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abstract

Genome-wide association studies (GWAS) have successfully identified thousands of
genetic variants contributing to disease and other phenotypes. However, significant
obstacles hamper our ability to elucidate causal variants, identify genes affected by
causal variants, and characterize the mechanisms by which genotypes influence
phenotypes. The increasing availability of genome-wide functional annotation data
provides unique opportunities to incorporate prior information into the analysis of
GWAS to better understand the impact of variants on disease etiology. Regulatory
genomic information has been recognized as a potential source that can improve
the detection and biological interpretation of single-nucleotide polymorphisms
(SNPs) in GWAS.

Although there have been many advances in incorporating prior information
into the prioritization of trait-associated variants in GWAS, functional annotation
data has played a secondary role in the joint analysis of GWAS and molecular (i.e.,
expression) quantitative trait loci (eQTL) data in assessing evidence for association.
Moreover, current methodologies that aim to integrate such annotation information
focus mainly on fine-mapping and overlook the importance of its usage in earlier
stages of GWAS analysis. Equally important, there is a lack of development in
proper statistical frameworks that can perform selection of annotations and SNPs
jointly.

To address these shortcomings, we develop two statistical models: iFunMed
and GRAD. iFunMed is a novel mediation framework to integrate GWAS and eQTL
data with the utilization of publicly available functional annotation data. iFunMed
extends the scope of standard mediation analysis by incorporating information from
multiple genetic variants at a time and leveraging variant-level summary statistics.
GRAD integrates high-dimensional auxiliary information into high-dimensional
regression. This method allows annotation information to assist the detection of
important genetic variants while identifying relevant annotation simultaneously.
We provide an upper bound for the estimation error of the SNP effect sizes to gain
insights on what factors affect estimation accuracy.
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For iFunMed, data-driven computational experiments convey how informative
annotations improve SNP selection performance while emphasizing the robustness
of the model to non-informative annotations. Applications to the Framingham
Heart Study data indicates that iFunMed is able to boost the detection of SNPs with
mediation effects that can be attributed to regulatory mechanisms.

Simulation experiments indicate that GRAD can improve the identification of
genetic variants by increasing the average area under the precision-recall curve
by up to 60%. Real data applications to the Framingham Heart Study show that
GRAD can select relevant genetic variants while detecting several transcription
factors involved in specific phenotypical changes.
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1 introduction

1.1 Genome-wide Association Studies

Genome-wide association studies (GWAS) aim to identify genetic variants associ-

ated with different phenotypical changes. They examine hundreds of thousands to

millions of markers across the genome to find single nucleotide polymorphisms

(SNPs) that are observed with higher (or lower) frequencies in subjects with a

specific trait of interest. GWAS has successfully identified SNPs associated with

complex diseases such as coronary diseases (Nikpay et al., 2015) and type 2 diabetes

(Prasad and Groop, 2015), among many others. This is a vital tool for researches

in the clinical field to characterize diseases and develop strategies for detection,

treatment, and prevention.

A traditional GWAS analysis workflow has the following steps:

1. Quality control and imputation: Genotype data is first filtered based on (most

commonly) three criteria. These are call rate, minor allele frequency (MAF)

and violation of Hardy-Weinberg equilibrium (HWE). Call rate filters out

SNPs that have an elevated proportion of missing data among patients, MAF

removes rare SNPs, and deviations of HWE can potentially detect miscalled

variants. This is followed by imputation of partially missing genotypes which

is most successfully performed by using a reference panel to gain knowledge

of the genetic structure of the variants (Marchini and Howie, 2010; Li et al.,

2010). Genotypes are then recoded to an additive format (0/1/2).
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2. Association analysis: The phenotype of interest is regressed on each SNPi

(i = 1, . . . ,p) individually with or without adjustment for other traits that

could be relevant (e.g. age and sex). This yields p regression models that

are summarized and inspected visually with Manhattan plots (− log10 trans-

formed p-values for each SNP across their genomic coordinates).

3. Selection of SNPs: Significance at a high level is required. A threshold of

1 × 10−8 is widely used to account for the multiple testing problem. SNPs

with p-values below the margin are selected and partitioned into independent

regions for further inspection.

4. Fine-mapping: Each region with promising associations is analyzed and soft-

wares like (Pruim et al., 2010) are used for visualization. The goal is to perfect

the localization of causal variants with the use of statistical tools and/or

functional methods for follow-up functional studies.

1.2 Understanding GWAS Hits

The associations that are characterized by GWAS have lead to novel discoveries

(Hirschhorn et al., 2009), including pathways that were previously unsuspected

(Lettre and Rioux, 2008) but many times, interpretation of SNPs that are found to

be associated remains unknown. More importantly, by using strict thresholds on

marginal associations we might miss candidates with moderate signals that have

strong joint effects.
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Current efforts by large consortia projects (Consortium, 2012; Roadmap Epige-

nomics Consortium, 2015) to identify functional elements are helping us to better

understand the human genome. We refer to this as functional annotation data. The

information that can be used as annotation can range from open chromatin regions,

protein binding of specific proteins, or even accessibility changes among SNP al-

leles, and they can originate from different tissues and cell types. Findings from

(Maurano et al., 2012) revealed that common disease-associated SNPs are enriched

in functional DNA. This motivated scientists in the field to utilize and incorporate

annotation as auxiliary information into GWAS analyses to improve SNP selection

and prioritization.

To have a comprehensive understanding of the biology underlying different

traits, (Nicolae et al., 2010) motivated the idea of using gene expression information

starting from the basis that associated SNPs are more likely to be eQTLs. These

observations suggest that GWAS SNPs modify expression levels of genes nearby

which ultimately results in phenotypical changes. We can think about this biological

pathway as a mediation process where gene expression acts as a mediator variable

between genotype and phenotype associations.

Furthermore, nowadays, scientists are encouraged to share data that summarizes

their findings. A common technique is to make results from marginal associations

publicly available such as SNP effect sizes, standard errors, t-scores, or a combina-

tion of them. This is practical because of, mainly, two reasons: it doesn’t yield on

violations of patient privacy and summary-level data requires modest computation

capacity. This data-sharing process allows us to gather information from large
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cohorts in a short amount of time.

1.3 Statistical Methods for GWAS Analysis

Statistical methodologies that aim to integrate different sources of information to

elucidate functionality and help to prioritize genetic variants are a focus of interest

within GWAS analyses. They have the intent to answer some of the questions

and challenges portrait by GWAS. We will review some of the main methods in

literature and they are summarized in Figure 1.1.

Figure 1.1A displays methods that use mediation models, i.e. they provide

an alternative pathway of association by assuming that phenotypical changes are

observed because of changes in expression levels. The main focus of these methods

in literature is to characterize gene-trait associations. TWAS (Gusev et al., 2016)

provides flexibility regarding the input data, which can be raw-level or summary

statistics. In both cases, it produces prediction-like gene expression that is later on

tested for associations with the trait. SMR (Zhu et al., 2016) takes advantage of the

Mendelian randomization framework and inputs summary data from GWAS and

eQTL studies to identify associations between gene expression and traits of interest.

Finally, both PrediXcan (Gamazon et al., 2015) and S-PrediXcan (Barbeira et al.,

2018) compute gene-level association. PrediXcan predicts/imputes transcriptome

levels from genotype and phenotype data, while S-PrediXcan does it directly from

GWAS outputs.

Mediation models that have the goal of gaining information regarding direct
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or mediated effects of individual SNPs are much less common. Some approaches

do single-SNP mediation where they fit as many models as SNPs in the locus

of interest. This technique can be useful as a form of exploratory analysis or to

gain insights regarding the mediation potential of a specific gene but lack proper

multiple comparison error control and do not account for joint SNP effects. A step-

up from such procedures is iGWAS (Huang et al., 2015). iGWAS uses a multivariate

mediation model with raw-level data and incorporates a family-based design. Yet,

there are still no methodologies, to our knowledge, that incorporate epigenomic

information into this models to improve SNP detection. iFunMed (Rojo et al., 2019)

fills this hole by performing a mediation analysis with only the use of GWAS

and eQTL summary statistics (t-scores) that integrates annotation information

to inform non-zero status of SNP effect sizes and reports direct and mediated

posterior probabilities of being non-zero. This allows the user to prioritize and

select SNPs with high posterior probabilities. We accompany our analysis with an

annotation selection pipeline based on enrichment values to avoid the burden of

fitting hundreds to thousands of annotations that are generated nowadays, and to

gain potential functionality of mediated and direct effects.

Another cluster of methods leverages annotation information into GWAS to

improve SNP detection. These are illustrated in Figure 1.1B. They commonly share

the way they integrate annotation into their models by using it as data-driven prior

information, similarly as iFunMed. A portion of them assumes independence and

only takes as input GWAS summaries that provides computation efficiency. One of

the first ones to emerge was fgwas (Pickrell, 2014) that adopts an empirical Bayes
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approach. It computes the probability of a specific block in the genome to have a

non-zero SNP and within each region that harbors a non-zero SNP, it computes

posterior probabilities for all of the SNPs in the locus. To do this computation,

it assumes one causal variant per locus and uses a forward-backward technique

to select annotations, which can be discrete (e.g. overlap vs no overlap with a

TF binding region) or continuous (e.g. distance to TSS). GPA (Chung et al., 2014)

takes as input marginal associations p-values and models them as null (from a

uniform distribution) and non-null (from a beta distribution). It aims to discover

and prioritize non-null SNPs. GPA only takes binary annotations and does not

provide high-dimensional annotation selection, although it does have p-values

of enrichment for one annotation at a time fits. One last method that assumes

independence is RiVIERA (Li and Kellis, 2016). It provides inference of the empirical

prior of a genetic variant being associated with a specific disease, which will depend

on the annotation. Same as fgwas, it assumes one causal variant per-locus. It doesn’t

have annotation selection but they do propose a technique to recognize enrichment.

It has the limitation of only using binary annotations.

A step further in these class of methods is to integrate linkage-disequilibrium

(LD) into their pipelines to model the correlation structure among them. One

method that has gained popularity is PAINTOR (Kichaev et al., 2014). Annotation

influences the non-zero status probability through a logistic model. They relate

SNPs to the observed marginal associations under a multivariate normal model.

PAINTOR suggests to use one at a time fits to select top strictly binary annotations.

A comparatively less popular method (by comparing the number of citations) is
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CAVIARBF (Chen et al., 2016). Their model is fairly similar to iFunMed if we didn’t

have the mediation part. They start with a multivariate GWAS model and split effect

sizes into zero and non-zero portions. The non-zero SNPs will have a higher prior

inclusion probability that is modeled with a logistic function and a normal prior for

the annotation enrichment. These classes of models follow similar ideas as earlier

Bayesian variable selection models (Carbonetto and Stephens, 2012). CAVIARBF has

the flexibility to adapt to multiple types of annotations (binary and continuous) and

provides proper annotation selection by using penalization methods on annotation

enrichment.

There are other methods that do not take advantage of meta-analyses and

summary-level data. Instead, they use full raw-level data information. FM-QTL

(Wen et al., 2015) proposes a multivariate model and computes posterior probabili-

ties of SNPs being non-zero. They relate this to the Bayes Factor and use MCMC

for posterior inference. They further link genomic annotations using a logistic

model. FM-QTL can only handle a handful of annotations but they can be binary

or continuous. DAP (Wen et al., 2016) is an extension of FM-QTL and their models

are very similar. Their key difference is that DAP only uses high-priority loci and

the EM algorithm instead of MCMC. Finally, bfGWAS (Yang et al., 2017) follows a

similar model to (Carbonetto and Stephens, 2012) and models the joint effect of an

annotation by having a prior per category. This imposes the strong assumption of

non-overlapping annotations categories, which is not realistic. Moreover, it doesn’t

allow annotation selection.

All of these methods from Figure 1.1B calculate a form of posterior probabilities
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with the use of a Bayesian hierarchical model. We propose GRAD (Rojo et al., 2020),

a genome-wide regression with auxiliary data that decomposes SNP effect sizes

into two components: one that is measured by the annotation information (Aγ) and

an annotation-free contribution (η). The general formulation of GRAD allows us to

take advantage of regularization methods for the selection of γ and η. Methods that

provide annotation selection are based on forward-backward techniques (fgwas), or

limited to enrichment or p-values from fittings with one annotation at a time (GPA,

PAINTOR, DAP, and RiVIERA). These have the potential of wasting important

information that might have joint effects that can improve SNP detection. Unlike

others, except for CAVIARBF, we provide high-dimensional annotation selection.

We recommend the use of GRAD for SNP selection and inspect them further with

fine-mapping tools.

The rest of the document is organized as follows. In Chapter 2 I will introduce

iFunMed to do integrative functional mediation analysis with GWAS and eQTL. In

Chapter 3, GRAD is proposed to leverage annotations into GWAS analysis with a

flexible model. Both chapters are accompanied by extensive simulation experiments

and applications to the Framingham Heart Study (FHS) data. Lastly, I will discuss

some future directions for these models in Chapter 4.
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Figure 1.1: Categorization of (main) statistical methods that perform data-
integration on GWAS analysis. Methods highlighted in purple presented in
this dissertation.
(A) Methodologies based on mediation analysis can be split on what they aim to
characterize: gene-trait associations or SNP prioritization. They typically take as
input summary-level data or raw-level data. (B) Methodologies that aim to improve
SNP prioritization and/or selection with the use of external annotation information.
They usually use annotation to inform the status of the SNP effect β sizes as prior
information or the effect size magnitude and take a combination of summary-level
data, LD matrix, or raw-level data as input, besides the annotations. Methods in
cursive indicate that the model provides tools for annotation selection.
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2 ifunmed: integrative functional mediation analysis
of gwas and eqtl studies

©2019. Genetic Epidemiology. (Rojo et al., 2019). All Rights Reserved1.

2.1 Introduction

Genome-wide association studies (GWAS) and molecular quantitative trait loci

(QTL) (e.g., expression QTL (eQTL), methylation QTL (meQTL)) studies are com-

monly used approaches in genetic research. Many studies aiming to integrate

these two types of data have emerged in the study of complex diseases such as

Type 2 diabetes (Zhong et al., 2010), Crohn’s disease (Xiong et al., 2012), and vari-

ous types of cancer (Zhang et al., 2012). These approaches capitalize on the idea

that trait-associated SNPs are more likely to be functional and thus eQTLs (Nico-

lae et al., 2010); therefore, they aim to identify significant GWAS SNPs that are

also eQTL SNPs. Although such an approach makes use of eQTLs for reranking

or filtering the candidate disease SNPs, it falls short of disentangling the asso-

ciation of eQTL SNPs to generate mechanistic hypotheses. An emerging area

to address this shortcoming is causal mediation modeling of GWAS and eQTL

data to decompose the etiological mechanisms for the total genetic effect into the

genetic effect on disease risk mediated through gene expression (mediation or

indirect effect, Genotype → Gene Expression → Phenotype) and the genetic ef-
1Material in this chapter is a modified version of: Constanza Rojo, Qi Zhang & Sündüz Keleş.

"iFunMed: Integrative functional mediation analysis of GWAS and eQTL studies." Genetic Epidemiol-
ogy, 2019
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fect through other biological pathways or environmental risk factors (direct effect,

Genotype → Phenotype adjusted by Gene Expression). Pioneering work in this

area include mediation analysis framework of (Huang et al., 2004, 2014; Chaibub-

Neto et al., 2010). Although mediation analysis in genetical genomics is an active

area of research with most recent methods addressing familial designs (Huang

et al., 2015) or specifically aiming to identify expression-trait associations (Gamazon

et al., 2015; Gusev et al., 2016; Barbeira et al., 2018), it shares the key impediment of

individual GWAS and eQTL analysis: more than 90% of associated SNPs are located

either intronic or intergenic regions, making their interpretation challenging.

The availability of large-scale functional annotation data through large con-

sortia projects is enabling the annotation of non-coding SNPs that significantly

associate with disease and other traits. Initial analyses from the ENCODE Consor-

tium indicated that GWAS-identified phenotype-associated variants can be found

in regulatory regions (enhancers) more often than expected by chance (Maurano

et al., 2012). This and related fundamental observations led to the undertaking

of phenotype-associated variant prioritization using functional annotation data.

The increasing body of work in this area, such as (Kichaev et al., 2014; Wen et al.,

2016; Chung et al., 2014; Pickrell, 2014; Gagliano et al., 2014; Thompson et al., 2013;

Minelli et al., 2013; Chen et al., 2016), typically model univariate association statis-

tics from GWAS as functions of annotation data. None of these methods utilize

functional annotation in the joint analysis of clinical/physiological and expres-

sion phenotypes and almost all of them focus on relating univariate association

statistics from GWAS to annotation data. Another major challenge in the currently
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employed mediation analysis approaches, except for recently developed (Gusev

et al., 2016; Zhu et al., 2016; Barbeira et al., 2018) that can only detect gene-trait

associations, is that they require raw subject-level, i.e. experimental-unit level, SNP

genotype, gene expression, and phenotype data. Although such level data from

GWAS and eQTL studies can be available through controlled-access repositories

such as dbGap (Mailman et al., 2007), information stored in these repositories are

not always organized enough to enable easy interactions with the data without

the involvement of data generators. Furthermore, with the ever increasing data

sizes of biobanks, successful access to raw, unprocessed data requires considerable

storage and computation capacity. However, GWAS and eQTL summary statistics

of individual studies are often publicly available as part of the publication process.

To overcome these challenges, we introduce iFunMed: a mediation model that

utilizes functional annotation data (A in Figure 2.1) as prior information and builds

on summary statistics from GWAS and eQTL studies (ZY , ZG in Figure 2.1). Specifi-

cally, iFunMed model leverages functional annotation information when modeling

the inclusion probabilities of the SNPs, i.e., probability that a given SNP has a

non-zero direct or indirect effect. As a result, it enables identification of SNPs

that are associated with phenotypical changes through direct phenotype-genotype

effect and/or indirect gene expression mediated phenotype-genotype effect. We

further develop a functional annotation screening procedure to accompany the

direct and indirect models of iFunMed. This is motivated by the fact that a large

proportion of the annotations exhibit no to little association with the summary

statistics, and annotations that associate with the GWAS summary statistics (ZY)
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do not necessarily correlate with the eQTL summary statistics (ZG), and vice versa

(Figure A.1). Figure 2.1 depicts an overview of the model. We derive a variational

expectation-maximization (EM) algorithm that enables the fitting of the iFunMed

model in a computationally feasible way. Our data-driven computational experi-

ments illustrate how informative annotations improve SNP selection performance

in the iFunMed model. These experiments also indicate that iFunMed is robust

to non-informative annotations. Application to Framingham Heart Study (FHS)

data using a large collection of publicly available annotations results in elucidation

of SNPs, mediation effects of which can be attributed to regulatory mechanisms.

Implementation of iFunMed is in R programming language and is freely available

at https://github.com/mcrojo/iFunMed.

2.2 Materials and Methods

Mediation Model from Univariate Summary Statistics

Multivariate Mediation Analysis

Let Y be a quantitative phenotype of interest observed from n subjects, G the

expression of a gene that is associated with phenotype Y, S the n×p SNP genotype

matrix, and X the matrix of other covariates that may be important to control for,

such as age and sex. The relationship between Y, S, G, and X can be modeled as in

Figure 2.1 by the following mediation framework

Y = Xα+ Sβ+ Gδ+ ε and G = Xa + SB + η, (2.1)

https://github.com/mcrojo/iFunMed
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where ε ∼ N(0,σ2
εIn) and η ∼ N(0,σ2

ηIn). Under model (2.1), β is considered as the

direct effect of the genotype S on the phenotype Y adjusted by the mediator G, B is

the effect of the genotype on gene expression, B ·δ is the mediated (indirect) effect of

the genotype on the phenotype through gene expression G, andβ+B·δ corresponds

to the total genetic effect of the SNPs on the phenotype. In genetical genomic

applications, a simplified version of this model that considers one SNP at a time

is typically utilized (Yao et al., 2015). Although computationally efficient, such a

model creates a prohibitive multiple testing problem and does not acknowledge the

fact that, for complex diseases, each of a large number of underlying susceptibility

SNPs might exhibit modest disease association, but their combined effect could

contribute to a significant variation in the phenotype (Chatterjee et al., 2016).

In the following, we reformulate the individual-level data mediation model

in Equation (2.1) in terms of univariate SNP-level summary statistics from GWAS

and eQTL studies. Let ZY and ZG denote vector of t-statistics from the univariate

regression of clinical phenotype Y and expression phenotype G on the individual

SNP Sj for j = 1, . . . ,p, both adjusted by covariates X. Then, the summary statistics

can be expressed as

ZY = D−1ST (I − HX)Y and ZG = D−1ST (I − HX)G. (2.2)

Here, HX is the projection matrix onto the column space of X, and D = diag([ST (I−

HX)S]). Let Σ = ST (I − HX)S denote the Pearson correlation matrix of the SNPs as

a measure of the linkage disequilibrium (LD) and further define transformations

Σ̃ = D−1/2ST (I − HX)SD−1/2, Z̃Y = D1/2ZY , Z̃G = D1/2ZG, β̃ = D1/2β, B̃ = D1/2B,
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ε̃ = D−1/2ST (I−HX)ε, and η̃ = D−1/2ST (I−HX)D1/2η. For the sake of simplifying

the notation, we eliminate “ ˜ " from all the notations except for Σ̃ and obtain

ZY = Σ̃β+ ZGδ+ ε and ZG = Σ̃B + η, (2.3)

where the error covariances now depend on the SNP correlation structure as ε ∼

N(0, Σ̃σ2
ε) and η ∼ N(0, Σ̃σ2

η). Figure 2.1B is a pictorial depiction of Equation (2.3)

as a mediation model, with additional components described below. Note that

in Equation (2.3), Σ̃ represents the correlation matrix between SNPs, same as the

linkage disequilibrium (LD) structure, which can be approximated using large

reference genome pools (e.g., 1,000 Genomes (Consortium, 2015)) or can be shared

among investigators without violating the privacy of genetic data of the study

participants. As a result, model (2.3) is able to recover parameter estimates from

the original model in Equation (2.1) by utilizing univariate summary statistics.

Integrative Functional Mediation

The mediation formulation in Equation (2.3) is a high dimensional regression

problem. We consider a Bayesian variable selection framework that can naturally

administer data-driven prior information such as functional annotation. We repre-

sent such auxiliary information by a Ap×(K+1) matrix where column j represents a

length p binary vector with entries denoting whether or not an individual SNP has

the j-th annotation (e.g., SNP resides within an enhancer region identified through
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epigenomic studies). We define sβ and sB as unobserved indicator variables as

sβ,j =

 1 if βj 6= 0,

0 o.w.
, sB,j =

 1 if Bj 6= 0,

0 o.w.
.

Next, we explicitly model β as β = τβ ◦ sβ, where τβ ∼ N(0,νβσ2
εIp), sβ =

(sβ,1, . . . , sβ,p)
T , and sβ,j ∼ Bernoulli(πβ,j). Here, x ◦ y denotes component-wise

multiplication of vectors. Similarly, we model B as B = τB ◦ sB, where τB ∼

N(0,νBσ2
ηIp), sB = (sB,1, . . . , sB,p)

T , and sB,j ∼ Bernoulli(πB,j). The key roles of sβ

and sB are to enable selection of SNPs with direct and gene effects, respectively. τβ

and τB, with variances of νβσ2
ε and νBσ2

η, denote the effect sizes. πβ,j and πB,j are

SNP inclusion prior probabilities that we further link to the functional annotation

information Aj by utilizing a logistic function

πβ,j =
1

1 + e−ATj γβ
and πB,j =

1
1 + e−ATj γB

. (2.4)

In Equation (2.4), ATj represents a K + 1 binary vector of K annotations, where

Aj,k = 1 if the annotation k overlaps with SNP j, and an intercept term. Finally, we

denote all the parameters of the model, including the hyperparameters, as (δ,θ)

where θ = (σ2
ε,σ2

η,νβ,νB,γTβ,γTB).
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Likelihood of the Model

We consider the joint distribution of (ZY , ZG,τβ,τB, sβ, sB, δ) as,

P(ZY , ZG,τβ,τB, sβ, sB, δ;θ, A, Σ̃) = P(ZY ,τβ, sβ, δ|ZG;σ2
ε,νβ,γβ, A, Σ̃)

×P(ZG,τB, sB;σ2
η,νB,γB, A, Σ̃), (2.5)

and remark that right-hand side of Equation (2.5) factorizes

into two parts that model the direct effect given the mediator

variable (P(ZY ,τβ, sβ, δ|ZG;σ2
ε,νβ,γβ, A, Σ̃)), and the gene effect

(P(ZG,τB, sB;σ2
η,νB,γB, A, Σ̃)). They share no hyperparameters, and can be

fitted separately. We refer to these two parts as direct effect model adjusted by

the mediator (DEM) and the gene effect model (GEM), respectively. Then, the

log-likelihoods of GEM (LGEM) and DEM (LDEM) are as follows:

log P(ZG,τB, sB;σ2
η,νB,γB, A, Σ̃) = log P(ZG|B ≡ τB ◦ sB;σ2

η, Σ̃) + log P(τB;σ2
η,νB)

+

p∑
j=1

log P(sB,j;πB,j ≡ expit(ATj γB)), (2.6)

log P(ZY ,τβ, sβ, δ|ZG;σ2
ε,νβ,γβ, A, Σ̃) = log P(ZY |β ≡ τβ ◦ sβ, δ, ZG;σ2

ε, Σ̃) + log P(τβ;σ2
ε,νβ)

+

p∑
j=1

log P(sβ,j;πβ,j ≡ expit(ATj γβ)), (2.7)

where expit(x) denotes the inverse logistic link function.

We fit this model with an expectation-maximization (EM) algorithm based
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on variational approximations (Ormerod and Wand, 2010; Ormerod et al., 2017)

owing to the high dimensionality of the problem, i.e., the number of SNPs in a

typical mediation study can fluctuate from a couple hundred to thousands. Varia-

tional methodologies have shown promising results under Bayesian approaches

for large-scale genetic association studies (Carbonetto and Stephens, 2012). The

variational algorithm approximates the joint posterior distribution by a product of

lower dimension functions and then minimizes the Kullback-Leibler divergence

between them. This approach leads to a computationally feasible algorithm while

maintaining the desirable properties of the EM algorithm (Tzikas et al., 2008). The

outline of the individual steps is presented in Appendix A.1.

Data-driven Simulation Experiments

To evaluate the performance of iFunMed, we performed a series of simulations in

settings where the underlying truth is known. We used data from the Framingham

Heart Study to construct the LD matrix Σ̃. We utilized the 2,456 available subjects

and a segment of the genome between 35,985,004 bp and 43,707,220 bp on chro-

mosome 1, which harbored 2,000 SNPs with a wide range of LD between the loci

SNPs (r ∈ [−0.94, 1.00]).

To emulate realistic SNP and annotation effect sizes, we simulated data from

the hierarchical model in Equation 2.3 by leveraging estimates of δ and θ =

(σ2
ε,σ2

η,νβ,νB,γTβ,γTB) from the actual fits of the FHS data and the LD matrix

Σ̃. For each simulation setting, we generated the prior inclusion probabilities πβ

and πB using an annotation matrix A with two columns: an intercept and one
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auxiliary information, which corresponded to fitting the mediation model using

one annotation at a time.

We used a set of 220 annotations curated by LD Score Regression (Finucane et al.,

2015) and corresponding to four histone marks (H3K4me1, H3K4me3, H3K9ac,

and H3K27ac originating from the Roadmap Epigenomic Project (Roadmap Epige-

nomics Consortium, 2015)) across ten tissues: adrenal and pancreas, cardiovas-

cular, central nervous system (CNS), connective and bone, gastrointestinal (GI),

immune/hematopoietic, kidney, liver, skeletal muscle, and other. We further re-

duced this list to 209 annotations by combining replicates of each epigenetic mark

from the same cell-type. To enable a wide range of simulation settings by reducing

the computational time, we utilized five annotations which we selected as rep-

resentatives of different proportions of SNPs with the annotation in the region,

varying from 0.014 (A1: gastric) to 0.147 (A5: hippocampus middle) as depicted

in Figure A.2. Individual information is detailed in Table A.1. The simulation

parameters were based on the actual fits of the hierarchical model on FHS data by

considering multiple loci and genes as candidate mediators. Specifically, the pa-

rameters varied as follows: σ2
ε,σ2

η ∈ {0.1, 1, 5}, νβ,νB ∈ {10, 20, 100}, δ ∈ {0.05, 0.5},

and the parameters associated with the functional annotation effects were set as

in Table 2.1 based on the FHS fits. Collectively, these combinations of parameters

resulted in 54 different simulation settings for each one of the five annotations we

utilized. We generated 20 simulated datasets from each scenario (54× 5 settings in

total) and summarized the results across these simulation replicates.
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Framingham Heart Study (FHS)

We accessed FHS individual-level genotype, expression, and phenotype data of

2,456 subjects through dbGap (dbGaP: phs000007.v16.p6). Genotypes were from

the SHARe sub-study that used the OMNI5M array and the whole blood RNA

expression from the SABRe CVD study. A total of 1,667 patients had both expression

and genotype data. We pre-processed the genotypes with PLINK v1.9 (Chang et al.,

2015; Purcell et al., 2007), and imputed with IMPUTE2 v2.3.2 (Marchini and Howie,

2010; Marchini et al., 2007). This resulted in 2,244,466 SNPs (details in Appendix

A.2). We utilized the 209 reduced list of LD Score Regression (Finucane et al.,

2015) annotations as the functional annotations for prior construction, as in the

simulations. For mediation analysis, because the expression data is from whole

blood RNA, we focused on blood-related phenotypes factor VII, which is involved

in the process of coagulation, red blood cell count, white blood cell count, and

Von Willebrand factor, which plays a role in hemostasis. For these phenotypes, we

evaluated multiple genes and selected six loci (Table 2.2) with dense and relatively

strong genotype signal and evidence of potential mediation to present in detail.

Further details are provided in Appendix A.3.

For each SNP in the model, we report estimates of the posterior probabilities

of inclusion in the DEM and GEM fits, i.e., P(sβ,j = 1|ZY , ZG, δ̂; σ̂2
ε, ν̂β, γ̂Tβ, A, Σ̃)

and P(sB,j = 1|ZG; σ̂2
η, ν̂B, γ̂TB, A, Σ̃), with the goal of elucidating the direct and

mediated SNP effects on the phenotype.
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Annotation Screening

To accommodate the observation that annotations might not exhibit any associa-

tion with the summary statistics and that they can be associated differently with

the GWAS and eQTL statistics (Figure A.1), we carried out annotation screening.

The proposed strategy starts by calculating an enrichment statistics based on the

iFunMed fit without the use of any annotation information (every SNP has the same

prior probability of inclusion). We refer to such model as the null model. In what

follows, we use the notation for the gene effect model (GEM: B) as the extension to

the direct effect model (DEM: β) follows directly. We denote the posterior probabil-

ity of inclusion from the null model as ŝB,j = P(sB,j = 1|ZG; σ̂2
η, ν̂B, γ̂TB, A, Σ̃). We

then calculate the average posterior probability of inclusion (e.g., evidence of the

non-zero effect size) of the SNPs with the annotation k, for k = 1, . . . ,K, from the

null model as:

ave(ŝB,k) =

∑
j:Aj,k=1 ŝB,j∑p
j=1 Aj,k

.

Next, we evaluate the significance of this enrichment statistic ave(ŝB,k) with a

permutation approach. The overall procedure is summarized as follows.

1. Fit the iFunMed null model and compute the average posterior probability of

inclusion, ave(ŝB,k), for each annotation k, for k = 1, . . . ,K. This is the main

annotation-level summary statistic for quantifying enrichment.

2. Within each annotation k, permute the binary annotation values Ak and

compute permuted ave(ŝB,k).
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3. Repeat step 2N times and compute ave(ŝnB,k) forn = 1, . . . ,N as the permuted

average posterior probability of inclusion.

4. Obtain the per annotation enrichment p-value as:

p̂B,k =
1
N

N∑
n=1

1{ave(ŝnB,k) > ave(ŝB,k)}.

In both the simulations and the FHS application, we setN = 10, 000. Evaluations

of this annotation screening procedure for Type I error and power are provided in

Section 3.3. In the FHS application, we utilized annotations that were marginally

significant at 5% and were retained after multiple testing correction with (Benjamini

and Hochberg, 1995) at false discovery rate (FDR) of 10%.

2.3 Results

Evaluation with Simulations

We first evaluated power and Type I error of the annotation screening strategy (Fig-

ure 2.2, Table A.2). Since five different annotations were simultaneously considered

in these simulations, we utilized Bonferroni correction for multiplicity adjustment

and observed that the family-wise error rate (FWER) is well controlled at 5% (Ta-

ble A.2). Results on power are further stratified with respect to the annotation that

was used to simulate data (A1 to A5, representing annotations with increasing

proportions of overlapping SNPs) and annotation effect sizes (mild and strong) and

are presented as the proportion of times that the screening strategy identified the
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correct annotation in Figure 2.2A. As expected, median power for strong effect sizes

is higher (between 0.10 and 0.75 for A1 to A5) than the mild effect sizes (median

power between 0.10 and 0.70 for A1 to A5). In addition, we observe that power

increases with the increasing proportion of SNPs with the annotation (A1 being

the lowest and A5 the highest, Table A.2). Hence, the screening strategy may not

be able to guarantee acceptable power for annotations with a low proportion of

SNP overlap. To circumvent this and alleviate the multiple testing burden, we

exclude individual annotations with less than 5% overlap with the SNPs from the

annotation set.

Area under the receiving operating characteristic curve (AUROC) comparisons

across all the simulation scenarios (Figure 2.2B) support that leveraging functional

annotation data improves detection of relevant SNPs, regardless of the simula-

tion setting and proportion of the SNPs with the annotation. While annotations

with lower proportion of SNPs with the annotation (A1, A2, and A3) exhibit only

marginal improvement, the ones with higher proportion (A4 and A5) show greater

and more stable improvements. This is consistent with the overall observations in

Figure 2.2A. Specifically, the average percentage increases in the AUROC with the

use of annotation A5 are 11.6% and 16.4% for the mild and strong settings, respec-

tively. Area under the precision-recall curves (AUPR) (Figure A.3A) exhibit similar

overall patterns as the AUROC curves for both the mild and strong annotation

effects.

Figures 2.2C and 2.2D contrast two simulation settings in more detail by varying

parameters νβ and νB. In these settings, there is a weak mediation effect (δ = 0.05),
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moderate error variances (σ2
ε = σ

2
η = 1), and the prior probability of SNP inclusion

changes from 0.01 without annotation to 0.08 with annotation (mild effect). We

observe that when the effect size variances of β and B are large (νβ = νB = 100

in panel C), easily leading to larger effect sizes, the AUROC is above 0.8 with

and without annotation, albeit using annotation improves the AUROC by 4%. In

contrast, for the case with weak effect sizes (panel D), the improvement due to

annotation is more pronounced at 15%. ROC curves separated for the DEM and

GEM fits behave similarly and are provided in Figure A.4. In addition, the precision-

recall curves for these cases are available in Figures A.3C, A.3D, and A.5 and exhibit

similar improvements.

In summary, these simulation results indicate that utilizing relevant annota-

tions in multivariate mediation analysis improves SNP selection; however, not so

surprisingly, the degree of improvement relies considerably on the effect sizes β

and B of the SNPs. When the effect sizes are small (Figure 2.2D), the improvement

due to annotations is evident. In contrast, when effect sizes are further away from

zero (Figure 2.2C), the improvement is marginal. However, we observe that even

for cases where false positive annotations are selected after FWER control, i.e., the

annotation strategy identifies either one or more annotations for scenarios with no

annotation effect (less than 5% of the cases, Figure 2.3A) or annotations different

from the specific annotations used in data generation, leveraging of the annotations

does not deteriorate model performance (Figure 2.3B).

In these diverse sets of simulations, we also quantified the computational re-

quirements of iFunMed. All of the simulations converged within 300 or fewer
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numbers of iterations (Figure A.3B) with a median of 25 iterations. On average,

25 iterations with 2,000 SNPs runs in 26 minutes with a standard deviation of 2

minutes on a MacBook Pro with 2.7 GHz Intel Core i5 processor and 2.7 GHz Intel

Core i5 memory. For a more advanced machine (e.g., 64bit with AMD Opteron

6174 processor and 24 cores), it runs in 4 minutes with a standard deviation of half

a minute, indicating computational feasibility of iFunMed. The time difference is

largely attributable to the number of cores which enable parallel computations in

matrix inversion.

Application to the FHS

We next utilized FHS to explore the impact of annotations on the mediation in-

ference. We performed annotation screening for the loci listed in Table 2.2 with

a subset of the annotations that overlap with at least 5% of the loci SNPs. Two of

the six loci considered (loci 3 and 4, Table A.3) resulted in enriched annotations

for the GEM, using red blood cell count as phenotype. In what follows, we mainly

focus on these loci. Figure 2.4A and 2.4B display p-values of the annotations for

loci 3 and 4, respectively. For both loci considered, we found that tissue origins

of some of the annotations are supported by the known tissue-specific activities

of the mediator genes. In the case of NINJ2, GEM enrichment p-values indicate

immune/hematopoietic as the most enriched. This is well supported by high ex-

pression of NINJ2 in lymphatic and hematopoietic organs (Araki and Milbrandt,

2000). For EVA1C, both of the identified annotations originate from CNS and are

supported by curated tissue-gene associations for EVA1C (Palasca et al., 2018).
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To investigate the impact of selected annotations on SNP detection, we examined

the set of SNPs identified with and without annotation by thresholding their poste-

rior probabilities of inclusion at 0.5. Figures 2.4C and 2.4D highlight SNPs with the

increased estimates of posterior probability of inclusion with the use of annotations

and vice versa for the DEM and GEM fits. Specifically, for the GEM fit in loci 3 and

4 with mediator genes NINJ2 and EVA1C, three SNPs, with estimated effect sizes

of zero in GEM, have non-zero estimated effect sizes with the use of the screened

annotations. In locus 3, rs2245906 and rs11063749 are detected with and without

annotation in the GEM fit and (Jansen et al., 2017) identified them as cis-eQTLs

for NINJ2 in peripheral blood based on conditional eQTL analysis. Further investi-

gation of the SNPs that are selected only by the use of annotation (rs76782035 for

NINJ2 and rs2834027 for EVA1C) by atSNP (Zuo et al., 2015; Shin et al., 2018), a web-

based tool that provides statistical evaluation of impact of SNPs on transcription

factor-DNA interactions, identified both SNPs as potentially impacting binding of

transcription factor SIN3A (Figures 2.5A and 2.5B). The direction of the mediation

effects and gain- or loss-of-function inference by atSNP of these SNPs are consistent

with each other. Specifically, rs76782035 exhibits negative iFunMed estimated effect

and is leading to generation of a subsequence, i.e., binding site, that SIN3A may

potentially interact with, whereas rs2834027 has positive iFunMed estimated effect

and seems to disrupt a potential binding site that SIN3A may interact with. Fur-

thermore, bone-marrow-specific deletion of Sin3a in a mouse model carrying Sin3a

conditional knock-out alleles causes reduction of red blood cell count (Heideman

et al., 2014), supporting that these SNPs could be affecting the phenotype indirectly.
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In contrast, for the SNPs that were excluded from the model fit with the use of

annotation, no such apparent SNP-transcription factor relationships were revealed,

highlighting the potential of the annotation framework for generating mechanistic

hypotheses. Further information on these SNPs is available in Table 2.4 for loci 3

and 4.

Figures 2.5C, 2.5D, 2.5E, and 2.5F display Manhattan plots of GWAS and eQTL

univariate summary statistics for the set of SNPs with large changes in their poste-

rior probabilities of inclusion with the use of annotation. We observe that these

SNPs tend to be spread around the loci as opposed to being localized on small

regions that harbor a leading SNP and its proxies due to high LD. The majority of

the SNPs with increased posterior probability of inclusion overlap with the selected

annotations used for the iFunMed fitting (i.e., Aj,k = 1, Table 2.4). This indicates an

increase in their prior probability of inclusion, while SNPs with decreased posterior

probability of inclusion due to annotations tend to not overlap with the annotations

included in the model, reducing their prior probability of inclusion.

We refer to the estimated parameters of the model (δ̂, θ̂) in Table B.1 to further

elucidate the impact of the annotations. Most of the parameters were estimated

similarly with or without annotation, with the exception of parameters that directly

involve annotations, i.e., γβ and γB, and variances, νβ and νB, associated with the

signal strength. Varying iFunMed estimates of γβ and γB assign a higher prior

probability of inclusion to SNPs that overlap with the annotations included in the

fit. Parameters νβ and νB modulate the distribution of the signal strength and

impact the number of SNPs with non-zero effect sizes. These parameters play a
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crucial role in the selection of the SNPs.

Finally, for the loci where the screening did not identified any enriched annota-

tions, fits of the null model are summarized in Figure A.6 and Table A.4. For loci 1

and 6, four of the SNPs with non-zero DEM estimated effect sizes have reported

associations with Factor VII and Von Willebrand Factor, respectively, based on

independent studies. In locus 1, rs2181540 (Williams et al., 2013) and rs488703

(Smith et al., 2010) are selected in the DEM while, for locus 6, rs8176704 (Desch

et al., 2013) and rs505922 (Williams et al., 2017) are identified. In locus 2, rs330787

is detected in the GEM null fit and its association with the mediator gene MSH6 is

further supported by (Jansen et al., 2017).

Mediation Analysis for Other FHS Phenotypes

To expand our analysis to other phenotypes where gene expression from whole

blood, where the bulk of the RNA comes largely from peripheral blood mononuclear

cells, may not be a relevant mediator, we considered identifying potential mediators

as tissue-specific genes from tissues that may be directly related to the phenotypic

variation using reference expression datasets of the GTEx Project (Carithers et al.,

2015). Specifically, we considered two phenotypes: fasting glucose and HDL, and

utilized GTEx pancreas and liver datasets, respectively. For fasting glucose, out

of all the pancreatic eQTL genes, only IL32 and P2RX1 had median pancreatic

and whole blood gene expression at least two-fold larger than average median

expression across all GTEx tissues, suggesting their specificity for pancreas and

whole blood. Same procedure was carried out for HDL using liver eQTL genes and
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identified six genes (CDA, PSD4, IL1RAP, ASGR2, IGFLR1, and APMAP) as liver

and whole blood specific. Information on these loci are provided in Table A.5 and

results of the annotation screening are available in Tables A.6 and A.7.

Results for P2RX1 are summarized in Figure A.7. Figure A.7A highlights anno-

tations from cardiovascular and GI tissues as the most enriched. Data integration

from many different technologies and sources has found cardiovascular tissue to

be associated with P2RX1 (Palasca et al., 2018) and, furthermore, P2RX1 is also

highly expressed in midgut (GI) and its associated cells (Edgar et al., 2013). SNPs

identified by thresholding posterior probabilities of inclusion at 0.5 are highlighted

in their respective Manhattan plots (Figures A.7B and A.7C). rs8076916 is selected by

models both with and without annotation and is also a cis-eQTL for P2RX1 (Jansen

et al., 2017). Further investigation of the SNPs that are included only by the use of

annotation (rs76395158, rs117071988, and rs1050997) by atSNP identified rs76395158

and rs117071988 as potentially impacting binding of transcription factors SRF and

NR5A2, respectively. SRF is known to be linked to insulin resistance (Jin et al., 2011)

and NR5A2 is associated with increase in glucose levels (Bolado-Carrancio et al.,

2014) (Figures A.8A and A.8B).

For the rest of the loci, we found that when IL32 is a candidate mediator for

fasting glucose, different types of T cells underlie the most enriched annotations

for the DEM and established links exist between glucose and T cells (MacIver et al.,

2008). For HDL with IL1RAP as mediator, the most enriched annotation for the

DEM is CD19, which acts as a biomarker for B lymphocytes that have been associ-

ated with HDL (Kaji, 2013). For IL32, rs1075581 is the only SNP selected with the
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use of annotation. atSNP analysis indicates this SNP as a loss-of-function candi-

date for transcription factor NFE2L1 (Figure A.8C). iFunMed estimates a positive

effect size for rs1075581, leading to higher values of fasting glucose with the SNP

allele. Interestingly, NFE2L1 has been linked with glucose levels since its deficiency

disrupts glucose metabolism and impairs insulin secretion (Zheng et al., 2015).

Further details for the SNPs selected with each candidate mediator are presented

in Table A.8.

2.4 Conclusion

Mediation analysis is often used to identify and account for potential mechanisms

that underlie an observed association between genetic variants and a phenotype

through a mediator variable, e.g., eQTL gene. iFunMed extends the existing me-

diation methods originating from the framework of (Baron and Kenny, 1986) by

considering effects of multiple genetic variants on the trait mediated by a single

mediator and integrating informative epigenome and regulation-based large scale

functional annotation into mediation analysis. This framework complements other

areas of analysis of genome-wide association studies that utilize auxiliary annota-

tion information (Kichaev et al., 2014; Wen et al., 2016; Chung et al., 2014; Pickrell,

2014; Gagliano et al., 2014; Thompson et al., 2013; Minelli et al., 2013; Chen et al.,

2016; Finucane et al., 2015) and goes one step further from current mediation-based

techniques (Gamazon et al., 2015; Gusev et al., 2016; Barbeira et al., 2018) by allow-

ing variant-level identification. iFunMed model is fit in a computationally feasible
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way by taking advantage of variational methodologies and can operate even when

only GWAS and eQTL summary statistics are available. The key output of iFunMed

includes posterior probabilities of inclusion for each SNP for both the direct and the

mediation model, and effect size estimates. While our current application focused

on gene expression as a mediator, iFunMed can conceptually accommodate other

types of mediators.

Evaluation of iFunMed with data-driven simulations indicate that relevant anno-

tation information improves SNP detection for both the direct and indirect effects

in the mediation analysis and highlights the robustness of iFunMed to the use of

irrelevant annotations. Our analysis with the FHS data focused on blood-related

phenotypes and provided comparisons of iFunMed fits that integrates regulatory

information and with those that do not. Use of annotation information identified

a number of additional SNPs that are missed in the mediation analysis without

annotation but well-supported by independent studies. Furthermore, several of

them are potentially impacting transcription factors binding. Follow-up investi-

gation of these transcription factors (e.g., SIN3A for red blood cell count and SRF

and NR5A2 for fasting glucose) could reveal new potential regulatory roles and

diagnostic biomarkers for diseases associated with high/low levels of red blood

cell count or fasting glucose.

The choice of an informative prior is an integral part of the iFunMed framework.

Besides the potential to boost SNP signals with its multivariate model as we have

shown in our simulation experiments, it can also facilitate hypotheses generating

for the underlying mechanisms of association. Our current applications focused
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on binary epigenomic annotations; however, other types of annotations such as

impact of SNPs on transcription factor or RNA binding protein-DNA interactions as

measured by allele-specific analysis of ChIP-seq or eCLIP-seq experiments (Zhang

and Keleş, 2017) can be easily accommodated either as continuous or categorical

annotations without further computational cost. In addition, although we presented

a well-calibrated and powered annotation selection framework for iFunMed, an

interesting extension includes adaptively selecting informative priors from a set of

noisy prior information by imposing a variable selection framework on the prior

model.

iFunMed focuses on scenarios where GWAS and eQTL summary statistics are

available from the same set of study subjects and treats multiple genetic variants as

instrumental variables, akin to practice in Mendelian randomization (Davey Smith

and Ebrahim, 2003). Generalizations of instrumental variable analysis that combine

instrumental measurements, exposure and outcome (i.e., phenotype) effects of

which are measured on different study populations, have been recently addressed

by (Zhao et al., 2019). Although Mendelian randomization techniques employ the

strong assumption that all the genetic effect on the phenotype is being mediated by

the exposure variable - an assumption that can certainly be violated in our frame-

work when other cellular/genomic events beyond gene expression is considered,

it is still worth noting the important discussion of (Zhao et al., 2019) with regard

to the use of heterogeneous samples: they can lead to biased estimators and are

less robust to model misspecifications. Since, in practice, iFunMed can combine

summary statistics from meta-analysis studies and LD structure from a reference
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panel (e.g., 1,000 Genomes (Consortium, 2015)), it is imperative that the latter is as

close as possible to the study population of the summary statistics. If the reference

panel does not approximate the study population well, LD structure estimated from

this reference might have profound effects on SNP prioritization and mediation

effect quantification. Previous work in this area has proposed to use a shrinkage

estimator on the reference panel LD matrix (Zhu and Stephens, 2017) and showed

that this can improve inference. Further investigation of these approximations and

their impact on iFunMed are part of our current work.

Web Resources

iFunMed https://github.com/mcrojo/iFunMed;

GTEx Portal (release v.7) http://www.gtexportal.org;

LD Score Annotations https://data.broadinstitute.org/alkesgroup/

LDSCORE/;

atSNP http://atsnp.biostat.wisc.edu;

PLINK v1.9 https://www.cog-genomics.org/plink2;

IMPUTE2 v2.3.2 https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#

download.

Data Availability

The data that support the findings of this study (Framingham Heart Study

(Kannel et al., 1979)) are available through dbGap (phs000007.v16.p6). Ge-

https://github.com/mcrojo/iFunMed
http://www.gtexportal.org
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
http://atsnp.biostat.wisc.edu
https://www.cog-genomics.org/plink2
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#download
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#download
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netic data is under study number phs000342.v14.p10 (https://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10) and

expression data under study number phs000363.v13.p10 (https://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10).

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10
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Figure 2.1: Overview of iFunMed modeling framework.
(A) iFunMed input consists of four different types of summary data: GWAS (ZY)
and eQTL (ZG) summary statistics, LD matrix (Σ), and annotation matrix (A). (B)
A graphical representation of the proposed hierarchical mediation model where
annotation information is integrated through priors for the model parameters β
and B with ZG as the mediator variable, Σ as the set of independent variables,
and ZY a dependent variable. (C) iFunMed output provides results of the annota-
tion screening for the direct and gene effect models and posterior probabilities of
inclusion for each SNP, in addition to other estimated parameters of the model.
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Figure 2.2: Simulations for comparing iFunMed fits with (w.Anno) and without
annotation data (wo.Anno).
(A) Power for annotation screening at family-wise error rate of 0.05. Simulations
are stratified with respect to the utilized annotation (A1 to A5 with proportion
of SNPs with the annotation increasing from 1.4% to 14.7%) and the annotation
effect sizes (mild or strong). For each simulated dataset, all five annotations were
evaluated with the Bonferroni adjustment at 5% level. (B) Percentage change in
the area under the ROC curves across fits for all the 54 simulation settings with
the use of annotation. The total set of annotations (54× 5 settings) are stratified by
the annotation effect sizes γβ and γB. ROC curves are obtained by thresholding
the total effect estimates. (C, D) ROC curves for simulation scenarios with a mild
annotation effect (γβ,γB = (−4.5, 2)), σ2

ε = σ
2
η = 1 and δ = 0.05, using annotation

A5, and varying effect size variances. (C): νβ = νB = 100 for strong and (D):
νβ = νB = 20 for weak effect sizes of the SNPs.
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Figure 2.3: Evaluations of the effect of false positive annotations resulting from
annotation screening.
(A) Proportion of times that the annotation screening strategy identified incorrect
numbers of annotations with Bonferroni adjustment at significance level of 5%
across simulation scenarios with zero annotation effect sizes (18 × 5 settings in
total). (B) Percentage change in the area under the ROC curves across fits where the
annotation screening strategy selected one or more incorrect annotation. Incorrect
identification when the annotation effect size is zero (“None" category), considers
cases where there was at least one selected annotation, whereas “Mild" and “Strong"
settings include cases where only false positive annotations were selected. ROC
curves are obtained by thresholding the total effect estimates.
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Figure 2.4: Red Blood Cell Count with NINJ2 and EVA1C as mediators: enriched
annotations and identified SNPs.
(A, B) Enrichment p-values of the annotations (after − log10 transformation) with
at least 5% overlap with the loci SNPs. Dashed line represents marginal sig-
nificance level of 5%. Annotations used for the fits are significant at FDR of
10% and are marked with asterisks. (A) NINJ2 as mediator and (B) EVA1C as
mediator. (C, D) Estimated posterior probabilities of inclusion from iFunMed
for DEM (P(sβ,j = 1|ZY, ZG, δ̂; σ̂2

ε, ν̂β, γ̂Tβ, A, Σ̃) = 1, j = 1, . . . ,p) and GEM
(P(sB,j = 1|ZG; σ̂2

η, ν̂B, γ̂TB, A, Σ̃) = 1, j = 1, . . . ,p) across the two fits (with and
without annotation). Dashed line represents the posterior probability cut-off at
0.5. Majority of the SNPs are clustered around values of 0 in the plot. (C) NINJ2 as
mediator and (D) EVA1C as mediator.
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Figure 2.5: Red Blood Cell Count with NINJ2 and EVA1C as mediators: atSNP
results and Manhattan plots.
(A, B) atSNP composite logo plots for SNPs that are identified only by the use of
annotation. The composite logo plots compare the best matches of SIN3A motif
to the DNA sequences overlapping the SNP positions with the reference and SNP
alleles to suggest potential gain- or loss-of-function with atSNP p-value cutoff of
6 1e−7. (A) rs76782035-SIN3A pair from the model using NINJ2 as mediator; (B)
rs2834027-SIN3A pair from the model using EVA1C as mediator. (C-F) Manhat-
tan plots for the GWAS (C, D) and eQTL (E, F) input summary statistics. SNPs
highlighted in blue/red represent SNPs with large changes in their posterior prob-
abilities of inclusion across the two iFunMed fits (with and without annotation).
Blue SNPs are selected with the use of annotation whereas red SNPs are excluded,
and the status of the purple (selected) and gray SNPs (not selected) do not vary
between the two fits at the posterior probability of inclusion threshold of 0.5. (C, E)
NINJ2 as mediator and (D, F) EVA1C as mediator.
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Table 2.1: Prior probabilities of inclusion as defined in Equation (4) with the annota-
tion effects (γβ and γB) considered in simulations. The prior inclusion probability
without annotation is computed with ATj = (1, 0) and the prior inclusion probability
with annotation is with ATj = (1, 1).

Prior Inclusion Probability
wo. Annotation w. Annotation

γβ = γB ATj = (1, 0) ATj = (1, 1)
No Effect (-4, 0) 0.018 0.018
Mild Effect (-4.5, 2) 0.011 0.076
Strong Effect (-3, 2) 0.047 0.269

Table 2.2: Details of loci considered for the mediation analysis.

Phenotype Mediator Gene Chrom Start End # of SNPs # of Subjects
Locus 1 Factor VII TMCO3 chr13 112,505,203 114,498,328 1,894 1,500
Locus 2 White Blood Cell Count (log) MSH6 chr2 47,001,834 49,698,778 2,745 1,258
Locus 3 Red Blood Cell Count NINJ2 chr12 601,584 2,897,864 2,174 1,255
Locus 4 Red Blood Cell Count EVA1C chr21 32,802,778 35,599,366 2,593 1,255
Locus 5 Red Blood Cell Count ITSN1 chr21 32,802,778 35,599,366 2,593 1,255
Locus 6 Von Willebrand Factor RALGDS chr9 134,500,059 137,499,448 2,869 1,500

Table 2.3: Information on the annotations that were identified by the screening
strategy.

Mediator Gene Model Tissue Mark Cell-type Enrichment p-value
NINJ2 GEM Immune/Hematopoietic H3K27ac CD3 primary 0.001
EVA1C GEM CNS H3K27ac Cingulate gyrus 0.002
EVA1C GEM CNS H3K27ac Substantia nigra 0.001
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Table 2.4: List of SNPs selected in the analysis of Red Blood Cell Count with NINJ2
and EVA1C as mediators. SNPs are labeled as 0 to 1 ((↑) direction) if they are
selected only with the use of annotation and as 1 to 0 ((↓) direction) if they are
excluded from the iFunMed fit with the use of annotation. SNPs selected with and
without annotation are labeled as 1 to 1 (−). Details of the annotations included for
both models (DEM and GEM) at the individual SNP level are also displayed.

NINJ2 Location Model Direction
rs3825386 1,725,753 DEM 1 to 1 (−)
kgp9894929 1,758,398 DEM 1 to 1 (−)
rs758162 1,966,289 DEM 1 to 1 (−)
kgp1280039 2,471,266 DEM 1 to 1 (−)
rs7968680 2,500,203 DEM 1 to 1 (−)
kgp9131341 2,873,827 DEM 1 to 1 (−)

Annotation

NINJ2 Location Model Direction CD3 Primary
rs2245906 673,788 GEM 1 to 1 (−) 1
rs11063749 697,095 GEM 1 to 1 (−) 0
rs11503082 697,158 GEM 1 to 0 (↓) 0
kgp9542890 714,576 GEM 1 to 1 (−) 0
kgp2779595 813,385 GEM 1 to 0 (↓) 0
kgp4731528 921,616 GEM 1 to 1 (−) 1
rs2286007 971,291 GEM 1 to 1 (−) 1
kgp4334187 1,013,954 GEM 1 to 1 (−) 1
kgp2348645 1,201,772 GEM 1 to 1 (−) 0
rs117759283 1,261,573 GEM 1 to 0 (↓) 0
kgp27840668 1,324,952 GEM 1 to 1 (−) 0
kgp3224402 1,508,979 GEM 1 to 1 (−) 0
kgp27666261 1,529,921 GEM 0 to 1 (↑) 0
rs1859389 1,632,668 GEM 1 to 0 (↓) 0
rs11061851 1,671,180 GEM 1 to 1 (−) 0
kgp2822459 1,875,163 GEM 0 to 1 (↑) 1
rs76782035 1,922,305 GEM 0 to 1 (↑) 1
kgp6212365 2,453,853 GEM 1 to 1 (−) 0
rs73035417 2,458,950 GEM 1 to 0 (↓) 0
kgp6671610 2,879,808 GEM 1 to 1 (−) 1
rs16929977 2,893,650 GEM 1 to 0 (↓) 0

EVA1C Location Model Direction
kgp8102103 33,235,336 DEM 1 to 1 (−)
kgp3044871 33,256,005 DEM 1 to 1 (−)
kgp5757773 33,334,632 DEM 1 to 1 (−)
kgp1163247 33,895,682 DEM 1 to 1 (−)
kgp4934738 33,910,920 DEM 1 to 1 (−)
kgp349380 34,535,884 DEM 1 to 1 (−)
rs2834178 34,677,391 DEM 1 to 1 (−)
kgp2131229 34,783,522 DEM 1 to 1 (−)
kgp6697616 35,407,829 DEM 1 to 1 (−)

Annotation

EVA1C Location Model Direction Cingulate gyrus Substantia nigra
kgp5202566 32,865,315 GEM 1 to 1 (−) 0 0
kgp4337540 33,202,254 GEM 1 to 1 (−) 0 0
kgp5881618 33,204,096 GEM 1 to 1 (−) 0 0
rs4817488 33,781,596 GEM 1 to 0 (↓) 0 1
kgp7246838 33,782,785 GEM 1 to 1 (−) 1 1
rs2211789 33,782,887 GEM 0 to 1 (↑) 1 1
rs113131388 33,992,844 GEM 1 to 0 (↓) 0 0
rs2834027 34,323,524 GEM 0 to 1 (↑) 1 1
kgp8275553 34,328,258 GEM 1 to 1 (−) 1 1
rs73200447 34,363,524 GEM 0 to 1 (↑) 1 1
kgp6028639 34,438,734 GEM 1 to 1 (−) 1 1
kgp244201 34,458,657 GEM 1 to 1 (−) 0 0
kgp3444218 34,537,929 GEM 1 to 1 (−) 0 0
kgp23287607 35,129,049 GEM 1 to 0 (↓) 0 0
kgp917601 35,274,135 GEM 1 to 1 (−) 1 0
kgp23258579 35,359,515 GEM 1 to 1 (−) 0 0
kgp5648029 35,450,938 GEM 1 to 0 (↓) 0 0
rs141547866 35,573,813 GEM 1 to 0 (↓) 0 0
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Table 2.5: Estimated iFunMed parameters for the Red Blood Cell Count phenotype.

Locus 3/NINJ2 Locus 4/EVA1C
wo. Annotation w. Annotation wo. Annotation w. Annotation

γ̂β -5.915 -5.915 -5.722 -5.722
γ̂B -4.840 (-5.496, 2.518) -5.260 (-6.011, 2.698, 0.404)
δ̂ -0.044 -0.044 0.011 0.011
σ̂2
ε 0.529 0.529 0.440 0.440
σ̂2
η 0.473 0.476 0.417 0.419
ν̂β 21.367 21.367 22.677 22.677
ν̂B 24.138 28.173 19.982 18.735
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3 high dimensional sparse regression with auxiliary
data on the features

3.1 Introduction

Genome-wide association studies (GWAS) have become the standard tool in the

scientific community to identify evidence of association between genetic variants

and traits of interest. These studies commonly perform univariate analyses of

single-nucleotide polymorphisms (SNPs) to identify loci of association and draw

conclusions. Although widely-adopted, this approach completely overlooks SNPs

with smaller associations (e.g., subthreshold SNPs) and their potential joint contri-

bution to variations in the phenotype. Loci identified can typically explain only a

small fraction of the variance in complex traits and do not directly provide sugges-

tions for functional mechanisms of association (Boyle et al., 2017).

Current efforts from large consortia (Encyclopedia of DNA Elements (ENCODE)

(Consortium, 2012) and Roadmap Epigenomic Project (Roadmap Epigenomics Con-

sortium, 2015), among others) to collect epigenomic information from a wide array

of tissues and cell types are facilitating the interpretation of noncoding associated

genetic variants. The integration of epigenomic information into GWAS pipelines

has the potential of improving SNP detection and unravel regulatory mechanisms.
Material in this chapter is a modified version of: Constanza Rojo, Pixu Shi, Ming Yuan &

Sündüz Keleş. "High dimensional sparse regression with auxiliary data on the features." (Under
Preparation)
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The body of work in this area typically assumes that annotation informs a

latent variable that represents the non-zero status of SNP effects and adopts statisti-

cal frameworks for variable selection (e.g., Bayesian variable selection regression

(Guan et al., 2011)) that compute posterior inclusion probabilities (Carbonetto and

Stephens, 2012) and leverage annotation information as a data-driven prior to de-

termining underlying causal variants (Chen et al., 2016; Chung et al., 2014; Kichaev

et al., 2014; Li and Kellis, 2016; Rojo et al., 2019; Pickrell, 2014; Wen et al., 2015, 2016;

Yang et al., 2017). Many of these models underutilize the data by considering only

binary annotations, e.g., wether or not SNP resides in a region with a particular

histone modification or transcription factor (TF) binding, and assume that all the

variants with the same annotation share the same prior probability of having a

non-zero effect (Chung et al., 2014; Kichaev et al., 2014; Li and Kellis, 2016; Rojo

et al., 2019; Yang et al., 2017). This treatment of annotations overlooks the sequence

dependency of TF binding (Slattery et al., 2014) and the fact that noncoding genetic

variants that reside within the same TF can associate differently with a trait. By uti-

lizing annotations that predict accessibility changes among SNP alleles (Alipanahi

et al., 2015; Kelley et al., 2016; Shin et al., 2018; Zhou and Troyanskaya, 2015), we

gain nucleotide-level refinement to measure the potential impact of annotation on

SNP effect sizes. Moreover, annotation data is usually high-dimensional and po-

tentially noisy. Proper selection, except for (Chen et al., 2016) that takes advantage

of regularization methodologies on the annotation, is usually nonexistent (Li and

Kellis, 2016; Wen et al., 2015, 2016; Yang et al., 2017) or limited to one at a time

fitting that misses the joint annotation effect (Chung et al., 2014; Kichaev et al., 2014)
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and forward-backward selection (Pickrell, 2014). Methods that allow annotations

to inform the magnitude of SNP effect sizes are scarce and typically do not focus

on SNP selection or prioritization (Finucane et al., 2015; Reshef et al., 2018).

In this paper, we introduce GRAD, Genome-wide Regression with Auxiliary

Data, a statistical framework that leverages external functional annotations by mod-

eling their specific impact on SNP effect sizes. GRAD enables high-dimensional

simultaneous SNP and annotation selection by integrating genotype and annota-

tion information in the model using the Lasso (Tibshirani, 1996) and control the

per-comparison error rate (PCER) of feature selection through stability selection

(Meinshausen and Bühlmann, 2010). Figure 3.1 depicts an overview of the model.

A theoretical analysis of GRAD model yields upper bound for the SNP effect estima-

tion errors and provide the requirements concerning genotype and annotation data

for optimal estimation. Unlike other methods that focus on whole-genome fine-

mapping, GRAD carries out an annotation-informed multivariate SNP selection to

determine loci of interest that can be followed up by other fine-mapping techniques

to determine causal status. With a wide range of data generation schemes in our

real data-driven simulation experiments, we demonstrate that the use of informa-

tive annotation improves SNP selection and shows how GRAD outperforms other

competing methodologies, such as GPA (Chung et al., 2014). Applications of GRAD

to the Framingham Heart Study (FHS) with annotations that reflect the signed

effect of SNPs on transcription factor binding leads to the discovery of SNPs that

could potentially affect specific phenotypes by disrupting a number of TFs.
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3.2 Materials and Methods

GRAD Model

Statistical Model

We denote Yn×1 as the phenotype vector for n subjects, Gn×p as the genotype

matrix with columns corresponding to SNPs in the study, Xn×k as the matrix of

explanatory variables (e.g., age, sex) that may be important to adjust for, and Ap×m

as the annotation matrix with columns representing annotation information for p

SNPs (Figure 3.1A). We assume a linear model:

Y = Xα+Gβ+ ε, (3.1)

where εn×1 is a vector of independent random errors with variance σ2, βp×1 is the

effect of genotype on the phenotype, and αk×1 is the effect of other features. The

genotype effect βp×1 is further partitioned based on annotation:

β = Aγ+ η, (3.2)

where the effect size β is decomposed into a linear combination of the annotation

effects γ and annotation-free component η. The effect of SNP i on the phenotype

through the influence of annotation j is quantified by Aijγj, where the sign of Aij

determines whether the effect of annotation j is positively or negatively reflected

in SNP i, and the magnitude of Aij determines the strength of the annotation j for
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SNP i. The annotation-free effect of SNP i is captured by ηi. Combining (3.1) and

(3.2) as

Y = Xα+ (GA)γ+Gη+ ε, (3.3)

provides a more intuitive interpretation of this model and justification of the parti-

tion in (3.2). Here, each column of GA can be considered as an aggregated SNP

with the corresponding annotation as weights. As a result, SNPs with the same

(or different) signs in annotation j are accumulated (or subtracted) to create the

jth aggregated SNP. γj quantifies the effect explained by the jth aggregated SNP,

and η quantifies the annotation-free effect of the SNPs. If an annotation does not

provide any information on how the genotype associates with phenotype, then the

corresponding aggregated SNP will have no effect and γj = 0. If none of the anno-

tations has any influence, then γ = 0 and the model becomes standard polygenic

model Y = Xα + Gβ + ε. The overall genotype effect β, annotation effect γ, and

the annotation-free genotype effect η are all fixed effects and will be estimated in

our model.

Model Estimation

Our goal is to enable the simultaneous selection of relevant genomic variants that

affect the phenotype of interest and their relevant annotations. Because p� n in

most GWAS studies, ordinary least square cannot provide a unique solution for

the estimation of the proposed model. For such situations, it is common to use

regularization regression methods such as ridge regression (Hoerl and Kennard,

1970), Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), MCP (Zhang et al., 2010),
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among others. We adopt the Lasso estimator due to its ability to select variables,

its easy implementation, and widespread popularity. Specifically, we obtain the

estimated parameters with the following convex optimization:

(α̂, γ̂, η̂, β̂) = argmin
α,γ,η,
β=Aγ+η

{
1

2n
||Y − Xα−Gβ||22 + λ (||γ||1 + ||η||1)

}
= argmin

α,γ,η,
β=Aγ+η

{
1

2n
||Y − Xα− (GA)γ−Gη||22 + λ (||γ||1 + ||η||1)

}
, (3.4)

where || · ||2 and || · ||1 are the `2 and `1 norms of vectors respectively. The `1 penalty on

γ andη induces variable selection on both annotation and the remaining annotation-

free genotype effects. Without loss of generality, we assume that the columns ofX,G,

and GA are standardized to have mean zero and variance one so that the `1 penalty

on variables are at comparable levels and an intercept for the regression can be

fitted separately. The tuning parameter λ controls the number of variables selected.

To avoid the burden of choosing a single optimal value of λ using cross-validation

or scaled lasso (Sun and Zhang, 2012), we use stability selection (Meinshausen and

Bühlmann, 2010). Stability selection adopts a subsampling aggregation approach

that is virtually insensitive to the choice of λ. Combined with high dimensional

selection algorithms, it yields on a bound for the expected number of false selections,

hence providing per-comparison error rate (PCER) control. Specifically, we estimate

(3.4) with a range of values of λ in one hundred bootstrapped samples with halves

of the observations and record the frequency of each variable being selected among

the one hundred runs (Figure 3.1B). Variables with selection frequency exceeding a

certain cutoff are kept in the final model (Figure 3.1C).
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Theoretical Analysis of the GRAD Model

We provide an upper bound for the estimation error of β = Aγ+ η in Theorem 1

and Theorem 2 in Appendix B.1 to gain insights on what factors affect the estimation

accuracy. These theorems reveal the necessary conditions to be within the derived

bound.

Based on these results, leveraging annotations yields improved estimation accu-

racy of βwhen its non-zero components are mostly accounted for Aγ instead of

η, i.e., when the effect of genotype on phenotype is largely through annotations.

In addition, Theorem 1 also provides a guide on how to filter the genotype and

annotation information to improve the model estimation. Specifically, the condition

in Theorem 1 requires: (i) weak LD structure in genotype matrix G, (ii) a well

conditioned annotation matrix A, (iii) annotations with enough non-zero entries,

and (iv) non-degenerate annotations where values for individual SNPs are not too

similar.

Framingham Heart Study Data and Annotation Data

We used data from the Framingham Heart Study with individual-level genotypes

(SHARe substudy) and phenotypes of 2,456 subjects (dbGaP: phs000007.v16.p6). We

used iFunMed (Rojo et al., 2019) preprocessed genotypes. We considered 382 signed

and continuous annotations curated by signed LD profile (SLDP) (Reshef et al.,

2018). These annotations were derived from ChIP-seq experiments (75 transcription

factors and 84 distinct cell lines) from ENCODE (Consortium, 2012) using the

Basset software (Kelley et al., 2016). The resulting nucleotide-level annotation
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matrix reflects the signed effect of SNPs on transcription factor binding. A total

number of 847,491 FHS SNPs were present in the SLDP annotations and had the

same minor allele. We proceeded with these for our analyses.

We focused our analysis on four phenotypes that were selected based on their

genotype signal strength: factor VII, von Willebrand factor, fasting glucose, and

height. For each phenotype, we further screened genotype and annotation data

to meet the requirements of Theorem 1 and Theorem 2. We reduced the number

of candidate SNPs to P by keeping SNPs with minor allele frequency (MAF) >5%

and the lowest p-values from its univariate associations (adjusted by age and sex).

Based on exploratory analyses, we use P = 1, 000 along with the results. This subset

of SNPs allows us to have a wide range of signals while removing noisy (low signal)

SNPs from the model fitting. Requirement (i) of Theorem 1 is met because the LD

structure of SNPs is greatly weakened. We later removed annotations that were

highly correlated (pairwise Pearson’s correlation magnitude > 0.95 and kept one or

the other) and that overlap with less than 3 out of the 1,000 SNPs for requirements

(ii) and (iii) of Theorem 1. Requirement (iv) is not an issue with our annotations

since they are measured at the nucleotide level and are highly sparse. Information

regarding the data considered for each phenotype is listed in Table 3.1.

Simulation Experiments

We design simulation studies to measure the performance of the GRAD model

under diverse scenarios. In all of the simulations, we utilized data from the Fram-

ingham Heart Study to construct the genotype matrixG and generated 100 datasets
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per scenario, i.e., simulation replicates. We followed the same procedure as in

the data applications (Section 3.2) to obtain G using von Willebrand factor as the

phenotype. This resulted in 2,163 subjects and 1,000 SNPs.

Our simulations can be divided into two categories. One is purely designed

to evaluate the performance of GRAD for fits with and without annotation in

SNP and annotation selection. The other category compares the selection of SNPs

between GRAD and GPA (Chung et al., 2014), a model that prioritizes GWAS results

(univariate p-values) by using annotation information. Since GPA model can only

use binary annotations, instead of utilizing the SLDP annotations, we used the

annotations curated by LD Score Regression (Finucane et al., 2015).

Evaluation of GRAD

We leveraged two data generation schemes to measure the impact of annotation

information on SNP selection. In the first scheme (linear partition), we simulate

data directly from the model setting of GRAD as in equation (3.3), making it

the most favorable scenario. In the second scheme (model misspecification), we

simulate from a misspecified model, where the parameter β is drawn from a

Laplace distribution centered in zero and scale depending on Aγ + η, i.e. β ∼

Laplace(0, |Aγ+ η|), and the response phenotype generated as in equation (3.1).

This resembles the treatment of annotations of (Finucane et al., 2015) where SNP

effect sizes have mean zero and the variance depends on functional categories.

In both schemes, we simulate data by leveraging model parameters γ, η, and
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σ2. We varied error variance σ2 ∈ {100, 150, 200, 250, 300}. We simulated η using

ηi =


N(5, 1) w. p. pη6=0/2,

−N(5, 1) w. p. pη6=0/2,

0 w. p. 1 − pη6=0.

, i = 1, . . . ,p,

where the proportion of non-zero values pη6=0 ∈ {0.01, 0.02, 0.04, 0.08, 0.1, 0.15, 0.2}.

γ is generated using

γj =


N(µγ, 1002) w. p. pγ 6=0/2,

−N(µγ, 1002) w. p. pγ 6=0/2,

0 w. p. 1 − pγ 6=0.

, j = 1, . . . ,m,

where the informativeness of annotation is controlled in two different ways: the

proportions of informative annotations pγ 6=0 ∈ {0.02, 0.05, 0.08, 0.1, 0.15, 0.2}, and the

magnitude of the mean of individual annotation effects sizes µγ ∈ {200, 500, 1000}

(low, mild, and strong). Both pη6=0 and pγ 6=0 control the sparsity of parameters η

and γ, respectively. These values are set based on actual fits of the model with the

FHS data.

Comparison Between GRAD and GPA

To elicit the best performance of GPA, we followed the data generation procedure

of GPA for simulations using a linear mixed model and the liability threshold

model, which we will refer to as GPA-LTM. We used the same parameters as in the

GPA experiments and only introduced a few differences: we used the genotype
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matrix from the FHS data, kept a continuous response variable, and simulated fifty

annotations instead of one, among which Sγ ∈ {2, 5, 8, 10} are set to be informative.

We varied the proportion of risk SNPs as pβ 6=0 ∈ {0.01, 0.02, 0.04, 0.08, 0.1, 0.15, 0.2}.

We added a second simulation experiment because GPA-LTM simulates binary

annotations after obtaining the effect sizes and they have more non-zero entries

when there are more risk SNPs, which means that the sparsity of the annotations

depends on the sparsity of the risk SNPs. The second simulation experiment aims

to explore a scenario where annotation informs the non-zero status of the SNP,

a common design to account for annotation. We used the iFunMed hierarchical

model (Rojo et al., 2019) and created 27 simulation settings (details in Table B.1)

using the same combination of parameters as in the iFunMed experiments that vary

variances for the overall SNP effect and error, and individual annotation impact.

We generated data with one informative binary annotation at a time (randomly

selected out of fifty binary LD Score Regression annotations) with different prior

inclusion probabilities (none, mild, and strong) of the SNPs based on the annotation

information.

Since GPA does not provide a direct pipeline for annotation selection, we run it

with one annotation at a time, tested individual annotation enrichment (with the

aTest method) in each run, and retained the significant annotations using multiple

testing with FDR controlled at 10% (Benjamini and Hochberg, 1995). We re-fitted

GPA with the selected annotations to obtain the final set of selected SNPs.



54

3.3 Results

Evaluation of GRAD with Simulations

Figure 3.2A compares the area under the precision-recall curves (AUPR) and evalu-

ates how annotation information impacts SNP selection. We observe that the use of

annotation always improves the detection of relevant SNPs. Such improvement is

present regardless of the generative model, although is weaker for cases with model

misspecification. For example, the average increase in the AUPR is up to 58.7% for

the linear partition model and 37.8% for model misspecification. Both maximums

occur for cases when the proportion of non-zero γ and η are fixed at 0.2 and 0.01,

respectively. These values bring up two important patterns. For a fixed value of

pη 6=0, the improvement on SNP selection due to the annotation increases with pγ 6=0.

This tendency is not surprising since we expect to have a better SNP selection when

there are more informative annotations. On the other hand, for fixed values of pγ 6=0,

when the proportion of risk SNPs pη6=0 is small we observe greater improvement

compared to cases with larger pη 6=0. This can be attributed, potentially, to the error

bound in Theorem 1 increasing for denser η (sη), i.e., the accuracy of our estimation

is better for a sparse η. A similar pattern arises when looking the area under the

receiver operating characteristic (AUROC) curve in Figure B.1B.

Comparisons of fits with and without annotation in terms of partial area under

the receiver operating characteristic curve (pAUC) for assessing SNP selection

performance are shown in Figure 3.2B. When the false positive rate (FPR) is below

0.1, the pAUC reaches values of up to 0.09 and displays higher values for the fits with
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annotation and stronger annotation effect magnitudes, for both simulation schemes.

In addition, the fit with annotation showed an increased average sensitivity across

simulations at 90% specificity, i.e. FPR 0.1, reaching its maximum sensitivity of

0.92 for the linear partition simulation scheme with strong annotation effect sizes

(Figure B.6A).

Individual precision-recall curves for SNP selection with a specific parameter

combination (pη6=0 = 0.01, pγ 6=0 = 0.05, and σ2 = 100) are displayed in Figure 3.2C.

When comparing the three annotation effect sizes µγ, we observe better AUPR for

stronger magnitudes. Since annotation has an impact on the SNP effect size, either

by being a linear combination of it (linear partition) or by influencing its variance

(model misspecification), both simulation schemes will have larger effect sizes when

the annotation effect magnitude becomes greater, leading to better SNP selection

performance and a more moderate improvement with the use of annotation, as

shown in Table 3.2. Moreover, the curve from the fit with annotation achieves a

power of 73% compared to 16% for the fit without annotation when controlling FDR

at 10% for these parameters (Table B.2). Overall power at FDR 10% are presented

in Figure B.6B. Other simulation settings exhibit comparable patterns for AUPR

(Figure B.3) and AUROC (Figure B.4).

Evaluations of annotation selection in Figure 3.2D reveal multiple contributors

to its performance, which we summarize into two sources: how much of the SNP

effect signal β is explained by the annotation Aγ in contrast to the annotation free

parameter η, and how large the correlation among annotations is. First, for fixed

values of pγ 6=0, AUPR increases with µγ because Lasso has a better selection of
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relevant annotations when the signal of annotation effects γ becomes stronger.

Second, for a fixed value of µγ, the AUPR changes with pγ 6=0 in a convex fashion

due to the joint effect of signal to noise ratio and correlation among annotation.

On one hand, a larger pγ 6=0 brings in denser signals from the annotations that

improve the AUPR. On the other hand, a larger pγ 6=0 makes it more possible to

have a strong correlation between informative and non-informative annotations, in

which case Lasso will pick one randomly, worsening the AUPR. For small values of

µγ, β is dominated by η instead of Aγ (Figure B.8), so annotation selection benefits

more from denser signals than being hurt by more annotation correlation, making

the convex trend of AUPR increasing. For large values of µγ, the effect of more

annotation correlation outstrips the effect of denser signals, so the convex trend

of AUPR becomes to behave more decreasing. In addition, Figure B.5 shows a

decreasing trend in AUPR of annotation selection when pη 6=0 increases, because

larger pη 6=0 makes annotation effect Aγ less dominant in β. A larger pη 6=0 also

makes denser signals of γ to be more prominent than the annotation correlation

when pγ 6=0 increases, so the convex trend of AUPR becomes more increasing. For

the cases with model misspecification, we never observe decreasing tendencies and

there is virtually no difference in annotation selection across different annotation

effect magnitudes. When annotations impact the variance of the effect sizes, its

selection suffers and the only improvement we observe is attributed to a denser

annotation parameter γ that allows for more informative annotations.
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GPA Comparisons with Simulations

When we evaluated SNP selection in simulations that aim to compare GRAD

with GPA in Figure 3.2E and 3.2F, we observe that GRAD outperforms GPA. For

cases when the GPA-LTM is used to simulate the data (Figure 3.2E), GPA tends to

improve its performance as the proportion of risk SNPs increases while the opposite

pattern occurs with GRAD. This is due to GPA’s over selection of SNPs. For smaller

proportions of risk SNPs, GPA displays an elevated number of false positives. When

the proportion increases, the false positives decreases in favor of true positives.

On the other hand, since GRAD’s estimation accuracy increases with the sparsity

of β (sβ in Theorem 2), selects fewer false positives for smaller proportions of

risk SNPs. When contrasting their AUROC in Figure B.1C, performance of both

methods decreases with pη6=0. This can be attributed to the comparable number of

correctly identified SNPs (true positives) for both methods that increase with the

proportion of risk SNPs. When comparing the two methods in terms of annotation

selection (Figure B.9A and B.9B), GPA does better under the GPA-LTM especially

when pη6=0 is large. Under the GPA-LTM, the binary annotations are simulated after

generating the SNP effect sizes and they have more overlap, i.e. non-zero entries,

for larger values of pη6=0. This leads us to believe that GPA selects annotations with

higher overlap, regardless of how informative they truly are. When iFunMed is

used to simulate data in Figure 3.2F, GPA is unable to select SNPs properly while

GRAD reaches average AUPR values above 0.9. This is due to the small percent of

risk SNPs (< 6%) under this simulation scheme. Moreover, GRAD lacks the ability

to select the correct annotation out of fifty under this scenario (Figure B.9C and
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B.9D) while GPA is slightly better.

Real Data Results

We run GRAD for the phenotypes specified in Table 3.1. All of the cases consid-

ered resulted in selected annotations. For simplicity, we will mainly focus on von

Willebrand factor and detailed results from other phenotypes are available on the

Supplementary Material. Figures 3.3A and 3.3B display stability selection frequency

paths with cutoff selection probability of 0.75 for the parameters considered on fits

without and with annotation, respectively. The fit without annotation identified

one non-zero SNP whereas the fit with annotation identified two annotation free

SNP (η̂ 6= 0) and 20 additional SNPs (Aγ̂ 6= 0) that are attributed to four non-zero

annotations (γ̂ 6= 0). Comparisons of estimated SNP effect sizes for models with

and without annotation in Figures 3.3C-E provide information about the source and

strength of associations. We observe that SNPs that have the strongest univariate

associations (Figure 3.3C) tend to be selected by both the fit without annotation

and the annotation free SNP effect η in the fit with annotation. In contrast, non-

zero SNPs with lower univariate associations can be captured by the annotation

contribution Aγ but are missed by the fit without annotation. Manhattan plots

in Figure B.13 display similar observations and provide information about the

genomic location of these SNPs, from which the annotation free non-zero SNPs are

localized in small regions and the ones boosted by the use of annotation are more

spread around the genome. These patterns are similar when other phenotypes are

considered (Figures B.10-B.12; B.14-B.16).
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Further details of the detected SNPs and annotations are provided in Table 3.3.

Five SNPs in chromosome 9 and 12 are identified as GWAS SNPs for von Willebrand

factor or blood protein levels by the GWAS Catalog (Buniello et al., 2018) in studies

with populations of majority European descent. From these SNPs, three out of

five are selected because of the annotation contribution parameter and display

overlap with the selected annotations. Three of these SNPs (rs8176749, rs505922,

and rs579459) are located in chromosome 9 and are considered to be part of the

ABO blood group locus, which has a relationship with hemostasis that influences

von Willebrand factor (Peyvandi et al., 2011; Franchini et al., 2007, 2014). rs8176749

and rs505922 do not overlap with any of the non-zero annotations. rs8176749 is

detected by the model with annotation and is associated with von Willebrand factor

antigen levels and highly determines the ABO blood group (Desch et al., 2013)

while rs505922 is detected with and without annotation and it has been found

to be strongly associated with von Willebrand factor (Williams et al., 2013, 2017).

According to our fitting, rs579459 has a positive effect on Pol2 TF binding and

(Emilsson et al., 2018) identified it as a protein single-nucleotide polymorphism

(pSNP) for the von Willebrand factor protein in trans. On chromosome 12, both

rs1063857 and rs1063856 have an effect on c-Myc TF binding and reside within

the von Willebrand factor gene. rs1063857 is coding synonymous and rs1063856

coding nonsynonymous SNP and they are highly associated with von Willebrand

factor levels (Smith et al., 2010; Desch et al., 2013). This specific locus displays a

low GWAS signal in the FHS data (− log10(p) < 8 in Figure B.13) but it has clear

importance on von Willebrand factor. This highlights the importance of the use of
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annotations that can boost the signal of relevant SNPs that would be overlooked

otherwise.

The rest of the selected SNPs are all captured by the fit with annotation and

have an effect through at least one of the selected TF. We found well supported

TF-phenotype associations in literature for two of the selected annotations. Specif-

ically, Stat3 modulates hemostasis signals (Zhou et al., 2013; Aleva et al., 2018)

and upregulation of c-Myc increases expression of von Willebrand factor (Xiang

and Hwa, 2016). For the other phenotypes considered, we also found evidence of

potential TF-phenotype associations. One of the TF selected in factor VII, Mxi1, is

induced by hypoxia, as well as factor VII (Corn et al., 2005; Koizume and Miyagi,

2015). For fasting glucose (log), all of the TF (Elf-1, MafK, Ccn-T2, and C/EBPβ)

showed relationship with either diabetes related traits or adipose tissue: Elf-1 is

related to NKT cells in mice that plays a role in diabetes (Choi et al., 2011) and

related to O-GlcNAc that perturbs insulin levels (Lim and Chang, 2010); MAFK

is a potential target gene for impaired fasting glucose (Cui et al., 2016) and MafK

negatively regulates β−cell function in mice (Nomoto et al., 2015); CCNT2 gene

may play a role in development of adipose tissue (Broholm et al., 2016); C/EBPβ

promotes adipose tissue inflammation and insulin resistance (Rahman et al., 2012).

Moreover, the selected annotations are not necessarily the ones with the highest

overlap with the SNPs but they do tend to be the ones that overlap with SNPs that

have the strongest univariate associations (Figure B.17 and B.18).

We further examined how the selected SNPs correlate with each other to elu-

cidate how LD impacts mechanisms of association (Figure B.19). Most of them
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do not display high LD except for 2 pairs in chromosome 12 and 15 that were less

than 200 base pairs away from each other. In particular, rs1063857 and rs1063856

have an LD of 0.99 and impact c-Myc TF, as discussed previously. By incorporating

nucleotide-level annotation that informs in both magnitude and direction, we are

able to separate the SNP effects for high LD pairs. Having nucleotide-precision

measurements is especially beneficial for our model to differentiate high LD SNPs

by assigning different effect size estimates.

We also provide results using 5-fold cross-validation (CV) for model estimation

instead of stability selection (Figure B.20-B.23). Because CV chooses the tuning

parameter λ that minimizes prediction error, it emphasizes more on prediction

accuracy instead of offering family-wise error control like stability selection. As a

result, the model chosen by CV is generally much denser, with hundreds of selected

SNPs that are mostly captured by the annotation-free effect η.

3.4 Conclusion

The integration of external auxiliary data, e.g. epigenomic information, into GWAS

analyses is an important step to further understand underlying mechanisms of

association and to better prioritize SNPs loci. Recently emerging methodologies

usually model annotation as a data-driven prior that informs the non-zero status of

SNP effects and are limited to binary annotations in most cases. In this study, we

develop GRAD, a flexible statistical method that models the impact of annotation

information on SNP effect β by assuming β = Aγ + η. This model allows the
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utilization of continuous-valued annotation information at the nucleotide-level to

inform the magnitude and direction of TF accessibility changes.

By adopting Lasso (Tibshirani, 1996) as the estimation method of our model, we

are able to perform variable selection on both annotation and genotype information.

We provide two techniques to deal with the tuning parameter in Lasso: stability

selection and cross-validation. We mainly focus on the results yielded by stability

selection because of its error control (PCER). In our simulation experiments, we

found cross-validation to have a tendency to over-select SNPs and an inflated

number of false positives. Even though stability selection has been deemed as

overly conservative in the context of GWAS when no external information is used

(Alexander and Lange, 2011), we found in our extensive simulation experiments

that by leveraging annotation information into our analyses, we increase the number

of relevant selected SNPs and reduce the number of false positives, especially when

the true proportion of risk SNPs is small (< 6%). Ultimately, it should be up to

the users which technique to use and our code is flexible enough to provide both

options.

In this work, we assume one common tuning parameter λ for both η and γ in the

convex optimization problem in equation (3.4). To make the penalties comparable

on η and γ, we standardized columns of {GA,G} together instead of standardizing

G before its multiplication by A. This standardization procedure is interpretable

because GA can be seen as “meta SNPs” with annotation as weights, and the “meta

SNPs” GA are standardized to have the same scale as the original SNPs G. Our

initial explorations considered different tuning parameters, i.e. λ1 for γ and λ2 for
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η, and we used cross-validation to choose them. No considerable improvement

was seen compared to the current approach and computing cost was significantly

increased with two tuning parameters. It is also feasible to extend stability selection

into the setting of two tuning parameters, although this has not been seen in the

current literature, to our knowledge. This could be considered in the future if

substantial improvement is detected compared to one common tuning parameter.

The variable selection performance of Lasso can be greatly undermined by

high collinearity among features, which is typically observed in GWAS because of

linkage disequilibrium patterns among SNPs in close genomic proximity. When

high LD is present, Lasso has the tendency of picking one single variant instead of

the entire LD block. For such cases, elastic net (Zou and Hastie, 2005) can be an

attractive alternative but initial inspections within our simulations failed to uphold

its use compared to Lasso. To overcome potential drawbacks that might arise from

highly correlated SNPs and/or annotations, we provide a guideline on how to filter

genotypes and annotations for optimal estimations by calculating the upper bound

of the SNP effect estimation errors. It is part of our current work to inspect how

much correlation our method can handle without compromising the quality of the

selected SNPs, and whether we can expand our analysis to smaller regions with

stronger LD structures. It could also be beneficial to inspect other sequence-based

algorithms (Alipanahi et al., 2015; Zhou and Troyanskaya, 2015) to construct signed

annotations besides (Kelley et al., 2016) and check their correlation structure.

One important strength of our method is its ability to pick up SNPs with tradi-

tionally low signal from univariate associations (− log10(p) < 8) mainly because
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of the following reasons: (1) annotation information puts more emphasis on the

SNPs with changes in TF accessibility, regardless of the univariate signal strength

of the SNP; (2) the multivariate modeling of our method inspect the joint effects of

SNPs instead of marginal effect. For example, in our analysis with the FHS data, in

addition to recognizing GWAS SNPs that are validated by independent studies and

TF-phenotype associations well supported in literature, we are also able to identify

a high LD pair in chromosome 15 for the von Willebrand factor (rs1063857 and

rs1063856) that impacts c-Myc with different magnitude and opposite direction,

and have weak univariate associations (− log10(p) ∼ 3.6).

Web Resources

Signed LD Profile (SLDP) Annotations https://data.broadinstitute.org/

alkesgroup/SLDP/annots/;

LD Score Annotations https://data.broadinstitute.org/alkesgroup/

LDSCORE/;

GPA v1.1 https://github.com/dongjunchung/GPA.

Data Availability

The data that support the findings of this study (Framingham Heart Study

(Kannel et al., 1979)) are available through dbGap (phs000007.v16.p6). Ge-

netic data is under study number phs000342.v14.p10 (https://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10) and

https://data.broadinstitute.org/alkesgroup/SLDP/annots/
https://data.broadinstitute.org/alkesgroup/SLDP/annots/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://github.com/dongjunchung/GPA
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10
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expression data under study number phs000363.v13.p10 (https://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10).

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10
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Figure 3.1: Overview of GRAD modeling framework.
(A) GRAD input consists of three different types of data: phenotype (Yn×1), geno-
type (Gn×p), and annotation matrix (Am×p). (B) The proposed model partitions
SNP effects sizes β into an annotation contribution (Aγ) and an annotation-free
contribution (η). Selection of the features (η and γ) is performed with stability
selection. For each value of λk (k = 1, . . . ,K), N subsamples with halves of the
observations are followed by lasso to obtain a selection set Ŝλk(N) to be later on ag-
gregated into empirical selection probabilities. (C) GRAD output provides results
of empirical selection probability for η and γ from stability selection for each λk
value. Model parameters with selection probability above a certain cutoff for at
least one λk are selected (Ŝstable) and highlighted in red. Estimates for η̂ and γ̂
result on selected SNPs β̂ = Aγ̂+ η̂.
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Figure 3.2: Simulation results comparing fits with and without annotation.
(A) Percentage change in the area under the precision-recall curves (AUPR) for
SNP selection across fits with the use of annotation comparing simulations gen-
erated by linear partition and model misspecification for different proportions of
non-zero η and γ (pη6=0 and pγ 6=0, respectively). (B) Partial area under the ROC
curve (pAUC) for SNP selection for false positive rate below 0.1 for fits with and
without annotation comparing simulations generated by linear partition and model
misspecification schemes for simulation scenarios with low, mild, and strong an-
notation effect magnitude µγ. (C) SNP selection precision-recall curves for fits
with and without annotation comparing simulations generated by linear partition
and model misspecification schemes for simulation scenarios with pη6=0 = 0.01,
pγ 6=0 = 0.05, and σ2 = 100 for low, mild, and strong annotation effect magnitude µγ.
(D) Area under the precision-recall curve (AUPR) for annotation selection (γ) when
the proportion of risk SNPs is 0.04 (pη6=0 = 0.04) across fits comparing simulations
generated by linear partition and model misspecification for different proportions
of non-zero γ (pγ 6=0). (E, F) GPA comparisons: average area under the precision-
recall curves (AUPR) for SNP selection across 100 simulation replicates and their
corresponding error bars (mean ± standard deviation) for GRAD and GPA. (E)
Data generated using the GPA liability threshold model (GPA-LTM) . Results are
divided by the number of risk annotations Sγ ∈ {2, 5, 8, 10}. (F) Data generated
using the iFunMed model. Results are divided by their prior inclusion probabilities
with the use of annotation (no annotation effect, mild annotation effect, and strong
annotation effect).
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Figure 3.3: Stability selection results for von Willebrand factor.
(A, B) Stability paths for each parameter included in the model. Colored paths
indicate non-zero estimated parameters. Dashed line represents selection frequency
cutoff of 0.75. (A) Without annotation and (B) with annotation. (C, E) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(C) − log10 transformed p-values from univariate GWAS associations, (D) strength
of the annotation free contribution η̂ from the model with annotation, and (E)
strength of the annotation contribution Aγ̂ from the model with annotation.
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Table 3.1: Details of cases considered for the analysis

Phenotype # of Annotations # of Subjects Smallest − log10(p) Largest − log10(p)
(chromosome) (chromosome)

Factor VII 64 2,162 3.158 (chr12) 39.782 (chr13)
von Willebrand factor 70 2,163 3.164 (chr20) 38.468 (chr9)
Fasting glucose (log) 69 2,070 2.964 (chr2) 7.458 (chr1)
Height 78 2,268 4.150 (chr1) 9.140 (chr16)

Table 3.2: Area under the precision-recall curves (AUPR) stratified by annotation
effect magnitude µγ (low, mild, and strong) for simulation scenarios displayed in
Figure 3.2C (pη 6=0 = 0.01, pγ 6=0 = 0.05, and σ2 = 100) with and without annotation,
and their respective improvements due to annotation.

Low µγ Mild µγ Strong µγ
Without With Improvement Without With Improvement Without With Improvement

Annotation Annotation (%) Annotation Annotation (%) Annotation Annotation (%)
Linear Partition 0.446 0.659 47.824 0.596 0.838 40.641 0.647 0.843 30.318
Model Misspecification 0.440 0.544 23.638 0.463 0.580 25.411 0.541 0.655 21.042
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Table 3.3: List of SNPs selected in GRAD for von Willebrand factor. SNP signals
refers to the direction of the estimated SNP effect sizes for fits without and with
annotation. Details of the annotations included at the individual SNP level are also
displayed. Bold SNPs have evidence of association in the GWAS Catalog.

SNP Signal Annotation
SNP ID Location wo. Ann w. Ann JunD Pol2 STAT3 c-Myc
rs12565220 chr1:61522880 0 − 0 − 0 −
rs2144555 chr1:101760889 0 + 0 0 + 0
rs12041138 chr1:190149198 0 − 0 0 − 0
rs1257019 chr2:97617140 0 − 0 0 0 −
rs1730122 chr2:97630540 0 − 0 0 0 −
rs4142942 chr3:4841657 0 − 0 0 − 0
rs2280630 chr3:39195964 0 − 0 − 0 0
rs3732610 chr3:124691470 0 − 0 0 0 −
rs261126 chr5:4375160 0 + 0 0 + 0
rs29775 chr5:172483023 0 − 0 0 0 −
rs10984077 chr9:121284915 0 + 0 0 + 0
rs8176749 chr9:136131188 0 + 0 0 0 0
rs505922 chr9:136149229 + + 0 0 0 0
rs579459 chr9:136154168 0 + 0 + 0 0
rs1063857 chr12:6153514 0 − 0 0 0 −
rs1063856 chr12:6153534 0 + 0 0 0 +
rs3912393 chr12:94594035 0 − − 0 0 0
rs8027767 chr15:99297503 0 + 0 0 + 0
rs8041224 chr15:99297665 0 + 0 0 + 0
rs2663849 chr18:55464523 0 + + 0 0 0
rs1206808 chr20:45688440 0 − 0 0 − 0
rs2154592 chr22:23947352 0 + + 0 0 0
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4 discussion

4.1 Limitations from Using Summary-level Data

The number of methodologies that use summary-level data has increased in the

last couple of years. These tools provide a convenient and practical way to analyze

thousands of genetic variants without the hassle of applications to controlled-access

repositories, extensive data cleaning and processing, and potential problems from

limited computing resources.

Ready to use data generally consist of results from univariate associations where

where patient privacy is not violated. The majority of statistical models developed to

use summary-level data typically require a combination of p-values, estimated effect

sizes, standard deviations, and linkage-disequilibrium (LD). A large proportion

of the data applications for these methods use information coming from meta-

analyses, which is a common practice to increase sample size where summarized

information from different studies is combined. One of the biggest meta-analysis ex-

plored data on blood lipids-related phenotypes (HDL, LDL, and triglycerides) data

(Teslovich et al., 2010). They combined summary statistics from over 20 different

studies and cohorts with individuals of majority European ancestry to reach sample

sizes close to 100,000. For treatment of the LD matrix, it is usually approximated

using a reference panel, e.g. 1,000 Genomes (Consortium, 2015), with matching

ancestry. Both approximations induce potential error from using multiple reference

population results that are generated by different scientists with diverse treatment

of the data and mismatched LD from the study and the reference. Moreover, al-
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though meta-analyses increase sample size, there are still only 2,504 subjects in

the data available from 1,000 Genomes. Four hundred sixty five samples are of

European ancestry which is used in the majority of larger GWAS studies.

When using the lipids data (Teslovich et al., 2010) and the LD matrix from 465

subjects with European ancestry from 1,000 Genomes, iFunMed showed convergence

problems, even after strict matching to the reference alleles. The only solution we

found was to severely filter by minor-allele frequency which considerably reduced

the number of SNPs and resulted in a very small number of discoveries.

To have a better understanding of iFunMed operative mechanisms, we inspected

the SNPs with the highest univariate associations within each loci for HDL. Our

premise was simple: if two SNPs are highly correlated (close to perfect LD) then

their summary statistics should be relatively close in magnitude.

Figure 4.1 displays information of two SNPs: rs12678919 and rs9600212 (4.1A

and 4.1B, respectively). They are located in different regions of the genome and both

display high marginal association with HDL. We compare the LD of the specific

SNP with the rest of the ones in the locus and their corresponding summary

statistics. rs12678919 (Figure 4.1A) has a t-score of 22.24 and as expected, the overall

tendency is increasing and linear. SNPs with elevated summary statistics have

stronger correlations with rs12678919 and weakly correlated SNPs are concentrated

in a cloud around zero. There are two SNPs highlighted in the figure that break

the linear pattern. Both of them have almost perfect LD with rs12678919 and yet,

their summary statistics magnitude is below 5. More importantly, one of them

has opposite direction (red in Figure 4.1A). In Figure 4.1B, rs9600212’s t-score
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is 15.69 and the tendency is linear but vertical around zero (GWAS summary

statistics around zero). The three highlighted SNPs display even weaker marginal

associations (close to zero in one case) for high LD with rs9600212. These are clear

examples of mismatched LD between the study and the reference which will most

likely have an impact on different models that use this data. This was not an isolated

event, it was observed in multiple loci with varying patterns of off-diagonal SNPs.

As a next step, we intended to reduce the sources of potential error by using

summary statistics from only one study (FHS) and approximate the LD matrix.

Many SNP pairs have small LD values (close to zero) but opposite magnitudes when

comparing FHS with the reference panel. Our results with this input data were

much more stable but there were still very few discoveries that fluctuated between

zero to two for regions with 1,000 to 2,000 SNPs and high univariate summary

statistics.

The success of these models that use summary-level data is undeniable. Strong

examples are LD Score Regression (Finucane et al., 2015) used to partition heri-

tability and TWAS (Gusev et al., 2016) used to find gene-trait associations. That

being said, there are still few studies that measure the impact of different sources

of approximation have on model estimates and results. The influence and the effect

on the results will vary across methodologies and could potentially lead to elevated

numbers of false discoveries that are not accounted for. One alternative proposed by

(Zhu and Stephens, 2017) is to use a shrinkage estimator on the reference panel LD

matrix. As scientists, we should promote such inspections when approximations

are being used. More importantly, there is an increasing need to not only share
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summary-level data but to also share LD structures.

4.2 Error Control

Traditional approaches to control for the multiple comparisons problem that arises

from univariate associations threshold p-values by 1 × 10−8. This is based on a

conservative Bonferroni correction for one million independent variants that controls

familywise error rate (FWER) at 6 α = 0.01. Due to high correlations along the

human genome, the key independence assumption is violated. Regions with high

and specific patterns of linkage-disequilibrium, i.e. LD blocks, might generate an

elevated, and not accounted for, number of false negatives which can decrease

power.

Majority of methods that leverage functional annotation data report as a final

output some sort of posterior inclusion probability, i.e. the posterior probability

for each SNP of being non-zero. With a lack of p-values, posterior probabilities are

usually thresholded based on their distributions, calibrations of the values by using

independent datasets (Pickrell, 2014), or utility functions (Kichaev et al., 2014). For

iFunMed, we used a 0.5 threshold. This value was based on our observations of

simulation results and real data applications. Our posterior probabilities behaved

as bimodal around zero and one with few to none values in the middle. We

recommend to proceed with care with SNPs around 0.5 as they could easily lead to

false positives or false negatives.

If we expect a reasonable proportion of rejections, i.e., SNPs with an association
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to the trait, it might be more appropriate to control the false discovery rate (FDR).

Methodologies that assume independence among SNPs (Chung et al., 2014), can

use a direct posterior probability approach (Newton et al., 2004) to control global false

discovery rates for Bayesian hierarchical models. There is another class of methods

within this realm that partition the genome into blocks that are assumed to be

independent between each other but not within. They control FDR at the locus-

level to identify loci of interest by calculating a common posterior probability

within each locus (Wen, 2016; Wen et al., 2016) to be followed up by the direct

posterior probability approach (Newton et al., 2004). This technique seems appropriate,

compared to others, because it takes information that we know about the human

genome and GWAS studies and treats each locus as the unit in the analysis, but

does not guarantee FDR control within each locus.

Unlike others, GRAD assumes that the SNP effect sizes can be linearly parti-

tioned into an annotation and annotation-free contribution. By adopting the Lasso

within stability selection for feature selection, we provide per-comparison error rate

(PCER) control that showed promising results within our analyses. A technique

that aims for FDR control within the Lasso called SLOPE (Bogdan et al., 2015) has

a strict orthogonal restriction for the design matrix. When used in GWAS data

(Brzyski et al., 2017), the genotype matrix follows strict procedures to pre-select

SNPs. Further inspections of this technique are part of our current plan.
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4.3 GWAS Advances and Future Directions

After more than a decade of GWAS and thousands of associated SNPs, our under-

standing of complex diseases keeps improving, but there is still significant progress

to be made. Early-stage analyses only focus on univariate associations with obsolete

thresholds to account for multiple testing. Such an approach overlooks the potential

gain from incorporating biological knowledge and the joint contribution of SNPs

on a trait. Many statistical advances are aiming to incorporate auxiliary data and

biological processes to better characterize genetic variants. These are extremely

relevant because not only they refine and improve detection but they also take into

account biological mechanisms of association by, for example, adopting multivari-

ate mediation models like iFunMed. Methodologies that use summarizy-level data

usually complement it with LD structures and annotation information (Chen et al.,

2016; Kichaev et al., 2014; Rojo et al., 2019). This is important to characterize joint

effects and boost signals of SNPs in regulatory regions.

Methods that impose strict assumptions on the data such as independence

(Chung et al., 2014), one causal variant per locus (Li and Kellis, 2016; Pickrell, 2014),

or non-overlapping annotations (Yang et al., 2017) are typically computationally-

efficient and they could provide a good first exploration of the data but their

unrealistic assumptions might hinder true discoveries. With increasing advances

in GWAS data, the need for flexible models will become greater. The majority of

existing studies mainly focus on European populations and have modest sample

sizes. For example, after filtering, we only have a little over 2,000 individuals in the

FHS that varies for different phenotypes after removing missing data. We believe
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that with larger sample sizes, both the proposed models will benefit. iFunMed’s

input summary statistics will be more stable and less dependent on specific subjects

with rare variants, especially if the LD is approximated with a reference panel,

without sacrificing computational time once summary statistics are calculated.

GRAD’s computational cost will be greater compared to iFunMed but it will only

depend on the computation of XTX and XTY within each round of the Lasso.

Also, it is important to point out that we are limited to the epigenomic informa-

tion that is available to us and our discoveries might be related to other features

within the human genome. With the development of software that predict signed

effects of a SNP on transcription factor binding (Alipanahi et al., 2015; Kelley et al.,

2016; Zhou and Troyanskaya, 2015) and higher quality annotations, the demand

for models that can integrate continuous auxiliary data in an efficient way (Chen

et al., 2016; Rojo et al., 2020) will increase. Annotation sources can also be extended

to single-cell data that hasn’t been explored for this context. For example, we could

construct annotations from ATAC-seq data and summarize weather or not SNPs

overlap with a peak for different cell-types or even accessibility quantifications of

the SNP region within a cell-type.

When more ethnic groups are collected, there will be a need to adapt current

methods or create new ones that account for population structure while utilizing

annotation information. With the flexibility and increasing advancements on the

Lasso, an extension of GRAD to a mixed-effect model to correct for the grouping

structure could be possible (Schelldorfer et al., 2011).

As for now, GWAS seems like only the beginning and the tip of the iceberg. Once
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there are more advances in technology, study design, sample sizes, and epigenomic

information the potential discoveries and possibilities could be endless.
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Figure 4.1: Pairwise LD versus their corresponding univariate GWAS summary
statistics for HDL (Teslovich et al., 2010) for two SNPs with high marginal asso-
ciations using a European ancestry reference panel for LD computations.
(A) rs12678919 with a GWAS summary statistics of 22.24 and (B) rs9600212 with a
GWAS summary statistics of 15.69
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a appendix a

A.1 Fitting iFunMed with Variational EM

In this appendix, we provide details on the derivation of the variational EM algo-

rithm for the iFunMed model.

Variational E-Step

The variational algorithm approximates the joint posterior distribution by a product

of lower dimensional functions using factorized distributions as

q(τβ, sβ, δ) = q(δ)q(τβ)
p∏
j=1

q(sβ,j) and q(τB, sB) = q(τB)
p∏
j=1

q(sB,j),

where q(·) is an arbitrary density function that generates a q−dependent lower

bound on the marginal likelihood by minimizing the Kullback-Leibler divergence

between the posterior density and q. It considers the expectation with respect

to the parameters in their corresponding factorized form of the full log posterior

distribution for minimizing. In what follows, Ea,−b(L) represents the expectation

of L over distribution a, excluding the distribution of variable b, and q(t)(·) is

the current variational estimate of the posterior distributions of each component.

Moreover, the parameters (σ2
ε,σ2

η,νβ,νB,γTβ,γTB) are in fact estimates from the

previous iteration, but we will drop the superscript (t) for the ease of notation.

Next, we layout the updating steps of each component, which will iterate until

convergence. For the DEM, we update τβ, δ, and sβ. Let w(t)
β =

(
w

(t)
β,1, . . . ,w(t)

β,p

)T



81

for j = 1, . . . ,p denote the posterior inclusion probability of the elements of β from

the last iteration, and W(t)
β = diag

(
w(t)
β

)
. The resulting posterior distribution of

τβ from Eq(t),−τβ(LDEM) follows a normal distribution

τβ|q
(t) ∼ N(µτβ , Vτβ),

where µτβ = K−1
β W(t)

β (ZY − µδZG), Vτβ = σ2
εK−1

β , and Kβ = W(t)
β Σ̃W(t)

β +

diag(Σ̃)
[

W(t)
B −

(
W(t)
B

)2
]
+ν−1

β Ip. Here, µδ is the posterior mean of δ from the last

iteration and Kβ is a p× pmatrix. Next, from the computation of Eq(t),−δ(LDEM),

we update the variational posterior distribution of δ as

δ ∼ N(µδ,σ2
δ) where σ2

δ =
σ2
ε

ZTGΣ̃
−1ZG

and µδ =
ZTGΣ̃

−1ZY − ZTGW(t)
β µτβ

ZTGΣ̃
−1ZG

.

Finally, the variational posterior distribution of the variable sβ,j derived from

Eq(t),−sβ,j
(LDEM) is a Bernoulli distribution with P(sβ,j = 1) ≡ w(t+1)

β,j , where

logit
(
w

(t+1)
β,j

)
= logit(πβ,j) −

1
2σ2
ε

{
Σ̃j,j

(
µ2
τβ,j + Vτβ,j,j

)
− 2µτβ,j

[
ZY,j − µδZG,jw

(t)
β,−j

−Σ̃j,−j

(
µτβ,−j ◦w(t)

β,−j

)]
+ 2

(
Σ̃j,−j ◦Vτβ,j,−j

)
w(t)
β,−j

}
.

For the GEM, we update τB and sB. Similar to the quantities in the DEM, let

w(t)
B =

(
w

(t)
B,1, . . . ,w(t)

B,p

)T
for j = 1, . . . ,p denote the posterior inclusion probability

of the elements of B from the last iteration, and W(t)
B = diag

(
w(t)
B

)
. We first update

the posterior distribution of τB by computing Eq(t),−τB(LGEM), which follows a
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normal variational posterior

τB|q
(t) ∼ N(µτB , VτB),

where µτB = K−1
B W(t)

B ZG, VτB = σ2
ηK−1

B , and KB = W(t)
B Σ̃W(t)

B +

diag(Σ̃)
[

W(t)
B −

(
W(t)
B

)2
]
+ ν−1

B Ip is a p × p matrix. From Eq(t),−sB,j
(LGEM), we

update the variational posterior distribution of the signal sB,j which is a Bernoulli

distribution with P(sB,j = 1) ≡ w(t+1)
B,j , where

logit
(
w

(t+1)
B,j

)
= logit(πB,j) −

1
2σ2
η

{
Σ̃j,j

(
µ2
τB,j + VτB,j,j

)
− 2µτB,j

[
ZG,jw

(t)
β,−j

−Σ̃j,−j

(
µτB,−j ◦w(t)

B,−j

)]
+ 2(Σ̃j,−j ◦VτB,j,−j)w(t)

B,−j

}
.

Variational M-Step

Following the variational E-step, we obtain point estimates of the hyperparameters

in the variational M-step as:

σ2
η =

1
p− |wB|1 − 1

{(
µτB ◦wB

)T
Σ̃
(
µτB ◦wB

)
− 2ZTG

(
µτB ◦wB

)
+ ZTGΣ̃

−1ZG

+wT
B

(
Σ̃ ◦VτB

)
wB + diag(Σ̃)T

(
WB − W2

B

) [
µ2
τB

+ diag (VτB)
]}

,

νB =

∑p
j=1wB,j

(
µ2
τB,j

+ VτB,j,j

)
σ2
η|wB|1

,

where |x|1 denotes number of non-zero elements of x. We update γB by maximizing

Q
(
γB
∣∣q(t+1) ) = p∑

j=1

[
wB,jATj γB − log

(
1 + exp

(
ATj γB

))]
.
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Similarly, we get point estimates of σ2
ε, νβ and γβ as follows:

σ2
ε =

1
p− |wβ|1

{(
µτβ ◦wβ

)T
Σ̃
(
µτβ ◦wβ

)
− 2ZTY

(
µτβ ◦wβ

)
+ ZTYΣ̃

−1ZY

+wT
β

(
Σ̃ ◦Vτβ

)
wβ + diag

(
Σ̃
)T (Wβ − W2

β

) [
µ2
τβ

+ diag
(
Vτβ

)]
+
(
µ2
δ + σ

2
δ

)
ZTGΣ̃

−1ZG + 2µδZTGWβµτβ − 2µδZTGΣ̃
−1ZY

}
,

νβ =

∑p
j=1w

(t+1)
β,j

(
µ2
τβ,j

+ Vτβ,j,j

)
σ2
ε|wβ|1

.

We update γB by maximizing

Q
(
γβ
∣∣q(t+1) ) = p∑

j=1

[
wβ,jATj γβ − log

(
1 + exp

(
ATj γβ

))]
.

A.2 Pre-processing of Framingham Heart Study Data

Genotypes, expression levels, and phenotypes were acquired from the Framing-

ham Heart Study (FHS) using project number 8158 and dbGaP study accession

phs000007. Genotypes were obtained from the SHARe substudy (phs000342) that

used the Illumina HumanOmni5M-4v1 array for genome-wide genotyping array of

4,271,233 SNPs from the human genome version GRCh37 (hg19). FHS included

expression data from whole blood RNA for different cohorts from the Systems

Approach to Biomarker Research in Cardiovascular Disease (SABRe CVD) study

(phs000363) that utilized Affymetrix Human Exon 1.0 ST Array. 284,558 core probe

sets (exons) were annotated using the Affymetrix annotation file resulting in 17,873

hg18 transcripts, 15,004 of which were successfully mapped to hg19.
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A total of 1,667 subjects had both expression and genotype data. All of these

subjects are from the offspring cohort and their phenotype information was acquired

from clinical exam 5 in the case of factor VII and von Willebrand factor, exam 7 for

fasting glucose, exam 8 for HDL, and exam 9 for red and white blood cell count.

Based on initial exploratory analysis, we log transformed fasting glucose, HDL,

and white blood cell count measurements.

Preprocessing of the genotypes was performed with PLINK v1.9 (Chang et al.,

2015; Purcell et al., 2007) and the SNPs were filtered following the guidelines in

(Roshyara et al., 2014). SNPs with call rates 6 95%, that were discordant with

Hardy-Weinberg equilibrium (HWE p-value 6 10−6), and with minor allele fre-

quency (MAF) small than 1% were filtered. After removing non-autosomal chromo-

somes, indel and repeated SNPs, a total of 2,478,340 SNPs remained for imputation.

IMPUTE2 v2.3.2 (Marchini and Howie, 2010; Marchini et al., 2007) with one phased

reference panel from 1,000 Genomes (phase 3) and a probability of 0.9 as threshold

for calling genotypes resulted in 2,244,466 SNPs. Genotypes were recoded to an

additive format (0/1/2) using the --recode A option from PLINK.

A.3 Procedure for Identifying Candidate Mediators

In order to define potential mediator genes, we followed the guidelines provided

in (Baron and Kenny, 1986) with some modifications to adapt to the fact that we

consider multiple SNPs at the same time. Specifically, we applied the following

three steps:
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1. Identify SNPs significantly associated with the phenotype. We assessed uni-

variate association between the phenotype of interest and the genotype

as Y ∼ SNPj, j = 1, . . .p. This translated to considering regions of the

genome that showed moderate to high GWAS signal (at least one SNP with

− log10(p-value) 6 4). We formed windows around such SNPs to consider

regions of size 2 Mb approximately.

2. Identify potential mediator variables significantly associated with the phenotype. For

each gene within regions from step 1, we calculated univariate association

between the expression of the gene and the SNPs in that region as G ∼

SNPj, j = 1, . . .p. We reduced the set of candidate genes by considering

only those that showed high and dense signal (at least a couple of SNPs with

− log10(p-value) 6 8).

3. Identify potential mediator variables that significantly associate with the phenotype

adjusted for the genotype effect. For the genes with eQTL signal from step 2, we

fitted Y ∼ SNPj + G, j = 1, . . .p and required that G remained significant,

for at least one SNP within the region.

Finally, we remark that the final selection of mediator genes was further subjected

to visual inspection by paying attention to cases that were at the boundary but

didn’t pass the threshold from step 2 and setting a more liberal significance level in

step 3, if necessary. We further note that majority of the candidate mediator genes

arising from this procedure (Table 2.2) also exhibited gene-trait associations based

on TWAS results of (Gusev et al., 2016) available at http://twas-hub.org/.

http://twas-hub.org/
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A.4 Supplementary Figures for “iFunMed:

Integrative Functional Mediation Analysis of

GWAS and eQTL Studies”
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Figure A.1: Heatmaps for − log10 transformed p-values from the univariate asso-
ciation analysis of GWAS and eQTL summary statistics with individual anno-
tations.
Rows depict a list of 209 epigenomic annotations from 4 activation histone marks
from the Roadmap Epigenomic Project (Roadmap Epigenomics Consortium, 2015).
Left column for each panel corresponds to p-values (− log10 transformed) from
univariate association analysis of GWAS summary statistics and individual an-
notations, i.e., ZY ∼ Ak, and right column to univariate association analysis of
eQTL summary statistics and individual annotations, i.e., ZG ∼ Ak (k = 1, . . . , 209).
Results depicted are for Red Blood Cell Count as phenotype. (A) NINJ1 as mediator
and (B) EVA1C as mediator.
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Figure A.2: Proportion of SNPs with annotations.
Proportion of SNPs with annotations, i.e., with corresponding entry of the A ma-
trix equal to 1, across the 209 annotations considered. Annotations used in the
simulations are boxed in black with their corresponding labels.
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Figure A.3: Simulations for comparing iFunMed fits with (w.Anno) and without
annotation data (wo.Anno).
(A) Percentage change in the area under the precision-recall (AUPR) curves with
the use of annotation across fits for all the 54 simulation settings. The total set of
annotations (54× 5 settings) are stratified by the annotation effect sizes γβ and γB.
PR curves are obtained by thresholding the total effect estimates. (B) Boxplots of
numbers of iterations until convergence across simulation replicates. (C, D) PR
curves for simulation scenarios with a mild annotation effect (γβ,γB = (−4.5, 2)),
σ2
ε = σ

2
η = 1 and δ = 0.05, using annotation A5, and varying effect size variances.

(C) νβ = νB = 100 for strong and (D) νβ = νB = 20 for weak effect sizes of the
SNPs.
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Figure A.4: Area under the DEM and GEM ROC curves from simulation settings
with a mild annotation effect (γβ,γB = (−4.5, 2)), σ2

ε = σ2
η = 1 and δ = 0.05, us-

ing annotation A5, and varying effect size variances.
(A, B) ROC curves for the direct effect model (DEM). (C, D) ROC curves for the
gene effect model (GEM). (A, C) νβ = νB = 100. (B, D) νβ = νB = 20.
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Figure A.5: Area under the DEM and GEM PR curves from simulation settings
with a mild annotation effect (γβ,γB = (−4.5, 2)), σ2

ε = σ2
η = 1 and δ = 0.05, us-

ing annotation A5, and varying effect size variances.
(A, B) PR curves for the direct effect model (DEM). (C, D) PR curves for the gene
effect model (GEM). (A, C) νβ = νB = 100. (B, D) νβ = νB = 20.
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Figure A.6: iFunMed results for fits that the annotation screening did not identify
any enriched annotations.
(A, D, G, J)− log10 transformed enrichment p-values for annotations with more than
5% of loci SNPs with the annotation. Dashed line represents marginal significance
level of 5%. (A) TMCO3 as mediator, (D) MSH6 as mediator, (G) ITSN1 as mediator,
and (J) RALGDS as mediator. (B, C, E, F, H, I, K, L) Manhattan plots for the GWAS
(B, E, H, K) and eQTL (C, F, I, L) input summary statistics. SNPs highlighted in
purple are selected by the null model whereas gray SNPs are not selected using
posterior probability of inclusion cut-off at 0.5. (B, C) TMCO3 as mediator, (E, F)
MSH6 as mediator, (H, I) ITSN1 as mediator, and (K, L) RALGDS as mediator.
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Figure A.7: iFunMed results for log transformed Fasting Glucose with P2RX1 as
mediator.
(A) − log10 transformed enrichment p-values for annotations with more than 5% of
loci SNPs with the annotation. Dashed line represents marginal significance level
of 5%. Annotations used for the fits are significant at FDR of 10% and are marked
with asterisks. (B, C) Manhattan plots for the GWAS and eQTL input summary
statistics, respectively. SNPs highlighted in blue/red represent SNPs with large
changes in their posterior probabilities of inclusion across the two iFunMed fits
(with and without annotation). Blue SNPs are selected with the use of annotation
whereas red SNPs are excluded, and the status of the purple (selected) and gray
SNPs (not selected) do not vary between the two fits.
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A B

C

Figure A.8: atSNP (Shin et al., 2018) composite logo plots for SNPs that are iden-
tified only by the use of annotation.
The composite logo plots compare the best matches of TF motifs to the DNA se-
quences overlapping the SNP positions with the reference and SNP alleles to hy-
pothesize potential gain- or loss-of-function with atSNP p-value cutoff of 6 1e−7.
(A) rs76395158-SRF pair from the model using P2RX1 as mediator, suggesting po-
tential loss-of-function. (B) rs117071988-NR5A2 pair from the model using P2RX1
as mediator, suggesting potential gain-of-function. (C) rs1075581-NFE2L1 pair from
the model using IL32 as mediator, suggesting potential loss-of-function.
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A.5 Supplementary Tables for “iFunMed:

Integrative Functional Mediation Analysis of

GWAS and eQTL Studies”

Label Cell-type Histone Mark Tissue Group Proportion
A1 Gastric H3K4me3 GI 0.014
A2 Peripheralblood Mononuclear Primary H3K9ac Immune/Hematopoietic 0.036
A3 Adipose Nuclei H3K4me3 Other 0.050
A4 CD8 Memory Primary H3K4me1 Immune/Hematopoietic 0.098
A5 Hippocampus Middle H3K4me1 CNS 0.147

Table A.1: Details of the annotations used in the simulations. “Proportion” refers to
proportion of SNPs residing in the peak regions, i.e., candidate regulatory regions,
of the underlying histone mark.

Type I Error Power
A1 A2 A3 A4 A5

Mild Strong Mild Strong Mild Strong Mild Strong Mild Strong
DEM 0.047 0.089 0.136 0.256 0.286 0.383 0.450 0.447 0.539 0.617 0.722
GEM 0.049 0.125 0.108 0.206 0.300 0.378 0.475 0.522 0.578 0.672 0.736

Table A.2: Evaluation of annotation screening for Type I error control and power
with simulations for direct and gene effect models. The null hypothesis (H0 :
No annotation effect) considered 18 simulation settings where annotation effect
sizes were set to 0 (γβ,γB = (−4, 0)). For the remaining 36 simulation settings, the
alternative hypothesis was true and included scenarios with a non-zero annotation
effect (mild or strong). Within each simulation setting, we used five different
annotations and generated 20 datasets. For each dataset, we calculated enrichment
p-values for all annotations used for the simulation for direct (p̂β) and gene (p̂B)
effect models and thresholded the Bonferroni corrected p-values at 5%.
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Mediator # Annotations # of Selected Annotations
Phenotype Gene after Filtering DEM GEM

Locus 1 Factor VII TMCO3 41 0 0
Locus 2 White Blood Cell Count (log) MSH6 53 0 0
Locus 3 Red Blood Cell Count NINJ2 73 0 1
Locus 4 Red Blood Cell Count EVA1C 59 0 2
Locus 5 Red Blood Cell Count ITSN1 59 0 0
Locus 6 Von Willebrand Factor RALGDS 81 0 0

Table A.3: Results of the annotation screening, including the total numbers of
candidate annotations for each locus after filtering out annotations with less than
5% of overlap with the locus SNPs.
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TMCO3 Location Model
kgp10717896 112,573,998 DEM
rs2181540 113,753,164 DEM
kgp9453357 113,759,526 DEM
rs488703 113,770,876 DEM
kgp1387232 112,877,768 GEM
rs1536678 113,095,947 GEM
kgp12297185 114,131,289 GEM
kgp2036972 114,154,230 GEM
kgp4645137 114,164,811 GEM
kgp525215 114,173,204 GEM
MSH6 Location Model
kgp3063860 47,004,949 DEM
kgp2682188 47,095,636 DEM
kgp2427793 47,103,998 DEM
kgp11431633 47,182,740 DEM
rs17481182 47,223,522 DEM
kgp11283959 47,226,640 DEM
kgp2688517 47,477,578 DEM
kgp4611764 47,555,232 DEM
kgp12183625 47,819,972 DEM
rs6716984 47,863,075 DEM
rs17504691 47,871,470 DEM
rs2348719 48,408,487 DEM
kgp6493984 48,815,977 DEM
kgp10514201 48,887,051 DEM
kgp9736999 49,138,080 DEM
kgp7392282 49,250,623 DEM
kgp154300 49,568,675 DEM
kgp10248994 49,568,756 DEM
rs10865241 49,697,619 DEM
rs7586009 47,098,968 GEM
kgp10038202 47,259,497 GEM
kgp738041 47,726,765 GEM
rs1863334 47,790,611 GEM
kgp10844215 47,823,379 GEM
kgp255139 47,961,712 GEM
rs330787 48,041,377 GEM
rs4583515 48,177,487 GEM
kgp8128499 48,624,433 GEM
kgp9184078 49,003,681 GEM
kgp9692670 49,011,274 GEM
kgp4392460 49,027,304 GEM
kgp1901800 49,079,247 GEM
rs7563889 49,129,890 GEM
kgp10252206 49,558,562 GEM
kgp4555932 49,688,295 GEM
ITSN1 Location Model
kgp8102103 33,235,336 DEM
kgp3044871 33,256,005 DEM
kgp5757773 33,334,632 DEM
kgp1163247 33,895,682 DEM
kgp4934738 33,910,920 DEM
kgp349380 34,535,884 DEM
rs2834178 34,677,391 DEM
kgp2131229 34,783,522 DEM
kgp12140722 35,207,719 DEM
kgp6697616 35,407,829 DEM
kgp9934392 33,083,774 GEM
kgp564488 33,356,500 GEM
rs8134098 33,383,368 GEM
kgp4450304 33,609,279 GEM
kgp1811605 33,770,584 GEM
kgp9149520 34,971,300 GEM
kgp2881149 35,029,572 GEM
kgp11178917 35,127,360 GEM
kgp7266158 35,204,420 GEM
kgp8478798 35,430,916 GEM
RALGDS Location Model
kgp840600 134,743,431 DEM
kgp27492383 134,974,875 DEM
kgp8852139 135,033,545 DEM
kgp5352959 135,152,029 DEM
kgp1676062 135,231,526 DEM
kgp5859342 135,842,732 DEM
kgp1276914 135,962,024 DEM
rs7044834 136,040,899 DEM
rs8176704 136,135,552 DEM
rs505922 136,149,229 DEM
kgp7665392 136,365,210 DEM
kgp3389780 136,412,638 DEM
kgp5046126 136,637,867 DEM
rs9409863 136,643,239 DEM
kgp1498770 136,769,545 DEM
kgp7940722 136,783,505 DEM
kgp6740746 136,935,656 DEM
kgp170487 137,337,974 DEM
kgp10327190 135,312,230 GEM
rs10122574 135,365,135 GEM
rs11243956 135,840,945 GEM
rs509064 135,954,310 GEM
kgp11339176 135,974,100 GEM
kgp12147077 136,105,515 GEM
kgp9105822 136,162,255 GEM
kgp6406543 136,451,851 GEM
rs28404378 137,038,257 GEM
kgp11596945 137,167,572 GEM
rs877954 137,326,408 GEM
kgp6885766 137,369,131 GEM
rs11791555 137,408,867 GEM
kgp11976262 137,496,884 GEM

Table A.4: List of SNPs selected in the iFunMed fits with a posterior probability of
inclusion threshold of 0.5. The annotation screening did not identify any enriched
annotations for the listed candidate mediators; therefore, iFunMed results from fits
without annotation (null model) are displayed.
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Phenotype Mediator Gene Chrom Start End # of SNPs # of Subjects
Fasting Glucose (log) IL32 chr16 1,616,201 4,617,621 1,948 1,501
Fasting Glucose (log) P2RX1 chr17 2,300,929 5,319,808 2,581 1,501
HDL (log) CDA chr1 19,375,841 22,485,337 2,386 1,661
HDL (log) PSD4 chr2 112,392,625 115,500,323 2,225 1,661
HDL (log) IL1RAP chr3 188,694,749 191,913,088 3,308 1,661
HDL (log) ASGR2 chr17 5,467,424 8,557,608 3007 1,661
HDL (log) IGFLR1 chr19 34,691,449 37,747,799 2,180 1,661
HDL (log) APMAP chr20 23,405,281 26,309,255 1,857 1,661

Table A.5: Details of loci considered for the mediation analysis of the FHS pheno-
types fasting glucose and HDL.

# Annotations # of Identified Annotations
Phenotype Mediator Gene after Filtering DEM GEM
Fasting Glucose (log) IL32 139 3 0
Fasting Glucose (log) P2RX1 109 0 5∗
HDL (log) CDA 91 0 0∗
HDL (log) PSD4 48 0 0
HDL (log) IL1RAP 12 1 0
HDL (log) ASGR2 115 0 0
HDL (log) IGFLR1 124 0 0
HDL (log) APMAP 54 1 0

Table A.6: Annotation strategy results for FHS phenotypes fasting glucose and
HDL. Cases in asterisk denote loci with an elevated signal in either GWAS or eQTL
(− log10(p-value) > 20) and low density from which 0.5% of the SNPs were trimmed
to remove outliers.
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Mediator Enrichment
Gene Model Tissue Mark Cell-type p-value
IL32 DEM Immune/Hematopoietic H3K27ac CD3 primary 0.002
IL32 DEM Immune/Hematopoietic H3K27ac Th0 0.001
IL32 DEM Immune/Hematopoietic H3K27ac Th1 0.002
P2RX1 GEM Cardiovascular H3K4me1 Fetal heart 0.001
P2RX1 GEM Skeletal Muscle H3K4me1 Fetal trunk muscle 0.001
P2RX1 GEM Cardiovascular H3K9ac Fetal heart 0.002
P2RX1 GEM Other H3K9ac Penis foreskin keratinocyte primary 0.003
P2RX1 GEM GI H3K27ac Duodenum mucosa 0.004
IL1RAP DEM Immune/Hematopoietic H3K27ac CD19 0.007
APMAP DEM CNS H3K4me1 Fetal brain 0.000

Table A.7: Details of the annotations that were identified for the FHS phenotypes
fasting glucose and HDL by the annotation screening strategy.
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Annotation

IL32 Location Model Direction CD3 Primary Th0 Th1
rs1075581 4,135,898 DEM 0 to 1 (↑) 0 1 0

Annotation

P2RX1 Location Model Direction Heart Trunk Muscle Heart Keratinocyte Duodenum
rs9652825 2,314,074 GEM 1 to 0 (↓) 0 0 0 0 0
rs7219019 2,633,324 GEM 1 to 0 (↓) 0 0 0 0 0
kgp23896402 2,908,975 GEM 1 to 1 (−) 1 1 0 0 0
kgp3755826 2,937,617 GEM 1 to 1 (−) 1 1 1 1 0
rs76056301 3,514,954 GEM 1 to 0 (↓) 0 0 0 0 0
rs224498 3,519,954 GEM 1 to 0 (↓) 0 0 0 0 0
kgp3692495 3,774,014 GEM 1 to 1 (−) 1 1 1 0 1
kgp2113525 3,790,498 GEM 1 to 1 (−) 0 1 0 1 1
kgp11900618 3,800,995 GEM 1 to 1 (−) 0 1 0 1 0
rs8076916 3,822,637 GEM 1 to 1 (−) 1 1 1 1 1
kgp10137990 3,822,926 GEM 1 to 1 (−) 1 1 1 1 1
kgp9641039 4,353,359 GEM 0 to 1 (−) 0 1 0 1 0
rs76395158 4,458,005 GEM 0 to 1 (↑) 1 1 1 1 0
rs117071988 4,502,386 GEM 0 to 1 (↑) 1 1 0 0 1
rs1050997 4,641,755 GEM 0 to 1 (↑) 0 1 0 0 1

Annotation

IL1RAP Location Model Direction CD19
kgp9044897 188,819,337 DEM 1 to 1 (−) 0
kgp5564150 188,952,988 DEM 1 to 1 (−) 0
rs1515490 189,596,855 DEM 1 to 0 (−) 0
rs2378570 190,154,740 DEM 1 to 1 (−) 1
rs7641416 190,861,768 DEM 0 to 1 (↑) 1
kgp7767169 191,001,699 DEM 1 to 1 (−) 1
rs13059172 191,348,064 DEM 1 to 1 (−) 0

Table A.8: List of SNPs selected in the analysis of FHS phenotypes fasting glucose
and HDL. SNPs are labeled as 0 to 1 ((↑) direction) if they are selected only with the
use of annotation and as 1 to 0 ((↓) direction) if they are excluded from the iFunMed
fit with the use of annotation by thresholding poterior probability of inclusion at
0.5. SNPs selected with and without annotation are labeled as 1 to 1 (−). APMAP is
not shown since there were no selected SNPs. Details of the annotations included
for both models (DEM and GEM) at the individual SNP level are also displayed.
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b appendix b

B.1 Supplementary Text for “High dimensional

sparse regression with auxiliary data on the

features”

In this section, we provide the upper bound for the estimation error of β. For

simplicity of proof, we assume that the model does not have additional covariates

X to adjust for. When there is a need to adjust for X, all the assumptions on G in

the following proof should be modified into assumptions on (I− X(X>X)−1X>)G

and all other parts of the proof remain the same. Our model setting is

Y = Gβ+ ε, (B.1)

β = Aγ+ η, (B.2)

where Y and G are centralized to have mean zero so no intercept is needed in the

regression model. Denote Z = (GA,G), W = diag(Z>Z)1/2 and Z̃ = ZW−1 as the

standardized Z so that the column l2 norm of Z̃ is one. Then we have

Y = GAγ+Gη+ ε = Z̃θ+ ε
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where θ = W(γ>,η>)>. Our estimators for γ and η are obtained through the

following optimization:

θ̂ = argmin
θ

{
1

2n
||Y − Z̃θ||22 + λ||θ||1

}
,

(γ̂
>, η̂>)> =W−1θ̂

(B.3)

Suppose G = (G1, . . . ,Gp) and A = (A1, . . . ,Am). Define the following constants:

µG = max
i 6=j

|G>i Gj|

||Gi||2||Gj||2
(B.4)

τmax = max
j

1√
n
||Gj||2 (B.5)

τmin = min
j

1√
n
||Gj||2 (B.6)

µA = max
i 6=j

|A>i Aj|

||Ai||2||Aj||2
(B.7)

κ1 = max
j

||Aj||1 = ||A||1 = sup
x 6=0

||Ax||1

||x||1
(B.8)

κmin = min
j
‖Aj‖2 (B.9)

κmax = max
j

||Aj||2 (B.10)

κ∞ = max
i,j

|Aij| (B.11)

For any vector x, denote Sx = {i : xi 6= 0} as the support set of x, and sx = #Sx as

the number of nonzero elements of x.

Theorem B.1. Suppose γ̂ and η̂ are obtained using (B.3) with

λ = 2Cσ
√

log(p+m)/n (B.12)
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Then, under the condition of

µ < 1/(4(sγ + sη) − 1) (B.13)

with probability at least 1 − 2(p+m)1−C2/2, we have

‖β̂− β‖2 6
6CC2

1 − 4µ(sγ + sη − 1)

√
σ2(sγ + sη) log(p+m)

n
(B.14)

where

µ = max

{
(τmax/τmin)

2(µGκ
2
1 + µAκ

2
max)

κ2
min − µGκ

2
1

, (τmax/τmin)
2(µGκ1 + κ∞)√

κ2
min − µGκ

2
1(τmax/τmin)2

,µG

}
,

C2 = max

{√
κ2

max(1 + µA(m− 1))
τ2

maxκ
2
min − µGτ

2
maxκ

2
1

, 1
τmin

}
.

Proof. Set h = θ̂− θ and let Sh be the set of indices of the largest s values of h. By

definition of θ̂, we have

1
2n

||ε− Z̃h||22 + λ||θ̂||1 =
1

2n
||Y − Z̃θ̂||22 + λ||θ̂||1

6
1

2n
||Y − Z̃θ||22 + λ||θ||1 =

1
2n

||ε||22 + λ||θ||1,
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which gives us

1
2n

||ε− Z̃h||22 −
1

2n
||ε||22 6 λ(||θ||1 − ||θ̂||1)

= λ(||θsupp(θ)||1 − ||θ̂supp(θ)||1 − ||θ̂supp(θ)c − θsupp(θ)c ||1)

6 λ(||hsupp(θ)||1 − ||hsupp(θ)c ||1)

6 λ(||hSh ||1 − ||hSch ||1).

(B.15)

Define event

A =

{
||ε>Z̃||∞ 6

nλ

2

}
.

So under event A,

1
2n

||ε− Z̃h||22 −
1

2n
||ε||22 =

1
2n

||Z̃h||22 − ε
>Z̃h/n

>−
1
n
||ε>Z̃||∞||h||1 > −

λ

2
||h||1 = −

λ

2
(||hSh ||1 + ||hSch ||1).

(B.16)

Combining inequalities (B.15) and (B.16), we have

||hSch ||1 6 3||hSh ||1.

Therefore, under event A,

||hSch ||
2
2 6 ||hSch ||1||hSch ||∞ 6 3||hSh ||1 · ||hSh ||1/s 6 3||hSh ||22. (B.17)
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Next, we will prove that

max
i 6=j

|Z̃>i Z̃j| 6 µ, (B.18)

where

µ = max

{
τ2

max(µGκ
2
1 + µAκ

2
max)

τ2
minκ

2
min − µGτ

2
maxκ

2
1

, τ2
max(µGκ1 + κ∞)

τmin
√
τ2

minκ
2
min − µGτ

2
maxκ

2
1
,µG

}
.

In fact,

max
i 6=j

|(A>G>GA)i,j| 6 max
i 6=j

∣∣∣∣∣∑
k,l

Aki(G
>G)k,lAlj

∣∣∣∣∣
6 max

i 6=j

∑
k,l

|Aki||Alj|
|G>kGl|

||Gk||2||Gl||2
nτ2

max

6 max
i 6=j

{
nτ2

maxµG
∑
k6=l

|Aki||Alj|+ nτ
2
max

∑
k

|AkiAkj|

}

6 max
i 6=j

{
nτ2

maxµG||Ai||1||Aj||1 + nτ
2
max

|A>i Aj|

||Ai||2||Aj||2
||Ai||2||Aj||2

}
6 nτ2

max(µGκ
2
1 + µAκ

2
max),

min
i
‖GAi‖2

2 =‖
∑
k

GkAki‖2
2 =
∑
k

‖Gk‖2
2A

2
ki +

∑
k6=l

〈Gk,Gl〉AkiAli

>min
k
‖Gk‖2

2 ·
∑
k

A2
ki − max

k
‖Gk‖2

2µG ·
∑
k6=l

AkiAli

>nτ2
min‖Ai‖2

2 − nτ
2
maxµG||Ai||

2
1

>nτ2
minκ

2
min − nµGτ

2
maxκ

2
1.
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Thus,

max
i 6=j

|(A>G>GA)i,j|

‖(GA)i‖2‖(GA)j‖2
6
τ2

max(µGκ
2
1 + µAκ

2
max)

τ2
minκ

2
min − µGτ

2
maxκ

2
1

.

max
i,j

|(G>GA)i,j| 6 max
i,j

∑
k

|(G>G)i,k||Akj|

6 max
i,j

{
nτ2

max

∑
k6=i

|G>i Gk|

||Gi||2||Gk||2
|Akj|+ nτ

2
max|Aij|

}

6 max
i,j

{
nτ2

maxµG||Aj||1 + nτ
2
max|Aij|

}
6 nτ2

max(µGκ1 + κ∞),
thus,

max
i,j

|(G>GA)i,j|

‖Gi‖2 · ‖(GA)j‖2
6

τ2
max(µGκ1 + κ∞)

τmin
√
τ2

minκ
2
min − µGτ

2
maxκ

2
1

Therefore,

max
i 6=j

|Z̃>i Z̃j| = max
i 6=j

|Z>i Zj|

||Zi||2||Zj||2

=max
{

max
i 6=j

|(A>G>GA)i,j|

‖(GA)i‖2‖(GA)j‖2
, max
i,j

|(G>GA)i,j|

‖Gi‖2 · ‖(GA)j‖2
, max
i,j

|(G>G)i,j|

‖Gi‖2‖Gj‖2

}
6max

{
τ2

max(µGκ
2
1 + µAκ

2
max)

τ2
minκ

2
min − µGτ

2
maxκ

2
1

, τ2
max(µGκ1 + κ∞)

τmin
√
τ2

minκ
2
min − µGτ

2
maxκ

2
1
,µG

}
= µ
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and we have (B.18). As a result of (B.18), we have

||Z̃hSh ||
2
2 =

∑
i∈Sh

∑
j∈Sh

(Z̃>Z̃)i,jhihj

>
∑
i∈Sh

(Z̃>Z̃)i,ih
2
i −

∑
i,j∈Sh,i 6=j

µ|hi||hj|

>
∑
i∈Sh

h2
i − µ(||hSh ||

2
1 − ||hSh ||

2
2)

> ||hSh ||
2
2 − µ(s− 1)||hSh ||22

> (1 − µ(s− 1))||hSh ||22

and

|h>SchZ̃
>Z̃hSh | = |

∑
i∈Sh

∑
j∈Sch

(Z̃>Z̃)i,jhihj|

6
∑
i∈Sh

∑
j∈Sch

µ|hi||hj| = µ||hSh ||1||hSch ||1

6 3µ||hSh ||21 6 3sµ||hSh ||22

Therefore,

h>Z̃>Z̃hSh > ||Z̃hSh ||
2
2 − |h>SchZ̃

>Z̃hSh |

> (1 − µ(4s− 1)) ||hSh ||22
(B.19)

On the other hand, according to the KKT condition of optimization (B.3), we have
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||Z̃>(y− Z̃θ̂)||∞ 6 nλ. Therefore, under event A,

h>Z̃>Z̃hSh 6 ||Z̃>Z̃h||∞||hSh ||1
6
(
nλ+ ||Z̃>ε||∞

)
||hSh ||1

6 (nλ+ nλ/2) ||hSh ||1

6
3
2
nλ
√
s||hSh ||2

(B.20)

Combining (B.19) and (B.20), we have

||hSh ||2 6
3nλ
√
s/2

1 − µ(4s− 1)
. (B.21)

Together with (B.17), we have that under event A,

||h||2 = (||hSh ||
2
2 + ||hSch ||

2
2)

1/2 6 2||hSh ||2 6
3nλ
√
s

1 − µ(4s− 1)
. (B.22)

Note that

P(A) = 1 − P
(
||ε>Z̃||∞ >

nλ

2

)
> 1 − 2(p+m) exp

{
−
n2λ2

8σ2

}
= 1 − 2(p+m)1−C2/2.

(B.23)

Therefore,

P
(
||h||2 6

3nλ
√
s

1 − µ(4s− 1)

)
> 1 − 2(p+m)1−C2/2 (B.24)

Next, we develop the upper bound for β̂ − β based on the upper bound of ‖h‖2.
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Note that for any vector v ∈ Rm,

||Av||22 6
∑
i

v2
i||Ai||

2
2 +
∑
i 6=j

|vivj||A
>
i Aj|

6 κ2
max||v||

2
2 + µAκ

2
max

∑
i 6=j

|vi||vj|

6 κ2
max
(
||v||22 + µA(||v||

2
1 − ||v||22)

)
6 κ2

max(1 + µA(m− 1))||v||22,

so that ‖A‖ 6 κmax
√

1 + µA(m− 1), where ||A|| is the spectrum norm of matrix A.

Therefore, under event A,

||β̂− β||2 = ||A(γ̂− γ) + η̂− η||2
(B.3)
= ‖[A I]W−1(θ̂− θ)‖2

=

∥∥∥∥∥∥∥[A I]
diag({‖(GA)i‖−1

2 }mi=1)

diag({‖Gi‖−1
2 }

p
i=1)


∥∥∥∥∥∥∥ · ‖h‖2

6 max
{
‖A‖ ·max

i
{‖(GA)i‖−1

2 }, max
i
‖Gi‖−1

2

}
· ‖h‖2

6
3nλ
√
s

1 − µ(4s− 1)
max

{√
κ2

max(1 + µA(m− 1))
nτ2

maxκ
2
min − nµGτ

2
maxκ

2
1
, 1√
nτmin

}

6 6Cσ
√
s log(p+m)

n
· 1

1 − µ(4s− 1)
·max

{√
κ2

max(1 + µA(m− 1))
τ2

maxκ
2
min − µGτ

2
maxκ

2
1

, 1
τmin

}
.

The constants µG and µA characterize the orthogonality of columns of G and

A respectively. If the columns of A are normalized to have `2 norm of one, then

κmax = κmin = 1, and κ1 characterizes the sparsity of the column vectors of A, and
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κ∞ characterizes the concentration of values within A. If the columns of G are

normalized to have `2 norm of one, then τmax = τmin = 1. µ in Condition (B.13)

becomes

µ = max

{
(µGκ

2
1 + µA)

1 − µGκ2
1

, (µGκ1 + κ∞)√
1 − µGκ2

1
,µG

}
.

The requirement of small µ in Condition (B.13) indicates that aside from a well

conditioned G, we also need a well conditioned A with sparse columns and values

not concentrated on a few entries. Here are a few examples of A that would violate

Condition (B.13):

1. Ai and Aj are colinear, so that µA > A>i Aj is large.

2. Ai = (1, 0, . . . , 0), so that κ∞ is large. In this case, GAi and G1 are colinear.

3. Ai = (1/√p, . . . , 1/√p), so that κ1 is large. In this case, the annotation Ai is

not informative.

Denote V = diag(G>G)1/2 and G̃ = GV−1 as the standardizedG so that the column

`2 norm of G̃ is one. Denote δ = Vβ. Then we have

Y = G̃δ+ ε.

Theorem B.2. Consider the estimation of β using β̂ = V−1δ̂ where δ̂ is obtained using

δ̂ = argmin
δ

{
1

2n
||Y − G̃δ||22 + λ||δ||1

}
(B.25)
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with

λ = 2Cσ
√

log p/n. (B.26)

Then, under the condition of

µG 6
1

4sβ − 1
, (B.27)

with probability at least 1 − 2p1−C2/2, we have

||β̂− β||2 6
6C/τmin

1 − µG(4sβ − 1)

√
σ2sβ log p

n
. (B.28)

Comparing Theorem 1 and Theorem 2, the rate of estimation error bound is

much smaller using annotations when β is much larger than sγ + sη � sβ, which

indicates that effect of genotype on phenotype is largely through the annotations.
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B.2 Supplementary Figures for “High dimensional

sparse regression with auxiliary data on the

features”
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Figure B.1: Simulation results comparing fits and without annotation in terms
of area under the receiver operating characteristic curve (AUROC).
(A) Percentage change in the AUROC for SNP selection across fits with the use
of annotation comparing simulations generated by linear partition and model
misspecification for different proportions of non-zero η and γ (pη6=0 and pγ 6=0,
respectively). (B) AUROC for annotation selection (γ) for annotation selection
(γ) when the proportion of risk SNPs is 0.04 (pη6=0 = 0.04) across fits comparing
simulations generated by linear partition and model misspecification for different
proportions of non-zero γ (pγ 6=0). (C, D) GPA comparisons: average AUROC for
SNP selection across 100 simulation replicates and their corresponding error bars
(mean ± standard deviation) for GRAD and GPA. (C) Data generated using the
GPA liability threshold model (GPA-LTM) . Results are divided by the number of
risk annotations Sγ ∈ {2, 5, 8, 10}. (D) Data generated using the iFunMed model.
Results are divided by their prior inclusion probabilities with the use of annotation
(no annotation effect, mild annotation effect, and strong annotation effect).
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Linear Partition Model Misspecification
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Figure B.2: Percentage change in the area under the precision-recall curves
(AUPR) for SNP selection across fits with the use of annotation comparing sim-
ulations generated by linear partition and model misspecification for different
proportions of non-zero η and γ (pη6=0 and pγ6=0, respectively) divided by anno-
tation effect magnitude (low, mild, and strong).
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Figure B.3: SNP selection precision-recall curves for fits with and without anno-
tation comparing simulations generated by linear partition and model misspec-
ification schemes for different simulation scenarios for low, mild, and strong
annotation effect magnitude µγ.
(A) pη6=0 = 0.04, pγ 6=0 = 0.08, and σ2 = 150. (B) pη6=0 = 0.08, pγ 6=0 = 0.05, and
σ2 = 200. (C) pη 6=0 = 0.15, pγ 6=0 = 0.1, and σ2 = 150.
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Figure B.4: SNP selection receiver operating characteristic curves (ROC) for fits
with and without annotation comparing simulations generated by linear parti-
tion and model misspecification schemes for different simulation scenarios for
low, mild, and strong annotation effect magnitude µγ.
(A) pη6=0 = 0.01, pγ 6=0 = 0.05, and σ2 = 100. (B) pη6=0 = 0.04, pγ 6=0 = 0.08, and
σ2 = 150. (C) pη6=0 = 0.08, pγ 6=0 = 0.05, and σ2 = 200. (D) pη6=0 = 0.15, pγ 6=0 = 0.1,
and σ2 = 150.
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Linear Partition Model Misspecification
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Figure B.5: Area under the precision-recall curve (AUPR) for annotation selec-
tion (γ) for varying proportion of risk SNPs pη6=0 across fits comparing simu-
lations generated by linear partition and model misspecification for different
proportions of non-zero γ (pγ6=0).
(A) pη 6=0 = 0.01. (B) pη 6=0 = 0.02. (C) pη6=0 = 0.08. (D) pη 6=0 = 0.1. (E) pη6=0 = 0.15.
(F) pη6=0 = 0.2.
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Figure B.6: SNP selection sensitivity and power calculations for fits with and
without annotation comparing simulations generated by linear partition and
model misspecification schemes for different simulation scenarios for low, mild,
and strong annotation effect magnitude µγ.
(A) Sensitivity at 90% specificity. (B) Power at FDR 10%.
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Figure B.7: Signal to noise ratio ‖Gβ̂‖2
‖e‖2

for fits with annotation comparing sim-
ulations generated by linear partition and model misspecification schemes for
different proportions of non-zero η and γ (pη6=0 and pγ6=0, respectively) divided
by annotation effect magnitude (low, mild, and strong). For visualization pur-
poses, values on the top 0.5% were removed.
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Figure B.8: Signal of each component (Aγ and η) to β ratio for fits with annota-
tion comparing simulations generated by linear partition and model misspeci-
fication schemes for different proportions of non-zero η and γ (pη6=0 and pγ6=0,
respectively) divided by annotation effect magnitude µγ (low, mild, and strong).
The Aγ contribution to β corresponds to ‖Aγ̂‖2

‖β̂‖2
and the η contribution to β cor-

responds to ‖η̂‖2
‖β̂‖2

. For visualization purposes, values on the top 0.5% were re-
moved.
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Figure B.9: Annotation selection simulations results for GRAD and GPA com-
parisons.
For the GPA liability threshold model (GPA-LTM) used for simulations, results
are divided by the number of risk annotations Sγ ∈ {2, 5, 8, 10}, and for the iFun-
Med simulations results are divided by their prior inclusion probabilities with the
use of annotation (no annotation effect, mild annotation effect, and strong anno-
tation effect). Results are summarized by area under the precision-recall curves
(AUPR) and area under the receiver operating characteristic curves (AUROC). (A)
Average AUPR for annotation selection across 100 simulation replicates and their
corresponding error bars (mean ± standard deviation) for GRAD and GPA. (B)
Average AUROC for annotation selection across 100 simulation replicates and their
corresponding error bars (mean ± standard deviation) for GRAD and GPA.
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Figure B.10: Stability selection results for factor VII.
(A, B) Stability paths for each parameter included in the model. Colored paths
indicate non-zero estimated parameters. Dashed line represents selection frequency
cutoff of 0.75. (A) Without annotation and (B) with annotation. (C, E) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(C) − log10 transformed p-values from univariate GWAS associations, (D) strength
of the annotation free contribution η̂ from the model with annotation, and (E)
strength of the annotation contribution Aγ̂ from the model with annotation.



123

0.00

0.25

0.50

0.75

1.00

0.04 0.06 0.08
λ

S
el

ec
tio

n 
F

re
qu

en
cy

Non−zero βA

0.00

0.25

0.50

0.75

1.00

0.04 0.06 0.08 0.10
λ

S
el

ec
tio

n 
F

re
qu

en
cy

Non−zero η Non−zero γB

−2.5

0.0

2.5

0 1 2 3 4 5

β̂  Without Annotation

β̂ 
 W

ith
 A

nn
ot

at
io

n

3 4 5 6 7
−log10 (p)C

−2.5

0.0

2.5

0 1 2 3 4 5

β̂  Without Annotation

β̂ 
 W

ith
 A

nn
ot

at
io

n

0 1 2 3 4
η̂D

−2.5

0.0

2.5

0 1 2 3 4 5

β̂  Without Annotation

β̂ 
 W

ith
 A

nn
ot

at
io

n

−2 −1 0 1 2 3
A γ̂E

Figure B.11: Stability selection results for fasting glucose (log).
(A, B) Stability paths for each parameter included in the model. Colored paths
indicate non-zero estimated parameters. Dashed line represents selection frequency
cutoff of 0.75. (A) Without annotation and (B) with annotation. (C, E) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(C) − log10 transformed p-values from univariate GWAS associations, (D) strength
of the annotation free contribution η̂ from the model with annotation, and (E)
strength of the annotation contribution Aγ̂ from the model with annotation.
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Figure B.12: Stability selection results for Height.
(A, B) Stability paths for each parameter included in the model. Colored paths
indicate non-zero estimated parameters. Dashed line represents selection frequency
cutoff of 0.75. (A) Without annotation and (B) with annotation. (C, E) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(C) − log10 transformed p-values from univariate GWAS associations, (D) strength
of the annotation free contribution η̂ from the model with annotation, and (E)
strength of the annotation contribution Aγ̂ from the model with annotation.
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Figure B.13: Manhattan plots of von Willebrand factor for the 1,000 SNPs con-
sidered in the analysis.
SNPs are colored by their effect sizes and dashed line represents GWAS traditional
cutoff at p − value = 10−8. The upper panel highlights non-zero SNPs that are
captured by the annotation and lower panel represents annotation free non-zero
SNPs. In both cases, gray represents zero estimated effects.
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Figure B.14: Manhattan plots of factor VII for the 1,000 SNPs considered in the
analysis.
SNPs are colored by their effect sizes and dashed line represents GWAS traditional
cutoff at p − value = 10−8. The upper panel highlights non-zero SNPs that are
captured by the annotation and lower panel represents annotation free non-zero
SNPs. In both cases, gray represents zero estimated effects.
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Figure B.15: Manhattan plots of fasting glucose (log) for the 1,000 SNPs consid-
ered in the analysis.
SNPs are colored by their effect sizes and dashed line represents GWAS traditional
cutoff at p − value = 10−8. The upper panel highlights non-zero SNPs that are
captured by the annotation and lower panel represents annotation free non-zero
SNPs. In both cases, gray represents zero estimated effects.
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Figure B.16: Manhattan plots of height for the 1,000 SNPs considered in the
analysis.
SNPs are colored by their effect sizes and dashed line represents GWAS traditional
cutoff at p − value = 10−8. The upper panel highlights non-zero SNPs that are
captured by the annotation and lower panel represents annotation free non-zero
SNPs. In both cases, gray represents zero estimated effects.
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Figure B.17: Proportion of SNPs with corresponding non-zero entries across
the m annotations for the four phenotypes considered. Selected annotations by
GRAD are highlighted in purple and with asterisks.
(A) von Willebrand factor with m = 70 annotations. (B) Factor VII with m = 64
annotations. (C) Fasting glucose (log) withm = 69 annotations. (D) Height with
m = 78 annotations.
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Figure B.18: − log10 transformed p-values from the univariate association anal-
ysis of GWAS summary statistics (ZY) with individual annotations, i.e. ZY ∼ Aj
for j = 1, . . . , m, across the four phenotypes considered. Selected annotations by
GRAD are highlighted in purple and with asterisks.
(A) Von Willebrand factor with m = 70 annotations. (B) Factor VII with m = 64
annotations. (C) Fasting glucose (log) withm = 69 annotations. (D) Height with
m = 78 annotations.
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Figure B.19: Pearson’s correlation magnitude, i.e. absolute value, of non-zero
SNPs from the fit with annotation for von Willebrand factor.
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Figure B.20: 5-fold cross-validation results for von Willebrand factor.
(A) Number of selected SNPs across the five cross-validation sets for fits without
and with annotation. (B) Number of selected annotations across the five cross-
validation sets. (C) Prediction error across 40 values of the tuning parameter λ for
fits without and with annotation. Colored point represents the selected λ value
that minimizes the prediction error. (D) Manhattan plots from univariate GWAS
results. SNPs are colored by their effect sizes and dashed line represents GWAS
traditional cutoff at p− value = 10−8. The upper panel highlights non-zero SNPs
that are captured by the annotation and lower panel represents annotation free non-
zero SNPs. In both cases, gray represents zero estimated effects. (E, G) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(E) − log10 transformed p-values from univariate GWAS associations, (F) strength
of the annotation free contribution η̂ from the model with annotation, and (G)
strength of the annotation contribution Aγ̂ from the model with annotation.
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Figure B.21: 5-fold cross-validation results for factor VII.
(A) Number of selected SNPs across the five cross-validation sets for fits without
and with annotation. (B) Number of selected annotations across the five cross-
validation sets. (C) Prediction error across 40 values of the tuning parameter λ for
fits without and with annotation. Colored point represents the selected λ value
that minimizes the prediction error. (D) Manhattan plots from univariate GWAS
results. SNPs are colored by their effect sizes and dashed line represents GWAS
traditional cutoff at p− value = 10−8. The upper panel highlights non-zero SNPs
that are captured by the annotation and lower panel represents annotation free non-
zero SNPs. In both cases, gray represents zero estimated effects. (E, G) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(E) − log10 transformed p-values from univariate GWAS associations, (F) strength
of the annotation free contribution η̂ from the model with annotation, and (G)
strength of the annotation contribution Aγ̂ from the model with annotation.
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Figure B.22: 5-fold cross-validation results for fasting glucose (l log).
(A) Number of selected SNPs across the five cross-validation sets for fits without
and with annotation. (B) Number of selected annotations across the five cross-
validation sets. (C) Prediction error across 40 values of the tuning parameter λ for
fits without and with annotation. Colored point represents the selected λ value
that minimizes the prediction error. (D) Manhattan plots from univariate GWAS
results. SNPs are colored by their effect sizes and dashed line represents GWAS
traditional cutoff at p− value = 10−8. The upper panel highlights non-zero SNPs
that are captured by the annotation and lower panel represents annotation free non-
zero SNPs. In both cases, gray represents zero estimated effects. (E, G) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(E) − log10 transformed p-values from univariate GWAS associations, (F) strength
of the annotation free contribution η̂ from the model with annotation, and (G)
strength of the annotation contribution Aγ̂ from the model with annotation.
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Figure B.23: 5-fold cross-validation results for height.
(A) Number of selected SNPs across the five cross-validation sets for fits without
and with annotation. (B) Number of selected annotations across the five cross-
validation sets. (C) Prediction error across 40 values of the tuning parameter λ for
fits without and with annotation. Colored point represents the selected λ value
that minimizes the prediction error. (D) Manhattan plots from univariate GWAS
results. SNPs are colored by their effect sizes and dashed line represents GWAS
traditional cutoff at p− value = 10−8. The upper panel highlights non-zero SNPs
that are captured by the annotation and lower panel represents annotation free non-
zero SNPs. In both cases, gray represents zero estimated effects. (E, G) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(E) − log10 transformed p-values from univariate GWAS associations, (F) strength
of the annotation free contribution η̂ from the model with annotation, and (G)
strength of the annotation contribution Aγ̂ from the model with annotation.
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B.3 Supplementary Tables for “High dimensional

sparse regression with auxiliary data on the

features”

Table B.1: Details on the simulation settings for the iFunMed scheme. The SNP
effect error variance component corresponds to the ν parameter and the error
variance to σ2 in the iFunMed model. The annotation effects correspond to the γ
parameter on iFunMed. The prior probabilities of being non-zero with the use of
annotation changes as 0.018 for with and without annotation for no effect, from
0.011 to 0.076 for a mild effect, and 0.047 to 0.269 for strong effect changes.

No Annotation Effect Mild Annotation Effect Strong Annotation Effect
Set Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
SNP effect 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100 10 20 100variance
Error variance 0.1 0.1 0.1 1 1 1 5 5 5 0.1 0.1 0.1 1 1 1 5 5 5 0.1 0.1 0.1 1 1 1 5 5 5

Table B.2: Power calculations with FDR at 10% from precision-recall curves (AUPR)
stratified by annotation effect magnitude µγ (low, mild, and strong) for simulation
scenarios displayed in Figure 1C (pη6=0 = 0.01, pγ 6=0 = 0.05, and σ2 = 100) with and
without annotation.

Linear Partition Model Misspecification
Without With Without With

Annotation Effect Annotation Annotation Annotation Annotation
Low 0.004 0.303 0.153 0.197
Mild 0.295 0.662 0.209 0.372
Strong 0.157 0.729 0.231 0.352
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Table B.3: List of SNPs selected in GRAD for factor VII. SNP signals refers to the
direction of the estimated SNP effect sizes for fits without and with annotation.
Details of the annotations included at the individual SNP level are also displayed.
Bold SNPs have evidence of association in the GWAS Catalog.

Signal Annotation
SNP ID Location wo. Ann w. Ann Mxi1 CTCF
rs4970519 chr1:27659500 0 − 0 +
rs11264339 chr1:155140648 0 + + 0
rs2706126 chr2:178026558 0 − 0 +
rs9878609 chr3:72305546 0 + 0 −
rs13148961 chr4:40625135 0 − 0 +
rs11732608 chr4:40629682 0 − − 0
rs2553808 chr11:35164108 0 − 0 +
rs9597985 chr13:59912839 − − 0 0
rs555212 chr13:113756540 + 0 0 0
rs1755685 chr13:113757192 − − 0 0
rs488703 chr13:113770876 − − 0 0
rs11696570 chr20:37253950 0 − 0 0
rs16992555 chr20:46044044 0 − − 0
rs2239961 chr22:21363960 0 + + 0



142

Table B.4: List of SNPs selected in GRAD for fasting glucose (log). SNP signals
refers to the direction of the estimated SNP effect sizes for fits without and with
annotation. Details of the annotations included at the individual SNP level are also
displayed.

Signal Annotation
SNP ID Location wo. Ann w. Ann Elf-1 MafK Ccn-T2 C/EBPβ
rs12408116 chr1:12533468 0 + − 0 0 0
rs12026202 chr1:188187805 0 + 0 0 0 +
rs3850625 chr1:201016296 + + 0 0 0 0
rs715049 chr2:217657102 0 − + 0 0 −
rs4580644 chr4:15785201 0 + 0 0 0 0
rs11556167 chr4:152682046 0 + 0 + 0 0
rs13176438 chr5:59759107 0 − 0 0 0 −
rs11134864 chr5:174035919 0 − 0 − 0 0
rs1004558 chr7:44240407 0 + − 0 − 0
rs13238018 chr7:104430466 0 + 0 + 0 0
rs1993181 chr10:4891168 0 − 0 0 0 −
rs7350420 chr10:51594462 0 − 0 0 + 0
rs11189479 chr10:99836031 0 − 0 0 0 −
rs17146413 chr11:64638041 0 + 0 0 − −
rs12886379 chr14:34638094 0 − 0 − 0 0
rs9322996 chr14:39693018 0 + 0 0 0 +
rs8140067 chr22:32871442 0 + 0 0 − 0
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Table B.5: List of SNPs selected in GRAD for height. SNP signals refers to the
direction of the estimated SNP effect sizes for fits without and with annotation.
Details of the annotations included at the individual SNP level are also displayed.

Signal Annotation
SNP ID Location wo. Ann w. Ann EBF1 CHD2 C/EBPβ Max TAL1 Stat3
rs3791020 chr1:173813197 0 − 0 0 0 0 − 0
rs1569879 chr1:186547952 0 − 0 0 0 0 0 −
rs4363479 chr1:202112285 0 − 0 0 + 0 0 0
rs7519922 chr1:203991273 0 + 0 0 0 0 0 0
rs925255 chr2:28614794 0 + 0 − 0 0 0 0
rs1396733 chr2:28642747 0 + 0 0 − 0 0 0
rs3806502 chr2:136288273 0 − 0 + + 0 0 0
rs17369895 chr2:228483942 0 + 0 0 − 0 0 0
rs17685252 chr3:27719152 0 − 0 0 0 0 0 −
rs9850318 chr3:34018833 0 − 0 0 + 0 0 0
rs893566 chr3:45673062 0 − 0 0 0 + 0 0
rs11717486 chr3:146536741 − − 0 0 0 0 0 0
rs1114277 chr3:172783783 + + 0 0 0 0 0 0
rs4554118 chr4:184576088 0 + 0 0 0 0 0 0
rs260718 chr5:139132796 0 − 0 0 0 + 0 0
rs2068981 chr6:127697992 0 + 0 0 0 0 0 0
rs6466121 chr7:106183083 0 + 0 0 0 − + 0
rs849299 chr7:106666157 0 + 0 0 0 0 + 0
rs1329393 chr9:98318926 0 + 0 0 0 0 0 0
rs7081523 chr10:1240519 0 + 0 0 0 0 0 0
rs793088 chr10:31364621 0 + 0 0 0 0 0 +
rs17296289 chr10:33260699 0 − 0 0 0 0 − 0
rs2275044 chr10:121201626 0 − − 0 0 0 0 0
rs15564 chr16:677854 0 + 0 − 0 0 0 0
rs1620139 chr16:8755121 0 − − 0 0 0 0 0
rs4784817 chr16:57565774 0 − 0 0 0 0 0 0
rs872300 chr17:16277776 0 + 0 0 0 0 0 +
rs1242482 chr17:17352341 0 − 0 0 0 + 0 0
rs4796224 chr17:34842521 0 + 0 − 0 + 0 0
rs2016639 chr18:6943264 0 + 0 0 0 0 0 0
rs12607412 chr18:46072320 0 − 0 0 0 + 0 0
rs8108874 chr19:11797112 0 − − 0 0 0 0 0
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