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Chapter 1

Introduction

Genetics studies in model organisms like mice can identify genomic regions that affect complex traits, such

as systolic blood pressure and body weight (Sax 1923; Soller, Brody, and Genizi 1976; Lander and Botstein

1989; Broman and Sen 2009; Jansen 2007). These genomic regions are called “quantitative trait loci” or

“QTL”. A genome-wide QTL “scan” reveals associations between genotypes and phenotypes by considering

each position, one at a time, as a candidate QTL for the trait of interest. A region with strong evidence of

association with a complex trait, then, defines a QTL (for that trait). Because nearby markers have correlated

genotypes, a QTL in a two-parent cross often spans multiple megabases in length and may contain more than

a hundred genes. Identification of the causal gene (for a given complex trait) from among those genes near the

QTL is challenging and may require costly and time-consuming experiments. The growing need for greater

QTL mapping resolution fueled development over the last two decades of model organism multiparental

populations for high-resolution QTL mapping (Koning and McIntyre 2017; Churchill et al. 2004; Svenson

et al. 2012; Huang et al. 2012; Shivakumar et al. 2018; Huang et al. 2011; Kover et al. 2009; Tisne et

al. 2017; Stanley et al. 2017). With experimentalists now measuring tens of thousands of biomolecular traits

in multiparental populations, the systems genetics community needs multivariate statistical tools to fully

examine the large volumes of data (Keller et al. 2018; Chick et al. 2016). Identifying loci that affect multiple

traits can aid in identifying biomolecular interactions and in clarifying complex trait genetic architecture. A

QTL that affects more than one trait is called a “pleiotropic” QTL. A test of pleiotropy vs. separate QTL

is one multivariate statistical tool that will inform complex trait genetics by enabling researchers to identify

the number of unique QTL in a genomic region of interest. In this thesis, I develop a test of pleiotropy vs.

separate QTL in multiparental populations. I study its statistical properties and demonstrate its utility by
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analyzing experimental data.

In the first chapter, I introduce statistical methods in QTL mapping studies and argue for the need

to develop a pleiotropy test in multiparental populations. Existing pleiotropy tests for two-parent crosses

don’t directly apply to multiparental populations because of the multi-allelic genotype data and complex

relatedness patterns. A pleiotropy test for multiparental populations with high-dimensional traits would

enable dissection of QTL hotspots (i.e., small genomic regions that affect many traits) and would complement

newly developed methods in causal inference for systems genetics (Chick et al. 2016).

I begin Chapter 1 by motivating the study of pleiotropy with a case study of the pleiotropic Agouti gene.

I then consider two-parent crosses, with emphases on experimental design, QTL mapping methods, and

pleiotropy testing. I then turn to multiparental populations, where I describe experimental design and QTL

mapping methods. I conclude Chapter 1 by reiterating the need to develop a test of pleiotropy vs. separate

QTL in multiparental populations.

1.1 Agouti biology & pleiotropy

Pleiotropy is the biological phenomenon in which a gene affects multiple traits. Identifying a gene that affects

multiple traits may inform scientific understanding of interactions between biomolecules and ultimately

contribute insights that aid development of new therapeutics. For example, mouse studies identified multiple

biological roles for the protein product of the Agouti gene. Mutations in the Agouti gene may lead to both

yellow hair (in mice that are typically black) and obesity (Attie, Churchill, and Nadeau 2017). Subsequent

investigations uncovered two related biological roles for the Agouti protein. It antagonizes the action of

α-melanocyte-stimulating hormone both to prevent melanocyte-based melanin production and to disrupt

melanocortin-4 receptor signaling in the brain (Lu et al. 1994; Klebig et al. 1995; Huszar et al. 1997). The

former leads to yellow hair, while the latter causes weight gain. Later research identified altered signaling

by the melanocortin-4 receptor in the brain as a leading cause of inherited obesity in humans (Farooqi et

al. 2003; Vaisse et al. 2000). Therapeutics to mitigate the effects of disruptions in melanocortin receptor

signaling are currently being developed (MacNeil et al. 2002; Fani et al. 2014). The case of pleiotropic Agouti

variants illustrates the potential value of examining pleiotropy in QTL studies. I next consider designs and

QTL mapping in two-parent crosses (Sections 1.2 and 1.3).
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Figure 1.1: Agouti viable-yellow mutant mouse has yellow hair and is obese in comparison to a wild-type
mouse. (https://upload.wikimedia.org/wikipedia/commons/4/4d/Agouti Mice.jpg)

1.2 Designs for two-parent crosses

Two widely used two-parent crosses are the “backcross” and the “intercross”. I first discuss the backcross

design (Figure 1.2). A backcross starts with mating between members of two inbred lines. The offspring

of this mating event, termed the “F1”, or “first filial”, generation then mate with members of one of the

two parent lines. The experiment designers decide which line (A or B) mates with F1 subjects with. The

F1 subjects mate with the specified founder line (A in Figure 1.2) to create generation “BC” subjects.

Generation BC subjects are then genotyped and phenotyped for QTL mapping.

As Figure 1.2 illustrates, all backcross animals (generation BC) have, for any locus, only two possible geno-

types: heterozygote (AB) and homozygote (AA). The F1 generation is heterozygous at all loci (Figure 1.2)

because they inherited one chromosome (of each pair) from each parent. The meiotic crossovers that occur

as the F1 animals produce gametes result in “BC” generation animals that have individual chromosomes

that contain DNA from both founder lines.

I now consider the intercross design (Figure 1.3). An intercross differs from a backcross design by mating

F1 subjects with each other, rather than with a parent line (as in a backcross). Because F1 subjects produce

gametes with detectable crossovers, the F2 generation animals have, for every marker, three genotype classes:

AA, AB, and BB. Compare this with the backcross, where BC subjects have only two genotype classes (AA
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A B

F1A

BC

Figure 1.2: Breeding scheme for a backcross. Each pair of autosomes represents a single subject. (From
Broman and Sen (2009))
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A B

F1 F1

F2

Figure 1.3: Breeding scheme for an intercross. Each pair of autosomes represents a single subject. (From
Broman and Sen (2009))

and AB in Figure 1.2).

In an intercross, phenotyping and genotyping are typically done in only the F2 subjects. As with a

backcross, intercross planning may involve genotyping and phenotyping of subjects from two (or more)

inbred lines. The designers then have the option of choosing as founders two inbred lines that demonstrate

a big difference in mean phenotype values (for traits of interest). Now that I’ve considered two widely used

two-parent designs, I discuss QTL mapping methods for two-parent designs.
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1.3 QTL mapping in two-parent crosses

1.3.1 Overview

QTL mapping is a systematic, statistical approach for identifying genetic loci where genetic variation affects

variation in a measured trait. A variety of statistical methods for QTL mapping exist. I discuss below three

QTL mapping methods: marker regression (Section 1.3.2), interval mapping (Section 1.3.3), and Haley-Knott

regression (Section 1.3.4). I consider the three methods in analysis of a backcross design. Before getting to

the details of our three QTL mapping methods, I discuss data inputs that are required for QTL mapping,

assuming at most one QTL somewhere in the genome.

Three standard inputs for QTL mapping are:

1. genome-wide marker genotypes for a collection of study subjects

2. a set of trait measurements on the same subjects

3. a genetic map that contains genomic positions for all molecular markers (Figure 1.4) (Sturtevant 1913)

A physical map, with marker positions in units of megabases, may also be used. Additional inputs include

genotype data (for the same set of markers) from founder lines, i.e., the inbred lines that initiate the mating

design. For example, in Figures 1.2 and 1.3 there are two founder lines at the top of the mating design, those

with genotypes AA and those with genotypes BB.

Figure 1.4 depicts the positions of markers (horizontal hash marks) on each chromosome (vertical lines).

In practice, for QTL mapping, a genetic map object may be stored as a collection of two-column data frames,

where each row is a unique marker and the two columns contain marker identities and marker positions.

In this structure, each chromosome has its own map object. Marker distribution is not uniform across the

genome (Figure 1.4). Some chromosome regions in Figure 1.4, including parts of Chromosome 4, have dense

marker coverage, while others, including Chromosome 2, have relatively sparse marker coverage. Dense

marker coverage is preferred in QTL mapping applications because it provides more genetic information and

enables more accurate genotype inference between markers. Before the recent development of high-density

single nucleotide polymorphism marker arrays, many studies relied on sparse microsatellite and restriction

fragment length polymorphism markers.

A univariate QTL scan is a procedure to interrogate the entire genome for genetic variants that affect a

single trait of interest. One assesses genotype-phenotype associations by considering each location, one at a

time. Those loci for which the evidence for a QTL is sufficiently strong are declared QTL.
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Figure 1.4: Genetic map for markers from Sugiyama et al. (2001). Figure from Broman and Sen (2009).

A A A A A B

?

Figure 1.5: Inferring genotypes at an intermarker position (from Broman and Sen (2009))

In QTL mapping, two major statistical challenges are what Broman and Sen (2009) call the “missing

data” problem and the “model selection” problem. The “missing data” problem arises in QTL studies because

genotypes are obtained at only select markers. In this sense, genotypes at positions between markers are

“missing” because they aren’t explicitly measured (Figure 1.5). Figure 1.5 presents, for one subject, a

chromosome with genotyped markers at the tick marks. The triangle represents a position at which I wish

to know the allele’s identity. In Section 1.3.3, I discuss methods for genotype inference at positions between

markers.

The three statistical methods for QTL mapping, marker regression, interval mapping, and Haley-Knott

regression, differ in strategies for addressing the “missing data” problem. I first discuss marker regression,
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because it is the simplest approach and because the other methods share some aspects of it.

1.3.2 Marker regression

Marker regression inputs are genome-wide marker genotypes and measured values of a complex trait of

interest (from the same subjects). At each marker, one fits a linear model by regressing trait values on

marker genotypes (Equation 1.1), sequentially, at each marker. i indexes subjects, while gi denotes genotype

(at a marker) for subject i. Each marker genotype class has its own mean, denoted µg where g denotes the

marker genotype.

Both backcross and intercross designs permit solution by a statistical technique called “maximum like-

lihood estimation”. I assume that the random errors for all subjects have a normal distribution with mean

zero and variance σ2 and are statistically independent (Equation 1.2). Statistical independence means that

knowing the value of one subject’s random error provides no information about the distribution of another

subject’s random error.

yi = µgi + εi (1.1)

εi ∼ind. N(0, σ2) (1.2)

Equation 1.2 specifies the random error distribution. The “∼” symbol designates that a random variable

has a probability distribution. The left-hand side “is distributed as” the right-hand side. The subscript

“ind.” in “∼ind.” indicates that the random errors are statistically independent. Capital “N” abbreviates

“Normal”. The first number after the “N” is the distribution mean, while the second is the variance.

These two numbers, mean and variance, completely specify a normal distribution. Equation 1.3 gives a

mathematical definition of the normal probability density for a random variable y with mean µ and variance

σ2.

φ(y;µ, σ2) =
1√

2πσ2
exp (− (y − µ)2

2σ2
) (1.3)

For a backcross and a single marker, Equation 1.1 has three statistical parameters, two means for the two

genotype classes and the variance (σ2) of the random errors. In this statistical framework, I treat parameters

as fixed, but unknown, numbers. I then seek, via “maximum likelihood estimation”, the parameter values
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that are most compatible with the data.

The maximum likelihood estimates for the genotype class means are given in Equation 1.1.

σ̂2 =
RSS1

n
(1.4)

The residual sum of squares “RSS1”, which is central to the calculation of the pooled variance estimate

σ̂2 in Equation 1.4, is an expression that tells us how far the observed trait measurements are from the

predicted values, for a set of specified parameter values. Equation 1.6 defines residual sum of squares for a

univariate QTL analysis. I make an additional substitution in Equation 1.6 by replacing “B allele count”

with xi, where “i” indexes subjects.

In Equation 1.6, I introduce µ̂gi as an estimate of the parameter µgi . µgi is the mean trait value of the

genotype class to which subject i belongs. If subject i has genotype AA, then µgi = µAA. I estimate µgi

with Equation 1.5

µ̂g =

∑n
i=1 yi1gi=g
ng

(1.5)

In Equation 1.5, g is any of AA, AB, or BB. 1gi=g takes values 0 and 1; if gi = g, then 1gi=g = 1;

otherwise, it’s zero. ng is the number of subjects with gi = g.

RSS1 =

n∑
i=1

(yi − µ̂gi)2 (1.6)

We ultimately want to calculate a likelihood ratio test statistic for the competing statistical hypotheses

of Equation 1.7.

H1 : A QTL is present only at a specified marker

H0 : No QTL is present in the genome (1.7)

I wish to calculate the likelihood for both the alternative hypothesis and the null hypothesis. I write the

likelihood as a product of per-subject likelihoods in Equation 1.8.

L1(µAA, µAB , σ
2) = P (data|QTL at marker, µAA, µAB , σ

2) =

n∏
i=1

φ(yi;µgi , σ
2) (1.8)
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I introduce new notation in Equation 1.8. L1 denotes the likelihood under hypothesis H1, where a QTL

is present. The likelihood of the model parameters is equal, by definition, to the joint probability of the

data conditional on presence of a QTL and the parameter values. This, by the assumption of statistical

independence of subjects, is equal to the product of the n per-subject likelihoods, where φ(y;µ, σ2) denotes

the density at y for a normal distribution with mean µ and variance σ2 (Equation 1.3). µAA and µAB are

the mean trait values for the genotype classes AA and AB.

I also need to calculate the maximum likelihood under the null model constraints, i.e., under the as-

sumption that there is no QTL in the genome, in which case the genotype classes have the same mean trait

value.

L0(µ0, σ
2
0) = P (data|µ0, σ

2
0) =

n∏
i=1

φi(yi;µ0, σ
2
0) (1.9)

After calculating the likelihood ratio test statistic at every marker, one needs to obtain p-values for every

test. Because a researcher performs many tests (i.e., one per marker) in a genome-wide QTL scan, one needs

to account for multiple testing. One way to do this is to perform a permutation test to determine adjusted

p-values. In this permutation test, one shuffles or randomizes subjects’ trait values to get a “permuted

phenotype”. One does this many times to obtain, say, 1000 permuted phenotypes. Each permuted phenotype

is then analyzed with a univariate QTL scan. The statistician records, for each permuted phenotype, the

maximum observed LOD score from the genome-wide scan to obtain an empirical distribution of “max LOD

score” statistics. One then determines the 95th percentile of this empirical distribution and uses it as a

critical value when assessing statistical significance of observed peaks.

1.3.3 Interval mapping

I highlight elements from the exposition of interval mapping in Broman and Sen (2009). More details are

available in its Chapter 4. Lander and Botstein (1989) first described interval mapping for QTL studies.

While marker regression considers only marker positions as candidate QTL, in interval mapping one prob-

abilistically infers genotypes for all positions along each chromosome. One leverages the entire collection of

marker genotypes on each chromosome and their correlations to do this.

As in marker regression, I assume that the trait values for each subject (yi), after conditioning on genotype

(gi) at a putative QTL, follow a normal distribution with a QTL genotype-specific mean µgi and a common

variance, σ2 (Equation 1.10).
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Table 1.1: Probabilities for genotypes at intermediate putative QTL in a backcross, conditional on flanking
marker genotypes.

Marker 1 genotype Marker 2 genotype P(AA) P(AB)

AA AA
(1−r1Q)(1−rQ2)

1−r12
r1QrQ2

(1−r12)

AA AB
(1−r1Q)rQ2

r12

r1Q(1−rQ2)
r12

AB AA
r1Q(1−rQ2)

r12

(1−r1Q)rQ2

r12

AB AB
r1QrQ2

(1−r12)
(1−r1Q)(1−rQ2)

(1−r12)

yi|gi ∼ N(µgi , σ
2) (1.10)

The challenge in interval mapping, compared to marker regression, is that in interval mapping I don’t

know, in general, the putative QTL genotypes for each subject. This is because I’m considering putative

QTL between markers.

Following Broman and Sen (2009), I define pij , for a single putative QTL, as the probability that subject

i has genotype class j conditional on all (genome-wide) marker data (Mi) for subject i (Equation 1.11).

pij = P (gi = j|Mi) (1.11)

I then assume, for a single putative QTL, that it is sufficient to condition on flanking marker genotypes

instead of the entire set of marker genotypes. This yields Equation 1.12. With Equation 1.12, I consider a

specific example in which I calculate genotype probabilities at a putative QTL.

pij = P (gi = j|flanking marker genotypes) (1.12)

To illustrate this approach, consider a backcross sample with two adjacent markers. I suppose that the

backcross follows the design in Figure 1.2, with generation BC subjects having either AA or AB genotypes.

I wish to know the genotype probabilities at an intermediate point, i.e., the putative QTL, between the

two markers. Calling the markers “marker 1” and “marker 2”, suppose that the recombination fraction

between marker 1 and marker 2 is r12. Assume that all subjects are genotyped at markers 1 and 2. With

two additional assumptions, that of no crossover interference (i.e., recombinations are assumed independent)

and that of no genotyping errors, I can write expressions for genotype probabilites at the putative QTL,

conditional on (only) the genotypes at markers 1 and 2 (Table 1.1) (Broman and Sen 2009).

In Table 1.1, I present genotype probabilities for a putative QTL, denoted “Q”, between marker 1 and
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marker 2, in a backcross (Figure 1.2). r12 is the recombination probability between marker 1 and marker 2,

r1Q is the recombination probability between marker 1 and putative QTL Q, and rQ2 is the recombination

probability between putative QTL Q and marker 2. Each row in the table represents an ordered pair of

genotypes for markers 1 and 2. Since I’m considering a backcross, each marker has one of two possible

genotypes, so only four rows are needed. The first two columns list the genotypes at the two genotyped

markers. The third and fourth columns contain the putative QTL’s genotype probabilities. Note that these

are conditional probabilities, where the conditioning is done on the marker 1 and 2 genotypes. To calculate

these values, apply the relationship between joint and conditional probabilities. A more general solution for

these calculations can be implemented with algorithms for hidden Markov models (Broman and Sen 2009;

Broman 2006).

In interval mapping, trait values are modeled statistically as having a distribution that is a mixture of

normal distributions, where each component in the mixture corresponds to a genotype class (for the putative

QTL). I assume a single variance common to all components (for each putative QTL). In a backcross,

there are thus two normal distribution components for each position. Fitting such a model by maximum

likelihood requires an iterative procedure like the expectation-maximization algorithm (Dempster, Laird,

and Rubin 1977). Performing the iterative procedure is required at every putative QTL position. Thus,

interval mapping is more computationally intensive than other approaches, such as Haley-Knott regression,

which I now discuss.

1.3.4 Haley-Knott regression

A computationally simpler approach that yields results similar to those of interval mapping (in some settings)

is “Haley-Knott” regression (Haley and Knott 1992; Martinez and Curnow 1992). In Haley-Knott regression,

one first infers genotype probabilities along a grid of putative QTL positions. As mentioned above, algorithms

for hidden Markov models provide a flexible framework for this task (Broman 2006; Broman and Sen 2009).

At each grid point, then, one regresses the trait values on the genotype probabilities, much like the marker

regression method (Section 1.3.2). In contrast to interval mapping, Haley-Knott regression doesn’t require an

iterative method. Haley-Knott regression treats the distribution of trait values, conditional on genome-wide

marker data, as arising from a single normal distribution (Equation 1.13).

yi|Mi ∼ N(
∑
j

pijµj , σ
2) (1.13)
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In Equation 1.13, “j” indexes the genotype classes, while “i” indexes the subjects. pij is the probability

that subject “i” belongs to genotype class “j”, while µj is the mean trait value for genotype class “j”.

While Haley -Knott regression may be insufficient when marker data is sparse, it performs well (compared

to interval mapping) with dense marker data when all subjects are successfully genotyped (Broman and

Sen 2009). Having completed the discussion of Haley-Knott regression, I now consider pleiotropy testing in

two-parent crosses.

1.4 Testing pleiotropy in two-parent crosses

In anticipation that multivariate mapping of correlated traits would enhance statistical power to detect QTL

and would improve precision of QTL position estimates, both Jiang and Zeng (1995) and Korol, Ronin,

and Kirzhner (1995) developed multivariate interval mapping procedures for two-parent crosses. Among the

novel methods from Jiang and Zeng (1995) is a test of pleiotropy vs. separate QTL. Such a test is useful

when two traits map to a single genomic region. The question then arises “do the two traits associate with

the same locus, or do they associate with separate loci”?

If both traits associate with the same locus, then that locus is called “pleiotropic”. Figure 1.6 provides

schematics for the two possibilities. On the left side of Figure 1.6, a single QTL (denoted by Q) affects both

traits. On the right side of Figure 1.6 two distinct QTL (Q1 and Q2) affect one trait each. The pink arrows

indicate that Q1 and Q2 are on the same chromosome and are correlated by linkage disequilibrium.

Figure 1.7 illustrates a small two-dimensional, two-QTL scan. Each point in the grid corresponds to an

ordered pair of markers. Along the horizontal axis are the markers for the first component of the ordered

pair; the second component of the ordered pair is indicated by the vertical axis. The red points correspond to

those that are considered under the pleiotropy hypothesis. Under the alternative hypothesis, all grid points

are considered.

Jiang and Zeng (1995) fitted their models via maximum likelihood methods and calculated the likelihoods

of the models corresponding to each grid point (Figure 1.7). The likelihood ratio test statistic (for the

pleiotropy test) is the ratio of the maximum of the likelihoods under pleiotropy to the maximum of the

likelihoods under the separate QTL hypothesis; that is, the maximum of the all likelihoods on the two-

dimensional grid. Jiang and Zeng (1995) determined p-values for their test statistics by comparing them,

after logarithm transformation and multiplication by two, to a chi-squared distribution with 1 degree of

freedom. I detail these ideas in Section 2.2.
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Figure 1.6: One pleiotropic QTL affecting two traits (left) and two distinct, but correlated, QTL each
affecting one trait (right). Figure after code from https://github.com/kbroman/QTLFigs repository.
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1.5 Designs for Collaborative Cross and Diversity Outbred mice

Recognizing limitations of two-parent designs, geneticists sought populations with greater QTL mapping

precision. And, rather than designing a high-resolution mapping resource for only one or few traits or

diseases, they aimed to develop a mapping population for study of a diverse collection of complex traits. Since

this required a collaborative, research community-supported investment, mammalian geneticists formed the

Complex Trait Consortium to create a high-resolution mouse mapping population, the Collaborative Cross

(Koning and McIntyre 2014; Threadgill, Hunter, and Williams 2002; Churchill et al. 2004; Threadgill and

Churchill 2012).

The Collaborative Cross is a collection of eight-way recombinant inbred lines for systems genetics studies

(Figure 1.8). A “n-way recombinant inbred” line is an inbred line that arises from a mating design with

n genetically distinct founder lines (Bailey 1971; Crow 2007). The Collaborative Cross incorporates DNA

from eight inbred founder lines: A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ,

PWK/PhJ, WSB/EiJ. The designers of the Collaborative Cross used a “multi-funnel” mating scheme to

generate mice with DNA from all eight founder lines over the course of 3 generations (Churchill et al. 2004).

The term “funnel” refers to the design for the first three mating generations in which the DNA from eight

founder lines “funnels” into animals that have DNA from all eight founders. For example, in one funnel,

mating pairs are: A x B, C x D, E x F, and G x H in the first generation (Figure 1.8) (where “x” denotes

mating). AB offspring then mate with CD offspring, and EF offspring mate with GH mice. Finally, the

ABCD mice mate with the EFGH mice to create a generation of mice that contain genetic material from

all eight inbred founder lines. Subsequent generations of inbreeding resulted in multiple inbred lines for the

Collaborative Cross.

The designers of the Diversity Outbred population started with 167 breeding pairs from Collaborative

Cross generations F4 to F12 (Svenson et al. 2012). They since have maintained the Diversity Outbred mouse

population with about 175 mating pairs. They produce three or four generations per year. Offspring from

each mating are either used to create the next generation or shared with researchers around the world

(Svenson et al. 2012; Chesler et al. 2016).

Due to the breeding scheme, each Diversity Outbred mouse is a highly heterozygous and essentially

unique mosaic of founders’ DNA. Figure 1.9 presents color-coded chromosomes for a collection of subjects

from a multiparental population like the Diversity Outbred mice. DNA from each founder line is color-coded.

Each pair of vertical bars corresponds to one subject. Each row corresponds to a single generation, with
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Figure 1.8: Schematic for a single funnel in the Collaborative Cross breeding design. Figure is created with
R code from https://github.com/kbroman/QTLFigs repository.
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Figure 1.9: Diversity outbred mouse genomes are a highly heterozygous mixture of eight founder genomes.
(R code to create figure from https://github.com/kbroman/QTLFigs repository.)
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generation labels on the left. Generation number increases from top to bottom. With each new generation,

the Diversity Outbred mouse genomes are shuffled in smaller and smaller chunks.

1.6 QTL mapping in Diversity Outbred mice

QTL mapping in Diversity Outbred mice, like that in mice from two-parent crosses, is a multi-step procedure:

1. data acquisition, 2. inference of missing genotypes, and 3. modeling phenotypes as a function of genotypes.

Data acquisition involves measurement of phenotypes and, at specified genetic markers, termed “single

nucleotide polymorphism” or SNP markers, measurement of two-allele genotypes. Often, the SNP marker

genotypes are obtained by use of a microarray, such as the GigaMUGA SNP microarray (Morgan et al. 2015).

The next step, missing genotypes inference, is needed because of the “missing data problem” (Broman

and Sen 2009). It takes as input the two-allele genotypes at the measured SNP markers. Hidden Markov

model methods, developed by Broman (2012b) and Broman (2012a) and implemented in the qtl2 R package

(Broman et al. 2019), output 36-state genotype probabilities for all nuclear autosomal markers and pseudo-

markers. The outputted genotypes have 36 states because each position has eight homozygote states (one for

each founder line) and
(
8
2

)
heterozygote states. Pseudomarkers are arbitrary positions at which the researcher

wants 36-state genotype probabilities. Finally, I collapse the 36-state genotype probabilities to eight founder

allele dosages at each marker. This last step is optional, but often helpful, because the simplified models

require specification of fewer parameters. We then treat the founder allele dosages as known quantities in

subsequent steps.

After inferring founder allele dosages, I address the second major statistical challenge of QTL mapping:

the “model selection” problem (Broman and Sen 2009). A genetically “additive” linear model, in which I

assume a linear relationship between a trait’s values and each founder allele’s dosage, is a popular default

model. (Gatti et al. 2014; Broman et al. 2019).

Due to the complexity of the breeding design, Diversity Outbred mice have complicated pairwise relation-

ships. A given study cohort may include pairs of first cousins, parent-offspring pairs, grandparent-grandchild

pairs, second cousin pairs, and others. Because relatedness can confound genotype-phenotype associations

(Yang et al. 2014), researchers have developed methods to account for relatedness in their statistical models.

One popular approach involves use of a polygenic random effect in the statistical model (Kang et al. 2008).

The inclusion of a random effect in a model with fixed (i.e., nonrandom) effects results in what statisticians

call a “linear mixed effects model”.



19

One then fits a linear mixed effects model and calculates the log10 likelihood at each position. As in

two-parent crosses (Section 1.3), one summarizes evidence for a QTL by plotting LOD scores across the

genome. Because multiple hypothesis tests are performed, one typically wants to control family-wise error

rate. One strategy to do this involves a permutation test, much like that in two-parent crosses (Churchill

and Doerge 1994).

1.7 Potential benefits of a pleiotropy test in multiparental popu-

lations

The complex traits genetics community needs a pleiotropy test for multiparental populations. Having such

a test, when experimentalists are measuring tens of thousands of traits on subjects from multiparental

populations, would enable our community to address new and interesting biological questions. For example,

I can dissect an expression trait QTL hotspot by asking how many separate QTL are present within the

hotspot. Additionally, I can inform experimental validation studies by addressing whether a pair of putatively

related traits share a pleiotropic QTL.

I present in Chapter 2 a pleiotropy test for multiparental populations. I discuss in detail our statistical

methods before studying the test’s statistical properties, including type I error rate and power. I then apply

the test to data from Diversity Outbred mice. In Chapter 3, I study the test through three vignettes. I

first examine its contributions relative to mediation analysis in the dissection of expression QTL hotspots. I

then examine statistical power to distinguish local expression trait QTLs. I conclude Chapter 3 by applying

the pleiotropy test to two microbiome-related traits, where we obtain a result consistent with a pleiotropic

QTL that affects both traits. Chapter 4 presents the R software package qtl2pleio, which is available on

Github (https://github.com/fboehm/qtl2pleio, https://fboehm.us/static/software/qtl2pleio/). The Github

repository also features integration with the Binder software project. With this, a user may explore the code

in an online, interactive R session.

https://github.com/fboehm/qtl2pleio
https://fboehm.us/static/software/qtl2pleio/
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Chapter 2

Testing pleiotropy vs. separate QTL

in multiparental populations

2.1 Introduction

1Complex trait studies in multiparental populations present new challenges in statistical methods and data

analysis. Among these is the development of strategies for multivariate trait analysis. The joint analysis

of two or more traits allows one to address additional questions, such as whether two traits share a single

pleiotropic locus.

Previous research addressed the question of pleiotropy vs. separate QTL in two-parent crosses. Jiang

and Zeng (1995) developed a likelihood ratio test for pleiotropy vs. separate QTL for a pair of traits. Their

approach assumed that each trait was affected by a single QTL. Under the null hypothesis, the two traits

were affected by a common QTL, and under the alternative hypothesis the two traits were affected by distinct

QTL. Knott and Haley (2000) used linear regression to develop a fast approximation to the test of Jiang

and Zeng (1995), while Tian et al. (2016) used the methods from Knott and Haley (2000) to dissect QTL

hotspots in a F2 population.

Multiparental populations, such as the Diversity Outbred (DO)mouse population (Churchill et al. 2012),

enable high-precision mapping of complex traits (Koning and McIntyre 2014). The DO mouse population

began with progenitors of the Collaborative Cross (CC) mice (Churchill et al. 2004) Each DO mouse is

1Published at https://www.biorxiv.org/content/10.1101/550939v1 and accepted at G3 pending minor revisions.

https://www.biorxiv.org/content/10.1101/550939v1


21

a highly heterozygous genetic mosaic of alleles from the eight CC founder lines. Random matings among

non-siblings have maintained the DO population for more than 23 generations (Chesler et al. 2016).

Several limitations of previous pleiotropy vs. separate QTL tests prevent their direct application in

multiparental populations. First, multiparental populations can have complex patterns of relatedness among

subjects, and failure to account for these patterns of relatedness may lead to spurious results (Yang et

al. 2014). Second, previous tests allowed for only two founder lines (Jiang and Zeng 1995). Finally, Jiang

and Zeng (1995) assumed that the null distribution of the test statistic follows a chi-square distribution.

We developed a pleiotropy vs. separate QTL test for two traits in multiparental populations. Our test

builds on research that Jiang and Zeng (1995), Knott and Haley (2000), Tian et al. (2016), and Zhou

and Stephens (2014) initiated. Our innovations include the accommodation of k founder alleles per locus

(compared to the traditional two founder alleles per locus) and the incorporation of multivariate polygenic

random effects to account for relatedness. Furthermore, we implemented a parametric bootstrap test to

assess statistical significance (Efron 1979; Tian et al. 2016).

Below, we describe our likelihood ratio test for pleiotropy vs. separate QTL. In simulation studies, we

find that it is slightly conservative, and that it has power to detect two separate loci when the univariate

LOD peaks are strong. We further illustrate our approach with an application to data on a pair of behavior

traits in a population of 261 DO mice (Logan et al. 2013; Recla et al. 2014). We find modest evidence for

distinct QTL in a 2.5-cM region on mouse Chromosome 8.

2.2 Methods

Our strategy involves first identifying two traits that map to a common genomic region. We then perform

a two-dimensional, two-QTL scan over the genomic region, with each trait affected by one QTL of varying

position. We identify the QTL position that maximizes the likelihood under pleiotropy (that is, along the

diagonal where the two QTL are at a common location), and the ordered pair of positions that maximizes

the likelihood under the model where the two QTL are allowed to be distinct. The logarithm of the ratio of

the two likelihoods is our test statistic. We determine statistical significance with a parametric bootstrap.

2.2.1 Data structures

The data consist of three objects. The first is an n by k by m array of allele probabilities for n subjects with

k alleles and m marker positions on a single chromosome [derived from the observed SNP genotype data by
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a hidden Markov model; see Broman et al. (2019)]. The second object is an n by 2 matrix of phenotype

values. Each column is a phenotype and each row is a subject. The third object is an n by c matrix of

covariates, where each row is a subject and each column is a covariate.

One additional object is the genotype-derived kinship matrix, which is used in the linear mixed model

to account for population structure. We are focusing on a defined genomic interval, and we prefer to use a

kinship matrix derived by the “leave one chromosome out” (LOCO) method (Yang et al. 2014), in which

the kinship matrix is derived from the genotypes for all chromosomes except the chromosome under test.

2.2.2 Statistical Models

Focusing on a pair of traits and a particular genomic region of interest, the next step is a two-dimensional,

two-QTL scan (Jiang and Zeng 1995). We consider two QTL with each affecting a different trait, and

consider all possible pairs of locations for the two QTL. For each pair of positions, we fit the multivariate

linear mixed effects model defined in Equation 2.1. Note that we have assumed an additive genetic model

throughout our analyses, but extensions to design matrices that include dominance are straightforward.

vec(Y ) = Xvec(B) + vec(G) + vec(E) (2.1)

where Y is the n by 2 matrix of phenotypes values; X is a 2n by 2(k + c) matrix that contains the k allele

probabilities for the two QTL positions and the c covariates in diagonal blocks; B is a (k + c) by 2 matrix

of allele effects and covariate effects; G is a n by 2 matrix of random effects; and E is a n by 2 matrix of

random errors. n is the number of mice. The ‘vec’ operator stacks columns from a matrix into a single

vector. For example, a 2 by 2 matrix inputted to ‘vec’ results in a vector with length 4. Its first two entries

are the matrix’s first column, while the third and fourth entries are the matrix’s second column.

We also impose distributional assumptions on G and E:

G ∼MNnx2(0,K, Vg) (2.2)

and

E ∼MNnx2(0, I, Ve) (2.3)

where MNnx2(0, Vr, Vc) denotes the matrix-variate (n by 2) normal distribution with mean being the n by
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2 matrix with all zero entries and row covariance Vr and column covariance Vc. We assume that G and E

are independent.

2.2.3 Parameter inference and log likelihood calculation

Inference for parameters in multivariate linear mixed effects models is notoriously difficult and can be com-

putationally intense (Meyer 1989, 1991). Thus, we estimate Vg and Ve under the null hypothesis of no QTL,

and then take them as fixed and known in our two-dimensional, two-QTL genome scan. We use restricted

maximum likelihood methods to fit the model:

vec(Y ) = X0vec(B) + vec(G) + vec(E) (2.4)

where X0 is a 2n by 2(c+ 1) matrix whose first column of each diagonal block in X0 has all entries equal to

one (for an intercept); the remaining columns are the covariates.

We draw on our R implementation (Boehm 2018a) of the GEMMA algorithm for fitting a multivariate

linear mixed effects model with expectation-maximization (Zhou and Stephens 2014). We use restricted

maximum likelihood fits for the variance components Vg and Ve in subsequent calculations of the generalized

least squares solution B̂.

B̂ = (XT Σ̂−1X)−1XT Σ̂−1vec(Y ) (2.5)

where

Σ̂ = V̂g ⊗K + V̂e ⊗ In (2.6)

where ⊗ denotes the Kronecker product, K is the kinship matrix, and In is a n by n identity matrix. We then

calculate the log likelihood for a normal distribution with mean Xvec(B̂) and covariance Σ̂ that depends on

our estimates of Vg and Ve (Equation 2.6).

2.2.4 Pleiotropy vs. separate QTL hypothesis testing framework

Our test applies to two traits considered simultaneously. Below, λ1 and λ2 denote putative locus positions

for traits one and two. We quantitatively state the competing hypotheses for our test as:
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H0 : λ1 = λ2

HA : λ1 6= λ2 (2.7)

Our likelihood ratio test statistic is:

LOD = log10

[
maxλ1,λ2

L(B,Σ, λ1, λ2)

maxλ L(B,Σ, λ, λ)

]
(2.8)

where L is the likelihood for fixed QTL positions, maximized over all other parameters.

2.2.5 Visualizing profile LOD traces

The output of the above analysis is a two-dimensional log10 likelihood surface. To visualize these results, we

followed an innovation of Zeng et al. (2000) and Tian et al. (2016), and plot three traces: the results along

the diagonal (corresponding to the null hypothesis of pleiotropy), and then the profiles derived by fixing one

QTL’s position and maximizing over the other QTL’s position.

We define the LOD score for our test:

LOD(λ1, λ2) = ll10(λ1, λ2)−max ll10(λ, λ) (2.9)

where ll10 denotes log10 likelihood.

We follow Zeng et al. (2000) and Tian et al. (2016) in defining profile LOD by the equation

profile LOD1(λ1) = max
λ2

LOD(λ1, λ2) (2.10)

We define profile LOD2(λ2) analogously. The profile LOD1 and profile LOD2 traces have the same maximum

value, which is non-negative and gives the overall LOD test statistic.

We construct the pleiotropy trace by calculating the log-likelihoods for the pleiotropic models at every

position.

LODp(λ) = ll10(λ, λ)−max ll10(λ, λ) (2.11)

By definition, the maximum value for this pleiotropy trace is zero.
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2.2.6 Bootstrap for test statistic calibration

We use a parametric bootstrap to determine statistical significance (Efron 1979). While Jiang and Zeng

(1995) used quantiles of a chi-squared distribution to determine p-values, this does not account for the

two-dimensional search over QTL positions. We follow the approach of Tian et al. (2016), and identify the

maximum likelihood estimate of the QTL position under the null hypothesis of pleiotropy. We then use

the inferred model parameters under that model and with the QTL at that position to simulate bootstrap

data sets according to the model in equations 2.1–2.3. For each of b bootstrap data sets, we perform a two-

dimensional QTL scan (over the genomic region of interest) and derive the test statistic value. We treat these

b test statistics as the empirical null distribution, and calculate a p-value as the proportion of the b bootstrap

test statistics that equal or exceed the observed one, with the original data, p = #{i : LOD∗
i ≥ LOD}/b

where LOD∗
i denotes the LOD score for the ith bootstrap replicate and LOD is the observed test statistic.

2.2.7 Data & Software Availability

Our methods have been implemented in an R package, qtl2pleio, available at GitHub:

https://github.com/fboehm/qtl2pleio

Custom R code for our analyses and simulations are at GitHub:

https://github.com/fboehm/qt2pleio-manuscript

The data from Recla et al. (2014) and Logan et al. (2013) are available at the Mouse Phenome Database:

https://phenome.jax.org/projects/Chesler4 and https://phenome.jax.org/projects/Recla1.

They are also available in R/qtl2 format at https://github.com/rqtl/qtl2data.

2.3 Simulation studies

We performed two types of simulation studies, one for type I error rate assessment and one to characterize

the power to detect separate QTL. To simulate traits, we specified X, B, Vg, K, and Ve matrices (Equations

2.1–2.3). For both we used the allele probabilities from a single genomic region derived empirically from

data for a set of 479 Diversity Outbred mice from Keller et al. (2018).

https://github.com/fboehm/qtl2pleio
https://github.com/fboehm/qtl2pleio-manuscript
https://phenome.jax.org/projects/Chesler4
https://phenome.jax.org/projects/Recla1
https://github.com/rqtl/qtl2data
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Table 2.1: Type I error rates for all runs in our 23 experimental design. We set (marginal) genetic variances
(i.e., diagonal elements of Vg) to 1 in all runs. Ve was set to the 2 by 2 identity matrix in all runs. We used
allele probabilities at a single genetic marker to simulate traits for all eight sets of parameter inputs. In the
column “Allele effects partitioning”, “ABCD:EFGH” means that lines A–D carry one QTL allele while lines
E–H carry the other allele. “F:ABCDEGH” means the QTL has a private allele in strain F.

Run ∆(Allele effects) Allele effects partitioning Genetic correlation Type I error rate

1 6 ABCD:EFGH 0 0.032
2 6 ABCD:EFGH 0.6 0.035
3 6 F:ABCDEGH 0 0.040
4 6 F:ABCDEGH 0.6 0.045
5 12 ABCD:EFGH 0 0.038
6 12 ABCD:EFGH 0.6 0.042
7 12 F:ABCDEGH 0 0.025
8 12 F:ABCDEGH 0.6 0.025

2.3.1 Type I error rate analysis

To quantify type I error rate (i.e., false positive rate), we simulated 400 pairs of traits for each of eight sets

of parameter inputs (Table 2.1). We used a 23 factorial experimental design with three factors: allele effects

difference, allele effects partitioning, and genetic correlation, i.e., the off-diagonal entry in the 2 by 2 matrix

Vg.

We chose two strong allele effects difference values, 6 and 12. These ensured that the univariate phe-

notypes mapped with high LOD scores to the region of interest. For the allele partitioning factor, we used

either equally frequent QTL alleles, or a private allele in the CAST strain (F). For the residual genetic

correlation (the off-diagonal entry in Vg), we considered the values 0 and 0.6. The marginal genetic variances

(i.e., the diagonal entries in Vg) for each trait were always set to one.

We performed 400 simulation replicates per set of parameter inputs, and each used b = 400 bootstrap

samples. For each bootstrap sample, we calculated the test statistic (Equation 2.8). We then compared the

test statistic from the simulated trait against the empirical distribution of its 400 bootstrap test statistics.

When the simulated trait’s test statistic exceeded the 0.95 quantile of the empirical distribution of bootstrap

test statistics, we rejected the null hypothesis. We observed that the test is slightly conservative over our

range of parameter selections (Table 2.1), with estimated type I error rates < 0.05.

2.3.2 Power analysis

We also investigated the power to detect the presence of two distinct QTL. We used a 2 × 2 × 5 experimen-

tal design, where our three factors were allele effects difference, allele effects partitioning, and inter-locus
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Figure 2.1: Pleiotropy vs. separate QTL power curves for each of four sets of parameter settings. Factors
that differ among the four curves are allele effects difference and allele partitioning. Red denotes high allele
effects difference, while black is the low allele effects difference. Solid line denotes the even allele partitioning
(ABCD:EFGH), while dashed line denotes the uneven allele partitioning (F:ABCDEGH).

distance. The two levels of allele effects difference were 1 and 2. The two levels of allele effects partitioning

were as in the type I error rate studies, ABCD:EFGH and F:ABCDEGH (Table 2.2). The five levels of

interlocus distance were 0, 0.5, 1, 2, and 3 cM. Vg and Ve were both set to the 2 by 2 identity matrix in all

power study simulations.

We simulated 400 pairs of traits per set of parameter inputs. For each simulation replicate, we calculated

the likelihood ratio test statistic. We then applied our parametric bootstrap to determine the statistical

significance of the results. For each simulation replicate, we used b = 400 bootstrap samples. Because the

bootstrap test statistics within a single set of parameter inputs followed approximately the same distribution,

we pooled the 400 ∗ 400 = 160, 000 bootstrap samples per set of parameter inputs and compared each test

statistic to the empirical distribution derived from the 160,000 bootstrap samples. However, for parameter

inputs with interlocus distance equal to zero, we did not pool the 160,000 bootstrap samples; instead, we

proceeded by calculating power (i.e., type I error rate, in this case), as we did in the type I error rate study

above.

We present our power study results in Figure 2.1. Power increases as interlocus distance increases. The
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top two curves correspond to the case where the QTL effects are largest. For each value for the QTL effect,

power is greater when the QTL alleles are equally frequent, and smaller when a QTL allele is private to one

strain. One can have high power to detect that the two traits have distinct QTL when they are separated

by > 1 cM and when the QTL have large effect.

2.4 Application

To illustrate our methods, we applied our test to data from Logan et al. (2013) and Recla et al. (2014), on

261 DO mice measured for a set of behavioral phenotypes. Recla et al. (2014) identified Hydin as the gene

that underlies a QTL on Chromosome 8 at 57 cM for the “hot plate latency” phenotype (a measure of pain

tolerance). The phenotype “percent time in light” in a light-dark box (a measure of anxiety) was measured

on the same set of mice (Logan et al. 2013) and also shows a QTL near this location, which led us to ask

whether the same locus affects both traits. The two traits show a correlation of −0.15 (Figure 2.5).

QTL analysis with the LOCO method, and using sex as an additive covariate, showed multiple suggestive

QTL for each phenotype (Figure 2.6; Table 2.3). For our investigation of pleiotropy, we focused on the interval

53–64 cM on Chromosome 8. The univariate QTL results for this region are shown in Figure 2.2.

The estimated QTL allele effects for the two traits are quite different (Figure 2.3). With the QTL placed

at 55 cM, for “percent time in light”, the WSB and PWK alleles are associated with large phenotypes and

NOD with low phenotypes. For “hot plate latency”, on the other hand, CAST and NZO show low phenotypes

and NOD and PWK are near the center.

In applying our test for pleiotropy, we performed a two-dimensional, two-QTL scan for the pair of

phenotypes. With these results, we created a profile LOD plot (Figure 2.4). The profile LOD for “percent

time in light” (in brown) peaks near 55 cM, as was seen in the univariate analysis. The profile LOD for “hot

plate latency” (in blue) peaks near 57 cM, also similar to the univariate analysis. The pleiotropy trace (in

gray) peaks near 55 cM.

The likelihood ratio test statistic for the test of pleiotropy was 1.2. Based on a parametric bootstrap

with 1,000 bootstrap replicates, the estimated p-value was 0.11, indicating weak evidence for distinct QTL

for the two traits.
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Figure 2.2: Chromosome 8 univariate LOD scores for percent time in light and hot plate latency reveal
broad, overlapping peaks between 53 cM and 64 cM. The peak for percent time in light spans the region
from approximately 53 cM to 60 cM, with a maximum near 55 cM. The peak for hot plate latency begins
near 56 cM and ends about 64 cM.
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near 56 cM and ends about 64 cM.
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2.5 Discussion

We developed a test of pleiotropy vs. separate QTL for multiparental populations, extending the work of

Jiang and Zeng (1995) for multiple alleles and with a linear mixed model to account for population structure

(Kang et al. 2010; Yang et al. 2014). Our simulation studies indicate that the test has power to detect

presence of separate loci, especially when univariate trait associations are strong (Figure 2.1). Type I error

rates indicate that our test is slightly conservative (Table 2.1).

In the application of our method to two behavioral phenotypes in a study of 261 Diversity Outbred mice

(Recla et al. 2014; Logan et al. 2013), we obtained weak evidence (p=0.11) for the presence of two distinct

QTL, with one QTL (which contained the Hydin gene) affecting only “hot plate latency” and a second QTL

affecting “percent time in light” (Figure 2.4).

Founder allele effects plots provide further evidence for the presence of two distinct loci. As Macdonald

and Long (2007) and King et al. (2012) have demonstrated in their analyses of multiparental Drosophila

populations, a biallelic pleiotropic QTL would result in allele effects plots that have similar patterns. While

we do not know that “percent time in light” and “hot plate latency” arise from biallelic QTL, the dramatic

differences that we observe in allele effects patterns further support the argument for two distinct loci.

We have implemented our methods in an R package qtl2pleio, but analyses can be computationally

intensive and time consuming. qtl2pleio is written mostly in R, and so we could likely obtain improved

computational speed by porting parts of the calculations to a compiled language such as C or C++. To

accelerate our multi-dimensional QTL scans, we have integrated C++ code into qtl2pleio, using the Rcpp

package (Eddelbuettel et al. 2011).

Another computational bottleneck is the estimation of the variance components Vg and Ve. To accelerate

this procedure, especially for the joint analysis of more than two traits, we will consider other strategies

for variance component estimation, including that described by Meyer et al. (2018). Meyer et al. (2018),

in joint analysis of dozens of traits, implement a bootstrap strategy to estimate variance components for

lower-dimensional phenotypes before combining bootstrap estimates into valid covariance matrices for the full

multivariate phenotype. Such an approach may ease some of the computational burdens that we encountered.

We view tests of pleiotropy as complementary to mediation tests and related methods that have become

popular for inferring biomolecular causal relationships (Chick et al. 2016; Schadt et al. 2005; Baron and

Kenny 1986). A mediation test proceeds by including a putative mediator as a covariate in the regression

analysis of phenotype and QTL genotype; a substantial reduction in the association between genotype and
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phenotype corresponds to evidence of mediation.

Mediation analyses and our pleiotropy test ask distinct, but related, questions. Mediation analysis

seeks to establish causal relationships among traits, including molecular traits, or dependent biological and

behavioral processes. Pleiotropy tests examine whether two traits share a single source of genetic variation,

which may act in parallel or in a causal network. Pleiotropy is required for causal relations among traits. In

many cases, the pleiotropy hypothesis is the only reasonable one.

Schadt et al. (2005) argued that both pleiotropy tests and causal inference methods may contribute to

gene network reconstruction. They developed a model selection strategy, based on the Akaike Information

Criterion (Akaike 1974), to determine which causal model is most compatible with the observed data. Schadt

et al. (2005) extended the methods of Jiang and Zeng (1995) to consider more complicated alternative

hypotheses, such as the possibility of two QTL, one of which associates with both traits, and one of which

associates with only one trait. As envisioned by Schadt et al. (2005), we foresee complementary roles emerging

for our pleiotropy test and mediation tests in the dissection of complex trait genetic architecture.

Two related approaches for identifying and exploiting pleiotropy deserve mention. First, CAPE (Com-

bined Analysis of Pleiotropy and Epistasis) is a strategy for identifying higher-order relationships among

traits and marker genotypes (Tyler et al. 2013; Tyler et al. 2016) and has recently been extended for use

with multiparental populations, including DO mice (Tyler et al. 2017). CAPE exploits the pleiotropic rela-

tionship among traits in order to characterize the underlying network of QTLs, and it can suggest possible

pleiotropic effects, but it does not provide an explicit test of pleiotropy. Second, Schaid et al. (2016) described

a test for pleiotropy in the context of human genome-wide association studies (GWAS). Their approach is

fundamentally different from ours, in that rather than ask whether traits are affected by a common locus or

distinct loci, they ask whether the traits are all affected by a particular SNP or only some are. The difference

in these approaches may be attributed to the difference in mapping resolution between human GWAS and

experimental populations.

Technological advances in mass spectrometry and RNA sequencing have enabled the acquisition of high-

dimensional biomolecular phenotypes (Ozsolak and Milos 2011; Han, Yang, and Gross 2012). Multiparental

populations in Arabidopsis, maize, wheat, oil palm, rice, Drosophila, yeast, and other organisms enable high-

precision QTL mapping (Yu et al. 2008; Tisne et al. 2017; Stanley et al. 2017; Raghavan et al. 2017; Mackay

et al. 2012; Kover et al. 2009; Cubillos et al. 2013). The need to analyze high-dimensional phenotypes in

multiparental populations compels the scientific community to develop tools to study genotype-phenotype

relationships and complex trait architecture. Our test, and its future extensions, will contribute to these
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ongoing efforts.
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2.6 Supplementary materials

Table 2.2: Eight founder lines and their one-letter abbreviations.

Founder allele One-letter abbreviation

A/J A

C57BL/6J B

129S1/SvImJ C

NOD/ShiLtJ D

NZO/H1LTJ E

Cast/EiJ F

PWK/PhJ G

WSB/EiJ H
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Table 2.3: Both “hot plate latency” and “percent time in light” demonstrate multiple QTL peaks with LOD
scores above 5.

phenotype chr pos LOD score
percent time in light 8 55.28 5.27
hot plate latency 8 57.77 6.22
percent time in light 9 36.70 5.42
hot plate latency 9 46.85 5.22
percent time in light 11 63.39 6.46
hot plate latency 12 43.52 5.13
percent time in light 15 15.24 5.67
hot plate latency 19 47.80 5.48
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Chapter 3

Applications

I present in Chapter 3 three applications of the pleiotropy test that I developed in Chapter 2. Through

three case studies, I examine test properties and utility in data from Diversity Outbred mice. In the first

case study (Section 3.1), I clarify the role of my pleiotropy test with regards to mediation analysis in the

dissection of expression trait hotspots. In Section 3.2, I study the test’s power to discriminate expression

QTL when I know, approximately, the true positions of the expression QTL. I conclude the series of three

case studies with a data analysis of two gut microbiome-related traits.

3.1 Expression trait hotspot dissection

3.1.1 Introduction

A central goal of systems genetics studies is to identify causal relationships between biomolecules. Recent

work by Chick et al. (2016), which builds on research from Baron and Kenny (1986), has popularized linear

regression-based methods, such as mediation analysis, for causal inference in genetics. Because of the great

successes of mediation analysis in systems genetics (Chick et al. 2016; Keller et al. 2018), we need to clarify

a role for our pleiotropy test. We argue below that our pleiotropy test complements mediation analysis in

two ways. First, our test limits the set of candidate mediators by ruling out traits that don’t share a single

pleiotropic QTL. This is reasonable because it’s unlikely that one trait mediates a relationship between a

genetic variant and a second trait unless the two traits share a pleiotropic QTL. Second, when regression-

based mediation analysis fails to identify a mediator, our pleiotropy test still provides information on the
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number of QTL, which may aid biological understanding and inform subsequent studies. Below, we first

review the prerequisite molecular biology, including the “central dogma”, before discussing in some detail

regression-based mediation analysis in the systems genetics context.

Crick (1958) articulated a pathway for transmission of biological information that is now known as the

central dogma of molecular biology (Figure 3.1) (Crick 1970). In it, he argued that information encoded in

DNA sequence is transmitted via transcription to RNA molecules, which, in turn, transfer the information to

proteins via translation. The process of transcription uses DNA as a template for creating a RNA molecule

that conveys the information encoded in DNA. In this sense, every gene leads to a unique RNA molecule.

Translation is the molecular biology process by which an RNA molecule’s information is transferred to a

protein. As in transcription, the nucleic acid (DNA in transcription and RNA in translation) serves as

a template for synthesis of the product (RNA in transcription and protein in translation). Thus, RNA

molecules from distinct genes lead to different proteins.

This sequence of information transfer, from DNA to RNA to protein, provides a natural setting by which

to examine mediation analysis. If a DNA variant affects protein concentrations only through its gene’s RNA

transcripts, then conditioning on RNA transcript levels would greatly reduce the strength of association

between DNA variant and protein concentration. Before we continue our discussion, we define key terms

and discuss an example below.

We continue by stating what it means for one trait to mediate a relationship between a DNA variant

and another trait. To clarify our discussion, we refer to an example from Chick et al. (2016) (Figure 3.2).

Chick et al. (2016), in studying livers of 192 Diversity Outbred mice, found evidence that Dhtkd1 transcript

levels associated with a Chromosome 2 marker near the Dhtkd1 gene. They also found that the same marker

affected DHTKD1 protein concentrations. (Note that DHTKD1 protein is the product of translation of

Dhtkd1 transcripts.) As anticipated, mediation analysis, in which the DHTKD1 protein concentrations are

regressed on founder allele dosages (at the Chromosome 2 marker) demonstrated that Dhtkd1 transcript

levels act as a mediator between DHTKD1 protein concentrations and founder allele dosages. In fact, the

extent of the reduction in association strength indicates that the primary pathway by which the genetic

marker affects DHTKD1 protein concentrations is through Dhtkd1 transcript levels.

In our studies below, we follow Keller et al. (2018) by generalizing this setting to the case where a DNA

variant affects a local transcript level, which then affects a nonlocal transcript level. We term a transcript

“local” to a marker when its gene is near that marker. We use a threshold of no more than 2 Mb to restrict

the number of local transcripts for a given marker. A nonlocal transcript, then, is either one that arises from
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Figure 3.1: Biological information is encoded in DNA. This information is passed, via transcription, to
sequence-specific RNA molecules. The process of translation transmits the information to sequence-specific
proteins.

DHTKD1_ProteinDhtkd1_DNA Dhtkd1_RNA

Figure 3.2: A DNA variant in the Dhtkd1 gene affects Dhtkd1 transcript abundances which, in turn, affect
DHTKD1 protein concentrations.

a gene on another chromosome or from a distant gene on the same chromosome as the marker.

It is highly plausible that concentration variations in one transcript may affect abundances of a second

transcript. For example, the first transcript may encode a transcription factor protein. In this case, the

transcription factor protein may influence expression patterns of the second transcript (and perhaps other

transcripts, too).

To determine whether a local transcript level mediates the relationship between a nonlocal transcript level

and a DNA variant, we perform a series of regression analyses, which we detail below (Frame 3.1). In brief,

we regress the nonlocal transcript levels on founder allele dosages at the DNA variant, with and without

conditioning on the candidate mediator (the local transcript levels). If the LOD score measuring association

between nonlocal trait and QTL genotype diminishes sufficiently upon conditioning on a candidate, then we

declare the candidate a mediator.

The rationale behind this strategy follows. If the DNA variant affects the nonlocal transcript levels

solely by way of local transcript levels, then conditioning on the local transcript levels would nullify the

relationship between DNA variant and the nonlocal transcript levels. At the other extreme, if the DNA

variant affects nonlocal transcript levels solely through mechanisms that don’t involve the local transcript

levels, then conditioning on local transcript levels would not affect the association between the DNA variant
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Frame 3.1: Four regressions for a single mediation analysis

Y = b1 +WC + E (3.1)

Y = XB +WC + E (3.2)

Y = b1 +WC +Mβ + E (3.3)

Y = XB +WC +Mβ + E (3.4)

and nonlocal transcript levels.

We now consider the procedures needed for a mediation analysis in systems genetics. In the four linear

regression models (Frame 3.1), X is an n by 8 matrix of founder allele dosages at a single marker, B is an 8

by 1 matrix of founder allele effects, E is an n by 1 matrix of random errors, b is a number, 1 is an n by 1

matrix with all entries set to 1, Y is an n by 1 matrix of phenotype values (for a single trait), and M is an

n by 1 matrix of values for a putative mediator. C is a c by 1 matrix of covariate effects, and W is a n by c

matrix of covariates. We denote the coefficient of the mediator by β.

We assume that the vector E is (multivariate) normally distributed with zero vector as mean and covari-

ance matrix Σ = σ2In, where In is the n by n identity matrix.

In the above models with normally distributed random errors, the log-likelihoods are easily calculated.

For example, in Equation 3.1, the vector Y follows a multivariate normal distribution with mean (b1 +WC)

and covariance Σ = σ2I. Thus, we can write the likelihood for Model 3.1 as:

L(b, C, σ2|Y,W ) = (2π)−
n
2 exp

(
−1

2
(Y − b1−WC)TΣ−1(Y − b1−WC)

)
(3.5)

We thus have the following equation ( 3.6 for the log-likelihood for Model 3.1:

logL(b, C, σ2|Y,W ) = −n
2

log(2π)− 1

2
(Y − b1−WC)TΣ−1(Y − b1−WC) (3.6)

Chick et al. (2016) calculated the log10 likelihoods for all four models before determining two LOD scores

(Equations 3.7 and 3.8).

LOD1 = log10(Model 3.2 likelihood)− log10(Model 3.1 likelihood) (3.7)
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Frame 3.2: Four assumptions for causal inference

1. No unmeasured confounding of the DNA variant-nonlocal transcript levels relationship

2. No unmeasured confounding of the local transcript levels-nonlocal transcript levels relationship

3. No unmeasured confounding of the DNA variant-local transcript levels relationship

4. No local transcript levels-nonlocal transcript levels confounder that is affected by the DNA variant

LOD2 = log10(Model 3.4 likelihood)− log10(Model 3.3 likelihood) (3.8)

And, finally, Chick et al. (2016) calculated the LOD difference statistic (Equation 3.9).

LOD difference = LOD1 − LOD2 (3.9)

LOD difference values need not be positive. For example, in the setting where the putative mediator has

no effect on the phenotype-QTL association, LOD difference may be negative.

In our analyses below, we consider the LOD difference proportion (Equation 3.10).

LOD difference proportion =
(LOD1 − LOD2)

LOD1
(3.10)

In other words, we consider what proportion of the association strength, on the LOD scale, is diminished

by conditioning on a putative mediator. Scaling the LOD difference statistic by LOD1 accommodates the

diversity of LODs in our data, which will be useful for graphical comparisons. For example, a LOD difference

statistic of 5 may be relevant when a trait has a LOD1 of 10, but unimportant if the trait’s LOD1 is 100. Now

that we’ve defined our summary statistics for a mediation analysis in systems genetics, we turn attention to

two statistical challenges in this area of research, 1. confounding and 2. significance thresholds.

Our first statistical challenge is due to confounding. To claim that the LOD difference statistic reflects a

causal relationship, four assumptions about confounding are needed (Frame 3.2) (VanderWeele 2015), yet it

is often difficult or impossible to recognize unmeasured confounders. Unmeasured confounders, as I use the

term here, are unmeasured random variables that confound a causal relationship between two other random

variables. For example, Figure 3.3 shows a directed graph. Arrows indicate causal directions. For example,

“QTL” causes “M”. “M” designates the mediator (local transcript). “Y” denotes the nonlocal transcript

level in this setting, while “C1”, “C2”, and “C3” are covariates that confound, respectively, the DNA variant
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Figure 3.3: Example causal diagram showing relationships between random variables in an expression QTL
study.

- nonlocal transcript level relationship, the local transcript level - nonlocal transcript level relationship, and

the DNA variant - local transcript level relationship. Failure to measure C1, C2, or C3 leads to violations

of Assumption 1, Assumption 2, or Assumption 3, respectively (Frame 3.2).

In studies of Diversity Outbred mice, relatedness is a possible confounder, yet the linear models (Equa-

tions 3.1, 3.2, 3.3, 3.4 in Frame 3.1) fail to account for the complex relatedness patterns among Diversity

Outbred mice. In fact, the only covariates in our models are for wave membership and sex. The 400 mice

were shipped from the Jackson Laboratory in four waves of 100 mice. Because each wave was processed at a

different time, I include wave membership as a covariate with the goal of accounting for wave-related effects.

Other sources of confounding, such as batch effects in the phenotyping, may be unmeasured.

In efforts to quantify the potential impact of unmeasured confounding, scientists have developed a suite

of sensitivity analysis tools for use in regression-based mediation analysis. While a discussion of sensitivity

analysis is beyond the scope of this thesis, it may be useful in future systems genetics studies to assess

robustness of mediation analysis results in the presence of unmeasured confounders. VanderWeele (2015)

discusses sensitivity analysis in the context of epidemiological studies.
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Besides accounting for confounding, a second statistical challenge in mediation analysis is assessing signif-

icance of the LOD difference statistic. Chick et al. (2016) used individual transcript levels as sham mediators

and tabulated their LOD difference statistics. They then compared the observed LOD difference statistics

for putative mediators to the empirical distribution of LOD difference statistics obtained from the collection

of sham mediators. Keller et al. (2018), on the other hand, in their study of pancreatic islet biology, declared

mediators to be those local transcripts that diminished the LOD score of nonlocal transcripts by at least

1.5. While significance threshold determination remains an active area of research, we proceed below by ex-

amining all 147 nonlocal transcript levels that Keller et al. (2018) identified as mapping to the Chromosome

2 hotspot.

3.1.2 Methods

We examined the potential that the two methods, 1. pleiotropy vs. separate QTL testing and 2. mediation

analysis, play complementary roles in efforts to dissect gene expression trait hotspots. We use the term

“hotspot” to refer to a contiguous genomic region, typically no more than 5 Mb in length, that affects many

expression traits. After describing our data below, we detail our statistical analyses involving 13 local gene

expression traits and 147 nonlocal gene expression traits, all of which map to a 4-Mb hotspot on Chromosome

2.

We analyzed data from 378 Diversity Outbred mice (Keller et al. 2018). Keller et al. (2018) genotyped tail

biopsies with the GigaMUGA microarray (Morgan et al. 2015). They also used RNA sequencing to measure

genome-wide pancreatic islet gene expression for each mouse at the time of sacrifice (Keller et al. 2018).

We examined the Chromosome 2 pancreatic islet expression trait hotspot that Keller et al. (2018) iden-

tified. Keller et al. (2018) found that 147 nonlocal traits map to the 4-Mb region centered at 165.5 Mb

on Chromosome 2. The 147 nonlocal traits all exceeded the genome-wide LOD significance threshold, 7.18

(Keller et al. 2018). With regression-based mediation analyses, they identified transcript levels of local gene

Hnf4a as a mediator of 88 of these 147 nonlocal traits.

We designed a study to examine the possible roles for mediation analysis and pleiotropy testing. Because

Keller et al. (2018) reported that some nonlocal traits that map to the Chromosome 2 hotspot did not

demonstrate evidence of mediation by Hnf4a expression levels, we elected to study a collection of local gene

expression traits, rather than Hnf4a alone. This strategy enabled us to ask whether one of twelve other

local traits mediates those nonlocal hotspot traits that are not mediated by Hnf4a. Our set of local gene

expression traits includes Hnf4a and 12 other local genes (Table 3.1). Our 13 local genes are the only genes
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Frame 3.3: Local gene inclusion criteria

1. QTL peak with LOD > 40

2. QTL peak position within 2 Mb of hotspot center (165.5 Mb)

3. Gene midpoint within 2 Mb of hotspot center (165.5 Mb)

that met three criteria (Frame 3.3). The 147 nonlocal traits that we studied all had LOD peak heights above

7.18 and QTL positions within 2 Mb of the center of the hotspot (at 165.5 Mb).

We now describe our statistical analyses. After univariate QTL mapping to identify expression traits

that map to the Chromosome 2 hotspot, we performed both bivariate QTL scans and mediation analyses of

all 13 * 147 = 1911 pairs involving one local expression trait and one nonlocal expression trait.

Our bivariate QTL analyses involved the same 13 local expression traits and 147 nonlocal expression

traits. We described above (Frame 3.3) the criteria for choosing these expression traits.

We performed a series of two-dimensional QTL scans in which we paired each local gene’s transcript

levels with each nonlocal gene’s transcript levels, for a total of 13 x 147 = 1,911 two-dimensional scans. Each

scan examined the same set of 180 markers, which spanned the interval from 163.1 Mb to 167.8 Mb and

included univariate peaks for all 13 + 147 = 160 expression traits. We performed these analyses with the R

package qtl2pleio (Boehm 2018b).

For each bivariate QTL scan, we fitted a collection of bivariate models for all 180 * 180 = 32,400 ordered

pairs of markers. For each ordered pair of markers, we fitted a bivariate linear mixed effects model using the

methods of Chapter 2.

We performed mediation analyses for all 1,911 local-nonlocal trait pairs in which we probed the extent

to which each nonlocal trait’s association strength diminished upon conditioning on transcript levels of a

putative mediator.

Each of the 13 local expression traits, considered one at a time, served as putative mediators. We thus

fitted the four linear regression models that we describe above (Equations 3.1, 3.2, 3.3, 3.4).

One question that needs clarification is the choice of genetic marker for each mediation analysis. We

elected to use the founder allele dosages at the marker (or pseudomarker) that demonstrated the univariate

LOD peak for the nonlocal trait. Alternative analyses, in which one uses the founder allele dosages at which

the local trait has its univariate peak, are also possible.

To visualize the summary statistics for the two methods, I plotted, for each local gene, a scatterplot of
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Gene Start End QTL peak position LOD
Pkig 163.66 163.73 163.52 51.68
Serinc3 163.62 163.65 163.58 126.93
Hnf4a 163.51 163.57 164.02 48.98
Stk4 164.07 164.16 164.03 60.39
Pabpc1l 164.03 164.05 164.03 52.50
Slpi 164.35 164.39 164.61 40.50
Neurl2 164.83 164.83 164.64 64.58
Cdh22 165.11 165.23 165.05 53.84
2810408M09Rik 165.49 165.49 165.57 67.34
Eya2 165.60 165.77 165.72 98.89
Prex1 166.57 166.71 166.75 46.91
Ptgis 167.19 167.24 167.27 56.25
Gm14291 167.20 167.20 167.27 73.72

Table 3.1: Local gene annotations for analysis of Chromosome 2 expression trait hotspot. All positions are
in units of Mb on Chromosome 2. LOD peak position and LOD peak height refer to those obtained from
univariate analyses. “Start” and “end” refer to the local gene’s DNA start and end positions, as annotated
by Ensembl version 75.

LOD difference proportion values against pleiotropy test statistics.

We also examined the 1,911 pairs by considering one nonlocal gene at a time. For each of the 147

nonlocal genes, I plotted LOD difference proportion against pleiotropy test statistic values. I present below

(Figure 3.7) examples that illustrate some of the observed patterns between pleiotropy test statistics and

LOD difference proportion values.

3.1.3 Results

Figure 3.4 is a scatterplot of the results from all pleiotropy tests and mediation analyses. Each point

contains one local expression trait and one nonlocal expression trait. I see that points with high values of

LOD difference proportion tend to have small values of pleiotropy test statistic, and those points with high

values of the pleiotropy test statistic tend to have small values of LOD difference proportion.

Some points demonstrate large values of pleiotropy test statistic (eg., > 10), yet still have sizeable LOD

difference proportion statistics (Figure 3.4). One possible explanation for such points is that the univariate

LOD (LOD1) value is small, so that even a modest LOD difference gives rise to a sizeable LOD difference

proportion value. A second possible explanation is that the phenotype variances for both phenotypes in the

pair are large enough to skew the null distribution of the test statistic towards larger values. To distinguish

between these two, I would examine the LOD difference statistics and obtain bootstrap p-values.

In Figure 3.4, I colored red the points that involve Hnf4a; points with other local genes are blue. The most
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Figure 3.4: LOD difference proportion against pleiotropy vs. separate QTL test statistics for 1911 pairs of
traits. Each point represents a single pair. Pairs that involve local expression trait Hnf4a are colored red,
while all others are colored blue. Note the high concentration of red points in the upper left quadrant of the
figure. These points, with low values of the pleiotropy vs. separate QTL test statistic and high values of
LOD difference proportion, are consistent with Hnf4a transcript levels mediating the effect of Hnf4a genetic
variants affecting nonlocal transcript abundances.

striking feature of the coloring is that many red points have small values of the pleiotropy test statistics and

very high values of LOD difference proportion. This is what I expect when Hnf4a mediates the relationship

between a nonlocal trait and a QTL; namely, Hnf4a and a nonlocal trait share a pleiotropic QTL and

conditioning on Hnf4a diminishes the LOD score for the association between nonlocal trait and QTL.

To more thoroughly examine the pleiotropy test and mediation analysis relationships across the 13 local

genes, I created 13 plots of LOD difference proportion against pleiotropy test statistic (Figures 3.5 and 3.6).

They reveal common patterns. First, I see no points in the upper right quadrant of each plot (Figure 3.6).

This tells us that those nonlocal genes with high values of pleiotropy test statistic (when paired with the

specified local gene) have low values of LOD difference proportion. Similarly, those nonlocal genes with high
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values of LOD difference proportion tend to have small values of the pleiotropy test statistic. Finally, some

trait pairs demonstrate low values of both the LOD difference proportion and pleiotropy test statistic. This

observation suggests that, for a given local expression trait, the nonlocal trait is not mediated by the local

expression trait yet it shares a pleiotropic locus. Low power to resolve multiple nearby QTL may give rise

to such findings.

In comparing the Hnf4a plot (Figure 3.5) with the other 12 plots (Figure 3.6), I see that none of the 12

plots in Figure 3.6 closely resembles Figure 3.5. Serinc3, Stk4, Neurl2, and Cdh22 are closest in appearance

to the plot of Hnf4a. However, each of Serinc3, Stk4, Neurl2, and Cdh22 has very few points with LOD

difference proportion above 0.5, while Hnf4a has many points with LOD difference proportion above 0.5.

Now that I’ve examined our results from the perspective of every one of 13 local gene expression traits, I

turn attention to the nonlocal gene expression trait perspective. I present four nonlocal gene expression trait

plots in Figure 3.7. I chose these four from the 147 to demonstrate two of the observed patterns. In a single

scatterplot, I’ve plotted 13 points, one for each local gene expression trait, paired with a single nonlocal gene

expression trait. Local expression trait Hnf4a is colored in red, while the other local genes are colored in

blue. The top row of Figure 3.7 features scatterplots for nonlocal expression traits Abcb4 and Smim5. I see

that local expression trait Hnf4a has, by far, the greatest value of LOD difference proportion. In the second

row of Figure 3.7, I see a different pattern in the plots for nonlocal expression traits Tmprss4 and Gm3095.

Both demonstrate, for Hnf4a, small values for the pleiotropy test statistic and small values of LOD difference

proportion. This tells me that Hnf4a shares a pleiotropic locus with both Tmprss4 and Gm3095, yet none

of the 13 local gene expression traits mediates the relationship between these two nonlocal traits and the

QTL.

3.1.4 Discussion

Our pairwise analyses with both mediation analyses and pleiotropy tests provide additional evidence for the

importance of Hnf4a in the biology of the Chromosome 2 hotspot in pancreatic islets. Our analyses, and,

specifically, the test of pleiotropy vs. separate QTL, may be more useful when studying nonlocal traits that

map to a hotspot yet don’t show strong evidence of mediation by local expression traits. In such a setting,

the pleiotropy test can, at least, provide some information about the genetic architecture at the hotspot.

Specifically, our pleiotropy test may inform inferences about the number of underlying QTL in a given

expression trait hotspot. Additionally, our test may limit the number of expression traits that are potential

intermediates between a QTL and a specified nonlocal expression trait. This relies on the assumption that
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Figure 3.5: Scatter plot of LOD difference proportion against pleiotropy vs. separate QTL test statistic for
147 pairs of traits. Each pair includes Hnf4a and one of the nonlocal gene expression traits that map to the
Chromosome 2 hotspot.



51

2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik2810408M09Rik























0 20 40 60 0 20 40 60

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Pleiotropy vs. separate QTL test statistic

L
O

D
 d

if
fe

re
n
c
e
 p

ro
p
o
rt

io
n

Figure 3.6: Scatter plots of LOD difference proportion against pleiotropy vs. separate QTL test statistic
with 147 pairs of traits per panel. Each panel includes a local gene expression trait (per the label in the
upper right quadrant) and one of the 147 nonlocal gene expression traits that map to the Chromosome 2
hotspot.
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Figure 3.7: Scatter plots for four nonlocal expression traits. Each plot features 13 points, one for each local
gene expression trait. The vertical axis denotes LOD difference proportion values, while the horizontal axis
corresponds to pleiotropy test statistics. Red points represent the pairing with local gene expression trait
Hnf4a. Blue points represent the other 12 local gene expression traits.
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(a) Hnf4a transcript levels mediate Abcb4 transcript
levels. The high LOD difference proportion and the
very small pleiotropy test statistic together provide
evidence that Hnf4a mediates Abcb4 transcript lev-
els.
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(b) Hnf4a transcript levels mediate Smim5 tran-
script levels. The high LOD difference proportion
and the very small pleiotropy test statistic together
provide evidence that Hnf4a mediates Smim5 tran-
script levels.
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Tmprss4

(c) Tmprss4 transcript levels are not mediated by
any of the 13 local gene expression traits. However,
several local gene expression traits arise from sepa-
rate QTL, as evidenced by their large (greater than
5) values of the pleiotropy test statistic.
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(d) Gm3095 transcript levels are not mediated by
any of the 13 local genes. The tests of pleiotropy
demonstrate evidence of separate QTL for some local
expression traits when paired with Gm3095.
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a causally intermediate (local) expression trait and a target (nonlocal) expression trait presumably share a

QTL. On the other hand, mediation analyses, when they provide evidence for mediation of a nonlocal trait

by a local expression trait, are possibly more valuable than the test of pleiotropy vs. separate QTL, since

the mediation analyses identify precisely the intermediate expression trait.

I recommend using both tests of pleiotropy vs separate QTL and mediation analyses when dissecting

an expression trait QTL hotspot. Future researchers may use the test of pleiotropy vs. separate QTL as a

preliminary screen to limit the set of candidate mediators to those that have test results that are consistent

with pleiotropy. Subsequently, fewer mediation analyses are needed, which would reduce the magnitude

of the multiple testing adjustment. This, in turn, would lead to detection of more true positive signals in

mediation analysis.

Future research may investigate the use of polygenic random effects in the statistical models for media-

tion analysis. Additional methodological questions include approaches for declaring significant a mediation

LOD difference proportion and consideration of other possible measures and scales of extent of mediation.

Additionally, future researchers may wish to consider biological models that contain two mediators.

The social and health sciences have witnessed much methods research in mediation analysis. The field

of statistical genetics has not fully adopted these strategies yet, but, given the nature of current and future

data, many opportunities exist for translation of approaches from causal inference in epidemiology to systems

genetics. For example, VanderWeele (2015) contains detailed discussions of many methods issues that arose

in mediation analyses in epidemiology studies.

3.2 Power analyses

3.2.1 Introduction

The goal of this section is to characterize the statistical power of our pleiotropy test under a variety of

conditions by studying an expression QTL data set. I examine pancreatic islet expression traits from the

Keller et al. (2018) data. As in Chapter 2 and Section 3.1, I test only two traits at a time. Because

we’ve chosen local expression traits in our analysis, I both know where each trait’s true QTL location

(approximately), and I anticipate that each trait has a unique QTL that is distinct from QTL for other local

expression traits. This design thus provides opportunities to study statistical power for our test.

I anticipate that inter-locus distance, univariate QTL strength, and correlation of founder allele effects

patterns are three factors that contribute to power for our test. Specifically, I expect that greater inter-locus
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distance, greater univariate LOD scores, and less similar founder allele effects patterns correspond to greater

statistical power to detect two separate QTL.

I use pancreatic islet gene expression traits from a publicly available data set, which Keller et al. (2018)

first collected, analyzed, and shared. I examine a collection of 80 local traits on Chromosome 19 and perform

our test for pleiotropy on pairs of traits. I also examine pairwise relationships among gene expression traits

to characterize the impacts of univariate LOD score, inter-locus distance, and similarity of founder allele

effects patterns on pleiotropy test statistics.

3.2.2 Methods

I analyzed data from 378 Diversity Outbred mice (Keller et al. 2018). Keller et al. (2018) genotyped tail

biopsies with the GigaMUGA microarray (Morgan et al. 2016). They used RNA sequencing to measure

genome-wide pancreatic islet cell gene expression for each mouse at the time of sacrifice (Keller et al. 2018).

They shared these data, together with inferred founder allele probabilities, on the Data Dryad site (https:

//datadryad.org/resource/doi:10.5061/dryad.pj105). I performed analyses with the R statistical computing

environment (R Core Team 2018) and the packages qtl2 (Broman et al. 2019) and qtl2pleio (Boehm

2018b).

I study below 80 Chromosome 19 local expression QTL and their corresponding transcript levels. I define

a local expression QTL to be an expression QTL that is on the same chromosome as the gene itself. For

example, the Asah2 gene is located on Chromosome 19 and its transcript levels have an expression QTL on

Chromosome 19 (Table 3.2). Thus, I term the Chromosome 19 Asah2 expression QTL a local expression

QTL.

I focused on local expression QTL, while ignoring nonlocal expression QTL, because I know, approxi-

mately, the true locations for local expression QTL. That is, a local expression QTL is near the corresponding

gene position. Additionally, I expect that a given local expression QTL affects only one local expression trait.

In our example above, I expect that the Asah2 expression QTL is near the Asah2 gene position and that

no other local expression traits map to it.

Our design involves selection of a set of “anchor” expression traits. Gene Asah2 is located near the

center of Chromosome 19 and has a very strong local expression QTL (Table 3.2). I chose it as our first

“anchor” gene expression trait. To diversify our collection of anchor genes, I chose three additional expression

traits with local expression QTL. These three are Lipo1, Lipo2, and 4933413C19Rik (Table 3.2). Together,

the four anchor genes represent a variety of strong local expression trait LOD scores (from 60 to 101) and

https://datadryad.org/resource/doi:10.5061/dryad.pj105
https://datadryad.org/resource/doi:10.5061/dryad.pj105


55

demonstrate modest variability in their founder allele effects (Figure 3.8). All four anchor genes are located

near the middle of Chromosome 19 (Table 3.2).

I identified a set of 76 non-anchor local expression traits that map to the 20-Mb region centered on the

peak for Asah2, at 32.1 Mb. Each trait among the 76 maps to Chromosome 19 with a univariate LOD score

of at least 10 (Table 3.5).

Table 3.2: Annotations for four anchor genes.

Gene Start End QTL peak position LOD
Asah2 31.98 32.06 32.14 101.20
Lipo1 33.52 33.76 33.67 85.46
Lipo2 33.72 33.76 33.02 77.21
4933413C19Rik 28.58 28.58 28.78 60.41

I estimated founder allele and covariate effects for every trait on Chromosome 19. I then sought to

calculate a similarity measure between two traits’ allele effects patterns. For each of the 80 expression traits,

I calculated fitted values for each subject with the estimated founder allele and covariate effects. I then

calculated correlations between fitted values for pairs of traits. Our motivation for working with the fitted

values vectors (instead of the estimated founder allele effects vectors) is that the fitted values approximately

weight the allele effects by allele frequency. I anticipated that more similar two traits’ founder allele effects

would correspond, on average, to smaller pleiotropy test statistics. I base this expectation on findings from

Macdonald and Long (2007) and King et al. (2012), who found that two traits that associate with a single

pleiotropic QTL tended to have similar founder allele effects patterns for biallelic markers.

I performed two-dimensional QTL scans for 4 ∗ 76 +
(
4
2

)
= 310 pairs. Each pair included one of the four

anchor gene expression traits and either one of 76 non-anchor gene expression traits or one of the remaining

three anchor gene expression traits. Our two-dimensional QTL scan encompassed a 1000 by 1000 marker

grid from 18.1 Mb to 42.5 Mb on Chromosome 19. Each scan involved fitting 1000 x 1000 = 1,000,000 models

via generalized least squares. For a given ordered pair of markers, I used the bivariate linear mixed effects

model and methods of Chapter 2. These methods are implemented in the R package qtl2pleio (Boehm

2018b).

3.2.3 Results

Figure 3.8 presents allele effects plots for the four “anchor” transcripts over the two-dimensional scan region

on Chromosome 19. All four anchor traits demonstrate strong PWK allele effects (Figure 3.8). Additionally,



56

20 25 30 35 40

−2

−1

0

1

2

3

Chr 19 position

Q
T

L 
ef

fe
ct

s

(a) Founder allele effects for 4933413C19Rik expres-
sion trait.

20 25 30 35 40

−2

−1

0

1

2

3

Chr 19 position

Q
T

L 
ef

fe
ct

s

AJ
B6

129
NOD

NZO
CAST

PWK
WSB

(b) Founder allele effects for Asah2 expression trait.
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(c) Founder allele effects for Lipo1 expression trait.
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(d) Founder allele effects for Lipo2 expression trait.

Figure 3.8: Founder allele effect estimates for the four “anchor” transcripts.
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Lipo2 and Asah2 have highly similar patterns among the eight allele effects.

Figure 3.9 examines the relationship between inter-QTL distance and power to reject the pleiotropy

hypothesis. Along the horizontal axis is Chromosome 19 position. The vertical axis is for pleiotropy test

statistics. Each point corresponds to a local gene expression trait (paired with the appropriate anchor gene

expression trait). Point color corresponds to the local gene’s univariate LOD score, with lighter shades of

blue denoting greater values of univariate LOD score. Vertical black bar denotes the anchor gene’s position

on Chromosome 19. All four panels reveal that points further from the anchor gene tend to show greater test

statistic values. Additionally, because of their nearly identical positions, the Lipo1 and Lipo2 panels offer an

opportunity to compare the impact of anchor gene univariate LOD score on pleiotropy test statistics. The

difference in univariate LOD scores is modest, 85.5 for Lipo1 vs. 77.2 for Lipo2. The effect of univariate LOD

scores is most apparent when examining local expression traits that have strong univariate LOD scores. For

example, near 32 Mb is a point with light blue color. The light blue indicates that it has a high univariate

LOD score. Lipo2, which has the lower univariate LOD score, shows a pleiotropy test statistic just over 30

when paired with this local expression trait. Lipo1 demonstrates a greater test statistic value, about 40,

when paired with the same local expression trait.

Similarly, a local expression trait near 29 Mb has a strong univariate LOD score (near 100). I see that

its pleiotropy test statistic values in the Lipo1 and Lipo2 panels reflect the difference in univariate LOD for

the two anchor gene expression traits. The pleiotropy test statistic value is greater when paired with Lipo1,

the anchor gene expression trait with greater univariate LOD (compared to Lipo2 ).

In comparing the plot for Asah2 with those of Lipo1, Lipo2, and 4933413C19Rik, I also see that Asah2,

with the largest (101.2) of the four univariate LOD scores, demonstrates the steepest ascent of points as

interlocus distance increases.

Figure 3.10 shows the relationship between univariate LOD scores and pleiotropy test statistics. Analyses

for all four anchor gene expression traits demonstrate that greater univariate LOD scores tend to correspond

to greater values of the pleiotropy test statistic (Figure 3.10). The coloring of points reflects interlocus

distance from the anchor gene. All four panels reveal a common pattern in the coloring of points. For a

given univariate LOD value, those genes with greater interlocus distance tend to have greater values of the

pleiotropy test statistic. Anchor gene 4933413C19Rik, due to its position on Chromosome 19, has multiple

light blue points. Nearly all of these light blue points have large pleiotropy test statistics relative to their

univariate LOD scores.

Figure 3.11 features four panels, one for each anchor gene. Each point corresponds to a pairing between
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Figure 3.9: Relationship between pleiotropy test statistic and gene position. Each anchor gene has its own
panel. Along the horizontal axis is Chromosome 19 position. The vertical axis is for pleiotropy test statistic
value. Each point corresponds to a local gene expression trait (paired with the anchor gene). Point color
corresponds to the local gene’s univariate LOD score, with lighter shades of blue denoting greater values of
univariate LOD score. Vertical black bar denotes the anchor gene’s position on Chromosome 19. All four
panels reveal that points further from the anchor gene tend to show greater test statistic values. Additionally,
the Lipo1 and Lipo2 panels offer an opportunity to compare the impact of anchor gene univariate LOD score
on pleiotropy test statistic values.
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Figure 3.10: Vertical axis denotes pleiotropy test statistic value, while horizontal axis denotes univariate
LOD score. Each point corresponds to a single gene expression trait. Panels correspond to the anchor gene
expression trait. The pleiotropy test statistics correspond to analyses involving a single gene expression trait
and the specified anchor gene expression trait.
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Figure 3.11: Vertical axis denotes the pleiotropy test statistic value, and horizontal axis indicates absolute
value of the correlation between vectors of fitted values. Each point corresponds to a pairing between the
specified anchor expression trait and one of the 79 other expression traits.
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the specified anchor and one of the 79 other gene expression traits. None of the four panels reveals a strong

relationship between fitted values correlation and pleiotropy test statistics. There may be weak evidence for

a downward trend in pleiotropy test statistics at larger fitted values correlations, as demonstrated by Asah2,

Lipo1, and Lipo2. QTL with different effect patterns may be somewhat easier to distinguish, as separate

QTL, but the effect is slight.

3.2.4 Discussion

Our goal for this study was to characterize the impacts of univariate LOD score, inter-locus distance, and

founder allele effects pattern similarities on pleiotropy test statistic values. Our study design, in which

I examined 310 pairs of local gene expression traits on Chromosome 19, allowed us to interrogate both

the effects of univariate association strength and the effects of inter-locus distance. I found that stronger

univariate associations and greater inter-locus distances correspond to greater pleiotropy test statistic values

(Figures 3.9 and 3.10). I expected these trends based on our simulation studies in Chapter 2.

Figure 3.11 revealed no strong relationship between similarity of QTL effect pattern and pleiotropy test

statistics. However, close examination of Figure 3.11 reveals the possibility that there is an interaction

between 1) fitted values correlations and 2) univariate LOD scores. In every panel, those expression traits

with stronger univariate associations tend to have steeper slopes between the conditional mean pleiotropy

test statistic values and fitted values correlations. The plots weakly suggest that, at greater univariate LOD

values, there is a greater (negative) relationship between fitted values correlation and pleiotropy test statistic

value.

I anticipated that more similar founder allele effects patterns would correspond to smaller values for the

pleiotropy test statistic, when holding other factors constant. As I stated above, Macdonald and Long (2007)

and King et al. (2012) argued that, for biallelic markers, two pleiotropic traits should have similar founder

allele effects patterns. In our setting, it’s unclear whether the markers are biallelic in the collection of eight

founder lines.

We’ve demonstrated strong evidence in support of the roles of 1) univariate QTL LOD scores and 2)

interlocus distances impacting pleiotropy test statistic values. Greater univariate QTL scores and greater

interlocus distance lead to greater pleiotropy test statistics. Future research may clarify the impoact of

founder allele effects patterns on pleiotropy test statistics. The fact that all four anchor traits had strong

PWK effects (Figure 3.8) limited our ability to fully define the impact of allele effects patterns on our test

statistics.
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Throughout this study, I elected to use test statistic values rather than p-values as our measure of evidence

supporting the separate QTL hypothesis. The primary reason for doing this is to avoid the computationally

costly bootstrap sampling and two-dimensional QTL scans that I would need to get bootstrap p-values.

Additionally, the null distribution of the test statistic is likely to be very similar for all gene pairs, and so

the test statistics on their own may be compared.

I share our analysis R code (R Core Team 2018) as a git repository at this URL: https://github.com/

fboehm/keller-2018-chr19-power.

3.3 Microbiome data analysis

3.3.1 Introduction

Recent technological innovations have fueled exploration of ecological relationships between gut microbiota

and their hosts. Advances in mass spectrometry experimental methods have enabled high-throughput quan-

tification of lipid levels and protein concentrations. These developments, when coupled with experiments

to quantify gut microbiota, have the potential to uncover new microbiome-host interactions. Such discov-

eries would lead to a more nuanced understanding of organismal biology and health implications of the gut

microbiome.

Previous research demonstrated that hosts and gut microbiota communicate with each other via small

molecule metabolites, including bile acids. The liver uses cholesterol to synthesize an array of bile acids.

These bile acids are secreted into the gut, where bacteria chemically transform some bile acids. One function

of bile acids is to aid digestion by emulsification of dietary fats. While a portion of bile acids are lost in

the feces, much of the secreted bile acids is reabsorbed in the distal gut. Finally, reabsorbed bile acids are

transported via the circulatory system back to the liver.

Below, I use our pleiotropy test to identify a pleiotropic QTL that affects both the abundance level of a

group of bacteria in the distal gut and plasma cholic acid levels in the host. While many questions remain

after our investigation, our identification of a single pleiotropic locus that affects these two phenotypes is an

important preliminary step for further investigations.

https://github.com/fboehm/keller-2018-chr19-power
https://github.com/fboehm/keller-2018-chr19-power
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3.3.2 Methods

As I describe in Kemis et al. (submitted), I analyzed data from 384 Diversity Outbred mice. Keller et

al. (2018) analyzed data from many of these same mice. Specifically, I examined two microbiome-related

phenotypes, 1. plasma cholic acid and 2. Turicibacter abundance in the distal gut. Both traits map

to Chromosome 8 (4.3 Mb and 5.7 Mb, respectively) in univariate QTL scans (Table 3.3). Our methods

proceed in three ordered steps. First, we collect the biological samples. Then, we prepare and process the

data. Finally, I perform our pleiotropy test.

Our sample collection involves three steps, all of which are done at the time of sacrifice (at age 22 weeks).

We obtained fecal samples from all mice immediately after a four-hour fast. We also obtained blood plasma

from every mouse at the time of sacrifice. Tail clippings provided DNA for host genotyping.

As the first ordered step in genotype reconstruction in the Diversity Outbred mice, DNA was extracted

from tail clippings and subjected to SNP genotyping with the GigaMUGA microarray (Morgan et al. 2015).

We inferred 36-state genotype probabilities from SNP genotype calls for every (autosomal) marker and every

mouse. We used a hidden Markov model strategy developed by Broman (2012a, 2012b) and implemented

in the R package qtl2 (Broman et al. 2019). We treated these inferred genotype probabilities as known

quantities in the analyses below. Lastly, we calculated founder allele dosages by summing the appropriate

genotype probabilities.

Phenotype processing proceeds in parallel by separately processing fecal samples and blood samples.

Processing of fecal samples to obtain microbial taxa counts involves multiple experimental and computa-

tional steps. Microbiome DNA was extracted from fecal samples and subjected to 16S ribosomal RNA gene

sequencing to infer abundances of microbial taxa. Demultiplexed, paired-end FASTQ files resulted from

the sequencing. We used the QIIME2 (version 2018.4) software package (Bolyen et al. 2018) for quality

control and processing of sequence data. DADA2 software package (Callahan et al. 2016) was used to de-

noise sequencing reads and to identify de novo sub-operational taxonomic units. Sequence variants were

aligned with the software package mafft (Katoh and Standley 2013). After FastTree-based phylogeny re-

construction (Price, Dehal, and Arkin 2010), taxonomic classifications were assigned with classify-sklearn

against the Greengenes OTUs reference sequences (DeSantis et al. 2006). Sequencing data was normalized

with cumulative sum scaling with MetagenomeSeq (Paulson, Pop, and Bravo 2013). We limited study of

microbiota-derived traits to those that we detected in at least 20% of subjects. The Turicibacter abundance

trait is one element of the resulting core measurable microbiota.
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Contemporaneously with the fecal sample processing, plasma samples were subjected to multiple exper-

imental and computational steps to obtain traits for QTL mapping. After removing soluble proteins from

each plasma sample, each sample was analyzed by mass spectrometry to measure abundances of pre-specified

bile acids. Finally, plasma bile acid measurements were processed and normalized to obtain QTL analysis

traits.

We then had the needed inputs for QTL mapping. We performed univariate QTL analyses for many

bacterial abundances and many serum traits. For each marker and each univariate phenotype we fitted

a linear mixed effects model (with a polygenic random effect), as implemented in the R package qtl2

(Broman et al. 2019). We treated founder allele effects as additive and neglected possible interactions. We

incorporated four covariates into the model: sex and three binary indicators for wave number. We needed

to include wave number because the mice were shipped and studied in four distinct batches, or waves, from

the Jackson Laboratory. We thus included wave number in efforts to accommodate wave effects that might

have influenced measured trait values.

We then calculated LOD values comparing the univariate models’ log-likelihoods at each marker to the

log-likelihood of the model without founder allele dosages. In summarizing LOD peak results, we identified

a small region on Chromosome 8 that contains LOD peaks for both Turicibacter abundance and plasma

cholic acid levels. We decided to examine these two traits because they mapped to a single genomic region.

We use the R package qtl2 to estimate founder allele effects at Chromosome 8 markers with the univariate

linear mixed effects model.

We then had the inputs needed for our pleiotropy test: founder allele probabilities for each mouse at every

marker and two traits that map to a single genomic region. We performed a test of pleiotropy vs. separate

QTL for our two traits, Turicibacter abundance and plasma cholic acid levels, using the methods of Chapter 2.

To determine statistical significance, we performed a parametric bootstrap analysis to acquire 1000 bootstrap

samples. With the collection of 1000 bootstrap test statistic values, we calculated a bootstrap p-value as the

proportion of the 1000 test statistics that were at least as large as the true test statistic. Calculation of a

bootstrap p-value is the last step in our hypothesis test for pleiotropy vs. separate QTL.

3.3.3 Results

Both plasma cholic acid and Turicibacter abundance demonstrate multiple univariate QTL across the genome

(Figure 3.12). Both traits also map to a 1.4-Mb region on Chromosome 8. Because these two traits map to

a single genomic region, we elected to study them further.
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Figure 3.12: Genome-wide LOD scores for plasma cholic acid and Turicibacter abundance traits.
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Plasma cholic acid founder allele effects
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(a) Plasma cholic acid founder allele effects over the scan interval.
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(b) Turicibacter abundance founder allele effects over the scan interval.

Figure 3.13: Founder allele effects and LOD plots for our two traits over the Chromosome 8 region. Both
traits demonstrate QTL peaks between 4 and 8 Mb and similar patterns of founder allele effects.
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phenotype chromosome position LOD

plasma cholic acid

1 91.61 5.37
3 40.53 5.80
7 122.19 6.83
8 4.32 6.52

12 16.60 5.24

Turicibacter abundance
2 17.20 5.40
8 5.68 7.22

12 76.34 5.17

Table 3.3: Genome-wide LOD peaks greater than 5 for plasma cholic acid levels and Turicibacter abundance.
Both traits map to approximately the same region on Chromosome 8. Chromosome positions are in Mb
units.

Univariate LOD plots for the two traits reveal broad LOD peaks on Chromosome 8 (Figure 3.13). Plasma

cholic acid’s peak starts about 4 Mb and extends to approximately 6.5 Mb. Turicibacter abundance has an

even broader peak, starting about 4 Mb and extending to 7.5 Mb. Although the two traits’ peak position

point estimates differ by 1.4 Mb, the univariate LOD plots demonstrate highly similar patterns for the two

traits.

It is unclear from the univariate LOD plots whether there are two nearby QTLs that both affect Turi-

cibacter abundance (Figure 3.13). Consistent with the possibility of two peaks is the observation that the

Turicibacter peak extends further to the right than does the plasma cholic acid peak.

Founder allele effects plots for the two traits demonstrate similarities in the relative magnitudes of the

eight effects. Specifically, the plasma cholic acid founder allele effects, at 5Mb, has AJ, NZO, CAST, and

129 above average, while WSB is well below average. Similarly, Turicibacter abundance has founder allele

effects at 5Mb with AJ and 129 above average and WSB below average.

To explore relationships between the two traits, we created a scatter plot. The scatter plot of plasma

cholic acid levels and Turicibacter abundance levels demonstrates modest correlation (Pearson correlation

coefficient = 0.5) (Figure 3.14). Turicibacter was unobserved in fecal samples from 192 of 384 mice. After

our data processing steps (described above), these 192 mice all have the smallest possible value of the

Turicibacter abundance trait. Because these 192 mice possess a range of plasma cholic acid values, they

appear as a vertical “line” on the left-hand side of the scatter plot.

Once we examined the univariate QTL scan results, we had the needed inputs for a bivariate scan;

namely, two traits that map to a single genomic region and genotype probabilities for all mice and all

markers. We performed a bivariate QTL scan over a 180-marker region on Chromosome 8 (Boehm 2018b).

The profile LOD plot over our two-dimensional scan region reveals broad peaks for both traits’ profile LODs
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Figure 3.14: Scatter plot of plasma cholic acid levels against Turicibacter abundance
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(Figure 3.15). The grey pleiotropy trace is the log likelihood for each marker under the pleiotropy hypothesis.

The grey circle designates the maximum of the grey trace. By definition, its LOD is zero. The gold plasma

cholic acid trace designates the bivariate log10 likelihood values for every position when I maximize over

the Turicibacter abundance dimension. Similarly, the blue Turicibacter abundance trace corresponds to the

bivariate log10 likelihood values for every position when I maximize over the plasma cholic acid dimension.

The triangles correspond to peak positions from the univariate analyses, while the diamonds designate the

profile LOD peak positions. Note that both profile LOD peak heights are, by definition, the same.

Plasma cholic acid profile LOD has a peak that begins about 4 Mb and extends to approximately 6.5

Mb (Figure 3.15). Turicibacter abundance profile LOD has a broader peak, with endpoints near 4 Mb and

7.5 Mb. Here, but not in the univariate LOD plots, one sees what appears to be a second peak in the

Turicibacter abundance phenotype that begins near 7.5 Mb and ends near 8.7 Mb.

We calculated the (log) likelihood ratio test statistic, Λ = 0.45. We determined the bootstrap p-value to

be 0.53 with 1000 bootstrap samples. Thus, we failed to reject the null hypothesis of pleiotropy.

3.3.4 Discussion

Results from our analyses above, including the pleiotropy test, are consistent with a single pleiotropic QTL

affecting both Turicibacter abundance and plasma cholic acid levels. The similarity of founder allele effects

patterns (Figure 3.13) is also consistent with a single pleiotropic QTL (King et al. 2012; Macdonald and

Long 2007).

While our results indicate presence of a single pleiotropic QTL, they leave many questions unanswered.

For example, it would be interesting to know if one trait mediates the effects of the QTL on the other

trait. Statistical mediation analyses (Chick et al. 2016), like those discussed earlier in Chapter 3, may clarify

this issue. Both possibilities are biologically plausible: 1. that plasma cholic acid levels affect Turicibacter

abundance and 2. that Turicibacter abundance affects plasma cholic acid levels.

A consideration of cholic acid biology illuminates this biological plausibility. Plasma cholic acid levels,

which are related to absorption rates of cholic acid from the distal gut, may be influenced by cholic acid

production rates in the liver. This, in turn, might affect gut colonization by Turicibacter. Alternatively, the

second possibility above is also biologically plausible, because, for example, Turicibacter may affect plasma

cholic acid levels by chemically transforming cholic acid while it’s in the gut. Mediation analyses and causal

model selection tests (Neto et al. 2013) may clarify the biological interactions that affect plasma cholic acid

levels and Turicibacter abundance in the distal gut.
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A second issue that arose in our analysis is the possibility of two nearby peaks for the Turicibacter

abundance trait. While the univariate LOD plot doesn’t indicate two Turicibacter peaks (Figure 3.13),

the profile LOD plot suggests that there is a second Turicibacter abundance peak from approximately 8 to

8.7 Mb. We might clarify this possibility by examining statistical models that explicitly incorporate two

QTL for Turicibacter while constraining plasma cholic acid levels to a single QTL (Schadt et al. 2005).

Distinguishing whether there are two QTL that affect Turicibacter abundance offers insights into the trait’s

genetic architecture and, by suggesting candidate causal genes, may inform subsequent experiments.

In this microbiome study, we’ve illustrated another scientific application of our pleiotropy test. Our

pleiotropy test tells us that the data are consistent with presence of a single QTL affecting both Turicibacter

abundance and plasma cholic acid levels. This insight serves as a starting point for follow-up studies into the

directions of intertwined causal relationships between plasma cholic acid levels and Turicibacter abundance.

3.4 Supplementary materials for Chapter 3

Table 3.4: LOD peak positions and peak heights for 147 expression traits that map to the Chromosome 2
expression trait hotspot. We see that some transcript levels have LOD scores, per our calculations, below
the 7.18 genome-wide threshold. We believe that this is due to differences in statistical modeling between
our analyses and those of Keller et al. (2018).

Gene Peak position LOD

Mtfp1 163.52 17.79

Slc12a7 163.58 8.30

Gpa33 163.58 26.38

Tmem25 163.58 11.26

Klhl29 163.58 11.03

Slc9a3r1 163.58 8.40

Kif1c 163.58 11.12

Gata4 163.58 8.72

Ppp2r5b 163.58 7.80

Vil1 163.58 26.48

Aldh4a1 163.58 9.38

Cotl1 163.58 16.25

Tmprss4 163.58 18.30
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Fhod3 163.58 17.62

Zfp750 163.58 7.83

Svop 163.58 10.12

Abcb4 163.58 16.59

Ccnjl 163.58 6.70

Sephs2 163.58 27.21

Pcdh1 163.58 12.48

Fat1 163.58 7.49

Sox4 163.58 14.71

Gm8206 163.58 11.33

Gm8492 163.58 10.47

Clcn5 164.02 10.49

Slc6a8 164.02 8.35

Bcmo1 164.02 47.31

Arrdc4 164.02 8.75

Cacnb3 164.02 47.06

Sec14l2 164.02 12.00

Pgrmc1 164.02 15.88

Baiap2l2 164.02 20.33

Recql5 164.02 33.97

Cpd 164.02 13.70

Degs2 164.02 15.20

Muc13 164.02 18.91

Clic5 164.02 10.39

Tff3 164.02 16.38

Myo7b 164.02 13.70

Afg3l2 164.02 19.12

Sema4g 164.02 23.39

Agap2 164.02 33.99

Plxna2 164.02 8.61

Aldob 164.02 20.99

Epb4.1l4b 164.02 9.21

Sel1l3 164.02 17.92
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Sult1b1 164.02 17.63

Hpgds 164.02 31.14

Ush1c 164.02 21.90

Calml4 164.02 12.62

Fam83b 164.02 16.12

Myo15b 164.02 71.57

Inpp5j 164.02 11.57

Ttyh2 164.02 15.20

Cdhr2 164.02 30.00

Myrf 164.02 37.55

Sh3bp4 164.02 9.04

Vgf 164.02 15.05

Grtp1 164.02 23.88

B4galnt3 164.02 20.43

Gucy2c 164.02 12.02

Smim5 164.02 18.20

Nrip1 164.02 9.50

Clrn3 164.02 20.13

Acot4 164.02 12.17

Hunk 164.02 18.50

Zbtb16 164.02 6.69

Osgin1 164.02 13.51

Zfp541 164.02 25.28

2610042L04Rik 164.02 8.14

Gm9429 164.02 9.13

Agxt2 164.02 14.54

Gm17147 164.02 26.94

Gm8281 164.02 8.40

Ddx23 164.03 9.29

Map2k6 164.03 18.54

Npr1 164.03 9.68

Hdac6 164.03 11.28

Vav3 164.03 13.51
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Atp11b 164.03 11.77

Aadat 164.03 8.08

Tmem19 164.03 20.60

Gbp4 164.03 7.14

Papola 164.03 12.14

Als2 164.03 18.35

Sult1d1 164.03 11.23

Myo6 164.03 10.27

Dnajc22 164.03 13.72

Unc5d 164.03 6.96

Gm3095 164.03 10.90

Gm26886 164.03 8.76

Eps8 164.06 12.49

Ddc 164.06 13.61

Fras1 164.06 10.06

Card11 164.06 7.20

Glyat 164.06 10.79

Pipox 164.08 15.90

Iyd 164.08 23.23

Man1a 164.26 8.77

Cdc42ep4 164.26 8.11

Ppara 164.26 8.84

Galr1 164.26 10.10

Ctdsp1 164.26 7.13

Eif2ak3 164.26 8.93

Misp 164.26 9.24

Sun1 164.26 7.35

Kctd8 164.26 9.76

Dcaf12l1 164.26 8.95

4930539E08Rik 164.26 8.25

Slc29a4 164.26 7.94

Gm3239 164.26 9.21

Gm3629 164.26 9.77



75

Gm3252 164.26 9.87

Gm3002 164.26 7.62

Ctsh 164.29 9.76

Dao 164.29 7.06

Ak7 164.31 10.07

Pcp4l1 164.35 9.11

Gm12929 164.62 37.80

Mgat1 164.63 10.10

Atg7 164.76 7.82

Gm11549 165.05 10.23

Ccdc111 165.12 7.77

Fam20a 165.15 7.59

Oscp1 165.16 7.99

Dsc2 165.28 8.06

Adam10 165.28 9.73

Plb1 165.28 8.85

Ccdc89 165.28 7.84

9930013L23Rik 165.28 7.93

Gm13648 165.28 7.08

Igfbp4 165.45 8.68

Ldlrap1 165.45 7.18

Cdh18 165.45 7.96

Arhgef10l 165.46 7.57

Cib3 165.48 8.70

Macf1 165.57 9.10

Fam63b 165.58 8.33

1190002N15Rik 165.63 9.02

Bcl2l14 165.71 7.54

Hist2h2be 165.88 8.96

Gm6428 165.89 7.32

Dennd5b 166.18 9.42

Gm12168 166.18 7.77

Gm12230 166.42 7.46
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Acat3 166.61 7.17

Gpr20 166.84 8.41

Table 3.5: Annotations for 76 non-anchor genes on Chromosome 19.

Gene Start End Peak position LOD

C030046E11Rik 29.52 29.61 29.55 95.58

Tctn3 40.60 40.61 40.59 90.00

Gm7237 33.41 33.42 33.67 74.61

Lipo4 33.50 33.52 34.00 68.23

Dock8 25.00 25.20 25.07 63.17

Sorbs1 40.30 40.40 40.48 61.89

Lipm 34.10 34.12 34.06 58.43

Blnk 40.93 40.99 40.76 57.16

A830019P07Rik 35.84 35.92 35.60 55.54

Uhrf2 30.03 30.09 29.96 54.40

Mbl2 30.23 30.24 30.18 52.81

Myof 37.90 38.04 38.05 48.46

Gm27042 40.59 40.59 40.61 44.27

Btaf1 36.93 37.01 36.90 41.25

Hoga1 42.05 42.07 42.09 41.23

Ppp1r3c 36.73 36.74 36.53 40.69

Pcgf5 36.38 36.46 36.24 40.06

Slc35g1 38.40 38.41 38.35 38.11

Pten 32.76 32.83 32.77 37.95

Gldc 30.10 30.18 30.17 36.26

Lgi1 38.26 38.31 38.17 34.91

C330002G04Rik 23.04 23.08 23.34 34.84

Ppapdc2 28.96 28.97 29.09 34.71

Gm8978 33.61 33.63 33.03 34.59

Mms19 41.94 41.98 41.98 32.03

Ankrd22 34.12 34.17 34.04 31.83
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Cdc37l1 28.99 29.02 29.03 31.14

Sgms1 32.12 32.39 32.11 30.10

Entpd1 40.61 40.74 40.50 29.73

Cbwd1 24.92 24.96 24.73 29.65

Gm14446 34.59 34.60 34.28 27.65

Ermp1 29.61 29.65 29.70 26.57

Gm9938 23.72 23.73 23.87 26.46

Insl6 29.32 29.33 29.37 26.23

Slc16a12 34.67 34.75 34.71 25.54

Pgm5 24.68 24.86 25.00 24.30

Morn4 42.07 42.09 41.79 23.86

Exosc1 41.92 41.93 42.10 23.28

Smarca2 26.61 26.78 26.59 23.25

4930418C01Rik 24.42 24.43 23.92 23.10

2700046G09Rik 32.39 32.39 32.25 23.02

Kcnv2 27.32 27.34 27.14 22.88

1500017E21Rik 36.61 36.71 37.07 22.78

Fra10ac1 38.19 38.22 38.35 22.48

Rnls 33.14 33.39 34.17 21.94

Noc3l 38.79 38.82 40.20 21.67

Pip5k1b 24.29 24.56 24.15 21.62

Plgrkt 29.35 29.37 29.37 20.65

Ifit3 34.58 34.59 34.28 20.45

Fas 34.29 34.33 34.20 19.65

Slit1 41.60 41.74 41.70 18.95

Rrp12 41.86 41.90 41.71 18.09

Ak3 29.02 29.05 29.55 16.90

A1cf 31.87 31.95 32.11 15.56

4430402I18Rik 28.90 28.97 29.37 15.43

Pdlim1 40.22 40.27 40.25 15.25

Gm26902 34.47 34.48 36.15 14.26

Plce1 38.48 38.79 38.42 14.26

Slc1a1 28.84 28.91 28.97 14.18
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Fam122a 24.48 24.48 24.08 14.07

Lipa 34.49 34.53 34.29 14.06

Mamdc2 23.30 23.45 23.35 13.12

Kif11 37.38 37.42 37.33 12.93

4933411K16Rik 42.05 42.05 42.08 12.92

Ccnj 40.83 40.85 40.59 12.19

Gm340 41.58 41.59 41.30 12.17

Fxn 24.26 24.28 24.31 12.07

Stambpl1 34.19 34.24 34.28 11.62

Pde6c 38.13 38.18 38.07 11.54

Cyp26a1 37.70 37.70 37.48 11.35

Ch25h 34.47 34.48 32.50 10.74

Pank1 34.81 34.88 35.55 10.61

9930021J03Rik 29.71 29.81 28.71 10.32

Klf9 23.14 23.17 23.34 10.26

Ubtd1 41.98 42.03 41.71 10.25

Lipk 34.01 34.05 34.29 10.23
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Chapter 4

Software

qtl2pleio is a freely available, open-source R (R Core Team 2018) package that I share on Github (https:

//github.com/fboehm/qtl2pleio). qtl2pleio complements the R package qtl2 (Broman et al. 2019) by

offering functions that perform a multivariate, multi-QTL scan and calculate pleiotropy test statistics from

scan results. Additionally, qtl2pleio contains functions to create profile LOD plots to aid in visualization

of scan results. qtl2pleio includes unit tests to ensure accuracy of calculations (Wickham 2011). I use the

Rcpp and RcppEigen packages to incorporate C++ code into qtl2pleio to enable faster matrix calculations

(Eddelbuettel et al. 2011; Bates and Eddelbuettel 2013).

I present below the qtl2pleio package vignette. In it, I perform pleiotropy testing with determination

of a bootstrap p-value. I also provide code to create profile LOD plots. The user needs to install the qtl2

R package in addition to qtl2pleio. Additional package vignettes, available on Github, provide additional

example analyses and details for using a computing cluster for bootstrap analysis.

4.1 Pleiotropy testing vignette

Our setting involves a pair of traits, Y1 and Y2, each of which individually (univariately) maps to a single

genomic region. Y1 and Y2 are both measured on the same subjects. The exact definition of a genomic

region is imprecise; in practice, it may be as large as 4 or 5 Mb. We seek to distinguish whether Y1 and

Y2 associations (in the genomic region of interest) arise due to a single QTL or whether there are two two

distinct loci, each of which associates with exactly one of the two traits. We recognize that more complicated

association patterns are possible, but we neglect them in this test.

https://github.com/fboehm/qtl2pleio
https://github.com/fboehm/qtl2pleio
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4.1.1 Installing qtl2pleio

We install qtl2pleio from github via the devtools R package, which is available from CRAN.

To install qtl2pleio, use install github() from the devtools package.

install.packages("devtools")

devtools::install_github("fboehm/qtl2pleio")

You may also wish to install R/qtl2 and the qtl2convert package. We will use both below.

install.packages(c("qtl2"), repos = "http://rqtl.org/qtl2")

The above line only needs to be run once on a given computer (unless you wish to install a newer version

of the package).

We then load the library into our R session with the library command:

library(qtl2pleio)

We also load the qtl2 package with the library command.

library(qtl2)

4.1.2 Reading data from qtl2data repository on github

We’ll consider the DOex data in the qtl2data repository. We’ll download the DOex.zip file before calculating

founder allele dosages.

file <- paste0("https://raw.githubusercontent.com/rqtl/", "qtl2data/master/DOex/DOex.zip")

DOex <- read_cross2(file)

Let’s calculate the founder allele dosages from the 36-state genotype probabilities.

probs <- calc_genoprob(DOex)

pr <- genoprob_to_alleleprob(probs)

We now have an allele probabilities object stored in pr.

https://devtools.r-lib.org
https://kbroman.org/qtl2
https://github.com/rqtl/qtl2convert
https://github.com/rqtl/qtl2data/tree/master/DOex
https://github.com/rqtl/qtl2data
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names(pr)

#> [1] "2" "3" "X"

dim(pr$`3`)

#> [1] 261 8 102

We see that pr is a list of 3 three-dimensional arrays - one array for each of 3 chromosomes.

We now have an allele probabilities object stored in pr.

names(pr)

#> [1] "2" "3" "X"

dim(pr$`3`)

#> [1] 261 8 102

We see that pr is a list of 3 three-dimensional arrays - one array for each of 3 chromosomes.

4.1.3 Kinship calculations

For our statistical model, we need a kinship matrix. Although we don’t have genome-wide data - since

we have allele probabilities for only 3 chromosomes - let’s calculate a kinship matrix using “leave-one-

chromosome-out”. In practice, one would want to use allele probabilities from a full genome-wide set of

markers.

kinship <- calc_kinship(probs = pr, type = "loco")

str(kinship)

#> List of 3

#> £ 2: num [1:261, 1:261] 0.6934 0.0705 0.2356 0.0558 0.0513 ...

#> ..- attr(*, "n_pos")= int 195

#> ..- attr(*, "dimnames")=List of 2

#> .. ..£ : chr [1:261] "1" "4" "5" "6" ...

#> .. ..£ : chr [1:261] "1" "4" "5" "6" ...

#> £ 3: num [1:261, 1:261] 0.6662 0.0647 0.2024 0.1129 0.0772 ...

#> ..- attr(*, "n_pos")= int 220
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#> ..- attr(*, "dimnames")=List of 2

#> .. ..£ : chr [1:261] "1" "4" "5" "6" ...

#> .. ..£ : chr [1:261] "1" "4" "5" "6" ...

#> £ X: num [1:261, 1:261] 0.4871 0.0831 0.1953 0.1043 0.1125 ...

#> ..- attr(*, "n_pos")= int 229

#> ..- attr(*, "dimnames")=List of 2

#> .. ..£ : chr [1:261] "1" "4" "5" "6" ...

#> .. ..£ : chr [1:261] "1" "4" "5" "6" ...

We see that kinship is a list containing 3 matrices. Each matrix is 261 by 261 - where the number of

subjects is 261 - and symmetric.

4.1.4 Statistical model

Before we simulate phenotype data, we first specify our statistical model.

We use the model:

vec(Y ) = Xvec(B) + vec(G) + vec(E)

where Y is a n by 2 matrix, where each row is one subject and each column is one quantitative trait. X

is a 2n by 2f design matrix containing n by f allele probabilities matrices for each of two (possibly identical)

markers. Thus, X is a block-diagonal matrix, with exactly two n by f blocks on the diagonal. B is a f

by 2 matrix. “vec” refers to the vectorization operator. “vec(B)”, where B is a f by 2 matrix, is, thus, a

(column) vector of length 2f that is formed by stacking the second column of B beneath the first column of

B.

G is a matrix of random effects. We specify its distribution as matrix-variate normal with mean being

a n by 2 matrix of zeros, covariance among row vectors a n by n kinship matrix, K, and covariance among

column vectors a 2 by 2 genetic covariance matrix, Vg.

In mathematical notation, we write:

G ∼MNn by 2(0,K, Vg)

We also need to specify the distribution of the E matrix, which contains the random errors. E is a



83

random n by 2 matrix that is distributed as a matrix-variate normal distribution with mean being the n by

2 zero matrix, covariance among row vectors In, the n by n identity matrix, and covariance among columns

the 2 by 2 matrix Ve.

E ∼MNn by 2(0, In, Ve)

In practice, we typically measure the phenotype matrix Y . We also treat as known the design matrix X

and the kinship matrix K. We then infer the values of B, Vg, and Ve.

4.1.5 Simulating phenotypes with qtl2pleio::sim1

The function to simulate phenotypes in qtl2pleio is sim1. By examining its help page, we see that it takes

five arguments. The help page also gives the dimensions of the inputs.

# set up the design matrix, X

pp <- pr[[2]] #we'll work with Chr 3's genotype data

dim(pp)

#> [1] 261 8 102

We prepare a block-diagonal design matrix X that contains two nonzero blocks on the diagonal, one for

each trait. We use here a function from the gemma2 R package to set up the needed matrix.

# Next, we prepare a design matrix X

X <- gemma2::stagger_mats(pp[, , 50], pp[, , 50])

dim(X)

#> [1] 522 16

# assemble B matrix of allele effects

B <- matrix(data = c(-1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1,

-1, 1, 1, 1, 1), nrow = 8, ncol = 2, byrow = FALSE)

# verify that B is what we want:

B

#> [,1] [,2]

#> [1,] -1 -1
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#> [2,] -1 -1

#> [3,] -1 -1

#> [4,] -1 -1

#> [5,] 1 1

#> [6,] 1 1

#> [7,] 1 1

#> [8,] 1 1

# set.seed to ensure reproducibility

set.seed(2018 - 1 - 30)

# call to sim1

Ypre <- sim1(X = X, B = B, Vg = diag(2), Ve = diag(2), kinship = kinship[[2]])

Y <- matrix(Ypre, nrow = 261, ncol = 2, byrow = FALSE)

rownames(Y) <- rownames(pp)

colnames(Y) <- c("tr1", "tr2")

Let’s perform univariate QTL mapping for each of the two traits in the Y matrix.

s1 <- scan1(genoprobs = pr, pheno = Y, kinship = kinship)

Here is a plot of the results.

plot(s1, DOex$pmap$`3`)

plot(s1, DOex$pmap$`3`, lod = 2, col = "violetred", add = TRUE)

legend("topleft", colnames(s1), lwd = 2, col = c("darkslateblue",

"violetred"), bg = "gray92")
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We see that the two traits share a peak on Chr 3.

And here are the observed QTL peaks with LOD > 8. In practice, we could do a permutation test to

determine a threshold for family-wise error rate control.

find_peaks(s1, map = DOex$pmap, threshold = 8)

#> lodindex lodcolumn chr pos lod

#> 1 1 tr1 3 82.77806 16.19704

#> 2 2 tr2 3 82.77806 18.26406

#> 3 2 tr2 X 103.79061 16.19708

4.1.6 Perform two-dimensional scan as first step in pleiotropy vs. separate QTL

hypothesis test

We now have the inputs that we need to do a pleiotropy vs. separate QTL test. We have the founder allele

dosages for one chromosome, i.e., Chr 3, in the R object pp, the matrix of two trait measurements in Y,

and a LOCO-derived kinship matrix. We also specify, via the start snp argument, the starting point for

the two-dimensional scan within the array of founder allele dosages. Here, we choose the 38th marker in

the array as the starting point. Via the n snp argument, we specify the number of markers to include in

the two-dimensional scan. Here, we input 25, so that we fit the bivariate linear mixed effects model at
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25*25 = 625 ordered pairs of markers. In practice, we usually use between 100 and 300 markers for most

two-dimensional scans.

Lastly, we specify the number of cores to use, with the n cores argument. We set it to 1 here, to ensure

that the vignette can be run by CRAN. However, in practice, you may wish to increase the number of cores

to accelerate computing.

out <- scan_pvl(probs = pp, pheno = Y, kinship = kinship$`3`,

start_snp = 38, n_snp = 25, n_cores = 1)

#> starting covariance matrices estimation with data from 261 subjects.

#> covariance matrices estimation completed.

The number of cores available will vary by computer. For example, on my Macbook pro computer, with

16GB RAM, I have access to 8 cores. If I use all 8, I can’t do other computing tasks, so I often set n cores

to 7.

To check how many cores are available on your computer, run this code.

parallel::detectCores()

Create a profile LOD plot to visualize results of two-dimensional scan To visualize results from

our two-dimensional scan, we calculate profile LOD for each trait. The code below makes use of the R

package ggplot2 to plot profile LODs over the scan region.

out

#> # A tibble: 625 x 3

#> Var1 Var2 loglik

#> <chr> <chr> <dbl>

#> 1 JAX00108034 JAX00108034 -866.

#> 2 backupUNC031096286 JAX00108034 -863.

#> 3 JAX00525579 JAX00108034 -865.

#> 4 JAX00525718 JAX00108034 -865.

#> 5 UNC030088171 JAX00108034 -864.

#> 6 backupUNC030474070 JAX00108034 -864.

#> 7 backupUNC030474244 JAX00108034 -863.
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#> 8 UNC030103315 JAX00108034 -862.

#> 9 UNC030107226 JAX00108034 -861.

#> 10 JAX00527615 JAX00108034 -861.

#> # ... with 615 more rows

We see that out is a 625 by 3 tibble, as expected. The first two columns contain the marker ids for each

ordered pair of markers. The third column contains the log-likelihood values.

library(dplyr)

#>

#> Attaching package: 'dplyr'

#> The following objects are masked from 'package:stats':

#>

#> filter, lag

#> The following objects are masked from 'package:base':

#>

#> intersect, setdiff, setequal, union

out %>% tidy_scan_pvl(DOex$pmap$`3`) %>% add_intercepts(intercepts_univariate = c(82.8,

82.8)) %>% plot_pvl(phenames = c("tr1", "tr2"))

#> Warning: Removed 49 rows containing missing values (geom_path).
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We first pass the scan pvl output, i.e., out, to the function tidy scan pvl to add the physical map

coordinates to the out tibble. We pipe that output to the add intercepts function. This function adds

columns for the univariate peak positions. Note that we need to specify the univariate peak positions by

hand. In the current case, the two traits have identical peak positions.

Finally, the output of add intercepts is piped to plot pvl. This function uses ggplot2 functions to

create a profile LOD plot with three “traces”: one for each trait and a third for all ordered pairs under the

pleiotropy hypothesis.

Calculate the likelihood ratio test statistic for pleiotropy v separate QTL We use the function

calc lrt tib to calculate the likelihood ratio test statistic value for the specified traits and specified genomic

region.

(lrt <- calc_lrt_tib(out))

#> [1] 0
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Bootstrap analysis to get p-values

The calibration of test statistic values to get p-values uses bootstrap methods because we don’t know the

theoretical distribution of the test statistic under the null hypothesis. Thus, we use a bootstrap approach

to obtain an empirical distribution of test statistic values under the null hypothesis of the presence of one

pleiotropic locus.

We will use the function boot pvl from our package qtl2pleio.

We use a parametric bootstrap strategy in which we first use the studied phenotypes to infer the values

of model parameters. Once we have the inferred values of the model parameters, we simulate phenotypes

from the pleiotropy model (with the inferred parameter values).

A natural question that arises is “which marker’s allele probabilities do we use when simulating pheno-

types?” We use the marker that, under the null hypothesis, i.e., under the pleiotropy constraint, yields the

greatest value of the log-likelihood.

Before we call boot pvl, we need to identify the index (on the chromosome under study) of the marker

that maximizes the likelihood under the pleiotropy constraint. To do this, we use the qtl2pleio function

find pleio peak tib.

(pleio_index <- find_pleio_peak_tib(out, start_snp = 38))

#> loglik13

#> 50

set.seed(2018 - 11 - 25)

b_out <- boot_pvl(probs = pp, pheno = Y, pleio_peak_index = pleio_index,

kinship = kinship$`3`, nboot_per_job = 10, start_snp = 38,

n_snp = 25)

The argument nboot per job indicates the number of bootstrap samples that will be created and ana-

lyzed. Here, we set nboot per job = 10, so we expect to see returned a numeric vector of length 10, where

each entry is a LRT statistic value from a distinct bootstrap sample.

Finally, we determine a bootstrap p-value in the usual method. We treat the bootstrap samples’ test

statistics as an empirical distribution of the test statistic under the null hypothesis of pleiotropy. Thus, to

get a p-value, we want to ask “What is the probability, under the null hypothesis, of observing a test statistic

value that is at least as extreme as that which we observed?”
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b_out

#> [1] 2.8881948 0.0000000 0.9943472 0.0000000 1.1553322 0.6764714 0.0000000

#> [8] 1.1446433 0.0000000 1.0460109

(pvalue <- mean(b_out >= lrt))

#> [1] 1

In practice, one would want to use many more bootstrap samples to achieve an empirical distribution

that is closer to the theoretical distribution of the test statistic under the null hypothesis.

However, if one wants to perform analyses with a reasonable number - say 400 - bootstrap samples,

this will take a very long time - many days - on a single laptop computer. We have used a series of

computer clusters that are coordinated by the University of Wisconsin-Madison’s Center for High-throughput

Computing (http://chtc.cs.wisc.edu). We typically are able to analyze 1000 bootstrap samples in less than

24 hours with this service.

4.1.7 Session info

devtools::session_info()

#> - Session info ----------------------------------------------------------

#> setting value

#> version R version 3.5.3 (2019-03-11)

#> os macOS Mojave 10.14.3

#> system x86_64, darwin15.6.0

#> ui RStudio

#> language (EN)

#> collate en_US.UTF-8

#> ctype en_US.UTF-8

#> tz America/Chicago

#> date 2019-03-17

#>

http://chtc.cs.wisc.edu
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Chapter 5

Conclusions

I’ve successfully developed a pleiotropy test for multiparental populations. I discussed our new methods in

Chapter 2. In developing a pleiotropy test for multiparental populations, our novel contributions included

accommodation of multiple alleles and incorporation of polygenic random effects to account for complicated

patterns of relatedness. In Chapter 3, we illustrated the test’s use in three vignettes. The first vignette

compared pleiotropy testing with mediation analysis in the dissection of expression trait QTL hotspots.

I learned that the pleiotropy test provides information about the number of underlying QTL even when

mediation analyses don’t identify intermediates. Pleiotropy testing also serves as a useful screen before

applying mediation analyses for a collection of putative intermediates. The second vignette examined my

test’s power to detect separate QTL in pairs of local expression traits. I learned that both interlocus distance

and univariate LOD scores impact test statistic values. I was unable to find a strong relationship between

allele effects patterns and statistical power. In the last vignette, I applied my test to two gut microbiome-

related traits. From this analysis, I learned that the two traits share a pleiotropic QTL and, thus, it is

reasonable to conduct further causal modeling studies for these two traits. Chapter 4 demonstrates features

of the qtl2pleio R package. qtl2pleio provides functions for multi-dimensional, multi-QTL scans. It also

creates profile LOD plots and performs bootstrap tests to get p-values for the pleiotropy test statistics. This

package uses the data structures in the R package qtl2 (Broman et al. 2019). I now conclude the thesis

with brief discussions of limitations and future research.
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5.1 Limitations

5.1.1 A d-variate pleiotropy test

Pleiotropy tests for two traits at a time have a valuable role in complex trait genetics. However, to fully

use the tens of thousands of experimentally measured traits, we need to consider testing more than two

traits at a time. Suppose that five traits map to a single region spanned by 100 markers. One might

perform a series of
(
5
2

)
= 10 bivariate QTL scans and 10 pairwise tests for pleiotropy. Each bivariate scan

would require 1002 = 10, 000 model fits by generalized least squares. Alternatively, one could perform a

d-variate QTL scan, with d = 5 in this case. With the results of the d-variate scan, a variety of statistical

hypotheses could be tested. For example, one could formulate a test for the null hypothesis that all five

traits share a pleiotropic QTL against the alternative that the first two traits share a single QTL and the

last three traits share a distinct, pleiotropic QTL. The d-variate scan over the 100-marker region, would

require 100d = 1005 = 10 billion model fits via generalized least squares. With distributed computing

resources, including the resources at the University of Wisconsin’s Center for High-throughput Computing,

this is not an unreasonable volume of computing. The use of C++, instead of R, for generalized least squares

calculations decreases the computing time for each model fit.

My qtl2pleio R package contains code that performs d-variate, d-QTL scans for a genomic region. In

this thesis, I set d = 2 for all analyses, yet the code and theory accommodate d > 2. The major hurdle

in performing d-variate, d-QTL scans, as the above calculations suggest, is the computing time. Yet, even

without modifying the current qtl2pleio code base, I can use computing clusters to complete multivariate,

multi-QTL scans in reasonable time periods when d is 3, 4, or 5.

Before applying the d-variate pleiotropy test to experimental data, I would characterize its statistical

properties, like I did for the bivariate test in Chapter 2. I would examine power and type I error rate for a

variety of settings and distinct values of d.

5.1.2 Pleiotropy test power and allele effects patterns

Based on findings from Macdonald and Long (2007) and King et al. (2012) I anticipated finding a stronger

relationship between allele effects patterns and pleiotropy test power (Section 3.2 and Figure 3.11). Mac-

donald and Long (2007) and King et al. (2012) argue that similar allele effects patterns for two traits in

multiparental populations favor pleiotropy over separate QTL when the QTL is bi-allelic. I would like to in-

vestigate this question with simulated traits in which we know the true genetic architecture. In Chapter 3.2,
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we used experimental data where I don’t know the true number of QTL alleles.

To address this question, I would perform a simulation study. I would first study pleiotropic (simulated)

traits to see if they show evidence of similar allele effects, as measured by correlation between fitted values,

when the QTL is bi-allelic. Because the Diversity Outbred mice have eight alleles at every locus, I want to

consider the 22 partititions of eight alleles. The partition number (22 for eight objects) is the number of

ways to form nonempty subsets with (unlabeled) objects. Because I’m concerned with merely the number

of objects in each subset, rather than the labels of the objects, I only need to examine the 22 partitions. For

example, one of the 22 partitions of eight objects is to have two subsets, where one subset has one allele and

the other has seven alleles. A second partition of the 22 partitions of eight objects is to have eight subsets,

with each subset containing exactly one allele.

5.2 Future research

5.2.1 Selection bias

Selection bias is a known concern in QTL studies (Lande and Thompson 1990). Sometimes termed the

“Beavis effect”, after a researcher who described it in QTL studies (Beavis et al. 1991; Beavis 1994), selection

bias arises when characterizing the QTL effect on the trait of interest. Given that a QTL is discovered, the

estimated effect, in terms of proportion of trait variance explained, tends to overestimate the true effect

(Broman and Sen 2009). Additionally, the number of detected QTL is biased downward in a genome-wide

study (Beavis 1998). Originally described in two-parent crosses, King and Long (2017) found evidence for

the Beavis effect in multiparental Drosophila melanogaster populations. QTL studies in Diversity Outbred

mice likely exhibit similar phenomena. Xu (2003) attributed the Beavis effect to the observation that QTL

are only reported when the evidence in favor of a QTL exceeds a quantitative threshold. When Xu (2003)

considered the appropriate truncated distributions, the experimental findings agreed with the theoretical

expected results.

In my studies, I identify traits of interest as pairs in which each shows sufficiently strong evidence of

univariate QTL in a single genomic region. Identifying the traits of interest, then, is subject to the Beavis

effect. To my knowledge, the impact of the Beavis effect on pleiotropy testing has not been studied. The

direction of the Beavis effect on my pleiotropy test remains unclear at the time of this writing. Recall that

our pleiotropy test statistic is the difference in log likelihood values under the alternative and under the null

hypothesis. If there truly are two distinct QTL for a pair of traits, then it may be that the Beavis effect
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inflates the pleiotropy test statistic because the maximum log likelihood value in the two-dimensional grid

may be more inflated than the maximum log likelihood along the diagonal (i.e., under pleiotropy). This

question could be studied with simulated phenotypes using the genotypic data from Keller et al. (2018).

5.2.2 Determining significance thresholds for LOD difference and LOD differ-

ence proportion statistics

One methodological question that arose in Chapter 3 is that of determining significance thresholds in me-

diation analyses. Chick et al. (2016), in a landmark investigation of mediation methods for sytems genetics

studies, approximated the null LOD difference statistic distribution with an empirical distribution of sham

intermediates. Keller et al. (2018) used an arbitrary threshold of 1.5 for declaring significant LOD difference

statistics. To accommodate signals of differing strengths, I calculated LOD difference proportion statistics

for the traits that Keller et al. (2018) studied. However, I made no effort to determine a significance threshold

for LOD difference proportion statistics.

To address the issue of determining a significance threshold for LOD difference proportion statistics, one

could borrow from Chick et al. (2016) the idea of using sham mediators, and calculate the LOD difference

proportion for each sham mediator. The collection of LOD difference proportion statistics for sham mediators

would provide an empirical null distribution with which to compare the observed statistics. Instead of using

experimentally obtained sham mediators, one could also simulate sham mediators.

5.2.3 Collapsing eight alleles to two to enhance power

Yandell (2019) developed the R package qtl2pattern in which he collapses eight founder allele dosages into

two “pattern probabilities”. The assumption here is that, for some genomic regions, there may be only two

alleles at each marker. If I can recognize the binary “SNP distribution pattern” for the genomic region, I

could then collapse the eight alleles into two groups. For example, it may be that A, B, C, D, E, and F

lines all have the same alleles at a sequence of markers, while G and H share a different set of alleles over

the same interval. I would then partition the eight founder alleles into two groups, 1. ABCDEF and 2. GH,

and determine the pattern probabilities. It might be that my pleiotropy test power would increase if I were

to use the binary allele pattern probabilities instead of using the eight founder allele dosages.

At the present time, this is an open research question. I would begin with a simulation study using

Diversity Outbred mouse genotypic data from (Keller et al. 2018). With a collection of simulated traits, I
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would know the true allele patterns. I would then compare statistical power when I perform my pleiotropy

test with each of the two encodings of genotype data, the eight founder allele dosages and the pattern

probabilities.

5.2.4 Multiple testing in mediation analysis

I learned in Chapter 3 that my pleiotropy test is a useful screen before performing mediation analyses. One

application of this fact is in reducing the number of mediation analyses when examining an expression QTL

hotspot. Doing fewer mediation analyses leads to a less strict significance threshold for the LOD difference

and related test statistics. I envision a procedure in which one performs a collection of pleiotropy tests

pairing local expression traits with nonlocal expression traits, like I did in Section 3.1. With the results of

these tests, one may identify local expression trait - nonlocal expression trait pairs that are consistent with a

single pleiotropic locus. Subsequent mediation analysis, for only those trait pairs that arise from pleiotropic

loci, would be done. In this manner, I would reduce the number of mediation analyses, and reduce the

impact of inflated family-wise error rate.
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