate is produced in the treatment of ores for the extraction of copper. Other deposits in British Columbia and northwestern Ontario attracted attention during the year. Exports from Canada rose sharply in 1939, amounting to 99,919 metric tons (sulfur content) compared with 20,057 tons (sulfur content) in 1938.

In addition, sulfuric acid is made from smelter gases at the Trail (British Columbia) and Copper Cliff (Ontario) smelters, and elemental sulfur is recovered at Trail. In 1939, 87,842 metric tons of sulfur were recovered as sulfur or in sulfuric acid manufactured from smelter

gases.

Japan.—Japan is one of the principal producers of pyrites, but data on production are not available, owing to a ban on information pertaining to domestic production and consumption. The entire output is consumed locally in the manufacture of sulfuric acid, and Japan

is said to be nearly self-sufficient as regards this material.

Norway.—Production of pyrites is one of the principal mining industries in Norway, and in 1939 output exceeded 1,000,000 metric tons for the fourth successive year. Exports were slightly lower in 1939, totaling 653,962 metric tons compared with 654,956 in 1938. Some of the Norwegian pyrites is used locally for the production of elemental sulfur.

Portugal.—Output was at a high rate in 1939, totaling 673,200 metric tons. Exports in 1939 were 432,895 metric tons compared

with 456,786 in 1938.

Spain.—Spain is the principal world producer of pyrites, but war conditions undoubtedly affected operations during 1939. Official data for recent years are not available, but unofficial reports indicate that shipments of pyrites from the ports of Huelva, Seville, and La Laja were 2,256,800 metric tons in 1937, 2,331,200 in 1938, and 1,635,200 in 1939. Underground mining methods at Rio Tinto have been described by Julian.

⁷ Julian, C. R., Underground Mining at Rio Tinto, Spain: Bull. Inst. Min. and Met., No. 421, October 1939, pp. 1-43.

PHOSPHATE ROCK

By BERTRAND L. JOHNSON AND K. G. WARNER

SUMMARY OUTLINE

	Page		Page
General conditions	1301	Reserves	130
Production	1301	Review by States Foreign trade	1304
Sales	1302	World production	1316
Consumption	1303	Technology Superphosphates	1316
Prices	1304	Basic slag	1319

Domestic demand for phosphate rock improved slightly in 1939 over 1938, a little more than enough to offset the decline in exports caused partly by the blockade of Germany after the outbreak of war in September. Total shipments of domestic phosphate rock in 1939 (3,757,067 long tons, valued at \$12,294,042), although a little greater in tonnage, were less in value than in 1938. Part of the slight gain in mine production over 1938 was added to stocks, which were greater at the end of 1939 than a year earlier. The output in Tennessee and the Western States was greater than in any previous year; but in Florida, by far the leading producing State, it was less than in 1937 or Imports were even smaller than usual.

Salient statistics of the phosphate rock industry in the United States, 1938-39

		1938			1939	
		Value at	mines		Value at	mines
	Long tons	Total	Average	Long tons	Total	Average
Production (mined)	3, 860, 476	(1)	(1)	3, 987, 970	(1)	(1)
Soli or used by producers: Florida: Land pebble 2 Soft rock Hard rock Total, Florida Tennessee 2 3 Idaho Montana South Carolina Virginia	53, 479 125, 048 2, 707, 335 899, 298 66, 014 66, 491 100 (3)	\$7, 993, 665 178, 093 601, 922 8, 773, 680 3, 725, 601 296, 595 155, 917 350	\$3. 16 3. 33 4. 81 3. 24 4. 14 4. 49 2. 34 3. 50 (3)	2, 547, 782 41, 906 89, 096 2, 678, 784 938, 448 95, 451 44, 384	\$7, 353, 567 128, 435 411, 455 7, 893, 457 3, 856, 505 431, 938 112, 142	\$2. 89 3. 06 4. 62 2. 95 4. 11 4. 53 2. 53
Total, United States Imports Exports	3, 739, 238 7, 006 1, 140, 841	12, 952, 143 4 80, 539 4 6, 637, 638	3. 46 4 11. 50 5. 82	3, 757, 067 3, 500 949, 006	12, 294, 042 4 23, 625 5 5, 233, 104	3. 27 4 6. 75 8 5. 51
Apparent consumption 6	2, 605, 403			2, 811, 561		
Stocks in producers' hands, Dec. 31: Florida Tennessee 3 7 Other	1, 285, 000 224, 000 3, 000	(i) (i)	(1) (2)	1, 504, 000 247, 000 2, 000	999	(i) (i)
Total stocks	1, 512, 000	(1)	(1)	1, 753, 000	(1)	(J)

² Includes sintered matrix. 1 Figures not available. 3 Virginia included with Tennessee.

Market value (or price) at port and time of exportation to the United States.

Value at port of exportation.

Quantity sold or used by producers plus imports minus exports.

Includes brown-rock matrix of sinter grade and sintered brown rock.

On February 27, 1939, the Department of Justice began a Nation-

wide investigation of the fertilizer industry.

The report of the hearings of the Joint Congressional Committee to Investigate the Adequacy and Use of Phosphate Resources of the United States, pursuant to Public Resolution No. 112, was published early in the year. The findings and recommendations of the joint congressional committee were reviewed in a pamphlet entitled "The Facts About the Adequacy and Use of Our National Phosphate Resources," published in April 1939 by the Phosphate Rock Institute of New York City.

Just before the close of Congress in August, the phosphate investigators were granted a \$5,000 appropriation to complete their work of determining the extent of domestic resources of phosphate rock and

related minerals.

A general paper on phosphate, by F. S. Lodge, of the National Fertilizer Association, presented at the meeting of the Division of Fertilizer Chemistry, American Chemical Society, held at Boston, Mass., September 11 and 12, 1939, was published later in the American Fertilizer.

Production.—Mine production of phosphate rock in the United States in 1939 increased about 128,000 tons over 1938 but did not recover to the 1937 peak. Phosphate rock was mined in Florida, Tennessee, Idaho, and Montana, and apatite was recovered from nelsonite in Virginia. Phosphate rock operations in South Carolina, which had been resumed in 1938 after a lapse of many years, were inactive in 1939.

Phosphate rock mined in the United States, 1930-39, by States, in long tons

Year	Florida	Tennes- see	West- ern States	United States	Year	Florida	Tennes- see	West- ern States	United States
1930 1931 1932 1933 1934	3, 361, 786 2, 155, 903 1, 500, 891 2, 039, 531 2, 464, 969	393, 925 1 152, 533 1 296, 441	116, 681 44, 724 23, 663	2, 359, 635	1935 1936 1937 1938 1939	2, 598, 337 2, 645, 819 3, 179, 588 2, 722, 927 2, 791, 360	1 737, 866 1 942, 158 2 999, 551	139, 670 137, 998	3, 462, 837 4, 261, 416 3, 860, 476

Includes small quantity of apatite from Virginia.
 Includes small quantity of apatite from Virginia and phosphate rock from South Carolina.

Sales.—The quantity of domestic phosphate sold or used by producers in 1939 was slightly greater than in 1938, but the value of the shipments declined more than half a million dollars from the 1938 figure.

Phosphate rock sold or used by producers in the United States, 1935-39

77	Long	Value a	t mines	Year	Long	Value at	143 \$3.46
Year	tons	Total	Average	1 ear	tons	Total	Average
1935 1936 1937	3, 042, 381 3, 351, 857 3, 956, 189	\$10, 951, 723 11, 406, 132 12, 975, 268	\$3. 60 3. 40 3. 28	1938 1939	3, 739, 238 3, 757, 067	\$12, 952, 143 12, 294, 042	\$3.46 3.27

¹ Hearings before the Joint Committee to Investigate the Adequacy and Use of Phosphate Resources of the United States: 75th Cong., 3d sess., pursuant to Public Res. 112, A Joint Resolution to Create a Joint Congressional Committee to Investigate the Adequacy and Use of the Posphate Resources of the United States: June 18, 20, and 21; July 20, 21, and 22; November 21, 22, 24, 25, 28, and 29, 1938; Washington, 1939,

1, 182, pp. 1 Lodge, F. S., Phosphates and Their Utilization: Am. Fertilizer, vol. 91, No. 8, October 14, 1939, pp.

Distribution of sales.—Shipments of phosphate rock fall into two distinct groups according to grade—one below 60 percent B. P. L. (bone phosphate of lime) and the other above 68 percent B. P. L. The latter is the larger group, and most of the sales are of the grades between 72 and 75 percent B. P. L. The manufacture of acidulated superphosphate is still the major outlet for domestic rock; however, with development of the use of low-grade material in the production of elemental phosphorus by the electric furnace method, the retreatment of land-pebble wastes by flotation, and the utilization of the low-grade, hard-rock, waste-pond phosphates, the consumption of grades containing less than 60 percent B. P. L. is becoming increasingly important.

The following table, showing the distribution of sales by grades, uses, and classes of consumers, is compiled from reports of domestic producers of phosphate rock.

Phosphate rock sold or used by producers in the United States, 1938-39, by grades, uses, and classes of consumers

		1938			1939	
	Quai	ntity		Quar	itity	
	Long tons	Percent of total	Value	Long tons	Percent of total	Value
erades—B. P. L.¹ content (percent): Below 60 60 to 66 68 basis, 66 minimum 70 minimum 72 minimum 75 basis, 74 minimum 77 basis, 76 minimum 77 minimum 77 minimum Above 85 (apatite) Undistributed 4	100 378, 847	(3) 100 100 24 25 9 (4) 100	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	395, 709 18, 818 366, 512 383, 483 1, 227, 806 769, 360 328, 784 (4) 276, 595	111 1 9 100 33 20 9 (4) 7	(2) (2) (2) (3) (2) (2) (2) (3) (3) (3)
Uses: Domestic: Superphosphates. Phosphates, phosphoric acid, ferrophosphorus. Direct application to soil. Fertilizer filler. Stock and poultry feed. Undistributed * Exports.	2, 074, 779 443, 086 83, 069 24, 746 5, 904 7, 748 1, 099, 906 3, 739, 238	56 12 2 1 (3) (3) (3) 29	(2) (2) (2) (2) (2) (2) (4, 478, 266	2, 192, 779 479, 020 95, 667 30, 994 1, 794 10, 423 946, 390	58 13 3 1 (³) (³) 25	(2) (3) (3) (2) (2) (2) (2) (3) 3,747,60
classes of consumers: Affiliated companies Other domestic consumers Export 7	959, 717 1, 679, 615 1, 099, 906	26 45 29	3, 182, 569 5, 291, 308 4, 478, 266	3, 757, 067 948, 640 1, 862, 037 946, 390	25 50 25	3, 035, 26 5, 511, 16 3, 747, 60
•	3, 739, 238	100	12, 952, 143	3, 757, 067	100	12, 294, 04

¹ Bone phosphate of lime. ¹ Figures not available. ³ Less than 0.5 percent.
⁴ Included under "Undistributed"; Bureau of Mines not at liberty to publish figures.
⁵ Includes grades of B. P. L. content between 68 and 70; 69/66; 68/70; 71; 73/74; 73; 76.55; 78/76; 78; and above 85 percent; also dust, B. P. L. content not known.
⁶ Includes some calcined phosphate and phosphatic material used in pig-iron blast furnaces, concrete aggregates, in the manufacture of concentrated fertilizers, as filler in asphalt mixtures, and as foundry facings.
⁻ As reported to the Bureau of Mines by producers (exclusive of exports by dealers, etc.).

Consumption.—The apparent domestic consumption of phosphate rock in 1939 (2,811,561 long tons) was about 200,000 tons above the figure for 1938 and 100,000 tons below the 1937 peak. Figure 1 shows a logistic curve fitted to the consumption of phosphate rock in the United States since 1867, the consumption for 1938 and 1939 being added to the same curve shown on page 1171 of Minerals Yearbook, 1938. The data for 1938 and 1939 tend further to confirm the decreasing rate of increase and the sidewise trend in domestic consumption of phosphate rock forecast by the logistic curve, with no indication of greatly increased consumption in the future.

Prices.—Trade-journal quotations for various grades of domestic phosphate rock were changed in January 1939. For Florida land

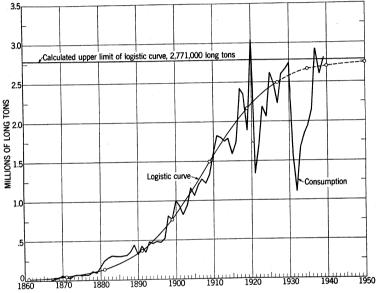


FIGURE 1.—Consumption of phosphate rock in the United States, 1867-1939.

pebble containing 68 percent B. P. L. prices increased slightly (\$1.85 to \$1.90), but for higher grades quotations were substantially lower. The price of the 70-percent grade was dropped from \$2.35 to \$2.15, of the 72-percent grade from \$2.85 to \$2.40, and of the 75-percent grade from \$3.85 to \$2.90. No further changes occurred during the year.

Reserves.—Mansfield has discussed the phosphate rock reserves of the United States in two recent papers.³ As of January 1940, he estimated reserves as at least 13,291,543,000 long tons, including all the different grades considered in his study. Of this quantity, 5,306,651,000 tons are in the Eastern States and 7,984,892,000 tons in the Western States.

REVIEW BY STATES

Florida.—The total tonnage of Florida rock shipped in 1939 was a little less than in 1938, and its value decreased by nearly \$900,000. A

³ Mansfield, George R., Phosphate Deposits of the United States: Econ. Geol., vol. 35, No. 3, May 1940, pp. 405-429; Recent Studies of Reserves of Domestic Phosphate: Amer. Inst. Min. and Met. Eng., Min. Technol., Tech. Pub. 1208, 1940, 10 pp.

slight gain in shipments of land-pebble rock was more than offset by a decline of 22 percent for soft rock and 29 percent for hard rock. Total stocks in hands of Florida producers were higher at the end of 1939 than on December 31, 1938.

In 1939 seven companies produced land-pebble phosphate rock, three companies hard rock, and several small concerns soft rock.

The following seven companies produced land-pebble phosphate rock in 1939:

American Cyanamid Co., 30 Rockefeller Plaza, New York, N. Y.

The American Agricultural Chemical Co., 50 Church Street, New York, N. Y. Plant at Pierce.

Coronet Phosphate Co., 19 Rector Street, New York, N. Y. Plant at Coronet, near Plant City.

International Agricultural Corporation, 61 Broadway, New York, N. Y. Plant at Prairie, near Mulberry.

The Phosphate Mining Co., 110 William Street, New York, N. Y. Plant at

Nichols.

Southern Phosphate Corporation, Baltimore Trust Building, Baltimore, Md. Plant at Ridgewood.

Swift & Co. Fertilizer Works, R. F. D. 1, Bartow, Fla. Plant at Agricola. The following companies mined hard rock in 1939:

J. Buttgenbach & Co., Lakeland, Fla. C. & J. Camp, Ocala., Fla. Dunnellon Phosphate Mining Co., Savannah, Ga.

The following companies were reported to have produced soft phosphate rock in 1939:

Colloidal Phosphate Sales Co., Dunnellon, Fla.

The Dixie Phosphate Co., Ocala, Fla.

Lakeland Phosphate & Fertilizer Co., 225 East Main Street, Bartow, Fla.

Loncala Phosphate Co., Ocala, Fla.

M. R. Porter Co., Ocala, Fla.

Soil Builders, Inc., Dunnellon, Fla.

Superior Phosphate Co., Dunnellon, Fla.

Superior Phosphate Co., Dunnellon, Fla.

Florida phosphate rock sold or used by producers, 1935-39, by kinds

		Hard rock		1	Soft rock 1	
Year		Value at	t mines		Value a	t mines
•	Long tons	Total	Average	Long tons	Total	Average
1935	116, 483 138, 859 64, 151 125, 048 89, 096	\$500, 526 579, 202 342, 202 601, 922 411, 455	\$4.30 4.17 5.33 4.81 4.62	36, 430 31, 769 60, 256 53, 479 41, 906	\$125, 129 103, 352 200, 271 178, 093 128, 435	\$3. 43 3. 25 3. 32 3. 33 3. 06
	Land pebble Total					
Year	T	Value at	mines	-	Value at mines	
	Long tons	Total	Average	Long tons	Total	Average
1935 1936 1937 1938 1939	2, 269, 891 2, 454, 272 2, 872, 413 2, 528, 808 2, 547, 782	\$7, 751, 954 7, 845, 969 2 8, 600, 512 2 7, 993, 665 2 7, 353, 567	\$3. 42 3. 20 2. 99 3. 16 2. 89	2, 422, 804 2, 624, 900 2 2, 996, 820 2 2, 707, 335 2 2, 678, 784	\$8, 377, 609 8, 528, 523 9, 142, 985 8, 773, 680 7, 893, 457	\$3. 46 3. 25 3. 05 3. 24 2. 95

¹ Includes material from waste-pond operations.

² Includes sintered matrix.

The United States Circuit Court of Appeals, sitting at Philadelphia, Pa., in the spring of 1939, in litigation between the Phosphate Recovery Corporation, of New York, and the Southern Phosphate Corporation, of Baltimore, Md., sustained patents owned by the Phosphate Recovery Corporation, an affiliate of the International Agricultural Corporation, on a process for recovery of phosphate rock, at the same time ruling invalid a similar patent owned by the Southern Phosphate Corporation. A cash settlement was made by the Southern Phosphate Corporation, and it again became a licensee of the Phosphate Recovery Corporation.

The Phosphate Mining Co. is reported to have installed in 1939, at Nichols, Fla., a second bowl mill with gravity discharge and a 12-foot mechanical air separator for closed-circuit grinding of pebble phosphate

rock, duplicating an installation made late in 1937.

On May 28, 1939, an investigation was ordered by the Secretary of the Interior, Harold L. Ickes, as to the advisability of reserving to the United States the undeveloped phosphate rock deposits in many parts of the public domain of Florida. More than 66,000 acres in 16 Florida counties are reported as already included in the Federal Phosphate Reserve. The new order instructed the Geological Survey to determine the possibilities of additional workable deposits of phosphate rock before the General Land Office disposes of the land under the present public land laws.

Mansfield's 4 study of Florida reserves largely substantiates the figures for land-pebble and river-pebble rock recently given before the joint congressional investigating committee, considerably lowers the figure for hard rock, and points out that the data now available as to the reserves in the Hawthorn formation and certain phosphate marls "are insufficient to justify their present inclusion in reserves, though it is recognized that they are worthy of further consideration and study." He estimates total phosphate reserves in Florida, of all grades, as exceeding 5 billion tons, of which over 2 billion is classified as known, 1½ billion as probable, and 1½ billion as possible.

Tennessee.—The quantity of phosphate rock shipped in Tennessee in 1939, including a small amount of apatite from Virginia, was 938,448 long tons, 4 percent greater than the previous all-time high attained in 1938. The shipments consisted almost entirely of brown rock, although a small quantity of blue rock went to the Tennessee Valley Authority. Stocks of phosphate rock in the hands of the producers at the end of 1939 were larger than at similar periods in 1937 or 1938.

Tennessee phosphate rock sold or used by producers, 1935-39
[Includes apatite from Virginia]

Year Long tons	Long	Value at	mines	V	Long	Value at mines	
	Total	Average	Year	tons	Total	Average	
1935 ¹ 1936 ¹ 1937 ¹ ²	550, 284 643, 822 825, 099	\$2, 323, 536 2, 598, 279 3, 343, 108	\$4. 22 4. 04 4. 05	1938 ² 1939 ¹ ²	899, 298 938, 448	\$3, 725, 601 3, 856, 505	\$4, 14 4, 11

¹ Separate figures for brown rock and blue rock cannot be given without disclosing confidential data regarding blue-rock production.
³ Includes sintered matrix.

⁴ Mansfield, George R., Work cited in footnote 3.

In 1939, as in previous recent years, almost the entire output of the State was mined by six companies—Armour Fertilizer Works, Charleston Mining Co., Federal Chemical Co., Hoover & Mason Phosphate Co., International Agricultural Corporation, and the Monsanto Chemical

Co.—together with the T. V. A.

The two privately owned electric furnace plants, the Victor Chemical Works, Mount Pleasant, Tenn., and the Monsanto Chemical Co., Columbia, Tenn., and the T. V. A. plant, Muscle Shoals, Ala., were operated during 1939. The elemental phosphorus produced by the Victor Chemical Works and the Monsanto Chemical Co. was shipped in tank cars to Nashville, Tenn., Anniston, Ala., and elsewhere for the manufacture of phosphate chemicals. The elemental phosphorus produced by the T. V. A. was used to make concentrated superphosphate and calcium metaphosphate at Muscle Shoals. Two electric furnaces at the Monsanto plant are reported to have been shut down for a short time in the fall.

The Monsanto Chemical Co., the Charleston Mining Co., and the T. V. A. are reported to have increased their phosphate land holdings during the year. A small washing plant, which was built during 1938 near Gallatin in the Sumner County phosphate rock field for the preparation of phosphate rock for T. V. A. use, began operations late in

1939.

The Victor Chemical Works added two new electric furnaces to its elemental phosphorus plant at Mount Pleasant, Tenn., and a nodulizing plant of sufficient capacity for all three electric furnaces. The company is reported to own large tracts of phosphate-rock land in Tennessee which it has never developed. In recent years it has obtained its supplies of phosphate rock from the Charleston Mining Co. Both its electric-furnace plant at Mount Pleasant, Tenn., and its blast-furnace plant at Nashville, Tenn., were operated during 1939. Several illustrations of these plants, with flow sheets and descriptions, were given in articles published in 1939. A plant for continuous oxidation of elemental phosphorus to phosphoric acid was built by the company at Chicago Heights, Ill.

The plant of the Federal Chemical Co. at Ridley, 1 mile north of Mount Pleasant, was largely rebuilt early in 1939; almost the entire steam plant was replaced with electric motors, and the washer plant was reconstructed. A large four-roll low-side mill is also reported to have been installed for grinding phosphate rock. Operations were

resumed late in the summer.

The three completed electric furnaces of the T. V. A. were operated throughout the fiscal year except during the annual shut-down in August, according to the T. V. A. annual report. Output approximated 69,000 tons of concentrated superphosphate, with an average available P₂O₅ content of about 47 percent. Construction of a new electric furnace, different in design and method of handling the gas produced, was nearly completed. Another small experimental electric furnace was operated from time to time to obtain data regarding various operations. The first full-size calcium metaphosphate unit was operated part of the fiscal year ended June 30, 1939, yielding

⁸ Chemical and Metallurgical Engineering, How Victor Makes Its Phosphates: Vol. 46, No. 5, May 1939, pp. 269-272; Phosphate Plants Continue Growth: Vol. 46, No. 11, December 1939, p. 684.

⁸ Tennessee Valley Authority, Annual Report for the Fiscal Year Ended June 30, 1939; Washington, D. C., 1940, 478 pp.

approximately 4,600 tons of "metaphos" with an average content of about 60 percent available P2O5. This unit uses lump-rock phosphate. or agglomerated fines, and phosphorus condensed from electric furnace gases. A second process that has been carried through the pilot-plant stage uses phosphate fines directly instead of prepared agglomerates or the less available rock. A large-scale experimental plant for this

process has been designed and partly built.

Work has been done on another material, fused-rock phosphate, which is not so concentrated but is considered promising because T. V. A. studies show that the processing should be relatively economical. After completion of laboratory and pilot-plant tests a full-size unit was built and operated during the fiscal year. Work continued on improvements in the production of concentrated superphosphate by the electric-furnace method, that is, by treating ground phosphate rock with concentrated phosphoric acid resulting from the smelting of phosphate ores in the electric furnace. Improvements were also made in the methods of agglomerating raw phosphate ore for use in the electric furnace which enabled the Authority to process a much larger proportion of its ore than formerly.

Other investigations included blast-furnace studies and research with elemental phosphorus and high-strength phosphoric acids; small-scale experimental work and pilot-plant operations on the production of potassium-calcium metaphosphate; studies to reduce the cost of phosphate fertilizer by greater and more efficient recovery of byproducts such as fluorine and ferrophosphorus; chemical studies of the curing of superphosphate and the elimination of its fluorine; and studies of the corrosion of apparatus. Studies were also made of the phosphate rock from the T. V. A. reserves to determine the most favorable site for a field plant to prepare phosphate rock for furnace

use.

Options to purchase were taken on 11 tracts, and commitments were made to acquire 2 in fee simple and to purchase mineral rights on the other 9. The 11 tracts totaled 660 acres. During the fiscal year purchases were consummated on seven properties in Maury and Giles Counties; interests acquired were fee simple title in one instance and mineral rights in the other six, a total of 968 acres. All but two of the Authority's leases on phosphate property were permitted to lapse; one of these was in Maury County and the other in Sumner County.

Several articles were published in 1939 covering T. V. A. phosphate

operations.7

T. V. A. fertilizers were tested by land-grant colleges in 40 States, by the United States Department of Agriculture in 3 additional States, and on approximately 25,700 farms in 20 States. More than 50,000 tons of T. V. A. concentrated fertilizers were also distributed by the Agricultural Adjustment Administration. In the fiscal year

⁷ Elmore, K. L., and Farr, T. D., Equilibrium in the System CaO-P₂O₃·H₂O: Presented before Am. Chem. Soc., Baltimore, Md., April 3-7, 1939.

Copson, R. L., and Frear, G. L., Progress in Phosphate Fertilizers: Abs. in Jour. Alabama Acad. Sci., vol. 2, June 1939, pp. 36-37; presented before Alabama Acad. Sci., Montgomery, Ala., April 14-15, 1939.

Newton, R. H., and Ardern, D. B., Electric Furnace Smelting of Rock Phosphate: Abs. in Jour. Alabama Acad. Sci., vol. 2, June 1939, pp. 37-38; presented before Alabama Acad. Sci., Montgomery, Ala., April 14-15, 1939.

Tarbutton, Grady, T. V. A. Processes for Concentrated Superphosphate and Metaphosphate Fertilizers: Abs. in Jour. Alabama Acad. Sci., vol. 2, June 1939, pp. 38-39; presented before Alabama Acad. Sci., Montgomery, Ala., April 14-15, 1939.

Junkins, J. N., and Newton, R. H., Instrumentation of T. V. A. Electric Furnace Phosphoric Acid Plant: Instruments, vol. 12, June 1939, pp. 161-165; presented at Carnegie Inst. Technol., Pittsburgh, March 2-3, 1939.

1939 appreciable quantities of metaphosphate entered the test demonstration program, and nearly 4,000 tons were distributed.

During the fiscal year 1938-39 fertilizer having a content of 32,786 tons of available P2O5 was shipped from the experimental large-scale production plant. These shipments comprised 30,457 tons (available P_2O_5) of concentrated superphosphate and 2,329 tons (available P₂O₅) of calcium metaphosphate. Most of the concentrated superphosphate was sold to the A. A. A., whereas most of the calcium metaphosphate was used in tests and demonstrations.

Early in 1939 a report by C. R. Ball, describing the work done by the land-grant colleges of the Tennessee Valley in cooperation with

the Tennessee Valley Authority, was published.

The estimates of reserves of phosphate rock in Tennessee, as presented in 1938 by the phosphate rock industry to the Joint Congressional Committee to Study the Adequacy and Use of the Phosphate Resources of the United States (totaling more than 5 billion tons, largely phosphatic limestone), were reviewed critically during the year by G. I. Whitlatch, associate geologist, Tennessee Division of Geology, Nashville, Tenn., who concluded, in regard to blue rock that

Phalen's estimate of approximately 84,000,000 tons of blue-rock phosphate, made in 1916 still remains as the most acceptable current reserve figure, because additional data necessary for its revision are lacking.

He states in regard to the white rock that

The white fields have never been fully explored, and any estimate of reserves based on present meager data is apt to be in serious error. Barr's figure of 23,-000,000 tons, as reported in the Webster estimates of 1938, cannot therefore be accepted without reservations.

Regarding the brown rock reserves Whitlatch says:

Brown phosphate reserves today are actually and potentially greater than at any time in the history of the industry, owing to the development of processes in which phosphate of grades lower than ever heretofore acceptable can be used. Of chief importance in this phase of development are the sintering and nodulizing processes of the electrothermal phosphorus manufacture introduced in 1937. On the basis of such widened conception of commercial reserves, Webster's figures of 1938 indicate that Tennessee has approximately 100,000,000 tons of available and usable brown phosphate, and this reserve figure is essentially confirmed by data compiled by the writer and by a third independent survey.

The great increase in the phosphate rock industry's 1938 estimate of Tennessee's reserves was in the figure submitted for phosphatic limestone; regarding these, Whitlatch states:

Phosphatic limestones are, admittedly, a potential future source of phosphate, but present data are too meager to warrant full acceptance of Webster's 1938 estimate of 5,000,000,000 tons of highly phosphatic limestone.

Mansfield ¹⁰ places the reserves of phosphate rock in Tennessee at 195,151,000 tons, accepting Whitlatch's figures of 96,918,000 tons for the brown-rock reserves but adding 83,233,000 tons for blue rock and 15,000,000 tons for white rock in accordance with data supplied by the State geologist.

Western States.—In 1939, as in 1938, Idaho and Montana were the only Western States to produce phosphate rock. In Idaho there were

^{*}Ball, Carleton R., A Study of the Work of the Land-grant Colleges in the Tennessee Valley Area in Cooperation with the Tennessee Valley Authority: Special comm. on Land-grant College Data and Subcomm. on Exp. Sec. Data, 1939, 76 pp.

*Whitlatch, G. I., Phosphate Rock Reserves in Tennessee: Paper presented at the Tuscaloosa Meeting, Ind. Minerals Div., Am. Inst. Min. and Met. Eng., November 3, 1939, 29 pp.

18 Mansfield, G. R., Work cited in footnote 3.

at least two known producers—the Anaconda Copper Mining Co., which operated its No. 3 mine at Conda, Caribou County, Idaho, shipping more phosphate rock than in any previous year, and the Vassar Produce Co., of Caldwell, Idaho, which shipped phosphate rock from Bennington, Bear Lake County, Idaho. Two other companies, recently organized, hold phosphate rock deposits in Bear Lake County, Idaho—the Teton Phosphate Co., Beise, Idaho, incorporated in 1939 with a reported capitalization of 50,000 shares of \$1 each, and the Idaho Grange Phosphate Cooperative, of Nampa, Idaho. No production in 1939 was reported by either company. Montana had two producers—one large and one small. The larger one, the Montana Phosphate Products Co., of Trail, British Columbia, operated the Anderson mine near Garrison, Powell County, Mont., and United States Government Leases Great Falls 076740 and 081920, supplying the requirements of the Consolidated Mining & Smelting Co. of Canada, Ltd., at Trail. The Anderson mill at Garrison, which prepares ground phosphate rock for direct application to the soil, is not known to have been operated during the year. The Mineral Hill Mining Co. shipped less than 2,000 tons from its mines near Avon, in Powell County, Mont.
The Western Phosphate Conference held symposia on reserves,

technology, and uses of phosphate rock at the University of Idaho, August 31 to September 2, 1939. The delegates to the conference also visited some of the phosphate rock deposits of the Western States.

Much information regarding the phosphate rock deposits of the Western States and the phosphate industry of that region is contained in the recently published hearings of the joint congressional committee on phosphate.11

Mansfield¹² discusses the phosphate reserves of the Western States As of January 1940, he estimates reserves at 7,984,892,000 long tons, at least in the areas so far studied, with Idaho listed as 5,736,335,000 tons; Utah (including grades down to 40 percent),13 1,741,480,000 tons; Montana, 391,323,000 tons; and Wyoming, 115,754,000 tons.

Western States phosphate rock sold or used by producers, 1935-39

		Idaho			Montana			Total		
Year			Value at mines		Value at mines		Tong	Value at mines		
Long	Total	Aver- age	Long tons	Total	Aver- age	Long tons	Total	Aver- age		
1935	41, 796 47, 113 83, 436 66, 014 95, 451	\$176, 877 203, 264 356, 037 296, 595 431, 938	\$4. 23 4. 31 4. 27 4. 49 4. 53	27, 497 36, 022 50, 834 66, 491 44, 384	\$73, 701 76, 066 133, 138 155, 917 112, 142	\$2. 68 2. 11 2. 62 2. 34 2. 53	69, 293 83, 135 134, 270 132, 505 139, 835	\$250, 578 279, 330 489, 175 452, 512 544, 080	\$3. 62 3. 36 3. 64 3. 42 3. 89	

Virginia.—The Southern Mineral Products Corporation (a subsidiary of the Vanadium Corporation of America) operated its milling plant at Piney River, Nelson County, Va., recovering apatite from nelsonite ore from its mines in Amherst County, Va.

See footnote 1.
 Mansfield, G. R., Work cited in footnote 3.
 Williams, J. Stewart, Phosphate in Utah: Utah Agr. Exp. Sta. Bull. 290, 1939.

FOREIGN TRADE 14

Imports.—Imports of phosphate rock into the United States in 1939 dwindled to only 3,500 tons compared with 7,006 tons in 1938 and 13,400 tons in 1937. All imports in 1939 came from Curaçao in the Netherland West Indies and entered the United States in May. No further imports from this source were received during the year, reportedly because of increased costs and shipping difficulties. Customarily phosphate rock is imported from French Oceania, but no imports were recorded in 1939. No apatite was imported from the U. S. S. R. or Brazil.

Phosphate rock and phosphatic fertilizers imported for consumption in the United States, 1935-39

	1935		1936		1937		1938		1939	
Fertilizer	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value
ApatitePhosphate rock, crudePhosphates, crude, not	3, 599 100	\$28, 829 900		\$17, 187	(1)	(1)	(1) 2	(¹) \$5	(1)	(1)
elsewhere specified	(²)	(²)	(²)	(²)	13, 400	\$115,926	7,004	80, 534	3, 500	\$23, 625
used as fertilizer Bone dust, or animal car- bon, and bone ash, fit	10, 812	401, 431	13, 383	475, 483	27, 253	1, 089, 657	29, 028	1, 286, 935	34, 995	1, 627, 608
only for fertilizing Guano Slag, basic, ground or un-				465, 585 457, 209			19, 581 15, 199		40, 530 5, 151	
ground Precipitated bone, ferti-	1,078	15, 136	758	9,758	714	7, 339	691	9, 547	405	5, 168
lizer grade	472	11, 613	3, 817	96, 166	4, 414	120, 225	3,385	98, 725	2,314	68, 611

¹ Not shown separately; included with "Phosphates, crude, not elsewhere specified" beginning January 1, 1937.

² New classification beginning January 1, 1937.

The United States Treasury Department order of February 9, 1928 (T. D. 42577), a finding of dumping with respect to Morocco phosphate rock, was reversed by the Department on September 18, 1939. On the basis of undisclosed new evidence the Treasury Department became convinced that the original order was not justified, and it was vacated as of February 9, 1928, the original date of issue.

(T. D. 49964.)

Late in 1939 the Interstate Commerce Commission granted authority for railroads to establish rail rates of not less than \$4.70 per ton of 2,000 pounds on carload lots of imported phosphate rock from New Orleans and other Gulf ports to Quincy, Ill., for the duration of the

next open season of navigation, from March 1 to November 30, 1940. Exports.—Exports in 1939 totaled only 949,006 long tons compared

	Phosphat	e rock exp	orted from	n the United S	tates, 193	5–39	
Year	Long	Val	Value Year Long		Value		
to	tons	Total	Average	ı ear	tons	Total	Average
1935 1 1936 1 1937	1, 104, 394 1, 208, 951 1, 052, 802	\$5, 773, 506 6, 776, 917 5, 818, 231	\$5. 23 5. 61 5. 53	1938 1939	1, 140, 841 949, 006	\$6, 637, 638 5, 233, 104	\$5. 82 5. 51

¹ Includes sintered matrix.

¹⁴ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.
¹⁹ Interstate Commerce Commission, Phosphate Rock from Gulf Ports to Quincy, Ill.: 4th Sec. Application 17796, Opinion 22920, 1939, pp. 204-206.

with 1,140,841 tons in 1938 and 1,052,802 tons in 1937. Their value was nearly 1½ million dollars less in 1939 than in 1938. Not only was a smaller quantity exported, but also the average value declined to \$5.51 per ton in 1939 compared with \$5.82 in 1938. Most of the exports were from Florida, but some were from the Western States.

The quantity and value of exports of both high-grade hard rock and land-pebble rock were less in 1939 than in 1938. The quantity and value of exports of other phosphatic material, including sintered matrix, were also less. The following tables show total exports of high-grade hard rock and land-pebble phosphate rock, as well as shipments of each type of rock to various countries from 1935 to 1939, inclusive.

Phosphate rock exported from the United States, 1935-39, by countries

		HIGH-	GRAD	E HARI	ROC	K				
1935		35	1936		1937		1938		1939	
Country	Long	Value	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value
Belgium	2	\$40	4, 300			\$29, 750	507	\$28,000 5,000		\$12,000
CanadaGermany 1ItalyJapan	28, 907 49, 880	121, 686 349, 160	39, 271 72, 400	274, 934 507, 950	31, 457	305, 865 216, 016 11	57, 250 3, 000		55, 246	276, 372 345, 290 12, 500
Lithuania ¹ Netherlands Panama Poland and Danzig ¹	6,000 19,575 4	42,000 137,025 31	15, 050 7, 700		50	12,600	14, 450	48		
Sweden	25, 700		25, 225	174, 350	20,800	145, 600	<u> </u>	219, 425	14, 625	102, 375
	130, 068	819, 017	163, 946	1, 156, 584	120, 478	795, 704	181, 920	1, 160, 018	132, 983	840, 725

	1935	19	36	19	37 2	19	38 2	1939 2	
Country Lon ton		Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value
Haiti	16, 794 160, 028 160, 028 159, 242 171, 20, 377 191, 157, 410 1952, 977 101, 952, 977 101, 952, 977 101, 952, 977 101, 952, 977 101, 952, 977 102, 968, 495 103, 968, 495 104, 968, 495 105, 968, 495 10	77, 972 37, 833 5, 983 278, 404 4, 852 66, 813 281, 797 142, 432 116, 654 12, 852 428, 720 45, 664 364 47, 608	478, 384 165, 166 30, 114 1, 660, 508 24, 163 393, 657 1, 176, 953 904, 135 93, 428 64, 260 151, 788 291, 870	88, 050 60, 174 29, 494 7, 331 189, 603 26, 266 69, 012 278, 155 98, 850 17, 586 4, 814 4, 814 4, 814 4, 818 4, 1496	267, 983 185, 867 34, 404 1, 104, 534 135, 330 426, 094 1, 153, 910 628, 370 115, 975 306, 412 37, 068 28, 940 8, 602	59, 275 26, 238 7, 495 358, 077 10, 017 49, 911 159, 270 103, 666 	33, 503 2, 181, 869 69, 107 305, 718 664, 392 675, 249 19, 821 412, 948 46, 316 41, 445	68, 386 2, 498 271, 801 3, 877 2, 500 86, 375 225, 527 27, 517 2, 800 	319, 829 16, 612 1, 623, 330 12, 794 15, 750 562, 533 875, 804 178, 283 18, 814

¹ For statistical purposes, trade with the Sudeten area, as far as ascertainable, is included with Germany, while trade with the other Czechoslovak Provinces occupied by Germany, Hungary, and Poland has been included with these countries since March 18 or 19, 1939. After November 16, 1939, trade with Danzig and that part of Poland occupied by Germany has been included with Germany and trade with that part of Poland occupied by U.S.S.R. has been included with U.S.S.R.
² Excludes sintered matrix. ³ Figures cover period January 1 to May 5.

Year	Long tons Value		Year	Long tons	Value
1935 1936 1937 *	3, 984 3, 489 55, 665	\$154, 429 165, 385 466, 850	1938 ²	32, 581 29, 080	\$208, 550 192, 306

¹ Includes bone ash, dust, and meal; animal carbon for fertilizer; basic slag; etc. ² Includes sintered matrix.

The following table shows exports of high-grade hard rock from the various customs districts. In 1939 most rock of this type went from the hard-rock district of Florida to European countries, but a considerable quantity of phosphate rock from the Western States was shipped from the Montana-Idaho customs district to Canada.

High-grade hard-rock phosphate exported from the United States, 1938–39, by customs districts

Customs district	19	38	1939		
Customs district	Long tons	Value	Long tons	Value	
Buffalo. Dakota Florida Michigan Montana and Idaho New Orleans. St. Lawrence Washington	2 14 114, 782 70 67, 042 4 2 4	\$30 120 753, 507 812 405, 445 48 16 40	2 23 87, 821 251 44, 873	\$25 260 564, 353 2, 595 273, 373	
	181, 920	1, 160, 018	132, 983	840, 725	

Exports of phosphate rock have decreased since the British blockade of Germany was established. Shipments for the last 4 months of

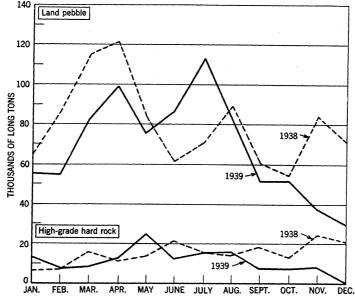


FIGURE 2.—Exports of phosphate rock from the United States, 1938–39. Note drop in exports after outbreak of war in September 1939.

1939, after war broke out in Europe, were below those for the same period in 1938. The last 1939 shipment of Florida high-grade hard rock from the United States to Germany was in August and of Florida land pebble in September. The monthly exports of phosphate rock for 1938 and 1939 are shown in figure 2.

The first seizure of a cargo of phosphate rock as contraband by the British Navy was reported by the British Government on September 14, 1939. The shipment comprised 5,900 tons of Florida land-pebble phosphate, intended for Germany and German-owned, on the American-owned freighter *Warrior*, of the Waterman Steamship Corporation, Mobile, Ala.

Figure 3 gives the sources of Germany's supplies of phosphate rock

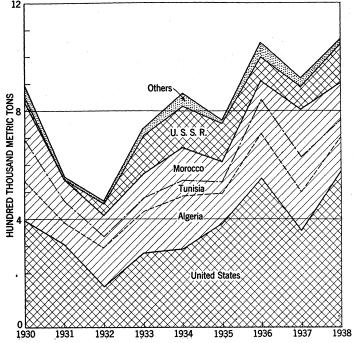
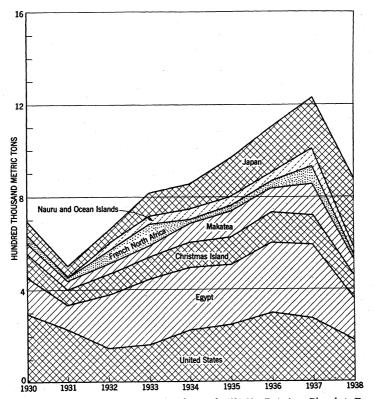



Figure 3.—Sources of Germany's supplies of phosphate rock, 1930-38. Data from Phosphate Export Association.

in recent years, based upon reports of the Phosphate Export Association, of New York City.

Figure 4 shows similar data for Japan.

 $F_{\rm IGURE}$ 4.—Sources of Japan's supplies of phosphate rock, 1930–38. Data from Phosphate Export Association.

WORLD PRODUCTION

World production of phosphate rock from 1935 to 1939 is given in the following table.

World production of phosphate rock, 1935-39, by countries, in metric tons [Compiled by M. T. Latus]

Country	1935	1936	1937	1938	1939
Algeria.	603, 863	530, 998	631, 148	584, 452	1 450, 000
Angaur Island (exports) Australia: New South Wales	78, 112	89, 226	90, 652		1 400,000
Australia: New South Wales	239	178	90, 032	105, 578	1 3
Belgium	173, 360	16.090	20	244	1 (2)
Brazil	110,000	10,090			(2) (2) (2)
Canada	169			100	
China 8		476	91	189	142
Christmas Island, Straits Settlements (exports)	8,000	8,000	8,000	8,000	8,000
Tarret	149, 341	157, 564	154, 378	162, 425	(2)
Egypt Estonia	473, 896	531, 031	517, 002	458, 404	(2)
Estonia	11, 642	11,408	10.112	13,012	(2)
rance	49,600	55,000	103,600	(2)	(2)
Fermany	180	1,060	3, 314	3, 221	(2)
Austria	440	120	0,022	0,	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
ndia, British	104	130	169	23	2
ndocnina	5, 888	10, 336	20, 252	37, 341	\ \display
taly	500	10,000	20, 202	01,011	%
apan	91, 248	113, 102	(3)	(2)	\X
Madagascar	6,000	5, 349	4, 290	5, 699	1 12
Makatea Island (exports)	190 959	122, 936	166, 726		(2)
Morocco, French (shipments) 4	1, 303, 182	1, 257, 796		102, 941	(2)
Variety and Ocean Islands 5	707, 051		1, 501, 767	1, 447, 544	1, 491, 754
Netherland India	107,001	965, 349	1,024,168	1, 184, 816	1, 244, 170
Vetherland West Indies: Curação (exports)	11, 553	12,072	26, 167	33, 113	(2)
New Caledonia	90, 709	78, 131	101, 837	99, 283	(2)
	11,855	4,877	307	5, 000	(2)
Philippine Islands	1, 309	497	750	(2)·	(2)
Poland	11, 641	12, 497	(2)	(2)	(3)
Rumania	2, 784	1,039	950	(2)	(2)
eychelles Islands (exports)		23, 942	9, 594	21, 703	(2)
weden (apatite)	2, 960	6,140	4, 917	6, 192	(2)
aiwan	91	213	(2)	(2)	25
anganyika Territory	194		104	69	9399999999
'unisia	1, 500, 000	1, 488, 000	1, 771, 439	1, 934, 200	- X
J. S. S. R.6	767, 900	920,000	(2)	1, 934, 200 (2)	. (2)
Inited States (sold or used by producers)	3, 091, 211	3, 405, 654			
producers/	0, 001, 211	0, 200, 004	4, 019, 686	3, 799, 253	3, 817, 368

Estimated.
 Data not available.
 Estimated (Imp. Inst., London).
 Including exports as follows: 1935, 1,296,052 tons; 1936, 1,247,923 tons; 1937, 1,484,562 tons; 1938, 1,427,643 tons; 1939, 1,465,673 tons.

Exports during fiscal year ended June 30 of year stated.
 Apatite concentrates. Production of apatite ore in 1936 amounted to 2,000,000 tons. In addition, low-grade phosphate rock is produced, but production data are not available.

German trial exploitation of the phosphate deposits in Nassau, in the Lahn River Basin, were abandoned in 1939, the operations being much too costly, even under German conditions of closed national economy, because of the low grade of the deposits and their pockety nature. According to Redecker, the best grades of the phosphate rock in the Lahn region contained only 10 to 13 percent phosphorus.¹⁶ The phosphate rock situation in Germany is described in considerable detail in another report by Redecker.¹⁷

TECHNOLOGY

The design of a 5,500-kw. electric furnace for smelting phosphate rock is described by Curtis and Heaton ¹⁸ of the T. V. A. One of the furnaces now in use is described in detail.

¹⁶ Redecker, S. B., American consul, Frankfort on the Main, Germany, June 7, 1939: Bureau of Mines Mineral Trade Notes, vol. 9, No. 1, July 1939, p. 23.

17 Redecker, S. B., American consul, Frankfort on the Main, Germany, October 4, 1939: Bureau of Mines Mineral Trade Notes, vol. 9, No. 6, December 1939, pp. 17-20.

18 Curtis, H. A., and Heaton, R. C., Design for a Phosphate Furnace: Chem. and Met. Eng., vol. 45, No. 10, October 1938, pp. 536-540.

The determination of fluorine in natural phosphates and phosphatic fertilizers is described in considerable detail in a paper by Reynolds and Hill, 19 of the Bureau of Chemistry and Soils, United States Department of Agriculture.

Emmett and Shultz,²⁰ also of the Bureau of Chemistry and Soils, United States Department of Agriculture, have studied the utilization

of carbon dioxide in the oxidation of elemental phosphorus.

The results obtained by a comparative study of methods of determining available phosphoric acid are given in a paper by J. R. Adams. 21 of the Bureau of Chemistry and Soils, United States Department of Agriculture. Ross and Adams 22 present the results of further studies on phosphoric acid.

The development of dipotassium phosphate for use in wool processing has been announced.23 Cleansing of raw wool now requires large quantities of olive oil, which must be imported. It is reported that the olive oil can be replaced by domestic dipotassium phosphate.

A British patent 24 describes a method for the production of the alkaline phosphates, such as trisodium phosphate, direct from phosphate rock by the treatment of mixtures of crude phosphates and

The determination of phosphoric acid in basic slag and in super-

phosphate is the subject of two articles by W. Spengler.²⁵

A new plant has been opened for the manufacture of sodium tetraphosphate by the Rumford Chemical Works at Rumford, R. I.²⁶ The use of this chemical as a water softener, in cleansing compounds, and in drilling oil wells is reported to be increasing. Ranshaw 27

describes the use of trisodium phosphate in laundries.

The growing scarcity of sulfuric acid for use in the production of superphosphate in Germany, because of its employment for other purposes, has stimulated research to develop improved processes for making phosphate fertilizers with less sulfuric acid or none at all. Four main types of phosphatic fertilizers using less sulfuric acid than before have been developed. These are described in a recent report.28

MacIntire and Hardin in a recent article 29 presented the results of a study of the development of citrate insolubility through the formation of fluorphosphate by the reaction between the fluorides of superphosphate and calcined rock phosphate in mixtures of these

two compounds.

The results of a study to determine the nature and composition of the products of the reaction of potassium chloride with phosphoric

¹⁹ Reynolds, D. S., and Hill, W. L., Determination of Fluorine, with Special Reference to Analysis of Natural Phosphates and Phosphatic Fertilizers: Ind. Eng. Chem., Anal. Ed., vol. 11, No. 1, 1939, pp. 21-27.

40 Emmett, P. H., and Shultz, J. F., Oxidation of Phosphorus to a Pentavalent Form by Carbon Dioxide: Ind. Eng. Chem., vol. 31, No. 1, 1939, pp. 105-111.

11 Adams, J. R., A Comparison of the Official and MacIntire-Shaw-Hardin Methods for Determining Available Phosphoric Acid: Jour. Assoc. Official Agr. Chem., May 1939, pp. 397-400.

12 Ross, W. H., and Adams, J. R., Report on Phosphoric Acid: Jour. Assoc. Official Agr. Chem., May 1939, pp. 254-263.

23 Ind. Eng. Chem., News Ed., vol. 17, No. 7, April 10, 1939, p. 229.

Chem. Ind., vol. 44, No. 6, June 1939, p. 614.

34 Chemische Fabrik Budenheim Akt.-Gesellschaft, Phosphates Direct from Rock. British Patent 449,566 (1938): Chem. Ind., vol. 44, No. 5, May 1939, p. 512.

25 Spengler, W., Determination of Phosphoric Acid in Basic Slag: Ztschr. anal. Chem., vol. 117, 1939, pp. 161-168. Determination of Phosphoric Acid in Superphosphate: Ztschr. anal. Chem., vol. 117, 1939, pp. 169-176.

pp. 161-168; Determination of Prosphoric Actu in Superprosphates. Estat. data. Only, 181, 192, 196-176.

Source Chem. Ind., vol. 44, No. 3, March 1939, p. 309.

Ranshaw, G. S., Textile Applications of the Phosphates. Laundry Uses for Trisodium Phosphates: Chem. Ago (London), vol. 41, No. 1061, October 28, 1939, pp. 299-300.

Redecker, S. B., American consul, Frankfort on the Main, Germany, October 4, 1939: Bureau of Miness Mineral Trade Notes, vol. 9, No. 6, December 1939, pp. 17-20.

MacIntire, W. H., and Hardin, L. J., Fluoride-induced Reversion in Mixtures of Superphosphates and Calcined Rock Phosphate: Ind. Eng. Chem. (Ind. Ed.), vol. 32, No. 1, January 1940, pp. 88-94.

acid at temperatures higher than those reported by previous investigators and some physical properties of the high-temperature, insoluble, crystalline form of potassium metaphosphate are presented in a recent article by Madorsky and Clark.³⁰

SUPERPHOSPHATES

The following table gives the salient features of the superphosphate industry in the United States, 1936-39.

Salient statistics of the superphosphate industry in the United States, 1936-39

	1936	1937	1938	1939
Production: 1	2 419 498	4, 429, 767	3, 575, 588	3,801,194
Bulk superphosphateshort tons_ Wet base and wet mixed goodsdo Shipments: 1	3, 412, 486 142, 459	122, 680	156, 730	152, 500
All superphosphate, to consumersdoAll superphosphate, to othersdo	997, 011 1, 672, 049	1, 046, 334 2, 130, 860	902, 490 1, 817, 293	897, 749 2, 073, 123
Base and mixed goods ³ do Stocks in manufacturers' hands, Dec. 31: ¹	1, 480, 719	1,723,590	1, 537, 491	1, 526, 026
Bulk superphosphatedo Base and mixed goods ³ do	1, 133, 640 657, 828	1, 313, 327 784, 532	1, 361, 127 669, 503	1, 233, 297 701, 649
Exports of superphosphates 3long tons_ Imports of superphosphates 3do		78, 949 57, 930	90, 237 18, 753	95, 224 17, 238
Sales of phosphate rock by producers for superphosphate productionlong tons	1, 768, 677	2, 391, 245	2, 074, 779	2, 192, 779

¹ Bureau of the Census, Monthly Statistics Superphosphate Industry; 16 percent available phosphoric acid.

Includes wet and dry bases and wet and dry mixed goods.
 Bureau of Foreign and Domestic Commerce.

The following table shows the source of imports of superphosphates and the destination of exports of domestic superphosphates for 1938 and 1939.

Superphosphates (acid phosphates) imported into and exported from the United States, 1938-39, by countries

	Imports				Exports			
Country	1938		1939		1938		1939	
	Long tons	Value	Long tons	Value	Long tons	Value	Long tons	Value
Argentina Belgium	2, 540	\$77, 198	4, 619	\$142, 510	500	\$16,070		
Bolivia Canada Chile	7, 333	125, 426	10, 536	172, 519	73, 649 240 12, 282	770, 677 2, 235 102, 822	5, 136 71, 665 15 16, 594	\$70, 933 694, 217 1, 192 197, 122
Cuba Dominican Republic Jamaica					32	1, 173	58 294	2, 303 5, 862
Mexico Netherlands	8,880	121, 769	1,885	22, 724	186	9, 946	238	12, 027
Philippine Islands					246	3, 575	(1) 57	16 1,613
Union of South AfricaVenezuela					2, 955 52	34, 296 2, 280	500 185	5, 550 8, 305
West Indies, "Other British" Other countries			198	2, 124	61 34	844 1, 433	281 201	3, 841 7, 355
	18, 753	324, 393	17, 238	339, 877	90, 237	945, 351	95, 224	1, 010, 336

¹ Less than 1 ton.

³⁰ Madorsky, S. L., and Clark, K. G., Potassium Metaphosphate. A Potential High-analysis Fertilizer Material: Ind. Eng. Chem., vol. 32, No. 2, February 1940, pp. 244-248.

Statistics for 1937 covering international trade in superphosphates and production of superphosphates in various countries were published

early in 1939.31

A revised definition of superphosphate was adopted in 1939 by the Association of Official Agricultural Chemists at its 55th annual meeting but does not become final until its next meeting. It would include as superphosphate a product made by mixing concentrated phosphoric acid with limestone. This product lacks the gypsum content of ordinary superphosphate. The new definition reads:

Superphosphate is a commercial phosphate, the phosphoric acid content of which is due chiefly to monocalcium phosphate. 32

In October 1939 the price of superphosphate was advanced from \$7.50 to \$8.50 a short ton (basis, 16 percent for run-of-pile, in bulk, f. o. b. Baltimore) because of reported increases in the cost of produc-The Temporary National Economic Committee 33 calls attention to the absence of any change in the price of either phosphate rock or sulfuric acid, the basic raw materials for the production of superphosphate.

BASIC SLAG

Basic slag is an important competitor of phosphate rock and superphosphate as a source of fertilizer phosphorus in European countries, where most of it is produced and used. The demand in the United States is limited and is met by importation of a small quantity and the annual production of a few thousand tons in the Birmingham iron district of Alabama. Less than 1 percent of the world production comes from the United States.

Production o	f hasia slaa	1005 00	has accountation	in	motria tono 1	
Proauction o	t oasic sia a.	1930-38.	ou countries.	in	metric tons -	

Country	1935	1936	1937	1938
Europe: Belgium ² . Czechoslovakia Eire. France. Germany Italy. Luxemburg. Poland Sweden U. S. S. R. United Kingdom ⁴	396, 000 1, 000 15, 000 41, 000 276, 000	605, 000 145, 000 1, 250 1, 035, 000 2, 277, 000 41, 113 431, 076 (3) 15, 713 (3) 302, 000	825, 000 162, 562 1, 481 1, 218, 000 2, 312, 000 532, 458 4, 000 15, 442 (3) 410, 000	857, 000 162, 000 1, 682 860, 000 2, 550, 000 (3) 319, 600 8, 100 (3) (4)
North America: United States 2	4, 389, 731 25, 000 4, 414, 731	\$ 4, 813, 152 35, 600 5 4, 848, 752	6 5, 481, 783 35, 600 6 5, 517, 383	(3) 35, 600 (3)

Adapted from figures as published by Imperial Institute, London.
 Estimated. Data not available.
 Estimated amount ground and used as fertilizers.
 Exclusive of Poland and U. S. S. R. Exclusive of U. S. S. R.

The characteristics of various Alabama iron ores have been summarized recently by Burchard.34

³¹ Gray, A. N., Phosphate Rock and Superphosphate Statistics for 1937; B, Superphosphate; Superphosphate (London), vol. 12, No. 2, 1939, pp. 21-27.

32 Oil, Paint and Drug Reporter, vol. 136, No. 19, November 6, 1939, pp. 3, 61.

33 Business Week, December 2, 1939, p. 15.

34 Burchard, E. F., Iron Ore Available to Alabama Blast Furnaces: Min. and Met., vol. 19, No. 376, April 1938, pp. 183-184.

Basic Bessemer slags supply about 70 percent of the phosphorus for the German fertilizer industry and a considerable proportion comes from German ores. That country has very few phosphate deposits and, in operating the basic Bessemer process, must consider. the need of producing a phosphatic slag suitable for fertilizer use along with other metallurgical problems.³⁵

Sauchelli 36 discusses the composition of superphosphate and Mehring 37 the various grades of superphosphate sold in the United States.

³⁵ Trömel, G., Phosphate Slag Problems: Stahl u. Eisen, vol. 57, 1937, pp. 1213-1216.
36 Sauchelli, Vincent, 20 Percent Superphosphate: What's the Other 80 Percent: Am. Fertilizer, vol. 90,
No. 12, June 10, 1939, pp. 12, 13, 26.
37 Mehring, A. L., Grades of Superphosphate Sold to Farmers in the United States: Fertilizer Rev.,
January-February 1939, pp. 3, 11-12.

TALC, PYROPHYLLITE, AND GROUND SOAPSTONE 1

By Bertrand L. Johnson and K. G. Warner

SUMMARY OUTLINE

	Page	1	Page
General conditions	1331	Prices	
Calca	1324	l World production	1929
Markets	1325	orta product mon	1320

Sales of talc, pyrophyllite, and ground soapstone attained a new high in 1939, exceeding the previous 1937 peak by 24,000 tons. (See fig. 1.) Total sales were 253,976 short tons valued at \$2,700,834.

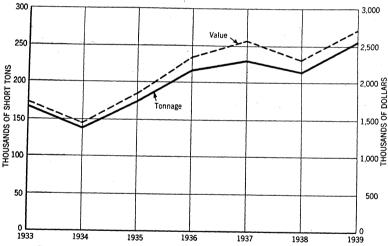


FIGURE 1.—Sales of domestic talc, pyrophyllite, and ground soapstone, 1933-39.

Sales of crude, sawed and manufactured, and ground materials increased over 1938, but by far the greatest part of the increase—over 38,000 tons—was in sales of the ground products. Imports of crude materials were much smaller than in 1938, but those of manufactured products were appreciably larger. Exports of all classes were greater in 1939 than in 1938.

Pyrophyllite is included in this discussion with talc solely because the custom was established many years ago in these annual reports of the Bureau of Mines. Although pyrophyllite resembles talc in certain physical properties, it is a hydrous aluminum silicate

¹ Soapstone sold in slabs or blocks is included in the chapter on Stone.

(Al₂Si₄O₁₀(OH)₂) instead of a hydrous magnesium silicate like talc (Mg₃Si₄O₁₀(OH)₂). Authorities who have classified pyrophyllite as one of the kaolin minerals were cited in Minerals Yearbook, 1939 (p. 1273). Several analyses of North Carolina pyrophyllite have been assembled by Trice.²

Salient statistics of the talc, pyrophyllite, and ground-soapstone industry in the United States, 1938-39

	193	38	1939	39	
	Short tons	Value	Short tons	Value	
Sales by producers: Crude	13, 498 1, 729 197, 548	\$72, 845 70, 268 2, 159, 447	15, 722 1, 871 236, 383	\$82, 188 77, 915 2, 540, 731	
	212, 775	2, 302, 560	253, 976	2, 700, 834	
Imports for consumption: Crude and unground steatite and French chalk	337	5, 956	133	2, 392	
Manufactures (except toilet preparations) wholly or partly finished	21,790	385, 242	26, 134	450, 227	
	22, 127	391, 198	26, 267	452, 619	
Exports: Tale, steatite, and soapstone, crude and ground Powder—talcum (in packages), face, and compact	7, 118 (¹)	124, 194 978, 100	9,047 (¹)	. 162, 426 1, 115, 176	
		1, 102, 294		1, 277, 602	

¹ Quantity not recorded.

In 1939, as in 1938, nine States produced talc, pyrophyllite, and ground soapstone. Seven of these States, which contribute most of the output, are in the East; the other two are California and Washington. Talc, pyrophyllite, and soapstone were reported as produced in California; talc and soapstone in Georgia, Maryland, Virginia, and Washington; talc and pyrophyllite in North Carolina; talc in New York and Vermont; and soapstone in Pennsylvania.

PRODUCTION

The following producers of talc, pyrophyllite, and soapstone in the United States reported to the Bureau of Mines in 1939.

Producers of talc, pyrophyllite, and soapstone in the United States in 1939

			Location			
Producer	Material Produ		County	Nearest town		
CALIFORNIA						
J. A. Barnett, Shingle W. H. Binder, 25 East Palm St.,	Soapstonedo	Crudedo	Eldorado Los Angeles	Shingle. Saugus.		
Altadena. Blue Star Mines, Ltd., 840 San	Talc, soapstone,	Ground	Inyo	Bigpine.		
Julian St., Los Angeles. Wm. Bonham & W. V. Skinner,	Talc	Crude	do	Keeler.		
Lone Pine. Lew A. McEachran, 2652 Harri-	Soapstone	do	Butte	Isaiah.		
son St., San Francisco. Moorhouse Talc Co., 3215 West 6th St., Los Angeles.	Talc	do	San Bernardino.	Shoshone, Inyo County.		

² Trice, M. F., Pyrophyllite Dust—Its Effect and Control: Am. Inst. Min. and Met. Eng., Tech. Pub. 1179, 1940, 13 pp.

Producers of tale, pyrophyllite, and soapstone in the United States in 1939—Contd.

Producer	Material		Loc	ation
	Material	Product	County	Nearest town
Pacific Coast Tale Co., 2149 Bay St., Los Angeles.	Talc			Darwin.
Pacific Minerals Co., Ltd., 337 10th St., Richmond.	Soapstone	Crude, grounddo	San Bernardino. Eldorado	Silver Lake. Shingle.
Sierra Talc Co., 428 Union League Building, Los Angeles. Southern California Minerals	į.	do		1
Co., 320 South Mission Road, Los Angeles.	do	Ground	San Bernardino.	Kingston.
Western Talc Co., 1901 East Slauson Ave., Los Angeles.	do	Crude, ground	do	Tecopa, Inyo County.
GEORGIA				
Cohutta Talc Co., Dalton Georgia Talc Co., Asheville, N. C.	Talc, soapstone.	Crayons, ground _	Murraydo	Chatsworth.
Southern Talc Co., Chatsworth_ Thompson, Weinman & Co.,	do	Sawed, ground Ground	do	Do. Jasper.
Inc., Cartersville.				vasper.
MARYLAND Clinchfield Sand & Feldspar Co.,	Goomstone			
430 Hearst Tower Building, Baltimore.	Soapstone	do	Carroll	Marriottsville, Howard County.
Harford Tale & Quartz Co., Bel Air.		Crude, ground		Dublin.
Herbert I. Oursler, Marriotts- ville.	Soapstone	do	Howard	Marriottsville.
NEW YORK				
Carbola Chemical Co., Inc., Natural Bridge.	D.	Ground		_
International Pulp Co., 41 Park Row, New York. W. H. Loomis Tale Corporation,	1	do	t i	
223 East Main St., Gouverneur.	do	do	do	Do.
NORTH CAROLINA				
Carolina Pyrophyllite Co., Staley. Nantahala Tale & Limestone Co., Andrews.	Pyrophyllite Talc	Crude, crayons	Randolph Cherokee	Staley. Andrews.
Pyrophyllite Talc Products, Inc.,		Ground	1	
Standard Mineral Co., Inc., 230 Park Ave., New York, N. Y.	1	do	1	Hemp.
Victor Mica Co., Inc., Spruce Pine.	Talc	do	Mitchell	Spruce Pine.
PENNSYLVANIA				•
C. K. Williams & Co., 640 North 13th St., Easton.	Soapstone	Crude	Northampton	Easton.
VERMONT				
Eastern Magnesia Talc Co., Inc., Burlington.			Lamoille	Johnson.
Do		Crude, crayons, ground.	Washington	Waterbury.
Vermont Talc Co., Chester- Vermont Mineral Products, Inc., Chester.	do	Crude, ground Ground	Windham Windsor	Windham. Chester.
VIRGINIA				
Alberene Stone Corporation of Virginia, Schuyler.	Soapstone	Sawed, ground	Nelson	Schuyler.
Blue Ridge Talc Co., Inc., Henry Bull Run Talc Co., Llanerch, Pa	Talc	Crushed, ground_ Ground	Franklin Fairfax	Henry. Clifton Station.
Washington				
Asbestos-Tale Products of Washington, Inc., Burlington.	do	do	Skagit	Burlington.
Skagit Talc, Inc., Sedro Woolley	Soapstone	Ground, sawed	do	Rockport.

SALES

Sales of talc, pyrophyllite, and ground soapstone by producers increased 19 percent in quantity in 1939, totaling 253,976 short tons valued at \$2,700,834 compared with 212,775 tons valued at \$2,302,560 in 1938. The output exceeded the previous peak of 1937 by 10 percent. Only in 1928, 1929, and 1936–39 have sales of these commodities exceeded 200,000 tons annually. Sales of crude, sawed and manufactured, and ground materials increased in 1939 over 1938. The greatest increase—38,835 short tons or 94 percent of the total increase (41,201 tons)—was in sales of ground products. Sales of ground materials alone in 1939 were greater than total sales of all classes of talc, pyrophyllite, and ground soapstone in any previous year.

Tale, pyrophyllite, and ground soapstone sold by producers in the United States, 1935-39, by classes

Year	Cra	Crude		Sawed and manu- factured				ound	Ţc	tal
2 000	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value		
1935	10, 725 10, 910 11, 087 13, 498 15, 722	\$57, 259 59, 556 52, 750 72, 845 82, 188	841 618 1, 101 1, 729 1, 871	\$63, 211 90, 542 111, 680 70, 268 77, 915	161, 150 204, 663 217, 811 197, 548 236, 383	\$1, 727, 585 2, 193, 073 2, 397, 323 2, 159, 447 2, 540, 731	172, 716 216, 191 229, 999 212, 775 253, 976	\$1, 848, 055 2, 343, 171 2, 561, 753 2, 302, 560 2, 700, 834		

• Sales by States.—In 1939 increased sales of talc, pyrophyllite, and ground soapstone were reported in all States for which figures can be given. Sales showed the greatest advances in New York and North Carolina and established all-time highs in California, North Carolina, and Georgia. In North Carolina sales gained 34 percent and in Georgia 33 percent. The greatest percentage increase was in Virginia where sales were 58 percent greater in 1939 than 1938. About 39 percent of the total sales in 1939 came from New York.

Talc, pyrophyllite, and ground soapstone sold by producers in the United States, 1938-39, by States

	1938		1939		
State	Short tons	Value	Short tons	Value	
California Georgia New York North Carolina Vermont Washington Other States 1	30, 059 15, 117 86, 423 27, 460 35, 126 174 18, 416	\$391, 456 130, 595 1, 110, 024 241, 337 329, 084 894 99, 170 2, 302, 560	33, 796 20, 090 99, 880 36, 772 39, 393 190 23, 855 253, 976	\$483, 839 177, 881 1, 252, 525 283, 789 378, 492 1, 225 123, 083 2, 700, 834	

¹ Maryland, Pennsylvania, and Virginia.

MARKETS 3

The largest markets for talc, pyrophyllite, and ground soapstone are in northeastern United States and along the Pacific coast. industries use these minerals, but they are employed principally in paint, ceramics, rubber, roofing, and paper.

Talc, pyrophyllite, and ground soapstone sold by producers in the United States, 1938-39, by uses

	19	38	1939	
Use	Short tons	Percent of total	Short tons	Percent of total
Paint	53, 506 29, 590 25, 374 27, 607 27, 329 5, 970 2, 511 20, 732 20, 156	25 14 12 13 13 3 1 10 9	67, 859 38, 407 31, 078 30, 516 30, 177 9, 672 3, 986 12, 918 29, 363	27 15 12 12 12 12 4 2 5 11

¹ Includes crayons, bleaching, insecticides, plaster, textile, and other minor uses.

As indicated by reports from the producers to the Bureau of Mines. the paint industry—the leading consumer of these materials—increased its share of the market to 27 percent in 1939, taking nearly twice as much as the ceramic industry, the next largest user. All industries specified in the foregoing table absorbed larger quantities in 1939 than in 1938; the tonnage increases in consumption were especially notable in the paint, ceramics, and rubber industries.

Most of these materials are sold ground. There are no generally accepted standard specifications, but the largest quantity of talc is sold on the basis of previously satisfactory material or plant tests.4 Chemical analyses are of interest, but physical tests pertinent to the particular trade, such as size and shape of grain, color, slip, retention, oil-absorption index, bonding strength, melting point, and vitrification

range, usually are more significant.

Freight rates on soapstone and talc in the United States were fixed by the Interstate Commerce Commission in 1939 in the widely publicized Southern Governors' case. The findings in this case. as far as soapstone and talc are concerned, are that the rate on highergrade talc in carload lots shall be 16 percent of the first-class rate and on lower-grade talc 13 percent of the first-class rate. These rates are to apply from points in the South to points in the North. From points in the North to points in the South the carload rate on higher-grade talc is to be 22½ percent and on the lower-grade talc 19 percent of the first-class rate.

³ See also Johnson, Bertrand L., Marketing Talc, Pyrophyllite, and Ground Soapstone: Bureau of Mines Inf. Circ. 7080, 1939, 13 pp.

⁴ Norman, J. E., O'Meara, R. G., and Baumert, F. X., Froth Flotation of Talc Ores from Gouverneur, New York: Am. Ceram. Soc. Bull. vol. 18, No. 8, August 1939, pp. 292-297.

⁵ Interstate Commerce Commission, State of Alabama et al. v. N. Y. C. R. R. Co. et al.: Docket 27,746—embracing also I. and S. docket 4,400. Soapstone and Talc Between Southern and Official Points—Decided

PRICES

The selling price of domestic talcs—except grades suitable for toilet preparations, lava, and crayons—usually is between \$4 and \$20 a ton. The average value of sales of all grades of talc, pyrophyllite, and ground soapstone, as reported to the Bureau of Mines by producers, has been about \$11 a ton, ranging between \$12.50 per ton, as in 1928, and \$10.43, as in 1933; in 1939 it was \$10.63. The average values for the past 5 years are given in the following table.

Average value per short ton of talc, pyrophyllite, and ground soapstone sold by producers in the United States, 1935-39

1935	\$10. 7	0	1938	\$10.82
1936	10. 8	4	1939	10. 63
1937	11. 1	4		

Quotations on finely ground domestic tales, f. o. b. works, carload lots, in April 1940 were as follows: California, \$17 to \$20; New York, \$11 to \$19; Vermont, \$9 to \$14; Georgia, \$6 to \$8; Virginia, \$4.50 to \$7. Crude Virginia tale was quoted at \$4 a ton. Prices of imported tale ranged from \$11.50 to \$13 for Canadian, \$23 to \$60 for French, and \$64 to \$78 for Italian.

Prices of pyrophyllite are reported to have gained in 1939, but trade-journal quotations in April 1940 for ground pyrophyllite still showed a range from \$7.50 to \$12 a ton, as in 1938.

DEVELOPMENTS IN THE INDUSTRY

The leading development in the talc industry is its growing use in wall tile and other ceramic bodies, for which purposes New York and Canadian talcs are said to have found favor. Lime-free talcs are reported as wanted for use in highly absorptive bodies employed for electrical heater plates, but for porcelain and particularly for bodies maturing at low temperature talcs containing definite amounts of lime are desired.

The present froth-flotation plant of the Eastern Magnesia Talc Co., at Johnson, Vt., has been described in detail by Trauffer.⁷ This company began experiments with froth flotation in 1934 and in cooperation with the Bureau of Mines developed a reclamation process to recover talc from waste material. The present plant is reprocessing both accumulated and current wastes at the rate of 30 tons a day. Froth flotation now makes possible the economical recovery of 95-percent-pure talc from the dry-plant waste, which comprises about 55 percent talc, 35 percent magnesite, and 10 percent other impurities. About 150 pounds of nickel concentrates also are being recovered daily. Recently a market has been found for the high-iron magnesite (breunnerite) which at first was being wasted.

Pyrophyllite originally was utilized mainly as a substitute for tale, and considerable quantities still are used as a filler in various products. Consumption of pyrophyllite in ceramic bodies, however, has been increasing rapidly. According to Tyler,8 probably 90 percent of the

⁶ Tyler, Paul M., Tale: Bureau of Mines Mineral Trade Notes, January 1939, p. 33.

⁷ Trauffer, W. E., Froth Flotation Economically Recovers Valuable Material from Tale Waste: Pit and Quarry, vol. 32, No. 4, October 1939, pp. 28-30.

⁸ Tyler, Paul M., Pyrophyllite: Bureau of Mines Mineral Trade Notes, January 1939, pp. 32-33.

makers of wall tile have adopted pyrophyllite-talc mixtures to eliminate the crazing that hitherto had been accepted as more or less unavoidable; one formula for wall tile contains 40 percent pyrophyllite and 12 percent magnesia talc (New York or Canadian). Still more recent is the use of pyrophyllite-talc mixtures for dinnerware bodies. a typical formula being 19 percent pyrophyllite and 6 percent talc.

In July 1939 the North Carolina Division of Industrial Hygiene announced pyrophyllite dust as a new industrial hazard. In February 1940 M. F. Trice ⁹ of that organization presented before the American Institute of Mining and Metallurgical Engineers a detailed study of pyrophyllite dust and its effects, together with suggested methods of Thirty-five percent of the workers exposed to the dust for 2 years showed evidence of lung damage. The effective control of dust underground results from the adoption of wet methods and improved ventilation. On the surface, tight housings for machinery and exhaust ventilation have eliminated hazardous concentrations of dust.

Trice 10 has also described some of the present uses of pyrophyllite. He states that it is an excellent refractory, as pure crystalline specimens have a pyrometric cone equivalent of 29; moreover, associated impurities such as quartz and sericite do not appear to affect this coefficient appreciably, as this value has been found to be a fair average for many run-of-mine specimens. Virtually all floor and wall-tile bodies now produced are said to contain pyrophyllite. It reduces the coefficient of expansion and moisture expansion of the tile body and prevents crazing of the glaze, which usually results from the absorption of moisture. Pyrophyllite is also employed in the production of electrical and other porcelains and in the manufacture of tiny insulation elements, such as are used in radios. One company manufactures dry-press pyrophyllite brick for use as refractory furnace lining. Pyrophyllite is employed to some extent in the manufacture of enamels for porcelain enamel products for stoves and refrigerators, and its use in this connection is increasing. Promising results have been obtained from experiments utilizing pyrophyllite, ground to 1,250-mesh, as an extender for paints and as a surfacer for cardboard. An original use for pyrophyllite, which is still important, is for talcum powder. It is also used as a filler in several industries.

Schünemann ¹¹ found that pyrophyllite from Indian Gulch, Calif., on heating to 400° was unchanged; above that temperature H₂O was evolved continuously but was not reabsorbed on cooling. The lattice remained unchanged to 500°; above that there was some indication of a new form, but the scaly structure continued. Pyrophyllite resists attack by NaOH or HCl unless previously heated above 500° and then is affected only slightly unless the heating has exceeded 1,000°. With MgCl₂ cordierite is formed; with CoCl₂, spinel; with LiF, products of varying composition; and with NiCl₂, a bright-green

substance of doubtful composition.

Studies by the Bureau of Mines in cooperation with the W. H. Loomis Talc Co. on the fibrous and foliated talc ores of the Gouverneur (N. Y.) district show that these ores may be improved by froth

⁹ Trice, M. F., Work cited in footnote 2.

¹⁰ Trice, M. F., Work cited in footnote 2.

¹¹ Schünemann, H., Effect of Heat on Pyrophyllite and Its Decomposition Products with Magnesium and Cobalt Chlorides: Univ. Berlin Inaug. Diss., 1937, 34 pp.; Neues Jahrb. Mineral., Geol. Ref. I, 1938, pp. 309-310; Chem. Abs., vol. 33, No. 8, April 20, 1939, p. 2849.

flotation.¹² Three types of ores were tested—tremolite talc, limy tale, The ores are said to have differed in type of talc and green talc. foliated and fibrous—and in proportion and kind of impurities calcite, tremolite, serpentine, diopside, and quartz—and each represented a separate problem in flotation. The ores containing fibrous talc and those containing tremolite and calcite were difficult to separate, whereas those containing foliated tale and quartz were easy to float. Different flotation agents were required for the various ores. Pine oil was suitable for foliated talc, but reagents of the amine type proved more suitable for the fibrous talc. The results indicate that a product of high talc content may be separated from each of the In the talc-tremolite ores nothing need be wasted in consequence of beneficiation, as the tailing, enriched in tremolite, is stated to be suitable for wall tile as it is or blended with the feed.

From values listed by manufacturers and standard references Thurnauer ¹³ has tabulated the mechanical and electrical properties of

porcelain, steatite, cordierite, TiO2, and lava materials.

Meyer 14 found that ground soapstone pressed to shape and burned to 1,400° gave satisfactory results when used for gas-meter valves, remaining tight in tests lasting 1½ years.

Esme 15 discussed the occurrence and properties of talc and its use

in papermaking.

Hendricks 16 treated the crystal structure of both talc and pyrophyllite as determined by X-ray data.

Charrin ¹⁷ presented a general discussion of talc.

d. Moraes and Leinz 18 described the occurrence of deposits of pyrophyllite suitable for ceramic use in the Province of Minas Geraes, Brazil. They conclude that the pyrophyllite deposits have been formed from kyanite-rich schists through the agency of pneumatolytichydrothermal emanations from the associated granitic bodies.

The mining and milling of pyrophyllite are described briefly by Milliken,¹⁹ who points out that pyrophyllite as a substitute for Cornwall stone in wall-tile bodies gives equal abscrption, shrinkage, and modulus of rupture, greater uniformity over the firing range, and

lower moisture expansion.

Webb and Ratcliffe 20 discussed the use of talc as an anticraze material.

Attention is called by Tyler and Bowles 21 to a new use of pyrophyllite for a refractory known as "pyroplastic," employed chiefly to patch disintegrated firebrick, thereby obviating costly shut-downs and lengthening the life of furnace linings. They also report that the platy or schistose variety of pyrophyllite is claimed, as a result of recent tests, to make a satisfactory paint filler.

¹² Norman, J. E., O'Meara, R. G., and Baumert, F. X., Work cited in footnote 4.
¹³ Thurnauer, Hans. Properties of Ceramic Materials: Electronics, vol. 12, No. 3, 1939, p. 33.
¹⁴ Meyer, George (Gas-meter Valves of Soapstone): Gas-u.-Wasserfach., vol. 82, 1939, pp. 501-502.
¹⁵ Esme, A. (Talc in Papermaking): Papeterie, vol. 60, 1938, pp. 58-65.
¹⁶ Hendricks, S. B. (Crystal Structure of Talc and Pyrophyllite): Ztschr. Kristallographie, vol. 99, 1938, pp. 64-67.

pp. 264-275.

17 Charrin, V. (Industrial Magnesium Silicate; Talc): Verre et silicates ind., vol. 10, No. 13, 1939, pp.

d. Moraes, L. J., and Leinz, V. (Agalmatolite Occurrences in Minas Geraes, Brazil): Chemie der Erde, vol. 12, 1938, pp. 95-103.
 Mülliken, W. A., Pyrophyllite Developments in North Carolina: Ceram. Age., vol. 31, No. 1, 1938, 1938.

minister, w. A., Pytophyline Developments in Notifi Carolina. Cerain. Age., vol. 31, No. 1, 1885, pp. 18-19.

Webb, H. W., and Ratcliffe, S. W., Formation of Cristobalite in Earthenware and White Tile Bodies: Trans. British Ceram. Soc., vol. 38, No. 1, 1939, pp. 100-105; Mechanism of the Action of Talc as an Anticraze Material; Trans. British Ceram. Soc., vol. 38, No. 1, 1939, pp. 105-110.

Tyler, Paul M., and Bowles, Oliver, Nonmetallic Mineral Industries in 1939: Bureau of Mines Inf. Circ. 7106, 1940, p. 24.

Ralston and others 22 note that the separation of the earthy minerals—talc, pyrophyllite, and clay—has been benefited by attrition scrubbing before flotation. It is thought that attrition produces cleaner concentrates by rubbing off "smears" of the soft mineral from the gangue material.

Flotation tests on two talc ores from California were described by

Engel and Shelton.²³

FOREIGN TRADE 24

Imports.—Both the quantity and value of total imports of tale, steatite or soapstone, and French chalk were greater in 1939 than in 1938 but did not quite reach the 1937 levels. Imports of crude and unground steatite and French chalk dropped markedly in 1939, but this decline was much more than counterbalanced by the increase in "manufactures."

Talc, steatite or soapstone, and French chalk imported for consumption in the United States, 1935-39

Year	Crude and steatite a chalk	unground nd French	toilet pr	res (except reparations) repartly fin-	Total		
	Short tons	Value	Short tons	Value	Short tons	Value	
1935. 1936. 1937. 1938. 1939.	298 188 324 337 133	\$5,856 2,915 7,644 5,956 2,392	23, 598 24, 332 26, 552 21, 790 26, 134	\$486, 418 453, 752 465, 175 385, 242 450, 227	23, 896 24, 520 26, 876 22, 127 26, 267	\$492, 274 456, 667 472, 819 391, 198 452, 619	

Talc, steatite or soapstone, and French chalk imported for consumption in the United States, 1938-39, by countries

Country	19	938	1939		
	Short tons	Value	Short tons	Value	
Austria Belgium Canada China Egypt France Germany Greece Hong Kong India, British Italy Japan Kwantung Norway Sweden Union of South Africa United Kingdom	1, 767 55 4, 244 2 2 287 7, 842 1, 325 34 131	1 \$69 60 65, 968 42, 479 1, 039 64, 693 306 4, 514 192, 146 16, 915 330 2, 647 26 391, 198	8, 116 2, 593 110 5, 543 3 (2) 892 2, 617 2, 305 62 25 26, 267	\$64, 506 50, 359 2, 519 80, 539 68 55 70 11, 057 209, 888 32, 034 588 936	

¹ Figures cover period Jan. 1 to May 5. 2 Less than 1 ton.

²¹ Ralston, O. C., and others, Annual Report of the Nonmetals Division, Fiscal Year 1939: Bureau of Mines Rept. of Investigations 3473, 1939, p. 35.

²³ Engel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division. 36. Ore Testing Studies, 1938-39; Bureau of Mines Rept. of Investigations 3484, 1940, pp. 17-19.

²⁴ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Imports from many countries increased. Italy was again the leading source of supply, with Canada second, France third, China fourth, and Japan fifth. Figure 2 shows imports of these materials by countries during the past 3 years.

Exports.—Both the quantity and value of exports of "talc, steatite, and soapstone, crude and ground" were greater in 1939 than in recent

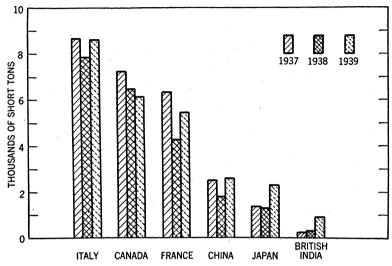


FIGURE 2.—Imports of talc, steatite or soapstone, and French chalk for consumption in the United States, 1937-39, by leading countries.

years; likewise the value of "powders—talcum (in packages), face, and compact" was greater, continuing the upward trend begun in 1935 for material of this type.

Talcum and other nowders exported from the United States, 1935-	Talcum	and other	nowders	ernorted	from the	United	States.	1935-9
---	--------	-----------	---------	----------	----------	--------	---------	--------

Y_{ear}	Description	Short tons	Value
1935 1936 1937 1938	Talc, crude, in bnlk Powders—talcum (in packages), face, and compact Talc, steatite, and soapstone, crude and ground Powders—talcum (in packages), face, and compact Talc, steatite, and soapstone, crude and ground Powders—talcum (in packages), face, and compact Talc, steatite, and soapstone, crude and ground Powders—talcum (in packages), face, and compact Talc, steatite, and soapstone, crude and ground Powders—talcum (in packages), face, and compact Talc, steatite, and soapstone, crude and ground	5, 814 (¹) 6, 670 (¹) 8, 878 (¹) 7, 118 (¹) 9, 047	\$ 101, 299 711, 38: 115, 43: 803, 57: 149, 62: 966, 47: 124, 199 978, 100 162, 42: 1, 115, 170

¹ Quantity not recorded.

A shipload of talc, consigned to London, England, by the Sierra Talc Co., Los Angeles, Calif., was reported sunk by a German mine.²⁵

WORLD PRODUCTION

Although few figures are yet available on the production of talc, pyrophyllite, and soapstone in foreign countries in 1939, the data at hand, coupled with established production trends in the principal

²⁵ Pit and Quarry, vol. 32, No. 8, February 1940, p. 23.

producing countries, indicate that the United States was by far the leading producing nation and that its output exceeded greatly that of other important producers, such as China, France, Italy, British India, Germany, Canada, Norway, and Sweden.

World production of talc and soapstone, 1935-39, by countries, in metric tons [Compiled by M. T. Latus]

Country 1	1935	1936	1937	1938	1939
Argentina.	176	177	208	. 80	(2)
Australia: New South Wales	511	520	526	597	(2)
South Australia	954	1,003	991	973	(2)
TasmaniaBulgaria	15	3			(2)· (2)
Canada 3	12.522	13, 161	11, 301	9, 846	11, 924
China (Manchuria)	69.818	80, 326	(2)	(á)	
EgyptFinland	366 2, 185	351 1,683	2, 266 881	1, 251	(2) (2) (2) (2)
France	59, 500	51, 550	56, 300	(2)	(2)
Germany: Austria (exports)	20, 951	19, 975	14 000	F 60F	(0)
Bavaria	7, 163	9, 589	14, 089 7, 790	5, 625 6, 805	(2)
Greece	552	864	1,838	1, 293	(2)
India, BritishIndochina	12,798	10, 128 630	13, 249 428	18, 888	(2)
Italy	41.692	43, 938	45, 714	53, 511	(2) (2) (2) (2) (2) (2) (2)
Morocco, French (exports)	720	1,368	841	(2)	(2)
NorwayRumania	27, 782 1, 999	29, 714 2, 529	24, 701 1, 976	(2) 1, 913	(2)
Sweden		7, 146	7, 937	6, 797	(2) (2) (2) (2)
Tanganyika Territory Union of South Africa (Transvaal)	303	413	376	38	
United States 4	156, 685	196, 124	208, 650	1, 554 193, 025	450 230, 402
Uruguay (exports)	1, 200	772	437	952	(2)

¹ In addition to the countries listed talc is produced in Brazil, Newfoundland, Spain and the U. S. S. R., but data of production are not available.

2 Data not available.

3 Excludes soapstone, which is reported only by value and was as follows: 1935, \$32,053; 1936, \$32,770; 1937, \$40,513; 1938, \$35,038; 1939, \$41,471. Soapstone is sold in the form of both blocks and powder.

4 Talc, pyrophyllite, and ground soapstone sold or used by producers.

FLUORSPAR AND CRYOLITE

By H. W. DAVIS and M. E. TROUGHT

SUMMARY OUTLINE

Summary Salient statistics Production and shipments Shipments, by uses Uses	1333 1334 1337 1338 1338	Technologic developments Industry in 1939, by States Imports and exports World production	1346 1346 1346
Consumption and consumers' stocks Quoted prices	1339	Cryolite	1350

FLUORSPAR

Greatly increased demand for fluorspar by all the chief consuming industries was indicated by the consumption of 176,800 short tons of fluorspar in 1939 compared with 115,100 tons in 1938. As a result of this improved demand, operations were resumed at some inactive mines and operating schedules at many others were increased. In consequence, domestic mine production and shipments were 75 and 127 percent, respectively, higher than in 1938. In fact, so great was the demand for fluorspar that shipments from domestic mines in 1939 were the largest since 1920 and the fourth highest on record. Shipments from Arizona, Kentucky, and Nevada established all-time highs. However, shipments of fluorspar far exceeded consumption, and as a result consumers' stocks at the end of 1939 were abnormally high. Sales of imported fluorspar in the United States were 7 percent less than in 1938.

Much prospecting and development work was done in 1939, which led to discovery of additional ore bodies and the opening of several new properties. In 1939 new mills came into operation at seven mines, and two new plants were under construction. Improvements and refinements were made in the flow sheets at several mills. Additional new

mills are contemplated for 1940.

Total sales of fluorspar to consumers in the United States were 198,198 short tons in 1939 (179,795 tons from domestic mines and 18,403 tons from foreign sources) compared with 99,478 tons in 1938 (79,615 tons from domestic mines and 19,863 tons from foreign sources). Total sales to the steel industry increased to 139,060 tons in 1939 (62,196 tons in 1938), while sales to manufacturers of hydrofluoric acid advanced to 31,966 tons (20,976 tons in 1938) and those to makers of glass and enamel increased to 22,018 tons (12,902 tons in 1938).

Despite the improved demand for fluorspar in 1939, the average composite selling price of all grades of fluorspar (both domestic and foreign) delivered to consumers in the United States was 32 cents a ton less than in 1938. The average selling price f. o. b. Illinois-Kentucky mines of fluorspar shipped to steel plants was \$18.24 a short ton (\$18 in 1938), of that shipped to manufacturers of hydrofluoric

acid \$27.34 (\$25.29 in 1938), and of that to makers of glass and enamel \$26.87 (\$27.90 in 1938). The average selling price at seaboard (duty paid) of imported fluorspar shipped to steel plants was \$20.64 a short ton in 1939 (\$20.56 in 1938) and of that shipped to manufacturers of hydrofluoric acid \$29.76 (\$27.54 in 1938).

Salient statistics of the fluorspar industry in the United States, 1938-39

	193	38	1939	
	Short tons	Value	Short tons	Value
Domestic shipments: Gravel Lump Ground	59, 199 7, 907 13, 297	\$1, 065, 960 182, 860 350, 846	144, 149 15, 367 23, 255	\$2, 725, 510 371, 047 608, 402
	80, 403	1, 599, 666	182, 771	3, 704, 959
Stocks at mines or shipping points Dec. 31: Ready-to-ship	1 34, 996 1 48, 474	(2) (2)	38, 619 26, 746	(2) (2)
	1 83, 470	(2)	65, 365	(2)
Imports for consumption: Containing more than 97 percent CaF ₂ Containing not more than 97 percent CaF ₁ .	9, 216 10, 406	192, 469 95, 174	3, 351 12, 951	79, 088 97, 603
Exports	19, 622 788	287, 643 9, 061	16, 302 2, 976	176, 691 74, 443
Consumption (by industries): Metallurgical Ceramic Chemical	81, 400 14, 800 18, 900	(2) (3) (4) (2)	128, 600 21, 900 26, 300 176, 800	(2) (2) (2) (2)
Stocks at consumers' plants Dec. 31: Metallurgical Ceramic Chemical	57, 800 2, 800 11, 200	(3) (3) (3)	73, 000 3, 300 14, 100	(2) (2) (2) (2)
	71, 800	(3)	90, 400	(2)

¹ Revised figures.
2 Figures not available.

Because of the interest that has centered lately on strategic, critical, and essential minerals from a military standpoint, as well as the fact that fluorspar has been classed by the Army and Navy Munitions Board as an essential mineral, it seems fitting at this time to present historic tables comprising data on production and imports.

The total quantity of fluorspar shipped and imported into the United States from about 1870 through 1939 was about 5,333,000 short tons, including about 80 percent from domestic mines and 20 percent

from foreign sources.

The total shipments since the beginning of commercial production (about 1870) in the United States through 1939 was approximately 4,294,000 short tons. Illinois has contributed 57, Kentucky 35, and Colorado 5 percent; most of the remaining 3 percent was supplied by New Mexico. Imports of fluorspar into the United States from 1910 (the first year for which complete data are available) through 1939 were 882,360 short tons and imports before 1910 are estimated at 157,000 tons; thus, total imports have been about 1,039,000 tons, of which the United Kingdom has contributed about 51, Germany 20, and France 12 percent. Africa, 7, and Spain, 4 percent, have furnished the greater part of the remainder.

Fluorspar shipped 1 from mines in the United States, 1880-1939, by States 2

244	****	Ariz	ona	Colo	orado	I111	inois	Ken	tucky	Nev	7ada		Hamp- ire		Mex-	Tenn	iessee	Ut	tah		her ates	Т	otal
244615-40	Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short	Value	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
85	1880-1909 3 1910 1911 1912 1912 1913 1914 1915 1916 1917 1918 1919 1920 1922 1922 1924 1925 1924 1925 1929 1930 1931 1932 1934 1935 1936 1937 1938 1938 1938 1939 1939	100 199 135 364 45 181 	2, 587 1, 080 5, 537 450 3, 264	268 7211 1, 639 4, 432 1, 978 8, 649 17, 104 38, 475 9, 687 12, 852 3, 143 2, 309 6, 432 110, 440 111, 776 14, 808 9, 248 9, 248 9, 248 9, 412 6, 537 6, 577 6, 578 9, 412 7, 869	1, 608 4, 226 9, 834 26, 692 12, 992 1, 482 42, 457 196, 633 416, 789 251, 308 39, 907 20, 169 59, 710 135, 411 152, 707 101, 758 5, 921 3, 330 6, 778 83, 132 88, 454 109, 411 98, 493 (9)	62, 067 54, 428 53, 734 46, 006 65, 884 67, 009 44, 134 28, 072 9, 615 36, 075 33, 234 44, 120 82, 056 78, 664 35, 368 75, 257	277, 764 481, 635 695, 467 550, 815 426, 063 624, 040 746, 150 1, 373, 333 2, 887, 099 2, 430, 361 3, 096, 767 1, 493, 188 11, 443, 489 11, 284, 834 101, 012, 879 863, 909 1, 154, 983 1, 284, 834 836, 473 468, 386 156, 279 1, 525, 606 1, 730, 585 751, 227 1, 638, 693	10, 473 19, 622 19, 077 19, 219 19, 698 43, 639 87, 604 32, 386 46, 001 15, 266 52, 484 45, 441 47, 487 44, 826 62, 494 57, 495 69, 747 770, 827 39, 181 23, 462 14, 725 34, 614 43, 163 68, 679 80, 241 87, 296 34, 803 88, 563 89, 563	113, 903 128, 986 129, 873 123, 596 697, 586 697, 586 883, 171 1, 246, 942 294, 513 945, 402 988, 940 833, 794 1, 167, 129 1, 040, 338 1, 426, 766 1, 390, 603 763, 370 437, 642 225, 052 469, 451 690, 990 1, 017, 451 1, 409, 433 1, 710, 122 678, 094 1, 773, 063	400 532 455 1, 357 974 395 49 505 631 1, 040 2, 126 2, 909 3, 520	\$5, 600 8, 672 	300 2000 250 650 8000 1, 274 1, 059 531 202 567 690 142	1, 500 1, 200 2, 000 5, 200 7, 864 19, 110 21, 243 12, 826 4, 040 13, 721 15, 353 3, 160	196 5, 372 485 	1, 176 42, 976 42, 976 43, 488 37, 643 101, 460 60, 186 30, 992 50, 861 35, 178 40, 325 33, 058 47, 978 50, 162 35, 682 30, 775 30, 775 30, 775 30, 9020 (6) (6) (6) (6)	6	116	20 166 268 188 184 	\$465 4, 784 6, 094 1, 404 3, 196 3, 292 	6 181	\$824 	11b, 545 115, 580 95, 116 136, 941 155, 735 218, 828 263, 817 138, 290 186, 778 34, 960 141, 596 121, 188 124, 979 113, 669 128, 657 112, 546 140, 490 146, 439 95, 849 95, 849 123, 741 176, 877 181, 230 80, 403 182, 771	611, 447 769, 163 736, 286 570, 041 764, 475 922, 654 4718, 547 724, 094 4, 718, 547 724, 094 4, 718, 547 724, 094 1, 039, 178 1, 341, 277 2, 034, 728 2, 656, 554 2, 791, 126 1, 746, 643 392, 499 1, 039, 178 1, 391, 405 1, 860, 638 3, 119, 668 3, 704, 959
		(6)	(6)	211, 882	(6)	2,432,152	34, 340, 157	1, 513, 298	25, 096, 245	17, 437	(6)	8, 302	(₆)	(6)	(6)	1,026	7, 036	2, 970	(8)	241	2, 874	4,269,255	63, 541, 841

Figures for 1880-1905 represent production.
 Figures on production not recorded for Colorado before 1905, for Illinois before 1880, and for Kentucky before 1886 and for 1888-95; total unrecorded production, chiefly from Illinois, estimated at 25,000 short tons.
 Figures by years for 1880-1909 are given in Mineral Resources of the United States, 1925, pt. 2, p. 13
 Washington.
 California.
 Bureau of Mines not at liberty to publish figures.

Fluorspar imported into the United States, 1910-39, by countries 1

Year	A:	rica	Can	ada	Fra	nce	Ger	many	Ita	aly	Newf la:		Sp	ain	United 1	Kingdom		coun- es 2	Т	'otal
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1910 1911 1912 1913 1914 1914 1915 1916 1917 1918 1919 1919 1922 1921 1922 1922 1922	30 -486 10, 380 11, 125 7, 906 8, 506 7, 069 2, 661 6, 387 2, 712 3, 672 1, 587 1, 547 1, 1, 347 1, 343	\$1, 080 8, 415 157, 625 147, 977 108, 647 136, 502 90, 967 31, 089 40, 375 14, 809 12, 449 31, 872 23, 739 19, 424 19, 479 56, 298	618 913 902 7, 068 4, 370 2, 877 (3) 213 1, 109 560	\$3, 813 21, 973 13, 532 110, 532 52, 855 \$2, 679 3, 216 10, 310 4, 250 2, 313	232 2, 537 11, 163 11, 711 15, 072 16, 850 23, 313 24, 462 1, 578 14, 158 14, 141 13, 094	\$2, 782 20, 887 90, 737 86, 279 141, 434 159, 059 184, 238 33, 646 9, 588 1, 247 16, 039 80, 816 67, 097 100, 769	320 184 127 215 5, 804 8, 580 6, 834 11, 680 20, 465 31, 829 17, 601 16, 488 23, 797 64, 433 8, 224 4, 333 8, 224 4, 333 12, 944 14, 501 3, 062 19	1, 919 2, 444 3, 073 1, 818 1, 154 	268 1, 585 4, 278 1, 379 449 1, 033 1, 258 1, 802 1, 523 1, 457 533 60 55	\$2, 471 14, 804 32, 208 15, 434 5, 969 9, 600 10, 528 17, 198 24, 267 11, 848 4, 533 587 587	320 745 	\$2, 646 10, 460 28, 497 67, 723 103, 909 61, 775	2, 948 978 680 7, 168 6, 784 4, 068 2, 659 4, 262 4, 914 5, 701 566 309 168	\$33, 915 3, 650 5, 178 52, 039 53, 612 24, 881 28, 690 35, 316 35, 432 31, 365 4, 464 3, 535 2, 542	18, 449 9, 360 4, 828 5, 756 4 1 17 466 	78, 673 69, 172 68, 390 37, 125 21, 724 54, 000 110, 785 147, 391 94, 099 144, 142 202, 548 208, 391 195, 229 281, 735 168, 840 60, 995	111 136 1,689 664 470 776 1,366 739 213 112 27 112	426 1, 948 2, 075 19, 115 8, 031 6, 835 4, 410 8, 560 12, 053 7, 957 1, 981 867 413 990	32, 764 26, 176 22, 682 10, 205 7, 167 12, 323 13, 616 12, 572 6, 943 24; 612 6, 229 33, 108 42, 226 51, 043 48, 700 75, 671 71, 515 64, 903 54, 345 64, 903 13, 236 16, 705 16, 340 16, 705 16, 340 16, 340 16, 341 16, 963 17, 963 17, 963 17, 963 17, 963 17, 963 17, 963	80, 592 71, 463 38, 943 22, 878 54, 000 114, 598 169, 304 107, 631 265, 630 299, 188 432, 319 555, 642 448, 847 747, 237 595, 185 448, 847 747, 237 595, 185 544, 556 211, 435 132, 665 105, 642 240, 779, 649 256, 262 397, 627 287, 643
	72, 077	1, 013, 053	19, 098	2 58, 4 54	123, 380	994, 618	210, 186	2, 051, 840	16, 804	155, 788	17, 922	275, 010	46, 299	346, 405	368, 687	2, 481, 129	7, 907	87, 326	882, 360	7, 663, 623

¹ Imports Aug. 1 to Dec. 31, 1909, 6,971 short tons valued at \$26,377; not separately recorded before Aug. 1, 1909. Imports before Aug. 1, 1909, virtually all from the United Kingdom, estimated at 150,000 short tons.

² Argentina, Australia, Austria-Hungary, Belgium, China, Czechoslovakia, Mexico, Netherlands, Norway, Tunisia, and Soviet Russia in Asia.

³ Quantity not recorded.

⁴ Optical fluorspar.

Production and shipments.—Fluorspar was known to have been produced in 1939 at 106 mines and prospects, and small quantities were recovered at an undetermined number of other prospects and reclaimed from millponds, waste dumps, and old workings of abandoned mines. All operations yielded about 173,000 short tons of merchantable fluorspar compared with about 99,000 tons in 1938. However, in spite of the large number of properties worked in 1939, 28 mines produced 87 percent of the total output.

Shipments of fluorspar from domestic mines in 1939 aggregated 182,771 short tons valued at \$3,704,959, increases of 127 percent in quantity and 132 percent in total value over 1938. Shipments in 1939 were equivalent to 146 percent of the average annual tonnages shipped in the 5-year period 1926–30. Of the 1939 shipments, 48,648 tons (an all-time high) were shipped by river or by river-rail for delivery to consumers in Illinois, Kentucky, New Jersey, Ohio, and

Pennsylvania. In 1938, 20,862 tons were so shipped.

In 1939, mines operated by or for consumers shipped 36,335 short tons of fluorspar for use in their own plants compared with 13,226 tons in 1938.

The average value of all grades of domestic fluorspar shipped was \$20.27 (\$0.37 more than the 1938 average). The value recorded for domestic fluorspar is the price paid f. o. b. mine shipping point and excludes cost of containers.

In 1939, an undetermined quantity of optical fluorspar from Illinois was sold for \$25.

The following table shows shipments of fluorspar by States and by kinds for 1938 and 1939.

Fluorspar shipped from mines in the United States, 1938-39, by States and kinds

		1938			1939		
State	Short	Val	ue	Short	Value		
	tons	Total	Average	tons	Total	Average	
Illinois_ KentuckyArizona	35, 368 34, 803 1, 093	\$751, 227 678, 094	\$21. 24 19. 48	75, 257 89, 563	\$1, 638, 693 1, 773, 063	\$21. 77 19. 80	
New Mexico Nevada Utah	4, 066 2, 909 370	142,802	17. 70	6, 477 3, 520 385	132, 408 } 53, 336	20. 44 13. 66	
Colorado New Hampshire	1, 704 90	27, 543	12. 73	7, 569	107, 459	14. 20	
	80, 403	1, 599, 666	19.90	182, 771	3, 704, 959	20. 27	
		1938			1939		
Kind	Short	Val	ue	Short	Val	пе	
	tons	Total	Average	tons	Total	Average	
Gravel 1Lump	59, 199 7, 907	\$1,065,960 182,860	\$18. 01 23. 13	144, 149 15, 367	\$2, 725, 510 371, 047	\$18.91 24.15	
Ground 3	13, 297	350, 846	26. 39	23, 255	608, 402	26. 16	
	80, 403	1, 599, 666	19.90	182, 771	3, 704, 959	20. 27	

¹ Includes flotation concentrates shipped to hydrofluoric acid, steel, and cement plants and run-of-mine fluorspar shipped to steel plants.
² Includes flotation concentrates shipped to glass and enamel trades.

Shipments, by uses.—The predominance of the steel industry as a purchaser of fluorspar is evident from the following table.

		19	938			19	939	
Use	Quan	tity	Valı	пе	Quai	ntity	Valu	18
	Percent of total	Short tons	Total	Aver- age	Percent of total	Short tons	Total	Aver- age
Steel	64. 67 2. 54 10. 82 5. 10 14. 28 1. 61	51, 991 2, 041 8, 702 4, 100 11, 484 1, 297	\$912, 111 33, 755 224, 315 109, 165 285, 274 25, 985	\$17. 54 16. 54 25. 78 26. 63 24. 84 20. 03	68. 59 1. 31 } 11. 97 15. 03 1, 47	125, 371 2, 391 21, 884 27, 463 2, 686	\$2, 234, 996 42, 428 569, 349 730, 383 53, 360	\$17. 83 17. 74 26. 02 26. 60 19. 87
Exported	99. 02 . 98 100. 00	79, 615 788 80, 403	1, 590, 605 9, 061 1, 599, 666	19.98 11.50	98. 37 1. 63	179, 795 2, 976 182, 771	3, 630, 516 74, 443 3, 704, 959	20. 19 25. 01 20. 27

Fluorspar shipped from mines in the United States, 1938-39, by uses

Uses.—As shown graphically in figure 1, the steel industry is the chief consumer of fluorspar in the United States, followed in order by the hydrofluoric acid, glass, and enamel industries. Comparatively small quantities of fluorspar are used in a number of miscellaneous operations, such as production of the finer grades of iron castings,

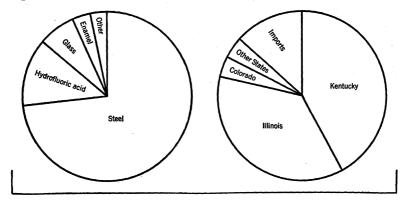


FIGURE 1.—Average annual fluorspar sales in the United States, 1935-39, by consuming industries and by sources.

nickel and Monel metal, cement, ferro-alloys, carbon electrodes, and calcium carbide and cyanamid; reducing aluminum; refining lead and silver; extracting various rare metals from their ores; smelting refractory ores of gold, silver, and copper; as a paint pigment; and as a binder in abrasives.

cities commercial grades of states par	Chief	commercial	grades	of	fluorspar
--	-------	------------	--------	----	-----------

	_		Spec	cification percent	
Name	Chief use	Form	CaF ₂ (mini- mum)	SiO ₂ (maxi- mum)	Fe ₂ O ₃ (maxi- mum)
Metallurgical CeramicAcid	Basic open-hearth steel. Glass and enamel Hydrofluoric acid	Washed gravel, less than 1 inch and not more than 15 percent of fines. Ground: coarse, fine, and extra fine Lump, gravel, and ground	85 95 98	5 3 1	0. 12

Consumption and consumers' stocks.—The following tables give data on consumption and stocks of fluorspar.

Fluorspar (domestic and foreign) consumed and in stock in the United States, 1938–39, by industries, in short tons

[Partly estimated by Bureau of Mines]

	1	938	19	939
Industry	Consump- tion	Stocks at consumers' plants Dec. 31	Consump- tion	Stocks at consumers' plants Dec. 31
Basic open-hearth steel. Electric furnace steel. Foundry. Ferro-alloys Hydrofluoric acid. Enamel. Glass Miscellaneous.	73, 600 4, 000 2, 000 800 18, 900 4, 000 10, 500 1, 300	55, 000 1, 000 800 400 11, 200 900 1, 600 900	116, 200 7, 600 2, 400 1, 100 26, 300 } 21, 400 1, 800	69, 900 1, 400 800 400 14, 100 3, 100 700

Consumption and stocks of fluorspar (domestic and foreign) at basic open-hearth steel plants, 1935-39

	1935	1936	1937	1938	1939
Production of basic open-hearth steel ingots and castings. long tons. Consumption of fluorspar in basic open-hearth steel production. short tons. Consumption of fluorspar per ton of steel made pounds. Stocks of fluorspar on hand at steel plants at end of year. short tons.	30, 447, 000	43, 615, 000	46, 361, 000	25, 868, 000	43, 368, 000
	99, 600	133, 900	138, 900	73, 600	116, 200
	6. 5	6. 1	6. 0	5. 7	5. 4
	47, 500	59, 200	71, 400	55, 000	69, 900

The quantity of fluorspar used by individual plants per ton of basic open-hearth steel produced ranges from 1 to 50 pounds—a relatively small proportion of the furnace charge. The average is generally 5 to 8 pounds, but it decreased to 5.36 pounds in 1939 from 5.69 pounds in 1938. It is noteworthy that since 1921—the first year for which these data were collected—the average consumption of fluorspar per ton of basic open-hearth steel made has declined almost steadily from 8.2 to 5.4 pounds. The following table shows the variation in average consumption of fluorspar per ton of basic open-hearth steel over a 5-year period in certain plants that make about 88 percent of the total.

Average consumption of fluorspar (domestic and foreign) per ton of steel, 1935-39, in pounds

1935	1936	1937	1938	1939	1935	1936	1937	1938	1939
13. 243	13. 187	13. 867	12. 548	14. 079	7. 048	6. 734	7. 360	8. 420	6. 337
4. 182	4. 792	5. 623	4. 457	3. 623	9. 347	10. 495	6. 623	11. 984	8. 506
4. 803	4. 541	4. 376	3. 845	3. 793	8. 168	5. 104	4. 358	3. 831	3, 171
8. 452	10. 519	8. 795	8. 297	8. 095	5. 236	5. 027	6. 619	6. 448	6. 551
7. 027	4. 105	3. 550	6. 843	6. 814	6. 764	6. 357	8. 895	8. 340	9. 370
5. 658	5. 160	5. 275	3. 694	3. 709	5. 257	5. 917	5. 236	6. 195	4. 578
6. 857	7. 416	6. 404	6. 806	4. 958	7. 115	6. 789	6. 816	6. 097	6. 896

Quoted prices.—In 1939 the quoted price f. o. b. Illinois-Kentucky for fluxing gravel fluorspar ranged from \$17 to \$22 a short ton for rail delivery and \$18 to \$22 a ton for barge delivery at Ohio River and tributary landings. Imported fluxing gravel fluorspar (at seaboard, duty paid) was quoted at \$21.50 to \$27 a short ton.

Stocks at mines or shipping points.—According to reports of producers the total quantity of fluorspar in stock at mines or shipping points at the close of 1939 was 65,365 short tons, or about 22 percent less than in 1938. These stocks comprised about 26,700 tons of crude fluorspar (calculated to be equivalent to 15,000 tons of ready-to-ship fluorspar) and 38,619 tons of ready-to-ship fluorspar.

Stocks of fluorspar at mines or shipping points in the United States, Dec. 31, 1938 and 1939, by States, in short tons

	1938			1939	
Crude 1	Ready- to-ship	Total	Crude 1	Ready- to-ship	Total
50 260 35, 157 12, 207 2 692 48 60	10, 182 24, 486 2 328 34, 996	50 260 45, 339 36, 693 21, 020 48 60 2 83, 470	150 565 17, 667 4, 570 3, 686 48 60 26, 746	209 329 17, 163 20, 333 585 	209 150 894 34, 830 24, 903 4, 271 48 60
	50 260 35, 157 12, 207 2 692 48 60	Crude 1 Ready- to-ship 50 260 35, 157 12, 207 2 692 2 328 60	Crude 1 Ready-to-ship Total 50 50 50 260 260 35, 157 10, 182 45, 339 12, 207 24, 486 36, 693 248 60 60	Crude 1 Ready-to-ship Total Crude 1 50 50 565 35, 157 10, 182 45, 339 17, 667 12, 207 24, 486 36, 693 4, 570 2692 2328 21, 020 3, 686 60 60	Crude ¹ Ready-to-ship Total Crude ¹ Ready-to-ship 50 50 150 329 35, 157 10, 182 45, 339 17, 667 17, 163 12, 207 24, 486 36, 693 4, 570 20, 333 2692 2 328 2, 10, 20 3, 686 585 48 48 48 48 48 60 60 60 60 60

¹ The greater part of this crude (run-of-mine) fluorspar must be beneficiated before it can be marketed. ² Revised figures.

Technologic developments.—Further interest in flotation of fluorspar was apparent in 1939. Four new plants—two at Rosiclare, Ill., and one each at Salida, Colo., and Deming, N. Mex.—were completed and put into operation, a new plant is being built at Duncan, Ariz., and two new plants—one each at Lordsburg, N. Mex., and Skyline, Mont.—are planned. The output of flotation concentrates was 22,450 tons in 1939 compared with 10,321 tons in 1938.

The commercial production of fluorspar flotation concentrate for use in the manufacture of hydrofluoric acid, glass, and enamel, which require a finely divided material of high purity, was begun about 11 years ago. The middling product of the flotation process, however, which is not pure enough for the chemical and ceramic trades, is objectionable to steel makers because of its particle size, as such fine material would blow out of the furnace or would not sink into the molten charge. Consequently, during recent years experimenting on

agglomeration has been under way; and the Mahoning Mining Co.. in cooperation with the Dwight & Lloyd Sintering Corporation, has carried on considerable test work on sintering of fluorspar. In the summer of 1938, 150 tons of minus 100-mesh fluorspar concentrates were sintered on a commercial machine under regular plant conditions. The resulting 150 tons of sinter were divided among three open-hearth steel plants, which found the sinter as satisfactory as the metallurgical gravel fluorspar used ordinarily. Although the sintering of fluorspar has been successfully demonstrated, the Mahoning Mining Co. has not felt justified in installing a sintering plant, because its output of metallurgical-grade concentrates comprises only a small proportion of its total production.

The flotation concentrates produced by the Hillside Fluor Spar Mines will, it is reported, be briquetted and then crushed to gravel

size for use in steel plants.

A method of sintering finely divided fluorspar is the subject of United States Patent 2,184,078. According to this patent-

Fluorspar concentrate offers difficulties to sintering for the purpose of increasing its particle size. These difficulties are due to the physical character of the fluorspar concentrates which are of a "sandy" nature. Ordinary moistening and pelletizing processes are ineffective and the charge of concentrate would, therefore, make a dense bed on a sintering machine through which air could not be drawn at a rate sufficient to produce a sintering temperature. This condition is aggravated by the fact that fluorspar has a relatively high fusion temperature so that a higher sintering temperature is required than in the sintering of ordinary materials. Owing to the sandy character of the fluorspar, any pellets formed solely of fluorspar in a pelletizing machine would break down as soon as the charge is exposed to the ignition heat, thus destroying the permeability given to the charge by pelletizing.

In my present invention these difficulties are overcome by forming the fluor-spar concentrates into pellets by means of a plastic bonding material which is sufficiently stable during the sintering operation to maintain the pellets of fluorspar concentrates against breakdown until sintered, and which is neutral or

spar concentrates against breakdown unth sintered, and which is neutral of unobjectionable in the later metallurgical operations.

In my invention I admix with the fluorspar concentrates, either during or previous to pelletizing, a small quantity of an inorganic bonding material of plastic nature. Such a bonding agent may, for example, be freshly hydrated lime (fresh mason's hydrate), ferrous hydrate, or some ferrous salt, which will form ferrous hydrate in alleding solution. Plaster of Paris sodium silicate clay or similar hydrate in alkaline solution, plaster of Paris, sodium silicate, clay or similar plastics, or any hydrated metal compound compatible with the metallurgical operations in which the fluorspar is to be employed, and having plastic properties such as those of lime or ferrous hydrate. The amount of material thus added may amount, for example, to 5% of the total quantity of fluorspar. During the pelletizing operation in which the fluorspar and the plastic bonding agent in a moistened condition are admixed and tumbled about or otherwise subdivided into pellets, the action of the bonding agent is primarily mechanical, serving to bond and hald the first divided matigagent is primarily mechanical, serving to bond and hold the finely divided particles of fluorspar in stable pellet form. A small quantity of fuel may be added either admixed in the interior of the pellets or as a surface coating. This fuel will also be in finely divided condition as, for example, coke breeze or powdered or finely divided coal. In forming the pellets, returns

coke breeze or powdered or inely divided coal. In forming the penets, returns may be employed as is customary in sintering operations.

The pellets are then laid in a bed on a sintering machine to a suitable thickness as, for example, from about 5 inches to 8 inches, and burned with a strong blast of air. As is usual in sintering operations, a down blast of air is used. During the sintering operation the cementing or bonding material may combine or flux with the fluorspar. In the event that lime is employed, the lime will be available for fluxing purposes in the later matellusrical expertion. In the event available for fluxing purposes in the later metallurgical operation. In the event that iron oxide, such as that produced from ferrous sulfate or mill scale, is employed it may also flux with the fluorspar during the sintering, or with impurities such as lime or silica contained in the fluorspar. Inasmuch as the fluorspar is to be used in steel making, the iron oxide thus added may be reduced in the

open hearth furnace and replaced by silica or other slag material.

Examples of my invention are as follows:

Example I

Fluorspar concentrate, containing 98% CaF₂, and of the following size-

Minus 40 plus 60 mesh	6.8 7.7
Minus 80 plus 100 mesh	19. 0
	100.0

was mixed with 10% of coke breeze, moistened and mixed in a pelletizer mixer with 5% of freshly hydrated lime and formed into pellets. It was then discharged into a sintering machine on a bed of 5% inches depth. When ignited and burned with a down draft of air, an excellent sintered product was obtained in about 15 minutes.

Example II.

100 pounds of fluorspar concentrate of the characteristics described in example I were mixed with 5 pounds of ferrous sulfate crystals, 2 pounds of freshly hydrated lime and 10 pounds of coke, then moistened and pelletized to form pellets, and sintered on a sintering machine in a bed of 5 inches depth. It ignited readily and sintered in about 10 minutes to an excellent sintered product.

Example III

Fluorspar concentrate such as described in example I was mixed with freshly hydrated lime (mason's hydrate), iron oxide and return sinter fines in the following proportions— Pounds

•	· with	20.7
Fluorspar concentrate	_ 100	,
Mason's hydrate	_ 5	,
Iron oxide (fine ore)	_ 0	•
Return sinter fines	_ 40	,
Coke	- 10	i

The mixture was then moistened and pelletized and sintered on a sintering

machine as described above. It ignited readily and made an excellent sintered product in about 15 minutes burning time.

The term "pellets" as used herein is not limited to rounded particles or nodules only, but is meant to include also small irregularly shaped masses composed of a number of fine individual particles bonded lightly together in such form that a near of the relief particles above a critering meaning will form a bed with mass of the pellets, when charged on a sintering machine, will form a bed with interstices between the pellets through which gases may be caused to flow readily * * * readily.

Engel and Shelton 1 have recorded data obtained in applying flotation to fluorspar mill tailings from Illinois. The results of both batch and pilot-plant tests are given. The object of these tests was to produce "acid-grade" concentrates containing 98 percent fluorspar, less than 1 percent silica, and nearly free from metal sulfides.

United States Patent 2,168,762 covers "improvements in the concentration of ores by flotation and is especially directed to the recovery of fluorspar of a high degree of purity from ores in which it is accompanied by calcareous substances, such as calcite and other forms of calcium carbonate, and/or various mineral sulfides such as galena (PbS) and sphalerite (ZnS)."

Improvements in or relating to methods of extracting fluorine values from fluorspar ores are covered in British Patent 512,005.

¹ Engel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division. 36. Ore-Testing Studies, 1938-39: Bureau of Mines Rept. of Investigations 3484, 1940, pp. 20-24.

INDUSTRY IN 1939, BY STATES

Arizona.—Production in Arizona in 1939 came chiefly from mines and prospects near Duncan, Greenlee County, and most of it was shipped to the flotation plants at Deming and Lordsburg, N. Mex. Some, however, was shipped to steel plants. Figures on shipments for Arizona in 1939 have been combined with those for New Mexico. The flotation concentrates recovered from the fluorspar, instead of the run-of-mine material produced, have been credited to Arizona in the statistics. Considerable development work was done at the Polly Ann mine in 1939. A flotation plant is being built at Duncan.

California.—At the Big Horn mine in San Bernardino County, some fluorspar was mined in the course of development work, but none was shipped. Some Nevada fluorspar was ground at the grinding plant at West Berkeley and shipped to the ceramic trade in 1939. The ground

fluorspar has been credited to Nevada in the statistics.

Colorado.—The effect of reopening the Wagon Wheel Gap mine in Mineral County and of several properties in Chaffee County is shown in the shipments of 7,569 short tons of fluorspar from Colorado in 1939 compared with 1,704 tons in 1938. Most of the 1939 shipments went to steel plants, but some went to iron foundries and to ferroalloy, cement, glass, and hydrofluoric acid plants. Production in 1939 came from Boulder, Chaffee, Jackson, Jefferson, Mineral, and Park Counties, but mines in Chaffee and Mineral Counties supplied 93 percent of the total for Colorado.

A crushing plant was installed at the mines of the American Fluorspar Corporation near Salida. The Colorado Fluorspar Corporation, Salida, completed its new 125-ton combination flotation and jig mill the latter part of 1939. It was operated a short time and produced a small quantity of flotation concentrates. The mill is described and illustrated in a recent article.² Fluorspar for the ceramic trade was ground in the mill of the Western Feldspar Milling Co., Denver.

Illinois.—Approximately 128,000 short tons of fluorspar-bearing rock, equivalent to 71,000 tons of merchantable fluorspar, were mined at 25 mines or prospects in 1939 compared with about 75,000 tons, equivalent to 46,000 tons of merchantable fluorspar, mined at 30 mines or prospects in 1938. Of the merchantable fluorspar produced in 1939, 43,000 tons were from mines where the fluorspar occurs in veins, chiefly in fault fissures, and 28,000 tons from mines where the fluorspar occurs in flat-lying tabular masses, locally called blanket formations. Virtually all the output in 1939 came from Hardin County.

Fluorspar-bearing material milled in Illinois in 1939 totaled 147,000 tons, from which 82,000 tons of fluorspar were recovered—a ratio of

1.793:1.

Shipments from Illinois were 75,257 tons in 1939 compared with 35,368 tons in 1938. Of the total, 23,989 tons were shipped by river or river-rail to consumers compared with 13,572 tons in 1938. In 1939, an undetermined quantity of optical fluorspar was sold for \$25. The Argo, Boundary, Crystal, Daisy, W. L. Davis, Hamp, Humm,

The Argo, Boundary, Crystal, Daisy, W. L. Davis, Hamp, Humm, Lee, Midway, Spar Mountain, Stewart, and Victory mines supplied about 92 percent of the total merchantable fluorspar produced in Illinois in 1939. Most of the remainder came from the Cave in Rock, Dimick, Eureka No. 5, Lacey, and Lead Hill mines.

² Pit and Quarry, vol. 32, December 1939, pp. 48-50.

At the Crystal mine near Cave in Rock, a new shaft (No. 3) was sunk 110 feet, and a steam plant was installed at this shaft. In the mill a trommel screen was replaced by a double-decked vibrating screen. The barge loading station at Cave in Rock of the Benzon Fluorspar Co. was purchased by the Crystal Fluorspar Co. in 1939.

The Hillside Fluor Spar Mines completed a flotation plant at Rosiclare. This plant will, it is reported, treat the large tonnage of fluor-spar fines from the Hillside mill that have been accumulated over a period of years. The flotation concentrate will, it is understood, be briquetted and then crushed to gravel size for use in steel plants.

The Benzon Fluorspar Co., operators of the Spar Mountain mines, ceased operations in 1939 because its ore reserves virtually were exhausted. The mining property was acquired by a local purchaser. A considerable tonnage of ore was recovered by contractors in mining the remaining pillars. The Spar Mountain mines were opened in 1918 by the Spar Mountain Mining Co., which operated them until 1925, when they were acquired by the Benzon Fluorspar Co. These mines have been important producers of fluorspar in the Cave in Rock district; the output from 1918 through 1939 was about 140,000 short tons.

At the Victory mine, 2,039 feet of diamond core drilling were done; 600 feet of development drifts were driven; a hoist engine was installed at the Carlos shaft; a change house for employees was constructed; and an underground gravity drainage system, consisting of 1,000 feet of ditching, was excavated through the lowest part of the mine to

drain the water to the surface through a side hill adit.

Development work was continued by the Rosiclare Lead & Fluorspar Mining Co. on the 800-foot levels on the Daisy and Blue Diggings veins. Although these two veins did not intersect at this level, as was believed, they approach each other closely, being 30 to 40 feet apart. Additional fluorspar was located on the Daisy fault by diamond drilling. The new power plant of the company was completed during the summer of 1939. It consists of two 600-horsepower boilers and a 1,250-kilowatt and a 1,000-kilowatt turbine generator. A stand-by 750-kilowatt generator remains in the old power plant. To dewater the Rosiclare mine, flooded since January 1924, a pump with a 600-horsepower motor and a 620-foot lift and having a capacity of 3,200 gallons per minute will be installed. A 3,000-gallon-perminute pump was installed in the Rosiclare shaft in 1938.

Core and churn drilling was in progress at the mine of the Cave in Rock Spar Co. In addition to production from its Cave in Rock mine, the company treated considerable purchased ore in its mill on Peters Creek. This company is increasing the capacity of its present

mill and building a mill at Cave in Rock.

At the Humm mine near Rosiclare considerable development work

was done, and a mill was built on Grand Pierre Creek.

In June the Mahoning Mining Co. put its new flotation plant into operation at Rosiclare. It produces fluorspar, lead, and zinc concentrates by selective flotation. The mill feed comprised tailings from the Benzon mill and ore from the company W. L. Davis mine, which made its initial production in 1939. The ore at this mine occurs in a bedded deposit similar to other Cave in Rock ore bodies, but in addition to fluorspar it carries appreciable quantities of lead and zinc.

Kentucky.—Production of merchantable fluorspar in Kentucky was about 81,000 short tons in 1939 compared with 43,000 tons in 1938; and shipments, which established an all-time high, were 89,563 tons compared with 34,803 tons in 1938. Of the 1939 shipments, 24,659 tons were shipped by river or river-rail to consumers compared with 7,290 tons in 1938.

The output of fluorspar in Caldwell County in 1939 was from the Walker, Eureka, and Crook mines. The Hollowell & Hobby mine, which has been the chief producing mine in Caldwell County in recent years, was nonproductive in 1939. However, the stock of crude ore

previously mined was washed, and some was sold.

Production in Crittenden County, amounting to 53,000 tons, came chiefly from the Bachelor, Davenport, Keystone, Lafayette, Pigmy, Pogue, Two Brothers, and Watson (Eagle) mines, which contributed 91 percent of the county output. Production was 15,000 tons in 1938.

At the Watson (Eagle) mine, a fluorspar ore body of high purity was opened during 1939. The Two Brothers mine, inactive for some time, was reopened. The Ada Florence mine, adjacent to the Keystone, was acquired by the Hillside Fluor Spar Mines. A prospect shaft followed by crosscutting and drift driving developed a new ore body at the Pigmy mine. At the Davenport mine, No. 3 shaft was sunk to 260 feet, and a crosscut was driven to the east vein, where a 7-foot ore body was found. A power plant was built and machinery installed at this shaft.

In Livingston County, 28,000 tons of merchantable fluorspar were produced in 1939 compared with 24,000 tons in 1938. The chief producing mines were the C. R. Babb, Klondike, and Nancy Hanks,

which supplied 90 percent of the 1939 output of the county.

A jig plant to treat tailings from the Klondike mill was completed

and put into operation by John Hughett & Son during 1939.

In 1939 the Faircloth mine near Wilmore, Woodford County, and the Twin Chimney mine near Mundys Landing, Mercer County, shipped small quantities of fluorspar. The fluorspar from the Twin Chimney mine was recovered from an old dump. Veins containing fluorspar and fluorspar associated with barite are being opened in Woodford County.

Montana.—At the Boeing prospect near Austin, Lewis and Clark County, development work was continued, and flotation tests on the ore were in progress. The building of a mill at Skyline is under

consideration.

Nevada.—Shipments of fluorspar from Nevada, which were 3,520 short tons in 1939 compared with 2,909 tons in 1938, established an all-time record. Most of the 1939 shipments went to steel mills, but some went to iron foundries and to ceramic and hydrofluoric acid plants.

The chief producing mine in Nevada in 1939 was the Baxter, in Mineral County, which shipped 2,505 tons. The other active mine was the Daisy, in Nye County, which shipped 1,015 tons. Development work at the Baxter mine consisted of sinking the main shaft to 200 feet, drifting 200 feet, and installing a power plant.

New Mexico.—Shipments of fluorspar from New Mexico and Arizona were 6,477 short tons in 1939 compared with 5,159 tons in 1938.

Shipments in 1939 comprised flotation concentrates, which went to ceramic and hydrofluoric acid plants, and metallurgical grade, which

went to steel plants.

Production in 1939 was from Catron, Grant, Luna, Sierra, and Valencia Counties. Several new properties were opened and some mines were reopened in New Mexico in 1939. P. L. Grattan completed a flotation mill 1 mile east of Deming to treat ore from the Sadler mine. As a result of mill tests, a small quantity of concentrates was produced. The capacity of the mill is being increased to 50 tons daily. A flotation plant at Lordsburg with a capacity of 75 tons per 24 hours is contemplated by the Fluorspar Milling Co. to treat ore from the reopened Great Eagle mine and purchased ores. Improvements were made in the flotation plant of the Indian Metals Co. at Lordsburg. The flotation plant of General Chemical Co. at Deming operated throughout the year on fluorspar purchased from local producers.

Utah.—Shipments of fluorspar from Utah were 385 short tons in 1939 compared with 370 tons in 1938, all from the Monarch claims in Beaver County; they were consigned to steel plants and iron foundries.

IMPORTS AND EXPORTS 3

Imports of fluorspar for consumption in the United States in 1939 totaled 16,302 short tons (3,351 tons containing more than 97 percent and 12,951 tons containing not more than 97 percent calcium fluoride) valued 4 at \$176,691, compared with 19,622 tons (9,216 tons containing more than 97 percent and 10,406 tons containing not more than 97 percent calcium fluoride) valued 4 at \$287,643 in 1938. The value assigned to the foreign fluorspar in 1939 averaged \$10.84 a ton. cost to consumers in the United States also includes duty, loading charges at the docks, ocean freight, insurance, consular fee, and freight from docks to consuming points. The duty on fluorspar containing not more than 97 percent calcium fluoride is \$7.50 a short ton and on fluorspar containing more than 97 percent calcium fluoride \$3.75 a short ton.

Of the 1939 imports, 73.8 percent was metallurgical gravel fluorspar, 0.8 percent ceramic ground fluorspar, and 25.4 percent acid lump fluorspar. Virtually all the metallurgical gravel fluorspar was imported from France; the ceramic ground fluorspar from France and Germany; and the acid lump fluorspar from Mexico, Newfoundland, Spain, Tunisia, and the United Kingdom. Imports were equivalent to 9 percent of the total shipments of domestic fluorspar in 1939 compared with 24 percent in 1938.

³ Figures on imports (unless otherwise indicated) compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce; those on exports supplied by the producers. No exports of fluorspar recorded by the Bureau of Foreign and Domestic Commerce.

⁴ As defined in sec. 402 of the tariff act of 1930, "The value of imported merchandise * * is the foreign value or the export value, whichever is higher—that is, the market value or the price at which the merchandise, at the time of exportation to the United States, is offered for sale in the principal markets of the country from which-exported, including the cost of containers or coverings and all expenses (including any export tax) incident to placing the merchandise in condition ready for shipment to the United States."

Fluorspar imported for consumption in the United States in 1939, by countries and customs districts

Country and customs district	than 9	ng more 7 percent n fluoride		ing not han 97 per- licium flu-	Total	
	Short tons	Value	Short tons	Value	Short tons	Value
France: Buffalo Maryland New York Philadelphia	77 45 22	\$1, 834 968 379	2, 339 1, 196 9, 415	\$17, 482 8, 704 71, 402	2, 339 1, 273 45 9, 437	\$17, 482 10, 538 968 71, 781
	144	3, 181	12, 950	97, 588	13, 094	100, 769
Germany: New York Philadelphia	(¹) 19	33 570			(1)	33 570
	19	603			19	603
Mexico: New York Philadelphia	430 35	7, 080 338			430 35	7, 080 338
Newfoundland: Philadelphia Norway: Ohio.	465 2, 268	7, 418 61, 775	1	15	465 2, 268	7, 418 61, 775 15
Spain: Philadelphia	168 231 56	2, 542 2, 919 650			168 231 56	2, 542 2, 919 650
Total: 1939	3, 351 9, 216	79, 088 192, 469	12, 951 10, 406	97, 603 95, 174	16, 302 19, 622	176, 691 287, 643

¹ Less than 1 ton.

The following table, compiled from data furnished the Bureau of Mines by importers, shows the quantities of imported fluorspar delivered to consumers in the United States in 1938 and 1939 and the selling price at tidewater (duty paid), irrespective of the year of importation into the United States; it differs from the preceding table, which shows the quantities received in the United States during 1938 and 1939. The quantities in the following table are based upon the actual outturn weights ascertained by sworn weighers and represent the weights on which duty was paid and entries were liquidated. Stocks of foreign fluorspar in the hands of importers in the United States were 466 short tons at the close of 1939 compared with 1,165 tons in 1938.

Imported fluorspar delivered to consumers in the United States, 1938-39

		1938	•	1939		
Industry	Short tons			Short tons	Selling price at tide- water, including duty	
		Total	Average		Total	Average
Steel	10, 205 11 89 9, 492 66 19, 863	\$209, 801 418 2, 254 261, 399 1, 546 475, 418	\$20. 56 38. 00 25. 33 27. 54 23. 42 23. 93	13, 689 134 4, 503 77 18, 403	\$282, 487 5, 240 134, 014 1, 597 423, 338	\$20. 64 39. 10 29. 76 20. 74 23. 00

Producers of fluorspar reported exports of 2,976 short tons of fluorspar valued at \$74,443 in 1939 compared with 788 tons valued at \$9,061 in 1938. In 1939 all the exported fluorspar went to Canada and the greater part of it was shipped from the Illinois-Kentucky district by rail to Chicago, thence by water over Lakes Michigan, Huron, Erie, and Ontario and the St. Lawrence and Saguenay Rivers to Quebec. Of the 1938 exports, 247 tons went to Canada and 541 tons to Japan.

Fluorspar reported by producers as exported from the United States, 1935-39

	Short	Va	lue	Year	Year Short		Value		
Year	tons	Total	Average	·			tons	Total	Average
1935 1936 1937	313 240 456	\$4, 651 4, 079 9, 091	\$14.86 17.00 19.94	1938 1939	788 2, 976	\$9, 061 74, 443	\$11.50 25.01		

WORLD PRODUCTION

The following table shows the world production of fluorspar by countries from 1935 to 1939, insofar as statistics are available. Although complete returns for 1938 and 1939 are not yet available, it is evident that the upward trend in world production, which began in 1933, was arrested in 1938 but was resumed in 1939. The greatly increased world production in recent years has been due chiefly to gains in the output of steel and aluminum in many European countries. Despite the fact that fluorspar is produced in about 20 countries, 5—United States 32 percent, Germany 29 percent, U. S. S. R. 13 percent, United Kingdom 9 percent, and France 7 percent—contribute 90 percent of the world total.

World production of fluorspar, 1935-39, by countries, in metric tons ¹ [Compiled by M. T. Latus]

Country	1935	1936	1937	1938	1939
Argentina 2	403	450	350	1, 406	(3)
Australia:	420	339	55	i	(3)
New South Wales	77.	487	1,410	2,479	(3) (3) (3) (3)
Queensland	185	23	1,410	2,410	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
South Australia	91	23		804	(3)
Victoria				197	218
Canada	68	68	136		
Chosen	9, 722	8, 740	11,000	(4) (4)	(3) (3)
France	22, 750	30, 600	51,430	(*)	(0)
Germany:				10 100	(2)
Anhalt	8,068	11,225	13, 662	10, 462	(3) (3) (3) (3) (3) (3) (3)
Raden	3,941	7, 359	13, 637	21, 350	(3)
Bavaria	31, 277	49, 153	62,455	59, 919	(3)
Prussia	24, 618	36, 271	30, 514	22, 956	(3)
Saxony		7, 990	8,074	12, 063	(3)
Thuringia		18, 792	16, 117	22, 405	(3)
Italy	6 404	11, 437	13, 385	12, 186	(3)
Mexico 5		900	900	1,000	1,30
M exico			8,479	8,944	11, 22
Newfoundland (shipments)	1,067	1,014	1,692	(4)	(3)
Norway	1,001		1,002	585	(3)
South-West Africa				156	()
Southern Rhodesia			1, 676	2,060	(3)
Tunisia		3, 123	3, 615	4, 736	10, 32
Union of South Africa			5 70, 000	(4)	(3)
U. S. S. R.	47, 859	65,000	42, 837	33, 866	(3)
United Kingdom	31, 646	33, 491		72, 940	165, 80
United States (shipments)	112, 255	160, 459	164, 409	12,940	100, 80
· -		455.000	£16 000	415, 000	(3)
	340,000	455, 000	516,000	410,000	(4)

In addition to countries listed, China and Spain produce fluorspar but data of output are not available.
 Railway shipments.
 Data not available.
 Estimated.

Argentina.5—Production of fluorspar in Argentina, under the stimulus of demand from Japan, increased from 350 metric tons in 1937 to 1,406 in 1938, of which 1,300 tons were exported to Japan and 10 to Brazil.

Production of fluorspar is confined almost entirely to the Province of Córdoba. It is also mined in the Province of San Luis, but production is small by comparison with that of Córdoba. It is understood that the fluorspar generally averages 97 to 98 percent calcium fluoride, although little sorting or refining is done. The Argentina ceramic industries annually use about 250 or 300 metric tons of the domestic

Newfoundland.—Shipments of fluorspar from Newfoundland in 1939 were 12,376 short tons, of which 3,569 tons of acid grade went to the United States and 4,838 tons of special-grade lump (93 to 95 percent CaF₂) and 3,969 tons of fluxing grade went to Canada. Shipments

were 9,859 tons in 1938.

The fluorspar deposits in Newfoundland have been described in a

recent article by Howse and Fischer.6

Union of South Africa.—Production of fluorspar in the Union of South Africa advanced to 11,378 short tons in 1939 from 5,221 tons in 1938. The greater part of the 1939 production was exported to

At present very little acid-grade fluorspar is available in the Union of South Africa.7 In the past, fluorspar of this grade has been obtained from freak deposits, but they are now exhausted. A lower grade fluorspar is being mined, however, for metallurgical purposes. bility of raising fluorspar to acid grade by concentration is now under investigation, but the process is still in the experimental stage.

U. S. S. R.—The fluorspar deposits of the U. S. S. R. have been

described by the Institute of Economic Mineralogy.8 Except for a two-page summary in English, from which the following is quoted,

the text is in Russian.

In the geological part particular attention is paid to questions relating to the fluorspar deposits of Eastern Transbaikalia, where such large deposits as the Abagaitui and the Kalangui and a number of much smaller ones are located; they are distinguished by a particularly simple mineralogical composition and relatively low temperature conditions of formation. These deposits of the Turga and Argun groups are characterized by the presence in the ore veins of nearly exclusively fluorspar with the addition of varying relative amounts of quartz, and by the absence of sulfide minerals.

To the same group of deposits belongs the Onon group, including relatively small deposits, of which the Sedlovoie is located near the station of Sedlovaia.

The Solonechnoic deposit, located about 250 km. from those of the Turga and Argun groups, is of a different nature. The fluorspar veins here are composed partly also of very pure fluorite with a greater or lesser amount of quartz; it is characterized as a higher-temperature deposit than the preceding one, according to data of geological and mineralogical investigations.

Mention is made also of the deposits of the Far East region.

The Suenga and other deposits located in Western Siberia have been as yet little studied, both from the mineralogical and petrographical, and from the geological

standpoint.

A brief description is given of the deposits located within the region of Southern Kazakhstan and Middle Asia. They are usually distinguished by a complex mineralogical composition which makes their utilization rather difficult. Thus, the Badam deposit is characterized by the content, along with fluorspar, also of

⁶ Davis, M. B., American consul general, Buenos Aires, Argentina, July 20, 1939.
⁶ Howse, C. K., and Fischer, R. P., Newfoundland Ships Fluorspar: Eng. and Min. Jour., vol. 140, July 1939, pp. 42-45.
⁷ South African Mining and Engineering Journal, vol. 1, pt. 1, April 22, 1939, p. 224.
⁸ All-Union Scientific Research Institute of Economic Mineralogy, Fluorspar in U. S. S. R.: Trans. 119, Moscow, U. S. S. R., 1937, 335 pp.

barite, their separation being difficult. The large Khaidarkan fluorspar deposit in Kirghizia is rich in sulfides, among which cinnabar plays the predominant part.

The utilization of this large fluorspar deposit is also hampered by the absence of sufficiently developed technological methods.

A characteristic of the Aurakhmat deposit in Kazakhstan is also given; this is distinguished by a relatively low sulfide content and a favorable mode of occurrence

of fluorspar ores among limestones, the reserves being large.

Of a quite different nature, as seen from the occurrence in the form of a large thick vein in granite, is the Takob fluorspar deposit in Tadjikistan. The vein intersecting the granite is distinguished by the content of sulfides, mainly galena, partly zinc blende, and—which is characteristic of this deposit—also of products of oxidation of these minerals.

This deposit, as shown by the prospecting works carried out by the Institute of Economic Mineralogy and by the Middle Asia Geological Trust, possesses vast reserves of fluorspar. As a result of the technological works conducted by the Institute simultaneously with prospecting, the deposit has become now one of great economic importance.

In the monograph a brief description is given also of the explored and developed large Kuli-Kolon deposit of optical fluorite, located on the shore of Lake Kuli-

Kolon in Tadjikistan.

In addition to a geological description, detailed mineralogical and petrographical characteristics are given for all of the deposits, the chief attention being paid to those studied by the Institute of Economic Mineralogy and to those studied by this Institute but partly, as for example, the large Amderma deposit near the island of Vaigach, etc.

In the technological part of the monograph the results are cited of a study of the methods of concentration of the fluorspar ores from the deposits described in the geological part, chiefly those of Eastern Siberia, of the Amderma deposit and of a number of those in Middle Asia and Kazakhstan. Of particular interest are the results which were obtained in the course of the works of the Institute of Economic Mineralogy dealing with the study of the possibility of concentrating fluorspar ores, containing oxides of lead and zinc, from the Takob deposit. Eng. Eigheles who conducted this work succeeded in obtaining positive results and in establishing the possibility of fluorspar concentration even in the presence of lead and zinc oxides, and of the utilization of particularly poor ores as well.

Data are also presented concerning the lines along which the works are to be

conducted on the concentration of fluorspar from different deposits and of diverse

mineralogical composition, structure, and origin.

In the third, economic, part of the monograph a discussion is presented of the technical requirements which fluorspar should satisfy, and of its standards, and the questions are summed up concerning the utilization of fluorspars in different industries. The problems of mining, exports and imports of fluorspar by different countries, and the treatment of fluorite ores in various industries, subsequent to their concentration, are also discussed. A detailed review is given of the condition of the fluorspar industry in USSR and in foreign countries.

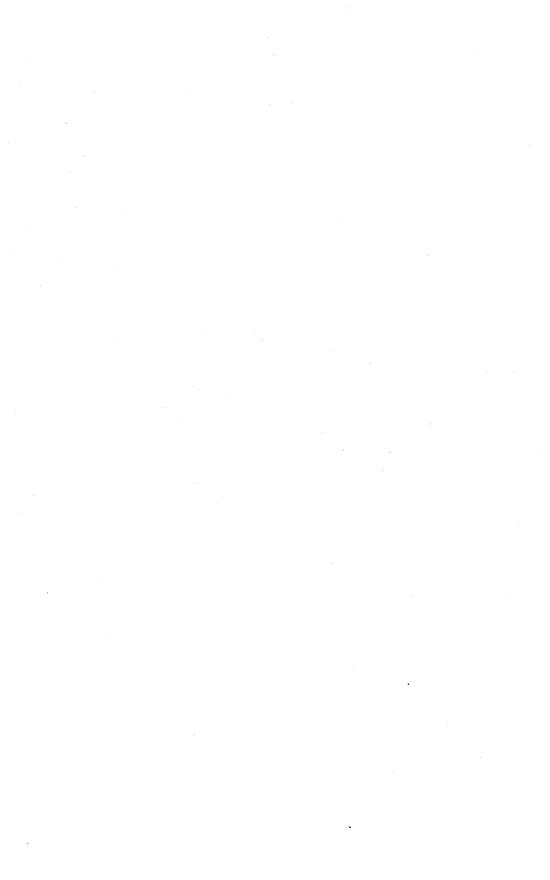
CRYOLITE

Cryolite occurs in commercial quantity and is mined at only one place-Ivigtut, Greenland. It is used in the metallurgy of aluminum, in the manufacture of glass and enamels, and in insecticides.

Gibbs has described the mine at Ivigtut, grades of ore produced, methods of processing and purification, and various uses of cryolite.

The cryolite mine at Ivigtut is owned by the Danish State, and the mining concession formerly belonged to the A/S Kryolith Mine og Handels Selskabet, Copenhagen, which divided all the raw material between the Pennsylvania Salt Manufacturing Co., Philadelphia, Pa., and the Oresunds Chemiske Fabriker, Kommanditselskake, ved C. F. Jarl, Copenhagen. The mining concession previously in force expired at the end of 1939. The industry has been reorganized and consolidated into a stock company controlled jointly by the State and the private interests concerned. The merger and the formation of the new company, which will be known as the Kryolithselskabet Øresund A/D (Øresund Cryolite Co., Inc.), has been approved by the Parliamentary Financial Committee and will go into effect on January 1, 1940. It is understood the reorganization will not alter the existing world marketing arrangements.

Imports.—The following table shows imports of cryolite into the United States in 1938 and 1939. As cryolite is mined only in Greenland, it is evident that importations credited to countries other than


Greenland probably include artificial cryolite.

Cryolite (natural and artificial) imported for consumption in the United States, 1938-39, by countries

Country	19	38	1939		
	Long tons	Value	Long tons	Value	
Canada Denmark France Germany Greenland	74 333 11, 708	\$11, 579 63, 027 711, 000 785, 606	(1) 140 731 9, 300 10, 210	\$7, 426 21 21, 499 125, 150 558, 000 712, 096	

Less than 1 ton.

Gibbs, A. E. (technical director, Pennsylvania Salt Manufacturing Co.), Cryolite as a Chemical Raw Material: Chem. Ind., vol. 38, May 1936, pp. 471-476.
 Bureau of Foreign and Domestic Commerce, Minerals Circular 21: December 29, 1939, pp. 18-20.

FELDSPAR

By ROBERT W. METCALF

SUMMARY OUTLINE

	Page	i	Page
Summary Salient statistics. Domestic production Crude Ground Consumption and uses Crude Ground	1353 1353 1354 1354 1355 1356 1356	World production	1358 1359 1361
Ground	1357	1	

The output of crude feldspar in the United States rose sharply in 1939, exceeding in quantity that of any year except 1937, but the value was less than that in several earlier years; however, a substantial output of feldspathic material, known as "aplite," produced in Virginia, might have been included in the 1939 totals if it had been possible to do so without revealing confidential information. Even excluding this material, which virtually made its commercial debut in 1939, the average value of the output (\$4.39) was less than in 1938, continuing a steady downtrend begun in 1936, when the average sales realization reported by producers was \$5.32 a long ton.

Salient statistics of the feldspar industry in the United States, 1938-39

	1938	1939	Percent change in 1939
Crude feldspar: Domestic sales: Long tons Value Average per long ton Imports: Long tons Value	196, 119 \$895, 081 \$4. 56 7, 651	253, 466 \$1, 112, 857 \$4. 39 7, 460	+29. 2 +24. 3 -3. 7 -2. 5 -7. 1
A verage per long ton Ground feldspar sold by merchant mills:	\$56, 126	\$52, 141	-7.1
	\$7. 34	\$6, 99	-4.8
Short tons Value. Average per short ton	\$214, 514	259, 194	+20.8
	\$2, 466, 252	\$2, 862, 278	+16.1
	\$11. 50	\$11. 04	-4.0

Sales of ground feldspar (excluding aplite) advanced to 259,194 short tons valued at \$2,862,278 compared with 214,514 tons valued at \$2,466,252 in 1938 and the all-time peak of 279,272 tons valued at \$3,486,741 in 1937. Although the tonnage was exceeded only in 1937, the value of the 1939 output, while 16 percent higher than in 1938, was less than that in both 1936 and 1937.

Imports of crude spar in 1939, all from Canada, were slightly less than in 1938 and much less than in other recent years except the depression years 1932 and 1933.

1353

Nearly all the States producing crude feldspar shared in the increased activity in 1939. There were increases of approximately 35 percent in Connecticut, New Hampshire, and North Carolina. Output in California and Wyoming in 1939, although still comparatively small, showed large percentage gains over 1938.

DOMESTIC PRODUCTION

In accordance with the usual practice in the industry, crude feldspar is reported in long tons of 2,240 pounds and ground spar in net (short)

tons of 2,000 pounds.

Crude feldspar.—Crude feldspar sold or used in 1939 increased to 253,466 long tons valued at \$1,112,857 compared with 196,119 tons valued at \$895,081 in 1938 and 268,532 tons valued at \$1,383,249 in 1937, the all-time record year.

Crude feldspar sold or used by producers in the United States, 1935-39
[Value at mine or nearest shipping point]

Year	Long	Value		Year	Long	Val	ue .	
1 Cai	tons	Total	Average	ı ear	1 ear	tons	Total	Average
1935 1936 1937	189, 550 244, 726 268, 532	\$1,005,021 1,303,090 1,383,249	\$5. 30 5. 32 5. 15	1938	196, 119 253, 466	\$895, 081 1, 112, 857	\$4. 56 4. 39	

Crude feldspar sold or used by producers in the United States, 1937-39, by States [Value at mine or nearest shipping point]

State	19	37	19	38	1939		
	Long tons	Value	Long tons	Value	Long tons	Value	
Arizona California Colorado. Connecticut Maine Maryland New Hampshire New York North Carolina Pennsylvania South Dakota Virginia Wyoming Undistributed 2	(1) 1, 836 42, 221 (2), 191 (1) 28, 831 (2), 595 (1) 94, 595 (1) 41, 392 22, 175 17, 291 268, 532	(1) \$9, 660 178, 148 (1) 110, 928 (1) 155, 925 (2) 538, 567 (1) 158, 976 125, 396 105, 649	(1) 1, 396 27, 452 7, 461 13, 764 25, 555 (1) 56, 795 (1) 42, 297 9, 766 1, 168 10, 465	(1) \$7, 675 104, 675 145, 153 45, 153 68, 047 135, 760 (1) 295, 800 (1) 122, 467 52, 037 4, 343 59, 126	(1) 2, 076 29, 995 10, 033 18, 109 (1) 76, 738 (1) 48, 328 18, 544 6, 726 8, 503	(1) \$12, 655 107, 556 53, 120 74, 165 (1) 161, 968 (1) 397, 631 (1) 133, 893 100, 299 25, 008 46, 582	

¹ Included under "Undistributed."

In 1939 feldspar was mined in 13 States, 1 more than in 1938. After a lapse of a year, Maryland again reported a small output. Wyoming, which first reported sales in 1938, increased its shipments sixfold to a total of 6,726 tons. North Carolina, notwithstanding a 35-percent gain in tonnage over 1938, produced only 30 percent of the national total compared with 29 percent in 1938 and 35 percent in 1937. South Dakota raised its output to 48,328 tons, 14 percent more than in 1938. A 35-percent increase over 1938 ranked New Hampshire ahead of Colorado, which, despite a 9-percent gain over

Includes States indicated by "1."

1938, failed by a wide margin to equal its output in 1937, when it was the second largest producing State. Virginia ranked fifth as a

producer of feldspar in 1939.

The downtrend in average values continued in 1939; in several States the decline was caused by larger shipments of lower-grade spar, and in a few States the averages actually increased. A further decline in average values of standard grades is indicated. Sales realizations in South Dakota and Colorado were \$2.77 and \$3.59, respectively, as against \$2.90 and \$3.81 in 1938. In certain Eastern States sales realizations in 1939 were as follows: Maine, \$4.10; New Hampshire, \$4.71; and North Carolina, \$5.18—compared with \$4.94, \$5.31, and \$5.21, respectively, in 1938.

Ground feldspar.—Sales of ground feldspar increased sharply compared with 1938, the tonnage rising 21 and the value 16 percent; however, sales were 7 percent lower in quantity and 18 percent lower in value than in 1937, the all-time record year. Colorado and South Dakota mills furnished 35 percent of the total ground feldspar sold or used in 1939 and 1938 compared with 30 percent in 1937. North Carolina and Tennessee mills, after suffering more than those in other States in the 1938 slump, increased their sales by more than 14,000 tons in 1939 when they supplied 29.2 percent of the total compared with 28.7 percent in 1938 and 32.5 percent in 1937. Three mills grinding imported Canadian feldspar shipped 4 percent of the total sales of spar from United States mills in both 1938 and 1939. In 1937, 6 percent of the total tonnage ground was imported spar.

Shipments of ground spar, from South Dakota, the leading producer in 1939, rose to 49,497 short tons, a record for the State and 16 percent higher than in 1938, the previous high year. Tennessee was second in rank, followed by Colorado and North Carolina. Sales from North Carolina and Tennessee mills in 1939 totaled 75,740 tons, 23 percent more than in 1938. Colorado's output also increased 23 percent to 41,176 tons. New Hampshire, Arizona, and Virginia showed substantial gains over 1938. New Jersey's output rose 35 percent to 18,727 tons.

Ground feldspar sold by merchant mills 1 in the United States, 1935-39

		Domestic				Canadia	n	Т	otal
Year	Active mills	Short	Val	Value		Short Value		Short	
	tons	Total	Average	tons	Total	Average	tons	Value	
1935 1936 1937 1938 1939	29 30 31 30 31	189, 289 222, 126 263, 387 206, 646 249, 889	\$2, 460, 073 2, 884, 493 3, 187, 185 2, 314, 675 2, 685, 473	\$13.00 12.99 12.10 11.20 10.75	10, 806 14, 764 15, 885 7, 868 9, 305	\$199, 067 270, 360 299, 556 151, 577 176, 805	\$18. 42 18. 31 18. 86 19. 26 19. 00	200, 095 236, 890 279, 272 214, 514 259, 194	\$2, 659, 140 3, 154, 853 3, 486, 741 2, 466, 252 2, 862, 278

¹ Excludes potters or others who grind for consumption in their own plants.

The average sales value of ground feldspar shipped by merchant mills in the United States declined further in 1939 to \$11.04 a short ton compared with \$11.50 in 1938 and \$12.49 in 1937, reflecting the larger consumption of graphic granite and other lower-grade spar, as well as further shading in the average prices of standard grades.

Average prices in virtually all States were lower and ranged from \$6.42 to \$18.01 as against \$6.55 to \$21.09 in 1938. Sales realizations in the Eastern States were as follows: New Jersey, \$18.01; Maine, \$12.68; and North Carolina-Tennessee, \$12.15, compared with average values for Colorado and South Dakota of \$6.42 and \$6.88, respectively. Sales of ground spar manufactured from Canadian crude averaged \$19 per short ton, a reduction of 26 cents from that reported in 1938.

Ground feldspar sold by merchant mills 1 in the United States, 1937-39, by States

	1937			1938			1939		
State	Active mills	Short tons	Value	Active mills	Short tons	Value	Active mills	Short tons	Value
Arizona California Colorado Illinois Maine Minnesota New Hampshire New Jersey New York Ohio North Carolina Tennessee South Dakota Virginia Undistributed	1 3 2 1 4 1 2 3 4 2 2 2 1	(2) 1, 888 43, 618 (2) 22, 090 (2) (2) 14, 700 (2) (2) 90, 696 40, 325 15, 609 50, 346	(2) \$30, 427 307, 412 (2) 303, 449 (2) 287, 577 (2) 1, 239, 149 316, 834 229, 295 772, 598 3, 486, 741	1 3 2 1 4 1 2 3 4 1 3 2 2 2 1	(2) 1, 263 33, 529 (2) 15, 651 (2) (2) 13, 901 (2) (2) (2) (3) 61, 467 42, 489 8, 940 37, 274 214, 514	(2) \$17, 561 219, 699 (2) 196, 460 (2) (2) 258, 123 (2) (2) 821, 686 300, 192 117, 874 534, 657 2, 466, 252	1 3 3 1 4 1 2 3 4 4 2 2 2 2 3 3 1	(2) 2, 082 41, 176 (2) 15, 246 (2) (2) (2) 18, 727 (2) 3 75, 740 49, 497 (2) 56, 726 259, 194	(2) \$27, 149 264, 153 (2) 193, 352 (2) (2) 337, 359 (2) 920, 556 340, 424 (2) 779, 288

¹ Excludes potters or others who grind for consumption in their own plants.
² Included under "Undistributed."

Minerals Yearbook, 1939 (pp. 1301–1302), listed feldspar grinding mills and their locations. In 1939 there were 31 mills in 13 States operated by 25 producing companies, of which 4 were merely subsidiary corporations of major producing companies. In California the American Radiator & Standard Sanitary Corporation succeeded the Standard Sanitary Manufacturing Co. at Campo, and the Kennedy Minerals Co. took over the Los Angeles plant of Chamberlain Co., Inc. The Coors Porcelain Co., Golden, Colo., was added to the list of producers. The Oxford Mining & Milling Co., West Paris, Maine, and the Tennessee Mineral Products Corporation, Spruce Pine, N. C., former subsidiaries of United Feldspar Corporation, were operated after January 1, 1940, as the Oxford Division and Minpro Division, respectively, of the United Feldspar & Minerals Corporation.

Crude feldspar.—Most crude feldspar is sold to merchant mills, which obtain material from several mines or localities, store and sort it according to grade and source, blend and grind it to required purity and fineness, and sell the ground product. However, at least two sanitary-ware manufacturers mine and grind spar for their own use, and some enamel and pottery manufacturers purchase part of their feldspar requirements crude and process it as needed with their own equipment. Manufacturers of soap, cleansing, and nonskid compounds also buy crude spar, chiefly from mines in New England and

the South, and, after grinding or other processing, utilize it as an abrasive in their products. A small tonnage of carefully selected crude material, commanding a substantial premium over No. 1 grade commercial spar, was reported sold for use in the manufacture of artificial teeth.

Ground feldspar.—For several years the glass industry has taken an increasingly large proportion of total sales of ground spar, but in 1939 this industry consumed only 53.4 percent of the gross sales compared with 54.9 percent in 1938 and 50.9 percent in 1937. If consumption of nepheline syenite, aplite, and other competitive sources of alumina were included with the feldspar sales the importance of this outlet would have continued to grow relatively as well as actually in 1939. The increased consumption of glass spar at the apparent expense of the higher-price pottery grades is a contributing factor in the smaller realization per ton for both ground and crude feldspar in recent years. Pottery makers used about 34 percent and enamel plants 11 percent of the ground feldspar sold in 1939. The rest was shipped for use in soap and abrasives and for miscellaneous purposes, largely ceramic.

Ground feldspar sold by merchant mills in the United States, 1937-39, by uses, in short tons

	19	37	1938		1939	
Use	Short tons	Percent of total	Short tons	Percent of total	Short tons	Percent of total
Ceramic: Glass. Pottery. Enamel and sanitary ware. Other ceramic uses Soaps and abrasives. Binder for abrasive wheels. Other uses.	142, 028 102, 346 25, 111 6, 442 1, 653 242 1, 450 279, 272	50. 9 36. 6 9. 0 2. 3 1. 2	117, 800 74, 035 19, 395 2, 077 1, 021 (1) 186 214, 514	54. 9 34. 5 9. 0 1. 0 . 5 (1) . 1	138, 336 87, 209 28, 356 2, 132 770 (1) 2, 391 259, 194	53. 4 33. 7 10. 9 . 8 . 3 (1)

¹ Not separately reported.

The following table, presented for the first time, shows distribution of ground feldspar by chief consuming States, as reported by grinding mills processing 99 percent of the feldspar ground in 1939. According to these data Ohio was the largest market for ground spar, taking 21 percent of the total. Indiana and Pennsylvania each took 15 percent, New

Shipments of ground feldspar from mills into States 1 in 1939, in short tons

State	Short tons	State	Short tons
California Illinois Indiana New Jersey New York Ohio	7, 590 15, 948 38, 189 34, 309 14, 995 53, 410	Pennsylvania Tennessee West Virginia Wisconsin Other States ²	37, 466 5, 077 19, 188 5, 134 25, 463 256, 769

Data include 99 percent of total ground feldspar.
 Arkansas, Colorado, Kentucky, Maryland, Mississippi, Oklahoma. South Carolina, and other States for which shipments cannot be segregated. Small shipments to Canada also included.

Jersey 13 percent, West Virginia 7 percent, and Illinois and New York 6 percent each. Included under "Other States" are sizable tonnages shipped to Maryland, Mississippi, Oklahoma, and South Carolina. One grinder reported small sales to Canada.

NEPHELINE SYENITE

Production of nepheline syenite in Ontario, Canada, continued throughout 1939. The largest company, Canadian Nepheline, Ltd., ships most of the tonnage obtained from its Blue Mountain (Peterborough County) quarry to the grinding mill of its subsidiary, the American Nepheline Corporation, Rochester, N. Y. Although the largest part of the company output is consumed by glass manufacturers, a fine-grinding unit has been installed to prepare material for general ceramic uses. The company mill at Lakefield, Ontario, now supplies the Canadian glass trade. A good general review of the operations of this company, which includes a detailed description and flow sheets of its plant with data as to the product and its applications, was published recently.1

Two quarries were operated in a coarse nepheline syenite pegmatite in Dungannon Township, Hastings County, during 1939. product averages higher in nepheline and consequently higher in alumina than the Blue Mountain material. It was shipped to the processing mills of the Golding-Keene Co., Keene, N. H., and the United Feldspar & Minerals Corporation, Oxford Division, West Paris, Maine, and blended with granular glass spar. Late in 1939 development was begun on a third property to furnish raw material to the Rochester mill of the Consolidated Feldspar Corporation.

The only commercial production of nepheline outside of Canada, of which the Bureau of Mines has information, is in the U.S.S.R. on the far-northern Murmansk coast of the Kola Peninsula. Nepheline tailings or waste from the flotation of apatite at Kirovsk are now being concentrated in a new plant recently put in operation.2 Other byproducts of the apatite wastes will be soda, potash, and portland The concentrates will be shipped to the Volkhov aluminum plant, which is being equipped to use nepheline in place of bauxite in the manufacture of aluminum oxide. A detailed description of the Kola Peninsula deposits and of nepheline syenites and related rocks in the Urals, Siberia, and Central Asia, with chemical analyses and notes as to origin of the rocks and constituent minerals, has been published.34

Apparently Canadian nepheline syenite has become firmly established as a ceramic raw material. Shipments were begun in 1936, and annual output now greatly surpasses that of feldspar in Canada. The Bureau of Foreign and Domestic Commerce reported imports of nepheline syenite separately for the first time in 1939, when 26,099 long tons of crude material, valued at \$95,453, entered the United States, all from Canada. No ground nepheline syenite was imported in 1939.

¹ Nicholson, C. M., Developing Canada's Nepheline Syenite: Canadian Min. Jour., vol. 61, No. 3, March 1940, pp. 135-146.

² "Industriya," Moscow, June 6 and June 23, 1939, reported in Russian Economic Notes, vol. 1 (N. S.), No. 14, July 30, p. 14, and No. 15, August 15, 1939, p. 1.

³ ⁴ Kupletskii, B. M., Nepheline Syenite Formations of the U. S. S. R.; Ser. II, Monographs, Petrograd Inst. Acad. Sci., U. S. S. R., vol. 3, 1937, pp. 1-307; Mineralog. Abs., vol. 7, p. 299; Chem. Abs., vol. 33, No. 17, September 10, 1939, p. 6760.

FELDSPAR 1359

In addition to increased demand from glass plants, a recent customs decision, if sustained, may encourage importation of nepheline The United States Customs Court, Third Division, (C. D. 293) set aside an assessment of 30 percent ad valorem under paragraph 214 of the Tariff Act of 1930 and held nepheline syenite, when ground to the consistency of a sand, to be free of duty under paragraph 775 as manufactured sand.5

The addition of nepheline syenite to pottery, semivitreous ware, sanitary porcelain, tile, and structural-clay bodies has certain advantages, according to G. A. Bole, professor of research, Engineering Experiment Station, Ohio State University. The syenite increases fluxing action and lowers fusibility, thus conserving time and fuel. also increases translucency and reduces warpage and crazing. tions of 3 to 5 percent of nepheline syenite to structural-clay bodies increase their vitrification and mechanical strength, as its active fluxing properties offset somewhat the greater refractoriness of many

domestic clavs.

In testing the suitability of nepheline syenite for use in heavy-clay products, additions of 3 percent B-grade Lakefield syenite to fire-clay mixtures lowered the absorption 20 percent according to Chilcote and Koenig.⁷ Fluxing of wall-tile and floor-tile bodies with nepheline syenite and feldspar alone and with various mixtures of nepheline, talc, feldspar, and pyrophyllite was studied by Koenig.8 His conclusions, which largely substantiate Bole's claims, were that the lower fusibility and increased fluxing action of nepheline syenite permit the formulation of bodies maturing at lower temperatures and increase the life of refractories. Direct substitution of nepheline syenite for potash feldspar in wall-tile bodies lowers absorption and moisture expansion and increases shrinkage and mechanical strength. The thermal expansion of both the so-called low and high talc wall-tile bodies is reduced by direct substitution of nepheline syenite for potash feldspar, whereas wall-tile bodies singly fluxed with nepheline syenite have a higher thermal expansion than corresponding bodies singly fluxed with The greater refractoriness of American clays compotash feldspar. pared to English clays is compensated for by the increased fluxing action of nepheline syenite.

TECHNOLOGIC DEVELOPMENTS

The search for better and more efficient means of separating feldspar from quartz or other impurities still is active. Lower-grade spars. some feldspathic pegmatitic rocks, and even glacial sands are being tested and studied as sources of substitutes for, or competitors to, feldspar hitherto obtained chiefly from pegmatites. Ordinary gravity methods of concentration do not separate feldspar from quartz and certain other associated minerals. In the sand sizes other methods

⁸ Oil, Paint and Drug Reporter, vol. 137. No. 14, April 1, 1940, p. 30.
⁸ Bole, George A., Nepheline Syenite: Ceram. Age, vol. 34, 1939, pp. 135-137; Chem. Abs., vol. 34, No. 2, January 20, 1940, p. 600.
⁸ Chilcote, J. H., and Koenig, C. J., Use of Nepheline Syenite in Heavy-clay Products: Jour. Canadian Ceram. Soc., vol. 8, 1939, pp. 53-58. Chem. Abs., vol. 34, No. 2, January 20, 1940, p. 599.
⁸ Koenig, C. J., Use of Nepheline Syenite in Floor-tile and Wall-tile Bodies: Am. Ceram. Soc. Jour., vol. 23, No. 3, March 1940, pp. 86-91.
⁹ Bole, George A., Work cited in footnote 6.

of separating the minerals include various electrostatic and allied processes, but the most promising from a commercial standpoint are wet methods that depend upon surface properties; flotation is suitable for fine material and agglomerate tabling for coarse or sand sizes.

Froth flotation of feldspar to rid it of closely combined quartz has been perfected by members of the staff of the Nonmetals Division, The first commercial installation of the process Bureau of Mines. was the Golding-Keene Co. plant at Keene, N. H., where increasing proportions of quartz were being found in mining. The mill was wrecked by the hurricane in September 1938 but was partly rebuilt the following spring and again placed in operation; however, a new body of high-grade feldspar at the mine, with adequate reserve for several years, has now made operation of the flotation plant unnecessary, at least for the present. A second mill for separating feldspar from quartz has been authorized and soon will be under construction at the Erwin (Tenn.) plant of the Consolidated Feldspar Corporation. Similar plants are contemplated by several other companies, according to Oliver C. Ralston, chief engineer, Nonmetals Division, Eastern Experiment Station, Bureau of Mines.

All natural feldspar and quartz mixtures do not behave the same when treated by agglomerate tabling and flotation. Bureau of Mines investigators found that this was due to alteration of the feldspar. This alteration, even when invisible, may so activate the quartz as to make it float with the feldspar. Details of the processes have been described in a recent paper. Cationic reagents, such as have proved useful in the Bureau's work on other acid minerals (chiefly substituted ammonium compounds and nitrogen bases), are suitable collectors, but other chemical additions were required to supplement mechanical methods of cleaning the mineral particles. Best results were obtained with lauryl amine hydrochloride and fluorine-bearing

acids or salts in an acid circuit.

Considerable attention also has been given to the recovery of feldspar from various granites and other feldspathic rocks. Some years ago attempts were made in New Hampshire to salvage the feldspar content of the waste from granite quarrying. Recently similar

efforts in Missouri have been reported.¹¹

A new material that shows promise of commercial use as an important source of mixed feldspars in pottery manufacture is alaskite, composed essentially of quartz and alkali feldspars. The electrotechnical laboratory of the Bureau of Mines at Norris, Tenn., recently has tested a rock of this type occurring near Spruce Pine, N. C.; it comprises chiefly potash and soda feldspar (in about equal proportions) and quartz. This rock, when ground to a fine powder and treated electromagnetically for removal of a small content of ferromagnesian minerals, gives a satisfactory product for use in china sanitary-ware bodies.

During studies having other objectives the Illinois State Geological Survey found that many deposits of glacial sand in Illinois contain

¹⁰ O'Meara, R. G., Norman, J. E., and Hammond, W. E., Froth Flotation and Agglomerate Tabling of Feldspars: Bull. Am. Ceram. Soc., vol. 18, No. 8, August 1939, pp. 286-292.
11 Elliott, Floyd, Concentration and Use of Feldspar Derived from Missouri Granite: Progress Report of cooperative Project of Missouri Geol. Survey, Bureau of Mines, and Missouri School of Mines, presented at fall meeting of St. Louis section, Am. Ceram. Soc., December 1, 1939; Ceram. Ind., vol. 34, No. 1, January 1940, p. 66.

FELDSPAR

from 10 to 25 percent feldspar. 12 Investigation is under way to determine the composition and purity of this spar, as well as a practicable commercial method of separation.

An improved method of analysis of potash in feldspars and perhaps

other silicates is described by Koenig.13

IMPORTS 14

Notwithstanding the reduction in duty on both crude and ground spar under the Reciprocal Trade Agreement with Canada, effective January 1, 1939, imports of crude feldspar for consumption decreased slightly in 1939 to 7,460 long tons valued at \$52,141 (all from Canada) compared with 7,651 long tons valued at \$56,126 (1 ton valued at \$7 from Brazil and the rest from Canada) in 1938. The average value per ton (foreign market value) dropped to \$6.99 from \$7.34 in 1938 and \$7.09 in 1937.

Two short tons of ground feldspar valued at \$54 were imported from the United Kingdom in 1939; no ground feldspar was imported in 1937 or 1938.

Feldspar imported for consumption in the United States, 1935-39

37	C	rude	Gro	und		c	Crude		Ground	
Year	Long tons	Value	Short tons	Value	Year	Long tons	Value	Short tons	Value	
1935 1936 1937	8, 937 10, 786 12, 956	\$56, 175 68, 198 91, 885	1 132	\$106 1, 276	1938 1939	7, 651 7, 460	\$56, 126 52, 141	2	\$54	

Cornwall stone.—Imports of unmanufactured (unground) Cornwall stone in 1939 jumped to 1,684 long tons valued at \$17,233, or more than triple the 1938 receipts of 513 tons valued at \$4,976. Imports of ground Cornwall stone also increased sharply to 348 long tons valued at \$3,965 compared with 233 tons valued at \$1,797 in 1938. Imports of crude (unmanufactured) and ground material originated in the United Kingdom in both years.

Cornwall stone imported for consumption in the United States, 1935-39

	Unmar	ufactured	Gro	ound		Unmar	Unmanufactured		Ground	
Year 	Long tons	Value	Long tons	Value	Year	Long tons	Value	Long tons	Value	
1935 1936 1937	817 2, 061 1, 899	\$7, 449 18, 402 16, 864	242 357 323	\$3, 180 4, 730 4, 267	1938 1939	513 1, 684	\$4, 976 17, 233	233 348	\$1, 797 3, 965	

Pit and Quarry, vol. 32, No. 7, January 1940, p. 54.
 Koenig, E. W., The Semidirect Determination of Potassium Oxide in Feldspars: Jour. Am. Ceram.
 Soc., vol. 22, No. 5, May 1939, pp. 164-168.
 Figures on imports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

WORLD PRODUCTION

According to available data, the United States produces far more feldspar than any other country. In normal times important tonnages have come from Norway, Sweden, China, and probably Czechoslo-Data for 1939 indicate small decreases both in Canadian output and Norwegian exports. A considerable part of the Canadian spar output is shipped crude to United States grinding mills for

Norwegian and Swedish feldspar generally is exported largely to the United Kingdom, Germany, and other nearby European countries. Available data on world production of feldspar, 1935-39, appear in the following table.

World production of feldspar, 1935-39, by countries, in metric tons

[Compiled by M. T. Latus]

Country 1	1935	1936	1937	1938	1939
Argentina (shipments)	495	1, 082	1, 346	620	(2)
New South Wales 3South Australia 3	315	101 553	162 669	178 502	(2) (2)
Western Australia (exports)	(2)	3, 097 (2)	3, 031 8, 400	1, 906 (²)	(2) (2)
Canada (shipments) China (Manchuria)		16, 190 1, 403	19, 365 (²)	12, 753 (2)	11, 309 (²)
Egypt	2,071	45 2, 520	158 3, 232	199 5, 046	(2)
France Germany (Bavaria) India, British	6, 337	9, 524 798	8, 900 9, 986 495	(2) 10, 419 702	(2) (2)
India, British Italy Norway (exports)	7 616	8, 620 29, 985	13, 437 32, 555	13, 391 21, 761	(2) (2) (2) (2) 21, 282
Rumania Sweden	14, 180	1, 960 56, 799	2, 587 49, 140	(2) 45, 111	(2) (2)
United States (sold or used)	192, 592	248, 654	272, 842	199, 267	257, 534

¹ In addition to countries listed, feldspar is produced in Czechoslovakia. Official figures of output are not available, but it is estimated that the annual production is approximately 30,000 metric tons (Stat. Comm. Czechoslovak Ceram. Soc.).

² Data not yet available.

³ Includes some china stone.

ASBESTOS

By OLIVER BOWLES and K. G. WARNER

SUMMARY OUTLINE

	Page		Page
Consumption trends World consumption	1363 1364 1364	Prices New developments Review by States Foreign trade World production	1367 1367
		orra production	1370

Sales of domestic asbestos attained an all-time high of 15,459 tons in 1939, an increase of 48 percent over 1938. Their value was more than double that of 1938. Imports also increased greatly. Consumption of asbestos in the United States was 37 percent greater than in

1938 but still was far below the high point of 1937.

The United States leads all countries in the manufacture of asbestos products but in 1939 produced only 6 percent of the quantity and 51/2 percent of the value of its domestic requirements. Large tonnages of the better grades of asbestos, used in fabrics and in making magnesiaasbestos insulation and asbestos-cement products, normally are imported from Africa. Although such shipments may be interrupted to some extent owing to the war, it is unlikely that a serious shortage will result because the extensive deposits in Quebec, Canada, situated only about 80 miles north of the Vermont border, have furnished the United States with its major supplies since the industry was organized and doubtless could furnish larger supplies if necessary.

Domestic production of chrysotile asbestos is centered chiefly in the extensive deposits near Hyde Park in northern Vermont. Although production in this region is expanding, the national situation is essentially the same as heretofore; there have been no new developments, and our dependence on foreign supplies is virtually as great as it has been in the past. The Arizona deposits furnish excellent fiber; but mining costs are high, transportation is difficult, and freight rates to eastern markets are excessive. There is no evidence of increasing

activity in Arizona.

Small quantities of amphibole asbestos are produced in several States. It is more resistant to chemicals and high temperatures than chrysotile and accordingly is employed chiefly in making special prod-

ucts, such as acid filters.

Unusual attention has been directed toward asbestos during the past year because it has been classed by the Army and Navy Munitions Board as a critical mineral. Asbestos is so classed because it is the chief constituent of brake-band linings and clutch facings and thus is essential to automotive transport and because only a small percentage of the Nation's requirements is obtained from domestic mines.

Synthetic fibers, such as glass wool, mineral wool, and slag wool, are being refined to an increasing degree in manufacture and are competing with asbestos to some extent in the heat-insulation field. Asbestos generally is regarded as an indispensable constituent of automobile brake bands, but a recent patent covering a brake lining of glass fiber bonded with synthetic resin may be prophetic of future developments.

The following table of salient statistics compares 1939 data with those of 1938. A noteworthy feature is the great increase in unit value of domestic sales in 1939. The average sales value of domestic asbestos in 1938 was \$23.68 a ton; in 1939 it was about \$33. As price quotations of Vermont fiber were the same in both years, the increase in average price can be explained only by the sale of a larger proportion of the better grades.

Salient statistics of the asbestos industry in the United States, 1938-39

	1	938	1939		
	Short tons	Value	Short tons	Value	
Domestic asbestos— Produced:					
ChrysotileAmphibole	(1) (1)	(2) (2)	14, 686 450	(2) (2)	
Total produced	12, 901	(2)	15, 136	(2)	
Sold or used by producers: Chrysotile Amphibole	(1) (1)	(1) (1)	15, 043 416	\$503, 097 9, 691	
Total sold or used by producers Imports (unmanufactured) Exports (unmanufactured) Apparent consumption ³ Exports of asbestos products	10, 440 179, 490 2, 780 187, 150 (2)	\$247, 264 6, 160, 602 288, 617 6, 119, 249 2, 533, 916	15, 459 242, 561 2, 473 255, 547 (2)	512, 788 9, 094, 538 218, 830 9, 388, 496 3, 354, 919	

Bureau of Mines not at liberty to publish figures separately for chrysotile and amphibole.
 Figures not available.
 Quantity sold or used by producers, plus imports, minus exports.

The following table shows the production of asbestos in recent years.

Asbestos sold or used by producers in the United States, 1935-39, by varieties

Voor	Chry	sotile	Ampl	nibole	Total		
Year	Short tons	Value	Short tons	Value	Short tons	Value	
1935	(1) 10, 719 11, 547 (1) 15, 043	(1) \$302, 301 332, 747 (1) 503, 097	(1) 345 532 (1) 416	(1) \$11,860 11,897 (1) 9,691	8, 920 11, 064 12, 079 10, 440 15, 459	\$292, 927 314, 161 344, 644 247, 264 512, 788	

¹ Bureau of Mines not at liberty to publish figures separately for chrysotile and amphibole.

Consumption trends.—The following table shows trends in the asbestos-products industries in the United States during recent years.

Raw asbestos consumed in the United States and asbestos products manufactured in and exported from the United States, 1934-39

Raw as- bestos— Asbestos products—			Raw as- bestos—	Asbestos products—			
Year	apparent consump- tion	Manufac- tured ¹	Exported 2	Year	apparent consump- tion	Manufac- tured ¹	Exported 2
1934 1935 1936	Short tons 123, 752 174, 655 250, 922	\$62, 420, 944 (1)	\$2, 142, 514 2, 261, 929 2, 479, 273	1937 1938 1939	Short tons 316, 263 187, 150 255, 547	\$96, 347, 570	\$3, 047, 078 2, 533, 916 3, 354, 919

Figures of Bureau of the Census (collected biennially for odd years) include value of certain gaskets, packing, and similar products in which little asbestos was employed.
 Compiled from the records of the Bureau of Foreign and Domestic Commerce.
 Figures not yet available.

ASBESTOS 1365

The consumption of asbestos depends chiefly on the manufacture of automobiles, on the building trades, and on industrial activity. As stated, automobiles require large quantities for brake bands and clutch facings. Building construction employs many products in which asbestos is an important constituent, such as asbestos-cement shingles and siding, wallboard, and various heat-insulation and fire-proofing materials. Asbestos consumption bears a definite relationship to industrial activity because asbestos is used extensively for packings and gaskets in steam and other machinery, as well as for

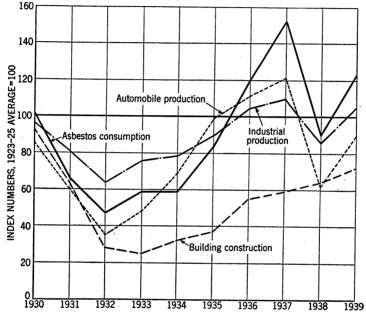


FIGURE 1.—Asbestos consumption compared with automobile production, value of building construction, and industrial production in the United States, 1930-39. Unlike units are reduced to percentages of the 1923-25 average. Statistics on automobiles are from the Bureau of the Census and building contracts and industrial production from the Federal Reserve Board.

boiler lagging and pipe covering. Figure 1 shows the relationship of asbestos consumption to these three major activities for a period of years.

WORLD CONSUMPTION

The following table presents a compilation of data on apparent world consumption of asbestos in 1938, based upon production plus imports minus exports. This table may not give a true picture because stocks held from previous years may be reexported, or material consumed may consist of stocks produced or imported during previous years. The figures are therefore approximate only, but they are the best that can be compiled from the records available. Anomalies are bound to appear in a table compiled upon this basis. For example, the consumption of 3,509 tons by Cyprus, which has virtually no consuming industries, is interpreted as an accumulation of stocks.

World consumption of asbestos in 1938, in metric tons

Continent and country	Produc- tion 1	Imports 2	Exports 2	Apparent consumption
Asia: China Chosen Cyprus India, British Japan Manchuria Netherland India	3 300 3 70 9, 177 90 3 1, 000 3 70	3, 633 28, 226 1, 716 192	5, 668 167 155	714 10, 095 3, 509 3, 732 29, 059 1, 631
Turkey	11, 375	44, 206	5,990	49, 591
Total Asia				
Africa: Algeria Egypt Southern Rhodesia Union of South Africa	53, 352 21, 025	6 175	53, 170 19, 940	175 182 1,085
Total Africa	74, 377	181	73, 110	1,44
North America: CanadaUnited States	262, 894 9, 471	162, 830	150, 361 2, 522	112, 533 169, 779
Total North America	272, 365	162, 830	152, 883	282, 31
South America: Bolivia Brazil Chile Colombia Uruguay	21 120	67 4 52 205	21	18 5 20
Total South America	141 176	328 11,358	21	44 11, 53
Europe: Austria Belgium-Luxemburg Bulgaria		4, 652 15, 919 6	45 675	4, 60 15, 24
Czechoslovakia Denmark Estonia Finland	\$ 2,700	5, 596 1, 955 122 296	801 2, 314	7, 49 1, 95 12 98
France	3 250	17, 299 28, 796 90 1, 976	151	17, 54 28, 64 1, 97
Hungary	6,860	7, 783 1, 422 2, 192	1,791 39	12, 88 1, 42 2, 11 1, 0
Norway Poland Portugal Rumania		1, 016 2, 402 575 145	16	1, 0 2, 38 5
Sweden Switzerland U. S. S. R United Kingdom	86, 000	5, 014 833 51, 142	29 10 14, 434 343	4, 99 8 71, 5 50, 7
Yugoslavia Total Europe	98,812	150, 177	20, 648	228, 3
Total by continents: Asia	11, 375 74, 377 272, 365 141 176	44, 206 181 162, 830 328 11, 358	5, 990 73, 110 152, 883 21	282, 3 4 11, 5
Europe Total world	98,812	150, 177	20, 648	

¹ Compiled by Foreign Minerals Division, Bureau of Mines.

² Figures as given in The Mineral Industry of the British Empire and Foreign Countries, Statistical Summary, published by The Imperial Institute, London.

² Estimated.

1367 ASBESTOS

Market conditions.—Markets were disturbed during the spring and summer because of unsettled conditions in Europe and hesitancy of American business. After hostilities were begun the fear of curtailed supplies of asbestos from Africa stimulated a stronger demand for Canadian fibers.

Prices.—All prices for asbestos are quoted on a short-ton basis. Canadian prices are f. o. b. Quebec mines, tax and bags included; Rhodesian, South African, and Russian prices, c. i. f. New York; and

Vermont prices, f. o. b. mines, Vermont.

According to quotations in Metal and Mineral Markets, published by the McGraw-Hill Publishing Co., Inc., New York City, prices of Canadian asbestos were constant throughout the year, as follows: Crude No. 1, \$700-\$750; Crude No. 2 and sundry crudes, \$150-\$350; spinning fibers, magnesia and compressed sheet fibers, \$110-\$200; shingle stock, \$57-\$78; paper stock, \$40-\$45; cement stock, \$21-\$25; floats, \$18-\$20; and shorts, \$12-\$16.50. Canadian quotations are in American dollars rather than Canadian dollars as formerly.

Rhodesian Crude No. 1 was quoted at \$300 and Crude No. 2 at

\$260 throughout the year.

South African prices were quoted as follows: Amosite: Grade B 1 (white), \$140; Grade B 3 (dark), \$120. Transvaal Blue: Grade B (long fiber), \$450 until August when it dropped to \$400 for the remainder of the year; Grade S (short fiber), \$140.

Russian Crude AA was quoted at \$750; Crude No. 1, \$275; Crude

No. 2, \$240; and shingle stock, \$67.50 and up.

Vermont prices were constant throughout the year, as follows: Shingle stock, \$57; paper stock, \$40; cement stock, \$25; and shorts and floats, \$12-\$18.

NEW DEVELOPMENTS

There were no outstanding new developments in the domestic asbestos industry during 1939, but increasing production in Vermont, a mild revival of activity in anthophyllite production, and a reported occurrence of chrysotile near Lake George, N. Y., are worthy of note. New factors in the asbestos industry abroad include the beginning of production at the important Havelock mine, Swaziland, Africa, initiation of milling on a small scale at the Rahn Lake chrysotile deposit in Ontario, Canada, and development of a deposit of blue asbestos in Western Australia. The year 1939 marked the Diamond Jubilee of asbestos, the seventy-fifth anniversary of the establishment of the organized asbestos industry.

REVIEW BY STATES

Arizona.—Sales of asbestos in Arizona were somewhat smaller in 1939 than in 1938 and were reported by the following companies: Arizona Chrysotile Asbestos Co., Arizona Asbestos Corporation, Emsco Asbestos Co., and Arthur Enders, all of Globe, Ariz.; and Johns-Manville Products Corporation, New York, N. Y. Several other producers sold small quantities to the larger operators.

Georgia.—Limited quantities of anthophyllite were obtained some years ago near Helen, White County, and Hollywood, Habersham County, but recently these districts have been inactive. A small output was reported in 1939 near Dillard, Rabun County, some dis-

tance north of the deposits formerly operated.

Maryland.—The Powhatan Mining Co., Woodlawn, Baltimore, Md., continued operation near Pylesville, Harford County. The tremolite obtained is prepared for use chiefly as a filtering medium for chemicals. The company also handles anthophyllite mined in several Southern A new mine was opened in this district during 1939.

Montana.—The Montana Asbestos Co. reported small sales of anthophyllite from its property at Gallatin Gateway, Gallatin County. North Carolina.—A small tonnage of anthophyllite was mined near

Greenmountain, Yancey County, in 1939.

South Carolina.—Small shipments of anthophyllite in 1939 from a deposit near Pickens, Pickens County, brought South Carolina for

the first time into the list of asbestos-producing States.

Vermont.—Vermont Asbestos Mines, a division of the Ruberoid Co. (address 500 Fifth Avenue, New York, N. Y.), operated continuously with three shifts of workers during the summer of 1939. The extensive deposit worked by the company near Eden, Lamoille County, contains slip-fiber chrysotile in serpentine.

Virginia.—Anthophyllite was mined many years ago near Bedford, Bedford County, and Rockymount, Franklin County. Production of a small quantity of slip fiber was reported in the latter county in

FOREIGN TRADE 1

The following table shows imports of unmanufactured asbestos into the United States in 1938 and 1939 by countries and classes. Total imports in 1939 increased 35 percent in quantity and 48 percent in value over 1938. Imports from Africa were nearly twice as great as in 1938 and those from Canada 35 percent greater than in Substantial shipments of short-fiber chrysotile from Cyprus were renewed, but shipments from the U.S.S.R. declined 50 percent.

Asbestos (unmanufactured) imported for consumption in the United States, 1938-39, by countries and classes

		including fiber)	Mil	ll fibers	Shor	nort fibers 1 Tota		otal
Country	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1938 Africa: Union of South Africa Other British Australia Australia Canada Finland Italy Malta, Gozo, Cyprus U. S. S. R. United Kingdom	3, 677 2, 745 21 1, 360 18 1 22 7, 844	\$456, 073 310, 147 6, 006 321, 424 12, 477 479 5, 205 1, 111, 811	51, 141 5, 201 56, 342	\$2, 701, 494 	3 113, 570 89 1, 551 6 63 22 115, 304	\$142 2, 043, 844 3, 564 38, 488 49 1, 525 847 2, 088, 704	3, 677 2, 745 21 3 166, 071 89 1, 569 6 5, 265 44 179, 490	\$456, 073 310, 147 6, 006 142 5, 066, 762 3, 564 50, 965 294 260, 597 6, 052 6, 160, 602

¹ Asbestos, n. e. s., containing not over 15 percent of foreign matter.

² Figures cover period Jan. 1-May 5.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Asbestos (unmanufactured) imported for consumption in the United States, 1938–39, by countries and classes—Continued

Country		(including e fiber)	Mi	ll fibers	Sho	rt fibers	Total		
Country	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	
Africa: Union of South Africa. Other British. Australia. Canada. Finland Italy Malta, Gozo, Cyprus. U. S. S. R. United Kingdom Venezuela	6, 359 4, 836 53 3, 068 31 	\$656, 543 593, 596 11, 000 547, 425 23, 167 40, 580 1, 872, 311	73, 511 	\$4, 378, 887 109, 516 4, 488, 403	147, 261 46 536 3, 940 (3) 11 151, 794	\$2, 650, 886 1, 324 12, 133 69, 426 5 5 2, 733, 824	6, 359 4, 836 53 223, 840 46 567 3, 940 2, 611 298 11 242, 561	\$656, 543 593, 596 11, 000 7, 577, 198 1, 324 35, 300 69, 426 109, 521 40, 580 50 9, 094, 538	

³ Less than 1 ton.

The following table shows imports and exports of unmanufactured asbestos for the 5-year period 1935–39.

Asbestos (unmanufactured) imported for consumption in and exported from the United States, 1935–39

Van	Imp	oorts	Exports		
Year	Short tons	Value	Short tons	Value	
1935. 1936. 1937. 1938. 1939.	166, 585 243, 602 307, 188 179, 490 242, 561	\$5, 125, 413 7, 524, 937 10, 470, 208 6, 160, 602 9, 094, 538	850 3,744 3,004 2,780 2,473	\$87, 896 310, 197 253, 734 288, 617 218, 830	

The following table shows exports of asbestos products in 1938 and 1939.

Manufactured asbestos products exported from the United States, 1938-39, by kinds

Pulled	19	38	1939		
Product	Quantity	Value	Quantity	Value	
Brake lining: Molded and semimolded	(1) 923, 672 448, 121 725 1, 143 565 83, 080 1, 593 1, 601	\$608, 970 176, 765 134, 209 100, 034 128, 666 611, 549 225, 987 293, 272 254, 464	(1) 886, 069 326, 493 819 2, 213 891 54, 634 2, 315 1, 483	\$714, 679 178, 393 129, 143 122, 543 251, 912 965, 923 284, 643 398, 960 308, 723	

¹ Quantity not recorded.

WORLD PRODUCTION

The following table shows world production of asbestos, by countries, from 1935 to 1939, insofar as figures are available.

World production of asbestos, 1935-39, by countries, in metric tons 1

[Compiled by M. T. Latus]

Country	1935	1936	1937	1938	1939
Argentina	2 13				(3)
Australia: South Australia	36	81	123	49	(3)
Toemania			2	4	(3) (3) (3)
Western Australia	143	162	43	123	(3)
Rolivia		(4)	21	21	(3)
Brazil				120	(3)
Bulgaria	3			262, 894	330, 642
Canada 5	190, 931	273, 322 69	371, 967	202, 894	
China (Manchuria)	70 6	69	(³) 70	(3) (3)	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
Chosen		9, 659	11, 842	5, 668	3
Cyprus (exports)		2,700	(3)		(3)
Czechoslovakia		3, 963	(³) 3, 330	(3)	(3)
Finland France		405	250	(3) (3) (3) (3)	(3)
Greece		1	2	(3)	(3)
India, British	64	57	102	90	(3)
Indochina		5	5		(3)
Italy	4,320	6, 113	6, 393	6,860	(3)
Tonon (annewimate)	1.000	1,000	1,000	1,000	1,00
Kanya Colony				53, 352	(3) 52, 90
Southern Rhodesia	30, 044	51, 116	51, 722	35, 302	7, 23
Swaziland		119	157	668	(3)
Turkey		119	10.	53	(3)
UgandaUnion of South Africa	20, 600	22,894	25, 975	21, 025	19, 988
	95, 500	125, 117	125,000	86,000	(3)
U. S. S. R. United States (sold or used by producers)	8,092	10, 037	10, 958	9, 471	14, 02
Venezuela	76	71	(3)	(3)	(3)

¹ In addition to countries listed, a small quantity of asbestos is produced in Madagascar.

² Rail and river shipments.

³ Data not available.

⁴ Less than 1 ton.

⁵ Exclusive of sand, gravel, and stone (waste rock only), production of which is reported as follows: 1935, 2,744 tons; 1936, 2, 815 tons; 1937, 3,611 tons; 1938, 2,975 tons; 1939, 3,535 tons.

CANADA

The value of sales of asbestos in Canada reached an all-time high in 1939, and the quantity sold was the second highest of any year, being exceeded only in 1937. The mines and mills of the well-known Thetford Mines district of Quebec, where almost the entire production of Canada is mined, were working virtually at capacity throughout the year. Johnson's Co. and Bell Asbestos Mines, Ltd., are changing from open-pit to shaft mining and are planning to introduce the block-caving system.

Activity has been renewed at the Rahn Lake deposit, Bannockburn Township, Ontario. A test shipment of chrysotile comprising 18 tons valued at \$720 was made in 1939. This material evidently is not included in the following table of Canadian sales taken from the Preliminary Report on the Mineral Production of Canada in 1939,

issued by the Dominion Bureau of Statistics.

Sales of asbestos in Canada, 1938-39

		1938		1939				
	Value		Value		Value		Val	ue
	Short tons	Total	Average per ton	Short tons	Total	Average per ton		
Grade: Crudes Fibers Shorts	2, 911 163, 097 123, 785	\$955, 423 9, 710, 899 2, 223, 873	\$328. 21 59. 54 17. 97	3, 121 193, 992 167, 359	\$938, 718 12, 049, 539 2, 870, 955	\$300. 68 62. 12 17. 15		
Sand, gravel, and stone (waste rock only)	289, 793 3, 279	12, 890, 195 2, 464	44. 48	364, 472 3, 897	15, 859, 212 2, 930	43. 51 . 75		
Total asbestos and waste rock	293, 072 5, 816, 368 4, 874, 548	12, 892, 659		368, 369 6, 650, 416 5, 548, 765	15, 862, 142			

AFRICA

Southern Rhodesia.—The output of asbestos in Southern Rhodesia in 1939 was a little lower in quantity but a little higher in value than in 1938. The following table shows production during recent years:

Asbestos produced in Southern Rhodesia, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	42, 598 56, 346 57, 014	£646, 658 836, 469 840, 025	1938 1939	58, 811 58, 313	£1, 020, 921 1, 088, 782

Union of South Africa.—The output of the Union of South Africa was 5 percent lower in 1939 than in 1938. The following table lists the output from 1935 to 1939:

Asbestos produced in the Union of South Africa, 1935-39, by sources

Year	Trans- vaal	Cape Province	Natal	Total	Total value
1935 1936 1937 1938 1939	1 20, 167 21, 188 23, 921 16, 505 15, 811	1 2, 541 4, 048 4, 712 6, 484 6, 143	(9) (3) (3) 3 187 79	22, 708 25, 236 28, 633 23, 176 22, 033	\$£226, 167 \$ 337, 229 \$ 431, 212 \$ 416, 401 \$ 509, 278

The following table states the tonnage of each variety produced from 35 to 1939. The decline in chrysotile production in the Transvaal 1935 to 1939. to a mere fraction of its former volume reflects the imminent depletion of the Amianthus mine.

Small quantity of blue fiber from Transvaal included under Cape Province.
 Value of local sales plus value of exports.
 Small production in Natal in December 1936 and in 1937 included in 1938 figures.

Asbestos produced in the Union of South Africa, 1935-39, by varieties and sources, in short tons

Variety and source	1935 1	19361	1937 2	1938 2	1939 3
Amosite (Transvaal) Chrysotile (Transvaal) Blue (Transvaal) Blue (Cape)	4, 684 15, 483 2, 541 22, 708	4, 823 16, 149 216 4, 048 25, 236	6, 531 16, 855 535 4, 712 28, 633	8, 793 3 5, 573 2, 326 6, 484 23, 176	11, 378 ³ 582 3, 930 6, 143 22, 033

¹ Data from Government Mining Engineer, Union of South Africa, Department of Mines, Annual Report.

² Data from Union of South Africa, Department of Mines, Monthly Reports.

Includes 187 short tons in 1938 and 79 tons in 1939 produced in Natal.

Swaziland.—The Havelock mine about 12 miles south-southeast of Barberton, which has been under development since April 1937, began producing in June 1939. The shaft, inclined at an angle of 40°, had attained a depth of 850 feet in May 1939. The mine is connected with the railway station at Barberton by means of an overhead cableway 12.6 miles long with a capacity of 7½ tons of bagged asbestos per Production was started in June, and an output of 7.973 short tons was reported for 1939. CYPRUS

Short-fiber chrysotile is produced in Cyprus. The following table, compiled from the Annual Report of the Inspector of Mines and Labor, shows exports during recent years.

Asbestos exported from Cyprus, 1935-39

Year	Year Long tons		Year Long tons Value Year		Long tons	Value
1935 1936 1937	7, 513 9, 506 11, 704	£50, 174 80, 343 126, 371	1938 1939	5, 578 (1)	£88, 290	

¹ Data not available.

U. S. S. R.

The following table presents the most recent available statistics on Russian asbestos.

Asbestos produced in and exported from U. S. S. R., 1935-39, in metric tons

Year	Production	Exports	Year	Production	Exports
1935 1936 1937	95, 500 125, 117 125, 000	1 25, 109 1 26, 147 2 27, 299	1938 1939	86, 000 (³)	(3) (3)

U. S. Bureau of Foreign and Domestic Commerce, Foreign Trade Notes. Statistics of the Foreign Trade of the U. S. S. R.

AUSTRALIA

A deposit of blue asbestos has been worked in Western Australia recently, and small shipments have been made to the United States. The material is similar to South African blue asbestos. Samples submitted to the Bureau of Mines comprise strong, flexible, dark-blue fibers having a maximum length of 1% inches.

³ Data not available.

BARITE AND BARIUM PRODUCTS

By Bertrand L. Johnson and K. G. Warner 1

SUMMARY OUTLINE

	_		
	Page	•	_
Summary	1373	Crude barite—Continued.	Page
Salient statistics		Technologic developments	1378
Crude barite	1374	Foreign trade	1378
Production	1374	World production	1381
Sales	1375	Barium products	
Prices			1381
Consumption by uses			1383
Consumption by States	1376	Technology	1383
Denosits	1377		

In response to the intensified demand for crude barite in 1939 new all-time peaks were attained for domestic production (365,870 short tons), domestic crude barite sold or used (383,609 tons), and reported consumption of domestic and imported crude barite (391,683 tons). The apparent new supply (barite sold or used by producers plus imports), however, was less than in 1937, when an exceptionally large quantity of crude barite was imported. The total value of domestic crude barite sold or used by producers also set a new record (\$2,-344,103), although the average value per ton declined from \$6.47 in 1938 to \$6.11 in 1939. Increased demands for crude barite came from the glass, lithopone, and barium-chemical industries, but the greater part of the expansion was a consequence of sharply improved demand from lithopone manufacturers. The consumption of crude barite in the production of ground barite decreased slightly. Imports of crude barite in 1939 were less than half those in 1938; the average value declined from \$6.09 in 1938 to \$4.83 in 1939, owing to the elimination of barite imports from Germany and the increase in imports of lowerprice barite from Cuba.

Total sales of barium products in 1939 likewise established a new record of 354,443 short tons, although the value of the sales was exceeded in several recent years. The quantities of ground barite, lithopone, and artificial barium carbonate sold or used by producers in 1939 were greater than in 1938, but sales of blanc fixe (precipitated barium sulfate) and all other barium chemicals were less.

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Salient statistics of the barite and barium products industries in the United States, 1935–39

	,				-
	1935	1936	1937	1938	1939
Crude barite:					
Producedshort tons	218, 075	274, 062	360, 877	335, 433	365, 870
Sold or used by producers:		,	1		555,575
Short tons	225, 111	283, 160	355, 888	309, 663	383, 609
Value: 1	1		111,000	,	1 000,000
Total	\$1, 251, 268	\$1,674,631	\$2, 240, 970	\$2,004,521	\$2, 344, 103
Average	\$5.56	\$5, 91	\$6, 30	\$6.47	\$6, 11
Imports for consumption:		1		,	1
Short tons	47, 048	33, 843	64, 992	24, 845	11, 588
Value: 2	1	1 '	1		,
Total	\$246, 254	\$170,316	\$327, 224	\$151, 235	\$55, 985
Average	\$5.23	\$5.03	\$5.03	\$6.09	\$4.83
Apparent new supply \$short tons	272, 159	317,003	420, 880	334, 508	395, 197
Domesticpercent_	82.7	89.3	84.6	92.6	97.1
Reported consumption (total)		ł	1		
short tons	290, 344	303, 449	383, 982	4 364, 985	4 391, 683
Barium products:	1	1	1		, ,
Sold or used by producers: 5	1	j	1	1	
Short tons	268, 652	263, 810	332, 185	4 327, 102	4 354, 443
Value	\$16, 858, 413	\$16, 299, 448	\$17, 242, 511	\$14, 871, 835	\$15,694,242
Imports for consumption:		1			. , ,
Short tons	11,672	11,079	14, 419	8, 334	8, 614
Vaiue	\$404,601	\$411, 797	\$485, 520	\$313, 908	\$251, 595
Exports of lithopone:	1	1		1	
Short tons	2,372	2, 538	2, 671	1, 734	4,845
Value	\$221,611	\$229,942	\$231,622	\$153, 567	\$392, 798
	1	1 ' '		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]

¹ F. o. b. mine shipping point.

2 Declared value f. o. b. foreign market.

3 Barite sold or used by producers plus imports.

4 Includes crushed barite as follows: 1938, 7,121 short tons; 1939, 11,678 tons.

3 To avoid duplication, the barium chemicals reported here do not include the output of firms that make these chemicals from such products as barium chemicals and imported barite and witherite purchased in the open market.

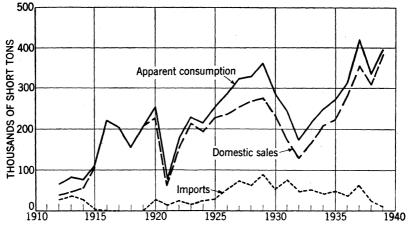


FIGURE 1.—Trends in domestic sales, imports, and apparent consumption of crude barite, 1912-39.

CRUDE BARITE

Production.—Barite was mined in 1939 in 11 States—Alabama, Arizona, California, Colorado, Georgia, Missouri, Montana, Nevada, South Carolina, Tennessee, and Virginia—compared with only 9 States in 1938. No output was reported from Texas in 1939, although this State had produced barite in 1938. Alabama, Colorado, and Montana were among the producing States in 1939, but not in 1938. The California output included witherite as well as barite. Mine

production in 1939 totaled 365,870 short tons, a 9-percent increase over that in 1938 (335,433 tons).

Sales.—More domestic crude barite was sold or used by producers in the United States in 1939 than ever before (383,609 short tons),

and the total value was higher (\$2,344,103).

Missouri continued to be the leading State in sales of crude barite in 1939, with Georgia second; both States reported increases over 1938. The quantity of crude barite sold or used by producers in the nine other producing States was less than half that in Missouri and Georgia combined.

Figure 1 shows trends in domestic sales, imports, and apparent consumption of crude barite since 1912.

Crude barite sold or used by producers in the United States, 1938-39, by States

State	19	38	1939		
Disto	Short tons	Value	Short tons	Value	
Georgia Missouri Tennessee Other States ¹	64, 304 156, 539 29, 898 58, 922	\$315, 329 1, 150, 630 209, 040 329, 522	86, 589 171, 642 57, 140 68, 238	\$438, 378 1, 163, 870 372, 348 369, 507	
	309, 663	2, 004, 521	883, 609	2, 344, 103	

¹ 1938: Arizona, California, Nevada, South Carolina, and Texas; 1939: Alabama, Arizona, California, Colorado, Montana, Nevada, South Carolina, and Virginia.

Prices.—The market quotation for crude barite from Georgia, f. o. b. mines, has remained unchanged at \$7 per long ton from 1935 to 1939, inclusive, according to the Engineering and Mining Journal Metal and Mineral Markets. The price of Missouri crude (93 percent barium sulfate, less than 1 percent iron) was \$7.50 per short ton during the first half of 1939, dropped to \$6.50 to \$7.50 f. o. b. mines at the end of June, and remained there until October. Quotations for crude barite (minimum, 90 percent BaSO₄) remained at \$6 to \$6.50 per ton until October, after which only the 95-percent BaSO₄ and 93-percent BaSO₄ were quoted. Missouri crude (95 percent BaSO₄, less than 1 percent iron) was quoted at \$6.50 to \$7 per ton for the last 3 months of 1939; the 93-percent grade was quoted at \$6 to \$6.50 per ton for the same period.

The average value, f. o. b. mine shipping point, of crude barite for the entire United States dropped from \$6.47 in 1938 to \$6.11 in 1939.

Consumption by uses.—Nearly 27,000 tons more crude barite (domestic and imported) were consumed in 1939 than in 1938 by manufacturers of barium products in the United States, raising the reported consumption of crude barite in this country to a new all-time record of 391,683 short tons. The production of crushed barite, lithopone, and barium chemicals required more crude barite than in 1938; the increase was especially marked in the lithopone-manufacturing industry—slightly more than 24,000 tons. About 6,000 tons less crude barite was used in the production of ground barite than in 1938, but the total quantity consumed in this industry remained considerably greater than in the manufacture of lithopone, the leading customer for crude barite before 1938. (See fig. 2.)

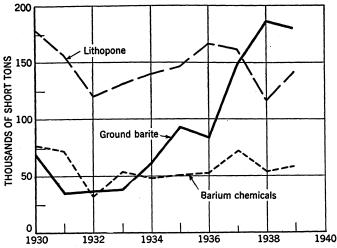


FIGURE 2.—Crude barite (domestic and imported) used in the manufacture of barium products in the United States, 1930-39.

Crude barite (domestic and imported) used in the manufacture of barium products in the United States, 1935-39, in short tons

In manufacture of—				In m	anufactur	e of				
Year	Ground barite	Litho- pone	Barium chemi- cals	Total	Total	Year	Ground barite	Litho- pone	Barium chemi- cals	Total
1935 1936 1937	93, 692 83, 990 148, 930	146, 164 167, 014 162, 681	50, 488 52, 445 72, 371	290, 344 303, 449 383, 982	1938 1939	1 193,728 1 192,112	117, 007 141, 556	54, 250 58, 015	1 364,985 1 391,683	

¹ Includes crushed barite as follows: 1938, 7,121 short tons; 1939, 11,678 tons.

Consumption by States.—Crude barite for the production of ground barite, lithopone, and barium chemicals was consumed in 34 plants in 14 States in 1939 as against the same number of plants in 13 States in 1938. The markets for crude barite lie (1) along the Atlantic coast, (2) along the Pacific coast, and (3) in the Mississippi River Valley region where there are three subregions—the West Virginia area, where crude barite is consumed in chemical plants; the Colorado area, where crude barite and witherite are utilized in preparing barium chemicals for use in the sugar industry; and the central valley region of Kansas, Illinois, and Missouri, where ground barite, lithopone, and barium chemicals are produced. Lithopone alone is manufactured in Kansas, ground barite and chemicals in Missouri, and all three products in Illinois. All these products likewise are produced in both the Atlantic and Pacific Coast regions. In the Atlantic Coast region crude barite is utilized for the production of ground barite in Georgia and South Carolina only. In 1939 the Mississippi Valley area was the largest consuming market for crude barite; the Atlantic Coast area ranked second and the Pacific Coast area third.

Crude barite (domestic and imported) used in the manufacture of barium products in the United States in 1939, by States

State	Product manufactured	Plants	Barite used (short tons)
Missouri. Delaware, New Jersey, and Pennsylvania. California. Illinois. Colorado. Rhode Island. West Virginia. Kansas. Maryland Georgia. New York. South Carolina.	Ground barite and chemicals. Lithopone and chemicals. Ground barite, lithopone, and chemicals. do Chemicals. do . do . do . Ground barite and chemicals. Ground barite.	35871121122111221	102, 218 81, 152 57, 650 52, 761 86, 224
	N.	1 34	3 391, 683

A plant producing more than 1 product is counted but once in arriving at State totals.
 Includes 11,678 short tons of crushed barite.

Deposits.—A recent report 2 on the Mississippi Valley lead and zinc deposits contains considerable information regarding the distribution and geologic setting of the associated barite deposits of that region. This region, which lies between the southwesterly trending Appalachian Mountains on the east and the southeasterly trending Cordilleras on the west and is bounded on the south by the Southern Highlands, is divided structurally into two parts—the Great Plains and the Central Lowlands—separated by the north-south trending Nemaha-Sioux uplift. The thick Paleozoic and later sediments, which rest on the pre-Cambrian crystalline bedrock, have been flexed into broad domes and basins that constitute the major structural elements of the Mississippi Valley region. Locally, broad, gentle folds are superimposed on the major structural features. Barite deposits occur in both the Great Plains and Central Lowland areas, but only those of the latter region have economic importance at present. In the Great Plains barite has been reported in both the Black Hills uplift of South Dakota and the Llano uplift in Texas. A small quantity of barite has been mined in the latter district.

In the Central Lowland area barite deposits occur on the flanks of the Ozark dome of the Southern Highlands in Missouri; on the Jessamine dome in central Kentucky and the Nashville dome in middle Tennessee—subordinate domes on the Cincinnati geanticline; on the Wisconsin arch of Wisconsin and Illinois; and on a collapsed northeasterly trending dome in the southern part of the Illinois Basin in Illinois and Kentucky. The most important barite-producing district is in Washington County, Mo., on the north flank of the Ozark dome, where the barite is recovered from residual deposits derived from the weathering of barite-bearing veins in the Potosi and Eminence formations of the Cambrian period.

Jewell 3 has described certain barite-bearing veins of probable post-Carboniferous age in the northeastern part of the Central Basin of middle Tennessee. All known veins lie in the Ordovician limestones

² Bastin, E. S. (editor), Contributions to a Knowledge of the Lead and Zinc Deposits of the Mississippi Valloy Regions: Geol. Soc. America, Spec. Paper 24, 1939, 156 pp.

³ Jewell, W. B., Barite, Fluorite, Galena, Sphalorite Veins in Middle Tennessee: Am. Inst. Min. and Met. Eng., Paper presented at Tuscaloosa meeting, November 3, 1939, 14 pp.

and range in width from a few inches to 5 or 6 feet, but most of them The more persistent have been traced for are 3 feet or less in width. 2 or 3 miles in length. They strike from N. 30° E. to N. 70° E., and dip 80° to vertical. The vein filling consists mostly of barite, fluorite, calcite, sphalerite, galena, and locally a little pyrite. Alteration products include calamine, limonite, witherite, and greenockite. Jewell, after discussing the possible origin of the veins, concludes that they are hydrothermal veins of the telethermal type, that therefore they will persist in depth, and that, at some unknown distance below the surface, the igneous rocks occur from which the ore solutions were derived. Various attempts have been made to develop and exploit these veins, and small quantities of galena, barite, and fluorite have

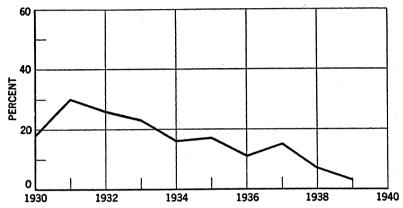


FIGURE 3.—Ratio of imports of crude barite to apparent consumption of crude barite, 1930-39.

been produced. A few carloads of barite were shipped from a deposit in Davidson County in 1934.

Boos 4 describes the occurrence and origin of barite in the form of

sand-barite rosettes or "stone roses."

Technologic developments.—The technology of barite is discussed in

several recent reports.5

Foreign trade.—Imports of crude barite enter the United States chiefly through Atlantic coast ports. In the past imports have consisted largely of German barite that came either from Germany direct or was transshipped from the Netherlands. In 1938, 74 percent of the crude barite imported into the United States originated

^{*} Boos, Margaret Fuller, Sand Barite Rosettes: Mines Mag. (Colorado), vol. 29, No. 12, December 1939, pp. 613-614, 617, 632, 636.

6 Blyumen, L. M., (Use of Heavy Spar for Introducing Barium Oxide into Glass): Stekolnaya Prom., vol. 4, No. 11, 1938, pp. 8-10.

Noy, J. M., and Bliss, L. G., Witherite in Case Hardening: Foote-Prints, vol. 12, No. 2, December 1939, pp. 15-26.

Kangarawa Kangarawa (Parterly of Parterly 15-26.

Kanazawa, Kazuo, (Flotation of Barite): Suiyokwai-Si, vol. 9, 1939, pp. 729-750; Chem. Abs., vol. 33, No. 10, May 20, 1939, p. 3975.

Shreve, R. N., and Toner, R. K., Barium Chloride from Barite and Calcium Chloride: Ind. Eng. Chem., vol. 32, No. 4, April 1940, pp. 568-573.

Engel, A. L., and Shelton, S. M., Progress Reports—Metallurgical Division 36; Ore-testing Studies, 1938-39 (Primarily Ore Dressing): Bureau of Mines Rept. of Investigations 3484, 1940, 34 pp.; see pp. 26-28, Sphalerite-Barite Ore from Missouri.

Ralston, O. C., and others, Annual Report of the Nonmetals Division, Fiscal Year 1939: Bureau of Mines Rept. of Investigations 3473, 1939, 40 pp.; see p. 33, Electrostatic Separation of Barite and Quartz.

Ralston, O. C., Flotation and Agglomerate Concentration of Nonmetallic Minerals: Bureau of Mines Rept. of Investigations 3397, 1938, 63 pp.; see pp. 22-25, Flotation of Barite

Dean, R. S., Progress Reports—Metallurgical Division 34; Annual Report of the Metallurgical Division, Fiscal Year 1939; Bureau of Mines Rept. of Investigations 3480, 1940, 98 pp.; see pp. 69, 71-72, Flotation of Barite Ores.

Barite Ores.

in Germany; the rest came from Cuba. In 1939, however, there was a complete reversal in relative importance of these sources; no imports were received in that year either from Germany or the Netherlands. Imports of barite from Cuba, on the other hand, nearly doubled those of 1938 and, except for 51 tons from Algeria and 1 ton from Canada, constituted the entire supply from foreign sources. total quantity of barite imported in 1939 was slightly less than half as great as in 1938, and the average value of the imports dropped from \$6.09 per ton in 1938, when German barite was the dominant material imported, to \$4.83 per ton in 1939, when virtually all the barite came from Cuba. With the exception of 1921 the total quantity of barite imported in 1939 was the lowest in any year since the World War period. (See fig. 3.)

Half of the world supply of barite is produced in Germany, and normally more than half of the German output is exported, large quantities of crude barite being shipped to the United States, Great Britain, France, Netherlands, and Belgium. Statistical details of the German barite industry, taken from official German sources, are given

in a recent publication.

Italy is one of the larger European producers of barite, and its annual output is exceeded only by those of Germany and Great Britain. In 1933 the United States imported 6,493 short tons of barite from Italy, but since then it has taken much smaller quantities (none at all in 1938 and 1939). The most important barite-producing localities are in the Trento, Carrara, and Milan districts in northern Italy and on the Island of Sardinia. Most of the output comes from the Trento Details regarding the various occurrences are given in a

recent report of the Imperial Institute.7 The barite deposits of Greece,8 formerly a source of barite imports into the United States, are in Melos, Polivos, and Kimolos Islands in the southern part of the Cyclades Archipelago in the Aegean Sea. The barite occurs as the principal gangue mineral of irregular silver-lead bearing deposits in Tertiary or later lavas and probably is of hydrothermal origin, deposited from solutions related to the associated igneous rocks. Operations, which were begun in 1934, have been confined principally to Melos. The other islands have been little explored. Imports of barite into the United States from Greece reached a maxi-

mum of 9,026 short tons in 1937 and then stopped.

Cuba has become an important foreign source of barite for the domestic industry. Barite deposits are known to exist in the Provinces of Oriente and Pinar del Rio.9 The deposits in Oriente are so inaccessible that no effort has been made in recent years to develop them on a commercial scale. In Pinar del Rio most of the deposits are also inaccessible, and cost of development under present economic conditions is too high to justify exploitation. Only two barite deposits in Pinar del Rio are reported as being exploited at present. These are the deposits of San Luis de Managuacos, the property of the Compañia Marmolera e Industrial del Cangre, S. A., and the deposits of

Bureau of Mines Mineral Trade Notes, Barite in Germany: Vol. 8, No. 5, May 1939, pp. 26-27.
 Imperial Institute, Barium Minerals: 2d ed., London, 1937, 84 pp.
 Siotis, G. J., The Barytes Deposits of Greece: Sands, Clays, and Minerals, vol. 3, No. 1, November 1936,

pp. 43-46.
Imperial Institute, Work cited in footnote 7.
Imperial Institute, Work cited in footnote 7.
Injel, C. L., American consul, Habana, Cuba, Barite Production in Cuba: Consular Rept., July 26, 1939, 7 pp.; Bureau of Mines Mineral Trade Notes: Vol. 9, No. 3, September 20, 1939, pp. 28-29.

Abraham Perez at Ysabel Maria. The total output of both of these mines is shipped to the United States. Barite production in Cuba was begun in 1936. Imports into the United States have increased each

year from 183 short tons in 1936 to 11,536 tons in 1939.

Canada has started a small barite industry, and in 1939 made an output for the first time since 1933. The production—300 short tons—came from a mine near South Porcupine, Ontario, about 400 miles north of Toronto; it is operated by the Canada Barytes Mines, Ltd., which has an option and lease on the mine and mill of the Canada Night Hawk Mines, Ltd. The property was first developed

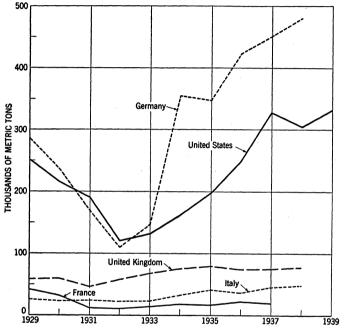


FIGURE 4.—World production of crude barite by countries, 1929-39.

in 1933, when 60 short tons of barite were produced. The shipment of 1 ton to New York, noted in the import statistics, is said to have been a trial order.

Barite has been found in several States of Brazil, 11 particularly in Minas Geraes, where deposits have been exploited to a small extent for local use, largely in paint manufacture. The present output is estimated at about 600 metric tons annually. None has been ex-Development of the barite deposits has been hindered by unfavorable transportation facilities and lack of capital.

Exports of crude barite from the United States are not separately recorded.

¹⁰ Heacock, R. L., American vice consul, Toronto, Canada, Barium Mine Resumes Production: Consular Rept., August 22, 1939, 2 pp.; Bureau of Mines Mineral Trade Notes: Vol. 9, No. 3, September 20, 1939, pp. 27–28.

¹¹ Winslow, R. R., American consul, Rio de Janeiro, Brazil, Barite in Brazil: Consular Rept., April 5, 1939, 10 pp.; Bureau of Mines Mineral Trade Notes: Vol. 8, No. 5, May 20, 1939, pp. 24–26.

Crude barite	imported for	consumption	in the	United Sta	tates, 1938-	-39. bu	countries

Country	19	38	1939		
Country	Short tons	Value	Short tons	Value	
Algeria. Canada. Cuba. Germany. Netherlands.	6, 367 4, 200 14, 278	\$27, 578 27, 188 96, 469	51 1 11, 536	\$161 7 55, 817	
Netherlands	24, 845	151, 235	11, 588	55, 985	

World production.—Germany and the United States are by far the leading barite-producing countries of the world. (See fig. 4.) Few figures are available for 1939 regarding the barite production of the various barite-producing countries, but in 1937 and 1938 the United Kingdom, Italy, Greece, France, and British India were also important producing nations.

World production of barite, 1935-39, by countries, in metric tons

[Compiled by M. T. Latus]

Country 1	1935	1936	1937	1938	1939
Algeria			2, 137	3, 069	(2)
Australia:	1	l			
New South Wales		149	268	322	(2)
South Australia		2,009	2,736	2,909	3,886
Tasmania		34	1 77	ll	
Victoria.			71		
Brazil (exports)			600	(2)	(2)
Chosen	11,027	5, 113	8, 400	(2)	(2)
Cuba	,	0, 110	3, 849	, ,	12,000
Egypt	85	30	51	20	(2)
France		22, 200	19, 850	(2)	(2) (2)
Germany:	10,000	22, 200	10,000		()
Austria	797	1.663	855	373	(2)
Baden	12, 445	17, 800	21, 653	36, 305	(2) (2)
Bavaria		11, 175	11, 832	26, 748	(2)
Prussia 3	326, 950	392, 103	410, 634	401, 906	20
Saxony		467	432	230	2
Thuringia		450	6, 790	15, 315	(2)
Württemburg	(2)	1,000	192	10, 510	2
Greece	23, 091	31, 336	39, 343	34, 700	(2) (2) (2) (2) (2) (2)
India, British	5, 581	5, 196	15, 941	8, 205	. 💥
Indochina	0,001	3, 190	45	50	53
Italy	41, 152	36, 671	45, 202	48, 169	(2)
Japan	41, 102				(2)
		3, 837	(2) 70	(3)	(2)
Norway		408			(2) (2) (2) (2) (2) (2)
Portugal	}	10	101	24	
Southern Rhodesia				91	.50
Union of South Africa		583	570	491	439
United Kingdom		74, 242	74, 485	77, 543	(2)
United States	197, 833	248, 624	327, 380	304, 298	331, 910

In addition to the countries listed, barite is produced in Canada, China, Czechoslovakia, Spain, and the U. S. S. R.
 Data not available.
 Official figures which, it is reported, cover only output of mines included under the mining law.

BARIUM PRODUCTS

Sales.—The quantities of ground or refined barite, lithopone, and artificial barium carbonate sold or used by producers in 1939 were greater than in 1938, in response to marked increases in the demand for all of these barium products. Blanc fixe (precipitated barium sulfate) sold or used by producers, however, decreased for the second consecu-

tive year but did not decline to the 1936 figure. The demand for "other barium chemicals" was less in 1939 than in 1938 but was above that in other recent years. Detailed statistics of barium products during the past 5 years are given in the following table.

Barium products sold or used by producers in the United States, 1935-391

Product	1935	1936	1937	1938	1939
Ground barite: Plants	11 76, 250	13 69, 102	12 129, 777	14 2 161, 422	13 2 170, 695
Short tonsValueLithopone: 3	\$1, 407, 787	\$1, 217, 818	\$2, 249, 612	² \$2, 786, 823	2 \$2, 902, 973
PlantsShort tons	159, 486	158, 319 \$12, 976, 754		11 125, 746 \$9, 975, 012	11 142, 759 \$10, 461, 102
Value	6	6	7	7	6 18, 653
Short tons	18, 067 \$980, 191	16, 149 \$890, 310	28, 250 \$1, 614, 764	19, 428 \$921, 203	
precipitated): Plants	3	3 11, 347	3 10, 755	9, 543	5 12, 478
Short tonsValueOther barium chemicals: 4	7, 329 \$357, 585	\$515,624	\$511, 357	\$459, 901	\$617, 799
Plants Short tons Value	7, 520 \$642, 576	8, 893 \$698, 942	8, 632 \$796, 988	10, 963 \$728, 896	9, 858 \$814, 170
Total barium products: Short tonsValue	268, 652 \$16, 858, 413			² 327, 102 ² \$14, 871, 835	² 354, 443 ² \$15, 694, 242

¹ To avoid duplication, the barium chemicals reported here do not include the output of firms that make these chemicals from such products as barium chemicals and imported barite and witherite purchased in the

Lithopone is used principally in the paint industry. Smaller quantities are consumed by the floor-covering, textile, and rubber industries. Sales of lithopone, 1937-39, by consuming industries, are shown in the following table.

Lithopone 1 sold or used by producers, 1937-39, by consuming industries

	19	37	19	38	1939		
Industry	Short	Percent	Short	Percent	Short	Percent	
	tons	of total	tons	of total	tons	of total	
Paints, enamels, and lacquers	122, 915	79. 4	101, 924	81. 1	113, 995	79. 9	
	20, 194	13. 1	15, 400	12. 2	17, 429	12. 2	
	4, 383	2. 8	3, 148	2. 5	3, 189	2. 2	
	7, 279	4. 7	5, 274	4. 2	8, 146	5. 7	
	154, 771	100.0	125, 746	100.0	142, 759	100.0	

¹ Does not include cadmium lithopone.

Data on ground barite sold or used by producers, classified by consuming industries, are given in the accompanying table; this information is available for 1938 and 1939 only.

these enemicals from such products as bardim enemicals and imported state that whether products as bardim enemicals and imported state that whether properties open market.

2 Includes crushed barite.

3 Does not include cadmium lithopones.

4 Figures cover chemicals, in order of value, as follows: 1935 and 1937: Chloride, dioxide, sulfide, and hydroxide; 1936 and 1938: Chloride, dioxide, hydroxide, sulfide, and oxide; 1939: Chloride, dioxide, hydroxide, sulfide, and oxide, sulfide, and oxide.

Ground or refined barite sold or used by producers, 1938-39, by consuming industries

	19	38	1939		
Industry	Short	Percent	Short	Percent	
	tons	of total	tons	of total	
Well drilling Paint Glass Rubbor Undistributed	126, 697	78	125, 560	74	
	8, 227	5	9, 750	6	
	1 7, 963	5	1 12, 586	7	
	2, 944	2	3, 319	2	
	15, 591	10	19, 480	11	
	1 161, 422	100	1 170, 695	100	

Includes crushed barite as follows: 1938, 7,121 short tons; 1939, 11,678 tons.

Prices.—Quotations for ground barite at \$23.65 a short ton in 1939 were the same as in 1938, but by March 1940 they had risen to \$25.65. Prices of ground witherite had a wider range in 1939 (\$41 to \$47 a ton) than in 1938 (\$41 to \$44) and like those of ground barite had risen by March 1940 to \$45 to \$47 a ton. Precipitated barium carbonate quotations remained unchanged from 1938. Lithopone (ordinary) quotations in 1939 showed lower limits than in 1938 (% cent in the lower limits and ½ cent in the upper limits). The upper range in the price of barium chlorate rose to 25 cents a pound in 1939 from 17½ cents in 1938; in March 1940 it was quoted at 20 to 22 cents a pound. Barium chloride prices were unchanged in 1939 from 1938, as were those for barium dioxide. Quotations for high-grade precipitated blanc fixe reached \$80 a ton in 1939 from \$75 a ton in 1938. Pulpgrade blanc fixe quotations were the same in 1939 as in 1938 but in March 1940 had risen from the 1939 quotation of \$40 a short ton to \$50. Barium nitrate quotations also were higher in 1939 than in 1938; in March 1940 they were 9½ to 10½ cents a pound.

Range of quotations on barium products, 1937-39 1

	1937	1938	1939		
Ground barite, carlots, 350-pound barrels, works short ton. Ground witherite, carlots, bags, works do Lithopone: Domestic, ordinary, delivered, bags Do barrels do Do barrels do Do barrels do Do barrels do Do barrium carbonate, precipitated, 200-pound bags, works Barium chlorate, 112-pound kegs, New York pound Barium chloride, barrels, delivered zone L. short ton. Barium dioxide (binoxide or peroxide), 88 percent, 690-pound drums pound Barium hydrate, 500-pound barrels do. Barium sulfate, precipitated (blanc fixe), 400-pound barrels, works short ton.	\$42.00 - 45.00 .04140456 .04140476 .05340616 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .060636 .070836	0434-0436 0554-06346 0554-06346 0554-06346 0554-06346 52.50-62.50 1614-1712 77.00-92.00	\$41.00 - 47.00 .03¾04¾ .0404¾ .05¼05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .05½05¾ .06¾10¾ .06¾10¾		

Chemical Industries (formerly Chemical Markets), New York (monthly).
 90 percent.
 Lowest price for pulp grade, highest for high-grade precipitated.

Technology.—Barium-zinc lithopone is the most important single chemical made from barite. A comprehensive description of the process of manufacture of this type of lithopone, with a detailed flow

sheet and list of patents, is given in a recent article by Mactaggart.¹² Briefly the process is as follows: Run-of-mine barite is crushed to minus 4-mesh and fed, with coal of similar size, to a rotary furnace heated by gas or pulverized coal. The barite is reduced to barium sulfide. The product ("black ash")—barium sulfide, ash, and unburned coal—is mixed with a weak solution of barium sulfide; the slurry passes into a tube mill and is finely ground; the barium sulfide is leached out of the black ash by a countercurrent leaching system, clarified, and carried to a barium sulfide storage tank. Barium sulfide and zinc sulfate solutions are run separately into a tank and mixed with the help of an agitator. The slurry so formed is treated in a thickener and then passed to a continuous vacuum filter. The filter cake is first dried, then calcined at 750° to 800° C., quenched, and ground in a pebble mill. The ground lithopone passes to classifiers, hydroseparators, thickeners, and filters. This filter cake is dried and disintegrated or ground.

Some cadmium lithopone—that is, lithopone in which the zinc sulfide is replaced by cadmium sulfide—is produced in this country and has been used as a rubber pigment and as a pigment for coloring artificial resin compounds.¹³ The cadmium yellows made in the United States are said by Brown ¹⁴ to be combinations of cadmium sulfide and barium sulfate, with or without zinc compounds. They are produced in shades ranging from primrose yellow to light chrome Because of their high cost, they are used only for special orange.

purposes.

Foreign trade.—Imports of all classes of barium compounds (except barium dioxide, barium hydroxide, witherite, and barium oxide) for consumption in the United States in 1939 decreased in both quantity and value from 1938. Barium dioxide and barium hydroxide imports did not reach the 1936 figures, however, and imports of witherite did not equal those of 1937. There were no imports of precipitated

barium carbonate.

Considerable ground barite is exported. An important market is Trinidad, where it is used in oil-well drilling to weight the drilling mud. Imports of barite into Trinidad range from 20,000 to 25,000 tons a year. Germany and the United States have been the principal sources of supplies. Specifications call for barite of not less than 4.25 specific gravity and a fineness of at least 98.75 percent to pass a 300-mesh screen. The barite arriving in Trinidad usually is packed in 120pound, six-ply paper bags or in double jute sacks. Some of the barite used in the drilling operations is reclaimed from the impregnated mud; the quantity so reclaimed is estimated at about 20,000 tons annually.¹⁵

The quantity of lithopone exported in 1939 was greater than in any year since 1922—when exports of barium products were first recorded separately—and probably before that date as well, because appreciable quantities of barium products had not been exported; the total value

¹² Mactaggart, E. F., The Manufacture of Lithopone: Industrial Chemist (London), vol. 16, No. 181, February 1940, pp. 72-77; largely reprinted in Canadian Chem. and Process Ind., vol. 24, No. 3, March

February 1940, pp. 72-77; largely reprinted in Canadian Chem. and Process Ind., vol. 24, No. 3, March 1940, pp. 107-111.

13 Imperial Institute, Mineral Industry of the British Empire and Foreign Countries, Cadmium: London, 1929, 23 pp. (See pp. 9, 23.)

14 Brown, A. F., Chemical Colors: Paint, Oil, and Chem. Rev., vol. 97, No. 8, April 18, 1935, pp. 32-36.

(Paper presented at the Symposium on Paint and Paint Materials at the 1935 Regional Meeting of the Am. Soc. Test. Mat. March 5-6 at Philadelphia, Pa.)

15 Bureau of Foreign and Domestic Commerce, Barytes Used Extensively in Oil Fields—Trinidad: World Trade Notes, vol. 13, No. 35, September 2, 1939, pp. 591-592. Imports into Trinidad by countries for last 3 years also are given.

of the lithopone exported in 1939 (\$392,798) was much less than in 1929, when it reached \$463,235. The average value of the exports in 1939 (\$81.07) was the lowest ever recorded.

Barium compounds imported for consumption in the United States, 1935-39 [Value at port of shipment]

Year	Gro	und barii	te	Litho	pone	Bariun	o dioxide	e cipit	nc fixe (p ated bari sulfate)	re- um	Bari carbo (precip	nate
T cai	Short	Valu		nort	Value	Pounds	Value	Sho:			hort	Value
1935 1936 1937 1938 1939	3, 354 2, 873 3, 313 1, 700 1, 590	28, 3 35, 0 15, 4	197 4, 146 5, 166 3,	603 781 601 932 641	\$256, 731 273, 571 302, 417 207, 121 130, 893	450 1, 392 229 100 350	\$7. 222 3. 1. 5.	3 12 4 16 3 16	23 6, 09 7, 06 5,	403 971 617 102 891	11 30 30 (1)	\$631 889 848 32
Year	crud	herite, e, un- und		m chlo ide	0- Barium nitrate			ım hy- oxide	Bariun	ı oxide	po	m com- unds e. s.)
	Short tons	Value	Short	Valu	e Short tons	Value	Short	Value	Pounds	Value	Short	Value
1935 1936 1937 1938 1939	2, 634 2, 464 4, 556 2, 115 3, 819	\$48, 551 44, 475 82, 341 43, 568 64, 106	392 244 315 69 39	\$17, 17 10, 35 13, 76 2, 35 1, 32	5 185 1 157 1 126	19, 107 15, 836 12, 061	271 370 310 236 360	\$16, 987 25, 423 21, 004 16, 874 19, 975	33 287 298 22	\$26 155 161	8 8 28 50 27	\$1, 852 2, 231 6, 455 11, 320 7, 244

^{1 110} pounds.

Lithopone exported from the United States, 1935-39

Year	Short	Va	lue	Voor	Short	Va	lue
	tons	Total	Average	Year	tons	Total	Average
1935 1936 1937	2, 372 2, 538 2, 671	\$221, 611 229, 942 231, 622	\$93. 43 90. 60 86. 72	1938 1939	1, 734 4, 845	\$153, 567 392, 798	\$88. 56 81. 07

POTASH

By J. H. HEDGES

SUMMARY OUTLINE

	Page		Page
General conditions	1387	Government activities	1392
Salient statistics	1389	Review by States	1394
Prices	1390	Foreign trade	1395
Consumption and uses	1390	World production	1397
Production and sales	1392	Foreign developments	1398

During a 20-year period beginning in 1911, various agencies of the Federal Government spent about \$2,000,000 searching for sources within the United States from which domestic needs for potash might be economically supplied. Government initiative soon inspired private efforts that led to the founding of a major industry. Now that history is repeating itself in Europe and potash imports again are declining, with the possibility that they may cease altogether, an evaluation of the public benefits derived from this program is in order.

In 1939 American producers supplied 634,000 short tons of potash salts, for which they realized an average of \$18.97 per ton at the plants. They may be called upon to deliver an even larger tonnage in 1940, as imports continue to decline. Increased costs may force prices somewhat higher; but no material advance is likely, and any prospective demand can be supplied from domestic sources, if necessary. trast this with the situation after the outbreak of the World War. In 1915 the then infant industry produced 4,374 short tons of low-grade potash salts that sold for an average price of \$78 per ton f. o. b. In 1916, when importers' stocks were exhausted and imports virtually ceased, the average price obtained at the plant for some 35,700 tons of potash salts produced and sold rose to \$119 per ton and did not again drop below \$100 until after the war was over. at these prices, the maximum output reached was 55,000 tons of K₂O, or about 20 percent of pre-war consumption. At the peak of the potash shortage as much as \$500 a ton was paid for muriate on the eastern seaboard. The cost to the ultimate consumer in high prices for certain farm products that cannot be grown successfully without fertilizer was incalculable.

With Europe again at war, no potash shortage now threatens the United States; there is no prospect that the farmer will have to pay exorbitant prices for his potash. This fortunate situation is directly attributable to the foresight that led the Federal Government to pioneer in the search for potash resources and to encourage and foster the building of a domestic industry that now can supply cheaply all

the potash required to meet essential needs.

Some measure of the economic significance of these developments may be obtained by applying 1915 prices to prospective 1940 consumption, remembering that with respect to foreign supplies the experience of 1915 is likely to be repeated in 1940. The average price of potash f. o. b. plant was \$3.14 a unit of K_2O in 1915 (increased to \$4.36 in 1916). In 1939 the average value at the plant was 33 cents a unit, a decrease from the 1915 figure of \$2.81 a unit or \$281 a ton of K_2O .

Consumption in 1940 may approximate 450,000 tons of K₂O at a total cost approximately \$126,000,000 less than for the same quantity in 1915 at the prices then prevailing. Although it would be absurd to claim a direct saving of this amount it is obvious that enormous benefits have accrued to the American people from the discovery and development of domestic resources of potash. By comparison with many other basic industries the potash industry bulks small, but because of its essential character its importance in the national economy is out of all proportion to the dollar value of its products.

Potash is used principally as an ingredient of mixed fertilizers; hence the demand for potash closely follows fertilizer sales, which in turn reflect farm income, although this relationship has been obscured in recent years by farm-benefit payments and crop-control programs. Fertilizer sales continued in 1939 at about the 1938 level; and, if allowance is made for extension of the final delivery date on 1939 discount contracts to January 31, 1940, instead of completing deliveries within the calendar year, as in 1938, a drop of about 3 percent from 1938 sales of potash for consumption in the United States and its possessions is indicated. However, the proportion of total sales that was supplied by American producers rose sharply to establish a new record, although production fell slightly below that in 1938.

During the last 4 months of the year, following the invasion of Poland on September 1 and subsequent events that virtually cut off shipments from Germany, only 52,723 tons of potash fertilizer salts were imported compared with 230,481 tons during the corresponding period in 1938. By virtue of "trading-with-the-enemy" laws the N. V. Export My. was dissolved and its affairs liquidated when war was declared between France and Germany. The French Potash Co., with offices at 30 Rockefeller Plaza, New York City, was incorporated to import and sell French potash salts and the Pioneer Potash Co., with offices at 44 Whitehall Street, New York City, to handle German business. It is reported that all N. V. contracts have been filled from stocks held in this country and at Antwerp and Rotterdam, sizable shipments having been received in January and February 1940; thus the war appears to have had little effect on delivery of the tonnage contracted for during the 1939 discount period, except for delayed completion of some importers' contracts.

Six domestic producers reported a total output in 1939 of 524,986 tons of potash salts equivalent to 307,051 tons of K_2O , a decrease from 1938 of 2 percent in gross tonnage and 3 percent in contained potash. Producers' sales increased 28 percent from 286,437 tons of K_2O in 1938 to 366,287 tons of K_2O in 1939. Sales exceeded production by about 60,000 tons, and stocks were reduced about 66 percent—to 29,440 tons of K_2O . Potash sold by producers and importers for use in agriculture and industry in the United States and its possessions totaled 393,549 tons of K_2O , of which American producers supplied

72 percent (282,487 tons).

Exports of 140,329 tons of salts equivalent to 83,800 tons of K₂O valued at \$5,254,840 represented increases from 1938 of 62 percent in bulk, 63 percent in K₂O, and 70 percent in value. Imports of 254,692 tons of salts equivalent to 99,569 tons of K₂O valued at \$8,158,334 represented decreases from 1938 of 43 percent in bulk, 49 percent in K₂O, and 40 percent in value. Thus the decline in imports during 1938 continued at an accelerated pace in 1939, influenced in part by the outbreak of hostilities in Europe.

POTASH 1389

The potential capacity of American producers, without major additions to plants or equipment, has been estimated by the Federal Geological Survey to be approximately 540,000 tons of K₂O per year, considerably more than probable needs. Any deficiency in highgrade salts that might develop can be made up by increased output of manure salts, which can be mined in New Mexico to average around 25 percent K₂O. Some apprehension has been expressed concerning the supply of sulfate, for which this country formerly depended almost entirely on imports; however, this salt now is being produced by three companies at the rate of about 48,000 tons a year, and a new plant for the manufacture of sulfate is expected to begin operations toward the end of 1940. In 1939 approximately 49,000 tons of sulfate of potash and 15,000 tons of sulfate of potash-magnesia were sold for consumption in the United States. Many agronomists believe that sulfate is not essential for some crops to which it customarily has been applied, and its advantages in many instances do not justify farmers in paying the higher price it commands. Hence the demand for sulfate conceivably may decline, and the supply doubtless will be adequate for essential uses. Following the outbreak of war American producers voluntarily restricted export sales of all potash materials to guard against any possibility of a shortage in the American market.

Natural brines and bedded saline deposits were the sources from which nearly 99 percent of the 1939 output of potash was drawn. As in past years, a small tonnage was derived from cement-plant dust and distillery waste. The three major companies (American Potash & Chemical Corporation, Potash Co. of America, and United States Potash Co.) produced 97 percent of the total. Bonneville, Ltd., treating brine from the Salduro marsh at its plant near Wendover, Utah, reported increased production in its second year of operation. As the process employed utilizes solar evaporation, operation of the plant is seasonal, although in that desert region many months of hot, dry weather may be counted upon with considerable assurance. Producers of byproduct potash were the North American Cement Corporation and United States Industrial Chemicals, Inc.

Salient statistics of the domestic potash industry for 1938 and 1939 are summarized in the following table:

Salient statistics of the potash industry (crude and refined potash materials) in the United States, 1938–39

	1938	1939
Production:		
Potassium saltsshort tonsdododo	534, 945	524, 986
Approximate equivalent, K ₂ Ododo	316, 951	307, 051
sales by producers:		· ·
Potassium saltsdo	498, 189	634, 014
Approximate equivalent, K ₂ Ododo	286, 437	366, 287
Value at plant	\$9, 748, 290	\$12, 028, 195
Average per ton	\$19. 57	\$18.97
	450 000	
Crude and refined short tons Approximate equivalent, K ₂ O do	450, 387	254, 692
Volue	193, 609	99, 569
ValueExports:	\$13, 512, 110	\$8, 158, 334
Fertilizer materialsshort tons_	84, 137	100 750
Approximate equivalent, K ₂ Ododo	50, 500	136, 750 82, 000
Value	\$2, 599, 772	\$4, 446, 853
Other short tons	2, 616	3, 579
Other short tons Approximate equivalent, K ₂ O do do	1, 300	1, 800
Value	\$485, 672	\$807, 987
	Ţ.50, 012	4501, 801

PRICES

The initial price schedule for the 1939–40 fertilizer season, issued by importers May 26, 1939, offered potash salts for prompt shipment from Europe at the base prices of the previous year c. i. f. Atlantic, Gulf, and Pacific ports, subject to 12-percent discount and guaranteed with respect to price reductions. In later schedules issued in June by the importers and the three major producers the price of sulfate of potash (90 percent K_2SO_4) was reduced from \$38 to \$36.25 per short ton, sulfate of potash-magnesia (48 percent K_2SO_4) from \$25.75 to \$24.75 per ton, and kainite (20 percent K_2O) from \$12.75 to \$12.25 per ton, the prices for other salts remaining the same. Quotations c. i. f. Atlantic, Gulf, and Pacific ports were as follows:

Manure salts—30 percent $K_2O_{}$ 58½ cents per unit $K_2O_{}$	
Kainite—20 percent K ₂ O	
Sulfate of potash—90 percent K ₂ SO ₄	
Sulfate of potash-magnesia—48 percent K ₂ SO ₄ \$24.75 per ton.	

These base prices were subject to a discount of 12 percent on all orders placed before July 20, for delivery in approximately equal monthly quantities over the period from August 1, 1939, to January 31, 1940, and of 5 percent on orders placed before October 1, 1939, for delivery in approximately equal monthly quantities from October 1, 1939, to January 31, 1940. From October 1 prices were net for the remainder of the season ending May 31, 1940. The only changes from 1938 were decreases of \$1.75, \$1.00, and 50 cents per ton, respectively, in list quotations for sulfate of potash, sulfate of potashmagnesia, and kainite and extension of the maximum discount period to July 19 instead of June 30 and of the delivery period to January 31 instead of December 31. Extension of the delivery period into 1940 throws out of balance the record of sales in 1939 in relation to sales reported in 1938. To reach a comparable figure, contract deliveries in January 1940, estimated at about 60,000 tons of K₂O, must be added to deliveries reported in 1939.

The following table shows the monthly average prices prevailing during 1939, in accordance with published schedules and discounts:

Average prices per short ton of potash salts in the United States in 1939, by months

Month	Muriate of potash, 50 percent K ₂ O, in bulk	Sulfate of potash, 90 percent K ₂ SO ₄ , in bags	Sulfate of potash- magnesia, 48 percent K ₂ SO ₄ , in bags	Manure salts, 30 percent K ₁ O, in bulk	Kainite, 20 percent K ₂ O, in bulk	
January to April	\$26. 75	\$38. 00	\$25. 75	\$17. 55	\$12. 75	
	26. 13	36. 81	24. 98	17. 14	12. 37	
	23. 54	31. 90	21. 78	15. 44	10. 78	
	24. 26	32. 88	22. 50	15. 92	11. 11	
	25. 41	34. 44	23. 51	16. 67	11. 64	
	26. 75	36. 25	24. 75	17. 55	12. 25	

CONSUMPTION AND USES

Producers and importers of potash salts sold and delivered approximately 387,000 short tons of potash in 1939 for consumption in the United States and its possessions; 93 percent was for agricultural and

POTASH 1391

7 percent for industrial use. For comparison with 1938, when deliveries on contracts were completed December 31, about 60,000 tons—representing estimated deliveries in January 1940 on 1939 contracts—should be added to this figure. Thus sales of potash for domestic use in 1938 and 1939, adjusted to a comparable basis, would be 467,000 and 447,000 tons, respectively, indicating a decline in potash consumption in 1939 of about 20,000 tons of K_2O .

The American Potash Institute reports that deliveries by member companies in the United States and its possessions in 1939 totaled 365,049 tons of potash and that 77,675 tons were exported. Importations and sales of all other primary suppliers amounted to 28,500 tons, indicating a total movement of potash of 471,224 tons from primary sources to buyers. Deducting exports of 83,800 tons leaves 387,424 tons delivered to purchasers for consumption in the United States. Apparent consumption calculated by subtracting exports (83,800 tons) from the sum of domestic sales (366,287 tons) and imports (99,569 tons) was 382,056 tons. Adjustment of the total of reported sales to the basis of completed deliveries reduces apparent consumption as calculated above to 367,000 tons and indicates withdrawal from importers' stocks of salts equivalent to about 23,000 tons of K₂O.

Differences in the methods of reporting to various agencies dealing with the statistical position of the potash industry lead to discrepancies sometimes difficult to explain, although in general these differences are compensating over a period of years. Figures published by the American Potash Institute, for example, represent deliveries of material sold in accord with a very precise definition of "deliveries" that is suited to the purposes of the institute and its members. Sales for any one year reported accurately to the Bureau of Mines may differ in greater or less degree from the record of transactions completed within that year as reported by the institute. In 1939, reported sales exceeded recorded completed transactions by about 15,000 tons of K₂O.

The following table gives as accurate a picture of sales for consumption in the United States and for export as can be drawn by combining information derived from numerous sources adjusted to a comparable basis.

Sales of primary potash in the United States for consumption and export, 1938-39, in short tons of K₂O

	1938	1939
Deliveries by member companies, as reported by American Potash Institute— In United States and possessions: Agricultural		340, 765
Chemical	423, 977 15, 584 40, 843	24, 284 77, 675
Imports, not included above, plus sales of nonmember producers		442, 724 28, 500
Total exports	519, 342 51, 800	471, 224 83, 800
Actual sales for consumption in United States	467, 542	387, 424

PRODUCTION AND SALES

The output of marketable salts by domestic mines and plants leveled off in 1939 and continued at about the 1938 rate, although the aggregate tonnage produced in 1939 fell slightly below that of the previous year. The extra tonnage required to satisfy increased sales was drawn from stocks, and no high-pressure efforts were made to operate plants continuously at full capacity. It is believed that the annual output of refined salts by existing plants could be stepped up at least 20 percent, if necessary.

Potash production decreased 3 percent, from 316,951 tons in 1938 to 307,051 tons in 1939. Increased output of the 50-percent grade of muriate, which for some obscure reason is in considerable demand, lowered the average grade from 59.2 percent K₂O in 1938 to 58.5 percent in 1939. Fertilizer manufacturers appear to prefer lower-analysis salts for certain mixtures, notwithstanding the higher unit cost at inland points.

Sales attained a new high, rising 28 percent from 286,437 tons of K₂O in 1938 to 366,287 tons in 1939. Producers supplied about 72 percent of the home market, and about 23 percent of their sales was exported, either directly or through resale by buyers.

Production and sales of marketable potassium salts and stocks in the hands of producers for the last 5 years are summarized in the following table. Only the final weight of marketable salts after refining or mixing is shown. For similar data from the beginning of the potash-producing industry in 1915 to 1934 see the chapter on Potash in Minerals Yearbook, 1935. Data by States and sources cannot be given without disclosing individual reports.

Potassium salts produced, sold, and in producers' stocks in the United States, 1935-39

	Production		Sales				Producers' stocks			
Year	Opera- tors	Potas- sium salts (short tons)	Equivalent as potash (K ₂ O) (short tons)	Opera- tors	Potas- sium salts (short tons)	Equivalent as potash (K ₂ O) (short tons)	Value f. o. b. plant	Opera- tors	Potassium salts (short tons)	Equivalent as potash (K ₂ O) (short tons)
1935 1936 1937 1938 1938	10 7 7 9 6	357, 974 431, 470 486, 090 534, 945 524, 986	192, 793 247, 340 284, 497 316, 951 307, 051	10 7 7 9 6	406, 922 396, 690 466, 933 498, 189 634, 014	224, 721 222, 810 266, 938 286, 437 366, 287	\$4, 993, 481 6, 969, 190 9, 019, 534 9, 748, 290 12, 028, 195	6 5 5 6 5	47, 710 73, 139 105, 900 158, 540 54, 233	18, 060 34, 000 55, 620 87, 440 29, 440

GOVERNMENT ACTIVITIES

The uncompleted investigation of the potash industry by the Senate Committee on Public Lands, begun in 1936 pursuant to Senate Resolution 274 (agreed to June 18, 1936), was in abeyance throughout 1939. The committee is especially concerned with the extent and implications of foreign ownership or control of American potash companies and the conditions under which deposits belonging to the Government are being exploited. The investigation was pursued vigorously for a year or so, but the committee was not ready to report to the Seventy-fourth Congress as required by the resolution. An extension of 2 years was granted in 1937, and in 1938 the time again

POTASH 1393

was extended to permit submission of the committee's report any time before expiration of the Seventy-sixth Congress at midnight December 31, 1940.

The Department of Justice, which had begun a general investigation of the fertilizer industry in 1936, undertook a special study of the potash industry by its Antitrust Division in February 1939. Material assembled in this investigation was placed before a Federal grand jury in New York, which was reported to have returned a sealed indictment in June that had not yet been officially filed at the end of February 1940. The Department of Justice is understood to be seeking satisfactory ground for a consent decree that would obviate the necessity of prosecuting the reputed indictment and would provide certain changes in pricing and trade practices believed by the Department to be desirable.

In its studies of various industries the Department of Justice on several occasions has sought the advice and assistance of other Departments more intimately acquainted with the organization and functioning of an industry under consideration. Early in 1939, at the suggestion of the Department of Justice, an economic study of the potash industry was undertaken by the Department of Commerce to examine the industry's performance and make such recommendations for changes in practices as might appear necessary in the public interest. Throughout this study the Department of Commerce had the wholehearted cooperation of the three domestic potash companies and the Many conferences were held with the principal executives and attorneys of the companies at which policies and performance of the industry were discussed in detail. Each of the four companies submitted upon request a comprehensive report with subsequent supplementary reports showing full and intimate details of its opera-All data submitted to the Department of Commerce have been made freely available by the companies to the Department of Justice for the information and use of its economic staff. At the close of the year a report was being prepared for submission to the Department of

Six leases embracing 6,409.6 acres of potash-bearing areas in Searles Lake, San Bernardino County, Calif., were sold to the highest bidders by the General Land Office at public auction in Sacramento, October 19, 1939, at 11 a. m. Four units aggregating 5,969.6 acres were awarded to the American Potash & Chemical Corporation and two units aggregating 440 acres to the West End Chemical Co. For a number of years these two companies have operated plants for the treatment of Searles Lake brines, from which the West End Chemical Co. recovers borax and soda ash and the American Potash & Chemical Corporation extracts directly or prepares by base-exchange methods muriate and sulfate of potash, borax, salt cake, soda ash, and lithium compounds. Bids included bonus payments aggregating \$189,156.52. Lessees are required to invest \$50,000 each on three of the units in actual development and improvements and \$200,000 each on the other The Government is to receive a 3-percent royalty on the gross value of all products at the point of shipment and a rental of 25 cents per acre the first year, 50 cents during the next 4 years, and \$1 per acre thereafter. It is estimated that royalties from these leases will exceed \$50,000 annually.

REVIEW BY STATES

California.—Potash is but one of the products extracted commercially from the complex brine of Searles Lake by the American Potash & Chemical Corporation at Trona. Borax, soda ash, and salt cake likewise are recovered, and in 1938 sodium-lithium phosphate was added to the list. Preparations are now being made to save some of the bromine; the Searles Lake brine contains about 12 times as much as sea water. Brine entering the plant annually carries nearly 10,000,-000 pounds of bromine, of which 2,000,000 to 3,000,000 pounds will be recovered in the form of liquid bromine and alkali bromides. Formerly high-grade muriate was the only potash salt produced by this company, but in 1939 the manufacture of sulfate of potash by base exchange with sodium sulfate was begun. The sulfate plant is reported to have a daily capacity of about 100 tons. Leases covering about 6,000 acres of Searles Lake added to the company holdings during the year assure an adequate supply of brine for many years to come.

Maryland.—No new developments relating to potash were reported in operations of the North American Cement Corporation, Hagerstown, or U. S. Industrial Chemicals, Inc., Baltimore, which recover small quantities of potash materials from cement-kiln flue dust and

molasses-distillery waste, respectively.

New Mexico.—Operations at the mines of the United States Potash Co. and the Potash Co. of America near Carlsbad continued on approximately the same scale as in 1938. Interruptions incident to unionization of the mines reduced somewhat the total tonnage of ore mined and the output of refined salts. However, stocks sufficed to meet

requirements.

A suit filed in 1938 by three Pecos Valley farmers to recover \$250,000 from the United States Potash Co. for alleged damage to land and crops by infiltration of brine from the refinery-waste pond into irrigation water was dismissed in June 1939 when it was shown conclusively that owing to structural dip the direction of underground drainage is away from the irrigated areas and the contamination claimed was a

physical impossibility.

The Union Potash & Chemical Co., controlled by the International Agricultural Corporation by ownership of nearly 60 percent of the common stock, continued throughout the year development of the potash beds exposed in the shaft that was completed in 1938 to a depth of 925 feet. A large tonnage of commercial-grade material is now assured, and the International Agricultural Corporation has announced plans to invest an additional \$2,500,000 in preparing the mine for production and constructing a refinery that will have an annual capacity of 70,000 tons of potassium sulfate and 70,000 tons of 60-percent muriate. It is reported that the mine will be equipped to handle up to 2,000 tons daily and that production will begin late in 1940.

Utah.—Bonneville, Ltd., 540 West Seventh South, Salt Lake City, produced an increased tonnage of potassium chloride from Salduro marsh brine at its plant near Wendover. Solar evaporation is utilized to concentrate the brine, which is then treated to separate potassium chloride from the other constituents. The product is a high-grade salt that appears to find a ready market. No other production was

reported from Utah in 1939.

FOREIGN TRADE

Imports.—The drastic decline in imports of potash salts during 1938 continued in 1939 to the lowest point reached since normal shipments from Europe were resumed in 1922 following the World War. Much of the decrease in 1939 doubtless was due to war conditions that disrupted shipping during the last 4 months of the year, when potash imports normally are heaviest. Fertilizer salts contained 94.1 percent of the potash imported and salts for industrial use the remaining 5.9 percent.

The quantity, average grade, and total declared value of the various potash salts imported in 1938 and 1939, the countries from which shipments were made in 1939, and the approximate K₂O equivalent of imports for the past 5 years are shown in the following tables.

Potash materials imported for consumption in the United States, 1938-39

			19	38			19	39	
Material	Approximate equivalent as	Short	Approximate equivalent as potash (K ₂ O)		Value	Short	Approx equive as po (K ₂	alent tash	Value
	potash (K10) (per- cent)	tons	Short tons	Per- cent of total	Value	tons	Short tons	Percent of total	value
Used chiefly in fertilizers:									
Kainite	14.0 20.0 31.4 56.4	402 59, 811 9, 169 223, 542	56 11, 962 2, 879 126, 078	6. 2 1. 5 65. 1	\$2, 528 523, 229 112, 713 5, 371, 600	301 20, 591 2, 078 94, 417	42 4, 118 652 53, 251	4. 1 . 6 53, 5	\$1, 923 153, 233 22, 216 2, 313, 574
Potash - magnesia sul- fate	27. 0 40. 0	13, 158 14, 648	3, 553 5, 859	1.8 3.0	281, 691 680, 602	12, 610 9, 463	3, 405 3, 785	3. 4 3. 8	270, 563 401, 111
trate mixtures, crude SulfateOther potash fertilizer	14. 0 50. 0	44, 493 59, 855	6, 229 29, 928	3. 2 15. 5	971, 646 1, 910, 819	55, 164 41, 343	7, 723 20, 672	7.8 20.8	1, 235, 078 1, 353, 326
material 1	60.0	184	110	.1	1, 373	149	89	.1	1, 201
Total fertilizer		425, 262	186, 654	96. 4	9, 856, 201	236, 116	93, 737	94. 1	5, 752, 225
Used chiefly in chemical industries: Bicarbonate	46.0	103	47	1	17, 334	121	56	1	(19, 456
Bitartrate: Argols Cream of tartar Bromide	20. 0 25. 0 39. 6	15, 873 18 (²)	3, 175 5 (2)		2,471,892 5, 226 30	8, 685 3	1, 737 1		1, 216, 940 828
Carbonate Caustic Chlorate and perchlorate Chromate and dichro-	61. 0 80. 0 36. 0	292 486 6, 848	178 389 2, 465		30, 981 79, 128 808, 151	217 332 5, 978	132 266 2, 152		24, 106 61, 930 662, 618
mate	40. 0 70. 0	(²) 42	(³) 29	3.6	29, 751	51	36	5.9	35, 886
ate) Ferrocyanide (yellow	42.0	98	41		42, 814	210	88		90, 063
prussiate)	46.0	70 (*) 1,042 49 204	31 (*) 479 14 102		12, 780 90 100, 509 10, 168 46, 892	28 (*) 2, 604 91 256	12 (*) 1, 198 26 128		4, 885 14 191, 446 17, 547 80, 390
Total chemical		25, 125	6, 955	3.6	3, 655, 909	18, 576	5, 832	5. 9	2, 406, 109
Grand total		450, 387	193, 609	100.0	13,512,110	254, 692	99, 569	100. 0	8, 158, 334

¹ Chiefly wood ashes from Canada.

Less than 1 ton.

Approximate equivalent as potash (K_2O) of potash-bearing materials imported for consumption in the United States, 1935–39, in short tons

1935	241, 510	1938	193, 609
1936	211, 752	1939	99, 569
1937	351, 445		,

Potash materials imported for consumption in the United States in 1939, by countries, in short tons

[Figures in parentheses in column headings indicate in percent approximate equivalent as potash (K2O)]

	Muri-		Potasi		K	ainite	Bit	artrate	_										
Country	ate (chlo- ride) (56.4)	Sul- fate (50)		e- n7780	(14)	(20)	Argols or wine lees (20)	Cream of tar- tar (25)											
AlgeriaArgentina			-		_		2, 715 79												
Belgium Canada Chile China	449		1	l			4 246												
Denmark Finland France			7		-	13, 469	1, 953												
Germany Hong Kong Italy		23, 32	4 12, 579		-		2, 220	-	3										
Japan Morocco Netherlands Palestine	11,030	6, 25	8	577		860	80												
Portugal Sweden Switzerland	1				-				8										
Tunisia U. S. S. R United Kingdom					-		185	-											
•	94, 417	41, 34	3 12,610	2,078	301	20, 591	8, 685	1	33										
Country				Nitrate	(salt-														
Country		arbon-	Cya-	peter),	crude	Chlorate and per-	All	То	tal 										
Country		arbon- ite (61)	Суа- nide (70)	peter),	(40)	Chlorate and per- chlorate (36)	All other (48)	Short tons	tal ————— Value										
Algeria		ate (61)	(70)	(14)	(40)	and per- chlorate (36)	other (48)	Short tons 2,715 79	Value \$363, 614										
Algeria Argentina Belgium Canada Chile		ate (61)	(70)	(14)	(40) 684	and per- chlorate (36)	other (48)	Short tons 2,715 79 10,003 1,317 55,410	\$363, 614 11, 942 267, 514 38, 401 1, 269, 798										
Algeria Argentina Belgium Canada		ate (61)	(70)	(14)	(40) 684	and per- chlorate (36)	8 148 (1)	Short tons 2,715 79 10,003 1,317 55,410 5 (1) 23	Value \$363, 61- 11, 94: 267, 51- 38, 40: 1, 269, 79: 71- 2, 03:										
Algeria Argentina Belgium Canada Chile China Denmark Finland France Germany Hong Kong		4 163	(70)	55, 164	(40) 684 (1) 355 8, 424	and per- chlorate (36)	8 148 (1) (2) 535 2, 361 14	Short tons 2,715 79 10,003 1,317 55,410 5 (1) 23 59,170 90,064 1 2,237	Value \$363, 61- 11, 94- 267, 51- 38, 40- 1, 269, 79- 1- 2, 033- 1, 545, 44- 2, 940, 34- 1- 362, 54- 362,	Algeria Argentina Belgium Canada Chile Chine Denmark Finland France Germany Hong Kong Italy Japan Morocco Netherlands Palestine		163 1	(70)	55, 164	(40) 684 (1) 355 8, 424	and per- chlorate (36)	8 148 (1) (1) 535 2, 361	Short tons 2,715 79 10,003 1,317 55,410 5 (1) 23 59,170 90,064 1 2,237 52 80 18,941	Value \$363, 61- 11, 94- 267, 51- 38, 40- 1, 269, 79- 7- 1- 2, 03- 1, 545, 44- 2, 940, 34- 4, 600 7, 91- 558, 83:
Algeria Argentina Belgium Canada Chile China Denmark Finland France Germany Hong Kong Italy Japan Morocco Netherlands Palestine Portugal Sweden Swetzenand		163 1	(70)	(14)	(40) (40) 684 (1) 355 8, 424	and per- chlorate (36)	other (48)	Short tons 2,715 79 10,003 1,317 55,410 5 (1) 2,237 59,170 90,064 2,237 52 80 18,941 10,498 1,197 1,420 1,083	Value \$363, 61- 11, 94- 267, 51- 38, 40- 1, 269, 79- 1- 1, 545, 44- 2, 940, 34- 4, 60 7, 91- 1558, 83 337, 47 123, 31 165, 744 105, 89										
Algeria Argentina Belgium Canada Chile China Denmark Frinland France Germany Hong Kong		163 1	(70)	55, 164	(40) 684 (1) 355 8, 424	and per- chlorate (36)	8 148 (1) 535 2, 361 14 (1) 164	Short tons 2, 715 79 10,003 1,317 55,410 50,170 90,064 1 2,237 52 80 11,97 1,420 1,197	Value \$363, 61- 11, 94- 267, 51- 38, 40- 1, 269, 79- 71- 2, 03- 1, 545, 44- 2, 940, 34- 14-										

¹ Less than 1 ton.

POTASH 1397

Exports.—A greater quantity of fertilizer salts was exported in 1939 than ever before, and exports of chemical salts likewise approached in quantity and exceeded in value the previous high record established in 1935. Exports totaled 140,329 tons of material equivalent to approximately 83,800 tons of K₂O, an increase of about 32,000 tons of K₂O (62 percent) from 1938. About 4,000 tons of K₂O were exported by customers of the producers and importers who originally sold this material for consumption in the United States. Japan and Canada, the principal customers for American potash for a number of years, increased their purchases materially, and for the first time substantial sales were made to the United Kingdom.

Potash fertilizer materials exported from the United States, 1938-39, by countries

Country	19)38	1939		
	Short tons	Value	Short tons	Value	
Argentina Belgium Canada Canary Islands Ecuador Honduras Japan Liberla Mexico Mozambique Norway Philippine Islands Sweden Union of South Africa United Kingdom Venezuela West Indies: British: Barbados Other British Cuba Haiti Other countries ¹	13, 101 21, 368 560 2 35, 045 20 3 3 1, 856 4, 740 657 4, 035 248 822 112 239 168 1, 100 56 56	\$331, 292 567, 859 7, 500 67 1, 221, 827 805 116 66, 360 153, 050 21, 428 136, 350 9, 693 30, 207 4, 497 8, 723 6, 085 32, 007 1, 745 161	28 9, 257 24, 874 11 207 59, 098 20 183 56 4, 386 4, 389 678 8, 501 242 17, 211 223 3, 870 158 3, 348	\$848 300, 320 695, 425 213 5, 333 2, 136, 908 8, 663 2, 596 156, 827 143, 361 21, 177 352, 762 9, 052 345, 314 8, 358 149, 760 5, 999 102, 549	
	84, 137	2, 599, 772	136, 750	4, 446, 853	

¹ Includes countries to which less than 10 tons was exported in both years.

Potassium salts (not fertilizer) exported from the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935	3, 641 2, 333 2, 094	\$637, 473 487, 347 484, 450	1938 1939	2, 616 3, 579	\$485, 672 807, 987

WORLD PRODUCTION

Publication of production statistics by European governments virtually ceased in the summer of 1939, and no adequate data are available for the latter half of the year. However, reports of production and sales of potash fertilizer salts during the first 6 months of 1939 indicate a definite upward trend in every major producing country except Germany, where output declined slightly owing to labor shortage and transportation difficulties. Mobilization and concentration of civilian manpower in war industries preparatory to and following the

outbreak of war virtually closed the French potash mines for a time and doubtless resulted in further curtailment of German production. Rehabilitation of the Spanish mines was in progress; but there was little or no production by the end of the year, and the output of Polish mines, following the German occupation, probably was negligible. Increased operations in Palestine were not significant with respect to world production. The over-all result doubtless was a drop in world output of potash salts that might be as much as 10 percent of the 1938 production figure.

Available official figures of world production for 1935-38 are shown in

the following table.

World production of potash minerals and equivalent K2O, 1935-38, by countries, in metric tons

[Compiled by R. B. Miller]

	19	35	19	36	195	37	19	38
Country and mineral 1	Output	Equiv- alent K ₂ O	Output	Equiv- alent K ₂ O	Output	Equiv- alent K ₂ O	Output	Equiv- alent K ₂ O
North America: United States, potassium salts Europe:	324, 747	174, 898	391, 421	224, 382	440, 971	258, 090	485, 2 91	287, 532
Germany, crude po-	2, 027, 200	2 347, 270	2, 123, 540	² 368, 880	2, 883, 502	489, 801	3, 374, 811	581, 790
tassium salts: Carnallite 3 Kainite, sylvinite, and hart-	1, 371, 604	139, 057	1, 415, 731	145, 160	1, 672, 417	170, 550	1, 874, 375	1, 861, 000
salz Italy, alunite Poland, crude potas-	10,300,905 2,092				12, 787, 735 3, 500		14, 567, 896 2, 778	
sium salts: KainiteSylviteLangbeinite	81, 593 288, 091 13, 914	63, 380	336, 317	73,990	395, 885	87, 095	427, 200	93, 984
Spain, crude potas- sium salts	776, 873	121, 372	(4)	(4)	(4)	(4)	(4)	(4)
U. S. S. R., crude po- tassium salts	1, 319, 000	173,000	1, 800, 000	225, 000	2, 400, 000	2 66, 000	(4)	(4)
China, potassium carbonate 5 Chosen, alunite India (British), ni-	38 81, 510		68 114, 569	(4) (4)	(4) 149, 000	(4) (4)	(f) (f)	(4) (4)
trate of potash 6	9,800	4, 500	8,800	4, 200	9,000	4, 300	8, 200	4,000
Palestine, crude po- tassium salts 7 Africa: Eritrea, niccoli	17, 201	8, 601	23, 456	11,727	36, 467	18, 234	58, 118	29, 059
salts 8. Australia, alunite	579	(4)	300 758		(4) 339	(4) (4)	(4) 445	(4) (4)

¹ In addition to countries listed, Chile and Iran are reported to produce a small quantity of potash salts, but statistics of production are not available.

2 Content of merchantable products.

3 Includes some natural kieserite.

4 Data not available. 5 Exports.

FOREIGN DEVELOPMENTS

France.—Production of the French potash mines for the first 8 months of 1939 was reported by the American commercial attaché, Paris, to total 428,100 tons of K₂O, an increase of 45,400 tons compared with the corresponding period in 1938. Production figures for

Estimated production (Imperial Institute, London).
 Extracted from waters of the Dead Sea.
 Extracted from waters of the Red Sea.

POTASH 1399

the rest of the year are not available; but it is known that, although the mines are close to the Maginot line, they have continued to operate. Disruption of the administrative and operating staffs by mobilization slowed production for a time, but reorganization soon was accomplished and by the end of the year output was reported approaching the maximum previously attained. Success of the educational campaign to increase the use of potash fertilizers, in which motion pictures have played a prominent part, was indicated by the rise of domestic sales, in spite of firmer prices decreed by the State Potash Mines Administration.

Since the beginning of the war special efforts have been made to continue exports to the United States as a means both of protecting the American market and providing dollar exchange. Potash for export, formerly transported by barge down the Rhine, now must be shipped by rail to Belgian or French ports at much higher cost. The cost is increased further by labor shortage at the mines and by higher ocean freight and war-risk-insurance rates. This situation may hasten development of the deposits in the Department of Landes in southwestern France, less than 100 miles from Bordeaux. Formation of a company with a capital of 16 million francs to develop and equip these properties was announced in 1936, and it was stated at that time that about 5 years would be required to prepare them for production.

French Potash Co., Inc., 30 Rockefeller Plaza, New York City, was organized shortly after the outbreak of war to import and sell French

potash in the United States.

Germany.—The following comments on the potash industry in Germany are abstracted from comprehensive reports by Sydney B.

Redecker, American consul, Frankfort on the Main.

The virtual cessation of overseas trade as a result of the naval blockade of Germany has limited potash sales to the extensive domestic market and to nearby European countries not cut off from Germany by the war, together with such overseas trade as it may be possible to carry on through neutral countries. Aside from loss in trade for the industry itself, the interruption of shipments of potash to overseas countries is a financial blow to Germany, depriving the nation of badly needed foreign exchange yielded by overseas potash exports, especially as potash is one of the few raw materials of which the country has a large exportable surplus.

To offset losses in export trade the industry has turned its attention to intensive cultivation of the domestic market, especially the recently annexed regions of Greater Germany, and to trade with nearby neutral countries in accordance with the national policy of supplying German products in exchange for foreign foodstuffs and industrial raw materials. The newly annexed territories of Austria, Czechoslovakia, and Poland are believed to offer an excellent field for expansion, as potash fertilizers have been consumed in these regions at a very much lower rate per hectare than in the Old Reich and must be increased to attain the maximum agricultural production essential to the national autarchic program. It is also believed that the countries of southeastern Europe, as well as Italy, Scandinavia, and the Baltic States, are capable of consuming notably increased quantities of German potash and other fertilizers, deliveries of which can be applied toward payment for increased receipts of agricultural products by Germany.

Remarkable gains have been attained in consumption of potash fertilizer in Germany (Old Reich) in the past few years, stimulated especially by drastic price reductions enforced by the Government in the spring of 1937 for expanding national agricultural production. Consumption rose to 1,156,000 metric tons of K_2O in 1937–38 and is believed to have exceeded this figure in 1938–39. For many years, before 1937, when authentic export statistics were available the domestic market absorbed 70 to 75 percent of the total national turn-over.

Germany's production of potash expanded from 1932 to 1938, rising from 871,354 to 1,861,000 metric tons of K₂O, an output far surpassing that in any previous year except 1937. However, beginning in 1938 difficulties began to be experienced in the further expansion of production owing to increasing shortage of miners coupled with other circumstances, such as flooding of mines, break-down of equipment, delayed deliveries of replacements and new equipment, and shortages of railroad rolling stock. These difficulties were intensified in 1939, so that, for the first time in 6 years, production actually declined somewhat, to 1,090,700 metric tons of K₂O in the first 7 months compared with 1,103,900 tons in the corresponding period of 1938. Although statistics for a later period are not available and quite possibly no further ones will be issued during the war, the prospects are that lessened shipments to overseas countries, coupled with labor shortage and other difficulties hampering productive activities under wartime conditions, may cause further decrease in production in the future.

For several years a substantial part of German potash exports has consisted of consignment shipments, made in accordance with the terms of confidential cartel agreements for the account of foreign potash producers (notably the Spanish mines) that were unable to make the deliveries themselves. The conditions governing these consignment shipments are not publicly known, but it is understood that the producer for whom the shipment is made has the right subsequently to supply, within a stipulated period, a correspondingly increased quantity of potash under the terms of the International Cartel Pact, or to receive certain financial indemnification. Deliveries by the German potash industry for the account of foreign producers reached a maximum of 190,000 metric tons K₂O in 1937 and dropped to 80,000 tons in 1938.

After contracting considerably in 1938 from the high levels established in 1937, Germany's exports of potash expanded markedly in the first 7 months of 1939, doubtless indicating the desire of both German producers and foreign importers to effect early delivery in foreign countries of as large a tonnage as possible, in view of the unfavorable international outlook threatening interruption of German producers.

many's overseas trade.

Faced with the loss of the world monopoly enjoyed before 1914, resulting from the loss of the Alsatian mines to France and the development of extensive potash industries in other countries, the German potash companies in recent years have sought active participation in other industrial spheres, notably petroleum and the mining of nonferrous metals and coal, as a means of developing new outlets for profitable investment of their capital and employment of their technical facilities. The extent to which diversification has been

POTASH 1401

carried is indicated by the fact that in 1933 around 95 percent of the personnel of Wintershall A. G. was employed in potash production, whereas in 1938 only 67 percent of the workers were associated with potash activities. During the same period the total number of employees increased fourfold to 13,340 in 1938; the company has attained an outstanding position in Germany's petroleum industry and has become a major producer of magnesium metal and alloys used in the manufacture of aircraft. Other leading members of the potash industry likewise have entered upon extensive programs of diversification and the development of byproducts to supplement the shrinking profits from their potash operations.

Italy.—The American Embassy at Rome reports that the concessionaire for the Marada Basin in Libya completed its first experimental season in the summer of 1939 with an output of 2,100 metric tons of potash salts. Although hampered by transportation obstacles a minimum production of 25,000 tons is contemplated in 1940. A road is being constructed from Maaten Ciofer to Ras Aali to facilitate

movement of potash from Marada to the sea.

Japan.—In anticipation of the possible cessation of imports of potash salts from European countries and the United States the Japanese Ministry of Commerce and Industry and the Ministry of Agriculture and Forestry introduced a joint ordinance on October 3, 1939, requiring official approval for all future sales of potash and authorizing the respective ministers to issue orders for distribution of potash for the manufacture of fertilizers. Details concerning stocks of potash are required to be submitted immediately to the ministries. Japan is reported to be negotiating a trade pact with Spain to exchange Japanese raw silk and camphor for Spanish potash and other raw materials. Japanese interests are said to have purchased 10,000 metric tons of sodium-potassium nitrate in Chile. Imports of potash salts from the United States, which contracted sharply in 1938, were expanded in 1939 to 59,000 short tons, approaching the maximum of 63,000 tons imported in 1937.

Palestine.—According to a report from the American consulate general, Jerusalem, the shift in sources of supply for potash brought about by the conflict in Europe has caused Palestine Potash, Ltd., to accelerate production activities. Exports during the first 9 months of 1939 showed an increase of 35 percent over the corresponding period of 1938. Output for the year might reach 80,000 tons of 50-percent muriate. Palestine, where potash is extracted from salts derived by solar evaporation from waters of the Dead Sea, is the only important

source of potash in the British Empire.

Poland.—The steadily rising output of potash from the Polish mines reached 84,585 metric tons K₂O in the crude salts mined in 1938, and sales of commercial grades of crude and refined salts totaled 71,412 tons K₂O in salts averaging 20 percent K₂O, as reported by the American commercial attaché, Warsaw, from production and sales figures compiled by the producer. No information is available relating to 1939 operations. The mines are situated in southwestern Galicia, a former Austrian Province that was incorporated in the Polish State following the World War. The greater part of Galicia, including the potash mines at Kalusz, Stebnik, and Holyn, south of the city of Lwow, was ceded to the U. S. S. R. by Germany following the Ger-

man conquest of Poland and the Soviet-German alliance and is now

occupied by the U. S. S. R.

Spain.—Rehabilitation of the Spanish potash mines in Catalonia was undertaken soon after the close of the civil war. It was hoped that production might be resumed before the end of 1939, but it is doubtful whether this objective was achieved, as the mines were reported to have been badly damaged by the retreating Loyalist troops and the railroad connecting the mines with the port of Barcelona destroyed. However, it is believed that productive operations will approach normal in the near future, and strenuous efforts probably will be made to attain maximum output in 1940 to supply in the world market as much as possible of the deficiency that will result from

stoppage of German overseas exports by the naval blockade.

It was reported in September 1939 that 10,000 to 12,000 metric tons of potash salts were on hand at Barcelona and about 30,000 tons at the mines. Before the civil war the Spanish mines were producing about 120,000 metric tons K₂O a year, and their full capacity is said to be around 200,000 tons. The pre-war project to establish a Government-controlled sales agency to handle the distribution of all Spanish potash has been revived, and an organization for this purpose has been established under the title "Potasas Espanolas." The three operating companies are the Union Espanola de Explosivos, a Spanish company financed by British capital; Potasas Ibericas, S. A., controlled by French capital; and Minas de Potasa de Suria, S. A., controlled by Belgian Solvay interests and affiliated with Potasas Reunidas, S. A., a selling organization headquartered in Madrid.

U. S. S. R.—The development of the potash deposits at Ozinki and at Okuz-Bulak in central Asia is being urged by Soviet engineers to supplement production from the Solikamsk mines and to avoid the present long hauls from the northern Urals to central Asia and the Ukraine. Ozinki is in the Urals, but a considerable distance south of Solikamsk. The deposits have been prospected only superficially but are believed to be extensive. Soviet chemists are reported to have obtained crystals containing nitrogen, phosphorus, and potash—presumably a composite salt—that have been tested in the experimental flax fields of an agricultural institute near Moscow with very satisfactory results. Construction of a factory for the manufacture of

concentrated fertilizer by this new method is planned.

MICA

By PAUL M. TYLER AND K. G. WARNER

SUMMARY OUTLINE

	Page	1	Page
Salient statistics	1404	Prices Foreign trade	1411
Sheet mica	1405	Imports Exports	1412
Ground mica	1406	Domestic consumption of sheet mica	1416
Mica splittings	1409	Possible substitute	1419

After improving slowly during the first 8 months of 1939 the demand for mica rose rapidly to record proportions following the outbreak of war in Europe. Consumption of sheet mica and splittings during the last quarter of the year probably exceeded even the feverish pace set during the first half of 1937. The total consumption for the year exceeded the total for 1938 but fell short of a record. Domestic production of sheet mica, notwithstanding increases in several States and the greatly increased activity in all the mining districts in the latter part of the year, failed to equal that of 1938.

Mica is a strategic mineral; mica splittings, radio-tube mica, condenser sheet, airplane spark-plug "cigarette" mica and washers, and magneto condenser films are materials especially needful from a military standpoint—to maintain communications as well as to enable airplanes and all modern mechanized equipment to operate. Other kinds of sheet mica required in electrical machinery and in the manufacture of munitions are obtainable domestically, but the items mentioned have been almost wholly imported, principally from

British India.

A Bureau of Mines survey in the early summer of 1939 showed that stocks of splittings and other strategic varieties of mica in the United States were equivalent to more than a year's supply at any previous annual consumption rate. As the European war greatly stimulated sales of manufactured mica products, monthly consumption of several of these items rose above any previous requirement, and simultaneously the normal flow of supplies from India was interrupted. Manufacturers who had been buying raw material on a hand-to-mouth basis were threatened with a shortage of supplies. In December one large consumer exhausted its stock of its most important grade of splittings, and no companies could maintain their customary raw-material inventories. At no time was there any dearth of supplies in Calcutta, but the heavy movement of burlap and other commodities caused a shortage of shipping space. This

situation, however, began to improve toward the end of the year as more ships were routed from India to the United States. Early in 1940 a new alarm arose, as word came that all exports of block mica from India might be prohibited because of the British Government's munitions needs, but no real curtailment of shipments was apparent by April 1940. Shipments of amber splittings from Madagascar came under French Government control, and not until the end of 1939 were licenses obtainable for even limited quantities for export to this country. A threatened shortage of cigarette mica was averted by employing selected domestic sheet.

Even before these wartime uncertainties developed shipments of South American mica to the United States began to increase, and

domestic mines displayed renewed activity.

Late in the year prices paid for domestic mica advanced much more than those for India mica. Those for Argentine and Brazil sheet mica averaged perhaps 10 percent above the relatively high levels reached in 1938. For India splittings and radio mica sterling prices and freight and war-risk insurance rose sharply, but with respect to bulk lines these increases virtually were offset by the decline in exchange. For more expensive grades of splittings, however, prices increased slightly; No. 5 book-packed splittings, for example, advanced from \$1.25 to \$1.40 a pound.

Salient statistics of the mica industry in the United States, 1935-39

	1935	1936	1937	1938	1939
Domestic mica sold or used by producers:					
Total uncut sheet and punch:		-			
Pounds	936, 633	1, 319, 233	1, 694, 538	939, 507	813, 708
Value	\$161, 150	\$203,879	\$285, 244	\$139, 333	\$138, 963
Average per pound	\$0.17	\$0. 1 5	\$0.17	\$0. 15	\$0.17
Scrap: 1	18, 852	20, 955	25, 196	20, 257	24, 672
Short tons	\$243, 951	\$260, 594	\$354, 737	\$256, 382	\$311, 895
ValueAverage per ton	\$12.94	\$12.44	\$14.08	\$12.66	\$12.64
Average per tou	312.01	412.11	441.00		
Total sheet and scrap: 1					
Short tons	19, 320	21, 615	26, 043	20, 727	25, 079
Value	\$405, 101	\$464, 473	\$639, 981	\$395, 715	\$450, 858
Total ground: 1				o= 000	00.004
Short tons	18, 323	25, 585	27, 245	27, 086	30, 924
Value	\$542, 973	\$722, 416	\$839, 812	\$924, 554	\$1, 156, 333
Consumption of splittings: 2	2, 532, 984	3, 518, 058	4, 347, 435	1, 667, 806	3, 423, 044
Pounds Value	\$631,065	\$846, 393	\$1, 257, 645	\$612,465	\$1, 089, 683
value	\$031,000	φοτο, σου	Ψ1, 201, 010	φ012, 100	\$1,000,000
Imports for consumption:		-			
Total uncut sheet and punch:	1		}		
Pounds	594, 443	860, 253	1,004,950	391, 125	902, 598
Value	\$192, 659	\$239, 378	\$296, 235	\$113, 403	\$271,072
Scrap:		0.000	0 500	4.50	4 070
Short tons	2, 993	3,893	6, 723 \$36, 355	4, 450 \$28, 590	4, 279 \$29, 493
Value	\$18, 897	\$22,666	\$30, 300	\$20, 090	\$29, 450
Total sheet and scrap:					
Short tons	3, 290	4, 323	7, 226	4, 646	4, 730
Value	\$211, 556	\$262,044	\$332, 590	\$141,993	\$300, 565
Manufactured:			, ,		
Short tons	1, 588	2, 355	4, 113	1, 115	1,550
Value	\$696, 828	\$943, 524	\$1, 735, 009	\$522, 426	\$758, 745
·					
Total imports: Short tons	4, 878	6, 678	11, 339	5, 761	6, 280
Value		\$1, 205, 568	\$2, 067, 599	\$664, 419	\$1,059,310
Export (all classes of mica):	ψουσ, υστ	Ψ1, 200, 000	42, 551, 666	1 4551, 110	12, 500, 010
Short tons	1, 499	1, 478	1, 795	1,772	1, 827
Value	\$165, 385	\$170,011	\$216, 858	\$183, 889	\$226, 364
,	1 '	' '	1	1	1

Includes mica recovered from kaolin and mica schists, as follows: 1935, 6,667 short tons valued at \$111,345; 1936, 8,258 tons, \$127,343; 1937, 10,536 tons, \$149,931; 1938, 6,550 tons, \$86,602; 1939, 10,011 tons, \$108,899.

Exclusive of a nominal quantity of splittings produced in the United States and South America.

DOMESTIC PRODUCTION 1

Sheet mica.—The output of sheet mica was less in 1939 than in 1938 owing to a sharp reduction in output of punch mica in North Carolina and New Hampshire and of larger sheet in New Hampshire. Substantial increases were reported in Connecticut and South Dakota and minor increases in Maine, Virginia, and other States. A small output of punch mica, with some scrap mica, was shipped in 1939 from a newly opened feldspar property near Edinburg, Saratoga County, N. Y.; this is the first output of mica reported in that State since 1923, when a little sheet mica was produced in St. Lawrence County.

Sheet mica sold or used by producers in the United States, 1908-39 1

Year	New Ha	mpshire	North C	arolina	Other	States 2	Tot	tal
1 ear	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
908	12,000	\$1, 200	599, 234	\$114, 540	361, 730	\$118, 281	972, 964	\$234, 02
909	55, 808	12,086	1, 296, 274	122, 246	457, 500	100, 150	1, 809, 582	234, 48
910	117, 170	26, 109	455, 020	193, 223	1, 904, 000	64, 500	2, 476, 190	283, 83
911	289, 473	35, 103	454, 653	187, 501	1, 143, 075	87, 650	1. 887, 201	310, 25
912	308, 047	32, 238	489, 599	219, 874	47, 837	30, 711	845, 483	282, 82
913	731, 478	65, 765	803, 462	230, 674	165, 737	57, 078	1, 700, 677	353, 51
914	133, 556	39, 588	274, 121	171, 370	149, 256	67, 582	556, 933	278, 54
915	96, 685	59, 414	281, 074	266, 650	176, 062	52, 195	553, 821	378, 25
.916	125, 502	64, 386	546, 553	380, 700	193, 808	79, 399	865, 863	524, 48
.917	472, 519	159, 822	643, 476	543, 207	160, 538	50, 845	1. 276, 533	753, 87
918	376, 900	106, 200	941, 200	460, 450	326, 100	165, 160	1, 644, 200	731, 81
.919	235, 724	90, 915	1, 021, 306	331, 498	288, 679	61, 154	1, 545, 709	483, 56
.920	284, 862	83, 811	1, 084, 946	405, 654	313, 672	57, 507	1, 683, 480	546, 97
.921	491, 743	63, 249	230, 532	51, 851	19, 570	3, 413	741, 845	118, 51
922	475, 647	63, 240	544, 495	119, 767	57, 826	11, 294	1, 077, 968	194, 30
923	835, 751	107, 674	1, 130, 283	188, 317	97, 145	15, 189	2, 063, 179	311, 18
.924	744, 133	88, 737	597, 385	108, 656	119, 379	14, 642	1, 460, 897	212, 03
925	1, 120, 857	198, 858	592, 478	105, 376	80, 530	17, 728	1, 793, 865	321, 96
926	1. 371. 890	235, 890	700, 313	150, 362	99, 956	13, 932	2, 172, 159	400, 18
927	720, 219	78, 849	665, 360	114, 514	126, 913	19, 119	1, 512, 492	212, 48
928	774, 143	63, 470	777, 395	129,706	130, 239	37, 780	1, 681, 777	230, 95
929	984, 778	82, 657	894, 200	150, 293	156, 150	53, 371	2, 035, 128	286, 32
930	673, 064	53, 304	749,074	112, 451	43, 347	11, 552	1, 465, 485	177, 30
931	441, 164	36, 368	389, 426	51, 657	132, 363	23, 805	962, 953	111, 83
932	146, 014	17, 978	127, 696	18, 322	65, 287	9, 582	338, 997	45, 88
933	167, 464	22,008	162, 672	21, 107	34, 404	10,064	364, 540	53, 17
934	161, 430	14, 423	293, 381	38, 674	128, 717	37, 171	583, 528	90, 26
935	131, 586	13, 727	512, 590	77, 598	292, 457	69, 825	936, 633	161, 15
936	285, 822	22, 920	730, 446	119, 653	302, 965	61, 306	1, 319, 233	203, 87
937	235, 055	20, 119	1, 044, 328	218, 176	415, 155	46, 949	1, 694, 538	285, 24
938	3 282, 836	8 49, 254	632, 646	87, 879	4 24, 025	4 2, 200	939, 507	139, 33
939	43, 670	3, 738	401, 170	69, 344	368, 868	65, 881	813, 708	138, 96

For earlier years see Geol. Survey Mineral Resources of the United States, 1916, pt. II, p. 292.
 Alabama, Colorado, Connecticut, Georgia, Idaho, Maine, Maryland, Nevada, New Mexico, New York, Pennsylvania, South Carolina, South Dakota, Texas, Virginia, Wisconsin, and Wyoming.
 Connecticut included with New Hampshire.
 Exclusive of Connecticut, which is included with New Hampshire.

Production statistics on mica have been published annually since 1880, in which year the output of American mines (all sheet mica) was 81,669 pounds valued at \$127,825. After rising to 147,410 pounds valued at \$368,525 in 1884 it dwindled rapidly owing to the competition of India mica, which was imported first in 1885. growth of the electrical industry during the 1890's so increased the demand for sheet mica that in 1898 domestic output once more rose above 100,000 pounds and at the turn of the century jumped to 456,283 pounds valued, however, at only \$92,758. By 1906 the output had

¹ Historical tables compiled and readjusted by E. T. Shuey, Bureau of Mines.

grown to 1,423,100 pounds valued at \$252,248. In 1910 it attained a peak of 2,476,190 pounds—but this was mostly small mica as the value was only \$283,832 whereas the 1,700,677 pounds produced in 1913 was worth \$353,517.

In the earlier years some mica miners operated cutting plants; and the value of their finished products, such as stove mica and other more or less standard sizes, was included in the production statistics. Since 1920, however, the production as officially reported is uncut sheet mica alone, although separate figures were also compiled for uncut punch and uncut sheet larger than punch. "Punch mica" is a domestic term not generally used abroad and refers to crystals of book or block mica, usually thumb-trimmed, as opposed to knife- or shear-trimmed, but not large enough to furnish sheets more than about 1½ inches in diameter. Included with punch mica is circle mica, which is somewhat larger, yielding circles up to 2 inches in diameter.

As may be seen in the preceding table of annual production by States from 1908 to 1939, North Carolina has been the leading producing State, although occasionally yielding first place temporarily to New Hampshire and for two years to South Dakota.

Domestic mica, exclusive of scrap and ground, sold or used by producers in the United States, 1924-39

Year	Uncut p Pounds 1, 305, 219	Value \$113, 285	Uncut lar pur Pounds		Split	tings Value	Tot	al Value
	1, 305, 219		Pounds	Value	Pounds	Value	Pounds	Value
	1, 305, 219	#119 90E						
1925 1926 1927 1928	757, 314 1, 799, 545 1, 311, 286 1, 466, 773 1, 731, 096 1, 252, 887 248, 408 423, 749, 632 246, 408 423, 749, 665, 385 1, 013, 733 1, 300, 978 374, 204 1 665, 755	64, 173 213, 718 94, 856 90, 849 97, 344 1 61, 194 32, 786 7, 976 8, 574 16, 049 28, 051 48, 103 69, 552 35, 832 1 39, 207	147, 450 1, 003, 682 329, 189 197, 750 213, 295 283, 084 211, 703 205, 306 80, 485 111, 297 158, 372 266, 300 300, 773 381, 638 165, 386 147, 953	\$97, 282 246, 434 172, 131 117, 471 140, 025 187, 332 116, 077 78, 513 37, 906 42, 980 74, 172 132, 763 155, 493 214, 751 93, 767 99, 756	8, 228 32, 869 43, 425 3, 456 1, 709 20, 948 8, 015 6, 835 1, 416 4, 942 4, 727 11, 922 99, 917	\$1, 468 11, 355 14, 335 155 82 1, 645 531 1, 625 47 336 283 941 9, 734	1, 460, 897 1, 793, 865 2, 172, 159 1, 512, 492 1, 681, 777 2, 035, 128 1, 465, 485 962, 953 338, 957 364, 540 583, 528 936, 633 1, 319, 233 1, 694, 538 939, 507 813, 708	\$212, 03! 321, 96: 400, 18- 212, 48: 230, 95! 286, 32: 177, 30: 111, 83: 45, 88: 53, 17: 90, 26: 161, 15: 203, 87: 285, 24: 139, 33: 138, 96:

¹ Small amount of splittings included with punch.

Scrap mica.—Scrap mica may be defined as material suitable for conversion into ground mica with little or no additional purification. Production from domestic sources in 1939 totaled 24,672 short tons valued at \$311,895, of which 10,011 tons worth \$108,899 were recovered in washing kaolin or kyanite or by milling schists and the remainder was mine scrap.

Separate statistics covering domestic mine production of scrap mica have been available continuously since 1893, when an output of 156 tons was recorded. In 1900 the output soared to 5,497 tons valued at \$55,202, but this was abnormal; the average for the 5-year prewar period, 1909–13, was only 4,043 tons valued at \$55,296. Beginning in 1916, mica recovered from schist has been reported first to the Geological Survey and since 1925 to the Bureau of Mines; and in 1925 byproduct mica from kaolin operations first became

MICA 1407

For several years these items were not reported in the mica statistics; they were grouped merely as "miscellaneous minerals" or miscellaneous mineral production in summary tables. however, the contributions from these sources had become so important that it seemed best to include them in the production figures for "scrap mica" and also those for "ground mica." Readjusted data for earlier years have not been published hitherto and are inserted in the following table for the first time. The revised figures for all years are believed now to be on a comparable basis, as they include available data on mine scrap; production from muscovite, sericite, and chlorite schists; and byproduct mica from china clay and kyanite operations.

Since sales of scrap mica may increase the revenues of sheet-mica mines substantially, it has been contended that mine scrap should be separated from mica of similar use obtained from other sources. Accordingly, the Bureau of Mines in recent years has recorded separately the total mica from other sources, usually in a footnote to the production tables.

Scrap mica 1 and mica recovered from kaolin and schists 2 sold or used by producers in the United States, 1908-39

Veen	New Har	npshire	North C	arolina	Other S	tates 3	Tot	al.
Year	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1908	10	\$150	1, 308	\$13,330	1, 099	\$20, 424	2, 417	\$33, 904
1909	412	4,094	2,607	26, 178	1,071	15, 775	4,090	46, 047
1910		6,090	3,074	37, 237	582	9, 938	4,065	53, 265
1911	719	9, 824	2, 347	29, 798	446	5, 928	3, 512	45, 550
1912	264	5, 100	2, 492	36, 675	470	7, 298	3, 226	49, 073
1913	692	13, 906	2,729	37, 239	1,901	31, 398	5, 322	82, 543
1914	600	8, 249	1,789	23, 900	1,341	19, 267	3, 730	51, 416
1915	516	7, 557	2,840	33, 943	603	9,010	3, 959	50, 510
1916	724	10, 853	2,755	41, 880	2, 104	39, 023	5, 583	91, 756
1917	l 680 l	9, 229	2, 180	34, 134	569	9, 545	3, 429	52, 908
918	530	7,040	1,046	12, 930	716	13, 160	2, 292	33, 130
919	738	13, 356	1,639	32, 338	881	12, 390	3, 258	58, 084
1920	1 435 1	12, 877	2,823	91, 653	2,465	62, 487	5,723	167, 017
921	537 (10, 613	1,353	30, 496	1,887	53, 002	3,777	94, 111
1922	238 1	5, 838	4, 205	65, 923	3, 111	65, 441	47,554	4 137, 202
923	1,078	25, 871	5,005	4 95, 128	3,476	74, 180	4 9, 559	4 195, 179
924	[492 [9, 498	6,641	115, 774	1,005	18, 124	8, 138	143, 396
925	1,953	47, 525	7,095	124, 818	3,312	65, 738	12, 360	238, 08
1926	1,738	38, 213	5, 314	124, 048	2, 425	44, 382	9,477	206, 643
1927	1, 284	22, 909	5, 409	93, 670	2,844	51, 899	9, 537	168, 478
928	1, 291	25, 232	8, 739	132, 119	3,048	55, 516	13,078	212, 867
929	1,657	35, 977	8, 346	153, 722	3, 980	62, 391	13, 983	252, 090
930	449	8, 743	5, 904	98, 400	2, 562	47, 988	8,915	155, 131
931	295	5, 465	6, 872	84, 818	2, 181	31, 854	9, 348	122, 137
932	344	5, 585	6, 237	71, 842	4,085	44, 730	10,666	122, 157
933	532	9, 563	8,968	102, 830	3,980	47, 046	13, 480	159, 439
934	537	9, 529	7, 255	101, 985	4, 145	55, 108	11, 937	166, 622
935	394	5, 335	11, 831	153, 553	6, 627	85, 063	18, 852	243, 951
936	250	3, 610	10,840	131, 138	9,865	125, 846	20, 955	260, 594
937	306	4, 397	12, 988	209, 212	11,902	141, 128	25, 196	354, 737
938	8 927	§ 16, 189	11,959	161, 598	67, 371	6 78, 595	20, 257	256, 382
939	105	1, 592	13, 913	184, 377	10,654	125, 926	24,672	311, 89

For earlier years see Mineral Resources of the United States, 1916, pt. II, p. 292.
 Mica recovered from schists first reported in 1916 and from kaolin in 1925.
 Alabama, Arizona, California, Colorado, Connecticut, Georgia, Idaho, Maine, Maryland, Massachusetts, New Mexico, New York, Pennsylvania, South Carolina, South Dakota, Texas, Utah, Vermont, Virginia, and Wyoming.
 A particul figures

Revised figures.
 Connecticut included with New Hampshire.

⁶ Exclusive of Connecticut, which is included with New Hampshire.

Ground mica.—The quantity of ground mica sold by domestic producers in 1939 was 30,924 short tons valued at \$1,156,333, exceeding by a wide margin the previous record of 27,245 tons valued at \$839,812 in 1937. The trend toward increased consumption in wallpaper, paint, and miscellaneous uses, noted in previous Yearbook chapters, continued in 1939, and the increase in sales to the rubber industry was notable. More mica was consumed in roll roofing—still the principal use—than in 1938 but less than in 1937; the percentage of total sales used for this purpose declined to 62 percent compared with 70 percent in 1938 and 79 percent in 1937.

Data for 1923 to 1934 have been adjusted to permit comparison with those for 1935 and later years as now reported; the production of ground mica includes the product made from mine scrap, factory

scrap, byproduct mica, and schist mica of all kinds.

Ground mica 1 sold by producers in the United States, 1923-39,2 by methods of grinding

	Dry-gr	Dry-ground 1		Wet-ground		Total 1	
Year	Short tons	Value	Short tons	Value	Short	Value	
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1931 1932 1933 1935 1936 1937 1938	6,021 5,186 4,810 5,851 8,190 9,549 8,139 8,090 8,879 11,168 11,042 15,178 20,800 21,150	\$188, 934 157, 854 166, 224 168, 290 149, 307 175, 596 196, 218 236, 666 191, 505 165, 094 196, 458 222, 877 341, 825 457, 042 457, 879 466, 959 547, 539	2, 102 2, 868 2, 490 3, 199 3, 317 2, 697 1, 575 2, 444 2, 452 3, 392 2, 723 3, 145 6, 095 7, 702	\$250, 170 331, 410 279, 940 206, 370 332, 511 358, 458 328, 332 161, 633 267, 653 184, 126 263, 503 247, 284 201, 148 265, 374 381, 933 457, 595 608, 794	6, 437 8, 889 7, 588 7, 300 9, 050 11, 507 12, 246 9, 714 10, 534 11, 331 14, 560 13, 765 18, 323 25, 585 27, 245 27, 086 30, 924	\$439, 104 489, 264 446, 164 374, 660 481, 818 534, 054 524, 550 398, 289 459, 158 349, 220 470, 161 542, 973 722, 416 839, 812 924, 554 1, 156, 333	

¹ Includes mica recovered from kaolin and schists. 2 Figures for ground mica not available before 1923.

Ground mica sold by producers in the United States to various industries, 1938-39

		1938		1939				
Industry	Qua	ntity		Qua				
-	Short tons	Percent of total	Value	Short tons	Percent of total	Value		
Roofing ¹ Wallpaper Rubber Paint Miscellaneous ²	18, 795 2, 926 1, 187 1, 666 2, 512 27, 086	70 11 4 6 9	\$402, 671 232, 870 82, 809 117, 595 88, 609	19, 255 3, 586 2, 539 1, 916 3, 628	62 12 8 6 12	\$406, 522 265, 359 204, 977 144, 235 135, 240 1, 156, 333		

¹ Includes mica from kaolin and schist.

³ Includes mica used for molded electric insulation, house insulation, Christmas-tree snow, manufacture of axle greases and oil, annealing, pipe-line enamel, plastic specialties, textiles, coating levee mattresses, and other purposes.

MICA 1409

MICA SPLITTINGS

Reflecting the increased activity in the factories producing built-up mica during the last few months of the year, the consumption of mica splittings in the United States was virtually twice as large in 1939 as in 1938, although, owing to the slow recovery during the earlier months the total for the year fell far short of the 1937 peak and failed even to

equal the quantities used in 1929 or 1936.

Of the 1939 total (1,712 short tons valued at \$1,089,683) 88 percent was India muscovite splittings, 9 percent amber splittings from Madagascar, and 3 percent amber splittings from Canada. An increasing amount of South American mica is being sent to Calcutta to be split and is reexported as "India splittings." Both domestic and imported mica may be converted into splittings in the United States, but the quantity seldom has constituted as much as 2 percent of the domestic consumption and in many years has been virtually negligible.

Stocks of splittings in consumers' hands at the end of 1938 had reached an all-time high, exceeding consumption for any previous 12 months and about 3 years' supply at the 1938 consumption rate; but as imports did not pace withdrawals the total stocks at the end of 1939 were reduced to less than 9 months' supply, and several companies had no more than enough to last them a few weeks when deliveries from India began arriving in substantial volume after November.

Consumption and stocks of mica splittings in the United States, 1935-39, by sources, as reported by the consumers

Year	In	dia	Car	ada	Mada	gascar	Total	
Loai	Pounds	Value	Value Pounds Value Pounds Value		Pounds	Value		
Consumption: 1 1935	2, 150, 593	\$492, 161	129, 272	\$42, 897	253, 119	\$96, 007	2, 532, 984	\$631, 065
	3, 051, 824	649, 982	102, 766	44, 566	363, 468	151, 845	3, 518, 058	846, 393
	3, 721, 594	965, 418	98, 618	51, 960	527, 223	240, 267	4, 347, 435	1, 257, 645
	1, 446, 349	511, 674	41, 100	20, 401	180, 357	80, 390	1, 667, 806	612, 465
	2, 995, 626	905, 763	107, 101	44, 065	320, 317	139, 855	3, 423, 044	1, 089, 683
1935	1, 011, 864	259, 201	139, 019	57, 286	213, 421	82, 908	1, 364, 304	399, 398
1936	1, 280, 517	304, 036	52, 014	19, 048	223, 357	101, 711	1, 555, 888	424, 798
1937	3, 920, 730	1, 094, 414	77, 130	33, 722	444, 762	195, 976	4, 442, 622	1, 324, 112
1938	4, 057, 681	1, 128, 075	55, 827	24, 378	631, 119	273, 926	4, 744, 627	1, 426, 379
1939	2, 754, 748	857, 656	52, 523	17, 697	673, 354	273, 465	3, 480, 625	1, 148, 818

¹ Exclusive of a nominal quantity of splittings produced in the United States and South America.

BUILT-UP MICA

In 1939 the Bureau of Mines made its first compilation of production of various kinds of built-up mica as part of its investigation of the strategic uses of mica. However, the total output of these products in the United States in certain specified years had been reported by the United States Tariff Commission, as follows: ²

² U. S. Tariff Commission, The Mica Industry: Rept. 130, 2d ser., 1938, pp. 63-64.

	Pounds 4 1		Pounds
1927	2, 925, 941	1933	1, 308, 924
		1934	
1931	1, 702, 938	1935	2, 385, 623
1932	922, 936	1936 (6 months)	1. 452, 734

Additional data compiled by the Commission for 1935 and 1936 show the quantity and value of major classes of built-up mica produced in the United States, separated according to the type of mica used, and also the percentage of binder used in such products:

Built-up mica produced in the United States in 1935 and January-June 1936, by kinds ¹

		1935		Jan	1936		
Product and type of mica used	Pounds	Va	lue	Pounds	Va	Percent binder 2	
		Total	Average		Total	Average	
Molding plate: Muscovite Phlogopite	817, 995	\$703, 688	\$0.86	481, 810	\$414, 388	\$0.86	12, 9
Segment plate: Muscovite Phlogopite Heater plate:	541, 784 242, 086	528, 652 406, 002	. 98 1. 68	328, 408 133, 766	316, 903 225, 439	. 96 1. 69	4.6 4.6
Muscovite Phlogopite	159, 123 35, 048	184, 916 66, 586	1. 16 1. 90	95, 548 28, 852	110, 790 54, 818	1. 16 1. 90	3, 2 3, 2
Flexible (cold): Muscovite Phlogopite	176, 345	183, 026	1.04	114, 161	119, 035	1.04	16. 5
All other (fape, etc.): Muscovite Phlogopite	375, 470 37, 772	790, 685 84, 987	2. 11 2. 25	249, 630 20, 559	528, 006 46, 257	2. 12 2. 25	19. 4 19. 4
	2, 385, 623	2, 948, 542	1. 24	1, 452, 734	1, 815, 636	1. 25	10.8

¹ U. S. Tariff Commission.

In American factories splittings are assembled on paper or fine-mesh screen and held together with shellac, glyptol, or other suitable binder, which is sprayed or painted over each layer of splittings as formed until the desired thickness is attained up to % inch. Individual plates, usually 3 feet square, are put into an oven, heated at 250° F. to dry the varnish, and then inspected over a strong light in a darkened room or occasionally by X-ray. Imperfections or thin spots are touched with additional binder or covered with additional splittings as required; if the sheet cannot be repaired the defective part is cut out. The sheets are then put in a press, subjected to a pressure of 1,000 pounds per square inch and a temperature of about 300° for several minutes, and then chilled quickly. When removed from the press they are milled or sanded and finally ground perfectly smooth and to exact thickness. Several plants employ more mechanized methods; the flakes of mica, instead of being dabbed on by hand, fall from a "snowing" tower onto a suction drum or moving screen upon which one or at most three layers are built up before the binder is sprayed over the sheet.

Domestic production of built-up mica comes almost entirely from six companies, although at least two other concerns produce minor amounts. Roughly, half the built-up mica made in the United States is manufactured by large electrical companies for use in their own motors, generators, and all sorts of electrical equipment and appli-

² Weighted average for both periods combined.

MICA 1411

ances. Several other companies, about equally prominent as producers, are not so integrated, although they generally carry their fabricating processes beyond the point of making board, tape, etc. Most of them manufacture tubing, tape strips, V-rings, and—most important from a quantity standpoint—segment plates for the commutators of

generators and starting motors of automobiles.

Molding plate is used largely in making commutator V-rings and cones; when heated it becomes flexible enough to be molded into these shapes or bent into troughs or square tubing. As the name implies, flexible plate can be formed cold, although it may be heated slightly when rolled into tubes. Segment plate is used entirely for flatwork, commutator segments (as previously stated) being the chief shapes cut or stamped from it. Heater plate contains even less binder than commutator segments; the bonding material, whether organic or inorganic, must be nonvolatile so that the product can be used in place of pure sheet mica for such purposes as supporting flatiron and toaster heater elements without excessive disintegration. Flexible sheets or ribbons (insulating tapes) are made in a thickness of 0.004 to 0.008 inch, including the paper, cloth, or silk facing; a common form is a "sandwich" made from book-packed splittings between 1-mil layer of Japanese rice paper.

Built-up mica produced in the United States, 1937-39, by kind of product

Product	1937 1	19	38	1939		
	(pounds)	Pounds	Value	Pounds	Value	
Molding plate. Segment plate. Heater plate Flexible (cold). All other (tape, etc.)	1, 405, 056 1, 399, 014 290, 564 258, 620 780, 873	531, 661 479, 273 209, 814 119, 440 417, 466	\$505, 000 605, 000 280, 000 160, 000 650, 000	1, 099, 066 1, 135, 555 369, 677 239, 582 581, 515	\$1, 090, 000 1, 610, 000 815, 000 290, 000 925, 000	
	4, 134, 127	1, 757, 654	2, 200, 000	3, 425, 395	4, 730, 000	

¹ Figures for value not available.

PRICES

As previously noted, the prices of India mica did not change greatly owing to the break in the English pound sterling from an average exchange value of \$4.68 during the summer to less than \$4 during

the last 4 months of the year.

Trade-journal quotations for domestic mica, after remaining virtually unchanged for about 2 years, began to rise in the early summer and were completely revised before the end of the year. As shown in the following table, the new quotations represented, with fair accuracy, the average prices actually received by producers as reported to the Bureau of Mines. A comparison of the average prices reported shows an increase over corresponding averages for 1938 of 39 percent for clear circle mica and smaller increases for several other items.

Trade-journal quotations and average sales value of domestic uncut sheet mica per pound in 1939

	Trade-journa	l quotations 1	Average value 2		
Size	Dec. 22, 1938	Dec. 14, 1939	Clear	Stained or spotted	
Punch	\$0. 03-\$0. 05 .1540 .3060 .75- 1. 20 1. 00- 1. 40 2. 00- 2. 50 2. 50- 3. 50 3. 50- 5. 00	\$0.05-\$0.06 	\$0. 056 . 143 . 299 . 515 . 778 1. 104 1. 372 1. 767 2. 812 4. 167 7, 935	\$0.055 .188 .184 .267 .479 .653 .824 1.043 1.284 2.071	

Engineering and Mining Journal (Metal and Mineral Markets) quotations for No. 1 or No. 2 quality,
 o. b. North Carolina; stained qualities take 25 to 50 percent discount.
 Calculated from reports of 1939 sales by domestic producers to the Bureau of Mines.

State geologist H. J. Bryson comments upon the wartime boost to North Carolina mining as follows:³

The mica industry is undoubtedly more active in North Carolina now than in the past 10 or 12 years * * * all of the larger mines are operating night and day while more than 200 small mines, many of them little more than holes in the mountain sides, are being operated by the mountaineers, and the mica hauled into washing plants. * * *

Mica that 6 months ago was bringing only \$5 and \$10 a ton is now bringing from \$15 to \$20 a ton and frequently more. The larger mica, large enough for washers and punch purposes, brings from \$150 to \$250 a ton, while mica as much as 4 by 6 inches in size now brings from \$2.50 to \$2.60 a pound.

FOREIGN TRADE 4

Imports.—The imports of mica in 1939 aggregated 6,280 short tons valued at \$1,059,310 compared with 5,761 tons valued at \$664,419 in 1938 and 11,339 tons valued at \$2,067,599 in 1937. The reduction in imports of scrap and splittings in 1939 was notable compared with 1937.

Imports furnish virtually all the splittings, most of the sheet mica larger than punch, and a variable proportion of the small sheet and scrap mica used in this country. Available data on imports for the period 1909–39 are summarized in the following table compiled by E. T. Shuey, of the Bureau of Mines.

³ Mining Congress Journal, North Carolina Mining Industry Benefits from Price Advance: Vol. 26, No.

February 1940, p. 19.
 Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Mica imported for consumption in the United States, 1909-39, by classes

								Man	ufactured		•					
Year	Unmanu	factured	Cu	ıt	Splitt	ings	Built-	up	Grou	ınd	All other	r manu- ured	To	tal	То	tal
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
1909 1910 1911 1911 1912 1913 1914 1915 1916 1916 1917 1918 1920 1921 1922 1923 1924 1925 1928 1927 1928 1929 1930 1930 1931 1932 1938 1936	1, 424, 618, 1, 987, 644, 1, 900, 500, 2, 047, 571, 360, 888, 438, 322, 703, 832, 656, 391, 741, 429, 837, 328, 444, 385, 653, 46, 45, 46, 461, 361, 45, 49, 122, 970, 742, 88, 486, 486, 446, 4461, 361, 44, 549, 122, 950, 7688, 486, 486, 446, 4461, 361, 9, 292, 083	460, 694 460, 694 7649, 236 751, 092 168, 591 240, 440 421, 856 658, 576 726, 532 1, 177, 943 350, 793 552, 375 419, 154 526, 292 94, 194 729, 155 67, 496 132, 866 78, 496 178, 953 247, 498	(1) (3) (3) (4) (3) (3) (4) (3) (4) (5) (6) (12) (74, 534 41, 284 44, 675 49, 555 118, 224 72, 402 72, 402 72, 402 72, 402 73, 097 139, 787 16, 68, 619 18, 733 19, 43, 398 18, 733 43, 938 43, 938 43, 938 43, 938 43, 938	49, 268 69, 018 63, 466 44, 621 75, 469 93, 964 201, 632 100, 498 19, 774 16, 824 25, 609 64, 498 83, 382 51, 698 70, 810 44, 926	(a) (b) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	1 191, 928 1 456, 805 1 447, 962 1 646, 680 1 1, 1014, 181 1 880, 906 1 762, 232 1 2, 011, 434 1 758, 521 5 371, 801 1, 730, 532 1, 681, 727 21, 750, 434 1, 123, 808 1, 125, 790 1, 123, 808 1, 123, 123 1, 684, 928 1, 123, 808 1, 125, 909 1, 124, 124 1, 125, 125 1, 125, 125 1	(a) (b) (c) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	41, 455 16, 785 15, 410 9, 211 4, 539 9, 805 8, 499 3, 483 6, 871 10, 795 5, 651 25, 383 38, 242 60, 240 29, 551	1, 867, 385 1, 342, 107 950, 614 140, 732 1, 020 11, 771 537, 776 318, 464 2, 132, 712 82, 200 169, 025	383 1,388 907 2,282	(a) (b) (c) (c) (c) (c) (d) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	26, 967 93, 471 65, 962 76, 021 22, 519 7, 955 5, 215 1, 388 173 1, 611 1, 209 3, 406 2, 784 3, 757	5, 129, 358 4, 296, 758 5, 499, 715 2, 683, 340 3, 563, 340 5, 192, 193 2, 408, 684 1, 549, 297 1, 093, 739 1, 939, 577 2, 542, 568 3, 176, 007 4, 709, 141 8, 226, 78 2, 229, 641	1, 872, 473 1, 907, 752 1, 272, 535 1, 888, 534 1, 231, 007, 1, 132, 301 1, 494, 250 877, 856 487, 919 200, 171 294, 804 515, 214 696, 828 943, 524 1, 735, 009 522, 426	(2) (3) (4) (3) (4) (5) (5) (7) (7) (8) (9) (10) (10) (10) (10) (10) (10) (10) (10	2, 326, 906 1, 798, 827 2, 450, 834 1, 630, 309 1, 426, 495 2, 223, 408 1, 283, 616 620, 784 287, 667 473, 757 762, 622 908, 384 1, 205, 568 2, 067, 599 664, 419

¹ Figures for cut included under splittings. ³ Not separately classified before Sept. 22, 1922. ³ Figures for quantity not available. ⁴ 6 months, July to December. ³ Sept. 22-Dec. 31. Not separately classified before change in tariff. ⁴ Includes cut and splittings valued at \$555,243 for January to Sept. 21.

Mica imported for consumption in the United States in 1939, by kinds and by countries

	1				τ	nman	ufa	ctured	r				
	Waste a more t	and so	rap, va cents pe	lued r pour	not nd	phl mic wh rect	ogo ca nicl	nmed opite from h no gular		ied no		Valued 15 cent	
Country						piece exceed- ing in size 1			per	above 15 cents per pound,			duty,
	Phlogo (duty, 2 cen	5 per-	(duty	Other (duty, 25 per- cent)		inch by 2 inches may be cut (duty, 15 percent)		n. e. s. (duty, 4 cents per pound)		nts d)	4 cents per pound +25 percent)		
	Pounds	Value	Poun	ds V	alue	Pour	ıds	Value	Poun	ds	alue	Pounds	Value
Africa: Madagascar Union of South	i		1 333	645	 \$5. 36				-	220	\$26		\$14,388
Union of South AfricaArgentinaBolivia									75, 5	34), 195 89	43, 418 3, 336	1,305
Brazil	1 550 92	\$7 44	226	280	1. 01	8 61.	288	\$5, 33	38 29, 1	197 2	3, 209 2, 247	144, 470 17, 852 704	54, 600 7, 403 1, 371
India, British	112,00	44	5, 335,	731	15, 21	9			14,3		1, 904 829	364, 326 1, 415 12, 286	132, 778 343
CHILDR TING	- 1							-			8, 499	600, 165	237, 235
Total: 1939 1938	1, 662, 82	(1)	18,900	900	20, 00	<u> </u>	100)	12 110,	706 1	3, 147	280, 319	100, 244
									ns and s	plittir	ngs		
		Not	cut or s	tampe	d to	dimen	sio	ons	Cut	or			
Country		thousandths of the			ousandths of		stamp dimen (duty,	stamped to dimensions (duty, 45 per- cent)			Total films and splittings		
		Pour	nds V	alue	Po	unds	V	alue 1	Pounds	Valu	e I	Pounds	Value
Africa: Madagascar Brazil Canada France India, British Japan United Kingdom			2, 584 2, 477 3, 407 3, 814 44	23, 466 471 26, 584 4, 069 91, 285	1 2 5 7	2, 688 680 47, 000 50	12	330 2, 195 36	16, 941	\$10,		550, 882 5, 272 63, 157 20, 407 , 033, 755 94 10, 010	\$123, 466 1, 892 26, 914 4, 069 523, 782 43 4, 991
Omitou IIIIguo			3, 729	2, 520	-	3, 080 53, 498		2, 111	17, 142	10,		2, 683, 577	685, 157
Total: 1939 1938			5, 520 3	548, 409 372, 319	2 1	46, 182	6	7, 828	7, 460	5,	183 1	, 979, 162	
	Manufact	ured-	-Cut or shape,	stamı or fori	ped t	o dime	ens	ions,				d—Othe	
Country	Cut (dut)		Disks (duty, ent)	40	Other ((du cer	ity, 40 it)	Mica built (duty,	-up n	11ca	verize	d or pul- d (duty, ercent)
	Pounds	Value	Pounds	Val	lue	Pound	s	Value	Pound	ls V	alue	Pound	ls Value
Brazil Canada Germany India, British	5 344 6, 892 37, 305	\$173 267 6, 499 19, 554	23, 02		753	1, 6		\$950	16, 8	69 38	318, 38 99	318, 50	\$4,608
Norway United Kingdom	459						12	499	-		2, 67	3 318, 8	95 4, 622
Total: 1939 1938	30, 038		23, 03 10, 03	22 11, 71 5,		2, 5 3, 8	72 29	1, 449 2, 778	21, 0 3 37, 5	316	29, 55	3 169, 0	3 2, 626

^{1 &}quot;Phlogopite" not separately classified before 1939.
2 In addition, 4,953 pounds valued at \$5,155 of "All manufactures of which mica is the component material of chief value (duty, 40 percent)" were imported; no imports of this class are shown in 1938.
3 Changes in table, Minerals Yearbook, 1939, p. 1359, are as follows: 18,965 pounds valued at \$18,500 of "Mica plates and built-up mica" reported as imported from Canada should be reported as imported from Germany; 169,025 pounds valued at \$2,626 of "ground or pulverized" reported as imported from Germany should be reported as imported from Canada.

Exports.—Although production in the United States falls far short of domestic requirements, small quantities of sheet mica are exported every year. Ground mica long has comprised the bulk of the mica exported, although not separately recorded in the official statistics before 1937. It has been estimated that only 15 percent of the quantity and 50 percent of the value of exports formerly classified as "mica and manufactures" consisted of manufactures other than Studies made from time to time by the Tariff Commission have indicated that although important but unreported quantities of mica manufactures are included in domestic exports of radio equipment, motors, generators, and household appliances, the exports of manufactured mica other than ground have consisted of repairs and replacement parts for American-made machinery and electrical ap-Draw-back statistics published by the Department of Commerce show \$20,000 to \$30,000 worth of foreign mica contained in exported goods in certain years; but, as the value of mica embodied in most products is small and often difficult to identify for purposes of obtaining a refund on duties, it is believed that the draw-back statistics afford an inadequate measure of the volume of mica consumed in export goods.

Mica and manufactures of mica exported from the United States, 1910-39

				Manufac	tured			
Year	Unmanuf	factured	Grour pulve		Other		Tota	1
	Pounds	Value	Pounds	Value	Pounds	Value	Pounds	Value
1910	(1) 415, 862 356, 601 298, 711 467, 451 54, 183 63, 168 4 11, 771 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(1) \$15, 649 14, 936 14, 175 5, 118 4, 544 3, 073 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(1) (8) (8) (8) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(1) (2) (2) (2) (2) (2) (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(1) 3 \$20, 267 2 25, 876 3 48 009 2 27, 751 3 33, 915 3 74, 127 3 71, 412 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	\$20, 543 35, 916 40, 812 62, 184 50, 896 39, 033 78, 671 74, 455 74, 529 109, 348 316, 169 123, 169 129, 186 182, 162 230, 511 207, 203 229, 302 229, 302 229, 302 229, 302 228, 135 182, 755 117, 625 185, 858 183, 858 183, 889 226, 389

Figures not available. Separation by classes not recorded.
 Ground or pulverized not separately classified.

Figures for quantity not available.
6 months, January to June.

Mica and manufactures of mica exported from the United States in 1939, by countries

Country	Unmanu	factured	Ground veri		Otl	ne r
Country	Pounds	Value	Pounds	Value	Pounds	Value
North America: Canada	249, 490	\$941 	609, 206 12, 600 16, 300 120	\$22, 061 306 713 13	30, 982 604 1, 180 432	\$52, 711 1, 791 1, 855 1, 226
South America:	100,000	90 600	40, 224 5, 500 50	1,380 198 15 48	957 2,893 815 310	1, 099 4, 242 2, 501 498
Venezuela Other South America Europe: Belgium			1, 980 12, 000 363, 816	1, 420 13, 517	1, 755 438	1, 955 726
France Germany Netherlands	2,000	88	44, 585 611, 760 98, 815	1, 475 22, 534 3, 729 34, 026	26 20, 986 3, 913	18, 149 2, 561
United KingdomOther EuropeAsia:	2,040	2, 006 80	928, 127 163, 652	5, 831	4, 987 379	5, 918 758
India, British Netherland India	26, 500	1,900	2, 800 54, 100	122 2, 014	9, 405	5, 257 3, 119
Other Asia	8,000	230	28, 158 7, 000	935 231	970 3, 101	883 3, 763
Total: 1939 1938 ¹	564, 230 705, 797	6, 717 4, 859	3,000,793 2,787,788	110, 568 103, 651	88, 488 50, 445	109, 079 75, 379

¹ Change in Minerals Yearbook, 1939, p. 1352, is as follows: Australia should read Oceania.

DOMESTIC CONSUMPTION OF SHEET MICA

The United States is the largest consumer of mica. Although it normally produces 15 to 35 percent of its requirement of sheet mica, it is virtually 100 percent dependent on imports not only for phlogopite mica and for mica splittings of all kinds but also for condenser mica and certain other specialties. One of the largest uses of sheet mica (excluding splittings) is for radio-tube bridges and supports; and most of such mica is imported, although domestic mica also is used successfully for radio stampings. During the 5 years 1925–29 domestic mines furnished almost 90 percent of the punch and small-sheet mica (1 to 2 square inches) but only 35 percent of the larger sheets and not over 1 or 2 percent of the splittings. In 1939 the percentage contribution of domestic mines was greatly reduced, and the relative importance of foreign mica correspondingly increased even with respect to supplies of punch and circle sizes.

The United States virtually depends on British India for high-grade condenser and spark-plug cigarette mica. An attempt to cover any large proportion of our needs of such mica from domestic or other foreign mines would seem impossible. Even in British India not more than 10 percent of the sheet mica mined satisfies the rigid requirement of such material. Moreover, in India the opportunity for selection is far greater than it would be under American conditions, because in that country the mica is inspected far more carefully at the mines. Skilled labor is cheap, and the small books of mica are handled and examined repeatedly during the laborious process of sorting and manufacturing mica films and splittings. In the splitting operation, as leaf after leaf is removed, stained or spotted laminae are laid bare

MICA 1417

and can be eliminated and sold separately. In the United States only about one-fifth as much sheet mica is mined as in India, no splitting is done, and even the trimming is far less complete because more

irregular pieces can be marketed.

It is almost impossible to account for the total consumption of mica by industries because of the tremendous waste in manufacturing and because block mica from some mines is trimmed much more closely than mica from other mines. Moreover, as imports of uncut block mica are divided according to price rather than size, some assumptions are necessary to calculate apparent supplies of different sizes available each year. However, the Bureau of Mines estimates that the consumption of raw sheet or block mica in the United States in 1937, the most active recent year, totaled about 2,600,000 pounds, which was distributed approximately as shown in the following table.

Estimated consumption of sheet mica in the United States in 1937, by uses

Use	Pounds	Usual quality	Typical size
Transmitter condensers Trimmer condensers Receiver condensers Industrial condensers, magnetos Spark-plug cigarettes and shields Spark-plug washers—amber Spark-plug washers—muscovite Radio-tube parts Washers, small stampings Electrical appliances, etc Miscellaneous	30,000 20,000 105,000 15,000 12,600 10,000 20,000 750,000 1,127,400 500,000 10,000	Fair-stained or better; films, block Fair-stained films, block Fair-stained (60 percent); good- stained. Mostly fair-stained Fair-stained block, slightly stained films. Phlogopite Good-stained Domestic (75 percent), stained Domestic (50 percent), stained Mostly good-stained or better	No. 5½ (mostly), 5, 4, No. 6. No. 6 (75 percent); 5, 4, 3, 2. No. 4 and larger. No. 5. No. 6 (85 percent); 5½, 5. Punch, circle No. Carious.

Estimates in this table for the first eight items covering most of the high-grade mica are based upon reports from manufacturers and probably are at least 80 percent correct. The last three items are added to account for the total estimated consumption of block mica and thick films as indicated by available data for domestic consumption and imports. Built-up mica and splittings are not covered in this table. In addition, 138,773 pounds of manufactured mica (cut or stamped to dimensions), equivalent to probably 300,000 pounds of block mica, were imported in 1937. In calculating the total apparent consumption as shown by this table the domestic production of punch and circle was reduced by 35 percent and of larger sizes by 10 percent to make it comparable with imports because imported block mica is trimmed more closely.

Of the total apparent consumption of 170,000 pounds of mica in condensers of all kinds, about 40,000 pounds was good-stained (No. 6); the remainder (chiefly fair-stained) comprised 55,000 pounds of No. 6, 35,000 pounds of No. 5½, 30,000 pounds of No. 5, and 10,000

pounds of larger sizes, up to No. 2.

WORLD PRODUCTION

Until 1914 India, the United States, Canada, and German East Africa accounted for virtually all the world output of mica. The World War, by emphasizing the fact that 80 percent of the total supply came from the British Empire, stimulated development elsewhere, but India has managed to maintain its place as the dominant factor; in fact, its position has been better entrenched owing to the greater importance of splittings. In the manufacture of splittings, as previously noted in this chapter, India has a preponderant advantage not only in abundant supplies of mica but also in cheap, experienced Most large consuming countries import supplies; the only important producing countries that consume more than a small fraction of the mica they produce are the United States and the U.S.S.R.

The occurrence and mining of mica in India and in other countries are described in a recent book 5 by Chowdhury, who also discusses marketing and manufacturing.

World production of mica, 1925-34 (5-year averages) and 1937-38, in metric tons [Compiled by M. T. Latus]

Country	1925-29 (average)	1930-34 (average)	1937	1938
North America:				
Canada (sales)	3, 087	864	857	342
United States (sold or used by producers) ¹	11, 437	10, 197	23, 626	18, 803
South America:	11, 451	10, 157	20, 020	10, 000
Argentina 2	119	91	225	250
Bolivia 8	11	6	9	4
Brazil ³	49	46	330	521
Colombia	l	3		
Peru.			5	24
Europe:		ļ	`	
Italy	8 3	7	24	122
Norway ³	43	96	42 26	104
Sweden	47	57	68	22 131
U. S. S. R.	(4)	(4)	(4) 08	(5)
Asia:	(-)			(9)
Cevlon 3	(6)	1	1	(5)
Chosen	25	39	7 70	(5) (5)
India, British 3	4,868	3, 378	15, 106	8, 896
Japan	8 1, 082	(5)	(ð)	(5) (5)
U. S. S. R	923	10 5, 743	(5)	(5)
Africa:				
Eritrea	1	8	(5)	(5) (5)
Ethiopia Kenya Colony and Protectorate	(6) (6)		(5)	(9)
Madagascar	473	238	583	677
Nigeria	410	200	969	077
Rhodesia:				١ ،
Northern	4	2	4	1 4
Southern	168	50	17	13
Tanganyika Territory	46	17	71	37
Union of South Africa (Transvaal)	1,734	411	1,740	1, 16
Oceania:	1		· ·	,
Australia:				ļ
New South Wales		26		
Northern Territory Queensland	(6) 11	35	42	49
Queensland South Australia	(6)	(6)	43	
Western Australia	(6) 2	1 (9)	43	
TI COUCLII AUSULAIIA	1 4			

¹ Includes following quantities recovered from kaolin and schists: 1925-29 (average), 4,146 tons; 1930-34 (average), 4,741 tons; 1937, 9,558 tons; 1938, 5,942 tons.

2 Rail and river shipments. 3 Exports.

4 Output of U. S. S. R. in Europe included under U. S. S. R. in Asia.

5 Data not available. 6 Less than 1 ton. 7 Official estimate. 6 Data for 1925 only.

9 Average for 1925-28 only. 10 Average for 1932-34 only.

⁵ Chowdhury, Ramani R., Handbook of Mica: Calcutta (Thacker & Co., London), 1933, 300 pp.

MICA 1419

POSSIBLE SUBSTITUTE

In 1939 definite progress was made in the use of Alsifilm as a substitute for mica. This interesting product, made from bentonite, was described in Minerals Yearbook, 1939, p. 1353, which mentioned insulating tapes as a possible field of use in addition to built-up mica. Although Alsifilm of high tensile strength and material that is flexible or even creaseproof can be produced, it has not been possible to obtain a high degree of flexibility without sacrificing other properties that render the material a competitor of mica. Under the cooperative agreement between the Massachusetts Institute of Technology and the Research Corporation, Dr. E. A. Hauser and his associates investigated in 1939 the properties of films from raw materials from many domestic localities and from foreign sources, finally selecting a variety produced by one of the Wyoming companies as best suited for the process—chiefly because of its higher yield of ultrafine colloidal material. The status of the several developments at the end of 1939 has been summarized as follows: 6

Aside from fundamental laboratory research, quasi-commercial developments are now being conducted under cooperative arrangements with various companies. One of these companies is investigating the production of a cambric-type insulating tape impregnated with Alsifilm; another is working on a combination of Alsifilm with fiber glass, including both felted fibers and woven fabrics; and still other companies are directing their efforts to the production of substitutes for built-up mica sheet or board. Already commutator segments and other stampings have been made that appear to be acceptable substitutes for mica products. Large V-rings may also be produced, although the material does not seem at present to be universally suitable for molding plate. Experiments in the manufacture of heater plate are quite promising but are not far advanced as yet.

The technique of production of Alsifilm is quite simple. The raw bentonite is made into a 2-percent dispersion with water, which is allowed to settle or is centrifuged to remove the coarser particles. The colloidal material is then either evaporated or concentrated in a supercentrifuge to a 6- to 8-percent gel, which has the consistency of smooth paste and so can be spread over a flat surface and then struck off to an even thickness by passing it under a knife. The moist film is next placed under a bank of incandescent electric lamps with infrared reflectors; films up to 4 or 5 mils thick are dried in this way in about 5 minutes, although thicker films cause difficulty. The final treatment is immersion in a hardening bath that renders the material water-resistant. Experiments have been made with both potassium hydroxide and lead acetate baths. The action is one of base exchange, and although the addition of potash yields a product that more nearly duplicates the chemical composition of the muscovite molecule, lead acetate is employed more commonly. The sheets are now made separately in 3-foot lengths and widths of 18 inches or more. Eventually, however, a continuous sheet may be produced and recovered in the form of a roll. In making commutator segments be produced and recovered in the form of a roll. In making commutator segments the next step is to paste these sheets together with shellac or other binder and to compress them in a heated press in exactly the same way as ordinary built-up mica sheets are made. Some difficulty has been experienced in cutting the built-up Alsifilm sheets into strips without breakage; but the stamping operations are conducted without difficulty, this operation being, if anything, easier with Alsifilm than with ordinary built-up mica. When shellac binder is used, the Alsifilm sheets are reported to have dielectric strength equivalent to 800 volts per mil, which is quite satisfactory. Although the individual films are rather brittle the laminated sheets are reasonably strong and will stand ordinary handling. sheets are reasonably strong and will stand ordinary handling

In addition to its use as a possible substitute for mica Alsifilm is being investigated as a substitute for paper, especially for permanent records. It takes ink well, can be strengthened by the addition of asbestos or other noninflammable fiber, and may be opacified with a dispersed pigment.

⁶ Tyler, Paul M., and Bowles, Oliver, Nonmetallic Mineral Industries in 1939: Bureau of Mines. Information Circ., 7106, February 1940, pp. 21-22.

SALT

By A. T. Coons and F. E. HARRIS

SUMMARY OUTLINE

	Page	l '	
By States	1421 1421 1422	Pressed blocks Distribution	1424
Evaporated salt	1423 1423	Uses. Technologic developments Imports and exports. World production	$\frac{1426}{1427}$

Total domestic production of salt was the largest ever reported to the Bureau of Mines, aggregating 9,277,911 short tons valued at \$24,509,680. This quantity exceeded the nearest previous record (that for 1937) by 36,347 tons and thus more than compensated for the million-ton drop in 1938, when production was only 8,025,768 tons valued at \$23,242,561.

All three types—rock salt, evaporated salt, and salt in brine—shared in the increase, but salt in brine contributed by far the greatest part, totaling 4,584,177 tons in 1939 compared with 3,694,807 in 1938; evaporated salt was next—2,658,577 tons compared with 2,429,100 in 1938; and rock salt was last—2,035,157 tons compared with 1,901,861 in 1938.

Salient statistics of the salt industry in the United States, 1931-35 (average) and 1936-39

	1931-35 (average)	1936	1937	1938	1939
Sold or used by producers: Manufactured (evaporated) short tons. In brine	2, 245, 512 3, 357, 222 1, 779, 263	2, 539, 597 4, 279, 760 2, 009, 579	2, 579, 552 4, 631, 580 2, 030, 432	2, 429, 100 3, 694, 807 1, 901, 861	2, 658, 577 4, 584, 177 2, 035, 157
Average per ton 1	\$21, 697, 327	8, 828, 936 \$23, 306, 177 \$2. 64	9, 241, 564 \$24, 131, 733 \$2. 61	8, 025, 768 \$23, 242, 561 \$2, 90	9, 277, 911 \$24, 509, 680 \$2. 64
Imports for consumption: For curing fish short tons. Value In bags, barrels, etc. short tons. Value In bulk short tons. Value	\$35, 374 1,850	21, 711 \$44, 382 1, 388 \$12, 263 27, 942 \$56, 137	21, 079 \$45, 106 802 \$8, 008 24, 115 \$80, 248	21, 010 \$47, 800 654 \$8, 228 17, 849	15, 461 \$27, 700 2, 121 \$14, 977 28, 451
Total:	39, 146 \$89, 631	51, 041 \$112, 782	45, 996 \$133, 362	39, 513 \$101, 925	\$58, 540 46, 033 \$101, 217
Short tons	97, 009 \$609, 173 7, 324, 134	76, 974 \$463, 670 8, 803, 003	70, 111 \$514, 858 9, 217, 449	67, 498 \$469, 708 7, 997, 783	124, 273 \$601, 501 9, 199, 671

¹ Values are f. o. b. mine or refinery and do not include cost of cooperage or containers.

PRODUCTION

Salt production was reported by 79 plants (65 companies) in 1939 compared with 79 plants (63 companies) in 1938. Minerals Yearbook, 1936 (p. 920), listed producing companies in 1935, location of plants, and class of salt produced. Changes since then have been given in subsequent issues of the Minerals Yearbook. Changes in 1939 are as follows: The General Foods Corporation, Diamond Crystal Salt Division, Lyons, Kans., was taken over by the Carey Salt Co. The E. S. Blackmon operation, Freedom, Okla., is now the Eklund-Blackmon Salt Co. In Puerto Rico the works formerly designated as Ernesto H. Lienau now is the Salinas Del Papayo, Inc., Mayaguez, P. R. The Livestock & Milling Co., Redmond, Utah, reported production in 1939. The California Rock Salt Co., of Los Angeles, Calif., has bought the 40 salt claims that it has oper-

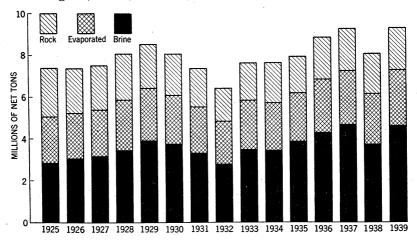


FIGURE 1.—Trends in the quantity of rock salt, evaporated salt, and brine (in terms of salt content) sold or used by producers in the United States, 1925-39.

ated on lease for 18 years at Bristol Dry Lake in the Mojave Desert south of Amboy. The deposits, formerly owned by the Consumers Salt Co., Los Angeles, cover 5,000 acres and are said to have been bought for \$50,000. On July 31, 1939, a bill (H. R. 6831) to permit the Metropolitan Water District of Southern California to operate a salt mine on the public domain was passed by the House of Representatives, and to date no other action has been taken. If the bill is passed the water district will obtain from this mine all the salt required in large quantities annually to treat water from the Boulder Reservoir for domestic use. The operations would be confined to the production of salt for water conditioning only and would not permit its output for commercial use or sale. Under the general leasing law a public corporation may not obtain a mineral lease, hence the special bill.

The following tables give statistics on salt sold or used by producers in the United States by States and by methods of manufacture. Because of the small number of producers of salt in brine for chemical manufacture and of rock salt and evaporated salt in some States, it is impossible to show either rock salt or salt in brine separately

by States.

Salt sold or used by producers in the United States, 1937-39, by States

State	. 1937		19	38	1939	
State	Short tons	Value	Short tons	Value	Short tons	Value
California Kansas Louisiana Michigan New York Ohio Puerto Rico Texas Utah West Virginia Other States ¹	370, 911 654, 089 974, 403 2, 476, 406 2, 084, 867 1, 733, 875 12, 116 364, 780 69, 696 128, 715 371, 706	\$1, \$17, \$30 2, 759, 062 2, 898, 826 6, 506, 120 5, 795, 551 2, 625, 644 53, 381 623, 037 205, 328 713, 421 133, 533 24, 131, 733	349, 856 597, 909 958, 186 2, 078, 612 1, 177, 508 12, 508 324, 449 61, 959 129, 568 306, 387 8, 025, 768	\$1, 940, 449 2, 565, 447 2, 775, 384 6, 151, 154 5, 467, 077 2, 562, 620 61, 917 624, 096 192, 495 721, 490 180, 432	404, 689 641, 752 1, 072, 540 2, 408, 872 2, 041, 492 1, 794, 788 13, 325 352, 008 68, 100 144, 727 335, 618	\$1, 980, 777 2, 591, 934 2, 830, 331 6, 726, 912 5, 855, 422 2, 647, 355 57, 707 604, 633 202, 244 773, 988 238, 377 24, 509, 680

^{1 1937:} New Mexico, Oklahoma, and Virginia; 1938-39: Colorado, New Mexico, Oklahoma, and Virginia.

Salt sold or used by producers in the United States, 1938-39, by methods of manufacture

Method of manufacture	193	8	1939	
Method of mandiacture	Short tons	Value	Short tons	Value
Evaporated in open pans or grainers Evaporated in vacuum pans Solar-evaporated Pressed blocks from evaporated salt Rock Pressed blocks from rock salt Salt in brine (sold or used as such)	482, 154 1, 479, 806 330, 441 136, 699 1, 865, 603 36, 258 3, 694, 807 	\$4, 025, 375 9, 072, 224 1, 352, 568 1, 116, 272 5, 970, 972 281, 109 1, 424, 041 23, 242, 561	499, 331 1, 615, 838 391, 287 152, 121 1, 995, 915 39, 242 4, 584, 177 9, 277, 911	\$4, 225, 088 9, 434, 587 1, 403, 680 1, 136, 527 6, 233, 507 263, 300 1, 812, 991 24, 509, 680

Evaporated salt.—Evaporated salt aggregating 2,658,577 short tons in 1939 was produced at 58 plants, either from the original brine of wells and ponds or from brine obtained artificially by forcing the water into beds of rock salt and withdrawing it for processing by one of several methods in use. This total includes 152,121 tons of salt blocks for stock, the output of 19 plants. Solar-evaporated salt from 25 plants comprises 15 percent of the evaporated-salt output and in 1939 totaled 391,287 tons. Most of it comes from California and some from Utah, New Mexico, and Oklahoma.

Evaporated salt sold or used by producers in the United States, 1938-39, by States

State	19	38	1939	
State	Short tons	Value	Short tons	Value
California Kansas Michigan ¹ New York Ohio Puerto Rico Texas Utah West Virginia ¹ Other States ²	340, 137 372, 711 12, 508 38, 362 56, 597	\$1, 912, 637 1, 724, 635 4, 672, 529 3, 378, 167 2, 307, 949 61, 917 208, 533 173, 746 721, 490 404, 836	396, 479 232, 985 922, 645 365, 899 395, 913 13, 325 39, 096 62, 177 144, 727 85, 331	\$1, 943, 698 1, 717, 995 5, 019, 674 3, 496, 414 2, 337, 282 57, 707 198, 051 183, 422 773, 988 471, 651

Includes a quantity of salt contained in brine for chemical use reported as evaporated salt with value as evaporated salt.
 Colorado, Louisiana, New Mexico, and Oklahoma.

Rock salt.—The output of rock salt reported by 21 plants totaled 2,035,157 short tons in 1939, which includes 39,242 tons of blocks produced by 7 plants for consumption by livestock. New York maintained the lead in rock-salt production, followed by Louisiana, Kansas, and Michigan. These four States continue to produce most of the national total.

Rock salt sold by producers in the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935	1, 759, 242 2, 009, 579 2, 030, 432	\$5, 510, 413 6, 003, 054 6, 447, 648	1938. 1939.	1, 901, 861 2, 035, 157	\$6, 252, 081 6, 496, 807

Salt content of brine.—Notwithstanding the fact that the quantity of salt in brine sold or used by producers was 4,584,177 tons in 1939, 24 percent greater than the 1938 total (3,694,807 tons), production did not reach the peak record of 4,631,580 tons in 1937. Salt in brine was produced at 10 plants in 1939, excluding 2 plants where the product is reported as evaporated salt rather than as salt in brine.

Pressed blocks and salt for livestock.—The quantity of salt consumed by livestock is increasing. Although the sale of pressed-salt blocks slumped in 1935 and 1937, their sale is increasing, as evidenced by the rise in 1938 and 1939. Moreover, not all the salt used by stock is apparent in the production statistics, as a greater quantity (estimated by a Department of Agriculture specialist as two-thirds or three-fourths of total stock salt) is used in the prepared feed for stock and poultry or is added to the feed at the farm. The blocks are suitable for some stock, but others—swine in particular—cannot be allowed to eat it at their discretion, as they are prone to overeat the salt and thus poison The salt used in the prepared feed is a coarse, granulated themselves. A convenient way for cattle to get their required salt (and whatever other conditioning mineral is added) is by a newly developed molded plastic dispenser that calls for a cylindrical "block" of salt.

Pressed-salt blocks sold by original producers of the salt in the United States, 1935-39

	From evaporated salt		From ro	ock salt	Total	
Year	Short tons	Value	Short tons	Value	Short tons	Value
1935. 1936. 1937. 1938.	126, 005 134, 586 120, 061 136, 699 152, 121	\$900, 040 965, 114 966, 812 1, 116, 272 1, 136, 527	24, 691 34, 489 28, 981 36, 258 39, 242	\$156, 002 222, 864 240, 251 281, 109 263, 300	150, 696 169, 075 149, 042 172, 957 191, 363	\$1, 056, 042 1, 187, 978 1, 207, 063 1, 397, 381 1, 399, 827

DISTRIBUTION

The following table was compiled from data furnished by the producers only, with no account of reshipments.

Distribution (shipments) of evaporated and rock salt in continental United States, 1938-39, by States of destination, in short tons

	19	38	1939		
Destination	Evaporated	Rock	Evaporated	Rock	
Alabama	6, 194	31, 532	7, 174	31, 801	
Arizona	7, 387	2, 444	8, 336	2, 179	
Arkansas	6, 451	19, 103	6,900	22, 355	
California	218, 599	6, 848	218, 440	8, 210	
Colorado	23, 910	11, 330	24, 225	11, 575	
Connecticut	13, 234	4, 198	13, 247	4, 930	
Delaware	2, 446	34, 330	2, 646	29, 257	
District of Columbia	4,742	1,053	4, 590	1, 191	
Florida	5, 681	18, 271	6, 595	19, 213	
Georgia	14,779	40, 325	15, 250	43, 918	
Idaho	10, 411	2, 966	11, 457	1,316	
Illinois	220, 080	127, 751	239, 128	134, 096	
Indiana	60, 197	36, 608	64, 293	41,615	
Iowa	68, 435	75, 020	76,658	83, 354	
Kansas	37, 542	120, 527	26, 577	131, 449	
Kentucky	32, 841 5, 909	13, 153 51, 564	45, 583 5, 809	15, 106	
Louisiana	6, 855			55, 002 20, 818	
Maine	24, 744	16, 978 20, 424	8, 189 26, 493	20, 818	
Maryland	47, 667	30, 206	52, 375	20, 955 34, 871	
Massachusetts	222, 588	42,652	232, 327	34, 871 44, 984	
Michigan	80, 438	60, 266	95, 093	62, 547	
Minnesota	2, 645	29, 966	3, 293	28, 947	
Mississippi	56, 717	48, 943	57, 273	52, 471	
Missouri	13, 378	1,914	14, 690	2, 077	
Nebraska	24, 263	40, 378	25, 254	46, 110	
Nevada	2, 054	115	2, 405	216	
New Hampshire	3, 552	26, 065	5, 348	30, 448	
New Jersey	55, 075	101, 173	74, 776	124, 312	
New Mexico	4, 513	10, 741	5, 550	10, 983	
New York	182, 528	318, 836	183, 186	316, 316	
North Carolina	35, 842	30, 185	37, 227	37, 971	
North Dakota	10, 064	4, 550	10, 322	3, 927	
Ohio	126, 483	50, 989	133, 817	63, 803	
Oklahoma	22, 783	27, 481	25, 278	26, 640	
Oregon	21, 633	331	22, 803	464	
Pennsylvania	105, 493	72, 205	125, 927	83, 536	
Rhode Island	7, 544	6, 272	8, 565	7,326	
South Carolina	6,982	15, 165	7,741	15, 485	
South Dakota	11,870	13, 426	14, 195	14, 888	
Tennesseee	23, 767	36, 812	26,089	38, 959	
Texas	43,008	135, 054	49, 580	140, 808	
Utah	12, 500	3, 443	13,602	4, 147	
Vermont	4,673	4, 915	5,807	5, 793	
Virginia	46, 718	28, 829	48, 813	41, 192	
Washington	84, 692	500	90, 671	720	
West Virginia	135, 754	67, 244	159, 850	41, 772	
Wisconsin	95, 801	21,619	107, 017	27, 207	
Wyoming	7,358	2, 803	7, 434	2, 833	
Other 1	160, 280	34, 358	200, 679	45, 066	
	2, 429, 100	1, 901, 861	2, 658, 577	2, 035, 157	

¹ Includes production of Puerto Rico (evaporated salt); exports to Australia, Canada, Central America, Cuba, Japan, Mexico, South America, and other countries; and shipments to unspecified destinations, including Alaska, Hawaii, and Puerto Rico.

Salt shipped to noncontiguous Territories of the United States, 1938-39

	193	38	1939	
. Territory	Short tons	Value	Short tons	Value
Alaska American Samoa Canton and Enderbury Islands Guam Hawaii Midway Island Puerto Rico Virgin Islands Wake Island	6, 130 4 (1) 37 2, 144 1, 282 10 1	\$97, 858 264 (¹) 1, 287 55, 402 22 33, 781 603 20 189, 237	6, 108 6 1 29 2, 265 1 1, 288 16 (²) 9, 714	\$109, 517 289 32 1, 104 61, 153 33 35, 241 829 7

¹ Figures not available before Jan. 1, 1939.

PRICES

New York quotations on rock salt were stable in 1939, but those of vacuum common fine salt fluctuated somewhat. The price of bagged rock salt, delivered at New York, was \$13.20-\$13.80 a ton in carlots; in less than carlots it was \$15-\$15.60. Bagged common fine salt in carlots delivered in New York cost \$15.30 a ton in the first quarter of 1939; in less than carlots it cost \$16.30-\$21. At the end of the first quarter the quotations dropped to \$14 a ton for carlots and \$15-\$19.70 a ton for less than carlots. These prices prevailed until the last quarter of 1939, when they were changed to \$15.30 a ton for carlots and \$16.60-\$19.70 a ton for less than carlots—quotations that continued through the first quarter of 1940. At the end of this quarter the price for carlots rose to \$15.70, the prices for smaller lots remaining the same.

USES

Salt is one of the minerals about which the United States need have no concern as to an ample supply. It is found abundantly in many parts of the country, and new sources are discovered almost daily. The chief problems therefore are distribution and research to develop new uses and efficient methods for converting it into useful commodities. The ingenious use of salt has been an important factor in attainment by the United States of first place in world production of chemicals. Many chemicals are based upon salt, especially the heavy alkalies so important to process and other industries.

A quantitative break-down of salt production into its ultimate as well as immediate uses would be interesting, but so far the sequence has never been followed through. All that can be said is that there are hundreds of uses of salt, many of which are vital to the respective industries employing it. Some of these industries consume only small quantities of salt, but together their consumption aggregates an im-

portant volume.

Of the heavy alkalies made from salt, soda ash and caustic soda are used in large quantities by important industries. According to recent statements, 2,964,000 short tons of soda ash and 970,000 tons of caustic soda were consumed in 1939, increases over 1938. The greatest increase in soda-ash consumption was in the glass, pulp and paper, caustic and bicarbonate soda, and other chemical industries. Textile industries also used more soda ash in 1939 than in 1938, and requirements for water softening and petroleum refining were greater. Production of caustic soda rose because the rayon and cellulose industry consumed more in 1939 than 1938, as did the pulp and paper industry. The soap, petroleum-refining, lye, textile, and rubber-reclaiming industries also took more caustic soda in 1939 than in 1938. Exports of both soda ash and caustic soda were larger in 1939 than in the previous year.

The same source of information stated that the indications were that chlorine gas "slightly exceeded its previous high point in 1937, probably by about 2 percent, although the pressure of excessive chlorine demands was relieved in 1938, and neither that year nor 1939

was an exciting one for chlorine."

¹Chemical and Metallurgical Engineering, February 1940, pp. 70-71.

SALT 1427

The European war influenced the chemical market in no small Some markets were cut off from the United States, but others were substituted that had been deprived of their European supply. Moreover, because of the war, chemical requirements were greater.

The effect of the use of common salt on concrete roadways still engages attention. How the salt honeycombs snow and ice was The flaking, spalling, and disintegration of concrete described.² surfaces owing to application of salt in icy weather was discussed,3 and Swedish investigations were reported.4 This use of salt has no reference to dirt roads on which the use of salt appears to have been Although reported progress is slow the quantity so employed has been increasing steadily in recent years.

Although aggregating a small total, the use of salt in drinking water

for those working in hot places is continuing.5

The new plastics and rubberlike fabrics in which salt is used as one of the basic ingredients are still in the public eye and their prac-

tical features are being shown.

As a novelty, the ceiling of the Rumanian building at the New York World's Fair of 1939 was built of blocks of rock salt mined in The blocks in the center of the ceiling were streaked with wide bands of gypsum, while the large blocks around the edge appeared to be of purer quality. All the blocks were crude (just as mined and cut). From below they resembled polished marble. Fans had to be used to keep the salt blocks dry, otherwise they would begin to deliquesce and drip.

A recent bibliography 6 of published reports of experiments on the effect of various minerals on plant growth includes a number of references to the use of salt; these include determination of the salt requirements of tobacco, the plant uptake of potash as induced by salt, the effect of application of common salt upon the yield and quality of sugar beets and upon the sugar content of melons, and other phases

of salt action.

Food is the largest market for dry salt. A new food use, although consuming an insignificant quantity compared to the present total, may be mentioned. The canning of Atlantic crab meat for long keeping, not heretofore attempted, has been begun recently. The may be mentioned. process employs sodium chloride in a brine to give the meat a protective salt treatment.7

TECHNOLOGIC DEVELOPMENTS

The up-to-date methods of mining rock salt at the Jefferson Island Salt Mining Co. in northern Louisiana were described and illustrated in a magazine article.8 This salt is pure enough to use without

² Toaspern, Arthur C., Salt Breaks Ice Bond: Eng. News-Record, April 11, 1940, p. 73.

Edwards, Dean G., Salt on Concrete Pavement: Eng. News-Record, May 9, 1940, p. 61.

Schutz, F., The Influence of Salt on Concrete: Betong, 1938 (3), pp. 154–161; Building Sci. Abs., vol. 11 (N. S.), No. 11, November 1933, pp. 365–366.

Talbert, R. C., Maintaining Health and Comfort with Salt: Hazards and Safety, July 1939, pp. 14–15,

^{32.}Explosives Engineer, Salt Cocktails: Vol. 17, No. 10, October 1939, p. 296.
United States Navy, circular letter of July 1934 (still in circulation).
North Carolina Experiment Station Soil Research Laboratory, Wilmington, N. C., Bibliography of References to the Literature on the Minor Elements and Their Relation to Plant and Animal Nutrition: 1st Supp. to 3d ed. (originally compiled by L. G. Willis); pub. by Chilean Nitrate Educational Bureau, Inc., 1940, 82 pp.
Fellers, Carl R., and Harris, Sterling G., Canned Atlantic Crab Meat: Ind. Eng. Chem., vol. 32, No. 4, April 1940, p. 594.
Excavating Engineer, February 1939, pp. 82–85, 118.

further treatment than crushing, screening, and grading to size after

Fine granulated salt has been the form most favored by many textile factories for industrial use in the past because such salt dissolves more readily than other types. Rock salt costs less, but because it dissolves slowly dissolvers must be used if a plant wants a fairly continuous supply of brine. At a textile show in the South, the Myles Salt Co., of Louisiana, exhibited a small rock-salt dissolving unit, the storage tank of which was nickel-lined to prevent not only corrosion but also contamination of the brine.

The International Salt Co., of New York and Pennsylvania, has equipment called the Lixator ⁹ which supplies saturated brine for such industrial uses as regenerating zeolites; curing meat, fish, and hides; and The brine, free from sediment, is produced from cheap dveing textiles. rock salt as needed. The equipment is automatic, except for the necessity of refilling the salt hopper and emptying the sediment from

the bottom of the cone. It is made of Monel metal.

A method of purifying rock salt "uses silicate to prevent the floating of soluble crystals in a saturated solution and makes clean separation of insoluble dirt from such a substance as common salt by floating the earthy material on a soapy foam; thus certain rock salts can be purified without the expense of dissolving and recrystallizing." 10

IMPORTS AND EXPORTS 11

Although foreign trade in salt is small (and has been for a long time), domestic imports and exports were larger in 1939 than in 1938. Imports increased by only 17 percent, but exports advanced 84 per-Of the imports the greatest tonnage increase was in bulk salt with a substantial rise in salt in bags, barrels, etc., while the total imported for curing fish declined sharply. The largest tonnages exported went to Canada and Japan; both represented gains over 1938 shipments.

Salt imported for consumption in the United States, 1938-39, by countries

	193	8	1939		
Country	Short tons	Value	Short tons	Value	
North America: Canada West Indies:	8, 130	\$18,724	7, 504	\$25, 503	
British: Jamaica Other British	12, 100 40	26, 991 529	26, 230 314 4	42, 24 1, 74 4	
French Netherland	348	765	457	1, 16	
Europe: France Germany Sweden	2 15 1	$\begin{array}{c} 32 \\ 612 \\ 40 \end{array}$	1	-	
U. S. S. B. United Kingdom	(1) 273	803 3, 775	(1) 154	29 2, 55	
Africa: Egypt Tunisia	18, 604	49, 654	5, 034 6, 335	19, 27 8, 31	
	39, 513	101, 925	46, 033	101, 21	

¹ Less than 1 ton.

[•] Chemical and Engineering News, News Edition, vol. 18, No. 4, February 25, 1940, p. 177.

10 Silicate P's & Q's, vol. 19, No. 12, December 1939, p. 2.

11 Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

SALT

Salt exported from the United States, 1938-39, by countries

	19	38	1939		
Country	Short tons	Value	Short tons	Value	
North America:					
Bermuda	28	\$651	27	\$62	
Canada	43, 593	181, 063	54, 691	223, 31	
Central America:			' 1	•	
British Honduras	404	4, 395	495	4, 97	
Guatemala	114	1,785	179	2, 56	
Honduras	150	3, 957	135	2,70	
Nicaragua	311	5, 155	2 52	3, 61	
Panama:		1)	,	
Republic of	15	545	87	1, 25	
Canal Zone	687	17, 828	924	19, 76	
Mexico	3,372	48, 193	3, 220	44, 54	
Newfoundland and Labrador	442	1, 584	307	1, 32	
West Indies:		_,,,,,,		-,	
British	36	1, 394	656	9, 08	
Cuba	9, 171	97, 260	9, 037	99, 01	
Dominican Republic	238	7, 791	215	4, 98	
Haiti	15	613	9	37	
Netherland	119	3, 952	86	3, 45	
Other North America	35	606	46	95	
South America:		000	10	00	
Argentina	205	2, 198	117	1. 18	
Brazil	70	599	53	49	
Colombia	7	221	13	26	
Other South America	13	309	36	1. 83	
Europe:	10	000	00	1,00	
Ireland	8	1, 597	7	1, 50	
U. S. S. R	· ·	1,00.	1,408	5, 02	
United Kingdom	12	544	17	1, 48	
Other Europe	- 6	421	68	2, 67	
Asia:	v	T	•	2, 0,	
China	5	618	6	83	
Hong Kong	18	1, 166	20	60	
Japan	5, 647	21, 080	49,669	113, 85	
Philippine Islands	370	12, 873	330	9, 65	
Other Asia	27	1, 597	25	1, 58	
Africa:	21	1,001		1,00	
Liberia			74	2, 04	
Morocco	8	181	53	2,09	
Other Africa	18	1, 375	19	1, 14	
Oceania:	10	1,375	13	1, 14	
British:		1			
Australia	1, 229	22, 173	1, 234	24, 39	
New Zealand	926	21, 664	523	13, 62	
Franch	199	4, 320	235	4, 75	
French	199	4, 320	430	4, 76	
ļ	67, 498	469, 708	124, 273	610, 50	
	07, 498	±09,700	124, 215	010, 50	

WORLD PRODUCTION

Although production data are still lacking for many countries listed in the accompanying table, doubtless, the United States in 1938 maintained its long-held position as the leading salt producer of the world.

World production of salt, 1934-38, by countries, in metric tons
[Compiled by M. T. Latus]

[COI	inplied by iv.	. I. Datusj			
Country 1	1934	1935	1936	1937	1938
North America:					
Canada	293, 960	324, 975	355, 486	415, 994	398, 013
Costa Rica	3, 330	3, 500	3, 500	415, 994 4, 287	4, 740
Guatemala	2, 913	2,073	8,053	12, 610	10, 465
Mexico	(2)	57, 746	101, 628	82, 876	107, 701
Panama	4, 947	5, 541	4, 385	6, 898	3, 332
United States:	1, 735, 600	1, 595, 949	1, 823, 050	1, 841, 967	1 705 220
Rock salt Other salt	5, 169, 921	5, 595, 173	6, 186, 384	6, 541, 795	1, 725, 330 5, 547, 321
West Indies:	0, 100, 021	0,000,110	0, 100, 001	0, 011, 100	0,041,021
British:			1		1
Bahamas 3	3, 175	545		5, 003	4,830
Leeward Islands 3 Turks and Caicos Islands 3	1, 357				
	18, 963	28, 803	41, 899	50, 833 36, 287	35, 578
Cuba Netherland 3	20, 964	36, 921	34, 339 2, 285	36, 287	35, 217
South America:	6, 479	3, 781	2,285	2, 337	2,013
Argentina 4	194, 443	234, 441	247, 433	290, 084	264, 150
Brazil	280, 573	277, 583	494, 119	708, 714	859, 222
Chile	31, 210	36, 453	47, 232	36, 697	(2)
Colombia	181, 052	181, 613	171, 455	164, 636	(2)
Ecuador:					400
Rock salt	114	119	138	138	(2)
Other salt	28, 902 34, 343	32, 039 35, 397	16, 632 36, 110	13, 800 39, 010	13, 800 34, 307
PeruVenezuela	28, 357	53, 225	25, 128	26, 298	22, 658
Europe:	20,000	00, 220	20,120	20, 200	. 22,000
Bulgaria:	{				
Rock salt	6, 138	5, 330	7, 008	9, 745	10, 242
Other salt	48, 722	36, 629	47, 000	43, 602	66, 258
Czechoslovakia	147, 299	163, 843	172, 647	165, 898	174, 000
France: Rock salt and salt from springs	1, 673, 280	1, 604, 660	1, 711, 060	1, 847, 179	1, 264, 230
Other salt	398, 070	356, 650	202, 040	490, 906	346, 046
Germany:	300,010				010, 010
Rock salt	2, 024, 194	2, 077, 316	2, 383, 825	2, 757, 242	2, 694, 984
Other salt	509, 316	561, 588	574, 489	608, 046	585, 32 6
Austria:	864	1 077	710	908	700
Rock saltOther salt	163, 732	1, 257 198, 209	712 191, 294	169, 883	786 93, 576
Greece	107, 696	113, 980	74, 447	102, 285	102, 057
Italy:	201,000	1 220,000	1 -, 2 - 2 .	102,000	202,00.
Rock salt	393, 306	483, 436	499, 798	603, 798	613, 870
Other salt	576, 742	671, 084	770, 333	952, 655	885, 205
Malta	2, 235 74, 759	2, 032	1,930	1,829	1, 523
Netherlands: Rock salt Poland	506, 383	70, 963 515, 094	76, 271 466, 525	132, 430 602, 746	164, 266 642, 875
Portugal 3	56, 511	81, 965	73, 944	4, 633	6,096
Rumania:	00,011	01,000	10,011	1,000	0,000
Rock salt	308, 723	308, 921	283, 389	308, 882	351, 723
Other salt		1, 542	1,750	2,077	1,842
Spain:	100 000	(0)	. (0)	(0)	(4)
Rock salt	160, 023 602, 308	(2) (2)	(2)	(2) (2)	(2) (2)
Other salt Switzerland	81, 596	79, 757	81, 177	81, 969	84, 049
U. S. S. R	5 3, 544, 000	5 4, 349, 500	(2)	(2)	(2)
United Kingdom:	3, 522, 500	2,020,000		` '	` ` '
Great Britain:					
Rock salt	17, 650	16, 571	17, 569	18,666	19, 974
Other salt	2, 528, 634	2, 713, 377	2, 845, 242	3, 101, 511	2, 651, 939
Ireland, Northern:	9 500	2 900	2 175	4 054	0.000
Rock salt Other salt	3, 533 10, 500	3, 282 10, 199	3, 175 12, 297	4, 254 8, 818	2, 36 2 5, 75 7
Yugoslavia	41, 922	43, 549	45, 205	46, 323	52, 634
	,	,	,00	,	, 50 -

See footnotes at end of table.

World production of salt, 1934-38, by countries, in metric tons-Continued

Country 1	1934	1935	1936	1937	1938
Asia:					
Aden	361, 119	345, 119	361, 098	360, 866	282, 510
Burma	37, 569	40, 729	32, 790	54, 677	39, 319
Cevlon	63, 449	41, 612	40, 332	38, 815	
China 6	3, 220, 000	3, 000, 000	3, 000, 000	3, 000, 000	36, 490
China ⁶ Chosen ⁷	138, 000	138, 000	138,000	138,000	3, 000, 000 138, 000
Cyprus 7	3,000	3,000	3,000	3,000	
India:	0,000	0,000	3,000	0,000	3,000
British:			· ·	1 .	
Rock salt	182, 047	181, 214	175, 020	190, 103	101 201
Other salt.	1, 596, 531	1, 593, 593	1, 369, 861	1, 516, 984	191, 395
Portuguese	209, 219	160, 681	24, 047	26, 095	1, 372, 979
Indochina	160, 536	203, 210	192, 237	193, 558	29, 527
Iraq	8, 000	7, 045			193, 050
Japan:	0,000	7,040	2,804	1,810	7, 907
Japan proper 8	676, 302	604, 442	F10.0F0	FOF 888	(8)
Taiwan		149, 375	518, 859	535, 775	(3)
Netherland India	191, 577 92, 370	102, 076	189, 777 107, 449	210, 471	(2)
Palestine:	92, 310	102,070	107, 449	75, 780	9 74, 411
Rock salt	859	867	700	707	
Other salt	9, 389		755	727	444
Philippine Islands	(2)	10, 376	8, 058	11,717	8,065
Syria 7	10,000	(2)	53, 471	48, 905	(3)
Thailand 3	126, 565	10,000	10, 000	10,000	10,000
Turkey	190, 602	138, 504	44, 505	132, 899	156, 268
U. S. Š. R	(5)	214, 688	220, 500	262, 226	247, 293
Africa:	ا (ق)	(5)	(4)	(5)	(5)
Algeria	42, 885	67, 990	62, 400	69 767	F4 000
Relgian Congo	888	894		63, 767	74, 630
Belgian Congo Canary Islands 7	2,000	2,000	920 2, 000	1,004	1, 013
Egypt 3	288, 470	257, 104		2,000	2,000
Eritrea	96, 000	2, 380	237, 570	276, 735	284, 949
Ethiopia: Rock salt	10,000	10,000	62, 000	(2)	(3)
French West Africa	1, 200		10,000	10,000	10,000
Kenya Colony		381	748	643	51
Libya (Italian Africa):	1,760	2,845			3, 2 50
Cyroneigo 7	10.000	10.000	10 000	** ***	
Cyrenaica 7 Tripolitania 7	10,000	10,000	10, 000	10,000	10, 000
Mauritius 7	20,000	20,000	20, 000	20,000	20,000
Morocco Franch	1,500	1,500	1, 500	1, 500	1,500
Morocco, French	1,064	1, 194	814	11, 207	909
Nigeria 7 Portuguese East Africa	400	400	400	400	400
Portuguese East Africa	1, 689	3, 436	2, 520	2, 605	6, 448
Portuguese West Africa (Angola) 7 Somaliland:	25, 000	25, 000	25, 000	25, 000	25, 000
Deitich ?	0.010				
British 3	3, 212	2, 655	1,509	950	353
French 3	35, 497	76, 500	21, 985	85, 273	(2)
South-West Africa: Rock salt	2,800	5, 021	3, 822	4, 113	5, 071
Sudan, Anglo-Egyptian	24, 421	26, 534	27, 027	34, 553	37, 532
Tanganyika Territory	7, 418	6, 916	8, 574	8, 723	10, 169
Tunisia	86, 966	79, 689	129, 000	129, 708	129, 287
Uganda.	4, 950	1,590	3, 405	3, 133	3, 169
Union of South Africa	83, 233	87, 261	97, 904	106, 338	(2)
Oceania:					
Australia:				Ì	
South Australia	62, 063	79, 255	67, 391	74, 739	76, 013
Victoria 10	46, 813	48, 356	(2)	3, 729	(2)
Western Australia	2, 713	(2)	4, 295	0 700	3, 850

<sup>In addition to the countries listed salt is produced in Bolivia, Gold Coast, Madagascar, and Southern Rhodesia, but figures of production are not available.

Data not available.

Exports.

Exports.

Anailway shipments.

Includes Manchuria.

Estimated annual production.

Year ended March 31 of year following that stated.

The figures do not include output from salt beds which, although situated on Government beach lands, have no fixed areas.

Incomplete data.</sup>

Canada.—A substantial quantity of salt is produced annually in Canada for various uses. At present only the preliminary report for 1939 is available. 12 The final annual reports of the Dominion Bureau of Statistics usually give a break-down of total salt production into uses, by quantity. In 1937 the Dominion Bureau began to itemize separately the quantity of salt used on roads in the Dominion: the quantity of highway salt sold in 1938 was 10,174 tons valued at \$34,689 compared with 1,969 tons valued at \$6,227 in 1937. Canadian salt beds are discussed in an article 13 on the development of mineral resources. Two occurrences of salt 900 and 1,400 feet thick, which were discovered incident to drilling for gas and oil in New Brunswick.

were described.14

China.—Salt fields have received a great deal of attention from Japan, according to United States Counsul Frederick W. Hinke. Tientsin, China, who has furnished a comprehensive official report on the needs of Japan for an adequate and continuous supply of salt for its industries and military purposes and on Japan's intense efforts to exploit the Changlu field of China to meet a large part of its requirements. Japan's annual consumption totals about 1,900,000 tons, of which it produces 36, Taiwan 4, and foreign countries 60 percent. Because of the growth of industries in the country its requirements have increased by leaps and bounds. The quantity of salt used industrially by Japan in 1912 was only 3 percent of the total; in 1924, 10 percent; in 1932, 35 percent; and in 1933, 46 percent. In the past 6 years salt consumption in Japan has increased 50 percent. Since the outbreak of the conflict in China it has become increasingly imperative for Japan to obtain salt from nearby sources because of exchange and shipping difficulties. The European war has heightened this urgency, as Japan for the past 7 years has imported an annual average of well over 400,000 tons of salt from Africa whence it is difficult now to obtain a supply. Expectations were that the Changlu field would fill the gap, but this does not seem to be the case. Despite the promising yields of salt early in 1939, output from the Changlu field has suffered set-backs owing to typhoons, increased domestic needs, and lack of shipping facilities. An increase of 190,000 tons in Changlu production was anticipated from 1938 to 1939 but did not materialize, and a further estimated increase of 120,000 tons for 1940 cannot be realized because of typhoon damage.

Germany.—Despite a reduction in exports, salt production in Germany has expanded steadily since 1933. 15 Part of the decrease in exports was due to the German Reich's absorption of countries to which salt was exported previously. In 1939 Germany introduced a new denaturant for (tax-free) salt to be used for industrial purposes. Formerly, heliotropine was the chief denaturant used, but as it has to be imported a new denaturant was introduced which is called Nerolin (also known as Bromelia) and is produced from domestic

materials.16

¹² Bureau of Mines Mineral Trade Notes, vol. 10, No. 4, April 1940.
12 Canadian Chemistry and Process Industries, London (Ont.) as an Industrial Center; Agricultural and Mineral Resources under Chemical Development Produce Growing Enterprises: Vol. 23, No. 5, May 1939, p. 225.
14 Canadian Mining and Metallurgical Bulletin, No. 324, April 1939, p. 122.
15 Bureau of Mines Mineral Trade Notes, July 1939, pp. 26–28.
16 Bureau of Mines Mineral Trade Notes, April 1940, p. 18.

SALT 1433

Italy.—Chiefly through the aid of the colonies of the Italian Empire, Italy has been striving to increase its exports of salt. 17 The Italian East African salt industry now exports about 250,000 tons a year,

which is more than is being exported from Italy.

Palestine.—Although Palestine has huge resources of salt, much of which is in the Jebel Usdum area, the reported output is not large, and it seems difficult to obtain representative statistics. According to an article 18 that describes operations at the southern plant on the Dead Sea, the brine is pumped up to a series of pans exposed to the intense heat of the sun and arranged for a continuous flow downward to the Dead Sea. Common salt is the first of the dissolved salts to be deposited in the pans.

Spain.—It is reported that Spain is endeavoring to reestablish its salt industry and recapture its former markets.19 For many years Spain was second in the list of salt-exporting countries, and its ship-

ments averaged more than 500,000 tons a year.

Venezuela.—An extension of the salt works at Araya is included in the program for which an additional 26,099,000 bolivares was allotted by the Government under the 3-year public-works plan in July 1939. This salt field was described in a report in 1938.20

¹⁷ Bureau of Mines Mineral Trade Notes, March 1940, p. 16.
¹⁸ Shepstone, Harold G. (F. R. G. S.), The Conquest of the Dead Sea: Sci. American, January 1939, pp. 10-12.
¹⁹ Bureau of Mines Mineral Trade Notes, April 1940, pp. 18-19.
²⁰ Bureau of Mines Mineral Trade Notes, vol. 6, No. 6, June 1938, pp. 18-20.

MAGNESIUM COMPOUNDS, BROMINE, CALCIUM CHLORIDE, IODINE, SODIUM SULFATE, BORATES, AND MISCELLANEOUS SALINES

By Paul M. Tyler and A. T. Coons 1

SUMMARY OUTLINE

	Page	. •	Page
Magnesite Dolomite Brucite Other magnesium compounds Technologic trends in magnesia refrac- tories	1435 1435 1439 1440 1440		1446 1446 1448 1449 1450
Bromine	1443	1939	1452

Common salt, the most important saline mineral, and potash are discussed in separate chapters of this volume. Available data on other natural salines and on magnesite and other magnesium compounds are reviewed in this chapter, following the arrangement first adopted in

Minerals Yearbook, 1939.

Previous annual reviews have stressed the growing interchangeability of sources of magnesium. In 1939 serpentine was added to the list of minerals mined for their magnesium content. As noted in the Minor Nonmetals chapter of this volume, serpentine is being employed as an admixture in the new dolomite-base refractories, both to increase the magnesia content and to convert the lime into a nonslaking disilicate. Early in 1940 it was reported that the Dow Chemical Co. proposed to build a plant on the Gulf of Mexico, utilizing sea water as the source of additional raw material for metallic magnesium. A process for making either Epsom salt or monohydrated magnesium sulfate from North Carolina olivine was investigated; this process also is discussed briefly in the Minor Nonmetals chapter of this volume.

MAGNESIUM COMPOUNDS

MAGNESITE

Domestic production and imports of magnesite increased sharply in 1939. The apparent new supply of dead-burned magnesite was more than twice as large as in 1938 and larger than in any previous year except 1936 and 1937. It exceeded the 1925–29 average by 25 percent and was well ahead of recovery in iron and steel output, which failed to regain its predepression average, thereby tending to confirm the fact that new outlets for magnesite in other industries are offsetting any losses in demand caused by possible substitution of competitive refractory materials in the iron and steel industry.

1435

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

Salient statistics of the magnesite industry in the United States, 1935-39

	1935	1936	1937	1938	1939
Crude:					
Mined:					İ
Short tons	177, 154	207, 119	203, 437	1 97, 000	1 198, 980
Value 1	\$1, 192, 052	\$1,411,664	\$1, 483, 492	1 \$725, 000	1 \$1, 465, 190
Sold by producers:					
Short tons	1,626	1,669	1,952	919	1, 123
Value Average per ton ²	\$22, 345	\$24, 420	\$29, 203	\$12, 332	\$15, 752
Average per ton 2	\$13.74	\$14.63	\$14.96	\$13.42	\$14.03
Imports for consumption:	· ·				
Short tons	49	. 59	34	36	569
Value	\$1,084	\$1, 130	\$313	\$777	\$5, 456
Apparent new supplyshort tons	1, 675	1,728	1,986	955	1, 692
Percent domestic	97. 1	96.6	98. 2	96. 2	66. 4
Caustic calcined:					
Sold by producers:	1				
Short tons	6,049	7,998	10,031	7, 400	10, 157
Value	\$170, 326	\$221, 410	\$311, 326	\$228, 498	\$310, 102
Average per ton 2	\$28.16	\$27, 68	\$31.04	\$30, 88	\$30.53
Imports for consumption:	4-01-22	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	*******
Short tons	1, 441	2, 196	2,798	1,452	2, 218
Value	\$36,076	\$49,674	\$62,420	\$39, 551	\$51,884
Apparent new supplyshort tons	7, 490	10, 194	12, 829	8,852	12, 375
Percent domestic	80.8	78. 5	78. 2	83. 6	82.1
Dead-burned:					
Sold by producers:		1		1	l
Short tons	72, 438	89,979	83, 204	38, 738	86, 077
Value		\$1, 713, 527	\$1, 598, 336	\$730, 978	\$1,699,723
Average per ton 3		\$19.04	\$19.21	\$18.87	\$19.75
Imports for consumption:	410.00	Ψ10.01	410.21	\$20.0.	410.10
Short tons	24, 674	42,608	56,020	24, 990	44, 420
Value	\$429,830	\$662, 567	\$795, 047	\$371,669	\$800,664
Amount now wants short tone	97, 112	132, 587	139, 224	63, 728	130, 497
Apparent new supplyshort tons Percent domestic	74.6	67.9	59.8	60.8	66.0
rereent domestic	74.0	07.9	39.0	00.8	00.0
	1	1	1	I	1

Partly estimated; most of the crude is processed by the mining companies, and very little enters open market.

Average receipts f. o. b. mine shipping point.

Although the use of calcined magnesite is barely one-third as large as during the 1923–25 boom, the apparent new supply was larger than in any other year since 1930 except 1937. More crude magnesite was sold in 1939 than in 1938, and imports were unusually large, but the expense of shipping uncalcined material and competition from other sources of magnesia tend to prevent sales from increasing greatly.

Northwest Magnesite Co. (Farmers Bank Building, Pittsburgh, Pa.) operated two to five of its six kilns at Chewelah, Wash., 11 months and closed 1 month. Both the Finch and Allen-Moss quarries were operated in 1939, as in 1938. An experimental flotation plant has

been installed.

In California the new sea-water plant of the Westvaco Chlorine Products Corporation (405 Lexington Avenue, New York, N. Y.) was operated virtually at capacity, and its Red Mountain mine 30 miles south of Livermore was reopened during the summer. Before the completion in November of a new kiln at the mine the material was calcined at Patterson where the product of the Robert Hays Smith mine was treated until it was worked out in 1936. The company also continued mining at the Bald Eagle mine near Gustine and the Western mine above Livermore. Water-soluble magnesium oxide for fertilizer use was added to the list of products made from sea water;

a company brochure stated that "Tonnage into four figures had been used by fertilizer manufacturers prior to September 1939."

The Eastern Magnesia Talc Co., Inc. (206 Bank Street, Burlington, Vt.), made a trial shipment of its high-iron magnesite tailing in 1939 in expectation of a contract for regular deliveries in 1940.

Magnesite has been discovered in the vicinity of Llano, Tex., and a prospect is being currently developed by Meramec Minerals, Inc.,

a subsidiary of Basic Dolomite, Inc., of Cleveland, Ohio.

Fairly heavy shipments of Austrian magnesite were made early in 1939, but this trade dwindled promptly after April when the extra (countervailing) duty of 25 percent was levied against all shipments from Germany and later became virtually impossible because of the British blockade.

Freight rates even from the Orient advanced greatly after the outbreak of the war in Europe. Cargo rates from Dairen to United States Atlantic ports jumped from \$10 to \$13 a ton, with \$20 mentioned as an early possibility. Imports from Manchukuo, which are credited in the United States import statistics as coming from Kwantung, began to increase markedly 2 years ago. This material is not always uniform, but it is usually low in iron (less than 2 percent) and had begun to displace Austrian material even before war was The inclusion of Austria and Czechoslovakia in Greater Germany gave the German Government almost complete control of the Magnesite Cartel, which had influenced production in Hungary and other parts of the former Austro-Hungarian Empire. can still be made from Yugoslavia but are subject to the handicaps of moving through the Mediterranean and war-infested parts of the Atlantic Ocean. A little Chinese magnesite has been imported into the United States, apparently from areas not controlled by the Japanese. Large deposits of high-grade magnesite have been reported in Chosen, but so far as is known no magnesite from this source has been exported to the United States.

The magnesite deposits at Tashikkiao (Manchukuo) have an annual output of over 300,000 metric tons and are among the most important in the world. About 60 percent of the output is exported to Europe and America and the remainder to Japan. Reserves are estimated at 5 billion tons. Other extensive magnesite deposits are being worked in Southern Manchukuo, although exploitation in this area is handicapped by transportation difficulties. The leading producer is the Nippon Magnesia Chemical Co., which makes brick and calcined

magnesia.2

²The Chemical Age (London), Foreign News: Vol. 42, No. 1080, Mar. 9, 1940, p. 146.

Magnesite imported for consumption in the United States in 1939, by countries and classes

	Crude -			Caustic		Dead-burned and grain and		
Country			Lump		Ground		periclase	
	Short	Value	Short	Value	Short tons	Value	Short tons	Value
Canada China Cuba Czechoslovakia¹ Germany¹ Hungary¹ India, British Kwantung Netherlands U, S, S, R,¹ United Kingdom Yuzoslavia	535	\$4, 776 	958	\$13, 822	949	\$370	177 4, 341 3, 567 21, 279 5, 081 11 7, 024 	\$17, 254 53, 860 53, 902 458, 814 81, 506 132 84, 256 50, 940
I ugosus in-	569	5, 456	1, 182	19, 588	1, 036	32, 296	44, 420	800, 664

¹ For statistical purposes trade with the Sudeten area, as far as ascertainable, is included with Germany, while trade with the other Czechoslovak Provinces occupied by Germany, Hungary, and Poland has been included with these countries since Mar. 18 or 19, 1939. After Nov. 16, 1939 trade with Danzig and that part of Poland occupied by Germany has been included with Germany and trade with that part of Poland occupied by U. S. S. R. has been included with U. S. S. R.

Price quotations of the Engineering and Mining Journal remained at \$22 and \$25 a short ton for dead-burned magnesite f. o. b. Chewelah, Wash., and California shipping points, respectively. For other products, its quotations f. o. b. California were nominally: Artificial periclase, 94 percent MgO, \$65; 90 percent \$35; caustic, 95 percent MgO, white color, \$40; 85 percent MgO, no color standard, \$37.50 a ton. The base price of magnesite brick (9-inch straight) continued at \$67 a ton.

Average values realized on domestic sales in 1939 were somewhat higher on dead-burned magnesite, probably owing to a larger proportion of the more expensive California periclase. The figures for crude, caustic calcined, and dead-burned magnesite, respectively (1938 figures in parentheses), were \$14.03 (\$13.42), \$30.53 (\$30.88), and \$19.75

(\$18.87).

World production of magnesite, 1934-38, by countries, in metric tons 1

[Compiled by M. T. Latus]

Country	1934	1935	1936	1937	1938
Anglo-Egyptian Sudan		256	(2)		(2)
Australia:	i	i	' '	1	1
New South Wales	15, 902	15, 940	17, 459	19, 807	19, 465
Queensiand	1 42	102	102		10, 100
South Australia	208	51	118	71	231
Victoria	26	335	219	143	122
Western Australia				1	10
Canada 3	27, 385	27, 112	(4)	(4)	(4)
China (Manchuria)	100, 329	225, 654	191, 568	331,000	(4) (2) (2)
Chosen.	3 169	2, 410	14, 258	37, 000	25
Czecnosiovakia	58, 235	70, 838	83, 270	92, 143	74, 707
Germany:	1	,	00, 210	02,110	12,101
Austria	258, 382	300, 312	397, 776	459, 233	6 415, 000
Prussia	11,010	13, 818	15, 026	21, 091	23, 860
Greece		93, 563	116, 106	161, 676	168, 243
India, British	15, 215	17, 257	15, 716	26, 586	26, 022
Italy	1,100	1, 251	3, 153	5, 392	6, 157
Norway	2,500	2, 526	3, 116	2,096	2, 098
Turkev	628	1,092	2, 247	1, 365	846
Union of South Africa.	1,667	1, 485	1, 694	1,752	2, 615
U. S. S. R.		475,000	500,000	(2)	(2)
United States	91,601	160, 711	187, 894	184, 554	88,000
Yugoslavia (Serbia)	25, 086	30, 225	39, 008	41, 967	39, 314

¹ Unless otherwise stated quantities in this table represent crude magnesite mined.

Data not available.
 Magnesitic dolomite.

DOLOMITE

In 1939 sales of dead-burned dolomite by domestic producers increased to another new record, 671,561 short tons valued at \$5,447,554 compared with 366,626 tons valued at \$3,095,355 in 1938 and 617,706 tons valued at \$5,217,833 in 1937.

As shown in the table on page 1375 of Minerals Yearbook, 1939, imports of dead-burned dolomite, comprising principally impure Canadian magnesite or "Basifrit," rose from 6,051 tons valued at \$152,795 in 1931 to a maximum of 13,928 tons valued at \$349,678 in 1936. Basic Dolomite, Inc. (845 Hanna Building, Cleveland, Ohio), acquired the American rights to a similar product in 1938 and is reported to be making it from ordinary dolomite admixed with magnesia obtained from brucite and serpentine. In 1939 imports totaled only 186 short tons valued at \$4,260 compared with 2,875 tons valued at \$67,340 in 1938.

Dead-burned dolomite sold in and imported into the United States, 1935-39

	Sales		Imports 1			Sales		Imports 1	
Year	Short tons	Value	Short tons Value	Value	Year	Short tons	Value	Short tons	Value
1935 1936 1937	455, 258 596, 751 617, 706	\$3, 785, 834 4, 887, 243 5, 217, 833	7, 519 13, 928 9, 083	\$189, 714 349, 678 231, 084	1938 1939	366, 626 671, 561	\$3, 095, 355 5, 447, 554	2, 875 186	\$67, 340 4, 260

¹ Reported as "dead-burned basic refractory material."

Data for production not available; value reported as follows: 1936, \$768,742; 1937, \$677,207; 1938, \$420,261.
 Exports, less imports, of crude and sintered magnesite, the sintered being reduced to crude on the basis of 2.1 tons crude to 1 ton sintered.

6 Estimated production.

BRUCITE

The production of brucite from the deposit near Luning, Nev., increased further in 1939, but the Bureau of Mines is not at liberty to publish the figures separately and the material is included under "Other magnesium compounds." Basic Ores, Inc., a subsidiary of the principal consumer, Basic Dolomite, Inc., is the only domestic

producer.

Commercial deposits of brucite were first discovered in Canada in 1937 at Rutherglen in the Nipissing district, Ontario, by M. F. Goudge of the Dominion Bureau of Mines. Subsequent field work has disclosed other deposits in the same area and in the Bryson and Wakefield areas of Quebec, all within easy reach of transportation. The brucite occurs as small crystals or grains comprising 25 to 30 percent of the surrounding limestone. The Bureau at Ottawa has worked out a process of calcination, hydration, and separation that yields calcined brucite granules analyzing 94.4 percent magnesia and only 0.40 percent CaO, the remainder being chiefly water (4.38 percent) and fractions of 1 percent silica, iron, and alumina.³

OTHER MAGNESIUM COMPOUNDS

The output of magnesium compounds other than magnesite and dolomite produced from natural sources and sold or used in the United States totaled 85,754 short tons valued at \$1,907,944 in 1939 compared with 70,733 tons valued at \$1,588,570 (revised figure) in The principal item is magnesium sulfate, but magnesium chloride is a close second, and brucite (natural magnesium hydroxide) has become an important factor. These figures include a fair amount of carbonate and a little oxide, but the output of the new sea-water magnesium oxide sold for fertilizer by the California Chemical Co. Division of the Westvaco Chlorine Products Corporation is included in the statistics of sales of caustic calcined magnesite. This product carries three times as much magnesium as kieserite but sells for much less than three times the kieserite price. It is bought by manufacturers of mixed fertilizers, especially fertilizers used in magnesium-deficient areas. Not only is it a magnesium carrier, but also it acts as a soil conditioner and sweetener and is reported to improve the physical characteristics of the fertilizer itself owing to the absorption of free acid and excess moisture.

Magnesium compounds imported for consumption in the United States, 1930-34 (average) and 1935-39

Year	Magnesium chloride (anhydrous and n. s. p. f.)		Magnesium sul- fate (Epsom salts)		Calcined magne- sium sulfate or calcined kieserite (not fertilizer)		Oxide or calcined magnesia	
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1930-34 (average)	430 25 16 32 41 28	\$8, 267 1, 095 584 1, 120 1, 572 960	4, 179 1, 530 2, 167 1, 953 799 198	\$51, 761 18, 495 25, 008 26, 771 12, 328 3, 641	430 1, 834 2, 720 4, 117 3, 193 2, 472	\$6, 544 30, 291 44, 664 71, 889 66, 470 43, 455	195 98 119 109 46 38	\$69, 426 36, 297 39, 098 35, 643 15, 947 14, 755

³ Goudge, M. F., A Preliminary Report on Brucite Deposits in Ontario and Quebec and Their Commercial Possibilities: Canadian Bureau of Mines Memorandum Ser. 75, 1939.

Magnesium compounds imported for consumption in the United States, 1930-34 (average) and 1935-39—Continued

Year	Magnesium car- bonate, precipi- tated		Manufactures of carbonate of mag- nesia		Magnesium sili- cofluoride or fluo- silicate		Magnesium salts and compounds, n. s. p. f.	
- •	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1930-34 (average)	291 302 377 521 470 776	\$26, 662 27, 935 34, 396 51, 684 53, 151 68, 934	(1) 6 7 3	\$15 489 562 209	24 49 (3) (3) (3) (3) (3)	\$2,654 6,500 (3) (3) (3) (3)	(2) (2) 3 186 3 70 3 48 3 59	(2) (3) 3 \$29, 355 3 20, 462 3 17, 146 2 26, 288

Imports of most magnesium compounds declined further in 1939, along with other products imported from Germany; but imports of precipitated carbonate, which come chiefly from the United Kingdom, increased greatly after the reduction in duty under the reciprocal trade agreement on January 1, 1939, from 1½ cents to 1 cent a pound. The following notes on imported items are taken from a recent report: 4

Kieserite, a hydrous magnesium sulfate (MgSO₄·H₂O), has been produced commercially almost exclusively at Stassfurt, Germany, where it occurs abundantly in the potash mines. Formerly it was calcined and used chiefly as raw material for making Epsom salts (MgSO₄·TH₂O). Imports of kieserite were reported in official statistics of the United States for many years appearing the states of the state of t reported in official statistics of the United States for many years, averaging 6,455 long tons annually in 1910-14, after which they dropped off and eventually ceased. Kieserite for fertilizer use is exempt from duty under par. 1706 of the Tariff Act of 1930, but imports were probably small or nonexistent until 1935 when they were included in the official statistics along with imports of "other substances used chiefly for fertilizer," amounting to 11,428 long tons valued at \$142,902. In 1937 the imports under the latter classification amounted to 10,781 long tons valued at \$99,054, and a study by the Chemical Division of the Bureau of Foreign and Domestic Commerce revealed that this was entirely kieserite. In 1938 kieserite was again listed separately in the official statistics, and imports aggregated 14,221 long tons. About one-third of this was imported into New England for use principally on potato fields in Maine, considerably more than one-third was entered at Florida ports for use on citrus fruits, and the remainder was used mainly by tobacco growers in Virginia and the Carolinas. In 1939 shipments diminished along with those of other German commodities, only 2,245 long tons valued at \$14,511 being imported during the first 9 months before war conditions cut off further deliveries.

In 1935 the official statistics showed imports of "calcined magnesium sulfate or calcined kieserite (not fertilizer)" of 1,834 short tons valued at \$30,291. This material is dutiable at 25 percent ad valorem under par. 5 of the Tariff Act of 1930 as a chemical compound not specially provided for, and according to a study made by the United States Tariff Commission it is used principally by rayon producers in the coagulation of cellulose solutions into filaments. After rising to 4,117 short tons valued at \$71,889 in 1937, imports under this classification declined

in 1938 and again in 1939.

Epsom salts, magnesium chloride, magnesium carbonate, and calcined magnesia are provided for at specific rates of duty under par. 49 of the Tariff Act of 1930. Imports of magnesium chloride have been small for several years and were further reduced in 1939. An increase occurred in those of precipitated carbonate which arose to a new record, probably as a result of the reduction in duty under the British Reciprocal Trade Agreement which was extended to all countries Domestic production of precipitated carbonate was 7,301 tons except Germany.

¹ Less than 1 ton. ² Not separately classified prior to 1936. ² Magnesium silicofluoride or fluosilicate included under "magnesium salts and compounds, n. s. p. f."

⁴ Tyler, Paul M., and Bowles, Oliver, Nonmetallic Mineral Industries in 1939: Bureau of Mines Inf. Circ. 7106, 1940, pp. 18-19.

in 1937 as reported by seven producers to the Bureau of the Census, but most of this was technical or basic carbonate used for pipe coverings or other heat insulation, whereas imports are mainly for medicinal or pharmaceutical use.

A process for making synthetic kieserite or magnesium sulfate from olivine was tested in 1939. Parts of a large deposit of olivine at Webster, N. C., are reported to contain 25 to 35 percent MgO and up to 1½ percent nickel, which can also be recovered.

Magnesol, a synthetic silicate of magnesium, recently has been used as a competitor of bleaching clays in a newly patented process of oil

refining.

TECHNOLOGIC TRENDS IN MAGNESIA REFRACTORIES

A trend toward still wider use of dolomite in refractories is forecast by successful experiments in overcoming the tendency of the lime content to slack. Pioneer work in this field in Canada is well-summarized in a recent paper 5 released by the National Research Council (Ottawa). The chief Canadian raw material for making basic refractories is the so-called magnesitic dolomite which occurs in large deposits at Kilmar, Quebec. This material contains only 38 percent MgO and 11 percent CaO and corresponds mineralogically to a mixture of 57 percent magnesite, 35 percent dolomite, and 8 percent serpentine. In the production of thermoplastic refractories for open-hearth furnaces blends of various classes of rock and iron ore are made into a material containing roughly 65 percent periclase and 20 percent dicalcium silicate (both of which are extremely refractory), along with 15 percent low-melting calcium aluminate and ferrites. Such material can be burned-in on furnace hearths in much the same way as mixtures of slag and ordinary dead-burned magnesite, but the resulting lining is claimed to be superior. This development is strategically important, as it relieves the British Empire steel industry of all anxiety from unavailability of Austrian magnesite.

Chemically bonded magnesia-base refractories are now being made for use where high burning-in temperatures (3,000° F.) are not obtainable. Preliminary tests with thermoplastic magnesitic dolomite clinker, liquid sodium silicate, and an additional agent to increase strength resulted in failure, but addition of a new chemical has produced a chemically bonded ramming mixture that has been applied successfully in converters, anode furnaces, and reverberatory furnaces in the copper industry and in open-hearth and electric furnaces in the

steel industry.

Another development has been production of unburned brick. Owing to the dicalcium silicate in the magnesitic dolomite a strong

chemical bond is obtained with or without chrome ore.

Chrome-ore additions are desirable not only for unburned brick but also for nonspalling burned brick, tap-hole blocks, and linings for kraft furnaces. Although chrome ore has proved of enormous advantage in combination with magnesia-bearing minerals, it also has limitations, according to the afore-mentioned authority. To avoid undue absorption of iron oxide, resultant swelling, and possible failure, a pure magnesia brick may be employed. Recent work with Canadian brucite has produced satisfactory brick of this character.

In making magnesite brick American plants have depended mainly on imported grain magnesite, owing less to technologic than to eco-

⁵Lathe, F. E., Basic Refractories in Canada, 1914 and 1939; Trans. Canadian Inst. Min. and Met., vol. 43, 1940, pp. 83-99-

nomic reasons. The plants are situated on the Atlantic seaboard, where overseas shipments do not have to bear the additional expense of railroad transportation. Moreover, the draw-back on duties paid on imported magnesite can be refunded only in respect to export products in which the imported magnesite is actually used and, since the doctrine of substitution of domestic raw materials (applied to manufactures of nonferrous metals) has not been accepted as applicable to magnesite refractory products exported, this factor is important. As much as one-third of the magnesite now used in refractory brick and other shapes may be domestic, and the proportion probably is larger in magnesite-chrome brick. Even straight magnesite brick can be made from domestic magnesite alone without any impairment of quality, although the trend is to use mixed materials in the manufacture of high-heat-duty brick. Virtually all chrome brick now contain a certain amount of magnesite, and according to at least one authority the most satisfactory mixture for general service is 75 percent chrome ore and 25 percent dead-burned magnesite. Owing to displacement of medium-duty by high-duty refractories the total consumption of straight magnesite, straight chrome, and magnesitechrome brick has increased, but owing to the preferences for mixed materials about twice as much chrome ore as dead-burned magnesite is now consumed in the manufacture of these high-grade products.

BROMINE

Production of bromine in the United States continued to climb much faster even than motor-fuel demand and soared to 18,941 short tons valued at \$7,611,400 in 1939 compared with 16,662 tons (revised figure) valued at \$6,610,056 in 1938. The use of bromine in the form of ethylene dibromide for making tetraethyl lead compounds for anti-knock motor fuels was begun in 1923 and has been the principal outlet for bromine since 1928, when total sales were only 1,082 tons valued

at \$649,475.

Bromine is recovered from salt-well brines by five companies in Michigan and five in the West Virginia-Ohio salt area. By far the largest producer is the Ethyl-Dow Corporation, which recovers bromine from sea water at Kure Beach near Wilmington, N. C. second largest producer is the Dow Chemical Co., which, in addition to its joint interest in the former corporation, recovers large quantities of bromine from its brine operations at Midland, Mich. The third largest producer is the Westvaco Chlorine Products Co., which not only operates in West Virginia but obtains bromine from sea-water bitterns at Chula Vista and Newark, Calif. According to a recent report 6 the American Potash & Chemical Corporation plans to add bromine to the list of products it recovers from Searles Lake brine. Some concentrated products of this brine carry 100 times as much bromine as sea water, and the quantity of brine treated in 1939 carried 10,000,000 pounds. The proposed installation, however, will recover only 2,000,000 to 3,000,000 pounds annually, using the richer liquors.

The foreign market value of imports of bromine or its compounds was only \$38,097 in 1939 compared with \$277,527 in 1938. Hereto-

⁶ Oil, Paint and Drug Reporter, Bromine to be Made by Potash Concern: Vol. 137, No. 5, January 29, 1940, pp. 3 and 37.

fore imports of ethylene dibromide have been a factor in the domestic market, but in 1938, as noted in Minerals Yearbook, 1939 (p. 1379), a countervailing duty of 3.775 cents a pound was assessed on imports of

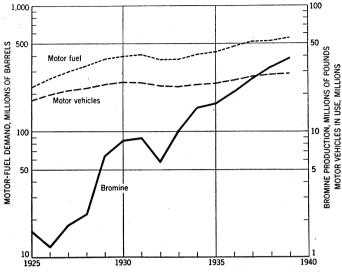


FIGURE 1.—Bromine production compared with motor-fuel demand and motor vehicles in use (July 1) in the United States, 1925-39.

this product, all of which came from Germany, and none was imported in 1939.

Bromine and bromine in compounds sold or used by producers in the United States, 1935-39

Year	Pounds	Value	Year	Pounds	Value
1935 1936 1937	16, 428, 533 20, 609, 025 26, 200, 256	\$3, 483, 239 4, 038, 438 5, 180, 177	1938 1939	133, 324, 116 37, 882, 005	\$6,610,056 7,611,400

¹ Revised figures.

Bromine and bromine compounds imported for consumption in the United States, 1938-39, by countries

	19	38	1939		
Commodity and country	Pounds	Value	Pounds	Value	
Ethylene dibromide: Germany	1, 210, 005 42	\$263, 459 30			
Other bromine compounds: France	733 527 10	5, 110 8, 611 317	2, 011 1, 503	\$19 9, 51 28, 38	
	1, 270	14, 038	3, 518	38, 09	

CALCIUM CHLORIDE

Production and sales of calcium chloride and mixed calcium-magnesium chloride (basis 75 percent CaCl₂) obtained directly from natural brines increased to 108,441 short tons valued at \$1,307,717 in

1939 compared with 96,470 tons valued at \$1,218,938 in 1938 and 97,142 tons valued at \$1,295,403 in 1937. Calcium chloride is also produced as a byproduct of soda ash in the Solvay process, but sales of this material are not included in the Bureau of Mines tables that follow, as the calcium comes from limestone and the chlorine mostly from sodium chloride that is reported elsewhere as salt in brine. The total domestic sales, including byproduct chlorides, have been estimated at 258,000 tons in 1938, of which 39 percent was used for road treatment, 15 percent for dedusting coal and coke, 12 percent for ice

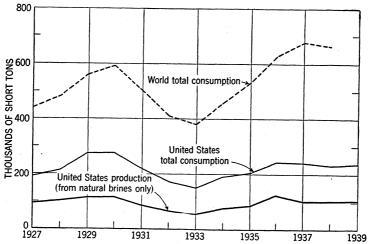


Figure 2.—Domestic production of calcium chloride (and mixed calcium-magnesium chloride) from natural brines compared with United States and world consumption, 1927–39.

control, and 6 percent in refrigerating brines; 28 percent was taken by resellers, exports, or minor consuming outlets.

Calcium (calcium-magnesium) chloride from natural brines sold by producers in the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1936 1937	83, 546 125, 911 1 97, 142	\$1, 039, 103 1, 909, 908 1, 295, 403	1938 1939	¹ 96, 470 ¹ 108, 441	\$1, 218, 938 1, 307, 717

¹ Calculated to basis of 75 percent CaCl₂.

Calcium chloride imported for consumption in and exported from the United States, 1935-39

Year	Imp	orts	Exports	
- COA	Short tons	Value	Short tons	Value
1935	2, 004 2, 128 2, 205 1, 642 996	\$26, 987 25, 678 24, 908 21, 174 12, 314	30, 736 27, 831 21, 732 24, 118 19, 382	\$525, 179 503, 966 415, 309 396, 981 318, 199

IODINE

Domestic production of iodine increased again in 1939. The Dow Chemical Co. is the leading producer, having taken over the business of its subsidiary Io-Dow Chemical Co. on March 31, 1939. The company plant is at Long Beach, Calif. The only other producer is the Deepwater Chemical Co. (plant at Compton, Calif.) which recently has operated under a process patent controlled by Dow. The General Salt Co., Long Beach, Calif., one of the pioneer domestic producers, has been idle for several years and reported no output in 1939.

Imports of iodine (all crude) totaled 200,000 pounds valued at \$168,238 compared with 570,532 pounds valued at \$464,303 in 1938 and a record quantity of 1,967,148 pounds valued at \$1,784,491 in 1937.

The price of crude iodine, after dropping to 81 cents a pound in 1936, rose to \$1.02 in 1938, and the average for 1939 sales remained

at approximately that figure.

Chile has been the leading producer of iodine for many years, but substantial quantities have been produced also in France, the United Kingdom, Ireland, Norway, Japan, Netherland Indies, and British India. According to a recent study, Japanese exports dropped from 78,708 kg. in the fiscal year 1932–33 to 4,586 in the fiscal year 1937–38, whereas domestic consumption increased from 34,668 to 40,972 kg. Cost of production has increased above the cost of importation as a result of increased wages, and the supply of kelp on Hokkaido Island has diminished. Two companies produce iodine from subterranean brines, but prospecting has failed to develop additional supplies from this source.

Iodine produced in the United States, 1935-39

Year	Pounds	Value	Year	Pounds	Value
1935	245, 696 233, 925 299, 286	\$248, 654 212, 635 242, 422	1938 1939	(1) (1)	(1) (1)

¹ Bureau of Mines not at liberty to publish figures.

Crude iodine imported for consumption in the United States, 1935-39

Year	Pounds	Value	Year	Pounds	Value
1935	375, 819 592, 217 1, 967, 148	\$420, 793 558, 326 1, 784, 491	1938 1939	570, 532 200, 000	\$464, 303 168, 238

SODIUM SULFATE

Sales of natural sodium sulfate jumped 71 percent to 137,479 short tons valued at \$1,027,876 in 1939 compared with 80,210 tons valued at \$596,812 in 1938, the previous high record. Census data on total production in 1939, including the output of chemical plants, are not yet available, but imports of salt cake increased slightly, and consumption in the United States is believed to have been as large or

⁷ Bernard, L. M., Le Marché de l'iode au Japon: Chim. et ind., vol. 43, No. 5, March 5, 1940, pp. 439-443,

larger than in 1937, the record year. For 1937 the Bureau of the Census reported a production of 269,177 tons of salt cake, of which 241,347 tons valued at \$2,367,616 were for sale.

Synthetic salt cake, a sintered product of soda ash and sulfur in molecular proportions, is a promising substitute for sodium sulfate in its leading use (kraft paper), especially in the South, according to Walter L. Lovell of the Mathieson Alkali Works, Inc.⁸ A large plant is to be erected to produce this new-process salt cake on Lake Charles, La.

The large increase in Canadian output of sodium sulfate in recent years is due to its use in smelting nickel-copper matte and in the manufacture of kraft paper. Production in 1939 is reported officially as 71,453 tons valued at \$627,941 compared with 63,009 tons worth \$553,307 in 1938—all from Saskatchewan. Not included in these figures were 30 tons valued at \$186 shipped from deposits in Alberta.

After reaching a peak of 220,176 short tons in 1937, imports of salt cake dropped to 142,429 tons in 1938 and amounted to only 148,794 tons in 1939. Notwithstanding the European war 26 percent of the total imports for the year came in during the fourth quarter, and receipts from Chile which rose to 26,079 tons in 1938 dropped to 1,503 tons in 1939. Germany supplied 103,259 tons, almost as much as in 1938, and 5,111 tons came from Poland and Danzig (before German occupation) and 25,607 tons from Belgium. Imports from Canada increased from 8,262 tons in 1938 to 9,518 in 1939. As usual virtually all the European salt cake imported was entered at South Atlantic or Gulf ports, principally for use in southern kraftpaper mills, which also are served by the recently expanded salt-cake mining industry in Texas.

Sodium sulfate imported for consumption in the United States, 1938-39, by countries

Country	Crude (salt cake)		Crystallized (Glauber salt)		Anhydrous		Total	
Country	Short tons	Value	Short	Value	Short tons	Value	Short tons	Value
1938 Belgium Canada Chile Czechoslovakia Germany Netherlands. Sweden 1939 Belgium Canada Chile France Germany '	8, 262 26, 079 104, 615 3, 473 	\$57, 323 178, 416 1, 059, 020 37, 207 1, 331, 966 291, 619 66, 477 10, 575 931, 553	556 783 1 1,340	\$4, 496 4, 640 49 9, 185	6, 458 23 1 6, 483	\$27 115, 916 546 25 116, 514 7, 358 90, 262	1 8, 262 26, 079 556 111, 856 3, 496 2 150, 252 25, 607 9, 518 1, 503 444 108, 774	\$27 57, 323 178, 416 4, 496 1, 179, 576 37, 753 74 1, 457, 665 291, 619 66, 477 10, 575 7, 358 1, 024, 335
Netherlands Poland and Danzig ¹ United Kingdom	1, 552 5, 111 2, 244 148, 794	14, 034 55, 621 24, 605 1, 394, 484	468	2, 520	5, 491	97, 620	1, 552 5, 111 2, 244 154, 753	14, 034 55, 621 24, 605 1, 494, 624

 $^{^1}$ For statistical purposes, after Nov. 16, 1939, trade with Danzig and that part of Poland occupied by Germany has been included with Germany.

⁸ Oil. Paint and Drug Reporter, Application of Synthetic Saltcake: Report of meeting of Tech. Assoc. Pulp and Paper Ind., vol. 137, No. 9, February 26, 1940, p. 53.

²⁴⁴⁶¹⁵⁻⁴⁰⁻⁹²

Crude sodium sulfate (salt cake) imported for consumption in the United States, 1938-39, by customs districts, in short tons

Customs district	1938	1939	Customs district	1938	1939
Atlantic ports: Georgia. Maryland. New York. South Carolina. Virginia. Gulf ports: Florida. Galveston.	25, 601 1, 008 803 23, 372 700 42, 780 1, 212	27, 533 1, 503 33, 672 901 50, 541 1, 207	Gulf ports—Continued. Mobile	36, 067 2, 624 7, 592 670 142, 429	21, 076 2, 844 9, 094 423 148, 794

BORATES

Owing to a large increase in domestic consumption the production (shipments) of borates in the United States increased to 249,976 short tons valued at \$5,882,302 in 1939 compared with 219,513 tons valued at \$4,570,316 in 1935. In 1937, the peak year, production was 358,898 tons valued at \$7,232,897, of which 154,052 tons having a declared value of \$4,715,691 were exported. In 1938 exports declined sharply to 77,519 tons valued at \$2,642,446, and in 1939 they were 91,139 tons valued at \$3,230,304.

The production figures for 1939 include borax and kernite (from California) and small quantities of colemanite (from California) and ulexite (from Nevada).

Salient statistics of the boron-mineral industry in the United States, 1935-39

	1935	1936	1937	1938	1939
Sold or used by producers: 1 Short tons	272, 967 \$5, 381, 560 748	313, 759 \$6, 156, 123 1, 887	358, 898 \$7, 232, 897 724	219, 513 \$4, 570, 316 631	249, 976 \$5, 882, 302 ² 774
Value	\$181	\$457	\$176	\$131	² \$170
Exports: Short tonsValue	\$3, 242, 350	102, 021 \$3, 119, 850	154, 052 \$4, 715, 691	77, 519 \$2, 642, 446	91, 139 \$3, 230, 304
Apparent consumption: Short tons	158, 520	211, 739	204, 846	141, 994	158, 837

^{1 1935-37:} Borax, colemanite, kernite, and boric acid (calculated as borax); 1938: Borax, kernite, and boric acid (calculated as borax); 1939: Borax, colemanite, kernite, ulexite, and boric acid (calculated as borax).

Although borax was used as a flux in fire refining of gold at least as early as the fourteenth century, large tonnages were not employed until new discoveries in California reduced the price to about \$30 a ton after 1920. During the last 2 decades the use of borax in the United States has increased approximately three fold, owing partly to its growing employment in enamelware but principally to its use in glass manufacture. Recently boron has been found to be one of the so-called minor elements that stimulate plant growth and inhibit the development of certain plant diseases. Borax already is included in many mixed fertilizers, but the quantities used are so small that only wide recognition of its desirability as a fertilizer constituent will result in any appreciable increase in demand from this source.

borax).

Also 348 pounds of crude valued at \$3.

Germany, which before 1938 imported as much as 50,000 short tons of crude and refined borax a year, chiefly from the United States, has taken definite steps to reduce consumption, first as a means of conserving foreign exchange and later as a war measure. In April 1939 the use of boron materials was prohibited in the manufacture of leather, finishing agents used by the leather goods and hat industries and in the manufacture of cosmetics, office glue, plywood, casein, and After war was declared the quantities used in ceramic glazes was limited to a maximum of 10 percent B2O3 of the dry mix for primary enamel (and then only for one coat) or to 5 percent for surface enamel. In the glass industry the use of boron was restricted to optical and scientific or technical glass. To replace part of the borax in enamels, which hitherto have been responsible for most of Germany's consumption of imported boron minerals, metallurgical slags have been used successfully, especially those from the smelting of siliceous domestic ores by a newly developed process employing soda ash as a desulfurizing agent.

World reserves of boron minerals are abundant, but known sources are confined to a few countries, chiefly the United States, Chile, Argentina, Peru, Italy, and Turkey, although borax also has been reported in Tibet, Persia, India, and Ceylon. Perhaps the most interesting operations are in Italy where boric acid is a joint product of the utilization of volcanic gases, which also yield ammonia, carbon dioxide, and heat and power from natural steam. The history of the industrial development of the "soffioni" or vapor springs at Laiderello and elsewhere in the Province of Pisa is told in a recent article. A brief but competent review of the industry in the United States, which is by far the leading producer of borax, has been presented in a

paper by Kitchen. 10

SODIUM CARBONATES

Sales of natural sodium carbonates (chiefly soda ash but also bicarbonate and trona) rose in 1939 to an all-time record of 124,743 short tons valued at \$1,528,810 compared with 100,010 tons valued at \$1,235,328 in 1938 and a previous peak of 104,711 tons valued at

\$1,191,485 in 1937.

Only a small percentage of the total production of soda ash or sodium sulfate comes from natural resources. According to the annual review in Chemical and Metallurgical Engineering (vol. 47, No. 2, February 1940, pp. 70–71 and pp. 86–87) the total domestic output of soda ash in 1939 was believed to be 2,964,000 short tons, most of which (apart from the small amount of natural soda and 7,000 tons of electrolytic soda produced at pulp mills) was ammonia soda ash. Production of caustic soda in 1939 is estimated as 930,000 short tons, composed of 465,000 tons each of lime-soda caustic and electrolytic caustic, compared with a revised estimate of 420,000 of lime-soda caustic and 415,000 tons of electrolytic caustic in 1938 and the revised census figures of 488,807 tons of lime-soda caustic and 479,919 tons of electrolytic caustic in 1937.

Nigro, S., Utilization of Volcanic Gases in Italy: Mines Mag. (Colorado), vol. 29, No. 4, April 1939, pp. 169–172, 184.
 Kitchen, E. M., Borax—Its Manufacture and Uses: Am. Fertilizer, vol. 91, No. 7, pp. 7–9, 24, 26.

Estimated distribution of soda ash consumed in the United States, 1937-39 by industries, in short tons 1

Consuming industry	1937	1938	1939
Glass Soap Caustic and bicarbonate Other chemicals Cleansers and modified sodas Pulp and paper. Water softeners Petroleum refining Textiles Exports Miscellaneous	903, 000 180, 000 751, 000 650, 000 140, 000 104, 000 32, 000 10, 000 38, 000 55, 000 184, 000	660, 000 187, 000 655, 000 556, 000 120, 000 85, 000 27, 000 10, 000 30, 000 51, 000 149, 000	830, 000 198, 000 716, 000 640, 000 105, 000 30, 000 11, 000 43, 000 84, 000 170, 000

¹ Chem. and Met. Eng., vol. 47, No. 2, January 1940, p. 70.

Domestic production of natural sodium carbonates has been limited almost exclusively to the output at Searles Lake and at Owens Lake, Calif., where borax and other products help to bear the cost of recovery. Common salt, soda ash or sodium bicarbonate, and possibly small amounts of potash salts and borax could be obtained from the waters of Abert Lake or Summer Lake in southeastern Oregon, but a recent study 11 casts doubt upon the commercial feasibility of working these

deposits under existing conditions.

The Geological Survey discovered a large deposit of trona at a depth of about 1,600 feet on Government land in Sweetwater County, Wyo., in 1939. The trona beds were found in cores of an oil and gas well being drilled by a commercial company. Associated with the trona were small quantities of two exceedingly rare minerals, northupite and pirssonite, both complex carbonates. A new mineral in these formations was identified by Fahey, 12 who named it "shortite"; it is a double carbonate of sodium and calcium.

OPERATIONS AT OWENS LAKE, CALIF.

Although operations at Searles Lake have been described frequently, less information has been published on Owens Lake. This lake, in Inyo County between the Sierra Nevada on the west and the Inyo Range on the east, covers an area of about 17.2 square miles and has no outlet. The Owens River, before being diverted in 1937 for the municipal water supply of Los Angeles, entered the basin from the north, and the lake waters were a dense brine containing common salt, soda, borax, and other soluble salts. Subsequently the lake has dried and, like Searles Lake, has become a vast bed of solid salt with only its crevices filled with brine, except occasionally in an unusually wet season when it may be flooded. The following notes on technology originally were published in Bureau of Mines Mineral Trade Notes for September 1939:

The Pacific Alkali Co. has a plant on the west shore of Owens Lake at Bartlett, about 10 miles south of Lone Pine (H. S. Mudd, president, George E. White, general manager, George D. Dubb, superintendent). According to a recent report (Tucker, W. B., and Sampson, R. J., Mineral Resources of Inyo County: Calif. Jour. Mines and Geol., State Mineralogist's Report 34, No. 4, October

II Stafford, O. F., Preliminary Report Upon Oregon Saline Lakes: Oregon State Dept. of Geol. and Min. Ind., G. M. I. Short Paper 1, 1939, 4 pp.

13 Fahey, J. J., New Mineral Discovered: Glass Ind., vol. 20, No. 8, August 1939, p. 300.

1938), this company pumps brine through 2½ miles of 14-inch pipe into three vats, which range from 15 to 50 acres in area. After being concentrated by solar evaporation to 12 to 14 percent soda, the brine is run to storage reservoirs and thence is pumped into 16 carbonating tanks, each 6 feet in diameter and 80 feet in Carbon dioxide gas made from dolomite is forced into these tanks, thereby precipitating sodium carbonate, which is drawn off from the bottom as a sludge. centrifuged, and then dried and screened for laundry use or calcined in Herreschoff furnaces into soda ash, which is screened and sacked for shipment. After the soda is removed, the mother liquor is chilled to precipitate borax, passed through an Oliver filter, and returned to the lake. The crude borax cake is redissolved and the solution is treated chemically, clarified in Sweetland filters, and chilled The purified borax crystals are recovered in a centrifugal drier, and this liquor likewise goes back to the lake. This plant can produce about 1,000 tons of soda and 2,000 tons of borax per season and employs only 50 men.

Early in 1917 the California Alkali Co., an affiliate of the Great Western

Electro-Chemical Co., erected a plant at Cartago on the southwest shore of the lake. This plant operated for 2 years and then closed until 1923, the company meanwhile acquiring the Inyo Development Co. In 1924 the two corporations were merged under the name of the Inyo Chemical Co., and the Keeler plant was leased to the Natural Soda Products Co., which subsequently has operated almost steadily at Keeler. The Cartago operations were discontinued in 1932, and the California Alkali Co. and the Great Western Electro-Chemical Co., which controls it, while retaining ownership, have not operated their properties on their own

account since that year.

At Bartlett, which lies north of the original California Alkali Co. plant on the northwest shore, the Chemical Products Co. of Denver, Colo., built a wartime plant with a nominal capacity of 20 tons daily, which operated scarcely 2 months in 1918. The process was a failure, and the property, after being optioned to at least two different lessees, was sold to Boston capitalists, who rebuilt the plant completely and operated briefly under the name of the Clark Chemical Co. After producing soda ash and caustic soda liquor in 1927 and early 1928, this company ceased operations on May 8, 1928, and became bankrupt in 1931. In 1926 the Kuhnert Syndicate built an experimental plant to test its process for recovering borax, and in 1928 it was merged into the Pacific Alkali Co., whose present operations at Bartlett have been described and which has reported a substantial output every year since 1928.
On the east side of the lake, just south of Keeler, the Natural Soda Products Co.

recently erected a new plant of 100 tons daily capacity, using a new process, details of which are not divulged. It employs 44 men.

Operations were begun near Keeler by Inyo Development Co. in 1885. For many years the treatment consisted essentially of solar evaporation in clay vats 1 to 20 acres in extent. These were filled with from 6 to 8 inches of brine, and the precipitated trona (Na₂CO₃·NaHCO₃·2H₂O) was harvested once a year in the form of crust about three-quarters of an inch thick. The trona was calcined for soda ash in an oil-burning furnace, pulverized in rolls, and sacked. miles from this site and 2 miles south of Keeler the Natural Soda Products Co. erected a plant about 1915, which produced sodium bicarbonate as well as soda ash and trona. Shortly after the World War this company was making large shipments to Japan and Sweden as well as to domestic consumers, its total output being estimated by the State mineralogist as 10,000 tons of trona a year, employing 100 men and 2,230 horsepower. Carbon dioxide at various times has been obtained from dolomite from the Inyo Marble Co. and from limestone from the Cerro Gordo mine.

Producers of natural salines (other than common salt and potash) in the United States in 1939

· Company name and address	Plant site	Product
American Potash & Chemical Corporation, Trona, Calif. Arizona Chemical Co., 30 Rockefeller Plaza, New York, N. Y.	Trona (Searles Lake), San Bernardino County, Calif. O'Donnell, Lynn County, Tex. Brownfield, Terry County.	Borax, boric acid, potash (muriate and sulfate), salt cake (also bur- keite), soda ash, lithium salts. Salt cake.
Basic Ores, Inc., 845 Hanna Bldg., Cleveland, Ohio. Deepwater Chemical Co., Box 588, Victoria Avenue, Compton, Calif. J. Q. Dickinson & Co., Malden, W. Va. The Dow Chemical Co., Midland, Mich. Do	Brownfield, Terry County, Tex. Luning (near), Nye County, Nev. Compton (near Long Beach), Los Angeles County, Calif. Malden, Kanawha County, W. Va. Long Beach, Los Angeles County, Calif. Midland, Midland County, Mich. Wilmington, New Hanover County, N. C. Manistee, Manistee County, Mich. Rawlins, Natrona County, Wyo. Oroville, Okanogan County, Wash. Hartford, Mason County, W. Va. South San Francisco, San Mateo County, Calif. Saint Louis, Gratiot County, Mich. Manistee, Manistee County, Manistee, Manistee County, Manistee, Manistee County, Manistee, Manistee County, Manistee, Manistee County, Manistee, Manistee County, Manistee, Manistee County, Manistee, Manistee County,	Do. Brucite (magnesium hydroxide). Iodine. Bromine, calcium-magnesium chloride, common salt. Iodine. Bromine, calcium chloride, common salt, magnesium chloride, magnesium sulfate. Bromine. Bromine, calcium-magnesium chloride. Glauber's salt. Magnesium sulfate. Bromine, calcium-magnesium chloride, common salt. Magnesium calcium-magnesium chloride, common salt. Magnesium carbonate, magnesium oxide, magnesium hydroxide. Bromine, calcium-magnesium chloride. Bromine, common salt, magnesium
ton Street, Chicago, III. Natural Soda Products Co., 405 Montgomery Street, San Francisco, Calif. Ohio River Salt Co., Mason, W. Va Ozark Chemical Co., Tulsa, Okla Pacific Alkali Co., 1206 Pacific Mutal Building, Los Angeles, Calif. Pacific Coast Borax Co., 51 Madison Avenue, New York, N. Y. Do	Mich. Keeler (Owens Lake), Inyo County, Calif. Mason, Mason County, W. Va Monahans, Ward County, Tex. Bartlett (Owens Lake), Inyo County, Calif. Mojave, Kern County, Calif. Death Valley Junction, Inyo	carbonate. Trona (soda ash and bicarbonate in 1938). Bromine, calcium-magnesium chloride, common salt. Salt cake. Soda ash, bicarbonate, borax. Kernite (rasorite). Colemanite.
Do	County, Calif. Wilmington. Los Angeles County, Calif. (refinery). Redwood City, San Mateo County, Calif. Minersville, Meigs County, Ohio. Casper, Natrona County, Wyo. Manistee (near), Manistee County, Mich. Saltair, Salt Lake County, Utah.	Borax, etc. Magnesium carbonate. Bromine, calcium-magnesium chloride, common salt. Glauber's salt. Bromine, calcium-magnesium chloride. Salt cake.
Stanford Investment Co., 756 South Broadway, Los Angeles, Calif. West End Chemical Co., 608 Latham Square Building, Oakland. Calif. Westvaco Chlorine Products Corporation (California Chemical Co. Division), Newark, Calif. Do	Coaldale, Esmeralda County, Nev. Westend (Searles Lake), San Bernardino County, Calif. Newark, Alameda County, Calif. Chula Vista, San Diego County, Calif. South Charleston, Kanawha County, W. Va.	Ulexite. Soda ash, borax. Bromine, sea-water magnesite, other magnesium compounds. Bromine, magnesium chloride. Bromine, calcium-magnesium chloride, common salt (brine).

GEM STONES

By SYDNEY H. BALL!

SUMMARY OUTLINE

Page Page	Diamond—Continued. Cutting in 1939. Imports. World production. Tropical hygiene and diamond production. Industrial diamonds. Emerald, ruby, ands apphire.	1458 1458 1459 1460 1460
Diamond 1457	Lesser gems Bibliography	1400

Retail sales of jewelry in 1939 totaled about \$307,000,000, or 10 percent above sales in 1938 (\$279,000,000) and only slightly less than those in 1937 (\$312,000,000). Diamond rings, watches, and gold jewelry were the principal items. After February sales were better each month than in 1938, and after September monthly sales showed increases over those of 1937. Improvement was progressive in 1939, and the Christmas trade in jewelry was markedly better than that for either of the past 2 years (16 percent over 1938 and 13 percent over 1937); moreover, there was some demand for higher-price articles. Sales in Oregon and Washington and, to a smaller extent, Georgia and South Carolina, made marked progress over 1938. Installment selling is increasing in the trade and is likely to show further gains.

Manufacturers' sales and those of wholesalers were respectively 25 and 20 percent greater than in 1938, and it is evident that both wholesalers and retailers increased their stocks somewhat in 1939 (retailers about 2 percent). Wholesale trade was relatively good, particularly during the last 5 months of the year, and sales of costume jewelry con-

tinued to increase.

Fashions in jewels.—Large jewels, flamboyant in color and daring in design, were the mode in 1939. Use of gold (often in two or three colors) and silver, to a smaller extent, gained at the expense of platinum. It is the opinion of many, however, that platinum sets off fine diamonds much more advantageously than gold. The motifs include geometric, classical, Victorian, Georgian, Hindoo, and ancient Egyptian. Jewelry ensembles, each piece set with similar stones, gained in popularity, as did large jewels divisible into several ornaments. Long pendant earrings, rings with large stones, clips, lapel ornaments, and necklaces were much worn. Jeweled flowers increased in popularity.

Colored gems set pavé with countless diamonds are used to a larger extent yearly. The finer gems—diamond (including an unusual number of colored diamonds), ruby, sapphire, and emerald—are most popular; however, aquamarine, moonstone, and topaz are used fre-

One of the consulting engineers, Bureau of Mines. Figures on imports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.
1453

quently and many other colored stones from time to time. For men's wear, star sapphires, cat's-eye, and quartz gems predominate.

As a result of the war "mourning jewelry" is likely to be in demand (jet or black-stained onyx alone or with white stones, such as moon-

stone).

Domestic production.—From the 1909 peak production of gem stones valued at \$534,280, the domestic industry dwindled until in 1934 the value decreased to about \$3,000. Since then production has increased markedly and in 1939 was valued at \$235,000 to \$470,000; the first figure is a rough estimate of the amount used in jewelry and the second an estimate of the total, including that treasured by collectors or sold to tourists, mineral collectors, and rock gardeners. Almost 85 percent of the amount used in jewelry comprises stones of the agate family. Gems are produced largely by individuals or small partnerships, and as there are no official production returns exact figures are not available. The revival of the industry is due to three factors: (1) The purchase by automobile and other tourists of souvenirs, (2) the extraordinary increase in gem cutting as a hobby (particularly in Oregon and Washington), and (3) the use of an increasing variety of colored stones in jewelry.

The war has shut off, at least partly, the country's normal sources of supply of colored gems and has engendered nationalistic sentiments; consequently, gems of American origin, notably turquoise, tourmaline, kunzite, benitoite, and hiddenite, should increase in popularity. An important gem-stone industry cannot, however, arise in this country owing to the lack of gem deposits of the first order and the high cost of cutting in the United States. Unfortunately, some unscrupulous dealers sell to tourists and even to their fellow townsmen "American" gems which actually originated in foreign countries and were cut in

Germany.

In the Northwest, especially in Oregon, according to correspondence with H. C. Dake, the number of mineral collectors and lapidaries, both professional and amateur, most of whom collect and cut quartz gems, continues to increase markedly. He estimates the value of the material cut in 1939 as follows: Oregon, \$300,000; Washington, \$90,000; Idaho, \$35,000; Montana, \$10,000; and Wyoming, \$8,000—a total of \$443.000. Much of the material remains in private mineral collec-In Oregon the centers of the industry are Portland and New-Some 14 lapidary shops in Newport employ from 2 to 10 per-For about 75 miles up and down the beach from Newport agate hunters (both amateur and professional) search for the rough material, particularly from February to the beginning of summer after winter storms have uncovered new sources of supply. ogical societies of Lincoln County have protested against the use of local agate-bearing gravels as road material by the State highway commission. Oregon ships some uncut agates to cutters outside the In Washington the largest cutting centers are Seattle and Spokane; the principal stone cut is opalized wood from Miocene lake In Wyoming local gem stones, mostly moss agate, are cut at Rawlins and Chevenne. In Idaho the production was largely opalized wood from the southwestern part of the State and star garnets from Ruby Creek, Latah County.

Numerous collectors are slowly depleting the supplies of moss agate along the Yellowstone River in southeastern Montana from Huntley to northeast of Glendive, a distance of over 200 miles; however, the supply is partly replenished by the spring floods which rework the gravels. The most satisfactory collecting periods are during low Billings is the chief cutting center. The better moss agates

are valued at \$3 to \$5 a pound in the rough.

Nevada yielded turquoise valued at about \$17,000 in 1939. principal producers were the Smith mine, Cortez district, Lander County, the Blue Matrix mine near Tenabo, and the "Royal Blue" mine at Royston. The output of the Smith mine was 7,512 pounds Considerable turquoise was also produced at Villagrove Colo., and a little in Mineral Park near Kingman, Ariz. Mines in Utah, some about 5 miles west of Fairfield and others about 10 miles south of Grantsville, yielded 1,000 pounds or more of variscite.

A substantial quantity of sapphire was produced in Montana (perhaps 1,000 pounds), but very little of this was gem material, most

of it being of industrial grade.

In 1939 it was reported that nephrite was found in place in California and that some had been cut and was on the market. siderable prospecting for gems was done in North Carolina in 1939, and the local lapidary trade is increasing, thanks largely to tourist Kunzite crystals were discovered in Mitchell County a

few years ago.

Other gem stones produced in the United States in 1939 included agatized wood (private lands surrounding Petrified National Monument, Ariz.); amethyst (Townes County, Ga.; Larimer County, Colo.; and New Hampshire); aquamarine (Black Hills, S. Dak., and Maine); kyanite (Upson County, Ga.); garnet (Washington); oligoclase moonstone (North Carolina); rock crystal (Arkansas and North Carolina); rose quartz (Black Hills, S. Dak., and Albany, Maine); ruby (Macon County, N. C.); rutilated quartz (North Carolina); satin spar (Niagara Falls, N. Y.); topaz (Thomas Ridge, Utah; San Diego, Calif.; and New Hampshire); and tourmaline (green—San Diego, Calif., and Maine; red (rubellite)—Black Hills, S. Dak.).

For 60 years the Potter family has cut satin-spar (gypsum) beads and other souvenirs at Niagara Falls. Some of the material is of local

and Canadian origin, but most of it is imported from England.

Marble similar to Mexican onyx was produced near Pelican Point on Utah Lake, Utah, by the Onyx Corporation of America and by the

Jay Em Onyx & Gem Co., near Hartville, Wyo.

According to information furnished by A. H. Cornelison, the Hawaiian Islands produce a few gems and several decorative stones. Their output of olivines in 1939 was very small, as information regarding the locality of the best prospect was lost with the death of E. Mott Smith. Some clear plagioclase feldspar, locally known as "Hawaiian golden-yellow topaz," was mined, also an interestingly marked jasper and some common opal. The known deposits of "Hawaiian diamonds" (rock crystal) are almost exhausted. Possibly \$1,000 worth of local stones were sold in 1939.

Imports.—According to the Bureau of Foreign and Domestic Commerce, imports of precious and imitation stones (exclusive of

industrial diamonds) into the United States in 1939 totaled \$40,487,-877, an increase of 43 percent over 1938. Details are shown as follows:

Diamonds:		
Rough or uncut (suitable for cutting into gem stones),	Carats	Value
duty free	153, 982	\$7, 956, 397
Cut but unset, suitable for jewelry, dutiable:	•	. , ,
Less than 10 stones per carat	60, 332	5, 107, 173
10 or more stones per carat	427, 822	22, 310, 100
Emeralds:	•	, ,
Rough or uncut, free	36, 946	17, 531
Cut but unset, dutiable	17, 624	361, 345
Pearls and parts, not strung or set, dutiable:	•	
Natural		249, 415
Cultured or cultivated		328, 250
Other precious stones:		
Rough or uncut, free		_ 111, 830
Cut but unset, dutiable		1, 937, 479
Imitation, except opaque, dutiable		2, 018, 134
Imitation, opaque, including imitation pearls, dutiable		30, 969
Marcasites, dutiable:		
Real		
Imitation		20, 394

40, 487, 877

Tariff regulations.—Wars in Europe and the East brought about

many changes in tariffs.

As soon as war was declared France decreed that licenses are required for the importation of gems and jewelry, and to conserve the country's gold, licenses doubtless will be difficult to procure. Supplies of gold for use in jewelry are controlled, and to prevent hoarding, jewelry containing an abnormal quantity of gold can no longer be manufactured.

At the outbreak of war the British Government placed an embargo on the export of diamonds to prevent industrial stones from reaching its enemies. Committees were set up in Antwerp, Amsterdam, Paris, and possibly also in New York to assist the British Board of Trade in issuing export licenses. The early delays caused by the embargo are now less exaggerated, but the embargo accounts partly for the fall in American diamond imports of uncut and industrial stones after September 1939.

Germany requires that official approval be obtained before precious and rare metals can be fabricated, and jewelers can only sell gold jewelry made of gold furnished by their clients. When Germany absorbed Czechoslovakia the duty on imitation precious stones immediately was increased 30 to 45 percent, as Czechoslovakia had a favored-nation trade agreement. France is supplying part of the

shortage.

In Belgium special authorization from the Department of Economic Affairs is necessary to import or export rough diamonds for the duration of the war. In January 1940, Hungary replaced free imports by a regime of permits, and by May permits were virtually unobtainable.

a regime of permits, and by May permits were virtually unobtainable. In May 1939 Japan required all residents to report to the Government all gold held and after June 1 no gold articles could be displayed in shop windows. China nationalized all gold (coins, bars, and jewelry) in August, the owners being compensated at official rates.

Ceylon reduced the import duty on diamonds from 15 to 5 percent, or to that of India and Burma. Precious stones can be exported from

Brazil only by registered buyers or dealers after official appraisal. During the year Palestine removed duties on diamonds and unset

precious stones.

Effect of war on jewelry trade.—When war was declared certain panicky dealers feverishly replenished their stocks; this buying, with a certain speculation by those outside the trade, raised the price of small cut diamonds 20 or 30 percent and that of large stones less. In reality the supply of diamonds is adequate, and prices should only have been raised enough to cover increased shipping and insurance costs. The price of colored stones also rose some 20 percent. Later higher cutting costs may have to be taken into consideration. Rather large stocks of costume jewelry were purchased, as the war automatically cut off some important sources of imitation and synthetic precious stones. Platinum prices rose (January 1, 1939, \$34.44; December 30, 1939, \$40 an ounce).

Hereafter jewelry probably will be more expensive, but there is no reason to fear a shortage of supply, even if the war becomes a long-drawn-out affair. Obviously the warring nations need dollar

exchange.

The American diamond-cutting industry may be stimulated somewhat by the war, but even under war conditions small diamonds doubtless will continue to be cut in Europe, as American cutting

costs on such goods are prohibitive.

War and destruction are synonymous, therefore war must hurt industry. Today the Russian and German markets for gem stones are almost nonexistent; France and England are throttled by high taxation; hence the industry must live on the trade of the United States, India, and South America and on such investment buying of fine gems as the citizens of belligerent countries can accomplish.

Gem publicity.—At the New York World's Fair, jewels will again be attractively exhibited in 1940. The House of Jewels will show the beautiful jewelry of five leading Fifth Avenue jewelers and gorgeous diamonds, uncut and cut, of De Beers & Associated Producing Cos. During 1939 De Beers, in a selected group of periodicals, conducted a campaign advertising the beauty, value, and rarity of the diamond.

DIAMOND

The year 1939 was surprisingly satisfactory in the diamond industry in view of the grave political crises and the two major wars. Trade was far better than in 1938, and in some respects was almost as good as in 1937, admittedly a good year. Production of rough stones, which was virtually equivalent to that in 1938, exceeded sales, and for the second successive year stocks increased. All grades of diamonds increased in price. In Europe increases were as follows: Large rough, slight, and small rough, 25 to 45 percent; large cut, 15 to 20 percent; and small cut, almost 100 percent. In America increases were less. Many stones were bought for investment, notwithstanding attempts by various governments to curtail the practice.

Share dealings.—The shares of diamond-mining companies listed on the London Stock Exchange had a restricted market in 1939. Prices were weak during most of the year, although there were sharp recoveries in the last half of July, owing to activity in Wall Street, and after October, owing to news of good sales by the Diamond Trading Co.,

and smaller recoveries from mid-February to mid-March, early May to mid-June, and late December. During the year five representative stocks lost 17 percent of their value and at the end of the year were 31 percent of their high (1927) and 307 percent of their low (1932). Of the 12 principal mining shares, 7 paid dividends in 1939.

Market.—In 1939 the Diamond Trading Co., which sells about 95

percent of the world output of diamonds, inaugurated a new sales policy. "Sights" are now held fortnightly; buyers, large and small, are urged to attend, and goods are sorted into standard types that will not vary from "sight" to "sight." Sales in 1939 were about £5,865,000—159 percent of those in 1938 but only 64 percent of those in 1937. First- and fourth-quarter sales were particularly satisfactory. Good-quality stones continue to be scarce.

Sales of polished diamonds, while not satisfactory, showed an appreciable gain over 1938. Small sizes were particularly in demand, fine goods being bought when available and mediocre grades at other times. Fine large stones were in demand as investments. Sales of industrial stones were excellent. The market was quiet until May, after which the improvement was progressive, and by August the market was animated. When war was declared, frantic buyers, fearing that their sources of supply would be cut off, purchased in quantity, but in October the market became normal.

Cutting in 1939.—The cutting trade was even worse in 1939 than in 1938; "masters" made little money, and the men were frequently unemployed. During the year the number of artisans decreased from approximately 27,000 to 23,000, owing largely to the shutting down of German shops at the outbreak of war. Both Antwerp and Amsterdam suffered, the first somewhat more than the second. Cutters' wages were raised 15 percent in October.

Imports.—Diamond imports into the United States in 1939, by

countries, were as follows:

Diamonds imported into the United States in 1939, by countries [Exclusive of industrial diamonds]

	Ro	ugh, or uncu	t	Cut, but not set			
Country	G. and a	Val	ne	Compto	Value		
	Carats	Total	Average	Carats	Total	Average	
Africa: British East Africa. Union of South Africa. Belgium Brazil France.	34 148, 001 5, 846	\$3, 091 7, 656, 408 292, 854	\$90. 91 51. 73 50. 09	1, 488 399, 806 4, 719	\$187, 107 21, 733, 478 699, 239	\$125. 74 54. 36	
Germany		4, 044	40. 04	77, 422 36 1, 392 3, 284	419 4, 454, 205 2, 299 69, 926 270, 600	59. 86 57. 53 63. 86 50. 23 82. 40	
	153, 982	7, 956, 397	51. 67	488, 154	27, 417, 273	56. 17	

World production.—World production of diamonds (gem and industrial) in 1939 approximated 11,330,000 carats (2.266 metric tons) worth about \$39,270,000. Compared to 1938 this is a decrease of 2

percent (readjusted figure, 11,620,000 carats worth \$40,750,000) by weight and 4 percent by value. Of the South African pipe mines only Dutoitspan and Bulfontein operated; world alluvial mines yielded 91 percent of the output by weight and 77 percent by value. Empire produced 26 percent by weight and 60 percent by value of the total production; less than one-fifth by weight were gem stones.

The following table gives, as accurately as available statistics permit,

world production for the past 5 years.

World production of diamonds, 1935-39, by countries, in metric carate [Including industrial diamonds]

[220-dating industrial distributes]								
Country	1935	1936	1937	1938	1939			
Africa: Angola. Belgian Congo. French Equatorial Africa. French West Africa. Gold Coast (exports) Sierra Leone. South West Africa. Tanganyika	3, 812, 023 138 1, 349, 847 295, 483	577, 531 4, 634, 266 1, 550 18, 897 1, 414, 677 616, 200 184, 917 2, 704	626, 424 4, 925, 228 5, 588 57, 687 1, 577, 661 913, 401 196, 803 3, 234	651, 265 7, 205, 620 16, 013 61, 928 1, 296, 763 689, 621 154, 856 3, 576	1 682,000 1 7,201,000 1 16,000 56,314 1,087,652 1 600,000 35,470 2 3,445			
Union of South Africa: Mines Alluvial Total Union of South Africa Brazil British Guiana Other countries 4	274, 317 402, 405 676, 722 39, 100 47, 785 5, 800	339, 719 284, 204 623, 923 136, 462 41, 067 6, 000	820, 284 207, 359 3 1, 030, 434 238, 606 35, 958 6, 000	979, 460 259, 148 1, 238, 608 1 235, 000 32, 522 34, 200	1 1, 062, 670 1 184, 000 1 1, 246, 670 1 350, 000 32, 491 19, 000			
	6, 838, 400	8, 258, 200	9, 617, 000	11, 620, 000	11, 330, 000			

¹ Estimated. ² Exports.

In South Africa the output of pipe mines increased, whereas that of alluvial mines continued its decline. Production in Brazil and the new fields of the French African colonies increased, but in Southwest Africa and the Gold Coast it was drastically curtailed. As usual, the Belgian Congo contributed 64 percent, by weight, of the world output, largely industrial stones. the U.S.S.R., Kenya, and Uganda. New discoveries are reported in

Tropical hygiene and diamond production.—Diamond output, more than that of any other mineral product, comes from tropical countriesin the past from India, Borneo, and Brazil; today from Central Africa and to a smaller extent Brezil and British Guiana. ness of the tropics in gems is a matter of chance, but the scientists of the Middle Ages believed that the hot tropical sun ripened the gems. A century ago 100 percent of the production came from the tropics; in those days tropical diseases decimated the workmen, and jewel buyers felt they were risking their lives in visiting the diamond fields. Of the present world output, approximately 88 percent by weight and 51 percent by value are produced in tropical countries, but today the personnel of the larger companies enjoys a health record comparable to that of mining companies operating in temperate climates. The different records of the two centuries "spotlights" the advance of tropical hygiene.

Includes 2,791 metric carats recovered from re-treatment of tailings.
 1935: Borneo, India, Nigeria, and Venezuela; 1936: Borneo, India, New South Wales, Rhodesia, United States (California), and Venezuela; 1937: Borneo, India, Liberia, New South Wales, Rhodesia, and Venezuela; 1938-39: Borneo, India, New South Wales, U. S. S. R., and Venezuela.

Malaria no longer saps the vitality of the staff and workmen; the dreaded sleeping sickness is being conquered, and dysentery has become rare. Turn-over in the staff is no longer a detriment to efficient operation. The staff lives in modern camps with proper water supply, sewerage systems, electric lights, and golf courses. Many bring their families, and schools are provided for the children. The villages of native laborers serve as models to be imitated by the bush natives. The Forminière Co., operating in the Belgian Congo, realizing that its future labor supply was menaced by the sleeping-sickness plague for some years, has had a large, mobile medical staff examining the natives of the countryside and giving treatment to infected natives. In 1938 the medical staff examined 129,348 natives for the disease. The scourge is now under control. Throughout the Belgian Congo the number of cases of the dread disease has decreased from 11 per 1,000 in 1908–10 to 2.9 per 1,000.

It may be stated safely that if it were not for tropical medical research and present-day knowledge of sanitation, the diamond production of the world would be at least one-third less than it is.

Industrial diamonds.—In 1939 more industrial diamonds were employed than ever before; larger factory use in the United States and munition-plant use in Europe more than offset decreased use of the diamond drill in Canadian prospecting. Striking features of the 1939 advance were the rapid expansion in use of diamond-impregnated wheels and other abrasive tools (particularly those with a powdered-metal bond), the increased use of very small bort in drilling, and the gain of mechanically set over hand-set diamond-drill bits. Diamond drills are now employed extensively, particularly in Canada, for blast-hole work.

The demand for industrial stones was strong throughout 1939. As it has been for 3 years, the scarcity of fine stones required the use of mediocre grades. Prices of all grades registered marked advances.

Imports of industrial diamonds into the United States during the past 5 years were as follows.

Industrial diamonds (glaziers', engravers', and miners') imported into the United States, 1935–39

Year	Carats	Value		37	Comoto	Value	
		Total	Average	Year	Carats	Total	Average
1935 1936 1937	954, 589 1, 166, 094 1, 885, 970	\$4, 293, 611 4, 328, 603 6, 542, 365	\$4.50 3.71 3.47	1938 1939	1, 396, 247 3, 568, 730	\$4, 213, 412 9, 725, 683	\$3. 02 2. 73

The 1939 imports are somewhat misleading, as some shipments were sent here for safekeeping by the countries at war; in addition a number of dealers, forced to leave their homelands, brought with them their stocks of industrial diamonds.

EMERALD, RUBY, AND SAPPHIRE

The increased use of colored stones in jewelry during the past 4 years has caused concern over the source from which supplies are to be obtained in the future. With the State-owned Colombian emerald

mines closed, the Burma ruby mines worked only by the natives, and the production of world sapphire mines small, little new rough stone is coming on the market. The jewelers are using largely stones recovered from old jewelry, Spain having furnished many fine-colored stones in the past 2 years. Such a situation, however, cannot last, and eventually old mines must be reopened or new mines found.

The Muzo emerald mine in Colombia has been shut down several years, but the property of the Chivor Emerald Mines, Inc., has been operated under lease from September 15, 1937, to date by the Compañía de Esmeraldas de Colombia. From September 15, 1937, to September 1, 1939, 28,841.22 carats of emeralds of all grades and 73,633.4 carats of moralla were produced. About 100 miners were employed. Since September 1, 1939, the output has been unimportant. The property is to be sold to the leasing company on a

royalty basis and a cash payment of \$10,000.

The emerald deposits of the Murchison Range, Transvaal (see bibliography, Kent, L. E., Emeralds, Murchison Range, Transvaal) were discovered in 1927; altogether there have been 15 producers, most of which are now moribund. Production to the end of 1937 was 664,612 carats, worth £84,294, or 2s. 6½d. per carat. Some of the stones are of fine color, but like most emeralds they usually are flawed (owing to movement after deposition) and often include biotite inclusions. Color zoning is common. Cobra Emeralds, Ltd., has been by far the largest producer. Emeralds occur as well-shaped crystals, distributed sporadically in shoots and pockets in biotite schist near pegmatitic intrusions. The pegmatite contains no emerald but does contain beryl. Near later basic intrusions the emerald has been "baked" to a brownish green. The emerald deposits resemble those of Egypt, the Urals, the Salzburg Alps, and North Carolina. The emeralds were deposited during the "hydrothermal phase" following the intrusion of the pegmatite.

Open-cut methods of mining are used, and the emeralds are separated largely by hand methods. The yearly emerald content has ranged from 2.75 to 3.16 carats per load (approximately a cubic yard). The product is sold directly to London gem buyers. In 1938–39 the Cobra Emerald Mines, Ltd., was shut down, owing partly to the depressed state of the precious-stone market and partly to decreased quality of the stones. N. M. Uspensky believes that although some of the emeralds at the Ural emerald mines near Sverdlovsk, crystallized at 500° C., most of them crystallized below 400° C. and some as

low as 200° C.

In 1938 the Mogok or Katha workings, Burma, produced 202,483 carats of rubies, a 29-percent increase over 1937 (157,308 carats).

The subcommittee appointed by the Government of Ceylon to report on marketing and cutting gems in Ceylon, recommended (1) that a Government institute to instruct the natives in gem cutting be set up as part of the Department of Mineralogy, and (2) that a Government salesroom be attached thereto. The Singhalese cutter certainly has much to learn from an up-to-date gem cutter. The report of the committee is an interesting document, describing the three trades concerned (the miner, the cutter, and the dealer), the laws relating to gemming, mining methods, marketing, and other phases of the industry. It is understood that the recommendations of the committee will be acted on favorably.

The sapphire production of the Mogok ruby workings, Burma, has been as follows in the past 3 years: 1936, 172 carats; 1937, 4,392 carats; and 1938, 1,344 carats. Judging from the statistics of the Indian Government, the output of the Kashmir sapphire mines was

probably less than 10,000 carats in 1938.

In 1938 gems valued at £2,166 were sold from the Anakie (Queensland) sapphire field (£1,410 in 1937). First blues comprised three-fourths of the sales; other sapphires (green and yellow) and zircons were not in demand. Production came from Rubyvale, Reid's Water Hole, and Mt. Laura. In 1939 a new field is said to have been discovered about 6 miles west of Rubyvale, central Queensland. A 412-carat emerald-green sapphire is reported among the finds. No gem sapphires were produced in New South Wales in 1938, but 132 ounces of industrial stones were produced at Sapphire.

At Mtito Andei, Kenya, patches of fine blue sapphire are found in crystalline corundum, encountered in working asbestos. Several

small parcels of sapphires have been shipped.

LESSER GEMS

The Smithsonian Institution put on exhibition a huge topaz weighing 153 pounds, or about 350,000 carats, in 1939. It is pale blue, with a sherry-color interior. The Harvard University Mineralogical Museum also added to its collection a large white topaz weighing 225 pounds. Late in the year the American Museum of Natural History, New York, obtained an even larger topaz weighing 596 pounds. All three crystals came from Minas Geraes, Brazil.

In 1937 the output of aquamarine at Daso, Kashmir, was 6,260

carats (no output in 1935 and 1936).

The total value of the opal production of New South Wales to December 31, 1938, has been £1,627,021. The 1938 output was valued at £4,226 (1937, £3,357); Lightning Ridge produced stones valued at £4,132, Grawin £50, and White Cliff £44. No production was reported from Queensland in 1938.

In 1930 a deposit of lapis lazuli was discovered by G. L. Judin at Ovalle, Pamir Mountains, Badakhshan. Like similar occurrences, it

is a contact-metamorphic deposit in marble.

The Katanga copper deposits are the most important present-day producers of malachite. The material is used in cheap jewelry and objets d'art. Recent sales are as follows: 1937, 3½ tons; 1938, 2½ tons; and 1939, 1½ tons.

A little turquoise is produced in northern Baja California, Mexico,

not far from Ensenada.

The amber mines at Palmnicken, Samland, Prussia, produced 400 metric tons of amber in 1938 (1937, 328 metric tons). Amber is used as an ornament, and considerable amber oil and amber acid are distilled, as they are employed in the German dye and varnish industries. In 1938 Germany exported 16,400 kilos of amber valued at 229,000 reichsmarks. Most of the amber goes to Danzig for processing and reexport, the major trade being with the Balkan States and the Orient. In Germany the use of amber "German gold" has been increased by nationalistic propaganda and the difficulty of buying other types of jewelry. Laws forbid the sale of imitation amber and synthetic resins resembling it in Germany.

Some gem prospecting is being done in the Grenville limestone near Laurel, Quebec. Clear pale-lilac diopside and honey-yellow vesuvianite occurences may have some gem value. Previously minute blue sapphires were found at Kilmar. As Frank D. Adams has pointed out, the geology of the Laurentian rocks is similar to that of the gem-bearing rocks of Ceylon, but owing to recent glaciations there is no concentration of the gems in stream gravels.

The mining and cutting of jet at Whitby, England, was an important industry 75 years ago. Today, only a few score of people are

engaged in it. The present war may revive the trade.

In 1938 Brazil exported 746,872 kilos of rock crystal, 2½ times the average for the preceding 14 years (see bibliography, Winslow, Rollin R., Quartz Crystal (Brazil)). Japan in particular, Great Britain, Germany, and to a smaller extent the United States are the principal purchasers. The best-quality crystals are sent to the United States for use in scientific instruments. Bahia is the principal producer, followed by Minas Geraes and Goyaz. The crystal occurs in pegmatite dikes or in detrital or placer deposits derived from them. Mining methods are primitive and usually are carried on by "garimpuros," locally called "crystalleiros"; the open pits are rarely more than 5 meters deep. Most of the exporting firms have their own buyers in Brazil. Rough crystal is worth \$0.15 to \$18.50 per kilo, according to quality. Reserves of crystal are reported to be large. Optical quartz has been discovered recently in the Mtito Andei district, Kenya.

No other gem except the diamond has a wider variety of industrial uses than rock crystal. It is employed for oscillators in radio transmitters; for quartz-plate resonators at cable and long-distance telephone terminals; and for quartz plates in sound-detecting and sound-locating devices of various sorts and in detonator measurers. Quartz is also the basis of fused quartz employed as tubes, flasks, and fibers for precision instruments. It is used widely in the optical trade, in moderate-priced jewelry and objets d'art, in quartz lamps, and as an abrasive. A glass developed in 1939 by the Corning Glass Works may decrease the use of fused quartz. In December the United States Treasury Department bought 14,800 pounds of Brazilian crystals under its strategic-materials buying program. The price was \$98,875,

or \$6.68 per pound.

San Luis and Mendoza Provinces, Argentina, produced, respectively, 325 and 270 metric tons of greenish yellow translucent marble ("onyx") suitable for decorative purposes in 1937. The United States is the principal purchaser; the rough material is worth \$140 to \$230 per ton. To obviate flaws, the blocks are cut by hand with chisels, no percussion drills or powder being used. The "onyx" deposits at El Marmol, Baja California, Mexico, produce from 3,000 to 25,000 cubic feet a year. The product is trucked to Santa Catarina, whence it is shipped to the United States.

In 1938 Madagascar exported 453,638.037 kilos of gems and industrial stones. Beryl, tourmaline, colored topaz, opal, sapphire, ruby, garnet, and spodumene totaled 6.81 kilos; feldspar, scapolite, amethyst, and other lesser gems, 263.544 kilos; opaque beryl and garnet, 328,979.208 kilos; rock crystal, 4,693.625 kilos; rose quartz, amazonstone, etc., 6,249 kilos; and industrial rock crystal, 111.763 kilos. France was the principal purchaser, although Germany purchased the

finer rock crystal and Switzerland and England certain grades of

There were four producers of precious stones in South-West Africa in 1938. The following table gives productions and exports for 1937, 1938, and the first quarter of 1939.

Production and exports of precious stones in South-West Africa, 1937-38 and first quarter of 1939

	Production			Exports		
	1937	1938	1939 (first quarter)	1937	1938	1939 (first quarter)
Semiprecious stones: Aquamarine grams Chalcedony do	4, 970	270	2, 000	4, 350 119, 000	200 70, 000	
Rose quartz do Topaz do Tournaline do Iceland spar pounds.	4, 000 37, 795 873	500 26, 248 3, 630	6, 720 4, 300 250	54, 786 3, 000 507, 851 309	9, 720 1, 000 59, 508 24	70 10,666

Germany buys virtually the entire output of aquamarine.

With the possible exception of Ceylon, Brazil is the most important producer of the lesser gems, but figures on its 1939 production are not at hand.

BIBLIOGRAPHY

Ball, Sydney H. The Diamond Industry in 1939. Jewelers Circ., July 1940, pp. 1-16.

BULLETIN OF THE IMPERIAL INSTITUTE OF GREAT BRITAIN. Piezo-Electric April-June 1938.

DEPARTMENT OF COMMERCE AND INDUSTRIES. The Marketing and

Ceylon. Department of Commerce and Industries. The Marketing and Cutting of Ceylon Gems. Report of Subcommittee. Gemological News, London, pp. 1119-1121, 1203.
Chilvers, Hedley A. The Story of De Beers, Cassell & Co. London, 1939.
Diamond News. A Monthly, Kimberley, South Africa.
Kent, L. E. Emeralds, Murchison Range, Transvaal. Mineral Deposits of the Murchison Range. Geol. Survey Union of South Africa, Mem. No. 36, Pretoria, 1939, pp. 93-120.
Knetsch, G. 1. Neue Diamantlagerstätten nördlich des Aequators als Beispiel der bergbaulichen Erschliessung afrikanischer Rohstoffgebiete (abs.). Deut. Geol. Ges., vol. 89, No. 8-9, November 20, 1937, p. 565, also vol. 90, No. 8.

Geol. Ges., vol. 89, No. 8–9, November 20, 1937, p. 565, also vol. 90, No. 8, August 16, 1938, pp. 457–469.

Kobysheva-Posnova, M. No. 478. Die mikrochemische Quantitativeanalyse des Lasursteines aus Ovalle (Tschily), (Badakhshan, Pamir Mts.). Inst. Ind. Novocherkassk (Rostov-on-Don), Ann. 8 (1935–36), 1937, pp. 62–68. (Russian, German summ., pp. 67-68.)

Kraus, Edward H., and Slawson, Chester B. Variation of Hardness in the Diamond. Am. Mineral., vol. 24, November 1939, pp. 661–676.

Lacourt, F. 4. Topázio em Ouro Preto, Minas Gerais. Mineracão e Metal, vol. 3, No. 13, May-June 1938, p. 24.

Livemont, J. G. Le Diamant au Congo Belge. L'Expansion Belge, April 1939.

OLIVEIRA, EUZEBIO PAULO DE. 14. Pesquiza da matriz do diamante. Acad. Brasil. Sci., Ann., vol. 10, No. 3, September 30, 1938, pp. 271–272.

PAIVA TEIXEIRA, GLYCON DE. 2. Consideracoes sobre a economiz da garimpagem:
Mineracao e Metal, vol. 2, No. 12, March-April 1938, pp. 361–368.

PEARL, RICHARD M. Gem Mining in Colorado. Colorado Mag., vol. 16, Novem-

ber 1939, pp. 213-220.

SOUTH AFRICAN MINING AND ENGINEERING JOURNAL. Alluvial Diamonds. 1939, pp. 363-364, 419-431; 1940, pp. 623-625.

USPENSKY, N. M. Contributions to the Knowledge of the Emerald Deposits of the Sverdlovsky Mining District in the Urals. Leningrad, Inst. Mines, Ann., vol. 11, No. 1, 1938, pp. 161-205 (Russian, English summ., pp. 197-

Vedder, M. E. A Visit to the Diamond Market. Gems and Gemology, vol. 3, No. 3, 1893.

Weinstein, Michael. Precious and Semi-precious Stones. 3d ed., Pitman & Sons, Ltd., London, p. 184.

Williams, G. J. The Kimberlite Province and Associated Diamond Deposits of Tanganyika Territory. Geol. Div. Bull. 12, Dar-es-Salaam, 1939

Winslow, Rollin R. Quartz Crystal (Brazil). Bureau of Mines Mineral Trade

Notes, August 19 and September 20, 1939.

MINOR NONMETALS

CARBON DIOXIDE; GRAPHITE; GREENSAND; KYANITE, ANDALUSITE, AND DUMORTIERITE; LITHIUM MINERALS: MEERSCHAUM; MINERAL WOOL; MONAZITE; OLIVINE; PINITE; SERPENTINE; STRONTIUM MIN-**ERALS: TOPAZ: AND VERMICULITE**

By PAUL M. TYLER 1

SUMMARY OUTLINE

	Page	Ī	Page
Carbon dioxide	1467	Monazite	1470
Graphite	1468	Olivine	1478
Greensand	1473	l Pinito	1470
Kvanite, and alusite, and dumortierite	1474	Serpentine	1 4770
Lithium minerals	1475	Strontium minorale	1470
wieerschaum	1476	Topaz	1480
Mineral wool	1476	Vermiculita	1400

CARBON DIOXIDE

According to trade reports, more carbon dioxide was consumed in the United States in 1939 than in any previous year, and the production and use of both solid and liquid products increased more than the general consumption of goods and services. The latest available statistics, however, are for 1937 when, as reported by the Bureau of the Census, the output of dry ice was 156,609 tons valued at \$4,618,937

and of liquid or gaseous CO2, 50,358 tons worth \$4,939,508.

The ice-cream industry continues to be the main outlet for dry ice, but in 1939 there seemed to be a marked increase in the production of other frozen foods, a trend that may serve somewhat to level off the seasonal slump in demand during winter months. Gassing strawberries and raspberries for 4 to 7 hours in an atmosphere containing 35 to 40 percent CO₂ is claimed to keep them in good condition at least 2 days longer than normal. A recent patent specifies CO2 as a means of making soybeans more palatable, removing certain odors and flavor elements. A broad research program for carbon dioxide gas storage of foodstuffs has been projected by the American Institute of Refrigeration.2

No new wells producing natural carbon dioxide were reported to the Bureau of Mines in 1939, and although natural dry-ice plants have been built in California, Colorado, New Mexico, Utah, and Washington further expansion is likely to be restricted by the various difficulties and losses attendant upon transportation to large consuming Recovery of byproduct gas from lime, cement, and other process plants likewise is largely a matter of geography. At Neville Island, Pittsburgh, Pa., the Frozen Carbonic Corporation installed a new generator which recovers 3 tons of gas and 4% tons of lime from 8 tons of somewhat low grade stone. With a purity of 97 to 99 percent CO2, the normal gas yield is 90 percent, but 98 percent recovery can be

¹ Figures on imports and exports compiled by M. B. Price, of the Bureau of Mines, from records of the Bureau of Foreign and Domestic Commerce.

² Chemical and Metallurgical Engineering, Carbon Dioxide Research Project Sponsored: Vol. 46, No. 5, May 1939, p. 282.

made if the purity of the gas is lowered.³ This plant uses Carbofrax retorts and related equipment under the process of the Gillette Kiln Sales Co.

GRAPHITE

Although the graphite needs of the United States still are obtained almost entirely from foreign sources the outbreak of war in Europe in 1939 caused no such serious dislocation as after 1914. During a quarter century the nature of consumption of graphite has altered so that different kinds of graphite are more nearly interchangeable in use. In 1914-18 the most important use was in crucibles, and domestic crucible makers wanted principally Ceylon lump or chip plumbago. In recent years the consumption of graphite in crucibles has declined to rather small proportions, and crucible makers insist upon having Madagascar flake graphite of suitable mesh sizes. Some soft Ceylon lump is required for pencil-lead mixtures, and there are a few other specialties for which Madagascar flake or certain kinds of crystalline Ceylon graphite are desired in preference to qualities obtainable else-Fortunately, from the standpoint of national security, the tonnage of graphite from these distant sources that can be considered as absolutely essential to military or even to civilian industry is a relatively small fraction of the total now compared to what it was even a dozen years ago.

During the last quarter of 1939 the demand for graphite was unusually active, and the difficulty of getting export licenses for shipment from Madagascar occasioned some inconvenience but no real distress. Supplies of certain grades had to be rationed to discourage speculative purchasing, but prices were held in control and in most

instances remained stationary.

There was no revival of graphite mining in the United States in 1939, and apparently the only substantial domestic production of crystalline graphite was by the Long Valley Ore Co., with mines near Pope Mills and a milling plant at Morristown, N. Y. The deposit is said to be extensive and carries 20 to 30 percent carbon. The milling plant probably could furnish 100 tons or more of concentrate a week but has been operated at full capacity only occasionally, owing to market limitations. The product has been used almost exclusively

as an addition to foundry facings.

Small amounts of amorphous graphite for paint were produced at Carson City, Nev., by the Carson Black Lead Co. As in former years, some amorphous graphite for foundry facings was shipped from the Rhode Island anthracite mine. A letter to the Bureau of Mines states that it is unlikely that the business will be continued after existing stocks are sold. The mine at Cranston, R. I., has not been worked for a number of years, but equipment is still on the premises and mining could be resumed if demand justified. A moderate tonnage of amorphous graphite was shipped by the Southern Mining & Milling Co., Clarkesville, Ga., as a byproduct of its kyanite operations.

Foreign trade.—Imports of graphite in 1939 totaled 21,950 short tons valued at \$425,326, a substantial increase over 17,005 tons valued at \$372,039 in 1938 but much less than the 29,593 tons valued at \$752,315 in 1937 or even the 24,171 tons valued at \$566,662 in 1936.

³ Trauffer, W. E., Improves Recovery of Carbon Dioxide: Pit and Quarry, vol. 31, No. 12, June 1939, pp. 26-28, 48.

Exports were 976 short tons valued at \$109,715 compared with 983 tons valued at \$112,443 in 1938 and 1,514 tons worth \$163,331 in 1937.

All artificial graphite imported comes from Canada. Recently Mexico has supplied about two-thirds of the imports of natural amorphous graphite. Imports of Ceylon lump and chip have so diminished that they are now included with "dust," imports of which come from Canada and other countries as well as from Ceylon. As usual, most of the flake graphite was from Madagascar or France, the remainder chiefly from Canada.

Graphite imported for consumption in the United States, 1935-39, by kinds

Amorphous				Crystalline						
Year	Na	tural	Arti	ficial	Lump	and chip	D	ust	Fl	ake
	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	Value
1935	14, 477 20, 160 25, 354 14, 676 18, 675	\$302, 646 344, 499 512, 162 247, 789 269, 046	1, 916 1, 635 802 500 413	\$74, 679 63, 804 31, 562 19, 870 15, 383	215 251 482 41 (¹)	\$11, 606 18, 107 41, 499 3, 074 (1)	84 68 321 168 1 602	\$4, 444 4, 090 17, 600 10, 643 130, 421	1, 669 2, 057 2, 634 1, 620 2, 260	\$132, 758 136, 162 149, 492 90, 663 110, 476

¹ Lump and chip included with dust.

Graphite exported from the United States, 1935-39

Year	Short tons	Value	Year	Short tons	Value
1935 1 1936 ² 1937 ²	1, 480 816 1, 514	\$234, 334 114, 847 163, 331	1938 ³	983 976	\$112, 443 109, 715

¹ Crude, refined, and manufactures.

Prices.—Prices of graphite in 1939 were about the same as in 1938 and 1937, the quotations being roughly the same as those reported in Minerals Yearbook, 1938. Ceylon quotations for some grades were advanced, and freight rates rose sharply after the outbreak of war; however, these increases were at least counterbalanced by the downward course of exchange. For a year or more Japan has been the chief buyer of high-grade Ceylon plumbago, and anticipated increases in shipments to the United States or Europe were offset by the loss of the German market. Actually it seems doubtful whether the present war has done much to increase the consumption of graphite, and although the tone of the market was buoyant at the end of 1939 there was no expectation of sharp price advances in any leading production centers.

World production.—Assuming that the Soviet output has continued at approximately 84,000 metric tons annually (as in 1935, the last year for which statistics have been published) the world output of graphite is around 200,000 tons annually. On this basis the U.S.S.R. furnishes over 40 percent; Germany (including Austria and Czechoslovakia), 25 percent; Chosen, 20 percent; and Mexico, 5 percent. However, the bulk of the product of these countries is low-priced

² Natural.

amorphous graphite, much of the European portion being used only Although the tonnage mined in Ceylon and Madagascar seldom exceeds 15 percent of the world total the value of their combined output is probably at least half the world total.

World production of natural graphite, 1915-34 (5-year averages), 1935-37 (3-year average), and 1938, in metric tons

[Compiled by M. T. Latus]

Country	1915-19 (average)	1920-24 (average)	1925-29 (average)	1930-34 (average)	1935-37 (average)	1938
Argentina					14	28
Australia: New South Wales	100	18	12	18	10 16	10
QueenslandSouth Australia				15	(1)	
Brazil 3	13	10	4	4	· ′ 4	(2) (2)
Canada		1, 172	1,756	790	(4)	(4)
Ceylon 8		9,088	13, 618	8,677	15, 174	11, 922
Unosen •	7, 679	15, 034	18, 484	23, 721	42, 937	50, 348
Ozechoslovakia	5 26, 841	13, 751	29, 276	4, 187	3, 313	(2) (2)
France	886	415	734	46		(2)
Germany:						
Austria	6 19, 657	11, 557	19,083	14, 653	19, 786	16, 852
Bavaria	31, 308	21, 696	17, 548	21, 333	23, 166	28, 106
Greenland		753			20	(2) 465
India, British	349	29	7 289	71	509	400
Indochina 3				3, 997	5, 255	5, 485
Italy	9, 151	5, 722 778	8, 487 578	572	8 1, 239	(2)
Japan Madagascar 3	1, 380	9, 929	14, 141	6, 111	9, 668	13, 433
Madagascar •	16, 776 3, 059	4, 340	5, 699	3, 521	9, 480	9. 611
Mexico Morocco, French 3	(2)	4, 540	3, 033	108	324	406
Morocco, French	(•)	2	21	1, 206	2, 485	3, 802
Norway Spain	1, 184	1, 923	580	1,200	2, 100	0,002
Sweden	101	1, 525	000		52	48
Union of South Africa	64	50	51	53	63	53
U. S. S. R	(2)	(2)	3, 992	9 32, 333	(2)	(2)
United States:	(7)	\ \ \	0,002	02,000	''	` '
Amorphous	3,999	3, 059	2,840	(10)	(10)	(10)
Crystalline	4, 494	1, 672	2, 133	(10)	(10)	(10)
Total 11	156, 724	100, 999	139, 334	121, 416	133, 518	140, 569

¹ Less than 1 ton.

Domestic consumption.—Although graphite no longer is listed by the military establishments of the United States as a "strategic" mineral, it is considered important enough to the national defense program to be included in the "critical" group. In 1939 the Bureau of Mines investigated the consumption of graphite by industries and obtained replies from 48 dealers and consumers, of which all but about a dozen directly consumed substantial tonnages. A strict accounting is fraught with difficulties, not the least of which is the overlapping among materials "used" by one establishment after being "processed for resale" by another. The total tonnage accounted for, even in 1937, was less than the apparent supply as indicated by the import statistics, but the discrepancy is explained largely by the building-up of inventories and to a minor extent by various shrinkages,

² Data not available. 8 Exports.

A Quantity not available; value reported as follows: 1935, \$79,781; 1936, \$88,812; 1937, \$125,343; 1938, \$41,590. Average based on production of Bohemia and Moravia, which before 1918 formed part of Austria. Average based on production of Lower Austria and Styria only. Data covering production of Bohemia and Moravia are shown under Czechoslovakia. 7 Concentrates.

⁷ Concentrates.

8 Average for 1935-36; data for 1937 not available.

9 Average for 1932-34; data for 1930-31 not available.

10 Bureau of Mines not at liberty to publish figures.

11 Sum of figures given in table only; probably incomplete.

possible reexports, and errors in classifying and recording imported The Bureau canvass, however, greatly exaggerated the merchandise. apparent consumption of crystalline at the expense of amorphous According to Department of Commerce import statistics, only 12 percent of the total new supply of natural graphite in 1937 and 11 percent in 1938 was flake or crystalline grades, whereas the replies from consumers indicated 24 and 32 percent for the respective This is accounted for only partly by the larger proportion of amorphous graphite that went into stocks in both years. Many consumers probably classed as "crystalline" blended material mixed with even a small proportion of flake or Ceylon plumbago. Moreover, many of them may not have known that in recent years 95 percent of the imports of Ceylon graphite have been classified as "amorphous." whereas formerly virtually all Ceylon graphite was imported as crystalline lump, chip, or dust.

In 1937 the quantity of graphite consumed in the United States was almost the same as in 1913; yet crucibles, which took 55 percent of the total consumed in 1913, required only 8.3 percent of the total The quantity of graphite used in foundry facings, core wash, and similar uses rose from 10 percent in 1913 to 38.5 in 1937. Other features were the decline in the quantities used for stove polish and the increase in graphite lubricants. Notable, too, is the recent jump in consumption for dry batteries. A decade ago several large battery makers began using manufactured graphite instead of natural flake. Concurrently the use of batteries declined, as radios were operated by light-socket power; but during the last few years Mexican graphite has been widely accepted for this purpose, and the demand for dry batteries has revived (owing in part to the growing popularity of portable radios and the increasing use of flashlights), so that by 1937 the

around 5,000 tons a year.

Consumption of natural graphite in the United States, 1913, 1919, 1923, 1924, 1933, 1937, and 1938, by kinds of graphite and by uses

consumption of amorphous graphite for this purpose had risen to

TOTAL COI	NSUMPTIC	on, shor	T TONS				
	1913 1	1919 *	1923 2	1924 2	1933 3	1937 4	1938 4
Amorphous graphiteCrystalline graphite		12, 500 25, 000	29, 500 10, 000	26, 500 6, 000	5, 813 5, 716	21,000 6,700	12, 100 5, 700
	28,000	37, 500	39, 500	32, 500	11, 529	27, 700	17, 800
PERCENT	OF TOTA	L CONSUI	MPTION	•			

Used for— Foundry facings, etc. Lubricants, etc. Pencils, crayons. Crucibles Paints, stove polish, etc. Commutator brushes. Unspecified.	10 5 10 55 15	25 10 5 45 10	43. 5 3. 0 9. 0 15. 0 18. 5 8. 5 2. 5	51. 5 2. 5 5. 0 13. 0 19. 5 5. 0 3. 5	38. 0 11. 0 12. 0 17. 5 12. 0 3. 5 6. 0	38. 5 10. 9 10. 6 8. 3 4. 0 . 6 27. 1	28. 4 11. 9 9. 7 10. 0 3. 3 . 8 35. 9
	100	100	100.0	100.0	100.0	100.0	100.0

Estimated by Geological Survey.
 Compiled by U. S. Tariff Commission; includes some artificial or manufactured graphite.
 Compiled by National Recovery Administration.
 Compiled from reports of consumers and dealers to the Bureau of Mines.

Apparent new supply of natural amorphous and crystalline graphite in the United States from domestic and foreign sources, 1910-39 (5-year averages), in short tons

	Amorphous				Grand		
	Domestic	Imported	Total	Domestic	Imported	Total	total
1910-14 (ave.) 1915-19 (ave.) 1920-24 (ave.) 1925-29 (ave.) 1930-34 (ave.) 1935-39 (ave.)	1, 732 4, 409 3, 373 3, 131 1 800 1 400	6, 119 7, 761 7, 062 9, 352 7, 816 18, 668	7, 851 12, 170 10, 435 12, 483 18, 600 1 19, 100	2, 421 4, 954 1, 844 2, 351 1 150 (2)	16, 977 23, 580 8, 453 9, 254 2, 668 2, 494	19, 398 28, 534 10, 297 11, 605 1 2, 800	27, 249 40, 704 20, 732 24, 088 1 11, 400 (2)

1 Partly estimated.

Market channels.—New York always has been the principal port of entry for foreign graphite, although the tonnage passing through Arizona during the last year or two has exceeded the total even for New York, owing to the large increase of imports of Mexican amorphous graphite. However, as virtually all the higher-priced Ceylon and Madagascar varieties have entered at New York, that port is still far in the lead in values of the material imported. Canadian graphite, of course, comes through border ports, and a portion of the imports from Korea has been landed at San Francisco or Los Angeles. Michigan appears as an outstanding importing point owing to the fact that it is a distributing as well as consuming center for Mexican graphite railed through in bond. Chicago, too, often is listed as the actual port of entry even though much of the consumption in the Middle West is entered, and commonly processed to some extent, in the East. Canadian artificial graphite usually is entered at Buffalo.

The bulk of the graphite imported into the United States passes through the hands of only half a dozen companies, and only three firms import most of the Madagascar flake and Ceylon plumbago received. One of these firms is primarily a consumer of raw graphite, which it uses in making a wide variety of manufactured products. The other concerns, while engaged primarily in the sale of material to other manufacturers, are not merely importers or even merchants, for in addition to carrying extensive stocks for prompt shipment they are processors and blenders. Moreover, as the grinding, sizing, and purification of graphite and blending or otherwise preparing it for use by manufacturers of crucibles, pencils, lubricants, and other commodities result in a great deal of dust and off-grade material, the principal importers have built up manufacturing businesses of their own to utilize these byproduct materials economically in foundry facings and other products. Whereas the Bureau of Mines lists at least 40 companies as buyers of crude graphite, including a dozen or more relatively large consumers, scarcely 5 percent of the crystalline graphite used in this country is handled by ordinary importers. The proportion of amorphous graphite handled by other firms is somewhat larger because most of it requires little or no preliminary processing after arrival in this country, yet much of the amorphous graphite also passes through the same main channels.

Stocks.—The larger importers and dealers generally maintain a year's supply of crystalline graphite, either in warehouse or on order;

Bureau of Mines not at liberty to publish figures.

there is generally considerably more than a year's supply of Madagascar flake used for crucibles in the hands of manufacturers or their suppliers in this country. Characteristically, purchases are made when material can be bought advantageously. Graphite miners in most countries often are in need of cash; and large American buyers, being well financed, frequently can buy graphite under favorable terms. It follows that on a falling market, when lower prices are anticipated, stocks of graphite in the United States tend to diminish. However, it seldom happens that they dip much below the 12-month margin, and when prices are low the resumption of buying may result in the acquisition of enough graphite to last 18 months or longer.

During the latter part of 1939 the large importers and dealers were faced with the sudden increase in demand, whereas, particularly as regards Madagascar flake, there was difficulty in obtaining deliveries even of graphite that had already been ordered. Notwithstanding this condition, they continued to sell graphite to their regular customers

at the old prices.

GREENSAND

In recent years the only commercial production of greensand has been in New Jersey, and it has been consumed almost exclusively in water-softening compounds. A brief review of this industry was published in 1939. Shipments of refined greensand in 1939 totaled 6,466 short tons valued at \$150,500 compared with 6,576 tons worth \$152,000 in 1938 and an annual average for the 1925–29 period of 12,715 tons valued at \$197,200. Valuation figures are partly estimated. The best grade of refined greensand has been quoted nominally at \$20 a short ton f. o. b. cars, but most of the output nowadays is processed further by the three leading producers and sold as water softener at prices up to \$115 a ton. The yield of finished greensand zeolite averages between 35 and 40 percent of the hand-picked raw glauconite; including overburden, about 5 tons of material have to be moved for each ton of finished product.

Refined greensand produced in New Jersey, 1935-39

Year	Shorttons	Value	Year	Shorttons	Value
1935 1936 1937	7, 589 8, 368 9, 734	\$219, 749 177, 835 210, 974	1938 1939	6, 576 6, 466	\$152,000 150,500

Processed greensand zeolite comes on the market in the form of hard green granules ranging from 0.25 to 0.8 mm. in diameter—averaging about 0.30 mm. They bulk about 90 pounds per cubic foot, and the exchange capacity usually ranges from about 2,500 to 3,000 grains of CaCO₃ per cubic foot, although this can be increased by extra processing. As the softeners can be regenerated indefinitely and the total loss (chiefly mechanical) in active use is only 2 or 3 percent a year, replacement sales are a relatively small factor in this industry.

⁴ Tyler, Paul M., Greensand Zeolites: Bureau of Mines Mineral Trade Notes, vol. 9, No. 5, November 20, 1939, pp. 14-17.

KYANITE, ANDALUSITE, AND DUMORTIERITE

Domestic kyanite has become a fairly important refractory material. With at least two new producers entering the field in 1939 the production in the United States for that year is estimated at 2,950 short tons valued at \$69,000 f. o. b. mines. Although no figures of domestic output are available for earlier periods, the 1939 output is believed to have been twice as large as that of any preceding year. Most of this was used in glass-house refractories, but small amounts are employed in the glass industry also as a constituent of the melt, as well as in various ceramic products. Imports of kyanite, almost all of Indian origin, were 3,881 short tons having a foreign market value of \$38,137 compared with 3,964 tons valued at \$32,458 in 1938 and 7,674 tons valued at \$79,410 in 1937, the first year for which statistics were recorded separately.

Somewhat like kyanite in composition and potential uses are pinite

and topaz, which are discussed later in this chapter.

Celo Mines, the pioneer eastern producer of kyanite, has installed flotation equipment for better cleaning of concentrates from schist at its Burnsville (N. C.) plant. The Phosphate Recovery Corporation has used flotation to supplement tabling almost from the beginning of its work on Baker Mountain near Pamplin, Va. This company has also leased kyanite property near Henry Knob, S. C., owned by B. J. Lachmond. At Clarkesville, Ga., the Southern Mining & Milling Co. has three plants, one of which was idle in 1939. E. C. Noble produced and shipped kyanite concentrates from a new Georgia plant, which later was leased by the A. P. Green Firebrick Co., Mexico, Mo. The Vitrefrax Corporation, Los Angeles, Calif. (mines at Ogilby, Calif.), converts most of its product into mullite grains.

The Champion Sillimanite, Inc., a subsidiary of the Champion Spark Plug Co., Detroit, Mich., produces and alusite from White Mountain, Mono County, Calif., and dumortierite from near Oreana, Nev. The Tillotson Clay Products Co., Los Angeles, Calif. (mines in California and Nevada), also produces and alusite. The production of these minerals has been estimated at 2,000 tons or more a year

chiefly for use in ceramic spark-plug cores.

According to Edgar Bowles of the Alabama State Geological Survey, a 2- to 4-foot vein of kyanite has been opened up in Alabama on Turkey Heaven Mountain southeast of Heflin, Cleburne County. Until recently the only known occurrence in Alabama was of float material, which has been found in Coosa, Tallapoosa, Clay, Randolph, Chilton, and Cleburne Counties, often in large blocks but never in commercial quantities. In contrast to the usual pockety nature of vein kyanite, the newly discovered deposit may be more or less regular and continuous over a distance of at least 6 miles. An occurrence of gneiss in Iron County, Wis., containing 8 to 10 percent kyanite has been described by Carl Fries in an unpublished report. The kyanite is relatively free of inclusions and of good quality. Garnet (almandite) and biotite also are present in significant amounts. Several years ago, various kyanite occurrences were being prospected in Wyoming, especially in the Encampment district, but no recent activity has been reported in kyanite developments in this State.

As noted in Minerals Yearbook, 1939, and alusite sands are found in South Africa. Sales of 450 short tons worth £675 were reported

Bowles, Edgar, Kyanite'in Eastern Alabama: Bull. Am. Ceram. Soc., vol. 18, No. 8, August 1939, p. 316.

Consolidated Minerals, Ltd., of during the third quarter of 1939.

Johnannesburg is the sole producer.

A great deal of domestic kyanite can now be had at \$15 a short ton in bulk or \$17.50 in bags, f. o. b. cars, to which must be added a freight rate of \$5 to \$7 a ton to consuming points in the North or Middle West. Very-low-iron concentrates are offered at \$25 a ton, with intermediate grades at around \$20. An extra-low-iron grade (under 0.1 percent Fe₂O₃, 98 percent kyanite) calcined and ground to 325 mesh sells for \$78 a ton f. o. b. Burnsville, N. C.

LITHIUM MINERALS

Of interest in 1939 was the increased use of lepidolite in glass making and of spodumene in general ceramic work. Improved methods of concentrating low-grade spodumene ores, abundant in North Carolina, were worked out by the Bureau of Mines in cooperation with the Tennessee Mineral Products Corporation.

In South Dakota, the Black Hills Keystone Corporation (Ingersoll mine) and the Maywood Chemical Works (Etta mine) shipped lepidolite and spodumene, respectively, from Keystone, Pennington County. A small tonnage of spodumene was shipped also from the Ralph A. Smith property, near Keystone. The Black Hills Tin Co., Tinton, S. Dak., made no shipment. The national output (which includes the total for the three South Dakota producers and also that of the American Potash & Chemical Corporation, Trona, Calif.) was 1,990 short tons valued at \$97,000 in 1939 compared with 892 tons worth \$47,088 (corrected figure) in 1938.

Lithium compounds shipped from mines in the United States, 1935-39

Year	Pro- ducers	Short .tons	Value	Year	Pro- ducers	Short tons	Value
1935 1936 1937	4 6 7	1, 154 1, 241 1, 357	\$26, 834 34, 273 36, 206	1938 1939	4 4	892 1, 990	1 \$47, 088 97, 000

¹ Corrected figure.

Leading foreign countries producing lithium minerals are South-

West Africa and Argentina.

A detailed plane-table survey has been made by the Geological Survey of the spodumene deposits in the Kings Mountain district of North and South Carolina, and a pilot plant has been erected at Spruce Pine, N.C., for beneficiation by flotation of spodumene-bearing rock from this district. Tests indicate that a spodumene-microcline product can be obtained that, when used in place of feldspar in whiteware bodies, will lower the fusion temperature several cones, thus conserving time and fuel.

The Black Hills Tin Co. has perfected a flotation process for separating spodumene from quartz. The company property is said to contain a 90,000-ton deposit of spodumene quartz crystallized so finely that formerly it was thought to be feldspar. The concentrate contains 6 percent or better lithium oxide. After operating experimentally for 6 weeks during the summer of 1939 the company proposed to introduce in its present tin-tantalum concentrating mill a spodumene circuit capable of producing several carloads a week.

⁶ Norman, J., and Gieseke, E. W., Beneficiation of Spodumene Rock by Froth Flotation: Am. Inst. Min. and met. Eng. Tech. Pub. 1161, Mining Technol., March 1940, 9 pp.

MEERSCHAUM

Meerschaum, hitherto used exclusively in the manufacture of smokers' articles, has recently shown promise of becoming a useful medicament. Dr. Manfred Kraemer, Newark, N. J., has reported excellent results in both England and the United States from using the powdered mineral as a remedy for stomach ulcers.⁷

World supplies of meerschaum came from Eskishehir, Turkey. Imports into the United States in 1939 were 10,467 pounds valued at

\$12,191 compared with 3,559 pounds valued at \$9,221 in 1938.

MINERAL WOOL

Statistics on mineral wool are not compiled by the Bureau of Mines but are obtained biennially by the Bureau of the Census. Preliminary reports indicate that production in 1939 exceeded that in 1938 but probably failed to reach the 1937 peak; however, there was a boom in the sale of batts and strips, consumption of which has

increased rapidly during the last year or two.

The Carney Rock Wool Co., an affiliate of the Carney Cement Co., Mankato, Minn., began producing at a new mineral-wool plant late in 1939. The American Rock Wool Co. is spending \$100,000 improving its plant at Wabash, Ind. In August 1939 it was reported that Superior Insulations, Inc., was about to erect a new rock-wool plant at Lagro, Ind. The Kentucky Stone Co. rock-wool plant at Mullins, Ky., was destroyed by fire in February 1939 but it probably will be rebuilt.

No rock wool is manufactured at present in the Southeastern States, and slag-wool plants in this territory are found only in Tennessee and Alabama. According to a recent circular (No. 10) of the State Department of Natural Resources, Division of Mines, Mining, and Geology, Georgia is well-situated geographically, has ample wool-rock resources, and offers other advantages for establishing a plant. Annual consumption of mineral wool in this market is now only 1,000 to 1,500 tons—most of which comes from Indiana, Ohio, and New Jersey—but it might be increased.

MONAZITE

Owing to the declining use of gas mantles as electric lighting became more nearly universal, world production of monazite decreased, slowly at first but later quite rapidly, from the peak of 7,392 short tons in 1909 to less than 100 tons annually. After fluctuating violently for several years a turning point appeared about 1932, and in 1938 the gross output exceeded 6,000 metric tons; owing to the greater purity of recent shipments the actual output in terms of thorium content and perhaps even in content of cerium and other rare metals, may now exceed the pre-war peak.

What actually stimulated the revival in demand for monazite is not generally known. There has been a sizable increase in demand for the metal in radio and X-ray equipment, and there is a small consumption of thoria for highly refractory crucibles and other laboratory utensils. Substantial quantities of monazite are used more or less directly in rare-earth electrodes or carbons for sun lamps and other light-therapy

⁷ Science News Letter, vol. 35, No. 20, May 27, 1939, p. 334.

equipment. Nevertheless, these relatively new uses could not begin to offset the decline of around 90 percent in consumption for making gas mantles. Mesothorium is recovered from monazite, but ordinarily only as a byproduct. On the other hand, the manufacture of sparking flints and certain miscellaneous uses for cerium salts have expanded greatly; it is probable, therefore, that some of the increased demand for monazite can be ascribed to an increased demand for cerium and other rare earths. There is the further question, however, since these elements are available in the residues from gas-mantle manufacture, whether current needs cannot still be supplied, at least in part, from accumulated residues. About 100,000 tons of monazite have been consumed in Europe and the United States since 1893, chiefly for gasmantle making. Roughly 30 percent was cerium oxide, and 30 percent more comprised lanthana, didymia, and other rare-earth oxides. An almost negligibly small fraction of this 60,000 tons of various oxides was needed in the gas-mantle industry. It is not known to what extent these residues have been absorbed by other industries or otherwise dissipated, but it would seem that in the United States the increasing need for cerium salts-chiefly for mothproofing fabrics, for coloring topaz-yellow glass, for opacifying enamels, and for stabilizing the arcs in carbon arc lamps—is being supplied by imports of monazite. According to Chambers, a recent shipment of Indian monazite from

According to Chambers, a recent shipment of Indian monazite from the Quilon area in Travancore analyzed: Thorium dioxide, 8.3; cerium and other rare-earth oxides, 61.7; iron oxide, 0.1; and phosphoric

anhydride, about 29.0 percent.

In 1938 British India produced 5,305 metric tons of monazite compared to 3,130 tons in 1937. As recently as 1933 the Indian output was only 141 tons, and in 1930 it dropped to 14. A somewhat similar revival has occurred in Brazil, whose exports virtually ceased after 1933 and were not resumed until 1938 when they were 323 metric tons. Recently the Netherland East Indies has appeared as a new source, furnishing 668 metric tons in 1937 and 393 tons in 1938. Egypt and Ceylon also have produced monazite in the past, although only sporadically and in small amounts. The United States likewise has never been a large producer, and domestic output has been reported

in only 1 year (1925) since 1917.

According to an American consular report, the exports of monazite from Brazil totaled 474.68 metric tons in 1938, all from the State of Espirito Santo. Of this quantity, 373.20 tons were shipped to France, 100.02 tons to the United States, and 1.46 tons to Germany. The first discovery of monazite in Brazil was in diamond-bearing river sands of Bahia in 1884, and John Gordon shipped monazite to Europe in 1886. From 1904 to 1910 Brazil shipped an average of 5,000 metric tons annually, but after the Travancore deposits began to be worked in 1910 British India gradually became the leading source of monazite and Brazilian output declined. By 1915 Brazil furnished only 439 tons and India 1,108. It has been stated that monazite sands are found all along the coast of Espirito Santo, but the Guarapary deposits are the only ones worked in recent years. The relative importance of these deposits may be due mainly to their size and to the fact that they are not covered by the sea at high tide, as are so many of the other

^{*} Chambers, Gordon H., Zircon, Ilmenite, and Monazite Mining in India: Foote-Prints (Foote Mineral Co.), vol. 12, No. 1, Philadelphia, June 1939, pp. 6-7.

* Forsyth, T. Muldrup, American vice consul, Victoria, Brazil, Monazite in the State of Espirito Santo, Brazil: Consular Rept., June 27, 1939, 17 pp. (abstracted in Bureau of Mines Mineral Trade Notes: Vol. 9, No. 2, August 19, 1939, pp. 16-19).

large deposits. Moreover, they are more accessible, since Guarapary has good anchorage for small coastwise vessels. The principal known deposits of monazite in Brazil are on lands belonging to States or to the National Government. Since 1915 the National Government has been adjudicated all deposits situated not more than 33 meters from the mean water level. Contracts for mining on public lands generally have called for a minimum output and payment to the State or to the National Government of a certain percentage of gross income from sales, over and above export taxes. Before 1907, the only concentration was in sluices, the mixed product containing 60 to 65 percent monazite and varying quantities of ilmenite, zircon, garnet, and quartz. Later, however, the Société Minière Franco-Brésilienne installed magnetic separators, which yield a concentrate containing 85 to 92 percent monazite, with zircon and ilmenite as byproducts.

The monazite sand shipped from Espirito Santo to the United States in 1938 was sold for \$35 (United States currency) a metric ton f. o. b. Victoria, Brazil. Trade-journal quotations in the United States have remained unchanged at \$75 a short ton (basis, 8 percent ThO₂) for several years. This quotation relates to Indian monazite, which is higher grade; a presumably typical analysis of the Guarapary concen-

trates shows only 6.3 percent ThO₂.

In 1939 the imports of monazite into the United States aggregated 1,560 short tons valued at \$52,016; 1,336 tons were imported directly from British India and 54 tons from Brazil. In 1938 the imports were 456 short tons valued at \$18,210, of which 339 tons were from British India.

OLIVINE

The North Carolina dunite deposits contain 50 to 100 million tons of olivine and have yielded as much as 600 tons a month. Recently, however, only two quarries have been worked—both in Jackson County, N. C.—and shipments were estimated at 3,000 tons in 1939, only a little more than in 1938. Other domestic deposits of commercial size are found in California and Washington. Those in Norway and the U. S. S. R. (Urals) have been worked on a small scale. Synthetic olivine can be made of talc or serpentine and research along these lines has been done in Germany, Italy, and Japan, as well as Norway.¹⁰

Magnesium silicate or forsterite refractories do not have a wide market but have become well-established in several specific services. Owing to their remarkable resistance to attack by iron oxide their use in nonferrous metallurgy is broadening, and they are also used to a growing extent in rotary kilns for portland cement and dead-burned dolomite. Relatively small amounts of olivine are used as quarried blocks or cut shapes; the major tonnage goes into manufactured

forsterite brick.

Julius R. Gillis and George W. Pawel, Sylva, N. C., have devised a process for making synthetic kieserite or magnesium sulfate from olivine. They propose to employ material from a large deposit at Webster, N.C., which is reported to contain 25 to 35 percent MgO and up to 1½ percent nickel. Southern rayon mills afford the anticipated market for the magnesium sulfate and the nickel also can be recovered.

¹⁰ Mining Journal (London), Development of Refractories: Vol. 208, No. 5445, December 30, 1939, p. 1086.

PINITE 11

Several secondary minerals derived from alteration of feldspar, nepheline, and certain other silicates are classed as pinite. Essentially a hydrous silicate of alumina and potash, pinite has virtually the same composition as muscovite, and certain varieties resemble sericite in appearance. Massive pinite resembles steatite or pyrophyllite.

A large deposit of pinite on the east side of the Humboldt Range near Rochester, Nev., has been developed, and during the last 2 years approximately 1,200 tons have been shipped to the Stockton Fire Brick Co. at Pittsburg, Calif., for manufacture into firebrick. In a paper presented in August 1939 at the American Ceramic Society meeting in San Francisco, Calif., Page, Raine, and Sullivan of that company listed the important properties of pinite as refractoriness, ease of raw grinding, snow-white color after firing, inversion to mullite at relatively low temperatures (1,125° C.), low and reversible thermal expansion, absence of free silica, extreme hardness and resistance to abrasion of the fired product, low firing shrinkage, high density after firing, and resistance to molten-enamel slags. In the cold zones of rotary kilns and in the coolers that take the discharge from rotary kilns, pinite linings last longer than linings of other materials. It is claimed they have been used in calcining cement clinker, magnesite, and limestone since 1936; in 1939 an installation was made in the new cement plant of the Permanente Corporation at San Jose, Calif.

SERPENTINE

Massive serpentine, neither fibrous (asbestos) nor decorative (verde antique "marble"), has entered the growing list of industrial minerals. Carload shipments were made in 1939 from Nottingham, Pa., for use in dolomite-base refractories.

STRONTIUM MINERALS

The celestite resources of the United States undoubtedly are large; a few domestic occurrences of strontianite have been reported to the Bureau of Mines, but no production of either mineral has been reported since 1918—apart from impure celestite mined near Sweetwater, Tex., and sold by the Mudrite Products Co., of Houston, Tex., for use as oil-well drilling-mud admix.

American manufacturers of strontium nitrate for red flares and other pyrotechnic compounds have employed imported raw materials. As these have come almost exclusively from Germany in recent years the wartime blockade late in 1939 developed some uncertainties, and prices of strontium salts were tending slightly higher.

Strontium minerals and chemicals imported for consumption in the United States, 1935-39

Year	Miner	als	Nit	rate	Carbonate and oxide	
	Pounds	Value	Pounds	Value	Pounds	Value
1935	2, 674, 094 3, 880, 302 5, 636, 570 552, 868 5, 645, 935	\$11, 595 14, 537 20, 877 2, 824 23, 136	277, 548 694, 696 609, 488 364, 362 479, 933	\$15, 716 39, 820 40, 243 23, 921 32, 060	1 21, 828 52, 311 44, 579 82, 859 23, 148	1 \$2,641 6,056 4,610 8,502 2,811

¹ Carbonate only; not separately recorded after 1935.

¹¹ Tyler, Paul M., Pinite—A New Refractory: Bureau of Mines Mineral Trade Notes, vol. 9, No. 5, November 20, 1939, pp. 18-19.

TOPAZ

A carload of fine-grained topaz was shipped in 1939 by the Tennessee Mineral Products Corporation, Spruce Pine, N. C., from the unique deposit at the Brewer gold mine near Jefferson, S. C. The raw material analyzes 50 percent Al_2O_3 , 40 percent SiO_2 , 0.92 percent Fe_2O_3 , and 12.74 percent Fe_2 . (Inasmuch as the analysis totals over 100 percent, it would appear that some of the aluminum is combined with fluorine instead of oxygen.) After calcining, however, it carries 71 percent Al_2O_3 and 29 percent SiO_2 , or about the same composition as calcined Indian kyanite. Like kyanite it may be used in special refractories.

VERMICULITE

The production of raw vermiculite in the United States in 1939 was larger than in 1938 but did not attain the 1937 record. Declines in the western output partly canceled an important gain in North Carolina, where there are now two producers, Philip S. Hoyt and Cary Minerals Co., both operating at Franklin, N. C. The latter company is affiliated with expanding plants in Washington, D. C. (Verling). miculite Products Co.), and Newark, N. J. (Munn & Steele, Inc.). The two producers at Libby, Mont., merged into a new corporation— Universal Zonolite Insulation Co. (C. W. Kearney, president), Chicago, Ill.—which continues to mine the raw material and to ship cleaned and sized vermiculite to its own and other expanding plants The Mikolite Co. (1100 South Mill Street, Kansas in various cities. City, Kans.), after being optioned to Lehigh Portland Cement Co.. resumed operations under the original management, producing—in addition to loose fill—a varied line of insulating, acoustical, and lightweight plasters, cements, and coatings, as well as stucco and textural finishes. Among its newer products is an extender for aluminum paints which, it is claimed, give better results than straight aluminum paint and increase coverage by 25 percent. Vermiculite for this purpose is only 0.00002 inch in diameter, and 1 ounce bulks approximately 5½ ounces by volume. Other uses of this fine powder (98 percent through 325 mesh) are as a coolant and lubricating agent in automobiles, both in the motor and in the transmission and rear end. This company gets its raw material from Wyoming. ulite is mined in Colorado by the Vermiculite Co. of America, 406 Thorpe Building, Minneapolis, Minn.

Vermiculite sold or used by producers in the United States, 1924-39

Year	Short tons	Value	Year	Short tons	Value
1924	2	\$68	1932	1, 643	\$16, 950
1925	102	2,818	1933	2, 247	21, 993
1926	150	3,750	1934	4, 746	56, 965
1927	51	1,318	1935	7, 068	88, 445
1928	1,006	38,118	1936	16, 933	185, 787
1929	982	24,483	1937	26, 556	260, 664
1930	831	13,682	1938	20, 700	192, 000
1931	1,256	24,758	1939	21, 174	174, 587

Freshly exfoliated vermiculite has been reported as being a powerful desiccant, a property that prevented its proposed employment for packing fruit, but a recent investigation indicates that vermiculite that has been exfoliated several months has low capacity and efficiency for the sorption of water vapor. On the other hand, the silica obtained after other oxides are dissolved out with sulfuric and hydrochloric acids has excellent sorbing properties; it has characteristics of a good desiccating agent, although a large volume may be needed owing to its low density.

Retail prices of expanded vermiculite remained firm at 90 cents to \$1.35 a 24-pound bag, and prices to building material dealers stiffened. The raw material was worth \$7 to \$12 a ton, f. o. b. mines.

12 Hansen, L. A., Samuel, W. S., Jr., and Forni, P. A., Sorption of Water Vapor by Vermiculite and Its Silica: Ind. Eng. Chem., vol. 32, No. 1, January 1940, pp. 116-118.

PART IV. MINE SAFETY

EMPLOYMENT AND ACCIDENTS IN THE MINERAL INDUSTRIES

By W. W. Adams

SUMMARY OUTLINE

	Page	1	Page
ntroduction	1483	Employment and accidents—Continued.	
Employment and accidents		Slate quarries	1489
Bituminous-coal mines	1486	Trap-rock quarries	1489
Anthracite mines	1486	Granite quarries	
Iron-ore mines	1487	Sandstone quarries	1490
Copper mines	1487	Limestone quarries	1490
Lead and zinc mines (Mississippi Valley		Limekilns and quarries	1490
States)	1487	Byproduct-coke ovens	1491
Gold and silver mines (including copper,		Beehive-coke ovens	1491
lead, zinc)	1488	Ore-dressing plants	1491
Miscellaneous metal mines	1488	Smelters	1491
Nonmetallic-mineral mines	1488	Auxiliary works at ore-dressing plants and	-10-
Cement mills and quarries	1488	smelters	1492
Marble quarries	1489	Summary, 1931-39	1492

Reports from mineral producers to the Bureau of Mines for 1939 reveal widespread recovery of much of the loss in employment noted in 1938. Combined figures covering all main classes of mines and quarries, coke ovens, and metallurgical plants showed more employees working and a larger aggregate number of man-hours worked in 1939 than in 1938.

Increased employment was accompanied by a rise in the number of accidents but not to such an extent as to cause an increase in the accident-frequency rate per million man-hours worked. In fact, as far as may be determined from tentative figures now available, the accident rate for 1939 actually was a little lower than the correspond-

ing rate for 1938.

Reports furnished to the Bureau of Mines are classified into 21 groups; each represents a major branch of the mineral industries and has separate accident and employment figures. Eighteen groups employed more men in 1939 than in 1938, and 18 worked a larger number of man-hours. Nonmetallic-mineral mines reported fewer employees but a gain in man-hours worked, whereas the gold-and-silver group reported a gain in employees but a slight decrease in man-hours. The only two groups reporting a loss both in employees and man-hours worked were those covering miscellaneous metal mines and trap-rock quarries.

This general review of accidents and employment in 1939 is based largely upon reports that had been received from mining companies at the time this chapter was prepared for Minerals Yearbook, 1940. Complete figures are now available for only a few groups—beehive coke ovens, byproduct coke ovens, cement mills and quarries, marble quarries, and slate quarries. Estimates have been made for all

other groups.

Figures in the following table show the estimated number of men employed in 1939, the number of men employed in 1938 as shown by reports that are complete and final for all groups except bituminous-coal and metallurgical plants, and the number of men employed in 1937 as shown by complete and final figures for all operations.

Number of men employed in the mineral industries of the United States, 1937-39

	1937	1938	1939
Coal mines:			
Bituminous-coal	490, 771	1 444, 000	1 446, 000
Pennsylvania anthracite	99, 085	96, 282	1 98, 000
	589, 856	1 540, 000	1 544, 000
Metal mines:			
Iron	22, 957	18,006	1 20, 700
Lead-zinc (Mississippi Valley)	8, 466	6,413	1 7, 000
Copper	21, 175	17, 582	1 18, 300
Gold, silver (including lead, zinc, copper)	51, 610	47, 534	1 52, 300
Miscellaneous (tungsten, manganese, etc.)	4, 204	3, 943	1 3, 800
	108, 412	93, 478	1 102, 000
Nonmetallic-mineral mines	10, 017	9, 526	1 9, 200
Quarries:			
Cement	27, 215	25, 520	26, 045
Marble	3, 647	3, 414	3, 697
Slate	3, 074	2, 615	2, 833
Trap-rock	2, 806	3, 141	1 2, 900
Granite	8, 961	8, 395	1 8, 500
Sandstone	3, 242	2, 907	1 2, 950
Limestone	24, 789	22, 352	1 22, 900
Lime	10, 360	9, 153	1 9, 600
	84, 094	77,497	1 79, 000
Coke ovens: Byproduct	17, 850	12,750	14, 852
Beehive	2, 192	1, 049	1,757
	20, 042	13, 799	16, 609
Matallannian plants			
Metallurgical plants: Mills	14, 497	1 12, 400	1 13, 100
Smelters	17, 957	1 14, 400	1 16, 300
Auxiliary works	15, 076	1 12, 500	1 12, 900
Auxerary works			
	47, 530	1 39, 300	1 42, 000
Grand total	859, 951	1 774, 000	1 793, 000

¹ Subject to revision.

The following table shows men employed, man-days and man-hours of employment, and men killed and injured by accidents chargeable to the hazards of their occupations, as well as the yearly fatality and injury rates for mines, quarries, coke ovens, ore-dressing plants, smelters, and auxiliary works connected with ore-dressing plants and smelters.

Employment and accident record of mineral industries of the United States, 1931-39

Year	Men em- ployed	Man-days of employment	Man-hours of employment	Nu	mber		er million -hours
	ployed	employment	employment	Killed	Injured	Killed	Injured
1931 1932 1933 1934 1935 1936 1937 1938 1 1939 1	784, 347 671, 343 677, 722 739, 817 783, 139 824, 514 859, 951 774, 000 793, 000	147, 602, 799 110, 655, 616 122, 787, 658 144, 566, 133 152, 354, 170 177, 920, 334 186, 790, 283 144, 700, 000 158, 700, 000	1, 209, 270, 036 900, 211, 723 984, 570, 160 1, 081, 694, 716 1, 128, 808, 465 1, 326, 347, 029 1, 381, 261, 415 1, 074, 000, 000 1, 173, 000, 000	1,707 1,368 1,242 1,429 1,495 1,686 1,759 1,364 1,359	96, 412 68, 717 72, 342 81, 660 82, 219 92, 644 96, 484 73, 740 78, 248	1. 41 1. 52 1. 26 1. 32 1. 32 1. 27 1. 27 1. 27 1. 16	79. 73 76. 33 73. 48 75. 49 72. 84 69. 85 69. 85 68. 64 66. 69

¹ Subject to revision.

The trends in employment and accidents based upon figures in the foregoing table are shown graphically in figures 1, 2, and 3.

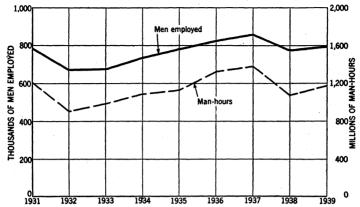


FIGURE 1.—Trend of employment in the mineral industries of the United States, 1931-39.

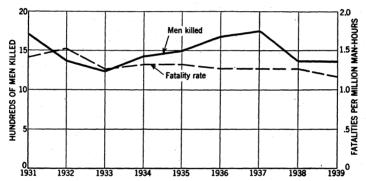


FIGURE 2.—Trend of fatal accidents in the mineral industries of the United States, 1931-39.

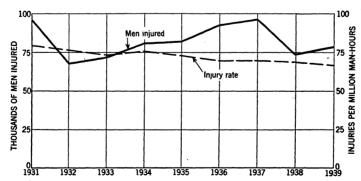


FIGURE 3.—Trend of nonfatal accidents in the mineral industries of the United States, 1931-39.

EMPLOYMENT AND ACCIDENTS

BITUMINOUS-COAL MINES

Employment.—Bituminous-coal mining is by far the largest branch of the mineral industries in the United States. Approximately 60 percent of the total number of men engaged in extracting minerals of all kinds, except oil, sand, gravel, and clay, work in mines that produce bituminous coal. The number of employees at bituminous-coal mines in 1939, as estimated from operators' reports now available, was 446,000 and the total man-hours worked approximately 559 million. The number of employees in 1939 was almost the same as in 1938; however, there was a large increase, amounting to about 10 percent, in volume of labor as measured by man-hours worked. The average working time also increased—from 161 days per man in 1938 to about 176 days per man in 1939.

Accidents.—Accidents increased in number in 1939, but the accident-frequency rate per million man-hours worked was prevented from rising by a proportionately larger gain in man-hours of employment. In fact, information now available indicates that the accident rate probably was a little lower in 1939 than in 1938. The tentative rate, covering both fatalities and injuries, was 75.84 compared with 78.54 in 1938. According to present reports, 890 employees were killed by accidents in 1939. Nonfatal injuries are estimated at 41,500. The tentative fatality rate is 1.59 per million man-hours worked in 1939 compared with 1.72 in 1938. Corresponding rates for

nonfatal injuries are 74.25 for 1939 and 76.82 for 1938.

Only one major disaster occurred at bituminous-coal mines in 1939 (a major disaster being defined as an accident causing the loss of five or more lives). The single disaster was a mine explosion on July 14 in Webster County, Ky., in which 28 lives were lost.

ANTHRACITE MINES

Employment.—As referred to in the present discussion, this group of mines covers only the anthracite or hard-coal operations in eastern Pennsylvania. Employment during 1939 was more favorable than in 1938; a few more men were working at the mines, and a notably higher aggregate number of man-hours were worked. Incomplete returns from operating companies indicate a total of 98,000 employees, a slight gain over the 96,282 men employed in 1938. A more significant increase is revealed by the estimated 126 million man-hours worked in 1939 compared with 116 million man-hours worked in 1938. Improvement also was made in 1939 in the number of days of work available per employee; the average was 184, a gain of 12 workdays per man over the average of 172 per employee in 1938.

Accidents.—Accidents were more numerous in 1939 than in 1938. Because of increased employment, however, there was no increase in accident-frequency rate per million man-hours of work done. Tentative figures show a total accident rate of 121.84 per million man-hours

for 1939, compared with 127.27 for 1938.

Anthracite mining was free of major disasters in 1939. No such disaster has occurred in an anthracite mine in Pennsylvania since June 2, 1938, when 10 men were killed in a mine explosion in Luzerne County.

IRON-ORE MINES

Employment.—Employment in iron-ore mining recovered sharply to approximately 20,700 men in 1939 from 18,006 men in 1938. Similar recovery was made in man-hours of labor performed, which rose to about 36 million man-hours in 1939 from 28.5 million in 1938. The workyear also was lengthened, as tentative figures indicate 219 workdays per employee in 1939 compared with 197 days in 1938.

Accidents.—Accidents were more numerous in 1939 than in the preceding year, and the accident rate per million man-hours worked also was higher than in 1938. According to present information the death-and-injury rate was 17.68 in 1939 compared with 16.69 in 1938. Although the rate increased in 1939, it was lower and therefore more favorable than the 1939 rate for any other major branch of metal mining in the United States.

COPPER MINES

Employment.—Notable recovery in employment in the coppermining industry in 1939 compared with 1938 was shown by a 21-percent rise in number of man-hours worked. The number of men employed in and about the mines also increased. Moreover, the average employee had a longer work year in 1939 (285 days per man—a gain of about 39 workdays per man employed), according to reports now available. About 18,300 men were employed in 1939 compared with 17,582 men in 1938. Man-hours worked totaled 41.9 million compared with 34.6 million in 1938.

Accidents.—There was no significant change in the accident-frequency rate for copper mines in 1939 from that reported for 1938, although the actual number of persons injured was larger in 1939. The increase in number of accidents did not cause a rise in the accident-frequency rate owing to the larger number of man-hours worked in 1939. According to preliminary figures, the 1939 accident rate was 60.25 per million man-hours, whereas final reports for 1938 showed a rate of 61.27. Both rates represented an improvement over 1937, when the rate was 95.93.

LEAD AND ZINC MINES (MISSISSIPPI VALLEY STATES)

Employment.—This group includes mines producing lead or zinc in the Mississippi Valley States—including principally Kansas, Missouri, and Oklahoma—and those producing fluorspar in Illinois and Kentucky, where similar accident conditions prevail. The number of men working increased slightly in 1939, and the total man-hours worked gained much more, proportionately. The number of employees was approximately 7,000 compared with 6,413 in 1938. The aggregate man-hours worked at all mines increased about 12 percent in 1939, as reports for the year indicated 11.9 million man-hours worked compared with 10.6 million in 1938. The average employee had 212 days of work, a gain of 5 days over 1938.

Accidents.—Tentative figures based upon reports now available indicate an accident-frequency rate in 1939 of 53.11 injuries and deaths per million man-hours of employment, a more favorable record than that shown by the rate of 58.80 for 1938. Five men were killed by a fall of roof in a mine at Treece, Kans., on January 31, 1939.

GOLD AND SILVER MINES

Employment.—This group includes not only gold and silver mines, but also those producing some copper but operated chiefly for some other metal and those producing lead or zinc elsewhere than in the Mississippi Valley States. Placer as well as lode mines are included.

Mines in this group employed approximately 52,300 men in 1939 compared with 47,534 in 1938. The favorable record shown by the increase in number of employees did not extend to the man-hours worked, which declined from 88.8 million in 1938 to about 87.4 million in 1939.

Accidents.—Accidents increased in 1939 and resulted in higher death and injury rates than in 1938. Tentative figures place the death rate at 0.95 and the injury rate at 105.13 compared with 0.90 and 94.21, respectively for 1938. Reports now available indicate 83 lives lost and 9,187 men injured in accidents at mines in 1939. Final reports for 1938 showed 80 fatal and 8,362 nonfatal injuries.

MISCELLANEOUS METALEMINES

Employment.—This group covers all operations that mine any kind of metallic ores except those produced chiefly for their gold, silver, copper, lead, zinc, or iron; therefore it includes mines that produce ores of tungsten, mercury, manganese, or any of the other metals. The group as a whole contains quite a large number of mines, but many of them are small and employ relatively few men. According to tentative figures now available, the number of employees in 1939 was 3,800, slightly less than the 3,943 men employed in 1938. Total man-hours worked likewise dropped; the total for 1939 was 7.4 million compared with 7.8 million for 1938 and 8.3 million for 1937.

Accidents.—Progress was made in prevention of accidents in 1939, as the tentative accident-frequency rate per million man-hours worked was 51.21 compared with 61.48 for 1938. The 1939 rate was 17 percent below 1938 and 25 percent below 1937.

NONMETALLIC-MINERAL MINES

Employment.—This group covers mines that produce all kinds of nonmetallic minerals except stone, sand, gravel, and clay; therefore it includes mines producing phosphate rock, rock salt, sulfur, gypsum, and many other minerals. The group as a whole employed approximately 9,200 men in 1939, a decrease from 9,526 in 1938. More continuous operation of the mines, however, was reported in 1939, so the aggregate number of man-hours worked increased, the total for 1939 being about 18.4 million and for 1938 17.8 million.

Accidents.—The safety record for nonmetallic-mineral mines as a group was slightly more favorable in 1939 than in 1938. The records for both years, however, were better than in 1937. According to tentative figures the rate for 1939 was 39.20 compared with 41.06 for 1938. The improvement indicated by each of these rates is seen when they are compared with the rate of 48.69 for 1937.

CEMENT MILLS AND QUARRIES

Employment.—A gain in employment was reported for cement quarries and mills in 1939 compared with 1938; the number of men

working increased 2 percent and the aggregate number of man-hours worked 7 percent. The total number of workers was 26,045; and man-hours worked, 52 million. An increase of about 17 days per

man over the 255 workdays in 1938 was shown.

Accidents. -- Accidents were reduced in 1939, notwithstanding an increase in workers and in man-hours of employment. Twelve men were killed and 456 injured in 1939. These figures represent a fatality rate of 0.23 and an injury rate of 8.77 per million man-hours worked by the cement industry as a whole. Corresponding rates for 1938 were 0.29 for fatalities and 9.69 for injuries; thus the record for 1939 was favorable both in accident prevention and employment.

MARBLE QUARRIES

Employment.—More men were employed and more man-hours of employment were available at marble quarries in 1939 than in 1938. The average number of men working at both quarries and finishing plants was 3,697, and the total man-hours worked during the year was more than 7 million. The average number of workdays per employee was 2 more than in 1938, bringing the figure to 236 days per employee in 1939.

Accidents.—No employee was fatally injured in 1939—a favorable record considering that men working at the quarries and finishing plants were exposed to occupational hazards for more than 7 million man-hours. One man was fatally injured in 1938. Nonfatal injuries involving disability of 1 day or more totaled 429 and represented a frequency rate of 60.90 per million man-hours of exposure.

rate was slightly higher than that for 1938.

SLATE QUARRIES

Employment.—Increased employment, both in men working and man-hours of work performed, was reported for the slate-quarrying Total man-hours worked was 25 percent higher industry in 1939. than in 1938 and only 12 percent lower than in 1937. Final figures for 1939 show 2,833 employees and 5.3 million man-hours of work.

Accidents.—Three men were killed and 375 injured by accidents at slate quarries during 1939—more than in either 1938 or 1937. The increase in accidents was proportionately greater than the gain in employment, so that the accident rate for 1939 was higher than for The rate for 1939 was 70.80 injuries and fatalities per million

man-hours worked compared with 57.04 for 1938.

TRAP-ROCK QUARRIES

Employment.—Contrary to the general upward trend in employment in most mineral industries, the number of men employed at trap-rock quarries (about 2,900) was smaller in 1939 than in 1938 but larger than in 1937. The aggregate number of man-hours worked (4.2 million) by the operating plants was less than in either 1938 or 1937.

Accidents.—Although final figures are not available, injuries during 1939 approximated 297, including 4 fatal injuries. The frequency rate, covering both nonfatal and fatal injuries, was 71.46 compared

with 62.85 in 1938.

GRANITE QUARRIES

Employment.—The number of men employed in and about granite quarries in 1939 was slightly higher than in 1938, when 8,395 men were employed, but did not differ materially from that figure; however, the aggregate number of man-hours worked in the industry as a whole increased about 5 percent, owing chiefly to a gain of about 14 workdays per man over the average of 214 workdays per man shown by final reports for 1938.

Accidents.—Preliminary data indicate that 592 men were injured. 8 of them fatally. These figures represent an accident-frequency rate of 39.89 per million man-hours of employment or exposure to risk.

The rate for 1938 was 42.93.

SANDSTONE QUARRIES

Employment.—About 2,950 men were employed at sandstone quarries in 1939. The number working was a little larger than the 2,907 employees in 1938. During 1939, 4.5 million man-hours of work were performed; the corresponding figure for 1938 being 4.3 million.

Accidents.—From reports so far received, the sandstone-quarrying industry was operated during 1939 without a fatality. Nonfatal injuries totaled 331, a considerable increase over the 252 that occurred during 1938. As a result the accident-frequency rate was higher in 1939, being 73.60 compared with 58.15 in 1938.

LIMESTONE QUARRIES

Employment.—Excluding quarries that produced limestone chiefly for the manufacture of lime, the limestone quarries of the United States employed approximately 22,900 men in 1939, a slight gain over the 22,352 reported for 1938. The number of man-hours of labor performed also increased, from 34 million in 1938 to about 36 million

Accidents.—A reduction in accidents, both in number and in relation to man-hours of employment, was shown by operators' reports for 1939. Tentative figures indicate 1,786 injuries in 1939 compared with 1,914 in 1938. The gain in man-hours worked and the more notable reduction in number of injuries lowered the accident-frequency rate to 49.40 in 1939 from 57.12 in 1938.

LIMEKILNS AND QUARRIES

Employment.—Gains in number of workers and in man-hours worked in 1939 compared with 1938 were reported by limekilns and quarries. Tentative figures show 9,600 men employed in 1939 compared with 9,153 in 1938, and total volume of employment was 20.2

million man-hours compared with 18.1 million in 1938.

Accidents.—Tentative figures show that 8 men were killed and 1,054 injured by accidents at quarries and kilns in 1939. record was better than that for 1938, which included 14 fatal accidents. Nonfatal injuries, on the other hand, were more numerous in 1939 (1,054 compared with 936 in 1938). The accident frequency rate for 1939 was 52.53 compared with 52.51 for 1938. The increase in number of injuries in 1939 did not cause a material rise in the accident rate per million man-hours owing to the increase in man-hours worked during 1939.

BYPRODUCT-COKE OVENS

Employment.—Increased employment in 1939 raised the total number of employees at byproduct-coke ovens to 14,852, a gain of more than 16 percent over 1938 but 17 percent less than in 1937. Volume of employment amounted to 42.2 million man-hours in 1939 compared with 35.5 million in 1938, the gain in 1939 being nearly 19 percent.

Accidents.—Byproduct-coke ovens and one other group, cement mills and quarries, are conspicuous among the various mineral industries for consistently low and favorable accident rates reported from year to year. In 1939 byproduct-coke plants, with an accident-frequency rate of 8.15, established the best safety record of any group canvassed by the Bureau of Mines. The rate for 1939 was not quite as favorable as that for 1938, which was 7.29, but compared favorably with 8.54 for 1937.

BEEHIVE-COKE OVENS

Employment.—Although the number of men working at beehive-coke ovens in the United States has been small in recent years, a marked increase was reported in 1939 compared with 1938. Final reports show a total of 1,757 men working at the ovens, an increase of 67 percent over 1938 when the number was 1,049. Man-hours of work also showed a substantial increase, being 1.54 million in 1939 compared with 1.06 million in 1938.

Accidents.—There were no fatal accidents in 1939 but 62 men were injured, an increase of 33 over 1938. Because injuries increased more in proportion than number of man-hours worked, the accident rate rose to 40.25 in 1939 compared with 27.36 in 1938; however, the rate for 1939 compared favorably with that for 1937—48.49—which represented 158 injuries and 1 fatality that occurred during 3.3 million man-hours of work.

ORE-DRESSING PLANTS

Employment.—At ore dressing and beneficiating plants employees increased about 5 or 6 percent and man-hours worked in 1939, 14 percent compared with 1938. According to tentative figures, 13,100 men were employed and 27.4 million man-hours of work done at all operations in 1939.

Accidents.—Seven fatalities and 745 injuries occurred in 1939. These figures represent an accident-frequency rate of 27.44 per million man-hours worked, which compares favorably with the previous year's rate of 34.93 and the 1937 rate of 35.04, showing the progress in accident prevention during 1939.

SMELTERS

Employment.—The smelting industry, as classified herein, covers the smelting and refining of all metallic ores except iron ore. The smelting of iron ore and the manufacture of steel are not included in acci-

dent and employment reports collected by the Bureau of Mines, as such reports have been collected and compiled by the Department of Labor. Reports for all smelters except those treating iron ore show that 16,300 men were employed in 1939. This figure represents a gain over 1938 but a loss compared with 1937. The man-hours worked during 1939 totaled 39.1 million compared with 36.4 million in 1938.

Accidents.—Progress in accident prevention during 1939 was indicated by a reduction in the accident-frequency rate from 19.21 in 1938 to 16.74 in 1939. The rates for both years were more favorable

than that for 1937 which was 22.84.

AUXILIARY WORKS AT ORE-DRESSING PLANTS AND SMELTERS

Employment.—Auxiliary works cover all operations at mills and smelters not directly connected with milling and smelting processes. About 12,900 men were so employed in 1939, virtually the same number as in 1938, when the figure was about 12,500. The man-hours worked during 1939 also was virtually the same as in 1938; reports for each year show a total of about 30 million man-hours of labor performed.

Accidents.—Preliminary figures indicate that 523 employees were injured—6 fatally—by accidents during 1939. Based upon this figure, the accident-frequency rate was 17.25 per million man-hours worked, which was nearly identical with the rate of 17.21 in 1938. Each of these rates was considerably better than that of 27.40 reported

for 1937.

SUMMARY, 1931-39

Accident and employment data of the Bureau of Mines, except those covering nonfatal injuries at coal mines, first became available for 1911; the figures covered the mining and quarrying industries only. Beginning with 1913, statistics also became available for coke ovens and for ore-dressing plants and smelters, although the early records did not show the number of man-hours worked. After a few years some companies operating metal mines and stone quarries supplied special information, including man-hours worked, and tables based upon these data were prepared from time to time. Nation-wide coverage of accidents and employment, including the number of man-hours worked, first became available for coal mines in 1930 and for quarries, coke ovens, metallurgical plants, and all other mines in 1931. Beginning with 1931, therefore, the yearly records of the Bureau of Mines are complete as to fatal and nonfatal injuries, men employed, and man-days and man-hours worked.

The low point of the depression in many branches of mining and quarrying was reached in 1932. In the discussion of accidents and employment in the mineral industry published in Minerals Yearbook, 1939, 1932 was chosen as a base year to show the comparative record of accidents and employment in 1938. However, 1931—the earliest year for which man-hour and other data are complete for all classes of the mineral industry on which annual reports of accidents and employment are compiled—may also be chosen as a base year with which to compare the record in later years, particularly that for 1939.

If, therefore, 1931 is used for purposes of comparison and assigned a base rating of 100, the comparative rating for later years may be

clearly seen. Considering the number of men employed in 1931 as being represented by an index of 100, the number of employees fell to its lowest level in 1932 (when the index was 86), reached its highest point with an index of 110 in 1937, dropped to 99 in 1938, and recovered to 101 in 1939. As the trend in employment based upon number of employees does not necessarily parallel that based upon man-hours worked, comparison may be made also on a man-hour With an index of 100 for the number of man-hours worked in 1931, the comparable figure for 1932 (the depression low point) is 74, followed by a rise to a maximum of 114 in 1937, a drop to 89 in 1938, and an increase to 97 in 1939.

The number of fatal accidents in 1931, which was 1,707, also may be represented by an index of 100. Comparative figures show an index of 73 for 1933, the lowest number reported for any year since 1931, and of 80 in both 1938 and 1939. Similarly, if an index of 100 represents the actual number of persons injured in 1931, the smallest number of injuries, which was reported in 1932, may be represented by an index of 71, while the tentative figure for 1938 is

76 and that for 1939 is 81.

The accident-frequency rate per million man-hours of exposure for 1939, covering an estimated 79,607 fatal and nonfatal injuries, was 67.85. The rate was lower and therefore more favorable than the corresponding rate for any year since comparable rates first became available in 1931.

Callegian constitution and the second constitution of the second constituti

INDEX

By M. E. Winslow

A Page	l Page	٠.
A brasives, artificial, review 1284	Pag	
sales 1985	Aluminum, secondary, annual review 48	35
sales	data 64 recovery 486, 488, 489, 638, 646, 648, 64 Sources 486, 488, 489, 638, 646, 648, 64	40
salient statistics 1271		3°0
Abrasives industries, annual review 1271	Aluminum alloys, brazing 68	52
salient statistics	Aluminum alloys, brazing 66 coating and electroplating, Travers process 66 for trains extraorth process 66	
Accident data, mineral industries	1 101 trains, strength, proof 64	
Africa. See Algeria; Belgian Congo; Cyprus;	Aluminum-alloy automotive bearings, develop-	
French Morocco; Gold Coast; Kenya;	ment	46
Madagascar; Nigeria; Rhodesia; South	Aluminum-base alloy, die casting, develop-	
Madagascar; Nigeria; Rhodesia; South West Africa; Swaziland; Transvaal; Union of South Africa.	ment68	
	Aluminum cable, mileage, increase 64	49
Agricultural stone, sales 1162, 1163, 1184	Aluminum chloride, data 643, 64	44
Air furnaces. ferrous scrap, consumption	Aluminum Co. of America, contract with labor	
Alabama, bentonite, deposit 1259	unions 64 Government suit against 64	
	Aluminum foil, use, in insulating locomotive	ł 6
792, 794, 795, 801, 814	boilers	40
gold, production	Aluminum house paint, development 64	
poliuminous-coal industry, data. 791, 792, 794, 795, 801, 814 gold, production	Aluminum industry, annual review 637, 64	16
	Aluminum plants, new 64	
review	Aluminum plants, new 64 Aluminum salts, foreign trade 64	
kyanite, deposit1474	production 64	13
lignite, briquetting 924	shipments 64	
manganese ore, shipments 577	Aluminum scrap, prices 49	90
minerals production	stocks 49 Aluminum sulfate, data 643, 64	Ю
Alaska, antimony, data 730 bituminous-coal industry, data 792, 794, 795, 801, 814 bullion, markets 165	Amber, data	4
bituminous-coal industry, data 791,	Ammonia from coke production)Z
792, 794, 795, 801, 814	872 911 912 01	ď
bullion, markets 165	A minimale Nee A shostos	.0
Cook Inlet-Susitna region, mining industry. 168 copper, production	Andalusite, production 147	14
Conner River region mining industry 167	Anthophymie. See Aspestos.	_
gold, production	Anthracite, as source of energy, study 785-79	Ю
59, 61,65, 66, 67, 70, 164, 165, 166	"bootleg," production84	
59, 61,65, 66, 67, 70, 164, 165, 166 gold dredges, list	competitive fuels 84	2
Kenai Peninsula region, mining industry 168	consumption 838, 839, 844, 845, 85 effect of weather 836, 84	ō
Kodiak Island region, mining industry 168	foreign trade 838, 86	1
Kuskokwim region, mining industry 168	freight rates 84	
lead, production 112, 164, 165 metals, production, annual review 163 minerals, production 14	prices 838 840 85	7
minerals, production	prices838, 840, 85 production834, 836, 838, 847–853, 860	6
Northwest region, mining industry 169 platinum, production 751 platinum metals, analysis 751 Seward Peninsulairegion, mining industry 169 silver mediations	production	1
platinum, production 751	salient statistics834, 836	8
platinum metals, analysis 751	shipments	3
Seward Peninsulairegion, mining industry 169	sources	2
	SIOCKS 838, 840, 84	5
	Anthrogita conferences, program	ĕ
Southeastern region, mining industry 71 tin, production 682	Anthracite conferences, program 834 Anthracite Industries, Inc., activities 835, 84	0
Yukon River Basin region, mining industry 173	Anthracite industry, annual reviews 829, 835	5
Alaskite, as source of feldspar, study 1360	Anthracite Institute, activities 835, 841	ĭ
Albania, chromite, review 599	Anthracite mines, accidents 1486	Ř
Alclad, wrought aluminum, uses 652	days operated 834, 859	ğ
Algeria, mercury, review 673	Anthracite mines, accidents 1480 days operated 834, 850 mechanization 838, 860-862	2
Alloy steel, chromium, use 597	men employed 834, 838, 840, 848, 859, 860, 1484, 1486	8
production 568 Alsifilm, as mica substitute, discussion 1261, 1419	Anthracite plants, number 858	
Alsmin, as mica substitute, discussion 1261, 1419	Anthracite refuse, uses841	
Num, data	Anthracite stokers, sales 843	3
lumina abrasives, salient statistics 1272	Antimonial land production 790 791	ļ
lumina cement, description 1130	Anthrafilt, uses 841 Antimonial lead, production 729, 731 Antimony, as strategic mineral, investigations 729	ň
Alumina cement, description 1139 Aluminum, as strategic mineral, interest 647	consumntion 790 790	,
consumption 648, 649, 654	foreign trade 720, 732	٤.
embargo	Drices 729 735	5
consumption 648, 649, 654 embargo 650 foreign trade 638, 648, 649, 650 in steel metallurgy, restriction of grain	primary, production, mine 729, 736	š
in steel metallurgy, restriction of grain	smelter 731	L
grow til 652	salient statistics	•
growth 652 prices 638, 648, 650 primary, production 638, 646, 648, 653 saliant statistics 638, 646, 648, 653	secondary, recovery 486, 488, 490)
salient statistics 638, 648, 648, 653	728 729 730 731 732 733 733 734 735 735 735 736 737 737 737 737 737 737 737 737 737 737 737 737 737 737 737 738	,
044615 40 05	727	
244615—40——95	1495	

Page	P	age
ntimony oxide, tariff, consideration in reciprocal-trade agreement with Belgium 728	Arsenic industry annual regions	-
rocal-trade agreement with Belgium 728	Arsenic sulfide, data 704 Asbestos, amphibole, production 704	, 70
Datite, data 1302 1306 1310 1311	Asbestos, ampinbole, production	136
Antimony salts, producers, list 733 Apatite, data 1302, 1306, 1310, 1311 Aquamarine, production 1462 Argentine, fluoroper production 1462	Sources	136
rgentina, fluorspar, review 1348, 1349	anthophyllite, production as critical material, classification	136; 136;
lead, review121	as critical material, classification	136
148, 1549 1548		136
tin, data693, 694	sales	1364
zine review 630, 631	Sources competing metaviols	1363
rizone eghectes and	Sources Sour	1363
rizona, asbestos, sales 1367 bituminous-coal industry, data 791,	foreign trade	1300
792 794 795 801 814	market conditions	1365
792, 794, 795, 801, 814 cobalt, deposit, development 611		1367
Cochise County, metals, production	i sament statistics	1364
184 186 187 188 180 102	tremonte, production	1368
Coconino County, metals, production 183,		1363
copper, production 184, 188, 189, 193 80, 82, 83, 84, 85, 180, 182, 183, 185, 186, 187, 188, 189, 189, 189, 189, 189, 189, 189	new developments Asbestos products, foreign trade Asia, hismuth, production	1363
180, 182, 183, 185, 186, 187, 188, 180	Asbestos products, foreign trade 1364	1365
fluorspar, review 1335, 1337, 1343 Gila County, metals, production 183,		716
Gila County, metals, production 183,	See also British India; British Malaya; Bur-	
184, 186, 187, 188, 189, 194	ma; China; Chosen; Indochina; Japan;	
	Kashmir, Malay States; Netherland India; Palestine; Philippine Islands; Turkey; Union of Soviet Socialist	
180, 183, 184, 185, 186, 187, 188, 189 Graham County, metals, production 183,	Turkey; Union of Soviet Socialist	
184 187 188 180 105 1		
Greenee County, metals, production 183, 1	Asphalt, distribution	1114
184, 187, 188, 189, 195	native, foreign trade 1107, 1108, 1	1115
lead, production 112, 113,	production	1101
lead, production 184, 187, 188, 189, 195 112, 113, 180, 182, 183, 185, 186, 187, 188, 189 manganese deposits, investigation, under	Aspnalt industry, annual review	1107 1107
Strategic Minerals Act 575	Atom, splitting, possibilities Auer Research Foundation, prize, for develop-	759
Maricopa County, metals, production 183	Auer Research Foundation, prize, for develop-	•••
184, 186, 187, 188, 189, 195 mercury, review 666	INVINSES IOF INTERNITY COMPOUNDS	767
mercury, review666	for improving Welsbach mantles	767
metals, production, annual review 179	Australia, bismuth, production	716
metallurgic industry, review 185 minerals, production 15	cadmium, production 746	31Z 747
mining industry, review 184	blue asbestos, development 1 cadmium, production 746, lead, review 121, magnesium plant 121,	122
Mohave County, metals, production 183,	magnesium plant	724
184, 186, 187, 188, 190, 196	Western blue exhauter	763
molybdenum, production 618	magnesium plant 121, magnesium plant 121, tantalite, production Western, blue asbestos, deposit 1 zinc, review 142, Austria See Gormon 142,	367
ore, classification 185 Pima County, metals, production 183,	Austria. See Germany.	143
	Automobiles, magnesium-alloy die castings in	720
Pinal County, metals, production 183,	Ball clay, sales	-
184, 186, 187, 188, 191, 200	Ball clay sales B	
Santa Cruz County, metals, production 183,	salient statistics	268
184, 186, 187, 188, 191, 201 silver, production 48, 59, 61, 65, 66, 67, 180, 182, 183, 184, 185, 186, 187, 188, 189	Ball-clay industry, annual review	257
180, 182, 183, 184, 185, 186, 187, 188, 189	Barite, consumption 1375, 1	376
	deposits 1 foreign trade 1374, 1	377
vanadium, production 634	prices 1374, 1	378
Yavapai County, metals, production 183,	prices 1374, 1 production 1374, 1 sales 1374, 1 salient statistics 1374, 1	391
184, 186, 187, 188, 191, 202 Yuma County, metals, production 183,	sales 1374, 1	375
184, 186, 187, 188, 192, 206	salient statistics	374
zine, production 135.		375
180, 182, 183, 185, 186, 187, 188, 189	Barium, foreign trade	373
rkansas, bauxite, data 639	Barium, foreign trade	761 385
bituminous-coal industry, data791,	Drices	383
bituminous-coal industry, data 791, 792, 794, 795, 801, 815 manganese ore, shipments 772, 794, 795, 801, 815 mercury review	Barium chloride, foreign trade	385
mercury, review 666 metals, production, annual review 296	prices1	383
metals, production, annual review 296	prices1	385
minerals, production 16 natural gas, data 1044, 1045, 1046, 1047, 1048,		383 385
1049–1050, 1066, 1067, 1068, 1070, 1078		383
netroleum, data 948 949 950 953 954 955 956 1	Barium nitrate, foreign trade	385
969, 970, 972, 973, 975, 977, 979, 980, 981	prices	383
rhenium, occurrence, in manganese-bearing	Barium products foreign trade	385
ores 768		374 383
		381
zine, production 132, 135, 288, 296 rsenic, consumption 704, 705, 710	salient statistics	374
foreign trade 704, 705, 710	- Content Statistics 1	373
national-defense aspects 706	Barium products industry, annual review 1	
	Barium products industry, annual review 1: Barium sulfate, foreign trade 1:	385
prices	prices	385 383
prices 707 production 704, 707, 709	prices	385 383 280
prices 707 production 704, 707, 709 sallent statistics 704	Basalt, crushed, sales	385 383 280 182
707	Basalite units, pumice, for residences 1	385 383 280 182
707	Barlim Sinate, foreign trade : : : : : : : : : : : : : : : : : : :	385 383 280 182 169 319
704, 707, 709 704, 707, 709 8allent statistics	Basalt, crushed, sales sales sales 1162, 1164, 1166, 1168-1 Basit, crushed, sales sales 1162, 1164, 1166, 1168-1 Basic slag, production 1184tery industry, manganese ore, consumption	385 383 280 182 169

INDEX

Page	Pag	zе
Bauxite, foreign trade 638, 640, 641, 644, 645	"Bootleg" anthracite, production 84	49
prices 645	Borates, annual review 14	
production 638, 640, 652	Borax, foreign trade14	
salient statistics 638	uses 14	48
shipments639, 641, 642	Boron, electrometallurgical production, Bu-	
uses641	reau of Mines investigation 76	63
uses		61
Beehive coke. See Coke.	uses 70	63
Beetles, white fringed, arsenic as insecticide 706	Boron minerals, reserves 144	49
Belgian Congo, cobalt, review 613	salient statistics 14	
copper, review98, 99	Boron-minerals industry, annual review 144	48
tantalum-columbium ore, production 763	Bort, foreign trade1283, 128	86
tin, data 693, 694	"Bottled gas," demand 109 Brass, foreign trade 109	93
Relgium, arsenic, review 710	Brass, foreign trade	96
diamonds, trade, regulation 1456 lead, review 120, 121, 122	secondary, recovery 486, 49 Brazil, abrasive diamonds, foreign trade 126	91
lead, review 120, 121, 122	Brazil, abrasive diamonds, foreign trade 120	83
Reciprocal Trade Agreement, new, tariff on	barite, data130	
antimony oxide 728	gem stones, export, regulations 14	
zinc, review 143, 144 Bentonite, foreign trade 1261	lead, review 120, 1	22
Bentonite, foreign trade	manganese, review 587, 58 nickel, review 6	
prices 1264, 1262, 1268 sales 1254, 1262, 1268 salient statistics 1254		08 22
sales	rock crystal, exports 140 topaz, exhibit specimens 140	
uses 1259	zinc, review 142, 1	44
Bentonite industry, annual review 1259	Brick, production 12	
Benzol, production 944, 946		74
Beryl, prices 762	British Guiana, bauxite, review	54
uses 763	British India, chromite, review 599, 60	Õĩ
Beryllium, fabrication	manganese ore, review588, 50	89
foreign trade 761	tungsten data 630 6	39
Berylliim-copper, 11ses	British Malaya, tin, review 693, 69	96
Beryllium industry, annual review	Bromine, foreign trade 1443, 14	44
Bessemer converters, ierrous scrap, consump-	production 1443, 14	44
tion517	sources 14	
Bismuth, consumption 712, 714	Bromine industry, annual review 14	43
foreign trade		96
prices713	Brucite, data14	40
production712, 714	Building lime. <i>See</i> Lime. Building sand. <i>See</i> Sand.	
uses712	Building sand. See Sand.	
Bismuth alloys, uses 713 Bismuth Cartel, World, price stabilization 714	Building sand and gravel, sales_ 1206, 1208, 1211, 12	
	Building stone, sales 1162, 1163, 1164, 116 use, trends 11'	
Bismuth industry, annual review 711 Bismuth-lead alloy, use, in Ekko process 713	use, trends 11' Building tile, production 12'	
Bismuth metal, metallurgical characteristics. 713		23
Bismuth saccharate, for treatment of syphilis,	zinc review	44
natent /12		44
Bitumens foreign trade 1107, 1115	prices 988, 102	21
production 1107, 1108	prices988, 10: Bureau of Mines, alaskite, as source of feldspar,	
salient statistics 1107	study 130	
sulfonated, data1108		29
Bitumens industry, annual review 1107	bentonite, for oil-well drilling mud, study 12	
Bituminous coal, as source of energy, study 785-790		63
consumption 774, 776, 779, 782		01 93
efficiency as fuel 777, 802 foreign trade 774, 779, 782, 807	electrolytic manganese process, industrial	99
freight rates 774	tests5	73
prices		25
price structure, minimum, building 773.	feldspar, froth flotation, development 130	60
production 774, 775, 779, 780, 781		38
production774, 775, 779, 780, 781' 782, 791-795, 801, 810, 814-828	magnesium, research 7	23
salient statistics 779 shipments 774, 776, 783, 784, 803–807, 809	manganese, deposits, search	74
shipments 774, 776, 783, 784, 803-807, 809		73
stocks 774, 779, 802 stripping operations 776, 780, 791, 801, 814–831		62
stripping operations 776, 780, 791, 801, 814-831		05
value 782, 796	sand and gravel accident-prevention contest_ 12	23 81
Bituminous Coal Division, price structure, minimum, building	tin deposits, investigation	01
Bituminous-coal industry, annual review 773	tests 765 7	66
Bituminous-coal mines, accidents 1486	tests 765, 76 Burma, cobalt, review 6	13
	lead, review 121, 13	$\frac{1}{23}$
capacity 777, 780 mechanization, data 774, 779, 780, 799, 801		
men employed	rubies, production 14	61
780, 791, 799, 800, 814–831, 1484, 1486	tin, review6	97
Bituminous rock, data 1108	nickel, review 6 rubies, production 144 tin, review 6 zinc, review 630, 6 zinc, review 1	31
Black-outs, use of white paint.	zinc, review 1	44
Blanc fixe, foreign trade 1385	Butane, sales 1092, 1092	93
prices 1383	Byproduct coke. See Coke.	
Blast furnaces, ferrous scrap, consumption 522	C	
Bleaching clays, technologic developments 1263 use, decline 1263	U	
	Cadmium, consumption 743, 7	41
Blue clay, foreign trade 1254 Bluestone sales	foreign trade 7	45
Bluestone, sales 1175 Blue vitriol, foreign trade 96		45
Bolivia, antimony, review		43
lead, review122	production 743, 7	
tin industry, summary 694	toxic effect, on foods	44
tungsten, review	uses	44

Page	Pag
Cadmium industry, annual review 742	C-1141-
Cadmium lithopone, uses 1334 Caesium, foreign trade 761 Calcium, foreign trade 761 Calcium arsenate, data 704, 705, 707, 708, 709 Calcium chloride, annual review 1444 foreign trade 1445	Riverside County, metals, production 21
Calcium, foreign trade 761	217, 218, 219, 220, 224, 24 Sacramento County, metals, production 21
Calcium arsenate, data 704, 705, 707, 708, 709	sacramento County, metals, production 21, 224, 24
Calcium chloride, annual review 1444	San Bernardino County, metals, produc-
foreign trade 1445 production 1444, 1445	1011 212, 217, 218, 219, 220, 224, 24
Calcium metaphosphate, as source of fertilizer,	
T. V. A investigations 1909	San Francisco County, metals, production. 212
California, Alpine County, metals, produc- tion 212, 218, 219, 220, 221, 228 Amador County, metals, production 212,	225, 24
tion212, 218, 219, 220, 221, 228	San Joaquin County, metals, production 213
217, 218, 219, 220, 221, 228	Con Tuis Obiene Country - 225, 24
antimony, data 730	San Luis Obispo County, metals, produc- tion 212, 22
Butte County, metals, production 212.	Santa Cruz County, metals production 212 22
217, 218, 219, 220, 221, 229	scheelite, production 62 Shasta County, metals, production 215
Calaveras County, metals, production 212, 217, 218, 219, 220, 221, 230	Shasta County, metals, production 212
china elay, production 1255	217, 218, 219, 220, 225, 24 Sierra County, metals, production 212
	217, 218, 219, 220, 226, 24 silver, production 48, 59, 61, 65, 66 67, 208, 210, 213, 215, 217, 218, 219, 220, 22
Colusa County, metals, production 212, 217, 221 copper, production 80, 82, 83, 84,	silver, production 48, 59, 61, 65, 66
85, 208, 210, 214, 215, 217, 218, 219, 220, 221	67, 208, 210, 213, 215, 217, 218, 219, 220, 22
Del Norte Colling, metals, production 212 221	silver mines, list 21 Siskiyou County, metals, production 212
Eldorado County, metals, production 212, 217, 218, 219, 220, 221, 232	1. 217 218 219 220 226 24
217, 218, 219, 220, 221, 232	Stanislaus County, metals, production 212
fluorspar, review 1343 Fresno County, metals, production 212,	226, 24
217 220 221 222	sulfur, data1289, 129 Tehama County, metals, production212, 226, 24
217, 220, 221, 233 gold, production	Trinity County, metals, production 212, 220, 24
	217, 219, 226, 24
gold mines list 200	Tulare County, metals, production 212
Humboldt County, metals, production212,	tungsten deposits, investigation 62
217, 222, 233	Tuolumne County, metals, production 212
Imperial County, manganese ore, ship-	217, 218, 219, 220, 226, 24
ments578 metals, production_212, 217, 218, 219, 220, 222, 233	ventura County, metals, production 212, 21
Inyo County, metals, production 212	Yuba County, metals, production 212 217, 218, 219, 227, 24
Inyo County, metals, production 212, 217, 218, 219, 220, 222, 234 iron ore, review 212, 213, 218, 219, 220, 222, 234 iron ore, review 324, 535, 537, 546, 554	1 zinc. production 125
From ore, review 534, 535, 537, 546, 554	208, 210, 214, 215, 217, 218, 219, 222, 22 Canada, aluminum, review 653, 65-
101 of the feview	Canada, aluminum, review 653, 654
Lassen County, metals, production 212.	anthracite market 86 antimony, review 736, 74
217, 218, 220, 223	arsenic, review 7711 asbestos, data 1366, 1368, 1369, 1370
lead, production 112,	asbestos, data 1366, 1368, 1369, 1370 barite, data 1386 bauxite, review 546 bituminous coal. imports 774, 779, 782, 808 cadmium, production 746, 744 cement, data 1156 chromite, review 599, 600 chrysotile asbestos, mill to treat 1367 cobalt, review 93, 95, 98, 98 copper mines, development, effect on United States production 76
208, 210, 214, 215, 217, 218, 219, 220, 221 Los Angeles County, metals, production 212,	Darite, data
217, 218, 220, 223, 236	bituminous coal imports 774 779 789 808
Madera County, metals, production 212,	cadmium, production 746, 747
217, 218, 219, 223, 236 Mariposa County, metals, production 212,	cement, data 1159
Mariposa County, metals, production 212, 217, 218, 219, 220, 223, 236	chrysotile ashestos mill to treet
Merced County, metals, production 212, 223, 237	cobalt, review 613
mercury, review	copper, review 93, 95, 98, 99
metals, production, annual review 207 metallurgic industry, review 216	copper mines, development, effect on United
minerals production 17	States production 76
mining industry, review 214 Modoc County, metals, production 212, 220, 223	diopside, deposits 1463 iron ore, shipments 543
Modoc County, metals, production 212, 220, 223	lead, review 118, 120, 121, 123
molybdenum, production 619 Mono County, metals, production 212,	magnesium, review 724
217, 218, 220, 223, 238	molybdenum, review
Monterey County, metals, production 212,	nepheline syenite, review 1358
Nana County metals production 217, 220, 238	nickel, review 605, 608, 609
Napa County, metals, production 218, 219, 223, 238	18
natural gas, data 1044 1045 1046 1047 1049 1040	radium, annual review 765
1050-1051, 1066, 1067, 1068, 1070, 1073, 1077	
natural gasoline, data	ground, reduction of duty 1361
nephrite, deposit 1455	zinc, import duties, request for restoration 130 salt. data 1428, 1430, 1432
nephrite, deposit 1455 Nevada County, metals, production 212,	Sulfur, data 1903 1905
411, 410, 419, 440, 420, 438 1	sulfur. data 1293, 1295 vesuvianite, deposits 1463 zinc, review 140, 142, 143, 145
Orange County, metals, production 212,	zinc, review
ore, classification218, 219, 240	Canada National Research Council, ionium,
Owens Lake, brine operations 1450	investigations 767 Carbon abrasives, review 1283
Detroleum data 049 !	Carbon black, consumption 1099
949, 950, 953, 954, 955, 956–958, 969, 970, 971, 972, 973, 975, 977, 978, 980, 981	deliveries 1095, 1096, 1099
971, 972, 973, 975, 977, 978, 980, 981 Placer County, metals, production 212,	foreign trade 1096, 1100, 1102
217, 218, 219, 220, 223, 240	prices 1096, 1102 producers, list 1099
Plumas County, metals, production 212,	production 1095, 1096–1098
potash, review 1394	salient statistics
POUGDII, 10 / 10 W	stocks1095_1096_1102

Page	Page
Carbon black, value 1096, 1102	Coal, coking, stocks 902
Carbon-black industry, annual review 1095	See also Anthracite: Bituminous coal: Fuel
Carbon-black plants, natural gas, consumption1069	briquets: Peat; Lignite. Coal industry. See Anthracite industry;
number 1096, 1097, 1098	Bituminous-coal industry; Fuel bri-
Carbonados, foreign trade	quets industry: Lignite industry; Peat
Carbon dioxide, annual review 1467 uses 1467	industry. Coating clays, prices1256
Carnotite ores, shipments 633	Cobalt, deposits 611
Celestite, resources 1479	foreign trade611
Cement, foreign trade 1154	production
minoralizare 1137	Cobalt industry, annual review
production 1120, 1121, 1157	Coke heebive production 867 868
salient statistics 1120	869, 870, 872, 874, 876, 878, 879, 880, 881, 902 byproduct, production 867, 868, 869, 870,
specifications 1137 See also Portland cement.	872, 874, 875, 877, 878, 879, 880, 881, 900
Cement industry, annual review 1119 men employed 114-1153 Cement quarries, accidents 1489 men employed 1484, 1488	consumption 844, 867, 870, 871, 872, 898
men employed 1141-1153	foreign trade 867, 870, 871, 872, 898, 908
men amployed 1484, 1488	petroleum. See Petroleum coke. prices 867, 870, 871, 872, 905–907
Cement-soil road surface, award 1138	production867, 869, 870, 872, 874, 875, 876, 877, 878, 879, 880, 881, 900. 902. 910
Control States conner production XII X2 X4 X5 2XX	875, 876, 877, 878, 879, 880, 881, 900. 902, 910
gold, production	shipments 908 stocks 867, 868, 870, 871, 872, 902-905 Coke breeze, recovery 896
metals, production, annual review	Coke breeze, recovery 896
silver production 45, 59, 91, 255	etoeks 903
zinc, production 135, 288 Ceramics, rare earths in, use 768	Coke byproducts, annual review 911 salient statistics 870, 871, 872, 911
Cerium, foreign trade 761	value 870. 872
Cevlon, diamonds, import duty, reduction 1456	value 870, 872 Coke industry, annual review 867
gem cutting, instruction 1461 Chasers. See Millstones.	Coke ovens, accidents
Chasers. See Mustones. Chemicals, chromite, use598	byproduct, capacity 885
Chemical industry, platinum, consumption 753	owned by city gas companies 921 coal charged 869, 871, 872, 878, 879, 886-894
Chemical lime. See Lime.	men employed
Chile, cobalt, exports 614 copper, blockade of markets 75	number 809, 871, 872, 878, 879, 881, 882-880
copper, blockade of markets 75 copper, review 93, 98, 101 mining industries, Bureau of Mines, report 101	yield 869, 871, 878, 879 Coke-oven gas, production 870, 871, 911, 912, 913–915
mining industries, Bureau of Mines, report. 101	Coke plants, data
molydenum, review 622 sulfur, data 1295	879, 881, 882, 883, 904 Colombia, em eralds, production1461
trade acreement proposed 78	emerald mines, closing 1460
China, antimony, review 734, 737, 741 shipments, effect of Japanese occupation 727	emerald mines, closing 1460 gold, production 53, 788 platinum metals, review 757, 788 Colorado, Adams County, metals, production 252,
shipments, effect of Japanese occupation 727	platinum metals, review 757, 758
lead, review 121, 123 salt, data 1429, 1431, 1432 tin, review 693, 697	254, 260, 263
tin, review 693, 697	Arapahoe County, metals, production 252.
tungsten, review 630, 632 China clay, beneficiation 1255	254, 260, 263 bituminous-coal industry, data791,
foreign trade 1254, 1258	792, 794, 795, 801. 815
Sales	Boulder County, metals, production 252,
salient statistics1254	253, 254, 256, 257, 258, 259, 260, 263 Chaffee County, metals, production 252,
China-clay industry, annual review 1255 Chosen, columbite, deposits 763	Chaffee County, metals, production 252, 253, 254, 256, 257, 285, 159, 260, 264
Chrysotile. See Asbestos.	Clear Creek County, metals, production 252,
Chromate of potash, imports 596 Chromate of soda, imports 596	253, 254, 256, 257, 258, 259, 260, 265 cobalt ore, analysis
Chromate of soda, imports 596 Chrome, imports 596	conner production 80 82 83 84 85
Chromic acid, imports 595	250, 251, 253, 255, 256, 257, 258, 259, 260
Chromite, as strategic mineral, emergency	Costilla County, metals, production 252, 254, 260, 267
stock pile 593 consumption 597	Cripple Creek district, gold, production 280
deposits, exploration, by Bureau of Mines	Custer County, metals, production 252,
and Geological Survey 593	253, 256, 259, 260, 267
effect of reciprocal trade agreement with Turkey 532	254, 260, 267
foreign trade592, 595	Dolores County, metals, production 252, 253, 254, 257, 258, 259, 260, 267
priore 508 i	253, 254, 257, 258, 259, 260, 267
production 592, 594, 599 salient statistics 592	Douglas County, metals, production 252, 254, 260, 268
shipments 592, 595	Eagle County, metals, production 252,
uses	253, 254, 256, 259, 260, 268
Chromite industry, annual review 591 Chromite ore, metallurgical, specifications 593	Elbert County, metals, production 252, 254, 260, 268 El Paso County, metals, production 268
Chromite ore, metallurgical, specifications 593 Chromium compounds, imports 595	El Paso County, metals, production 268 feldspar, production 1354, 1355
Clays, miscellaneous, annual review	feldspar, production 1354, 1355 fluorspar, review 1335, 1337, 1340, 1343
sales 1254, 1264, 1265, 1268	Fremont County, metals, production 252, 253, 254, 256, 260, 269
salient statistics 1254 terminology, revision 1254	Garfield County, metals, production 252,
Clay industries, annual review 1253	253, 259, 260, 269
Clay products, improvement, by hydrogen-ion	Gilpin County metals production 252.
control research 1265	253, 254, 256, 257, 258, 259, 261, 269 cold production 48, 59, 61, 65, 66, 77, 250.
Clay-products industry, annual review 1265	gold, production
Survey1205	gold dredges, list69
Clinker, production 1127	Golden Cycle mill, metals, production 268

	± asc	rage
C	olorado, Grand County, metals, production 252, 253, 254, 257, 258, 259, 261, 270	Copper industry, annual review 73 changes, since World War 76
	253, 254, 257, 258, 259, 261, 270	changes, since World War 76
	Gunnison County, metals, production 252,	International aspects 97
	253, 254, 256, 257, 258, 259, 261, 270	Copper mines, accidents 1487 men employed 1484, 1487 Copper ores, recoverable content 83
	Hinsdale County, metals, production 252,	men employed 1484 1487
	253, 257, 258, 259, 261, 271	Copper ores recoverable content 83
	Jackson County, metals, production 252,	Copper scrap, prices 492
	Jackson County, metals, production 202,	etodre 400
	254, 261, 271	stocks 492
	Jefferson County, metals, production252,	Copper sulfate, foreign trade 96
	254, 261, 271	Cornwall stone, imports1361
	Lake County, ferruginous manganese ore,	Corundum, review 1282 Critical minerals. See Aluminum; Asbestos; Graphite; Iodine; Platinum; Toluol;
	shipments	Critical minerals. See Aluminum: Asbestos:
	metals, production 252.	Graphite: Iodine: Platinum: Toluol:
	253 254 256 257 258 250 261 272	Vanadium.
	La Plata County, metals, production 252.	Crucible furnaces, ferrous scrap, consumption. 522
	952 956 957 950 950 961 972	Cryolite, annual review 1350
	253, 256, 257, 258, 259, 261, 273	deposite
	lead, production 112,	deposits1350
	113, 250, 251, 253, 255, 256, 257, 258, 259, 260	foreign trade1351
	Leadville district, metals, production 272	Cuba, barite, data 1379 chromite, production 599, 600 iron ore, review 541 manganese ore, review 587, 588
	metals, production annual review 940	chromite, production599, 600
	metallurgic industry, review	iron ore, review 541
	minerals, production 18	manganese ore, review 587, 588
	Mineral County, metals, production 252.	tungsten, data 632 Cupola furnaces, ferrous scrap, consumption 519
	253, 257, 258, 259, 261, 273	Cupola furnaces, ferrous scrap, consumption 519
	mining industry mariors 054	Cupric achaetae concumption 1965
	mining industry, review 254	chromita mariana
	Moffat County, metals, production 252,	Cyprus, asbestos, consumption
	254, 261, 273	cm ysothe aspestos, data 1366,1368, 1369, 1370, 1372
	molypodenum, production619	
	Montezuma County, metals, production 252.	Czecnosiovakia, radium, annual review
	molybdenum, production 254, 261, 273 Montezuma County, metals, production 252, 253, 256, 259, 261, 275 Montrose County, metals, production 259, 261, 275	See also Germany.
	Montrose County, metals, production 252,	D
	253 254 250 261 274	
	253, 254, 259, 261, 274 natural gas, data1044, 1045, 1046, 1047, 1048,	Delaware, minerals, production19
	1040 1051 1066 1067 1060 1070 1071	Dentistry pelledium consumption 754
	1049, 1051, 1066, 1067, 1068, 1070, 1074	platinum, consumption 753 Department of Commerce, clay-products in-
	ore, classification 255	Department of Commerce, clay-products in-
	Ouray County, metals, production 252,	dustry, survey1265
	Ouray County, metals, production 252, 252, 254, 256, 257, 258, 259, 261, 274	dustry, survey 1265 Department of Justice, inquiry, into fertilizer
	Park County, metals, production 252.	industry 1909 1909
	Park County, metals, production 252, 253, 254, 256, 257, 258, 259, 261, 275	industry 1288, 1302
	petroleum, data 948,	into potash industry 1393
	950, 954, 958, 969, 970, 972, 977, 981	into sulfur industry 1288
	Pitkin County, metals, production 252,	Diamond, abrasive, foreign trade 1283
	989 987 989 981 981 972	review
	Dyriton data 200, 201, 200, 209, 201, 210	cutting trade
	253, 257, 258, 259, 261, 276 pyrites, data 1297 Rio Grande County, metals, production 252,	imports 1458 industrial, imports 1460 use 1460 markets 1458 production 1458
	Kio Grande County, metals, production 252,	industrial, imports1460
	253, 256, 258, 261, 277	use1460
	Routt County, metals, production 252,	markets 1458
	254, 261, 277	nroduction 1400
	Saguache County, metals, production 252, 253, 256, 257, 258, 259, 262, 277	production 1458
	253, 256, 257, 258, 259, 262, 277	share dealings 1457 Diamond bits, cast-setting, beryllium-copper
	San Juan County, metals production 252	Diamond bits, cast-setting, perymum-copper
	San Juan County, metals, production 252, 253, 256, 257, 258, 259, 262, 277	
	San Miguel County metals production : 959	Vankolite for 1284
	San Miguel County, metals, production 252, 253, 254, 256, 257, 258, 259, 262, 278	Diamond industry, annual review 1457
	203, 204, 200, 207, 208, 209, 202, 278	Diamond mining, health of workers, improve-
	silver, production48, 59, 61, 65, 66, 67, 250,	ment 1459
	silver, production 48, 59, 61, 65, 66, 67, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260 Summit County, metals, production 252, 253, 254, 256, 257, 258, 259, 262, 279 Tellor County, metals, production 252, 253, 254, 256, 257, 258, 259, 262, 279	Vankolite for 1284 Diamond industry, annual review 1457 Diamond mining, health of workers, improvement 1459 Diatomite, review 1273 sales 1271, 1274
	Summit County, metals, production 252,	sales 1971 1974
	253, 254, 256, 257, 258, 259, 262, 279	11SAS 1974
	Teller County, metals, production 252.	Dimonsion stone soles 1100 1100 1101 1100
	Teller County, metals, production 252, 253, 254, 256, 257, 258, 259, 262, 280	Diapside deposits 1102, 1103, 1104-1177
	tungsten, review 627 vanadium, review 634 zine, production 135,	uses 1274 Dimension stone, sales 1162, 1163, 1164-117 Diopside, deposits 1463 District of Columbia, minerals, production 190 Delamite color 1156
	vanadium, review 634	District of Columbia, minerals, production 19
	zine, production 135,	Dolomite, sales 1186, 1439 Dolomite industry, annual review 1439 Dragstones. See Millstones.
	250, 251, 252, 253, 255, 256, 257, 258, 259, 260 olumbium, foreign trade	Dolomite industry, annual review
C	Olumbium foreign trade	Dragstones. See Millstones.
ŏ	olumbium industry onnuel marie 761	Dry ice, annual review 1467 Dumortierite, production 1474
×	olumbium industry, annual review 763	Dumortierite, production 1474
×	oncentration, magnetic, iron ore537	,
×	oncrete, sales 1178,1181, 1182, 1184, 1188, 1189	\mathbf{E}
Č	oncrete, sales 1178, 1181, 1182, 1184, 1188, 1189 onnecticut, minerals, production 19 onstruction industry, improvement 530	
Ç	onstruction industry, improvement 530	Eastern States, copper, production 288, 290
С	opper, excise tax, extension 77	gold, production61, 288, 289
	opper, excise tax, extension 77 foreign trade 77, 92 prices 13, 77, 90, 91	lead, production 112, 288, 290
	prices 13 77 90 91	metals, production, annual review 287
	primary, production, mine 77 91 99 00	Eastern States, copper, production 288, 290 gold, production 61, 288, 289 lead, production 112, 288, 290 metals, production, annual review 27 silver, production 61, 288, 289 zinc, production 135, 288, 290 Fharling reach and full process, description 290
	primary, production, mine 77, 81, 82, 98 refinery 85 smelter 77, 80, 98 sales 77	vine production 195 999 900
	emalter 50 00	Eberling packaged-fuel process, description 933
	salas	Eberling packaged-fuel process, description 933
	sales 77 salient statistics 77 secondary, recovery 77, 86, 87, 486, 488, 491 sources 487, 491 stocks 78, 89 supply 87 uses, industrial 88 opper Cartel, investigation, by Temporary National Economic Committee 78 National Economic Committee 78 corper cestings, production 86	Economic Committee, Temporary National. See Temporary National Economic Committee.
	sament statistics	See Temporary National Economic
	secondary, recovery 77, 86, 87, 486, 488, 491	Committee.
	sources 487, 491	Ekko process, bismuth-lead alloy in 713
	stocks 77.89	Electrical industry, palladium, consumption 754
	supply	platinum, consumption
	uses industrial	Elements, transmutation, progress
C	Onner Cartel investigation by Tomporary	Embargo, moral, aluminum 650
U	Notional Factoria Committee	molybdenum 618
~	reational Economic Committee 78	
Q	opper castings, production 86	Emerald industry, annual review 1460
C	opper castings, production 86 opper Export Association, activities 78	Emery, annual review 1282

INDEX

Page	Page
Employment data, mineral industries 1483	Foundry coke. See Coke.
Energy, competing sources, study 777, 785-790	France, alumina, review 653, 65
Engine sand. See Sand.	arsenic, review 71 bauxite, review 653, 65 chromite, review 600 copper, blockade of supplies to Germany 71
England, London, as mercury trade center,	bauxite, review653, 65
abandonment660	chromite, review 60
Europe, bismuth, production 715	copper, blockade of supplies to Germany 7
See also Beigium; Ozecnoslovakia; England;	supplies, dependence on outside sources7
France; Germany; Great Britain;	gem stones, war tariff regulations145
Greece; Hungary; Italy; Moravia;	lead, review 120, 121, 12 magnesium, review 72
See also Belgium; Czechoslovakia; England; France; Germany; Great Britain; Greece; Hungary; Italy; Moravia; Netherlands; Norway; Poland; Portugal; Rumania; Spain; Sweden; Swit-	magnesium, review
gar, Rumania, Spain, Sweden, Swit-	mercury, review 66 potash, data 1396, 139 tin, consumption 69
zerland; Turkey; United Kingdom; Union of Soviet Socialist Republics;	tin consumption
Yugoslavia.	tin, consumption 69 zinc, review 143, 14 French chalk, foreign trade 1329, 133 French Morocco, cobalt, review 613, 61 molybdenum, review 622, 62
European War, belligerents, copper supplies. 74	Franch chalk foreign trade 1329 133
raropean war, beingerents, copper supplies.	French Morocco, cobalt, review 613 61
F	molybdenum, review
	Fuel briquets, binders 93
Face brick, production1266	consumption 84 foreign trade 925, 93 for heating orchards, features 92
Federal oil lands, royalties 981 Feldspar, alaskite as source, Bureau of Mines	foreign trade 925, 93
Feldspar, alaskite as source, Bureau of Mines	for heating orchards, features 92
study	manufacture, technology 92 plants 925, 926, 92 production 923, 925, 93
duty, reduction	plants 925, 926, 92
foreign trade	production 923, 925, 93
froth flotation, Bureau of Mines, work by 1360	raw fuels 924, 928-93
prices 1355, 1356	salient statistics 92
production1354, 1362	shape 93
production 1354, 1362 recovery, from granites 1360 sales 1353, 1354, 1355, 1357	shipments 93 value 925, 92
sales 1353, 1354, 1355, 1357 salient statistics 1353	value925, 92
	Final briggests industry approal review 09
shipments 1357	Fuel oil demand 044 046 082 1010 1011 101
substitutes 1359 technologic developments 1359	weight 93 Fuel-briquets industry, annual review 92 Fuel oil, demand 944, 946, 982, 1010, 1011, 101 foreign trade 982, 1010, 1016, 1031, 1035, 103
uses 1356	prices102
uses1356 Feldspar industry, annual review1353	prices 102 production 982, 983, 984, 985, 986, 987, 1010, 101
	sales 1011, 1013, 101
production 528, 562	sales 1011, 1013, 101 stocks 982, 989, 1010, 1016, 101
salient statistics 528	yields 990, 101
production 528, 662 salient statistics 528, 662 salient statistics 588, 662 shipments 588, 662 Ferro-alloys industry, annual review 527, 662	yields 990, 101 Fuller's earth, foreign trade 1254, 126 Magnesol as substitute, uses 126
Ferro-alloys industry, annual review 527, 562	Magnesol as substitute, uses 126
	production 126
imports 596	sales1254, 126
Ferrocolumbium, prices	126 Sales 1254, 126 Salient statistics 125 technologic developments 126
Ferromanganese, foreign trade_ 528, 565, 566, 5672, 583	use, decline, reasons 126
prices 585 production 563, 572, 582 bisperson 589, 582, 582	Fuller's earth industry, annual review 126
shipments	Fuller's earth industry, annual review 126 Furnace coke. See Coke.
shipments 528, 563, 583 stocks 585	Fuller's earth industry, annual review 126
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 564, 566	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 564, 566	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 564 Ferrotungsten, shipments 564 Ferrilizer industry Department of Justice in-	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 564 Ferrotungsten, shipments 564 Ferrilizer industry Department of Justice in-	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 564 Ferrotungsten, shipments 564 Fertilizer industry, Department of Justice inquir 1288, 1302 Fibers, synthetic, competition with asbestos 1383	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 566 Ferrotungsten, shipments 548 Fertilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand.	Fuller's earth industry, annual review
Section	### Fuller's earth industry, annual review
Section	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 Serrotungsten, shipments 528, 564 Ferritungsten, shipments 564 Ferritungsten, shipments of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 136 Filter sand. See Sand. 614 Finland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1259, 1268	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 Serrotungsten, shipments 528, 564 Ferritungsten, shipments 564 Ferritungsten, shipments of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 136 Filter sand. See Sand. 614 Finland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1259, 1268	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 564 Ferrolungsten, shipments 564 Ferrilitzer industry, Department of Justice inquiry 1288, 1302 Pibers, synthetic, competition with asbestos 1363 Filter sand See Sand Finclad, data 609 Fire clay, foreign trade 1254, 1258 sale 1254, 1259, 1268 salient statistics 1254 Fire-clay industry, annual review 1258	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 685 Ferrous scrap, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 564 Ferrotungsten, shipments 564 Ferritilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand 52e Sand Filnland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1259 salient statistics 1254 Fire-clay industry, annual review 1258	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 685 Ferrous scrap, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 564 Ferrotungsten, shipments 564 Ferritilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand 52e Sand Filnland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1259 salient statistics 1254 Fire-clay industry, annual review 1258	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 Ferrotungsten, shipments 548 Ferritulzer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand 614 Finland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1259, 1268 salient statistics 1254 Fire clay industry, annual review 1258 Fire sand. See Sand Flagging, sales Filtnit lining, review 1279	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 Ferrotungsten, shipments 548 Ferritulzer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand 614 Finland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1259, 1268 salient statistics 1254 Fire clay industry, annual review 1258 Fire sand. See Sand Flagging, sales Filtnit lining, review 1279	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 Serrotungsten, shipments 564 Ferritungsten, shipments 564 Ferritungsten, shipments 564 Ferritilizer industry, Department of Justice in-quiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand. 614 Finland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 salient statistics 1254, 1259, 1268 salient statistics 1254 Fire clay industry, annual review 1258 Fire sand. See Sand. 1162, 1163, 1165, 1175 Flint liming, review 1279 sales 1271 Florida, minerals, production 20	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 Serrotungsten, shipments 564 Ferritungsten, shipments 564 Ferritungsten, shipments 564 Ferritilizer industry, Department of Justice in-quiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand. 614 Finland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 salient statistics 1254, 1259, 1268 salient statistics 1254 Fire clay industry, annual review 1258 Fire sand. See Sand. 1162, 1163, 1165, 1175 Flint liming, review 1279 sales 1271 Florida, minerals, production 20	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 564 shipments 528, 564 Ferrolungsten, shipments 564 Ferrolungsten, shipments 564 Fertiltzer industry, Department of Justice in- 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand. 614 Fire clay, foreign trade 1254, 1258 sales 1254, 1258 sales 1254 Fire clay industry, annual review 1258 Fire sand. See Sand. Flagging, sales 1162, 1163, 1165, 1175 Flint lining, review 1279 sales 1271 Florida, minerals, production 20 phosphate rock, data 1302, 1304 Fluorsnar, as essential mineral, status 1334	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 503 Ferroshicon, foreign trade 528, 565, 566 Ferrosilicon, foreign trade 528, 565, 566 Ferrotungsten, shipments 528, 566 Ferrotungsten, shipments 54 Ferrilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand. 614 Finland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1258 salent statistics 1254, 1259, 1258 salent statistics 1254 Fire clay industry, annual review 1258 Fire sand. See Sand. 182 Flint liming, review 1270 sales 1271 Filmt liming, review 1270 sales 1271 phosphate rock, data 1302, 1304 Fluorida, minerals, production	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 564 shipments 528, 564 Ferrotungsten, shipments 564 Ferritulzer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand 614 Fire clay, foreign trade 1254, 1258 sales 1254, 1259 salient statistics 1254 Fire clay industry, annual review 1258 Flagging, sales 1162, 1163, 1165, 1175 Flint liming, review 1279 sales 1271 sales 1271 Florida, minerals, production 20 phosphate rock, data 1302, 1304 enumption 1334 enumption 1334 enumption 1334 enterture plents 1340	Fuller's earth industry, annual review
Shipments 528, 563, 583 Stocks 585 Stocks 585 Serromanganese industry, annual review 582 Serrous scrap, annual review 582 Serrous scrap, annual review 582 Serrous scrap, annual review 583 Serrophosphorus, shipments 584 Serrophosphorus, shipments 585 564 Serrotingsten, shipments 528 564 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 1288 1302 Fibers, synthetic, competition with asbestos 1363 Filters and See Sand See Sand Serrotingsten, shipments 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 258 sales 1254 1259 1268 salient statistics 1254 1259 1268 Serrotingsten 1268 Fire clay industry, annual review 1258 Fire-clay industry, annual review 1279 Sales 1271 Flint lining, review 1277 Sales 1271 Florida, minerals, production 20 phosphate rock, data 1302 1304 Consumption 1334 consumption 1334 floation, plants 1340 Coreign trade 1334, 1336, 1346 Coreign trade 1344, 1336, 1346 Coreign trade 1344, 1336, 1346 Coreign trade 1344, 1	Fuller's earth industry, annual review
Shipments 528, 563, 583 Stocks 585 Stocks 585 Serromanganese industry, annual review 582 Serrous scrap, annual review 582 Serrous scrap, annual review 582 Serrous scrap, annual review 583 Serrophosphorus, shipments 584 Serrophosphorus, shipments 585 564 Serrotingsten, shipments 528 564 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 1288 1302 Fibers, synthetic, competition with asbestos 1363 Filters and See Sand See Sand Serrotingsten, shipments 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 258 sales 1254 1259 1268 salient statistics 1254 1259 1268 Serrotingsten 1268 Fire clay industry, annual review 1258 Fire-clay industry, annual review 1279 Sales 1271 Flint lining, review 1277 Sales 1271 Florida, minerals, production 20 phosphate rock, data 1302 1304 Consumption 1334 consumption 1334 floation, plants 1340 Coreign trade 1334, 1336, 1346 Coreign trade 1344, 1336, 1346 Coreign trade 1344, 1336, 1346 Coreign trade 1344, 1	Fuller's earth industry, annual review
Shipments 528, 563, 583 Stocks 585 Stocks 585 Serromanganese industry, annual review 582 Serrous scrap, annual review 582 Serrous scrap, annual review 582 Serrous scrap, annual review 583 Serrophosphorus, shipments 584 Serrophosphorus, shipments 585 564 Serrotingsten, shipments 528 564 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 1288 1302 Fibers, synthetic, competition with asbestos 1363 Filters and See Sand See Sand Serrotingsten, shipments 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 258 sales 1254 1259 1268 salient statistics 1254 1259 1268 Serrotingsten 1268 Fire clay industry, annual review 1258 Fire-clay industry, annual review 1279 Sales 1271 Flint lining, review 1277 Sales 1271 Florida, minerals, production 20 phosphate rock, data 1302 1304 Consumption 1334 consumption 1334 floation, plants 1340 Coreign trade 1334, 1336, 1346 Coreign trade 1344, 1336, 1346 Coreign trade 1344, 1336, 1346 Coreign trade 1344, 1	Fuller's earth industry, annual review
Shipments 528, 563, 583 Stocks 585 Stocks 585 Serromanganese industry, annual review 582 Serrous scrap, annual review 582 Serrous scrap, annual review 582 Serrous scrap, annual review 583 Serrophosphorus, shipments 584 Serrophosphorus, shipments 585 564 Serrotingsten, shipments 528 564 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 584 Serrotingsten, shipments 1288 1302 Fibers, synthetic, competition with asbestos 1363 Filters and See Sand See Sand Serrotingsten, shipments 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 258 sales 1254 1259 1268 salient statistics 1254 1259 1268 Serrotingsten 1268 Fire clay industry, annual review 1258 Fire-clay industry, annual review 1279 Sales 1271 Flint lining, review 1277 Sales 1271 Florida, minerals, production 20 phosphate rock, data 1302 1304 Consumption 1334 consumption 1334 floation, plants 1340 Coreign trade 1334, 1336, 1346 Coreign trade 1344, 1336, 1346 Coreign trade 1344, 1336, 1346 Coreign trade 1344, 1	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrous scrap, annual review 584 Ferrosilicon, foreign trade 528, 565, 566 Serrotungsten, shipments 528, 566 Ferrotungsten, shipments 564 Ferrilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand. 614 Filnland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1258 salent statistics 1254 Fire calay industry, annual review 1258 Fire sand. See Sand. 1262 Flint liming, review 1270 sales 1271 Florida, minerals, production 20 phosphate rock, data 1302, 1304 Fluorspar, as essential mineral, status 134 consumption 1334 floration, plants <td> Fuller's earth industry, annual review</td>	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrous scrap, annual review 584 Ferrosilicon, foreign trade 528, 565, 566 Serrotungsten, shipments 528, 566 Ferrotungsten, shipments 564 Ferrilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand. 614 Filnland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1258 salent statistics 1254 Fire calay industry, annual review 1258 Fire sand. See Sand. 1262 Flint liming, review 1270 sales 1271 Florida, minerals, production 20 phosphate rock, data 1302, 1304 Fluorspar, as essential mineral, status 134 consumption 1334 floration, plants <td> Fuller's earth industry, annual review</td>	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferromanganese industry, annual review 582 Ferrous scrap, annual review 503 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 Serrotungsten, shipments 528, 566 Ferrotungsten, shipments 564 Ferritilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand. 614 Finland, cobalt, imports 614 nickel, data 609 Fire clay, foreign trade 1254, 1258 salient statistics 1254, 1258 salient statistics 1254 Fire-clay industry, annual review 1258 Fire sand. See Sand. 1162, 1163, 1165, 1175 Flint liming, review 1279 sales 1271 Florida, minerals, production 20 phosphate rock, data 1302, 1304 Fluorisa, as sesential mineral, status 1334 flotation, plants 1334, 1336, 1346	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 685 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 shipments 528, 565, 566 ferrotungsten, shipments 564 Ferritilzer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand 52e Sand Filler sand 614 Inickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1259, 1268 sales 1254, 1259, 1268 salent statistics 1254 Fire clay industry, annual review 1258 Fire sand See Sand Flagging, sales 1162, 1163, 1165, 1175 Flint lining, review 1279 sales 1271 Florida, minerals, production 20 phosphate rock, data 1302, 1304 Fluorspar, as essential mineral, status	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 Selements 528, 564 Ferrotungsten, shipments 528, 564 Ferrotungsten, shipments 564 Ferritilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filters and 528 Sand Filter sand 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1258 sales 1254, 1259 sales 1254, 1259 sales 1254, 1259 sales 1254, 1258 sales 1254, 1258 sales 1254, 1259 sales 1254, 1258 sales 1254, 1258 Fire clay industry, annual review 1258 Fire clay industry, annual review 1258 Fire clay industry, annu	Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrophosphorus, shipments 564 Ferrosilicon, foreign trade 528, 565, 566 Selements 528, 564 Ferrotungsten, shipments 528, 564 Ferrotungsten, shipments 564 Ferritilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filters and 528 Sand Filter sand 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1258 sales 1254, 1259 sales 1254, 1259 sales 1254, 1259 sales 1254, 1258 sales 1254, 1258 sales 1254, 1259 sales 1254, 1258 sales 1254, 1258 Fire clay industry, annual review 1258 Fire clay industry, annual review 1258 Fire clay industry, annu	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrosilicon, foreign trade 582, 565, 566 Ferrosilicon, foreign trade 582, 564 Ferrotungsten, shipments 564 Ferritilzer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1838 Filter sand 52e Sand Filler and 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1259 sales 1254, 1259 salient statistics 1254 Fire-clay industry, annual review 1258 Fire sand See Sand Flagging, sales 1162, 1163, 1165, 1175 Flint liming, review 1279 Florida, minerals, production 20 phosphate rock, data 1304 fluorspar, as essential mineral, status 1334 consumption 1334 floation, plants	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrosilicon, foreign trade 528, 565, 566 Seriosilicon, foreign trade 528, 564 Ferrotungsten, shipments 564 Ferritilizer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1363 Filter sand. See Sand. 614 Filnland, cobalt, imports 614 Inickel, data 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1258 sales 1254, 1259 Sales 1254, 1259 Fire clay, foreign trade 1254 Fire sand. See Sand. 1278 Fire sand. See Sand. 1279 Fire sand. See Sand. 1279 Fire sand. See Sand. 1271 Florida, minerals, production 20 phosphate rock, data 1302, 1304 Fluorspar, as essential mineral, s	### Fuller's earth industry, annual review
shipments 528, 563, 583 stocks 585 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrous scrap, annual review 582 Ferrosilicon, foreign trade 582, 565, 566 Ferrosilicon, foreign trade 582, 564 Ferrotungsten, shipments 564 Ferritilzer industry, Department of Justice inquiry 1288, 1302 Fibers, synthetic, competition with asbestos 1838 Filter sand 52e Sand Filler and 609 Fire clay, foreign trade 1254, 1258 sales 1254, 1259 sales 1254, 1259 salient statistics 1254 Fire-clay industry, annual review 1258 Fire sand See Sand Flagging, sales 1162, 1163, 1165, 1175 Flint liming, review 1279 Florida, minerals, production 20 phosphate rock, data 1304 fluorspar, as essential mineral, status 1334 consumption 1334 floation, plants	### Fuller's earth industry, annual review

Page	Page
Georgia, bituminous-coal industry, data 791,	Great Britain, copper, blockade of supplies to
792 794 795 801 814	Germany 75
china elay, production 1255 gold, production 48, 59, 61, 65, 288, 289, 291 iron ore, review 534, 535, 537, 539, 546, 549, 554	Ministry of Supply, increased price 91
gold, production 48, 59, 61, 65, 288, 289, 291	London Metal Exchange, transactions, dis-
iron ore, review 534, 535, 537, 539, 546, 549, 554	continuance 76.91
Kaulii, Sales	Nonferrous Metals Control 120
manganese ore, shipments 578	tin prices, Ministry of Supply 679
metals, production, annual review 291	Greece, barite, data 1379
minerals, production20	bauxite, review 653, 655
silver, production 48, 59, 61, 65, 288, 289, 291 Germanium industry, annual review 764	chromite, review 599, 600
Germanium industry, annual review 764	nickel, data
Germany, aluminum, review653, 655	Greenland, cryolite, deposits 1350
amber, data 1462	foreign trade1351
antier, data 1462 antimony, review 741 arsenic, review 710, 711 barite data 1270	Greensand, annual review 1473
horito dete	Grinding sand. See Sand.
barite, data 1379 cadmium, uses 747	Grinding pebbles, review1279
chromita romina (00	Sales 1271
conner review	Grass Almorede eleminante 12/1, 12/8
chromite, review 600 copper, review 75, 95, 98, 102 ferrous scrap, review 525	Grindstones, sales 1271, 1278 Gross Almerode clay, imports 1254, 1258 Gypsum, foreign trade 1228, 1234
fuel briquets, manufacture, processes 924	priose 1999
gem stones, regulations 1456	prices 1233 processing, hammer mills 1228, 1230 production 1228, 1229, 1230, 1335
iron industry, effects of war 527, 528, 529	production 1298 1290 1230 1235
lead review 120 121 124	I Sales 1992 1921
lead, review 120, 121, 124 light metals, consumption, restriction 655	salient statistics 1228
magnesium, review	Guneum industry annual review 1997
magnesium, review 724 manganese industry, effect of Clearance Agreement with Union of South	1224 1226 1227 1228
Agreement with Union of South	Gypsum plants, data 1230
Africa	Gypsum plaster, specifications 1233
mercury, data 661, 673	Gypsum products, new 1234
nickel, imports608, 609	output1228, 1232
phosphate rock, supplies 1313	
nickel, imports 608, 609 phosphate rock, supplies 1313 potash, data 1396, 1399	H
radium, annual review	
salt, data1428, 1430, 1432	Hafnium, extraction from cyrtolite, difficulty 760
steel industry, review 525	Hard coal. See Anthracite.
sulfur, data1293, 1295	Hawaii, gem stones, production 1455
tin, review693, 698	Health conditions, tri-State lead-zinc region 304
zinc, review143, 145	Heating oils, sales 843, 844
Gilsonite, data 1108	Heavy-clay products, annual review 1265
Glass, optical, rare earths in, use 768	Helium, annual review 1103 prices 1105
Glassmaking, selenium, use 768 Glass-pot clay, imports 1258	prices 1105 sales 1104
Glass sand See Sand	uses Government 1104
Glass sand. See Sand.	uses, Government 1104
Glass sand. See Sand. Glenn Smith packaged-fuel process, descrip-	uses, Government 1104 non-Government 1104
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Oilstones.
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 1104 Hong Kong, lead, review 124
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Ollstones. 124 Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 933 934 934 935	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 1104 Hong Kong, lead, review 124
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 933 934 934 935	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government
Glass sand. See Sand. Glenn Smith packaged-fuel process, description 933 Gold, foreign trade 52 held by United States Treasury 51 prices 13, 49 production, dredges 7 mill 56, 66, 67 mine 47, 53, 56, 60, 62, 65 placer 9	uses, Government 1104 non-Government 1104 Hones. See Ollstones. 124 Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury. 51 prices. 13, 49 production, dredges. 70 mill. 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 67 refinery. 48	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I I Idaho, Ada County, metals, production 313,
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury 51 prices. 13, 49 production, dredges. 7, 9 mill 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer 48 secondary, recovery 49, 492	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 653, 656 Hungary, bauxite, review 653, 656 Hydrogen-ian control, to improve clay products, research 1265 I I Idaho, Ada County, metals, production 313, 314, 316, 319, 323
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury 51 prices. 13, 49 production, dredges. 70 mill 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 68 refinery. 48 secondary, recovery 49, 492 supply, domestic. 52	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 313, 313
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury 51 prices. 13, 49 production, dredges. 70 mill 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 67 refinery. 48 secondary, recovery 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review 58, 589	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury. 51 prices. 13, 49 production, dredges. 70 mill. 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 68 refinery. 48 secondary, recovery. 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review. 588, 589 Gold dredges, list. 68	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hongs, bauxite, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, Adams County, metals, production 313, 314, 316, 319, 323 antimony, data 314, 316, 318, 319, 323
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury. 51 prices. 13, 49 production, dredges. 70 mill. 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 67 refinery. 48 secondary, recovery. 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review. 588, 589 Gold dredges, list. 68 Gold industry, annual review. 47	uses, Government 1104 non-Government 1104 Hones. See Ollstones. 124 Hong Kong, lead, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 730 investigations, under Strategic Minerals 730 730
Glass sand. &e Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury 51 prices. 13, 49 production, dredges. 70 mill 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 48 secondary, recovery. 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review. 588, 589 Gold dredges, list. 68 Gold industry, annual review. 47 Gold mines, accidents. 1487	uses, Government 1104 non-Government 1104 Hones. See Ollstones. 124 Hong Kong, lead, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 730 investigations, under Strategic Minerals 730 730
Glass sand. &e Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury 51 prices. 13, 49 production, dredges. 70 mill 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 48 secondary, recovery. 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review. 588, 589 Gold dredges, list. 68 Gold industry, annual review. 47 Gold mines, accidents. 1487	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, Adams County, metals, production 313, 314, 316, 319, 323 Antimony, data 314, 316, 318, 319, 323 investigations, under Strategic Minerals Act. 729, 730 Bannock County, ferruginous manganese
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury. 51 prices. 13, 49 production, dredges. 70 mill. 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 48 secondary, recovery. 49, 492 supply, domestic. 58, 589 Gold Coast, manganese ore, review. 588, 589 Gold industry, annual review. 47 Gold mines, accidents. 1487 leading, list. 57 men employed. 1484, 1488 number. 58	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 323 Adams County, metals, production 313, 314, 316, 319, 323 antimony, data 314, 316, 318, 319, 323 antimony, data 729, 730 Investigations, under Strategic Minerals Act. 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Beneway County, metals, production 313
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury 51 prices. 13, 49 production, dredges. 70 mill. 56, 66, 67 nence. 47, 53, 56, 60, 62, 65 placer. 67 refinery. 48 secondary, recovery 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review. 585, 589 Gold dredges, list. 68 Gold industry, annual review. 47 Gold mines, accidents. 1487 leading, list. 57 men employed. 1484, 1483 number. 59 Gold ore, production. 62	uses, Government 1104 non-Government 1104 Hones. See Oilstones. Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-in control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 319, 323 antimony, data 730 investigations, under Strategic Minerals Act. 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 314, 319, 323
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 314, 316, 318, 319, 323 investigations, under Strategic Minerals Act. 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 313, 314, 319, 323
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury. 51 prices. 13, 49 production, dredges. 70 mill. 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 67 refinery. 48 secondary, recovery. 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review. 588, 589 Gold dredges, list. 57 men employed. 1484, 1483 number. 57 Gold ore, production. 62 Gold reserves, international. 51 Gold dre, production. 62	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 653, 656 Hydrogen-ion control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 314, 316, 318, 319, 323 investigations, under Strategic Minerals Act. 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 313, 314, 319, 323
Glass sand. See Sand.	uses, Government 1104 non-Government 1104 Hones. See Oilstones. 124 Hong Kong, lead, review 53, 656 Hungary, bauxite, review 653, 656 Hydrogen-i-in control, to improve clay products, research 1265 I I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 730 investigations, under Strategic Minerals 720 Act 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 313, 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 792, 794, 795, 801, 814
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Ollstones. 124 Hong Kong, lead, review 553, 656 Hydrogen-ion control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 Adams County, metals, production 730 investigations, under Strategic Minerals Act 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 313, 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 791, 712 bituminous-coal industry, data 792, 794, 795, 801, 814 Blaine County, metals, production 313,
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Ollstones. 124 Hong Kong, lead, review 53, 656 Hungary, bauxite, review 653, 656 Hydrogen-i-n control, to improve clay products, research 1265 I I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 314, 316, 318, 319, 323 investigations, under Strategic Minerals 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 313, 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 792, 794, 795, 801, 811, 819, 232 Type of the production 313, 314, 316, 318, 310, 318
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Ollstones. 124 Hong Kong, lead, review 53, 656 Hungary, bauxite, review 653, 656 Hydrogen-i-n control, to improve clay products, research 1265 I I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 314, 316, 318, 319, 323 investigations, under Strategic Minerals 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 313, 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 792, 794, 795, 801, 811, 819, 232 Type of the production 313, 314, 316, 318, 310, 318
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Oilstones. Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-in control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 730 investigations, under Strategic Minerals Act. 729, 730 Bannock County, ferruginous manganese 729, 730 Bannock County, metals, production 314, 316, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 792, 794, 795, 801, 814 Blaine County, metals, production 313, 314, 316, 317, 318, 319, 323 Boise County, metals, production 313, 314, 316, 317, 318, 319, 324
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Glod, foreign trade. 52 held by United States Treasury 51 prices. 13, 49 production, dredges. 70 mill 56, 66, 67 mine. 47, 53, 56, 60, 62, 65 placer. 48, 55 placer. 48, 55 glodd Coast, manganese ore, review. 588, 589 Gold dredges, list. 68 Gold industry, annual review. 47 Gold dredges, list. 57 men employed. 1484, 1488 number. 59 Gold ore, production. 62 Gold reserves, international 51 Gold-silver ore, production. 62 Government-and-contractor operations, sand and gravel industries, definition. 1213 Granite, crushed, sales. 1180-1181 sales. 1162, 1164, 1166-1168 Granite quarries, accidents. 1490, 1490 men employed. 1490, 1494 men employed. 1490, 1490 men employed. 1490, 1490 men employed. 1490, 1490 men employed. 1490, 1490	uses, Government 1104 non-Government 1104 Hones. See Ollstones. 124 Hong Kong, lead, review 553, 656 Hydrogen-i-on control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 314, 316, 318, 319, 323 investigations, under Strategic Minerals Act 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 791, 792, 794, 795, 801, 814 Blaine County, metals, production 313, 314, 316, 317, 318, 319, 323 Boise County, metals, production 313, 314, 316, 317, 318, 319, 324 Bonner County, metals, production 313, 314, 316, 317, 318, 319, 324 Bonner County, metals, production 313, 314, 316, 317, 318, 319, 324
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933 Gold, foreign trade. 52 held by United States Treasury. 51 prices. 13, 49 production, dredges. 70 mill. 58, 66, 67 mill. 58, 66, 67 mill. 78, 58, 56, 60, 62, 65 placer. 79 refinery. 48 secondary, recovery. 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review. 588, 589 Gold dredges, list. 68 Gold industry, annual review. 47 Gold mines, accidents. 1487 leading, list. 57 men employed. 1484, 1488 number 59 Gold ore, production. 62 Gold respress, international 51 Gold-silver ore, production 62 Government-and-contractor operations, sand and gravel industries, definition. 1213 Granite, crushed, sales. 1180-1181 sales. 1162, 1164, 1166-1168 Granite quarries, accidents. 1490, 494 Graphite, annual review. 1468 Graphite, annual review. 1468	uses, Government 1104 non-Government 1104 Hones. See Ollstones. 124 Hong Kong, lead, review 553, 656 Hydrogen-ion control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 770 investigations, under Strategic Minerals Act 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 313, 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 791, 712 bituminous-coal industry, data 791, 721, 794, 795, 801, 814 Blaine County, metals, production 313, 314, 316, 317, 318, 319, 323 Boise County, metals, production 313, 314, 316, 317, 318, 319, 324 Bonner County, metals, production 313, 314, 316, 317, 318, 319, 324
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Oilstones. Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-in control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 314, 316, 318, 319, 323 antimony, data 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 314, 316, 318, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 791, 314, 316, 317, 318, 319, 323 Boise County, metals, production 313, 314, 316, 317, 318, 319, 323 Boise County, metals, production 313, 314, 316, 317, 318, 319, 324 Bonner County, metals, production 313, 314, 317, 318, 319, 325 Boundary County, metals, production 313, 314, 317, 318, 319, 325 Boundary County, metals, production 313, 314, 319, 325 Boundary County, metals, production 313, 314, 319, 325 Boundary County, metals, production 313, 314, 319, 325 Boundary County, metals, production 313, 314, 319, 325 Boundary County, metals, production 313, 314, 319, 325
Glass sand. See Sand.	uses, Government
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. 933	uses, Government 1104 non-Government 1104 Hones. See Oilstones. Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-in control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 730 investigations, under Strategie Minerals Act 729, 730 Bannock County, ferruginous manganese 729, 730 Bannock County, metals, production 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 713 bituminous-coal industry, data 712 bituminous-coal industry ferruginous manganese
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. Glenn Smith packaged-fuel process, description. Gold, foreign trade. held by United States Treasury. prices. 13, 49 production, dredges. 70 mill. 56, 66, 67 mill. 56, 66, 67 mill. 56, 66, 67 mill. 56, 66, 67 mill. 56, 66, 67 mill. 56, 60, 62, 65 mill. 67 refinery. 48 secondary, recovery. 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review. 58, 589 Gold dredges, list. 68 Gold industry, annual review. 47 Gold mines, accidents. 1487 leading, list. 57 men employed. 1484, 1488 number. 59 Gold ore, production. 50 Gold-silver ore, production. 51 Gold-silver ore, production. 52 Government-and-contractor operations, sand and gravel industries, definition. 1213 Granite, crushed, sales. 1180-1181 sales. 1180-1181 sales. 1180-1181 sales. 1190, 1494 fraphite, annual review. 1468 consumption. 1470 foreign trade. 1470 foreign trade. 1472 prices. 1469 sources. 1468 stocks. 1472	uses, Government 1104 non-Government 1104 Hones. See Oilstones. Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-i-on control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 314, 316, 318, 319, 323 antimony, data 730 investigations, under Strategic Minerals Act. 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 313, 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 792, 794, 796, 801, 814 Blaine County, metals, production 313, 314, 316, 317, 318, 319, 325 Boise County, metals, production 313, 314, 316, 317, 318, 319, 325 Bonne County, metals, production 313, 314, 316, 317, 318, 319, 325 Bonneville County, metals, production 313, 314, 317, 318, 319, 325 Boundary County, metals, production 313, 314, 319, 325 Butte County, metals, production 313, 314, 318, 319, 325 Butte County, metals, production 313, 314, 318, 319, 325 Butte County, metals, production 313, 314, 318, 319, 325
Glass sand. See Sand. Glenn Smith packaged-fuel process, description. Glenn Smith packaged-fuel process, description. Gold, foreign trade. held by United States Treasury. prices. 13, 49 production, dredges. 70 mill. 56, 66, 67 mill. 56, 66, 67 mill. 56, 66, 67 mill. 56, 66, 67 mill. 56, 66, 67 mill. 56, 60, 62, 65 mill. 67 refinery. 48 secondary, recovery. 49, 492 supply, domestic. 52 Gold Coast, manganese ore, review. 58, 589 Gold dredges, list. 68 Gold industry, annual review. 47 Gold mines, accidents. 1487 leading, list. 57 men employed. 1484, 1488 number. 59 Gold ore, production. 50 Gold-silver ore, production. 51 Gold-silver ore, production. 52 Government-and-contractor operations, sand and gravel industries, definition. 1213 Granite, crushed, sales. 1180-1181 sales. 1180-1181 sales. 1180-1181 sales. 1190, 1494 fraphite, annual review. 1468 consumption. 1470 foreign trade. 1470 foreign trade. 1472 prices. 1469 sources. 1468 stocks. 1472	uses, Government 1104 non-Government 1104 Hones. See Oilstones. Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-in control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 314, 316, 318, 319, 323 antimony, data 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 313, 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 791, 314, 316, 317, 318, 319, 324 Blaine County, metals, production 313, 314, 316, 317, 318, 319, 324 Bonner County, metals, production 313, 314, 316, 317, 318, 319, 324 Bonner County, metals, production 313, 314, 317, 318, 319, 325 Boundary County, metals, production 313, 314, 317, 318, 319, 325 Butte County, metals, production 314, 318, 319, 325 Camas County, metals, production 313, 314, 318, 319, 325 Camas County, metals, production 313, 314, 318, 319, 325 Camas County, metals, production 313, 314, 318, 319, 325 Camas County, metals, production 314, 318, 319, 325
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Oilstones. Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-ian control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 313, 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 730 investigations, under Strategic Minerals Act. 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 792, 794, 795, 801, 814 Blaine County, metals, production 313, 314, 316, 317, 318, 319, 325 Boise County, metals, production 313, 314, 316, 317, 318, 319, 325 Bonneville County, metals, production 313, 314, 317, 318, 319, 325 Boundary County, metals, production 313, 314, 317, 318, 319, 325 Camas County, metals, production 313, 314, 317, 318, 319, 325 Camas County, metals, production 313, 314, 317, 318, 319, 325 Camas County, metals, production 313, 314, 317, 318, 319, 325 Camas County, metals, production 313, 314, 317, 318, 319, 325 Camas County, metals, production 313, 314, 317, 318, 319, 325 Camso County, metals, production 314, 316, 317, 318, 319, 325 Camso County, metals, production 314, 316, 317, 318, 319, 325 Camso County, metals, production 314, 316, 317, 318, 319, 325 Camso County, metals, production 314, 316, 317, 318, 319, 325 Camso County, metals, production 314, 316, 317, 318, 319, 325 Camso County, metals, production 314, 316, 317, 318, 319, 325 Camso County, metals, production 314, 316, 317, 318, 319, 325 Camso County, metals, production 314, 316, 317, 318, 319, 325
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government 1104 non-Government 1104 Hones. See Oilstones. Hong Kong, lead, review 124 Hungary, bauxite, review 653, 656 Hydrogen-in control, to improve clay products, research 1265 I Idaho, Ada County, metals, production 314, 316, 319, 323 Adams County, metals, production 313, 314, 316, 318, 319, 323 antimony, data 730 investigations, under Strategic Minerals Act 729, 730 Bannock County, ferruginous manganese ore, shipments 578 Benewah County, metals, production 314, 319, 323 bismuth, production, new plant 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 712 bituminous-coal industry, data 713 Boise County, metals, production 313, 314, 316, 317, 318, 319, 324 Bonner County, metals, production 313, 314, 316, 317, 318, 319, 325 Boundary County, metals, production 313, 314, 317, 318, 319, 325 Camsa County, metals, production 313, 314, 318, 319, 325 Camsa County, metals, production 313, 314, 318, 319, 325 Camsa County, metals, production 313, 314, 318, 319, 325 Camsa County, metals, production 313, 314, 318, 319, 325 Cassia County, metals, production 313, 314, 318, 319, 325 Cassia County, metals, production 314, 318, 320, 325 Cassia County, metals, production 314, 318, 320, 325 Cassia County, metals, production 314, 318, 320, 325
Glass sand. See Sand. Glenn Smith packaged-fuel process, description	uses, Government

Page	Page
Idaho, Clearwater County, metals, production 313,	Indochina, zinc, review143, 146
314, 320, 326	Industrial lime. See Lime.
cobalt, deposit, development 611	Insecticides, consumption 706 Iodine, annual review 1446
Coeur d'Alene region, metals, production 332	Iodine, annual review 1446
copper, production 80.	Ionium, uses 767 Iowa, bituminous-coal industry, data 791, 792, 794, 795, 801, 818
82, 83, 84, 85, 310, 312, 313, 315, 316, 317, 318, 319	Iowa, bituminous-coal industry, data 791,
Custer County, metals, production 313,	792, 794, 795, 801, 818
314, 316, 317, 318, 320, 326	minerals, production 23
Elmore County, metals, production 313,	Iridium, prices 752
314, 316, 317, 318, 320, 327	refined, recovery
Gem County, metals, production	Sales 754
314, 317, 318, 320, 327	secondary, recovery 752
mold production 40 to co	11Ses 754
65, 66, 67, 310, 311, 313, 314, 315, 316, 317, 318, 319	Iron, cast, improvement by Misch metal 768
gold dredges, list69	duties, reduction 532 foreign trade 568
Gooding County, metals, production 313,	foreign trade
gold dredges, list 69 Gooding County, metals, production 313. 314, 320, 327	pig. See Pig iron.
idano County, metals, production 313,	Iron, Steel, and Tinworkers Union, con- tract with United States Steel Cor-
314, 316, 317, 318, 320, 327	tract with United States Steel Cor-
Jerome County, metals, production 313,	poration 531 Iron industry, effects of war 527, 528 employer-employee relationships 531
314, 321, 330 Latah County, metals, production 313. 314, 321, 330	iron industry, enects of war
Latan County, metals, production313,	Company National Foremic Committee
314, 521, 350	Temporary National Economic Committee, hearings 533
lead, production 112, 113, 310, 311, 312, 313, 315, 316, 317, 318, 319	Tron organismos
Lambi County matels production	consumption con
Lemhi County, metals, production 313,	foreign trade Kog Kgg Kgg Kan Kai
314, 316, 317, 318, 321, 330 Lewis County metals production 313	magnetic concentration 527
314. 316, 317, 318, 321, 330 Lewis County, metals, production 313, 314, 321, 332	manganiferous shipments 877
mercury, review 669 metals, production, annual review 309	hearings
metals, production, annual review 309	prices 544
metallirgic industry, review 315	prices 544 production 528, 533, 534, 535, 542, 554, 555
minerals, production 21 mining industry, review 314 Nez Perce County, metals, production 313, 314, 321, 332	red, scuffing 538 salient statistics 528, 533, 535, 537, 538, 542 shipments 528, 533, 535, 537, 538, 542
mining industry, review 314	salient statistics 529
Nez Perce County, metals, production 313.	shipments528, 533, 535, 537, 538, 542
314, 321, 332	stocks 528, 541
ore, classification 315	stocks 528, 541 tenor 534
Owyhee County, metals, production 313	value 528, 538
314, 316, 317, 318, 322, 332	value 528, 538 Iron-ore industry, annual review 527, 533
phosphate rock, data 1309, 1310	tron-ore mines, accidents 1487
314, 316, 317, 318, 322, 332 phosphate rock, data 1309, 1310 Power County, metals, production 313, 314, 322, 332 Sheshare County, metals, production 314, 322, 332	list 536 men employed 550, 1484, 1487
314, 322, 332	men employed 550, 1484, 1487
bhoshone County, metals, production 313,	output per man 550 Iron scrap, consumption 504, 505, 511, 516
314, 316, 317, 318, 322, 332	iron scrap, consumption 504, 505, 511, 516
silver, production 48, 59,	demand, increase 524 export legislation, proposed 504, 505, 504, 507 foreign trade 504, 505, 523, 532 prices 504, 505, 506, 531
61, 65, 66, 67, 310, 311, 313, 315, 316, 317, 318, 319	export legislation, proposed 504 505 502 500
tungsten, review 627	nricor 504 505 506 521
Twin Falls County, metals, production 313,	etooke 505 507
Valley County, metals, production 314, 322, 335 Valley County, metals, production 314, 316, 322, 335 Washington County, metals, production 318	Stocks
214 216 200 225	Italy arganic raviow 710 711
Washington County, metals, production 313,	barite, data
314, 316, 322, 335	bauxite, review 653, 656
	chromite, review601
135, 310, 311, 312, 313, 315, 316, 317, 318, 319	cohalt, review 614
Illinois, bituminous-coal industry data 701	forming cores use regulation 595
Illinois, bituminous-coal industry, data	lead, review
fluorspar, review 1335, 1337, 1340, 1341, 1343	magnesium, review 723, 724
792. 794, 795, 801, 816 fluorspar, review 1335, 1337, 1340, 1341, 1343 glacial sand, as source of feldspar 1360	lead, review 121, 124 magnesium, review 723, 724 mercury, review 659, 660, 661, 672, 673, 674
illite, properties 1254	nickel, review608, 610
lead, production 112, 113, 288, 296	potasn, data
metals, production, annual review 296	Sait, uata
illite, properties 1254 lead, production 112, 113, 288, 296 metals, production, annual review 296 minerals, production 22 maturel lead detailed 124	metetry, review 608, 610 mickel, review 608, 610 potash, data 1396, 1401 salt, data 1430, 1433 steel industry, review 525 sulfur, data 1287, 1296 tin, data 693, 698 zinc, review 143, 146
	sunur, usts
1045, 1046, 1047, 1048, 1049, 1051–1052, 1066, 1067, 1068, 1070, 1073, 1074, 1078.	vine review 149 148
1067, 1068, 1070, 1073, 1074, 1078.	ZILIC, 16416W 140
petroleum, data 948, 950, 953, 954, 955, 958–959, 969, 970, 972, 973, 975, 976, 977, 978, 979, 980, 981	
909, 970, 972, 973, 975, 976, 977, 978, 979, 980, 981	J
Piersol briquetting process, investigation 924	
pyrites, uata 1297	Japan, aluminum, review 653, 656, 724, 725
pyrites, data 1297 silver, production 48, 59, 61, 65, 288 zinc, production 132, 135, 288, 296	ferronickel, production 608, 610
Tilinois Chalorical Current placed and dance	ferronickel, production608, 610 ferrous scrap, data504, 526
Illinois Geological Survey, glacial sand depos-	gold, nationalization 1400
its, as source of feldspar, study	magnesium, review
Ilmenite, review 770	l phosphate rock, supphies 1315
Indian oil lands, royalties 981	potash, data1396, 1397, 1401
Indiana, bituminous-coal industry, data 791,	pyrites, data 1500
792, 794, 795, 801,817	steel industry, review 525
gold, production 48, 59, 61, 65, 288, 297	sulfur, data 1296
ninescone, sales 1171, 1172	tin, data693, 698
minerals, production23	zinc, review 142, 143, 146
limestone, sales 1171, 1172 minerals, production 2 natural gas, data 1044, 1045, 1046, 1047, 1048, 1049, 1052, 1066, 1068, 1070, 1073, 1074	zinc, review 142, 143, 146 Jewelry, exhibits, New York World's Fair 1457 feshion tronds
1027, 1020, 1020, 1002, 1000, 1008, 1070, 1073, 1074	lasmon trenus
petroleum, data	platinum, consumption 753 Jewelry trade, war, effects 1456
pyrites, data	Jewelry trade, war, effects 1456 Johore. See Unfederated Malay States,
Indium, uses 764	bauxite.
	- DWGGAVOT

K Page	Page
Kainite. See Potash.	Lead-zinc mines, accidents 1487
Kansas, bituminous-coal industry, data 791,	men employed 1484, 1487 Leemon packaged-fuel process, description 934
792, 794, 795, 801, 818	Leemon packaged-fuel process, description 934
792, 794, 795, 801, 818 lead, production 112, 113, 288, 295, 298 metals, production, annual review 297	Lepidolite, uses 1475 Light oil, from coke, production 870, 872, 912, 920
minerals, production 24	Light on, from coke, production 870, 872, 912, 920 Lighte, mining methods 833
natural gas, data 1044, 1045, 1046, 1047, 1048,	production 810, 829, 830, 834
natural gas, data1044, 1045, 1046, 1047, 1048, 1049, 1052–1053, 1066, 1067, 1068, 1070, 1074,	salient statistics 829-831
1077.	shipments 833
petroleum, data948, 949, 950, 953, 954, 955, 959-960,	stripping operations 833 Lignite industry, annual review 829
969, 970, 972, 974, 975, 976, 977, 978, 979, 980, 981.	Lignite industry, annual review 829
nyrites data 1297	men employed 791, 829, 830, 832
zinc, production 135, 288, 295, 298 Kaolin, beneficiation 1255	Lignite mines, number 795, 832 Lime, foreign trade 1238, 1239, 1251 plants 1239, 1240, 1241, 1248, 1249
Kaolin, beneficiation 1255	plants 1239, 1240, 1241, 1248, 1249
foreign trade1254	production 1239
prices 1256 sales 1254, 1255, 1256, 1257, 1268	sales1237, 1238, 1239, 1240, 1241, 1242, 1244-1248
salent statistics 1254, 1255, 1250, 1257, 1268	salient statistics 1238 shipments 1241–1244
salient statistics 1254 Kaolin industry, annual review 1255	Lime industry, annual review 1237
Kashmir, aquamarine, production 1462	new developments 1250
sapphire, production1462	Limekilns, accidents 1490
Keene's cement. See Gypsum.	Sample 1241-1244 1241-1244 1241-1244 1250 1267
Kennametal, uses 770 Kentucky, bituminous-coal industry, data 791,	Limestone, crushed, sales1183-1187
792, 794, 795, 801, 819	Limestone quarries, accidents 1400, 1100, 1170-1175
792, 794, 795, 801, 819 fluorspar, review 1335, 1337, 1345	Limestone quarries, accidents 1490 men employed 1484, 1490
nenum neid, purchase 1104	wire saws, use
lead, production112, 288, 296, 298	Litharge, foreign trade 159, 160, 161
metals, production, annual review 298 minerals, production 24	prices 159 sales 150, 151, 154
natural gas, data 1044,	value150;
1045, 1046, 1047, 1048, 1049, 1053-1054, 1066,	Lithium, foreign trade
1067, 1068, 1070, 1073, 1074	Lithium compounds, shipments 1475
petroleum, data948, 950, 953, 954, 955, 960, 969, 970, 972, 975, 977, 978, 980, 981	Lithium minerals, review 1475
zine, production 135, 288, 296, 298	Lithopone, barium-zinc, manufacture 1383 foreign trade 159, 161, 162, 1384
Kenya sannhire denosits 1462	prices 158 150 1383:
Kenya, sapphire, deposits 1462 Kerosene, demand 944, 945, 946, 982, 1007	prices 158, 159, 1383 sales 150, 152, 155, 1381
foreign trade	value150 Loparite, deposits, as possible source of rare
prices 988, 1021	Loparite, deposits, as possible source of rare
foreign trade 982, 1031, 1035, 1036 prices 988, 1021 production 982, 983, 985, 986, 987, 1007 sales 982, 983, 985, 986, 987, 1008	metals 763 Louisiana, minerals, production 25
stocks 982, 989, 1007	natural gas data 1044 1045 1046 1047 1049 1040
Kieserite, sources 1441	natural gas, data1044, 1045, 1046, 1047, 1048, 1049, 1054, 1066, 1067, 1068, 1070, 1072, 1075, 1077
Kieserite, sources 1441 Klingenberg clay, prices 1258	natural gasoline, data1082,
Kunzite, crystals, discovery 1455	1083, 1084, 1085, 1087, 1088, 1089, 1091
Kyanite, beneficiation 1474 prices 1475	petroleum, data 948,
prices 1470	949, 950, 953, 954, 955, 960–961, 969, 970, 972, 973, 975, 976, 977, 978, 980, 981
L	l sulfur, dafa 1280 1204:
	Lubricants, consumption 1022 demand 944, 945, 946, 982, 1023 foreign trade 982, 1022, 1031, 1035, 1036
Lake Superior district, iron-ore mining,	demand 944, 945, 946, 982, 1023
review542 Land pebble. See Phosphate rock.	loreign trade 982, 1022, 1031, 1035, 1036
Land people. See Phosphaterock. Lanthanum compounds, uses, development,	prices 1024 production 982, 983, 984, 985, 986, 987, 990, 1023
prize767	stocks
Lapis lazuli, deposit	yield
Lead, antimonial, production	
foreign trade 108, 118, 120	
pricos 10, 100, 110	M
primary, mine, production	Madagascar, gem stones, exports 1463:
refined, consumption 108, 114, 121	Madagascar, gem stones, exports 1463:
prices 13, 108, 116 primary, mine, production 111, 120 refined, consumption 108, 114, 121 production 108, 109	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1442 Magnesite, foreign trade 1436, 1437, 1438
production 108 109	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1436, 1437, 1437 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1438
production 108 109	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1442 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1439 salient statistics 1436
production 108, 109 salient statistics 108 secondary, annual review 492 recovery 108, 111, 486, 488, 492	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1442 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1439 salient statistics 1436 Magnesite industry, annual review 1435
production 108, 109 salient statistics 108 secondary, annual review 492 recovery 108, 111, 486, 488, 492 sources 488, 493 stocks 113	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1442 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1439 salient statistics 1436 Magnesite industry, annual review 1435 Magnesium, corrosion-resistant, production 722 fabricators, list 721
production 108, 109 108 109 salient statistics 108 secondary, annual review 492 recovery 108, 111, 486, 488, 492 stocks 113 115 115	Madagascar, gem stones, exports. 1463 Magnesia refractories, improvement. 1442, 1442 Magnesite, foreign trade. 1436, 1437, 1438 production. 1436, 1436, 1436 Magnesite industry, annual review. 1435 Magnesium, corrosion-resistant, production. 722 fabricators, list. 721 foreign trade. 722
production 108, 109 108 109 salient statistics 108 secondary, annual review 492 recovery 108, 111, 486, 488, 492 sources 488, 493 stocks 113 uses 115 uses 704, 707, 708	Madagascar, gem stones, exports. 1463 Magnesia refractories, improvement. 1442, 1442 Magnesite, foreign trade. 1436, 1437, 1438 production. 1436, 1436, 1436 Magnesite industry, annual review. 1435 Magnesium, corrosion-resistant, production. 722 fabricators, list. 721 foreign trade. 722
108, 109 108 109 108 109 108 109 108	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1431, 1432 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1438 salient statistics 1436 Magnesite industry, annual review 1435 Magnesium, corrosion-resistant, production 722 fabricators, list 721 foreign trade 722 primary, production 718, 719, 723 production, from sea water 718, 723
108, 109 108 109 108 109 108 109 108	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1442, 1437, 1438 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1439 salient statistics 1436 Magnesite industry, annual review 1435 Magnesium, corrosion-resistant, production 722 fabricators, list 721 foreign trade 722 primary, production 718, 719, 723 production, from sea water 718, 723 research, Bureau of Mines 723
108, 109 108 109 108 109 108 109 108	Madagascar, gem stones, exports. 1463 Magnesia refractories, improvement. 1436, 1437, 1438 production. 1436, 1437, 1438 salient statistics. 1436 Magnesite industry, annual review. 1435 Magnesium, corrosion-resistant, production. 722 fabricators, list. 721 foreign trade. 722 primary, production. 718, 719, 723 production, from sea water. 718, 729 research, Bureau of Mines. 723 salient statistics. 718 Magnesium alloys, die-casting, improvement. 720,
108, 109 108 109 108 109 108 109 108	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1442 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1439 salient statistics 1436 Magnesite industry, annual review 1436 Magnesium, corrosion-resistant, production 722 fabricators, list 721 foreign trade 718, 722 primary, production 718, 719, 723 production, from sea water 718, 723 research, Bureau of Mines 728 salient statistics 718 Magnesium alloys, die-casting, improvement 720, 722
108, 109 108 109 108 109 108 109 108	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1437, 1438 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1439 salient statistics 1436 Magnesite industry, annual review 1435 Magnesium, corrosion-resistant, production 722 fabricators, list 721 foreign trade 722 primary, production 718, 723 production, from sea water 718, 723 research, Bureau of Mines 723 salient statistics 718 Magnesium alloys, die-casting, improvement 720, use, in metallurgy 722
108, 109 108 109 saleint statistics 108 109 secondary, annual review 492 recovery 108, 111, 486, 488, 492 stocks 113 uses 115 Lead arsenate, data 704, 707, 708 foreign trade 159, 160 Lead industry, annual review 107 world aspects 120 Lead pigments, foreign trade 150, 159 manufacture, raw materials 156 prices 159 production 111 150	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1442 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1439 salient statistics 1436 Magnesite industry, annual review 1435 Magnesium, corrosion-resistant, production 722 fabricators, list 721 foreign trade 722 primary, production 718, 719, 723 production, from sea water 718, 723 research, Bureau of Mines 722 salient statistics 718 Magnesium alloys, die-casting, improvement 720, use, in metallurgy 721 in tractors 720
108, 109 108 109 saleint statistics 108 109 secondary, annual review 492 recovery 108, 111, 486, 488, 492 stocks 113 uses 115 Lead arsenate, data 704, 707, 708 foreign trade 159, 160 Lead industry, annual review 107 world aspects 120 Lead pigments, foreign trade 150, 159 manufacture, raw materials 156 prices 159 production 111 150	Madagascar, gem stones, exports. 1463 Magnesia refractories, improvement. 1442, 1442 Magnesite, foreign trade. 1436, 1437, 1438 production. 1436, 1436, 1436 Magnesite industry, annual review. 1435 Magnesium, corrosion-resistant, production. 722 fabricators, list. 721 foreign trade. 722 primary, production. 718, 719, 723 production, from sea water. 718, 729 research, Bureau of Mines. 723 salient statistics. 718 Magnesium alloys, die-casting, improvement. 720 use, in metallurgy. 722 use, in metallurgy. 722 Magnesium-alloy sheet, manipulation, improvement. 720 Magnesium-alloy sheet, manipulation, improvement. 722
Description 108, 109 108 109 108 109 108	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1442 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1439 salient statistics 1436 Magnesite industry, annual review 1435 Magnesium, corrosion-resistant, production 722 fabricators, list 721 foreign trade 722 primary, production 718, 719, 723 production, from sea water 718, 723 research, Bureau of Mines 723 salient statistics 718 Magnesium alloys, die-casting, improvement 720 use, in metallurgy 721 in tractors 720 Magnesium-alloy sheet, manipulation, improvement 720 uses 721
108, 109 108 109 saleint statistics 108 109 secondary, annual review 492 recovery 108, 111, 486, 488, 492 stocks 113 115 1	Madagascar, gem stones, exports 1463 Magnesia refractories, improvement 1437, 1438 Magnesite, foreign trade 1436, 1437, 1438 production 1436, 1439 Magnesite statistics 1436 Magnesite industry, annual review 1435 Magnesium, corrosion-resistant, production 722 fabricators, list 721 foreign trade 722 primary, production 718, 719, 723 production, from sea water 718, 723 research, Bureau of Mines 723 salient statistics 718 Magnesium alloys, die-casting, improvement 720 use, in metallurgy 721 in tractors 720 Magnesium-alloy sheet, manipulation, improvement 720 Magnesium-alloy sheet, manipulation, improvement 723 uses 721 Magnesium compounds, annual review 1435
108, 109 108 109 saleint statistics 108 109 secondary, annual review 492 recovery 108, 111, 486, 488, 492 stocks 113 115 1	Madagascar, gem stones, exports
Description 108, 109 108 109 108 109 108	Madagascar, gem stones, exports. 1463 Magnesia refractories, improvement. 1442, 1442 Magnesite, foreign trade. 1436, 1437, 1438 production. 1436, 1437, 1438 salient statistics. 1436 Magnesite industry, annual review. 1435 Magnesium, corrosion-resistant, production. 722 fabricators, list. 721 foreign trade. 722 primary, production. 718, 719, 723 production, from sea water. 718, 723 research, Bureau of Mines. 723 salient statistics. 718 Magnesium alloys, die-casting, improvement. 720 use, in metallurgy. 721 in tractors. 720 Magnesium-alloy sheet, manipulation, improvement. 720 Magnesium-alloy sheet, manipulation, improvement. 723 uses. 721 Magnesium compounds, annual review. 1435 foreign trade. 1440, 1441 Magnesium industry, annual review. 722 Magnesium industry, annual review. 722 Magnesium industry, annual review. 722 Magnesium industry, annual review. 722
Description 108, 109 108 109 108 109 108	Madagascar, gem stones, exports. 1463 Magnesia refractories, improvement. 1442, 1442 Magnesite, foreign trade. 1436, 1437, 1438 production. 1436, 1437, 1438 salient statistics. 1436 Magnesite industry, annual review. 1435 Magnesium, corrosion-resistant, production. 722 fabricators, list. 721 foreign trade. 722 primary, production. 718, 719, 723 production, from sea water. 718, 723 research, Bureau of Mines. 723 salient statistics. 718 Magnesium alloys, die-casting, improvement. 720 use, in metallurgy. 721 in tractors. 720 Magnesium-alloy sheet, manipulation, improvement. 720 Magnesium-alloy sheet, manipulation, improvement. 723 uses. 721 Magnesium compounds, annual review. 1435 foreign trade. 1440, 1441 Magnesium industry, annual review. 722 Magnesium industry, annual review. 722 Magnesium industry, annual review. 722 Magnesium industry, annual review. 722
108, 109 108 109 saleint statistics 108 109 secondary, annual review 492 recovery 108, 111, 486, 488, 493 stocks 113 115 1	Madagascar, gem stones, exports. 1463 Magnesia refractories, improvement. 1442, 1442 Magnesite, foreign trade. 1436, 1437, 1438 production. 1436, 1437, 1438 salient statistics. 1436 Magnesite industry, annual review. 1435 Magnesium, corrosion-resistant, production. 722 fabricators, list. 721 foreign trade. 722 primary, production. 718, 719, 723 production, from sea water. 718, 723 research, Bureau of Mines. 723 salient statistics. 718 Magnesium alloys, die-casting, improvement. 720 use, in metallurgy. 721 in tractors. 720 Magnesium-alloy sheet, manipulation, improvement. 720 Magnesium-alloy sheet, manipulation, improvement. 723 uses. 721 Magnesium compounds, annual review. 1435 foreign trade. 1440, 1441 Magnesium industry, annual review. 722 Magnesium industry, annual review. 722 Magnesium industry, annual review. 722 Magnesium industry, annual review. 722

Page	Page
Magnesium sticks, prices 722 Magnesol, as fuller's earth substitute, uses 1263	Mica, prices. 1411 production 1404, 1405, 1418 salient statistics 1404
Magnesol, as fuller's earth substitute, uses 1263	production 1404, 1405, 1418
Maine, minerals, production25	salient statistics 1404 scrap, production 1406
slate, data 1201 Malay States, tungsten, review 630, 632 Unfederated, bauxite, review 653, 657	short consumption 1414
Unfederated, hauxite, review 653, 657	sheet, consumption 1414 production 1405
Manganese, electrolytic, Bureau of Mines	mica industry, annual review
Manganese, electrolytic, Bureau of Mines process, industrial tests 573	Mica splittings, consumption 1404, 1409
emergency stock pile 5/2	stocks 1409 Michigan, bituminous-coal industry, data 791, 792, 794, 795, 801, 820
new uses, Bureau of Mines, research 573	Michigan, bituminous-coal industry, data 791,
Manganaga industry, appual raviow 571	792, 794, 795, 801, 820
salient statistics 572 Manganese industry, annual review 571 Manganese ore, consumption 572, 581	copper, production 80, 82, 83, 84, 85, 288, 299
deposits, examination, by Bureau of Mines	gypsum, data 1229 iron ore, reserves 545
and Geological Survey 574	review _ 534, 535, 536, 539, 540, 541, 543, 546, 549, 554
forro-grade specifications 573	metals production, annual review 298
ferruginous, shipments 576	minerals, production 27
foreign trade 572 573 579	minerals, production 27 natural gas, data 1044, 1045, 1046, 1047, 1048, 1049, 1055, 1066, 1067, 1068, 1070, 1072,
Ferruginous, Shipments 576	1048, 1049, 1055, 1066, 1067, 1068, 1070, 1072,
production 572, 573, 576, 587	1073, 1077 packaged fuel, types 933
stocks572, 580	packaged to permit of perm
Manue sates. See I deasi.	950, 953, 954, 955, 961–962, 969, 970, 972, 973, 976, 977, 978, 979, 980, 981
Marble, crushed, sales 1183 lasting qualities, determining 1176	976, 977, 978, 979, 980, 981
soles (determining	silver, production 48, 59, 61, 65, 288, 299
sales 1162, 1165, 1169-1170 Marble quarries, accidents 1489 men employed 1484, 1489	Millstones, sales 1271, 1279 Minerals, critical. See Aluminum; Asbestos;
men employed 1484, 1489	Minerals, critical. See Aluminum; Asbestos;
underground operations 1177	Graphite; Iodine; Platinum; Toluol;
underground operations 1177 Maritime Commission, revival of shipbuilding	Vanadium.
Maritime Commission, revival of shipbuilding industry 530 Maryland, bituminous-coal industry, data 791, 792, 794, 795, 801, 820 gold, production 48, 59, 61, 65, 288, 289, 292	production, summary 1, 3, 10, 13
Maryland, Dituminous-coal industry, data 191,	value3, 7, 9 strategic. See Antimony; Chromium; Man-
gold, production 48, 59, 61, 65, 288, 289, 292	ganese; Mercury; Mica; Nickel; Quartz; Tin; Tungsten.
gold, production 48, 59, 61, 65, 288, 289, 292 minerals, production 26	Quartz; Tin; Tungsten.
potash, data1394	Mineral industries, accident data 1483
minerals production	employment data1483
Masonry cement, data1139	Mineral oils, foreign trade 1031 shipments, intercoastal 1039
shipments 578	shipments, intercoastal 1039 Mineral wool, sales 1476
shipments 578 granite, sales 1168	Minnesote iron ore reserves 545
minerals, production 26	review 534, 535, 536, 537,
Massachusetts Institute of Technology, Studies	Minnesota, iron ore, reserves 545, 536, 537, review 539, 540, 541, 543, 545, 547, 550, 554
of Alsifilm as mica substitute1261	
Medicinal oil, production 1027, 1028 Meerschaum, data 1476 Memorial stone, use, trends 1176	manganese-bearing ore, shipments 578
Mamorial etona usa trands 1176	minerals, production 28 Minor metals, foreign trade 761
	Minor-metals industry, annual review 759
Mercurio Europeo, activities 659, 662, 663, 675, 676 Mercury, as strategic mineral, data 662 deposits, examination, by Bureau of Mines	Misch metal, improvement of cast iron by 768
Mercury, as strategic mineral, data	agreet simple submodulation 99
deposits, examination, by Bureau of Mines	natural gas, data 1045, 1046, 1047, 1048, 1049,
	1055, 1066, 1068, 1070, 1075, 1077
foreign trade 672 monthly data 661 prices 660, 662 production 660, 661, 673	mississiph, mierais, production natural gas, data 1045, 1046, 1047, 1048, 1049, 1055, 1066, 1068, 1070, 1075, 1077 petroleum, production 962 subbentonite, outnut 1259
prices 660, 662	subbentonite, output 1259 Mississippi Valley region, barite, deposits 1377
production 660, 661, 673	
Salient Statistics	Missouri, barite, deposits 1377 bituminous-coal industry, data 791, 792, 794, 795, 801, 820
stock-pile provisions	792, 794, 795, 801, 820
substitutes 664 supply 660, 664	feldspar, recovery from granite waste 1360 lead, production
trade center 660	lead, production112, 113, 288, 295, 296, 301, 302
uses	limestone, sales
Mercury boilers, description 664	metals, production, annual review
Mercury Cartel, activities 659, 660, 662, 674	natural cas data 1045, 1046, 1048, 1049, 1055-
Mercury industry, annual review	lead, production. 112, 113, 226, 230, 230, 230, 230, 230, 230, 230, 230
Mesothorium, source 769	petroleum, production 962
Metals, old, classification 498	pyrites, data1297
Matal concentrates imports increase reasons 304	petroleum, production 962 pyrites, data 1297 silver, production 48, 59, 61, 65, 288 zinc, production 135, 288, 295, 296, 301, 302
Metallurgical works, accidents1491, 1492	zine, production 1368
Metallurgical works, accidents. 1491, 1492 men employed. 1484, 1491, 1492 Metal mines, accidents. 1487, 1488 men employed. 1484, 1487, 1488 Matal religious 1484, 1487, 1488	Montana, anthophyllite as bestos, production 1368 Beaverhead County, metals, production 341,
men employed 1484 1487 1488	342, 345, 346, 347, 348, 352
Metal polishes, composition 1272	bituminous-coal industry, data 791,
Metal polishes, composition 1272 Mexico, antimony, review 734, 736, 741	792, 794, 795, 801, 821
arsenic, review 710, 711 bituminous coal, imports 779, 782, 808	Broadwater County, metals, production 341,
bituminous coal, imports 779, 782, 808	342, 345, 346, 347, 348, 353 Carbon County, metals, production
copper, review 95, 98, 103 lead, review 118, 119, 120, 121, 124	Carbon County, metals, production 341, 342, 349, 354
mercury, review	Cascade County, metals, production 341,
molybdenum, review	342, 345, 346, 347, 348, 354
"onyx," data	chromite deposits, exploration projects 594
"onyx," data 1463 zinc, review 140, 143, 146	copper, production 80, 82, 83, 84, 85, 338, 339,
Mica, Alsifilm as substitute, research	340, 341, 343, 344, 345, 346, 347, 348 Deer Lodge County, metals, production 341.
as strategic mineral, uses 1403 huilt-up, production 1409	Deer Lodge County, metals, production 341, 342, 345, 347, 348, 354
built-up, production 1409 foreign trade 1404, 1412	Fergus County, metals, production 341,
ground, sales.	
= •	

Montone Flother I Committee I	Pag
Montana, Flathead County, metals, production 341, 342, 347, 348, 355 fluorspar, review 1340, 1345 Gallatin County, metals, production 341, 342, 347, 348, 355 gold, production 48, 59, 61, 65, 66, 67, 338, 339, 341, 342, 343, 344, 345, 346, 347, 348 gold dredges, list 70 Granite County, metals, production 341, 342, 345, 346, 347, 349, 355	Motor fuel, production 94
fluorspar, review 1340, 1345	982, 983, 985, 986, 987, 992, 993, 995, 10 shipments 10 stocks 982, 989, 992, 10
Gallatin County, metals, production 341,	stocks 982, 989, 992, 10
gold, production 48, 59, 61, 65, 66, 67, 338, 339	yields 990, 9
341, 342, 343, 344, 345, 346, 347, 348	Munitions Control Board, National, tin-plate scrap, production estimates 6
gold dredges, list 70	being production communications
Granute County, metals, production 341,	Naphthalene, sales 872, 912, 91 Natural gas, as source of energy, study 785-7
Jefferson County, metals, production 341	Notinal cas as seemed of a see
342, 345, 346, 347, 349, 357 Judith Basin County, metals, production 341,	1042, 1045, 1047, 1048, 1065-10
Judicii Dasin County, metals, production 341,	1042, 1045, 1047, 1048, 1065-10
342, 345, 346, 349, 359 lead, production 112, 113, 338, 339, 340, 341, 343,	loreign trade10
	men employed
Lewis and Clark County, metals, produc- tion 341, 342, 345, 346, 347, 349, 359 lignite industry, data	mixed with manufactured gas, consumption 10
tion 341,342,345,346,347,349,359 lignite industry, data. 791, 795,801,821,829,830,832,833 Lincoln County, metals, production 341,	10
795, 801, 821, 829, 830, 832, 833	production
Lincoln County, metals, production 341, 345	salient statistics 10
342, 345, 346, 347, 361 Madison County, metals, production 341,	shipments, interstate 10
349 345 346 347 350 369	value 1042,
manganese, deposits investigation under	Natural-gas industry, annual review1045, 1
Strategic Minerals Act 575 manganese ore, shipments 578	Natural-gas pipe lines, developments 107
manganese ore, shipments 578 Meagher County, metals, production 341,	Natural gasoline distribution 1042, 104
342 247 350 364	foreign trade 1080, 108
metals, production, annual review 337 metallurgic industry, review 344	prices1080, 108
minerals, production 30	Natural-gas wells, number 1042 10 Natural-gas wells, number 1048 10 Natural gasoline, distribution 1080, 106 foreign trade 1080, 108 prices 1080, 108 prices 943, 946, 983, 98 985, 986, 987, 1080, 1082-1085, 1086, 108 stocks 943, 947, 1080, 1081, 1086, 108 salient statistics 943, 947, 1080, 1081, 1086, 108
Mineral County, metals, production 341	stocks 943, 947, 1080, 1081, 1086, 108
342, 345, 346, 347, 350, 364	salient statistics 108 technical developments 108 Natural-gasoline industry, annual review 108 Natural-gasoline industry, annual review 108 Natural-gasoline industry 108 Natural-gasoline
WISSOUIA COUNTY, metals production 341	Natural-gasoline industry, appual review
342, 345, 346, 347, 350, 364	
metrical gas data 1044 1045 1046 1047 1048	Nebraska, minerals, production
342, 340, 346, 347, 350, 364, 347, 361, 365, 361, 365, 362, 364, 367, 367, 367, 367, 367, 367, 367, 367	Nepheline sympto review
ore, classification 343 Park County, metals, production 341	uses1358, 135
Park County, metals, production 341,	Nephrite, deposit145
342, 345, 346, 347, 350, 365 petroleum, data 948, 950, 953, 954, 955, 962, 969, 970, 972, 977, 980, 981 Phillips County, metals, production	Nebraska, minerals, production 96 petroleum, production 96 Nepheline syenite, review 133 uses 1358, 135 Nephrite, deposit 146 Netherlands, tin, data 693, 6 zinc, review 143, 14 Netherland India, bauxite, review 653, 66 nickel, data 608, 608, 608, 608, 608, 608, 608, 608,
970, 972, 977, 980, 981	Netherland India, bauxite, review 653 65
Phillips County, metals, production 341,	nickel, data 608, 61
phosphate rock, data 1300 1310	tin, importance 693, 66 Nevada, antimony, data 693 Churchill County, metals, production 37
Powell County, metals, production 341	Nevada, antimony, data
342, 345, 346, 347, 350, 365	Churchill County, metals, production 372
pyrites, data 1298 Ravalli County, metals, production 341, 345, 347, 350, 365	376, 378, 379, 380, 38
Sandara County motel 342, 345, 347, 351, 366,	Clark County, metals, production 376, 378, 379, 380, 38
Sanders County, metals, production 341, 351, 366, 342, 343, 346, 347, 351, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 367, 361, 361, 361, 361, 361, 361, 361, 361	
	82, 83, 84, 85, 370, 371, 373, 374, 375, 376, 377, 378, 379, 380.
	Douglas County, metals, production 379
silver, production 48, 59, 61, 65, 66, 67, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348	376, 38
Silver Bow County, metals, production 341, 341, 341, 341, 341, 341,	376, 38 Elko County, metals, production 375 376, 377, 378, 379, 380, 38 Esmeralda County, metals, production 377
	376, 377, 378, 379, 380, 38 Esmeralda County, metals, production 372
Sweet Grass County, metals, production 341,	376, 378, 379, 381, 38
342, 345, 346, 347, 351, 368 Toole County, metals, production 341,	Eureka County, metals, production 376, 379, 381, 38
	fluorspar, review1335_1337_134
zine, production 132, 135, 338, 339, 340, 341, 343,	fluorspar, review 376, 379, 381, 38 gold, production 48, 59, 61, 65, 66 gold dredge 7, 370, 372, 374, 375, 376, 377, 378, 379, 38
Molding sand. See Sand. 344, 345, 346, 348 Molybdenum, foreign trade 618, 620, 621 moral embargo	67, 370, 372, 374, 375, 376, 377, 378, 379, 38
Molybdenum, foreign trade 618, 620, 621	67, 370, 372, 374, 375, 376, 377, 378, 379, 38 gold dredge
moral embargo 618	Humboldt County, metals, production 372
18,20,021 18,2	gold dredge
salient statistics 618	376 377 378 370 381 38
	376, 377, 378, 379, 381, 38 lead, production 112, 113, 370, 372
Molybdenum concentrates, exports 618, 621 production 618	
WOLVERSON INCOME. AND THE PARTIES AND THE STREET	Lincoln County, metals, production 372, 378, 379, 381, 39
wionazite, as source of thorium 769	Dyon County, motals, production 312
demand, revival 1476 foreign trade 1477	376, 377, 378, 379, 382, 39
WORDON CRICKETS ARSONIO AS incontinida 700 l	manganese deposits, investigation, under Strategic Minerals Act 57
MORTAL-MIX cement, description 1138	mercury, review666, 66
1004. 1005 l	metals, production, annual review 36
demand 944, 946, 982, 992-994 effect of weather 995	metallurgic industry, review
foreign trade 982, 992, 993, 1031, 1035, 1036, 1038	minerals, production 372 Mineral County, metals, production 372
Drices 088 007	276 277 270 270 200 20

Page	Page
Nevada, mining industry, review	New Mexico, Sierra County, metals, produc-
molydenum, data 620 nickel-cobalt deposits, study 611	tion 400, 401, 403, 404, 405, 406, 414
nickel-cobalt deposits, study 611	silver, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406.
Nye County, metals, production 372,	398, 399, 400, 401, 402, 403, 404, 405, 406.
376, 378, 379, 382, 392 ore, classification 373	
Ormshy County metals production 970	401, 403, 404, 405, 407, 414
Ormsby County, metals, production 372, 376, 379, 383	Taos County, metals, production
Perching County metals production 279	tin denosite test nite 401, 403, 403, 407, 415.
Pershing County, metals, production 372,	zinc, production 398, 399, 400, 402, 403, 404, 405, 406.
376, 377, 378, 379, 383, 393 silver, production 48, 59, 61, 65, 66, 67, 370, 371, 372, 374, 375, 376, 377, 378, 379, 380	200 200 400 402 404 407 406
370 271 279 274 275 276 277 270 270 200	New York, gypsum, data1229
	iron ore, review 534.
silver mines, list	535, 537, 538, 539, 540, 541, 548, 550, 554
Storey County, metals, production 372,	metals, production, annual review 292
5/0, 5/1, 5/8, 5/9, 585, 394	minerals production 24
tungsten, deposits, investigation	natural gas data 1044 1045 1046 1047 1049
production628	minerals, production
turquoise, production1455	netroleum data 049 050
Washoe County, metals, production	953 954 955 963 969 970 972 977 978 981
376, 379, 383, 394	petroleum, data 948, 950, 953, 954, 955, 953, 954, 955, 963, 969, 970, 972, 977, 978, 981 pyrites, data 1298 silver, production 48, 59, 61, 65, 288, 289, 292
White Pine County, metals, production 372.	silver, production 48, 59, 61, 65, 288, 289, 202
376, 377, 378, 379, 384, 394	slate, data1197_1201
zine, production135,	zinc, production 135 288 292
370, 372, 373, 374, 375, 377, 378, 379, 380	Nickel, classification 501
New Caledonia, chromite, review 599, 601	consumption 608
nickel, review 608, 610	deposits, prospecting 606:
Newfoundland, fluorspar, review	Silver, Front 100
1347, 1348, 1349	price605.
lead, review 118, 125	production 605, 606.
zinc, review	salient statistics 605.
New Hampshire, feldspar, froth flotation 1360	secondary, annual review
production1354	recovery 486, 488, 494, 605,
recovery, from granite waste 1360	605. 606. 605. 606. 605. 606. 605. 606. 605. 606. 605. 606. 605. 606. 605. 606.
mica, production 1405 minerals, production 32	Nickel alloys, classification 501
minerals, production 32	Nickel-Dearing materials, classification 501
New Jersey, iron ore, review 534,	Nickel industry, annual review
535, 537, 539, 541, 548, 550, 554	Nickel industry, annual review
minerals, production 32	Nickel scrap, prices 494
zinc, production 135, 288, 292	Stocks
New Mexico, bituminous-coal industry, data_ 791,	tin review coo
792, 794, 795, 801, 822	Nichium foreign trade
Catron County, metals, production 400,	Nonferrous scrap, annual review 485
401, 403, 405, 406, 408	Nonmetals, minor, annual review 1467
Colfax County, metals, production 400,	Nonmetal mines, accidents 1488
401, 403, 404, 405, 406, 408	Stocks
copper, production80, 82, 83,	North America, bismuth, production 715
84, 85, 398, 399, 400, 402, 403, 404, 405, 406	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400,	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 401, 403, 405, 406, 408	See also Canada; Cuba; Mexico; Newfound-
Eddy County, metals, production 400, 401, 403, 405, 406, 408	See also Canada; Cuba; Mexico; Newfound-
Eddy County, metals, production 400, 401, 403, 405, 406, 408	See also Canada; Cuba; Mexico; Newfound-
Eddy County, metals, production 400, 401, 403, 405, 406, 408	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 403, 404, 408, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 63, 638, 398, 399, 400, 401, 402, 403, 404, 405, 406	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 403, 404, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 538, 399, 400, 401, 402, 403, 404, 405, 406 Grant County, metals, production 400, 404, 404, 406, 406, 408	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 403, 404, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406 Grant County, metals, production 400, 404, 404, 406, 408	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 401, 403, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 403, 404, 405, 406, 408 Eddy County, metals, production 401, 403, 404, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 401, 403, 404, 405, 406, 411	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 408, 408, 408, 408 Eddy County, metals, production 401, 405, 406, 408, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 401, 403, 404, 405, 406, 408 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 404, 405, 406, 411	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 403, 404, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 538, 399, 400, 401, 402, 403, 404, 405, 406, 401 Grant County, metals, production 400, 401, 403, 404, 405, 406, 401 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 113, 388, 399, 400, 402, 403, 404, 405, 406 Lincoln County, metals, production 400, 400, 401, 403, 404, 405, 406, 411	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 408, 408, 408 Eddy County, metals, production 400, 408, 408, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406 Lincoln County, metals, production 400, 401, 403, 404, 405, 406 Lincoln County, metals, production 400, 401, 405, 406 401, 405, 406, 412	See also Canada; Cuba; Mexico; Newfound-
Dona Ana County, metals, production 400, 401, 403, 404, 405, 408, Eddy County, metals, production 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 104, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 412 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 401, 403, 404, 405, 408, Eddy County, metals, production 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 104, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 412 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 401, 403, 404, 405, 408, Eddy County, metals, production 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 104, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 412 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 401, 403, 404, 405, 408, Eddy County, metals, production 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 104, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 412 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 401, 403, 404, 405, 408, Eddy County, metals, production 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 104, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 412 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 404, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 575 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 576 metals, production, annual review 397 metallargic industry, review 402	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 404, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 575 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 576 metals, production, annual review 397 metallargic industry, review 402	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 401 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 412 Luna County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metalls, production annual review 397 metallurgic industry, review 402 minerals, production 33 mining industry, review 401	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 401, 403, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 408 Lincoln County, metals, production 400, 401, 403, 404, 405, 406, 412 Luna County, metals, production 400, 401, 405, 406, 412 Luna County, metals, production 578 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production, annual review 397 metallurgic industry, review 402 minerals, production 333 mining industry, review 401 molybdenum, review 620	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 401, 403, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 408 Lincoln County, metals, production 400, 401, 403, 404, 405, 406, 412 Luna County, metals, production 400, 401, 405, 406, 412 Luna County, metals, production 578 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production, annual review 397 metallurgic industry, review 402 minerals, production 333 mining industry, review 401 molybdenum, review 620	See also Canada; Cuba; Mexico; Newfound- land; United States.
Dona Ana County, metals, production	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 408 Eddy County, metals, production 401, 403, 404, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345 gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 412 Luna County, metals, production 400, 401, 403, 404, 405, 406, 412 Luna County, manganese ore, shipments 578 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metallurgic industry, review 402 minerals, production 333 mining industry, review 401 molybdenum, review 620 natural gas, data 1044, 1045, 1049, 1057, 1066, 1067, 1068, 1076, 1075, 1078, 1075, 1078.	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 400, 403, 404, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 400, 401, 403, 404, 405, 406, 401 lead, production 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production, annual review 397 metallurgic industry, review 402 minerals, production 33 mining industry, review 401 molybdenum, review 401 molybdenum, review 620 natural gas, data 1044, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1075, 1078. Otero County, metals, production 400.	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 400, 401, 403, 404, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 538, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Lina County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production, annual review 397 metallurgic industry, review 407 minerals, production 33 mining industry, review 407 molybdenum, review 620 natural gas, data 1044, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1075, 1078. Otero County, metals, production 401, 405, 406, 412 petroleum, data 948, 949, 950, 953, 954	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 400, 401, 403, 404, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 538, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Lina County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production, annual review 397 metallurgic industry, review 407 minerals, production 33 mining industry, review 407 molybdenum, review 620 natural gas, data 1044, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1075, 1078. Otero County, metals, production 401, 405, 406, 412 petroleum, data 948, 949, 950, 953, 954	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 401, 403, 405, 406, 408 Eddy County, metals, production 401, 403, 404, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411, 113, 398, 399, 400, 402, 403, 404, 405, 406, 412 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, metals, production 570, 406, 412 manganese, deposits, investigation, under Stategic Minerals Act 575 metalls, production, annual review 397 metallurgic industry, review 401 minerals, production 33 mining industry, review 401 molybdenum, review 620 natural gas, data 1044, 1045, 1049, 1057, 1066, 1067, 1068, 1070, 1075, 1078. Ore, classification 402, 401, 405, 406, 412 petroleum, data 948, 949, 959, 953, 954, 975, 975, 978, 980, 981	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Luna County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 575 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production, annual review 397 metallurgic industry, review 402 minerals, production 33 mining industry, review 401 molybdenum, review 620 natural gas, data 1044, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1078, 1078. Ore, classification 402, 401, 405, 406, 412 petroleum, data 948, 949, 950, 953, 954, 955, 963, 970, 972, 973, 976, 977, 978, 809, 981 potash, review 399	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 45, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 401, 403, 404, 405, 406, 401, 403, 404, 405, 406, 401, 403, 404, 405, 406, 411 lead, production 401, 403, 404, 405, 406, 401, 112, 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Luna County, metals, production 400, 401, 405, 406, 412 Luna County, metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production, annual review 397 metallurgic industry, review 402 minerals, production 33 mining industry, review 401 molybdenum, review 620 natural gas, data 1044, 1045, 1046, 1047, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1075, 1078. ore, classification 402 Otero County, metals, production 955, 963, 970, 972, 973, 976, 977, 978, 890, 981 Rio Arriba County, metals, production 400, 401, 405, 406, 412	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 45, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 401, 403, 404, 405, 406, 401, 403, 404, 405, 406, 401, 403, 404, 405, 406, 411 lead, production 401, 403, 404, 405, 406, 401, 112, 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Luna County, metals, production 400, 401, 405, 406, 412 Luna County, metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production, annual review 397 metallurgic industry, review 402 minerals, production 33 mining industry, review 401 molybdenum, review 620 natural gas, data 1044, 1045, 1046, 1047, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1075, 1078. ore, classification 402 Otero County, metals, production 955, 963, 970, 972, 973, 976, 977, 978, 890, 981 Rio Arriba County, metals, production 400, 401, 405, 406, 412	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 401, 403, 4045, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 598, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Lincoln County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 578 metals, production, annual review 397 metallurgic industry, review 402 minerals, production 33 mining industry, review 401 molybdenum, review 620 natural gas, data 1044, 1045, 406, 412 petroleum, data 948, 949, 950, 953, 954, 955, 963, 970, 972, 973, 976, 977, 978, 980, 981 potash, review 401, 403, 404, 406, 412 petroleum, data 948, 949, 950, 953, 954, 955, 963, 970, 972, 973, 976, 977, 978, 980, 981 potash, review 401, 403, 404, 406, 412 Sandoval County, metals, production 400, 401, 403, 404, 406, 412	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 404, 405, 406, 408 Eddy County, metals, production 401, 403, 404, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Luna County, metals, production 400, 401, 405, 406, 412 Luna County, manganese ore, shipments 578 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act. 575 metallurgic industry, review 401 minerals, production 33 mining industry, review 401 molybdenum, review 620 natural gas, data 1044, 1045, 1046, 1047, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1075, 1078. ore, classification 400, 401, 405, 406, 412 petroleum, data 948, 949, 950, 953, 954, 955, 963, 970, 972, 973, 976, 977, 978, 980, 981 potash, review 1394 Rio Arriba County, metals, production 401, 403, 404, 406, 412 Sandoval County, metals, production 401, 403, 404, 406, 412 Sandoval County, metals, production 401, 403, 404, 406, 412	See also Canada; Cuba; Mexico; Newfoundland; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 401, 403, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 408 Hidalgo County, metals, production 400, 401, 403, 404, 405, 406, 408 Lincoln County, metals, production 400, 401, 403, 404, 405, 406, 412 Luna County, metals, production 400, 401, 405, 406, 412 Luna County, metals, production 570 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metallurgic industry, review 402 minerals, production 33 mining industry, review 401 molybdenum, review 620 natural gas, data 1044, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1075, 1078. ore, classification 400, 401, 403, 404, 406, 412 petroleum, data 948, 949, 950, 953, 954, 955, 963, 970, 972, 973, 976, 977, 978, 980, 981 potash, review 401, 403, 404, 406, 412 Sandoval County, metals, production 400, 401, 405, 406, 412 Sandoval County, metals, production 400, 401, 405, 406, 412 Sandoval County, metals, production 400, 401, 405, 406, 412 Sandoval County, metals, production 400, 401, 405, 406, 413 San Miguel County, metals, production 400, 401, 405, 406, 413	See also Canada; Cuba; Mexico; Newfoundland; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 400, 401, 405, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 401, 403, 404, 405, 406, 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Luna County, metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 397, 402, 403, 404, 404, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 397, 402, 403, 404, 404, 406, 412 minerals, production 308, 1070, 1075, 1078, 1044, 1045, 406, 412 molybdenum, review 402 minerals gas, data 1044, 1045, 1046, 1047, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1075, 1078. Ore, classification 402 Otero County, metals, production 401, 405, 406, 412 petroleum, data 948, 949, 950, 953, 954, 955, 963, 970, 972, 973, 976, 977, 978, 890, 981 Rio Arriba County, metals, production 400, 401, 405, 406, 412 San Miguel County, metals, production 400, 401, 405, 406, 412 Santa Fe County, metals, production 400, 401, 405, 406, 412 Santa Fe County, metals, production 400, 401, 405, 406, 412	See also Canada; Cuba; Mexico; Newfound-land; United States.
Dona Ana County, metals, production 400, 403, 405, 406, 408 Eddy County, metals, production 401, 403, 4045, 406, 408 fluorspar, review 1335, 1337, 1340, 1345, gold, production 48, 59, 61, 65, 66, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408 Grant County, metals, production 400, 401, 403, 404, 405, 406, 411 lead, production 401, 403, 404, 405, 406, 411 lead, production 113, 398, 399, 400, 402, 403, 404, 405, 406, 411 Luna County, metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production 400, 401, 405, 406, 412 manganese, deposits, investigation, under Strategic Minerals Act 575 metals, production 303 mining industry, review 402 minerals, production 303 mining industry, review 402 molybdenum, review 620 natural gas, data 1044, 1048, 1049, 1057, 1066, 1067, 1068, 1070, 1078, 1078. Ore, classification 402 Otero County, metals, production 401, 405, 406, 412 petroleum, data 948, 949, 950, 953, 954, 955, 963, 970, 972, 973, 976, 977, 978, 980, 981 Rio Arriba County, metals, production 400, 401, 403, 404, 406, 412 Sandoval County, metals, production 400, 401, 403, 404, 406, 412 Sandoval County, metals, production 400, 401, 403, 404, 406, 412 Sandoval County, metals, production 400, 401, 403, 406, 412 Sandoval County, metals, production 400, 401, 405, 406, 412 Sandoval County, metals, production 400, 401, 405, 406, 412 Sandoval County, metals, production 400, 401, 405, 406, 412	See also Canada; Cuba; Mexico; Newfound-land; United States.

Toma	1
Page	Palastina
Oilstones, sales 1271, 1278	Palestine, gem stones, duties, removal
Oil-well drilling mud, bentonite, Bureau of Mines research 1260	potash, data
Oklahoma, bituminous-coal industry, data 791,	Palladium foreign trode
792, 794, 795, 801, 823	Drices 749, 750, 75
lead, production 112, 113, 288, 295, 296, 306, 307	production 749 752 75
metals, production, annual review 304	
minerals, production 37 natural gas, data 1044, 1045, 1046, 1047,	salient statistics 74 secondary, recovery 749, 75 stocks 749, 75
natural gas, data 1044, 1045, 1046, 1047,	secondary, recovery749.75
1048, 1049, 1059-1060, 1066, 1067, 1068, 1070, 1075	stocks749, 75
natural gasoline, data1081,	
1082, 1083, 1084, 1085, 1088, 1089, 1091	Paper-filler clays, prices 125 Paving sand, sales 1206, 1209, 1211, 121 See also Sand
petroleum, data 948,	See also Sand.
949, 950, 953, 954, 955, 963–964, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981	Pear, annual review 93
zinc, production 132, 135, 288, 295, 296, 306, 307	foreign trade
Olivine, annual review	foreign trade 93 Government specifications 93
use, in refractories 1478	production937, 938, 94
'Onyx,'' data1463	reserves93
"Onyx," data 1463 Open-hearth furnaces, ferrous scrap, consump-	USes
tion	Peat moss, imports 939, 94 Pennsylvania, anthracite, production 792
Orange mineral, foreign trade 159, 160	Pennsylvania, anthracite, production792
prices159	794, 838, 847–853, 86
Sales	anthrogita conferences Con Anthrogita
sales 151, 154 Ore-dressing plants, accidents 1491 men employed 1484, 1491	research program 794, 838, 847-853, 86 anthracite conferences. See Anthracite; Anthracite industry; Anthracite mines.
Oregon, agate, sources 1454	
Baker County, metals, production 423	792. 794. 705. 201. 00
Dregon, agate, sources. 1454 Baker County, metals, production. 423, 424, 425, 426, 428	china clay, production 792, 794, 795, 801, 82 coke, production 125 coke, production 88 gold, production 48, 59, 61, 65, 288, 28 iron ore, recovery of cobalt, study 794, 825, 827, 827, 827, 828, 828, 828, 828, 828
424, 425, 426, 428 bituminous-coal industry, data 791, 792, 794, 795, 801, 814 chromite, deposit, exploration project, 594	coke, production 88
792, 794, 795, 801, 814	gold, production 48, 59, 61, 65, 288, 28
	iron ore, recovery of cobalt, study
Coos County, metals, production 426	
copper, production80, 82, 84, 85, 418, 420, 421, 422, 423, 424, 425, 426	metals, production, annual review 29 minerals, production 3
Crook County, metals, production 425, 426	natural gas, data 1044, 1045, 1046, 1047, 1048, 1049
Curry County, metals, production 423, 425, 426, 429	1060-1061, 1066, 1067, 1068, 1070, 1073, 107
Douglas County, metals, production 423, 425, 426	репојеци, дата 948, 950, 953, 954 955 954
gem cutting, as hobby 1454	904, 909, 970, 971, 972, 973, 977, 980, 99
gem cutting, as hobby 1454 gold, production 48, 59, 61, 65, 66, 67, 418, 419, 420, 422, 423, 424, 425, 426	rottenstone, sales
65, 66, 67, 418, 419, 420, 422, 423, 424, 425, 426	silver, production 48, 59, 61, 65, 288, 28
gold dredges, list	slate, data 1197, 1201, 1201
Grant County, metals, production 423,	Pentane, sales 1092, 1092 Peru, copper, data 93, 98, 100
424, 425, 426, 429 Harney County, metals, production 427	lead, review 93, 98, 10
Jackson County, metals, production 423.	lead, review 118, 121, 12 mineral industries, Bureau of Mines report 10 molybdenum, review 622, 62
424, 425, 427, 430	molybdenum, review 622 623
Josephine County, metals, production 423,	Molyodenum, review 622, 62 622 622 74 623 632 74 633 634
494 495 497 420	zinc, review146
Lane County, metals, production 425, 427, 431	Petrolatum, production 1027, 1028
425, 427, 431	retroleum, as source of energy, study 785-790
lead, production 112,	defiald 942, 944-947, 944 distribution 977 foreign trade 943, 944, 944, 946, 977, 1030 price 943, 974, 944, 946, 949, 950, 951-970, 1028 State "allowables" 945
418, 420, 421, 422, 423, 424, 425, 426 Linn County metals production 422, 427	foreign trade 042 044 046 077 1096
Linn County, metals, production 423, 427 Malheur County, metals, production 427, 431	price 043 076
Marion County, metals, production 423, 427	production 941, 943, 944, 946, 949, 950, 951-970, 1026
mercury, review666, 670 l	State "allowables"949
metals, production, annual review 417	
metallurgic industry, review 422	runs to stills 943, 974, 981 shipments, intercoastal 1036 stocks 943, 944, 946, 947, 970
minerals, production 37	stroks, intercoastal1039
mining industry, review 421 Morrow County, metals, production 427	value943, 944, 946, 947, 970
ore, classification 427 ore, classification 422	Petroleum asphalt, demand 046 082 1027 1107 1112
silver, production 48.	foreign trade 982, 1027, 1031, 1035, 1107, 1115
59, 61, 65, 66, 67, 418, 420, 422, 423, 424, 425, 426	DEOULICLION
Umatilla County, metals, production 427	
Union County, metals, production 427	sales
Wallowa County, metals, production 427	sales
Wheeler County, metals, production 427	
zine, production 135, 418, 424, 425, 426 Osmiridium, foreign trade 755, 756	Petroleum coke, demand 946, 982, 1026 foreign trade 982, 1026, 1031, 1035
production 757	982, 1026, 1031, 1035 production 873, 982, 983, 984, 985, 986, 987, 1026
refined, recovery	
Osmium, characteristics 752	yield982, 989, 1026
Osmium, characteristics 752 foreign trade 755, 756	stocks
uses754	
	DIOGUCION 1097 1090
Pagkaged fuel binders	
ackaged fuel, binders 935	Petroleum industry, annual review 941 European war, effects 942 men employed 950
characteristics 932 plants 934, 935	European war, effects 942
production 924, 933, 934	men employed 950
raw fuels	Potroloum products referred
smoke tests	demand 981
value934	Section of the control of the cont
value 934 ackaged-fuel industry, annual review 932 ackaged Fuel Manufacturers, National Asso-	946, 982 1030 1031 1035 1096 1096
ackaged Fuel Manufacturers, National Asso-	miscellaneous, data 044 046
ciation, activities 033	000 000 001 005 000

Page	Pa	age
Petroleum products, salient statistics 943, 982	Potash, consumption 1388, 1	390
stocks 943, 947, 982, 989	foreign trade 1387. 1	1388
Petroleum refineries, capacity 943	prices 1387, 1 production 1387, 1389, 1392, 1	390
natural gas, consumption 1069	production1387, 1389, 1392, 1	397
Petroleum wells, number 943, 968	sales 1389, 1391, 1 salient statistics 1389	392
Phenolate process, for removing sulfur from		1389 1389
gas	uses1388, 1	
gold, production		393
Phosphate industry, litigation 1306	Potash industry, annual review 1	387
Phosphate Reserve, Federal, establishment 1306	Government investigation 1	392
Phosphate Resources Committee, Congres-		761
sional, hearings 1302 Phosphate rock, consumption 1301, 1304	Power plants, electric, natural gas, consump-	
Phosphate rock, consumption 1301, 1304		1069
foreign trade 1301, 1311	production 1966	1267
prices1304	production 1266, 1 Pottery industry, annual review 1	1207
production 1301, 1302, 1316 reserves 1304, 1309, 1310	Potting clays, prices	257
sales 1304, 1309, 1310	Propane, sales 1092, 1	1093
salient statistics 1301	Propane-butane mixtures, sales 1092, 1	1094
seizure, as contraband 1314	Puddling furnaces, ferrous scrap, consumption.	522
stocks 1301 technology 1316 T. V. A. investigations 1307, 1308 Phosphate rock industry, annual review 1301 ligad britanting process investigations 034	Pulpstones, sales 1271, 1	1278
technology1316	Pumice, review sales 1272, 1280, 1	1280
T. V. A. investigations	Pumicite, sales 1272, 1280, 1	1201
Phosphate rock industry, annual review 1301	Pyrites, foreign trade 1288, 1	298
	production 1288, 1296, 1	1299
Fig. 1001, blast furnaces, list	salient statistics	288
foreign trade 505, 523, 528, \$32, 559	Pyrites industry, annual review 1287, 1	296
manganiferous, foreign trade 586	Pyrophyllite, prices	1326
prices 300, 300, 330, 331, 338 1	producers, list	1322
production 528, 556, 562, 868	properties	1325
salient statistics 528	salient statistics	1322
shipments 528, 556, 557	uses, in ceramics 1326.	1328
stocks 505, 507	uses, in ceramics 1326, 1 Pyrophyllite dust, as industrial health hazard	1327
value	Pyrophyllite industry, annual review	1321
salient statistics 505		
Pinite, data 1479	Quarries agaidents 1490	1400
Pinite, data 1479 Plastics, synthetic, diatomite as filler 1274	Quarries, accidents 1489, men employed 1484, 1488, 1489,	1490 1400
Platinum, characteristics 752	Quartz, review	1276
crude, production749, 750, 751, 757	sales1271, stock-pile purchase	1276
foreign trade 749, 755, 756 prices 751, 752	stock-pile purchase	1463
purchases 751	See also Rock crystal.	
refined, recovery749, 752	Queensland, sapphire, data Quicklime. See Lime.	1462
cales 754	Quicklime. See Dime.	
salient statistics 749 secondary, recovery 749, 752	${f R}$	
secondary, recovery 749, 752	Radium, foreign trade	761
stocks	prices	765
uses 753 Platinum industry, annual review 749	production, total Radium industry, annual review	766
Platinum leaf, uses 753	Radium preparations, Bureau of Standards,	765
Platinum metals, production	tests	765
sources	Radium salts, manipulation, dangers, avoid-	
See also Iridium; Osmium: Osmiridium; Palladium; Platinum; Rhodium; Ru-	ance	766
Palladium; Platinum; Rhodium; Ru- thenium.	Radium standards, Bureau of Standards, prep-	moo
Platinum-rhodium spinnerets, use, in rayon	Radon, prices	766 765
industry	Railroads, rolling stock, replacements.	530
Poland, ferrous-scrap industry, review 526	Railroad ballast, sales 1178, 1179, 1180, 1181, 1	182
potasn, data	Railroad ballast, sales 1178, 1179, 1180, 1181, 1 1184, 1188, 1189, 1206, 1207, 1210,	1212
stratosphere flight, helium, purchase 1105	Range oils, sales 843, 844, 1009, 1011, Rare earths, new uses, development	1013
zinc, review 143, 147 zinc smelters, acquisition by Germany 142	Rayon industry, platinum-rhodium spinner-	708
Polishing sand. See Sand.	ets. use	754
Polonium, uses 767-	Red lead, foreign trade 159, 160	. 161
Portland cement, consumption	ets, use	159
electric power 1138	Sales 150, 151	, 15
flotation 1137	Value	150
foreign trade1120, 1154 fuels1138	Refractories, chromite, use Rhenium, uses	598 768
	Rhode Island, minerals, production	33
prices 1134 production 1119, 1120, 1121–1127	Rhode Island, minerals, production Rhodesia, Northern, cobalt, review 613	, 614
raw materials 1135 shipments 1119, 1120, 1121, 1122, 1125, 1129, 1130 stocks 1120, 1122, 1124, 1126, 1127, 1128	Copper, review	, 10
shipments 1119, 1120, 1121, 1122, 1125, 1129, 1130	Southern, asbestos, data1	366
STOCKS	1369, 1370,	137
supplies 1132 transportation 1133	chromite, review 599 nickel, data 608	, OU.
Portland cement industry, developments 1136	tungsten, production 631	63
Portland cement plants, natural gas, consump-	Rhodium, characteristics	75
tion	foreign trade 755	75
number 1119, 1134, 1136	uses Riprap, sales 1163, 1178, 1181, 1182, 1184, 1188,	75
Portugal purities data 1900 1900 1900	1162 1170 1101 1100 1104 1100	1162
Portland-puzzolan cement, data 1139 Portugal, pyrites, data 1298, 1299, 1300 sulfur, data 1296	Road metal, sales	1178 1178
tungsten, review	1179, 1180, 1181, 1182, 1184, 1188.	118

	age.		Page
Road oil, demand 946, 982,	1027	Silver, production, mill 56, mine 47, 55, 56, 60, refinery	AR A
production	982.	mine 47 55 56 60	00, 0 <i>1</i>
production983, 984, 985, 986, 987, 1027, 1117, sales1117	1118	refinery secondary, recovery supply demostic	102, 06
sales1117,	1118	secondary, recovery	0 400
SLOCKS UX2 UXU	1027	supply, domestic	o, 452 52
yleid	990	supply, domestic Silver industry, annual review	47
Rock crystal, foreign trade	1463	i onver innes, list	58
uses	1463		
See also Quartz.		Slag. blast furnace, sales	1224
Rock salt. See Salt.		Slate, dimension, sales 1165, 1198,	. 1199
Rock wool, data	1476	Slag. blast furnace, sales Slate, dimension, sales 1165, 1198,	1203
Rock wool, data	1202		1200
54165 1198.	1199	sales	1198
Rottenstone, sales Rubber clays, prices		salient statistics	1198
Rubbing stones. See Oilstones.	1256	waste, use as aggregate, Bureau of Mines	
	1460	Slate flour, sales 1198, Slate industry, annual review 1198, Slate granules, sales 1198, Slate undustry, annual review 1198, Slate undustry, annual review 1198,	1203
Rumania, chromite, review	602	Slate mour, sales1198,	1200
Ruthenium, characteristics	752	Slate granules, sales 1198,	1200
foreign trade 755,	756	Clote growing and deute	1197
11808	754	State Industry, annual review Slate quarries, accidents 1484, men employed 1484, Slip clay, sales 1264, 1265, Smelters, accidents 1484, soapstone, ground, annual review 1322, 1329, foreign trade 1322, 1329,	1489
uses	770	Slip clay sales	1489
prices	771	Smelters accidente	1268
P	***	men employed	1492
		Soanstone ground annual regions	1491
'S		foreign trade 1322, 1329,	1321
		prices	1000
Salines, producers, list	1452	prices	1020
Salt, consumption	1421	production	1220
distribution	1424	production	1305
foreign trade	1428		1320
mining methods	1427	boda asii, distribution	1450
prices	1496	sources	1440
production 1421, 1422, 1 salient statistics 1	1430	Sodium aluminate, data 643 Sodium aluminum sulfate, data 643	644
salient statistics1	1421	Sodium-aluminum sulfate, data 643	644
uses	1426	Socialit carbonates, annual review	1449
uses 1 Salt industry, annual review 1	1421	production	1450
Sand, aprasive, review	277	Sodium metal, fo-eign trade	761
foreign trade 1 ground, sales 1271, 1	223	Sodium metal, fo eign trade Sodium sulfate, annual review	1446
ground, sales 1271, 1	277	foreign trade 1447.	1448
prices 1		sources	1449
sales	206,	South America, bismuth, production	715
1207, 1208–1210, 1212, 1213, 1215, 1216, 1	217	See also Argentina; Bolivia; Brazil; British Guiana: Chile; Colombia; Peru;	
salient statistics	206	Gulana: Chile; Colombia; Peru;	
Sand and Gravel Association, accident-preven-	000	Surinam; Trinidad; Venezuela.	
	223	South Carolina, china clay, production.	1255
	205	gold production 48, 59, 61, 65, 288	, 289
	218 222	metals, production, annual review	293
Sandstone, ground, sales	222	minerals, production	39
Sandstone, ground, sales 1271, 1 sales 1162, 1165, 1166, 1173-1	175	silver, production 48, 59, 61, 65, 288 South Dakota, bentonite, occurrence	, 289
Sandstone quarries, accidents 1	490	Custer County metals production	
men employed 1484 1	400 l	Custer County, metals, production	436
Sapphire, industrial, production 1 Sapphire industry, annual review 1	455	feldspar, production 1354, gold, production 48, 59, 61, 65, 66, 434, 435	1999
Sapphire industry, annual review	460	iron ore, review534, 548	, 1 30
SCFAD, Genninons	487	Lawrence County, metals, production	436
ferrous, annual review	503	lead, production 112	424
nomerrous, annual review	485	lignite industry, data	791.
Scrap Convention. International, activities 504.	524	792, 794, 795, 801, 825, 829, 831, 832,	833
Scutting, use in beneficiating red iron ore	538	metals, production, annual review	433
Scythestones. See Oilstones.		metallurgic industry	435
Sealithor cement, description 1	137	minerals, production	39
Secondary metals, ferrous, annual review	503	mining industry	435
See also Iron scrap; Steel scrap.		natural gas, data1048, 1049, 1061, 1066, 1068,	1070
Homerrous, annual review	485	Pennington County, metals, production	439
See also Aluminum; Antimony; Brass; Cop-		Silver, production	48,
See also Aluminum; Antimony; Brass; Cop- per; Gold; Lead; Nickel; Silver; Tin. Selenjum, foreign trade		59 61 65 66 434 435	, 436
Selient statistics	761		763
	769	tin, deposits, investigation, by Bureau of	
	768	wines	681
Serpentine, use, in refractories 14	829	South-West Africa, cadmium, review	747
Sewer pipe, production	479	gem stones, data	1464
Shale, sales	266	gem stones, data	125
Shale, sales 1264, 1 Sheep dip, data 704, Shipbuilding industry, revival	200 700	mercury, review	659.
Shipbuilding industry, revivel	520	660, 672, 673,	6/5
Sinca adrasives, review	273	potash, data	
salient statistics	271	salt, data 1430,	1400
Silicate abrasives, review	280	sulfur data	1900
salient statistics	272	sulfur, dataSpiegeleisen, foreign trade	1.290÷
Silica-stone products review	278	565, 566, 572, production 572,	520,
salient statistics 19 Silumin, aluminum-silicon alloy, production,	271	production 579	595
Silumin, aluminum-silicon alloy, production.		shipments 502	564
Drenarations	657	shipments 528, Spiegeleisen industry, annual review Spodumene, beneficiation	585
Silver, foreign tradeheld by United States Treasury	52	Spodumene, beneficiation	1475
held by United States Treasury		shipments	1475
prices13,	49	Steatite, foreign trade1329.	1330

	Poga
Page	Page
Steel, aluminum coated, development 652	Talc, beneficiation—Continued.
bessemer, production 528, 566, 567	production 1331 sales 1321, 1322, 1324, 1325
olectric production 528 566 567	salient statistics 1322
foreign trade 532, 568	Talc. uses, in ceramics 1326
100 100	Talc industry, annual review 1321
Drices 551	Talcum, foreign trade 1330 Tantalum, foreign trade 761
production, rise, causes 529 salient statistics 528	Tantalum, foreign trade 761 uses 763
stainless, chromium, use 598	Tentalum-columbium are new source 763
Steel furnaces, electric, ierrous scrap, consump-	Tantalum industry, annual review
tion518	Tantalum industry, annual review
tion 518 Steel industry, annual review 527, 566 effects of war 527, 528, 529	Tariff, zinc, reduction 129 Tellurium, salient statistics 769
employer-employee relationships 531	uses
Mary areary Mational Fagnamia Committee	Temporary National Economic Committee,
hearings 533	hearings, Copper Cartel 78
Steel products, prices 530, 531	iron and steel industry533
Steel scrap, consumption 504, 505, 511, 516	sulfur industry 1288 Tennessee, barite, deposits 1377 bituminous-coal industry, data 791, 792, 794, 795, 801, 825
demand, increase 524	hituminous-coal industry, data 791.
foreign trade 504, 505, 523, 532	792, 794, 795, 801, 825
Hearings	copper, production 80, 82, 84, 85, 288, 290 feldspar, froth flotation 1360 gold, production 48, 59, 61, 65, 288, 289 fron ore, review 534, 535, 537, 548, 550, 554 lead, production 112, 288
500CAS	feldspar, froth flotation 1360
Steel-scrap industry, annual review 503	gold, production 45, 59, 51, 65, 256, 259
Steel Workers Organizing Committee, contract, with United States Steel Corporation. 531	lead, production 112, 288
Still gas production 946.	manganese ore, suidments
983, 984, 985, 986, 987, 990, 1027	metals, production, annual review 294
Stock-nile nurchases, mercury 662	minerals, production 40 petroleum, production 964
quartz 1463 tin 679, 682	phosphate rock, data 1302, 1306
tungsten 624	pyrites, data1298
7101	pyrites, data 1298 silver, production 48, 59, 61, 65, 288, 289 zinc, production 135, 288
new developments	zine, production 135, 288
sales1162, 1163, 1177–1191	Tennessee Valley Authority, phosphate, investigations 1292, 1306, 1307, 1308
foreign trade 1193	Terneplate, foreign trade 686, 687
sales1162, 1163	Texas, bituminous-coal industry, data
Stone, crushed, annual review 1161	Terneplate, foreign trade 688, 687 Texas, bituminous-coal industry, data 791, 792, 794, 795, 801, 825 Cliffide ges field belium production
Stoneware clay, sales	Cliffside gas field, helium, production 1103 copper, production 80, 82, 84, 85, 442
salient statistics 1254	Culberson County, metals, production 443
nm: Manganese: Mercury: Mica: Nickel:	gold, production 48, 59, 61, 65, 66, 67, 442
salient statistics. 1254 Strategic minerals. See Antimony; Chromium; Manganese; Mercury; Mica; Nickel; Quartz; Tin; Tungsten. 1105	Culberson County, metals, production 443 gold, production 48, 59, 61, 65, 66, 67, 442 Hudspeth County, metals, production 443
Stratosphere light, henum, purchase	lead, production 112, 442 lignite industry, data 791, 795, 801, 829, 831, 832, 833
Strontium, foreign trade 761 Strontium minerals, foreign trade 1479	mercury, review 672
Strondim minerals, foreign trade 1288, 1292	mercury, review 672 metals, production, annual review 41
price1288, 1291	minerals, production 41
production 1288, 1289–1291, 1294	natural gas, data 1044, 1046, 1047, 1048, 1049, 1061-
by Thylos process 1290	1062, 1066, 1067, 1068, 1069, 1070, 1076, 1077 natural gasoline, data
solient statistics 1288	1083, 1084, 1085, 1087, 1088, 1089, 1091
shinments 1288, 1291	ore, classification 442
stocks	petroleum, data 948,
Sulfuric acid, byproduct, recovery 132, 1290	949, 950, 953, 954, 955, 964–967, 969, 970 971, 972, 973, 974, 975, 976, 977, 978, 980, 981.
Sulfur industry, annual review 1287, 1289 Department of Justice inquiry 1302	Presidio County, metals, production 443
Temporary National Economic Committee	silver, production 48, 59, 61, 65, 66, 67, 442, 444
hearings 1288	smelting plants 443
Sulfur mines, list 1289 Sulfur Sales Bureau, Central, export agree-	sulfur, data
ment, status	Textiles, rare earths in, use 768
Sulphur Export Corporation, export agree-	Thorium, foreign trade 761
ment, status 1287	Uses 769
Superphosphates, definition 1319 foreign trade 1318	Thylox process, for removing sulfur from gas 1290 Tin, as strategic mineral, importance 677
salient statistics	consumption 693
Surinam hauvita review 653 656	domestic resources, investigation, Bureau of
Swaziland, asbestos, data	Mines and Geological Survey 680 foreign trade 678, 685, 686
sweden, aluminum, review	10reign trade
arsenic, review 710, 711 chromite, review 602	prices 678, 688 primary, consumption 684 production 678, 682, 691, 692
sulfur, data	production 678, 682, 691, 692
Switzerland, aluminum, review 653, 657	salient statistics 678
Syenite, nepheline, review 1358	secondary, annual review 495
Syphilis, bismuth saccarate for treatment, patent 712	consumption 684 recovery 486, 488, 495, 496, 678, 683
	sources 488, 495
${f T}$	stocks
The annual time foreign trade	stock-pile purchases
Taggers tin, foreign trade 686, 687 Talc, beneficiation 1326, 1327, 1328	Uses 685 Tin Buffer Pool, allotments, termination 690, 691
foreign trade 1320, 1327, 1328	Tin Committee, International, export quotas. 679
prices 1326	Tin Control Scheme, International, activities. 679,
producers, list1322	690, 691
244 61 5—40——9 6	

Page	Page
Tin industry opposite and a serious	1 ** ** 1 ** .
Tim Mutats y, annual review 677 world aspects 690 Tin Research and Development Council, International, activities 679, 691 Tin scrap, foreign trade 497, 680, 685, 686 prices 496 stocks 495	review1, 3, 10, 13
International activities 679 691	Value 3, 7, 9
Tin scrap, foreign trade 497, 680, 685, 686	United States Steel Corporation, contract, with union 531
prices496	United States Treasury, gold held by
Tin smelters, domestic, establishment 681	silver held by 51 Uranium, disposal 767 Uranium, foreign trade 761
Titanium, annual review 770	Uranium, disposal 767
foreign trade 761	prices
Titanium pigments, production 150	Utah, Beaver County, metals, production 448
Toluol, production 869, 911 Topaz, exhibit specimens 1462 shipments 1480	450, 451, 452, 453, bituminous-coal industry, data. 791, 792, 794, 795, 801, 828 Box Elder County, metals, production 448
shipments 1480	791, 702 704 705 201 200
shipments 1480 Tractors, magnesium alloys, use 720 Trades Agreements, Reciprocal, Belgium 728 Canada 130, 1361 Venezuela 950, 1018, 1030 Transvaal, emeralds, review 1461 Trap rock, crushed, sales 1182	Box Elder County, metals, production 448,
Trades Agreements, Reciprocal, Belgium 728	459 452 455
Venezuela 950 1018 1030	copper, production
Transvaal, emeralds, review	fluorspar shipments 1335 1337 1346
Trap rock, crushed, sales	Garfield County, metals, production 448,
Sales	459 453 455
Sales - 1102, 1704, 1706, 1708 - 1109 Trap-rock quarries, accidents - 1489 men employed . 1484, 1489 Travers process, for coating and electroplating aluminum alloys . 652	gold, production 48, 59, 61, 62, 63, 65, 66, 67, 446, 447, 448, 449, 450, 451, 452, 453
Travers process, for coating and electroplating	Grand County, metals, production 448, 453, 455
aluminum alloys 652	Iron County, metals, production 448, 452, 453, 455
Tremolite asbestos. See Asbestos. Trinidad, barite, ground, uses 1384	iron ore, review 534, 535, 548, 550, 554
Tripoli, sales 1271 1275	Juab County, metals, production 448,
Tripoli, sales 1271, 1275 Tri-State lead-zinc region, health conditions 304	450, 451, 452, 453, 456 lead, production 112.
Trona, deposit, discovery	113, 135, 446, 447, 448, 449, 450, 451, 452, 453
Propical diseases, at diamond mines, reduction 1459	manganese ore, shipments 579
Tungsten, as strategic mineral, importance 624	metals, production, annual review 445 metallurgic industry, review 449
deposits, exploration, by Bureau of Mines	Millard County, metals, production 448,
and Geological Survey 625	
foreign trade 624, 628 prices 625	minerals, production 42
production 624, 626, 630 salient statistics 624	molybdenum review 690
salient statistics 624	natural gas, data1048.
stocks 624	minerals, production 402, 453, 457 mining industry, review 449 molybdenum, review 620 natural gas, data 1049, 1062, 1066, 1068, 1071, 1076 ore, classification 449
stocks 624 stock-pile purchases 624 uses 630	ore, classification 449 Park City region, metals, production 460
Tungsten industry, annual review 623	petroleum, data 967 977
Furkey, chromite, review 532, 599, 603	Piute County, metals, production 448, 452, 453, 458
zinc, review	452, 453, 458
	potash, review 1394 Salt Lake County, metals, production 448,
U	
Union of South Africa, asbestos, data 1366,	San Juan County, metals, production 448, 452, 453, 459
1260 1260 1270 1271	scheelite, shipments 628 Sevier County, metals, production 448,
bort, foreign trade 1283 chromite, review 599, 603	Sevier County, metals, production 448,
fluorspar, review1348, 1349	452, 454, 460 silver, production 48 50 61 62 63 65
fluorspar, review 1348, 1349 manganese ore, review 588, 589	452, 454, 460 silver, production 48, 59, 61, 62, 63, 65, 66, 67, 446, 447, 448, 449, 450, 451, 452, 453
platinum metals, review	
num, review 653 657	Summit County, metals, production 448,
num, review 653, 657 asbestos, review 1366, 1368, 1369, 1370, 1372 anthracite shipments, restrictions, trade	450, 451, 452, 454, 460 Tooele County, metals, production48,
anthracite shipments, restrictions, trade	450, 451, 452, 454, 461
agreement 866 chromite, review 599, 604	Uintah County, metals, production 448,
copper, review 76, 95, 98, 105	452, 454, 463 Utah County, metals, production 452, 454, 463 448,
emeralds, data1461	450 451 459 454 469
nuorspar, data 1348, 1349	vanadium, review
lapis lazuli, deposit 1462 lead. review 121 125	wasatch County, metals, production 448,
lead, review 121, 125 lithopone plant, completion 155	450, 451, 452, 454, 460 Washington County, metals, production 448,
loparite, deposits	452, 454, 463
nepheline svenite data 588, 589	zinc, production446, 447, 448, 449, 450, 451, 452, 453
potash, data1396, 1402	\mathbf{v}
situmit, production, plans	Vanadium, foreign trade 633, 761
tin, review 700	
Jnited Kingdom, aluminum, review 653, 657 arsenic, production	salient statistics 633 shipments 633
chromite, review 599, 604	shipments 633 sources 633
Cornwall stone, imports from 1361	11SeS 634
ferrous scrap, conservation 526 gem stones, war tariff 1456	Vanadium industry, annual review 633 Vankolite for cest-setting diamond hits
iron industry, effects of war 528, 529	Vanariot, for cast setting diamond bits 1284
iron industry, effects of war 528, 529 magnesium, review 722, 724, 725	venereal diseases, arsenical ornes for frest-
	ment, distribution 706
mercury, review 659, 661, 672, 676	ment, distribution 706 bismuth saccharate for treatment, patent 706 Venezule Resignated Project 706
nickel, production 611 tin, review 693 699	Vankolite, for cast-setting diamond bits
Mercury, review 659, 661, 672, 676 nickel, production 611 tin, review 693, 699 zinc, review 142, 143, 147 See also England: Great Britain	venereal diseases, arsenical drugs for treatment, distribution. 706 bismuth saccharate for treatment, patent. 706 Venezuela, Reciprocal Trade Treaty. 950, 1018, 1030 salt, data

Page	Page
Vermont, asbestos, production 1363, 1368	West Virginia, bituminous-coal industry,
vermiont, assessos, production 305, 1305 granife, data 1168 minerals, production 42 slate, data 1197, 1201 Vesuvianite, deposits 1463 Virginia, anthophyllite asbestos, deposit 1362 apatite, data 1302, 1306, 1310 Virginia, bituminous-coal industry, data 791, 702, 704, 705, 801, 226	data 791, 792, 794, 795, 801, 827
minerals, production 42	manganese ore, shipment 579
Vocarrianita danocite 1463	minerals, production
Virginia, anthonhyllite asbestos, deposit	1047, 1048, 1049, 1063–1064, 1066, 1067, 1068
apatite, data1302, 1306, 1310	1069, 1071, 1076,
Virginia, bituminous-coal industry, data 791,	petroleum, data948,
792, 794, 795, 801, 826 gold, production 48, 59, 61, 65, 288, 289 ilmenite, shipment 770 iron ore, review 534, 535, 541, 549, 550, 554	950, 953, 954, 967, 969, 970, 972, 977, 981
gold, production 48, 59, 61, 65, 288, 289	Whetstones. See Oilstones. White arsenic. See Arsenic.
imenite, snipment 770	
manganese ore, shipments	White lead, foreign trade
manganese ore, shipments 579 metals, production, annual review 294	sales 150, 151, 152
minerals, production 43	value 150
minerals, production 43 natural gas, data 1048, 1062, 1066, 1068, 1071	Wisconsin, fuel briquets, production 927
pyrites, data1298	iron ore, review
pyrites, data 1298 rutile, production 770 slate, data 1197, 1202	535, 536, 539, 541, 543, 549, 550, 554
slate, data 1197, 1202	iron ore, review
\mathbf{w}	metals, production, annual review 307
Washington, antimony, data	minerals, production 45 molybdenum, production 620
Washington, antimony, data	nvrites data 1298
469, 474, 476	zinc, production 135, 288, 295, 296, 308
Benton County, metals, production 405,	Witherite, deposits 1378
469, 474, 476	foreign trade1385
bituminous-coal industry, data 791. 792, 794, 795, 801, 826 Chelan County, metals, production 468,	prices 1383
792, 794, 795, 801, 826	Wurtzuite, data 1108
Cheian County, metals, production 468, 471, 472, 473, 474, 476	duction County, metals, pro-
Clallam County, metals, production 468,	hentonite, data 1950_1960
469, 474, 476	Big Horn County, metals, production 482
Columbia County, metals, production 468,	molybdenum, production
469, 474, 477	792, 794, 795, 801. 828
copper, production80, 82, 84,	Carbon County, metals, production 482, 483
85, 466, 467, 468, 469, 470, 471, 472, 473, 474 Deuglos County, metals, production 468	chromite, deposit, exploration project 594, 595
Douglas County, metals, production 468, 469, 474, 477	Crook County metals production 482 483
Ferry County, metals, production	feldspar, shipments
469, 473, 474, 477	Fremont County, metals, production 482, 483
gold, production 48, 59, 61, 65,	chromite, deposit, exploration project
66, 67, 466, 468, 469, 470, 471, 472, 473, 474 Grant County, metals, production 468, 469, 477	Iron ore, review
Grays Harbor County, manganese ore,	leed production 112 489
shipments 579	metals, production, annual review 481
iron ore, review 534, 535, 541, 549, 550, 554	minerals, production 46
shipments 579 iron ore, review 534, 535, 541, 549, 550, 554 King County, metals, production 468,	moss agate, cutting 1454
471, 472, 473, 474, 477	natural gas, data 1044, 1046, 1047, 1048, 1049,
Kittitas County, metals, production 468, 469, 473, 474, 478	1004-1000, 1000, 1007, 1008, 1009, 1071, 1070, 1078
lead, production112,	netroleum, data 948, 950, 953, 954, 955, 967–968.
113, 468, 469, 470, 471, 472, 473, 474	969, 970, 972, 976, 977, 979, 980, 981
Lincoln County, metals, production	silver. production 48, 59, 61, 65, 66, 67, 482
469, 474, 478	Teton County, metals, production 482, 484
manganese deposits, investigation, under Strategic Minerals Act 574	Park County, metals, production 482, 484 petroleum, data 948, 950, 953, 954, 955, 967-968, 969, 970, 972, 976, 977, 979, 980, 981 silver, production 48, 59, 61, 65, 66, 67, 482 Teton County, metals, production 482, 484 trona, deposit, discovery 1450
Strategic Minerals Act 574 metals, production, annual review 465 metallurgic industry, review 470	Y
metallurgic industry, review 470	Yugoslavia, antimony, review 734, 736, 742
minerals, production 44	Chromite, review 599, 604
mining industry, review 469	copper, review
notyrol gog doto 1049 1040 1069 1066 1069	lead, review 121, 125
Okanogan County metals production 468	gine review 143 147
molybdenum, production 620 natural gas, data 1048, 1049, 1062, 1066, 1068 Okanogan County, metals, production 468, 469, 471, 472, 473, 474, 478 ore, classification 469	Zinc, 10 v 10 w
ore, classification 469	${f z}$
rend Oreme County, metals, production 468.	Zeolite, annual review
469, 471, 472, 474, 479 silver, production 48, 59, 61, 65, 66,	Zinc, consumption 136, 143
67, 466, 467, 468, 469, 470, 471, 472, 473, 474	import duties request for restoration 128, 140
Skamania County, metals, production 468,	prices 13, 128, 138, 139
471, 474, 479	primary, industrial use 137
Snohomish County, metals, production 468,	production, distilled 131
469, 473, 474, 479	electrolytic 131
Stevens County, metals, production 468, 469, 471, 472, 473, 474, 479	
tungsten, shipments	rolled 133
tungsten, shipments	smelter 143
	salient statistics 128
Whitman County, metals, production 468,	10164
469, 475, 480	industrial use 137 recovery 128, 131, 132, 486, 488, 497
zinc, production 135, 468, 469, 470, 471, 472, 474 Water power, as source of energy, study 785-790	recovery 128, 131, 132, 486, 488, 497
Wax, demand 946, 982, 1024, 1025	stocks 198 130
Wax, demand 946, 982, 1024, 1025 foreign trade 982, 1024, 1031, 1035, 1036	sources 488, 498 stocks 128, 130 tariff, reduction 129, 304 Zinc blende, sulfur dioxide from, manufacture 129, 304
price	Zinc blende, sulfur dioxide from, manufacture
production 982, 983, 984, 985, 986, 987, 1024, 1025	oi sulluric acid
stocks	Zine chloride, distribution 152, 156, 159, 161
77 CISDACH MAHUES, URES	Zinc concentrates, prices

MINERALS YEARBOOK, 1940

Page	Page
Zine dust, production 133	Zinc salts, sales 151, 154
Zine industry annual raview 127, 142	types 134
Zinc oxide, data 150, 152, 154, 155, 158, 159, 161, 162	Zinc salts industry, annual review 149
Zinc pigments, foreign trade 150, 159	Zine scrap, prices 498
manufacture raw materials 156	stocks 498
prices 159	Zinc smelters, number 140
sales 150, 151, 152	Zinc sulfate, data 152, 156, 159, 161
	Zircon, uses 771
Zinc pigments industry, annual review 149	
Zinc plants, electrolytic, number 140	
Zinc salts, foreign trade 159	foreign trade
prices 159	prices 771, 772
raw materials, manufacture 156	Zirconium compounds, uses 771