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Abstract

In 2000, Eliashberg, Givental, and Hofer [EGH00] sketched a new approach called sym-

plectic field theory to construct invariants of contact and symplectic manifolds. Despite

an extensive literature [AM12], [Bo02], [Bo09], [BEE11], [BEE12], [BCE07], [BC05],

[BEHWZ], [BO09], [Us99], [MLY04] even cylindrical contact homology, the least com-

plex of these invariants, has yet to be rigorously defined or computed in any non-trivial

situation. This paper establishes how the heuristic arguments sketched in the afore-

mentioned literature are not sufficient to define a homology theory. After introducing a

class of contact forms which we call dynamically separated, see Definition 1.2, we pro-

vide a rigorous foundation for cylindrical contact homology in dimension 3, reliant only

upon established analytic techniques [ADfloer], [CFHW], [Dr04], [H93], [H99], [HK99],

[HWZI], [HWZ02], [MSbigJ ], [Sa99], [Sc95], [We10]. We then provide a new aproach to

compute cylindrical contact homology for a large class of examples. The issue of invari-

ance under the choice of nondegenerate dynamically separated contact form or choice of

compatible almost complex structure remains unresolved.
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Chapter 1

Introduction and results

Symplectic field theory started with an impressionistic outline in 2000 by Eliashberg,

Givental, and Hofer in [EGH00]. As stated in the introduction of their paper, it contained

practically no proofs and was meant only as a “very sketchy overview” of what contact

homology and other related invariants should be if all the analytic difficulties could be

resolved. For many years the issues in understanding compactness and transversality

were not discussed in conjunction with cylindrical contact homology. See [AM12], [Bo02],

[Bo09], [BEE11], [BEE12], [BEHWZ], [BCE07], [BO09], [Us99], [MLY04]. Transversality

issues with multiply covered curves and their branched covers cannot be avoided by

merely excluding contractible Reeb orbits of a particular index, as has been asserted in

existing literature. Without transversality one has no way of guaranteeing that what

has been computed is an invariant or even a homology.

The ongoing polyfold project by Hofer, Wysocki, and Zehnder [H06], [HWZ10a],

[HWZ10b], [HWZgw] has been fruitful in overcoming various issues arising in pseudo-

holomorphic curve dependent theories, but the analytic foundations of contact homology

are still a work in progress. The main obstacle is due to multiply covered pseudoholo-

morphic curves and their branched covers, as these yield nonempty moduli spaces of

nonpositive virtual dimension. Standard methods of perturbing J as in [FHS95] fail to

do away with these moduli spaces because the chain complexes for contact homology
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have been set up with an unavoidable S1-symmetry. All known perturbation schemes

rely on breaking the underlying S1-symmetry, and hence are not appropriate for contact

homology. As a result a completely general definition of cylindrical contact homology

still awaits an appropriate theory of so-called abstract perturbations.

While linearized contact homology will not be discussed in this paper, we remark

that the presence of these same moduli spaces of multiply covered pseudoholomorphic

curves also prevents this theory from being a well-defined homology theory. It has been

claimed in the literature that linearized contact homology, a more general theory, can be

defined even when cylindrical contact homology cannot be [Bo09], [BO09] but the lack of

transversality results suggests otherwise. More details on transversality and regularity

can be found in Section 5.3 and 6. However, by restricting our attention to a class of

contact forms that satisfy a uniform growth in their Conley-Zehnder indices, we will

see that in dimension 3 we can construct a well-defined cylindrical contact homology,

though unresolved issues in proving invariance still remain. We call such contact forms

dynamically separated and give the precise definition in Definition 1.2.

For the uninitiated we begin with a brief recollection of how one aims to construct

contact homology, with more details contained in later chapters. We denote by (M, ξ)

a co-oriented contact manifold of dimension 2n − 1 and denote a globally defining 1-

form for the contact structure by α, so that ker α = ξ. The general philosophy in

these pseudoholomorphic curve homology theories is to transfer the finite dimensional

Morse theory picture of critical points and negative gradient flow to the infinite dimen-

sional world of closed periodic orbits and pseudoholomorphic curves by making use of a

Fredholm theory that is well-behaved under certain transversality assumptions.

Cylindrical contact homology aims to be a Z2-graded object defined over Z2-coefficients
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after an appropriate selection of a nondegenerate contact form α, used to define the con-

tact structure ξ. When using the canonical absolute Z2 grading, one assigns a Reeb orbit

an odd grading when it is positive hyperbolic and an even grading when it is elliptic or

negative hyperbolic. In certain cases, such as when c1(ξ) = 0 we can use the existence of

a volume form to upgrade to a Z-grading. For this to be well-defined, we stipulate that

H1(M) = 0 to ensure that there is only one homotopy class of trivializations associated

to the complex line bundle that is the canonical representation of −c1(ξ). Otherwise the

Z-grading will not be independent of the choice of volume form. Further details may be

found in [Se00] and [Se06]. In this paper we assume that c1(ξ) = 0 and H1(M) = 0.

For the purposes of this paper it suffices to restrict ourselves to Z2-coefficients, though

we mention that there is a notion of coherent orientations which would allow one to

define contact homology over Z-coefficients or Q-coefficients; an introduction to these

conventions may be found in [BM04] as adapted from Floer theory in [FH93]. The chain

complex C∗ is comprised of all nondegenerate closed Reeb orbits and their iterates,

associated to a contact manifold (M, ξ = kerα), which appear naturally as the critical

points of the symplectic action functional

A : C∞(S1,M) → R,

γ 7→
∫
γ

α.

The Reeb vector field Rα is uniquely determined by

ι(Rα)dα = 0, α(Rα) = 1.

The differential ∂ depends on the choice of a compatible almost complex structure J

and counts rigid1 pseudoholomorphic curves interpolating between closed Reeb orbits.

1These are elements of a moduli space with virtual dimension 0, that is these curves connect Reeb
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The pseudoholomorphic curves in this context are solutions of the Cauchy-Riemann

equation, specifically maps

u : (R× S1, j)→ (R×M,J)

satisfying

∂̄j,Ju := du+ J ◦ du ◦ j ≡ 0

subject to finite energy condition, which implies that the infinite ends of the domain

converge to closed Reeb orbits at ±∞ in the symplectization. Such curves are called

asymptotically cylindrical or finite energy pseudoholomorphic curves. The grading in

contact homology of a Reeb orbit is given by

|γ| = µCZ(γ) + n− 3

where n appears in the dimension of the contact manifold M2n−1, and µCZ is the Conley-

Zehnder index of a path of symplectic matrices obtained from the linearization of the

flow along γ, restricted to ξ. This index is a Maslov type index for arcs of symplectic

matrices which is a generalized winding number that controls embedding properties of

pseudoholomorphic curves. Understanding the behavior of pseudoholomorphic curves

and demonstrating that the counts of such objects is independent of all the choices one

made along the way and invariant of the underlying contact manifold requires that all

moduli spaces be cut out transversally.

The initial motivation for concocting such a homology theory is so that one can

qualitatively understand the behavior of any Reeb vector field associated to ξ. This is in

general hard because there are many different contact forms defining the same contact

orbits of Conley-Zehnder index difference 1 in the symplectization.
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structure, whose corresponding Reeb vector fields could have wildly different flows. If

it were well-defined, cylindrical contact homology would serve as a powerful qualitative

invariant, providing concrete relationships between topological aspects of a contact man-

ifold and any Reeb dynamics associated to the contact structure ξ. Applications of such

a theory include determining if every Reeb vector field associated to a particular contact

structure ξ admit a closed characteristic (the Weinstein Conjecture) or distinguishing

different contact structures. These questions are very much analogous to those found in

the world of symplectic topology and Hamiltonian dynamics.

The conjecture from the original [EGH00] paper of Eliashberg, Givental, and Hofer

that has only been presented with a sketch of a proof, is as follows.

Conjecture 1.1. Let (M2n−1, ξ) be a co-oriented contact manifold2. Further assume

that all closed orbits of the Reeb vector field associated to α are non-degenerate and that

there are no contractible orbits of grading |γ| = −1, 0, 1. Then for every free homotopy

class ā

(i) ∂2 = 0

(ii) H∗(C
ā
∗ , ∂) is independent of the contact form α for ξ, and the compatible almost

complex structure J.

We will see in Sections 5 and 6 that an abstract perturbation package is required

to show that ∂2 = 0 and to prove invariance under these general assumptions. This

is because the exclusion of orbits with grading -1, 0, 1 is not sufficient to preclude the

breaking phenomenon exhibited by pseudoholomorphic cylinders due to the presence of

nonempty moduli spaces of nonpositive virtual dimension.

2Co-oriented means there exits a global α ∈ Ω1(M) such that ξ = kerα
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Moreover, we need to demonstrate that the rigid pseudoholomorphic cylinders over

Reeb orbits are regular so that one can modify gluing arguments from Floer homology

to the world of contact homology. These regularity results are necessary to prove that

(C∗, ∂) forms a chain complex and to construct the the chain homotopy equation. A

thorough discussion of transversality and regularity requirements can be found in in

Sections 4, 5, and 6, and details on gluing arguments and the geometry of the moduli

spaces may be found in in Section 7.

By restricting ourselves to the following class of contact forms, which we term dy-

namically separated, we will be able to exclude the presence of moduli spaces of

nonpositive virtual dimension. We also obtain regularity results for all asymptotically

cylindrical pseudoholomorphic cylinders after a generic choice of J in the symplectiza-

tion and for all asymptotically cylindrical pseudoholomorphic cylinders which do not

limit on positive hyperbolic orbits of the same index in a cobordism. These are defined

as follows.

Definition 1.2. We call a contact form associated to (M3, ξ) dynamically separated

whenever the following two conditions are satisfied.

(i) 3 ≤ µCZ(γ) ≤ 5, for all closed simple contractible Reeb orbits γ.

(ii) µCZ(γk) = µCZ(γk−1) + 4, where γj is the j-th iterate of a simple orbit γ.

(1.1)

Implicit in this definition is the assumption imposed earlier; that there exists an

absolute integral grading of the Conley-Zehnder indices of our Reeb orbits. Hence we

must assume that c1(ξ) = 0 and H1(M) = 0. We explain the full details of this in

Section 9, and as a result we see that this gives a integrally graded cylindrical contact

homology.
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In order to exclude moduli spaces of nonpositive virtual dimension we use the uniform

increase in Conley-Zehnder index in conjunction with the assumption that 3 ≤ µCZ(γ) ≤

5, for all closed simple contractible Reeb orbits γ. We can then appeal to the work of

Wendl [We10] and Dragnev [Dr04] to surmount the aforementioned difficulties. However,

Wendl’s automatic transversality results restrict us to work only with three dimensional

contact manifolds.

The basic ideas in these arguments as follows. First we appeal to Dragnev’s regu-

larity results in [Dr04], which apply to moduli spaces consisting of somewhere injective

pseudoholomorphic curves. After a generic choice of J , these results allow us to ex-

clude the existence of nonpositive simple pseudoholomorphic cylinders associated to

dynamically separated contact forms, as simple pseudoholomorphic curves are some-

where injective. The uniform increase in Conley-Zehnder allows us to appeal to Wendl’s

automatic transversality results to obtain the requisite regularity results for multiply

covered pseudoholomorphic cylinders in symplectizations. In addition, the restriction to

the class of nondegenerate dynamically separated contact forms enables us to exclude all

nonpositive moduli spaces of pseudoholomorphic curves that could appear in the break-

ing phenomenon of asymptotically cylindrical pseudoholomorphic curves, obstructing

∂2 = 0.

Together these results allow us to conclude that the boundary of the set of pseudo-

holomorphic cylinders with index difference 2 consists only of broken trajectories, which

are cylinders of index difference 1 glued along an intermediary orbit. We use these results

to prove an analogue of Floer’s gluing theorem in Section 7. The multiplicities of our

Reeb orbits and finite energy pseudoholomorphic cylinders are encoded in the structure

of the graph that can be associated to the compactification, which allows us to prove
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that ∂2 = 0.

We remark that a uniform increase which is larger than 4 would also work, provided

item (i) in the definition of dynamically separated remains. In the case of simple non-

contractible orbits there is more flexibility on the lower bound of the Conley-Zehnder

index, but one needs either 1 ≤ µCZ(γ) ≤ 3 or 3 ≤ µCZ(γ) ≤ 5 for all Reeb orbits in the

same free homotopy class in order for the regularity results of Section 6 to be applicable

to cylinders of index difference 1 or 2. The reasons why a uniform increase of 3 or 2 fails

to yield the desired results can be seen in Section 6.2.

By only considering contact manifolds equipped with nondegenerate dynamically

separated contact forms we obtain a cylindrical contact homology. When the theorem

is stated as below, the proof relies only upon established analytic techniques, as in

[ADfloer], [CFHW], [Dr04], [H93], [H99], [HK99], [HWZI], [HWZ02], [MSbigJ ], [Sa99],

and [We10].

Theorem 1.3. Let (M3, ξ) be a co-oriented contact manifold3 with a nondegenerate

dynamically separated contact form α defining ξ and J a generic compatible almost

complex structure. The vector space C∗(α) generated by the closed Reeb orbits of α

admits the linear map ∂, as defined in (8.4) satisfying ∂2 = 0, thus (C∗, ∂) forms a

chain complex.

Remark 1.4. At this time, we are unable to remove the dependence of the homology

on the choice of nondegenerate dynamically separated contact form defining ξ or the

compatible almost complex structure J . This is because the automatic transversality

are results are inconclusive for a cylinder with both ends at positive hyperbolic orbits of

3Co-oriented means there exits a global α ∈ Ω1(M) such that ξ = kerα.
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the same Conley-Zehnder index in a cobordism.

After establishing that a meaningful formulation of cylindrical contact homology ex-

ists, it is desirable to demonstrate it can be computed in a rigorous fashion for a set of

non-empty examples. As we point out later in Example 5.1, even the typically noiseless

ellipsoid fails to satisfy the stringent requirements in the definition of dynamically sepa-

rated and gives rise to a moduli space of nonpositive dimension. Adding to the difficulty

in computing cylindrical contact homology is the requirement that the Reeb vector field

associated to α have only nondegenerate closed Reeb orbits. The understandable sym-

metric Reeb dynamics are typically associated to symmetric contact forms, which are

highly degenerate.

A generic perturbation can be used to obtain a nondegenerate contact form, but this

turns easy to understand dynamics into ones which are frequently imperceptible and

results in a perturbed Cauchy-Riemann equation, which tends to be impossible to solve

in practice. A potential way to avoid breaking nice symmetry is to use a Morse-Bott

approach to compute (cylindrical4) contact homology, which relaxes the condition of

non-degeneracy on α and permits the use of a larger class of admissible contact forms.

This framework was sketched by Bourgeois for specialized settings in his thesis [Bo02],

but never published.

We construct a new means of computing cylindrical contact homology, coming from

an explicit perturbation of the canonical contact form associated to a prequantization

space, satisfying a proportionality between the index and the action of the persisting

orbits in Section 10. This is accomplished by directly perturbing the critical manifolds

realized as Reeb orbits and establishing a natural filtration on the action of the Reeb

4This means we count cylindrical curves only.
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orbits, leading to a formal version of filtered homology. Similar methods were employed

in [CFHW] to determine the stability of the action spectrum of the contact type bound-

ary of symplectic manifolds in the world of symplectic cohomology. By appealing to the

realization of (S3, ξstd) as a prequantization space and making use of this approach, we

are able to rigorously compute the cylindrical contact homology for the standard sphere.

This approach does not rely on those ideas of Bourgeois, nor on those of [AM12], [vK08],

[Mo11], [Pa09], [Us99], [Va12], [MLY04].

The methods of this paper can be used to compute cylindrical contact homology of

certain circle bundles over symplectic manifolds, namely prequantization spaces. The

author is currently extending these methods to circle bundles over certain symplectic

orbifolds, such as the Seifert fibered spaces. We are able to directly show via Conley-

Zehnder index considerations that the differential vanishes in the computation for cylin-

drical contact homology of (S3, ξstd). This agrees with what has been conjectured, should

an abstract perturbation package exist. The geometric details of these methods are

sketched in the following section.

1.1 Prequantization

It is well known that one can realize the contact 3-sphere (S3, ξstd = kerλ0) as the Hopf

fibration

S1 ↪→ S3 h−→ S2

h(u, v) = (2uv̄, |u|2 − |v|2), (u, v) ∈ S3 ⊂ C2

over the standard symplectic 2-sphere (S2, ω0). This setup generalizes to the contact

(2n + 1)-sphere, obtained as a circle bundle h : S2n+1 → CPn over complex projective
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space. Alternatively one may think of this as the restriction of the tautological line

bundle over CPn to the unit sphere in Cn+1. Each one of these constructions is a

canonical example of a prequantization space, whose definition we recall as follows.

Take (Σ2n−2, ω) to be a symplectic manifold and suppose that the cohomology class

−[ω]/(2π) ∈ H2(Σ;R) is the image of an integral class e ∈ H2(Σ;Z). Let h : V 2n−1 → Σ

be the principal S1 bundle with first Chern class e. This means that S1 acts freely on

V with quotient Σ and that the primary obstruction to finding a section Σ → V is

e ∈ H2(Σ;Z). The derivative of the S1 action, denoted R, is a vector field on V tangent

to the fibers. Since ω is a closed form in the cohomology class −2πe, there exists a

real-valued connection 1-form λ on V whose curvature is ω. These conditions mean λ is

invariant under the S1 action, λ(R) = 1, and dλ = h∗ω. It follows that λ is a contact

form on V whose associated Reeb vector field is none other than R. This framework

means that the Reeb orbits are comprised of the fibers of this bundle, by design of period

2π, and their iterates.

This construction lends itself to a natural perturbation of (S3, λ0) and holds for any

prequantization space. It is comprised of adding a small lift of a Morse-Smale function

on (S2, ω0), or on (Σ2n−2, ω) in the more general setting, to the original contact form

λε = (1 + εh∗H)λ0. (1.2)

Since (1 + εh∗H) > 0 for small ε > 0, the contact structure remains unchanged as ker

λε = ker λ0 = ξstd. The perturbed Reeb dynamics are given by

Rε =
R

1 + εh∗H
+

εX̃H

(1 + εh∗H)2 . (1.3)
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Here XH is a Hamiltonian vector field5 on S2 and X̃H its horizontal lift,

i.e. dh(q)X̃H(q) = XεH(h(q)) and λ0(X̃H) = 0.

The only fibers that remain Reeb orbits of this perturbed contact form are the fibers

over the critical points of H. For small enough ε we will be able to show that these

surviving orbits are non-degenerate. However we obtain additional Reeb orbits that

cover closed orbits of XH . Since εH and εdH are small, these Reeb orbits all have

periods much greater than 2kπ, for some sufficiently small choice of ε(k). In Sections

9 and 10 we demonstrate that by letting ε → 0 these Reeb orbits become increasingly

long and that they ultimately do not contribute to cylindrical contact homology. This

is accomplished by appealing to a formal construction of a filtration on the action and

index and showing that up to a given action6 level T there is a choice of ε such that the

dynamically separated condition holds for the perturbed contact form λε.

Here is a precise formulation of the needed results.

Lemma 1.5. For all actions T, we can choose ε0 > 0 sufficiently small so that for all ε

such that 0 < ε < ε0 all periodic orbits of Rε in (1.3) of action T′ ≤ T are nondegenerate

and all simple orbits of action T′ ≤ T are in one-to-one correspondence with the critical

points of H.

For p a critical point of H, we denote by γkp the k-fold cover of the simple Reeb orbit

γ over p. The Morse index of H at p is denoted by indexp(H). The following formula

gives the Conley-Zehnder index of closed Reeb orbits of (S3, λε) over critical points p of

H.

5We use the convention ω(XH , ·) = dH.
6Note that the action of a Reeb orbit is synonymous with length.
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Theorem 1.6. Let ε0 be chosen such that Lemma 1.5 holds so that γp is a nondegenerate

orbit over a critical point p of H and all k-fold covers of γp of action T′ ≤ T are also

nondegenerate. Then the formula for their Conley-Zehnder indices is given by

µCZ(γkp ) = 4k − 1 + indexp(H). (1.4)

Thus the grading7 for cylindrical contact homology is

|γkp | = µCZ(γkp )− 1

= 4k − 2 + index p(H).
(1.5)

The computations of Sections 9 and 10 tell us that for some choice of ε0 the only

closed Reeb orbits of the perturbed Reeb vector field Rε, where ε < ε0, of action less

than

Tk := 2πk + 1

must lie in one fiber and occur as a k-fold multiple cover of a simple Reeb orbit lying

over a critical point of the Morse-Smale function in the base. We denoted these Reeb

orbits by γkp .

Theorem 9.7 establishes a proportionality between the action and index of the Reeb

orbits γkp as we obtain

µCZ(γkp ) = 4k − 1 + indexpH.

This natural filtration on both the action and the index allow us to compute a formal

version of filtered cylindrical contact homology. The proportionality between the action

and index of the Reeb orbits, permits the use of direct limits to recover the full cylindrical

7The grading in contact homology of a Reeb orbit is |γ| = µCZ(γ) + n − 3 where n appears in the

dimension of the contact manifold M2n−1.
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contact homology from the truncated chain groups, consisting of

C<Tk
∗ (S3, λεk , H) = {γjp | j ∈ [1, k] and p ∈ Crit(H)}.

This process is analogous to the approach taken in symplectic cohomology, however we

will not make use of continuation maps and will instead appeal directly to the propor-

tionality that has been established between the action and index of the Reeb orbits

under consideration.

One useful byproduct of this approach is that we can compute a well-defined cylindri-

cal contact homology of standard contact 3-sphere by taking H = z, the height function

on S2 (see also Figure 1). We obtain a maximum at the north pole (index 2) and a

minimum at the south pole (index 0). Thus, because index increases by 4 each time we

wrap around a closed orbit we are able to apply Theorem 1.3 and obtain the expected

result. The truncated chain complexes will be generated only by the fibers of the Hopf

fibration and their k-fold covers, lying over the critical points of H. In the case that

H is the height function, we obtain Reeb orbits in C<Tk
∗ (S3, λεk) which have only odd

Conley-Zehnder index, so the differential vanishes. We are presently working on demon-

strating that the resulting differential for different choices of H behaves analogously to

the the Morse-Smale differential on S2 and the Morse orbifold differential in the more

general setting.

Given the ambiguity in regards to invariance we cannot conclude that the homology

is invariant of H or the almost complex structure J . We obtain

Theorem 1.7. The direct limit of the homology of the truncated chain complexes,
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Figure 1: −∇H for H = z with a fiber over S2

H∗(C
<Tk
∗ (M,λε)) for the sphere (S3, λ0, H), with H = z is the height function is de-

fined after a generic choice of J and given by

lim−→
ε→0

lim−→
k→∞

H∗(C
<Tk
∗ (M,λε)) = lim−→

k→∞
lim−→
ε→0

H∗(C
<Tk
∗ (M,λε))

=

 Z2 ∗ ≥ 2 and even,

0 ∗ else.

Remark 1.8. We clarify that the above theorem is not meant to suggest that we have

computed cylindrical contact homology for the standard contact form λ0, but rather

indicates that we have chosen a specific Morse-Smale function H. Then we use the

filtration on the action and index to recover the limit of the truncated cylindrical contact

homology for this choice, as λε is dynamically separated up to a given action level, which

is inversely proportional to ε.
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We conjecture that we should be able to obtain invariance for other choices of H,

other choices of generic compatible almost complex structures J , and other dynamically

separated contact forms associated to (S3, ξstd) in regards to the above theorem. These

issues of invariance will be addressed in future work.

Remark 1.9. We point out that these methods do not generalize in the obvious way

to the standard contact (2n+ 1)-sphere, due to the lack of transversality and regularity

results for symplectizations of contact manifolds of dimensions greater than 3. By ob-

vious we refer to the fact that the contact (2n + 1)-sphere can be obtained as a circle

bundle over CPn and taking H([z0 : z1 : ... : zn]) =
∑n

j=1 j|zj|2 as the Hamiltonian on

the base.
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Organization of the article. The necessary notions from contact and symplectic

geometry are found in Chapter 2. The basics of pseudoholomorphic curves are given in

Chapter 3 and the preliminaries of the moduli spaces constructed is provided in Chapters

4. Issues of transversality for multiply covered curves and their branched covers and the

geometry of moduli spaces of pseudoholomorphic curves in symplectizations is discussed

in Chapters 5 and 6. Gluing and its implications on the structure of the moduli spaces
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is discussed in Chapter 7, as well .

With the analytic foundations in place, we are able to give an overview of cylin-

drical contact homology and the proof of Theorem 1.3 in Section 8. Conley-Zehnder

index computations are carried out in Chapter 9. Natural filtrations on both the ac-

tion and index give rise to a formal version of filtered homology, allowing us to recover

cylindrical contact homology of bundles equipped with a perturbed contact form which

is dynamically separated. This is established in Chapter 10, and combined with the

Conley-Zehnder index results yields Theorem 1.7.
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Chapter 2

Contact considerations

A contact structure ξ equipped to a compact manifold M2n−1 is a maximally non-

integrable hyperplane distribution. This means that one can always locally (and globally

in the case of co-orientable structures) write ξ as the kernel of a 1-form α such that

α ∧ (dα)n−1 is a volume form for M . This is equivalent to the condition that dα be

nondegenerate on ξ. Note that the contact structure is unaffected when we multiply the

contact form α by any strictly positive or negative function on M .

We say that two contact structures ξ0 = ker α0 and ξ1 = ker α1 on a manifold M are

contactomorphic whenever there is a diffeomorphism ψ : M → M such that ψ sends

ξ0 to ξ1:

ψ∗(ξ0) = ξ1

Note that the diffeomorphism ψ : M → M being a contactomorphism is equivalent

to the existence of a non-zero function g : M → R such that ψ∗α1 = gα0. Finding

an explicit contactomorphism often proves to be a rather difficult and messy task, but

an application of Moser’s argument yields Gray’s stability theorem, which essentially

states that there are no non-trivial deformations of contact structures on a fixed closed

manifold.

Theorem 2.1 (Gray’s stability theorem). Let ξt, t ∈ [0, 1], be a smooth family of contact
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structures on a closed manifold M . Then there is an isotopy (ψt)t∈[0,1] of M such that

ψt∗(ξ0) = ξt for each t ∈ [0, 1]

A proof of Gray’s stability theorem can be found in [Ge08].

Associated to a contact form α there is a Reeb vector field, transverse to ξ.

Definition 2.2. For any contact manifold (M, ξ), with α a contact form for ξ, the Reeb

vector field is defined as the unique vector field determined by α such that

ι(Rα)dα = 0, α(Rα) = 1.

The first condition says that Rα points along the unique null direction of the form

dα and the second condition normalizes Rα. Because

LRαα = dιRαα + ιRαdα,

the flow of Rα preserves the form α and hence the contact structure ξ. Note that if one

chooses a different contact form fα, the corresponding vector field Rfα is potentially

very different from Rα, and its flow may have wildly different properties. However one

might expect that the dynamics be qualitatively determined by ξ, providing the initial

motivation for constructing a homology theory.

We will primarily be interested in studying closed orbits of the Reeb vector field so

we review the associated terminology. We will refer to closed orbits of the Reeb vector

field as Reeb orbits. Moreover, two Reeb orbits, each of period T

γ, γ′ : R/TZ→M

are considered equivalent if they differ by reparametrization, i.e. precomposition with a

translation of R/TZ. If γ : R/TZ → M is a Reeb orbit and k a positive integer, then
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the k-fold cover or iterate of γ is the composition of γ with R/kTZ→ R/TZ. We call

a Reeb orbit γ simple if and only if it is not the k-fold iterate of another Reeb orbit

where k > 1. Simple orbits are sometimes called embedded orbits.

Next we will define what it means for a Reeb orbit γ : R/TZ to be nondegenerate,

which requires us to explain the notion of a linearized return map. Let ϕT : M → M

denote the diffeomorphism obtained by flowing along the Reeb vector field for time T .

From above, we know that this preserves the contact form, thus for any t ∈ R/TZ we

obtain a symplectic linear map

Φγ := dϕT : (ξγ(t), dα)→ (ξγ(t), dα),

which is known as the linearized return map associated to the Reeb orbit γ. A

more geometric interpretation of this map may be realized as follows. Let D be a small

embedded disk in M centered at γ(t) and transverse to γ, such that

Tγ(t)D = ξγ(t).

For x ∈ D close to the center, there is a unique point in D which is reached by following

the Reeb flow for a time close to T , yielding a partially defined “return map” φ : D → D

defined near the origin. The derivative of this map at the origin is the linearized return

map Φγ.

Definition 2.3. We say that the Reeb orbit γ is nondegenerate whenever Φγ does

not have 1 as an eigenvalue. Alternatively one says that 1 is not a Floquet multiplier

associated to γ.

We remark that the nondegeneracy condition does not depend on the choice of t ∈

R/TZ because the linearized return maps for different t are conjugate to each other. If
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the Reeb orbit γ is nondegenerate, then it is isolated, because Reeb orbits close to γ

give rise to fixed points of the map φ and the condition that 1− dφ be invertible at the

origin implies that φ has no fixed points near the origin.

Furthermore, the Reeb vector field gives us a natural splitting of the tangent bundle

of M ,

TM = 〈Rα〉 ⊕ ξ. (2.1)

This follows from the fact that dα is nondegenerate on ξ and since ξ = kerα, no nonzero

vector can simultaneously annihilate dα and α.

Next we briefly review the canonical contact form on S3 and its Reeb dynamics.

Example 2.4 (Canonical Reeb dynamics on the 3-sphere). If we define the following

function f : R4 → R

f(x1, y1, x2, y2) = x2
1 + y2

1 + x2
2 + y2

2,

then S3 = f−1(1). Recall that the canonical contact form on S3 ⊂ R4 is given to be

λ0 := −1

2
df ◦ J = (x1dy1 − y1dx1 + x2dy2 − y2dx2) |S3 . (2.2)

The Reeb vector field is given by

R =

(
x1

∂

∂y1

− y1
∂

∂x1

+ x2
∂

∂y2

− y2
∂

∂x2

)
.

Equivalently we may reformulate these using complex coordinates by identifying R4 with

C2 via

u = x1 + iy1, v = x2 + iy2.

We obtain

λ0 =
i

2
(udū− ūdu+ vdv̄ − v̄dv)|S3 ,
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and

R = (ix1 − y1, ix2 − y2)

= (iu, iv)

= i

(
u
∂

∂u
− ū ∂

∂ū
+ v

∂

∂v
− v̄ ∂

∂v̄

) (2.3)

To see that the orbits of R define the fibers of the Hopf fibration recall that a fiber

through a point

(u, v) = (x1 + iy1, x2 + iy2) ∈ S3 ⊂ C2,

can be parameterized as

ϕ(t) = (eitu, eitv), t ∈ R. (2.4)

We compute the time derivative of the fiber

ϕ̇(0) = (iu, iv) = (ix1 − y1, ix2 − y2).

Expressed as a real vector field on R4, which is tangent to S3, this is the Reeb vector field

R as it appears in Equation 2.3, so the Reeb flow does indeed define the Hopf fibration.

2.1 Hypersurfaces of contact type and symplectiza-

tions

As contact geometry is the odd-dimensional sibling of symplectic geometry, one expects

a natural setting where we might observe an interdependence between them. The most

useful constructions relating the two arise when we consider hypersurfaces in symplectic

manifolds, which admit a natural contact form. To understand this geometry, we first

need to give the definition of a Liouville vector field. References to these constructions

include the textbooks [MSintro] by McDuff and Salamon as well as [Ge08] by Geiges.
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Definition 2.5. A Liouville vector field Y on a symplectic manifold (W,ω) is a vector

field satisfying

LY ω = ω

The flow ψt of such a vector field is conformal symplectic, i.e. ψ∗t (ω) = etω. Note that

the flow of these fields are volume expanding, so such fields may only exist locally on

compact manifolds.

We say that a hypersurface Q ⊂ (W,ω) is of contact type, whenever Q is a codimen-

sion 1 submanifold of W which admits a contact form α that agrees with the symplectic

form, i.e.

dα = ω|Q.

Note that for a hypersurface Q of a symplectic manifold, whenever there exists a

Liouville vector field Y defined in a neighborhood of Q, which is transverse to Q, we can

define a 1-form on Q by the formula.

α := ιY ω.

In the following proposition we see that this is a contact form on any hypersurface Q

transverse to Y , which agrees with the symplectic form, i.e. dα = ω|Q.

Proposition 2.6. Assume (W,ω) admits a Liouville vector field Y , defined in a neigh-

borhood of a hypersurface Q with Y transverse to Q. Then Q is of contact type.

Proof. The Cartan formula

LY = d ◦ ιY + ιY ◦ d
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combined with the fact that ω is closed allows us to write the Liouville condition on Y

as d(ιY ω) = ω. Assuming W to be of dimension 2n, we compute:

α ∧ (dα)n−1 = ιY ω ∧ (d(ιY ω))n−1

= ιY ω ∧ ωn−1

= 1
n
ιY (ωn)

Since ωn is a volume form on W , it follows that α ∧ (dα)n−1 is a volume form when

restricted to the tangent bundle of any hypersurface transverse to Y in W .

The following is a useful result demonstrating that the existence of Liouville vector

fields transverse to a hypersurface Q ⊂ (W,ω) is equivalent to the existence of a contact

form on Q which is compatible with ω.

Proposition 2.7. Let (W,ω) be a symplectic manifold and Q ⊂ W a compact hyper-

surface. Then the following are equivalent

(i) There exists a contact form α on Q such that dα = ω|Q.

(ii) There exists a Liouville vector field Y : U → TW defined in a neighborhood U of Q,

which is transverse to Q.

Proof. First assume that (ii) is satisfied and define α = ιY ω. Then

dα = d(ιY ω) = ω

Since TqQ is odd dimensional, there exists a nonzero ṽ ∈ TqQ such that ωq(ṽ, v) = 0 for

all v ∈ TqQ. Since ω is nondegenerate we have αq(ṽ) = ωq(Y (q), ṽ) 6= 0. Hence

ξq = {v ∈ TqQ | ωq(Y (q), v) = 0}

is a hyperplane field on Q and ṽ is transversal to ξq. In fact, ξq is the symplectic comple-

ment of span{Y (q), ṽ}. This implies ω = dα is nondegenerate on ξq and hence α restricts
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to a contact form on Q.

Conversely suppose that α ∈ Ω1(Q) is a contact form such that dα = ω|Q. Let

Rα ∈ χ(Q) be the Reeb vector field of α:

ιRαdα = 0, ιRαα = 1

Choose a vector field Y ∈ χ(W ) such that

ω(Y,Rα) = 1, ω(Y, ξ) = 0

on Q. This can be done by picking any vector field Y0 such that ω(Y0, Rα) = 1 on Q.

Then for every q ∈ Q there exists a unique vector Y1(q) ∈ ξq such that ω(Y0 +Y1, v) = 0

for all v ∈ ξq. Define Y = Y0 + Y1 on Q and extend to a vector field on W. Next we

define φ : Q× R→ W by

φ(q, t) = expq(tY (q))

Then

φ∗ω|Q×{0} = φ∗dα|Q×{0}

= d(φ∗α)|Q×{0}

= d(etα)|Q×{0}

= dα− α ∧ dt

Now by Moser’s argument there exists a local diffeomorphism ψ : Q× (−ε, ε)→M such

that

ψ(q, 0) = q, ψ∗ω = et(dα− α ∧ dt).

So the required Liouville vector-field is ψ∗(
∂
∂t

).
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Example 2.8. The radial vector field

X0 =
1

2

n∑
j=1

xj
∂

∂xj
+ yj

∂

∂yj

is a Liouville vector field on R2n \ {0}. It is transverse along the unit sphere S2n−1. The

corresponding 1-form

λ0 = ιX0ω0 =
1

2

n∑
j=1

(xjdyj − yjdxj) (2.5)

is the canonical contact form for S2n−1.

There are 2 equivalent means of defining the symplectization in the case of a co-

oriented contact structure1, each endowing the symplectization with the structure of a

principal bundle with structure group R or R+. In discussions involving pseudoholo-

morphic curves, one typically uses the construction with structure group R. We take

(M,α = ker ξ) to be a contact manifold, whose symplectization is given by the mani-

fold R×M , to which we may associate the following symplectic form

ω = eτ (dα− α ∧ dt) = d(eτα).

Here τ is the coordinate on R, and it should be noted that α is interpreted as a 1-form

on R ×M , as we identify α with its pullback under the projection R ×M → M . A

simple calculation demonstrates that

Y =
∂

∂τ

gives the Liouville vector field, enabling one to realize (M,α) as a hypersurface of contact

type inside its symplectization (R ×M,d(eτα)). The symplectization (R ×M,d(eτα))

is a fiber bundle over M whose fibers are precisely the orbits of the Liouville vector

1If (M, ξ) is not co-oriented then the symplectization has structure group R∗.
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field ∂
∂τ

. Thus we see that in fact the symplectization is a principal bundle over M with

structure group R.

2.2 Almost complex structures

The other required component of a pseudoholomorphic curve theory is the notion of an

almost complex structure. Recall that any contact structure ξ may be equipped with a

complex structure J such that (ξ, J) is a complex vector bundle.

We denote the set of compatible almost complex structures on ξ by

J = {J : ξ → ξ | J2 = −1, dα(J ·, J ·) = dα(·, ·), dα(·, J ·) > 0}.

This set is nonempty and contractible, as in the symplectic case which is discussed in

[MSintro]. We can consider (ξ, dα, J) as a symplectic vector bundle with a Hermitian

structure. Isomorphism classes of symplectic vector bundles are in a 1-1 correspondence

with complex vector bundles. As a result (ξ, J) is frequently said to be a complex vector

bundle, and one suppresses the ‘almost’ in almost complex structure despite the fact

that we do not require elements of J to be integrable.

Next we describe the canonical extension of the almost complex structure J to R×M ,

which we will call J̃ . This is possible from the aforementioned splitting of the tangent

bundle of M ; see (2.1). This splitting allows us to realize the tangent bundle of the

symplectization as

T (R×M) = R
∂

∂τ
⊕ RRα ⊕ ξ. (2.6)

Definition 2.9 (Canonical extension of J to J̃ on R×M). Writing a tangent vector as

[a, b; v] where a, b ∈ R and v ∈ ξ we may define the extended almost complex structure
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J̃ on R×M by

J̃ [a, b; v] = [−b, a, Jv].

Hence J̃ |ξ = J and J̃ acts on R ∂
∂τ
⊕RRα in the same manner as multiplication by i acts

on C, namely J̃ ∂
∂τ

= Rα. Note that this procedure uniquely determines the extension of

J to J̃ .

The naturality in the way we have defined this complex structure is illustrated in the

following example.

Example 2.10. Consider S3 ⊂ C2 with its standard contact form, see Example 2.4.

Recall that for a point p ∈ S3 we can equivalently define ξp as the set of complex

tangencies at p, namely

ξp = TpS
3 ∩ J(TpS

3).

This is the unique complex subspace of C2 that is contained in TpS
3. Hence the restric-

tion of the standard complex structure

i : TC2 → TC2

(p, v) 7→ (p, iv)

yields a compatible almost complex structure J on ξ.

In addition, we note that the following map is a diffeomorphism

ϕ : R× S3 → C2 \ {0}

(τ, p) 7→ e2τp

satisfying Dϕ ◦ J̃ = i ◦Dϕ. Its inverse is given by

ψ : C2 \ {0} → R× S3

z 7→
(

1

2
ln |z|, z

|z|

)



29

Thus we see that the symplectization of S3 admits the “same” complex structure as

well.
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Chapter 3

The letter J is for

pseudoholomorphic

Pseudoholomorphic curves are defined in symplectic manifolds after selecting a compati-

ble almost complex structure, but prove to be considerably more analytically challenging

in non-compact symplectic manifolds. In the world of contact geometry we consider them

in the symplectization of a contact manifold (see Section 2.1). They were first used by

Hofer [H93] in this context to prove the Weinstein conjecture for S3. The statement of

the Weinstein Conjecture is as follows, and was originally formulated in [W79].

Conjecture 3.1 (The Weinstein Conjecture). Let ξ be a contact structure on M . Then

for any contact form defining ξ the associated Reeb vector field has at least one periodic

orbit.

We note that for contact manifolds of dimension 3 the Weinstein Conjecture was

proven by Taubes in [T07]. A nice summary of the history and development of the

Weinstein Conjecture, as well as an outline of Taubes’ proof is given by Hutchings in

[Hu10].

We will cover the necessary notions in the following sections, but the interested reader

may wish to supplement our discussion with [H99], [HK99], [HWZI].
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3.1 Pseudoholomorphic curves in symplectizations

Given a Riemann surface (which is not necessarily assumed to be compact) (Σ, j) and

a symplectic manifold (W,J) equipped with a compatible almost complex structure, a

map u : (Σ, j)→ (W,J) is called a pseudoholomorphic curve whenever

∂̄j,Ju := du+ J ◦ du ◦ j ≡ 0, (3.1)

or equivalently,

du ◦ j = J ◦ du. (3.2)

In words, a pseudoholomorphic curve must satisfy the Cauchy-Riemann equation (3.1)

which is equivalent to the condition that it has a complex-linear differential (3.2).

The curve u is considered equivalent to another pseudoholomorphic curve u′ :

(Σ′, j′) → (W,J) if there exists a holomorphic bijection φ : (Σ, j) → (Σ′, j′) such that

u′ ◦ φ = u. For the sake of brevity, we often refer to a “pseudoholomorphic curve” as

u, although we are actually formally considering a equivalence class of triples (Σ, j, u)

satisfying the above conditions, which should be written as [Σ, j, u].

If we take (W,J) to be the symplectization with its standard complex structure

(R×M, J̃), as discussed in Section 2.2, then one can reformulate the complex linearity

condition of a tangent map Dpu for α + iβ ∈ C and z ∈ TpΣ as

Dpu((α + iβ)z) = αDpu(z) + βJ̃Dpu(z).

Remark 3.2. A pseudoholomorphic curve u defined from a closed surface Σ into the

symplectization is necessarily constant. We will prove this later in Section 3.3 as Propo-

sition 3.13.
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In light of the above remark, we will specifically consider pseudoholomorphic curves

from a multiply punctured Riemann sphere to the symplectization (R×M,ω := d(etα))

with almost complex structure J̃ . We will frequently write a pseudoholomorphic curve

in a symplectization as u = (a, f) where a ∈ R and f ∈M .

For cylindrical contact homology we will be interested in counting rigid1 pseudoholo-

morphic curves whose domain is homotopic to a cylinder. These pseudoholomorphic

curves will have the twice punctured sphere as their domain, but since (S2 \ {x, y}, j0)

is holomorphic to (R × S1, jcyl), we can alternatively use the infinite cylinder as our

domain. In addition, j0 is taken to be the standard complex structure on S2, restricted

to the punctured sphere, and as such j0 will typically be suppressed in the notation.

Here are two baby examples to give the flavor of the sorts of pseudoholomorphic

curves we will be interested in studying.

Example 3.3. Let γ : R→M be a closed orbit of the Reeb flow. Then

u : (C, j0) → (R×M, J̃)

x+ iy 7→ (x, γ(y))

is a pseudoholomorphic curve.

Example 3.4. If γ is a T -periodic orbit of the Reeb vector field then

v : (R× S1, j) → (R×M, J̃)

(s, e2πit) 7→ (Ts, γ(Tt))

1These are elements of a moduli space with virtual dimension 0, that is these curves connect Reeb

orbits of Conley-Zehnder index difference 1 in the symplectization. Explanations of this jargon will

follow in subsequent chapters.
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is pseudoholomorphic as well. Note that u is a pseudoholomorphic cylinder mapping to

the Reeb orbit γ under the natural projection p : R ×M → M . Often one writes u as

R× γ.

The types of pseudoholomorphic curves we will be most interested in studying are

those which asymptotically limit on closed nondegenerate orbits of the Reeb vector field

as we approach a puncture of Σ̇. This behavior is exhibited by a certain subclass of

pseudoholomorphic curves, which was first noticed and discussed at length by Hofer,

Wysocki, and Zehnder in [H93], [HWZI], [HWZII]. These will be pseudoholomorphic

curves which have a specific finite energy associated to them.

Before we can describe the asymptotics and define the energy, we must study the

local behavior of solutions to the Cauchy-Riemann equations. Then we can give the

appropriate definitions of area and Hofer energy of a pseudoholomorphic curve. We will

revisit the pseudoholomorphic curves of Examples 3.3 and 3.4 in Section 3.3, to better

understand behavior exhibited by the subclass of pseudoholomorphic curves which have

finite positive energy and area.

3.2 Local behavior

It will be useful to understand the local behavior of pseudoholomorphic curves. By

working in local coordinates, we can obtain a maximum principle as well as some other

identities which will be helpful in the following sections. We denote by u := (a, f) :

(Σ̇, j) → (R ×M, J̃) a pseudoholomorphic curve in the symplectization of (M,α). Let

X be a local nowhere vanishing vector field on Σ̇ and define Y = J ◦X, yielding a local

frame.



34

Remark 3.5. Note that while X and Y are non-vanishing globally because there exists

a global Hermitian trivialization of T Σ̇, we cannot a priori conclude that globally they

come from a coordinate system on R2n. However since {X, Y } are a global frame, we

can obtain a global 2-form by taking the dual of the polyvector field X ∧ Y , which we

denote by

Ω{X,Y } = (X ∧ Y )∗

For the purposes of this section it is preferable to work locally with coordinate (s+

it) ∈ C by associating X with ∂
∂s

and Y with ∂
∂t

. However in later sections, the above

remark will allow us to work with a general global frame.

We will be interested in considering closed Riemannian surfaces with a finite number

of points removed, thus we can find a Hermitian trivialization of TΣ. As a result we

may think in terms of a global frame { ∂
∂s
, ∂
∂t
}. Recall that there is a projection π of the

tangent bundle of M along the Reeb vector field

π : TM → ξ.

Then

us := Du ◦ ∂

∂s
: Σ→ T (R×M) ∼= R

∂

∂τ
⊕ RRα ⊕ ξ

can be written as

us(z) = [as(z), αfs(z); πfs(z)],

where fs = Df ◦ ∂
∂s

. Similarly we have

ut(z) := Du ◦ ∂
∂t

= [at, αft; πft].

Now we can check that u = (a, f) is pseudoholomorphic if and only if

us + J̃ut = 0. (3.3)
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We have that (3.3) is equivalent to
as = α(ut),

at = −α(us)

πut = Jπus

(3.4)

The first two equations of (3.4) can be written as

f ∗α = −da ◦ j = ∗dα, where ∗ denotes the Hodge star operator. (3.5)

The third equation of (3.4) means that the map π ◦ df : TΣ → ξ is complex linear on

each fiber, hence π ◦Df(z) is either zero or an isomorphism. Differentiating (3.6) yields

f ∗dα = d(da ◦ j) = ∆a ds ∧ dt, where ∆a = ass + att. (3.6)

Therefore,

∆a = f ∗dα

(
∂

∂s
,
∂

∂t

)
= dα(fs, ft) = dα(πfs, Jπft) = |πus|2 = |πut|2,

as dα(·, J ·) defines a metric on ξ. Hence the function a is subharmonic. As a result of the

strong maximum principle, see for example [HK99], we obtain the following maximum

principle, applicable to pseudoholomorphic curves in symplectizations.

Proposition 3.6 (Maximum principle). If the real valued portion a of a pseudoholo-

morphic curve u := (a, f) assumes a local maximum in the interior of Σ̇ then u is the

constant map.

3.3 Energy and area

The following energy and area estimates will prove extremely useful in understanding

the behavior of pseudoholomorphic curves in noncompact symplectic manifolds with
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cylindrical ends. To provide some motivation for the importance of such notions, we

first visit the concept of area in the case of pseudoholomorphic curves whose images live

in closed symplectic manifolds. In this case, we recall that the crucial assumption in

Gromov’s compactness theorems is that the area of the curve be finite, defined as follows.

Let ν : (Σ, j) → (N, J), with (Σ, j) be a pseudoholomorphic curve defined on a closed

Riemann surface into a closed symplectic manifold (N,ω) equipped with a compatible

almost complex structure J . Then the area of ν is given by

A(ν) =

∫
Σ

ν∗ω. (3.7)

Since the almost complex structure J has been chosen to be compatible with the

symplectic form ω, this means that A(ν) is essentially the area of the image of the curve

ν measured in terms of the Riemannian metric g = ω(·, J ·). In addition, because ω is

closed, we know that this quantity A(ν) is actually a topological invariant of the map ν.

This means that the areas of pseudoholomorphic curves are controlled by straightforward

topological data.

When one is only concerned with closed symplectic manifolds, the area is often

referred to as the energy of a pseudoholomorphic curve and denoted by E(ν) in

the literature. In the setting that we are interested in we will need to modify the usual

notion of energy, as the area of the image of a non-compact proper pseudoholomorphic

curve in an open symplectic manifold with cylindrical ends is never finite with respect

to any complete metric. Moreover in the case of symplectizations, we will see that there

exist no non-constant compact pseudoholomorphic curves.

In [HWZI] and [HWZ02], Hofer, Wysocki, and Zehnder introduced quantities com-

monly referred to as the area and (Hofer) energy of a pseudoholomorphic curve. The
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first serves as a substitute for the notion of area as above in (3.7) and the finiteness of the

latter provides a relationship between the asymptotic behavior of the pseudoholomorphic

curve and the dynamics of a nondegenerate Reeb vector field of the contact manifold.

We will call these the area and energy of a pseudoholomorphic curve respectively, and

they are defined as follows.

As before, we take (Σ, j) to be a closed connected Riemann surface and Γ ⊂ int Σ a

finite set of interior punctures, with Σ̇ = Σ\Γ. The target of interest is (R×M,d(etα)),

the symplectization of a contact manifold (M,α), equipped with a compatible almost

complex structure J̃ , as defined in Definition 2.9. Let u := (a, f) : (Σ̇, j)→ (R×M, J̃)

be a pseudoholomorphic curve.

Definition 3.7. The area of the pseudoholomorphic curve u is given by the formula

A(u) :=

∫
Σ̇

u∗dα =

∫
Σ̇

f ∗dα. (3.8)

In some literature the area is called the ω-energy or dα-energy where ω = d(eτα)

is the symplectic form on the symplectization of (M,α). In early literature on contact

homology this was referred to simply as energy. We will not use these conventions and

refer to it as the area and denote it by A(u). Note that the area depends only on the M -

component, f , of the curve u. From the discussion of the local behavior in the preceding

section we have the following result regarding the non-negativity of area.

Proposition 3.8 (Non-negativity of area). For any finite area pseudoholomorphic curve

u we have

A(u) :=

∫
Σ̇

f ∗dα ≥ 0

Proof. The local computations (3.6) allow us to write

f ∗dα ≥ 0 = |πus|2ds ∧ dt = |πut|2ds ∧ dt,
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where π is the projection of the tangent bundle of M along the Reeb vector field

π : TM → ξ.

We can go through the same process in global coordinates by making use of the global

frame {X, Y } as discussed in Remark 3.5. Namely, we may write

uX := Du ◦X : Σ̇→ T (R×M) ∼= R
∂

∂τ
⊕ RRα ⊕ ξ

as

uX(z) = [aX(z), αfX(z); πfX(z)],

where fX = Df ◦X. Similarly we have

uY (z) := Du ◦ Y = [aY , αfY ; πfY ],

as well as the obvious analogue of (3.4) and (3.6). Recall that we obtain a non-vanishing

2-form from the dual of the polyvector field X ∧ Y , which we denote by

Ω{X,Y } = (X ∧ Y )∗.

Then globally we obtain that

A(u) :=

∫
Σ̇

f ∗dα =

∫
Σ̇

|πuX |2Ω{X,Y } =

∫
Σ̇

|πuY |2Ω{X,Y } ≥ 0

as desired.

Combined with the local computations of (3.4) we obtain the following corollary.

Corollary 3.9. If a pseudoholomorphic cylinder u := (a, f) has A(u) = 0 then the

image f(Σ̇) is contained in a trajectory of the Reeb vector field Rα.
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In order to define the Hofer energy of a pseudoholomorphic curve u, which we

denote by E(u), we need to use a class of smooth maps to extend the contact form α on

M to a 1-form on R×M . This is done as follows. Let

S = {φ ∈ C∞(R, [0, 1]) | φ′ ≥ 0}

and define for φ ∈ S the 1-form αφ on R×M by:

αφ(τ, p)(ρ, v) := φ(τ)αp(v) for (ρ, v) ∈ T(τ,p)(R×M).

Definition 3.10. The Hofer energy of u is given by

E(u) := sup
φ∈S

∫
Σ̇

u∗dαφ.

The Hofer energy of a pseudoholomorphic curve is also referred to as α-energy. In

this paper we will refer to it simply as energy, which is also typical.

Proposition 3.11 (Non-negativity of energy). For any finite energy pseudoholomorphic

curve u we have

E(u) := sup
φ∈S

∫
Σ̇

u∗dαφ ≥ 0.

Proof. One may compute the integrand in light of the local computations of Section 3.2

with respect to the local frame {∂s, ∂t},

u∗dαφ = (φ′(a)|∇a|2 + φ(a)∆a)ds ∧ dt = (φ′(a)|∇a|2 + φ(τ)|πfs|2)ds ∧ dt.

As in the proof of Proposition 3.11 we can convert this into the following global non-

negative expression,

u∗dαφ = (φ′(a)|∇a|2 + φ(τ)|πfX |2)Ω{X,Y } ≥ 0. (3.9)
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As a corollary we see that E(u) > 0 implies that u is non-constant, based on the

expression we obtain for the integrand, (3.9).

Corollary 3.12. E(u) = 0 if and only if u is constant.

This energy condition sorts out normalizations of algebraic curves among all pseudo-

holomorphic curves in the case of S3 with its standard form and is discussed in [HK99].

This suggests that one should view finite energy pseudoholomorphic curves as noninte-

grable generalizations of algebraic curves. In a way they form the subclass of pseudoal-

gebraic curves in the class of pseudoholomorphic curves. The interested reader may find

more details on this in [HK99] as will not discuss this matter further here.

This corollary allows us to prove that any pseudoholomorphic curve defined on a

closed Riemannian surface is constant by Stokes’ theorem.

Proposition 3.13. A pseudoholomorphic curve u defined on a closed surface Σ into the

symplectization of a contact manifold, i.e. (R×M,d(eτα)) is constant.

Proof. Stokes’ theorem yields ∫
Σ

u∗dαφ =

∫
∂Σ

u∗αφ = 0.

for all φ ∈ S hence E(u) = 0.

Next we revisit the examples we began with, to better understand the different

controls that area and energy have on a pseudoholomorphic curve. In the next section we

will introduce the asymptotics of [HWZI] associated to finite energy pseudoholomorphic

curves and delve deeper into the implications that finite energy has on the behavior of

pseudoholomorphic curves.
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If the area of a curve is zero, we see from the expression for the area of a pseudo-

holomorphic curve as given in Proposition 3.11 that this is equivalent to

πuX = πuY = 0.

Next we revisit the pseudoholomorphic curve discussed in Example 3.4 and compute its

area and energy. We will see in the next section that the behavior of the pseudoholo-

morphic curve in this example is the model for how general pseudoholomorphic curves

of finite energy behave near a puncture, namely Theorem 3.15 of [HWZI]. A corollary

of their theorem is that if we can prove the existence of a pseudoholomorphic curve with

finite energy in the symplectization of (M,α) then there exist periodic orbits of the Reeb

vector field associated to α.

Example 3.14. Recall that Example 3.4 consisted of the pseudoholomorphic cylinder

over a periodic orbit of the Reeb vector field, defined as

v : (R× S1, j) → (R×M, J̃)

(s, e2πit) 7→ (Ts, γ(Tt)),

where the Reeb orbit γ is T -periodic.

The computations done in local coordinates yield

us = T
∂

∂τ
, ut = TRα = J̃us.

Thus the we see that the area vanishes, A(u) = 0. However in this example the Hofer

energy of u satisfies

E(u) = T,

as Stokes’ theorem yields

E(u) = sup
φ∈S

lim
R→∞

∫
[−R,R]×S1

u∗dαφ = sup
φ∈S

lim
R→∞

(φ(−R)T − φ(R)T ) = T.
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Moreover we note that

lim
s→∞

f(s, t) = γ(tT ) in C∞(M),

lim
s→∞

a(s, t)

s
= γ(tT ) in C∞(R).

In other words, the M -part of u converges to a periodic orbit of the Reeb vector field of

period T , while the R-part is asymptotic to (s, t)→ Ts as s→∞.

On the other hand, we want to understand an example of a curve with E(u) = ∞.

This is the case if we consider the trivial solution of Example 3.3. Recall that this

pseudoholomorphic curve was defined by

u : (C, j0) → (R×M, J̃)

x+ iy 7→ (x, γ(y))

where γ : R→M was a closed orbit of the Reeb flow. Then if we take a function φ ∈ S

with φ 6= 0 we compute∫
C
u∗dαφ = (φ(∞)− φ(−∞))

∫
R
dt =∞.

In literature, a pseudoholomorphic curve u is said to be a finite energy curve2

whenever

0 < E(u) <∞.

Note that we are excluding all constant pseudoholomorphic curves as by required E(u) >

0. In later literature the terminology textbfasymptotically cylindrical pseudoholomor-

phic curves replaced finite energy surfaces. As this is more descriptive of the behavior of

the curves, we will use asymptotically cylindrical to describe pseudoholomorphic curves

u with 0 < E(u) <∞.
2In earlier literature these were sometimes referred to as finite energy surfaces.
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We devote the entirety of the following section to the important applications and

consequences of the finiteness of Hofer energy, as established in [H93], [HK99], [HWZI],

[HWZII], [HWZ02], [HWZ03]. In particular we will recall in Theorems 3.15 and 3.18

the significance of the concept of finite energy surfaces and their implication on the

existence of periodic orbits of the Reeb vector field, related to the asymptotic behavior

of the pseudoholomorphic curve.

3.4 Hofer energy and asymptotics

The finiteness of Hofer energy is an extremely important distinguishing characteristic

of pseudoholomorphic curves. In this section we will explore the relationship between

finiteness of energy and asymptotic behavior near the punctures of a pseudoholomorphic

curve to closed nondegenerate periodic orbit of the Reeb vector field Rα. The nature

of this asymptotic behavior will be made precise in Theorems 3.15 and 3.18. This

phenomenon and its applications first appeared in [H93] and [HWZI]. As a result, finite

energy pseudoholomorphic curves are often referred to as asymptotically cylindrical

pseudoholomorphic curves. Recall that Hofer energy was defined in Definition 3.10

of the previous section.

The following two theorems give the relationship between pseudoholomorphic curves

with finite Hofer energy and an asymptotic convergence in C∞ to nondegenerate periodic

orbits of the Reeb vector field. In addition, it tells us that if one can prove the existence

of a finite energy surface, then there exists a nondegenerate periodic orbit of the Reeb

vector field.

Theorem 3.15 (Hofer-Wysocki-Zehnder [HWZI]). Let v = (a, f) : ([0,∞) × S1, j) →
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(R×M, J̃) be a pseudoholomorphic curve having finite Hofer energy,

0 < E(v) <∞

and having its R component unbounded from above. Then the following quantity exists

and is positive,

T := lim
s→∞

∫ 1

0

f ∗α > 0.

Moreover there exists a sequence ρk →∞ such that

lim
k→∞

f(ρke
it) = γ(tT ) in C∞(R)

for a T -periodic solution γ(t) of the Reeb vector field Rα. If this solution is nondegenerate

then

lim
ρ→∞

f(ρe2πit) = γ(tT ),

with convergence in C∞(R). In the case that E(v) = 0 we have that

T := lim
s→∞

∫ 1

0

f ∗α = 0,

then the pseudoholomorphic curve w : D2 \ {0} → R×M defined by

w(e−2πz) = v(z),

can be extended smoothly to the unit disk D2.

Before we state the next theorem, pertaining to a precise description of the behavior

of pseudoholomorphic curves having finite Hofer energy near their punctures in local

coordinates, we make some remarks about the behavior of pseudoholomorphic cylinders

in relation to Theorem 3.15. Let u = (a, f) : (R×S1, j)→ (R×M, J̃) be a pseudoholo-

morphic cylinder. Then at each end u has either a removable puncture or it converges
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to a Reeb cylinder in the contact manifold M component at the +∞ or −∞ end of the

symplectization.

Since a pseudoholomorphic curve defined on a closed surface is necessarily constant

as discussed in Remark 3.13, we know that both ends cannot be removable punctures

unless u is the constant curve. In addition we know that at least one of the ends must

tend towards +∞ otherwise we obtain a contradiction with the maximum principle in

Proposition 3.6.

An alternative way of understanding Theorem 3.15, is to say that the pseudoholo-

morphic curve u : (S2 \{x, y1, ...ys}, j)→ (R×M, J̃) converges to vertical cylinders over

closed Reeb orbits at t = ±∞. We illustrate this in Figure 2.

Figure 2: A pseudoholomorphic curve u in R×M with s = 3.

Moreover, we obtain the following lemma in regard to how the symplectic action

A(γ) :=

∫
γ

α =

∫
S1

γ∗α

decreases along the pseudoholomorphic cylinders u which converge to the Reeb trajec-

tories γ+ at the positive end and γ− at the negative end. In the language of moduli
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spaces, which we explain in Section 4, one writes u ∈M(γ+; γ−).

Lemma 3.16. Suppose there exists a pseudoholomorphic cylinder u which converge to

the Reeb trajectory γ+ at the positive end and to γ− at the negative end. Then

A(γ+) ≥ A(γ−),

with equality if and only if γ+ = γ− and the image of u is an R-invariant pseudoholo-

morphic cylinder.

Proof. Let u : (R×S1, j)→ (R×M, J̃) be a pseudoholomorphic cylinder which converges

to the Reeb trajectory γ+ at the positive end and to γ− at the negative end. By Stokes’

theorem,

A(γ+)−A(γ−) =

∫
R×S1

u∗dα

We know that the integral on the right hand side converges because of the asymptotics of

u. By condition that J̃ is a compatible almost complex structure we know that u∗dα ≥ 0

in R× S1 with equality only when u is tangent to R cross the Reeb direction, i.e. when

γ+ = γ− and u is as in Example 3.4.

In other words, when u converges to the trajectories γ+ at the positive end and to

γ− at the negative end of the symplectization symplectic area may be expressed as

A(u) =

∫
R×S1

u∗dα =

∫
γ+

α−
∫
γ−

α = A(γ+)−A(γ−).

The next theorem allows us to study for large ρ, a pseudoholomorphic curve in

a tubular neighborhood of its limit γ(t). Before stating this theorem we will need to

explain some notation and construct local coordinates for particular pseudoholomorphic

curves. For the purposes of this paper we will restrict to contact manifolds of dimension
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3, but note that the results of this section can be extended for a contact manifold of

higher dimension.

We consider a pseudoholomorphic cylinder

u = v ◦ ϕ = (a, f),

with the biholomorphic map

ϕ : R× S1 → C \ {0}

(s, t) 7→ e2π(s+it).
(3.10)

Note that

lim
s→∞

f(s, t) = γ(Tt) in C∞(S1).

In the case that u converges to γ we can introduce suitable coordinates near γ, as in the

following lemma, proven in [HWZI]. As usual, we let (M,α) be a 3-dimensional contact

manifold and γ(t) a T -periodic orbit of the Reeb vector field Rα. We denote T0 to be

the minimal period so that T = kT0 for some positive integer k.

Lemma 3.17. There is an open neighborhood U ⊂ S1 × R2 of S1 × {0} and an open

neighborhood V ⊂M of

℘ = {γ(t) | t ∈ R}

and a diffeomorphism ϕ : U → V mapping S1 × {0} onto ℘ such that

ϕ∗α = fα0.

Here

α0 = xdy − dz
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is the standard contact form on R3, and f is a smooth positive function f : U → R

satisfying

f(θ, 0, 0) = T0

df(θ, 0, 0) = 0

for all θ ∈ S1.

Using the coordinates from the lemma we may write

(a, f) = (a, (θ, s, t)) = (a, (θ, (z)) = (a, ϕ−1 ◦ f). (3.11)

Working in the universal cover of S1 × R3 we may view

(a(s, t), θ(s, t), z(s, t)) : [s0,∞)× R→ R4.

where

θ(s, t+ 1) = θ(s, t) + k.

Here we assume that γ is nondegenerate and T0 = T/k is its minimal period.

In the case that u converges to γ the following theorem gives the asymptotic descrip-

tion of a nondegenerate finite energy plane. In the statement of this theorem we have

that

µ : [s0,∞)→ R

is a smooth function satisfying

lim
s→∞

µ(s) = λ < 0.

The number λ is an eigenvalue of a self adjoint operator A in L2(S1,R) related to the

linearized Reeb flow ϕt along the orbit γ(t) that we are limiting on. The operator is

defined by

A = −J0
∂

∂t
− S∞(t),
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with

S∞(t) = S∞(t+ 2π)

a symmetric, 1-periodic, smooth 2× 2 matrix function defined by

S∞(t) = −J0πmdR(m)πm

where m = (kt, 0) ∈ R× R2. Moreover,

~e(t) = ~e(t+ 1) 6= 0

is an eigenvector of A corresponding to the eigenvalue λ < 0. We are now ready to state

the following theorem.

Theorem 3.18 (Theorem 1.4 in [HWZI]). There exist constants c ∈ R and d > 0 such

that

|∂β[a(s, t)− Ts− c]| ≤ Ne−ds

|∂β[θ(s, t)− kt]| ≤ Ne−ds

for all multi-indices β, with constants N = Nβ. Moreover, we have the asymptotic

formula for the transversal approach to γ(t):

z(s, t) = e
∫ s
s0
µ(τ)dτ

[~e(t) + r(s, t)] ∈ R2,

with

lim
s→∞

∂βr(s, t) = 0 uniformly in t for all derivatives.

These notions are important in our study of the linearization of the ∂̄J̃ equation, as

it allows us to introduce a suitable system of weights on the Sobolev spaces. This will

be explained in the next chapter.



50

Chapter 4

Fredholm foundations

In this chapter we begin our study of moduli spaces of asymptotically cylindrical pseu-

doholomorphic curves from a punctured Riemann surface into the symplectization of a

contact manifold. This provides us with the functional analytic backbone to obtain the

virtual dimension of moduli spaces of such maps in terms of the Riemann surface and

the asymptotic data given by the periodic solutions of the Reeb vector field associated

to the contact form. We proceed by reviewing Dragnev’s transversality results from

[Dr04], which apply to moduli spaces consisting of somewhere injective asymptotically

cylindrical pseudoholomorphic curves. Dragnev’s results for this class of somewhere in-

jective pseudoholomorphic curves allow us to conclude that these moduli spaces are cut

out transversally after a generic choice of J , and hence smooth manifolds whose dimen-

sion coincides with the Fredholm index. Moduli spaces consisting of multiply covered

pseudoholomorphic curves are discussed later, in Chapters 5 and 6.

At the end of this chapter we state the folk theorem that a non-constant finite energy

surface factors through a somewhere injective one. This is an extension of an analogous

theorem regarding finite energy planes, proven in the appendix of Hofer, Wysocki, and

Zehnder’s [HWZII] as well as the theorem for closed curves in the book [MSbigJ ] by

McDuff and Salamon. A proof of this fact follows from taking the argument given

in McDuff-Salamon for the closed case and appealing to the behavior of finite energy
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punctured holomorphic curves near a puncture, as described in Siefrings work [Si08],

and will be given separate from this thesis.

4.1 Fredholm theory setup

We will not review the basic definitions of Fredholm operators in this paper. A lovely

exposition may be found Appendix A of [MSbigJ ]. This section provides a sketch of

the necessary functional analysis that will be used to glean information in regards to

the space of finite energy solutions of our favorite nonlinear elliptic partial differential

equation, that is maps u : Σ̇ := (Σ\{x, y1, ..., ys}, j)→ (R×M,J) satisfying the Cauchy

Riemann equation

∂̄j,Ju := du+ J ◦ du ◦ j ≡ 0.

We further assume that u is asymptotically cylindrical. This means that after par-

titioning the punctures into positive and negative subsets

Γ = Γ+ ∪ Γ−,

we can make a choice of a biholomorphic identification of a punctured neighborhood of

each z ∈ Γ± with the half-cylinder Z± which is subject to an asymptotic formula, which

we will precisely explain. Namely, we write

Z+ = [0,∞)× S1 and Z− = (−∞, 0]× S1,

and after choosing cylindrical coordinates (s, t) for u near the puncture, we have that

for |s| sufficiently large, the following asymptotic formula is satisfied

u ◦ φ(s, t) = exp(Ts,γ(Tt)) h(s, t) ∈ E±.
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Here (E−, J) ∼= ((−∞, 0]×M, J̃) and (E+, J) ∼= ([0,∞)×M, J̃)

As before, T > 0 is a constant, γ : R → M± is a T -periodic orbit of X±, and

the exponential map is defined with respect ot any R-invariant metric on R × Mω,

h(s, t) ∈ ξ|γ(Tt) goes to 0 uniformly in t as s → ±∞, and φ : Z± → Z± is a smooth

embedding such that

φ(s, t)− (s+ s0, t+ t0)→ 0 as s→ ±∞

for some constants s0 ∈ R and t0 ∈ S1. We denote by γz the T -periodic orbit parametrized

by γ and call it the asymptotic orbit of u at the puncture z. With this asymptotic

behavior in mind, it has become common to think of (Σ̇, j) as a Riemann surface with

cylindrical ends, and as such neighborhoods of the punctures are often called ends of Σ̇.

Asymptotically cylindrical pseudoholomorphic curves were studied in the work of Hofer,

Wysocki, and Zehnder [H93], [HWZI], [HWZII], [HWZIII], [HWZIV], [HWZ03]. Their

work guarantees that the asymptotically cylindrical pseudoholomorphic curves are those

which satisfy a useful finite energy condition. The details of this was discussed in Section

3.4.

While ultimately we are only interested in counting cylindrical pseudoholomorphic

curves, i.e. ones whose domain is S2 \ {x, y}, we still need to understand the more

general situation and take the domain of our pseudoholomorphic curves to be a multiply

punctured sphere (Σ̇, j) := (S2 \ {x, y1, ...ys}, j0). However, the following construction

is given generally and works for multiply punctured arbitrary Riemann surfaces, as

well as for those with more than one positive puncture. We review the main points

of the Fredholm theory associated to moduli spaces of asymptotically cylindrical

pseudoholomorphic curves. The full details of the Fredholm theory construction



53

can be found in [Dr04] and [Sc95], and we will make references to these sources as

appropriate.

The functional analysis required for studying partial differential equations problems

is often quite subtle and can seem largely unmotivated. The broad strokes of these

theories consists of abstractly recasting the partial differential equations as operators

acting on appropriate linear spaces. We write this symbolically as

A : X → Y,

where the operator A encodes the structure of the partial differential equation, including

possible boundary conditions or certain asymptotics, and X and Y are spaces of func-

tions. After making appropriate choices in regard to what the correct abstract operators

and function spaces are, we can ascertain the solvability of various equantions involving

A by invoking our favorite and now applicable theorems from functional analysis.

In the setting of interest to us, A is the linearized Cauchy-Riemann operator. The

difficulties in finding the correct spaces of functions X and Y arise from the lack of

analytic estimates necessary to demonstrating that the solutions we constructed actually

belong to spaces of functions that are neither “too smooth” nor “too ill-behaved.” As

a result, we must work in the setting of weighted Sobolev spaces. We will need an even

more souped-up version of Sobolev spaces as compared with the symplectic setting, e.g.

[MSbigJ ], to surmount the difficulties in working with linearizations of Cauchy-Riemann

operators (∂̄J̃) in open symplectic manifolds which are asymptotically cylindrical. This

data will be encoded in weights, which will describe the asymptotics near the punctures.

However the ultimate goal remains the same; we wish to demonstrate the same sorts of

geometric results may be prescribed to the space of solutions.
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We begin by describing the weighted Sobolev spaces and how they can be used

to account for the behavior exhibited by asymptotically cylindrical pseudoholomorphic

curves near their punctures, as precisely described in Theorems 3.15, 3.18. These weights

are derived from the nondegeneracy properties of the periodic orbits of the Reeb vector

field, which we will explain as follows. We warn the reader that this is quite involved to

do precisely and will take a bit of time.

Throughout we assume that we have selected a contact form α for our contact man-

ifold M , which is nondegenerate, meaning that all the Reeb orbits of Rα are nondegen-

erate. Recall that we may separate finite energy asymptotically cylindrical pseudoholo-

morphic curves u = (a, f) in symplectizations into an R-component denoted by a and

an M -component denoted by f . We further assume that f converges to nondegenerate

periodic orbits of the Reeb vector field as s → ±∞ in C∞(R). We use the coordi-

nates described immediately before (3.11) and in Theorem 3.18 to define the notion of

(δ, 1, p)-convergence.

To do this we introduce cylindrical coordinates near the puncture

u : [R,∞)→ R×M

where u(s, t)→ γ(Tt+ c) uniformly for t ∈ S1. here γ is a T -periodic orbit for the Reeb

vector field. Then we can write with φ as given in (3.10), and θ, z as given in (3.11)

f(s, t) = φ(θ(s, t), z(s, t)).

For constants c ∈ R and k ∈ Z>0 we define

ac(s, t) = a(s, t)− Ts− c

θk(s, t) = θ(s, t)− kt
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Here T = kT0, where T0 is the minimal period of γ. Later we will frequently need

cylindrical coordinates for d-different punctures of a pseudoholomorphic curve and this

will be denoted by {σi}di=1.

Definition 4.1 ( (δ, 1, p)-convergence). Let 0 < δ < ∞ and p > 2. We say that u is

(δ, 1, p)-convergent to a periodic orbit (γ, T ) of the Reeb vector field whenever

(s, t)→
(
eδsac(s, t), e

δsθk(s, t)
)

(4.1)

are in W 1,p([R,∞)× S1,R2) for some c, R ∈ R, k ∈ Z>0, and

(s, t)→ eδsz(s, t) (4.2)

is in W 1,p([R,∞)× S1,R).

Remark 4.2. If we were to work with contact manifold of dimension 2n− 1 we would

have that (4.1) is in W 1,p([R,∞)×S1,R2n−2) instead of in W 1,p([R,∞)×S1,R2). Oth-

erwise the formulation of the above definition remains the same in the setting of higher

dimensional contact manifolds.

A priori, this definition depends on the choice of ϕ as given in (3.10). The definition of

(δ, 1, p)-convergence is independent of this choice. We refer the reader to [Dr04] Lemma

2 for a proof of this useful fact.

Lemma 4.3. The definition of (δ, 1, p)-convergence is independent of the choice of ϕ.

The notion of (δ, 1, p)-convergence will be important in defining the appropriate

function spaces used to account for the behavior exhibited by asymptotically cylindrical

pseudoholomorphic curves near their punctures, as precisely described in Theorems 3.15,
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3.18. This will allow us to later understand the geometric structure of the moduli spaces

of asymptotically cylindrical pseudoholomorphic curves.

Before continuing with the definitions of the appropriate function spaces involved

in our later analysis, we will recall some notation from before. We will take Σ to be a

closed Riemann surface with a finite set of punctures Γ = Γ+ ∪Γ− and Σ̇ = Σ \Γ. Near

each puncture we have cylindrical coordinates, {σi}di=1, where d := #Γ, corresponding to

γ1, ..., γd smooth nondegenerate periodic orbits of the Reeb vector field. We will denote

the symplectization (R×M,d(eτα)) by W . We define the space

C∞γ1,...,γd(Σ̇,W ) =

{
h := (b, g) ∈ C∞(Σ̇,W ) | lim

εis→∞
(g ◦ σi)(s, t) = γi(Tit+ ei),

lim
εis→∞

1

s
[(a ◦ σi)(s, t)− Tis] = 0, ei ∈ R, i = 1, ..., d

}
.

(4.3)

Here in the limit as εis → ∞ we take εi = +1 for a positive puncture, i.e. one in Γ+,

and ε = −1 for a negative puncture. Next we must find an appropriate completion of

this space C∞γ1,...,γd(Σ̇,W ) to a Banach manifold of maps of a certain Sobolev type class,

which will involve the notion of (δ, 1, p)-convergence.

By using the projection π onto the contact structure along the Reeb vector field, we

can define the metrics gJ on M and g̃J̃ on W as follows:

gJ(X, Y ) = α(X)α(Y ) + dα(π(X), Jπ(Y )) (4.4)

g̃J̃((ρ,X), (%, Y )) = ρ%+ α(X)α(Y ) + dα(π(X), Jπ(Y )) (4.5)

Denote by ∇ and ∇̃ the Levi-Civita connections associated to gJ and g̃J̃ respectively,

along with the respective exponential maps exp and ˜exp. We obtain the following lemma.
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Lemma 4.4. Let ∇̃ and gJ be defined as above, Y a section of TM , X a section of the

contact structure ξ and Rα the Reeb vector field. Then the following holds.

1. ∇̃RαRα = 0

2. ∇̃YRα and ∇̃RαX are sections of ξ.

For a proof, see [Dr04], Lemma 3.

Next we would like to define Sobolev space structures on the pullback bundles u∗TW

for maps u such that the M -part of u converges at the punctures to the periodic orbits

of the Reeb vector field, as described in Theorems 3.15, and 3.18.

Take u0 = (a0, f0) : [R,∞) × S1 → W to be (δ, 1, p)-convergent to a periodic orbit

(γ, T = kT0) of the Reeb vector field Rα. Let

η : [R,∞)× S1 → TW

be of class W 1,p such that η(s, t) ∈ Tu0(s,t)TW . We can write

η(s, t) = (b(s, t), g(s, t)Rα(u0(s, t)) +Q(s, t)) (4.6)

where Q(s, t) ∈ ξu0(s,t).

Remark 4.5. Recall that one may define local analogues of the W k,p(Ω) spaces, denoted

by W k,p
loc (Ω), to consist of functions belonging to W k,p(Ω′) for all Ω′ compactly supported

in Ω. From functional analysis (see for instance Chapter 7 of Gilbarg and Trudinger

[GT]) we know that functions in W k,p
loc (Ω) of compact support will in fact belong to

W k,p
0 (Ω), the closure of C∞c (Ω) in W k,p(Ω).

Definition 4.6. We say that η ∈ W 1,p
δ (u∗0TW ) whenever η ∈ W 1,p

loc (u∗0TW ) with

eδs(b, g) ∈ W 1,p([R,∞)× S1,R2), (4.7)
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and

eδsQ ∈ W 1,p(u∗0ξ). (4.8)

That eδsQ ∈ W 1,p(f ∗0 ξ) means∫
|eδsQ|p +

∫
|∇se

δsQ|p +

∫
|∇te

δsQ|p <∞,

with |Q|2 = gJ(Q,Q) = dα(Q,Q) for Q ∈ ξ and the integration taken over [R,∞)× S1,

see Lemma 4.4

We define u = (a, f) when η ∈ C∞γ1,...,γd((u
∗
0TW )) and c, d ∈ R, assuming |η(s, t)| and

|c| are sufficently small, by

a(s, t) = b(s, t) + d

u(s, t) = expu0(s,t) ((g(s, t) + c)Rα(u0(s, t)) +Q(s, t)) ,

where η = (b, hRα +Q) and again, Q ∈ ξ. We have the following proposition.

Proposition 4.7. Assume u0 is (δ, 1, p)-convergent to a periodic orbit (γ, T ) and η, c, d

are described as above. Then u is (δ, 1, p)-convergent to (γ, T ). Moreover if u is (δ, 1, p)-

convergent to (γ, T ) for some η then η ∈ W 1,p
δ (u∗0TW ).

For a proof, see [Dr04], Proposition 1.

Next we will use this Sobolev space structure to complete the space C∞γ1,...,γd(Σ̇,W ),

recall (4.3), by completing it with maps from Σ̇ to W which are (δ, 1, p)-convergent at

the punctures to periodic orbits {γi}di=1 of the Reeb vector field. This will require some

more notational set up. On W we take the metric g̃J̃ as in (4.5) and ∇̃, the associated

Levi-Civita connection. Denote by D ⊂ TW the associated injectivity neighborhood of

the zero section.
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Pick ε > 0 such that 2ε is less than the injectivity radius of the zero section. We use

this to define Dε ⊂ D by

Dε = {(w, ζ) | w ∈ W, ζ ∈ TwW, ||ζ|| < ε}.

Denote by B2
ε (0) ⊂ R2 the disk of radius ε and center at 0 ∈ R2 and by D2d

ε (0) the

polydisk

D2d
ε (0) = B2

ε (0)× ...×B2
ε (0).

Let (x, y) = (x1, y1, ..., xd, yd) ∈ D2d
ε (0). Take R to be sufficently large and consider a

smooth function

κ : R→ [0, 1]

κ(s) =

 0 |s| ≤ R + 1/2,

1 |s| ≥ R + 1

Let ZR be the positive end of the infinite cylinder, [R,∞) × S1 and Z−R the negative

end, (−∞,−R] × S1. Now for h = (b, g) ∈ C∞γ1,...,γd(Ṡ,W ), we define h(x,y) as follows,

using the coordinates from Lemma 3.17 and Theorem 3.18:

h(x,y)(s, t) =

 h(s, t) on Σ \
⋃d
i=1 σi(ZεiR)

(a(s, t) + κ(s)yi, θ(s, t) + κ(s)xi, (1− κ(s))z(s, t)) on σi(ZεiR)

As before, we take εi = +1 for a positive puncture, i.e. one in Γ+, and ε = −1 for a

negative puncture. Now we are finally able to define the desired completion of the space

C∞γ1,...,γd(Σ̇,W ).

Definition 4.8. Given periodic orbits {γi}si=1 of the Reeb vector field we define

B = P1,p,δ
γ1,..,γd

(Σ̇,W ) = { ˜exp ◦ η | η ∈ W 1,p
δ

(
h∗(x,y)Dε

)
}
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where h ∈ C∞γ1,...,γd(Σ̇,W ), (x, y) ∈ D2d
ε (0), and

W 1,p
δ

(
h∗(x,y)Dε

)
= {η ∈ W 1,p

δ (h∗(x,y)TW ) | η(z) ∈ Dε, z ∈ Σ̇}.

Here we have abused notation slightly, and we point out that the less cumbersome ˜exp◦η

should be written ˜exph(x,y)(z)η(z).

We have the following theorems, whose proofs are the same as in Theorem 2.1.7 and

2.2.1 from [Sc95] and are therefore omitted.

Theorem 4.9 ([Sc95]). The space B = P1,p,δ
γ1,..,γd

(Σ̇,W ) is endowed with the differentiable

structure of an infinite dimensional, separable Banach manifold.

Remark 4.10. We point out that with the definition of B above, a Banach neighborhood

U of a map u ∈ B is described as a bundle over the polydisk D2d
ε (0),

U =
⋃

(x,y)∈D2d
ε (0)

{ ˜expu(x,y)η(z) | η ∈ W 1,p
δ (u∗(x,y)TW )}.

We may identify U with W 1,p
δ (u∗(x,y)TW ) ×D2d

ε (0) by choosing a suitable trivialization

as follows. Let

Π(x,y) : u∗TW → u∗(x,y)TW

denote parallel transport along the shortest geodesic from a point of U to a point of

u(x,y). Then we identify (η, (x, y)) ∈ W 1,p
δ (u∗(x,y)TW )×D2d

ε (0) with ˜expu(x,y)Π(x,y)η.

Theorem 4.11 ([Sc95]). The vector spaces W 1,p
δ (u∗TW ) and Lpδ(u

∗TW ) are well-defined

for every u ∈ B. Moreover

W 1,p
δ (B∗TW ) =

⋃
h∈B

W 1,p
δ (u∗TW )

Lpδ(B
∗TW ) =

⋃
u∈B

Lpδ(u
∗TW )
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are smooth vector bundles over B. There is a natural identification

ThB ∼= W 1,p
δ (u∗TW )⊕ R2d.

Our next construction is of the bundle X J̃ over Σ̇×W . It is defined as follows

X J̃ = Λ0,1Σ̇⊕J̃ TW

X J̃
(z,w) = {φ ∈ Hom(TzΣ̇, TwW ) | φ ◦ j(z) = −J̃(z, w) ◦ φ}.

Now we can define the following Banach space bundle E over the Banach manifold B by

E = Lpδ(B
∗X J̃) =

⋃
u∈B

{u} × Lpδ(u
∗X J̃),

where

Eu = Lpδ

(
Λ0,1Σ̇⊕J̃ u

∗TW
)

4.2 The linearized operator

First we will fix some notation and spaces. We will sketch the details of the relevant

constructions here, following the work of [Dr04] and [Sc95], as usual.

The ∂̄J̃ operator may be defined as a smooth section of a Banach bundle over a

Banach manifold as follows

∂̄J̃ : B→ E

∂̄J̃(u) = du+ J̃ ◦ du ◦ j

Next we will want to understand the linearization of ∂̄J̃ at a solution u ∈ ∂̄−1(0). We

will obtain this linearization by projecting the tangent space at a point of the bundle on

its vertical subspace, which is identified with the fiber of the bundle. This is well-defined
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as the point is contained in the zero section of the bundle. In formulas we express this

as

D∂̄J̃(u) : TuB→ T(u,0)E

T(u,0)E = TuB⊕ Eu.

We denote the projection by Π : T(u,0)E → Eu and define the linearization of ∂̄J̃ at

the solution u by the following map,

Fu : TuB→ Eu

Fu = Π ◦D∂̄J̃(u).

We note that the linearization Fu is determined for each pseudoholomorphic curve, but

its definition for a general u depends on the choice of connection. In this setting we will

work with the Levi-Civita connection ∇ of the metric gJ̃ = ω(·, J̃ ·), as it will allow us

to give an explicit formula for the linearization, Fu.

Using the identification provided by Theorem 4.11 and Remark 4.10 the parallel

transport for ζ ∈ u∗(x,y)TW can be written as

Φ(x,y)
u (ζ) : Tu(x,y)W → Texpu(x,y)

ζW,

and we can define the following map

Pu(η, (x, y)) = Π−1
(x,y) ◦ Φ(x,y)

u

(
Π(x,y)η

)−1 ◦ ∂̄J̃ ˜expu(x,y)(Π(x,y)η)

This construction allows us to succinctly express the linearization Fu as an operator

Fu : W 1,p
δ (u∗TW )⊕ R2d → Lpδ

(
u∗X J̃

)
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as

Fu(η, (x, y)) =
d

dt


t=0

Pu(tη, t(x, y)).

From this expression we obtain

Fu(η, (x, y)) = Du(η, (0, 0)) +Ku(0, (x, y)), (4.9)

and we will shortly explain what Du and Ku are.

Du may be explicitly defined as follows, when viewed as an operator fromW 1,p
δ (u∗TW )

to Lpδ

(
u∗X J̃

)
Proposition 4.12. The operator

Du : W 1,p
δ (u∗TW )→ Lpδ

(
u∗X J̃

)
,

has the following expression

Duζ = ∇ζ + J̃(u) ◦ ∇ζ ◦ j +∇ζ J̃(u) ◦ d(u) ◦ j.

A proof of this is given for Proposition 2 of [Dr04], following from computations standard

in the world of Riemannian geometry.

The operator Ku is a finite dimensional operator with compact support. Notice

that Ku = 0 on σi(Zεi(R+1)) for i = 1, ...d because of how u(x,y) has been constructed.

Therefore by homotoping Ku to 0 we may conclude that the Fredholm property and

transversality for the operator Fu is satisfied provided it can be established for the

operator Du. In this case, we can relate the Fredholm indices of Fu and Du as follows:

index(Fu) = index(Du) + 2d (4.10)

As a result, notation is frequently abused and Du is often referred to as the linearization

of ∂̄J̃ .
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4.3 Moduli spaces of somewhere injective pseudo-

holomorphic curves

We will be interested in studying the geometric properties of moduli space consisting

of asymptotically cylindrical pseudoholomorphic curves in symplectizations interpolat-

ing between fixed nondegenerate Reeb orbits. For nondegenereate closed Reeb orbits

γ, γ1, ...γs of periods T, T1, ..., Ts, we denote by

M(γ; γ1, ...γs),

to be the moduli space of equivalence classes of unparametrized asymptotically

cylindrical pseudoholomorphic curves, with one positive puncture and s negative

punctures. Recall that asymptotically cylindrical refers to the prescribed asymptotic

conditions as discussed in Theorem 3.15.

We define the equivalence relation between asymptotically cylindrical pseudoholo-

morphic curves as follows.

Two asymptotically cylindrical pseudoholomorphic curves

u : (Σ \ {x, y1, ..., ys}, j)→ (R×M,J),

u′ : (Σ \ {x′, y′1, ..., y′s}, j)→ (R×M,J)

are equivalent if and only if there exists a biholomorphism φ of Σ such that

(i) φ(x) = x,′ φ(yi) = y′i for i = 1, ..., s

(ii) u = u′ ◦ φ

In this case we see that u = u′ ◦ φ.
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Frequently for brevity we denote the finite set of punctures by Γ := {x, y1, ..., ys}

which we assume has been ordered. In this case we can define the equivalence classes of

data [(Σ, j,Γ, u)],

(Σ, j,Γ, u) ∼ (Σ′, j′,Γ′, u′)

whenever there exists a biholomorphic map

φ : (Σ, j)→ (Σ′, j′)

taking Γ to Γ′ with the ordering preserved such that

u = u′ ◦ φ.

When talking about asymptotically cylindrical pseudoholomorphic curves belonging to

a particular moduli space M one frequently writes u ∈ M. It is more precise to write

(Σ, j,Γ, u) ∈ M since technically one is referring to the equivalence classes represented

by this pseudoholomorphic curve, [(Σ, j,Γ, u)] ∈ M, but since u determines Σ and Γ

uniquely we will stick to the simpler notation.

Since J̃ is R-invariant, R acts on these moduli spaces by “external” translations

u = (a, f)→ (a+ ρ, f),

and we denote the quotient by

M̂ := M̂(γ, γ1, ...γs) = M(γ, γ1, ...γs)/R.

We will wait to discuss the implications of this external action until later.

In this section we are primarily interested in studying the equivalence classes of some-

where injective asymptotically cylindrical pseudoholomorphic curves. We denote the set
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of all somewhere injective pseudoholomorphic curves by N(γ, γ1, ...γs), and N(γ, γ1, ...γs) ⊂

M(γ, γ1, ...γs). We define somewhere injective pseudoholomorphic curves as follows.

As before, we take (Σ, j) to be a compact connected Riemann surface without boundary

and Γ ⊂ int Σ is a finite set of interior punctures, with Σ̇ = Σ\Γ and (W,J) to be a suit-

able almost complex manifold. The notation (Σ′, j′), Γ′, Σ̇′, designates other examples

of such objects. A pseudoholomorphic curve u : Σ̇→ W is said to be multiply covered

whenever there exists a a pseudoholomorphic curve v : Σ̇′ → W , and a holomorphic map

ϕ : Σ→ Σ′ with Γ′ = ϕ(Γ) such that

u = v ◦ ϕ, deg(ϕ) > 1.

The pseudoholomorphic curve u is called simple whenever it is not multiply covered. We

will see shortly that simple pseudoholomorphic curves (in a given homology class) form

a smooth finite dimensional manifold for generic J . This is equivalent to understanding

the multiply covered curves as the exceptional case, and as such they are often singular

points in the moduli space of pseudoholomorphic curves. The proof of this result is

based on the observation that every simple pseudoholomorphic curve is somewhere

injective, which means that for some z ∈ Σ̇

du(z) 6= 0 u−1(u(z)) = {z}.

A point z ∈ Σ̇ with this property is called an injective point of u.

Before we can state the following results of Dragnev in regards to somewhere injective

finite energy pseudoholomorphic curves, we must define a suitable Banach space on which

we can vary J and J̃ . To accomplish this we follow the approach of Floer, as in [Fl88]

and introduce Floer’s Cε-space. First we will need to fix some notation. Let J0 : ξ → ξ
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be a compatible almost complex structure associated to the defining contact form α. Let

J̃0 be the corresponding extension over the symplectization W , as explained in Section

2.2. Consider the space of all smooth maps Ψ(p) : ξp → ξp satisfying

Ψ(p)J0(p) + J0(p)Ψ(p) = 0

dα(ΨX, Y ) + dα(X,ΨY ) = 0 for X, Y ∈ ξ.
(4.11)

Let ε = {εn}∞n=1 be a sequence of positive numbers such that limn→∞ εn = 0. The

Cε-space consists of C∞ homomorphisms of ξ whose sums of weighted Ck norms decay

sufficiently fast. It is defined as

Cε =

{
Ψ ∈ HomR(ξ), Ψ ∈ C∞ | ||Ψ||ε =

∞∑
n=1

εn||Ψ||n <∞

}
,

where ||Ψ||k is the Ck norm with respect to a metric on W . If ε → 0 sufficiently fast

then (Cε, || · ||ε) is a separable Banach space, which is dense in C∞. For ∆ > 0, denote

by

U∆ =
{
J̃ | J = J0 exp(−J0Ψ), Ψ ∈ Cε, ||Ψ||ε < ∆

}
.

The map Ψ→ J̃ ∈ U∆ provides a global chart for U∆, equipped with a separable Banach

manifold structure.

Now we are ready to state the results of Dragnev. These appear as Theorem 4, and

Corollaries 1 and 2 in Dragnev, [Dr04].

Theorem 4.13 (Dragnev [Dr04]). The set of all such somewhere injective curves N(γ, γ1, ...γs)

carries the structure of a separable manifold. The projection map p

p : N(γ, γ1, ...γs)→ U∆

p(im(u), J̃) = J̃
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is a Fredholm map with Fredholm index near im(u)

ind u = (n− 3)(1− s) + µCZ(γ)−
s∑
i=1

µCZ(γi)

= |γ| −
s∑
i=1

|γi|
(4.12)

Since we are working with 3 dimensional contact manifolds note that formula 4.12 re-

duces to

ind u = (s− 1) + µCZ(γ)−
s∑
i=1

µCZ(γi).

For the rest of this paper we will use the 3 dimensional formula.

As a result of the above theorem we obtain several important corollaries.

Corollary 4.14. For regular values J̃ of p, p−1(J̃) is a smooth finite dimensional man-

ifold whose dimension agrees with the Fredholm index.

Corollary 4.15. There exists a dense subset S ⊂ U∆ such that for every J̃ ∈ S if

u : (S2 \ {x′, y′1, ..., y′s}, j) → (R ×M, J̃) is a somewhere injective finite energy surface

for J̃ then

ind u = (s− 1) + µCZ(γ)−
s∑
i=1

µCZ(γi) ≥ 1

provided that π◦Du does not vanish identically. Recall that π : TS3 → ξ is the projection

along the Reeb vector field Rα.

As a result of this Corollary, we obtain Theorem 2.1 of [HWZ03]. In the future when we

say something holds for generic J , this refers to the assumption that we have selected J

from the dense subset S ⊂ U∆ such that Corollary 4.15 holds.

Remark 4.16. Our results remain valid if we consider symplectic cobordisms. The only

difference is that the inequality in Corollary 4.15 reduces to

index u = (s− 1) + µCZ(γ)−
s∑
i=1

µCZ(γi) ≥ 0,
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due to the fact that in this case the almost complex structure J̃ is not R-invariant.

Next we provide a precise statement of the folk theorem that a non-constant finite

energy pseudoholomorphic curve whose domain is a punctured Riemann surface, factors

through a somewhere injective one. A proof of such a result when the domain is a

closed Riemann surface can be found in [MSbigJ ]. A proof in the case of finite energy

planes1 is proven by Hofer, Wysocki, and Zehnder in the appendix of [HWZII]. There

is some debate as to whether or not the result of Hofer, Wysocki, and Zehnder extends

in an obvious manner to the types of pseudoholomorphic curves we are considering, e.g.

ones whose domain are punctured more than once. Instead we expect that one would

need to combine the argument found in [MSbigJ ] with results regarding the behavior

of non-constant finite energy curves near a puncture, which are provided by Siefring in

[Si08].

As before, we take (Σ, j) to be a compact connected Riemann surface without bound-

ary and Γ ⊂ int Σ is a finite set of interior punctures, with Σ̇ = Σ\Γ and (W,J) to be a

suitable almost complex manifold. Recall that the pseudoholomorphic curve u is called

simple whenever it is not multiply covered. We will see shortly that simple pseudoholo-

morphic curves (in a given homology class) form a smooth finite dimensional manifold

for generic J .

If a curve is not somewhere injective then it is necessarily a branched cover.

Theorem 4.17. Let u : Σ̇ → W be a non-constant finite energy pseudoholomorphic

curve. Then there exists a compact Riemann surface Σ′ with a finite set of interior

1Recall these are asymptotically cylindrical pseudoholomorphic curves whose domains are once punc-

tured spheres.
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punctures Γ′ and a holomorphic branched covering ϕ : Σ → Σ′ with Γ′ = ϕ(Γ) ϕ and a

pseudoholomorphic curve v : Σ̇′ → W , and a holomorphic covering such that

u = v ◦ ϕ.

Remark. Note that somewhere injective curves automatically exclude those which are

a multiply covered cylinder or a branched cover of a multiply covered cylinder.
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Chapter 5

Traversing transversality troubles

Rigorous descriptions of the moduli spaces necessary to the conjectures of [EGH00] have

only been given under specialized circumstances in Dragnev [Dr04] and Wendl [We10].

Despite the wealth of literature, no comprehensive attempts have been made to clarify

issues of transversality of moduli spaces of pseudoholomorphic curves in symplectizations

arising in the construction of contact homology. The following two chapters detail the

difficulties presented by multiply covered cylinders and their branched covers in defining

both a chain complex and invariant. While our attention is restricted to the cylindri-

cal contact homology setting, these same issues must be dealt with in order to realize

linearized contact homology as a homology.

The automatic transversality results of Wendl in [We10] describe conditions which are

sufficient for punctured pseudoholomorphic curves on a 4-dimensional symplectic cobor-

dism W to be transversally cut out by the Cauchy-Riemann equations, without generic-

ity assumptions on J . These are applicable to arbitrary pseudoholomorphic curves with

totally real boundary and cylindrical ends in a 4-dimensional cobordism of two symplec-

tized contact manifolds. One can achieve regularity results even for multiply covered

curves in special circumstances by exploiting the “niceness” of the behavior of pseu-

doholomorphic curves in dimension 4 combined with intersection theory. This allows

us to give these geometrically natural moduli spaces the structure of globally smooth
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orbifolds.

We begin our discussion with an outline of the troubles in defining contact homol-

ogy and an overview of Wendl’s automatic transversality results in [We10]. We also

provide examples of Reeb orbits which give rise to moduli spaces of nonpositive virtual

dimension. The next chapter is devoted to providing the full numerical details of how

the Conley-Zehnder index computations associated to nondegenerate Reeb orbits of dy-

namically separated forms allow us to avoid the breaking off phenomenon and appeal

to Wendl’s automatic transversality results. These computations necessitate the strong

conditions required of dynamically separated contact forms, as they allow us to obtain

a well-defined chain complex without constructing a theory of virtual chains.

5.1 Quandaries of the multiply covered

The idea that one can make moduli spaces consisting of asymptotically cylindrical mul-

tiply covered pseudoholomorphic curves and their branched covers non-singular after

selecting a compatible almost complex structure J generically, does not work as desired

in this setting. Even after a generic choice of J , moduli spaces of such curves have the

unfortunate property that even those of nonpositive virtual dimension are not necessar-

ily empty. The presence of such curves must be excluded so as to avoid the breaking

phenomenon, which can preclude ∂2 = 0. Furthermore, a multiply covered cylinder

may be of smaller index than the cylinder it covers leading to a failure of compactness

and the inability to properly define the differential ∂ or continuation maps and chain

homotopies.

The main reason that these moduli spaces may be nonempty even after a generic
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choice of J is because multiply covered pseudoholomorphic curves and their branched

covers are not somewhere injective. Consequently the results of Dragnev [Dr04] as de-

scribed in previous chapter are not applicable, so moduli spaces of curves of nonpositive

virtual dimension could exist, even after a generic choice of J . This occurs in the fol-

lowing example with the ellipsoid.

Example 5.1 (Ellipsoid). The 3-dimensional ellipsoid can be described by E := f−1(1),

with

f : C2 → R

(u, v) 7→ |u|2

a
+
|v|2

b
and a, b ∈ R>0. We obtain a contact structure for the ellipsoid by taking its set of

complex tangencies,

ξp = TpE ∩ J0(TpE),

which may be described as the kernel of the 1-form

α = −1

2
df ◦ J0.

The Reeb vector field is given by

Rα =
1

a

(
u
∂

∂u
− ū ∂

∂ū

)
+

1

b

(
v
∂

∂v
− v̄ ∂

∂v̄

)
.

This vector field rotates the u-plane at angular speed 1
a

and the v-plane at angular speed

1
b
. In the case that a/b is irrational, we can check that there are only two nondegenerate

simple Reeb orbits associated to the Reeb vector field Rα. These are determined by the

circles u = 0 and v = 0 respectively. We denote these by γ1 and γ2 respectively.

One can check that their Conley-Zehnder indices are described by

µCZ(γki ) = 2bk(1 + φi)c+ 1, (5.1)
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where φ1 = a/b and φ2 = b/a, see [Lo02]. Moreover one can deduce that (5.1) spans

all odd positive numbers for all multiples of γ1 and γ2 and that their Conley-Zehnder

indices never coincide.

Since either φ1 < 1/2 or φ2 < 1/2 we have for this i that

µCZ(γi) = 3

µCZ(γ2
i ) = 5.

This means that any asymptotically cylindrical pseudoholomorphic curve u ∈M(γ2
i ; γi, γi),

has

ind(u) = 0

Thus the virtual dimension of M(γ2
i ; γi, γi) is 0. However this moduli space is never

nonempty, since it contains the double branched covers of the trivial cylinder over γi,

which form a 2-dimensional family. As a result transversality can never be achieved for

this moduli space.

A detailed explanation of why these curves obstruct the construction of a well-defined

homological invariant of a contact manifold is given in Section 6.3.

In addition, one needs to achieve regularity for all finite energy pseudoholomorphic

curves under consideration, so that one can appeal to Theorem 5.5 to obtain some of

the “numerous not entirely innocent subtleties entailed” in the conjectures of Section

1.7 of [EGH00]. The most important of these is as follows.

Conjecture 5.2. For a generic choice of J ,the Cauchy-Riemann equation gives rise

to a section ∂̄J̃ of a certain Banach bundle E → BA, where A is the homology class

represented by the curves. Its vertical differential has the form of a linearized Cauchy -
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Riemann operator and is a Fredholm operator with index

dim MA(γ; γ1, ..., γs) = (n− 3)(1− s) + µCZ(γ)−
s∑
i=1

µCZ(γi) + 2〈c1(ξ), A〉

= |γ| −
s∑
i=1

|γi| − 2〈c1(ξ), A〉
(5.2)

Here c1 ∈ H2(W ) is the first Chern class of (W,J).

The geometric structure and smoothness of these moduli spaces is difficult to as-

certain in this setting. In Section 1.7 of [EGH00] they note that making the moduli

spaces non-singular by picking generic J is needed for the purpose of curve counting but

does not always work properly. It is therefore crucial that the moduli spaces of stable

J-holomorphic curves are non-singular virtually. Transversality cannot be achieved by

perturbing J alone for multiply covered curves and their branched covers. Standard ap-

proaches as given by Floer, Hofer, and Salamon in [FHS95] to obtaining transversality

via a perturbation of J do not help with the issues of multiply covered cylinders due to

the presence of the S1-symmetry.

In previous literature [Us99], [Bo02], [Bo09] it was stated that when transversality

could not be achieved by perturbing the almost complex structure that the difficulty

could still be resolved via a delicate virtual cycle technique involving multivalued per-

turbations. However full details were never given and recent literature by McDuff and

Wehrheim [MW] suggests that this procedure is even more delicate than previously

indicated. This would in theory permit one to equip these moduli spaces with some

additional canonical structure, thereby functioning in theory the same way as if they

were orbifolds with boundary of dimension prescribed by the Fredholm index. Thus a

completely general definition of cylindrical contact homology still awaits an appropriate

theory of so-called abstract perturbations.
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These abstract perturbations would allow any singular J moduli spaces, to be equipped

with some canonical structures that makes them function in the theory the same way as

if they were orbifolds with boundary and had the dimension prescribed by the Fredholm

index. The analytic difficulties in obtaining virtual smoothness for the moduli spaces

described in Conjecture 5.2 are severe. It should be noted that [EGH00] was “meant

only as an informal exposition whose role was just to illustrate the involved ideas, rather

than to give complete rigorous arguments.”

The polyfold theory developed by Hofer, Wysocki, and Zehnder [H06], [HWZ10a],

[HWZ10b], [HWZgw] hopes to resolve these severe transversality issues once the exis-

tence of an abstract perturbation theorem and an implicit function theorem can be es-

tablished. This would resolve transversality troubles in a completely abstract functional-

analytic framework once a moduli space problem could be recast in the formal language

of polyfolds. We emphasize that this is still work in progress, and the necessary the-

orems for cylindrical and contact homology will require reworking even after a “full

SFT transversality package” has been developed. For the reader interested in a further

discussion of traversing transversality troubles, especially in relation to the polyfold

framework, we suggest [H06] and [FFGW]. Those uninitiated to Fredholm theory or

the regularity and transversality of pseudoholomorphic curves should consult [MSbigJ ],

though many of the main definitions and results can be found in Section 3.

The only results available are those proven by Dragnev as discussed earlier, applicable

only to moduli spaces of somewhere injective curves, and Wendl’s automatic transver-

sality results, applicable to more general curves but only in dimension 4. Wendl’s results

are still quite restrictive, as even if a multiply covered cylinder is of dimension 0, we

cannot always guarantee that it is regular. As a result cannot formulate the necessary
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gluing results needed to prove invariance. However, in the case of nondegenerate dy-

namically separated contact forms Wendl’s results provide us with a practical means of

determining that the curves u of interest achieve regularity so that we can appeal to

Theorem 5.5, which corresponds to the above conjecture. Combined with the results

of the following chapter we will be able to conclude that the chain complex (C∗, ∂;α)

associated to a nondegenerate dynamically separated contact form is well-defined after

choosing J generically. We summarize and state the pertinent results from [We10] in

the next section.

5.2 Notation and setting

Wendl’s work and theorems are applicable to 4 dimensional almost complex manifold

with noncompact cylindrical ends approaching 3-manifolds M± equipped with stable

Hamiltonian structures. This is more general than we need, as we are only interested

in symplectizations and cobordisms of a given contact manifold. However, even for

cobordisms his results are limited as we cannot use them to obtain regularity for asymp-

totically cylindrical (e.g. finite energy) pseudoholomorphic cylinders which limit on

positive hyperbolic orbits of the same index in a cobordism. As a result we cannot prove

the chain homotopy equation or obtain the continuation maps necessary for any proof

of invariance for cylindrical contact homology.

Before giving the statements of the theorems of interest to us, we will briefly review

the setting and notation used by Wendl in [We10] after restricting to symplectizations

or cylindrical cobordisms of contact manifolds of dimension 3. In this and the following

section we will only state his results in this restricted setting which is of interest to us.
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We will consider pseudoholomorphic curves

u : (Σ̇, j)→ (W,J),

where (Σ, j) is a closed connected Riemann surface and Γ ⊂ int Σ is a finite set of

interior punctures, with Σ̇ = Σ\Γ. For the purposes of this paper we need only consider

Σ = S2, but Wendl’s results hold in the more general setting. Here (W,J) will be

the symplectization of a contact 3-manifold (M,α) or a cylindrical cobordism between

(M,α1, J1) and (M,α2, J2) with ker α1 = ker α2.

By definition we require u to satisfy the nonlinear Cauchy-Riemann equation

du ◦ j = J ◦ du

We further assume that u a finite energy pseudoholomorphic curve. We denote

M := M(J)

to be the moduli space of equivalence classes of asymptotically cylindrical pseudoholo-

morphic curves in W . Recall an equivalence class is defined by the data (Σ, j,Γ, u) where

Γ is considered to be an ordered set, and we define

(Σ, j,Γ, u) ∼ (Σ′, j′,Γ′, u′)

whenever there exists a biholomorphic map

φ : (Σ, j)→ (Σ′, j′)

taking Γ to Γ′ with the ordering preserved such that

u = u′ ◦ φ
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For any u ∈M, we denote by Mu the connected component of M containing u.

By imposing constraints on the asymptotic behavior at some of the punctures we will

be able to consider subspaces of M. We make this precise in the following definition,

Definition 5.3. For a given punctured surface Σ̇ = Σ \ (Γ+ ∪ Γ−) let c denote a choice

of periodic orbit γz in M± for some subset of punctures z ∈ Γ±. We call c a choice of

asymptotic constraints, and refer to each puncture z for which c specifies an orbit γz

as a constrained puncture.

For any choice of domain Σ̇ and asymptotic constraints c, we can consider the con-

strained moduli space

Mc ⊂M.

The constrained moduli space Mc consists of curves u : Σ̇ → W that approach the

specified orbit γcz at each of the constrained punctures z ∈ Γ and arbitrary orbits at the

unconstrained punctures. If the asymptotic orbits of a pseudoholomorphic curve u are

all nondegenerate, then the virtual dimension of Mc
u is given by the Fredholm index

ind(u; c) = (n− 3)χ(Σ̇) + 2cΦ
1 (u∗TW ) + µΦ(u; c), (5.3)

as in [We10]. Wendl expresses the Fredholm index for the general setting, where

cΦ
1 (u∗TW ) is the relative first Chern number of (u∗TW, J) → Σ̇ with respect to a suit-

able choice of trivialization Φ along the ends and boundary. Given the assumptions

and notation used in this paper, we can reduce the expression of the index in (5.3) to

something more familiar. Recall that we assumed that c1(ξ) vanishes, thus in the case

of symplectizations when W = R×M we have that

c1(ξ) = c1(R×M) = 0,
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so the term 2cΦ
1 (u∗TW ) is 0 in (5.3). In the case when W is a cylindrical cobordism of

(M, ξ) with c1(ξ), we have that 2cΦ
1 (u∗TW ) is still 0. This requires some work, but as

we are not considering with cobordisms or invariance in this paper we will not give the

details.

The term µΦ(u; c) in (5.3) for the settings of interest to us in this paper is none other

than the difference of the Conley-Zehnder indices of the constrained orbits. Precisely, if

we take Γ+ = {x} and Γ− = {y1, ..., ys} and u : (S2 \ {x, y1, ..., ys}, j) → (R ×M, J̃) a

pseudoholomorphic curve, asymptotically cylindrical to Reeb orbits γ, γ1, ..., γs, then we

have that

Mc
u = M(γ; γ1, ..., γs).

As a result we obtain

µΦ(u; c) = µCZ(γ)−
s∑
i=1

µCZ(γi).

In addition, the term χ(Σ̇) is simply (2− 2g −#Γ+ −#Γ−), where g is the genus of Σ,

and since we are restricted to dimension 4, we get that (n − 3) = −1. Thus we obtain

the following familiar formula for the Fredholm index of a pseudoholomorphic curve

u : S2 \ {x, y1, ..., ys} → R ×M , asymptotically cylindrical to Reeb orbits γ, γ1, ..., γs,

with s > 1:

ind(u; c) = −(1− s) + µCZ(γ)−
s∑
i=1

µCZ(γi). (5.4)

Remark 5.4. Otherwise if s = 1 and the curve u is asmyptotically cylindrical to Reeb

orbits γ+ and γ− we obtain

ind(u; c) = 2 + µCZ(γ+)− µCZ(γ−).

When we consider the moduli space of equivalence classes of curves u, we have Mc :=



81

M(γ+; γ−) and we obtain the usual formula for the virtual dimension

dim(M(γ+; γ−)) = µCZ(γ+)− µCZ(γ−).

This is because we must subtract the dimension of the group of automorphisms of

the domain, which is a cylinder, which is 2. However, if we consider the space of

parametrized1 pseudoholomorphic solutions, which we denote by S(γ+; γ−), we obtain

dim(S(γ+; γ−)) = 2 + µCZ(γ+)− µCZ(γ−).

In order to be clear in the statement of the following theorems, we note that when

Σ̇ has underlying symmetry the virtual dimension of Mc will be less than the Fredholm

index of u, as discussed in the above Remark. To account for these cases we will use the

notation ĩnd(u; c), where

ĩnd(u; c) = ind(u; c)− dim(Aut(Σ̇)) (5.5)

In other words ĩnd(u; c) is the reduced Fredholm index of u, which agrees with the

virtual dimension of Mc, the moduli space of unparametrized asymptotically cylindrical

pseudoholomorphic curves.

Recall, as in Section 3 that the ∂̄J̃ operator, can be expressed as a smooth section of

a Banach space bundle. We have

∂̄J̃ : B→ E

∂̄J̃(u) = du+ J̃ ◦ du ◦ j.

Any neighborhood of any non-constant (Σ, j,Γ, u) in Mc is in one-to-one correspondence

with ∂̄−1

J̃
(0)/Aut(Σ̇, j), where the group Aut(Σ̇, j) of biholomorphic maps (Σ, j)→ (Σ, j)

1This means we do not mod out by the previously discussed equivalence relation.
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fixing Γ acts on pairs (j′, u′) ∈ ∂̄−1

J̃
(0) by

ϕ · (j′, u′) = (ϕ∗j′, u′ ◦ ϕ).

In the case when Σ = S2 and Γ consists of 2 points, then Σ̇ is biholomorphic to a cylinder.

The group of automorphisms of a cylinder consists of rotations and translations.

One says that (Σ, j,Γ, u) ∈ M is regular whenever it represents a transverse inter-

section with the zero-section. This is equivalent to requiring that the linearization

D∂̄J̃(u) : TuB→ T(u,0)E

be surjective. Observe that if u is a non-constant pseudoholomorphic curve, then the

action of Aut(Σ̇, j) induces a natural inclusion of its Lie algebra aut(Σ̇, j) into kerD∂̄J̃(u).

The first theorem in [We10] is the following standard folk theorem, which we have

restricted to symplectizations2 of 3-dimensional contact manifolds (M, ξ) with c1(ξ) = 0.

We will also only consider moduli spaces of asymptotically pseudoholomorphic curves

limiting on nondegenerate orbits, though we remark that this can be relaxed to Morse-

Bott orbits.

Theorem 5.5 (Theorem 0 [We10]). Assume that u : (Σ̇, j)→ (W,J) is a non-constant

curve in Mc with only nondegenerate asymptotic orbits. If u is regular, then a neighbor-

hood of u in Mc naturally admits the structure of a smooth orbifold of dimension

ĩnd(u; c) = −(1− s) + µCZ(γ)−
s∑
i=1

µCZ(γi),

whose isotropy group at u is given by

Aut := {ϕ ∈ Aut(Σ̇, j) | u = u ◦ ϕ}.
2This theorem also holds for cylindrical cobordisms of (M, ξ).
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Moreover, there is a natural isomorphism

TuM
c = kerD∂̄J̃(j, u)/aut(Σ̇, j).

In particular, regularity implies that Mc is a manifold near u if u is somewhere injec-

tive. Such a result has been demonstrated by Dragnev in the case of symplectizations in

[Dr04]. However, of particular interest to us is the case when u is multiply covered. In

this general setting, we see that the isotropy group for an orbifold singularity has order

bounded by the covering number of u. This is in contrast to the standard theory of

pseudoholomorphic curves, as in [MSbigJ ], as we are interested in cases where the curve

u achieves regularity despite being multiply covered, which is why the moduli space,

while still smooth, may be an orbifold instead of a manifold. A more precise description

of this structure is given in Section 7.4, and will be important later in proving ∂2 = 0.

5.3 Automatic transversality results in dimension 3

Wendl expresses the criterion for automatic transversality of a curve in terms of its

boundary and asymptotic data, homological properties, and the number of critical points

in [We10]. His work generalizes results from Hofer, Lizan, and Sikorav [HLS97] and

Ivashkovich and Shevchishin [IS99] to punctured curves with boundary that need not

be somewhere injective or immersed. This work cannot be generalized to higher dimen-

sions; it is inherent to the special intersection properties exhibited by pseudoholomorphic

curves in dimension 4.

Automatic transversality results are extremely helpful, as these are results that enable
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us to determine the regularity of a pseudoholomorphic curve.3 Before we can state these

results, we must review a few numbers that encode certain topological and geometric

data. These are the normal first Chern number and a quantity encoding the total

order of critical points of u.

We denote the normal first Chern number by cN(u; c) and this is a half integer. The

simplest means of defining it is via the following formula

2cN(u; c) = ĩnd(u; c)− 2 + #Γ0(c) (5.6)

as we are only interested in closed Riemann surfaces Σ whose genus is 0. The subset

Γ0(c) ⊂ Γ consists of the punctures for which the asymptotic orbit has even

Conley-Zehnder index, which is only correct if all orbits are nondegenerate. In the

Morse-Bott case, the definition is more complicated and refer the reader to [We10] as

we are only interested in nondegenerate orbits. A related quantity is Γ1(c) := Γ \ Γ0(c),

which consists of the punctures for which the asymptotic orbit has odd Conley-

Zehnder index.

To better illustrate the use of normal first Chern numbers consider the case where Σ

is closed and there are no punctures. Then a combination of (5.3) and (5.6) yields the

relation

cN(u; c) = c1(u∗TW )− χ(Σ).

This tells us that if u is immersed then cN(u; c) is the first Chern number of the normal

bundle.

3For example, if we were wandering about in a forest or thesis and happened upon a pseudoholo-

morphic curve, we would have some criterion allowing us to ascertain its regularity and could conclude

if Theorem 5.5 was applicable.
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The other ingredient that we need relates to the number of critical points of a pseu-

doholomorphic curve u : Σ̇→ W . Note that since a non-constant curve u is necessarily

immersed near the ends, that as a result it can only have at most finitely many critical

points. In fact, the bundle

u∗TW → Σ̇

admits a natural holomorphic structure such that the section

du ∈ Γ(HomC(T Σ̇, u∗TW ))

is holomorphic. Thus its critical points are isolated and have positive order, which we

will denote by ord(du; z) for any z ∈ Crit(u). This leads us to define the quantity

Z(du) :=
∑

z∈du−1(0)∩intΣ̇

ord(du; z) (5.7)

which is an integer as we are working with closed Riemann surfaces.

Remark 5.6. Note that Z(du) = 0 if and only if u is immersed.

The last bit of notation that we will need is a convenient piece of shorthand notation.

For given constants r ∈ R and G ≥ 0, we define the nonnegative integer

K(r,G) = min{k + ` | k ∈ Z≥0, ` ∈ 2Z≥0, k ≤ G, and 2k + ` > 2r}. (5.8)

In most pseudoholomorphic world applications, it turns out that r < 0, so K(r,G) = 0.

Now that we have the proper set up we can finally state Wendl’s automatic transver-

sality results, which again we have restricted appropriately for the considerations of this

paper.
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Theorem 5.7 (Theorem 1 [We10]). Suppose that dim W = 4 and (Σ, j,Γ, u) ∈Mc is a

non-constant pseudoholomorphic curve with only nondegenerate asymptotic orbits. If

ĩnd(u; c) > cN(u; c) + Z(du), (5.9)

then u is regular. Moreover, when this condition is not satisfied, we have the following

bounds on the dimension of kerD∂̄J̃(j, u). If ĩnd(u; c) ≤ 2Z(du), then

2Z(du) ≤ dim(kerD∂̄J̃(j, u))/aut(Σ̇, j)

≤ 2Z(du) +K(cN(u; c)− Z(du),#Γ0(c)),

and if 2Z(du) ≤ ĩnd(u; c), then

ĩnd(u; c) ≤ dim(kerD∂̄J̃(j, u))/aut(Σ̇, j)

≤ ĩnd(u; c) +K(cN(u; c) + Z(du)− ĩnd(u; c),#Γ0(c)).

Remark 5.8. Note that if we plug in the definition of the first Chern number of the

normal bundle, cN(u; c), and the index formula, then condition (5.9) is equivalent to

ĩnd(u; c) > 2g + #Γ0(c)− 2 + 2Z(du), (5.10)

or

2cΦ
1 (u∗TW ) + µΦ(u; c) + #Γ1(c) > 2Z(du),

where Γ1(c) := Γ \Γ0(c), which consists of the punctures for which the asymptotic orbit

has odd Conley-Zehnder index. These are direct generalizations of the criteria given in

[HLS97], [IS99], and [We05].

Remark 5.9. There is an important special case of the dimension bound which we will

use in the application. Namely, if cN(u; c) < Z(du), then

K(cN(u; c)− Z(du),#Γ0(c)) = 0,

and dim ker(D∂̄J̃(u)) becomes 2Z(du), which is its smallest possible size.
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In the following section we demonstrate how these results can be applied to settings

in which nondegenerate Reeb orbits are obtained from dynamically separated contact

forms and why the the dynamically separated condition is needed.
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Chapter 6

Requisite regularity results

In this chapter we obtain regularity results for multiply covered finite energy pseudo-

holomorphic cylinders1 in symplectizations of contact manifolds equipped with nonde-

generate dynamically separated contact forms. This is accomplished by appealing to

Wendl’s automatic transversality results in [We10] and Dragnev’s results for somewhere

injective curves in [Dr04]. These regularity results are the first step to constructing a

meaningful cylindrical contact chain complex.

In addition, we will demonstrate that moduli spaces of multiply covered asymp-

totically cylindrical pseudoholomorphic curves and their branched covers associated to

nondegenerate dynamically separated contact forms have dimension at least that of the

dimension of the group of automorphisms acting on the space. This allows us to exclude

moduli spaces of nonpositive index which would otherwise obstruct ∂2 = 0 in cylindrical

contact homology. Combined with the applicable automatic transversality results, we

are able to apply the motto, “the moduli space is smooth if the index is sufficiently large.”

As a result we can rule out the breaking phenomenon and the failure of compactness

needed to show that the cylindrical contact homology differential ∂ is well defined.

1Asymptotically cylindrical pseudoholomorphic cylinders sounds awkward, so we use the phrase

finite energy pseudoholomorphic cylinders instead.
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These results are obtained via an explicit numerical description of the index of mul-

tiply covered asymptotically cylindrical pseudoholomorphic curves and their branched

covers associated to dynamically separated contact forms. These computations are given

in Sections 6.1 and 6.2. We begin with a precise formulation of these results. Through-

out we let x and z be nondegenerate Reeb orbits associated to a dynamically separated

contact form in the same free homotopy class with µCZ(x)−µCZ(z) = 2. We denote the

set of all Reeb orbits associated to a dynamically separated contact form in the same

free homotopy class by P.

Theorem 6.1. The compactification of M̂(x, z) is obtained by including all broken

cylinders, which are pairs of curves (Cu,Cv) ∈ M̂(x, y) × M̂(y, z). We denote the

compactification by M(x; z) and obtain after a generic choice of J ,

M(x; z) := M̂(x; z) ∪
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y; z).

From Theorem 6.1 we obtain the following corollary, which is instrumental in the

proof that ∂2 = 0.

Corollary 6.2. Let x and z be nondegenerate Reeb orbits associated to a dynamically

separated contact form with µCZ(x)− µCZ(z) = 2. Then after a generic choice of J ,

∂M(x; z) ⊆
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y; z).

The precise geometry in terms of how boundary of the compactified moduli space

of finite energy pseudoholomorphic cylinders interpolating between orbits of index dif-

ference two is actually equal to the product of rigid finite energy pseudoholomorphic
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cylinders, i.e. that

∂M(x, z) =
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x, y)× M̂(y, z).

will be discussed in Chapter 7. The specifics in regards to why M(x, z) may be realized

as a graph can be found in Section 7.4. There is some subtlety due to multiply covered

Reeb orbits, manifest in the expression for the differential, and will be addressed later.

Together the results of this chapter and the next allow us to demonstrate that one

can define a cylindrical contact homology, dependent on the choice of nondegenerate

dynamically separated contact form.

The following preliminary propositions will be used to prove Theorem 6.1, with the

full details of the proof of the main theorem to follow in Section 6.3.

Proposition 6.3. After a generic choice of J , the only index 0 finite energy asymp-

totically cylindrical pseudoholomorphic cylinders that exist in the symplectization are

trivial.

Before stating the next proposition, we review the set up used in its statement. Let

γ+ and γ− be distinct nondegenerate simple Reeb orbits associated to a dynamically

separated contact form, with µCZ(γ+)− µCZ(γ−) = 1, or 2. In the case that µCZ(γ+)−

µCZ(γ−) = 0 the above Proposition implies that γ+ and γ− are the same orbit. We

denote by M(γ`+; γd−) the moduli space consisting of finite energy pseudoholomorphic

curves,

u : (S2 \ {x, y}, j)→ (R×M, J̃)
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with γ+ the orbit corresponding to the puncture Γ+ = {x} and γ− the orbit correspond-

ing to the puncture Γ− = {y}. When we restrict ourselves to finite energy pseudoholo-

morphic cylinders we may equivalently take the domain of u to be (R × S1, j) with γ+

corresponding to the +∞ direction and γ− corresponding to the −∞ direction of the

domain.

Proposition 6.4. After a generic choice of J the following holds for M(γ`+; γd−) 6= ∅.

1. We have ` ≥ d ≥ 1 and µCZ(γ`+)− µCZ(γd−) ≥ 1

2. All curves u ∈M(γ`+; γd−) are regular.

3. The moduli space M(γ`+; γd−) is a smooth orbifold of dimension µCZ(γ`+)−µCZ(γd−).

The specifics of the orbifold structure associated to M(γ+; γ−) will be discussed in

Section 7.4. In Proposition 6.4 we must choose J generically so that we can appeal to

Dragnev’s results for underlying simple cylinders, as in Theorem 4.15. This stipulation

ensures that ` ≥ d ≥ 1 when combined with the conditions on behavior of the Conley-

Zehnder indices of iterated orbits associated to nondegenerate dynamically separated

contact forms. Namely, the dynamically separated condition rules out the possibility of

multiply covered pseudoholomorphic cylinders to have smaller index than the cylinders

they cover. Further details as well as the proof of this theorem can be found in Section

6.1.

Aside from the case when γ+ and γ− represent the same multiply covered Reeb

orbit of even Conley-Zehnder index, this Proposition 6.4 follows immediately from the

criterion of Theorem 5.7 and Theorem 5.5 of Section 5. We can directly obtain regularity

for the trivial cylinder in a symplectization by appealing to Lemma 2.4 in [Sa99]. We
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may appeal to the methods of Salamon in this setting because all compatible almost

complex structures associated to a symplectization are R-invariant.

6.1 Dynamics associated to dynamically separated

contact forms

In this section we study finite energy pseudoholomorphic cylinders of both the multiply

covered and somewhere injective variety. We are interested in the cylinders which inter-

polate between closed nondegenerate Reeb orbits associated to dynamically separated

contact forms, of index difference 1 or 2. We will show that once we have chosen J

generically, these satisfy the automatic transversality requirements of Theorem 5.7. As

a result we can conclude that these cylinders will be regular and that Theorem 5.5 is

applicable, prescribing the necessary structure to these moduli spaces. This gives us the

proofs of Propositions 6.3 and 6.4 and is the first step in ensuring that ∂2 = 0.

We begin with a few words on terminology and notation. From now on we will refer

to such finite energy pseudoholomorphic entities merely as multiply covered cylinders

or simple cylinders of index 1 or 2. Technically these cylinders do not have Fredholm

index 1 or 2, though the (virtual) dimension of M(γ+; γ−) will be 1 or 2 respectively. To

avoid an arithmetic headache we will use the terminology unreduced (Fredholm) index

of a curve, which we denoted by ĩnd(u; c). Recall that the unreduced index was defined

in (5.5) by

ĩnd(u; c) = ind(u; c)− dim(Aut(Σ̇))
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and it agrees with the virtual dimension of the moduli space of unparametrized asmyp-

totically cylindrical pseudoholomorphic curves, Mc. See also the discussion in Remark

5.4 in regard to this technicality.

The finite energy condition is the one discussed in Section 3.3, and we refer to

asymptotically cylindrical pseudoholomorphic cylinders as finite energy cylinders. Unless

otherwise specified an orbit will be assumed to be nondegenerate and associated to a

Reeb vector field generated by a dynamically separated contact form. By index difference

1 or 2 we mean that the difference in the Conley-Zehnder index of the orbit corresponding

to +∞ and the Conley-Zehnder index of the orbit corresponding to −∞ is 1 or 2.

The precise correspondence of the orbits to ±∞ is discussed at length in Section 3.4,

but we briefly recall the basics. Let u ∈ M(γ+; γ−). We denote its components in the

symplectization (R×M,d(eτα), J̃) by

u := (a, f) : (R× S1, j)→ (R×M, J̃).

Additionally in the C∞ topology, we require

lim
s→+∞

a(s, t) = +∞, lim
s→−∞

a(s, t) = −∞,

and

lim
s→+∞

f(s, t) = γ+(T+t), lim
s→−∞

f(s, t) = γ−(T−t),

where T+ is the period of the Reeb orbit γ+ and T− is the period of the Reeb orbit γ−.

Recall that we defined a contact form α to be dynamically separated in Defini-

tion 1.2; namely that the following conditions are satisfied for any closed Reeb orbits

associated to Rα:

(i) 3 ≤ µCZ(γ) ≤ 5, for all closed simple contractible Reeb orbits γ.

(ii) µCZ(γk) = µCZ(γk−1) + 4, where γj is the j-th iterate of a simple orbit γ.
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Remark 6.5. One can relax condition (i) in the case of noncontractible orbits to allow

for simple noncontractible orbits γa in the same free homotopy class a to satisfy either

1 ≤ µCZ(γa) ≤ 3 or 3 ≤ µCZ(γa) ≤ 5. The results of the following section are only needed

for contractible orbits as they involve excluding the breaking phenomenon, which is why

we can relax (i), provided the results of this section still hold.

We include the following illustrations, Figures 3 and 4 to help us keep track of

the multiplicities of the ends in relation to an underlying simple cylinder. Note that

depending on the multiplicities of the orbits and existence of a covering map, a finite

energy cylinder interpolating between γ`+ and γd− may or may not be a multiply covered

pseudoholomorphic curve.

Figure 3: A simple cylinder. Figure 4: The plot thickens.

With the notation and terminology established, we proceed in our demonstration

that the first two main items of Proposition 6.4 follow from imposing the condition that

the contact form be dynamically separated. Recall that these are

1. We have ` ≥ d ≥ 1 and ĩnd(u) = µCZ(γ`+)− µCZ(γd−) ≥ 0

2. All curves u ∈M(γ`+; γd−) are regular.

Note that Item (3) of Theorem 6.4 follows immediately from (1) and (2) with the help

of Theorem 5.5. As a reminder, the inequality we are interested in establishing is that



95

of (5.10),

ĩnd(u; c) > #Γ0(c)− 2 + 2Z(du).

For the remainder of this section we will assume that the assumptions of Proposition

6.4 are in effect.

First we recall Corollary 3.17 from Wendl in regard to the quantity Z(du) which

has been defined in (5.7). It may be thought of as a simple version of the folk theorem

which states that generically, spaces of pseudoholomorphic curves with at least a certain

number of criticial points have positive codimension.

Corollary 6.6. For generic J , all somewhere injective curves u ∈M satisfy

2Z(du) ≤ ĩnd(u; c).

Thus in our setting somewhere injective pseudoholomorphic curves of reduced index

0 or 1 are necessarily immersed for generic J , as Z(du) = 0. However, we will need

to consider what can happen to finite energy pseudoholomorphic cylinders of index

2 separately. In the case where the finite energy cylinder is somewhere injective, we

immediately obtain the following as a result of Corollary 6.6.

Lemma 6.7. For generic J , a somewhere injective finite energy pseudoholomorphic

cylinder of index 2 satisfies

2Z(du) ≤ 2.

This lemma applies to all somewhere injective curves, which includes the case where

the orbits may be multiply covered, provided the cylinder is still simple, i.e. there exists

no biholomorphism of the source such that the cylinder factors through a covering of

simple cylinder.
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The following lemma details the relationship between Z(du) of a multiple cover of

a asymptotically cylindrical pseudoholomorphic curve and the underlying simple pseu-

doholomorphic curve. Let u be a multiply covered pseudoholomorphic curve. We can

write it as a composition

u = v ◦ ϕ,

where v is somewhere injective and ϕ is a holomorphic covering such that ϕ : (R ×

S1, j) → (R × S1, j) with deg(ϕ) > 1. We will see that this expression allows us to

realize Z(du) as the ramification number of ϕ.

Lemma 6.8. Let u be a multiply covered embedded pseudoholomorphic cylinder, as

above. Then

Z(du) = Z(dϕ).

Proof. Recall that we can write u as the composition

u = v ◦ ϕ,

where v is embedded and ϕ is a holomorphic covering of the source of u. Since v is

embedded we have that Z(dv) = 0. Then it follows from the chain rule that the critical

points of u can only arise from branch points of the cover ϕ, hence Z(du) = Z(dϕ).

This interpretation of Z(du) in relation to multiply covered curves useful, as it yields

the following result in regard to the quantity Z(du) associated to any multiple cover of

a finite energy cylinder of reduced index 2.

Lemma 6.9. For generic J , any finite energy pseudoholomorphic cylinder u associated

to a dynamically separated contact form of reduced index 2 satisfies

2Z(du) ≤ 2.
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Proof. We know that u is either somewhere injective or the multiple cover of a somewhere

injective cylinder of reduced index 2. We will proceed to prove the lemma by considering

these two cases. If u is somewhere injective this follows from Lemma 6.7.

If u is not somewhere injective, then u is the multiple cover of a somewhere injective

finite energy cylinder v, i.e.

u = v ◦ ϕ,

with ϕ as before.

We note that a holomorphic covering of a cylinder (R × S1, j) cannot have any

critical points. This is because in order to obtain a k-fold cover of a simple finite energy

cylinder, where k > 1 the covering ϕ of the source must be of the form ϕ(t, θ) = (t, θ/k)

for (t, eθ) ∈ R × S1 up to reparametrization of S1. Here the θ values 0 and 2π are

identified to obtain the circle. Then from Lemma 6.8 we know that

Z(du) = Z(dϕ) = 0.

Moreover, we have that v has at most 1 critical point of order 1 because of Lemma

6.7 and how the quantity Z(du) has been defined. The chain rule, combined with the

fact that ϕ must be of the described form tells us that the critical points of u and their

order must coincide with those of v. Thus 2Z(du) ≤ 2.

Remark 6.10. We note that if all the finite energy pseudoholomorphic cylinders that

are not somewhere injective are multiple covers of embedded finite energy cylinders, then

the proof of the above lemma can be greatly simplified. This is because the dynamically

separated condition forces u to be a multiple cover of a finite energy cylinder interpolating

between simple orbits. To see this, recall that the dynamically separated assumption
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means that for any simple orbit γ we have 3 ≤ µCZ(γ) ≤ 5 and the Conley-Zehnder

index increases uniformly by 4 each time we cover γ. Thus the only way to obtain

µCZ(γ`+)− µCZ(γd−) = 2

is for ` = d because of the uniform increase by 4 of the Conley-Zehnder index under

iteration and for µCZ(γ+) = 3 and µCZ(γ−) = 5. Provided this finite energy cylinder

is not somewhere injective, it must be a multiple cover of a finite energy cylinder in

M(γ+, γ−) where γ+ and γ− are simple.

This allows us to appeal to Proposition 3.7 of [Hu2] to conclude that a finite energy

pseudoholomorphic cylinder of reduced index 2 which limits only on simple Reeb orbits

is embedded. However this cannot be guaranteed to be the case in general, but may be

of interest in specialized geometric settings.

The next step is to demonstrate that after selecting J generically we can exclude all

cylinders of negative index, including cylinders which are multiply covered. This is pos-

sible because of the behavior of Conley-Zehnder indices prescribed to orbits associated

to dynamically separated contact forms. We may think of the following lemma as saying

that no matter how many times we travel around in circles, the only multiply covered

cylinders encountered continue to be of reduced index 0, 1, or 2 respective to the index

difference of underlying somewhere injective cylinder. This is an important result, as it

means there are no badly iterated multiply covered cylinders, and is a crucial ingredient

in proving Theorem 6.1.

We remark that this lemma yields a proof of Proposition 6.3, which stated that after

a generic choice of J , the only reduced index 0 cylinders that remain are necessarily

trivial.
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Lemma 6.11. For a generic choice of J , all finite energy nontrivial J-holomorphic

cylinders in the symplectization of a dynamically separated contact manifold have positive

reduced index. Moreover, the only reduced index 0 cylinders are trivial cylinders.

Proof. We begin by noting that for simple orbits γ+ and γ−,

µCZ(γ`+) = µCZ(γ+) + 4(`− 1), (6.1)

and likewise,

µCZ(γd−) = µCZ(γ−) + 4(d− 1). (6.2)

If we are only considering contractible simple orbits, we have

3 ≤ µCZ(γ+), µCZ(γ−) ≤ 5. (6.3)

We include a remark after this proof to clarify the allowable numerics for noncontractible

orbits.

Since we have started with γ+ and γ− as simple orbits we know that any finite energy

u ∈M(γ+; γ−) is simple, provided γ+ and γ− are distinct. Moreover for p and q coprime,

any u ∈ M(γp+; γq−) is simple. Then Dragnev’s results in [Dr04], specifically Corollary

4.15, allow us to conclude that ind(u) ≥ 1.

In particular this means for p ≥ q, we have

µCZ(γp+)− µCZ(γq−) = µCZ(γ+)− µCZ(γ−) + 4(p− q), (6.4)

and that (6.6) tells us sup (µCZ(γ+)− µCZ(γ−)) = 2. Thus µCZ(γp+) − µCZ(γq−) ≥ 0 if

and only if p ≥ q.

Moreover, from the above (6.4) we see that

µCZ(γp+)− µCZ(γq−) = 0
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if and only if

µCZ(γ+)− µCZ(γ−) + 4(p− q) = 0.

Thus we would need µCZ(γ+) = µCZ(γ−) and p = q. Next we explain why the equality

of the Conley-Zehnder indicies implies that after a generic choice of J the only u ∈

M(γp+; γq−) must be trivial, provided µCZ(γp+)− µCZ(γq−) = 0.

Note that γ+ and γ− are simple, so any u ∈M(γ+; γ−) must be somewhere injective,

thus Dragnev’s results are applicable. Thus after a generic choice of J , the only way to

have µCZ(γ+) = µCZ(γ−) and M(γ+; γ−) 6= ∅ is for γ+ and γ− to be the same orbit. We

see after a generic choice of J that p = q and µCZ(γ+) = µCZ(γ−). Thus after a generic

choice of J the only finite energy cylinders which may persist must be trivial cylinders,

as γ+ and γ− are the same orbit and p = q. Note that this argument completes the

proof of Proposition 6.3.

To prove that all multiply covered cylinders have non-negative reduced index we

appeal to the uniformity of the increase of the Conley-Zehnder of Reeb orbits associated

to dynamically separated contact forms. The Reeb orbits associated to multiply covered

cylinders must be a multiple cover a simple orbit. This means that any orbits can be

expressed as γ`+ and γd− for some `, d > 1.

From the prime factorization of integers we know that any cylinder can be obtained

as the multiple cover of some simple cylinder, requires ` = ap and d = aq for some

a ∈ N. Since we have chosen J generically, we know that p ≥ q. Note that if we are

interested in nontrivial cylinders only, if p = q then µCZ(γ+) 6= µCZ(γ−). Appealing

again to the formulas (6.1) and (6.2) in the same fashion of (6.4) we obtain that any

multiply covered cylinder u has ĩnd(u) ≥ 0, with ĩnd(u) = 0 only in the case that u is a

trivial cylinder.
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Remark 6.12. The analysis for noncontractible orbits follows identically, provided that

we are in an analogous situation with

1 ≤ µCZ(γa) ≤ 3. (6.5)

or

3 ≤ µCZ(γa) ≤ 5. (6.6)

This is the reason we can somewhat relax the requirement in the definition of dynamically

separated for noncontractible orbits.

With the preceding two lemmas in place, we can finish proving Proposition 6.4 as

follows.

Proof. As previously mentioned, it suffices to demonstrate for all multiply covered cylin-

ders of index difference 1 or 2 the following inequality (5.10) holds,

ĩnd(u; c) > #Γ0(c)− 2 + 2Z(du).

Recall that this is equivalent to the curve u satisfying the conditions for automatic

transversality as given in Theorem 5.7, thus we may conclude it is regular even though

it may be multiply covered.

If J has been chosen generically, then Corollary 6.6 implies that the quantity Z(du) =

0 for all index 1 cylinders and Lemma 6.9 implies that Z(du) is at most 1 for finite energy

cylinders of index 2.

We are only interested in finite energy asymptotically cylindrical pseudoholomorphic

curves limiting on nondegenerate Reeb orbits, so the subset Γ0(c) ⊂ Γ consists of punc-

tures for which the asymptotic orbit has even Conley-Zehnder index. Condition (i) in
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the definition of dynamically separated tells us that for all simple closed contractible

Reeb orbits γ, the Conley-Zehnder index satisfies 3 ≤ µCZ(γ) ≤ 5. Each time we iterate

we add 4 so for any nontrivial cylinder we have at most 1 puncture of even Conley-

Zehnder index associated to a finite energy cylinder of index 1 and no punctures of even

Conley-Zehnder index associated to an finite energy cylinder of index 2.

Recall that J has been chosen generically, so Lemma 6.11 tells us that for all non-

trivial cylinders u,

ĩnd(u; c) ≥ 1.

The proof of Proposition 6.4 is then complete, as 1 > −1 and 2 > −2 + 2 = 0.

6.2 Numerics of branched covers

In this section we will exclude all branched covers of multiply covered asymptotically

cylindrical pseudoholomorphic curves from having nonpositive index that are be an ob-

struction to obtaining a homology theory from the contact chain groups. This is accom-

plished by appealing to the uniform increase in Conley-Zehnder index of dynamically

separated contact forms and the bounds on the index of the simple orbits. These results

will allow us to prove Theorem 6.1 in the following section.

Before we delve into the numerics of all possible branched covers of a multiply covered

cylinder we discuss the numerics of a “pair of pants” in detail first. We will use the same

notation as before, and the setup is given as follows. Denote by γ`+ the `-fold cover of a

simple orbit γ+ and γd− the d-fold cover of a simple orbit γ− with µCZ(γ+) ≥ µCZ(γ−).

An arbitrary branched cover with two negative punctures of a curve u ∈ M(γ`+; γd−)
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belongs to the moduli space

M
(
γ
`(k1+k2)
+ ; γdk1− , γdk2−

)
,

where k1, k2 ∈ Z>0. The following illustration is helpful to visualize the geometry of

such a configuration.

Figure 5: The underlying cylinder. Figure 6: A branched cover.

Proposition 6.13. Let α be a nondegenerate dynamically separated contact form asso-

ciated to a 3-manifold M , with J a generic compatible almost complex structure. Let γ+

and γ− be simple distinct closed contractible Reeb orbits associated to α. Then

dim M(γ
`(k1+k2)
+ , γdk1− , γdk2− ) = 1 + µCZ

(
γ
`(k1+k2)
+

)
− µCZ

(
γdk1−

)
− µCZ

(
γdk2−

)
≥ 0,

with equality only in the case that γ+ = γ− and µCZ(γ+) = µCZ(γ−) = 5.

The proof of this crucial fact involves some tedious arithmetic, which we present in

full detail. We proceed by unraveling the expressions for the Conley-Zehnder indices

in terms of the number of iterations and the Conley-Zehnder index of the underlying

simple Reeb orbits, remembering that µCZ(γk) = µCZ(γk−1) + 4.
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Remark 6.14. In the case that the underlying simple closed orbits γ+ and γ− are

not distinct then it is possible for dim M(γ
`(k1+k2)
+ , γdk1− , γdk2− ) = 0. We saw this in the

ellipsoid. However, we will not have to worry about such configurations obstructing in

the proof of Theorem 6.1 due to the uniform increase in index increase by 4. More

details are given in Section 6.3.

Proof. Let us label

µCZ

(
γ
`(k1+k2)
+

)
− µCZ

(
γdk1−

)
− µCZ

(
γdk2−

)
. (6.7)

We begin by noting that

µCZ(γ`+) = µCZ(γ+) + 4(`− 1).

Since

µCZ

(
γ
`(k1+k2)
+

)
= µCZ(γ+) + 4(`(k1 + k2)− 1),

we obtain

µCZ

(
γ
`(k1+k2)
+

)
= µCZ(γ`+) + 4`(k1 + k2 − 1). (6.8)

Also,

µCZ(γdki− ) = µCZ(γ−) + 4(dki − 1)

= µCZ(γd−) + 4d(ki − 1).
(6.9)

So we can write

(6.7) = 1 + µCZ(γ`+) + 4`(k1 + k2 − 1)− 2µCZ(γd−)− 4d(k1 − 1)− 4d(k2 − 1).

= 1 + 4(`− d)(k1 + k2 − 1) + 4d+ µCZ(γ`+)− 2µCZ(γd−).

As a result of Proposition 6.4 we have that

µCZ(γ`+) ≥ µCZ(γd−),
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We have that (6.7) is the least when ` = d, since ` ≥ d (see Proposition 6.4). So we

need to make sure that

1 + 4d+ µCZ(γd+)− 2µCZ(γd−) > 0. (6.10)

If γd+ and γd− are distinct and their CZ indices agree, then generically the original

underlying cylinder connecting γ+ and γ− cannot exist for a generic choice of J by

Dragnev’s results (see Proposition 6.3). Thus in checking (6.10) holds we can take

µCZ(γd+) − µCZ(γd−) = 1. Here we take the infimum and supremum of the Conley-

Zehnder indices over all contractible Reeb orbits, remembering they all have underlying

simple orbits with Conley-Zehnder index3, 4, or 5 as in my definition of dynamically

separated. Keeping (6.9) in mind, we obtain

inf(6.7) = 1 + 4d+ 1− sup(µCZ(γd−))

= 1 + 4d+ 1− (5 + 4(d− 1))

= 1

> 0.

In the case that γ− and γ+ are the same orbit and µCZ(γ−) = µCZ(γ+) = 5 we see that

we obtain

1 + 4d+ µCZ(γd+)− 2µCZ(γd−) = 0.

In the case that µCZ(γ−) = µCZ(γ+) = 3 or 4, it is easy to see that

1 + 4d+ µCZ(γd+)− 2µCZ(γd−) > 0.

Thus the proposition is proven.
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Now we can move onto considering more general branched covers, where there may

be an arbitrary number of negative ends.

Proposition 6.15. After a generic choice of J , any branched cover of an asymptoti-

cally cylindrical pseudoholomorphic curve of positive index with one positive puncture

associated to a dynamically separated contact form has positive index.

Next we will want to consider the case when we take a branched cover with only

one positive puncture of a pseudoholomorphic curve coming from a moduli space of

dimension 0. From Proposition 6.13 we know that this means the underlying pseudo-

holomorphic curve associated to this branched cover must be an element of

M(γ`(k1+k2), γdk1 , γdk2),

with µCZ(γ) = 5. This situation is dealt with the following corollary, whose proof follows

by combining the preceding proofs of Propositions 6.13 and 6.15.

Corollary 6.16. After a generic choice of J any branched cover of a pseudoholomor-

phic curve of index 0 associated to a dynamically separated contact form belongs to the

following moduli space

M(γ`(k1+...+ks); γd1k1 , ..., γdsks)

with µCZ(γ) = 5.

We will see in the following section that these “exceptional” asymptotically cylindri-

cal pseudoholomorphic curves do not interfere with the proof of Theorem 6.1 because of

the uniform increase by 4 of the Conley-Zehnder index in the definition of dynamically

separated.
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First we set up some notation for the proof. Let the following moduli space have

positive dimension,

Mpos = M(γ`+; γd1β1 , ..., γ
dr
βr

).

We are interested in the moduli space consisting of branched covers of Mpos, which we

denote by

Mbranch := M(γ
`(k1+...+ks)
+ ; γd1k1β1

, ..., γdsksβs
).

Here γ+, γβi are all simple Reeb orbits, which are not necessarily distinct. Note that

s > r and that #({distinct βi}i∈{1,..s}) ≤ #({distinct βi}i∈{1,..r}), as the only simple

Reeb orbits appearing in Mbranch must have come from Mpos.

A slightly more horrible numerical argument identical to the methods used to prove

Proposition 6.13 yields the desired results. We will still go through the details, so as to

not unduly burden the skeptical reader.

Proof. We begin by noting that

dim Mpos = (−1)(1− r) + µCZ(γ`+)−
r∑
i=1

µCZ(γdiβi)

and

dim Mbranch = (−1)(1− s) + µCZ(γ
`(k1+...+ks)
+ )−

r∑
i=1

µCZ(γdikiβi
).

Then the equations (6.8) and (6.9) from the proof of Proposition 6.13 allow us to express

dim Mbranch as

dim Mbranch = (s− 1) + µCZ(γ`+)−
s∑
i=1

µCZ(γdiβi) +

4`(k1 + ...+ ks − 1) − 4
s∑
i=1

di(ki − 1).

(6.11)
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Note that for all i, ` ≥ di as this follows from the reasoning given in Proposition 6.13

and the assumptions that the underlying branched cover is positive and that J has been

chosen generically. Thus it suffices to consider the case where ` = di.

Note that when ` = di, we have −4`+ 4
∑s

i=1 di = 4`(s− 1). Thus we need to make

sure that

s− 1 + µCZ(γ`+)−
s∑
i=1

µCZ(γ`βi) + 4`(s− 1) > 0. (6.12)

There are two cases to consider. The first is where there is a γβi distinct from γ+. In

this case we can assume that for some j, µCZ(γ`+)− µCZ(γ`βj) = 1. Now checking (6.12)

amounts to observing that

inf(6.11) = (s− 1) + 1 + (1− s)
s−1∑
i=1

sup(µCZ(γ`βi)) + 4`(s− 1)

= (s− 1) + 1 + (1− s)(5 + 4(`− 1)) + 4`s− 4

= (s− 1) + 1 + 5 + 4`− 4− 5s− 4`s+ 4s+ 4`s− 4`

= 5− 4

= 1

> 0

The other case to consider is when all of the γβi and γ+ are actually the same orbit,

which we will denote by γ. Since the underlying curve must belong to Mpos we know

that the only possibilites for µCZ(γ) are 3 or 4 from the previous proposition. In either

of these cases the above argument shows that inf(6.11) ≥ 1.

Remark 6.17. We note that a uniform increase of 2 or 3 fails to yield the proofs

of Propositions 6.13 and 6.15, which can be checked directly via the above numerics.

On the other hand, a uniform increase by any integer larger than 4 also yields proofs
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of Propositions 6.13 and 6.15. Even in these cases we must still restrict the simple

contractible orbits γ to have µCZ(γ) = 3, 4, or 5 so that the regularity results of Section

6.1 are still applicable.

6.3 Overcoming obstructions

In this section we complete the proof of Theorem 6.1. Recall that we denote x and

z and to be nondegenerate Reeb orbits associated to a dynamically separated contact

form, with µCZ(x) − µCZ(z) = 2. We denote the set of all Reeb orbits associated to a

dynamically separated contact form in the same free homotopy class by P. To prove

Theorem 6.1 we need to show that the only possible configurations for breaking of a

finite energy pseudoholomorphic cylinder limiting on Reeb orbits of index difference 2

are into two broken cylinders, as in Figure 7.

Figure 7: Desired limiting behavior for u ∈ M̂(x; z)

We will show that the results of the previous section, Propositions 6.13 and 6.15 allow

us to appeal to the Symplectic Field Theory compactness results of [?] to conclude that

the compactification of M̂(x; z) is obtained by including only the “broken cylinders,”
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namely pairs of curves (Cu,Cv) ∈ M̂(x; y)× M̂(y; z). We denote this space as follows

M(x; z) := M̂(x; z) ∪
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y; z).

As an immediate consequence, we obtain the following inclusion of moduli spaces of

finite energy pseudoholomorphic cylinders interpolating between these orbits,

∂M(x; z) ⊂
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y, z). (6.13)

The inclusion of moduli spaces necessary to the construction of a Morse or Floer ho-

mology theory, as it is a crucial ingredient in demonstrating the ∂2 = 0 or obtaining the

chain homotopy equation in the proof of invariance. The presence of moduli spaces of

nonpositive virtual dimension obstructs the construction of cylindrical contact homol-

ogy, as we can no longer obtain the inclusion in (6.13) of compactified moduli spaces.

While we will not discuss invariance in this paper, we note that in this case we will be

interested in understanding the degenerations of a moduli space whose curves interpolate

between nondegenerate Reeb orbits of index difference 1.

We can explicitly see how (6.13) can fail to hold as follows. The compactness ar-

guments of Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder, allow for finite energy

pseudoholomorphic cylinders interpolating between Reeb orbits of index difference 1 or

2 to break into buildings of heigh 2 which could consist of a pair of pants, plane, and

cylinder, as in Figure 8. In this setting the pseudoholomorphic building can only have

one top level puncture because of the maximum principle as described in Proposition

3.6. However as we cannot rule out the possibility of a minimum appearing in the R

component of the symplectization, as in Figure 9. This is the reason that the language
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Figure 8: Building of height 2 in a symplectization.

of pseudoholomorphic buildings was introduced to explain the structure of compactified

asymptotically cylindrical moduli spaces.

Figure 9: Developing a minimum

It is important to note that this breaking behavior can occur in the compactification
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of M̂(x, z) even after excluding contractible orbits of degree -1, 0, 1, as in the assumptions

of Conjecture 1.1. This requirement is not sufficient for the purposes of constructing

a chain complex without the availability of an abstract perturbation package. We will

explain this pictorially, as a dense block of text may obscure the elementary properties

of addition under consideration. We begin by explaing the necessity of the assumption

that there be no contractible orbits of grading |γ| = −1, 0, 1, working in a 4 dimensional

symplectization.

It can be hard to keep of the −1 when discussing the boundary of a compactified

moduli space M̂ that is 1-dimensional, as one may have numerous building components

associated to the degeneration of such a moduli space. We will discuss the numerics

of boundary of the compactification in terms of the numerics associated to the virtual

dimension of M so that we do not need to keep track of the extra −1, which would be

associated to each component in a building of asymptotically cylindrical pseudoholo-

morphic curves. In order to compactify the moduli space M̂(x, z) = M(x, z)/R we need

to include buildings of height 2 consisting of a pair of pants, cylinder, and a plane. The

sum of their unreduced virtual dimensions must be 2, as it must be equal to the index

of M(x, z), which is 2.

Note that this is permissible because there is no fundamental geometric difference

aside from the change to the virtual dimension formula. We refer to the unreduced

virtual dimension of a moduli space to when we are working through virtual dimension

computations before modding about by the external R-action, and our computations are

of the virtual dimension of M instead of M̂.

The degeneration in Figure 10 demonstrates how the presence of a Reeb orbit y with

µCZ(y) = 2, i.e. |y| = 1, since we are working with 3-dimensional contact manifolds,
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precludes ∂2 = 0.

Figure 10: µCZ(y) = 2⇒ /

The degeneration in Figure 11 demonstrates how the presence of a Reeb orbit y with

µCZ(y) = 1, i.e. |y| = 0, precludes ∂2 = 0.

Figure 11: µCZ(y) = 1⇒ /

The degeneration in Figure 12 demonstrates how the presence of a Reeb orbit y with

µCZ(y) = 0, i.e. |y| = −1, precludes ∂2 = 0.
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Figure 12: µCZ(y) = 0⇒ /.

In addition, we see that we run into trouble if the reduced virtual dimension of any

of the building components is negative. If the virtual dimension of Mc is 0 then this

can only obstruct the desired inclusion when Mc is of the form M(x; y, y) such that the

Reeb orbit y satisfies µCZ(y) = 3, i.e. |y| = 2. This is precisely the sort of situation

encountered in the following Example 5.1 with the ellipsoid. To ensure that all planes are

of positive reduced virtual dimension, we must require µCZ(y) ≥ 3 for all nondegenerate

contractible Reeb orbits as otherwise we cannot ensure that ∂2 = 0 even if all other

moduli spaces M(x; y1, ..., ys) have positive virtual dimension.

In addition, one also needs to consider the possibility of buildings which include

moduli space of the form M(x; y1, ..., ys). This is because there is no reason branched

covers with an arbitrary number of negative ends must also be excluded from having

nonpositive virtual dimension. The following illustration of Figure 13 demonstrates

a rather complicated compactification of a cylinder, which might arise if the cylinder

developed several minima. Note that it is still homotopic to a cylinder.
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Figure 13: Egads!

Now that we understand the breaking phenomenon and what is entailed in proving

the inclusion of (6.13), we can give the proof of Theorem 6.1 as follows.

Proof. We begin by noting that asymptotically cylindrical pseudoholomorphic curves

with only one positive puncture at the top can be glued to obtain the buildings which

would appear in the compactification of M̂(x; z). The reasoning for is because we are

only interested in counting cylindrical curves, and gluing together curves with multiple

positive punctures at the top would give rise to a building of genus greater than 0.

Pictorially we have the following figures to illustrate this.
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Figure 14: What if? Figure 15: No donuts.

We see that Propositions 6.13 and 6.15 when combined with the requirement that

all contractible closed Reeb orbits have Conley-Zehnder index at least 3 rule out the

possibilities of a configuration as illustrated in Figures 10-12 or Figure 13 from occurring

in the compactification. This is because we know the total unreduced virtual dimension

of such a building sums to at least 2m where m is the number of of capping holomorphic

planes. Thus there can only be at most one holomorphic plane and we would be in

the configuration described in Figure 10. To see that this is not possible we appeal to

Proposition 6.13. This tells us that the pair of pants has reduced dimension greater

than 0 when 3 ≤ µCZ(γ) ≤ 4 and equal to 0 when µCZ(γ) = 5. But now we have that

|γ| = 4, which is also impossible. Thus we obtain the proof of Theorem 6.1.

Remark 6.18. In order to establish a cylindrical contact homology theory which in-

cludes noncontractible nondegenerate Reeb orbits as well, we only have to worry about
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excluding the existence of negative dimensional moduli spaces coming from branched cov-

ers of multiply covered curves which interpolate between the closed contractible Reeb

orbits only. This is because the pair of pants breaking configuration, as in Figure 8,

would only be homotopic to a cylinder when the capping discs are bounded by con-

tractible Reeb orbits. As explained earlier, we still need the regularity results of Section

6.1 for all pseudoholomorphic cylinders which interpolate between Reeb orbits of index

difference 1 or 2 in the same free homotopy class.
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Chapter 7

A gallimaufry of gluings

The purpose of this chapter is to prove an analogue of Floer’s gluing theorem theorem.

Gluing, a converse to Gromov compactness, allows us to approximate a broken curve,

consisting of two rigid pseudoholomorphic curves sharing a common orbit y with a nearby

honest pseudoholomorphic curve. This procedure allows us to prove that the ends of

the 1-dimensional compact moduli space M(x; z) correspond exactly to pairs of rigid

cylinders in M̂(x; y)× M̂(y; z). Such a theorem is crucial to proving that ∂2 = 0.

In the case of closed pseudoholomorphic curves such a construction is well docu-

mented in Chapter 10 of [MSbigJ ], and is rigorously treated in Chapter 9 of [ADfloer]

and Chapter 4 of [Sc95] for Hamiltonian Floer homology. Our methods and proof struc-

ture will be modeled after the arguments presented by Audin and Damian in [ADfloer],

by adapting the analytic set up in regards to weighted Sobolev spaces from Schwarz

[Sc95] as in Dragnev [Dr04]. Aside from the surjectivity of gluing, the arguments in the

gluing construction follow immediately from the Hamiltonian Floer setting after minor

necessary modifications, which are explained in Section 7.2.

The surjectivity arguments are the major difference between gluing in Hamiltonian

Floer theory and contact homology, as the gluing construction in Hamiltonian Floer

theory yields a unique honest pseudoholomorphic curve, whereas in contact homology

it does not. This is due to the inclusion of multiply covered orbits, which allows us
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to change the parametrizations by rotation of the pseudoholomorphic solutions corre-

sponding to the underlying cylinders in the pregluing construction. This gives rise to

additional non-equivalent approximately pseudoholomorphic solutions in the pregluing

construction, and yields the same number of non-equivalent honest pseudoholomorphic

curves as well. The work of Hofer, Wysocki, and Zehnder [HWZ02] on pseudoholomor-

phic cylinders of small area provides the proper notions of convergence to obtain these

results pertaining to the surjectivity for gluing. This will be extensively discussed in

Section 7.3, which will lead to the final details in the proof of Theorem 7.3.

We remark that the lack of uniqueness due to reparametrization is the reason for

the nonstandard coefficient in the expression of the differential for contact homology.

This also appears in the geometry associated to the moduli spaces of interest and will

be discussed in Section 7.4.

7.1 Outline of the gluing construction

Before stating the analogue of Floer’s gluing theorem we fix some notation for the moduli

spaces and pseudoholomorphic curves under consideration. Let γ+ and γ− be two closed

Reeb orbits of index difference one or two, that is µCZ(γ+)−µCZ(γ−) = 1, 2. We denote

the moduli space of pseudoholomorphic curves limiting on these orbits by S(γ+; γ−), and

will refer to this as the space of parametrized solutions. We will typically denote

pseudoholomorphic curves living in S(γ+; γ−) by the letters u and v.

Remark 7.1 (Splitting over free homotopy classes of Reeb orbits). There is a splitting

on the chain level of cylindrical contact homology over the free homotopy classes of loops.

Throughout we will assume that we only consider moduli spaces of curves interpolating
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between Reeb orbits of the same free homotopy class.

The source of these pseudoholomorphic curves is a twice punctured sphere, or cylin-

der whose space of biholomorphisms is generated by rotations and translations, which

is equivalent to an S1 × R’s worth of action. Thus in order to obtain the space of

unparametrized trajectories, which we will denote by M(γ+; γ−), we take

M(γ+; γ−) := S(γ+; γ−)/(S1 × R).

We will use the notation [u] to denote the equivalence class of a pseudoholomorphic

curves u ∈ S(γ+; γ−), under biholomorphisms of the source. Recall that this equivalence

relation was defined at the beginning of Section 4.3.

We note that in Hamiltonian Floer homology and symplectic homology one has

typically already perturbed the ∂̄J̃ equation for the purposes of achieving transversality,

resulting in an almost complex structure which is no longer invariant under the S1 action.

As a result there is only the R action coming from translations on the source and gluing

is unique.

Recall that the target of our pseudoholomorphic curves is the symplectization of a

contact manifold, thus the almost complex structure J on the target is by construction

R invariant. There is an additional R action on M(γ+; γ−) by external translations

u = (a, f) → (a + ρ, f), where ρ ∈ R. After modding out by this R action we decorate

a moduli space with a ,̂ as follows

M̂(γ+; γ−) := M(γ+; γ−)/R.

We denote the equivalence class of pseudoholomorphic curves originally representing

u ∈ S(γ+; γ−) by Cu.
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In order to compactify the space, M̂(γ+; γ−) we must add in the breaking of pseu-

doholomorphic curves. By the numerology of Section 6 we were able to ensure that the

only possible configurations for breaking of a pseudoholomorphic curve limiting on Reeb

orbits of index difference two was into two broken cylinders, each of index difference 1.

To be precise we take x, y, and z to be Reeb orbits associated to a nondegenerate dy-

namically separated contact form, each representing the same free homotopy class, such

that µCZ(x) − µCZ(z) = 2. We denote the set of all Reeb orbits in the free homotopy

class by P. Then we compactify M̂(x; z) by including all the broken cylinders, which

are pairs of curves (Cu,Cv) ∈ M̂(x; y)× M̂(y; z). That these are the only curves needed

to be included in the compactification was proven in Section 6. The compactified space

is given by

M(x; z) := M̂(x; z) ∪
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y; z).

The computations of the previous section gave us the following inclusion,

∂M(x; z) ⊆
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y; z). (7.1)

The object in proving an analogue of Floer’s gluing theorem is to demonstrate that the

reverse inclusion also holds. The formal statement is as follows.

Theorem 7.2 (Gluing). Let x, y, and z be three nondegenerate closed Reeb orbits rep-

resenting the same free homotopy class a of consecutive index

µCZ(x) = µCZ(y) + 1 = µCZ(z) + 2,

and let (u, v) ∈ S(x; y) × S(y; z) be a parametrized solution representing the trajectory

(Cu,Cv) ∈ M̂(x; y)× M̂(y; z). Then there exists a differentiable map

ψ : [R0,∞)→ S(x, z),
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for a particular value R0, such that ψ̂ := π ◦ ψ is an embedding

ψ̂ : [R0,∞)→ M̂(x; z)

satisfying

lim
R→+∞

ψ̂(R) = (Cu,Cv) ∈M(x; z) ⊃ M̂(x; z).

Before we state the second theorem which pertains to the surjectivity of gluing,

we must introduce some notation to handle the multiplicites of the pseudoholomorphic

cylinders and Reeb orbits. We denote by M(γ) the multiplicity of a Reeb orbit γ,

and M(C) of a finite energy pseudoholomorphic cylinder C. Specifically, if the finite

energy pseudoholomorphic cylinder C ∈ M̂(γ+; γ−) represented by u ∈ M(γ+; γ−) may

be written as the composition of a holomorphic map ϕ : (R× S1, j)→ (R× S1, j) with

±∞ = ϕ(±∞) where

u = v ◦ ϕ, deg(ϕ) > 1.

and v is a simple cylinder, then

M(C) = deg(ϕ).

When C is not multiply covered, then M(C) = 1.

By multiplicity of a Reeb orbit, we mean that M(γ) is the unique positive integer

such that γ is the Mγ-fold iterate of a simple Reeb orbit. Note that M(C)|M(γ+) and

M(C)|M(γ−).

For u and v given parametrizations of Cu and Cv, we can rotate the initial point

chosen on the orbit y(t) by T/M(y), where T is the period of the orbit y, to obtain

k :=
M(y)

lcm(M(Cu),M(Cv))
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non-equivalent different broken parametric solutions in S(x; y)×S(y; z). Each represents

the same broken trajectory given by (Cu,Cv) ∈ M̂(x; y) × M̂(y; z). and gives rise to k

different approximately pseudoholomorphic cylinders u#Rv, and hence k different honest

pseudoholomorphic solutions {ψi}i∈{1,...,k}.

As a result we obtain the following non-uniqueness result in regards to the surjectivity

of gluing.

Theorem 7.3 (Surjectivity of Gluing). If there exists a sequence (ŵn) converging to

(Cu,Cv) ∈ M̂(x; y) × M̂(y; z) then (ŵn) must lie in the image of one of the ψ̂i’s for

i ∈ {1, ..., k} when n is sufficiently large.

In order to obtain the honest pseudoholomorphic curve ψ̂ we use a process known as

gluing, which uses two connecting parametrized solutions,

u ∈ S(x, y), v ∈ S(y, z)

whose corresponding Fredholm operators Du and Dv are surjective. We then use these

parametrized solutions to construct a one parameter family of approximate solutions,

wR = u#Rv, (7.2)

which interpolate between the Reeb orbits x and z, where R is the gluing parameter.

This procedure is known as pregluing. Since the notation in literature varies, we want

to clearly indicate that wR refers to a one parameter family of approximate solutions

and not the honest pseudoholomorphic curve. Frequently one designates the approximate

solutions by u#Rv, but this makes for a cumbersome subscript, so we have abbreviated

it by wR.
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Next we will want to apply an appropriate infinite dimensional implicit function

theorem to establish the existence of an honest pseudoholomorphic curve sufficiently

close to the family of approximate solutions. This follows after using special cutoff

functions to piece together objects very close to the solution we are looking for and use

a Newton-type iteration to obtain an actual solution of the Cauchy-Riemann equations.

In order to make use of this refined implicit function theorem, we must prove that

the linearized operator DwR is surjective for sufficiently large R, introduce appropriate

weighted Sobolev norms for the vector fields and 1-forms along the preglued curves wR

as defined in (7.2), and demonstrate that DwR has a right inverse satisfying a uniform

bound independent of R. These details of technicalities can be found in [Sc95] and

[ADfloer].

We denote by ψ the honest pseudoholomorphic solution, which is approximated

by wR and it lives in S(x; z). Moreover, we will demonstrate that it is of the following

form

ψ(R) = expwR(η(R)),

where η(R) ∈ W 1,p
δ (w∗RTW ).

Due to the choices involved in picking a starting point on the Reeb orbit y, we obtain

k :=
M(y)

lcm(M(Cu),M(Cv))

non-equivalent pregluings wR via reparametrization. Near each choice of pregluing, wR,

the honest solution ψ is determined uniquely. This is the reason for the statement of

Theorem 7.3, as well as for the coefficient appearing in the expression (8.4) for the cylin-

drical contact homology differential ∂. This is in contrast to the setting in Hamiltonian

Floer homology, and requires notions of convergence from [HWZ02]. More details on
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this will be given in Section 7.3.

7.2 Pregluing and construction of the honest pseu-

doholomorphic curve.

In this section we provide more details on the construction of the one parameter family

of approximate solutions wR. We give details on the specialized cut off functions used

to piece together the cylinders that are very close to the solution we are looking for.

Pseudoholomorphic curves in symplectizations or cobordisms can be decomposed into

two components. Writing u and v as the two parametrized solutions which we will be

gluing together, we denote their components in the symplectization (R×M,d(eτα), J̃)

by

u := (a, f), v := (b, g).

These parametrized elements u ∈ S(x; y) and v ∈ S(y; z) have been chosen after we

fixing an initial point on the Reeb orbit y(t) and ensuring that they satisfy

lim
s→−∞

f(s, t) = lim
s→+∞

g(s, t) = y(Tt), (7.3)

where T is the period of the Reeb orbit y.

Our approximately holomorphic cylinder also decomposes in this manner as well. We

denote these components as follows

wR = (cR, hR).

In order to precisely define wR, we select two cutoff functions β+(s) and β−(s) in
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C∞(R, [0, 1]), satisfying for fixed 0 < ε < 1/2,

β−(s) =

 1 s ≤ −1,

0 s ≥ −ε
β+(s) =

 1 s ≥ 1,

0 s ≤ ε.

The approximate solution component in the R-direction is defined by

-

Figure 16: Model for the cutoff function

β−(s).

1

β+

Figure 17: Model for the cutoff function

β+(s).

cR(s) =


b(s+R, t) s ≤ −1,

β−(s)(b(s+R, t)− b(R, 0)) + β+(s)(a(s−R, t)− a(−R, 0)) s ∈ (−1, 1),

a(s−R, t) s ≥ 1,

and in the contact component M we have

hR(s) =


g(s+R, t) s ≤ −1,

expy(t)

(
β−(s) exp−1

y(t)(f(s+R, t)) + β+(s) exp−1
y(t)(g(s−R, t))

)
s ∈ (−1, 1),

f(s−R, t) s ≥ 1.

An illustration of this construction in the contact manifold compnent is given in Fig-

ure 18. It appears here with the kind permission of Dietmar Salamon, with a slight

modification from its original form in [Sa99].
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...x(t)z(t)...

Figure 18: Pregluing construction

The parametrizations u and v have been chosen such that for |s| ≤ 1 that u(s +

R, t) and v(s − R, t) lie in the image of the exponential map of a solution Y (t) to the

linearized ∂̄J̃ equation. We will refer to solutions to the linearized pseudoholomorphic

curve equation, such as these, as pseudoholomorphic vector fields along a solution.

Namely, they are contained in the set{
expy(t) Y (t) | sup

t∈S1

||Y (t)|| ≤ r0

}
.

Given the asymptotics described in Equation 7.3,

lim
s→−∞

f(s, t) = lim
s→+∞

g(s, t) = y(Tt),

we know that the above will be true when R is chosen to be sufficently large. The exact

value of R0 is not important, and when we write R ≥ R0 signifies that we are only

considering those R which are sufficently large.

The interpolation wR that we have constructed satisfies the following properties.

1. The approximate solution wR is an element of C∞(x, z).

2. For s ∈ [−ε, ε], we have hR(s, t) = y(t).

3. For s ≤ R− 1 we have hR(s−R, t) = g(s, t) and

lim
R→+∞

hR(s−R, t) = g(s, t) in C∞loc.
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Likewise we have for s ≥ 1−R we have hR(s+R, t) = f(s, t) and

lim
R→+∞

hR(s+R, t) = f(s, t) in C∞loc.

4. The approximate solution wR is a differentiable function with respect to R.

5. hR tends to y(t) in C∞loc as R→ +∞.

For R ≥ R0 we constructed an approximately pseudoholomorphic curve wR in

C∞(x, y). The next step is to construct for R ≥ R0 an honest pseudoholomorphic

curve, ψ ∈ S(x; y). As previously mentioned, it will be of the following form

ψ(R) = expwR(η(R)),

where η(R) ∈ W 1,p
δ (w∗RTW ). By honest, we meant that it will satisfy the Cauchy-

Riemann equation,

∂̄J̃(ψ) = 0.

Note that for p > 2, η(R) is continuous, so because of elliptic regularity ψ will be of

class C∞.

The full details of the gluing methods may be found in [ADfloer] and [Sc95], and

generalize immediately to the contact homology setting, aside from the surjectivity of

gluing as in Theorm 7.3, which we explain in the following section. The idea of these

arguments, which yield the proof of the analogue of Floer’s gluing theorem, Theorem 7.2

are as follows. In order to appeal to Newton’s method, one first utilizes a stabilization

technique which eliminates the finite dimensional cokernel. This gives us a subspace

W⊥
R where we can find a right inverse to LR|W⊥R . The right inverse can be found once

we have demonstrated that the linearizations associated to u and v are surjective and
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that there is a uniformly bounded family of right inverses associated to DwR for R

sufficiently large in the W 1,p-norm. With the right inverse and estimate in place, we can

appeal to Floer’s Picard Lemma to obtain a unique solution of the linearized operator

D∂̄J̃ ,R(η) = 0, starting at 0, obtaining the honest pseudoholomorphic curve as desired

by exponentiating along wR as desired. Here η ∈ W 2,p
δ (R× S1, wR

∗T (R×M)).

7.3 Surjectivity of gluing

The purpose of this section is to investigate the lack of uniqueness involved in the gluing

construction and prove Theorem 7.3. Recall that this states if there exists a sequence

(ŵn) ∈ M̂(x, z) converging to (Cu,Cv) ∈ M̂(x, y) × M̂(y, z) then (ŵn) must lie in the

image of one of the ψ̂i’s for i ∈ {1, ..., k}, where

k :=
M(y)

lcm(M(Cu),M(Cv))
.

Geometrically this is due to he fact that if y is a multiply covered orbit of multiplicity

M(y) then we can change the parametrizations of u and v of the cylinders Cu and Cv by

rotating the initial point chosen on the orbit y thru
T

M(y)
, where T is the period of y.

This gives rise to k unique pregluings, which we will denote by (u#Rv)i for i ∈ {1, ..., k}.

These k approximately holomorphic cylinders give rise to k honest pseudoholomorphic

cylinders ψi. Such a result is important because it tells us that the multiplicities of

our Reeb orbits and finite energy pseudoholomorphic cylinders will be encoded in the

structure of the graph given by the compactification of M̂(x, z). We discuss this geometry

in the following section, Section 7.4 and will use it to prove ∂2 = 0 in Section 8.2.

Before we can prove this theorem we will need several lemmas and propositions and

will recall the necessary notions of convergence and results of Section 4 in the work of
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Hofer, Wysocki, and Zehnder in [HWZ02] on pseudoholomorphic cylinders of small area.

We begin by introduce the language of asymptotic and directional convergence modulo

R of [HWZ02], which requires a few concepts. Let S+ and S− be two compact disk-like

Riemann surfaces with smooth boundaries. For the purposes of our discussion we will

take the same complex structure j on both. Let o± be interior points of S±. Then we

can obtain a noded surface by identifying o− and o+ in the disjoint union S− t S+.

The noded surface is denoted by (S, o).

A deformation of a compact Riemann surface (Σ, j) of annulus type is a continuous

surjection

φ : Σ→ S

onto the nodal surface (S, o) such that φ−1(o) is a smooth embedded circle, and

φ : Σ \ {φ−1(o)} → S \ {o}

is an orientation-preserving diffeomorphism. We push forward the complex structure j

to S \ {o}, obtaining φ∗j.

We consider a sequence of compact Riemann surfaces (Sn, jn) of annulus type whose

moduli converge to ∞,

mod(Sn, jn)→∞

On this sequence of surfaces we consider a sequence

wn = (an, fn) : (Sn, jn)→ (R×M, J̃)

of pseudoholomorphic finite energy maps. Let

w = (a, f) : (S \ {o}, j)→ (R×M, J̃)
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be a pseudoholomorphic finite energy map having negative puncture at o+ ∈ S+ and

positive puncture o− ∈ S− and assume that their asymptotic limits are the same periodic

orbit of the Reeb vector field. For our purposes we will think of this node point as

asymptotically limiting on the intermediary Reeb orbit y in our pregluing construction.

With these ideas in place we can define convergence modulo R for a sequence

wn : (Sn, jn)→ (R×M, J̃)

of pseudoholomorphic curves is said to converge to

w : (S \ {o}, j)→ (R×M, J̃)

whenever there exists a sequence of deformations

φn : (Sn, jn)→ (S, j)

satisfying in C∞loc(S± \ {o±}) the following two conditions

1. wn ◦ φ−1
n → w;

2. (φn)∗jn → j.

Next we introduce an example of how this construction is applicable to our setting.

Example 7.4. Let

w : (S \ {o}, j)→ (R×M, J̃)

be defined so that

w = (u, v)|{(−∞,0)∪(0,∞)}×S1

and

(Sn, jn) = ({(−Rn, 0) ∪ (0, Rn)} × S1, jn)
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where jn is the usual complex structure on R× S1 restricted to Sn. We take

wn = (u, v)|Sn

The sequence of deformations is

φn : (R× S1, j)→ S

in which we pinch (0, eit) to o. Then wn converges modulo R to w.

Next we need to introduce a second notion of convergence, directional convergence,

related to the notion of asymptotically marked points. This language will allow us to

relate the choice of underlying parametrization for (Cu,Cv) ∈ M̂(x; y) × M̂(y; z) to the

choice of asymptotic markers. As a result we will be able to see if two parametrized

solutions (u, v) and (v′, u′) ∈ S(x; y)×S(y; z) represent the same broken cylinder (Cu,Cv)

then they differ by rotation.

Let Σ be a Riemann surface and let r ∈ Σ be an interior point. An asymptotic marker

for r consists of a choice of an oriented real line ~r ⊂ TrΣ in the tangent space at r. The

oriented line ~r together with the underlying point r will be called an asymptotically

marked point.

Given the Riemann surface Σ with an asymptotically marked point ~r there is a

distinguished class of holomorphic coordinate systems around r which are said to be

compatible with the asymptotic marker. They are defined as follows. We take any

compact disk-like neighborhood D ⊂ Σ with smooth boundary around r. Then we take

the unique biholomorphic map σ from the closed unit disk D onto D mapping 0 to r so

that the tangent Tσ(0) sends 1 ∈ R to an (oriented) basis vector in ~r. We note that for

two such coordinate systems σ and τ which are compatible with the asymptotic marker,
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the linearized transition map at 0

D(σ−1 ◦ τ)(0) : C→ C

acts by multiplication by a positive real number.

The next step is to introduce a special class of holomorphic polar coordinates around

an asymptotically marked point r, which will be of use later. We note that these coor-

dinates exist for an arbitrary finite energy pseudoholomorphic map, which will will still

denote by

w = (a, f) : (Σ \ {r}, j)→ (R×M, J̃).

After we explain this construction, we will demonstrate how to specialize it to finite

energy pseudoholomorphic maps whose domain is (S \ {o}, j) arising from the noded

surface (S, o).

Remark 7.5. If we take r to be a non-removable puncture in the sense of Theorem 3.15

then we may assume that associated asymptotic limit is a nondegenerate periodic orbit

of the Reeb vector field, which we denote by γ. We will only be interested in the case

when r is a non-removable puncture.

Let ~r be an asymptotic marker associated to a positive puncture r. Then there is

a special class of holomorphic polar coordinates around r which is compatible with the

asymptotic marker and is defined as follows. We take a holomorphic coordinate system

σ : D → D around r which is compatible with the asymptotic marker as described above

and define the following holomorphic map, when r is a positive puncture,

ν− : R+ × S1 → D \ {r},

(s, t) 7→ σ(e−2π(s+it)).
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If the puncture r is negative, we take the holomorphic polar coordinates as before, but

with

ν+ : R− × S1 → D \ {r},

(s, t) 7→ σ(e2π(s+it)).

Remark 7.6. In either situation (in regards to the charge of the puncture), if one

considers the composition g ◦ ν±, then g ◦ ν±(s, t) will converge in C∞(R) as s→∞ to

a parametrization of the asymptotic limit. The limiting loop

[t 7→ γ(t)]

is independent of the choice of σ as long as σ is compatible with the asymptotic marker.

We refer to a finite energy pseudoholomorphic curve equipped with the asymptoti-

cally marked point ~r and the special holomorphic polar coordinates ν± as being com-

patible with the asymptotic markers.

Next we consider the previously discussed class of finite energy pseudoholomorphic

maps whose target is (S \ {o}, j). We explain how one may realize the node o as an

asymptotically marked point ~o, specialize the construction of the special holomorphic

polar coordinates ν± to such maps, and state what it means for these maps to be

compatible with the obvious asymptotic marker, ~o, as defined above.

Example 7.7. Let

w = (a, f) : (S \ {o}, j)→ (R×M, J̃),

where (S, o) is the noded surface introduced earlier. Recall that we took o+ to be a

negative puncture and o− to be a positive puncture. Moreover, the negative asymptotic

limit of

w|S+\{o+}
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coincides with the positive asymptotic limit of

w|S−\{o−}.

In addition, we assume that ~o± are asymptotic marked points. If ν+ are negative holo-

morphic polar coordinates at o+ compatible with ~o+ and ν− are positive holomorphic

polar coordinates at o− compatible with ~o−, we finally require for all t ∈ S1 that

lim
s→∞

f ◦ ν−(s, t) = lim
s→−∞

f ◦ ν+(s, t).

A finite energy pseudoholomorphic curve w = (a, f) : (S \ {o}, j)→ (R×M, J̃) having

all these properties is said to be compatible with the asymptotic markers.

With these concepts in place we can define directional convergence modulo R

as follows .

Definition 7.8. Assume that the finite energy surface

w = (a, f) : (S \ {o}, j)→ (R×M, J̃)

is compatible with the asymptotic markers as described above. The sequence

wn : (Sn, jn)→ (R×M, J̃)

is said to be directionally convergent to w for the given asymptotic marked points

~o± if there exists a sequence

φn : Sn → S

of deformations onto the nodal surface S and a sequence

Ψn : [−Rn, Rn]× S1 → Sn

of biholomorphic maps where 2Rn = mod(Sn, jn)→∞,satisfying in C∞loc(S± \ {o±}) the

following conditions as before
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1. fn ◦ φ−1
n → f ,

2. (φn)∗jn → j,

as well as that the sequences of mappings defined by

e+
n (z) := Ψ−1

n ◦ φ−1
n − (Rn, 0) for z ∈ S+ \ {o+}

e−n (z) := Ψ−1
n ◦ φ−1

n + (Rn, 0) for z ∈ S− \ {o−}

converge as n→∞ to some limit maps e± in the sense that

e+
n → e+ in C∞loc(S+ \ {o+},R+ × S1)

e−n → e− in C∞loc(S− \ {o−},R− × S1)

By construction the the limit maps e± are necessarily biholomorphic and are inverse

maps of holomorphic polar coordinates, which can be explicitly defined as follows.

We can define the associated holomorphic coordinate systems as

σ± : D → S±

by

σ±(0) = o±,

(e±)−1(s, t) = σ±(e±2π(s+it)) on R∓ × S1

and also imposing that σ± be compatible with the asymptotic markers.

Since the e±n are convergent, it follows from the properties of holomorphic mappings

that the limiting maps e± are biholomorphic. This implies that given any δ > 0 the

preimage Ψ−1
n ◦φ−1

n (o) of the node, which is a priori a circle in [−Rn, Rn]×S1, is actually

contained in

[−Rn + δ, Rn − δ]× S1
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if n is sufficiently large.

As a consequence, the composition φn ◦Ψn is defined on the complement of [−Rn +

δ, Rn − δ]× S1 if n is sufficiently large. Consequently

fn ◦Ψn(−Rn + s, t) = fn ◦ φ−1
n ◦ (φn ◦Ψ(−Rn + s, t))

is well-defined for every s ≥ 0 and for sufficiently large n. Moreover the right hand side

converges to the map

f ◦ (e±)−1 : R∓ × S1 →M.

Hence, introducing the translations

Tρ(s, t) = (s+ ρ, t),

we have

fn ◦Ψn ◦ T−Rn → f ◦ (e−)−1 in C∞loc(R+ × S1,M).

Likewise we obtain

fn ◦Ψn ◦ TRn → f ◦ (e−)−1 in C∞loc(R− × S1,M).

Based on the construction of asymptotic markers and discussion of finite energy pseu-

doholomorphic maps whose domain is (S \{o}, j) being compatible with the asymptotic

markers restricted we obtain the following proposition.

Next we recall the following proposition from [HWZ02] in regard to the following

uniqueness statement regarding directional convergence.

Proposition 7.9 (Proposition 4.4 of [HWZ02]). If wn converges directionally to w and

to w′ then

w = w′ ◦ ϕ on S± \ {o}
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for two biholomorphic mappings ϕ± : S± → S± satisfying

ϕ±(o±) = o±

Dϕ±(o±)~o± = e±iθ · ~o±

for some θ ∈ R.

We will use this in the proof of the following proposition.

Proposition 7.10. The choice of compatible asymptotic markers on (u, v)
∣∣
(−∞,0)∪(0,∞)

is equivalent to the choice of parametrized solutions for (u, v) which represents the broken

curve (Cu,Cv).

Proof. First we prove that the choice of compatible asymptotic markers implies the

choice of parametrized solutions. This follows immediately from the above, Proposition

7.9 and Remark 7.6 since the parametrized solutions u and v can only be chosen after

we fix an initial point on the Reeb orbit y(t). However, there are M(y) equivalent choices

of initial point which differ by rotation through T
M(y)

, where T is the period of y.

The next step is to understand how many unique pairs of parametrizations (u, v) we

obtain via rotation. In fact, the multiplicities of the cylinders Cu and Cv will cause some

of the parametrizations to coincide, since some of the cylinders may multiply covered

and M(Cu) and M(Cv) must be divisors of M(y).

Proposition 7.11. There are

k :=
M(y)

lcm(M(Cu),M(Cv))

unique pairs of parametrizations (u, v)i with i ∈ {1, ...k} such that

π((u, v)i) = (Cu,Cv)

where π : S(x; y)× S(y; z)→ M̂(x; y)× M̂(y; z).
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Proof. We know that there are at most M(y) pairs of parametrizations for (Cu,Cv). We

know that these each differ by rotating the initial point on the Reeb orbit y(t) through

T
M(y)

, where T . To be precise, after fixing an initial point t0 on the Reeb orbit y(t), we

obtain M(y) equivalent starting points given by

t0 +
T

`
for ` ∈ {1, ...M(y)}.

We denote the parametrizations obtained in this manner by (u, v)`, with ` ∈ {1, ...M(y)}..

Now we need to see if two such parametrizations are indistinguishable. Note that if we

rotate the initial point t0 on y(t) by T

lcm(M(Cu),M(Cv))
the parametrizations chosen for

(Cu,Cv) are identical. This is because the common periodicity of the multiply covered

cylinders implies the same periodicity for the broken curve (Cu,Cv) and hence also for

any underlying parametrization of (Cu,Cv). Thus there are exactly

k :=
M(y)

lcm(M(Cu),M(Cv))

unique pairs of parametrizations for (Cu,Cv).

As a result we obtain k unique honest pseudoholomorphic curves, via the gluing

procedure explained in the previous sections

Corollary 7.12. There are k unique honest pseudoholomorphic curves ψ which satisfy

Theorem 7.2.

The next lemma is so that we can reformulate the statement of convergence in the

gluing theorem in terms of convergence modulo R.

Lemma 7.13. If there exists a sequence (ŵn) ∈ M̂(x; z) converging to (Cu,Cv) ∈

M̂(x; y)× M̂(y; z) then (ŵn) converges modulo R.
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The final ingredient in the proof of the surjectivty of gluing, Theorem 7.3 is the

following main theorem from [HWZ02].

Theorem 7.14 (Theorem 4.5 of [HWZ02]). A convergence sequence wn has a direction-

ally convergent subsequence.

As a result we obtain that (ŵn) has a directionally convergent subsequence. However

directional convergence is equivalent to the choice of underlying parametrization for ŵn,

and since there are k unique such choices we can only conclude that (ŵn) must lie in the

image of one of the ψ̂i’s for i ∈ {1, ..., k}.

7.4 Geometric structure of M(x; z)

The purpose of this section is to combine the results of Section 6 in regards to the

inclusion of moduli spaces and the gluing results of Section 7 to understand the ends of

the 1-dimensional manifold M̂(x; z). Throughout this section we assume that x and z

are nondegenerate Reeb orbits associated to a dynamically separated contact form with

µCZ(x)− µCZ(z) = 2 in the same free homotopy class.

The gluing maps of the previous section described the ends of the 1-dimensional

manifold M̂(x, z) associated to the symplectization of a nondegenerate dynamically sep-

arated contact manifold. These ψ̂′is converge to the broken cylinders of the following

form,

C = (Cu,Cv)

where Cu ∈ M̂(x; y) and Cv ∈ M̂(y; z) with µCZ(y) = µCZ(x)− 1. As a result we obtain

the following preliminary theorem.
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Theorem 7.15. The boundary of M(x, z) is given by

∂M(x; z) =
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y; z).

Proof. The numerology of Section 6 ensures the ends of the compactified moduli space

M(x, z) can only converge to 2 broken rigid pseudoholomorphic cylinders. Namely, from

Corollary 6.2 we have that

∂M(x; z) ⊆
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y; z).

The gluing theorem of Section 7 gave us the reverse inclusion, thus we could conclude

the following in regard to the boundary of the compactified space M(x, z),

∂M(x; z) ⊇
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y; z).

Next we want to endow the compactification of M̂(x; z) with the structure of a

compact labelled graph whose vertices correspond to the broken cylinders and edges

correspond to the connected components of M̂(x; z), which will allow us to demonstrate

that ∂2 = 0 in the following section. Stated as a theorem, we have the following.

Theorem 7.16 (Structure). The compactification of M̂(x; z) has the structure of a graph

whose vertices correspond to the broken cylinders denoted by v(Cu,Cv) and edges correspond

to the connected components of M̂(x; z). Each vertex v(Cu,Cv) belongs to

k :=
M(y)

lcm(M(Cu),M(Cv))

edges, each corresponding to cylinders of multiplicity given by a divisors of

gcd (M(Cu),M(Cv)) .
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Remark 7.17. We clarify that the covering multiplicity associated to the all adjacent

edges connecting at a single vertex is the same.

Note that the first part of Theorem 7.16 follows from the Theorem 7.15. The remain-

der of the proof relies on understanding how to encode the multiplicities of the Reeb

orbits and finite energy pseudoholomorphic in the structure of the graph given by the

compactification of M̂(x; z). The multiplicity factor is because of the different of the k

different gluings ψi for i ∈ {1, ..., k} obtained in Theorem 7.3.

We begin by proving the following proposition. Let

U ⊆ M̂(x; y)× M̂(y; z) ⊆M(x; z).

Proposition 7.18. There exists a neighborhood of the vertex v(Cu,Cv) in U that is home-

omorphic to a k-valent graph.

Proof. Based on surjectivity of gluing, Theorem 7.3 nothing can lie outside of these

branches. Thus they must meet locally at a vertex and the number is determined by the

gluing construction. All these pieces are embedded and nonintersecting from Theorem

7.2.

As a result, we obtain the following corollary in regard to the multiplicities of cylin-

ders, which we associate as labels on the edges of M(x; z). For a fixed r ∈ N let Mr(x; z)

be the subgraph of M(x; z) consisting of the edges labelled with r. Here r is a divisor

of gcd (M(Cu),M(Cv)) . The subgraph Mr(x; z) is a union of connected components of

M(x; z). Furthermore, the following proposition tells us that on each connected compo-

nent of Mr(x; z) all edges are labelled the same.
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Proposition 7.19. All branches adjacent to a given vertex v(Cu,Cv) must have the same

covering multiplicity, given by the divisors of

gcd (M(Cu),M(Cv)) .

Proof. The isotropy associated to each branch is the number corresponding to the mul-

tiplicity of the underlying cylinder. Since we know all curves w ∈ M̂(x; z) are regular

by Theorem 5.5 there exists a neighborhood V of w ∈ M̂(x; z) such that the isotropy

of w is constant on V. Next we need to show that a locally constant isotropy implies

a constant isotropy on connected components of M(x, z), i.e. that all branches wi for

i = {1, ..., k} adjacent to a given vertex v(Cu,Cv) have the same covering multiplicity.

Suppose not. Then we can construct sequences Cak and Cbk in M̂(x; z) such that

Ca0 and Cb0 are branches both adjacent to a given vertex v(Cu,Cv), with M(Ca0) = a and

M(Cb0) = b with a 6= b 6= 1 and

lim
k→∞

Cak = (Cu,Cv) = lim
k→∞

Cbk .

Locally by Theorem 5.5 there exist neighborhoods Ak and Bk of Cak and Cbk respectively

such that all curves in Ak have multiplicity a and all curves in ∩Bk have multiplicity

b. Since (Cu,Cv) is a limit point of both these sequences we know there exists a K ∈ N

such that for all k ≥ K we have Ak ∩ Bk 6= ∅. Thus the multiplicities of Cak and Cbk

must agree for k ≥ K. But this contradicts a 6= b. Thus

M(Ca0) = M(Cb0).

The above two propositions yield the following corollaries.
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Corollary 7.20. The number of ends of Mr(x; z) are in correspondence with the com-

ponents int(Mr(x; z)).

Let M1(γ−; γ+) be the compactified space of all somewhere injective finite energy

pseudoholomorphic cylinders interpolating between the Reeb orbits γ− and γ+. In other

words, none of the u ∈M1(γ−; γ+) are multiply covered.

Corollary 7.21. As graphs

int
(
Mr(γ

r
−; γr+)

)
= int

(
M1(γ−; γ+)

)
,

As a result, we have the following decomposition for the compactified moduli spaces

M(x; z) =
⊔
r∈N

Mr(x; z),

where r is the covering multiplicity of the pseudoholomorphic cylinders in a given Mr,

after allowing for the possibility that some of the Mr(x; z) = ∅.
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Chapter 8

Constructing cylindrical contact

homology

Cylindrical contact homology is defined as an analogue of Morse theory on the loop space

of a co-oriented contact manifold (M, ξ). If there exists a nondegenerate dynamically

separated contact form α such that ker α = ξ, the chain complex C∗ is generated by all

the nondegenerate Reeb orbits associated to the Reeb vector field Rα. These arise as

critical points of the following symplectic action functional

A : C∞(S1,M) → R

γ 7→
∫
γ

α.
(8.1)

The appropriate notion of “gradient flow lines” between critical points of A is real-

ized, after selecting an almost complex structure J , by finite energy pseudoholomorphic

cylinders

u : (R× S1, j)→ (R×M, J̃) ∈ M̂(γ+; γ−),

interpolating between closed Reeb orbits γ+ and γ− with µCZ(γ+) − µCZ(γ−) = 1.

These pseudoholomorphic curves are called rigid pseudoholomorphic cylinders, as they

are elements of the 0-dimensional moduli space M̂(γ+; γ−). The differential ∂ provides a

weighted count of the number of these rigid pseudoholomorphic cylinders. Currently, we

can only show that (C∗, ∂) forms a chain complex for cylindrical contact homology if we
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restrict ourselves to dimension 3 and if a nondegenerate dynamically separated contact

form can be associated to the contact structure ξ.

In Morse theory one uses the Morse index, a count of the negative eigenvalues of the

Hessian associated to the critical points, as a grading for the chain complexes of critical

points. In contact homology the analogue of the Hessian has infinitely many negative

and infinitely many positive eigenvalues, so we instead use a Maslov type index for arcs of

symplectic matrices, known as the Conley-Zehnder index. This is a generalized winding

number that controls embedding properties of pseudoholomorphic curves, however one

does not always obtain a well-defined absolute Z-grading. A canonical absolute Z2-

grading does exist, and in this setting one assigns a Reeb orbit an odd grading when

it is positive hyperbolic and an even grading when it is elliptic or negative hyperbolic.

There is also a notion of a relative grading, but we will not discuss this here and the

interested reader may find details in Section 6.5 of [Hu10].

When c1(ξ) = 01 and H1(M) = 0 the Conley-Zehnder indices may be computed in a

globally well-defined way and one obtains an absolute Z-grading, arising from the unique

existence of a complex volume form on (R ×M, J̃). If c1(ξ) = 0 but H1(M) 6= 0 then

we can still obtain an absolute Z-grading, but this grading is dependent on the choice

of volume form which will be parametrized by H1(M). This agrees with conventions

in symplectic homology, see [Se06] and [Se00]. When the notion of a Z-grading exists,

1It turns out that 2c1(ξ) = 0 is the sufficient and necessary condition to obtain an absolute Z-grading;

see [Se00]. However we will restrict ourselves to the simpler setting to avoid the subtleties arising from

the fact that the grading is only defined up to a choice of homotopy class of trivializations associated

to the complex line bundle that is the canonical representation of −c1(ξ). Otherwise the Z-grading is

parametrized by choice of volume form.
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grading in contact homology of a Reeb orbit is

|γ| = µCZ(γ) + n− 3.

Here n appears in the dimension of the contact manifold M2n−1, and µCZ is the Conley-

Zehnder index of a path of symplectic matrices obtained from the linearization of the

flow along γ, restricted to ξ. Since we will only be interested in 3-dimensional contact

manifolds, we obtain

|γ| = µCZ(γ)− 1.

We provide more details on the Conley-Zehnder index and how it may be computed in

Section 9.

Before continuing our discussion of the chain complex and differential used in defining

cylindrical contact homology, we review our choice of coefficients. In our formulation of

cylindrical contact homology we will work with Z2-coefficients so that we do not have

to worry about orienting the moduli spaces under consideration. In the classical setting

[FH93], working over Z or Q-coefficients requires one to prove that the moduli spaces

connecting index difference 1 orbits are orientable and then choose a system of coherent

orientations under which an analogue of Floer’s gluing maps are orientation preserving.

Once one has demonstrated such orientations exist and selects a choice of them one

can define a number ε(u) ∈ {±1}, where u is a rigid pseudoholomorphic cylinder, by

comparing this coherent orientation of the index 0 moduli spaces M̂ with the obvious

flow orientation.

Ideally cylindrical contact homology should encode the qualitative characteristics of

the Reeb vector field associated to any contact form defining the contact structure ξ. At

this time we are unable to provide a proof of invariance, due to the regularity difficulties
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in cylindrical cobordisms of a contact manifold presented by rigid pseudoholomorphic

cylinders, which interpolate between orbits of the same even Conley-Zehnder index in

a cobordism. However, we are still able to demonstrate that one can define cylindrical

contact homology rigorously given a choice of nondegenerate dynamically separated

contact form and generic J . We will revisit the issue of invariance in later work.

8.1 Reeb orbits and an action functional

The closed trajectories of the Reeb vector field appear naturally in the study of the

following action functional as its critical points.

A : C∞(S1,M) → R

γ 7→
∫
γ

α
(8.2)

The set of critical values of the action functional is called the action spectrum. A

standard exercise in symplectic topology tells us that the critical points of A are in one

to one correspondence with closed Reeb orbits of α. This justifies the analogy between

cylindrical contact homology and an infinite dimensional variant of Morse theory by

making use of the previously discussed Fredholm theory under certain transversality

assumptions.

Before allowing Reeb orbits to be contained in the chain group we must first impose

a non-degeneracy condition on the critical points of our action functional, which are the

periodic orbits of the Reeb vector field associated to α. In the finite dimensional setting

of Morse theory one requires the Hessian matrix of A evaluated at critical points to be

non-singular, which further implies that the critical points are isolated. In our setting

we say that a periodic orbit γ is nondegenerate when the linearized return map along
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γ has no eigenvalue equal to 1. See also the discussion in Section 2.

To make sense of this stipulation we recall some basic facts pertaining to linearizing

the flow of a Reeb vector field along a closed orbit and see what transpires in the case

of S3 equipped with its standard contact form λ0 as in Example 2.4. We saw in this

example that the Reeb flow associated to λ0 defines the Hopf fibration and in particular

none of the closed Reeb orbits are isolated.

Example 8.1. In the case of the (S3, λ0) we can parametrize the Reeb flow using the

ambient coordinates in C2 by

ϕ(t) = (eitu, eitv),

as

Rλ0 := ϕ̇(0) = (ix1 − y1, ix2 − y2)

Thus

dϕ(t) =

 eit 0

0 eit

 and dϕ(2π) =

 1 0

0 1

 .

This shows that all of the Reeb orbits associated to the standard contact form are

degenerate and as a result we will need to perturb this contact form.

The following result is contained in the appendix of [ABW10], applicable to any co-

oriented contact manifold (M,α). It yields a perturbation that preserves a given Morse-

Bott submanifold and makes α nondegenerate everywhere else. To accomplish this, it

suffices to show that one can perturb α in some precompact subset and demonstrate

that all orbits that pass through this subset are nondegenerate.

Proposition 8.2. Let M be a manifold of dimension 2n − 1 equipped with a smooth

contact form α, and let U ⊂ M be an open subset with compact closure. Then there
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exists a Baire2 subset

Λreg(U) ⊂ {f ∈ C∞(M) | f > 0 and f |M\U ≡ 1}

such that for each f ∈ Λreg(U), every periodic orbit of Rfα passing through U is nonde-

generate.

This means that for a given contact structure ξ, one can find a generic contact form α

such that all Reeb orbits are nondegenerate. The issue is that Reeb dynamics associated

to generic contact forms are typically not easy to understand, nor can we guarantee that

the Conley-Zehnder index has the desired properties such that the work of the previous

sections will be applicable. The condition that α be dynamically separated is not a

generic condition. We will see that there is a natural way to equip prequantization

spaces with a contact form that is nondegenerate and dynamically separated up to a

given action level. More details on this construction are given in the next chapter.

The chain groups C∗ are comprised of all nondegenerate closed orbits γ ∈ Crit(A)

of action A(γ)3. Simple orbits along with all of their multiple covers are each generators

of the chain group. Recall that we say that a closed Reeb orbit γ is simple provided

it is not a nontrivial multiple cover of another Reeb orbit. The grading is given by

the aforementioned Conley-Zehnder index, a Maslov type index for arcs of symplectic

matrices obtained by linearizing the Reeb flow along an orbit, restricted to the contact

structure. This is possible when c1(ξ) = 0 as we can choose a volume form for R ×M

to carry out the computations, though the choice of volume form will be parametrized

by H1(M). Since we restrict ourselves to dimension three, we define the grading of any

2This means that a countable intersection of dense open sets is dense.
3Note that action is synonymous with length.
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closed Reeb orbit in this setting by

|γ| = µCZ(γ)− 1. (8.3)

We remark that the chain complex admits a splitting over free homotopy classes

of Reeb orbits. Namely if we denote by the free homotopy classes by a ∈ [ΣM ] =

[C0(S1,M)/S1] then

C∗ =
⊕

a∈[ΣM ]

Ca
∗ ,

where Ca
∗ consists of all nondegenerate closed Reeb orbits representing the free homotopy

class a of degree ∗. We will not discuss further details, as we are primarily interested in

the case of S3, which only has contractible Reeb orbits.

In order to prove that we can obtain a homology out of this chain complex construc-

tion, we additionally stipulate that the chain groups may only consist of Reeb orbits

associated to a nondegenerate dynamically separated contact form. The next section

provides the remaining details on how to construct the differential ∂ : C∗ → C∗−1 and

the proof that (C∗, ∂) is a chain complex.

8.2 Homological considerations

Throughout the entirety of this section we will assume that (α, J) is a regular dynami-

cally separated pair, meaning that J is a generic compatible almost complex structure

for α, a nondegenerate dynamically separatedcontact form associated to (M, ξ). We take

C∗ to be the vector space generated by the closed Reeb orbits of Rα. The set of all closed

Reeb orbits associated to α will be denoted by P, and we will implicitly assume that we

always work with orbits in the same free homotopy class. For simplicity, we will work
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with Z2-coefficients instead of with Q, so that we do not have to worry about the issue

of coherent orientations.

In order to define the linear map ∂ : C∗ → C∗−1, we will need to keep track of the

multiplicity of orbits and cylinders. We denote by M(γ) the multiplicity of a Reeb

orbit γ, and M(C) of a finite energy pseudoholomorphic cylinder C. Specifically, if the

finite energy pseudoholomorphic cylinder C ∈ M̂(γ+; γ−) represented by u ∈ M(γ+; γ−)

may be written as the composition of a holomorphic map ϕ : (R× S1, j)→ (R× S1, j)

with ±∞ = ϕ(±∞) where

u = v ◦ ϕ, deg(ϕ) > 1.

and v is a simple cylinder, then

M(C) = deg(ϕ).

When C is not multiply covered, then M(C) = 1.

By multiplicity of a Reeb orbit, we mean that M(γ) is the unique positive integer such

that γ is the Mγ-fold iterate of a simple Reeb orbit. The multiplicity factor is necessary

to later demonstrate that ∂2 = 0 because when one glues two somewhere injective (i.e.

not multiply covered) finite energy pseudoholomorphic cylinders along a Reeb orbit γ

which is the k-fold iterate of a simple Reeb orbit, there are k equivalent ways to fix a

parametrization of γ . Recall also the results of Chapter 7. More details will be discussed

as needed as we proceed with the proof that ∂2 = 0.

Let x, y be a pair of closed nondegenerate Reeb orbits, associated to a dynamically

separated contact form in the same free homotopy class a such that µCZ(x)−µCZ(y) = 1.
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We define the linear map

∂ : C∗(M,α) → C∗−1(M,α)

x 7→
∑

µCZ(y)=µCZ(x)−1

C∈M̂(x;y)

(
M(y)

M(C)
mod 2

)
y. (8.4)

Thus ∂ provides a weighted count of rigid pseudoholomorphic cylinders interpolating

between the closed Reeb orbits x and y.

We write

〈∂x, y〉 =
∑

µCZ(y)=µCZ(x)−1

C∈M̂(x,y)

(
M(y)

M(C)
mod 2

)
.

Based on the preceding discussion of multiplicities of finite energy pseudoholomorphic

cylinders and Reeb orbits we see that M(C) divides M(y), as well as M(x), so the above

expression for ∂ is well-defined over Z2-coefficients.

Remark 8.3 (Conventions on defining ∂). There are a few ways in which earlier litera-

ture defines the differential. Our convention is as above so that we may directly appeal

to the results of the gluing and structure theorems, Theorems 7.2, 7.3, and 7.16, which

gives the compactified moduli space M(x; z) the structure of a graph. We will use all

these results to prove that ∂2 = 0. Our convention in (8.4) agrees with Hutchings [Hu10].

In Ustilovsky [Us99] the multiplicity of finite energy pseudoholomorphic cylinders was

not appropriately defined, but otherwise the conventions agree.

In a footnote 7 on page 599 of Eliashberg, Givental, and Hofer [EGH00] their con-

vention (modulo sign) is to instead take

〈∂x, y〉 =
∑

µCZ(y)=µCZ(x)−1

C∈M̂(x,y)

(
nx,y
M(y)

)
,
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where nx,y is indicated to count equivalence classes of pseudoholomorphic curves with

asymptotic markers, which are elements of M̂(x; y). They state nx,y = M(x)M(y) when

C ∈ M̂(x; y) is not multiply covered, with no explanation of what to do in this case.

In Bourgeois [Bo09] and Yau [MLY04] the convention modulo sign is

〈∂x, y〉 =
∑

µCZ(y)=µCZ(x)−1

C∈M̂(x,y)

(
M(x)

M(C)

)
.

However no analogue of the gluing or structure theorems appearing in Chapter 7 are

stated. It is conceivable that there is a homological relation between these conventions

and ours, should the appropriate gluing and structure theorems be established.

The reason that we take a weighted count is due to the fact that when we glue

two non-multiply covered pseudoholomorphic cylinders along a Reeb orbit y which is

the M(y)-fold iterate of an simple Reeb orbit, there are M(y) different ways to glue.

When one connects two multiply covered pseudoholomorphic cylinders Ci ∈ M̂(x; y) and

Cj ∈ M̂(y; z), the results from Sections 7 and 7.4, gives us

k :=
M(y)

lcm(M(Ci),M(Cj))

non-equivalent solutions via reparametrization in Theorem 7.2, the analogue of Floer’s

gluing theorem. Thus we must take into account the covering multiplicity of all pseu-

doholomorphic cylinders C ∈ M̂(x; y) in the coefficient appearing in the expression (8.4)

for the cylindrical contact homology differential ∂. This will be apparent in the proof

that (C∗, ∂) forms a chain complex.

The next step is to prove that after a generic choice of J , that the linear map ∂

defines an honest boundary operator under the assumption that the chain group C∗ is
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generated by Reeb orbits associated to a nondegenerate dynamically separatedcontact

form. Before proving Theorem 1.3 we restate it.

Theorem 8.4. Let (M3, ξ) be a co-oriented contact manifold with a nondegenerate dy-

namically separated contact form α defining ξ and J a generic compatible almost complex

structure. The vector space C∗(α) generated by the closed Reeb orbits of α admits the

linear map ∂, as defined in (8.4) by

∂ : C∗(M,α) → C∗−1(M,α)

x 7→
∑

µCZ(y)=µCZ(x)−1

C∈M̂(x;y)

(
M(y)

M(C)
mod 2

)
y.

Then ∂2 = 0, thus (C∗, ∂) forms a chain complex.

As a result of the above theorem we can now define the homology of the complex

(C∗(α), ∂) to be

HC∗(M,α, J̃ ;Z2) =
ker ∂

im ∂
,

which is called the cylindrical contact homology associated to the regular dynami-

cally separated pair (α, J̃).

The proof that we obtain a homology will be similar to those in Floer homology.

However it does not follow immediately and the issues of multiply covered cylinders

require some care and explanation. The assumption that J has ben chosen generically

and that α is a nondegenerate dynamically separated contact form are crucial, as this

allows us to exclude all the moduli spaces of nonpositive dimension which obstruct the

inclusion of moduli spaces in Theorem 6.1). Moreover these assumptions enable us to

appeal to the automatic transversality results of Wendl for finite energy cylinders of

index 0, 1 and 2, as discussed in Chapter 6
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In addition, the restriction to regular dynamically separated pairs (α, J̃) allows us

to appeal to the results of Chapter 7 which gave analogue of Floer’s gluing theorem

in Theorems 7.2 and 7.3. This was used to demonstrate that the reverse inclusion of

moduli spaces holds, allowing us to obtain (8.5). The final component of the proof that

(C∗(α), ∂) is a chain complex will be to use Section 7.4 to understand the structure

associated to the compactified moduli space M(x, z) as in Theorem 7.16.

Proof. The key is to understand the ends of the compactified 2-dimensional moduli

space M̂(x; z), which is the 1-dimensional moduli space M(x; z). This is accomplished

by proving M(x; z) is a compact weighted graph whose boundary is given by

∂M(x; z) =
⋃
y∈P

µCZ(y)=µCZ(x)−1

M̂(x; y)× M̂(y; z). (8.5)

We combine this with the results from Sections 7 and 7.4, pertaining to gluing and the

geometry of these moduli spaces, yielding

k :=
M(y)

lcm(M(Cu),M(Cv))

non-equivalent solutions in Theorem 7.2, the analogue of Floer’s gluing theorem. This

geometric relation enables the following demonstration that the differential, which counts

asymptotically cylindrical pseudoholomorphic curves interpolating between index differ-

ence 1 orbits, squares to 0.

Here x and z are closed Reeb orbits in the same free homotopy class a satisfying
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µCZ(x) = µCZ(z) + 2. We will need to show

〈∂2x, z〉 =
∑
y∈P

µCZ(y)=µCZ(x)−1

〈∂x, y〉〈∂y, z〉

=
∑
y∈P

µCZ(y)=µCZ(x)−1

∑
Ci∈M̂(x;y)

Cj∈M̂(y;z)

M(y)M(z)

M(Ci)M(Cj)

≡ 0 mod 2.

We know that M(x; z) can be thought of as a labelled graph whose vertices corre-

spond to the broken cylinders and edges correspond to the connected components of

M̂(x; z). From the surjectivity of gluing, Theorem 7.3, and our discussion in regard to

parametrizations of multiply covered curves, Theorem 7.16, we know that each vertex

representing (Ci,Cj) belongs to

k :=
M(y)

lcm(M(Ci),M(Cj))

edges, each corresponding to cylinders of multiplicity determined by the divisors of

gcd (M(Ci),M(Cj)) .

We can think of these multiplicities as labels on the edges of M(x; z). For a fixed r ∈ N

let Mr(x; z) be the subgraph of M(x; z) consisting of the edges labelled with r. The

subgraph Mr(x; z) is a union of connected components of M(x; z). Since the number

of ends of Mr(x; z) is in correspondence with the components int(Mr(x; z)), we obtain

after adding up the indices of its vertices (Ci,Cj), for a fixed subgraph labelled by a
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particular value of r,

∑
(Ci,Cj)∈Mr(x;z)

M(y)

lcm(M(Ci),M(Cj))
≡ 0 mod 2.

Since r divides M(z), we obtain

∑
(Ci,Cj)∈Mr(x;z)

M(y)

lcm(M(Ci),M(Cj))
· M(z)

r
≡ 0 mod 2

Then summing up over all r ∈ N we obtain

∑
y∈P

µCZ(y)=µCZ(x)−1

∑
Ci∈M̂(x;y)

Cj∈M̂(y;z)

(
M(y)M(z)

M(Ci)M(Cj)
mod 2

)
≡ 0, (8.6)

as desired.
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Chapter 9

Grinding through gradings

This chapter provides the details on the computation Conley-Zehnder index of the Reeb

orbits associated to (S3, λε). The Conley-Zehnder index, a Maslov type index, is an

integer assigned to a path of symplectic matrices. It controls the embedding behavior

of asymptotically cylindrical pseudoholomorphic curves interpolating between nonde-

generate Reeb orbits and provides the absolute Z-grading in pseudoholomorphic curve

homology theories. This is because the Fredholm index may be realized as the spectral

flow of certain families of elliptic operators. In addition, the path of operators under

consideration turn out to have the same crossings as the symplectic path associated

to the Reeb orbits, and moreover these crossing forms are isomorphic. As a result we

can express the Fredholm index of the linearized ∂̄J̃ -operator in terms of the differences

of Conley-Zehnder indices. More details can be found in [RS95], [HK99], [Sa99], and

[SZ92].

Calculating this index requires some care as one must obtain a path of symplectic

matrices from the flow of a Reeb or Hamiltonian vector field in a globally consistent

way. When c1(ξ) = 0 there exists a choice complex volume form on the symplectization

(R×M, J̃), parametrized by H1(M), which can be used to linearize the Reeb flow along

the periodic orbit, restricted to ξ. This yields a path of symplectic matrices from a

nondegenerate Reeb orbit and the resulting computation of the Conley-Zehnder index
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is well-defined, and as a result one makes a slight abuse of language and refers to the

Conley-Zehnder index of a Reeb orbit. The following discussion occurs in 3 dimensions,

but can be generalized without much difficulty to 2n− 1 dimensions.

9.1 The Conley-Zehnder index

The Conley-Zehnder index is a generalized winding number which assigns an integer

µCZ(Ψ) to every path of symplectic matrices Φ : [0, T ] → Sp(n), with Φ(0) = 1. One

typically also stipulates that 1 is not an eigenvalue of the endpoint of this path of

matrices, i.e. det(1 − Ψ(T )) 6= 0, to ensure that the Conley-Zehnder index assigns the

same integer to homotopic arcs (see [HK99]). This is precisely the situation encountered

when linearizing the Hamiltonian or Reeb flow along a nondegenerate periodic orbit.

To obtain a path of symplectic matrices from a closed T -periodic Reeb orbit (γ, T ),

we must first fix a symplectic trivialization of ξ along γ. In general, µCZ(γ, T ) will

depend on the choice made in the extension σ : D2 → M of γ. It will however be the

same for contractible orbits if each pair of extensions can be homotoped into each other,

which will be the case if π2(M) = 0. This notion of an extension only makes sense when

considering contractible orbits.

In the case of noncontractible orbits, the Conley-Zehnder index µCZ(γ, T ) will be

well-defined whenever ξ → M is a trivial vector bundle. It should be noted that one

does not use the global symplectic trivialization of ξ, but rather a complex volume form

on (R×M, J̃) in linearizing the Reeb flow along an orbit. This is because c1(R×M, J̃) is

the obstruction to the existence of a volume form on the symplectization and c1(ξ, J) =

c1(R ×M, J̃). We note that the choice of a complex volume form is parametrized by
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H1(R × M), so the absolute integral grading is only determined up to the choice of

volume form.

To go back to the situation of linearizing the flow along a contractible orbit we will

need to use an auxiliary extension, which we call σ. For simplicity, we discuss the

situation related to 3-dimensional contact manifolds, though the setting generalizes in

the obvious manner to contact manifolds of arbitrary dimension. This is a smooth map

σ : D2 →M on the closed 2-disk in C which extends (γ, T ), meaning it satisfies

σ(e2πi t
T ) = γ(t).

Then we consider the pullback bundle σ∗ξ of the contact structure ξ associated to

α. Note that the symplectic form dα on ξ induces a symplectic form ω = σ∗dα on σ∗ξ,

and there is a unique trivialization up to homotopy of σ∗ξ. From above this means that

we pick a bundle isomorphism

Υ : σ∗ξ → D × R2

such that the isomorphism Υp between the fibers over p ∈ D satisfies Υ∗pω0 = ωp. Here

ω0 denotes the standard symplectic form on R2.

Now we can consider the Reeb flow, which we will denote by (ϕt). Its linearization

for each t ∈ [0, T ], is a symplectic map given by

At := dϕt(γ(0))|ξx(0) : ξγ(0) → ξγ(t).

This can be used to define a symplectic arc

Ψ : [0, T ] → Sp(1)

t 7→ Υ(e2πi t
T ) ◦ At ◦Υ−1(1),

(9.1)
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where Sp(1) is the symplectic group of R2, i.e. symplectic 2 × 2 matrices, and Υ is

the bundle isomorphism as discussed above. To each such arc Ψ there is an associated

Conley Zehnder index µCZ(Ψ). We define the Conley-Zehnder index of γ by

µCZ(γ, T ) = µCZ(Ψ).

Note that if Φ◦ is a closed loop then we have the following relation between the Conley-

Zehnder index and the Maslov index µ

µCZ(Φ◦) = 2µ(Φ◦).

For details on how to define the Conley-Zehnder index of a path of symplectic matrices

in terms of the Maslov index we refer the reader to [Sa99] or [RS93]. We will explain

how to compute the Conley-Zehnder index in terms of crossing forms in the following

section. Before doing this, we will need to discuss the properties associated to the

Conley-Zehnder index.

The Conley-Zehnder index does not assign the same integer to all homotopic paths

of symplectic matrices in

Σ(n) = {Ψ : [0, T ]→ Sp(n) : Ψ is continuous, T > 0 and Ψ(0) = 1}.

This issue can be overcome if we restrict to arcs in Σ(1) which end at time T in the

following open and dense set of all symplectic matrices which do not have 1 as an

eigenvalue,

Sp∗(n) := {Ψ ∈ Sp(n) | det(1−Ψ) 6= 0}.

Such arcs of symplectic matrices will arise precisely when we linearize the flow of non-

degenerate periodic orbits. We denote this set of symplectic matrices by

Σ∗(n) = {Ψ ∈ Σ(n) | Ψ(T ) ∈ Sp∗(n)}.
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Proposition 9.1. The space Sp∗(n) has two connected components,

Sp∗pos(n) = {Ψ ∈ Sp∗(n) | Ψ has positive, real eigenvalues }

= {Ψ ∈ Sp∗(n) | det(1− Φ) > 0}

and

Sp∗neg(n) = {Ψ ∈ Sp∗(n) | Ψ has either complex or negative, real eigenvalues }

= {Ψ ∈ Sp∗(n) | det(1−Ψ) < 0}.

The following theorem lists the various properties of the Conley-Zehnder index, and

proofs may be found in [SZ92] and [HK99]. That the homotopy, loop and signature

properties uniquely determine the Conley-Zehnder index is proven in [SZ92].

Theorem 9.2. There exists a unique functor µCZ, called the Conley-Zehnder index,

which assigns an integer µCZ(Ψ) to every path Ψ ∈ Σ∗(n) and satisfies the following

axioms.

(Naturality) For any path Φ : [0, 1]→ Sp(2n), µCZ(ΦΨΦ−1) = µCZ(Ψ).

(Homotopy) The Conley-Zehnder index is constant on the components of Σ∗(n). Equiv-

alently, if Φτ is a homotopy of arcs in Σ∗(n) then µCZ(Φτ ) does not depend on τ .

(Zero) If Ψ(s) has no eigenvalue on the unit circle for s > 0 then µCZ(Ψ) = 0.

(Product) If n = n′ + n′′ identify Sp(n′) ⊕ Sp(n′′) in the obvious way with a subgroup

of Sp(n). Then

µ(Φ′ ⊕ Φ′′) = µ(Φ′) + µ(Φ′′).

(Loop) If Φ : [0, T ]→ Sp(n,R) is a loop with Φ(0) = Φ(1) = 1 then

µCZ(ΦΨ) = µCZ(Ψ) + 2µ(Φ).
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(Signature) If S = ST ∈ R2n×2n is a symmetric matrix with ||S|| < 2π and Ψ(t) =

exp(J0St) then

µCZ(Ψ) =
1

2
sign(S),

where sign(S) is the signature of S, i.e. the number of positive eigenvalues minus the

number of negative eigenvalues.

(Determinant) (−1)µCZ(Ψ)−n = sign(det(1−Ψ(1))).

(Inverse) µCZ(Ψ−1) = µCZ(ΨT ) = −µCZ(Ψ).

(Normalization) For Φ 1
2
(t) = eπit on [0, 1], we have

µCZ(Φ 1
2
) = 1.

9.2 The beloved crossing form of Robbin and Sala-

mon

We may alternately realize the Conley-Zehnder index in terms of crossing forms, and that

both definitions agree is proven in [RS93]. Using crossing forms to compute the Conley-

Zehnder is arguably more practical and extends our ability to compute the Conley-

Zehnder index of arbitrary paths of symplectic matrices Ψ(t) ∈ Σ(n). Robbin and

Salamon use the crossing form to associate with every periodic solution a half integer

µRS which agrees with µCZ in the nondegenerate case, i.e. when Ψ(t) ∈ Σ∗(n).

To accomplish this we must realize Ψ(t) as a smooth path of Lagrangian subspaces.

To do this we review the construction of µCZ via the index of the Lagrangian path

Graph(Ψ(t)) := {(x,Ψ(t)x) | x ∈ Rn}
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in (R2n × R2n, ((−ω0)⊕ ω0)) relative to the diagonal

∆ := {(X,X) | X ∈ R2n}.

Here ω0 is the standard symplectic form on R2n. Assuming Ψ(a) = 1 and det(1−Ψ(b)) 6=

0 then the index of this Lagrangian path may be defined as follows,

µCZ(Ψ) := µ(Graph(Ψ),∆).

This index is an integer and satisfies

(−1)µ(Ψ)−n = sign det(1−Ψ(b)).

The above number is the parity of the Lagrangian frame (1,Ψ(b)) for the graph of Ψ(b).

Next we explain how to compute this index via quadratic forms defined at crossing

numbers.

As before we will take γ to be a nondegenerate closed Hamiltonian (or Reeb) orbit

of period T. We fix a symplectic trivialization of ξ along γ as in the previous section so

that the linearized flow

dϕt : ξt → ξφt(t)

for t ∈ [0, T ] is represented by a path Ψγ(t) of symplectic matrices, as in (9.1), such

that Ψγ(0) = 1 and det(Ψγ(T )− 1) 6= 0 In the case that γ is degenerate then we would

obtain det(Ψγ(T )− 1) = 0.

A number t ∈ [0, T ] is called a crossing if det(Ψγ(t)− 1) = 0. We denote the set of

crossings by

Et := ker(Ψγ(t)− 1).
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For a crossing t ∈ [0, T ], the crossing form Γ(Ψγ, t) is the quadratic form on Et defined

by:

Γ(Ψγ, t)(v) := dα(v, Ψ̇γv) for v ∈ Et.

If we are working strictly in (R2n, ω0) we note the following in regard to the expression

of the crossing form. Since any path in Sp(2n,R) is a solution to a differential equation

Ψ̇(t) = J0S(t)Ψ(t), with S(t) a symmetric matrix we can write the crossing form in R2n

as

Γ0(Ψ(t), t)(v) = 〈v, S(t)v〉 (9.2)

A crossing t is regular whenever the crossing form at t is nonsingular. Note that

regular crossings are necessarily isolated. Any path Ψ is homotopic with fixed end points

to a path having only regular crossings. Recall that the signature of a nondegenerate

quadratic form is the difference between the number of its positive eigenvalues and the

number of its negative eigenvalues.

Robbin and Salamon define the index µRS(Ψγ) of the path Ψγ having only regular

crossings to be

µRS(Ψγ) :=
1

2
sign(Γ(Ψγ, 0)) +

∑
0<all crossings t<T

sign(Γ(Ψγ, t)) +
1

2
sign(Γ(Ψγ, T )).

In the case that we have taken the linearized flow of a nondegenerate Reeb orbit to

obtain our path of symplectic matrices, i.e. Ψ(t) ∈ Σ∗(1), we obtain

µRS(Ψγ) :=
1

2
sign(Γ(Ψγ, 0)) +

∑
0<all crossings t≤T

sign(Γ(Ψγ, t)).

This is because t = T is no longer a crossing as det(Ψγ(t)− 1) 6= 0.

That both the Robbin-Salamon index and the Conley-Zehnder index agree for a path

of symplectic matrices Ψ(t) ∈ Σ∗(n) is proven in Robbin-Salamon [RS93]. The main

features of the Robbin-Salamon index are the following.



167

Proposition 9.3. The Robbin-Salamon index has the following properties.

(i) The Robbin-Salamon index satisfies additivity under concatenations of paths,

µRS
(
Ψ|[a,b]

)
+ µRS

(
Ψ|[b,c]

)
= µRS

(
Ψ|[a,c]

)
(ii) The Robbin-Salamon index characterizes paths up to homotopy with fixed end points.

(iii) The Robbin-Salamon index satisfies additivity under products,

µRS(Ψ′ ⊕Ψ′′) = µRS(Ψ′) + µRS(Ψ′′).

As an example of the usefulness of the crossing form expression for the Robbin-

Salamon index we compute it for the symplectic path of matrices arising from the flow

given by ϕt(z) = eitz on C, equipped with the standard symplectic structure. Note that

if we take t ∈ [0, 2πn] we do not obtain a path of symplectic matrices in Σ∗(1) but we

may still make use of crossing forms to compute the Robbin-Salamon index for this path.

Example 9.4. Note that the linearization is given by dϕt(z) · v = eitv, so we will use

Ψ(t) = eit

We obtain crossings for t = 2πn for every n ∈ Z≥0. Note that this is the one dimensional

case in which we can express the symmetric matrix S(t) which solves

Ψ̇(t) = J0S(t)Ψ(t)

as

S(t) = 1
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Then from (9.2) we know that the crossing form may be written as

Γ0(Ψ, t)(v) = 〈v, v〉

For t = 2πn with n ∈ Z≥0 we see that Γ0 is nondegenerate and we obtain

Γ0(Ψ, t)(v) = vv̄ = a2 + b2,

as we may write v = a + ib. This has signature +2, and thus on [0, 2πn] with n ∈ Z>0

we have

µRS(Ψ(t)) = 2n.

Note that if we take Ψ(t) to be defined on the interval [0, 2πn+ ε] with 0 < ε < 2π then

this would be a path of symplectic matrices in Σ∗(1) and we would obtain

µCZ(Ψ(t)) = µRS(Ψ(t)) = 2n

Next we prepare a lemma giving the computation of the Robbin-Salamon index

associated to Reeb orbits coming from the degenerate Hopf flow associated to λ0 on S3.

This will be useful in the following section.

Lemma 9.5. For a closed Reeb orbit γkp associated to the degenerate Reeb flow on S3

generated by the standard contact form λ0, we have

µRS(γkq ) = 4k.

Proof. Recall that (2.2) as in Example 2.4 gives the standard contact form on S3,

λ0 = (x1dy1 − y1dx1 + x2dy2 − y2dx2) |S3 . (9.3)

The Reeb vector field associated to λ0 is then given by

R =

(
x1

∂

∂y1

− y1
∂

∂x1

+ x2
∂

∂y2

− y2
∂

∂x2

)
.
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For the purposes of computing the Robbin-Salamon index it will be more practical to

reformulate the above expressions using complex coordinates. We obtain

λ0 =
i

2
(udū− ūdu+ vdv̄ − v̄dv)|S3 ,

and

R = (ix1 − y1, ix2 − y2)

= (iu, iv)

= i

(
u
∂

∂u
− ū ∂

∂ū
+ v

∂

∂v
− v̄ ∂

∂v̄

) (9.4)

Recall that

ϕt(u, v) = (eitu, eitv).

gives the flow of the Reeb vector field of (9.4). It also gives rise to a symplectomorphism

of C2 \ {0}, thereby allowing us to obtain a global trivialization which extends the

trivialization around the closed orbits to the closed disks spanned by the orbits.

In this manner we have realized S3 ⊂ C2. In fact, the standard contact 3-sphere

sitting inside of C2 is an example of a strictly Levi pseudoconvex hypersurfaces. These

carry a natural contact structure arising from the set of complex tangencies to their

boundary. This can be seen as follows. Define the following function f : R2 → R

f(x1, y1, x2, y2) = x2
1 + y2

1 + x2
2 + y2

2,

then S3 = f−1(1). Moreover at a point (x1, y1, x2, y2) in S3 the tangent space is given

by

T(x1,y1,x2,y2)S
3 = ker df(x1,y1,x2,y2) = ker (2x1dx1 + 2y1dy1 + 2x2dx2 + 2y2dy2).
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Identifying R4 with C2 gives us the standard complex structure

J0 =



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


.

We have J0xi = yi, J0yi = −xi for i = 1, 2. The complex structure J0 induces a complex

structure on each tangent space in the obvious way, which we will also denote by J0.

Namely, we have for i = 1, 2

J0
∂

∂xi
=

∂

∂yi

J0
∂

∂yi
= − ∂

∂xi

We now claim that ξ = kerλ0 is also equal to the set of complex tangencies. By this

we mean

ξ = kerλ0 = TS3 ∩ J0(TS3). (9.5)

Since

J0(T(x1,y1,x2,y2)S
3) = ker (df(x1,y1,x2,y2) ◦ J)

and

df(x1,y1,x2,y2) ◦ J = −2x1dy1 + 2y1dx1 − 2x2dy2 + 2y2dx2,

we see that λ0 = −1
2
(df ◦ J)|S3 and (9.5) holds as claimed.

Note that

Tp(C2 \ {0}) = C2

and

TpS
3 = ξp ⊕ 〈R(p)〉.
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As a result of the above computations we obtain the following natural splitting of C2,

C2 ∼= ξp ⊕ ξωp .

Here ξωp is the symplectic complement of ξp, defined as follows

ξωp = {v ∈ TpS3 | ω(v, w) = 0 for all w ∈ ξp}.

On C2 \ {0} we use the symplectic form d(eτλ0) pulled back under the biholomorphism,

ψ : C2 \ {0} → R× S3

z 7→
(

1
2

ln |z|, z
|z|

)
which we denote by

ω0 = ωC2\{0} = ψ∗(d(eτλ0))

Note that we may write ξω0
p as the span of the following vector fields evaluated at p:

X = −i(u, v) = −i
(
u
∂

∂u
− ū ∂

∂ū
+ v

∂

∂v
− v̄ ∂

∂v̄

)
,

Y = (u, v) =

(
u
∂

∂u
− ū ∂

∂ū
+ v

∂

∂v
− v̄ ∂

∂v̄

)
.

(9.6)

This is because we saw that

ξp = TpS
3 ∩ J0(TpS

3)

and if v ∈ ξp then J0v ∈ ξp. A similar result holds for vectors living in ξω0
p . This will be

instrumental in computing the Conley-Zehnder index in a moment.

Continuing in our calculation we check that X and Y as in (9.6) yield a standard

symplectic or Darboux basis for the symplectic vector space ξω0
p . Recall that this is

equivalent to computing

ω0(X, Y ) = −ω0(Y,X) = 1

ω0(X,X) = ω0(Y, Y ) = 0,
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which we easily obtain this in light of the above as Y = J̃X = −J̃Rλ0 = ∂
∂τ

with respect

to the inclusion ξω0
p ⊂ Tp(R×M).

Here we have omitted the excessive decoration by p, although the reader should

realize that we are evaluating the symplectic form at a point p on the vectors X(p) and

Y (p). Alternatively one writes that ω0 on ξω0
p is given by 0 1

1 0

 .

As a result we know that ξω0 is symplectically trivial, and that we are working thus far

with an appropriate trivialization. This gives a means to check that ξ is symplectically

trivial as well, as

TC2 ∼= ξ ⊕ ξω

and we know c1(TC2) = 0, thus c1(ξ) = 0.

As remarked earlier, we know that the Reeb flow may be extended to give rise to a

symplectomorphism of C2 \ {0}. As a result we can compute how the linearized flow

acts on ξω0
p . We obtain

dϕt(X(p)) = X(ϕt(p)),

dϕt(Y (p)) = Y (ϕt(p)).

Note that a trivialization of ξ over any disc in M followed by the above trivialization of

ξω0 gives a trivialization of Tp(C2 \ {0}) which is homotopic to the standard one.

As a result we may finally conclude that dϕt on Tp(C2\{0}) is given by the “standard”

differential of ϕt on C2, namely

dϕt =

 eit 0

0 eit

 .
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Denote a closed Reeb orbit of period T associated to the flow ϕ, of interest to us by

γp(t) = {ϕt(p) | t ∈ [0, T ]}

for p ∈ Crit(h∗F ).

Then we can write

ΦC2(t) := dϕt(p)|C2

as the path of symplectic matrices associated to the linearized Reeb flow of γp extended

to C2 \ {0} for T ∈ [0, T ]. Similarly, denote by

Φξω0 (t)

to be the path of symplectic matrices associated to the linearized Reeb flow of γp for

T ∈ [0, T ] restricted on the symplectic complement of ξ. Then the naturality, homotopy,

and product properties of the Conley-Zehnder index yield

µCZ(γp(t)) := µCZ (dϕ(t)|ξ) = µCZ (ΦC2(t))− µCZ (Φξω0 (t)) .

Since

X(ϕt) = −i(eitu, eitv)

Y (ϕt) = (eitu, eitv)

and

dϕ2kπ(X(p)) = −i(u, v) = X(p)

dϕ2kπ(Y (p)) = (u, v) = Y (p)

we obtain

Φξω0 (2kπ) = 1,

Thus µCZ(Φξω0 (2kπ)) = 0. With the help of Example 9.5 we obtain

µCZ(γp(t)) := µCZ (dϕ(t)|ξ) = µCZ (ΦC2(t)) = 4k,

as desired
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9.3 The promised computation of µCZ

The purpose of this section will be to prove Theorem 9.7, which gives us the formula for

the Conley-Zehnder index of closed Reeb orbits of Rε over critical points p of H. We

begin by studying the dynamics of Rε. Recall that we can realize the contact 3-sphere

(S3, ξstd = kerλ0) as the Hopf fibration S1 ↪→ S3 h−→ S2, which is an example of a

prequantization space, as explained in Section 1.1. We will perturb the contact form λ0

by

λε = (1 + εh∗H)λ0, (9.7)

where H is a Morse-Smale function on (S2, ω). With ε chosen sufficiently small we can

gurantee that kerλε = kerλ0 = ξ as (1 + εh∗H) > 0. While the contact structure is

unaffected by this perturbation, the associated Reeb dynamics will be affected. The

perturbation of (9.7) alters the Reeb dynamics of Rλ0 by perturbing the entire critical

S2’s worth of Reeb orbits of Rλ0 via H on S2, which by construction is invariant under

the S1-action of the bundle.

Proposition 9.6. The perturbed Reeb vector field associated to λε is given by

Rε =
R

1 + εh∗H
+

εX̃H

(1 + εh∗H)2 . (9.8)

where XH is a Hamiltonian vector field1 on S2 and X̃H its horizontal lift,

i.e. dh(q)X̃H(q) = XεH(h(q)) and λ0(X̃H) = 0.

Proof. We have the following splitting of TM with respect to the contact form λ0,

TpM = 〈R(p)〉 ⊕ ξp.
1We use the convention ω(XH , ·) = dH.
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Thus we know that there exists a, b ∈ R and Y where λ0(Y ) = 0 such that

Rε = aR + bY.

We will show that a =
1

1 + εh∗H
, b =

ε

(1 + εh∗H)2 and Y = X̃H .

We know that Rε is uniquely determined by the equations

λε(Rε) = 1,

ι(Rε)dλε = 0.
(9.9)

That a is of the desired form follows immediately from the first line of (9.9) as

λε(Rε) = (1 + εh∗H)λ0(aR) + (1 + εh∗H)λ0(bY )

= (1 + εh∗H)λ0(aR) + 0.

We compute to find

dλε = (1 + εh∗H)dλε + εh∗dH ∧ λ0.

Then

dλε(Rε, ·) = (1 + εh∗H) (dλ0(aR, ·) + dλ0(bY, ·))

+ εh∗dH(aR)λ0(·)− εh∗dH(·)λ0(aR)

+ εh∗dH(bY )λ0(·)− εh∗dH(·)λ0(bY ),

which reduces to

dλε(Rε, ·) = (1 + εh∗H)dλ0(bY, ·) + εh∗dH(aR)λ0(·)

− ε
(1+εh∗H)

h∗dH(·) + εh∗dH(bY )λ0(·).
(9.10)

Lest we forget about the symplectic form downstairs, recall

dλ0 = h∗ω

and

ω(XH , ·) = dH.
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Also we have that

h∗dH(·) = h∗ω(XH , ·) = dλ0(X̃H , ·)

and

h∗dH(·) ∧ λ0(·) = dλ0(X̃H , ·) ∧ λ0(·).

Thus (9.10) becomes

dλε(Rε, ·) = (1 + εh∗H)dλ0(bY, ·) + εdλ0(X̃H , aR)λ0(·)

− ε
(1+εh∗H)

dλ0(X̃H , ·) + εdλ0(X̃H , bY )λ0(·)

= (1 + εh∗H)dλ0(bY, ·)− ε
(1+εh∗H)

dλ0(X̃H , ·) + εdλ0(X̃H , bY )λ0(·).

Now we see that

dλε(Rε, ·) = 0

precisely when b =
ε

(1 + h∗H)2
and Y = X̃H as desired.

Theorem 9.7 gives us the formula for the Conley-Zehnder index of closed Reeb orbits

of Rε over critical points p of H. We will denote such Reeb orbits by γp and their k−fold

cover by γkp . The statement is as follows.

Theorem 9.7. If ε0 is chosen such that Proposition 9.11 holds and γp is a nondegenerate

orbit over a critical point p of H, then all k-fold covers of γp associated to Rε for all

positive ε ≤ ε0 of action T ≤ 2πk are nondegenerate.

We obtain the following formula for their Conley-Zehnder indices

µCZ(γkp ) = 4k − 1 + indexp(H). (9.11)



177

Thus the grading2 for cylindrical contact homology is

|γkp | = µCZ(γkp )− 1

= 4k − 2 + indexp(H).
(9.12)

We remark that the contribution of −1 + indexp(H) in the above theorem, relates to

half the dimension of the base S2 and the Morse index of H at a critical point, indexp(H).

The 4k is the contribution in the fiber direction to the Conley-Zehnder index. This will

be made precise later in the proof.

We organize our work as follows. First we prove a few technical propositions in

regards to the perturbed Reeb dynamics associated to Rε. Namely, we will show that

after a choice of sufficiently small ε0, for all ε such that 0 < ε ≤ ε0, the perturbation

λε yields that the only closed Reeb orbits of Rε, which are of length ≤ 2πk remain

in one fiber and must lie over a critical point of H. In other words these orbits are a

multiple cover of a Hopf fiber of length 2π. Then we will prove that all these orbits

of length ≤ 2πk are all nondegenerate. These will be crucial to the filtration set up in

the following section and in obtaining a result for the cylindrical contact homology of

(S3, λε).

Lemma 9.8. The closed orbits of Rε which do not lie over critical points of H must

cover orbits of XH . Moreover, the periodicity of these orbits is proportional to 1
ε
.

Proof. From (9.8) it is clear that the only fibers of the Hopf fibration that remain Reeb

orbits associated to the perturbed contact form λε are the fibers over the critical points

2Recall that the grading in contact homology of a Reeb orbit is |γ| = µCZ(γ)+n−3 where n appears

in the dimension of the contact manifold M2n−1.
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of H. Since we have that the Reeb vector field associated to λε is given by

Rε =
R

1 + εh∗H
+

εX̃H

(1 + εh∗H)2 .

The horizontal lift X̃H is determined by

dh(q)X̃H(q) = XεH(h(q)) and λ0(X̃H) = 0.

where XH is the Hamiltonian vector field defined by ω(XH , ·) = dH. The flow (ϕεt) of

Rε is determined by

ϕ̇εt = Rε(ϕ
ε
t) (9.13)

We know that that any additional solutions to (9.13) must be a lifts of a closed orbits of

the Hamiltonian vector field XH , however not all orbits of XH may lift to closed orbits

of Rε. This is because the orbits of Rε must close in both the fiber ‘R’-component and

base ‘XH ’-component. Orbits which close in the fiber must have length at least 2πk for

some k ∈ Z>0. Without loss of generality we can assume that the Morse-Smale function

H is bounded between -1 and 1. Thus we have that

ε

(1 + ε)2
<

ε

(1 + εh∗H)2 ≤
ε

(1− ε)2

For ε < 1 we can use Taylor series to obtain that

ε

(1− ε)2
= ε+ 2ε2 + o(ε2)

and

ε

(1 + ε)2
= ε− 2ε2 + o(ε2).

Thus orbits of XH which are m-periodic can only give rise to orbits of εX̃H
(1+εh∗H)2

which

are Cm
ε

-periodic for some C. We note that C and m must be bounded away from 0
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since XH is time autonomous and the flow of the Hamiltonian vector field preserves the

level sets of H. Since λ0(X̃H) = 0, we know that any periodic orbits of Rε which cover

periodic orbits of XH must also be C ′m
ε

-periodic, for some C ′ ≥ C.

As a corollary we obtain that the orbits covering XH must be much longer than the

surviving orbits of R associated to Rε. We will denote these surviving orbits by γkp where

p is a critical point of a smooth Morse-Smale function H. The k indicates that this is

the k-fold cover of an underlying simple orbit, realized by the Hopf fiber over a critical

point of H. In other words, the orbit γkp has traversed the Hopf fiber over p exactly k

times.

Remark 9.9. Note that the action of a Reeb orbit of γkp Rε over a critical point p of H

is proportional by the length of the fiber, namely

A(γkp ) =

∫
γkp

λε = 2kπ.

Furthermore since h∗H is constant on critical points of p we have that γkp is (2π(1 +

h∗H(p))-periodic.

Corollary 9.10. There exists a choice of ε0 sufficiently small, i.e. 0 < ε0 <
1
2

such that

for all ε with 0 < ε < ε0 the Reeb orbits of Rε covering closed orbits of XH , have action

greater than 2πk + 1 = A(γkp ) for each k ∈ Z>0.

Proof. An orbit which is a lift of XH winds around on torus, which may be represented

as a rectangle whose vertical length is given by the length of the fibers of the Hopf

fibration 2π and whose horizontal width is determined by the length of the periodic

orbit associated to XH . This is illustrated in Figure 19 with a hypothetical orbit in

blue.
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Figure 19: Hypothetical Reeb orbit of Rε

We also know that orbits which close in the fiber are are T -periodic with

2π(1− ε) ≤ T ≤ 2π(1 + ε).

Since the above lemma tells us that the periodicity of any orbits which do not lie over

critical points of H is proportional to 1
ε
, the result follows as C

ε
� T , once ε0 has been

chosen to be sufficiently small as C is bounded away from 0. Thus we can find ε0,

dependent on k, such that these orbits of Rε are at least 2k(3π)-periodic, and hence

have action at least 4kπ for all ε with 0 < ε < ε0.

The following proposition shows that for small enough ε the surviving orbits of R,

which lie over critical points of H in the Rε are nondegenerate.

Proposition 9.11. If H is chosen to be a smooth Morse-Smale function on S2 there



181

exists a choice of ε0 > 0 such that for all ε with 0 < ε < ε0 the orbits γkp associated to

Rε are also nondegenerate.

Proof. Recall that we may write

TqS
3 = 〈Rε〉q ⊕ ξq,

and the Reeb vector field associated to λε is given by

Rε =
R

1 + εh∗H
+

εX̃H

(1 + εh∗H)2 ..

Throughout the point q will be chosen such that h(q) = p is a critical point of H,

where h is the Hopf map S1 ↪→ S3 h−→ S2. To prove that γp is nondegenerate we will

need to demonstrate that 2π(1 + εH(p))-return map of the linearized flow (ϕεt) at q

restricted to ξ, given by,

dϕεt(q) : (ξq, dλε)→ (ξϕt(q), dλε)

does not have 1 as an eigenvalue.

We will want to consider the behavior of the linearized flow under the projection

h∗ : TqS
3 → TqS

2,

induced by the Hopf map h. The following computation,

dλε := d ((1 + εh∗H)λS3) |ξ

= (d(εh∗H) ∧ λ+ εh∗Hdλ) |ξ

= (εh∗Hdλ) |ξ.

demonstrates that we can equip ξ with the standard symplectic form h∗ωS3 = dλ0

because h∗H is constant along Hopf fibers over critical points, which are our Reeb orbits
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of interest. Thus we need only demonstrate that h∗dϕ2π(q) has no eigenvalue equal to 1

in order to prove that γp is nondegenerate.

Note that the orbits of the unperturbed degenerate Reeb vector field R define the

fibers of the Hopf fibration, see Example 2.4 we know that R(h(q)) will be normal to

TpS
2. Thus understanding h∗dϕ2π(q) reduces to understanding the linearized flow ψ

associated to the Hamiltonian vector field

XεH

(1 + εH)2
.

Recall from calculus that for

|εh∗H| < 1

the following Taylor series centered at 0 is given by

1

(1 + εH)2
:= (1− εH + (εH)2 + o(ε2))2

Then we can express

XεH

(1 + εH)2
= (1− 2εH + o(ε))XH

and it suffices to consider the linearized flow of

(1− 2εH)XεH .

Moreover since XH is a Hamiltonian vector field we know that it preserves the level sets

of H, that is to say

XH(H) = dH(XH) = 0,

thus flows of XH and HXH commute, i.e.

[XH , HXH ] = 0.
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As a result if we can demonstrate that the time 2π-return map of the linearized flow

associated to XH does not have 1 as an eigenvalue then neither will the linearized flow

associated to

(1− 2εH)XεH .

Since

−XεH(z) = εJ0∇H(z)

for all z ∈ S2 then the linearization of the flow at a critical point p of H is a solution of

the differential equation

dψ̇t = D(−XεH(p)) · dψt.

Thus the linearization at a critical point must be of the following form,

dψt(p) = e−εtJ0∇
2H(p).

However since H was chosen to be a Morse function, its Hessian ∇2H must be nonde-

generate at the critical point p. Thus for sufficiently small choice positive ε we see that

dψt(p) is nondegenerate for the 2π-periodic orbits γp.

We note that the above arguments work for any multiple cover of the orbits over

critical points of H, so the result follows.

With these details in place we can finish the proof of Theorem 9.7 in regard to the

Conley-Zehnder indices of γkp , which we will prove are given by

µCZ(γkp ) = 4k − 1 + indexp(H),

To do this we employ an argument similar to the one found in [CFHW].
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Proof. Note that we may use dλS3 instead of d ((1 + εh∗H)λS3) in computing the Conley-

Zehnder indices for closed Reeb orbits over critical points of H as a result of the following

computation. We have

d ((1 + εh∗H)λS3) |ξ = (d(εh∗H) ∧ λ+ εh∗Hdλ) |ξ

= (εh∗Hdλ) |ξ.

This tells us that h∗H is constant along Hopf fibers over critical points of H, which

are precisely the nondegenerate Reeb orbits of interest to us. This justifies the use of

equipping ξ with the standard symplectic form in the computation of the indices of the

nondegenerate Reeb orbits over critical points of H, which we will do throughout this

proof.

Consider the decomposition

Tq̃(R× S3) = R⊕ 〈Rε(p)〉 ⊕ ξq,

where q̃ is the lift of q under the projection map π : R × S3 → S3. Since p = h(q) is a

critical point of H we see that the matrix of the linearization at q̃ with respect to this

decomposition is given by

dϕεt(q̃) =


 1 0

0 1


dϕεt |ξq

 .

We denote by

Φε(t) = dϕεt |ξq ,

which is the linearization of the perturbed flow Rε restricted to ξq. Note that when
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h(q) = p is a critical point of H then the Reeb orbits associated to Rε are 2kπ(1+εH(p))-

periodic. We denote

Tk := 2kπ(1 + εH(p)).

We also denote by

Φ(t) =

 eit 0

0 eit

 ,

the linearization of the flow of the Hopf fibration restricted to ξq, and

Ψε(t) = dψ̃t|ξq ,

the linearization of the flow associated to X̃H .

The homotopy

L(s, t) = Φsε(t)Ψ(1−s)ε(t)

connects with fixed end points the path Φε(t) to Φ(t)Ψε(t). For small ε we know that

these paths have ends in Sp∗(2), which is the set of symplectic matrices with eigenvalues

not equal to 1.

Next we use the homotopy

K0(s, t) =

 L(s, 2t
s+1

) if t ≤ Tk · s+1
2

L(2 t
Tk
− 1, Tk) if t ≥ Tk · s+1

2

together with the fact that L(s, Tk) ∈ Sp∗(2) for s ∈ [0, 1] and the aforementioned

properties of the Conley-Zehnder index and Robbin-Salamon index we obtain

µRS(Φε) = µRS(ΦΨε).

Another homotopy,

K1(s, t) =

 Φ( 2t
s+1

)Ψε(st) if t ≤ Tk · s+1
2

Φ(Tk)Ψε((s+ 2)t− (s+ 1)) if t ≥ Tk · s+1
2
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for (s, t) ∈ [0, 1] × [0, Tk] combined with the aforementioned properties of the Conley-

Zehnder index and Robbin-Salamon index implies that

µRS(ΦΨε) = µRS(Φ) + µRS(Φ(Tk)Ψε).

As a result we obtain

µRS(Φε) = µRS(Φ) + µRS(Φ(Tk)Ψε).

In the proof of Proposition 9.11, we saw that since

−XεH(z) = εJ0∇H(z)

for all z ∈ S2 then the linearization of the flow associated to XH at a critical point p of

H is a solution of the differential equation

dψ̇t = D(−XεH(p)) · dψt.

Thus the linearization at a critical point must be of the following form,

dψt(p) = eεtJ0∇
2H(p).

We have the decomposition

TqS
3 = 〈R〉q ⊕ ξq

Under the Hopf map, where again h(q) = p is a critical point of H we further have that

h∗(TqS
3) = h∗(ξq) = TpS

2

Thus if we extend the flow ψt of XH to the symplectization at a critical point we

obtain the following expression for the Hessian of H in the decomposition Tq(R×S3) =
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R2〈p〉 ⊕ TpS2, where h∗H has been extended in the obvious way to R× S3 to H̃.

∇2H̃(q̃) =

 0 0

0 ∇2H(p)


This means that ker dψt = {0} for t > 0 and one is reduced to compute the intersection

form only for t = 0 to obtain the contribution from (the lift of) −XH to the Robbin-

Salamon index. We have

ker(1−Ψε(0)) = TpS
2

where Ψε is the symplectic matrix associated to the linearized flow of −XH at p. Thus

we obtain

sign Γ(Ψε, 0) = sign Γ0(Ψε, 0) = sign ε∇2H(p).

Recalling the following shift identity from Morse theory, where f is a Morse function on

M with critical point p,

−1

2
sign Hess f(p) = indexpf −

dimM

2
,

we obtain

µRS(Φ(Tk)Ψε(t)) = −1 + indexpH.

By Lemma 9.5 we obtain for 0 ≤ t ≤ Tk := 2kπ(1 + εH(p))

µRS(Φ) = 4k.

Thus since γkp is nondegenerate we have

µCZ(Ψε) = µRS(Ψε) = 4k − 1 + indexpH.
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Chapter 10

Fun with filtrations

In this chapter we provide the details on the construction of a filtered chain complex by

the action and index. We can compute the truncated cylindrical homology for (S3, λε),

and use the filtration to obtain a direct limit argument to recover the full cylindrical

contact homology. Since the issue of invariance remains unresolved we cannot make

a more meaningful statement as far as the qualitative implications this limit of the

truncated contact homology groups has on the contact structure. We conjecture that

this limit should be independent of other choices of Morse-Smale functions H or choices

of dynamically separated contact forms.

These methods may be generalized to apply to other prequantization spaces and S1-

bundles over symplectic orbifolds. In future work we will use these methods to compute

cylindrical contact homology for the lens spaces (L(n + 1, n), λstd). We begin with

the same perturbation of the contact form obtained via prequantization of Section 1.1,

namely

λε = (1 + εh∗H)λ0.

Here h is the Hopf fibration S1 ↪→ S3 h−→ S2 and H is a Morse-Smale function on the

base S2. Recall that the perturbed Reeb dynamics associated to λε are given by

Rε =
R

1 + εh∗H
+

εX̃H

(1 + εh∗H)2 .
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Here XH is a Hamiltonian vector field1 on S2 and X̃H its horizontal lift,

i.e. dh(q)X̃H(q) = XH(h(q)) and λ0(X̃H) = 0.

This results in a perturbation of the critical manifold of Reeb orbits associated to

the unperturbed contact form λ0 via the Morse-Smale function H on the base S2. By

construction this perturbation is invariant under the S1-action of the bundle, and further

details as to the dynamics associated perturbed Reeb vector field Rε were discussed in

the previous section. The computations of Propositions 9.8 and 9.11 tell us that there

exists a sufficiently small ε0 such that for all positive ε with ε ≤ ε0 the only closed Reeb

orbits of the perturbed Reeb vector field Rε of action less than

Tk := 2πk + 1

must lie in one fiber and occur as a k-fold multiple cover of a simple Reeb orbit lying

over a critical point of the Morse-Smale function in the base. We denoted these Reeb

orbits by γkp .

Theorem 9.7 establishes a proportionality between the action and index of the Reeb

orbits γkp as we obtain

µCZ(γkp ) = 4k − 1 + indexpH.

This natural filtration on both the action and the index and allow us to compute a

formal version of filtered cylindrical contact homology. The proportionality between

the action and index of the Reeb orbits, permits the use of direct limits to recover

the full cylindrical contact homology from the truncated chain groups. This process is

analogous to the approach taken in symplectic cohomology, however we will not make

1We use the convention ω(XH , ·) = dH.
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use of continuation maps and will instead appeal directly to the proportionality that has

been established between the action and index of the Reeb orbits.

10.1 The truncated chain complex

The truncated chain complexes, consist of all nondegenerate Reeb orbits of action less

than Tk := 2πk + 1. We will denote these by

C<Tk
∗ (M,λε) := {γ | γ is a closed Reeb orbit and A(γ) < Tk}.

Recall that A(γ) is the action functional given by

A : C∞(S1,M) → R,

γ 7→
∫
γ

α.

Given the proportionality between the choice of ε in the equation for the perturbed

contact form and the action of the Reeb orbits we can further index the truncated chain

complexes by the choice of ε in the equation for the perturbed contact form.

λε = (1 + εh∗H)λ0.

From Proposition 9.8 we know that for every Tk there exists a choice of εk, dependent

on k such that the only Reeb orbits of

Rε =
R

1 + εh∗H
+

εX̃H

(1 + εh∗H)2 .

of action less than Tk must be a k-fold cover of a Reeb orbit lying over a critical point

p of H. Note that this is also true for any ε < εk. We denoted these orbits by γkp . We

will further decorate these truncated chain complexes with the choice of ε

C<Tk
∗ (S3, λεj),
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provided that εj ≤ εk.

First we show this construction yields an isomorphism between the filtered chain

complexes C<Tk
∗ (S3, λεi) and C

Tk+1
∗ (S3, λεi+1

), where εi+1 < εi < εk. Throughout when

we we say that εk > 0 has been chosen sufficiently small we mean that Lemma 9.8 and

Proposition 9.11 hold for all Reeb orbits of period < Tk, thus we have

C<Tk
∗ (S3, λεk) = {γjp | j ∈ [1, k] and p ∈ Crit(H)}. (10.1)

Proposition 10.1. For fixed k, if εk > 0 is sufficiently small and if εi > εi+1 > εk > 0

there exists a chain map

φ : C<Tk
∗ (S3, λεi)→ C<Tk

∗ (S3, λεi+1
).

Proof. This follows from the truncation on the action and (10.1) since the results of

Propositions 9.8 and 9.11 hold, combined with Theorem 9.7. This is because we know

that both C<Tk
∗ (S3, λεi) and C<Tk

∗ (S3, λεi+1
) are only supported up to degree

sup |γkp | = 4k − 1 + sup indexpH − 1 = 4k

as 0 ≤ indexpH ≤ 2 < 4.

Next we show the inclusion of chain complexes after choosing a fixed ε0 as we allow

the truncation level to increase to T0. Here T0 is the maximal action such that the

results of Propositions 9.8 and 9.11 continue to hold.

Proposition 10.2. For fixed sufficently small ε0 > 0 there exists the following inclusion

of chain complexes for any εi ≤ ε0 and Tk+1 ≤ T0

ι : C<Tk
∗ (S3, λεi) ↪→ C<Tk+1

∗ (S3, λεi+1
).



192

provided all Reeb orbits of action

Proof. This follows immediately from the fact that the action of permitted Reeb orbits

in the chain complex increases as εi decreases.

The Conley-Zehnder index considerations of the previous section establish that this

perturbed contact form indeed satsifies the dynamically separated condition for all Reeb

orbits of action less than 2πk+ 1 for some choice of ε. In view of the truncation we can

establish that the perturbed contact form is dynamically separated, as all Reeb orbits

whose action is less than the truncated action satisfy the uniform growth of Conley-

Zehnder index, with simple orbits starting with a Conley-Zehnder indexof 3, 4, or 5.

From the previous section, we saw that the following contact form with a sufficiently

small choice of ε and with H the height function on S2 yields that all the Conley-

Zehnder indices of the Reeb orbits over critical points of H are odd. As a result we

are able to conclude that the differential vanishes for each of the truncated cylindrical

contact homologies, H∗(C
<Tk
∗ (M,λεk))

We have established the existence of the chain map between the truncated chain

complexes and inclusion between the truncated chain complexes associated to λεi and

λεj for εi > εj chosen sufficiently small in Propositions 10.1 and 10.2. Since these

morphisms are compatible with the filtration on the action and index we can take direct

limits to formally recover the limit of the truncated cylindrical contact homology of S3,

that is dependent on the choice of H and J . We obtain
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lim−→
ε→0

lim−→
k→∞

H∗(C
<Tk
∗ (M,λε)) = lim−→

k→∞
lim−→
ε→0

H∗(C
<Tk
∗ (M,λε))

= 〈γkmax〉k∈[1,∞) ⊕ 〈γkmin〉k∈[1,∞))

=

 Z2 ∗ ≥ 2, even

0 ∗ else.
.

This yields the proof of Theorem 1.7.

We conjecture that we should be able to obtain invariance for other choices of H

and other dynamically separated contact forms associated to (S3, ξstd) in regards to the

above theorem. These issues of invariance will be addressed in future work.
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