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Abstract

Estimation of population covariance matrices from samples of multivariate

data is of great importance. When the dimension of a covariance matrix is

large but the sample size is limited, it is well known that the sample covari-

ance matrix is dissatisfactory. However, the improvement of covariance

matrix estimation is not straightforward, mainly because of the constraint

of positive definiteness. This thesis work considers decomposition-based

methods to circumvent this primary difficulty. Two ways of covariance

matrix estimation with regularization on factor matrices from decom-

positions are included. One approach replies on the modified Cholesky

decomposition from Pourahmadi, and the other technique, matrix expo-

nential or matrix logarithm, is closely related to the spectral decomposi-

tion. We explore the usage of covariance matrix estimation by imposing

L1 regularization on the entries of Cholesky factor matrices, and find the

estimates from this approach are not sensitive to the orders of variables.

A given order of variables is the prerequisite in the application of the

modified Cholesky decomposition, while in practice, information on the

order of variables is often unknown. We take advantage of this property

to remove the requirement of order information, and propose an order-

invariant covariance matrix estimate by refining estimates corresponding

to different orders of variables. The refinement not only guarantees the

positive definiteness of the estimated covariance matrix, but also is ap-
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plicable in general situations without the order of variables being pre-

specified. The refined estimate can be approximated by only combining a

moderate number of representative estimates. Numerical simulations are

conducted to evaluate the performance of the proposed method in com-

parison with several other estimates. By applying the matrix exponential

technique, the problem of estimating positive definite covariance matrices

is transferred into a problem of estimating symmetric matrices. There are

close connections between covariance matrices and their logarithm matri-

ces, and thus, pursing a matrix logarithm with certain properties helps

restoring the original covariance matrix. The covariance matrix estimate

from applying L1 regularization to the entries of the matrix logarithm

is compared to some other estimates in simulation studies and real data

analysis.
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1

Introduction

Covariance matrices play an essential role in multivariate statistics, including princi-

pal components analysis, factor analysis, canonical correlation analysis, discriminant

analysis and so on. Thus, estimation of covariance matrices from samples of multi-

variate data is of great importance. The sample covariance matrix, becomes less sat-

isfactory in covariance matrix estimation when the number of variables increases. In

many applications involving gene expression, spectroscopic imaging, functional mag-

netic resonance imaging, weather forecasting and others, the variable sizes largely

override the sample sizes. In such a circumstance, the sample covariance matrix be-

comes degenerate with a distorted eigen-structure (Geman, 1980; Silverstein, 1985;

Johnstone, 2001; Pourahmadi, 2011). Therefore, it is important to explore more

appropriate covariance matrix estimation in large dimensions.

1.1 Empirical Covariance Matrix Estimation

In statistics, covariance is a measure of how two random variables change together.
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The covariance between two random variables X and Y is defined as

cov(X, Y ) = E
(
X − E(X))(Y − E(Y )

)
,

where E(X) is the expected value or expectation of X. The sign of cov(X, Y ) shows

the tendency of linear relationship between X and Y . A positive cov(X, Y ) implies

similar behaviors of X and Y . More specifically, when one variable takes greater

values, the other also takes greater values; when one takes smaller values, the other

also takes smaller values. A negative cov(X, Y ) implies opposite behaviors of X and

Y . When one variable takes greater values, the other takes smaller ones. The mag-

nitude of cov(X, Y ) measures the extent of the linear relation with the consideration

of individual variances of X and Y . If X and Y are identical, cov(X, Y ) becomes the

variance of X or Y .

In practice, cov(X, Y ) is often unknown, and needs to be estimated. With the

observations for X and Y available, say (x1, . . . , xn)T and (y1, . . . , yn)T , the sam-

ple covariance, denoted as σ̂(X, Y ) here, serves as an estimate for cov(X, Y ). It is

calculated as follows:

σ̂(X, Y ) =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ), (1.1)

where x̄ =
1

n

∑n
i=1 xi and ȳ =

1

n

∑n
i=1 yi are sample means that are used to estimate

corresponding expected values E(X) and E(Y ). In a special case with both E(X)

and E(Y ) known, σ̂(X, Y ) is calculated using

σ̂(X, Y ) =
1

n

n∑
i=1

(xi − E(X))(yi − E(Y )). (1.2)
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With the assumption of independence and identical distribution (i.i.d.) among ob-

servation points, σ̂(X, Y ) is an unbiased estimate for cov(X, Y ).

A covariance matrix Σ = (σst) is a square matrix that presents pairwise covari-

ances for a group of random variables {X1, . . . , Xp}. This group of random variables

compose a p-length random vector X = (X1, . . . , Xp)
T , and the (s, t) position of Σ is

the covariance between the s-th and t-th elements of X. That is, σst = cov(Xs, Xt),

or equivalently,

Σ = cov(X) = E
(
X − E(X))(X − E(X)T

)
.

Σ is symmetric and positive semi-definite. The diagonal entries of Σ give the variances

of individual random variables.

Since individual sample covariances can be used to estimate individual covari-

ances, a matrix which consists of sample covariances could be used to estimate the

covariance matrix. This provides an empirical covariance matrix estimation, and the

estimate is the sample covariance matrix. Let σ̂st = σ̂(Xs, Xt) from (1.1) or (1.2), and

the sample covariance matrix is S = (σ̂st). Without loss of generality, the assumption

of E(X) = 0 holds throughout this thesis. Thus,

Σ = E XXT , and S =
1

n

n∑
i=1

xixi
T ,

where xi represents the i-th observation for the random vector X.

The properties of the sample covariance matrix S have been extensively studied.

With i.i.d. observations, S is an unbiased estimate for Σ. If the sample is from

a multivariate normal distribution with zero mean, the resulting S is the maximum

likelihood estimate for Σ, and nS follows the (central) Wishart distribution (Wishart,
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1928). Constantine (1963) rewrites the distribution of S in terms of a hypergeometric

function of matrix argument.

As a special case of random matrices, the sample covariance matrix S is also

widely studied from the perspective of spectral analysis, i.e., the distribution of its

eigenvalues {λ1, . . . , λp}. The empirical distribution of eigenvalues is defined as fol-

lows:

F (t;n, p) =
1

p

p∑
i=1

1{λi≤t}.

Marčenko and Pastur (1967) achieve a great advancement about the limiting distri-

bution of F (t;n, p) under a simple but important circumstance. Their result states

if both the sample size n and the variable size p proportionally grow to infinity such

that lim
p

n
= c for some positive c > 0 and all the variables Xk’s are i.i.d. with mean

zero and variance σ2, then F (t;n, p) converges to the so-called Marčenko-Pastur dis-

tribution with the density function

g(t) =
1

2πσ2ct

√
(b− t)(t− a), a ≤ t ≤ b, (1.3)

with a = σ2(1−
√
c)2 and b = σ2(1 +

√
c)2. The distribution has a point mass 1− 1

c

if c > 1. This fundamental result describes how the eigenvalues of the empirical sam-

ple covariance matrix deviate from the expected ones under in a common situation.

Wachter (1978), Jonsson (1982) and Yin (1986) further explore the asymptotic prop-

erties of the empirical distribution of eigenvalues in similar conditions. Assuming a

matrix with extra independent variables, Silverstein (1995) achieves a convergence in

distribution about the empirical distribution of eigenvalues for the product matrix.

Through an equation defining its Stieltjes transform, Silverstein and Choi (1995) dis-
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cover certain analytical properties of the limiting distribution for F (t;n, p) such as

the limiting distribution has a continuous derivative away from zero.

Another branch of research is to study the largest eigenvalue λmax and the smallest

eigenvalue λmin of the sample covariance matrix. Through developing an almost

sure limit for the operator norm of a class of rectangular random matrices, Geman

(1980) achieves the limiting distribution of the largest eigenvalue λmax of the sample

covariance matrix S with the i.i.d observation setting for all Xk’s, k = 1, . . . , p. Under

the condition

E|X1|n ≤ nαn for all n ≥ 3 and some α > 0,

the statement deduced from Geman’s work gives

λmax → σ2(1 +
√
c)2, a.s., (1.4)

where c is the asymptotic ratio of p and n, consistent with the previous definition.

Jonsson (1982) obtains the same convergence under E|X1|7 < ∞, and Silverstein

(1984) further weakens the condition to E|X1|6+ε < ∞ for any small ε. Yin et al.

(1988) prove that (1.4) still holds under E|X1|4 <∞, and Bai et al. (1988) complete

this procedure by showing that the fourth moment can not be further weakened.

Starting with normal distribution and 0 < c < 1, Silverstein (1985) shows that

if Xk ∼ N(0, σ2), 1 ≤ k ≤ p, are independent, the smallest eigenvalue λmin of the

sample covariance matrix S has a similar asymptotic property:

λmin → σ2(1−
√
c)2, a.s.. (1.5)

Bai and Yin (1993) prove that (1.5) still holds without the normality assumption, as
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long as the fourth moment of variables are finite.

(1.4) and (1.5) state that when the true covariance matrix is an identity matrix and

the original variables have finite fourth moment, λmax and λmin in the corresponding

sample covariance matrix converges almost surely to the respective boundaries of the

support of the Marčenko-Pastur distribution.

The further achievement about λmax comes from Johnstone (2001) based on the

development of Tracy-Widom distribution. By studying the limiting law of the largest

eigenvalue of a square Gaussian symmetric matrix, Tracy and Widom (1994, 1996)

develop the so-called Tracy-Widom distribution. The cumulative distribution has a

form of

F (y) = exp
(
−
∫ ∞
y

(x− y) q2(x) dx
)
,

where function q(·) solves the nonlinear Painlevé II differential equation (Painleve,

1902),

d2

dx2
q(x) = x q(x) + 2 q3(x).

With assumption of independent Xk ∼ N(0, 1), 1 ≤ k ≤ p, Johnstone presents the

variability information for the convergence of λmax, and the asymptotic distribution of

the re-scaled largest eigenvalue of the sample covariance matrix follows Tracy-Widom

distribution, a more delicate result compared with (1.4).

1.2 Challenges from High Dimensional Data

Covariance matrices play an important role in statistical inference. In recent years,

areas of statistical learning dealing with massive and high-dimensional data have

been growing rapidly. In such areas, while the number of features or variables are
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dramatically high, the number of sample points are rather limited. One of the most

influential areas among them deals with gene expression data. Gene expression is the

most fundamental level where the genotype of an organism gives rise to the pheno-

type, and usually is achieved through genome-wide approaches such as microarrays

and RNA sequencing. Not surprisingly, the genome-wide approaches accompany a

large amount of features or variables. For instance, in a normal DNA microarray,

every gene is supposed to have a expression value, which means over 30,000 variables

get involved. Other types of gene expression data, such as data sets from exon array,

tiling array, single nucleotide polymorphism (SNP) array, have even larger scale of

variable dimensions. Functional magnetic resonance imaging (fMRI) is another area

flooded with high-dimensional data. By measuring brain activity through detecting

associated changes in blood flow, fMRI is a neuro-imaging technology that does not

require medicine injection or radiation exposure, and thus, has dominated the medical

diagnosis of brain imaging. When each brain image supplies huge amount of vari-

able values, the number of images is quite small. In spectroscopic imaging, weather

forecasting and so many other areas, there are more and more high-dimensional data

emerging.

Estimation of the covariance matrix in such areas encounters a new challenge that

the samples sizes are much smaller compared with the number of variables where

the number of parameters grows quadratically in terms of the number of variables.

As summarized by Pourahmadi (2011), the sample covariance matrix, based on a

sample of size n from a mean zero normal population with the covariance matrix

Σ, is not a satisfactory estimator when the ratio
p

n
goes large. Applying (1.4), one



8

can see λmax goes in the same order of the ratio
p

n
even when the true λmax should

be constant. In the studies involving high-dimensional data, the sample covariance

matrix systematically distorts the eigen-structure of Σ, making the the largest sample

eigenvalues upward biased and the smallest sample eigenvalues downward biased.

This phenomenon explains the motivation of efforts for developing more appropriate

covariance matrix estimation in high-dimensional statistical studies.

1.3 Development of Covariance Matrix Estimation

While the distorted eigen-structure of the sample covariance matrix S become a

common issue, especially when the sample size is less than the number of variables,

the development of covariance matrix estimation never ceases to advance. Here we

roughly introduce four groups of methods: (1) Stein-type shrinkage estimation; (2)

estimation from regularizing the sample covariance matrix; (3) regularized covariance

matrix estimation; (4) decomposition-based estimation with regularization.

1.3.1 Stein-type Shrinkage Estimation

An early achievement of covariance matrix estimation should be attributed, at least

partially, to the practice of ridge regression (Hoerl and Kennard, 1970). Somehow,

the resultant covariance matrix estimate is Stein-type, though there is no shrinkage.

One may argue that ridge regression is developed in a totally different domain, and

the motivation is to improve ordinary least squares in fitting linear regressions. How-

ever, in its implementation of imposing L2 penalty on the regression coefficients, the

treatment is equivalent to adding small positive quantities to the diagonal entries of
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∑n
i=1 xixi

T . If the data are centered first to remove the intercept in the regression,

we have
∑n

i=1 xixi
T = nS, so this treatment supplies a covariance matrix estimate

in the form of

Σ̂ = S + η Ip , (1.6)

where η corresponds to the added quantities, and Ip is the p-dimensional identity

matrix. This strategy is straightforward, and practically useful especially when the

original S is singular. Although the development of ridge regression does not have a

focus on improving covariance matrix estimation, it is a pioneer in providing standard

procedures to improve S. Through adding small quantities to the diagonal entries

of S, the underestimated small eigenvalues of S are increased. On the other hand,

because adding quantities to the diagonal entries further enlarge the eigenvalues, the

distortion of largest eigenvalues of S gets worse.

An important event in the development of covariance matrix estimation is Stein’s

Rietz lecture (Stein, 1975), where he brings up the issues of improving the sample

covariance matrix and provides many useful recommendations. Since then, many

people explore the problem within the framework of Stein’s estimation by shrinking

S. Among them, one of the most ambitious estimate is from Haff (1980), which has

the form of

Σ̂ = aS + u · t(u)C. (1.7)

a is a constant number; C could be any arbitrary positive definite matrix; u is de-

termined by S and C, and t(·) is any non-increasing function. While the motivation

aims high, the setting involving the arbitrary C and t(·) increases its complexity and
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decreases its feasibility. Important results are achieved with t(·) ≡ 0, which reduces

the form into aS. a is determined by the choice of loss functions. Denote Σ̂ for an

estimate of Σ. When the data are i.i.d from normal distribution with mean 0 and

covariance matrix Σ, Haff shows that if the loss function is entropy loss which is

defined as

entropy loss = tr(Σ−1Σ̂)− log |Σ−1Σ̂| − p, (1.8)

the resultant a is equal to 1. A general choice of the loss function does not correspond

to a close-form a. Through numerical investigations, Lin and Perlman (1985) and

(Haff, 1991) suggest that Haff’s estimate adequately shrinks the eigen-values of S,

even though the theoretical result about its accuracy is quite limited. They also

notice that the eigenvalues of such an estimate could be over-shrank. Meanwhile,

because the distortion of eigenvalues of S is not in the same direction, shrinking the

eigenvalues through Σ̂ = aS with a < 1 further underestimates the small eigenvalues.

Based on (1.6) and (1.7), it seems natural to investigate potential estimate for the

covariance matrix in the form of

aS + η Ip , (1.9)

especially when this form carries the possibility of simultaneously decreasing the large

eigenvalues and increasing the small eigenvalues of S. Such a form is used by Efron

and Morris (1976) to estimate an inverse covariance matrix. A delicate covariance

matrix estimate in this form is used in discriminant analysis by Friedman (1989), but

there is no optimality analysis for the choice of a and η. It is Ledoit and Wolf (2004)

that first systematically investigate the covariance matrix estimate in the form of
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(1.9). The very important strategy of Ledoit and Wolf is that they adopt the usage

of Frobenius norm, which could be used to define an inner product. Projection in

the defined inner product space brings their estimate. Equivalently, they rewrite the

form (1.9) using

Σ̂LW = (1− ρ)S + ρ ν Ip, (1.10)

and estimate the parameters through

min
ρ,ν

E
{
||Σ̂LW − Σ||2F

}
.

‖ · ‖F represents Frobenius norm (F norm). The F norm of a matrix A = (ast) is

denoted by ||A||F , which is defined as follows:

||A||F =

√∑
s

∑
t

a2
st . (1.11)

The most convenient part is that Ledoit and Wolf present closed-form estimates for

ρ and ν in simple formula, which greatly speeds up the acceptance of this approach.

The eigenvalues of Σ̂LW are weighted averages of the ones from the sample covariance

matrix and the identity matrix. In practice, the largest eigenvalues of Σ̂LW are better

controlled, while the smallest eigenvalues of the estimate are often exaggerated.

1.3.2 Estimation from Regularizing Sample Covariance Ma-

trix

Different from shrinking the sample covariance matrix towards some pre-specified

positive definite matrix, a group of methods achieve covariance matrix estimates by

regularizing the entries of the sample covariance matrix. Bickel and Levina (2008b)
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consider thresholding small entries of the sample covariance matrix to zeros. Dealing

with covariance matrices with banded structures, Bickel and Levina (2008a) consider

banding the sample covariance matrix through only keeping entries in the diagonal

and certain sub-diagonals non-zeros. Where these methods are easy to implement and

have nice asymptotic properties, one drawback is that they can not guarantee the pos-

itive definiteness of the estimated covariance matrix. In statistical inference, positive

definiteness is a desirable property for a covariance matrix estimate. Many applica-

tions including evaluating the likelihood of multivariate normal data and measuring

the variance proportion in applying principal components analysis (PCA) require

positive definite covariance matrices.

1.3.3 Regularized Covariance Matrix Estimation

To pursue improved covariance matrix estimate with guaranteed positive definiteness,

one perspective is to apply regularization on the covariance entries while treating them

as parameters. Such a strategy usually requires sophisticated optimization techniques

in order to meet the positive definiteness. Bien and Tibshirani (2011) propose an

estimate through optimizing the L1 penalized log-likelihood using a majorization-

minimization (Hunter and Lange, 2000) technique. An alternative direction algorithm

is used by Liu et al. (2013) when they add an eigenvalue constraint to the employment

of thresholding methods. Such sophisticated optimization often involves intensive

computation and convergence issue.
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1.3.4 Decomposition-based Estimation with Regularization

Another perspective of improving covariance matrix estimates with guaranteed posi-

tive definiteness is not to directly regularizing the covariance entries. Rather, through

appropriate matrix decomposition, the regularization could be placed on the entries

of the factor matrices instead of on the original covariance entries. Therefore, the

constraint of positive definiteness is circumvented. We follow the direction in this

thesis. More specifically, two ways of reparameterization for the covariance matrix

are considered. One is associated with the modified Cholesky decomposition, and

the other one, using matrix exponential, or equivalently, using matrix logarithm, is

associated with the spectral decomposition.

The modified Cholesky decomposition from Pourahmadi (1999) is a widely-used

tool in dealing with covariance matrices. The sequential regressions in accordance

with the modified Cholesky decomposition provide an unconstrained reparameteriza-

tion of the covariance matrix, and regularization can be easily applied to the Cholesky

factor matrix for it is equivalent to regularizing the coefficients of the linear regres-

sions. Incorporating the advantages of Bickel and Levina’s banding idea, Rothman

et al. (2010) proposed banding the Cholesky factor matrix of the covariance matrix

so that the estimated covariance matrix is always positive definite. The covariance

matrix estimation through regularizing the Cholesky factor matrix is not necessarily

limited to the scenarios in which the covariance matrices are banded. We employ the

L1 regularization on the Cholesky factor matrix to estimate the covariance matrix in a

more general situation where particular assumption of the matrix structure is not nec-

essary. Besides that, unlike the approach of banding the Cholesky factor matrix using
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ordinary least squares, the covariance matrix estimation through employing L1 regu-

larization on the Cholesky factor matrix does not suffer the constraint of insufficient

sample points. More importantly, we find that the estimate from L1 regularization is

not sensitive towards the order of variables. One prerequisite condition of using the

modified Cholesky decomposition is the order information of variables. Often, such

information is not available, or can not be reasonably assumed. Weakening or even

getting rid of this requirement can greatly broaden the usage of this technique. In

summary, Cholesky-based estimate from regularizing the Cholesky factor matrix has

its own features and advantages.

The idea of applying spectral decomposition to improve the covariance matrix

estimation has a straightforward starting point. Since the sample eigenvalues of S

tend to spread out compared with the ones of the true covariance matrix, a straight-

forward way to deal with it is directly working on the eigenvalues of S. Suppose the

sample covariance matrix has a spectral decomposition as follows:

S = RΛRT , (1.12)

where R is the matrix of normalized eigenvectors (RRT = RTR = Ip), Λ is the

diagonal matrix of corresponding eigenvalues with λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. In Stein’s

Rietz lecture (Stein, 1975), he proposes estimates in the form of

S = Rϕ(Λ)RT , (1.13)

where ϕ(Λ) = diag
{
ϕ1(λ1, . . . , λp), . . . , ϕp(λ1, . . . , λp)

}
. Stein provides a few sugges-

tions for ϕ(·), and there is further discussion along this line (Dey and Srinivasan,
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1985). Although the guideline of selecting ϕ(·) is obvious that the large eigenvalues

should be shrank while the small ones should be expanded, there is no clear optimal

choice for ϕ(·), partly because the domain of the function is so large and behavior

of eigenvalues varies so greatly along with the change of covariance matrix structure

and the increase of matrix dimension.

Other than proposing an explicit function to control the eigenvalues, similar effect

can be achieved differently. A technique called matrix exponential, or its inverse form,

matrix logarithm, helps to implement this purpose in an implicit way. Because the

sum of logarithms of eigenvalues of original covariance matrix is equal to the squared

F norm of its matrix logarithm, Deng and Tsui (2013) propose optimizing a penalized

log-likelihood, where the penalty controls the largest and smallest eigenvalues simul-

taneously. So the unknown part is changed from a function difficult to determine to

be a tuning parameter which is achievable with data-driven methods. Besides the

eigenvalue connection, there are more direct structure connection. If a covariance

matrix has a banded structure, its matrix logarithm has a banded structure; if a co-

variance matrix has a block diagonal structure, its matrix logarithm also has a block

diagonal structure. While the constraint of positive definiteness does not exist for

the matrix logarithm, the approach that restores its structure and transfers it back

to the covariance matrix, is often easier than directly restoring the structure of the

covariance matrix, especially when the restore is conducted through the application

of certain regularization.

With the belief that applying regularization on the factor matrices from matrix

decompositions rather than directly on the covariance matrix has its own advantages,
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we work in such a direction. In this thesis, the modified Cholesky decomposition and

matrix exponential technique based on spectral decomposition are mainly consid-

ered. That’s where the title “Large Dimensional Covariance Matrix Estimation with

Decomposition-based Regularization” comes from.
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2

Two Reparametrizations of

Covariance Matrix

While approaches of regularizing covariance matrix entries are expected to produce

improved covariance matrix estimation, the obstacle of positive-definiteness con-

straint from the covariance matrix stands in the way. To circumvent the encum-

brance, this thesis work applies regularization on the entries of factor matrices from

decomposing the covariance matrix so that the parameters are released from the

positive-definiteness restriction. This chapter covers the basics of the two decompo-

sitions used later as well as two reparametrizations for the covariance matrix to be

estimated.

2.1 Reparametrization using Modified Cholesky De-

composition

In the study of joint mean-covariance modeling, Pourahmadi (1999) provides uncon-

strained parameterization for a covariance matrix. In the further decomposition of

the Cholesky factor matrix from the traditional Cholesky decomposition into a unit
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lower triangle and a unique diagonal matrix, Pourahmadi shows the entries of the

unit lower triangular are unconstrained and have meanings as regression coefficients

when regressing a measurement on its predecessors, while the non-zero entries of the

diagonal matrix correspond to the prediction standard deviations.

Pourahmadi’s work of the regression-based Cholesky decomposition builds a bridge

connecting covariance matrix estimation and regression analysis. Not only the decom-

position provides an unconstrained and statistically interpretable reparameterization

and guarantees the positive-definiteness of the estimated covariance matrix, but also

many developed techniques in regression analysis can be applied. The regression-

based Cholesky decomposition is referred as the modified Cholesky decomposition

throughout this thesis, and is explained in details next.

2.1.1 Modified Cholesky Decomposition

Discovered by French military officer André-Louis Cholesky and named after him,

the Cholesky decomposition is a decomposition of a positive definite matrix into the

product of a lower triangular matrix and its (conjugate) transpose as follows:

Σ = CCT ,

where C = (cij) is a lower triangular matrix with positive diagonal entries. When

Σ is only positive semi-definite, there are many forms of Σ = CCT for C may have

different forms. When Σ is positive definite, the Cholesky decomposition is unique,

and the lower matrix C is often referred as the Cholesky factor matrix of Σ.

The Cholesky decomposition is extensively applicable in a wide filed. One of the
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most popular ways of simulating multivariate normal distribution data with a known

covariance matrix is to multiplying its Cholesky factor matrix with the independently

distributed normal data, which are directly available in majority statistical softwares.

The primary usage of the Cholesky decomposition is to solve a system of linear equa-

tions Ax = b, where A is the coefficient matrix and x is the variable vector. With a

lower triangular matrix L or a upper triangular matrix U , a linear system in the form

Lx = b or Ux = b is straightforward to solve by an iterative process, called forward

substitution for the lower triangular matrix case and back substitution for the upper

triangular matrix case. Therefore, to solve a general linear system Ax = b, it is usu-

ally to decompose the coefficient matrix A first into a product of a lower triangular

matrix and a upper triangular matrix, A = LU , so called LU decomposition. As a

special situation, linear systems with positive definite A arise often in applications,

such as in solving linear regressions using ordinary least squares. When A is a positive

definite matrix, it is possible that U is the (conjugate) transpose of L, which is the

Cholesky decomposition. While computing the Cholesky decomposition is numeri-

cally more stable and more efficient than computing some other LU decompositions,

and the decomposition always exists and is unique, applying Cholesky decomposition

becomes the routine in solving linear systems when the coefficient matrix is positive

definite. Because of that, the Cholesky decomposition is widely used in many opti-

mization algorithms. For instance, in Newton-Raphson method, each iteration needs

to solve a linear system with an approximate Hessian matrix as the coefficient ma-

trix. While the approximate Hessian matrix is often numerically ill-conditioned (the

condition number is high, or the output value from multiplying this matrix changes
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much for a small change in the input variable vector), application of the Cholesky

decomposition of the approximate Hessian matrix is preferred than approximating

the inverse of the Hessian matrix.

Pourahmadi discovers another relationship between the Cholesky decomposition

and the inverse matrix through changing the original Cholesky factor matrix into a

unit lower triangular matrix. Define the diagonal matrix

D = diag(c11, c22, . . . , cpp),

the decomposition of Σ can be rewritten as

Σ = CCT = CD−1DDD−1CT = LD2LT , (2.1)

where L = CD−1 is a unit lower triangular matrix. L can be extracted directly from

C, and from now on, we also call L as the Cholesky factor matrix of Σ.

While the modification is trivial and has been used ever since the beginning of

the Cholesky decomposition, Pourahmadi points out the statistical interpretation of

the modified decomposition.

2.1.2 Representation of Sequential Regressions

The importance of obtaining a unit lower triangular matrix is to connect Σ with

linear regression techniques. Let X = (X1, . . . , Xp)
T be a random vector with mean

zero and the positive-definite covariance matrix Σ. The auto-regression predictor of

Xj based on previous {X1, . . . , Xj−1} is denoted by X̂j. The residual is Ej = Xj−X̂j

with variance σ2
j for j = 1, . . . , p, and the residual vector is E = (E1, . . . , Ep)

T . For
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j = 1, we set X̂1 = E(X1) = 0 and thus E1 = X1; for 1 < j ≤ p, there are unique

coefficients φkj satisfying

Xj =
∑
k<j

φjkXk + Ej, j = 2, . . . , p. (2.2)

Let Φ be the lower matrix with entries φjk, 1 ≤ k < j ≤ p and other entries zeros,

and Ip be the p× p identity matrix. (2.2) can be rewritten as

(Ip − Φ)X = E. (2.3)

Based on regression techniques, it can be shown Ej is in the linear space spanned

by {X1, . . . , Xj} but perpendicular to the sub-space spanned by {X1, . . . , Xj−1}, and

hence, the residuals are uncorrelated. Computing the variance of the both sides of

(2.3) gives

(Ip − Φ) Σ (Ip − Φ)T = diag(σ2
1, . . . , σ

2
p), (2.4)

and (2.4) gives the expression of the covariance matrix as follows:

Σ = (Ip − Φ)−1 diag(σ2
1, . . . , σ

2
p) {(Ip − Φ)−1}T . (2.5)

Note Φ is a lower triangular matrix with diagonal entries zeros, and (Ip − Φ) is a

unit lower triangular matrix. Because the inverse matrix of a unit lower triangular

matrix is still a unit lower triangular matrix, the form of (2.5) matches the modified

Cholesky decomposition formula (2.1). Correspondingly,

L = (Ip − Φ)−1 and D = diag(σ1, . . . , σp). (2.6)

For the parameters of φjk’s and σj’s are all achievable through linear regressions, the
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modified Cholesky decomposition of a covariance matrix provides a reparameteriza-

tion of the covariance matrix by associating the covariance covariates with sequential

regression coefficients. Unlike the original covariance entries of Σ, which should func-

tion together to make the whole matrix positive definite, φjk’s and σj’s don’t have

such constraints. As long as σj’s are non-zeros, the parameters are free to vary. The

release of positive definiteness accompanies great potential in further applications

using the representation from sequential regressions.

The representation has been connected to the computation of likelihood for mul-

tivariate normal data. Assume the sample size is n. Then, each observation is a

p-length vector, denoted by xi, 1 ≤ i ≤ n, and the data matrix is X = (x1, . . . ,xn)T ,

a n×p matrix. When the data are from a multivariate normal population with mean

zero and covariance matrix Σ, we have the likelihood function

likelihood =
n∏
i=1

f(xi) =
{ 1

(2π)p/2|Σ|1/2
}n

exp{−1

2

n∑
i=1

xTi Σ−1xi},

and the log-likelihood function

log-likelihood = − np
2

log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

xTi Σ−1xi.

Recall Σ = (Ip−Φ)−1 D2 {(Ip−Φ)−1}T and Σ−1 = (Ip−Φ)TD−2(Ip−Φ). For Φ is a

lower triangular matrix with diagonal entries zeros, (Ip−Φ) is a unit lower triangular

matrix, and so is (Ip − Φ)−1. Hence, |(Ip − Φ)−1| = 1 and |Σ| = |D2|.

Thus, the log-likelihood has a form as follows:

log-likelihood = − np
2

log(2π)− n

2
log |D2| − 1

2

n∑
i=1

(
(Ip − Φ)xi

)T
D−2

(
(Ip − Φ)xi

)
.
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For D = diag(σ1, . . . , σp), we have

−2× log-likelihood = np log(2π) +n

p∑
j=1

log σ2
j +

n∑
i=1

p∑
j=1

(xij −
∑

k<j φjkxik)
2

σ2
j

, (2.7)

where xij represents the j-th component of the xi.

While the appearance of φjk’s and σj’s would shape Σ−1 and impact Σ, the refor-

mulation (2.7) supplies a platform for potential treatments for φjk’s and σj’s so that

Σ−1 as well as Σ can be indirectly adjusted. In contrast, directly manipulating the

entries of Σ−1 might damage its structure. In the work of Huang et al. (2006), L1

regularization of LASSO type penalty (Tibshirani, 1996) on φjk’s has been applied so

that Σ−1 has parsimonious properties. With focus on Σ−1 that has a banded struc-

ture, Levina et al. (2008) propose a modified version of L1 regularization, so called

Nested LASSO, to select the bandwidth of Σ−1 adaptively by setting φjk = 0 for

k < K(j), where the cutoff K(j) depends on j.

Besides the reparameterization for Σ−1, the reparameterization for Σ is also cov-

ered through sequential regressions. Combining (2.3) and (2.6), we have

X = LE.

Using the entries of L, i.e. ljk’s, the individual regressions can be written as follows:

Xj =
∑
k<j

ljkEk + Ej, j = 2, . . . , p. (2.8)

The set of regressions (2.8) can be viewed as one form of Schmidt decomposition

(see Horn and Johnson, 2012). Thus, a procedure as the Gram-Schmidt process of

orthogonalizing the data into p orthogonal vectors of Euclidean space Rn becomes
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applicable. Unlike (2.2), where individual regressions do not depend on each other,

the implementation of such a procedure needs to be performed in a sequential manner.

These sequential regressions of (2.8) gives the representation of the covariance matrix.

We would like to see how the procedure works under a usual situation. If the

sample covariance matrix S = 1
n

∑n
i=1 xixi

T is non-singular, it is relatively straight-

forward to show the least squares estimates l̂jk from sequentially regressing Xj on Ek,

1 ≤ k < j, together with the corresponding estimates of σ̂j’s from sample variances

of Ej, 1 ≤ j ≤ p, would restore the sample covariance matrix. Denote εij for the

realized Ej from i-th observation. Below we show the estimated covariance matrix

from sequential regressions is consistent as the sample covariance matrix.

X1 = E1 ⇒ εi1 = xi1, 1 ≤ i ≤ n, σ̂2
1 =

1

n

n∑
i=1

ε2
i1

X2 = l21E1 + E2 ⇒


l̂21 =

∑n
i=1 xi2εi1∑n
i=1 ε

2
i1

, εi2 = xi2 − l̂21εi1, 1 ≤ i ≤ n

σ̂2
2 =

1

n

n∑
i=1

ε2
i2,

n∑
i=1

εi2εi1 = 0

X3 = l31E1 + l32E2 + E3 ⇒



l̂31 =

∑n
i=1 xi3εi1∑n
i=1 ε

2
i1

, l̂32 =

∑n
i=1 xi3εi2∑n
i=1 ε

2
i2

εi3 = xi3 − l̂31εi1 − l̂32εi2, 1 ≤ i ≤ n

σ̂2
3 =

1

n

n∑
i=1

ε2
i3,

n∑
i=1

εi3εi1 = 0,
n∑
i=1

εi3εi2 = 0

· · ·

Xj =
∑
k<j

ljkEk+Ej ⇒



l̂j1 =

∑n
i=1 xijεi1∑n
i=1 ε

2
i1

, . . . , l̂jk =

∑n
i=1 xijεik∑n
i=1 ε

2
ik

, . . . , l̂j,j−1 =

∑n
i=1 xijεi,j−1∑n
i=1 ε

2
i,j−1

εij = xij −
∑
k<j

l̂jkεik, 1 ≤ i ≤ n

σ̂2
j =

1

n

n∑
i=1

ε2
ij,

n∑
i=1

εijεi1 = 0, . . . ,
n∑
i=1

εijεi,j−1 = 0
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Therefore, the (s, t) entry of the covariance matrix estimate from the sequential

regression process is

(Σ̂)st = (L̂D̂2L̂T )st =

min(s,t)∑
u=1

l̂sul̂tuσ̂
2
u (l̂uu = 1).

Meanwhile,

xis =
s∑

u=1

l̂suεiu (l̂uu = 1), 1 ≤ i ≤ n,

xit =
t∑

v=1

l̂tvεiv (l̂vv = 1), 1 ≤ i ≤ n,

and the (s, t) entry of the sample covariance matrix is

(S)st =
1

n

n∑
i=1

xisxit =
1

n

n∑
i=1

( s∑
u=1

l̂suεiu
)( t∑

v=1

l̂tvεiv
)

=
1

n

s∑
u=1

t∑
v=1

l̂sul̂tv
( n∑
i=1

εiuεiv
)

=

min(s,t)∑
u=1

l̂sul̂tuσ̂
2
u (l̂uu = 1).

The last equality holds because of

n∑
i=1

εiuεiv =


nσ2

u u = v;

0 u 6= v.

Thus, we’ve obtained the consistency

S = L̂ diag(σ̂2
1, . . . , σ̂

2
p) L̂

T .

The importance of adopting the representation for the covariance matrix using se-

quential regressions is to free the parameters from the positive definiteness constraint,
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so that potential regularization leading to improved estimates can be applied, just

as in the estimation of inverse covariance matrices (Huang et al., 2006; Levina et al.,

2008).

2.2 Reparametrization using Matrix Exponential

The essence of decomposition-based covariance matrix estimation is through the ap-

plication of possible matrix decomposition, the parameters can be set free from the

constraint of positive definiteness and potential regularization aiming to improve the

estimation can be adopted. While the Cholesky decomposition is one of the most

popular matrix decompositions, the spectral decomposition is also widely used. Some-

how the regularization on matrix factor matrices from the spectral decomposition is

not evident, and the matrix exponential technique closely related to the spectral

decomposition helps filling the gap.

2.2.1 Matrix Exponential and Spectral Decomposition

The matrix exponential is a matrix function correspondent to the ordinary expo-

nential function. Analogous to the Taylor expansion for the ordinary exponential

function at the zero point, the exponential of a real or complex p × p matrix A,

denoted by eA or exp(A), is the p× p matrix given by the power series

eA =
∞∑
k=0

1

k!
Ak, (2.9)

where A0 equals the p× p identity matrix, and Ak denotes ordinary matrix multipli-

cation of A for k times. The power series always converges, so the matrix exponential



27

of A is well-defined. Denote A = log(eA) if A satisfies the definition of (2.9), and it

is called the matrix logarithm of eA.

For the definition involves matrix multiplication, the entries of eA usually are not

equal to the exponential of entries of A. Taking a special case for instance, when A is

a diagonal matrix and the diagonal entries are a11, . . . , app, we write the exponential

of A as

eA =


ea11

ea22 0
. . .

0
. . .

eapp

 , rather than


ea11

ea22 1
. . .

1
. . .

eapp

 .

The matrix on the right hand side has entries equal to the exponential of the entries

of A.

One of the motivations of developing matrix exponential is that it helps solving

systems of linear differential equations. In Chapter 5, we use one matrix exponential

equality (5.7) intensively, and the equality is also deduced in solving linear differential

equations.

From the definition (2.9), A and eA always commute, i.e. A eA = eAA. If they are

diagonalizable, they are simultaneously diagonalizable (see Horn and Johnson, 2012).

A common approach of diagonalization is through the spectral decomposition. The

spectral decomposition is the factorization of a diagonalizable matrix B using its

eigenvalues and eigenvectors, such as

B = Γ Λ Γ−1,

where Γ is the square matrix whose columns are the normalized eigenvectors of B and
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Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues.

As a special case, if B is a real symmetric matrix, the eigenvectors can be chosen to

be orthonormal, and thus,

Γ−1 = ΓT and B = Γ Λ ΓT .

Therefore, with a real symmetric A, its exponential matrix eA is also symmetric, and

they can be diagonalized under the same set of eigenvectors.

2.2.2 Covariance Matrix in Matrix Exponential

In this presentation, we put our focus on positive definite covariance matrices and use

Σ = eA to build the connection between a covariance matrix and its matrix logarithm.

In such a circumstance, eA is a positive definite matrix and the diagonalization is

shown below,

eA = Γ Λ ΓT ,

where Γ takes the eigenvectors of Σ as columns and Λ takes the eigenvalues {λ1, . . . , λp}

of Σ as its diagonal elements. All λj’s are positive, 1 ≤ j ≤ p, because of the positive

definiteness of Σ. With the definition of (2.9) and ΓT = Γ−1, it is straightforward to

show

log(Λ) =

log(λ1)
. . .

log(λp)

 , and A = log(Σ) = Γ log(Λ) ΓT . (2.10)

Result (2.10) is trivial, but the converse is not. A lemma from Chiu et al. (1996)

states that for any symmetric matrixA, its exponential eA is a positive definite matrix.

Recall the motivation of the decomposition-based covariance matrix estimation, and
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we can tell the statement from Chiu et al. (1996) provides an alternative way of

modeling the positive definite covariance matrix Σ through a potential symmetric

matrix log(Σ) while the lower entries of log(Σ) are free of constraints. Potential

regularization on log(Σ) indirectly shapes the covariance matrix estimate itself while

maintaining its positive definiteness, and connections between log(Σ) and Σ supports

this thinking. For instance, if Σ has a diagonal block structure, so does log(Σ) since

they share the eigen-space. However, retrieving a diagonal block covariance matrix

indirectly through a symmetric block matrix whose lower entries are free is much

safer than retrieving the covariance matrix from direct approaches like trimming the

sample covariance matrix.

There are a few other properties of matrix exponential that would be useful in

covariance matrix modeling, and we list some of them here in advance.

• log |Σ| = tr
(

log(Σ)
)

where tr(·) denotes the trace of a matrix.

• Σ−1 = e−A if eA = Σ.

• For any p× p orthnormal matrix Q, log(QΣQT ) = Q log(Σ)QT .
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3

Regularized Estimation using

Modified Cholesky Decomposition

Pourahmadi (1999) discovers that regression-based Cholesky decomposition provides

an unconstrained and statistically interpretable reparameterization for a covariance

matrix, and guarantees positive definiteness of its estimate based on the decompo-

sition. Along this line of thought, Wu and Pourahmadi (2003) use the modified

Cholesky decomposition of the covariance matrix in longitudinal data analysis and

Huang et al. (2006) propose to impose L1 or L2 penalty on the entries of the Cholesky

factor matrix for the inverse covariance matrix. From another point of view, Bickel

and Levina (2008a) consider the banding structure of covariance matrices, and de-

velop an approach of banding sample covariance matrices. In spite of the convenient

usage and nice theoretical properties, there is one drawback of this approach that

the banded matrix estimate is not necessarily positive definite. In order to address

this issue, Rothman et al. (2010) combine the advantages from both the modified

Cholesky decompsoition and the banding idea, and consider banding the Cholesky

factor matrix of the covariance matrix rather than directly banding the sample covari-
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ance matrix. Application of L1 penalty as well as the Nested LASSO penalty (Levina

et al., 2008) on the Cholesky factor matrix has also been mentioned by Rothman et al.

(2010), but they do not explore the possible usage of such regularization in general

situations other than the special scenarios in which covariance matrices have banded

structures.

The banding assumption is rather strong and limits the usage of covariance matrix

estimation through regularizing the Cholesky factor matrix. There are more general

situations in which covariance structures are not banded. Meanwhile, because or-

dinary least squares technique is used by Rothman et al. (2010) to determine the

width of the band in the Cholesky factor matrix, the band could be overly narrow

if there are not enough sample points. In contrast, L1 regularization does not suffer

as much as using the ordinary least squares from insufficient sample observations. In

addition to the general feasibility of L1 regularization for estimating covariance ma-

trices without assuming particular structures, we choose to impose L1 regularization

on the Cholesky factor matrices in order to pursue parsimonious covariance matrix

estimates in general situations.

For completeness, we revisit the work of Rothman et al. (2010) before we investi-

gate the performance of applying L1 regularization in general cases.

3.1 Covariance Matrix Estimation via Banding Reg-

ularization

Let X = (X1, . . . , Xp)
T be a random vector with mean zero and a positive def-

inite covariance matrix Σ. {x1, . . . ,xn} are i.i.d observations for X with xi =
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(xi1, . . . , xip)
T , 1 ≤ i ≤ n. Denote the data matrix X = (x1, . . . ,xn)T .

Recall the modified Cholesky decomposition in (2.1),

Σ = LD2 LT ,

where L is the Cholesky factor matrix for the covariance matrix Σ. The corresponding

sequential regressions are

Xj =
∑
k<j

ljkEk + Ej, j = 2, . . . , p, (3.1)

and the meanings of notations are consistent with the ones in Chapter 2.

One important property of the modified Cholesky decomposition for covariance

matrix estimation is, regularization applied to the Cholesky factor matrix L would

directly impact the estimated covariance matrix. For instance, a banded Cholesky

factor matrix L leads to a banded covariance matrix estimate, where a banded L is

simply achievable by letting only the first b subdiagonals of L non zeros and setting

the rest zeros. Such an approach for estimation of inverse covariance matrices is

used by Wu and Pourahmadi (2003) and Bickel and Levina (2008a), and the one for

covariance matrices is used by Rothman et al. (2010).

Denote εij for the realized Ej from i-th observation. Estimating the covariance

matrix by banding its Cholesky factor matrix supplies a method of introducing parsi-

mony while positive definiteness is guaranteed. The estimate is obtained by banding

L in the decomposition of Σ = LD2LT as follows:

min
lj

n∑
i=1

(xij −
∑
k>j−b

ljkεik)
2.
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b is a tuning parameter, indicating the width of the band for non-zero entries in L,

which usually is determined through a standard process like cross validation. We

use “Band-L” to denote this method. While this approach achieves the positive

definiteness of the estimated covariance matrix, it has an issue that the value of b can

not exceed the number of sample points so as to let ordinary least squares technique

perform, i.e, the width of the non-zero band in L can not exceed the sample size.

Because the width of the non-zero band in L would determine the non-zero band in Σ,

the width of non-zero band in the estimated Σ would be correspondingly constrained

by 2 times of the sample size.

3.2 Covariance Matrix Estimation via L1 Regular-

ization

L1 regularization is another popular tool in covariance matrix estimation. Huang

et al. (2006) apply L1 regularization in the estimation of inverse covariance matrices.

Comparing with the banding L approach from Rothman et al. (2010), we believe L1

penalty on the Cholesky factor matrix L can be used for covariance matrix estimation

in general settings. For covariance matrices without banded structures, application

of L1 regularizatio might be able to lead to improved covariance matrix estimates as

well.

The sequential regressions with L1 regularization can be described as follows:

min
lj

n∑
i=1

(xij −
∑
k<j

ljkεik)
2

s.t.
∑
k<j

|ljk| < t ,

(3.2)
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where lj = (lj1, . . . , lj,j−1) and t is a tuning parameter. Recall εik is the realized Ek

from i-th observation. εik’s are obtained through model fittings sequentially. The

solution of (3.2) is equivalent to obtaining

l̂j = arg min
lj

{ n∑
i=1

(xij −
∑
k<j

ljkεik)
2 + ηj

∑
k<j

|ljk|
}
, j = 1, . . . , p, (3.3)

where ηj’s are tuning parameters. It is impractical to tune all ηj’s, 1 < j ≤ p, with a

large p, so we set all ηj’s the same, and denote them by η. In dealing with covariance

matrices with banded structures, Rothman et al. (2010) also mentioned L1 penalty

and the Nested LASSO penalty (Levina et al., 2008) could be applied, but they did

not explore the usage of such regularization in general situations.

For 1 < j ≤ p, after we obtain l̂j = (l̂jk) from (3.3), we further have εij =

xij −
∑

k<j l̂jkεik, 1 ≤ i ≤ n, and σ̂2
j = 1

n

∑n
i=1 ε

2
ij. Therefore, the covariance matrix

estimate Σ̂ is obtained from

L̂ = (̂l1, . . . , l̂p)
T and Σ̂ = L̂ diag(σ̂2

1, . . . , σ̂
2
p) L̂

T . (3.4)

Because of the nature of applying L1 regularization to the Cholesky factor L matrix,

we use “L1-on-L” to represent this approach throughout this thesis.

3.2.1 Algorithms of Implementing L1 Regularization

Aiming to combine the advantages from both subset selection and ridge regression

method, Tibshirani (1996) propose a technique, Least Absolute Shrinkage and Se-

lection Operator (LASSO), in regression modeling. The mechanism of fitting data

(xi, yi), i = (1, . . . , n) where xi = (xi1, . . . , xip)
T ’s are predicting variables and yi’s are
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responses, is defined through casting L1 regularization on the coefficients as follows:

(α̂, β̂) = arg min
{ n∑
i=1

(yi − α−
∑
j

βjxij)
2
}

s.t.
∑
j

|βj| < t .

(3.5)

Although the optimization for LASSO is convex, because of the indifferentiable

nature of absolute value function, the general fitting with L1 regularization does not

have a closed form solution. Only for special cases such as simple linear regression

or orthonormal design case in which the vectors of predictors are orthogonal to each

other, there is a simple way to express the solution

β̂j = sign(β̂0
j )(|β̂0

j | − γ)+, (3.6)

where β̂0
j is the ordinary least squares estimate and parameter γ is determined by

the condition
∑

j |β̂j| = t. sign(·) function extracts the sign of the input argument

number, and (·)+ picks the larger of the input argument and zero.

While the appearance of (3.6) is coincident with the proposal of Donoho and

Johnstone (1994) by using a soft thresholding procedure for recovering functions from

noisy data, the process from Donoho and Johnstone is implemented in a marginal

manner. Hence, the general form with simple functions is not available. From the

traditional perspective of convex optimization, an absolute value constraint can be

divided into two inequality constraints. Following that idea, the very first version

of LASSO fitting is using traditional quadratical programming under linear inequal-

ity constraints. Because the function to be optimized is convex, the convergence of

LASSO fitting through quadratical programming is obtainable. However, the compu-
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tation in this approach is intense and exceeds the supporting resources quickly along

with the increase of variable numbers.

As the first one attempting coordinate optimization techniques to solve the regres-

sion with L1 regularization, Fu (1998) proposes the so called “shooting” method by

cyclically setting each variable to the minimum using the modified Newton-Raphson

algorithm. Perhaps because Fu’s work is mainly to develop a new type of regular-

ized regression, bridge regression, and the “shooting” method is an auxiliary tool for

solving that, unfortunately the “shooting” method does not get into the highlight of

the stage until recent years, even though it is developed right after the proposal of

the regression L1 regularization.

While the idea of LASSO regression in the area of signal processing is also known

as basis pursuit (Chen et al., 1998), some people use interior-point algorithms to solve

equivalent optimizations.

With the modification of L1 constraints, Fan and Li (2001) develop a penalty

function called Smoothly Clipped Absolute Deviation (SCAD). Fan and Li suggest

using the locally quadratic approximation and iteratively solving the optimization

through coordinate optimization. This suggestion is being viewed directly applicable

in solving the regression with L1 regularization, with a simple approximation as

follows:

|βnew
j | =

1

2

(βnew
j )2

|βold
j |

+
1

2
|βold
j |. (3.7)

The local quadratic approximation (3.7) has been proved useful in fitting LASSO

regression or related topics. For instance, Levina et al. (2008) use this technique

dealing with their Nested LASSO penalty.
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Efron et al. (2004) provide another procedure called Least Angle Regression

(LARS) for problems like LASSO and forward stagewise regression. Unlike other

methods starting with coefficients from the ordinary least squares estimates, LARS

starts with all coefficients equal to zero. Carried out in successive steps, LARS im-

ports only one variable into the model at each step until the number of variables

reaches the sample size. Although the starting point of LARS is different from other

algorithms, and even the setting of (3.5) is not included, LARS produces very similar

outcomes as fitting the regression with L1 regularization. Furthermore, with an extra

modification, the LARS algorithm yields all LASSO solutions. LARS algorithm is

significantly faster than quadratic programming in solving LASSO regression, and

the algorithm stops nicely under the given completion condition.

In the work of Friedman et al. (2010), the idea of cyclical coordinate optimization

in LASSO regression and other generalized linear models with regularization has been

comprehensively revisited. Similar as “shooting” algorithm, this set of methods focus

on one variable each time while keeping others constant. Moreover, for the closed

form formula of updating coefficients using the coordinate descent has been devel-

oped and discussed, the algorithm for fitting the regression with L1 regularization

becomes straightforward. When the increase of computation along with the growth

of variable sizes gets under control, the algorithm can handle much larger problems

with considerably higher efficiency.

While the coordinate descent becomes a routine for fitting the regression with L1

regularization, we also rely on this approach to perform our work.
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3.2.2 Choice of Tuning Parameter

Recall that in the consideration of potentially large p, we set the ηj in (3.3) to be a

common value η for practical purposes. We adopt a procedure of repeated learning-

testing (Burman, 1989) to choose this tuning parameter η. Specifically, we repeatedly

split the data set into a learning set and a testing set with roughly equal sizes for

V times. Let Σ̂(v)(η) be the estimated covariance matrix based on the learning data

with tuning parameter η in the v-th replicate, v = 1, . . . , V , and let S(v) be the sample

covariance matrix obtained from the testing data in the v-th replicate.

The calculation would be carried out through all V replicates, and then the tuning

parameter is chosen to be

η̂ = argmin
η

1

V

V∑
v=1

||Σ̂(v)(η)− S(v)||F ,

where ‖ ·‖F is F norm defined in (1.11). Through the simulation study, we compared

the results based on three different norms: the induced L1 norm, the induced L2

norm and the F norm, and we found that the differences are minimal. The L1, L2 of

a matrix A = (ast) are denoted by ||A||1 and ||A||2, respectively. They are defined as

follows:

||A||1 = max
t

∑
s

|ast|, and ||A||2 =
√
λmax(ATA) ,

where λmax(M) denotes the largest eigenvalue of the square matrix M . Based on the

similarities of results corresponding to different norms, we use F norm as the measure

in choosing the tuning parameter throughout our numerical studies.

Other methods of choosing the tuning parameter include cross validation (see
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Stone, 1974) and information based criterion such as Bayesian information criterion

(Schwarz, 1978). Here we adopt a repeated learning-testing procedure because we

aim at a balance between estimating the covariance matrix and calculating the sample

covariance matrix. While the covariance matrix estimator needs reasonable sample

size to perform, we need to take care of the sample covariance matrix as well since it

functions as a bench mark and also needs modest amounts of sample points to provide

a reasonable standard. Equally splitting the samples into both sides is supposed to

deal with these issues better, given the limited sample points. The choice of V might

be a concern in the computation cost, and we find that setting V to be 20 gives stable

tuning parameter estimation in our simulations and real case studies.

3.3 Simulation Study

In this section, we would like to show simulation results of various estimates corre-

sponding to different patterns of a covariance matrix. Scenarios according to covari-

ance matrix structures being considered are listed below:

• Compact Banding Structure;

• Permuted Banding Structure;

• Loose Banding Structure;

• Block Diagonal Structure;

• Block Diagonal Structure with Permutation.

We compare the performance of our approach with five other methods: sample

covariance matrix, LW estimate, thresholding, Banding Cholesky factor estimate and
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Bien’s method.

As introduced in Chapter 1, the LW estimate is proposed by Ledoit and Wolf

(2004) through minimizing the squared F norm of the difference between the esti-

mated and true covariance matrices, and the estimate is in the form of

Σ̂LW = (1− ρ)S + ρ ν Ip,

where Ip is the p-dimensional identity matrix and S is the sample covariance matrix.

Ledoit and Wolf give the closed form formula for ρ and ν through

ν̂ =
1

p
tr(S),

ρ̂ =
tr(Σ2)− tr(S2)

tr(S − ν̂Ip)2
≈
∑p

s=1

∑p
t=1{

1
n

∑n
i=1 x

2
isx

2
it} − tr(S2)

tr(S − ν̂Ip)2
,

where tr(·) is the trace function for square matrices.

Another popular method in covariance matrix estimation is to use thresholding.

With a data driven threshold parameter, entries of the sample covariance matrix

whose absolute values are below that would be set zeros. This method is fast and

intuitively, but the drawback is also clear that the structure of the covariance matrix

might get destroyed. For instance, the property of positive definiteness is no longer

protected.

With the assumption of multivariate normal distribution, another perspective of

achieving regularized covariance matrix estimation is to add L1 penalty of Σ to the

log-likelihood function, resulting in an estimate

Σ̂ = argmin
Σ�0

{
− log |Σ−1|+ tr(Σ−1S) + η

∑
s

∑
t

|σst|
}
,
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where σst’s are entries of Σ and η is a tuning parameter. The main difficulty of

this approach is that the function to be optimized is not convex in term of Σ and

the solution might not be unique. Bien and Tibshirani (2011) develop a majorize-

minimize algorithm for this optimization problem in which they iteratively solve

convex approximations to the original non-convex problem. We call this method the

Bien’s method.

In order to evaluate the performance of different methods, we refer to some com-

monly used criteria. The first group of criteria are matrix norms, including the

induced L1, L2 norm, and the F norm. The norms of the difference matrix between

the estimated covariance matrix and the true one are reported as norm-based loss

measures.

Defined in (1.8), the entropy loss is also widely used in measuring closeness of two

square matrices. Another popular loss function is Kullback-Leibler divergence (KL

divergence), and it is similar to the entropy loss except we interchange the symbols

for the true covariance matrix and its estimate in the entropy loss formula. The

formula is shown below,

KL divergence = tr(Σ̂−1Σ)− log |Σ̂−1Σ| − p. (3.8)

As pointed out by Levina et al. (2008), KL divergence is more suitable in measuring

the inverse covariance matrix, while the entropy loss is a more appropriate measure

if the primary interest is the covariance matrix itself. Therefore, we consider the

entropy loss rather than KL divergence in our numerical studies.
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Regarding the eigen-structure of covariance matrix estimates, we consider the

accuracy in estimating the condition number. The condition number, originally used

to measure how far the output value would vary for a small change in the input,

equals the ratio of the largest eigenvalue to the smallest eigenvalue for a positive

definite matrix. Therefor, in this study, the condition number (λmax/λmin), is also

a rational measure. However, this measure is not a loss function or has a baseline

zero; instead, the reference line is the condition number of the true covariance matrix.

Taking the difference of condition numbers is not straightforward to tell the control

of eigenvalues for possible estimate. Thus, we would like to keep the raw values

of condition numbers. To make the presentation clear, we add one extra “estimate”

using the true covariance matrix into the comparisons. The value of condition number

from for this “estimate” serves as the reference. While for other measures like F norm

or entropy loss, the corresponding values for this “estimate” would be zeros.

For each scenario, we generated normally distributed data with three settings: (1)

n = 50, p = 30; (2) n = 50, p = 50; (3) n = 50, p = 100. Each case was repeated

200 times, and the average values from the 200 loss measures were reported as well

as their corresponding standard errors.

3.3.1 Compact Banded Structure

We design the true covariance matrix Σ1 to have an order-1 moving average (MA(1))

structure. Specifically, Σ1 = Σ1(σst) is a tri-diagonal and Toeplitz matrix with

σst =


1, s = t;

0.4, |s− t| = 1;

0 otherwise.
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p Σ Sample LW Band-L Bien’s L1-on-L

30 8.80 115.95 (2.47) 2.90 (0.03) 14.13 (0.19) 58.77 (1.34) 6.17 (0.08)

50 8.92 - 2.55 (0.02) 15.98 (0.18) 191.58 (1.04) 5.76 (0.06)

100 8.98 - 2.28 (0.03) 18.15 (0.40) 213.10 (2.50) 5.16 (0.10)

Table 3.2: Summary of condition numbers (λmax/λmin) of different estimates in Sce-
nario 1 (Compact Banded Structure). The values in the column for the true Σ serve
as references. Averages of measures from 200 replicates are listed, and numbers in the
parentheses indicate their standard errors.

The performance of different approaches is listed in Table 3.1 and Table 3.2.

Table 3.1 shows the norm-based loss and entropy loss measures. Dashed line in

the table indicates the corresponding values are either not achievable or infinite. For

various variable dimension choices and error measure terms, L1-on-L outperforms

other methods except Band-L method which catches the structure more precisely.

Table 3.2 shows the summary for condition numbers of different estimates. To

compare the results, the condition number for the true covariance matrix is listed

for reference. The condition numbers from L1-on-L estimate are closer to true values

than other estimates in comparison.

3.3.2 Permuted Banded Structure

Scenario 2 is developed to investigate the sensitivities of different approaches re-

garding covariance structure with permutation. We randomly permuted rows and

columns of Σ1 to generate Σ2 and applied all the methods in dealing with Σ2 with

200 replicates.

The performance of different approaches is listed in Table 3.3 for loss measures

and Table 3.4 for condition number accuracy.
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p Σ Sample LW Band-L Bien’s L1-on-L

30 8.80 115.54 (2.27) 2.91 (0.03) 2.31 (0.02) 58.28 (1.18) 5.74 (0.06)

50 8.92 - 2.58 (0.02) 2.57 (0.02) 192.19 (0.97) 5.57 (0.06)

100 8.98 - 2.26 (0.03) 2.79 (0.05) 214.18 (2.44) 5.22 (0.10)

Table 3.4: Summary of condition numbers (λmax/λmin) of different estimates in Sce-
nario 2 (Permuted Banded Structure). The values in the column for the true Σ serve
for reference. Averages of measures from 200 replicates are listed, and numbers in the
parentheses indicate their standard errors.

Comparing the performance reported in Table 3.3 and Table 3.4, we could

tell L1-on-L overrides other methods including Band-L method in this scenario since

Band-L is highly sensitive to the assumption of the banded structure.

Although L1-on-L approach is not directly order invariant, comparisons of its

performance between Table 3.1 and Table 3.3 imply L1-on-L estimate is rather

robust towards potential permutations of covariance structures.

3.3.3 Loose Banded Structure

With the existence of seasonal effects, we may encounter a loose banding structure

in which there is a gap between non-zero covariances in the previous order-1 moving

average (MA(1)) structure. That’s why we consider another structure Σ3 = Σ3(σst)

as follows:

σst =


1, s = t;

0.4, |s− t| = p/5;

0 otherwise.

The performance of various approaches is reported in Table 3.5 and Table 3.6,

and the measures suggest that the L1-on-L estimate is superior to estimates from

other methods in this scenario.
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p Σ Sample LW Band-L Bien’s L1-on-L

30 5.51 93.41 (1.97) 2.54 (0.03) 21.09 (0.55) 44.88 (0.97) 4.76 (0.05)

50 5.51 - 2.28 (0.02) 2.77 (0.19) 177.75 (1.07) 4.77 (0.06)

100 5.51 - 2.05 (0.03) 2.81 (0.05) 193.68 (3.22) 4.62 (0.10)

Table 3.6: Summary of condition numbers (λmax/λmin) of different estimates in Sce-
nario 3 (Loose Banded Structure). The values in the column for the true Σ serve for
reference. Averages of measures from 200 replicates are listed, and numbers in the
parentheses indicate their standard errors.

To better understand the behaviors of all these methods, we illustrate estimates

for five methods with p = 50 using heat maps in Figure 3.1 for one simulated

replicate.

We purposely use the same scale of darkness for all heat maps, so that the ab-

solute values of entries in the matrices can be directly compared by the extent of

darkness. The image for the estimate from threshold method has the clearest ap-

pearance. Threshold method correctly identifies a large amount of zero entries in its

estimate. However, many truly non-zero ones are also misidentified as zeros while

a few zero entries are incorrectly identified as non-zeros. The mistakenly identified

zero entries as well as the mistakenly identified non-zero entries invite difficulties in

capturing the true structure, and that explains why its performance measures Table

3.5 are not as competitive as it appears in Figure 3.1. In contrast, the two sub-

diagonals for estimates from LW and Bien’s method are not clear. For the estimate

from LW method, because of the large number of zero entries, the entries in the main

diagonal are enforced in terms of absolute values of their magnitude, and comparably

the ones not in the main diagonal are weakened including the two truly non-zero
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sub-diagonals, which impairs its efficiency in covariance matrix estimation. For the

estimate from Bien’s method, because of the nature of the optimization, the penalty

can not be very heavy, so that it has a less controlled structure and not enough zero

entries are identified. For the estimate from Band-L method, for the disturbance of

potential noise in the gap area, the tuning procedure may encounter great difficulty

in determining the width of the band. In this estimate, the two sub-diagonal entries

are abandoned, which entirely toppled down the estimation. On the other hand, even

if these two sub-diagonals are detected correctly, the entries in the gap area between

the two sub-diagonals and the diagonal would be filled with non-zero entries, in which

the appearance of such noise wound also impair the performance. The estimate from

L1-on-L method, though could not obtain zero entries as efficient as Threshold and

Band-L methods, captures better the big picture for the true covariance matrix.

3.3.4 Block Diagonal Structure

A covariance matrix with roughly a block diagonal structure is often seen, especially

when several groups of variables are involved while variables in different groups may

not have much interaction. To see the performance of covariance estimation methods

in dealing with this type of situations, we design the scenario with covariance matrix

Σ4 in which the first 20% variables are closely correlated while others are unrelated.

Specifically,

Σ4 = {σst} with σst =


1 s = t;

0.8 s 6= t, s ≤ p/5, t ≤ p/5;

0 otherwise.

The performance of various approaches is listed in Table 3.7 and Table 3.8.



51

p
M

ea
su

re
S
am

p
le

L
W

T
h
re

sh
ol

d
B

an
d
-L

B
ie

n
’s

L
1
-o

n
-L

30

L
1

n
or

m
4.

97
(0

.0
4)

3.
71

(0
.0

3)
1.

29
(0

.0
4)

1.
95

(0
.0

3)
3.

33
(0

.0
4)

2.
66

(0
.0

5)

L
2

n
or

m
2.

23
(0

.0
3)

2.
40

(0
.0

4)
0.

99
(0

.0
4)

1.
19

(0
.0

3)
1.

92
(0

.0
4)

2.
05

(0
.0

4)

F
n
or

m
4.

31
(0

.0
2)

3.
19

(0
.0

2)
1.

48
(0

.0
3)

2.
49

(0
.0

2)
3.

23
(0

.0
3)

2.
60

(0
.0

4)

en
tr

op
y

12
.5

8
(0

.0
6)

6.
45

(0
.0

4)
-

3.
59

(0
.0

3)
10

.1
5

(0
.0

6)
2.

69
(0

.0
4)

50

L
1

n
or

m
8.

40
(0

.0
8)

6.
32

(0
.0

4)
2.

30
(0

.0
8)

3.
27

(0
.0

5)
4.

93
(0

.0
8)

4.
67

(0
.0

8)

L
2

n
or

m
3.

62
(0

.0
6)

4.
02

(0
.0

7)
1.

65
(0

.0
7)

1.
85

(0
.0

6)
2.

80
(0

.0
7)

3.
56

(0
.0

7)

F
n
or

m
7.

17
(0

.0
3)

5.
35

(0
.0

4)
2.

26
(0

.0
6)

4.
10

(0
.0

3)
4.

81
(0

.0
5)

4.
33

(0
.0

7)

en
tr

op
y

-
12

.8
5

(0
.0

4)
-

10
.3

6
(0

.0
5)

33
.0

5
(0

.1
2)

6.
17

(0
.1

8)

10
0

L
1

n
or

m
17

.0
0

(0
.2

6)
12

.9
8

(0
.1

8)
5.

00
(0

.3
3)

6.
32

(0
.2

2)
9.

78
(0

.3
6)

9.
96

(0
.3

1)

L
2

n
or

m
7.

04
(0

.2
4)

8.
16

(0
.3

0)
3.

25
(0

.2
7)

3.
40

(0
.2

5)
5.

64
(0

.3
1)

7.
03

(0
.2

5)

F
n
or

m
14

.2
9

(0
.1

2)
10

.8
1

(0
.1

4)
4.

13
(0

.2
6)

7.
78

(0
.1

5)
9.

07
(0

.2
3)

8.
66

(0
.2

8)

en
tr

op
y

-
34

.3
0

(0
.3

8)
-

47
.0

4
(0

.2
4)

17
0.

12
(0

.5
5)

30
.4

0
(3

.1
3)

T
a
b

le
3
.7

:
P

er
fo

rm
an

ce
of

es
ti

m
at

es
fr

om
va

ri
ou

s
m

et
h

o
d

s
in

S
ce

n
ar

io
4

(B
lo

ck
D

ia
go

n
al

S
tr

u
ct

u
re

).
Σ

se
rv

e
a
s

th
e

re
fe

re
n

ce
.

A
ve

ra
ge

s
of

m
ea

su
re

s
fr

om
20

0
re

p
li

ca
te

s
ar

e
li

st
ed

,
an

d
n
u

m
b

er
s

in
th

e
p

ar
en

th
es

es
in

d
ic

at
e

th
ei

r
st

an
d

a
rd

er
ro

rs
.



52

p Σ Sample LW Band-L Bien’s L1-on-L

30 25 195.92 (5.09) 6.70 (0.21) 52.42 (1.04) 130.25 (3.43) 27.64 (0.59)

50 41 - 11.87 (0.39) 145.90 (3.20) 607.19 (7.55) 66.82 (1.71)

100 81 - 24.06 (1.67) 2429 (153) 1188 (33) 435 (61)

Table 3.8: Summary of condition numbers (λmax/λmin) of different estimates in Sce-
nario 4 (Block Diagonal Structure). The values in the column for the true Σ serve
for reference. Averages of measures from 200 replicates are listed, and numbers in the
parentheses indicate their standard errors.

With high correlations among first 20% variables, Threshold and Band-L, out-

perform others in terms of norm measures. However, in term of entropy loss, their

performance is not as desirable as norm measures. Threshold method could not guar-

antee the positive definiteness of its estimate even though the difference between zero

and non-zero entries is set rather large. The estimate from Band-L method contains

much noise in the matrix band because the length of the band is determined by the

block in the upper left corner, even if majority of the band entries should actually

be zeros. The behaviors of two L1 regularization based methods, Bien’s method and

L1-on-L, produce estimates with similar patterns, but in term of the entropy loss and

condition number, the estimate from Bien’s method is not as good as the one from

L1-on-L.

3.3.5 Block Diagonal Structure with Permutation

A general situation more close to realistic problems is that the covariance matrix

has a structure equivalent to block diagonal, but without the information of group

relationships among variables, we are unable to tell the structure directly. We explore

such a situation by simulating data with covariance matrix Σ5. Σ5 is generated by
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randomly permute the rows of Σ4 and the corresponding columns.

The performance of various approaches is reported in Table 3.9 and Table 3.10.

Similar as scenario 3, we also present the set of estimates for one replicate in Figure

3.2 to better explain the results. Threshold method produces the cleanest estimate,

and thus wins much with norm measures. The drawback is that the positive definite

structure is still under threat even if just a few truly zero entries are mistakenly set

non-zeros or vice versa. For the true covariance structure is no longer banded, Band-L

struggles to operate, and in the case, only the main diagonal remains in the estimate.

Both Bien’s and L1-on-L method import certain amount of incorrect non-zero entries

into their estimates, but between them, it seems the noise level for the estimate from

L1-on-L is lower, which explains why the L1-on-L estimate suffers less entropy loss

and has better control of the condition number.

p Σ Sample LW Band-L Bien’s L1-on-L

30 25 190.92 (4.35) 7.10 (0.21) 146.86 (5.20) 125.51 (2.96) 28.42 (0.62)

50 41 - 12.36 (0.41) 42793 (5459) 606.31 (7.23) 66.39 (1.57)

100 81 - 23.56 (1.56) - 1185 (31.74) 259 (17.44)

Table 3.9: Summary of condition numbers (λmax/λmin) of different estimates in Sce-
nario 5 (Permuted Block Diagonal Structure). The values in the column for the true Σ
serve for reference. Averages of measures from 200 replicates are listed, and numbers
in the parentheses indicate their standard errors.

The performance comparisons between Table 3.7 and Table 3.10 for L1-on-L,

suggests its robustness towards variable permutations.
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3.4 Real Data Analysis

In this section, two real data cases are presented to show the performance of estimates

from the L1-on-L approach.

3.4.1 A Blue-cell Tumor Data Study

Analyzing connections among genes using their covariance structure is a widely used

technique in gene expression data analysis. We applied L1-on-L to a data set from a

small round blue-cell tumor microarray experiment (Khan et al., 2001). The original

data set included 6,567 genes and was filtered down to 2,308 according to their inten-

sities. This data set contains 63 tissue samples, and there are four types of tumors

in the sample.

Following the work by Rothman et al. (2009), we ranked the genes by calculating

the F-statistics which is used to compare means of sub-groups in one way-ANOVA

analysis,

F =
1

k−1
nm(x̄m − x̄)2

1
n−k

∑k
m=1(nm − 1)σ̂2

m

. (3.9)

n = 63 is the total sample size; k = 4 is the number of sub-groups; nm, x̄m, σ̂
2
m are

the sample sizes, sample means and sample covariances for different sub-groups, with

m indexing the sub-groups, 1 ≤ m ≤ 4; x̄ is the grand mean. The 40 genes with

the largest F values from (3.9) and bottom 160 genes with smallest F values were

chosen. Since F values measure the extents of differential expression for genes, the

selection of the 40+160 genes has an intention that the genes in first group are closely

correlated while the correlation between the first and second groups as well as within
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the second group is not quite significant.

To select the tuning parameter associated with L1 regularization in L1-on-L, we

repeatedly divided the 63 observations into learning and testing groups of roughly

equal sizes. Because there are four types of tumors in the sample, we made the

proportions of four types of tumors in each group be nearly the same, so that both

the learning and testing data are good representatives of the whole.

We show the heat maps for the sample covariance matrix and the estimate from

L1-on-L in Figure 3.3 in the same scale of darkness. Absolute values of entries are

used in replace of original entries, and the darkness for the cells directly indicate the

magnitude of the corresponding entries. For the top-left corners of both maps, which

are corresponding to the 40 most differentially expressed genes, the appearances are

rather alike, while the remaining area of the maps has evident differences. The

absolute values of entries outside the top-left corner have been greatly reduced by

L1-on-L compared with the ones from the sample covariance matrix, which represents

the improvement brought by L1-on-L since those values are expected to be tiny.

3.4.2 A Parkinson Data Study

To further explore the performance of the L1-on-L approach, we carried out another

real data analysis. Scherzer et al. (2007) performed a transcriptome-wide scan to

investigate the the molecular processes perturbed in cellular blood of patients with

early-stage Parkinson’s disease (PD). They probed RNA extracted from whole blood

of 50 PD patients at early disease stages, and 55 age-matched controls using microar-

rays.



58

Sa
m

pl
e 

C
ov

ar
ia

nc
e 

M
at

rix
L 1

−o
n−

L 
Es

tim
at

e

F
ig

u
re

3
.3

:
H

ea
t

m
ap

s
of

th
e

es
ti

m
at

ed
co

va
ri

an
ce

m
at

ri
ce

s
fo

r
b

lu
e-

ce
ll

ge
n

e
ex

p
re

ss
io

n
d

at
a.

T
h

e
le

ft
p

a
n

el
sh

ow
s

sa
m

p
le

co
va

ri
an

ce
m

at
ri

x
,

an
d

th
e

ri
gh

t
on

e
sh

ow
s

th
e

es
ti

m
at

e
fr

om
L

1
-o

n
-L

.
A

b
so

lu
te

va
lu

es
of

en
tr

ie
s

ar
e

u
se

d
in

re
p

la
ce

o
f

o
ri

g
in

a
l

en
tr

ie
s.

A
n

en
tr

y
of

m
ag

n
it

u
d

e
1

or
ov

er
is

re
p

re
se

n
te

d
b
y

a
b

la
ck

sq
u

ar
e

an
d

an
en

tr
y

of
m

ag
n

it
u

d
e

0
is

re
p

re
se

n
te

d
b
y

a
w

h
it

e
sq

u
ar

e.



59

The data is available at http://www.ncbi.nlm.nih.gov/sites/GDSbrowser with the

identification number GDS2519. In spite of a total size over 23,000 expression vari-

ables, we narrowed down the variable size into a smaller number. By measuring the

extents of differential expression from two-sample t-tests, we sorted the expression

variables in accordance with their significance levels and chose the first P ones of our

interest.

Application of Principal Component Regression

We investigated the performance of various covariance matrix estimation methods

by comparing the behaviors of their first three principal components (PCs) of the

estimated covariance matrices. With the phenotype information as response, we fit

the data of all 105 individuals to three logistic regression models. These models

used only the 1st PC, the 1st and 2nd PCs, and all first three PCs as the covariates,

respectively. To achieve systematical comparisons, we took the variable size P in 150,

200, 300, 500 and 1000. Residual deviances of these logistic regressions are reported

in Table 3.11.

From Table 3.11, the results show that the estimate from L1-on-L provides

consistent improvement in terms of residual deviances compared with the sample

covariance matrix. The gained improvement further increases as the the number of

variables P increases. Note that the sample covariance matrix and the LW estimate

share the same eigenvectors and thus their residual deviances are identical in Table

3.11. Interestingly, the residual deviances from the Threshold estimate are identical

to the ones from the sample covariance matrix up to the second digital points. The
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Using the first principal component

P Sample/LW Threshold Band-L Bien’s L1-on-L

150 65.64 65.64 96.88 67.65 62.06

200 67.43 67.43 96.17 76.00 66.22

300 75.27 75.27 98.29 83.58 73.95

500 78.34 78.34 105.45 - 74.75

1000 87.09 87.09 116.97 - 82.71

Using first two principal components

P Sample/LW Threshold Band-L Bien’s L1-on-L

150 65.51 65.51 54.27 65.35 61.54

200 65.93 65.93 54.39 66.11 62.59

300 73.29 73.29 97.48 73.51 69.73

500 78.34 78.34 105.35 - 74.64

1000 85.20 85.20 116.89 - 80.86

Using first three principal components

P Sample/LW Threshold Band-L Bien’s L1-on-L

150 48.84 48.84 54.22 53.50 49.69

200 46.61 46.61 53.70 49.81 47.58

300 57.99 57.99 97.13 61.45 55.75

500 69.04 69.04 104.62 - 60.63

1000 67.10 67.10 112.01 - 62.31

Table 3.11: Residual deviances for three sets of logistic regressions. The first one, the
first two, and the first three principal components from covariance matrix estimates
are used, respectively.
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reason is that majority of entries in the sample covariance matrices are very small and

close to each other. Consequently, only a very small portion of entries are set zeros

by the Threshold method, and thus, the impact of thresholding is minimal. For the

performance of the Band-L estimate, the pattern of deviance values is inconsistent in

different conditions. Although there are two situations, P = 150 and 200 with first

two PCs, in which the performance of Band-L is better than others, the commonly

appeared large gaps between the deviances from using Band-L estimates and ones

from using other methods suggest its inaccuracy in majority circumstances consid-

ered in this investigation. We would like to remark that the Bien’s method requires

heavy computation capacity in this study. Using the existing R-package (Bien and

Tibshirani, 2011), it needs several days to finish the computation for P = 300 with a

reasonably adequate tuning set using a 3.0 GHz CPU. Hence, we skipped the situa-

tions corresponding to bigger P ’s for the Bien’s estimate. For the cases of P ≤ 300,

the comparisons of deviance values show that using Bien’s method does not improve

the covariance matrix estimation compared with the sample covariance matrix in this

study.

Comparisons between ROC curves

We further explored the performance of these covariance matrix estimates in term

of prediction accuracies. In this section, we only dealt with the case with P =

150. Training and validation groups were generated by randomly splitting the data

into two sub-groups of roughly equal sizes. We applied different covariance matrix

estimation methods to both the training and validation data, producing covariance
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matrix estimates, and further, obtained the first PC from these estimates. We used

these first PC and the phenotype information from the training data to build a logistic

regression model, and plugged the first PC from the estimated covariance matrices

using validation data into the built logistic model.

Phenotype predictions were conducted for individuals in the validation group. By

comparing the predicted results with real class labels, Receiver operating character-

istic (ROC) curves are produced for different covariance matrix estimation methods.

These ROC curves are shown in Figure 3.4 as well as their Area Under the Curve

(AUC) values. Such a prediction procedure was repeated for 50 times with different

data splitting in determining the case and control groups. Bien’s method is excluded

in this comparison, because of its computation cost. With 50 values available, the

distributions of AUC for different methods are drawn, as shown in Figure 3.5. The

distribution for Band-L falls behind, while other three have large overlaps. The distri-

bution of AUC corresponding to L1-on-L appears to have higher median and smaller

variability compared with the distributions for Threshold and LW method.
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0.5 0.6 0.7 0.8 0.9

Boxplot of AUC values from 50 replicates          

AUC values   

L1−on−L

Band−L

Threshold

Sample/LW

Figure 3.5: Distribution of AUC values from 50 replicates of classification based on
logistics regressions with the first principal component from various approaches.
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4

Order Issue of Cholesky-based

Estimation with L1 Regularization

The assumption of the covariance matrix having a banded structure limits the usage

of covariance matrix estimation through regularizing the Cholesky factor matrix. In

Chapter 3, we consider covariance matrix estimation without assuming particular

structures, and choose to impose L1 regularization on the Cholesky factor matri-

ces. The corresponding estimates, are parsimonious, in the sense that much fewer

parameters are involved to produce outcomes. Another essential advantage of such

parsimonious estimation is that the resultant estimates are not sensitive towards the

orders of variables. In Chapter 2, we have shown that the covariance matrix esti-

mate from sequential regressions without any regularization is equal to the sample

covariance matrix, which is order-invariant. Such a property does not remain if the

banding regularization is imposed, since changing the order of variables permutes the

rows and columns of the covariance matrix, resulting in a no-longer-banded Cholesky

factor matrix even if the original one is banded. However, L1 regularization is not

that sensitive to the change of variable orders. The main role of L1 penalty on re-
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gression coefficients is to shrink unimportant ones, leaving the significant ones less

impacted. Such a procedure is not vulnerable towards the order of sequential re-

gressions. As repeated by Pourahmadi (2011), the very important requirement of

the modified Cholesky decomposition is that a specific order of variables should be

provided beforehand. Often, such order information is not available in practice, or

can not be rationally assumed, which constrains the application of covariance matrix

estimation through regularizing Cholesky factor matrices. The idea of parsimonious

estimation from L1 regularization on Cholesky factor matrices casts a light of provid-

ing order-invariant estimates associated with the modified Cholesky decomposition.

We use an illustrative example to begin our explanation.

4.1 An Illustrative Example

Although we point out that the property of estimates from L1 regularizing Cholesky

factor matrices is parsimony, rather than sparsity, in this illustrative example, we

present a sparse case so that the message is more straightforward. An 8 × 8 sparse

covariance matrix shown below is used in this illustration.

Σ =



1 0 0 0 0 0 0.9 0
0 1 0 0.9 0 0 0 0
0 0 1 0 0 0 0 0.9
0 0.9 0 1 0 0 0 0
0 0 0 0 1 0.9 0 0
0 0 0 0 0.9 1 0 0

0.9 0 0 0 0 0 1 0
0 0 0.9 0 0 0 0 1



As shown on the next page, the true covariance matrices with respect to different

variable orders are shown on the left, while their Cholesky factor matrices L’s are
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shown on the right. If the structure of L can be successfully identified, the true

covariance structure would be restored. In the case, the structure of the Cholesky

factor matrices remains regardless under possible orders of variables. Because of that,

in terms of identifying Cholesky factor matrix L using L1 penalty, there appears no

substantial differences between processes of achieving Cholesky factor matrices under

different variable orders in this case.

Covariance Matrix Σ Cholesky Factor Matrix L

x1

x2

x3

x4

x5

x6

x7

x8



1 0 0 0 0 0 0.9 0

0 1 0 0.9 0 0 0 0

0 0 1 0 0 0 0 0.9

0 0.9 0 1 0 0 0 0

0 0 0 0 1 0.9 0 0

0 0 0 0 0.9 1 0 0

0.9 0 0 0 0 0 1 0

0 0 0.9 0 0 0 0 1


⇐

x1

x2

x3

x4

x5

x6

x7

x8



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0.9 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0.9 1 0 0

0.9 0 0 0 0 0 1 0

0 0 0.9 0 0 0 0 1


m Permutation

x3

x4

x1

x6

x2

x8

x5

x7



1 0 0 0 0 0.9 0 0

0 1 0 0 0.9 0 0 0

0 0 1 0 0 0 0 0.9

0 0 0 1 0 0 0.9 0

0 0.9 0 0 1 0 0 0

0.9 0 0 0 0 1 0 0

0 0 0 0.9 0 0 1 0

0 0 0.9 0 0 0 0 1


⇐

x3

x4

x1

x6

x2

x8

x5

x7



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0.9 0 0 1 0 0 0

0.9 0 0 0 0 1 0 0

0 0 0 0.9 0 0 1 0

0 0 0.9 0 0 0 0 1


m Permutation

x6

x5

x4

x1

x7

x3

x8

x2



1 0.9 0 0 0 0 0 0

0.9 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0.9

0 0 0 1 0.9 0 0 0

0 0 0 0.9 1 0 0 0

0 0 0 0 0 1 0.9 0

0 0 0 0 0 0.9 1 0

0 0 0.9 0 0 0 0 1


⇐

x6

x5

x4

x1

x7

x3

x8

x2



1 0 0 0 0 0 0 0

0.9 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0.9 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0.9 1 0

0 0 0.9 0 0 0 0 1
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Given this 8 × 8 covariance matrix under the original order of variables, n = 20

independent observations from a multivariate normal distribution were generated and

centered. The procedure was repeated for multiple times. To show the evolvement,

we first take one replicate of simulation for example. The sample covariance matrix

in this replicate is calculated as follows:

S =



1.095

−0.824 1.268

0.155 0.151 0.878

−0.712 1.121 0.129 1.181

0.184 −0.261 −0.223 −0.234 0.868

0.250 −0.217 −0.226 −0.126 0.772 0.933

1.127 −0.891 0.270 −0.802 0.315 0.331 1.359

0.112 0.235 0.764 0.224 −0.220 −0.170 0.212 0.804


.

Based on the L1-on-L approach described in Chapter 3, the estimate Σ̂ is produced

and presented below,

Σ̂ =



1.153

−0.562 1.038

0 0 0.924

−0.269 0.569 0 0.668

0 0 0 0 0.914

0 0 0 0 0.507 0.644

0.881 −0.429 0 −0.206 0 0 0.964

0 0 0.499 0 0 0 0 0.516


.

Randomly permuting the order of variables will not change the structure of the co-

variance matrix, while the corresponding Cholesky factor matrices could be different.

Thus, the estimates for the covariance matrix based on different order of variables are

not necessarily the same. This example is to illustrate that, estimates corresponding
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to various orders of variables are not far away from each other.

To make this illustration complete, we applied L1-on-L to get all covariance ma-

trix estimates for 8! = 40320 possible permutations. The average of all these 40320

estimated covariance matrices based on different orders of variables is shown as Σ̂

as below. We also calculated the standard deviations for all covariance entries, and

presents them in parentheses beside the corresponding entries. The standard devia-

tions are small, indicating the estimated structure is stable.

Σ̂ =



0.864(0.199)

−0.393(0.118) 0.998(0.230)

0.001(0.004) 0.001(0.005) 0.742(0.179)

−0.331(0.076) 0.729(0.145) 0.000(0.002) 0.941(0.212)

0.001(0.004) −0.001(0.003) 0.000(0.000) 0.000(0.002) 0.756(0.157)

0.002(0.007) −0.001(0.005) 0.000(0.000) −0.001(0.004) 0.506(0.003) 0.812(0.168)

0.735(0.145) −0.445(0.132) 0.007(0.016) 0.383(0.108) 0.004(0.009) 0.006(0.143) 1.071(0.245)

0.001(0.003) 0.003(0.010) 0.497(0.005) 0.001(0.005) 0.000(0.000) 0.000(0.000) 0.006(0.011) 0.680(0.163)



To compare the variability of matrix estimates across permutations within indi-

vidual replicates to the variability across different replicates, we repeated the previous

simulation for 200 times. Table 4.1 lists the summaries of accuracy measures and

their variabilities for 200 replicates. The L1, L2 and F norms of the difference matrix

between the estimated and the true covariance matrix are used as well as the entropy

loss. To better explain the result, we take the cell 1.394(0.134) in the line of “replicate

1” for instance. This cell tells that the averaged L1 norm of 40320 difference matrices

between the estimated and true covariance matrices in replicate 1 is 1.394, and the

standard deviation of these 40320 values is 0.134.
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If we use 1.394 as the L1 norm measure for L1-on-L in replicate 1, then 200 such

averages, which are 1.394, · · · , 1.154, have a mean value 1.158 and a standard devi-

ation 0.240. This standard deviation 0.240 is larger than the standard deviation of

corresponding measure for estimates across permutations in replicate 1, as well as in

other replicates. Such mean and standard deviation values are listed in the line of

“mean (s.d.)”. The claim that the variability across simulation replicates is greater

than the variability across permutations within individual replicates, still holds when

the measure is L2 norm, F norm or entropy loss.

L1 norm L2 norm F norm entropy loss

replicate 1 1.394 (0.134) 1.022 (0.075) 1.656 (0.098) 3.062 (0.305)
...

replicate 200 1.154 (0.062) 1.085 (0.055) 1.818 (0.076) 1.944 (0.392)

mean (s.d.) 1.158 (0.240) 1.016 (0.226) 1.483 (0.325) 2.075 (0.834)

Table 4.1: Performance of L1-on-L estimates across permutations in individual repli-
cates and across 200 simulation replicates in the illustrative example.

4.2 Refinement of Covariance Matrix Estimate from

L1 Regularization

In many cases like the illustrative example, we find that the variability of performance

across simulation replicates is greater than the variability of performance across per-

mutations within individual replicates. Those cases give us an expression that the

L1-on-L estimate described in Chapter 3 is not sensitive towards the order of vari-

ables. One understanding about this is: the application of L1 regularization aims
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to improve the estimate from the the sample covariance matrix towards the true

covariance matrix; marching along this track with both ends are order-invariant ma-

trices, estimation using different orders of variables may implement the improvement

differently, but is not expected to deviate far away from the track.

Note that the prerequisite of applying the modified Cholesky decomposition tech-

nique is the availability of the order of variables. The property that the estimate

resulted from L1 regularization is not sensitive towards the order serves well to elimi-

nate this prerequisite. It motivates us to propose an order-invariant covariance matrix

estimate from refining estimates under random permutations of the order of variables.

Such refinement from individual estimates can be analog to building a random forest

(Breiman, 2001) from individual decision trees. In random forest theory, an individ-

ual tree is a classifier which is able to fulfill the job, just as an individual estimate

from (3.3) and (3.4) is a desirable estimate for the covariance matrix. While one tree

may overfit the data, a particular-order-based estimate may be more preferred under

certain order. Combining representative estimates corresponding to different orders

is like building a random forest so that the performance becomes more stable.

As shown in Chapter 2 Section (2.1.2), when the sample covariance matrix S is

non-singular, the covariance matrix estimate from sequential regressions is exactly

equal to S. This treatment is equivalent to setting tuning parameter η zero while

applying L1-on-L. A fairly chosen η will probably lead to a better estimate. Fur-

ther refining estimates in accordance with different orders of variables is expected to

produce a stable estimate. We illustrate our consideration in Table 4.2.

In more detail, we define a permutation mapping π : {1, . . . , p} → {1, . . . , p},
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which represents a rearrangement of the orders, 1, 2, . . . , p,

(
π(1), . . . , π(p)

)
.

If we use et to denote a p-dimensional vector with only the t-th element one and all

others zeros, we can further define a permutation matrix

P π =
(
eπ(1), . . . , eπ(p)

)
.

Thus, the columns of data matrix X could be permuted by right multiplying P π as

follows:

Xπ = X P π = (Xπ(1), . . . ,Xπ(p)),

where Xπ(t) is the π(t)-th column of X .

Under the permutation π, we simply replace the xt with xπ(t) in (3.3) and (3.4)

for t = 1, . . . , p, and get Âπ as the covariance matrix estimate under the order π.

We further restore the estimated covariance matrix according to the original order

by applying the inverse of the mapping π as follows:

Σ̂π = Pπ Âπ
(
P π

)−1
.

By incorporating possible permutations π’s, one can have a pool of covariance matrix

estimates. Reasonably refining them would lead to an order-invariant estimate, and

such an refinement could be taking average of the estimates over all permutations.

In practice, a modest number of permutations is able to roughly fulfill our purpose

of pursuing the order-invariant estimate. Therefore, we randomly select a moderate

size subset of permutations, denoted as C = {π1, . . . , πK} . and the refined covariance
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matrix estimate Σ̂∗ is obtained by

Σ̂∗ =
1

K

∑
πk∈C

Σ̂πk . (4.1)

From the finite population sampling survey theory (see Cochran, 1977), the selection

of permutation set C is not essential if we have a reasonable size K. Choosing a

larger K would further reduce the variability of the refined estimate Σ̂∗, while a

modest number is capable to lead to stable results.

4.3 Previous Simulation Revisit

If the knowledge of variable orders is not available, we refer to refined L1-on-L to

produce the covariance matrix estimate. To illustrate the performance of the refine-

ment approach, we carried out the procedure to all previous simulations in Chapter

3. Following the exact same settings including the covariance matrix assumption, the

measure criteria of accuracy and the method in the tuning procedure, we investigated

the performance of estimates from our refined L1-on-L. We repeatedly randomly per-

muted the variable orders while the true arrangement information was not taken into

consideration. A refined L1-on-L estimate followed from this group of estimates. The

main concern was the size of this group, and it was from a tradeoff between efficacy

and computation consumption. We took two values for the group size, 30 and 100,

so the corresponding refined 30-L1-on-L and refined 100-L1-on-L estimates were gen-

erated. The results of loss measures are listed in Table 4.3 and Table 4.4, and

the summary for condition numbers is reported in Table 4.5. The same as in the

presentations in Chapter 3, average values from 200 replicates as well as the standard
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errors (in parentheses) are reported. To emphasize the consistency of the refined L1-

on-L with the original approach when the order information is available, we combine

the original results corresponding to L1-on-L estimate in both Table 4.3 and Table

4.4. In Table 4.5, besides the original results corresponding to L1-on-L estimate,

the true condition numbers from the simulated covariance matrices are listed as ref-

erences. Both estimates from refined 30-L1-on-L and refined 100-L1-on-L catch the

true covariance structure as nicely as the one from original L1-on-L, which implies 30

is a reasonable number of the group size in producing the order invariant estimate.

Figure 4.1 corresponds to Figure 3.1. In the exact same replicate of simulation

study in Scenario 3, the heat map for the 30-L1-on-L covariance matrix estimate is

added, while the one for the true covariance matrix as reference is removed. The

appearance of 30-L1-on-L estimate is very alike to the image of L1-on-L estimate.

Similar claim stands for Figure 4.2 in comparison to Figure 3.2.

In summary, we conclude that for all simulation scenarios, the performance of

refined L1-on-L estimate, despite the permutation size 30 or 100, is consistently close

to the original L1-on-L estimate with prior knowledge of the order of variables.

4.4 Real Data Analysis

4.4.1 Parkinson Data Revisit

We revisit the Parkinson data analysis we presented in Chapter 3. The purpose of

this revisit is, through comparisons with other methods, to show that the refined

estimate behavior similarly to the original estimate that uses the order information

of variables. For certain cases, there might be a gap, and the refined estimate might
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Scenario p Σ
original refined refined

L1-on-L 30-L1-on-L 100-L1-on-L

30 8.80 6.17 (0.08) 5.26 (0.05) 5.26 (0.05)

Σ1 50 8.92 5.76 (0.06) 5.00 (0.04) 4.98 (0.04)

100 8.98 5.16 (0.10) 4.56 (0.03) 4.56 (0.03)

30 8.80 5.74 (0.06) 5.19 (0.05) 5.18 (0.05)

Σ2 50 8.92 5.57 (0.06) 4.98 (0.04) 4.97 (0.04)

100 8.98 5.22 (0.10) 4.59 (0.04) 4.58 (0.04)

30 5.51 4.76 (0.05) 4.35 (0.04) 4.35 (0.04)

Σ3 50 5.51 4.77 (0.06) 4.32 (0.04) 4.30 (0.04)

100 5.51 4.62 (0.10) 4.09 (0.03) 4.08 (0.03)

30 25 27.64 (0.59) 13.63 (0.17) 13.60 (0.16)

Σ4 50 41 66.82 (1.71) 22.30 (0.27) 22.08 (0.25)

100 81 435 (61) 50.86 (0.48) 51.18 (0.47)

30 25 28.42 (0.62) 13.86 (0.16) 13.80 (0.16)

Σ5 50 41 66.39 (1.57) 22.63 (0.26) 22.33 (0.25)

100 81 259 (17.44) 50.93 (0.46) 51.65 (0.46)

Table 4.5: Summary of condition numbers (λmax/λmin) from the original L1-on-L
estimate and the refined ones based on 30 or 100 permutations in all five simulation
scenarios The values in the column for the true Σ serve for reference. Averages of
measures from 200 replicates are listed, and numbers in the parentheses indicate their
standard errors.
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be less capable. However, the performance of the refined estimate is still expected to

be competent relatively to the estimates from other methods.

Recall the Parkinson data contain the blood samples of 50 parkinson disease

patients, and 55 age-matched health participants. By measuring the extents of dif-

ferential expression from two-sample t-tests, we sorted the overall 23,000 expression

variables in accordance with their significance levels and chose the first P ones as our

focus. With the phenotype information as response, we fit the data to three logistic

regression models. These models used only the 1st PC, the 1st and 2nd PCs, and all

first three PCs as the covariates, respectively.

The results for refined L1-on-L based on a permutation set with size K = 30 are

attached to the previous outcomes, as shown in Table 4.6. The values match the

previous expectation. In general, the refined 30-L1-on-L estimate brings improvement

to logistic regression fittings compared with the sample covariance matrix, and the

improvement is systematical regardless the choices of matrix dimension P and how

many PCs involved. The improvement from 30-L1-on-L estimate, is systematically

not as good as the one from original L1-on-L estimate, but the gap in terms of

differences of deviance values is quite small.

To show that the refined 30-L1-on-L estimate is not sensitive to the choice of the

permutation set, we generated 200 estimates by using 200 different sets of K = 30

randomly selected permutations. We computed the individual deviance values of

logistic regressions correspondingly. Because of the 200 different permutation sets,

we are not only able to show the performance of the refined 30-L1-on-L estimate using

the averages from the corresponding 200 values, but also able to present the values
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Using the first principal component

p Sample/LW Threshold Band-L Bien’s L1-on-L 30-L1-on-L

150 65.64 65.64 96.88 67.65 62.06 65.15 (0.01)

200 67.43 67.43 96.17 76.00 66.22 69.17 (0.03)

300 75.27 75.27 98.29 83.58 73.95 76.91 (0.04)

500 78.34 78.34 105.45 - 74.75 78.05 (0.02)

1000 87.09 87.09 116.97 - 82.71 86.12 (0.02)

Using first two principal components

p Sample/LW Threshold Band-L Bien’s L1-on-L 30-L1-on-L

150 65.51 65.51 54.27 65.35 61.54 64.40 (0.02)

200 65.93 65.93 54.39 66.11 62.59 64.76 (0.01)

300 73.29 73.29 97.48 73.51 69.73 72.46 (0.01)

500 78.34 78.34 105.35 - 74.64 77.95 (0.02)

1000 85.20 85.20 116.89 - 80.86 83.96 (0.02)

Using first three principal components

p Sample/LW Threshold Band-L Bien’s L1-on-L 30-L1-on-L

150 48.84 48.84 54.22 53.50 49.69 48.67 (0.02)

200 46.61 46.61 53.70 49.81 47.58 46.07 (0.03)

300 57.99 57.99 97.13 61.45 55.75 56.16 (0.08)

500 69.04 69.04 104.62 - 60.63 63.25 (0.30)

1000 67.10 67.10 112.01 - 62.31 64.26 (0.14)

Table 4.6: Residual deviances for three sets of logistic regressions. The first one, the
first two, and the first three principal components from covariance matrix estimates
are used, respectively.
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of standard errors, which are listed in the parentheses beside the average values in

Table 4.6. The negligible quantities of standard errors confirm the minimal impact

of the selection of permutation set.

Comparisons between ROC curves

Similarly, we also revisited the prediction analysis as in Chapter 3 corresponding to

different estimates, and the case is P = 150 using only the first PC. ROC curves

for different approaches including the refined 30-L1-on-L are shown in Figure 4.4

as well as their AUC values. The same procedure was repeated for 50 times with

different ways of data splitting for various methods except Bien’s method for the

computing consideration. The distributions of AUC values are shown in Figure 4.3.

The performance for the refined 30-L1-on-L estimate is almost identical to the original

L1-on-L estimate with order information of variables.

0.5 0.6 0.7 0.8 0.9

Boxplot of AUC values from 50 replicates          

AUC values   

Refined 30−L1−on−L

L1−on−L

Band−L

Threshold

Sample/LW

Figure 4.3: Distribution of AUC values from 50 replicates of classification based on
logistics regressions with the first principal component from various approaches.
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4.4.2 Portfolio Allocation with Stock Data

Markowitz (1952) builds the foundation for modern portfolio theory. The work at-

tempts to maximize portfolio expected return for a given amount of portfolio risk, or

equivalently minimize risk for a given level of expected return by choosing the pro-

portions of various assets. The risk is generally measured by the variance or standard

deviation of the portfolio returns. The optimal mean-variance efficient portfolio is

constructed by solving the following quadratic optimization

minimize
w

wTΣw

subject to wTR = Rp,

wTe = 1.

w represents the proportions of various assets in the portfolio; Σ is the volatility

matrix of returns in the asset pool; R consists from the returns for individual assets;

rP denotes the required return for the portfolio and e is a vector with entries equal

to 1. Generally, components of w can be either positive or negative, corresponding

to long or short certain assets. In common situations, w is set to be positive, i.e., the

portfolio is constructed under no-shortsale constraint. Then, the optimal portfolio is

obtained by solving optimization problem as follows:

minimize
w

wTΣw

subject to wTe = 1,

w ≥ 0.

Traditionally, the sample covariance matrix is used to replace Σ above. However,

in many cases, the length of the asset return series used is not big enough compared to

the number of assets considered. As pointed by Michaud (1989), since the optimiza-



86

tion problem requires the inversion of a covariance matrix, an ill-conditioned matrix

results in unstable solutions and greatly amplifies the estimation error. The esti-

mate for Σ has to be positive definite, otherwise the quadratic programming would

be ill-defined. Besides, the assets do not have an order among them. Because of

these issues, only methods producing positive definite and order-invariant estimates

are used in comparison, including LW, Bien’s and refined 30-L1-on-L estimate. We

considered the stock return data of companies included in the Standard & Poor’s

100 index. Because of financial crisis in 2008, we used time zone before that period.

We used weekly return data in 2006 as the training set to build portfolios, and used

weekly return data in 2007 to test their performance. To comprehensively compare

the differences, the performance of the portfolios in 2006 is also included. Since

Mastercard, Visa and Philip Morris International are not listed throughout this time

zone, these companies were excluded from the equity pool and only the remaining 97

stocks were used.

We built portfolio 1, 2 and 3 according to estimates from LW, Bien’s and refined

30-L1-on-L method, respectively. Figure 4.5 displays the realized returns of these

portfolios for all 52 weeks in both 2006 and 2007. Because the differences between

the realized returns of three portfolios are dominated by the volatility caused by time

effect, the patterns for the realized return look similar. To deliberately compare the

performance of these portfolios, we summarize the realized returns in Table 4.7.

The averages of realized weekly returns as well as their standard deviations are pre-

sented for both 2006 and 2007. Annualized returns are so available from synthesizing

individual weekly returns. Because portfolios are achieved solving optimization with
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Year 2006 (Training Set) Weekly Return
Annualized Return

Arithmetic Standard

Average Deviation

Portfolio 1
0.29 % 0.67 % 16.24 %

(based on LW estimate)

Portfolio 2
0.32 % 0.69 % 17.78 %

(based on Bien’s estimate)

Portfolio 3
0.32 % 0.65 % 17.77 %

(based on 30-L1-on-L estimate)

Year 2007 (Testing Set) Weekly Return
Annualized Return

Arithmetic Standard

Average Deviation

Portfolio 1
0.21 % 1.56 % 10.62 %

(based on LW estimate)

Portfolio 2
0.19 % 1.58 % 9.89 %

(based on Bien’s estimate)

Portfolio 3
0.26 % 1.50 % 13.58 %

(based on 30-L1-on-L estimate)

Table 4.7: Summary of returns of portfolios built from using different covariance
matrix estimates.

2006 weekly return data, returns from portfolios in 2006 are higher than ones in

2007, and variabilities of these portfolios in 2006 are less than ones in 2007. Regards

the performance in 2006, portfolio 1 is not as good as the other two in terms of

both return and volatility. Portfolio 1 and 3 produce similarly better results. When

portfolios are applied to the 2007 data, portfolio 3 outperforms others. Not only its

realized returns are higher than the other two, but its volatility is also less than the

counterparts.

To eliminate any confusion about the choice of permutation set in this case, we
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adopt the similar strategy in the deviance calculation using refined 30-L1-on-L es-

timate in the Parkin data study. We took 200 different sets of randomly selected

permutations to obtain the covariance matrix estimates, and further, generated 200

portfolios. The behaviors of these 200 portfolios are consistent. The standard devi-

ation of annualized returns of these 200 portfolios is 0.24% for 2006, and 0.50% for

2007. With a moderate size of permutation set, K = 30, the impact of permutation

set selection has already been reduced to an acceptable level.

4.5 Refining Cholesky-based Inverse Covariance Ma-

trix Estimate

The idea of refining estimates corresponding to different orders of variables can be

useful in other techniques related to the modified Cholesky decomposition. Huang

et al. (2006) consider estimating inverse covariance matrices through penalizing the

likelihood with data from multivariate normal distributions. The implementation of

their algorithm also depends on the modified Cholesky decomposition. In this section,

we would like to show that the strategy of refining estimates also applies in such an

approach, so that the pre-specified order information is no longer required.

4.5.1 Cholesky-based Inverse Covariance Matrix Estimation

Recall the i.i.d observations {x1, . . . ,xn}, and the data matrix is X = (x1, . . . ,xn)T ,

a n× p matrix. When the data are from multivariate normal population with mean

zero and covariance matrix Σ, the likelihood function is as follows:

likelihood =
n∏
i=1

f(xi) =
{ 1

(2π)p/2|Σ|1/2
}n

exp{−1

2

n∑
i=1

xTi Σ−1xi}.
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Thus, the log-likelihood function is,

log-likelihood = − np
2

log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

xTi Σ−1xi.

Recall equation (2.3), (2.4) and (2.5), we have

Σ = (Ip − Φ)−1 D2 {(Ip − Φ)−1}T and Σ−1 = (Ip − Φ)TD−2(Ip − Φ),

where Φ is a lower triangular matrix with diagonal entries zeros. (Ip − Φ) is a unit

lower triangular matrix, and so is its inverse. Hence, |(Ip − Φ)| = 1 and |Σ| = |D2|.

−2× log(likelihood) = np log(2π) + n log |D2|+
n∑
i=1

(
(Ip − Φ)xi

)T
D−2

(
(Ip − Φ)xi

)
= np log(2π) + n

p∑
j=1

log σ2
j +

n∑
i=1

p∑
j=1

(xij −
∑

k<j φjkxik)
2

σ2
j

.

In the work of Huang et al. (2006), terms of L1 or L2 penalty on (φjk)’s are added

to the −2× log(likelihood). Therefore, the function to be minimize is as follows,

− 2× log(likelihood) + λ

p∑
j=2

∑
k<j

|φjk|q

= np log(2π) + n

p∑
j=1

log σ2
j +

n∑
i=1

p∑
j=1

(xij −
∑

k<j φjkxik)
2

σ2
j

+ λ

p∑
j=2

∑
k<j

|φjk|q, (4.2)

where q = 1 for L1 penalty or 2 for L2 penalty.

The minimization of (4.2) appears rather complicated. Fortunately, the parame-

ters corresponding to different j’s do not interact, so the whole penalized likelihood

can be broken down into p pieces. The overall minimizer consists of individual mini-

mizers from these p pieces. In details, the working flow is shown as follows:

• j = 1
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min
{
n log σ2

1 +
∑n

i=1

x2
i1

σ2
1

}
=⇒ σ̂2

1 =
1

n

n∑
i=1

x2
i1

• j = 2, . . . , p

min
{
n log σ2

j +
∑n

i=1

(xij −
∑

k<j φjkxik)
2

σ2
j

+ λ
∑

k<j |φjk|q
}

(1) if φjk’s are known,

=⇒ σ̂2
j =

1

n

n∑
i=1

(
xij −

∑
k<j

φjkxik
)2

(2) if σj is known,

=⇒ φ̂jk = argmin
n∑
i=1

(xij
σj
−
∑
k<j

φjk
xik
σj

)2
+ λ

∑
k<j

|φjk|q

With q = 2, ordinary least squares can be used to implement step (2), as

long as there are enough sample points. When q = 1, the optimization

of step (2) needs L1 penalty algorithms described in Chapter 3 Section

(3.2.1). Iterative optimizations from step (1) and (2) produce expected

estimates for a fixed j. Repeating such procedures along with j = 2, . . . , p

completes the whole optimization.

With Φ̂ = (φ̂jk) and D̂ = diag(σ̂2
1, . . . , σ̂

2
p) available, the estimate for the inverse

covariance matrix is achieved as (Ip − Φ̂)T D̂−2(Ip − Φ̂).

4.5.2 Refinement of Inverse Covariance Matrix Estimates

from L1 Regularization

We stick to L1 penalty with q = 1 in (4.2) to make our illustration. Through

minimizing this penalized log-likelihood, the inverse covariance matrix estimate is
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obtained. Recall in the refinement of covariance matrix estimates, we define a per-

mutation mapping π : {1, . . . , p} →
(
π(1), . . . , π(p)

)
and the permutation matrix

P π =
(
eπ(1), . . . , eπ(p)

)
, so the columns of data matrix X could be permuted by

right multiplying P π. For that circumstance, we simply replace the data matrix

with Xπ = X P π = (Xπ(1), . . . ,Xπ(p)), so as to get the covariance matrix estimate.

In a parallel manner, we carry all the definitions but use data matrix Xπ in the

minimization of (4.2). Suppose B̂−1
π is produced as the inverse covariance matrix

estimate under the order π. By applying the inverse of the mapping π, we restore

the estimated inverse covariance matrix according to the original order

{Σ̂π}−1 = Pπ B̂
−1
π

(
P π

)−1
.

Refining possible {Σ̂π}−1’s under different π’s leads to an order-invariant estimate for

the inverse covariance matrix. Similar as we refine the covariance matrix estimates,

we also randomly select a moderate size subset of permutations, and take the average

for resultant outcomes.

Four scenarios were investigated in the simulation study of Huang et al. (2006),

and the generation mechanisms for their inverse covariance matrices are listed below.

To distinct these matrices from ones used elsewhere, the four matrices are marked

with a star on the shoulder.

• {Σ∗1}−1 = Ip. The identity matrix.

• {Σ∗2}−1 = diag(1
p
, 1
p−1

, . . . , 1).

• {Σ∗3}−1 = ΓTD−1Γ, where D = 0.01 × Ip, and Γ = (−φt,s), with φt,t = 1,
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φt+1,t = 0.8, and φt,s = 0 otherwise. The AR(1) model.

• {Σ∗4}−1 = ΓTD−1Γ, where D = diag(σ2
1, . . . , σ

2
p) with σ2

t = σ2{1 − (t−1)ρ2

1+(t−1)ρ
},

1 ≤ t ≤ p. and Γ = (−φt,s) with φt,t = 1, φt,j = ρ
1+(t−1)ρ

, t ≥ 2, 1 ≤ j ≤ t − 1,

σ = 1, and ρ = 0.5.

The same settings used in the work of Huang et al. (2006) were adopted here.

Simulation data were generated from the multivariate normal distribution with zero

mean and the covariance matrix of interest. The sample size is 100 versus the number

of variables 30. Each simulation was replicated for 100 times. Permutation sets

with size K = 30 and K = 100 were chosen to implement the refinement strategy,

where the permutations in the sets were randomly selected. The comparisons of

performance for three estimates, the original estimate given the order of variables,

the refined estimate based on a K = 30 permutation set, and the refined estimate

based on a K = 100 permutation set, are presented in Table 4.8. The accuracy

measures include: the L1, L2 and F norms of the difference between the inverse

covariance matrix estimate and the true inverse covariance matrices; KL divergence of

the inverse covariance matrix estimate. The average values for the accuracy measures

from 100 replicates for three sets of estimates corresponding to the four covariance

matrices are reported, and numbers in the parentheses indicate the standard errors

for the averages.

The performance of estimates from permutation set K = 30 and K = 100 is very

consistent. In comparing them to the original estimate, we found for {Σ∗3}−1, the

original estimate using order information of variables outperforms the two refined

estimates. The gap based on the L1 norm measure is roughly 20%, while the coun-
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terparts are around 10% for the measures L2 norm, F norm and KL divergence. The

interesting part is, for {Σ∗1}−1, {Σ∗2}−1 and {Σ∗4}−1, the averages of accuracy mea-

sures imply better performance of the refined estimates compared with the original

one. Especially for {Σ∗4}−1, the differences of average values for L1 norm, L2 norm, F

norm and KL divergence, are greater than twice the corresponding standard errors,

which suggests the refined estimates be superior in this scenario even if they do not

take account of the order information. These comparisons show that the permuta-

tion and refinement strategy works well for the numerical experiments in the work of

Huang et al., so the order information of variables might not be indispensable in their

approach either. From this example, we believe that the refinement idea can be used

to improve other methods that are related to the modified Cholesky decomposition.
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Scenario Measure
original refined estimate refined estimate

estimate (K = 30) (K = 100)

{Σ∗1}−1

L1 norm 0.414 (0.014) 0.408 (0.011) 0.408 (0.011)

L2 norm 0.398 (0.012) 0.394 (0.011) 0.394 (0.011)

F norm 0.855 (0.014) 0.848 (0.013) 0.848 (0.013)

KL divergence 0.326 (0.008) 0.320 (0.008) 0.321 (0.008)

{Σ∗2}−1

L1 norm 0.142 (0.010) 0.132 (0.008) 0.132 (0.008)

L2 norm 0.132 (0.008) 0.126 (0.007) 0.125 (0.007)

F norm 0.171 (0.007) 0.163 (0.007) 0.163 (0.007)

KL divergence 0.324 (0.008) 0.317 (0.008) 0.316 (0.008)

{Σ∗3}−1

L1 norm 144.242 (2.487) 178.799 (3.358) 177.794 (3.385)

L2 norm 88.449 (1.777) 99.472 (2.259) 99.239 (2.242)

F norm 189.929 (2.213) 208.397 (2.753) 207.844 (2.701)

KL divergence 1.218 (0.019) 1.293 (0.017) 1.284 (0.017)

{Σ∗4}−1

L1 norm 6.893 (0.016) 6.840 (0.017) 6.840 (0.017)

L2 norm 4.765 (0.009) 4.745 (0.009) 4.745 (0.008)

F norm 5.108 (0.009) 5.082 (0.009) 5.081 (0.009)

KL divergence 2.406 (0.021) 2.330 (0.021) 2.329 (0.021)

Table 4.8: Performance of inverse covariance matrix estimates in different scenarios.
L1, L2, F norm and KL divergence are used to measure the accuracy. Average values
from 100 replicates are reported, and the corresponding standard errors are listed in
parentheses.
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5

Regularized Estimation using

Matrix Exponential

This chapter follows another matrix technique, matrix exponential, in the estimation

of large covariance matrices. Because the matrices involved are positive definite ma-

trices, this technique is closely related to the spectral decomposition. The application

falls in the framework of decomposition-based covariance matrix estimation.

Unlike the regularized estimation using the modified Cholesky decomposition,

which doesn’t require the distribution of the random vector in consideration, the

application of regularized estimation using matrix exponential assumes that observa-

tions are from a multivariate normal distribution.

5.1 Motivation of Applying Matrix Exponential

The most important reason of applying matrix exponential technique is to circumvent

the positive definiteness constraint of covariance matrices. As explained in Chapter

2, the only requirement of a matrix logarithm for a covariance matrix is symmetry.

In other words, half of the parameters are free to vary. Thus, regularization on the
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parameters is easy to apply.

Recall the Bien’s method described in Chapter 3, L1 penalty on the entries of Σ

is added to the log-likelihood function directly, resulting in an estimate

Σ̂ = argmin
Σ�0

{
− log |Σ−1|+ tr(Σ−1S) + η

∑
s

∑
t

|σst|
}
. (5.1)

where σst’s are entries of Σ and η is the tuning parameter. The main difficulty of

this approach is that the function to be optimized is not convex in term of Σ entries,

so the typical optimization problems such as non-convergence, boundary constraints

and multiple solutions from different initializations may occur.

Besides these issues, the minimization of function

− log |Σ−1|+ tr(Σ−1S) + η
∑
s

∑
t

|σst|. (5.2)

is actually not well-defined. To see the contradiction, let η go large, and σst’s would go

small and many of them might be shrank to zeros in order to minimize (5.2). However,

along with the increase of η and decrease of σst’s, |Σ| goes tiny fast, especially when

the dimension is high. |Σ−1| would diverge towards positive infinity, and − log |Σ−1|

would diverge towards to negative infinity, so that the function (5.2) can not be

minimized. In other words, Bien’s estimate works only when the tuning parameter

is allowed to vary in certain domain.

Instead, if the penalty in (5.2) is placed on the entries of the matrix logarithm of

the covariance matrix, A = log(Σ) based on (2.10), the ill-defined optimization would
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be changed into the one as follows:

min
{
− log |Σ−1|+ tr(Σ−1S) + η

∑
s

∑
t

|ast|q
}
, (5.3)

where ast’s are entries of A, and q > 0 so that the penalty term is convex. This opti-

mization is well-defined. When η goes large, and ast’s would go small, |Σ| would not

necessarily go small. Even if all of ast’s become zeros, Σ = eA is the identity matrix,

which might result in a low log-likelihood. This gives another important reason of

applying matrix exponential technique, because directly penalizing log-likelihood by

constraining norm of covariance entries presents an ill-defined optimization problem.

One may argue that the reason of applying penalty on covariance entries is such

a treatment could shape the estimated covariance matrix under some specific di-

rections, and placing penalties on the entries of matrix logarithm of the covariance

matrix may not fulfill this purpose well. As repeated throughout this thesis, directly

shaping the estimated covariance matrix while guaranteeing its positive definiteness is

usually not easy, especially when there is no special assumption about the covariance

matrix structure. From another perspective, an desirable covariance matrix estimate

is mainly supposed to better explain the data, and placing penalty on the entries of

matrix logarithm serves this purpose well through shaping the estimated covariance

matrix indirectly. There are many evidences to support this statement. For instance,

when q = 2 in (5.3),
∑

s

∑
t |ast|2 corresponds to the sum of logarithms of eigenvalues

of the covariance matrix. L2 regularization on entries of log(Σ) helps controlling the

eigen-structure of the estimated covariance matrix.

There are even more direct structure connections between Σ and log(Σ). Figure
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Σ  (σst=0.6| s−t |) log(Σ)

Connection between Σ and log(Σ) when Σ has a banded structure

Figure 5.1: Heat maps of Σ and log(Σ) to illustrate their structure connection when
Σ has a banded structure. Σ = (σst) where σst = 0.6|s−t|.

5.1 and Figure 5.2 show two situations of such connections. In these plotted heat

maps, absolute values of entries are used in replace of original entries. An entry of

magnitude one or over is represented by a black square and an entry of magnitude zero

is represented by a white square, so the darkness indicates the extent of values. When

Σ has a banded structure, typically log(Σ) also has a banded structure. Σ = (σst)

with σst = 0.6|s−t| is shown on the left panel of Figure 5.1, so the darkness of Σ

entries shades from the central diagonals. Correspondingly, the appearance of log(Σ)

also has a shading pattern as shown on the right panel. As illustrated in Figure

5.2, the matrix logarithm of a positive definite covariance matrix with a diagonal

block structure also has a diagonal block structure. This result is theoretical valid.

Suppose Σ = diag(Σ1, . . . ,ΣK) is a positive definite covariance matrix with diagonal
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Σ log(Σ)

Connection between Σ and log(Σ) when Σ has a block diagonal structure

Figure 5.2: Heat maps of Σ and log(Σ) to illustrate their structure connection when Σ
has a block diagonal structure. The block in the top left corner of Σ has σst = 0.6|s−t|.
The block in the middle of Σ permutes the matrix produced using σst = 0.7|s−t|. The
block in the bottom left of Σ has σst = 0.5 + 0.5I{s=t}.

blocks Σ1, . . . ,ΣK . Hence, for k = 1, . . . , K, Σk has to be positive definite and thus

is accompanied by a spectral decomposition as Σk = Γk Λk ΓTk .

Therefore,

Σ = diag(Σ1, . . . ,ΣK) = diag(Γ1Λ1ΓT1 , . . . ,ΓKΛKΓTK)

= diag(Γ1, . . . ,ΓK) · diag(Λ1, . . . ,ΛK) · diag(Γ1, . . . ,ΓK)T

= Γ Λ ΓT ,

where Γ = diag(Γ1, . . . ,ΓK) and Λ = diag(Λ1, . . . ,ΛK). All Λk’s are diagonal matri-

ces, k = 1, . . . , K, and thus, Λ is a diagonal matrix.

Based on (2.10) and the properties of matrix exponential listed at the end of
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Chapter 2, we have

log(Σ) = Γ log(Λ) ΓT = Γ diag(Λ1, . . . ,ΛK) ΓT

= diag(Γ1, . . . ,ΓK) · diag(Λ1, . . . ,ΛK) · diag(Γ1, . . . ,ΓK)T

= diag(Γ1Λ1ΓT1 , . . . ,ΓKΛKΓTK) = diag
(

log(Σ1), . . . , log(ΣK)
)
,

Thus, log(Σ) also has a block diagonal structure.

Because of the structure connection between Σ and log(Σ), if we can restore the

structure of log(Σ), the structure of Σ then, can be restored correspondingly.

5.2 Approximation of Log-likelihood with Matrix

Exponential Σ = e log (Σ)

Suppose random vector X = (X1, . . . , Xp)
T follows multivariate normal distribution

with mean zero and positive definite covariance matrix Σ. {x1, . . . ,xn} are i.i.d

observations for X with xi = (xi1, . . . , xip)
T , 1 ≤ i ≤ n. The log-likelihood for Σ is

as follows:

log-likelihood = −np
2

log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

xTi Σ−1xi .

Maximizing log-likelihood is equivalent to minimizing

log |Σ|+ 1

n

n∑
i=1

xTi Σ−1xi = log |Σ|+ tr(Σ−1 1

n

n∑
i=1

xix
T
i ) = log |Σ|+ tr(Σ−1S).

where S =
1

n

∑n
i=1 xix

T
i is the sample covariance matrix.

Matrix exponential Σ = eA is adopted for reparameterizing the covariance matrix.
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Recall the spectral decompositions for Σ and log(Σ), which are

Σ = Γ

d1

. . .

dp

ΓT and A = log(Σ) = Γ

log(d1)
. . .

log(dp)

ΓT ,

where Γ is a square matrix whose columns are the normalized eigenvectors of Σ,

d1 ≥ . . . ≥ dp ≥ 0 are the eigenvalues of Σ. Thus,

log(|Σ|) = log

p∏
i=1

di =

p∑
i=1

log di = tr(A).

The penalized log-likelihood with Lq penalty on A can be rewritten as

min
{

tr(A) + tr(e−AS) + η
∑
s

∑
t

|ast|q
}
. (5.4)

We mainly consider the scenarios for q = 1 or 2. In (5.4), it is relatively straight-

forward to deal with the terms tr(A) =
∑p

t=1 att and η
∑

s

∑
t |ast|q with q = 2.

For η
∑

s

∑
t |ast|q with q=1, the approaches described in Section (3.2.1) are able to

handle the issue. Thus, the emphasis is to implement the computation of tr(e−AS).

Despite its simple appearance, the calculation of this term using A is rather compli-

cated. Alternatively, we use linear and quadratical terms of A to approximate it in

high accuracy. The approximation starts with a very useful equation — we call it

“matrix exponential equality”.

5.2.1 Matrix Exponential Equality

The “matrix exponential equality” comes from one of the original purposes of using

matrix exponential—solving linear systems of ordinary differential equations. For a

exponential matrix function X(t) based on matrix A which is defined as X(t) = etA,
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it has

dX(t)

dt
= AX(t).

From the perspective of approximation, we have A = A0 + (A − A0), where A0 is

some initial setting to approach A, and thus,

AX(t) = A0 X(t) + (A− A0)X(t).

Consider the following derivation operation,

d

dt

(
e−tA0 X(t)

)
= −e−tA0 A0X(t) + e−tA0

dX(t)

dt

= −e−tA0 A0X(t) + e−tA0 AX(t)

= −e−tA0 A0X(t) + e−tA0 A0X(t) + e−tA0 (A− A0)X(t).

= e−tA0 (A− A0)X(t). (5.5)

Integrating both sides of (5.5), we have

e−tA0 X(t) = Ip +

∫ t

0

e−sA0(A− A0)X(s) ds. (5.6)

Based on (5.6), the expected “matrix exponential equality” is shown as follows:

etA = etA0 + etA0

∫ t

0

e−sA0(A− A0) esA ds. (5.7)

5.2.2 Quadratic Approximation of Matrix Exponential etA

Matrix exponential equality (5.7) is the essential tool to approximate matrix expo-

nential function etA. As one may expect, the computation of etA leads us to the main

concern of tr(e−AS) in (5.4). However, the actual calculation of etA requires applying
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spectral decomposition to A, which is not desirable if entries of A are assumed to be

parameters. A more straightforward connection between etA and A is preferred so

that the optimization involving etA is feasible with respect to A, and matrix expo-

nential equality (5.7) helps to build such a connection. Particularly, we are interested

in developing quadratic approximation of etA in terms of A. Before that, we would

like to show the linear approximations for etA.

Linear Approximation of etA

Replacing the esA inside the integral of (5.7) with esA0 , we get the linear approxima-

tion of etA in terms of A.

etA ≈ etA0 + etA0

∫ t

0

e−sA0(A− A0) esA0 ds. (5.8)

The difference between the real etA and this approximation would be

bias1(t) = etA0

∫ t

0

e−sA0(A− A0)(esA − esA0) ds. (5.9)

To better understand this linear approximation, we analyze the approximation

in one particular scenario, in which both A and A0 are diagonalizable, and they

commute, i.e.

AA0 = A0A.

Under the assumptions of two diagonalizable matrices which commute, A and A0

are simultaneously diagonalizable (see Horn and Johnson, 2012). In other words, A

and A0 share the same eigen-space. Therefore, the same eigenvectors can be chosen
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to apply the spectral decomposition for both A and A0.

A = Γ log(D) ΓT and A0 = Γ0 log(D0) ΓT0 with Γ0 = Γ. (5.10)

Γ is an orthogonal matrix consisted of eigenvectors of A. D and D0 are diagonal

matrices whose diagonal entries are corresponding eigenvalues of eA and eA0 . Plugging

(5.10) into (5.9), we have

bias1(t) = ΓDt
0 ΓT

∫ t

0

ΓD−s0 ΓT
(
Γ
(

log(D)− log(D0)
)
ΓT
)
(ΓDsΓT − ΓDs

0 ΓT )ds

= ΓDt
0

∫ t

0

D−s0

(
log(D)− log(D0)

)
(Ds −Ds

0)ds ΓT

= ΓDt
0

∫ t

0

(
log(D)− log(D0)

)
(D−1

0 D)s − Ip)ds ΓT

= ΓDt
0

(
(D−1

0 D)t − Ip − t
(

log(D)− log(D0)
))

ΓT

= ΓDt ΓT − ΓDt
0 ΓT − tΓDt

0ΓT
(
Γ log(D)ΓT − Γ log(D0)ΓT

)
= etA − etA0 − t(A− A0) etA0

Considering the Taylor’s expansion for eA at A0, we can tell that in this special

setting of A and A0 commuting, the linear approximation (5.8) is the same as the

1st order of Taylor’s expansion. When A and A0 can not commute, we have some

empirical experience that bias (5.9) is smaller than its counterpart using Taylor’s

expansion, i.e. the linear approximation (5.8) is tighter than etA0 + t(A− A0) etA0 .

Quadratic Approximation of etA

To obtain the quadratic approximation of etA in terms of A, matrix exponential

equality (5.7) has to be applied for another round. Specifically, we replace esA inside



106

the integral of (5.7) with another use of matrix exponentially equality as follows:

esA = esA0 + esA0

∫ s

0

e−uA0(A− A0)euA du.

Then we get another matrix equality below, which contains a double integral,

etA = etA0 + etA0

∫ t

0

e−sA0(A− A0)
(
esA0 + esA0

∫ s

0

e−uA0(A− A0)euAdu
)
ds

= etA0 + etA0

∫ t

0

e−sA0(A− A0)esA0ds

+ etA0

∫ t

0

e−sA0(A− A0)esA0
( ∫ s

0

e−uA0(A− A0)euAdu
)
ds.

(5.11)

Replacing the euA inside the second integral (w.r.t u) with euA0 , we get the quadratic

approximation of etA, viz

etA ≈ etA0 + etA0

∫ t

0

e−sA0(A− A0)esA0ds

+ etA0

∫ t

0

e−sA0(A− A0)esA0
( ∫ s

0

e−uA0(A− A0)euA0du
)
ds.

(5.12)

If A and A0 commute, the difference between (5.11) and (5.12) is

bias2(t) = etA0

∫ t

0

e−sA0(A− A0)esA0
( ∫ s

0

e−uA0(A− A0)(euA − euA0)du
)
ds

= etA0

∫ t

0

e−sA0(A− A0) bias1(s) ds

= etA0

∫ t

0

e−sA0(A− A0)
(
esA − esA0 − s(A− A0)esA0

)
ds

= etA0

∫ t

0

e−sA0(A− A0)(esA − esA0)ds− etA0

∫ t

0

e−sA0(A− A0)s(A− A0)esA0ds

= etA − etA0 − t(A− A0)etA0 − t2

2
(A− A0)(A− A0)etA0 .

Under the assumption that diagonalizable matrices A and A0 commute, the differ-

ence between true etA and its quadratic approximation (5.12) equals the sum of cubic

and higher order terms from Taylor’s expansion. Consistent with our experience with
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the linear approximation (5.8), when A and A0 do not commute, (5.12) approaches

etA better comparing the quadratic approximation from Taylor’s expansion.

5.2.3 Quadratic Approximation of e− log (Σ)

Recall our concern is tr(e−AS) with A = log (Σ). The development of quadratic

approximation of etA from the previous section enables us to approximate e− log (Σ)

using a quadratic function of log (Σ). We still use A in the derivation.

Using t = −1 in (5.12), we have

e−A ≈ e−A0 − e−A0

∫ 1

0

esA0(A− A0)e−sA0ds

+ e−A0

∫ 1

0

esA0(A− A0)e−sA0
( ∫ s

0

euA0(A− A0)e−uA0du
)
ds

= e−A0 − e−A0

∫ 1

0

esA0Ae−sA0ds+ A0e
−A0

+ e−A0

∫ 1

0

esA0(A− A0)e−sA0
( ∫ s

0

euA0Ae−uA0du− sA0

)
ds

= e−A0 + A0 e
−A0 +

1

2
A2

0 e
−A0

− e−A0

(∫ 1

0

esA0Ae−sA0ds+

∫ 1

0

sesA0Ae−sA0A0ds+ A0

∫ 1

0

∫ s

0

euA0Ae−uA0duds

)
+ e−A0

∫ 1

0

esA0Ae−sA0(

∫ s

0

euA0Ae−uA0du)ds .

To simplify the notations, we further decompose the quadratic approximation into

three parts as follows:

e−A ≈ constant term of A+ linear term of A+ quadratic term of A.

Constant Term of A

constant term of A = e−A0(Ip + A0 +
1

2
A2

0)
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Linear Term of A

The derivation of linear term ofA uses the spectral decomposition ofA0 = Γ0 log(D0) ΓT0 .

Hence, we have

∫ s

0

euA0 A e−uA0 du = Γ0(

∫ s

0

Du
0 ΓT0 A Γ0D

−u
0 du) ΓT0 .

Denote B = ΓT0AΓ0. The above term can be rewritten as

∫ s

0

euA0Ae−uA0du = Γ0(

∫ s

0

Du
0BD

−u
0 du) ΓT0 = Γ0

∫ s

0

[
bij(

doi
doj

)u
]
i,j

du ΓT0

= Γ0

[
bij

∫ s

0

(
doi
doj

)udu

]
i,j

ΓT0 = Γ0 [bij∆ij(s)]i,j ΓT0 ,

with

∆ij(s) =

∫ s

0

(
doi
doj

)udu =

{
s , if dos = dot ;
(doi /d

o
j )s−1

log (doi /d
o
j )
, if doi 6= doj .

Thus, we have the three component of the linear term of A as follows:

(1) −e−A0
∫ 1

0
esA0A e−sA0ds = −Γ0D

−1
∫ 1

0

[
bij(

doi
doj

)s
]
i,j
ds ΓT0 = −Γ0

[
bij∆

(1)
ij

]
i,j

ΓT0 ;

(2) −e−A0
∫ 1

0
s esA0A e−sA0A0ds = −Γ0

[
bij∆

(2)
ij

]
i,j

ΓT0 ;

(3) −e−A0A0

∫ 1

0

∫ s
0
euA0A e−uA0duds = −Γ0

[
bij∆

(3)
ij

]
i,j

ΓT0 ;

where ∆
(1)
ij , ∆

(2)
ij and ∆

(3)
ij are

∆
(1)
ij =

∫ 1

0

1

doi
(
doi
doj

)sds =

1/doi , if doi = doj ;
1/doj−1/doi
log (doi /d

o
j )
, if doi 6= doj ;

∆
(2)
ij =

∫ 1

0

s
1

doi
(
doi
doj

)s log doj ds =


log doj
2doi

, if doi = doj ;

(1/doj ) log (doi /d
o
j )+1/doi−1/doj

log2 (doi /d
o
j )

log doj , if doi 6= doj ;
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∆
(3)
ij =

∫ 1

0

log doi
doi

∆ij(s)ds =


log doi
2doi

, if doi = doj ;

1/doj−1/doi−log (doi /d
o
j )1/doi

log2 (doi /d
o
j )

log doi , if doi 6= doj .

Therefore, the linear term of A is −Γ0

[
bij∆

∗
ij

]
i,j

ΓT0 with ∆∗ij = ∆
(1)
ij + ∆

(2)
ij + ∆

(3)
ij .

Quadratic Term of A

e−A0

∫ 1

0

esA0Ae−sA0(

∫ s

0

euA0A e−uA0du) ds

= Γ0D
−1
0

∫ 1

0

Ds
0 ΓT0 A Γ0 D

−s
0 (

∫ s

0

Du
0 ΓT0 A Γ0 D

−u
0 du) ds ΓT0 .

The part in the middle can be rewritten as

D−1

∫ 1

0

Ds
0ΓT0A Γ0D

−s
0 (

∫ s

0

Du
0 ΓT0A Γ0D

−u
0 du) ds

= D−1

∫ 1

0

Ds
0 B D−s0 (

∫ s

0

Du
0 B D−u0 du) ds

= D−1

∫ 1

0

[
bij(

doi
doj

)s
]
i,j

[bij∆ij(s)]i,j ds

= D−1

∫ 1

0

[∑
k

bik(
doi
dok

)s · bkj∆kj(s)

]
i,j

ds

=

[∑
k

bikbkj
1

doi

∫ 1

0

(
doi
dok

)s ·∆kj(s)ds

]
i,j

=

[∑
k

bikbkj∆
∗
ikj

]
i,j

with

∆∗ikj =
1

doi

∫ 1

0

(
doi
dok

)s·∆kj(s) ds =



1
2doi

, doi = dok = doj ;

(doi /d
o
j )−1−log (doi /d

o
j )

log2 (doi /d
o
j )

1
doi
, doi = dok, d

o
k 6= doj ;

(doi /d
o
k)−1−log (doi /d

o
k)

log2 (doi /d
o
k)

1
doi
, doi 6= dok, d

o
j = doi ;

(doi /d
o
j ) log (doi /d

o
j )−(doi /d

o
j )+1

log2 (doi /d
o
j )

1
doi
, doi 6= dok, d

o
j = dok ;

(doi /d
o
j )−1

log (do
i
/do

j
)
− (doi /d

o
k)−1

log (do
i
/do

k
)

log (dok/d
o
j )

1
doi

=
∆

(1)
ij −∆

(1)
ik

log (dok/d
o
j )

1
doi
, doi 6= dok, d

o
j 6= doi , d

o
j 6= dok .
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Therefore, the quadratic term of A is −Γ0

[
bij∆

∗
ikj

]
i,j

ΓT0 .

Finally, we get

e−A ≈ e−A0 + A0e
−A0 +

1

2
A2

0e
−A0

− e−A0

(∫ 1

0

etA0Ae−tA0dt+

∫ 1

0

tetA0Ae−tA0A0dt+ A0

∫ 1

0

∫ t

0

esA0Ae−sA0dsdt

)
+ e−A0

∫ 1

0

etA0Ae−tA0(

∫ t

0

esA0Ae−sA0ds)dt

= e−A0(Ip + A0 +
1

2
A2

0)− Γ0

[
bij∆

∗
ij

]
i,j

ΓT0 + Γ0

[∑
k

bikbkj∆
∗
ikj

]
i,j

ΓT0 .

(5.13)

Although (5.13) still seems complex, the implementation of quadratic approxi-

mation for e− log Σ in terms of log Σ is routine. Based on that, we move back to the

penalized log-likelihood.

5.3 Penalized Log-likelihood with Matrix Expo-

nential Reparameterization

Plugging the approximation of e−A from (5.13) into the penalized log-likelihood of

(5.4), we have

tr(A) + tr(e−AS) + η
∑
s

∑
t

|ast|q

≈ tr(A) + tr
(
e−A0(Ip + A0 +

1

2
A2

0)S
)
− tr

(
Γ0

[
bij∆

∗
ij

]
i,j

ΓT0 S
)

+ tr
(
Γ0

[∑
k

bikbkj∆
∗
ikj

]
i,j

ΓT0 S
)

+ η
∑
s

∑
t

|ast|q

= constance term + tr(A)− tr
( [
bij∆

∗
ij

]
i,j
S̃
)

+ tr
( [∑

k

bikbkj∆
∗
ikj

]
i,j

S̃
)

+ η
∑
s

∑
t

|ast|q ,
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where S̃ = ΓT0 S Γ0. In addition to the results B = (bst) and B = ΓT0 AΓ0, the

minimization of the approximated penalized log-likelihood is more like a standard

convex optimization. For the L2 penalty, i.e. q=2, based on (5.10), it is clear that

∑
s,t

a2
st = tr(A2) = tr(Γ logD ΓT Γ logD ΓT ) = tr

(
(logD)2

)
=

p∑
i=1

{log(di)}2 ,

so optimizing the L2 penalized log-likelihood produces a covariance matrix estimate

with eigenvalues under control. Following this direction, Deng and Tsui (2013) ana-

lyze the behavior of such an estimate through numerical investigations. As explained

at the beginning of this chapter, there are other connections between covariance ma-

trices and their logarithm matrices including the structure relationships. Estimates

from minimizing L1 (q=1) penalized log-likelihood are expected to have their own

advantages. We call such an approach “L1-on-A”, and carried out numerical studies

for its performance.

5.4 Numerical Studies of Regularized Estimation

with L1 Penalty on log(Σ)

5.4.1 Simulation Study

We consider using Σ2 and Σ3 from Chapter 3 to conduct the simulation study. Recall

Σ2 is produced by permuting the banded covariance matrix Σ1 = (σst) with σst =

I{s=t}+ 0.4× I{|s−t|=1} and Σ3 = (σst) with σst = I{s=t}+ 0.4× I{|s−t|=p/5}, where p is

the number of variables. For each scenario, we generated normally distributed data

with three settings: (1) n = 50, p = 30; (2) n = 50, p = 50; (3) n = 50, p = 100.

Each case was repeated 200 times, and the average values from the 200 accuracy
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measures were reported as well as their corresponding standard errors.

Regarding accuracy measures, the L1, L2 and F norms of the difference matrix

between the estimated covariance matrix and the true one were calculated. Entropy

loss of estimates is included as well.

With respect to the choice of tuning parameter η, we also adopt the repeated

learning-testing to seek a balance between the quality of trained estimate and the

quality of reference covariance matrix. Unlike using F norm for the difference between

the estimated covariance matrix and the sample covariance matrix in Chapter 3,

in this implementation, we assume multivariate normal data, so a likelihood-based

criterion should be more appropriate. In details, We repeatedly split the data into

learning and testing sets with roughly equal sizes for V times. Let Σ̂(v)(η) be the

estimated covariance matrix based on the learning data with tuning parameter η in

the v-th replicate, v = 1, . . . , V . Denote Iv the index set of the data in the learning

set, s(v) the size of Iv, v = 1, . . . , V . The measure function is chosen to be the

likelihood, so that the tuning parameter is selected using

η̂ = argmin
η

1

V

V∑
v=1

{
s(v) log |Σ̂(v)(η)| −

∑
i∈Iv

yTi (Σ̂(v)(η))−1yi

}
.

Results of simulation study are reported in Table 5.1, following the same way

of presentations in the tables of Chapter 3 and 4. The performance for the sam-

ple covariance matrix, LW estimate and the refined L1-on-L estimate based on a

permutation set of size K = 30, is listed in comparison.

From Table 5.1, the L1-on-A estimate has the best performance for both Σ2 and

Σ3 in terms of L1 and L2 norm for the the difference between the estimated covariance



113

Σ
=

Σ
2

Σ
=

Σ
3

p
m

ea
su

re
S

am
p

le
L
W

30
-L

1
-o

n
-L

L
1
-o

n
-A

S
am

p
le

L
W

30
-L

1
-o

n
-L

L
1
-o

n
-A

30

L
1

n
or

m
4.

87
(0

.0
4)

2.
07

(0
.0

2)
1.

37
(0

.0
1)

1.
31

(0
.0

1)
4.

88
(0

.0
4)

1.
87

(0
.0

2)
1.

26
(0

.0
1
)

1
.2

3
(0

.0
1
)

L
2

n
or

m
2.

03
(0

.0
2)

0.
88

(0
.0

1)
0.

88
(0

.0
1)

0.
75

(0
.0

1)
2.

02
(0

.0
2)

0.
79

(0
.0

0)
0.

84
(0

.0
1
)

0
.7

1
(0

.0
1
)

F
n

or
m

4.
30

(0
.0

2)
2.

53
(0

.0
1)

2.
25

(0
.0

1)
2.

01
(0

.0
1)

4.
31

(0
.0

2)
2.

34
(0

.0
0)

2.
12

(0
.0

1
)

1
.9

1
(0

.0
1
)

en
tr

op
y

12
.5

8
(0

.0
6)

7.
22

(0
.0

4)
4.

05
(0

.0
4)

4.
78

(0
.0

4)
12

.5
8

(0
.0

6)
4.

84
(0

.0
3)

3.
04

(0
.0

3
)

3
.3

6
(0

.0
3
)

50

L
1

n
or

m
7.

98
(0

.0
5)

2.
50

(0
.0

2)
1.

47
(0

.0
1)

1.
42

(0
.0

1)
7.

96
(0

.0
5)

2.
22

(0
.0

2)
1.

35
(0

.0
1
)

1
.3

0
(0

.0
1
)

L
2

n
or

m
2.

96
(0

.0
2)

0.
91

(0
.0

0)
0.

94
(0

.0
0)

0.
91

(0
.0

0)
2.

93
(0

.0
2)

0.
81

(0
.0

0)
0.

89
(0

.0
0
)

0
.8

3
(0

.0
0
)

F
n

or
m

7.
11

(0
.0

2)
3.

50
(0

.0
0)

3.
08

(0
.0

1)
3.

13
(0

.0
1)

7.
13

(0
.0

2)
3.

20
(0

.0
0)

2.
88

(0
.0

1
)

2
.8

8
(0

.0
1
)

en
tr

op
y

-
14

.6
8

(0
.0

6)
8.

20
(0

.0
5)

10
.0

8
(0

.0
5)

-
9.

71
(0

.0
4)

5.
9
3

(0
.0

4
)

7
.0

6
(0

.0
4
)

10
0

L
1

n
or

m
15

.3
6

(0
.1

3)
3.

07
(0

.0
5)

1.
57

(0
.0

1)
1.

30
(0

.0
1)

15
.3

9
(0

.1
2)

2.
74

(0
.0

4)
1.

47
(0

.0
1
)

1
.2

0
(0

.0
1
)

L
2

n
or

m
4.

83
(0

.0
4)

0.
91

(0
.0

0)
1.

00
(0

.0
0)

0.
89

(0
.0

0)
4.

77
(0

.0
4)

0.
82

(0
.0

0)
0.

93
(0

.0
0
)

0
.8

0
(0

.0
0
)

F
n

or
m

14
.0

9
(0

.0
5)

5.
28

(0
.0

1)
4.

67
(0

.0
1)

5.
10

(0
.0

1)
14

.1
1

(0
.0

5)
4.

79
(0

.0
1)

4.
34

(0
.0

1
)

4
.5

9
(0

.0
0
)

en
tr

op
y

-
34

.4
9

(0
.1

7)
20

.3
5

(0
.0

9)
29

.5
6

(0
.0

7)
-

22
.4

0
(0

.1
1)

14
.3

8
(0

.0
7
)

1
9
.6

4
(0

.0
5
)

T
a
b

le
5
.1

:
C

om
p

ar
is

on
s

of
p

er
fo

rm
an

ce
b

et
w

ee
n

th
e
L

1
-o

n
-A

es
ti

m
at

e
an

d
ot

h
er

es
ti

m
at

es
in

Σ
2

an
d

Σ
3
.

A
ve

ra
g
es

o
f

m
ea

su
re

s
fr

om
20

0
re

p
li

ca
te

s
ar

e
li

st
ed

,
an

d
n
u

m
b

er
s

in
th

e
p

ar
en

th
es

es
in

d
ic

at
e

th
ei

r
st

an
d

ar
d

er
ro

rs
.



114

matrix and the sample covariance matrix. With respect to F norm, the performance

of L1-on-A estimate is similar as the one of refined 30-L1-on-L estimate, and is better

than the performance of the sample covariance matrix and LW estimate. The entropy

loss of L1-on-A estimate is larger than the loss of refined 30-L1-on-L estimate, but

smaller than the one of LW estimate.

5.4.2 Portfolio Allocation Revisit

We revisit the portfolio allocation problem in Chapter 3. In addition to the previous

3 portfolios according to LW, BT and the 30-L1-on-L estimate, we further built

portfolio 4 based on L1-on-A using the 52 weekly returns in 2006 of 97 stocks.

We summarize the realized returns in Table 5.2 to compare the performance.

Portfolio 4 does not perform so well in the training set of stock data in 2006. The

returns as well as standard deviation of the returns are close to portfolio 1 and they

are not as good as portfolio 2 and 3. For the testing set of stock data in 2007, the

performance of portfolio 4 is satisfactory. The standard deviation is the smallest

while the annualized return is the second highest.
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Year 2006 (Training Set) Weekly Return
Annualized Return

Arithmetic Standard

Average Deviation

Portfolio 1
0.29 % 0.67 % 16.24 %

(based on LW estimate)

Portfolio 2
0.32 % 0.69 % 17.78 %

(based on Bien’s estimate)

Portfolio 3
0.32 % 0.65 % 17.77 %

(based on 30-L1-on-L estimate)

Portfolio 4
0.29 % 0.66 % 16.20 %

(based on L1-on-A estimate)

Year 2007 (Testing Set) Weekly Return
Annualized Return

Arithmetic Standard

Average Deviation

Portfolio 1
0.21 % 1.56 % 10.62 %

(based on LW estimate)

Portfolio 2
0.19 % 1.58 % 9.89 %

(based on Bien’s estimate)

Portfolio 3
0.26 % 1.50 % 13.58 %

(based on 30-L1-on-L estimate)

Portfolio 4
0.25 % 1.49 % 12.96 %

(based on L1-on-A estimate)

Table 5.2: Summary of returns of portfolios derived from using different covariance
matrix estimates.
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6

Conclusion and Discussion

Estimation of population covariance matrices from samples of multivariate data is

of great importance. The sample covariance matrix estimate becomes less attractive

with the increase of the number of variables. In many applications such as gene ex-

pression, fMRI, spectroscopic imaging, weather forecasting and others, the number

of variables largely overrides the sample size. In this situation, the sample covari-

ance matrix becomes degenerate with a distorted eigen-structure (Johnstone, 2001).

Therefore, it is important to explore appropriate covariance matrix estimation in

large dimensions.

A natural thinking of improving covariance matrix estimation is to modify the

sample covariance matrix. Like the estimate from Ledoit and Wolf (2004), it is a

Stein-type estimate that shrinks the sample covariance matrix towards the identity

matrix. A different group of methods focus on regularizing the sample covariance

matrix. Bickel and Levina (2008b) consider thresholding small entries of the sample

covariance matrix to zeros. Dealing with covariance matrices with banded structures,

Bickel and Levina (2008a) consider banding the sample covariance matrix through

only keeping entries in the diagonal and certain sub-diagonals non-zeros. This group
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of methods can not guarantee the positive definiteness of the estimated covariance

matrix.

To pursue improved covariance matrix estimate with guaranteed positive definite-

ness, one perspective is to apply regularization on the covariance entries while treat-

ing them as parameters. This strategy usually requires sophisticated optimization

techniques in order to meet the positive definiteness. As an example, the estimate

from Bien and Tibshirani (2011) is obtained through optimizing the L1 penalized

log-likelihood using a majorization-minimization technique. Such sophisticated opti-

mization often involves intensive computation and convergence issue.

Another perspective of improving covariance matrix estimates with guaranteed

positive definiteness is not to directly regularizing the covariance entries. Rather,

through appropriate matrix decomposition, the regularization could be placed on the

entries of the factor matrices instead of on the original covariance entries. Therefore,

the constraint of positive definiteness is circumvented. Two ways of reparameteri-

zations based on matrix decomposition are considered. One is associated with the

modified Cholesky decomposition, and the other one, using matrix exponential, is

associated with the spectral decomposition.

The modified Cholesky decomposition from Pourahmadi (1999) is a widely used

tool in dealing with covariance matrices. The sequential regressions in accordance

with the modified Cholesky decomposition provide an unconstrained reparameteriza-

tion of the covariance matrix, and regularization can be easily applied to the Cholesky

factor matrix for it is equivalent to regularizing the coefficients of the linear regres-

sions. Incorporating the advantages of Bickel and Levina’s banding idea, Rothman
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et al. (2010) propose to band the Cholesky factor matrix of the covariance matrix

so that the estimated covariance matrix is always positive definite. The covariance

matrix estimation through regularizing the Cholesky factor matrix is not necessarily

limited to the scenarios in which the covariance matrices are banded.

That is the reason we choose to employ L1 regularization on the Cholesky factor

matrix to estimate the covariance matrix in a more general situation where particular

assumption of the matrix structure is not necessary. Besides that, the covariance

matrix estimation through employing L1 regularization on the Cholesky factor matrix

does not suffer the constraint of insufficient sample points as much as the approach

of banding the Cholesky factor matrix. More importantly, we find that the estimate

from L1 regularization is not sensitive towards the order of variables. One prerequisite

condition of using the modified Cholesky decomposition is the order information of

variables. Often, such information is not available, or can not be reasonably assumed.

Weakening or even getting rid of this requirement can greatly broaden the usage of

this technique.

In application of L1 regularization, it is true one may encounter certain disagree-

ment between estimates using different orders of variables, since the penalized linear

regressions are not necessarily the same. However, such disagreement should not be

considerable. We showed that when the tuning parameter is set to be zero, covariance

matrix estimate based on any order of variables is exactly equal to the sample covari-

ance matrix, which is order-invariant. The application of L1 regularization aims to

improve the estimate from the the sample covariance matrix towards the true covari-

ance matrix. Marching along this track with both ends are order-invariant matrices,
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estimation using different orders of variables may implement the improvement differ-

ently, but is not expected to deviate far away from the track. The property that the

estimate resulted from L1 regularization is not sensitive towards the order serves well

to eliminate this prerequisite. It motivates us to propose an order-invariant covari-

ance matrix estimate from refining estimates under random permutations of the order

of variables. Such refinement from individual estimates can be analog to building a

random forest from individual decision trees. While one individual tree may overfit

the data, a particular-order-based estimate could be more preferred under certain

order. Combining representative estimates corresponding to different orders is like

building a random forest so that the performance becomes more stable.

The theoretically order-invariant estimate is approximated from taking average of

many representative ones. This refinement strategy enables the refined estimate to

inherit positive definiteness and parsimony from individual estimates. Besides taking

average for maintaining these properties, other strategies may have similar effects.

For example, one may choose to refine Cholesky factor matrices L’s and standard

deviation matrices D’s from individual estimates. The averages of L’s and D’s can

be used to form an refined covariance matrix estimate with positive definiteness and

parsimonious property.

The choice of this representative group is not essential since the mechanism of

random selection achieves representativeness. For instance, in our simulation study,

the proposed estimates under refinement with permutation groups size 30 and 100

presented similar performance. In the real data analysis, the standard deviation

measures for estimates from different selection of permutation groups showed the
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minimal extents of variabilities for the results. Therefore, the guideline for the group

size is to seek balance between computation convenience and estimation accuracy. A

moderate number, like 30, should provide adequate performance in practice.

The idea of refining estimates corresponding to different orders of variables could

also be useful in the applications of other techniques based on the modified Cholesky

decomposition. For instance, Huang et al. (2006) propose methods of inverse covari-

ance matrix estimation by maximizing the log-likelihood with L1 and L2 penalty on

the entries of inverse covariance matrices. The implementation of their algorithms

is also based on the modified Cholesky decomposition. To examine the suitability

of our refinement strategy in their approach, we carried out their simulation studies,

and applied our refinement treatment to their estimates. In summary, the refining

strategy works as well in the estimates from Huang et al.. As an example, such an

investigation helps eliciting further usage of the refinement idea in other techniques

related to the modified Cholesky decomposition.

The matrix exponential technique is also able to circumvent the positive definite-

ness constraint in covariance matrix estimation. Based on the spectral decomposition,

the matrix logarithm of a covariance matrix is closely related to the original covari-

ance matrix. Since the only restrict of the matrix logarithm is symmetry, when the

parameters to be estimated are the entries in the lower part of the matrix logarithm,

these parameters are free to vary, and regularization on the parameters is easy to

apply.

One may argue that the reason of applying penalty on covariance entries is,

through such treatments, the estimated covariance matrix could be shaped towards
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some targets, and employ regularization on the entries of matrix logarithm of the

covariance matrix may not fulfill this purpose well. Directly shaping the estimated

covariance matrix while guaranteeing its positive definiteness is usually not easy, es-

pecially when there is no special assumption about the covariance matrix structure.

From another perspective, a desirable covariance matrix estimate helps better ex-

plaining the data, and placing penalty on the entries of matrix logarithm serves this

purpose well through shaping the estimated covariance matrix indirectly. There are

many evidences to support this statement. In terms of eigenvalues, the sum of loga-

rithms of eigenvalues from the original covariance matrix, is equal to the squared F

norm of matrix logarithm of the covariance matrix. In terms of matrix structures,

when a covariance matrix is banded, its matrix logarithm tends to be banded as

well; when a covariance is block diagonal, its matrix logarithm is also block diagonal.

Because of these properties, L2 penalty on entries of the matrix logarithm helps con-

trolling the extreme eigenvalues of the estimated covariance matrix, and L1 penalty

on entries of the matrix logarithm helps restoring the structure of covariance matrix

through restoring the structure of the matrix logarithm.

The magnitude of penalties, measured by tuning parameters, needs to be deter-

mined by procedures such as cross validation or repeated learning-testing. One thing

worth mentioning about the tuning procedure for L1-on-A is, the scale is correspon-

dent to the logarithm operation. Maybe not comparably in a strict sense, the selected

tuning parameter in L1-on-A is often significantly smaller than the selected one in

L1-on-L in the same scenario of simulation study. While the tuning set includes all

candidate choices for the tuning parameter, the variability of the penalized function
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values will be much greater if the same tuning set is used in L1-on-A than in L1-

on-L. Such a result is not unnatural, however, in practice, it does imply the tuning

procedure for L1-on-A should be more delicate. Without any prior information, one

may tend to use the same scale of tuning sets for different approaches. While one

tuning set is delicate enough for L1-on-L, it could be too loose in selecting the tuning

parameter for L1-on-A.



123

References

Z. Bai and Y. Yin. Limit of the smallest eigenvalue of a large dimensional sample

covariance matrix. The Annals of Probability, 21(3):1275–1294, 1993.

Z. D. Bai, J. W. Silverstein, and Y. Q. Yin. A note on the largest eigenvalue of a

large dimensional sample covariance matrix. Journal of Multivariate Analysis, 26

(2):166–168, 1988.

P. Bickel and E. Levina. Regularized estimation of large covariance matrices. The

Annals of Statistics, 36(1):199–227, 2008a.

P. Bickel and E. Levina. Covariance regularization by thresholding. The Annals of

Statistics, 36(6):2577–2604, 2008b.

J. Bien and R. Tibshirani. Sparse estimation of a covariance matrix. Biometrika, 98

(4):807–820, 2011.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation

and the repeated learning-testing methods. Biometrika, 76(3):503–514, 1989.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis

pursuit. SIAM: Journal on Scientific Computing, 20(1):33–61, 1998.



124

T. Y. Chiu, T. Leonard, and K.-W. Tsui. The matrix-logarithmic covariance model.

Journal of the American Statistical Association, 91(433):198–210, 1996.

W. G. Cochran. Sampling Techniques. John Wiley & Sons, 1977.

A. Constantine. Some non-central distribution problems in multivariate analysis. The

Annals of Mathematical Statistics, 34(4):1270–1285, 1963.

X. Deng and K.-W. Tsui. Penalized covariance matrix estimation using a matrix-

logarithm transformation. Journal of Computational and Graphical Statistics, 22

(2):494–512, 2013.

D. K. Dey and C. Srinivasan. Estimation of a covariance matrix under stein’s loss.

The Annals of Statistics, 13(4):1581–1591, 1985.

D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81(3):425–455, 1994.

B. Efron and C. Morris. Multivariate empirical bayes and estimation of covariance

matrices. The Annals of Statistics, pages 22–32, 1976.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The

Annals of statistics, 32(2):407–499, 2004.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association, 96(456):1348–

1360, 2001.



125

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear

models via coordinate descent. Journal of Statistical Software, 33(1):1, 2010.

J. H. Friedman. Regularized discriminant analysis. Journal of the American statistical

association, 84:165–175, 1989.

W. J. Fu. Penalized regressions: the bridge versus the lasso. Journal of Computational

and Graphical Statistics, 7(3):397–416, 1998.

S. Geman. A limit theorem for the norm of random matrices. The Annals of Proba-

bility, 8(2):252–261, 1980.

L. Haff. Empirical bayes estimation of the multivariate normal covariance matrix.

The Annals of Statistics, 8(3):586–597, 1980.

L. Haff. The variational form of certain bayes estimators. The Annals of Statistics,

19(3):1163–1190, 1991.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthog-

onal problems. Technometrics, 12(1):55–67, 1970.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2012.

J. Huang, N. Liu, M. Pourahmadi, and L. Liu. Covariance matrix selection and

estimation via penalised normal likelihood. Biometrika, 93(1):85–98, 2006.

D. R. Hunter and K. Lange. Quantile regression via an MM algorithm. Journal of

Computational and Graphical Statistics, 9(1):60–77, 2000.



126

I. M. Johnstone. On the distribution of the largest eigenvalue in principal components

analysis. The Annals of statistics, 29(2):295–327, 2001.

D. Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix.

Journal of Multivariate Analysis, 12(1):1–38, 1982.

J. Khan, J. Wei, M. Ringnér, L. Saal, M. Ladanyi, F. Westermann, F. Berthold,

M. Schwab, C. Antonescu, C. Peterson, et al. Classification and diagnostic pre-

diction of cancers using gene expression profiling and artificial neural networks.

Nature Medicine, 7(6):673–679, 2001.

O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance

matrices. Journal of Multivariate Analysis, 88(2):365–411, 2004.

E. Levina, A. Rothman, and J. Zhu. Sparse estimation of large covariance matrices

via a nested lasso penalty. The Annals of Applied Statistics, 2(1):245–263, 2008.

S. Lin and M. D. Perlman. A monte carlo comparison of four estimators of a covari-

ance matrix. Multivariate Analysis, 6:411–429, 1985.

H. Liu, L. Wang, and T. Zhao. Sparse covariance matrix estimation with eigenvalue

constraints. Journal of Computational and Graphical Statistics, (in press), 2013.
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