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Abstract

We have combined computer simulation and theory to study the forces at liquid-solid (L-S)

interfaces, including the friction and solvation forces. We first model the energy dissipation

and momentum transfer at vibrating solid-water interfaces with a wide range of wettabilities.

We study the effect of L-S slip/friction on the mechanical response of the resonators. A new

analytical model is developed to describe mechanical response of the high frequency resonators,

which is relevant in applications as biosensors. We find a linear relationship between the slip

length and the ratio of the damping rate shift to resonant frequency shift, which provides a

new way to obtain information about slip length from experiments. Our molecular dynamics

(MD) simulations demonstrate that the slip length is dynamic and depends on frequency.

To overcome the difficulty of measuring L-S slip/friction at experimental relevant time scales,

we have developed a Green-Kubo (GK) relation that enables accurate calculations of friction

at L-S interfaces directly from equilibrium MD (EMD) simulations. Our GK relation provides

a pathway to bypass the time scale limitations of typical non-equilibrium MD simulations. The

theory has been validated for a number of different of interfaces and it is demonstrated that the

liquid-solid slip is an intrinsic property of an interface. Because of the high numerical efficiency

of our method, it can be used in design of interfaces for applications in aqueous environments,

such as nano- and micro-fluidics.

Using our GK relation and µs-long large-scale MD simulations, we investigate the near-

boundary Brownian motion, a classic hydrodynamic problem of great importance in a variety of

fields, from biophysics to micro-/nanofluidics. Due to challenges in experimental measurements

of near-boundary dynamics, the asymptotic behavior of the velocity autocorrelation function

(VAF) of the near-boundary Brownian particle remains unclear and debated. Our computer

experiment unambiguously reveals that the t−3/2 long-time decay of the VAF of a Brownian

particle in bulk liquid is replaced by a t−5/2 decay near a boundary. We discover a general

breakdown of traditional no-slip boundary condition at short time scales and we show that

this breakdown has a profound impact on the near-boundary Brownian motion. Our results
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demonstrate the potential of Brownian-particle based micro-/nano-sonar to probe the local

wettability of liquid-solid interfaces.

Motivated by the need to understand phenomena such as hydrophobically driven self-assembly

or protein folding, we have also studied the hydrophobic solvation force with a specific focus

on the effects of ions. Using β-peptide-inspired nano-rods, we investigate the effects of both

free ions (dissolved salts) and proximally immobilized ions on hydrophobic interactions. We

find that the free ion effect is correlated with the water density fluctuation near a non-polar

molecular surface, showing that such fluctuation can be an indicator of hydrophobic interac-

tions in the case of solution additives. In the case of immobilized ion, our results demonstrate

that hydrophobic interactions can be switched on and off by choosing different spatial arrange-

ments of proximal ions on a nano-rod. For globally amphiphilic nano-rods, we find that the

magnitude of the interaction can be further tuned using proximal ions with varying ionic sizes.

In general, univalent proximal anions are found to weaken hydrophobic interactions. This is in

contrast to the effect of free ions, which according to our simulations strengthen hydrophobic

interactions. In addition, immobilized anions of increasing ionic size do not follow the same

ordering (Hofmeister-like ranking) as free ions when it comes to their impact on hydrophobic in-

teractions. We propose a molecular picture that explains the contrasting effects of immobilized

versus free ions.
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1 Introduction and motivation

1.1 From hydrodynamics to solvation science

Liquid-solid (L-S) interfaces are common in nature and give rise to many interesting phenomena

including capillarity, L-S slip, surface wettability and hydrophobic association. Understanding

these interfacial phenomena is of great scientific and engineering importance. For example,

biological systems typically involve abundant L-S interfaces and the properties and functional-

ities of such interfaces are essential for life. This fundamental role of biological L-S interfaces

in living systems goes all the way down to the molecular level where proteins, the building

blocks of life, cannot fold themselves without the driving force of hydrophobic interaction1–7.

Inspired by nature, amphiphilic molecules have been synthesized to self-assemble in aqueous

environment8–12. Super-hydrophobic materials have also been designed to make self-cleaning

surfaces13–17. The miniaturization of devices such as micro-/nano-fluidics18;19 has further urged

the studies of L-S friction as the surface/volume ratio is unavoidably high at small length scales.

Despite its wide existence in daily life and central relevance in novel applications, there are

still many open questions regarding L-S interfaces due to the challenges in calculating structure

and dynamics of interfacial liquids and measuring these properties in experiments. Some of

the mysteries at L-S interface have even been waiting for answers for centuries. For instance,

since the early days of classic hydrodynamics, it has been debated whether there can be slip

between liquid flow and its solid boundaries20. The boundary condition of fluid is necessary

to solve the continuum-level Stokes equations. However, such a boundary condition cannot be

predicted from hydrodynamic theories, but requires more fundamental molecular theories that

are yet to be developed. It has been determined only in the last decade by experiment that

slip can happen at L-S interfaces, which means that the classic no-slip boundary condition can

break down21;22. However, it has remained a difficult problem for experiment to quantitatively
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measure the slip. One reason is that it is challenging to directly probe the structure and

dynamics of liquid molecules within nanometer distance from a surface23. It is also a non-trivial

task for experiment to control the roughness of the L-S interface to nanometer or sub-nanometer

level. Both the molecular structure and the roughness of surfaces are known to strongly impact

the behavior of interfacial liquid and therefore the boundary condition for macroscopic flow.

One example of such an impact is the water splash upon the entering of macroscopic solid

objects into water. It has been shown that a small change of surface chemistry of the object

can significantly affect the size of the water splash24. For small objects that perform Brownian

motion in liquid, the interfacial chemistry can even determine how the object move or diffuse.

For example, a Brownian particle with perfect slip boundary condition diffuses 1.5 times faster

than a same sized particle with no-slip boundary condition in liquid25.

Consider even smaller solutes down to molecular level, the knowledge of how the solutes are

solvated by solvent molecules is crucial to understanding the solubility of the solutes and the

properties of the solution. The so-called solvation science is a scientific branch that focuses on

such questions and it has attracted increasing research interests in recent years3;26–28. In water,

many factors contribute to the solvation energy of a solute, including the surface chemistry29,

the shape of the solute30, and the additives such as ions31;32 in the solution. Non-polar or hy-

drophobic solutes have high solvation energy in water and tend to segregate. Such hydrophobic

attraction is a result of the break or rearrangement of the hydrogen bond network in water. It

is well known that adding salts can modify the strength of hydrophobic interaction and such

modification is ion-specific. In the seminal work of Hofmeister in 188833, he ranked ions based

on how they change the solubility of proteins. However, since then the mechanisms beyond

the Hofmeister series has been subject to intensive debate. Recent studies have suggested that

the Hofmeister effect is not solely determined by the ions but also depends on their interplay

with the solutes.26;30;34 Pioneering attempts35;36 have also been made to explore the effect of

immobilized charged groups on the hydrophobic interaction of the amphiphilic molecules, as

in reality molecular surfaces are often heterogeneous in polarity and charge.

The various L-S phenomena introduced above are largely governed by two forces in aqueous

environments as schematically shown in Fig. 1.1. The first one is the force parallel to the

L-S interface (friction force), which determines the boundary condition of fluids, leading to

energy dissipation upon the sliding along the interface. The other is the solvation force that
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Figure 1.1: Frictional force (Ff) and solvation force (Fs) at L-S interfaces. Left:
Macroscopic boundary condition and microscopic L-S friction on single solvent
molecule when it is moving parallal to the surface,which has a corrugated po-
tential. Right: solvent-mediated solvation force in solution that drive solutes to
self-assemble.

yields the surface tension, driving the wetting/dewetting processes of solid surfaces, or the

solvation/desolvation processes of solutes. Both forces are sensitive to the molecular details at

the L-S interface. For example, the corrugated potential along the interface plays an important

role in the L-S friction. On the other hand, the shape of the potential in the direction normal

to the interface can greatly influence the solvation force. These simple ideas are also illustrated

in Fig. 1.1.

Molecular dynamics (MD) simulation provides a powerful tool to study the molecular mech-

anisms underlying the L-S interfacial problems. In MD simulations, the trajectories of atoms

are known with the positions and forces being accurately calculated. Correlation functions that

characterize the liquid relaxations can also be extracted. With the growth of computing power,

MD simulations have now become capable of dealing with some hydrodynamic problems that

arise at relatively large length scales and long time scales. The upscaling of MD simulation

is often futher facilitated by the coarse-graining technique, which treats groups of atoms as

united entities. On the other hand, more powerful computers also allow more realistic and

sophisticated force fields to be implemented to increase the accuracy of the simulations. Ab

initio MD simulations that consider the electronic structures have also been used in recent

years to study L-S phenomena. Despite the advances in computations, interfacial problems
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are still in general challenging as long-range interactions, polarizations, charge transfer and

chemical reactions could all play a role. That means one needs to wisely choose the force field

and set up the simulation system to make the computation efficient and physically meaningful.

This thesis combines results of computer simulations and theory developments related to L-S

interface. Specifically, it focuses on the molecular mechanisms of the friction and solvation

forces at L-S interfaces. Mechanical models and statistical theories have been developed to un-

derstand the boundary condition of fluid and its hydrodynamic consequences. MD simulations

have been employed to validate our theories and as a means for discovery of new phenomena.

For the extensively studied hydrophobic interaction and specific ion effects, we aim to provide

novel and complementary insights using our newly designed simulation systems.

1.2 Overview of the thesis

The remainder of the thesis is set up as follows. In Chapter 2, we talk about the methods used

in this study, including simulation techniques and theoretical tools. We first briefly introduce

the key ideas of the MD technique, including discussions of force fields. Then we introduce

theoretical concepts such as correlation function and the Green-Kubo relations. These concepts

allow us to use equilibrium MD (EMD) simulations to extract information about transport

coefficients for non-equilibrium systems.

In Chapters 3, 4 and 5, we study the L-S friction and boundary condition of fluid. In Chapter 3,

we first study the effect of L-S friction in shear-mode vibrating systems of application for

biosensors. We show from non-equilibrium MD (NEMD) simulations that the L-S friction is

dynamic, which means it depends on the frequency. In such simulations, the frequency and

shear rate are much higher than those in experiments. To enable simulations to access the

experimental time scales, in Chapter 4 we develop a GK relation that connects the friction

coefficient to the interfacial correlation functions. Such statistical theory also provides a tool

to understand the relaxation of L-S friction. Chapter 5 shows an example of how a dynamic

boundary condition affects the near-by Brownian motion. Using MD simulations we show that

long-time tail follows a t−5/2 dependence, which functional form has been long debated in

literature. We show how the assumption of static no-slip boundary breaks down for unsteady

hydrodynamic problems, leading to a suppression of the hydrodynamic tail of near-boundary
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Brownian motion.

In Chapters 6, we turn to study the solvation force and focus more on the solvation chemistry.

Specifically, we study the effects of ions on the hydrophobic interactions. We compare the

effects of free and immobilized ions to gain a more general understanding of Hofmeister series.

Finally in Chapter 7 we summarize our studies and briefly discuss possible future directions.
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2 Simulation and theoretical methods

2.1 Molecular dynamics simulations

2.1.1 Introduction to molecular dynamics simulations

The molecular dynamics (MD) technique allows simulation of the motions of atoms and

molecules. In such simulations, atoms are usually treated as mass points. The movements

of atoms and molecules are simulated by numerically solving the Newton’s equation of motion:

mi
d2~ri
dt2

= ~Fi + ~Fext (2.1)

for each atom i. Heremi is the mass of the atom, ~ri is its position, ~Fi is the intermolecular force

on atom i exerted by the surrounding atoms, and ~Fext is the external force on atom i, if any is

present. In MD simulations, the atomic positions are updated at discrete times. The interval

of the discrete time is called a timestep ∆t. The evolution of the system can be realized by

different algorithms. A commonly used one is the velocity-Verlet algorithm which implements

the following two equations

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+
~Fi(t)

2mi
(∆t)2, (2.2)

~vi(t+ ∆t) = ~vi(t) +
~Fi(t) + ~Fi(t+ ∆t)

2mi
∆t. (2.3)

The total force ~Fi or the acceleration on atom i is calculated by Eq. 2.1 and it is used to update

the velocity ~vi of the atom. The choice of the timestep ∆t is a trade-off between the expense of

the calculation and the stability of the simulation. A large timestep lowers the computational

cost, but could increase the risk of introducing artifacts to the simulation.
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MD simulations can be valuable in providing insights into statistical problems because they do

not require a priori assumptions employed in many analytical theories. MD is especially useful

in studying liquid systems1 where the short mean free path of particles (which is comparable

to the molecular size) can post fundamental difficulties for analytical theories. Therefore, MD

simulation can serve as a powerful tool to test existing theories and inspire the development of

new models. On the other hand, it also bridges the molecular details to macroscopic observables

of experimental interests, such as structural quantities and transport coefficients. Lastly, one

can apply simulations to study the performance of materials at extreme conditions such as high

temperature and pressure, which conditions may be hard to reach in experiments.

2.1.2 Types of MD simulations

There are many types of MD simulations. Based on how the forces on the molecules are

obtained, MD simulations can be largely classified into two categories. The first one is the

so-called ab initio MD simulation, in which the atomic force is computed from first principles

by solving the Schrödinger equation. Such MD simulation usually does not rely on adjustable

parameters. However, due to the cost of such calculation, ab initio MD simulations are limited

to small length and time scales. Another way to calculate the intermolecular interaction is

through intermolecular potentials or force fields. MD simulations based on force fields are

often referred as classical MD simulations. Classical MD simulations and have access to larger

length and time scales than ab initio methods. To combine the advantages from both ab

initio and classical MD simulations, a hybrid method called QM/MM has been developed2,

which represents the reaction center quantum-mechanically while treating the rest of system

classically.

Another classification of MD simulations is based on whether the simulation system is at

equilibrium or under non-equilibrium status. Equilibrium MD (EMD) simulations are used to

calculate the structural and dynamic properties of equilibrated systems, often as a function

of thermodynamic variables such as temperature and pressure. Non-equilibrium MD (NEMD)

simulations are useful to study the behavior of systems out of equilibrium, at either steady

or non-steady states. A steady non-equilibrium state means that under a constant external

perturbation, the system has evolved to a point where its properties are no longer changing

with time. Simulation of such systems allows extraction of transport coefficients that describe
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how a system responds to external perturbations. For example, the viscosity of liquid can

be measured from NEMD simulation in which a constant shear rate is built. The external

perturbation can be either introduced from surfaces or boundaries where particles interact

with external momentum, or applied through adding an external term in the Hamiltonian that

modifies the equation of motion of particles. Lastly, we should point out transport coefficients

at the linear response regime of a system can be also calculated from EMD simulations using

Green-Kubo relations. One example on this will be given in Chapter 4

2.1.3 Molecular models and force fields

The force ~F in classical MD simulations are derived from intermolecular potential or force field

U

~Fi = −~∇U. (2.4)

Therefore, the performance of an MD simulation strongly depends on the choice of the force

field. The functional forms and parameters of the force fields are often derived from experiments

or first principle calculations. The nature of molecular interactions can be generally divided

into two categories: bonded and non-bonded interactions. The former potentials are functions

of bonds, angles and dihedrals. The non-bonded interactions include Coulomb interaction and

dispersion interaction. The Lennard-Jones (LJ) potential is one of the simplest force fields for

dispersion interaction and has been widely used in liquid simulations. The common 12-6 form

of LJ potential is:

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
, (2.5)

where σ characterizes the width of the energy well, ε the depth of energy well. This simple

potential has been widely used with reduced units to study the general properties of liquids.

To save computational time, the LJ interaction is often truncated at a cutoff distance. For the

electrostatic interactions which decay slower with distance, such a cutoff in real space would

lead to artifacts in simulations, and therefore other methods are often employed, such as Ewald

summation, particle mesh and PPPM methods3–5.

Depending on the level of molecular details, molecular models can be categorized as all-atom

and coarse-grained (CG) models. In the latter, a group of atoms is united and treated as one

entity, which makes the computation faster than that in the all-atom representation. Taking
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Figure 2.1: All-atom water models with different site numbers. O: oxygen atom; H:

hydrogen atom; M: dummy mass; L: lone pair.

water molecule as an example, the need to simulate large solution system has demanded the

development of CG water models such as the BMW model6. On the other hand, many all-atom

models have also been developed to simulate water in situation where atomic representation

is necessary. Most of these all-atom models are rigid models with the O-H bonds and H-O-H

angle frozen, but they differ in how the partial charges are distributed over the molecule. For

example, water models with more than 3 sites7–9 have been developed where the partial charges

are assigned to points outside of the center of mass of atoms as shown in Fig. 2.1. Specifically,

negative charges may be assigned to massless dummy sites near the oxygen atom. It is worth

pointing out that increasing the number of sites does not necessarily make a better water

model10 while it unavoidably increases the computational cost. Therefore the most commonly

used models today are still 3-site models such as TIP3P11 and SPC/E12. Early water models

have fixed partial charges on each site and thus are refered as non-polarizable models. In

reality, the molecular dipole of water is a variable dependent on its neighboring molecules. For

this reason, recently polarizable water models have been developed and are useful in studying

non-bulk water behaviors13–15.
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2.1.4 Potential of mean force and umbrella sampling
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Figure 2.2: Umbrella sampling. The entire sampling region is divided into multiple win-

dows where biasing potentials are applied. Rigid line: free energy landscape;
Dashed lines: harmonic biasing potentials.

The potential of mean force (PMF) refers to the free energy of a system as a function of

some reaction coordinate, such as the distance between two solutes in liquids. For a solution,

this energy function includes both direct interaction between two solutes and the solvent-

mediated interaction. Unlike internal energy, free energy cannot be directly calculated in

simulations. There are a number of methods to extract free energy from simulations, such as

free energy perturbation16, thermodynamic integration17, test particle insertion18 and umbrella

sampling19. Among these methods, umbrella sampling is commonly used when the reaction

coordinates are positions. The basic idea of this method is to apply biasing potentials to

improve the sampling of a system where ergodicity is hindered by energy barriers. The bias

potential often takes a quadratic form and can be viewed as a harmonic constraint. The entire

sampling region is divided into many small windows and for each window a separate calculation

is carried out with a biasing (constraining) potential. This procedure is illustrated in Fig. 2.2

where the rigid line represents the free energy landscape with high barriers and the dashed

lines are biasing potentials.

As the biasing potentials are known, the enhanced sampling, once finished, can be post-
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Figure 2.3: A typical velocity autocorrelation function. Arrows: velocities at different
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processed to deduce the intrinsic PMF without any bias. One algorithm to do this is the

Weighted Histogram Analysis Method (WHAM)20. The performance of PMF calculation or

the accuracy of the energy landscape is closely related to the quality of the sampling. Poor

sampling often happens at the overlapping region of neighboring sampling windows when the

harmonic spring stiffness and the window size are not appropriately chosen. The uncertainty of

the PMF can be estimated using the bootstrapping method21 which is implemented in WHAM.

2.2 Theoretical tools

2.2.1 Correlation functions

A correlation function is a statistical correlation between random variables at two different

temporal or special points. Correlation functions of two different random variables are often

called cross correlation functions while the so-called autocorrelation functions measure the cor-

relation of the same random variable. Consider the velocity autocorrelation function (VAF)

C(t) = 〈~u(0)~u(t)〉 of a diffusing colloidal particle for example. As illustrated in Fig. 2.3, the

particle undergoes ballistic motion at short time scales which means it keeps moving along

approximately the same direction. This ballistic motion is reflected as highly correlated veloc-

ities, leading to a large value of C(t) for small time t. At long time scales, C(t) decays to zero

as the velocity becomes uncorrelated.
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Figure 2.4: Extraction of diffusion constant using different simulation methods.
Left: NEMD simulation; Right: EMD simulation.

The correlation functions provide an important language to understand the dynamics of liquids

as these functions are theoretically tractable and can be measured from computer simulations

and experiments (often measured as Fourier transformed spectra in frequency domain). More-

over, integrals of correlation functions are often related to the macroscopic transport coefficients

through Green-Kubo (GK) relations. Such relations allow prediction of the non-equilibrium

behavior of a system under an external perturbation based on the thermal fluctuations in the

same system at equilibrium state. In the example of the diffusing colloidal particle, the integral

of the VAF is equal to the diffusion constant D of the particle:

D =
1

3

∫
〈~u(0)~u(t)〉dt. (2.6)

As shown in Fig. 2.4, one can measure the VAF of the colloidal particle of interest in EMD

simulation to calculate the diffusion constant from Eq. 2.6, instead of introducing a gradient

of concentration in NEMD simulation to directly monitor the diffusion. Besides Eq. 2.6, other

GK relations have also been developed for the transport coefficients including viscosity and

heat conductivity22. All the GK relations mentioned above are limited to bulk systems. More

recent interests in GK relations lie at the interfaces of phases. In Chapter 4, we develop an

interfacial GK relation that connect the L-S friction to the correlation functions involving the

friction and velocity of interfacial solvent molecules.

2.2.2 Brownian motion models

Brownian motion is a ubiquitous transport phenomenon in aqueous solutions. It is named after

botanist Robert Brown who observed the diffusive motion of pollen grains in water under a
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microscope in 182723. The mechanism behind the Brownian motion was not understood until

Einstein explained it in 1905 through a random walk model24. The model decomposes the

total force on the Brownian particle into two parts, a hydrodynamic friction force FH and a

random force FR

Ftot = FH + FR, (2.7)

where FH = −6πηru with η being the viscosity of the liquid and r the hydrodynamic radius

of the particle, and u the particle velocity. Without the second term on the right hand side,

Eq. 2.7 is just the classic Stoke hydrodynamic equation and it states that a free moving particle

in liquid will slow down due to the hydrodynamic friction and eventually it will come to rest.

However, this zero velocity solution for the final state of the particle violates the fact that,

no matter how small, there will be a finite thermal velocity on the particle. The contribution

from Einstein to this problem is the introduction of the random force, which supplies thermal

energy to the particle. This random force was reasoned to be a result of the collision between

the particle and surrounding individual solvent molecules. Considering both the Stokes friction

and the random force, one can relate the diffusion constant of the Brownian particle D to the

ratio of thermal energy and hydrodynamic friction coefficient

D =
kT

6πηr
. (2.8)

This is the so-called Stokes-Einstein equation. The theoretical model was verified by exper-

imentalist Jean Perrin in 190825. Today, the Brownian motion or random walk model has

been used in many fields not limited to physics, and become a powerful tool in statistics and

financial analysis.

As assumed by Einstein, the random force is uncorrelated in time, that is 〈FR(0)FR(t)〉 = 0

for t 6= 0. Therefore, based on the fluctuation-dissipation theorem, the random force satisfies

the following relation

〈FR(0)FR(t)〉 = 6πηrδ(t). (2.9)

Based on the above assumption of random force, Einstein predicted the VAF of Brownian par-

ticle to decay exponentially with time. Thus it came as a surprise when computer simulation

in the 70s discovered a slow t−3/2 decay or the so-called long-time tail in the VAF of solvent

molecules. The long-time tail was explained by the vortex flow emitted by the diffusing particle,
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an inertia effect of fluid previously ignored by Stokes hydrodynamics. Inspired by the simula-

tion result, modern Brownian motion model was developed incorporating the time-dependent

hydrodynamic friction, known as the Basset force:

FB(t) = −γ
√
τf
π

∫ t

−∞

u(t′)√
t− t′

dt′. (2.10)

Here, γ = 6πηr is Stokes friction coefficient and τf = r2ρ/η is the time scale over which

the vortex flow grows to the size of the particle. According to the fluctuation-dissipation

theorem, a time dependent dissipation corresponds to a random force that has a non-zero

autocorrelation function or a so-called memory function. This correlated random force has

been captured in recent optical tweezers experiments on Brownian particles in bulk liquid.

While the bulk Brownian motion theory has been widely accepted, the effect of a boundary on

nearby Brownian motion is still a debated topic. In Chapter 5 we will demonstrate that the

friction at L-S interface also has memory and can strongly affect the near-boundary Brownian

motion.

2.2.3 Projection operator technique

The hydrodynamic theories for Brownian motion assume that the mass of the particle is ex-

tremely heavy compared to solvent molecules and are therefore not applicable to particles with

comparable size to solvent molecules or solvent molecules themselves. One can ask if there

is a general model that describes the diffusive motions (or Brownian motions but in a more

general context) of particles in liquid regardless the particle size. The answer is positive and

this general theoretical framework is called the Generalized Langevin Equation (GLE), which

is widely used in non-equilibrium statistical mechanics not limited to Brownian motion26;27.

Here, let us restrict ourselves to the case of Brownian motion and review the specific GLE

equation for it. The formula of GLE for diffusion of particle i reads

mi~̇ui(t) = −
∫ t

0
γi(t− t′)~ui(t′) dt′ + ~Ri(t). (2.11)
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Here γ is the memory function and is related to the random force ~R through the generalized

fluctuation-dissipation theorem

kTγi(t) = 〈~Ri(0)~Ri(t)〉, (2.12)

where k is the Boltzmann constant and T is the temperature. Compared to Eq. 2.9 which

describes a white noise, Eq. 2.12 intrinsically deals with a correlated random force.

Another important note about the GLE is that it can be formally derived from classical me-

chanics. One way to do that is with the help of the projector operators:

P = |~ui〉〈~ui|〈~ui~ui〉−1, (2.13)

and Q = 1−P, where |~ui〉 is the vector in phase space with the velocity of particle i being ~ui.

The time evolution operator can be decomposed using the above projection operators:

eiLt = eiQLt +

∫ t

0
eiL(t−t′)iPLeiQLt′ dt′. (2.14)

Appling this decomposition to the acceleration of the particle ~̇ui = iL~ui, one can arrive

~̇ui(t) = − 1

kT

∫ t

0
~ui(t− t′)〈iL~uieiQLt′ iL~ui〉dt′ + eiQLtiL~ui. (2.15)

Compared to Eq. 2.11, we can see that ~R(t) = eiQLtiL~ui is the random force, and γ(t) =

1
kT 〈iL~uie

iQLtiL~ui〉 is the memory function.
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3 Friction and slip at vibrational liquid-solid

interfaces

3.1 Introduction

Friction at solid/liquid interfaces plays an important role in many mechanical devices. An

example is quartz crystal microbalance (QCM)1–6, which in recent years has become a widely

used mechanical method for characterization of bio-interfaces. QCM provides also a direct

experimental approach to study friction7–9 since its acoustic shear-wave motion is sensitive to

the sliding friction at its surface. Such interfacial friction will result in a shift of the resonant

frequency f0 and in the case quartz crystal with dissipation monitoring (QCM-D), also in a

shift of a damping rate D. f0 and D are defined as

f0 =
1

2d

√
cq
ρq

(3.1)

D =
−∆En

2En
, (3.2)

where d, cq and ρq are the thickness, stiffness, and density of quartz, respectively, and En is

the mechanical energy stored in quartz during the nth vibrational cycle. Solid/liquid interface

is viscous in nature and the corresponding friction force can be written as

F = −η(v0 − u0), (3.3)

where η is the friction coefficient and v0 and u0 are the shear velocity of liquid and solid at

the interface, respectively. The term v0 − u0 is the slip velocity, defined as the sliding velocity

of the liquid adjacent to the solid relatively to the solid surface. For sufficiently large friction
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coefficients, the slip velocity becomes negligible, which corresponds to the no-slip boundary

condition. With no-slip boundary condition, the mechanical response of QCM can be predicted

by solving continuum-level wave equations, without the need to know the value of the friction

coefficient. However, the assumption of no-slip boundary condition does not always hold and

therefore there is a need to develop theories that will take the existence of slip directly into

account. The existence of slip has been first proposed over a century ago by Navier10, but it

has been accepted only in recent years11–14. Slip can be quantified either using the slip velocity

v0 − u0 or the slip length l (see Fig. 3.1), where the latter quantity is defined as

l = (v0 − u0)

(
∂v

∂z

)−1

. (3.4)

The slip length is proportional to the viscosity η of liquid and to the inverse of the friction

coefficient η, that is

l =
η

η
. (3.5)

It is now accepted that the slip length can span a wide range of values, from several Angstroms

(a molecular diameter scale) to micrometers for super-hydrophobic surfaces15, and that con-

tributions from slip to dynamics at the solid/liquid interface cannot be neglected. Large slip

length is likely to occur when hydrophilic surfaces meet hydrophobic liquids or vice versa,

both scenarios frequently encountered in biological systems. Slip is also expected to play an

important role in resonators with high resonance frequency in the region of upper MHz (∼100

MHz) and possibly even GHz. This is because at such high frequencies the penetration length

of liquid is on the micron scale and generally slip is more important when its length scale be-

comes comparable to the size of the system of interest. Another example of application where

slip plays an important role is the microfluidics16–19. In this case a tiny amount of liquid flows

through nano-/micro-scale pipes and friction at the pipe wall can significantly affect the flow

due to the high surface/volume ratio.

Not surprisingly, understanding of the solid/liquid slip has been argued to be an important

challenge in research on solid/liquid interfaces.20–22 One of the difficulties in investigating slip

at solid/liquid interfaces is that the slip length is difficult to measure experimentally. Such

measurements require a very high sensitivity of the experimental apparatus to the shear stress

of liquid as well as a control of the surface quality, which includes both surface roughness
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Figure 3.1: Schematic representation of the slip boundary condition with slip
length l. Here, the velocity of the solid u0=0.

and chemistry. Atomistic simulations and in particular molecular dynamics (MD) simulations,

provide a powerful tool to complement experiments and to bring insights into slip-related

phenomena. The MD technique enables a precise control of such factors as shear rate and

vibrational frequency, and makes it possible to analyze fluid velocity gradient close to the

solid/liquid interface. In addition, thanks to the ability to model atomically smooth surfaces,

in MD simulations it is possible to isolate effects of surface chemistry (e.g., hydrophobicity)

from effects of surface roughness. MD simulations have been already employed to determine

the dependence of slip on shear rate, chemical bond strength, and surface roughness23–33. For

example, Barrat et al.23 found that the slip length of water on diamond-like solid surface scales

approximately as an inverse of the square of interfacial bond strength ε between the liquid and

the solid, that is:

l ∼ ε−2. (3.6)

In other simulation studies28;30;34, slip length has been observed to increase with shear rate γ̇,

consistently with the following empirical relation

l(γ̇) = l0 (1− γ̇/γ̇c)−0.5 , (3.7)

where l0 is the intrinsic slip length, which corresponds to the limit of zero shear rate, and

γ̇c is the maximum shear rate the a given liquid can carry. The aforementioned simulations

of slip phenomena typically involve a sliding system in its steady state or, more specifically,
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with a constant shear rate built in by confining the liquid between two parallel solid walls.

The slip length measured in this way is limited to a non-vibrating (here, referred to as static)

system and therefore it cannot provide any dynamic (i.e., related to vibrations) information

about the solid/liquid friction. In this study we investigate the effect of slip on mechanical

properties of a vibrating system, such as QCM, and therefore it is necessary to first extend the

concept of a static slip (ls) to the dynamic slip (ld) and to discuss the relationship between

these two quantities. The dynamic slip length can generally be a function of both shear rate γ̇

and frequency ω, and it can be written as ld(γ̇, ω). In the case of a small amplitude vibration

associated with a small shear rate, the dynamic slip length is approximately independent of

the shear rate. In this limit, we can simplify the dynamic slip length to be ld(ω). Later on,

we will focus on the dynamic slip length in the small shear rate limit and the symbol ld will

always refer to this case. Similarly to the behavior of static slip length at low shear rate, the

dynamic slip length will also converge to the intrinsic slip length l0, which is the slip length

in the limit γ̇ → 0, ω → 0. The intrinsic slip length l0 depends on the properties of the solid

and the liquid and on the interfacial geometry. In our simulations, for simplicity we control

the value of l0 by modifying the bond strength ε between liquid and solid rather than by

employing different types of liquid/solid combinations or different interfacial geometries. For

mathematical convenience we define

Γs(ε, γ̇) = ls(ε, γ̇)/l0(ε), (3.8)

Γd(ε, ω) = ld(ε, ω)/l0(ε), (3.9)

Γs (Γd) is the ratio between the static slip length (the dynamic slip length) and the intrinsic

slip length. Γs (Γd) is expected to be equal to unity when the shear rate (frequency) is zero.

As we can control the intrinsic slip length l0 by changing the strength of interfacial bonds in

simulation, we are able to investigate the influence of the slip length on the momentum transfer

and energy dissipation at the solid/liquid interface with a particular focus on the transverse-

shear model of a vibrating interface. We focus on a Newtonian liquid and a simple (i.e.,

unpatterned) solid surface, which is of relevance for most QCM applications. For a Newtonian

liquid, the damping wave through the liquid can be well described using a single parameter
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called penetration length35, which is defined as

δ =

√
2η

ωρl
, (3.10)

where ρl is the density of a liquid. The shear velocity amplitude of the damping wave along

the z direction (see Fig. 3.2) can be written as |v(z)| = |v0|e−z/δ, where v0 = |v0|eiωt is the

velocity of the liquid adjacent to the solid surface. The penetration length δ describes how fast

the shear wave emitted at the vibrating interface decays when it travels through the liquid.

The QCM system can only sense the viscosity of liquid within a distance of a few times the

penetration length from the QCM surface as the amplitude of damping wave of liquid at larger

distances is low and can be ignored. The relationship between v0 and the vibrational velocity

u0 of the solid’s interface is related to the penetration length through the following equation36

v0 =
u0

1− (i− 1) lδ
. (3.11)

From the above expression it is clear that when the slip length l is much smaller than the

penetration length δ, then v0 ≈ u0, which corresponds to the no-slip boundary condition. If

we define a normalized slip length b = l/δ (b0, bs and bd for the intrinsic, static, and dynamic

cases, respectively), we can see that boundary slip becomes important when b is not negligible

as compared to 1. In our simulation, a wide range of b values can be accessed by varying the

interfacial bond strength (which controls surface hydrophobicity) and the vibrational frequency

(which controls the penetration length). The ability to achieve this wide span of normalized

slip lengths allows us to determine relationship between QCM’s mechanical response and slip.

Such relationship is necessary to fully understand the effect of slip boundary condition on

solid/liquid interfacial momentum transfer and energy dissipation. In subsequent sections we

first review continuum level theories that are currently used to interpret QCM experiments.

We begin with theories that assume no-slip boundary conditions, followed by a discussion of

how slip boundary conditions have been introduced into these models. As the existing slip

boundary models have not been validated in experiments nor in simulations, we will test these

theories using MD simulations. We discuss what physical phenomena are not captured in the

existing theories and we provide a new model that includes these phenomena.
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3.2 Review of continuum-level models

The first continuum-level theory for QCM came from Sauerbrey37, who provided the relation

between the frequency shift of QCM and the mass attached to it. The Sauerbrey relation

assumes that the attached mass is a thin rigid (i.e., infinitely stiff) film and therefore no energy

dissipation takes place in the attached film. According to the Sauerbrey theory, the shift ∆f

of frequency can be related to ∆m, which is the mass of the attached film per unit area, as

follows:

∆f =
−2f2

0√
cqρq

∆m. (3.12)

In this expression f0 stands for the resonant frequency of the unloaded system (without the

attached film), and cq and ρq have the same meaning as in Eq. 3.1. When QCM is placed in

an aqueous environment, as often required in applications of biosensing, vibrational energy of

the QCM is damped into the liquid. This damping occurs as the result of a viscous coupling,

or in other words, by transmission of the shear acoustic waves across the solid/liquid interface.

For a Newtonian liquid with non-slip conditions at the solid-liquid interface, one can solve

the problem of wave propagation analytically to predict the change (∆D) in the damping

factor and the shift (∆f) in the natural frequency of the solid due to the presence of the

liquid (referred to as liquid-loading). A mathematical formalism for this problem has been first

introduced by Kanazawa and Gordon38, who solved coupled wave-propagation and the Navier-

Stokes equations. The resulting solution predicts that the resonance frequency (damping rate )

of the QCM decreases (increases) due to the presence of the liquid with viscosity η and density

ρl as:

∆f = −f3/2
0

√
ρlη

πρqcq
, (3.13)

∆D = −2π
∆f

f0
. (3.14)

Martin et al.39 considered the case of a combined loading of a thin rigid film and an infinitely

deep Newtonian liquid. The authors proposed that contributions to ∆f from the film and the

liquid are additive. It has been later found that Martin’s additive model overestimates ∆f

observed experimentally for the combination of a soft film and a liquid, which phenomenon has

been called a "missing mass effect". The missing mass effect has been attributed to the presence

of viscous coupling between the soft film and the liquid. A model that takes this physics into
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account has been developed by Voinova et al.40 Both, the Martin’s and Voinova’s models assume

no-slip boundary conditions. Studies that take into account slip boundary conditions explicitly

are much scarcer due to the difficulties discussed in the introduction section. Nevertheless there

have been several theoretical studies aimed at incorporating the slip effect into the Kanazawa

model36;41–46. For example, Ferrante et al.41 introduced a complex interfacial slip parameter

α. However, a physical meaning has not been provided for the two fitting parameters (the real

and the imaginary parts of α) that appear in the model. Other theoretical approaches to slip

boundary conditions include a model by Ellis et al.42, who proposed a relation between the

real and imaginary parts of the complex slip parameter and thereby was able to replace the

complex slip parameter α with a single parameter, which is the slip length. This new model

provided a clear connection between the QCM’s response and the slip length and it has been

invoked to explain a number of experimental results. For instance, Daikhin et al.43 applied

this model in the studies of adsorption of pyridine on gold surfaces and to explain the observed

difference between the prediction of no-slip theory and experimental results. McHale et al.44

used loading impedance to analyze similar discrepancy between experimental observations on

rough surfaces and the no-slip boundary model and introduced the concept of a negative slip

length to explain the discrepancy. Zhuang et al.45 followed classic hydrodynamic theories to

derive a mathematical formalism for the slip boundary condition and extended their model

to the non-Newtonian regime in order to explain the surprising experimental observation that

frequency shift ∆f can be positive (no-slip models do not allow the frequency to increase in

a Newtonian liquid). A mathematical analysis of a vibrational interface with slip boundary

conditions and with a simplified solid (a spring attached to a solid slab) has been also reported

by Persson 36. It is straightforward to show that ignoring the roughness of the surface and

the width of the interface (see discussion section), all the one-parameter slip-boundary models

from Refs.36;42–45 can be reduced to the following set of equations:

∆f

f0
= − 1

πZ

√
ρlηω

2

1

1 + 2b0 + 2b20
(3.15)

∆D =
2

Z

√
ρlηω

2

1 + 2b0
1 + 2b0 + 2b20

(3.16)

where ω = 2πf is the angular frequency and Z =
√
cqρq is the mechanical impedance of QCM.

b0 = l0/δ is the normalized intrinsic slip length we defined in the introduction section. In the
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limit of b0 → 0, Eq. 3.15 and Eq. 3.16 are reduced to the corresponding expressions in the

Kanazawa model38.

3.3 Simulation setup

All MD simulations have been performed using the LAMMPS software package47. In our sim-

ulations we choose water as a model liquid. We use the TIP4P model48 for water interactions

because it correctly describes mechanical properties of water, such as viscosity. Long-range elec-

trostatic interactions are calculated using the Particle-Particle Particle-Mesh method (PPPM)

method49. The non-bonded interactions involving hydrogen are not considered and an addi-

tional constraining force is applied to hydrogen atoms with the SHAKE50 algorithm to enable

a simulation time step as large as 4.0 fs. Because we are interested in the effects of liquid on

the vibrational properties of a solid instead of materials properties of the solid itself, we choose

a model solid in which atoms interact via Lenard-Jones (LJ) force field:

U(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
. (3.17)

Table 3.1: Parameters of the Lennard-Jones potential. * symbol refers to all atom
types other than H

Atom types ε (kcal/mol) σ(Å)
H-* 0.0 0.0
O-O 0.16275 3.16435
O-solid 0.05-1.0 2.8
solid-solid 8.0 3.368

Parameters ε and σ for the LJ force field used in our simulations can be found in Tab. 6.1. The

cut-off for interactions is taken to be 12 Å. The solid has face-centered-cubic (fcc) structure

with the (100) surface being in contact with the liquid. The value of ε = 8.0 kcal/mol is

sufficient to make the solid sufficiently rigid in our simulations. The properties of the solid wall

could affect the slip at the solid/liquid interface29;51. We choose the flexible wall model (solid

atoms are allowed to vibrate) over the rigid wall model (solid atoms are held at their lattice

sites). However, in our case the difference in the slip between the two wall models, if any such

difference exists, is not expected to be large, since the atomic mass of our solid is about 2 orders
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of magnitude larger than the molecular mass of water and therefore the vibrational amplitude

of atoms in the solid is significantly smaller than of the liquid molecules. Heavy solid atoms

are required to make the resonator in our simulation computationally inexpensive and stable

during high frequency vibration. The control of interfacial bond strength is realized by choosing

the value of ε for the oxygen-solid interaction. For no-slip boundary condition simulations, the

value of ε is chosen to be 1.0 kcal/mol, which is strong enough to eliminate the slip velocity

between solid and liquid. For slip boundary condition simulations, the value of ε changes

from 0.05 to 0.6 kcal/mol, which presents a wide range of slip lengths that are typically found

in simple solid/liquid interfaces. We choose the x axis to coincide with the direction of shear

velocity and the gradient of velocity to lie along the z axis. Nose-Hover thermostat is coupled to

the y and z components of the velocity so that the vibrational mechanical energy in x direction

is not affected by the thermostat. We have confirmed that this method of temperature control

leads to an exponential decay of the amplitude of free oscillations with time, as expected from

theory. We have also performed simulations without any thermostat in the liquid (thermostat

is only coupled to atoms in the solid), similarly as was done in MD simulations of the Couette

flow reported in Refs.52;53. We found that the main effect of removing the thermostat from the

liquid region is a decrease in water viscosity by about 10% and that this procedure does not

affect the slip length and the slip model we propose in subsequent sections. For consistency,

all results presented in this paper have been obtained using 2D thermostat applied to both

the solid and the liquid regions. In our simulations the system is first relaxed at 300K and

1 atmosphere using NPT ensemble with coupling constants τT=100 fs for temperature and

τp=1000 fs for pressure. Simulations of QCM vibrations are performed in NVT ensemble.

We perform three types of MD simulations. Measurement of water viscosity is carried out using

the Reversed Non-Equilibrium Molecular Dynamics (RNEMD) method54;55. The RNEMD

method constrains the velocity of water molecules to achieve a steady state shear rate through

the thickness of the liquid. The second simulation type involves a static shearing system to

measure the static slip length directly based on Eq. 3.4. In this setup two parallel solid slabs

slide with respect to each other to produce a velocity gradient through the liquid confined

between the two slabs. Each of the two solid slabs has dimension of 32Å×32Å×8Å (288

atoms) and the slabs are placed in a simulation box with dimensions of 32Å×32Å×81Å. There

are 2000 water molecules placed between the solids, which corresponds to the water thickness

of 63Å. This thickness is large enough to avoid nano-scale confinement effects reported in
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Figure 3.2: Illustration of the acoustic shear wave simulation system with slip
length l. u0 and v0 are the velocities of solid and liquid at the interface, re-
spectively. δ is the penetration length of water, which characterizes the damping
wave.

literature56. The third type of simulation involves modeling a vibrational system and measuring

its mechanical response to applied force, such as frequency shift and damping rate shift. In

this system a thicker box of water is placed above a vibrating solid. One-atom thick solid wall

is placed above the water to prevent it from evaporating. The water region has dimensions

of 32Å×32Å×251Å and contains 8000 water molecules. The corresponding water density is

0.99 g/cm3. Furthermore, we have considered two types of vibrational systems. The first one

is a shear-wave QCM resonator (see Fig. 3.2). We impose acoustic shear wave by initially

deforming the resonator using a cosine wave function through the thickness of the QCM (along

the z direction) and then removing the constraint and allowing free oscillation of the system.

This acoustic shear wave in the QCM resonator forms a standing wave while in the liquid it

becomes a damping wave with the source at the solid/liquid interface. The shear modulus of

the solid crystal in our simulation is 32.2 GPa. With this system setup we can only study

vibrational frequencies above 30 GHz. In order to study a wider frequency range, we simplify

the QCM model to a spring model, in which a solid slab is attached to a spring (each atom is

constrained with a spring force that pulls it to its initial position), since it enables a shorter

computational time for the same vibrational period. Although the properties of water above

the vibrating solids are the same for the two types of motions, the mathematical descriptions of
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the mechanical response of the two resonators are different. In Tab. 3.2, we provide expressions

for the equivalent properties in the shear wave and the spring models, which properties include

impendence Z, resonant frequency f0, relative change in the frequency ∆f/f0 in the presence

of liquid, and damping shift ∆D due to the presence of liquid.

Table 3.2: Mechanical properties of the two types of resonators discussed in the
text. Z is impendence (units of N · kg · m−5)0.5), f0 is resonant frequency, ∆f is
frequency shift, ∆D is damping rate, cq is shear modulus of quartz, ρq is density
of quartz, ηl is viscosity of liquid, ρl is density of liquid, k is spring constant per
unit, M is mass of solid per unit, and ω is angular frequency

Shear wave model Spring model
Z =

√
cqρq Z =

√
kM

f0 = 1
2d

√
cq
ρq

f0 = 1
2π

√
k
M

∆f
f0

= − 1
πZ

√
ρlηlω

2
∆f
f0

= − 1
2Z

√
ρlηlω

2

∆D = −2π∆f
f0

∆D = −2π∆f
f0

In the spring model, we control the spring constant k and atomic mass M per unit area, and

thereby we vary the resonant frequency while keeping the mechanical impedance Z constant

and equal to 4.93×107 (N · kg · m−5)0.5. The frequency in our simulations varies from 4.07 GHz

to 65.1 GHz (the shortest period about 15 ps is still 3 orders of magnitude longer than the 4.0

fs time step). The typical resonant frequency of QCM in experiment is on the order of 10 MHz,

and the highest frequency of acoustic shear wave devices can currently reach 1GHz, which is on

the same order of magnitude as the lower end of frequency range attained in our simulations.

The thickness of water in the vibrating system is 251Å and it is much larger than the penetration

lengths δ, which is found to range from 15Å to 76Å. The simulation therefore provide a good

approximation of an infinitely thick liquid, since the QCM can only sense the liquid within

a distance from its surface equal to a few times the penetration length (see the introduction

section). The penetration length is measured by computing and analyzing the vibrational

amplitude along the direction of wave propagation. In our study we will first demonstrate that

both, the QCM shear-wave model and the spring solid model, capture correctly behavior of

resonators in the limit of no-slip. We will then use the spring solid model to investigate and

provide insights into the slip behavior.
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3.4 Results

3.4.1 No-slip interface

Mechanical response of QCM with a simple loading (e.g., rigid thin film) and a no-slip boundary

condition has been studied extensively. The corresponding continuum-level theories summa-

rized in the review section have been verified by experiments. Before investigating the effect of

slip on mechanical properties of a QCM resonator, we first need to show that our MD model

of QCM reproduces the correct mechanical behavior with the no-slip boundary condition. The

non-loaded damping rate D0 is about 0.001. Separate sets of simulations are performed for

loading QCM with a rigid thin film (where we measure the resulting change ∆f in resonant

frequency) and for loading QCM with water (where we measure the change ∆D in the damping

rate). We control the rigid loading by attaching different numbers of atoms to the QCM sur-

face or by modifying the atomic mass of the attachment. The two approaches yield consistent

results. In the liquid loading test, we vary the crystal thickness to induce different resonant

frequencies. The results of tests performed for a rigid film loading and a liquid loading are

shown in Fig. 3.3(a) and (b), respectively. An excellent agreement is found between our MD

simulations and the Sauerbrey relation (Eq. 3.12) and Kanazawa model (Eq. 3.14), for the

two types of loadings, respectively. Similarly good agreement was found for the simple spring

model as shown in Fig. 3.4. In summary, both the shear-wave model and the spring model

capture correctly the behavior of resonators in the limit of no-slip boundary conditions. The

results of the simulations agree with the Sauerbrey and Kanazawa relations for dry and aqueous

conditions, respectively.

3.4.2 Static slip interface

The next step towards the development of a model with a dynamic slip is to measure the

intrinsic slip length l0 defined in Eq. 3.9. l0 does not depend on frequency and can be regarded

as the dynamic slip length in the limit of zero frequency. However, because simulations with

low frequencies are computationally too expensive, we measure l0 using Eq. 3.8, that is in the

static slip simulations in the limit of shear rate approaching zero. In our approach we use

different sliding velocities to determine the static slip lengths ls as a function of shear rate γ̇

and we estimate l0 by extrapolating ls to the limit of γ̇ → 0 using Eq. 3.7. In Fig. 3.5 (a),
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Figure 3.3: Test of QCM model with no-slip boundary condition. a) Simulation
results of rigid solid loading (squares) compared to Sauerbrey’s prediction (dashed
line see Eq. 3.12); b) Simulation results of water loading (squares) compared to
Kanazawa’s prediction (dashed line see Eq. 3.14)
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Figure 3.4: Test of spring model with no-slip boundary condition. Simulation results
of water loading (squares) compared to Kanazawa’s prediction (dashed line see
Eq. 3.14, Z =

√
cqρq)

we show the plot of ls as a function of γ̇ for the case of bond strength εint = 0.2 kcal/mol.

Data obtained from MD simulations is well approximated by the empirical relationship given in

Eq. 3.7. This relationship is used to find the intrinsic slip length l0 for different bond strengths

εint, as shown in Fig. 3.5 (b). We find that the dependence of l0 on εint is approximately

exponential for εint < 0.35 kcal/mol (solid line in Fig. 3.5 (b)). The empirical relationship

given by Barrat et al.23 (Eq. 3.6) provides a good fit to the data for εint > 0.2 kcal/mol

(dashed line in Fig. 3.5 (b)).

3.4.3 Dynamic slip interface

As pointed out in the review section, the slip length that enters existing continuum-level slip

models is treated as a single real number and no frequency dependency is considered. This

treatment implicitly assumes that intrinsic slip length can be used in the dynamic friction prob-

lem on the vibrating solid/liquid interface with small amplitude, as described in Eq. 3.15 and

Eq. 3.16. We test this assumption in our MD simulations by measuring the QCM’s mechanical

response as a function of the intrinsic slip lengths at different frequencies, and comparing to

the prediction of Eq. 3.15 and Eq. 3.16. All simulations are performed using the spring model
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Figure 3.5: Static slip length measured from simulations. a) Static slip length of
0.2 kcal/mol bond strength at different shear rates, fitted to Eq. 3.7. b) Static
slip length as a function of bond strength. Squares correspond to the estimated
intrinsic slip lengths.
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of QCM as the source of the resonance. As shown in Fig. 3.6, the theoretical predictions

for both frequency shifts and damping rate shifts (dashed lines) significantly overestimate the

corresponding quantities measured directly in MD simulations (symbols).

Our goal here is to identify the physical phenomena that underlie the observed deviations in

the dependence of frequency shift and damping rate on slip length (Fig. 3.6) and to develop

a theory that includes these phenomena. We hypothesize the following reasons for the break-

down of the existing theories when applied to high-frequency resonators: a) viscosity of water

depends on frequency; b) slip length depends on frequency; c) inertia of the liquid layer near

the interface has a non-negligible contribution to friction force. These hypotheses are tested

and discussed in the remainder of this section.

We first consider the viscosity of water and determine if the assumption that the viscosity is a

real constant number holds at high frequency. Based on continuum fluid mechanics, the liquid

viscosity is generally dependent on shear rate and vibrational frequency. Taking the frequency

dependence explicitly into account, the viscosity can be written as η(ω) = η′(ω)−iη′′(ω). For a

Newtonian liquid, η′(ω)� η′′(ω), from which it follows that the velocity profile of the damping

wave can be described as35

v(z) = v0e
−1−i
δ

z, (3.18)

where v is the shear velocity and δ is the penetration length defined in Eq. 3.10. By analyzing

the velocity profile of the water damping wave in our simulations, we found that Eq. 3.18

describes the amplitude and the phase of the damping wave very well. This finding implies

that the imaginary part of viscosity η′′(ω) can be ignored and we can calculate the viscosity

based on the measurement of the penetration length at different frequencies, using Eq. 3.10

(see the supporting information). The same equation can be used to determine viscosity as a

function of shear rate (if δ is measured as a function of γ̇). The dependence of viscosity on

both the vibrational frequency and the shear rate is shown in Fig. 3.7a. We can see that the

viscosity decreases at high frequencies and/or high shear rates and it converges to ∼ 7.3×10−7

m2/s in the low frequency (or low shear rate) limit. It is interesting to point out that our data

is consistent with the empirical Cox-Merz rule, which states that η(γ̇) ≈ |η(ω)|, if γ̇ = ω. In

summary, the water viscosity observed in our high frequency simulation can be treated as a

real number, which decreases with increasing frequency, although not very strongly (it remains

on the same order of magnitude). Because of this dependence on frequency, in our analysis we
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Figure 3.6: Comparison between existing models and MD results. Predictions from
continuum-level slip models are given by Eq. 3.15 and Eq. 3.16.

will use η(ω) as measured directly in our simulations instead of using the value estimated in

the low-frequency limit.

The second assumption that may break down at high vibrational frequencies is that the slip

length is independent of frequency. We test this assumption by calculating the ratio between

the dynamic and the intrinsic slip lengths and comparing it to 1. While the intrinsic slip length

l0 can be directly measured in simulations (see Fig. 3.5 (b)), the dynamic slip length ld cannot

be measured directly. Instead, we measure the slip velocity u0 − v0 and the velocity of the

liquid adjacent to the solid surface v0. According to Eq. 3.11, the normalized dynamic slip

length can be related to these two velocities as follows

bd =
|u0 − v0|√

2|v0|
. (3.19)

With this model, we can determine the normalized dynamic slip length indirectly by measuring

the right hand side of Eq. 3.19. The limits of applicability of Eq. 3.19 will be discussed

later. If the dynamic slip length is independent of frequency, the ratio Γd defined in Eq. 3.9

should be equal to 1. In Fig. 3.7 (b) we plot Γd measured as a function of bond strengths

for different vibrational frequencies. The ratio Γd increases with increasing frequency and

for the lowest frequency considered in our study (16.3 GHz) it is approximately equal to 1.5



37

(averaged over systems with different bond strengths). This result demonstrates that the

intrinsic slip length needs to be replaced by a frequency dependent dynamic slip length to

reproduce the correct physics in models of high-frequency resonators. Finally, we consider

the effect of the inertia of the first water layer on the solid surface on mechanical properties

of QCM. In particular, it is possible that the inertia of the first water layer can noticeably

contribute to the momentum/energy transfer at the liquid/solid interface at high frequency.

The equation of motion of the first water layer can be written as follow:

η(u0 − va) = −η∂v
∂z

∣∣∣
z=0

+ nam
∂va
∂t

, (3.20)

where m is the mass of a single water molecule, na is the surface number density of the first

layer of water, and va is the averaged velocity of first layer of water. The contribution from the

first water layer to the mechanical response of the QCM is described by the second term on the

right hand side of Eq. 3.20. This term scales linearly with both the surface number density na

and the frequency. In our static sliding system, as there is no acceleration, the second term on

the right hand side of Eq. 3.20 is rigorously equal to zero. In order to determine na, we count

the number of water molecules in the first layer, where the extent of this layer is determined

from a density profile shown in Fig. 3.7 (c). To make the units consistent with the slip length

and the penetration length, we introduce an inertia length la and a normalized inertia length,

which are, respectively, defined as

la = na/n, (3.21)

a(ω) = la/δ(ω). (3.22)

In the above equations, n is the number density of bulk water molecules and by writing a(ω)

we explicitly indicate that inertia length depends on frequency. We find from simulations

that la ∼ 4Å and that this value is not sensitive to the bond strength. Specifically, in our

simulations changing the bond strength does not affect the position of the first peak in water

density profile, but it affects the height and width of the peak (more hydrophilic surfaces have a

higher and a narrower peak). The velocity amplitude |va| of the first water layer is expected to

be smaller than the velocity amplitude |u0| of the solid and larger than the velocity amplitude

|v0| of the next water layer in the bulk liquid. As we did not observe any jump in the shear
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velocity of water, we assume va ≈ v0. Although this assumption is not as intuitive as va ≈ u0,

which means a rigid adsorption, it is applicable for a wider range of interfacial bond strengths.

For strong bonding (hydrophilic surfaces), va ≈ v0 ≈ u0, since the slip length and therefore

the slip velocity (u0 − v0) are small. However, for weaker bonding (hydrophobic surfaces),

the liquid-liquid attraction is larger than the liquid-solid attraction, making va closer to v0.

Therefore, va ≈ v0 is a good approximation for all the bond strengths. The inertia term in

Eq. 3.20 can be regarded as an additional friction force on the surface, whose contributions to

the total friction scales with a. The value of a increases with frequency. The largest a found

in our simulations is about 0.27, and it cannot be ignored in the analysis. We have modified

the relationship between the dynamic slip velocity and the slip velocity (Eq. 3.19) to include

the inertia effect of the first water layer. The new relationship has the following form (details

in supporting information)

bd =
1√

2 + 4a+ 4a2

∣∣∣u0 − v0

v0

∣∣∣. (3.23)

We will later use Eq. 3.23 to estimate the dynamic slip length in our simulations.

In summary, we found three physical phenomena that have not been included in existing models

for mechanical dissipation of resonators and that are important at high frequencies. These are:

viscosity of liquid depends on frequency, slip length depends on frequency, and inertia of the

first layer of liquid contributes to the friction force. We now propose a new model that takes

these phenomena into account. We begin by writing the equation of motion for a spring-model

of a solid vibrating along the x direction

Mω2x = Mω2
0x+ Ff , (3.24)

where Ff is the friction force (equal to the left hand side of Eq. 3.20), x is the displacement

of the solid, and M is the mass of the solid. ω0 is the resonance frequency without friction

and ω is the new frequency with friction. By solving the above equation for ω and defining

∆ω = ω − ω0, we obtain

∆ω = ω − ω0 =
Ff

2Mω0x
. (3.25)

The frequency shift ∆f and the damping rate shift ∆D can be calculated as the real and
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Figure 3.7: Effects needed to consider in a slip model. a) Frequency dependency of
water viscosity; b) Frequency dependency of slip length: ratio of dynamic length
and static slip length ; c) Water density profile near the interface
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imaginary part of ∆ω, that is

∆f =
Im(∆ω)

2π
, (3.26)

∆D =
Re(∆ω)

f0
. (3.27)

A slip boundary condition Eq. 3.20, which takes into account the inertia of the first liquid

layer, is then used to complete the set of equations for the new slip model and to make the

equations solvable. One can derive (details in supporting information) the following relations

between the mechanical response of QCM (frequency and damping shifts) and the normalized

dynamic slip length bd:

∆f

f0
= − 1

2Z

√
ρlηdω

2

1 + 2a

1 + 2bd + [(1 + 2a)2 + 1]b2d
, (3.28)

∆D

2π
=

1

2Z

√
ρlηdω

2

1 + [(1 + 2a)2 + 1]bd
1 + 2bd + [(1 + 2a)2 + 1]b2d

. (3.29)

To test applicability of the new model, in Fig. 3.8 we plot the frequency response
∣∣∣∆ff0 ∣∣∣ (or

−∆f
f0

as frequency always decreases in our case) and the damping response ∆D
2π as a function of

the normalized slip length for five different frequencies. These plots demonstrate that slip has

dramatic consequences on both frequency shift and energy dissipation in our high frequency

resonator, especially when the slip length is comparable to the penetration length of liquid.

Both the absolute value of frequency shift and the damping rate shift decrease with slip length.

In Fig. 3.8 at the same normalized slip length, the absolute values of frequency shift and

damping rate shift are generally larger when the resonant frequency is higher. Both the trends

and the quantitative data obtained in MD simulations (symbols in Fig. 3.8) are well described

by our model (dashed lines). In order to predict the frequency shift and damping rate shift

using our model, we need to know the surface density of the first water layer or the inertia

length la. A simple estimation of the surface number density na and inertia length la in Eq. 3.21

is na=n
2
3 and la=n−

1
3=3.1 Å, where n is the number density of bulk water. The exact values

of na and la depend on chemistry and structure of the interface. We found, however, that this

dependence is not strong and in our simulations, an inertia length of 3.8±0.3 Å fits well the

mechanical response of QCM (∆f
f0

and ∆D) at all frequencies and bond strengths. The reader
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Figure 3.8: Results of MD simulations (symbols) for a) frequency shift and b)
damping shift as a function of reduced slip length b0. Dashed lines repre-
sent the predictions from our analytical model described in the text.
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Figure 3.9: Dependence of the ratio between dynamic and intrinsic slip length on
frequency.

should note that in Fig. 3.8 we plotted the results against the intrinsic slip length l0, since

it is a physical quantity that is typically measured in slip experiments and often studied in

computer simulations. Our data can be easily converted to be a function of the dynamic slip

length using the scaling factor Γd, as defined in Eq. 3.9. This factor represents the ratio of the

dynamic and the static slip lengths. Γd can be either determined by measuring the dynamic slip

length using Eq. 3.23 (as was done in our simulations) or by fitting the measured mechanical

response (∆f or ∆D) to the equations of our model. We plot the values of Γd obtained using

the two methods as a function of frequency in Fig. 3.9 and we find a good agreement between

the estimates within the error bar of calculations.

As will be demonstrated below, it is useful to rewrite Eq. 3.28 and Eq. 3.29 as the ratio and

the difference of the damping shift ∆D
2π and the absolute value of frequency shift

∣∣∣∆ff0 ∣∣∣, namely,

∆D/2π

|∆f/f0|
=

1 + [(1 + 2a)2 + 1]bd
1 + 2a

, (3.30)

∆D

2π
−
∣∣∣∣∆ff0

∣∣∣∣ =
1

πZ

√
ρlηdω

2

[(1 + 2a)2 + 1]bd − 2a

1 + 2bd + [(1 + 2a)2 + 1]b2d
. (3.31)

In Fig. 3.10 (a) we plot the ratio in Fig. 3.30 as a function of bd for data calculated from
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MD simulations. Irrespectively of the frequency, all simulation data falls on the same line.

This linear dependence can be understood by considering that a is usually smaller than 1 (the

largest a in our simulation is about 0.27), which means that la < δ. With that in mind, we

can simplify the expression for the ratio between damping rate and frequency shift (Fig. 3.30)

to the 1st order of a as follows

∆D/2π

|∆f/f0|
≈ 2bd + 1− 2a. (3.32)

The above expression can be furthermore simplified to the 0th order of a and the right hand side

of Eq. 3.32 is approximately equal to 2bd + 1. This relationship is plotted as a dashed line in

Fig. 3.10 (a) and it shows a good agreement with the MD data. The one-to-one correspondence

between the normalized dynamic slip length and the ratio in Eq. 3.30 provides an easy way

of estimating the slip length from QCM measurements. This estimation is generally more

accurate when the ratio is large so that the contributions to the ratio from any source (e.g.,

interfacial inertia) other than slip can be neglected. In other words, if the normalized slip

length is too small (as compared to 1), one cannot determine its value from Eq. 3.32. For small

slip lengths, the relationship ∆D/2π
|∆f/f0| ≈ 2bd + 1 is not a good approximation. According to our

model, in this limit it is possible to obtain some qualitative information about the slip length

and more specifically one can determine if the normalized slip length bd is smaller, larger, or

comparable to the normalized inertia length a, where the latter quantity is a measure of the

width of the interface. This comparison can be accomplished by analyzing the difference ∆D
2π

and
∣∣∣∆ff0 ∣∣∣, because the sign of the expression in Eq. 3.31 is well approximated by the sign of

bd − a, that is

sign

[
∆D

2π
−
∣∣∣∣∆ff0

∣∣∣∣] = sign
{

[(1 + 2a)2 + 1]bd − 2a
}
≈ sign(bd − a), (3.33)

which means when the normalized dynamic slip length bd is smaller than the normalized inertia

length a, the frequency shift is larger than the damping rate shift and vice versa. A negative

value of the difference in Eq. 3.31 is not predicted by either the no-slip model (Kanazawa

model38) or by earlier slip models36;42–45 that ignore the inertia of the interfacial liquid. We

plot the difference in Eq. 3.31 in Eq. 3.10 (b) as a function of frequency for various bond

strengths (slip lengths). As shown by our MD data (symbols), the expression given by Eq. 3.31

can become negative in the no-slip limit or when the normalized slip length is smaller than
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normalized inertia length. This finding from simulation is again consistent with our analytical

model (Eq. 3.33) and provides a possible explanation to the origin of the negative difference in

Eq. 3.31 observed in some QCM experiments44. Additionally, from the curves in Fig. 3.10 (b)

we can see that independently of whether the difference is positive or negative, the absolute

value of this difference generally increases with increasing frequency, which is consistent with

trends observed in experiments46.

3.5 Discussion and conclusion

It is yet instructive to discuss possible limits of applicability of our model and under what

conditions this model becomes necessary and outperforms earlier low-frequency models. First

of all, although the model has been tested against simulations performed at high frequencies, it

is expected to apply also in the limit of low frequencies. It is because there is no discontinuous

change in viscosity, slip length, and interfacial inertia as a function of frequency and the

dependence of these quantities on frequency is monotonic (see Fig. 3.7). Contributions from

the three phenomena identified in this paper (viscosity and slip length dependence on frequency

and interfacial inertia) are present at low frequencies, but these contributions will be negligible

in the zero frequency limit. In fact, as shown in supporting information, in the zero frequency

limit our generalized model will be reduced to the previously developed models summarized in

Eq. 3.15 and Eq. 3.16 and therefore our model can be thought of as a generalized approach.

Frequency enters into the slip model in many different ways. First of all, penetration length that

characterizes the dimensions of the liquid wave is dependent on frequency. From Eq. 3.15 and

Eq. 3.16 one can see that it is the normalized slip length that governs the change of frequency

shift and damping shift. The smaller the normalization factor (penetration length), the bigger

the normalized slip length. Since the slip length is typically in the nm regime, models assuming

no-slip boundary condition that work very well for macroscopic systems will begin to fail with

the penetration length being reduced to the nm length scales. Taking QCM as an example, a

fundamental frequency of about 5 MHz will lead to a penetration length of about 250 nm for

water. Assuming the slip length is 10 nm, slip will cause a decrease of 7.7% in the absolute

value of the frequency shift and 0.3% in the damping rate shift, as compared to the no-slip

condition. Consequently, ignoring the slip will lead to 7.7% and 0.3% errors in frequency shift

and damping rate shift, respectively, which effect is not dramatic. However, if the operating
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Figure 3.10: Comparison between frequency shift and damping rate shift. a) The
ratio between damping rate shift and frequency shift (symbols) as a function
of the reduced dynamic slip length. (dash line is a universal linear relationship
y = 2x + 1). b) The sum of damping rate shift and frequency shift (or the
difference of their magnitudes) plotted as a function of frequency for different
interfacial bond strength εint.
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frequency of QCM is increased to 500 MHz (which corresponds to a 25 nm penetration length

for water), the same amount of slip will result in 53% and 15% errors in frequency shift and

damping rate shift, respectively. In this case, it is necessary to use a slip model to predict

mechanical behavior of QCM. As shown by our simulations on water, when the frequency is as

high as a few hundred MHz or higher, the slip length may be quite different from that measured

in the static shearing experiments or simulations. This is a somewhat surprising phenomenon

that has not been previously reported in literature. We expect this phenomenon to occur in a

broad range of liquids, since most liquids have a longer relaxation time than water. Thus our

results suggest that in typical QCM experiments with polymeric liquids, one should use the

concept of a dynamic slip length and a generalized slip model that considers frequency effects.

The identified frequency dependence of slip length also suggests that the liquid/solid friction

coefficient may need to be treated as interfacial viscosity. Mechanical analog models, similar

to those already developed for liquid viscosity, may be useful in describing solid/liquid friction

and in identifying underlying physics. In fact, simple mechanical analog models of solid/liquid

friction have been already proposed to shed light on certain experimental observations41;57.

On the other hand, molecular-level understanding of frequency dependence of slip length is

still missing and providing such understanding is beyond the scope of this paper. Another

phenomenon that enters our generalized model is the inertia of the first liquid layer. One

should be aware of the difference between this interfacial inertia and the adsorption on surface,

although both these effects lead to an increase in the magnitude of frequency shift. Adsorption

requires a much stronger interaction between the solid and the liquid molecules and if adsorption

takes place, the liquid density profile near the solid surface is expected to have a much sharper

peak than that observed in our simulations (see Fig. 3.7 (c)). Velocity of the adsorbed layer

should be equal to the velocity of the solid wall and consequently the slip can only take place

between the adsorbed liquid layer and the liquid above it. For atomically smooth surfaces,

slip between the adsorbed layer and the liquid is not likely to happen. The inertia effect from

the interfacial liquid is more general than adsorption, as it is not limited to the case of strong

interactions between liquid and solid. Our treatment on the first layer water is a simple way

to include effects from the interfacial region, where the properties of liquid, such as density

and viscosity, differ from those in the bulk liquid. This approach is more accurate than the

sharp interface condition that assumes the width of interfacial region to be zero. For water on

our atomically smooth surface, we found the interfacial layer to be about one monolayer thick,
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however this thickness may vary depending on the surface conditions. In general, the width

of the interfacial region is expected to be on the order of a few molecular diameters. Since in

currently used QCM technology, typical surfaces are not atomically smooth, it is interesting to

ask about the effects of surface roughness on solid/liquid friction. This topic is an active area

of research25;44;58–60 and many insights have been brought through MD simulations25. In most

cases, roughness was shown to reduce the slip length. Roughness have been also postulated to

be responsible for the negative value of the difference between the damping rate shift and the

magnitude of the frequency shift (Eq. 3.31) observed in in some QCM experiments46. This

negative value is not predicted by previous slip-boundary models. To explain this phenomenon,

McHale et al.44 introduced the concept of a negative slip length, which was assumed to be the

consequence of surface roughness. Our model provides a possible alternative explanation of

the experimental observation without the need to invoke a negative slip length. It is likely that

roughness affects both the slip length and the inertia length (or the width of the interfacial

region). A reduced (although still positive) slip length and an increased inertia length in our

model will result in a negative value of the difference given by Eq. 3.31 and therefore this

model may explain the experimentally observed effects of roughness. The effects of roughness

are expected to be much less important when the size of shear-wave acoustic resonators is

reduced, such as in the case of MEMS and NEMS devices.

In summary, the effects of slip boundary condition have been investigated by MD simulation.

We discovered new phenomena that emerge at high vibrational frequencies. For example,

we have shown that slip length is frequency dependent and to account for this dependence

explicitly, we introduce a concept of a dynamic slip length. We have also shown that the

interface between solid and liquid cannot be treated as sharp and that the inertia of water near

the interface contributes to friction. A generalized slip model that includes newly discovered

high-frequency phenomena is developed to connect the slip length and mechanical response of

high frequency acoustic resonators. The model shows excellent agreement with MD simulations.

A linear relationship between the ratio of measured mechanical properties and the slip length

is discovered. This relationship provides a means for determining slip length experimentally,

which had been an outstanding challenge in the field.
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4 Green-Kubo relation for liquid-solid friction

4.1 Introduction

The nature of the liquid-solid (L-S) boundary conditions have been a subject of an intense

scientific debate for over a century1–3. It is only recently that the existence of a slip at such

interfaces has been accepted4–7. The urgency of understanding slip and related phenomena

has increased further with the miniaturization of devices. In particular, in micro- and nano-

fluidics8–10 the presence or absence of slip and the magnitude of friction at the L-S interface

will have a large effect on the flow rate of the fluid. L-S slip is often characterized by a slip

length l or a friction coefficient

η̄ = η/l, (4.1)

where η is the viscosity of the liquid. Slip length is defined as the extrapolated distance where

the velocity of the liquid matches the velocity of the solid wall, as shown in Fig. 3.1. One

of the major challenges in this field is the ability to measure or predict the slip length, or

alternatively the coefficient of friction at the L-S interface. While experimental measurements

are plagued with their own limitations (see for instance Ref.11, here we focus on the challenges

associated with predicting the friction coefficient from atomistic simulations. In particular,

non-equilibrium molecular dynamics (NEMD) simulations, which can be invaluable in provid-

ing insights into relations between interfacial properties and friction12–15, are limited (with

few exceptions, see for instance Ref.16 to sliding velocities and shear rates that are orders of

magnitude higher than in typical experiments. In the case of L-S friction, such simulations

often trigger a non-linear behavior, leading to qualitative deviations from experiments. More



53

explicitly, for the viscous friction law

F = −η̄u, (4.2)

where F is the friction force per unit area, u is the slip velocity, the non-linear behavior

means that at large enough u, η̄ is not constant but it depends on u. Here, we use the linear

response theory and the Generalized Langevin Equation (GLE) to derive a new relationship for

predicting friction from equilibrium molecular dynamics (EMD) simulations. Because friction

is calculated from equilibrium properties of the system, by nature this approach overcomes

the time scale limitations of traditional NEMD techniques. Our new theory is validated by

comparing results of EMD simulations with NEMD results extrapolated to the limit of low

sliding velocities.

A pioneering attempt to predict friction for L-S interfaces from EMD simulations was reported

by Bocquet and Barrat (BB)17. It was proposed that the coefficient of friction η̄ can be

calculated from the integral of the time correlation function of the total friction force Ftot

between the solid and the liquid layer adjacent to the solid

η̄ =
1

SkT

∫ ∞
0
〈Ftot(0)Ftot(t)〉EC dt. (4.3)

In the above expression, S is the surface area, k is the Boltzmann constant, T is temperature

and 〈...〉EC denotes ensemble averages at equilibrium condition. Application of the above theory

led to two numerical issues, recognized by the authors themselves17: 1) Eq. 4.3 vanishes for

finite systems and a cut-off time in the upper limit of the integral is necessary to predict the

integral in the thermodynamic limit. 2) Predictions of Eq. 4.3 do not agree quantitatively with

the fitted parameters based on the transverse momentum density autocorrelation function. In

addition, a number of criticisms have been raised in literature, questioning whether η̄ in Eq. 4.3

corresponds to the intrinsic properties of the interface18–20. BB responded to these criticisms in

another paper21 and explained that results from simulations could be spurious if the limit of the

fluid particles going to infinity (the thermodynamic limit) and the limit of time going to infinity

are not taken in the proper order. In this debate one critical issue was ignored, which is that

friction coefficient is not a bulk property. Therefore, a large volume of the liquid is not necessary

for friction to arise at the L-S interface. For example, L-S friction is present in a nanotube22–24



54

where the number of liquid molecules is highly constrained and in such confined systems4;25 one

is not allowed to take the thermodynamic limit of the system size. Furthermore, L-S friction

is local, which means that for an inhomogeneous solid surface26, friction coefficient can be

different from one domain to another, and for a mixture of liquid27, friction coefficient can be

different from one kind of liquid particle to another. It is straightforward to see that due to its

mathematical structure, expressions like Eq. 4.3 cannot capture the potential inhomogeneity

of L-S friction.

In this paper, we first develop a formal GK relation for L-S friction that overcomes the limita-

tions of previous models and allows high efficient numerical evaluation of friction. Subsequently,

we validate our GK relation numerically by demonstrating a very good agreement between the

predictions from our GK relation for the L-S friction coefficient and the measurements from

NEMD simulations. Finally, for completeness we compare performance of the newly developed

GK relation and that proposed previously by BB.

4.2 Theoretical model

4.2.1 General strategy for the derivation of a GK relation for L-S friction

Having recognized that L-S friction is local and shall not be described by a bulk-like transport

coefficient that vanishes with finite system size, we shall construct the GK relation from the

dynamics of individual liquid particles near the solid wall. Our approach to deriving a GK

relation therefore differs from the standard one summarized by McQuarrie28, which starts

from the Fourier transform of the diffusion-like partial differential equation

∂φ

∂t
= D∇2φ, (4.4)

where φ is the field of interest and D is the corresponding transport coefficient. This difference

in the derivation strategies arises from the difference between the L-S friction coefficient and

thermal transport coefficients, such as viscosity and thermal conductivity. Due to the disconti-

nuity at the L-S interface, the L-S friction described by Eq. 4.2 does not have a form of a partial

differential equation in Eq. 4.4 that describes thermal processes at the macroscale. In fact, L-S

friction is in general a mechanical process rather than a thermal one, although sometimes it can
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be strongly coupled to thermal processes in the system24;29–31. The mechanical nature of L-S

friction makes it possible for us to construct a mechanical external Hamiltonian and apply the

linear response theory. Here, in order to directly take into account the microscopic details of

the L-S interface, we choose to apply the external perturbation to an individual liquid particle

at the L-S interface. The linear response theory then allows us to find out the expression for

η̄i, which is the friction coefficient of an individual liquid particle i near the solid interface. Fi-

nally, we can sum the contributions from all the interfacial particles to obtain the total friction

coefficient

η̄ =
1

C

∑
i

ηi, (4.5)

where C is the normalization factor. For a flat surface, C can be chosen as the unit surface

area. The specific choice of C is not as important. What is most important is that Eq. 4.5

demonstrates the additive property of L-S friction, which allows for modeling of inhomogeneous

L-S interfaces.

4.2.2 Application of linear response theory

As we will apply the linear response theory twice in our derivation of the GK relation, we shall

first briefly review the linear response technique. When a system at thermal equilibrium is

slightly perturbed by an external force f , the response of the system can be predicted from the

time correlation function of its thermal fluctuations at the equilibrium state. For any physical

observable B of interest, its thermal average at the perturbed non-equilibrium state can be

expressed as the convolution of the external force and the generalized susceptibility χAB, as

follows

∆〈B(t)〉 =

∫ ∞
−∞

χAB(t− t′)f(t′)dt′. (4.6)

Here, A is the internal variable that is conjugate to f . ∆〈B(t)〉 = 〈B(t)〉NE − 〈B〉EC, where

〈...〉NE and 〈...〉EC denote ensemble averages at non-equilibrium and equilibrium conditions,

respectively. Due to the causality, χAB is non-zero only at finite times (the application of the

external force f begins at time zero). The relation between the susceptibility χAB and the
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corresponding time correlation of δA and δB at equilibrium is as follows

χAB(t) =


− 1
kT

d
dt〈δA(0)δB(t)〉EC, t ≥ 0

0, t < 0

(4.7)

where δA = A − 〈A〉EC and δB = B − 〈B〉EC are thermal fluctuations in variables A and B,

respectively.

For the L-S interface, we choose the perturbation Hamiltonian to be ∆H = −xfeiωt, where

feiωt is the external drag force, x is the particle’s displacement along the direction parallel to the

solid wall, ω is frequency, and t is time. One can thus obtain the Fourier transformed frequency

dependent susceptibility by applying the periodic external force. Under the perturbation of

∆H, the liquid particle will respond with drift velocity, the magnitude of which is determined

by the balance between the external drag force, the friction force exerted by the solid wall, and

the friction force exerted by the surrounding liquid. We first choose A = xi and the physical

observable of interest B = ui, where ui is the drift velocity of the interfacial particle i within

a plane parallel to the solid wall. By substituting Eq. 4.7 into Eq. 4.6 and taking a Fourier

transform, one can show that ui is proportional to the velocity autocorrelation function (or the

mobility µ) determined in the equilibrium system

〈ui〉ω(t) =
feiωt

kT

∫ ∞
0
〈ui(0)ui(t)〉ECe−iωt dt, (4.8)

µi(ω) =
1

kT

∫ ∞
0
〈ui(0)ui(t)〉ECe−iωt dt. (4.9)

In the next step, we choose B to be the friction force Fi exerted by the solid wall on a single

interfacial particle i while retaining A = xi. One can then show that Fi is related to the

correlation between the particle’s velocity and the friction force experienced by the particle at

equilibrium

〈Fi〉ω(t) =
feiωt

kT

∫ ∞
0
〈ui(0)Fi(t)〉ECe−iωt dt. (4.10)

By definition, the friction coefficient η̄i is equal to the ratio between the friction force and the
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slip velocity. Using Eq. 4.8 and Eq. 4.10 we can write

η̄i(ω) ≡ −〈Fi〉ω(t)

〈ui〉ω(t)
= −

∫∞
0 〈ui(0)Fi(t)〉ECe−iωt dt∫∞
0 〈ui(0)ui(t)〉ECe−iωt dt

. (4.11)

We can now sum up the microscopic friction coefficients η̄i in Eq. 4.11 and normalize the sum

by the area S of the interface to obtain the macroscopic friction coefficient

η̄(ω) = − 1

SkTµi(ω)

∑
i

∫ ∞
0
〈ui(0)Fi(t)〉ECe−iωt dt. (4.12)

The order of the sum and the integral can be switched without affecting the results. It should

be noted here that the sum in Eq. 4.12 can be taken over all the liquid particles since the

liquid particles away from the interfacial region have no contribution to the integral due to

the short-range nature of friction force (Fi = 0). The friction force between the liquid and the

solid is either intrinsically short-range (as in the case of hydrogen or covalent bonding) or it

is screened by water (for electrostatic interactions). So far we assumed that there is only one

type of particle in the liquid. It is straightforward to generalize Eq. 4.12 to a mixture of liquids,

A,B,C, ..., based on the additive property of the friction coefficient shown in Eq. 4.5. One can

simply use the same method to evalute the friction coefficient for different types of particles

seperately and then sum them up to get η̄ = η̄A + η̄B + η̄C + .... For instance, to calculate

the friction coefficient for particles of type A, one first needs to determine mobility µA using

Eq. 4.9, plug it into Eq. 4.12 and take the summation in Eq. 4.12 over all liquid particles of

type A (
∑

i∈A).

4.2.3 Reformulation using the Generalized Langevin Equation

Equation 4.12 shows that the friction coefficient is inversely proportional to the liquid interfacial

mobility µ. However, unfortunately this equation is not particularly practical for simulations

because µ needs to be calculated for particles at the L-S interface. Liquid particles are free

to diffuse away from the interface and it turns out that the finite amount of time a particle

spends near the interface is not necessarily sufficient to obtain a well-converged estimate for

µ. In addition, the evaluation of the interfacial mobility could be sensitive to the definition

of the interfacial region. The uncertainty in the width of the interface will be transfered to

the uncertainty in η̄. Lastly, to obtain a reliable η̄, one will need to repeat the calculation
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for various interfacial widths to find a best fit or average. To avoid the above issue, we will

rewrite Eq. 4.12 using the Generalized Langevin Equation (GLE) formalism32;33. The GLE

generalizes the Brownian motion by taking into account the memory of the particle, which

means that the friction force experienced by a liquid particle depends on the history of the

particle’s motion34;35. Because we are interested in calculating the L-S friction force Fi, in

our formulation of GLE Fi is represented explicitly instead of being adsorbed into the random

force Ri and/or the memory kernel γi. Thus, the extended new GLE reads

miu̇i(t) = −
∫ t

0
γi(t− t′)ui(t′) dt′ +Ri(t) + Fi(t), (4.13)

where mi is the mass of the particle i, γi stands for the memory kernel and Ri represents the

random force. We assume the following three properties that are associated with the GLE

〈u(0)R(t)〉i = 0, t > 0, (4.14)

〈F (0)R(t)〉i = 0, t > 0, (4.15)

〈R(0)R(t)〉i = kTγi(t), t > 0. (4.16)

Because u and F are antisymmetric and symmetric, respectively, under time reversal, the

correlation between them is antisymmetric under time reversal, which leads to 〈u(0)F (t)〉i =

−〈F (0)u(t)〉i.

Now we can use the GLE to derive a relation between different time correlation functions. It is

straightforward to show that any two of the three properties of the GLE above (Eqs. 4.14-4.16)

can lead to the third one. Here, we start with the GLE (Eq. 4.13 and Eqs. 4.14 and 4.15. For

simplicity of the expression, we introduce the following abbreviation

〈AB〉(ω) ≡
∫ ∞

0
〈A(0)B(t)〉ECe−iωt dt. (4.17)

By applying 〈A...〉 with A being u,R, F, u̇ to both the left-hand-side (LHS) and the right-

hand-side (RHS) of the GLE (Eq. 4.13), we obtain the following four equations, respectively
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〈uF 〉i(ω) = [iωmi + γi(ω)]〈uu〉i(ω)− kT, (4.18)

[iωmi + γi(ω)]〈Ru〉i(ω) = 〈RR〉i(ω) + 〈RF 〉i(ω), (4.19)

〈FF 〉i(ω) = [iωmi + γi(ω)]〈Fu〉i(ω), (4.20)

mi〈u̇u̇〉i(ω) = γi(ω)〈uu̇〉i(ω) + 〈RR〉i(ω)

+〈FR〉i(ω)− iω〈uF 〉i(ω).

(4.21)

To derive the above equations, we used 〈u̇u〉i(ω) = −〈uu̇〉i(ω) = 〈u2〉i− iω〈uu〉i(ω), 〈u̇u̇〉i(ω) =

iω〈u̇u〉i(ω) and 〈u̇F 〉i(ω) = −iω〈uF 〉i(ω). With Eqs. 4.18-4.21 and 〈u(0)F (t)〉i = −〈F (0)u(t)〉i,

one can show the following

〈Fu〉i(ω) = kT − [iωmi + γi(ω)]〈uu〉i(ω), (4.22)

〈RR〉i(ω) = miγi(ω)〈u2〉i = kTγi(ω), (4.23)

〈Ru〉i(ω) = γi(ω)〈uu〉i(ω), (4.24)

〈RF 〉i(ω) = γi(ω)〈uF 〉i(ω). (4.25)

Having derived a close set of the relations between various time correlation functions, we

will briefly comment on some of them. First of all, Eq. 4.24 can be rewritten as γi(ω) =

〈Ru〉i(ω)/〈uu〉i(ω). This expression is a counterpart of Eq. 4.11, which described the friction

coefficient of particle i, where friction originates from the surrounding liquid. Equation 4.22

can be rewritten as kT/〈uu〉i(ω) = iωmi + η̄i(ω) + γi(ω), which simply means that the total

friction coefficient (LHS of the above equation) is the sum of inertia (first term on the RHS of

the above equation), the L-S friction coefficient (second term on the RHS of the above equation)
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and the liquid/liquid (L/L) friction coefficient (third term on the RHS). Typically, for the case

of slip boundary conditions, we expect |η̄i(ω)| � |γi(ω)|. Finally, one should note that Eq. 4.23

is just the Fourier transform of Eq. 4.16 and Eq. 4.23 shows that the fluctuation-dissipation

relation is the result of the lack of correlation of the random force R (Eqs. 4.14,4.15) to the

velocity and friction force.

We are now ready to derive the final expression for η̄i and η̄. As Eq. 4.18 relates the L-S

friction force-velocity correlation to the mobility of the liquid particle and Eq. 4.20 connects

the L-S friction force autocorrelation function to the L-S friction force-velocity correlation, we

can rewrite Eq. 4.11 and Eq. 4.12 as

η̄i(ω) =
〈FF 〉i(ω)

kT − 〈Fu〉i(ω)
, (4.26)

η̄(ω) =

∑
i〈FF 〉i(ω)

SkT (1− α(ω))
, (4.27)

where α(ω) ≡ 〈Fu〉i(ω)/kT . At zero frequency ω = 0, one can show from Eq. 4.22 that

η̄i(0)/γi(0) = α(0)/(1 − α(0)). For slip boundary conditions, this ratio is expected to be

very small, leading to α(0) � 1, which will be shown later to be true in our simulations.

Equation 4.27 is the new Green-Kubo (GK) relation for the macroscopic coefficient of fric-

tion coefficient that does not require calculation of the interfacial mobility and can be directly

evaluated from EMD simulations. To numerically evaluate Eq. 4.27 at ω = 0, the only pa-

rameter one needs to choose by hand is the number density n of interfacial liquid particles,

as there is no clear boundary of the L-S interface. Since n enters Eq. 4.27 only through

α(0) =
∑

i〈Fu〉i(0)/kTSn, the uncertainty in Eq. 4.27 from n will be suppressed by the fact

that α� 1 or η̄i � γi for a slip boundary condition.

η̄i and η̄ are in general complex numbers for a finite frequency ω and they become real numbers

for ω = 0. It is worth pointing out the macroscopic friction coefficient obtained in this way is

not limited to a certain geometry (e.g., the curvature of area S is not required to be zero) since it

is not calculated from macroscopic correlation defined on the area S, but from the microscopic

correlation that are not dependent on the global geometry. This property allows our method

to be applicable to curved interfaces, such as surfaces of nanotubes or even nanoparticles36.

The GLE formalism, used to derive Eq. 4.27, merits a few additional comments. First of all, the
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GLE written in the form of Eq. 4.13 has many applications. For example, it has been utilized to

explain the diffusion of impurities and defects in crystals37, the superionic conductance38 and

the fluctuations of the Josephson supercurrent through a tunneling junction39;40. Similar GLE

has also been implemented in the Brownian dynamics simulations41. The physical meaning of

the last term of Eq. 4.13, F (t) varies from case to case. It is important to note that in most

of the applications, the memory function γ(t) is approximated as a delta function γδ(t − t′),

where γ is a constant, not a function of time anymore. Such treatment of coarse graining

the memory function constitutes a compromise between a mathematical rigor and practical-

ity of the applications (which requires simple form of the memory function for computational

efficiency), because the exact form of the memory function is often difficult or impossible to

obtain. Nevertheless, in our case one does not need to know the exact form of the memory

function in order to be able to reformulate Eq. 4.11 into Eq. 4.26. Therefore, irrespectively of

the exact form the memory function, our GK relation for the coefficient of friction expressed

in Eq. 4.27 is formal and exact as long as the GLE given in Eq. 4.13 can formally describe

the motion of an interfacial liquid particle. In fact, one can formally construct Eq. 4.13 for

~F = −∇U(~r (where U is an arbitrary external potential) using the projection operator ap-

proach32;33;42. Proof of this statement is given in the Appendix B. In the derivation of the

extended GLE, we found that the memory kernel and the friction coefficient are in general two

dimensional tensors. This is not surprising, since due to the perturbation of the solid wall, the

memory and the transport coefficient of the interfacial particles could be anisotropic43–45. As

a result, Eq. 4.13 is generalized as

mi~̇ui(t) = −
∫ t

0
γi(t− t′)~ui(t′) dt′ + ~Ri(t) + ~Fi(t), (4.28)

where ~̇ui, ~ui, ~Ri and ~Fi are two dimensional vectors that lie parallel to the solid wall and γi is

the tensorial memory function with the generalized fluctuation-dissipation relation kTγi(t) =

〈~Ri(0)~Ri(t)〉. In the same spirit, Eqs. 4.14, 4.15 are generalized to 〈~ui(0)~Ri(t)〉 = 〈~Fi(0)~Ri(t)〉 =

0 at a finite time t. Consequently, the friction coefficient becomes a tensor and the reformulation

of GK relation reads

η̄i(ω) = [kTµi(ω)]−1〈~F~u〉i(ω)

= 〈~F ~F 〉i(ω)[kT I− 〈~F~u〉i(ω)]−1,

(4.29)
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Figure 4.1: Friction coefficients calculated from Eq. 4.12 (the GK relation, GK1)
and Eq. 4.27 (the reformulated GK relation by GLE, GK2) calculated
as a function of bond strength between liquid and solid atoms. σ is a
reduced unit of length, as explained in the main text. Inset: Density profile of a
hard-sphere liquid confined between two solid walls located at z = ±1.2σ.

where µi(ω) = 〈~u~u〉i(ω)/kT is the tensorial mobility. If the x and y axes parallel to the solid

wall are chosen to align with the crystallographic symmetry axes of the solid surface, then γi

and η̄i could be diagonalized. For simplicity, we will limit the discussion in the simulation

section to such a situation because we choose to adapt this particular alignment. In addition

to the formal proof in the Appendix B, the validity of the GLE equation will be further tested

against results of MD simulation in the next section.

4.3 MD simulation results and discussions

4.3.1 Simulation test of the Generalized Langevin Equation for interfacial

liquid particles

We carried out MD simulations to numerically validate our GK relation. First, in order to test

if the extended GLE with the assumption 〈F (0)R(t)〉i = 0 captures the physics of interfacial

liquid particles or not, we compare predictions of the friction coefficient from Eq. 4.12 and

Eq. 4.27. One of the challenges of using Eq. 4.12 was the calculation of local liquid mobility
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Figure 4.2: L-S frictional force autocorrelation function (FAF) and its time integral
I(t) (inset). Solid, dashed, and dotted-dashed lines (red, blue, and green colors
online) correspond to the hard-sphere, 12-bead polymer, and 100-bead polymer
liquids, respectively. Here the bond strength between liquid particles and the
solid is 0.3ε.

at the L-S interface. To overcome this challenge, we designed a simulation system, where the

liquid is confined between the two solid walls to the extent that almost the entire body of the

liquid becomes interfacial (see the inset of Fig. 4.1). The solid walls are face-centered cubic

crystals with a constant surface area of 48σ × 48σ, where σ is the unit of length in reduced

Lennard Jones (LJ) units. There are 8000 hard-sphere liquid particles confined between the

walls. Using this setup, we calculated the friction coefficient from both Eq. 4.12 and Eq. 4.27

and the results are shown in Fig. 4.1. The excellent agreement between the two ways to

calculate friction coefficient numerically justified our application of the extended GLE with the

form of Eq. 4.13.

4.3.2 Agreement between EMD and NEMD results

The next and most important examination of our proposed GK model is to see if it can predict

the friction coefficient measured in a direct way, which in our case is the NEMD method.

Explicitly, we calculate the friction coefficient η̄(ω) from the EMD simulations combined with

Eq. 4.27 and from NEMD simulations in the limit of low sliding velocities. The simulated
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system consists of a liquid confined between two solid walls. The simulation boxes for EMD

and NEMD are identical except in EMD the solid walls are stationary, while in NEMD the

walls are sliding against each other to build a shear rate in the confined liquid. To ensure that

our conclusions are general, we use both, a hard-sphere liquid and a spring-bead polymer melt

(for polymer liquid, index i in Eq. 4.27 runs over the beads). We also choose two different

lengths of the polymer liquid with the short one being 12 beads and the long one 100 beads

per particle. The number of liquid particles in each simulation is 48000, which means 4000

molecules for the 12-bead polymer melts and 480 molecules for the 100-bead polymer melts.

The solid walls are again face-centered cubic crystals with a constant surface area of 48σ×48σ.

The distance between the two walls is kept around 20σ, varying with the liquid type to keep

zero-pressure conditions. Periodic boundary conditions are applied within the plane of the

solid wall. To explore a range of slip boundaries, we choose three different bond strengths

(0.1ε, 0.3ε, 0.6ε) between the solid wall and liquid particles, where ε is the unit of energy in LJ

units. Temperature is kept at 1.1 (in LJ units) during the production run. Temperature is

controlled with the Nose-Hoover thermostat coupled only to one direction, which lies within

the plane of the solid surface and is perpendicular to the direction of sliding. The time step is

set to be 0.002τ , where τ = (mσ2/ε)1/2 and m is mass of the liquid particle in LJ units. For

EMD simulation, the production simulation is 5000 time steps long (10τ) while the production

simulation of NEMD simulation is as long as 106 time steps (2000τ).

It is found in simulations that α in Eq. 4.27 is generally small compared to 1, which, as discussed

earlier, is expected in the case of slip boundary conditions. As a result, the autocorrelation of

the L-S friction force (
∑

i〈F (0)F (t)〉i) is the dominant contribution to the friction coefficient

η̄. In Fig. 4.2, we show the behavior of this force autocorrelation function (FAF) and its

time integral (I(t) = 1
S

∫ t
0

∑
i〈Fi(0)Fi(t

′)〉EC dt′) as a function of time. The latter is important

for the evaluation of friction coefficient at zero frequency limit, which is of most interest and

can be compared directly to our NEMD results. For both, hard-sphere and polymeric liquids

the FAF decays dramatically at short time scales and exhibits a hydrodynamic tail at longer

time scales. The short time decay largely determines the growth of the time integral I(t)

and the hydrodynamic long tail barely contributes to the friction coefficient. One important

consequence of this fast decay of FAF and the corresponding fast convergence of its time integral

is that calculations of the L-S friction coefficient in EMD are two orders of magnitude faster

than the NEMD calculations of the friction coefficient at a single value of the sliding velocity
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Figure 4.3: Comparison between friction coefficients at zero frequency calculated
from EMD (filled symbols) and NEMD (open symbols) simulations as
a function of the bond strength between the liquid particles and solid
atoms. Circles, triangles, and squared (red, blue, and green colors online) in
the main figure correspond to the hard-sphere, 12-bead, and 100-bead liquids,
respectively. Data in the inset is calculated for interfacial bond strength of 0.6ε
for 12-bead polymer melts. The dashed horizontal line in the inset corresponds
to the friction coefficient calculated from EMD simulations.

(simulations with multiple values of sliding velocities are needed to determine the low-velocity

limit). In general, the convergence of I(t) slows down as the molecular weight of the polymeric

liquid increases.

In Fig. 6.7, a comparison is made between the results from EMD and NEMD simulations.

Excellent agreement is found between the friction coefficient predicted by our GK relation

from EMD results and the friction coefficient calculated from NEMD in the limit of low sliding

velocities (shear rates). Convergence of the NEMD simulations to the low velocity limit is

illustrated in the inset of the figure. The agreement between EMD and NEMD results is found

for all types of liquids considered in our study and for a range of interfacial bond strengths,

which indicates that our relationship is universal. We did not show the error bars of the EMD

results in Fig. 6.7 as they are smaller than the symbol size. The high efficiency and accuracy

of the EMD method based on our GK relation enables a comprehensive exploration of the

fundamentals of L-S friction, such as the dependence of the friction coefficient on pressure,

wettability, surface morphology46, liquid confinement4;25, etc. Here, as an example, we only
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briefly discuss the dependence of the friction coefficient on the bond strength between liquid

and solid molecules/atoms and on the properties of the liquid. From Fig. 6.7 we can see that η̄

increases roughly exponentially with the bond strength for a relatively wide range of liquids we

tested. For all types of liquid we found that η̄ in general increases nonlinearly with the length

of the polymer chain that the liquid is made of. Interestingly, for the 12-bead and 100-bead

polymer melts, the difference in η̄ is very small. This trend is in consistent with the finding in

Ref.13 that beyond chain lengths of about 10 beads, the molecular weight dependence of the

slip length l is dominated by the bulk viscosity η (see Eq. 4.1 for the relation between η̄, l and

η).

Once the friction coefficient η̄ is known, one can use it to calculate the lateral (i.e., in the plane

of the solid wall) mobility µ of the interfacial liquid using Eq. 4.12. We found in our hard-sphere

simulation that the µ/µ0 values for L-S bond strengths of 0.1ε, 0.3ε, 0.6ε are 1.72, 1.38 and

0.86, respectively, where µ0 stands for the bulk liquid mobility, which is calculated using Eq. 4.9

in a simulation system consisting of liquid only. The observed trend of decreasing interfacial

mobility with increasing L-S bond strength is not surprising, but the ability to evaluate this

interfacial property can be valuable to a number of other studies, such as those focused on

understanding the fundamental nature of hydrophobic interactions47–49.

4.3.3 Frequency dependent L-S friction coefficient

For any GK relation, one shall be able to get the dynamic transport coefficient from the Fourier

transform of the corresponding memory function. Here we demonstrate that our new GK re-

lation provides access to information about dynamic properties of the L-S friction. Knowing

the frequency dependent friction coefficient and mobility is of particular importance in high

frequency resonators, such as those based on quartz crystal microbalance50;51. It is because

at high frequencies transport coefficients can significantly deviate from their static (zero fre-

quency) values52. From Eq. 4.27 one can extract the frequency dependent friction coefficient

by Fourier transforming the time correlation of the friction force. This coefficient connects the

frequency dependent L-S friction and the slip velocity, explicitly, F (ω) = −η̄(ω)u(ω). At finite

frequency, η̄(ω) is in general a complex number, meaning that there exists a phase difference

between the friction and slip velocity. Figure 4.4 shows the details of the frequency dependence

of the complex friction coefficient η̄(ω). While the real part (solid lines) decreases monotoni-
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Figure 4.4: Complex friction coefficient η̄(ω) normalized by the zero-frequency
value η̄(0) as a function of frequency. Solid and dashed lines correspond
to the real (r) and imaginary (i) parts of the friction coefficients. Red, blue and
green colors represent hard-sphere, 12-bead, and 100-bead liquids, respectively.

cally, two peaks are found in the imaginary part (dashed lines). These peaks correspond to the

relaxation times of the two regimes of exponential decays visible in Fig. 4.2 (the first regime

extends in time from 0.01τ to 0.1τ and the second regime from 0.1τ to 1τ). In Fig. 4.4, the left

peak, which corresponds to the slower structural relaxation, is much higher in the polymeric

liquid than in the hard-sphere simple liquid. The positions of peaks in the η̄(ω) plot (Fig. 4.4)

depend on the properties of the liquid and these peaks could be used to design sensors based on

high-frequency resonators for characterization of soft matter (especially thin films with large

slip lengths).

4.3.4 Comparison to the earlier GK relation

Lastly, it is instructive to compare the numerical performance of our model to the one reported

earlier by BB in Refs17;21 and to discuss the differences and similarities between the models. In

Fig. 4.5 we plot the behavior of the time integral of two friction force autocorrelation functions

(FAFs). In Fig. 4.5(a) we plot I1(t) = 1
SkT (1−α(0))

∫ t
0

∑
i〈Fi(0)Fi(t

′)〉EC dt′, which is a time

integral derived in our model to predict the coefficient of friction from EMD. In Fig. 4.5(b)

we show I2(t) = 1
SkT

∫ t
0 〈Ftot(0)Ftot(t

′)〉EC dt′, which is the equivalent time integral proposed in
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Ref.17;21. The results are compared to coefficients of friction predicted in NEMD simulations

in the limit of low sliding velocities (red dashed lines). One can see that predictions from

EMD calculations based on our Green-Kubo relation fall within the range of error bars (grey

area) of NEMD calculations. In contrast, the EMD results in Fig. 4.5(b), although on the

same order of magnitude, do not agree with the NEMD results very well. In addition, we

see that the disagreement becomes worse as the size of the sampling interface increases (i.e.,

the decay of the integral of the correlation function decays faster). This is the opposite trend

than expected given the fact that as the system size approaches the thermodynamic limit

(i.e., the the sampling size is increased), the time integral that defines the transport coefficient

should decay slower53–55. We shall also point out that our GK relation allows a high numerical

efficiency. Despite the fact that our simulations based on Eq. 4.27 are one order of magnitude

shorter than those based on BB theory and Eq. 4.3, the former approach provides a much

smoother well-converged curve than the latter approach does. Specifically, data in Fig. 4.5(a)

is obtained in 5,000 time steps, while it takes 50,000 time steps to obtain data in Fig. 4.5(b).

Although it is not the goal of our paper, one can speculate on the possible sources of the

discrepancies between the BB model and the results of NEMD simulations. We find that there

is a number of assumptions in the derivations of BB model that need to be further justified:

(i) In the first derivation in the main text of Ref.17, an external perturbation Hamiltonian

defined with a shear rate and a reference position z0 was constructed in order to apply the

linear response theory and to calculate friction/slip length. As the slip length is constrained

by the quantity zwall−z0, where zwall is the position of the solid wall, such a choice of external

perturbation could have overspecified the problem. (ii) In the second derivation in the appendix

of Ref.17, contributions from higher (more than 2) order terms of k in the normal direction

to the solid wall are ignored, where k is the wave vector. This truncation of higher order

terms relies on the assumption that any spatial inhomogeneities are smoothly varying in the

hydrodynamic (long time-scale) limit. However, due to the presence of the solid wall, properties

of the liquid (e.g., the liquid density and viscosity) can be have pronounced inhomogeneities

at the nanometer length scales along the direction normal to the wall surface. Higher order

terms with respect to k may be needed to capture such small inhomogeneities. Therefore the

approximation of using only second-order terms in the expansion with respect to k needs to

be carefully justified. (iii) In the third derivation of the BB formalism in Ref.21, a Brownian

model is utilized to describe the motion of the solid wall. The coefficient of friction between
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Figure 4.5: Convergence of the time integral of friction force time correlation func-
tion (a) proposed in this work and (b) defined in Refs.17;21. In Fig. (b),
the total friction force is calculated on samples with surface areas of 12σ × 12σ
(blue), 24σ× 24σ (green), and 48σ× 48σ (black). The red dashed line represents
NEMD prediction in the limit of low velocities. The height of the grey domain
corresponds to the size of the error bar. Simulations were performed for a 12-bead
polymer melt liqud with the bond strength between the liquid and the solid being
0.6ε.
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the wall and the liquid is assumed to be equal to the integral of time correlation of the total

force experienced by the solid. From the fluctuation-dissipation theorem, one can see that

such a relation is only an approximation of the formal one between the friction constant and

the random force (see the force correlation section of Ref.56). Further test is needed for the

assumed approximation when replacing the random force autocorrelation function with the one

of the total force.

4.4 Concluding remarks

In conclusion, we have developed a general GK relation for liquid-solid friction and verified

its validity by numerical simulations based on the molecular dynamics technique. This new

relation provides access to dynamic properties of the L-S friction and allows overcoming the

challenge of limited time scales typical for NEMD simulations. We show that in the limit of

low shear-rates, the coefficient of friction is not infinite (corresponding to no-slip boundary

conditions), but instead it has a finite value. Consequently, the coefficient of friction is an

intrinsic property of the system. Friction coefficient was also shown to be a tensor, which

implies that in general it can be anisotropic. In addition, the friction coefficient has additive

properties, which means it can be calculated locally. Finally, because calculations with the new

method are significantly faster (2 to 3 orders of magnitude) than traditional NEMD simulations,

our GK relation opens up a new opportunity for computational exploration of L-S friction at

molecular level and for rational design of L-S interfaces optimized for their slip and friction.
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5 Effect of interfaces on the nearby Brownian

motion

5.1 Introduction

Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a

variety of fields, from biophysics to micro-/nanofluidics. However, due to challenges in experi-

mental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion

has remained elusive. Here, we discover this effect thanks to µs-long large-scale molecular

dynamics (MD) simulations and our newly developed Green-Kubo relation for friction at the

liquid-solid interface. Our computer experiment unambiguously reveals that the t−3/2 long-

time decay of the velocity autocorrelation function (VAF) of a Brownian particle in bulk liquid

is replaced by a t−5/2 decay near a boundary. We discover a general breakdown of tradi-

tional no-slip boundary condition at short time scales and we show that this breakdown has a

profound impact on the near-boundary Brownian motion. Our results demonstrate the poten-

tial of Brownian-particle based micro-/nano-sonar to probe the local wettability of liquid-solid

interfaces.

It is now well known that the VAF of a Brownian particle in a bulk liquid does not decay

exponentially as predicted by the Einstein-Ornstein-Uhlenbeck theory1;2, but instead it follows

a t−3/2 algebraic decay at the hydrodynamic long-time limit3. Such a t−3/2 long-time tail, first

discovered for neat liquid in the seminal computer experiment by Alder and Wainwright4, has

been recently observed experimentally for single Brownian particle trapped in optical tweezers

experiments5–8. When the optical trap is stiff enough, the power spectral density (PSD) of

the particle’s position exhibits a hydrodynamic resonance6. The slow VAF decay in time and

concomitant resonance in PSD are related to each other by Fourier transform and are both

the result of the hydrodynamics coupling between the Brownian particle and bulk liquid. This
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coupling is mediated by the vorticity generated by the particle. When the Brownian particle

moves toward a boundary and when the particle-generated vortex reaches the boundary (see

Fig. 5.1a), it is clear that the hydrodynamic coupling must change, but the question is how.

Since Lorentz9, theorists have attempted to answer this question from hydrodynamic and

lattice-Boltzmann calculations10–12. However, consensus has not been reached so far even for

the simplest case in which a spherical particle is immersed in Newtonian liquid bounded by a

flat surface with no-slip boundary condition (the slip length Ls defined in Fig. 5.1b vanishes).

For instance, Berg-Sørensen and Flyvbjerg developed models for PSD, which when Fourier

transformed predict a persistent t−3/2 long-time tail in VAF near a boundary. This is the

same functional form as in a bulk liquid, but with a reduced amplitude11. On the other hand,

Felderhof derived a model that exhibits an algebraic decay of t−5/2 (see Fig. 5.1c) for the

same case of a near-boundary particle12. Comparisons of these predictions to experimental

measurements have only been made in recent years. For instance, Jeney et al13 measured the

VAF of a near-boundary Brownian particle trapped with optical tweezers and reported a t−5/2

long-time tail. However, a later optical tweezers experiment by Jannasch et al14 observed a

reduced magnitude of PSD in the low-frequency (long-time tail) limit and a suppression of a

hydrodynamic resonance near a boundary (see Fig. 5.1d), which phenomenon was explained

using Flyvbjerg’s model with the t−3/2 long-time decay of VAF. While contradicting each other,

both experiments suffer from large statistical uncertainties in the long-time or low-frequency

limit. Therefore so far, experimental findings on the asymptotic behavior of near-boundary

Brownian particle have been inconclusive.

MD simulations provide a powerful tool for addressing the above questions, because they do

not require a priori assumptions about molecular phenomena at the liquid-solid interface3;15;16.

However, typical MD simulations of dynamic phenomena suffer from the limitations of acces-

sible time scales. Here, we overcome this challenge by using µs-long large-scale MD simulation

and our recently developed Green-Kubo (GK) relation for liquid-solid friction17. Thanks to

this new technique, our simulations are able to measure the boundary condition at the zero

shear-rate limit, consistent with the regime explored in the optical tweezers experiments. We

study the Brownian motion of a near-boundary nano-particle immersed in approximately half

a million solvent molecules. The use of such a large simulation system ensures that finite-size

effects (e.g., the effect of the acoustic wave traveling through the entire simulation domain
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Figure 5.1: Schematic representation of near-boundary Brownian motion and the
mysteries. a, The presence of the boundary affects the diffusivity of the Brown-
ian particle and its hydrodynamic coupling to the solvent. This effect is expected
to be surface-specific and understanding it is useful for advanced sensing appli-
cations. b, Slip length Ls defined to characterize the boundary condition of a
partially wetted surface. c, Log-log representation of the long-time tails. Accord-
ing to different theories, the t−3/2 long-time tail in bulk liquid (solid red) could
be persistent but suppressed (dashed blue) near a boundary, or transition into
a t−5/2 decay (dotted green). d, The resonance peak due to the particle-solvent
hydrodynamic coupling in bulk liquid is found to be suppressed as the particle
approaches a boundary.



78

within the time of the measurement) can be excluded. Unlike the optical tweezers experi-

ments that trap the Brownian particle in all three dimensions, we only constrain the particle

in the direction perpendicular to the surface by applying a harmonic potential. Therefore the

particle performs free Brownian motion parallel to the surface and its long-time tail in the

lateral directions will not be truncated nor affected by parallel constraints, as it can happen

in experiment13. By assigning strong interaction between solvent and solid atoms, we create a

fully wetted surface that exhibits no slip in the long-time limit, which is consistent with typical

experimental situations.

5.2 Simulation method

We construct a liquid box (see Fig. 5.2) with dimensions of 64σ×64σ×128σ confined between

two identical solid walls, where σ is the unit of length in reduced Lennard Jones (LJ) units. Two-

dimensional periodic boundary conditions are applied in the plane parallel to the interface. One

spherical Brownian particle is immersed in the fluid near each interface and it is constrained by

external harmonic potential along the direction normal to the interface. The average distance

between the nano-particle and the solid wall is kept at 5σ. The nano-particles interact with

the solvent with a shifted LJ potential:

φ(r) = 4ε

[(
σ

r − a

)12

−
(

σ

r − a

)6]
, (5.1)

where a is the shifted distance of the potential, which defines the size of the nano-particle.

We choose a = 2σ in our system which yields a hydrodynamic radius of R = 3σ suggested

by literature18. The solvent-interface interaction and solvent-solvent interaction employ the

same potential but with a = 0. The interaction strength is set to 1ε for solute-solvent and

solvent-solvent interactions. For no-slip boundary condition, we choose the liquid-solid inter-

action strength to be 0.8ε. A smaller value of 0.2ε is used for slip boundary condition. Since

confinement effects may be more severe in the presence of large slip length, to avoid any such

effects we use a box of size 48σ× 48σ× 200σ for the study of poorly wetted surfaces. A liquid

cube with three-dimensional PBC is also built to study the unbounded Brownian motion as a

reference. There are around 4×105 solvent particles in the bounded system and around 2×105

in the unbounded system.
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Figure 5.2: Simulation box. Half of the box is shown here. Red: solid wall atoms. Cyan:
solvent particles. Brown: nano-particle.

In order to have sufficient statistics in estimating long-time tails, we choose solvent density

of 0.693, which has a low shear viscosity of 1.1 in reduced units. The time step is set to be

0.005τ , where τ = (mσ2/ε)1/2 and m is the mass of the liquid particle in LJ units. To obtain a

good signal/noise ratio, 5000 independent simulations with different starting configurations are

carried out to obtain each near-boundary VAF curve. Each independent simulation consists of

105 timesteps in the production stage. A cumulative 5× 108 timesteps corresponds to a total

sampling time of 2.5 × 106τ in reduced units or around 5µs in real units for each VAF. Error

bars are calculated as a standard deviation from an average over 5000 independent simulations.

During the relaxation before data production, temperature is kept at 1.1 (in LJ units) and it

is controlled with the Nose-Hoover thermostat. The thermostat is removed in the production

stage. MD simulations are carried out using the LAMMPS software package19.
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5.3 Results

5.3.1 Effect of interface on diffusivity

Before studying the VAF of the Brownian motion, we first demonstrate that the hydrodynamic

theories can quantitatively predict the diffusion coefficient for a motion of a nano-particle in

our simulations. Although the functional form of the near-boundary VAF of Brownian motion

remains controversial, it is generally agreed that near a fully wetted solid surface (which yields

a no-slip boundary condition), the diffusion of a Brownian particle is slower than in bulk. Such

boundary confinement was first demonstrated by Lorentz9, who predicted a reduced diffusion

constant Dw = Db(1 − 9R
16h), where R is the hydrodynamic radius of the particle18 and h is

the distance between the center of the particle and the solid wall. In this equation, Db = kT
cπηR

is the Einstein-Stokes relation1 for Brownian diffusion constant in bulk liquid, with kT being

the thermal energy and η the viscosity of liquid. The constant c is equal to 4 when there is

no friction between the nano-particle and the surrounding solvent3;18 (as is the case in our

simulations). In our simulations, we use mean-square-displacement (MSD) to calculate the

diffusion coefficient of a nano-particle that is 125 times heavier than solvent and with R = 3σ,

where σ is the reduced unit of distance employed in simulation and corresponds to a few

angstroms in real units. To ensure that we truly test the effect of boundary confinement, we

constrain our nano-particle’s motion very close to the wall with h = 5σ. Diffusion coefficients

(which are time integrals of VAF) calculated both in bulk and near a liquid-solid interface are

shown in the inset of Fig. 5.3 and they are compared to the predictions of Lorentz and Eintstein-

Stokes theories, respectively. In general, a good agreement is reached between simulations and

theory, which demonstrates that our simulations of near-boundary motion capture correctly

the physics that is already well established.
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Figure 5.3: Diffusion constant and VAF of Brownian particle. Log-log plot of the
VAFs (normalized by its value at time zero) of a nano-particle in bulk liquid
(circles) and near a static no-slip boundary (squares). Solid black lines labeled
t−3/2 and t−5/2 are added to guide the eye. In the inset the diffusion coefficients
of the nano-particle in bulk and near boundary are compared to their theoretical
predications at Brownian limit. τp is a characteristic time scale equal to mp/γ,
where mp is the mass of the particle and γ is the Stokes friction coefficient. τf
and τw are defined in the main text. Data points represent averages over 2000
independent simulations for bulk VAF and 5000 for near-boundary VAF. The
error bars are obtained as a standard deviation from these averages and are not
shown for VAF at short time scale as they are smaller than the symbol sizes.

5.3.2 Effect of interface on velocity autocorrelation function

We now focus on the highly debated VAF of the nano-particle, since this function encodes

the full dynamic information about the Brownian motion. We first discuss the results in bulk

liquid, shown with red circles in Fig. 5.3. After time τf = R2ρ/η = 5.7 (where τf is the time

scale of developing a vortex comparable to the size of the particle and ρ is the liquid density)

the VAF decays according to the functional form Abt
−3/2 and it is the long-time tail behavior.

According to theory20, the amplitude Ab of the bulk t−3/2 long-time tail depends only on the

shear viscosity of the liquid

Ab =
kTρ1/2

12(πη)3/2
. (5.2)
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By fitting the long-time tail measured in our simulations and using Eq. 5.2, we find the liquid

shear viscosity of 1.0. This value is in a good agreement with η = 1.1 measured directly from

simulations using the following GK relation21

η =
V

kT

∫ ∞
0
〈Pxy(t)Pxy(0)〉dt, (5.3)

where V is the volume of bulk liquid and Pxy represents off-diagonal (shear) components of

the stress tensor.

When the nano-particle approaches a boundary, the VAF starts to deviate strongly from the

bulk VAF after τw = h2ρ/η = 15.8, which is the time when particle-induced vorticity reaches

the interface. As shown in Fig 5.3, in the long-time limit, the VAF of the near-boundary

nano-particle exhibits a t−5/2 behavior, instead of the t−3/2 behavior observed in the bulk.

Our finding conclusively demonstrates a transition from the bulk t−3/2 long-time tail (red solid

line in Fig. 5.1c) to a t−5/2 one (green dotted line in Fig. 5.1c) near a boundary and excludes

the possibility of a persistent but reduced t−3/2 long-time tail (blue dashed line in Fig. 5.1c),

previously proposed in literature11.

In order for the VAF to serve as a local probe of the nano-particle’s environment6, it is impor-

tant to understand not only the qualitative trend in VAF, but also the impact of the environ-

ment on VAF’s amplitude. The amplitude Aw of the t−5/2 long-time tail near a boundary has

been recently derived by Felderhof using hydrodynamic theories12

Aw = CkT
R2

η

(
ρ

4πη

)3/2

, (5.4)

where C = h2/R2− 5/9 + 2ρp/9ρ+ (1− ρp/ρ)R/8h with ρp being the density of the Brownian

particle. Unlike Ab, which depends only on the liquid properties, Aw is also dependent on the

density ρp of the particle. To test the predictive power of Eq. 5.4, we keep the size of our nano-

particle constant and we increase its mass from 125 to 375 in reduced units (corresponding to

solute-to-solvent density ratios of 1.6 − 4.8). In Fig. 5.4, we plot the VAFs of the Brownian

particles with varying masses and in the inset we compare the amplitudes of the t−5/2 long-

time tails to the theoretical predictions. While a reasonably good match between simulation

and theory is achieved for the most massive particle, a remarkable deviation is found for

the lightest particle. Specifically, the numerical result in the case of small nano-particle is
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significantly suppressed compared to the theoretical value. Such discrepancy suggests that the

time scale separation between the solute and solvent dynamics may not be sufficient for the

lightest particle.
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Figure 5.4: VAFs of nano-particles with varying masses. Log-log plot of the VAFs
(normalized by its value at time zero) of nano-particles (R = 3σ) with different
masses near a static no-slip boundary. Solid black lines are added to guide the
eye for the t−5/2 asymptotic behavior (see Appendix C for the quality of fittings).
The inset shows the ratio of amplitudes of the t−5/2 long-time tail measured in
simulations (Asim

w ) and predicted by theory (Ath
w ). Data points represent averages

over 5000 independent simulations and error bars are obtained as a standard
deviation from these averages.

5.3.3 Relaxation of boundary condition

An extreme separation of time scales between the fast relaxation of solvent transport coefficients

and the slow Brownian motion of a nano-particle is a major assumption of hydrodynamic

theories of simple viscous liquids (such as the theory underlying Eq. 5.4). We will test if this

assumption holds for the case of the lightest nano-particle, for which the hydrodynamic theory

was shown to break down (Fig. 5.4). First we calculate the relaxation of the fluid viscosity η

using Eq. 5.3 in the absence of an interface. Specifically, the relaxation of η is characterized

by the stress autocorrelation function (SAF). As shown in Fig. 5.5, the relaxation of SAF
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Figure 5.5: Correlation functions. he normalized correlation functions that characterize
the memories of different transport coefficients: the VAF for diffusion (squares),
the SAF (stress autocorrelation function) for viscosity (down triangles), the FAF
(force autocorrelation function) for liquid-solid friction coefficient on atomically
smooth surface (circles) and on rough surface (squares). Calculations are shown
for mp = 125.

is significantly faster than the velocity relaxation of the lightest nano-particle at short time

scale. Fitted to simple exponential decays, the solute relaxation time τ1 ≈ 1.7 is indeed well

separated from the viscosity relaxation time τ2 ≈ 0.07. This separation of τ1 and τ2 explains

why simulation results agree well with theory for the Brownian motion of this nano-particle

in bulk liquid (see Fig. 5.3). On the other hand, it suggests that there is some other physics

that is responsible for the discrepancy observed near a boundary and reported in Fig. 5.4. One

possibility is the relaxation of the boundary, which means that the boundary condition may

be time-dependent. Although existence of such dynamic boundary has been hypothesized in

literature22–24, it has never been demonstrated before due to the challenges in calculating it

theoretically and in measuring it experimentally. Consequently, a static boundary is assumed

in most hydrodynamic theories.

Here, we can test the hypothesis of boundary relaxation directly by calculating the friction

coefficient η̄ at the liquid-solid interface. To do that, we use our recently developed GK
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relation, which reads17

η̄ =
1

SkT (1− α)

∫ ∞
0

∑
i

〈F (t)F (0)〉idt. (5.5)

where F is the friction force on the solvent particle i exerted by the solid surface, α is the

ensemble-averaged ratio between F and the total force experienced by interfacial solvent par-

ticles, and the sum is taken over all solvent molecules above surface area S. Similarly to the

viscosity, the boundary relaxation can be characterized by the friction force autocorrelation

function (FAF) in Eq. 5.5. As shown in Fig. 5.5, the FAF initially follows the same relaxation

trend as the SAF, but then it transitions to a slower exponential decay with a relaxation time

τ3 ≈ 0.25. The slow decay corresponds to a collective relaxation of structure of the first liquid

layer near the surface. This result means that the onset of boundary conditions is not instan-

taneous, but instead it takes time to develop. More specifically, even in the case of atomically

smooth and fully wetted liquid-solid interfaces with high friction at long time scales (a so-

called static no-slip boundary), there can be a reduced friction and some slip present at shorter

time scales. Consequently, a Brownian particle can experience a transition from partial-slip to

no-slip boundary condition, which means that slip and the boundary condition are inherently

dynamic properties. Such a dynamic picture of boundary condition is consistent with earlier

observations of the dependence of slip length on shear rate15;22;25 and frequency17;26.

The presence of reduced friction (or partial slip) at short time scales means that the liquid-solid

coupling is weaker and in this regime the VAF of a Brownian particle decays slower (i.e., has

a higher amplitude) than expected for static no-slip boundary conditions. Since the calculated

zero-frequency diffusion constant (equal to the time integral of VAF) is the same as theoretically

predicted for static no-slip boundary (see the inset in Fig. 5.3), the amplitude of long-time VAF

has to be reduced to compensate for the short-time increase of the amplitude. Note that the

contribution of the long-time tail to the diffusivity is relatively small compared to the short-

time VAF, and therefore a strong reduction at long-time scale is needed to compensate for the

change in the short-time scale due to the boundary relaxation. In Ref.24, by assuming a simple

Debye relaxation of the boundary condition, Felderhof found that boundary relaxation at 0.1 µs

can have a strong effect on the near-boundary VAF over the time scale of 10 µs. A large delay

in the manifestation of a short-time boundary relaxation is also observed in our simulations.

The suppression of VAF amplitude in the long-time regime (which we have shown to be due
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to the dynamic nature of boundary conditions) is consistent with the idea that hydrodynamic

resonance shown in Fig. 5.1d would be suppressed near an interface. Specifically, as shown

in Ref.27 PSD and VAF are related to each other via Fourier transform and the smaller the

magnitude of VAF, the smaller the amplitude of the resonance. Since the magnitude of VAF

is smaller near a boundary than in the bulk (see Fig. 5.3), it follows that the resonance will

be suppressed for a particle near a boundary. This resonance suppression has been previously

observed in experiments by Jannasch et al14 and it was attributed as a reduction of VAF

amplitude with t−3/2. Future work is needed to include a dynamic boundary discovered in our

study in hydrodynamic theories to determine if experiments of Jannasch et al agree with the

t−5/2 decay with reduced amplitude predicted by our study. On the other hand, our findings of

the t−5/2 decay in the long-time regime of VAF are consistent with optical tweezers experiments

of Jeney et al13.

When considering relaxation of boundary conditions for engineering surfaces one should take

into account surface roughness, topology and even the possibility of forming air bubbles24. To

shed light on this important issue, we introduce roughness by constructing a patterned surface

with the pattern width of 8σ and height of 1σ and we investigate how this roughness impacts

boundary relaxation. Surprisingly we find that although the roughness is very small in our

simulations, it has a dramatic effect on relaxation time. As shown in Fig. 5.5, the boundary

(FAF) relaxation time on a rough surface is much slower (τ4 ≈ 2.0) than on a smooth surface

(τ3 ≈ 0.25). Since roughness of typical engineering surfaces can be often much higher than the

one considered here, such roughness is expected to strongly affect nearby Brownian particles

even with micrometer sizes. This sensitivity could be used as a potential probe of the local

properties of liquid-solid interfaces, such as wettability and and slip length (see Appendix C).

5.4 Further discussion and conclusion

Here we briefly discuss the Lorentz approximation or point approximation. It is worth not-

ing that Lorentz’s calculation is based on the assumption of a = R/h � 1, where R is the

hydrodynamic radius of the particle and h is the distance between the particle and the solid

surface. Such calculation only deals with the first order perturbation from a on the diffusion

constant. A more general theory taking into account higher order terms has been developed

later by Faxén28 who found that the near-boundary diffusion constant can be written as:
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Dw = Db(1− 9/16a+ 1/8a3− 45/256a4− 1/16a5 + . . .). Interestingly, there is no second order

term in this equation and the third and fourth order terms have opposite signs, which means

it is possible for them to cancel each other. Indeed, we found that in our case (where a = 0.6)

Faxén’s exact solution with up to the fifth order term in a gives a result within 0.1% of the

Lorentz’s approximation. Therefore the good agreement between our simulations and Lorentz’

theoretical prediction shown in Fig. 2 also holds for comparison with the more exact Faxén’s

theory.

Regarding the VAF of the Brownian particle, present theories including the one developed by

Felderhof have not yet taken into account the higher order terms in a. Within the first order

approximation, different theories predicted qualitatively different asymptotic behaviors (t−3/2

vs t−5/2 long-time tail near a boundary). For example, in the theory of Felderhof12, the leading

term of the VAF is Awt−5/2 with the coefficient Aw being a function of a. Including higher

order terms in a will not change the order in the leading term of time (the power of the long-

time tail), but it could modify the coefficient Aw (the amplitude of the tail). Nevertheless, it

is possible that the contribution from higher order terms of a is small, as a similar cancellation

could happen as in the case of diffusion constant. Our simulation result for the heaviest nano-

particle also suggests that the Lorentz approximation (with only first order term in a) works

reasonably well in predicting the VAF of Brownian motion close to the boundary.

So far our analysis have been restricted to the case of static no-slip boundaries. Here we show

the effect of a partially-wetted surface on the nearby Brownian motion. Since partially-wetted

surface exhibits slip at long-time scales when the interfacial solvents are fully relaxed, we refer

to it as a static slip boundary condition. We simulate such a boundary condition by using

weak liquid-solid interaction strength ε=0.2, which corresponds to a finite slip length Ls of

23σ. The VAF of a nano-particle near such a partially-wetted surface is shown in Fig. S2

and it is compared to the ones near wetted surface and in bulk. We find that although for

partially-wetted surface the long-time tail of VAF still follows t−5/2, the amplitude of VAF

increases as compared to no-slip boundary conditions. In the limit of perfect slip (Ls → ∞),

some theories10 predicted a t−3/2 long-time tail. Our results suggest that there could be a

transition from the t−5/2 to t−3/2 as the slip length increases.

In conclusion, our discovery of the long-time behavior of VAF directly from molecular simula-

tions addresses a long-standing debate in the field regarding the nature of the long-time tail
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Figure 5.6: VAF Long-time tails of a nano-particle (R = 3, M = 375) near bound-
aries (h = 5σ) with different boundary conditions. Solid black line (t−5/2

decay) and dashed black line (t−3/2 decay) are added to guide the eye.

near interfaces. We demonstrate that liquid-solid boundary conditions are inherently dynamic

and that relaxation of this boundary is important to account for in hydrodynamic theories

and in models of micro-/nanoflow, even for perfectly smooth surfaces and even in the case

of nominally no-slip boundaries. While it had been known that interfaces disrupt the vortex

generated by a nearby Brownian particle, we have shown that interfacial relaxation hinders the

vortex backflow even further and this effect is expected to be significant for submicron solutes

such as nano-particles and biomolecules. The sensitivity of Brownian motion to the nearby L-S

interface can enable advanced sensing applications, such as probing of local properties of L-S

interfaces by monitoring the VAF of a single Brownian particle6 or by measuring the two-point

correlation function between two test particles.29
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6 Comparison between free and immobilized

ion effects on hydrophobic interactions

6.1 Introduction

Hydrophobic interactions have been recognized as a key driving force for water-mediated self-

assembly processes1–6 such as protein folding and micelle formation. Because of the ubiquitous

nature of ions in biological environments, much research has been dedicated to understanding

the effects of specific ions on hydrophobic interactions7. While previous studies were mostly

focused on the effects of soluble salts, a less explored effect (although of similar importance) is

that of proximally immobilized ions. Immobilized charged or polar residues are often present

on surfaces of macromolecules, where they are distributed within or are adjacent to nonpolar

domains. The impact of these residues on hydrophobicity of the neighboring domains is key

to understanding hydrophobic interactions in complex biological environments. Recent mea-

surements based on the atomic force microscopy (AFM)8;9 have revealed that the strength of

hydrophobic interactions can be modulated by the presence of proximally immobilized ions.

This effect was found to be sensitive to the three dimensional nano-patterning of the charged

and non-polar groups10 and the specific charge (ion) type. Interestingly, the measurable effects

of proximally immobilized ions were interpreted to extend over one nanometer in distance,

i.e., they are long-range. This finding is in contrast to the recently reported11;12 short-range

nature (i.e., limited to the first ionic hydration shell) of the specific ion effects of soluble salts.

The above AFM experiments raise a number of new questions related to specific ions effects.

Do the specific proximally immobilized ions follow the same ranking as a function of ion size

(Hofmeister order)13 as free ions? For the same type of ion, how does its influence change

when it is transformed from a free ion to a proximally immobilized ion? Without the freedom

for ion segregation or depletion from the non-polar domain, what is the molecular origin of the
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effects of proximally immobilized ions on hydrophobic interactions?

As a first step towards providing insights into these questions, we report MD simulations of hy-

drophobic interactions between a non-polar surface and a non-polar or amphiphilic molecule in

the presence of proximal charges or free ions. Inspired by the experimental studies that use oligo

β-peptide14–16 that exhibits a well-defined helical conformation, we perform our simulations

with a model nano-rod that has a number of key features in common with the experimental sys-

tem. Specifically, our nano-rod has a well-defined shape and side groups that can be arranged

to mimic globally amphiphilic (GA) and non-gobally amphiphilic (iso-GA) oligo-β-peptides.

In addition, we construct a reference hydrophobic (HP) nano-rod with all side groups being

non-polar. There is no corresponding purely hydrophobic β-peptide studied in experiment as

it would be impractical to purify such molecules due to their physical properties. Nevertheless,

such HP nano-rods in simulation serve as a useful reference system, allowing us to evaluate the

effects of proximally immobilized ions and soluble salts.

In the remainder of this paper, we present potential of mean force (PMF) calculations of the

model nano-rods near a non-polar plate. We first explore the interaction between an HP nano-

rod and the extended non-polar plate as a reference system. We discuss the structure of the

PMFs and thermodynamics of the hydrophobic interaction. We then investigate the effect of

free ions (dissolved salts) by adding alkali halide salts to modify the hydrophobic interaction

involving the HP nano-rod. We analyze the water structure and dynamics near the nano-rod, in

search for a potential descriptor of the specific free ion effect. We revisit the anomalous effect of

lithium and use controlled simulations to investigate different hypotheses for molecular origin

of this anomaly. To study the effect of immobilized ions, we replace some of the non-polar side

groups of the HP nano-rod by ionic groups. We construct both iso-GA and GA nano-rods

to explore the effect of surface nano-patterns. For the GA nano-rods, we further study the

specific effects of immobilized ions which are long-ranged in nature. Finally, we compare the

immobilized and the free ion effects and discuss the origins of their differences.

6.2 Molecular Model and Simulation Methodology

All MD simulations are performed using the GROMACS software package17 with explicit

solvent since the details of water structuring are key to accurate modeling of hydrophobic



93

HP 

GA 
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Figure 6.1: Coarse-graining of a β-peptide into a nano-rod with three surface
nano-patterns: hydrophobic (HP), globally amphiphilic (GA) and non-
globally amphiphilic (iso-GA). The nano-rod is immersed in water and inter-
acts with an extended non-polar surface. Coarse-grained sites of the non-polar
surface are shown in cyan. Non-polar side groups of the nano-rod are shown in
blue, backbone in white, and the immobilized ions in yellow. The backbone refers
to the coarse-grained residues to which the functional groups are attached.

interactions. We use the SPC/E force field18 to model water. Long-range electrostatic in-

teractions are calculated using the particle mesh Ewald (PME) method. All hydrogen bonds

are constrained through the LINCS19 algorithm to enable a simulation time step of 2 fs. The

non-polar surface is modeled by 31 Lennard-Jones (LJ) particles arranged into a flat plate.

The particles are arranged in a triangular lattice with a lattice constant of 0.32 nm. The same

LJ particles (except for their different arrangement) are used to represent the non-polar groups

of the nano-rod, whereas the ionic groups are modeled as monoatomic ions. Each of the nine

side groups of the nano-rod is bonded to one of the three backbone residues of the molecule

and the side group-backbone-side group angles are 120 degree. The backbone residues do not

interact with water since they are buried inside the peptide, but their presence allows us to

arrange the functional groups in a controlled manner, resembling the rigid helical structure of

β-peptide.

As shown in Fig. 6.1, we construct nano-rods with three different nano-patterns: HP, GA and

iso-GA. Each nano-rod resembles a triangular prism that is approximately 1 nm long. Each edge

of the triangular side has a length of approximately 0.5 nm. Similar coarse-grained models have

been used in earlier simulations of the self-assembly of β-peptides20, but in that case implicit

solvent was used. To model the proximal ion effects, we use hypothetical halide ions as ionic
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Table 6.1: Parameters of the Lennard-Jones potential. H: hydrogen atom of water, O:
oxygen atom of water, BB: coarse-grained backbone atom of nano-rod, NS: coarse-
grained non-polar site of nano-rod, PC: coarse-grained immobilized ionic group of
nano-rod, ES: coarse-grained hydrophobic atom of the extended surface. * symbol
refers to atom types that are different from the ones before the hyphen symbol

Atom types ε (kJ/mol) σ(Å)
H-* 0.0 0.0
BB-* 0.0 0.0
NS-O 0.6 3.52
ES-O 0.6 3.52
NS-ES 0.1 4.0
PC-ES 0.1 4.0

side groups tethered to the coarse-grained backbone of the nano-rod. These immobilized halide

ions have the same charge and size as the free halide ions to allow a better comparison between

immobilized and free ion effects. We model both immobilized and free ions with the OPLS force

field (parameters of this force field can be found in Ref 21). Lorentz-Berthelot mixing rules are

applied to generate LJ parameters between different types of atoms. Other LJ parameters used

in our study are listed in Table 6.1. The cut-off distance for the LJ interaction and for short-

range Coulomb interaction is 1.2 nm. The strength of the hydrophobic interaction between the

nano-rod and the extended surface is largely determined by the parameter ε of the LJ potential

for interactions between the non-polar site (NS) of the nano-rod and the oxygen atom of water,

as well as between the extended nonpolar surface (ES) and the oxygen atom of water. We

chose ε for NS-O and ES-O to be 0.6 kJ/mol, which represents a typical hydrophobicity of

hydrocarbon molecules22. The nano-rod and non-polar surface are solvated in a 2.5 nm×2.5

nm×6 nm water box (around 1100 water molecules). By carrying out two sets of simulations

(with three counter-ions added or absent from the solutions) we found that such counter-ions

have a negligible effect on the calculated free energy, indicating that the effect of highly dilute

counter-ions and their interaction with immobilized ions can be reasonably neglected. When

investigating free ion effects, 1 molar concentration (approximately 80 ions) of various alkali

halides is added to the solution. Such concentration has been used in previous simulation work

to study the free ion effect and in past simulations the Hofmeister ordering of free ions was

found to be independent of the concentration of ions for neutral non-polar hydrophobes23;24.

We use the umbrella sampling method to calculate the PMF between each nano-rod and non-

polar surface. We define the reaction coordinate to be the z projection of the distance be-
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tween the second backbone atom (in the middle of the nano-rod) and the non-polar surface,

where z direction is perpendicular to the surface. The separation between neighboring sam-

pling windows is 0.05 nm and the spring constant of the external harmonic constraint is 4000

kJ/mol · nm2. The PMF reported in the main text corresponds to nano-rods that can freely

rotate. In addition we have carried out controlled simulations where the rotational degree of

freedom is forbidden (details in Appendix D). We found that the rotation of the molecules does

not impact the qualitative conclusions reported in this study. We have calculated uncertainties

in PMF using the bootstrapping method25. Other methods for calculating uncertainties in

PMF have also been reported in literature26. A 20 ns sampling time for each PMF calculation

allowed us to reach an uncertainty smaller than 0.1 kcal/mol. In our simulations, the system is

first relaxed for 1 ns at 300K and 1 atmosphere using constant pressure constant temperature

ensemble with coupling constants τ=1 ps for both the thermostat and the barostat. The ve-

locity rescaling thermostat is used for temperature coupling and the Berendsen barostat with

the compressibility of 4.5× 105 bar−1 is used for pressure coupling.

6.3 Results and Discussion

6.3.1 Hydrophobic interaction between HP nano-rod and non-polar plate

Before exploring the specific ion effects, we first study the hydrophobic interaction between

a HP nano-rod and an extended non-polar surface as a reference system. Free ion effect

can be studied by adding salts to the reference system, whereas proximal charge effect can

be investigated by replacing some of the non-polar sites with ionic groups. The PMFs of

the hydrophobic interactions for the reference system at different temperatures are plotted in

Fig. 6.2. It is interesting that the overall free energy landscape shown here is more complicated

than energy landscapes reported for the interactions between two non-polar solutes of simple

shapes22;23. While there is only one contact minimum in the attractive part of the PMF

in the case of simple solutes, our PMF has two minima (except at temperature higher than

325K). Specifically, in addition to the primary contact minimum near 0.5 nm, we have a weak

secondary minimum near 0.76 nm. The two minima correspond to two energetically favorable

configurations of the nano-rod/plate contacts as shown in the insets of Fig. 6.2. Since there is

no electrostatic interaction between the nano-rod and the non-polar surface and the assigned
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Figure 6.2: Hyrophobic interaction of HP nano-rod as a reference -rods at different
temperatures.

van der Waals interaction is very weak (see Table 6.1), the attractive part of the PMF is largely

due to the water-mediated hydrophobic interaction. Therefore, these two contact minima are

both hydrophobic in nature.

It is known that the thermodynamics of the hydrophobic hydration is size dependent27;28.

Since the hydrophobic interaction in our system is between a small molecule (nano-rod) and a

large surface (non-polar plate), it is interesting to ask what is the thermodynamic driving force

of such interaction. According to the partition of the free energy, ∆G = ∆H − T∆S (where

H is enthalpy, T is temperature and S is entropy), the temperature dependence in Fig. 6.2 is

indicative of a positive entropy change during the process of association between the nano-rod

and the non-polar wall. At T = 300K we estimate (based on the free energy difference between

T = 275K and T = 325K) the contribution to the free energy (−T∆S) to be −5.4±0.9kcal/mol,

which is more than half of the total free energy change ∆G = −8.8kcal/mol. The remainder

of the free energy change is due to a reduction of enthalpy (∆H = −3.4kcal/mol) associated

with the interaction. Therefore, the interaction between the HP nano-rod and the non-polar

plate is favorable both in entropy and enthalpy. Recall that the association of two macroscopic

non-polar surfaces is purely enthalpy driven and association of two small hydrophobes is purely

driven by entropy. Our results demonstrate that both of these driving forces (entropy increase
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and enthalpy reduction) can be present in a mixed system comprised of a small molecule and

a large surface. Additional information on the thermodynamic driving force will be presented

when discussing Fig. 6.5.

6.3.2 Free ion effects

We now investigate the specific ion effects on the interaction between the nano-rods and the

non-polar plate, starting with free ions. The ordering of free ions with respect to their effect

on hydrophobic interactions (the so-called Hofmeister series), have been extensively studied in

literature23;24 and can be used to test of our simulations. Simulations of free ion effects also

allows a direct comparison with the immobilized ion effects that will be discussed later.

Here we investigate the free ion (dissolved salt) effect by carrying out simulations of the in-

teractions between the HP nano-rod and the non-polar plate in the presence of alkali halide

salts (NaF, NaCl, NaI, LiCl, CsCl) at modest molar concentration (1M). Before showing the

results, we shall however emphasize that the ordering of the Hofmeister series is not trivially

determined by the properties of the ions, but also depends on the solute surface24. For exam-

ple, the ordering of ions that change the solubility of proteins with a net positive charge can

be reversed if the protein becomes negatively charged. As in this paper we are dealing with

hydrophobic interaction between charge neutral surfaces, we will use the term Hofmeister series

to refer to ordering of ions in the presence of charge neutral hydrophobes. Such Hofmeister

series for halide anions with respect to their salting-out ability is I− < Br− < Cl− < F− 24.

For alkali cations, the corresponding ranking is Cs+ < Li+ < K+ < Na+ 24.

Figure 6.3 shows the PMFs of the interaction between the nano-rod and the hydrophobic plate

in the presence of different salts. As Na+ and Cl− take positions in the middle of the Hofmeister

series and the long-range cooperative ion effects are believed to be small at low and moderate

concentrations11;12, it is reasonable to assume that the effect of sodium halide (alkali chloride)

mainly reflects the specific effect of the halide anions (alkali cations). Comparisons within the

sodium halide series and alkali chloride series in Fig. 6.3 show that the strength of hydrophobic

interaction follows the orders of NaI<NaCl<NaF and LiCl≈CsCl <NaCl. Therefore we can

rank halide anions and alkali cations as I−<Cl−<F− and Li+≈Cs+<Na+ in their salting-out

effects. Such orderings agree with previous reports of Hofmeister series for non-polar solutes

(I−<Br−<Cl−<F−, Cs+<Li+<K+<Na+) very well24.
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Figure 6.3: PMF curves of hydrophobic interaction in the presence of dissolved (a)
sodium halide and (b) alkali chloride. The black curve represents the results
from a reference system of a HP nano-rod in water in the absence of any free ions
or immoblized ions. Primary contact depth plotted in the insets is defined as
the absolute value of the difference in PMF between the depth of the primary
contact minimum and the reference state where the nano-rod and the surface are
separated from each other.
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To shed more light on the molecular origin of the Hofmester ranking of free ions, and inspired

by the work of Garde and coworkers29, we examine the structure and dynamics of the hydrating

water around the HP nano-rod by analyzing the water radial distribution function (RDF) and

its time-dependent fluctuation in the presence of different salts (see Appendix D). Here, the

fluctuation of the water density is not merely a measure of the uncertainty of density, but

more importantly it is an indicator of the dynamics of water in the hydration shells. For all

systems examined in our simulations, we found the RDF of water around the HP nano-rod to

be insensitive to the identity of the salts. In contrast, the fluctuation of the RDF is strongly

affected by salts. More interestingly, the ion-modulated RDF fluctuation is well correlated with

the ion-modulated strength of the hydrophobic interaction (|∆G|) with an approximate linear

relationship as shown in Fig. 6.4.

The only significant deviation from this linearity comes from the LiCl salt (see the point labeled

LiCl(clustered) in Fig. 6.4). Anomalous behavior of Li+ has been previously noted in literature.

Specifically, while the positions of ions in the Hofmeister series can often be correlated with

ion size, lithium ion was found to be an exception to this trend23;24. Two different ways to

rationalize the anomaly of Li+ have been proposed. Thomas and Elcock23 postulated that this

anomaly is primarily due to clustering between lithium atoms and counter-ions. On the other

hand Schwierz et al24 argued that the anomaly of lithium can be explained by its large effective

size if one considers the rigid first hydration shell to be part of the ion. To determine the primary

mechanism responsible for the lithium anomaly in our simulations, we carried out an additional

calculation of |∆G| for LiCl salt solution with a constraint on lithium cations such that Li+

cannot form clusters with chloride anions. The result of this calculation is labeled in Fig. 6.4 as

LiCl(dissolved). Interestingly, the salting-out effect (quantified by |∆G|) of dissociated LiCl is

weaker than that of NaCl and NaF and it is stronger than the effect of NaI and CsCl. In other

words, even for fully dissolved Li+, its effect on hydrophobic interaction does not correlate with

its bare ionic size. Instead, as shown in Fig. 6.4 the effect of dissociated LiC salt follows the

same linear trend as other salts, demonstrating that the strength of hydrophobic interactions

|∆G| is correlated with RDF fluctuations of water around the nano-rod. These results reveal

that while the clustering can contribute to the anomaly of lithium, the primary reason for this

anomaly is the large effective size of this ion24. It has been shown in recent literature11;12;30–33

that large ions (with low charge densities) tend to accelerate the reorientation of water. In this

light, our simulation observation of the large RDF fluctuation of water in the presence of Li+
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nano-rod. RDF peak fluctuation is defined as the maximum of the water density
fluctuation near the nano-rod.

is consistent with the hypothesis that Li+ has a large effective ionic size (see more details in

Appendix D).

Our conclusion that water fluctuations are a better indicator of hydrophobicity align with the

prior results reported by Garde and coworkers29 for flat surfaces. We demonstrate that these

conclusions apply to curved surfaces and more complex molecular structures.

6.3.3 Immobilized ion effects

Now we turn to the effects of immobilized ions. It has been reported that GA and iso-GA

β-peptides self-assemble into different structures10, which reflects interactions mediated by the

different arrangements of functional groups on the two types of molecules20;34–38. Recent AFM

single-molecule force spectroscopy measurements8 revealed that the adhesive forces between β-

peptides and non-polar surfaces depend on the nature of the nano-patterns formed by functional

groups on the β-peptides. Inspired by these experiments, our first goal here is to understand

how nano-scale chemical patterns affect intermolecular interactions and how these interactions

can be modulated by immobilized ions. To this end, we calculate the PMF between a non-
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polar plate and nano-rods with different nanoscale patterns. For amphiphilic nano-rods, we

use hypothetical Cl− ions (see method section) as the proximally immobilized ions in both GA

and iso-GA patterns.

The PMF profiles for these two types of nano-rods are shown in Fig. 6.5a together with a

reference PMF (without immobilized ions). All PMF curves are shifted so that the reference

state (corresponding to the nano-rod not interacting with the surfaces) has zero free energy.

The GA nano-rod interacts with the surface in such a way that six of the nano-rod’s non-

polar sites face the surface and three of its ionic sites point away from the surface, similarly

to the contact type I of the HP nano-rod shown in Fig. 6.2. This arrangement minimizes

the exposure of non-polar sites to water and thereby maximizes hydrophobic interaction. For

nano-rod with the GA pattern, the primary contact minimum is still pronounced, but it is

reduced as compared to the contact minimum for the HP nano-rod. The second minimum,

which was observed for the HP nano-rod, disappears in the case of the GA pattern. In contrast,

the PMF of the iso-GA pattern has a very shallow contact minimum of type II and is largely

repulsive in the regime where the primary minimum (corresponding to configuration I) would

occur. Although it is possible for the iso-GA nano-rod to align itself so that up to four of its

non-polar sites face the surface, it is clear that the strength of hydrophobic interaction does not

simply scale with the number of non-polar sites that face the surface. The striking difference in

the PMF of the GA and the iso-GA nano-rods reflects the distinct hydration status of the two

molecules in water. More specifically, we find that hydrophobic interaction can be effectively

destroyed by adding proximally immobilized ions between non-polar sites. Consequently, our

results demonstrate that the hydrophobic interaction is a result of the collective behavior of

hydrating water molecules and it is not a simple function of the surface area of non-polar

domains. This conclusion is generally consistent with the AFM measurement by Acevedo et

al8, although in the experiments a non-vanishing pull-off force persisted in the case of iso-

GA β-peptide. This force was established to be electrostatic in nature due to the non-polar

surface accumulating an excess negative charge when immersed in water. The immobilized

ion effect in the iso-GA nano-rod is similar to the one recently reported in MD simulations

by Acharya et al39 where it was shown that polar groups in the middle of a flat non-polar

domain can substantially modulate hydrophobic interactions. Our results extend Acharya et

al’s conclusion for polar groups to immobilized ions, and from a flat geometry to a nano-rod.
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Figure 6.5: Effect of nano-pattern on hydrophobic interactions. (a) PMFs of hy-
drophobic interaction between a non-polar wall and different nano-rods: hy-
drophobic HP (dashed line), GA (green squares) and iso-GA (red circles). Inset:
The PMF contact minimum at different temperatures: HP (black triangles) and
GA (green squares). Contact minimum is defined as the lowest free energy in the
PMF with the reference state where that the nano-rod and the surface are com-
pletely separated from each other. (b) The free energy decomposition at different
temperatures for the interaction between the non-polar plate and the nano-rods
(upper: HP, lower: GA).
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To determine the thermodynamic origin of the hydrophobic interaction predicted by our MD

simulations with the GA nano-pattern, we calculate the PMFs for hydrophobic interactions at a

number of different temperatures as shown in the inset of Fig. 6.5a. Based on this temperature

dependence, we partition the free energy into the entropy and enthalpy parts. As shown in

the Fig. 6.5b, around room temperature, both the entropy and enthalpy driving forces are

present in the interactions between the non-polar plate and the nano-rods (with and without

immobilized ions). In other words, both the HP and GA nano-rods have a negative hydration

entropy associated with their non-polar surfaces. The entropy driving force decreases with

temperature as the hydrating water becomes more disordered.

Having verified that the hydrophobic interaction involving amphiphilic molecules can be turned

on and off by choosing either the GA or iso-GA nano-pattern of the nano-rod, we now test

the possibility of tuning the strength of the hydrophobic interactions by varying the size of

the proximally immobilized ions of the GA nano-rod. We also investigate whether the effects

of proximally immobilized ion follows the same Hofmeister order as the dissolved free ions,

a question that is of practical importance for the rational design of hydrophobically driven

self-assembly of materials1–6.

To shed light on the question of the effect of the ionic size of a proximally immobilized ion on

hydrophobic interaction, we calculate the PMF for the nano-rods with the proximally immo-

bilized ions being halide anions. We choose halide anions for our test because their specific ion

effects are known to be stronger than alkali cations, and their Hofmeister order in the case of

free ions correlates well with the ionic sizes or, equivalently, charge densities. The PMF results

are presented in Fig. 6.6a. Interestingly, we find that the strength of hydrophobic interaction

between the nano-rod and the non-polar surface does not depend monotonically on the size of

the proximally immobilized ion. Instead, the ranking of the interaction, from weak to strong,

with different proximally immobilized ions follows I− < F− < Cl− ≈ Br−. To ensure that

the ordering of ions is not affected by the possibility of the nano-rod to reorient itself during

simulations, we carried out additional simulations where the orientational freedom of the nano-

rod is frozen out. In these constrained simulations, all nano-rods have their non-polar surface

lying parallel to the plate during the sampling so that the reaction paths are identical for all

ions. The results shown in the Appendix D show the same ordering of ions with the interaction

strength, confirming that the rotational freedom of nano-rod (or its absence) does not alter the



104

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
- 1 0

- 8

- 6

- 4

- 2

0

2

a

 

 

 N o  i o n s
 F -

 C l -
 B r -

 I -

PM
F (

kca
l/m

ol)

D i s t a n c e  f r o m  w a l l  ( n m )

6 . 0 0
6 . 2 5
6 . 5 0
6 . 7 5
7 . 0 0
7 . 2 5
7 . 5 0

|∆
G|(

kca
l/m

ol)

I -

B r -C l -

 

 

 

F -

-‐	  

b 

1

22

Figure 6.6: Hydrophobic interaction in the presence of proximally immobilized ions
with different sizes. (a) PMF of hydrophobic interaction between a non-polar
wall and the nano-rod with proximally immobilized ions with sizes that are com-
parable to halogen anions. The charge is constant at -1. The inset shows the depth
of the contact minimum, which is defined as the absolute value of the difference
in PMF between the contact minimum and the reference state where the peptide
and the surface are separated from each other. (b) Schematic molecular picture
of specific immobilized ion effect. Straight arrow (1) across the non-polar part
of the nano-rod (blue) represents the direct electrostatic (charge-dipole) inter-
action between the immobilized ions (green) and the interfacial water molecules
(in the dashed-line box). Curved arrows (2) represent the indirect long-range
perturbation of the structuring of the water molecules by the immobilized ions.

order of the specific immobilized ion effects. In addition, we have calculated uncertainty of the

PMF calculations (as explained in the Section Molecular Model and Simulation Methodology)

and it was found to be smaller than 0.1 kcal/mol.

Two types of interactions can hypothetically contribute to the observed effects of immobilized

ions on hydrophobic attraction and they are both illustrated by arrows in Fig. 6.6b. One

contribution comes from the electrostatic interaction between the immobilized ion and water

molecules residing at the nano-rod/non-polar surface interface. This interaction occurs across

the diameter of the GA nano-rod. The second contribution comes from long-range perturbation

of hydration shells by the immobilized ions. Both of these contributions can affect free energy

of the interfacial water (between the nano-rod and the non-polar surface). The electrostatic

(charge-dipole) contribution to interaction is sensitive to the charge of the ion and not to its

size. On the other hand, the contribution from long-range perturbation of hydration shell can

affect the entropy of interfacial water and it is sensitive to the size of the immobilized ion. The
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overall specific proximal ion effect is expected to be a balance of these two mechanisms and

further studies are needed to better understand the underlying molecular details.

Although many differences exist between the recent experiment studies using β-peptides and

the models used in our simulations, our simulations do support the experimental finding that

the immobilized ions can have a long-range effect on hydrophobic interactions.

6.3.4 Comparison between the effects of proximally immobilized ion and

soluble salts

It is instructive to compare the effects from the same ion in different states, soluble and immo-

bilized. In Fig. 6.7 we summarize the effects of immobilized ions and free ions. We choose the

reference (a dashed line in Fig. 6.7) for both cases to be the hydrophobic interaction strength

between the HP nano-rod and the extended non-polar surface without any ions. Inspection of

Fig. 6.7 reveals that the immobilized ions tend to weaken the hydrophobic interaction while the

free ones tend to strengthen it. This difference is related to the distinct spatial distributions

of immobilized and free ions. One can think of the hydrophobic interaction as a dehydrating

reaction accompanied by the release of water molecules from the surface of the solute to the

bulk region, which can be symbolically written as

Nano-rod · H2O + Surface · H2O
dehydrate−−−−−−→ Nano-rod|surface + H2O(bulk), (6.1)

where symbol · means hydrating and symbol | means in contact. The strength of hydrophobic

interaction is determined by

∆Gdehydrate = GH2O(bulk) − [GNano-rod ·H2O +GSurface ·H2O −GNano-rod|surface]

= GH2O(bulk) −GH2O(surface).

(6.2)

Here, we defined GH2O(surface), which qualitatively can be understood as the free energy of

water near the non-polar surfaces (the non-polar domain of GA nano-rod and the flat non-polar

surface) when they are far from each other. The specific ion effect on hydrophobic interaction

can therefore be generally understood as the difference in the manners the ion modifies the free
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energy of hydrating water and of bulk water

∆(∆Gdehydrate) = ∆GH2O(bulk) −∆GH2O(surface). (6.3)

The sign of ∆(∆Gdehydrate) determines whether the ion increases or decreases the strength of

hydrophobic interaction. As we are interested in the immobilized ion effect, we here focus on

the free energy of water hydrating the nano-rod. The free energy of water hydrating the non-

polar plate is not sensitive to the proximally immobilized ions and can be treated as a constant

reference because the plate is well isolated from the nano-rod in the non-interacting reference

state. The distinct effects from an immobilized ion and a free ion result from their different

spatial distributions with respect to the nano-rod, i.e., immobilized ions are immobilized near

the nano-rod and absent in the bulk water whereas free ions are excluded from the nano-rod

and remain in the bulk. Therefore in Eq 6.3, the ∆GH2O(bulk) term is important for free ions

but it is negligible for immobilized ions. This means that an immobilized ion weakens the

hydrophobic interaction solely by lowering the free energy of water hydrating the nano-rod.

In contrast, the free ion effect is a result of the changes in both the hydrating free energy

and bulk free energy. In our case, as the nano-rod is small in size and highly convex in

curvature, free ions are generally excluded from it and mainly lower the free energy of bulk

water. The exclusion of ions, including I−, from small hydrophobes have been recently reported

in experiments40;41. It is interesting to note that regardless of whether ions are immobilized or

dissolved, the same ions have different rankings with respect to their modulations of strength

of hydrophobic interactions.

6.4 Concluding remarks

We have used MD simulations to study the effects of proximally immobilized ions on hydropho-

bic interactions between a β-peptide inspired nano-rod and an extended non-polar surface. By

comparing the effect of immobilized ions with different nano-patterns and ionic radii, we demon-

strated that hydrophobic interaction can be largely eliminated by iso-GA patterning and can be

modulated by proximally immobilized ions in the globally amphiphilic (GA) nano-rod. Several

trends observed in our simulations agree with recent single-molecule AFM measurements8;9

and we provide a molecular mechanistic understanding of these trends in the context of the
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models used in the MD simulation. In the broader context of specific-ion effects, we have

shown that the immobilized ions do not necessarily follow the same ordering as the free ions.

Our analysis of the structure and dynamics of water near the hydrophobic nano-rod shows

that dynamics is a better indicator of the specific ion effect than the static water structure.

This result extends prior results of Garde and coworkers29. Our results provide new insights

into specific ion effects that may, in the long term, guide the rational design of hydrophobic

interactions and self-assembly process driven by these interactions.
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7 Summary and future directions

In this thesis, we have combined theory and computer simulations to explore the frictional and

solvation forces at aqueous interfaces, which forces play an important fundamental role in small

length scale hydrodynamics and solvent-mediated interactions, respectively.

On the hydrodynamic side, we have demonstrated that liquid boundary condition is an interfa-

cial transport phenomenon and depends on the intrinsic nature of the liquid-solid (L-S) inter-

face. By simulating vibrating L-S interfaces in non-equilibrium molecular dynamics (NEMD)

simulations, we demonstrated and modeled the effects of slip boundary condition on the energy

dissipation of the interfaces. The simulation uncovered a dynamic L-S slip (or alternatively

friction), which is not a constant but depends on frequency. To enable equilibrium molecu-

lar dynamics (EMD) simulations of the L-S boundary conditions at experimentally relevant

scales, we have developed a Green Kubo (GK) relation that relates the microscopic interfacial

correlation functions to the macroscopic friction coefficient. This relation also allows one to

effectively calculate mobility (or diffusion) of interfacial liquids. Using our GK relation, we

have shown that boundary condition has a memory, which means that this boundary relaxes

with time. Such boundary relaxation can strongly affect the near-boundary Brownian motion

as we demonstrated from large-scale long-time molecular dynamics (MD) simulations. Near

a boundary, the VAF of Brownian particle decays as a function of t−5/2 with time t. While

the general shape of such long-time tail is due to a universal geometry effect, the amplitude of

the tail is sensitive to the properties of the L-S interface. Therefore the monitoring of near-

boundary Brownian motion provides a method to probe the interfacial properties. Our current

study is limited to simple (Newtonian) liquids and simple structured surfaces. One natural

step further can be the study of near-boundary Brownian motion in viscoelastic fluids and the

investigation of boundary relaxation on patterned and chemically functionalized surfaces.

On the solvation side, we have studied the effect of immobilized ions on hydrophobic interactions
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in water. This effect is found to be distinct from a similar effect previously reported for free

ions. Not only the surface arrangement but also the species of immobilized ions can play

a role in modulating the hydrophobic interaction of amphiphic molecules on which the ions

reside. In the case of free ions, such modulation of solute interaction is correlated with the

hydration fluctuation near the solute. The knowledge of the effects of free and immobilized

ions provides a foundation towards understanding of more complicated specific ion effects in

biological systems, where immobilized and free ion effects could be strongly coupled.

Another future direction is the curvature effect on the hydration in alcohol. Compared to

water, the solvation in the aqueous solution of alcohol has been much less studied. However,

there is a merit to extend the investigations of solvation from water to alcohol for the following

reasons. First of all, alcohol is an amphiphilic solvent in which both polar and non-polar

solutes could be dissolved. The amphiphilic solvation effect is an interesting problem in itself

with widespread industrial applications1;2. Secondly, alcohol mixes with water and can be

used to suppress hydrophobic interactions3;4. While it is reasoned that alcohol can disrupt

the hydrogen bond network in water, the underlying molecular mechanism is yet to be fully

explored. Lastly, alcohol such as methanol is similar to water in structure with a substitution

of H atom to a methyl group. A comparison between the solvation thermodynamics in water

and alcohol can offer a more general understanding to the hydrophobic hydration.
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Appendices

Appendix A: Derivation of the mechanical model of vibrational

liquid-solid interface at high frequencies

Here we provide details of derivation of our slip-boundary model that includes high-frequency

effects. First of all, the equation of motion of a solid slab connected to elastic springs can be

written as:

Mẍ = −kx, (A1)

where M is the mass of the solid slab per unit area and k is spring constant per unit area. The

displacement x and velocity u0 along the direction of vibration can be written, respectively ,

as:

x = Aeiω0t, (A2)

u0 = ẋ = iω0x. (A3)

ω0 is the resonance frequency and it is equal to

ω0 =

√
k

M
. (A4)

When the solid slab is loaded with liquid as shown schematically in Fig. A1, there will be a

friction force Ff exerted by the liquid on the solid surface, and the equation of motion will be

correspondingly modified to:

Mẍ = −kx− Ff . (A5)

Assuming a new time dependence of the vibrational displacement, x = Aeiωt, and including
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Figure A1: Schematic representation of the force balance on the interfacial liquid.

Eq. A4, we can rewrite A5 as:

Mω2x = Mω2
0x+ Ff . (A6)

The shift in the frequency ∆ω = ω − ω0 is equal to:

∆ω =
Ff

2Mω0x
. (A7)

∆ω is a complex number, which means that the shift in resonance frequency is accompanied

by a dissipation of the mechanical energy of vibration. The displacement x can be therefore

written explicitly:

x = Aei(ω0+∆ω)t = Aei[ω0+Re(∆ω)]te−Im(∆ω)t. (A8)

The friction force (per unit area) on the solid slab is the sum of shear stress of the liquid at

the interface τ0 and the inertia of the interfacial liquid Finer (see Fig. A1):

Ff = τ0 + Finer. (A9)

Since friction in this case is viscous, it can be written as:

Ff = ηd(u0 − v0), (A10)
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where ηd is dynamic friction coefficient and u0 − v0 is the slip velocity. Using the velocity

profile of liquid along the z direction (perpendicular to the surface)

v(z) = v0e
−1−i
δ

z, (A11)

we can write the shear stress term in Eq. A9 as

τ0 = −η∂v
∂z

∣∣∣
z=0

= (1 + i)
ηv0

δ
, (A12)

where δ = (2η/ωρl)
1/2 is the penetration length of the liquid. Finally, the inertia term in A9

is equal to

Finer = nam
∂v0

∂t
= iωnamv0, (A13)

where na is the surface number density of the interfacial liquid. By including Eq. A10, Eq. A12

and Eq. A13, Eq. A9 becomes

ηd(u0 − v0) = (1 + i)
ηv0

δ
+ iωnamv0. (A14)

Let us recall the definitions of the dynamic slip length and the adsorption length, respectively,

ld(ω) =
η(ω)

ηd(ω)
, (A15)

la =
na
n
. (A16)

When normalized by the penetration length δ these properties become

bd =
ld
δ
, (A17)

a =
la
δ
. (A18)
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Substituting A17 and A18 into A14 simplifies A14 to the following form:

u0 − v0 = (1 + i)
ld
δ
v0 + i

ωρlla
ηd

v0

= (1 + i)bdv0 + 2iabdv0

= [1 + i(1 + 2a)]bdv0.

(A19)

By rearranging terms, we arrive at a relation between the dynamic slip length and the slip

velocity:

bd =
1√

2 + 4a+ 4a2

∣∣∣u0 − v0

v0

∣∣∣. (A20)

In addition, v0 can be determined based on u0, bd and a in the following way

v0 =
u0

(1 + bd) + i(1 + 2a)bd
. (A21)

The above expressions allow us to express the friction force Ff in terms of u0, bd and a, that

is

Ff = ηd(u0 − v0) =
[1 + i(1 + 2a)]bd

(1 + bd) + i(1 + 2a)bd
ηdu0. (A22)

Substituting Ff into Eq. A7 produces the expression for ∆ω in terms of the normalized slip

length bd and the adsorption length a

∆ω =
ηdu0bd
2Mω0x

1 + i(1 + 2a)

(1 + bd) + i(1 + 2a)bd

=
iηdbd
2M

1 + i(1 + 2a)

(1 + bd) + i(1 + 2a)bd

=
1

2M

√
ρlηdω

2

−(1 + 2a) + i

(1 + bd) + i(1 + 2a)bd

=
1

2M

√
ρlηdω

2

−(1 + 2a) + i{1 + [1 + (1 + 2a)2]bd}
1 + 2bd + [1 + (1 + 2a)2]b2d

.

(A23)

Recalling that Z =
√
kM is the mechanical impedance in the spring model, we can obtain the

frequency shift ∆f and the damping rate shift ∆D (D0 = 0 in this case):

∆f

f0
=

Re(∆ω)

ω0
= − 1

2Z

√
ρlηdω

2

1 + 2a

1 + 2bd + [(1 + 2a)2 + 1]b2d
, (A24)

∆D

2π
=

Im(∆ω)

ω0
=

1

2Z

√
ρlηdω

2

1 + [(1 + 2a)2 + 1]bd
1 + 2bd + [(1 + 2a)2 + 1]b2d

. (A25)
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These equations can be written in terms of frequency shift (∆f
f0

∣∣∣
no−slip

) and damping shift

(∆D
2π

∣∣∣
no−slip

) in the absence of slip:

∆f

f0
=

1 + 2a

1 + 2bd + [(1 + 2a)2 + 1]b2d

∆f

f0

∣∣∣
no−slip

, (A26)

∆D

2π
=

1 + [(1 + 2a)2 + 1]bd
1 + 2bd + [(1 + 2a)2 + 1]b2d

∆D

2π

∣∣∣
no−slip

. (A27)

In the case of shear-wave QCM model, Eq. A26 and Eq. A27 become

∆f

f0
= − 1

πZ

√
ρlηdω

2

1 + 2a

1 + 2bd + [(1 + 2a)2 + 1]b2d
, (A28)

∆D

2π
=

1

πZ

√
ρlηdω

2

1 + [(1 + 2a)2 + 1]bd
1 + 2bd + [(1 + 2a)2 + 1]b2d

. (A29)

It is straightforward to show that at low frequency when a ≈ 0 and bd ≈ b0, A28 and A29 can

be simplified to the following:

∆f

f0
= − 1

πZ

√
ρlηω

2

1

1 + 2b0 + 2b20
, (A30)

∆D

2π
=

1

πZ

√
ρlηω

2

1 + 2b0
1 + 2b0 + 2b20

. (A31)
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Appendix B: Derivation of the extended GLE based on the

projection operator approach

In Chapter 4 we showed that Eq. 4.11 can be reformulated into Eq. 4.26 if the motion of

interfacial liquid particle can be described by an extended GLE (Eq. 4.13). Here we construct

an extended GLE using the projection operator technique for a diffusive particle moving in an

external potential U(~r) with the resulted external force being ~F = −∇U(~r). We show that

under the condition 〈~F 〉 = 0, one can retrieve the properties in Eqs. 4.14-4.16.

Motivated by connecting different correlation functions, we extended the original GLE by

keeping the Fi term out of the memory kernel and the random force. Therefore we first

decompose the acceleration ~̇ui of an interfacial particle into to two parts: due to the external

potential (the solid wall) and due to the surrounding liquid, that is

~̇ui = iL~ui = iA~ui + iB~ui = ~FA + ~FB, (B1)

where L is the Liouville differential operator, and ~FA, ~FB are forces exerted on the particle

by the surrounding liquid and the solid wall, respectively. Here we have normalized the mass

to be 1. In this formulation, we use the symbol ~FB, but the reader should be aware that its

physical meaning is the same as of the symbol F used in the main text (here we are dealing with

the generalized 3 dimensional case while the equations in the main text is one dimensional).

At t = 0, the interfacial particle of interest i is at position ~ri and has velocity ~ui. We now

introduce projection operators P = |~ui〉〈~ui|〈~ui~ui〉−1 and Q = 1−P, so that

eiLt = eiQLt +

∫ t

0
eiL(t−t′)iPLeiQLt′ dt′, (B2)

where the inner product between two vectors a, b in the Hilbert space 〈ab〉 is defined as the

ensemble average at equilibrium. Since we are interested in the interfacial particle i, we only

average the position ~ri over the interfacial region we defined. In a three dimensional system

in space, infinite dimensional vectore a and b in the Hilbert space are also three dimensional

vectors in space, and 〈ab〉 is therefore a tensor in space.
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Using the operator identity (Eq. B2), we can rewrite Eq. B1 as

~̇ui(t) = − 1

kT

∫ t

0
~ui(t− t′)〈iL~uieiQLt′ iA~ui〉 dt′

+eiQLtiA~ui + eiLtiB~ui.

(B3)

We define ~R(t) = eiQLtiA~ui to be the random force. Then kTγ(t) = 〈iL~uieiQLtiA~ui〉 =

〈~R(0)~R(t)〉+ 〈~F (0)~R(t)〉 defines the memory kernel tensor. More explicitly,

〈~R(0)~R(t)〉 = 〈iA~uieiQLtiA~ui〉, (B4)

〈~F (0)~R(t)〉 = 〈iB~uieiQLtiA~ui〉. (B5)

At equilibrium, we have 〈~ui ~FA〉 = 〈~ui ~FB〉 = 0 as the result of antisymmetries under time rever-

sal. This means that |iA~ui〉 and |iB~ui〉 are both orthogonal to |~ui〉. Applying the projection,

we have P|iA~ui〉 = P|iB~ui〉 = 0 and Q|iA~ui〉 = |iA~ui〉,Q|iB~ui〉 = |iB~ui〉. Therefore the

operator QL is Hermitian in the subspace of |iA~ui〉 and |iB~ui〉.

If 〈~F (0)~R(t)〉 = 0, then kTγ(t) = 〈~R(0)~R(t)〉 recovers the fluctuation-dissipation theorem.

This assumption is not formal under all conditions. In fact, whether 〈~F (0)~R(t)〉 equals to

zero or not depends on the properties of ~FA and ~FB or, equivalently, on the properties of the

operators A and B. In our case, we show that every element of 〈~F (0)~R(t)〉 is zero except

〈Fz(0)Rz(t)〉 (z is the norm direction of the wall) in the following way. Let us take the time

derivative

d

dt
〈~F (0)~R(t)〉 =

d

dt
〈iB~uieiQLtiA~ui〉

= 〈iB~uiiQLeiQLtiA~ui〉

= −〈iLQiB~uie
iQLtiA~ui〉

= −〈iLiB~uie
iQLtiA~ui〉

= −〈iL~FB(0)eiQLtiA~ui〉

= −〈(∇~FB · ~ui)eiQLtiA~ui〉

= −〈[∇~FB][~uie
iQLtiA~ui]〉,

(B6)

where ∇~FB and ~uieiQLtiA~ui are tensors.
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Since ~FB depends only on the position of the particle of interest ~ri and iA~ui only on ~rj −

~ri (j 6= i), we can take the ensemble average by first integrating over the subspace Γ~ri =

(~r1, ~r2, ..., ~ri−1, ~ri+1, ..., ~rN , ~p1, ~p2, ..., ~pN ), then integrating over ~ri. We introduce the following

abbreviation for simplicity:

〈ab〉~ri =

∫
dΓ~rif~ri(Γ~ri)a(Γ~ri)b(Γ~ri), (B7)

where f~ri is the equilibrium distribution of the system when particle i is fixed at ~ri. Thus the

time derivitive reforms as

d

dt
〈~F (0)~R(t)〉 = −

∫
~rif(~ri) ~[∇~FB(~ri)]〈~uieiQLtiA~ui〉~ri . (B8)

If we define P~ri |...〉 = 〈~ui...〉~ri〈~ui~ui〉
−1
~ri
|~ui〉~ri , where |~ui〉~ri is the subspace of |~ui〉 with ~ri fixed,

we will have 〈~uieiQ~ri
LtiA~ui〉~ri = 0 where Q~ri = 1−P~ri . This is because P~ri |~ui〉~ri = |~ui〉~ri and

Q~ri |~ui〉~ri = 0. Due to the property of the operator Q~ri , eiQ~ri
iLt will keep the vector it operates

on to be orthogonal with |~ui〉~ri if the vector is orthogonal with |~ui〉~ri at time zero, which is true

for |iA~ui〉~ri . Since P~ri1 |~ui〉~ri2 = δ(~ri1 − ~ri2)|~ui〉~ri2 and P =
∑

~ri
P~ri , we have P|~ui〉~ri = |~ui〉~ri .

Based on the projection property of P on |~ui〉~ri , one gets 〈~uieiQLtiA~ui〉~ri = 0, which means

that 〈~F (0)~R(t)〉 would remain constant as t goes to infinity. As in the infinite time limit ~F (0)

is not correlated with ~R(t), 〈~F (0)~R(t)〉 = 〈~F 〉〈~R〉. At equilibrium, the net force 〈Fx〉 (〈Rx〉)

and 〈Fy〉 (〈Ry〉) that are parallel to the solid wall vanish, but 〈Fz〉 (〈Rz〉) in general does

not. Therefore except 〈Fz(0)Rz(t)〉, all the elements of 〈~F (0)~R(t)〉 are zero. Due to spatial

symmetry under reversals in x and y axes, one can show that 〈Rx(0)Rz(t)〉 = 〈Rz(0)Rx(t)〉 = 0

and 〈Ry(0)Rz(t)〉 = 〈Rz(0)Ry(t)〉 = 0. As a result, one can decouple the motion equation norm

direction z from the one parallel to the wall.

In summary, rearranging Eq. B1 using the projection operator we defined, we finally have an

equation with the form of extended GLE:

~̇ui(t) = − 1

kT

∫ t

0
~ui(t− t′)〈iA~uieiQLt′ iA~ui〉 dt′

+eiQLtiA~ui + iB~ui(t),

(B9)
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with the fluctuation-dissipation relation generalized to be

kTγ(t) = 〈iA~uieiQLtiA~ui〉 = 〈~R(0)~R(t)〉, (B10)

and Eqs. 4.14, 4.15 generalized to be

〈~ui(0)~Ri(t)〉 = 〈~Fi(0)~Ri(t)〉 = 0, t > 0. (B11)

One should be aware that the vectors and tensors in Eqs. B9, B10, B11 are two dimensional

and parallel to the solid wall.
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Appendix C: Fittings of the near-boundary long-time tails

In Chapter 5, we stated that in the long-time limit the velocity autocorrelation function (VAF)

of near-boundary nano-particle decays with time t as t−5/2 rather than t−3/2. Here, we provide

data to support this conclusion. Specifically, we fit the VAF long-time tails of the particles

with a power-law function: y = axb. The fittings are presented in Figure C1 and the results are

summarized in Table C1. The t−5/2 decay fits the data better than the t−3/2. Although physical

models all predict an algebraic decay of the VAF, one can ask if an exponential fit would fit

our data. Therefore, in addition we have fitted our data to exponential decays with two free

fitting parameters (amplitude and relaxation time). As shown in Table C1, the qualities of

these fits (quantified via R2 values) lie between those for t−3/2 and t−5/2 and Figure C1 shows

that exponential decays underestimate the VAFs at long time scales.
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Figure C1: Fittings of the asymptotic behavior of the VAF of near-boundary nano-
particles. From the left to the right: the mass of the particle M=125, 250 and
375 in reduced units. See Table S1 for parameters of the fits.



123

Table C1: Fitting results of the asymptotic behavior of near-boundary VAFs. The
long-time tails of VAF are fitted to power law function y = axb. R2 represents
the quality of the fit. Exponential decay with two free fitting parameters can fit
the data relatively well but the performance is not as good as for the t−5/2 decay,
which almost overlaps with the best power law fit.

Mass Fit with b=-5/2 Fit with b=-3/2 Best fit Exponential

125 R2 = 0.980 R2 = 0.835 b = −2.49, R2 = 0.980 R2 = 0.976

250 R2 = 0.996 R2 = 0.849 b = −2.51, R2 = 0.996 R2 = 0.986

375 R2 = 0.996 R2 = 0.826 b = −2.64, R2 = 0.996 R2 = 0.990
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Appendix D: Supporting information for specific ion effects

Water density and its fluctuation in the hydrophobic hydration shell

We calculate the radial distribution function (RDF) and its fluctuation over time for hydropho-

bic group-water oxygen pairs. RDF is calculated in spherical bins (shells) with a width of 0.1

nm. We find that the bin width of 0.1 nm provides a balance between a relatively good spatial

resolution of the hydration structure and a meaningful measure of the hydration dynamics

over time. For a bin size that is too small to accommodate more than one water oxygen at

the same time, the mean fluctuation of the density tends to lose the dynamic information. In

fact, one can show that when the number of particles n in the bin at any time is either 0 or

1, the magnitude of the fluctuation ∆n becomes determined by n̄(1− n̄), where n̄ is the time

averaged particle number in the bin. Therefore in the limit of small bins, a measurement of the

magnitude of fluctuation is simply equivalent to a measurement of the time-averaged density or

RDF. The fluctuations of the RDFs in various solutions are plotted in Fig. D1(b). Compared

to the RDFs, the RDF fluctuations are more sensitive to the identities of free ions. The RDF

fluctuation in NaCl is quite similar to the one in pure water, consistently with the location of

NaCl at the border between kosmotropic and chaotropic salts. For large ions (I− and Cs+),

RDF fluctuation is enhanced as compared to the case of pure water. On the other hand, small

F− is found to reduce the fluctuation of hydrophobic hydration. In addition, it is interesting to

note that the irregular behavior of Li+ is reflected in its effect on the RDF fluctuation as Li+

occupies a position between Na+ and Cs+, analogous to its position in the Hofmester order

for salting-out non-polar solutes. Therefore we find the water fluctuation in the hydrophobic

hydration shell to be a good indicator of the specific free ion effect.

Proximally immobilized ion effects in constrained simulation

In the main text we mentioned that if nano-rods are constrained in such a way that the

proximal charges are always pointing away from the hydrophobic surface, then the modulation

of hydrophobic interactions by ions follows the same order as in unconstrained simulations.

This is demonstrated in Fig. D2. It is worth pointing out that with the constraint, the contact

minimum is in general systematically deeper than in the unconstrained system. It is because

the reference state (corresponding to nano-rod being far away from the wall) is different for

the two systems: the constrained nano-rod remains oriented normal to the wall after it is
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Figure D1: water density and its fluctuation. (a) Radial distribution function (RDF) for
water oxygen around nano-rod. (b) Fluctuation in RDF for water oxygen around
nano-rod. One should note that when calculating RDF, we keep the width of
the spherical bin constant and therefore the number of atoms in each bin will
increase with distance r. This issue has been accounted for in calculations of
RDF by normalizing the data. However, RDF fluctuations will still be larger for
bins corresponding to smaller values of r (because they contain fewer particles)
and the large RDF fluctuation at r = 0.4 nm is the result of the small bin size.
The important feature in the figure is the difference in the fluctuation for different
types of ions.
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Figure D2: PMF of hydrophobic interaction between a hydrophobic wall and GA
nano-rod under constraint. The inset shows the contact minimum depth,
which is defined as the absolute value of the difference in PMF between the
contact minimum and the reference state where the nano-rod and the surface are
separated from each other.

completely detached whereas the unconstrained molecule can explore more orientations, which

increases the entropy.

Anomaly of the lithium effect

To determine the primary mechanism responsible for the lithium anomaly, we carried out

simulations of LiCl salt solution with a constraint on lithium cations such that Li+ cannot form

clusters with chloride anions. This lack of clustering is evidenced by RDF plotted in Fig D3(a).

Figure D3b shows that with the full ionic hydration shell the salting-out effect of lithium

becomes slightly stronger than in the case where lithium is allowed to cluster. However, the

salting-out effect of dissociated lithium (LiCl(R)) is still weaker than that of sodium (Fig. D3b),

and significantly weaker than that of fluoride. The structure of the PMF from the constrained

simulation (not shown here) looks very similar to one without constraint. The RDF fluctuation

is also hardly changed by the constraint, as shown in Fig D3c. Surprisingly, the depletion of

fully hydrated lithium from nano-rod is even weaker than that of clustered lithium (Fig D3d).

Such a weak depletion resembles the behavior of the large iodide. Consequently, our control

simulation with a constraint suggests that while the clustering can contribute to the anomaly

of lithium, the primary reason for this anomaly is the large effective size of this ion. Here, the
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Figure D3: Anomalous lithium effects. (a) RDF for LiCl RDFs. (b) PMF for hydrophobic
interaction. LiCl(R) means LiCl where constraints have been added to ensure
a complete dissociation of ions. (c) RDF fluctuation for peptide-water oxygen
interactions. (d) RDF for peptide-Li interactions.

effective size is large not only because of a strong first hydration shell, but also because of a

labile second hydration shell which accelerates the reorientation of water, similarly as has been

observed for large ions.


	Abstract
	Published work and work in preparation
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Abbreviations
	Introduction and motivation 
	From hydrodynamics to solvation science
	Overview of the thesis
	Bibliography

	Simulation and theoretical methods 
	Molecular dynamics simulations
	Introduction to molecular dynamics simulations
	Types of MD simulations
	Molecular models and force fields
	Potential of mean force and umbrella sampling

	Theoretical tools
	Correlation functions
	Brownian motion models
	Projection operator technique

	Bibliography

	Friction and slip at vibrational liquid-solid interfaces 
	Introduction
	Review of continuum-level models
	Simulation setup
	Results
	No-slip interface
	Static slip interface
	Dynamic slip interface

	Discussion and conclusion
	Bibliography

	Green-Kubo relation for liquid-solid friction 
	Introduction
	Theoretical model
	General strategy for the derivation of a GK relation for L-S friction
	Application of linear response theory
	Reformulation using the Generalized Langevin Equation

	MD simulation results and discussions
	Simulation test of the Generalized Langevin Equation for interfacial liquid particles
	Agreement between EMD and NEMD results
	Frequency dependent L-S friction coefficient
	Comparison to the earlier GK relation

	Concluding remarks
	Bibliography

	Effect of interfaces on the nearby Brownian motion 
	Introduction
	Simulation method
	Results
	Effect of interface on diffusivity
	Effect of interface on velocity autocorrelation function
	Relaxation of boundary condition

	Further discussion and conclusion
	Bibliography

	Comparison between free and immobilized ion effects on hydrophobic interactions 
	Introduction
	Molecular Model and Simulation Methodology
	Results and Discussion
	Hydrophobic interaction between HP nano-rod and non-polar plate
	Free ion effects
	Immobilized ion effects
	Comparison between the effects of proximally immobilized ion and soluble salts

	Concluding remarks
	Bibliography

	Summary and future directions 
	Bibliography

	Appendices
	Appendix A: Derivation of the mechanical model of vibrational liquid-solid interface at high frequencies
	Appendix B: Derivation of the extended GLE based on the projection operator approach
	Appendix C: Fittings of the near-boundary long-time tails
	Appendix D: Supporting information for spefici ion effects


