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1.1

2.1

Categorization of (main) statistical methods that perform data-
integration on GWAS analysis. Methods highlighted in purple pre-
sented in this dissertation.

(A) Methodologies based on mediation analysis can be split on what
they aim to characterize: gene-trait associations or SNP prioritization.
They typically take as input summary-level data or raw-level data. (B)
Methodologies that aim to improve SNP prioritization and/or selection
with the use of external annotation information. They usually use anno-
tation to inform the status of the SNP effect 3 sizes as prior information
or the effect size magnitude and take a combination of summary-level
data, LD matrix, or raw-level data as input, besides the annotations.
Methods in cursive indicate that the model provides tools for annotation

selection. . . . . . . . e e e e,

Overview of iFunMed modeling framework.

(A) iFunMed input consists of four different types of summary data:
GWAS (Zy) and eQTL (Zg) summary statistics, LD matrix (£), and an-
notation matrix (A). (B) A graphical representation of the proposed
hierarchical mediation model where annotation information is inte-
grated through priors for the model parameters 3 and B with Zg as
the mediator variable, X as the set of independent variables, and Zy
a dependent variable. (C) iFunMed output provides results of the an-
notation screening for the direct and gene effect models and posterior
probabilities of inclusion for each SNP, in addition to other estimated

parametersof themodel. . . . . . ... ... oo oo oo



2.2

2.3

Simulations for comparing iFunMed fits with (w.Anno) and without
annotation data (wo.Anno).

(A) Power for annotation screening at family-wise error rate of 0.05.
Simulations are stratified with respect to the utilized annotation (A1l
to A5 with proportion of SNPs with the annotation increasing from
1.4% to 14.7%) and the annotation effect sizes (mild or strong). For
each simulated dataset, all five annotations were evaluated with the
Bonferroni adjustment at 5% level. (B) Percentage change in the area
under the ROC curves across fits for all the 54 simulation settings with
the use of annotation. The total set of annotations (54 x 5 settings)
are stratified by the annotation effect sizes yg and yg. ROC curves are
obtained by thresholding the total effect estimates. (C, D) ROC curves for
simulation scenarios with a mild annotation effect (vg, vy = (—4.5,2)),

2

02 = 0% = 1 and § = 0.05, using annotation A5, and varying effect size

2 =
variances. (C): vg = vg = 100 for strong and (D): vg = vg = 20 for
weak effect sizesof the SNPs. . . . . . ... ... ... ... ...
Evaluations of the effect of false positive annotations resulting from
annotation screening.

(A) Proportion of times that the annotation screening strategy identi-
tied incorrect numbers of annotations with Bonferroni adjustment at
significance level of 5% across simulation scenarios with zero annotation
effect sizes (18 x 5 settings in total). (B) Percentage change in the area
under the ROC curves across fits where the annotation screening strat-
egy selected one or more incorrect annotation. Incorrect identification
when the annotation effect size is zero (“None" category), considers
cases where there was at least one selected annotation, whereas “Mild"
and “Strong" settings include cases where only false positive annotations
were selected. ROC curves are obtained by thresholding the total effect

estimates. . . . . . . . e
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24

2.5

Red Blood Cell Count with NINJ2 and EVA1C as mediators: enriched
annotations and identified SNPs.

(A, B) Enrichment p-values of the annotations (after —log,, transfor-
mation) with at least 5% overlap with the loci SNPs. Dashed line
represents marginal significance level of 5%. Annotations used for
the fits are significant at FDR of 10% and are marked with aster-
isks. (A) NINJ2 as mediator and (B) EVAIC as mediator. (C, D) Es-
timated posterior probabilities of inclusion from iFunMed for DEM
(P(sp; = 11Zy,Zg, 562,95, ¥5,A,2) = 1, j = 1,...,p) and GEM
(P(sp; = 11Zg; 62,98, ¥5,A,L) =1, j = 1,...,p) across the two fits
(with and without annotation). Dashed line represents the posterior
probability cut-off at 0.5. Majority of the SNPs are clustered around

values of 0 in the plot. (C) NINJ2 as mediator and (D) EVAIC as mediator. 38

Red Blood Cell Count with NINJ2 and EVA1C as mediators: atSNP
results and Manhattan plots.

(A, B) atSNP composite logo plots for SNPs that are identified only
by the use of annotation. The composite logo plots compare the best
matches of SIN3A motif to the DNA sequences overlapping the SNP
positions with the reference and SNP alleles to suggest potential gain-
or loss-of-function with atSNP p-value cutoff of < le~7. (A) rs76782035-
SINBA pair from the model using NINJ2 as mediator; (B) r5s2834027-
SIN3A pair from the model using EVAIC as mediator. (C-F) Manhattan
plots for the GWAS (C, D) and eQTL (E, F) input summary statistics.
SNPs highlighted in blue/red represent SNPs with large changes in
their posterior probabilities of inclusion across the two iFunMed fits
(with and without annotation). Blue SNPs are selected with the use of
annotation whereas red SNPs are excluded, and the status of the purple
(selected) and gray SNPs (not selected) do not vary between the two fits
at the posterior probability of inclusion threshold of 0.5. (C, E) NINJ2 as
mediator and (D, F) EVAIC asmediator. . . . .. ... ... .......



3.1 Overview of GRAD modeling framework.

(A) GRAD input consists of three different types of data: phenotype
(Ynx1), genotype (Gnxp), and annotation matrix (A «p). (B) The pro-
posed model partitions SNP effects sizes 3 into an annotation contri-
bution (Ay) and an annotation-free contribution (). Selection of the
features (n and vy) is performed with stability selection. For each value
of Ay (k =1,...,K), N subsamples with halves of the observations are
followed by lasso to obtain a selection set S?‘T’;) to be later on aggregated
into empirical selection probabilities. (C) GRAD output provides results
of empirical selection probability for n and y from stability selection
for each Ay value. Model parameters with selection probability above a
certain cutoff for at least one Ay are selected (§ stable) and highlighted in
red. Estimates for fj and ¥ result on selected SNPs $ = Ay + .

Xi
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3.2 Simulation results comparing fits with and without annotation.

(A) Percentage change in the area under the precision-recall curves
(AUPR) for SNP selection across fits with the use of annotation compar-
ing simulations generated by linear partition and model misspecification
for different proportions of non-zero n and y (p,. and p, .o, respec-
tively). (B) Partial area under the ROC curve (pAUC) for SNP selection
for false positive rate below 0.1 for fits with and without annotation
comparing simulations generated by linear partition and model misspec-
ification schemes for simulation scenarios with low, mild, and strong an-
notation effect magnitude . (C) SNP selection precision-recall curves
for fits with and without annotation comparing simulations generated
by linear partition and model misspecification schemes for simulation
scenarios with p,«o = 0.01, p, 0 = 0.05, and 02 = 100 for low, mild, and
strong annotation effect magnitude . (D) Area under the precision-
recall curve (AUPR) for annotation selection () when the proportion
of risk SNPs is 0.04 (py.0 = 0.04) across fits comparing simulations
generated by linear partition and model misspecification for different
proportions of non-zero y (py.o). (E, F) GPA comparisons: average
area under the precision-recall curves (AUPR) for SNP selection across
100 simulation replicates and their corresponding error bars (mean +
standard deviation) for GRAD and GPA. (E) Data generated using the
GPA liability threshold model (GPA-LTM) . Results are divided by the
number of risk annotations S, € {2,5,8,10}. (F) Data generated using
the iFunMed model. Results are divided by their prior inclusion proba-
bilities with the use of annotation (no annotation effect, mild annotation

effect, and strong annotation effect). . . ... ... ... ... ... ...
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Stability selection results for von Willebrand factor.

(A, B) Stability paths for each parameter included in the model. Colored
paths indicate non-zero estimated parameters. Dashed line represents
selection frequency cutoff of 0.75. (A) Without annotation and (B) with
annotation. (C, E) Estimated SNP effect sizes across fits with and with-
out annotation. SNPs with effect sizes exactly equal to zero with and
without annotation are omitted. SNPs are colored by (C) —log,, trans-
formed p-values from univariate GWAS associations, (D) strength of
the annotation free contribution fj from the model with annotation, and
(E) strength of the annotation contribution Ay from the model with

annotation. . . . . . L L e e e e e e e e

Pairwise LD versus their corresponding univariate GWAS summary
statistics for HDL (Teslovich et al., 2010) for two SNPs with high
marginal associations using a European ancestry reference panel for
LD computations.

(A) 1512678919 with a GWAS summary statistics of 22.24 and (B)
rs9600212 with a GWAS summary statisticsof 15.69 . . . . ... .. ..

Heatmaps for —log,, transformed p-values from the univariate asso-
ciation analysis of GWAS and eQTL summary statistics with individ-
ual annotations.

Rows depict a list of 209 epigenomic annotations from 4 activation hi-
stone marks from the Roadmap Epigenomic Project (Roadmap Epige-
nomics Consortium, 2015). Left column for each panel corresponds to
p-values (—log,, transformed) from univariate association analysis of
GWAS summary statistics and individual annotations, i.e., Zy ~ Ay,
and right column to univariate association analysis of eQTL summary
statistics and individual annotations, i.e., Zg ~ Ax (k =1,...,209). Re-
sults depicted are for Red Blood Cell Count as phenotype. (A) NINJI as
mediator and (B) EVAIC as mediator. . . ... ..............
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A2

A3

A4

Ab

Proportion of SNPs with annotations.

Proportion of SNPs with annotations, i.e., with corresponding entry of
the A matrix equal to 1, across the 209 annotations considered. Annota-
tions used in the simulations are boxed in black with their corresponding
labels. . . . ..
Simulations for comparing iFunMed fits with (w.Anno) and without
annotation data (wo.Anno).

(A) Percentage change in the area under the precision-recall (AUPR)
curves with the use of annotation across fits for all the 54 simulation
settings. The total set of annotations (54 x 5 settings) are stratified by
the annotation effect sizes vz and yy. PR curves are obtained by thresh-
olding the total effect estimates. (B) Boxplots of numbers of iterations
until convergence across simulation replicates. (C, D) PR curves for
simulation scenarios with a mild annotation effect (v, vg = (—4.5,2)),
02 = 07 =1 and § = 0.05, using annotation A5, and varying effect size
variances. (C) vg = vg = 100 for strong and (D) v = v = 20 for weak
effectsizesof theSNPs. . . . ... ... ... ... .. . .
Area under the DEM and GEM ROC curves from simulation settings
with a mild annotation effect (yg,yp = (—4.5,2)), 02 =07 =1 and
& = 0.05, using annotation A5, and varying effect size variances.

(A, B) ROC curves for the direct effect model (DEM). (C, D) ROC
curves for the gene effect model (GEM). (A, C) vg = vg = 100. (B,
D)ve=veg=20. ... ... ..
Area under the DEM and GEM PR curves from simulation settings
with a mild annotation effect (yg,vs = (—4.5,2)), 0% = 05 =1 and
& = 0.05, using annotation A5, and varying effect size variances.

(A, B) PR curves for the direct effect model (DEM). (C, D) PR curves for

Xiv

the gene effect model (GEM). (A, C) vg = vg = 100. (B, D) vg = vg =20. 91



A6

A7

iFunMed results for fits that the annotation screening did not identify
any enriched annotations.

(A, D, G, ) —log,, transformed enrichment p-values for annotations
with more than 5% of loci SNPs with the annotation. Dashed line rep-
resents marginal significance level of 5%. (A) TMCO3 as mediatoz, (D)
MSHG6 as mediator, (G) ITSN1 as mediator, and (J) RALGDS as mediator.
(B, C, E, F H, I, K, L) Manhattan plots for the GWAS (B, E, H, K) and
eQTL (G, F, I, L) input summary statistics. SNPs highlighted in purple
are selected by the null model whereas gray SNPs are not selected us-
ing posterior probability of inclusion cut-off at 0.5. (B, C) TMCO3 as
mediator, (E, F) MSH6 as mediator, (H, I) ITSN1 as mediator, and (K, L)
RALGDS asmediator. . . ... ........... ... ........
iFunMed results for log transformed Fasting Glucose with P2RX1 as
mediator.

(A) —log,, transformed enrichment p-values for annotations with more
than 5% of loci SNPs with the annotation. Dashed line represents
marginal significance level of 5%. Annotations used for the fits are
significant at FDR of 10% and are marked with asterisks. (B, C) Manhat-
tan plots for the GWAS and eQTL input summary statistics, respectively.
SNPs highlighted in blue/red represent SNPs with large changes in their
posterior probabilities of inclusion across the two iFunMed fits (with and
without annotation). Blue SNPs are selected with the use of annotation
whereas red SNPs are excluded, and the status of the purple (selected)
and gray SNPs (not selected) do not vary between the two fits. . . . . .
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A.8 atSNP (Shin et al., 2018) composite logo plots for SNPs that are iden-

B.1

tified only by the use of annotation.

The composite logo plots compare the best matches of TF motifs to the
DNA sequences overlapping the SNP positions with the reference and
SNP alleles to hypothesize potential gain- or loss-of-function with at-
SNP p-value cutoff of < 1e™7. (A) rs76395158-SRF pair from the model
using P2RX1 as mediator, suggesting potential loss-of-function. (B)
rs117071988-NR5A2 pair from the model using P2ZRX1 as medjiator, sug-
gesting potential gain-of-function. (C) rs1075581-NFE2L1 pair from the

model using IL32 as mediator, suggesting potential loss-of-function.

Simulation results comparing fits and without annotation in terms of
area under the receiver operating characteristic curve (AUROC).

(A) Percentage change in the AUROC for SNP selection across fits with
the use of annotation comparing simulations generated by linear parti-
tion and model misspecification for different proportions of non-zero n
and v (pyz0 and p, o, respectively). (B) AUROC for annotation selec-
tion (y) for annotation selection (y) when the proportion of risk SNPs
is 0.04 (pno = 0.04) across fits comparing simulations generated by
linear partition and model misspecification for different proportions
of non-zero vy (pyx0). (C, D) GPA comparisons: average AUROC for
SNP selection across 100 simulation replicates and their corresponding
error bars (mean + standard deviation) for GRAD and GPA. (C) Data
generated using the GPA liability threshold model (GPA-LTM) . Results
are divided by the number of risk annotations S, € {2,5, 8,10}. (D) Data
generated using the iFunMed model. Results are divided by their prior
inclusion probabilities with the use of annotation (no annotation effect,

mild annotation effect, and strong annotation effect). . ... ... ...
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B.2

B.3

B.4

B.5

B.6

Percentage change in the area under the precision-recall curves
(AUPR) for SNP selection across fits with the use of annotation com-
paring simulations generated by linear partition and model misspec-
ification for different proportions of non-zero n and y (p,, .0 and p- o,
respectively) divided by annotation effect magnitude (low, mild, and
strong). . . ...
SNP selection precision-recall curves for fits with and without an-
notation comparing simulations generated by linear partition and
model misspecification schemes for different simulation scenarios
for low, mild, and strong annotation effect magnitude .

(A) przo = 0.04, p, .0 = 0.08, and 0 = 150. (B) pyy .0 = 0.08, pyo = 0.05,
and 0% = 200. (C) py0 = 0.15, py. =0.1,and 0> =150. ... ... ..
SNP selection receiver operating characteristic curves (ROC) for fits
with and without annotation comparing simulations generated by
linear partition and model misspecification schemes for different sim-
ulation scenarios for low, mild, and strong annotation effect magni-
tude .

(A) pyzo = 0.01, py 40 = 0.05, and 0 = 100. (B) pyy.0 = 0.04, py0 = 0.08,
and 0®> = 150. (C) py = 0.08, pyz = 0.05, and o> = 200. (D)
Prnso=015py=01,and 6> =150. . ... ... ... ... ......
Area under the precision-recall curve (AUPR) for annotation selec-
tion (y) for varying proportion of risk SNPs p,, .o across fits compar-
ing simulations generated by linear partition and model misspecifi-
cation for different proportions of non-zero y (p o).

(A) pnzo = 0.01. (B) pnso = 0.02. (C) py20 = 0.08. (D) py20 = 0.1. (E)
Pnzo =015 (F) pno=02. ... ... .. .. .. ..
SNP selection sensitivity and power calculations for fits with and
without annotation comparing simulations generated by linear par-
tition and model misspecification schemes for different simulation
scenarios for low, mild, and strong annotation effect magnitude p,.
(A) Sensitivity at 90% specificity. (B) Power at FDR10%. . . . ... ..
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B.7

B.8

B.9

Signal to noise ratio % for fits with annotation comparing sim-

ulations generated by linear partition and model misspecification
schemes for different proportions of non-zeron and y (p,, .0 and p- o,
respectively) divided by annotation effect magnitude (low, mild, and
strong). For visualization purposes, values on the top 0.5% were re-
moved. . . .. ...
Signal of each component (Ay and 1) to (3 ratio for fits with annota-
tion comparing simulations generated by linear partition and model
misspecification schemes for different proportions of non-zero n and
Y (pnzo and pyo, respectively) divided by annotation effect magni-
tude p, (low, mild, and strong). The Ay contribution to 3 corre-
IAYI: a1d the 1 contribution to 3 corresponds to 1z por

I1B1l2 1B1l2"
visualization purposes, values on the top 0.5% were removed.

sponds to

Annotation selection simulations results for GRAD and GPA compar-
isons.

For the GPA liability threshold model (GPA-LTM) used for simulations,
results are divided by the number of risk annotations S, € {2,5, 8,10},
and for the iFunMed simulations results are divided by their prior inclu-
sion probabilities with the use of annotation (no annotation effect, mild
annotation effect, and strong annotation effect). Results are summarized
by area under the precision-recall curves (AUPR) and area under the
receiver operating characteristic curves (AUROC). (A) Average AUPR
for annotation selection across 100 simulation replicates and their corre-
sponding error bars (mean =+ standard deviation) for GRAD and GPA.
(B) Average AUROC for annotation selection across 100 simulation repli-
cates and their corresponding error bars (mean =+ standard deviation)
for GRADand GPA. . . . . . . .. ...
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B.10 Stability selection results for factor VII.

B.11

(A, B) Stability paths for each parameter included in the model. Colored
paths indicate non-zero estimated parameters. Dashed line represents
selection frequency cutoff of 0.75. (A) Without annotation and (B) with
annotation. (C, E) Estimated SNP effect sizes across fits with and with-
out annotation. SNPs with effect sizes exactly equal to zero with and
without annotation are omitted. SNPs are colored by (C) —log,, trans-
formed p-values from univariate GWAS associations, (D) strength of
the annotation free contribution fj from the model with annotation, and
(E) strength of the annotation contribution Ay from the model with
annotation. . .. . ... L L Lo
Stability selection results for fasting glucose (log).

(A, B) Stability paths for each parameter included in the model. Colored
paths indicate non-zero estimated parameters. Dashed line represents
selection frequency cutoff of 0.75. (A) Without annotation and (B) with
annotation. (C, E) Estimated SNP effect sizes across fits with and with-
out annotation. SNPs with effect sizes exactly equal to zero with and
without annotation are omitted. SNPs are colored by (C) —log,, trans-
formed p-values from univariate GWAS associations, (D) strength of
the annotation free contribution fj from the model with annotation, and
(E) strength of the annotation contribution Ay from the model with
annotation. . . . ... ..o Lo
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B.12 Stability selection results for Height.
(A, B) Stability paths for each parameter included in the model. Colored
paths indicate non-zero estimated parameters. Dashed line represents
selection frequency cutoff of 0.75. (A) Without annotation and (B) with
annotation. (C, E) Estimated SNP effect sizes across fits with and with-
out annotation. SNPs with effect sizes exactly equal to zero with and
without annotation are omitted. SNPs are colored by (C) —log,, trans-
formed p-values from univariate GWAS associations, (D) strength of
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ABSTRACT

Genome-wide association studies (GWAS) have successfully identified thousands of
genetic variants contributing to disease and other phenotypes. However, significant
obstacles hamper our ability to elucidate causal variants, identify genes affected by
causal variants, and characterize the mechanisms by which genotypes influence
phenotypes. The increasing availability of genome-wide functional annotation data
provides unique opportunities to incorporate prior information into the analysis of
GWAS to better understand the impact of variants on disease etiology. Regulatory
genomic information has been recognized as a potential source that can improve
the detection and biological interpretation of single-nucleotide polymorphisms
(SNPs) in GWAS.

Although there have been many advances in incorporating prior information
into the prioritization of trait-associated variants in GWAS, functional annotation
data has played a secondary role in the joint analysis of GWAS and molecular (i.e.,
expression) quantitative trait loci (eQTL) data in assessing evidence for association.
Moreover, current methodologies that aim to integrate such annotation information
focus mainly on fine-mapping and overlook the importance of its usage in earlier
stages of GWAS analysis. Equally important, there is a lack of development in
proper statistical frameworks that can perform selection of annotations and SNPs
jointly.

To address these shortcomings, we develop two statistical models: iFunMed
and GRAD. iFunMed is a novel mediation framework to integrate GWAS and eQTL
data with the utilization of publicly available functional annotation data. iFunMed
extends the scope of standard mediation analysis by incorporating information from
multiple genetic variants at a time and leveraging variant-level summary statistics.
GRAD integrates high-dimensional auxiliary information into high-dimensional
regression. This method allows annotation information to assist the detection of
important genetic variants while identifying relevant annotation simultaneously.
We provide an upper bound for the estimation error of the SNP effect sizes to gain

insights on what factors affect estimation accuracy.
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For iFunMed, data-driven computational experiments convey how informative
annotations improve SNP selection performance while emphasizing the robustness
of the model to non-informative annotations. Applications to the Framingham
Heart Study data indicates that iFunMed is able to boost the detection of SNPs with
mediation effects that can be attributed to regulatory mechanisms.

Simulation experiments indicate that GRAD can improve the identification of
genetic variants by increasing the average area under the precision-recall curve
by up to 60%. Real data applications to the Framingham Heart Study show that
GRAD can select relevant genetic variants while detecting several transcription

factors involved in specific phenotypical changes.



1 INTRODUCTION

1.1 Genome-wide Association Studies

Genome-wide association studies (GWAS) aim to identify genetic variants associ-
ated with different phenotypical changes. They examine hundreds of thousands to
millions of markers across the genome to find single nucleotide polymorphisms
(SNPs) that are observed with higher (or lower) frequencies in subjects with a
specific trait of interest. GWAS has successfully identified SNPs associated with
complex diseases such as coronary diseases (Nikpay et al., 2015) and type 2 diabetes
(Prasad and Groop, 2015), among many others. This is a vital tool for researches
in the clinical field to characterize diseases and develop strategies for detection,
treatment, and prevention.

A traditional GWAS analysis workflow has the following steps:

1. Quality control and imputation: Genotype data is first filtered based on (most
commonly) three criteria. These are call rate, minor allele frequency (MAF)
and violation of Hardy-Weinberg equilibrium (HWE). Call rate filters out
SNPs that have an elevated proportion of missing data among patients, MAF
removes rare SNPs, and deviations of HWE can potentially detect miscalled
variants. This is followed by imputation of partially missing genotypes which
is most successfully performed by using a reference panel to gain knowledge
of the genetic structure of the variants (Marchini and Howie, 2010; Li et al.,

2010). Genotypes are then recoded to an additive format (0/1/2).



2. Association analysis: The phenotype of interest is regressed on each SNP;
(i =1,...,p) individually with or without adjustment for other traits that
could be relevant (e.g. age and sex). This yields p regression models that
are summarized and inspected visually with Manhattan plots (—log,, trans-

formed p-values for each SNP across their genomic coordinates).

3. Selection of SNPs: Significance at a high level is required. A threshold of
1 x 107% is widely used to account for the multiple testing problem. SNPs
with p-values below the margin are selected and partitioned into independent

regions for further inspection.

4. Fine-mapping: Each region with promising associations is analyzed and soft-
wares like (Pruim et al., 2010) are used for visualization. The goal is to perfect
the localization of causal variants with the use of statistical tools and/or

functional methods for follow-up functional studies.

1.2 Understanding GWAS Hits

The associations that are characterized by GWAS have lead to novel discoveries
(Hirschhorn et al., 2009), including pathways that were previously unsuspected
(Lettre and Rioux, 2008) but many times, interpretation of SNPs that are found to
be associated remains unknown. More importantly, by using strict thresholds on
marginal associations we might miss candidates with moderate signals that have

strong joint effects.



Current efforts by large consortia projects (Consortium, 2012; Roadmap Epige-
nomics Consortium, 2015) to identify functional elements are helping us to better
understand the human genome. We refer to this as functional annotation data. The
information that can be used as annotation can range from open chromatin regions,
protein binding of specific proteins, or even accessibility changes among SNP al-
leles, and they can originate from different tissues and cell types. Findings from
(Maurano et al., 2012) revealed that common disease-associated SNPs are enriched
in functional DNA. This motivated scientists in the field to utilize and incorporate
annotation as auxiliary information into GWAS analyses to improve SNP selection
and prioritization.

To have a comprehensive understanding of the biology underlying different
traits, (Nicolae et al., 2010) motivated the idea of using gene expression information
starting from the basis that associated SNPs are more likely to be eQTLs. These
observations suggest that GWAS SNPs modify expression levels of genes nearby
which ultimately results in phenotypical changes. We can think about this biological
pathway as a mediation process where gene expression acts as a mediator variable
between genotype and phenotype associations.

Furthermore, nowadays, scientists are encouraged to share data that summarizes
their findings. A common technique is to make results from marginal associations
publicly available such as SNP effect sizes, standard errors, t-scores, or a combina-
tion of them. This is practical because of, mainly, two reasons: it doesn’t yield on
violations of patient privacy and summary-level data requires modest computation

capacity. This data-sharing process allows us to gather information from large



cohorts in a short amount of time.

1.3 Statistical Methods for GWAS Analysis

Statistical methodologies that aim to integrate different sources of information to
elucidate functionality and help to prioritize genetic variants are a focus of interest
within GWAS analyses. They have the intent to answer some of the questions
and challenges portrait by GWAS. We will review some of the main methods in
literature and they are summarized in Figure 1.1.

Figure 1.1A displays methods that use mediation models, i.e. they provide
an alternative pathway of association by assuming that phenotypical changes are
observed because of changes in expression levels. The main focus of these methods
in literature is to characterize gene-trait associations. TWAS (Gusev et al., 2016)
provides flexibility regarding the input data, which can be raw-level or summary
statistics. In both cases, it produces prediction-like gene expression that is later on
tested for associations with the trait. SMR (Zhu et al., 2016) takes advantage of the
Mendelian randomization framework and inputs summary data from GWAS and
eQTL studies to identify associations between gene expression and traits of interest.
Finally, both PrediXcan (Gamazon et al., 2015) and S-PrediXcan (Barbeira et al.,
2018) compute gene-level association. PrediXcan predicts/imputes transcriptome
levels from genotype and phenotype data, while S-PrediXcan does it directly from
GWAS outputs.

Mediation models that have the goal of gaining information regarding direct



or mediated effects of individual SNPs are much less common. Some approaches
do single-SNP mediation where they fit as many models as SNPs in the locus
of interest. This technique can be useful as a form of exploratory analysis or to
gain insights regarding the mediation potential of a specific gene but lack proper
multiple comparison error control and do not account for joint SNP effects. A step-
up from such procedures is iGWAS (Huang et al., 2015). iGWAS uses a multivariate
mediation model with raw-level data and incorporates a family-based design. Yet,
there are still no methodologies, to our knowledge, that incorporate epigenomic
information into this models to improve SNP detection. iFunMed (Rojo et al., 2019)
fills this hole by performing a mediation analysis with only the use of GWAS
and eQTL summary statistics (t-scores) that integrates annotation information
to inform non-zero status of SNP effect sizes and reports direct and mediated
posterior probabilities of being non-zero. This allows the user to prioritize and
select SNPs with high posterior probabilities. We accompany our analysis with an
annotation selection pipeline based on enrichment values to avoid the burden of
fitting hundreds to thousands of annotations that are generated nowadays, and to
gain potential functionality of mediated and direct effects.

Another cluster of methods leverages annotation information into GWAS to
improve SNP detection. These are illustrated in Figure 1.1B. They commonly share
the way they integrate annotation into their models by using it as data-driven prior
information, similarly as iFunMed. A portion of them assumes independence and
only takes as input GWAS summaries that provides computation efficiency. One of

the first ones to emerge was fgwas (Pickrell, 2014) that adopts an empirical Bayes



approach. It computes the probability of a specific block in the genome to have a
non-zero SNP and within each region that harbors a non-zero SND, it computes
posterior probabilities for all of the SNPs in the locus. To do this computation,
it assumes one causal variant per locus and uses a forward-backward technique
to select annotations, which can be discrete (e.g. overlap vs no overlap with a
TF binding region) or continuous (e.g. distance to TSS). GPA (Chung et al., 2014)
takes as input marginal associations p-values and models them as null (from a
uniform distribution) and non-null (from a beta distribution). It aims to discover
and prioritize non-null SNPs. GPA only takes binary annotations and does not
provide high-dimensional annotation selection, although it does have p-values
of enrichment for one annotation at a time fits. One last method that assumes
independence is RiVIERA (Li and Kellis, 2016). It provides inference of the empirical
prior of a genetic variant being associated with a specific disease, which will depend
on the annotation. Same as fgwas, it assumes one causal variant per-locus. It doesn’t
have annotation selection but they do propose a technique to recognize enrichment.
It has the limitation of only using binary annotations.

A step further in these class of methods is to integrate linkage-disequilibrium
(LD) into their pipelines to model the correlation structure among them. One
method that has gained popularity is PAINTOR (Kichaev et al., 2014). Annotation
influences the non-zero status probability through a logistic model. They relate
SNPs to the observed marginal associations under a multivariate normal model.
PAINTOR suggests to use one at a time fits to select top strictly binary annotations.

A comparatively less popular method (by comparing the number of citations) is



CAVIARBF (Chen et al., 2016). Their model is fairly similar to iFunMed if we didn’t
have the mediation part. They start with a multivariate GWAS model and split effect
sizes into zero and non-zero portions. The non-zero SNPs will have a higher prior
inclusion probability that is modeled with a logistic function and a normal prior for
the annotation enrichment. These classes of models follow similar ideas as earlier
Bayesian variable selection models (Carbonetto and Stephens, 2012). CAVIARBF has
the flexibility to adapt to multiple types of annotations (binary and continuous) and
provides proper annotation selection by using penalization methods on annotation
enrichment.

There are other methods that do not take advantage of meta-analyses and
summary-level data. Instead, they use full raw-level data information. FM-QTL
(Wen et al., 2015) proposes a multivariate model and computes posterior probabili-
ties of SNPs being non-zero. They relate this to the Bayes Factor and use MCMC
for posterior inference. They further link genomic annotations using a logistic
model. FM-QTL can only handle a handful of annotations but they can be binary
or continuous. DAP (Wen et al., 2016) is an extension of FM-QTL and their models
are very similar. Their key difference is that DAP only uses high-priority loci and
the EM algorithm instead of MCMC. Finally, bfGWAS (Yang et al., 2017) follows a
similar model to (Carbonetto and Stephens, 2012) and models the joint effect of an
annotation by having a prior per category. This imposes the strong assumption of
non-overlapping annotations categories, which is not realistic. Moreover, it doesn’t
allow annotation selection.

All of these methods from Figure 1.1B calculate a form of posterior probabilities



with the use of a Bayesian hierarchical model. We propose GRAD (Rojo et al., 2020),
a genome-wide regression with auxiliary data that decomposes SNP effect sizes
into two components: one that is measured by the annotation information (Ay) and
an annotation-free contribution (1). The general formulation of GRAD allows us to
take advantage of regularization methods for the selection of y and 1. Methods that
provide annotation selection are based on forward-backward techniques (fgwas), or
limited to enrichment or p-values from fittings with one annotation at a time (GPA,
PAINTOR, DAP, and RiVIERA). These have the potential of wasting important
information that might have joint effects that can improve SNP detection. Unlike
others, except for CAVIARBF, we provide high-dimensional annotation selection.
We recommend the use of GRAD for SNP selection and inspect them further with
fine-mapping tools.

The rest of the document is organized as follows. In Chapter 2 I will introduce
iFunMed to do integrative functional mediation analysis with GWAS and eQTL. In
Chapter 3, GRAD is proposed to leverage annotations into GWAS analysis with a
flexible model. Both chapters are accompanied by extensive simulation experiments
and applications to the Framingham Heart Study (FHS) data. Lastly, I will discuss

some future directions for these models in Chapter 4.
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Figure 1.1: Categorization of (main) statistical methods that perform data-
integration on GWAS analysis. Methods highlighted in purple presented in

this dissertation.

(A) Methodologies based on mediation analysis can be split on what they aim to
characterize: gene-trait associations or SNP prioritization. They typically take as
input summary-level data or raw-level data. (B) Methodologies that aim to improve
SNP prioritization and/or selection with the use of external annotation information.
They usually use annotation to inform the status of the SNP effect 3 sizes as prior
information or the effect size magnitude and take a combination of summary-level
data, LD matrix, or raw-level data as input, besides the annotations. Methods in
cursive indicate that the model provides tools for annotation selection.
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2 IFUNMED.:. INTEGRATIVE FUNCTIONAL MEDIATION ANALYSIS
OF GWAS AND EQTL STUDIES

©2019. Genetic Epidemiology. (Rojo et al., 2019). All Rights Reserved'.
2.1 Introduction

Genome-wide association studies (GWAS) and molecular quantitative trait loci
(QTL) (e.g., expression QTL (eQTL), methylation QTL (meQTL)) studies are com-
monly used approaches in genetic research. Many studies aiming to integrate
these two types of data have emerged in the study of complex diseases such as
Type 2 diabetes (Zhong et al., 2010), Crohn’s disease (Xiong et al., 2012), and vari-
ous types of cancer (Zhang et al., 2012). These approaches capitalize on the idea
that trait-associated SNPs are more likely to be functional and thus eQTLs (Nico-
lae et al., 2010); therefore, they aim to identify significant GWAS SNPs that are
also eQTL SNPs. Although such an approach makes use of eQTLs for reranking
or filtering the candidate disease SNPs, it falls short of disentangling the asso-
ciation of eQTL SNPs to generate mechanistic hypotheses. An emerging area
to address this shortcoming is causal mediation modeling of GWAS and eQTL
data to decompose the etiological mechanisms for the total genetic effect into the
genetic effect on disease risk mediated through gene expression (mediation or

indirect effect, Genotype — Gene Expression — Phenotype) and the genetic ef-

'"Material in this chapter is a modified version of: Constanza Rojo, Qi Zhang & Siindiiz Keles.
"iIFunMed: Integrative functional mediation analysis of GWAS and eQTL studies." Genetic Epidemiol-
ogy, 2019
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fect through other biological pathways or environmental risk factors (direct effect,
Genotype — Phenotype adjusted by Gene Expression). Pioneering work in this
area include mediation analysis framework of (Huang et al., 2004, 2014; Chaibub-
Neto et al., 2010). Although mediation analysis in genetical genomics is an active
area of research with most recent methods addressing familial designs (Huang
etal., 2015) or specifically aiming to identify expression-trait associations (Gamazon
et al., 2015; Gusev et al., 2016; Barbeira et al., 2018), it shares the key impediment of
individual GWAS and eQTL analysis: more than 90% of associated SNPs are located
either intronic or intergenic regions, making their interpretation challenging.

The availability of large-scale functional annotation data through large con-
sortia projects is enabling the annotation of non-coding SNPs that significantly
associate with disease and other traits. Initial analyses from the ENCODE Consor-
tium indicated that GWAS-identified phenotype-associated variants can be found
in regulatory regions (enhancers) more often than expected by chance (Maurano
et al., 2012). This and related fundamental observations led to the undertaking
of phenotype-associated variant prioritization using functional annotation data.
The increasing body of work in this area, such as (Kichaev et al., 2014; Wen et al,,
2016; Chung et al., 2014; Pickrell, 2014; Gagliano et al., 2014; Thompson et al., 2013;
Minelli et al., 2013; Chen et al., 2016), typically model univariate association statis-
tics from GWAS as functions of annotation data. None of these methods utilize
functional annotation in the joint analysis of clinical /physiological and expres-
sion phenotypes and almost all of them focus on relating univariate association

statistics from GWAS to annotation data. Another major challenge in the currently
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employed mediation analysis approaches, except for recently developed (Gusev
et al., 2016; Zhu et al., 2016; Barbeira et al., 2018) that can only detect gene-trait
associations, is that they require raw subject-level, i.e. experimental-unit level, SNP
genotype, gene expression, and phenotype data. Although such level data from
GWAS and eQTL studies can be available through controlled-access repositories
such as dbGap (Mailman et al., 2007), information stored in these repositories are
not always organized enough to enable easy interactions with the data without
the involvement of data generators. Furthermore, with the ever increasing data
sizes of biobanks, successful access to raw, unprocessed data requires considerable
storage and computation capacity. However, GWAS and eQTL summary statistics
of individual studies are often publicly available as part of the publication process.

To overcome these challenges, we introduce iFunMed: a mediation model that
utilizes functional annotation data (A in Figure 2.1) as prior information and builds
on summary statistics from GWAS and eQTL studies (Zy, Z¢ in Figure 2.1). Specifi-
cally, iFunMed model leverages functional annotation information when modeling
the inclusion probabilities of the SNPs, i.e., probability that a given SNP has a
non-zero direct or indirect effect. As a result, it enables identification of SNPs
that are associated with phenotypical changes through direct phenotype-genotype
effect and/or indirect gene expression mediated phenotype-genotype effect. We
further develop a functional annotation screening procedure to accompany the
direct and indirect models of iFunMed. This is motivated by the fact that a large
proportion of the annotations exhibit no to little association with the summary

statistics, and annotations that associate with the GWAS summary statistics (Zy)



13

do not necessarily correlate with the eQTL summary statistics (Zg), and vice versa
(Figure A.1). Figure 2.1 depicts an overview of the model. We derive a variational
expectation-maximization (EM) algorithm that enables the fitting of the iFunMed
model in a computationally feasible way. Our data-driven computational experi-
ments illustrate how informative annotations improve SNP selection performance
in the iFunMed model. These experiments also indicate that iFunMed is robust
to non-informative annotations. Application to Framingham Heart Study (FHS)
data using a large collection of publicly available annotations results in elucidation
of SNPs, mediation effects of which can be attributed to regulatory mechanisms.
Implementation of iFunMed is in R programming language and is freely available

athttps://github.com/mcrojo/iFunMed.

2.2 Materials and Methods

Mediation Model from Univariate Summary Statistics
Multivariate Mediation Analysis

Let Y be a quantitative phenotype of interest observed from n subjects, G the
expression of a gene that is associated with phenotype Y, S the n x p SNP genotype
matrix, and X the matrix of other covariates that may be important to control for,
such as age and sex. The relationship between Y, S, G, and X can be modeled as in

Figure 2.1 by the following mediation framework

Y=Xax+SB+Gd+€e and G=Xa+SB+n, (2.1)


https://github.com/mcrojo/iFunMed
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where € ~ N(0, 021,) and n ~ N(0, 0'% I.). Under model (2.1), B is considered as the
direct effect of the genotype S on the phenotype Y adjusted by the mediator G, B is
the effect of the genotype on gene expression, B - 8 is the mediated (indirect) effect of
the genotype on the phenotype through gene expression G, and 3+B-5 corresponds
to the total genetic effect of the SNPs on the phenotype. In genetical genomic
applications, a simplified version of this model that considers one SNP at a time
is typically utilized (Yao et al., 2015). Although computationally efficient, such a
model creates a prohibitive multiple testing problem and does not acknowledge the
fact that, for complex diseases, each of a large number of underlying susceptibility
SNPs might exhibit modest disease association, but their combined effect could
contribute to a significant variation in the phenotype (Chatterjee et al., 2016).

In the following, we reformulate the individual-level data mediation model
in Equation (2.1) in terms of univariate SNP-level summary statistics from GWAS
and eQTL studies. Let Zy and Zg denote vector of t-statistics from the univariate
regression of clinical phenotype Y and expression phenotype G on the individual
SNP S; forj =1,...,p, both adjusted by covariates X. Then, the summary statistics

can be expressed as

Zy =D !ST(I-Hy)Y and Z; =D'ST(I—Hx)G. (2.2)

Here, Hx is the projection matrix onto the column space of X, and D = diag( [ST(I—
Hx)S]). Let £ = ST (I — Hx)S denote the Pearson correlation matrix of the SNPs as
a measure of the linkage disequilibrium (LD) and further define transformations

£ =D V2ST(1-Hx)SD V% Zy = D'?Zy, Zg = D'/?Zg, p = D'/?B, B = D'/?B,
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¢ =D V2ST(I-Hx)e, and ) = D1/2ST(I—Hx)D'/?n. For the sake of simplifying

the notation, we eliminate “ ~ " from all the notations except for £ and obtain
Zy =XB+Zs6+e€ and Zg=ZXB+n, (2.3)

where the error covariances now depend on the SNP correlation structure as € ~
N(0,Z0%) and n ~ N(0, Zo?). Figure 2.1B is a pictorial depiction of Equation (2.3)
as a mediation model, with additional components described below. Note that
in Equation (2.3), £ represents the correlation matrix between SNPs, same as the
linkage disequilibrium (LD) structure, which can be approximated using large
reference genome pools (e.g., 1,000 Genomes (Consortium, 2015)) or can be shared
among investigators without violating the privacy of genetic data of the study
participants. As a result, model (2.3) is able to recover parameter estimates from

the original model in Equation (2.1) by utilizing univariate summary statistics.

Integrative Functional Mediation

The mediation formulation in Equation (2.3) is a high dimensional regression
problem. We consider a Bayesian variable selection framework that can naturally
administer data-driven prior information such as functional annotation. We repre-
sent such auxiliary information by a A, (k1) matrix where column j represents a
length p binary vector with entries denoting whether or not an individual SNP has

the j-th annotation (e.g., SNP resides within an enhancer region identified through
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epigenomic studies). We define sg and sg as unobserved indicator variables as

1 if B; #0, 1 if B; #0,
Sﬁ,j = , SBJ' = .
0 ow. 0 ow.

Next, we explicitly model B as B = T o sg, where 15 ~ N(0,vg02l,), sp =
(spa,---,Spp)', and sp; ~ Bernoulli(mg ;). Here, x o y denotes component-wise
multiplication of vectors. Similarly, we model B as B = 1 o sg, where t5 ~
N(0, vg G%Ip), Sg = (SB1,---, sBlp)T, and sg; ~ Bernoulli(7tg ;). The key roles of sg
and sg are to enable selection of SNPs with direct and gene effects, respectively. Ty
and g, with variances of v 02 and vg O'%, denote the effect sizes. 7z ; and 7t ; are
SNP inclusion prior probabilities that we further link to the functional annotation
information A; by utilizing a logistic function

1 1

Lo A M Ry 24

g, =

In Equation (2.4), A represents a K + 1 binary vector of K annotations, where
A; . = 1if the annotation k overlaps with SNP j, and an intercept term. Finally, we
denote all the parameters of the model, including the hyperparameters, as (9, 0)

where 0 = (crze, G%,Vﬁ,VB,Yg,YE)-
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Likelihood of the Model

We consider the joint distribution of (Zvy, Zg, T, Tg, S, S8, 0) as,

P(ZY,ZG,TB,TB,SB,SB,&; e/A/i) = P(ZY/TB/SﬁléyzG;O—ZQIVB/‘Y(j/A/i)

XP(ZG/TB/SB;Gﬁ/VB/‘YBIA/i)/ (25)

and remark that right-hand side of Equation (2.5) factorizes
into two parts that model the direct effect given the mediator
variable  (P(Zy, Tg,sp,0|Z; G%,VB,YB,A,}:_.)), and the gene effect
(P(Zg,TB,SB;O'%,VB,‘YB,A,E)). They share no hyperparameters, and can be
titted separately. We refer to these two parts as direct effect model adjusted by
the mediator (DEM) and the gene effect model (GEM), respectively. Then, the
log-likelihoods of GEM (Lgem) and DEM (Lpem) are as follows:

log P(Zg,TB,SB,‘O"TZVVB,YB,A,i) = logP(ZgIB="1go sB;Gﬁ,i) +log P(tg; 07, vE)

P
+ Z log P(sg;; 18, = expi’c(A)-TyB )), (2.6)

j=1

log P(ZY/ T|?)/ SB/ 6|ZG/ O—E;/-V[S/ Y[?)/ A/ i) - log P(ZY|B = TB o SB/ 5/ ZG/ O—E;/ i) + 108 P(TBI O—E:,.fo,)

P
+ Z log P(sp,;;mp,; = expit(A)-TyB)), (2.7)

j=1

where expit(x) denotes the inverse logistic link function.

We fit this model with an expectation-maximization (EM) algorithm based



18

on variational approximations (Ormerod and Wand, 2010; Ormerod et al., 2017)
owing to the high dimensionality of the problem, i.e., the number of SNPs in a
typical mediation study can fluctuate from a couple hundred to thousands. Varia-
tional methodologies have shown promising results under Bayesian approaches
for large-scale genetic association studies (Carbonetto and Stephens, 2012). The
variational algorithm approximates the joint posterior distribution by a product of
lower dimension functions and then minimizes the Kullback-Leibler divergence
between them. This approach leads to a computationally feasible algorithm while
maintaining the desirable properties of the EM algorithm (Tzikas et al., 2008). The

outline of the individual steps is presented in Appendix A.1.

Data-driven Simulation Experiments

To evaluate the performance of iFunMed, we performed a series of simulations in
settings where the underlying truth is known. We used data from the Framingham
Heart Study to construct the LD matrix £. We utilized the 2,456 available subjects
and a segment of the genome between 35,985,004 bp and 43,707,220 bp on chro-
mosome 1, which harbored 2,000 SNPs with a wide range of LD between the loci
SNPs (r € [—0.94,1.00]).

To emulate realistic SNP and annotation effect sizes, we simulated data from

the hierarchical model in Equation 2.3 by leveraging estimates of § and 6 =

(02,0%,Vg, VB, Yj, Yg) from the actual fits of the FHS data and the LD matrix
%. For each simulation setting, we generated the prior inclusion probabilities 7t

and 7tg using an annotation matrix A with two columns: an intercept and one
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auxiliary information, which corresponded to fitting the mediation model using
one annotation at a time.

We used a set of 220 annotations curated by LD Score Regression (Finucane et al.,
2015) and corresponding to four histone marks (H3K4mel, H3K4me3, H3K9%ac,
and H3K27ac originating from the Roadmap Epigenomic Project (Roadmap Epige-
nomics Consortium, 2015)) across ten tissues: adrenal and pancreas, cardiovas-
cular, central nervous system (CNS), connective and bone, gastrointestinal (GI),
immune/hematopoietic, kidney, liver, skeletal muscle, and other. We further re-
duced this list to 209 annotations by combining replicates of each epigenetic mark
from the same cell-type. To enable a wide range of simulation settings by reducing
the computational time, we utilized five annotations which we selected as rep-
resentatives of different proportions of SNPs with the annotation in the region,
varying from 0.014 (A1l: gastric) to 0.147 (A5: hippocampus middle) as depicted
in Figure A.2. Individual information is detailed in Table A.1. The simulation
parameters were based on the actual fits of the hierarchical model on FHS data by
considering multiple loci and genes as candidate mediators. Specifically, the pa-
rameters varied as follows: 02, 07 € {0.1,1,5}, vg, vs € {10,20,100}, 5 € {0.05,0.5},
and the parameters associated with the functional annotation effects were set as
in Table 2.1 based on the FHS fits. Collectively, these combinations of parameters
resulted in 54 different simulation settings for each one of the five annotations we
utilized. We generated 20 simulated datasets from each scenario (54 x 5 settings in

total) and summarized the results across these simulation replicates.
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Framingham Heart Study (FHS)

We accessed FHS individual-level genotype, expression, and phenotype data of
2,456 subjects through dbGap (dbGaP: phs000007.v16.p6). Genotypes were from
the SHARe sub-study that used the OMNI5M array and the whole blood RNA
expression from the SABRe CVD study. A total of 1,667 patients had both expression
and genotype data. We pre-processed the genotypes with PLINK v1.9 (Chang et al.,
2015; Purcell et al., 2007), and imputed with IMPUTE2 v2.3.2 (Marchini and Howie,
2010; Marchini et al., 2007). This resulted in 2,244,466 SNPs (details in Appendix
A.2). We utilized the 209 reduced list of LD Score Regression (Finucane et al.,
2015) annotations as the functional annotations for prior construction, as in the
simulations. For mediation analysis, because the expression data is from whole
blood RNA, we focused on blood-related phenotypes factor VII, which is involved
in the process of coagulation, red blood cell count, white blood cell count, and
Von Willebrand factor, which plays a role in hemostasis. For these phenotypes, we
evaluated multiple genes and selected six loci (Table 2.2) with dense and relatively
strong genotype signal and evidence of potential mediation to present in detail.
Further details are provided in Appendix A.3.

For each SNP in the model, we report estimates of the posterior probabilities
of inclusion in the DEM and GEM fits, i.e., P(sp; = 1|Zy, Zg, §; 62€,\7[3,‘§/g, AL
and P(sg; = 1|Zg; cﬁ,f/B,f/E,A,i), with the goal of elucidating the direct and

mediated SNP effects on the phenotype.
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Annotation Screening

To accommodate the observation that annotations might not exhibit any associa-
tion with the summary statistics and that they can be associated differently with
the GWAS and eQTL statistics (Figure A.1), we carried out annotation screening.
The proposed strategy starts by calculating an enrichment statistics based on the
iFunMed fit without the use of any annotation information (every SNP has the same
prior probability of inclusion). We refer to such model as the null model. In what
follows, we use the notation for the gene effect model (GEM: B) as the extension to
the direct effect model (DEM: B) follows directly. We denote the posterior probabil-
ity of inclusion from the null model as §g; = P(sp; = 1|Zg; 6121, \A/B,ﬁ/;, A, LX) We
then calculate the average posterior probability of inclusion (e.g., evidence of the
non-zero effect size) of the SNPs with the annotation k, for k =1,...,K, from the

null model as:
2 jin; =1 5B,

Ak

Next, we evaluate the significance of this enrichment statistic ave($g ) with a

ave(ég,k) =

permutation approach. The overall procedure is summarized as follows.

1. Fit the iFunMed null model and compute the average posterior probability of
inclusion, ave($p k), for each annotation k, for k =1, ..., K. This is the main

annotation-level summary statistic for quantifying enrichment.

2. Within each annotation k, permute the binary annotation values Ay and

compute permuted ave(8g ).
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3. Repeatstep 2 N times and compute ave(3g, ) forn =1,..., N as the permuted

average posterior probability of inclusion.

4. Obtain the per annotation enrichment p-value as:
N
Z Have(sg ) > ave(8p i)}
n=1

In both the simulations and the FHS application, we set N = 10, 000. Evaluations
of this annotation screening procedure for Type I error and power are provided in
Section 3.3. In the FHS application, we utilized annotations that were marginally
significant at 5% and were retained after multiple testing correction with (Benjamini

and Hochberg, 1995) at false discovery rate (FDR) of 10%.

2.3 Results

Evaluation with Simulations

We first evaluated power and Type I error of the annotation screening strategy (Fig-
ure 2.2, Table A.2). Since five different annotations were simultaneously considered
in these simulations, we utilized Bonferroni correction for multiplicity adjustment
and observed that the family-wise error rate (FWER) is well controlled at 5% (Ta-
ble A.2). Results on power are further stratified with respect to the annotation that
was used to simulate data (Al to A5, representing annotations with increasing
proportions of overlapping SNPs) and annotation effect sizes (mild and strong) and

are presented as the proportion of times that the screening strategy identified the
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correct annotation in Figure 2.2A. As expected, median power for strong effect sizes
is higher (between 0.10 and 0.75 for Al to A5) than the mild effect sizes (median
power between 0.10 and 0.70 for Al to A5). In addition, we observe that power
increases with the increasing proportion of SNPs with the annotation (Al being
the lowest and A5 the highest, Table A.2). Hence, the screening strategy may not
be able to guarantee acceptable power for annotations with a low proportion of
SNP overlap. To circumvent this and alleviate the multiple testing burden, we
exclude individual annotations with less than 5% overlap with the SNPs from the
annotation set.

Area under the receiving operating characteristic curve (AUROC) comparisons
across all the simulation scenarios (Figure 2.2B) support that leveraging functional
annotation data improves detection of relevant SNPs, regardless of the simula-
tion setting and proportion of the SNPs with the annotation. While annotations
with lower proportion of SNPs with the annotation (A1, A2, and A3) exhibit only
marginal improvement, the ones with higher proportion (A4 and A5) show greater
and more stable improvements. This is consistent with the overall observations in
Figure 2.2A. Specifically, the average percentage increases in the AUROC with the
use of annotation A5 are 11.6% and 16.4% for the mild and strong settings, respec-
tively. Area under the precision-recall curves (AUPR) (Figure A.3A) exhibit similar
overall patterns as the AUROC curves for both the mild and strong annotation
effects.

Figures 2.2C and 2.2D contrast two simulation settings in more detail by varying

parameters vg and vg. In these settings, there is a weak mediation effect (6 = 0.05),
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moderate error variances (02 = 0% = 1), and the prior probability of SNP inclusion
changes from 0.01 without annotation to 0.08 with annotation (mild effect). We
observe that when the effect size variances of 3 and B are large (vg = vg = 100
in panel C), easily leading to larger effect sizes, the AUROC is above 0.8 with
and without annotation, albeit using annotation improves the AUROC by 4%. In
contrast, for the case with weak effect sizes (panel D), the improvement due to
annotation is more pronounced at 15%. ROC curves separated for the DEM and
GEM fits behave similarly and are provided in Figure A.4. In addition, the precision-
recall curves for these cases are available in Figures A.3C, A.3D, and A.5 and exhibit
similar improvements.

In summary, these simulation results indicate that utilizing relevant annota-
tions in multivariate mediation analysis improves SNP selection; however, not so
surprisingly, the degree of improvement relies considerably on the effect sizes 3
and B of the SNPs. When the effect sizes are small (Figure 2.2D), the improvement
due to annotations is evident. In contrast, when effect sizes are further away from
zero (Figure 2.2C), the improvement is marginal. However, we observe that even
for cases where false positive annotations are selected after FWER control, i.e., the
annotation strategy identifies either one or more annotations for scenarios with no
annotation effect (less than 5% of the cases, Figure 2.3A) or annotations different
from the specific annotations used in data generation, leveraging of the annotations
does not deteriorate model performance (Figure 2.3B).

In these diverse sets of simulations, we also quantified the computational re-

quirements of iFunMed. All of the simulations converged within 300 or fewer
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numbers of iterations (Figure A.3B) with a median of 25 iterations. On average,
25 iterations with 2,000 SNPs runs in 26 minutes with a standard deviation of 2
minutes on a MacBook Pro with 2.7 GHz Intel Core i5 processor and 2.7 GHz Intel
Core i5 memory. For a more advanced machine (e.g., 64bit with AMD Opteron
6174 processor and 24 cores), it runs in 4 minutes with a standard deviation of half
a minute, indicating computational feasibility of iFunMed. The time difference is
largely attributable to the number of cores which enable parallel computations in

matrix inversion.

Application to the FHS

We next utilized FHS to explore the impact of annotations on the mediation in-
ference. We performed annotation screening for the loci listed in Table 2.2 with
a subset of the annotations that overlap with at least 5% of the loci SNPs. Two of
the six loci considered (loci 3 and 4, Table A.3) resulted in enriched annotations
for the GEM, using red blood cell count as phenotype. In what follows, we mainly
focus on these loci. Figure 2.4A and 2.4B display p-values of the annotations for
loci 3 and 4, respectively. For both loci considered, we found that tissue origins
of some of the annotations are supported by the known tissue-specific activities
of the mediator genes. In the case of NINJ2, GEM enrichment p-values indicate
immune /hematopoietic as the most enriched. This is well supported by high ex-
pression of NINJ2 in lymphatic and hematopoietic organs (Araki and Milbrandt,
2000). For EVAIC, both of the identified annotations originate from CNS and are

supported by curated tissue-gene associations for EVAIC (Palasca et al., 2018).



26

To investigate the impact of selected annotations on SNP detection, we examined
the set of SNPs identified with and without annotation by thresholding their poste-
rior probabilities of inclusion at 0.5. Figures 2.4C and 2.4D highlight SNPs with the
increased estimates of posterior probability of inclusion with the use of annotations
and vice versa for the DEM and GEM fits. Specifically, for the GEM fit in loci 3 and
4 with mediator genes NINJ2 and EVAIC, three SNPs, with estimated effect sizes
of zero in GEM, have non-zero estimated effect sizes with the use of the screened
annotations. In locus 3, rs2245906 and rs11063749 are detected with and without
annotation in the GEM fit and (Jansen et al., 2017) identified them as cis-eQTLs
for NINJ2 in peripheral blood based on conditional eQTL analysis. Further investi-
gation of the SNPs that are selected only by the use of annotation (rs76782035 for
NINJ2 and rs2834027 for EVA1C) by atSNP (Zuo et al., 2015; Shin et al., 2018), a web-
based tool that provides statistical evaluation of impact of SNPs on transcription
factor-DNA interactions, identified both SNPs as potentially impacting binding of
transcription factor SIN3A (Figures 2.5A and 2.5B). The direction of the mediation
effects and gain- or loss-of-function inference by atSNP of these SNPs are consistent
with each other. Specifically, 7576782035 exhibits negative iFunMed estimated effect
and is leading to generation of a subsequence, i.e., binding site, that SIN3A may
potentially interact with, whereas 52834027 has positive iFunMed estimated effect
and seems to disrupt a potential binding site that SIN3A may interact with. Fur-
thermore, bone-marrow-specific deletion of Sin3a in a mouse model carrying Sin3a
conditional knock-out alleles causes reduction of red blood cell count (Heideman

et al., 2014), supporting that these SNPs could be affecting the phenotype indirectly.
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In contrast, for the SNPs that were excluded from the model fit with the use of
annotation, no such apparent SNP-transcription factor relationships were revealed,
highlighting the potential of the annotation framework for generating mechanistic
hypotheses. Further information on these SNPs is available in Table 2.4 for loci 3
and 4.

Figures 2.5C, 2.5D, 2.5E, and 2.5F display Manhattan plots of GWAS and eQTL
univariate summary statistics for the set of SNPs with large changes in their poste-
rior probabilities of inclusion with the use of annotation. We observe that these
SNPs tend to be spread around the loci as opposed to being localized on small
regions that harbor a leading SNP and its proxies due to high LD. The majority of
the SNPs with increased posterior probability of inclusion overlap with the selected
annotations used for the iFunMed fitting (i.e., Aj = 1, Table 2.4). This indicates an
increase in their prior probability of inclusion, while SNPs with decreased posterior
probability of inclusion due to annotations tend to not overlap with the annotations
included in the model, reducing their prior probability of inclusion.

We refer to the estimated parameters of the model (§, 8) in Table B.1 to further
elucidate the impact of the annotations. Most of the parameters were estimated
similarly with or without annotation, with the exception of parameters that directly
involve annotations, i.e., Y5 and yg, and variances, vg and vg, associated with the
signal strength. Varying iFunMed estimates of vz and vy assign a higher prior
probability of inclusion to SNPs that overlap with the annotations included in the
fit. Parameters vg and vg modulate the distribution of the signal strength and

impact the number of SNPs with non-zero effect sizes. These parameters play a
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crucial role in the selection of the SNPs.

Finally, for the loci where the screening did not identified any enriched annota-
tions, fits of the null model are summarized in Figure A.6 and Table A.4. For loci 1
and 6, four of the SNPs with non-zero DEM estimated effect sizes have reported
associations with Factor VII and Von Willebrand Factor, respectively, based on
independent studies. In locus 1, rs2181540 (Williams et al., 2013) and rs488703
(Smith et al., 2010) are selected in the DEM while, for locus 6, rs8176704 (Desch
et al., 2013) and rs505922 (Williams et al., 2017) are identified. In locus 2, ¥s330787
is detected in the GEM null fit and its association with the mediator gene MSH6 is

further supported by (Jansen et al., 2017).

Mediation Analysis for Other FHS Phenotypes

To expand our analysis to other phenotypes where gene expression from whole
blood, where the bulk of the RNA comes largely from peripheral blood mononuclear
cells, may not be a relevant mediator, we considered identifying potential mediators
as tissue-specific genes from tissues that may be directly related to the phenotypic
variation using reference expression datasets of the GTEx Project (Carithers et al.,
2015). Specifically, we considered two phenotypes: fasting glucose and HDL, and
utilized GTEx pancreas and liver datasets, respectively. For fasting glucose, out
of all the pancreatic eQTL genes, only IL32 and P2RX1 had median pancreatic
and whole blood gene expression at least two-fold larger than average median
expression across all GTEXx tissues, suggesting their specificity for pancreas and

whole blood. Same procedure was carried out for HDL using liver eQTL genes and



29

identified six genes (CDA, PSD4, ILIRAP, ASGR2, IGFLR1, and APMAP) as liver
and whole blood specific. Information on these loci are provided in Table A.5 and
results of the annotation screening are available in Tables A.6 and A.7.

Results for P2RX1 are summarized in Figure A.7. Figure A.7A highlights anno-
tations from cardiovascular and GI tissues as the most enriched. Data integration
from many different technologies and sources has found cardiovascular tissue to
be associated with P2RX1 (Palasca et al., 2018) and, furthermore, P2RX1 is also
highly expressed in midgut (GI) and its associated cells (Edgar et al., 2013). SNPs
identified by thresholding posterior probabilities of inclusion at 0.5 are highlighted
in their respective Manhattan plots (Figures A.7B and A.7C). rs8076916 is selected by
models both with and without annotation and is also a cis-eQTL for P2RX1 (Jansen
et al., 2017). Further investigation of the SNPs that are included only by the use of
annotation (1576395158, rs117071988, and rs1050997) by atSNP identified 7576395158
and rs117071988 as potentially impacting binding of transcription factors SRF and
NR5A2, respectively. SRF is known to be linked to insulin resistance (Jin et al., 2011)
and NR5A?2 is associated with increase in glucose levels (Bolado-Carrancio et al.,
2014) (Figures A.8A and A.8B).

For the rest of the loci, we found that when IL32 is a candidate mediator for
fasting glucose, different types of T cells underlie the most enriched annotations
for the DEM and established links exist between glucose and T cells (Maclver et al.,
2008). For HDL with ILIRAP as mediator, the most enriched annotation for the
DEM is CD19, which acts as a biomarker for B lymphocytes that have been associ-
ated with HDL (Kaji, 2013). For IL32, rs1075581 is the only SNP selected with the
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use of annotation. atSNP analysis indicates this SNP as a loss-of-function candi-
date for transcription factor NFE2L1 (Figure A.8C). iFunMed estimates a positive
effect size for 51075581, leading to higher values of fasting glucose with the SNP
allele. Interestingly, NFE2L1 has been linked with glucose levels since its deficiency
disrupts glucose metabolism and impairs insulin secretion (Zheng et al., 2015).
Further details for the SNPs selected with each candidate mediator are presented

in Table A.8.

2.4 Conclusion

Mediation analysis is often used to identify and account for potential mechanisms
that underlie an observed association between genetic variants and a phenotype
through a mediator variable, e.g., eQTL gene. iFunMed extends the existing me-
diation methods originating from the framework of (Baron and Kenny, 1986) by
considering effects of multiple genetic variants on the trait mediated by a single
mediator and integrating informative epigenome and regulation-based large scale
functional annotation into mediation analysis. This framework complements other
areas of analysis of genome-wide association studies that utilize auxiliary annota-
tion information (Kichaev et al., 2014; Wen et al., 2016; Chung et al., 2014; Pickrell,
2014; Gagliano et al., 2014; Thompson et al., 2013; Minelli et al., 2013; Chen et al.,
2016; Finucane et al., 2015) and goes one step further from current mediation-based
techniques (Gamazon et al., 2015; Gusev et al., 2016; Barbeira et al., 2018) by allow-

ing variant-level identification. iFunMed model is fit in a computationally feasible
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way by taking advantage of variational methodologies and can operate even when
only GWAS and eQTL summary statistics are available. The key output of iFunMed
includes posterior probabilities of inclusion for each SNP for both the direct and the
mediation model, and effect size estimates. While our current application focused
on gene expression as a mediator, iFunMed can conceptually accommodate other
types of mediators.

Evaluation of iFunMed with data-driven simulations indicate that relevant anno-
tation information improves SNP detection for both the direct and indirect effects
in the mediation analysis and highlights the robustness of iFunMed to the use of
irrelevant annotations. Our analysis with the FHS data focused on blood-related
phenotypes and provided comparisons of iFunMed fits that integrates regulatory
information and with those that do not. Use of annotation information identified
a number of additional SNPs that are missed in the mediation analysis without
annotation but well-supported by independent studies. Furthermore, several of
them are potentially impacting transcription factors binding. Follow-up investi-
gation of these transcription factors (e.g., SIN3A for red blood cell count and SRF
and NR5A2 for fasting glucose) could reveal new potential regulatory roles and
diagnostic biomarkers for diseases associated with high /low levels of red blood
cell count or fasting glucose.

The choice of an informative prior is an integral part of the iFunMed framework.
Besides the potential to boost SNP signals with its multivariate model as we have
shown in our simulation experiments, it can also facilitate hypotheses generating

for the underlying mechanisms of association. Our current applications focused
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on binary epigenomic annotations; however, other types of annotations such as
impact of SNPs on transcription factor or RNA binding protein-DNA interactions as
measured by allele-specific analysis of ChIP-seq or eCLIP-seq experiments (Zhang
and Keles, 2017) can be easily accommodated either as continuous or categorical
annotations without further computational cost. In addition, although we presented
a well-calibrated and powered annotation selection framework for iFunMed, an
interesting extension includes adaptively selecting informative priors from a set of
noisy prior information by imposing a variable selection framework on the prior
model.

iFunMed focuses on scenarios where GWAS and eQTL summary statistics are
available from the same set of study subjects and treats multiple genetic variants as
instrumental variables, akin to practice in Mendelian randomization (Davey Smith
and Ebrahim, 2003). Generalizations of instrumental variable analysis that combine
instrumental measurements, exposure and outcome (i.e., phenotype) effects of
which are measured on different study populations, have been recently addressed
by (Zhao et al., 2019). Although Mendelian randomization techniques employ the
strong assumption that all the genetic effect on the phenotype is being mediated by
the exposure variable - an assumption that can certainly be violated in our frame-
work when other cellular/genomic events beyond gene expression is considered,
it is still worth noting the important discussion of (Zhao et al., 2019) with regard
to the use of heterogeneous samples: they can lead to biased estimators and are
less robust to model misspecifications. Since, in practice, iFunMed can combine

summary statistics from meta-analysis studies and LD structure from a reference
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panel (e.g., 1,000 Genomes (Consortium, 2015)), it is imperative that the latter is as
close as possible to the study population of the summary statistics. If the reference
panel does not approximate the study population well, LD structure estimated from
this reference might have profound effects on SNP prioritization and mediation
effect quantification. Previous work in this area has proposed to use a shrinkage
estimator on the reference panel LD matrix (Zhu and Stephens, 2017) and showed
that this can improve inference. Further investigation of these approximations and

their impact on iFunMed are part of our current work.

Web Resources

iFunMed https://github.com/mcrojo/iFunMed;

GTEXx Portal (release v.7) http://www.gtexportal .org;

LD Score Annotations https://data.broadinstitute.org/alkesgroup/
LDSCORE/;

atSNP http://atsnp.biostat.wisc.edy;

PLINK v1.9 https://www.cog-genomics.org/plink?2;

IMPUTE2 v2.3.2 https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#

download.

Data Availability

The data that support the findings of this study (Framingham Heart Study
(Kannel et al.,, 1979)) are available through dbGap (phs000007.v16.p6). Ge-


https://github.com/mcrojo/iFunMed
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https://data.broadinstitute.org/alkesgroup/LDSCORE/
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http://atsnp.biostat.wisc.edu
https://www.cog-genomics.org/plink2
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#download
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#download
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netic data is under study number phs000342.v14.p10 (https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10) and
expression data under study number phs000363.v13.p10 (https://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10).


https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10
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Figure 2.1: Overview of iFunMed modeling framework.

(A) iFunMed input consists of four different types of summary data: GWAS (Zy)
and eQTL (Zg) summary statistics, LD matrix (X), and annotation matrix (A). (B)
A graphical representation of the proposed hierarchical mediation model where
annotation information is integrated through priors for the model parameters 3
and B with Z¢ as the mediator variable, X as the set of independent variables,
and Zy a dependent variable. (C) iFunMed output provides results of the annota-
tion screening for the direct and gene effect models and posterior probabilities of
inclusion for each SNP, in addition to other estimated parameters of the model.
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Figure 2.2: Simulations for comparing iFunMed fits with (w.Anno) and without
annotation data (wo.Anno).

(A) Power for annotation screening at family-wise error rate of 0.05. Simulations
are stratified with respect to the utilized annotation (Al to A5 with proportion
of SNPs with the annotation increasing from 1.4% to 14.7%) and the annotation
effect sizes (mild or strong). For each simulated dataset, all five annotations were
evaluated with the Bonferroni adjustment at 5% level. (B) Percentage change in
the area under the ROC curves across fits for all the 54 simulation settings with
the use of annotation. The total set of annotations (54 x 5 settings) are stratified by
the annotation effect sizes yg and yg. ROC curves are obtained by thresholding
the total effect estimates. (C, D) ROC curves for simulation scenarios with a mild
annotation effect (yg, v = (—4.5,2)), 02 = 0%1 =1 and 6 = 0.05, using annotation
A5, and varying effect size variances. (C): vg = vg = 100 for strong and (D):
vp = v = 20 for weak effect sizes of the SNPs.
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Figure 2.3: Evaluations of the effect of false positive annotations resulting from
annotation screening.

(A) Proportion of times that the annotation screening strategy identified incorrect
numbers of annotations with Bonferroni adjustment at significance level of 5%
across simulation scenarios with zero annotation effect sizes (18 x 5 settings in
total). (B) Percentage change in the area under the ROC curves across fits where the
annotation screening strategy selected one or more incorrect annotation. Incorrect
identification when the annotation effect size is zero (“None" category), considers
cases where there was at least one selected annotation, whereas “Mild" and “Strong"
settings include cases where only false positive annotations were selected. ROC
curves are obtained by thresholding the total effect estimates.
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Figure 2.4: Red Blood Cell Count with NINJ2 and EVA1C as mediators: enriched
annotations and identified SNPs.

(A, B) Enrichment p-values of the annotations (after —log,, transformation) with
at least 5% overlap with the loci SNPs. Dashed line represents marginal sig-
nificance level of 5%. Annotations used for the fits are significant at FDR of
10% and are marked with asterisks. (A) NINJ2 as mediator and (B) EVAIC as
mediator. (C, D) Estimated posterior probabilities of inclusion from iFunMed
for DEM (P(sg; = 11Zy,Zg, 5;62,95,¥3,A2) = 1, j = 1,...,p) and GEM
(P(sg; = 1|Zg; 631,\75,1?;A,}:'.) =1,j=1,...,p) across the two fits (with and
without annotation). Dashed line represents the posterior probability cut-off at
0.5. Majority of the SNPs are clustered around values of 0 in the plot. (C) NINJ2 as
mediator and (D) EVAIC as mediator.
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Figure 2.5: Red Blood Cell Count with NINJ2 and EVA1C as mediators: atSNP
results and Manhattan plots.

(A, B) atSNP composite logo plots for SNPs that are identified only by the use of
annotation. The composite logo plots compare the best matches of SIN3A motif
to the DNA sequences overlapping the SNP positions with the reference and SNP
alleles to suggest potential gain- or loss-of-function with atSNP p-value cutoff of
< le 7. (A) rs76782035-SIN3A pair from the model using NINJ2 as mediator; (B)
1s2834027-SIN3A pair from the model using EVAIC as mediator. (C-F) Manhat-
tan plots for the GWAS (C, D) and eQTL (E, F) input summary statistics. SNPs
highlighted in blue/red represent SNPs with large changes in their posterior prob-
abilities of inclusion across the two iFunMed fits (with and without annotation).
Blue SNPs are selected with the use of annotation whereas red SNPs are excluded,
and the status of the purple (selected) and gray SNPs (not selected) do not vary
between the two fits at the posterior probability of inclusion threshold of 0.5. (C, E)
NIN]J2 as mediator and (D, F) EVA1C as mediator.
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Table 2.1: Prior probabilities of inclusion as defined in Equation (4) with the annota-
tion effects (v and yg) considered in simulations. The prior inclusion probability
without annotation is computed with A" = (1,0) and the prior inclusion probability
with annotation is with A" = (1,1).

Prior Inclusion Probability

wo. Annotation | w. Annotation
Yg = VB A)'T = (1,0) AjT =(1,1)
No Effect (-4,0) 0.018 0.018
Mild Effect (-4.5,2) 0.011 0.076
Strong Effect (-3, 2) 0.047 0.269

Table 2.2: Details of loci considered for the mediation analysis.

Phenotype Mediator Gene ~ Chrom Start End #0fSNPs # of Subjects
Locus 1 Factor VII TMCO3 chrl3 112,505,203 114,498,328 1,894 1,500
Locus 2 White Blood Cell Count (log) MSH6 chr2 47,001,834 49,698,778 2,745 1,258
Locus3  Red Blood Cell Count NINJ2 chri2 601,584 2,897,864 2,174 1,255
Locus 4 Red Blood Cell Count EVA1C chr21 32,802,778 35,599,366 2,593 1,255
Locus 5 Red Blood Cell Count ITSN1 chr21 32,802,778 35,599,366 2,593 1,255
Locus6  Von Willebrand Factor RALGDS chr9 134,500,059 137,499,448 2,869 1,500

Table 2.3: Information on the annotations that were identified by the screening
strategy.

Mediator Gene  Model  Tissue Mark Cell-type Enrichment p-value
NINJ2 GEM Immune/Hematopoietic =~ H3K27ac ~ CD3 primary 0.001
EVAIC GEM CNS H3K27ac  Cingulate gyrus 0.002

EVAIC GEM CNS H3K27ac  Substantia nigra 0.001
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Table 2.4: List of SNPs selected in the analysis of Red Blood Cell Count with NINJ2
and EVAIC as mediators. SNPs are labeled as 0 to 1 ((1) direction) if they are
selected only with the use of annotation and as 1 to 0 ((}) direction) if they are
excluded from the iFunMed fit with the use of annotation. SNPs selected with and

without annotation are labeled as 1 to 1 (—). Details of the annotations included for
both models (DEM and GEM) at the individual SNP level are also displayed.

NINJ2 Location = Model Direction
153825386 1,725,753 DEM 1tol(-)
kgp9894929 1,758,398 DEM 1tol(-)
rs758162 1,966,289 DEM 1tol(-)
kgp1280039 2,471,266 DEM 1tol(-)
157968680 2,500,203 DEM 1tol(-)
kgp9131341 2,873,827 DEM 1tol(-)
Annotation
NINJ2 Location = Model Direction CD3 Primary
152245906 673,788 GEM 1tol(-)
1511063749 697,095 GEM 1tol(-)

1511503082 697,158  GEM  1to0(l)
kgp9542890 714576  GEM  1tol(-)
kgp2779595 813385 GEM  1to0(])
kgp4731528 921,616 GEM  1tol(-)
1$2286007 971291  GEM  1to1(-)
kgp4334187  1,013954 GEM  1to1(—)
kgp2348645 1,201,772 GEM  1tol(-)
15117759283 1,261,573 GEM  1to0(])
kgp27840668  1,324952 GEM  1to1(-)
kgp3224402  1,508979 GEM  1tol(—)
kgp27666261 1529921 GEM  0Oto1(1)
11859389 1632668 GEM  1to0(])
rs11061851 1,671,180 GEM  1to1(-)
kgp2822459  1,875163 GEM  0Oto1()
1576782035 1,922,305 GEM  Oto1(1)
kgp6212365 2453853 GEM  1tol(-)
rs73035417  2,458950 GEM  1to0(])
kgp6671610 2,879,808 ~GEM  1to1(-)
1516929977 2893650 GEM  1t00(l)

OrRrOORrRRPROO0OO0OO0OOOOORrRPRFPROOOOR

EVAIC Location =~ Model Direction
kgp8102103 33,235,336 DEM Ttol(—)
kgp3044871 33,256,005 DEM 1tol(—)
kgp5757773 33,334,632 DEM 1tol(—)
kgp1163247 33,895,682 DEM 1tol(—)
kgp4934738  33,910920 DEM 1tol(—)
kgp349380 34,535,884 DEM 1tol(—)

)

)

)

152834178 34,677,391 DEM ltol(—
kgp2131229 34,783,522 DEM ltol(—
kgp6697616 35,407,829 DEM 1tol(—

Annotation
EVAIC Location = Model Direction Cingulate gyrus Substantia nigra
kgp5202566 32,865,315 GEM  1to1(—) 0 0
kgp4337540 33,202,254 GEM  1to1(—) 0 0
kgp5881618 33,204,096 GEM  1to1(-) 0 0
rs4817488 33,781,596  GEM 1to0 () 0 1
kgp7246838 33,782,785 GEM  1tol(-) 1 1
rs2211789 33,782,887 GEM  Otol(1) 1 1
rs113131388 33,992,844 GEM 1to0({) 0 0
rs2834027 34,323,524 GEM  0Otol(1) 1 1
kgp8275553 34,328,258 GEM  1to1(—) 1 1
1573200447 34,363,524 GEM  Otol(1) 1 1
kgp6028639 34,438,734 GEM  1to1l(—) 1 1
kgp244201 34,458,667 GEM  1to1l(-) 0 0
kgp3444218 34,537,929 GEM  1tol(—) 0 0
kgp23287607 35,129,049  GEM 1to0({) 0 0
kgp917601 35,274,135 GEM  1tol(-) 1 0
kgp23258579 35,359,515 GEM  1tol(—) 0 0
kgp5648029 35,450,938  GEM 1to0({) 0 0
rs141547866 35,573,813 GEM 1to0(}) 0 0
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Table 2.5: Estimated iFunMed parameters for the Red Blood Cell Count phenotype.

Locus 3/NINJ2 Locus 4/EVAIC
wo. Annotation w. Annotation wo. Annotation w. Annotation

Y -5.915 -5.915 -5.722 -5.722

Ye -4.840 (-5.496, 2.518) -5.260 (-6.011, 2.698, 0.404)
§ -0.044 -0.044 0.011 0.011

62 0.529 0.529 0.440 0.440

6% 0.473 0.476 0.417 0.419

Vg 21.367 21.367 22.677 22.677

VB 24.138 28.173 19.982 18.735
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3 HIGH DIMENSIONAL SPARSE REGRESSION WITH AUXILIARY
DATA ON THE FEATURES

3.1 Introduction

Genome-wide association studies (GWAS) have become the standard tool in the
scientific community to identify evidence of association between genetic variants
and traits of interest. These studies commonly perform univariate analyses of
single-nucleotide polymorphisms (SNPs) to identify loci of association and draw
conclusions. Although widely-adopted, this approach completely overlooks SNPs
with smaller associations (e.g., subthreshold SNPs) and their potential joint contri-
bution to variations in the phenotype. Loci identified can typically explain only a
small fraction of the variance in complex traits and do not directly provide sugges-
tions for functional mechanisms of association (Boyle et al., 2017).

Current efforts from large consortia (Encyclopedia of DNA Elements (ENCODE)
(Consortium, 2012) and Roadmap Epigenomic Project (Roadmap Epigenomics Con-
sortium, 2015), among others) to collect epigenomic information from a wide array
of tissues and cell types are facilitating the interpretation of noncoding associated
genetic variants. The integration of epigenomic information into GWAS pipelines

has the potential of improving SNP detection and unravel regulatory mechanisms.

Material in this chapter is a modified version of: Constanza Rojo, Pixu Shi, Ming Yuan &
Stindiiz Keles. "High dimensional sparse regression with auxiliary data on the features." (Under
Preparation)
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The body of work in this area typically assumes that annotation informs a
latent variable that represents the non-zero status of SNP effects and adopts statisti-
cal frameworks for variable selection (e.g., Bayesian variable selection regression
(Guan et al., 2011)) that compute posterior inclusion probabilities (Carbonetto and
Stephens, 2012) and leverage annotation information as a data-driven prior to de-
termining underlying causal variants (Chen et al., 2016; Chung et al., 2014; Kichaev
et al., 2014; Li and Kellis, 2016; Rojo et al., 2019; Pickrell, 2014; Wen et al., 2015, 2016;
Yang et al., 2017). Many of these models underutilize the data by considering only
binary annotations, e.g., wether or not SNP resides in a region with a particular
histone modification or transcription factor (TF) binding, and assume that all the
variants with the same annotation share the same prior probability of having a
non-zero effect (Chung et al., 2014; Kichaev et al., 2014; Li and Kellis, 2016; Rojo
et al., 2019; Yang et al., 2017). This treatment of annotations overlooks the sequence
dependency of TF binding (Slattery et al., 2014) and the fact that noncoding genetic
variants that reside within the same TF can associate differently with a trait. By uti-
lizing annotations that predict accessibility changes among SNP alleles (Alipanahi
et al., 2015; Kelley et al., 2016; Shin et al., 2018; Zhou and Troyanskaya, 2015), we
gain nucleotide-level refinement to measure the potential impact of annotation on
SNP effect sizes. Moreover, annotation data is usually high-dimensional and po-
tentially noisy. Proper selection, except for (Chen et al., 2016) that takes advantage
of regularization methodologies on the annotation, is usually nonexistent (Li and
Kellis, 2016; Wen et al., 2015, 2016; Yang et al., 2017) or limited to one at a time

fitting that misses the joint annotation effect (Chung et al., 2014; Kichaev et al., 2014)
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and forward-backward selection (Pickrell, 2014). Methods that allow annotations
to inform the magnitude of SNP effect sizes are scarce and typically do not focus
on SNP selection or prioritization (Finucane et al., 2015; Reshef et al., 2018).

In this paper, we introduce GRAD, Genome-wide Regression with Auxiliary
Data, a statistical framework that leverages external functional annotations by mod-
eling their specific impact on SNP effect sizes. GRAD enables high-dimensional
simultaneous SNP and annotation selection by integrating genotype and annota-
tion information in the model using the Lasso (Tibshirani, 1996) and control the
per-comparison error rate (PCER) of feature selection through stability selection
(Meinshausen and Bithlmann, 2010). Figure 3.1 depicts an overview of the model.
A theoretical analysis of GRAD model yields upper bound for the SNP effect estima-
tion errors and provide the requirements concerning genotype and annotation data
for optimal estimation. Unlike other methods that focus on whole-genome fine-
mapping, GRAD carries out an annotation-informed multivariate SNP selection to
determine loci of interest that can be followed up by other fine-mapping techniques
to determine causal status. With a wide range of data generation schemes in our
real data-driven simulation experiments, we demonstrate that the use of informa-
tive annotation improves SNP selection and shows how GRAD outperforms other
competing methodologies, such as GPA (Chung et al., 2014). Applications of GRAD
to the Framingham Heart Study (FHS) with annotations that reflect the signed
effect of SNPs on transcription factor binding leads to the discovery of SNPs that

could potentially affect specific phenotypes by disrupting a number of TFs.
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3.2 Materials and Methods

GRAD Model
Statistical Model

We denote Y, as the phenotype vector for n subjects, G, as the genotype
matrix with columns corresponding to SNPs in the study, X, «k as the matrix of
explanatory variables (e.g., age, sex) that may be important to adjust for, and A, m
as the annotation matrix with columns representing annotation information for p

SNPs (Figure 3.1A). We assume a linear model:
Y =Xa+ Gp + ¢, (3.1)

where €, is a vector of independent random errors with variance o2, By x1 is the
effect of genotype on the phenotype, and «y; is the effect of other features. The

genotype effect B, is further partitioned based on annotation:

B=Ay+n, (3.2)

where the effect size  is decomposed into a linear combination of the annotation
effects y and annotation-free component 1. The effect of SNP i on the phenotype
through the influence of annotation j is quantified by A;jy;, where the sign of Aj;
determines whether the effect of annotation j is positively or negatively reflected

in SNP i, and the magnitude of A;; determines the strength of the annotation j for
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SNP i. The annotation-free effect of SNP i is captured by n;. Combining (3.1) and
(3.2) as
Y=Xx+ (GA)y+Gn+e¢e, (3.3)

provides a more intuitive interpretation of this model and justification of the parti-
tion in (3.2). Here, each column of GA can be considered as an aggregated SNP
with the corresponding annotation as weights. As a result, SNPs with the same
(or different) signs in annotation j are accumulated (or subtracted) to create the
jth aggregated SNP. v; quantifies the effect explained by the jth aggregated SNP,
and n quantifies the annotation-free effect of the SNPs. If an annotation does not
provide any information on how the genotype associates with phenotype, then the
corresponding aggregated SNP will have no effect and y; = 0. If none of the anno-
tations has any influence, then y = 0 and the model becomes standard polygenic
model Y = Xa + G + €. The overall genotype effect 3, annotation effect y, and
the annotation-free genotype effect n are all fixed effects and will be estimated in

our model.

Model Estimation

Our goal is to enable the simultaneous selection of relevant genomic variants that
affect the phenotype of interest and their relevant annotations. Because p > n in
most GWAS studies, ordinary least square cannot provide a unique solution for
the estimation of the proposed model. For such situations, it is common to use
regularization regression methods such as ridge regression (Hoerl and Kennard,

1970), Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), MCP (Zhang et al., 2010),
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among others. We adopt the Lasso estimator due to its ability to select variables,
its easy implementation, and widespread popularity. Specifically, we obtain the

estimated parameters with the following convex optimization:

~~ T . 1
(& 9,7, B) = argmin { oL IY — Xer—~ GBIE + A (Il + )

Y,
B=Ay+n

1
— argmin {EHY— Xoc— (GA)y — GnlE +A (vl + ||n|m}, (3.4)

aym,
B=Avy+n

where |- ]|, and || -]/ are the {, and ¢; norms of vectors respectively. The {; penalty on
v and 1 induces variable selection on both annotation and the remaining annotation-
free genotype effects. Without loss of generality, we assume that the columns of X, G,
and GA are standardized to have mean zero and variance one so that the {; penalty
on variables are at comparable levels and an intercept for the regression can be
fitted separately. The tuning parameter A controls the number of variables selected.
To avoid the burden of choosing a single optimal value of A using cross-validation
or scaled lasso (Sun and Zhang, 2012), we use stability selection (Meinshausen and
Biihlmann, 2010). Stability selection adopts a subsampling aggregation approach
that is virtually insensitive to the choice of A. Combined with high dimensional
selection algorithms, it yields on a bound for the expected number of false selections,
hence providing per-comparison error rate (PCER) control. Specifically, we estimate
(3.4) with a range of values of A in one hundred bootstrapped samples with halves
of the observations and record the frequency of each variable being selected among
the one hundred runs (Figure 3.1B). Variables with selection frequency exceeding a

certain cutoff are kept in the final model (Figure 3.1C).
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Theoretical Analysis of the GRAD Model

We provide an upper bound for the estimation error of p = Ay + 1 in Theorem 1
and Theorem 2 in Appendix B.1 to gain insights on what factors affect the estimation
accuracy. These theorems reveal the necessary conditions to be within the derived
bound.

Based on these results, leveraging annotations yields improved estimation accu-
racy of B when its non-zero components are mostly accounted for Ay instead of
n, i.e.,, when the effect of genotype on phenotype is largely through annotations.
In addition, Theorem 1 also provides a guide on how to filter the genotype and
annotation information to improve the model estimation. Specifically, the condition
in Theorem 1 requires: (i) weak LD structure in genotype matrix G, (ii) a well
conditioned annotation matrix A, (iii) annotations with enough non-zero entries,
and (iv) non-degenerate annotations where values for individual SNPs are not too

similar.

Framingham Heart Study Data and Annotation Data

We used data from the Framingham Heart Study with individual-level genotypes
(SHARe substudy) and phenotypes of 2,456 subjects (dbGaP: phs000007.v16.p6). We
used iFunMed (Rojo et al., 2019) preprocessed genotypes. We considered 382 signed
and continuous annotations curated by signed LD profile (SLDP) (Reshef et al.,
2018). These annotations were derived from ChIP-seq experiments (75 transcription
factors and 84 distinct cell lines) from ENCODE (Consortium, 2012) using the

Basset software (Kelley et al., 2016). The resulting nucleotide-level annotation
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matrix reflects the signed effect of SNPs on transcription factor binding. A total
number of 847,491 FHS SNPs were present in the SLDP annotations and had the
same minor allele. We proceeded with these for our analyses.

We focused our analysis on four phenotypes that were selected based on their
genotype signal strength: factor VII, von Willebrand factor, fasting glucose, and
height. For each phenotype, we further screened genotype and annotation data
to meet the requirements of Theorem 1 and Theorem 2. We reduced the number
of candidate SNPs to P by keeping SNPs with minor allele frequency (MAF) >5%
and the lowest p-values from its univariate associations (adjusted by age and sex).
Based on exploratory analyses, we use P = 1, 000 along with the results. This subset
of SNPs allows us to have a wide range of signals while removing noisy (low signal)
SNPs from the model fitting. Requirement (i) of Theorem 1 is met because the LD
structure of SNPs is greatly weakened. We later removed annotations that were
highly correlated (pairwise Pearson’s correlation magnitude > 0.95 and kept one or
the other) and that overlap with less than 3 out of the 1,000 SNPs for requirements
(ii) and (iii) of Theorem 1. Requirement (iv) is not an issue with our annotations
since they are measured at the nucleotide level and are highly sparse. Information

regarding the data considered for each phenotype is listed in Table 3.1.

Simulation Experiments

We design simulation studies to measure the performance of the GRAD model
under diverse scenarios. In all of the simulations, we utilized data from the Fram-

ingham Heart Study to construct the genotype matrix G and generated 100 datasets
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per scenario, i.e., simulation replicates. We followed the same procedure as in
the data applications (Section 3.2) to obtain G using von Willebrand factor as the
phenotype. This resulted in 2,163 subjects and 1,000 SNPs.

Our simulations can be divided into two categories. One is purely designed
to evaluate the performance of GRAD for fits with and without annotation in
SNP and annotation selection. The other category compares the selection of SNPs
between GRAD and GPA (Chung et al., 2014), a model that prioritizes GWAS results
(univariate p-values) by using annotation information. Since GPA model can only
use binary annotations, instead of utilizing the SLDP annotations, we used the

annotations curated by LD Score Regression (Finucane et al., 2015).

Evaluation of GRAD

We leveraged two data generation schemes to measure the impact of annotation
information on SNP selection. In the first scheme (linear partition), we simulate
data directly from the model setting of GRAD as in equation (3.3), making it
the most favorable scenario. In the second scheme (model misspecification), we
simulate from a misspecified model, where the parameter 3 is drawn from a
Laplace distribution centered in zero and scale depending on Ay + 1, ie. B ~
Laplace(0,|Ay + nl), and the response phenotype generated as in equation (3.1).
This resembles the treatment of annotations of (Finucane et al., 2015) where SNP
effect sizes have mean zero and the variance depends on functional categories.

In both schemes, we simulate data by leveraging model parameters y, n, and
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o2. We varied error variance o2 € {100, 150,200, 250, 300}. We simulated 7 using

N(5,1)  w.p. pnzo/2,
ni = —N(S,l) W. p pnio/z, /i':]v"'/p/

0 Ww. p. 1 —pyr0.

where the proportion of non-zero values p,, .o € {0.01,0.02,0.04,0.08,0.1,0.15,0.2}.

v is generated using

N(py,100%)  w. p. pyx0/2,
Y) = —N(H’y, 1002) W. p pY#O/2I /j = 1/"'/m/

0 w. p. 1—pyx0.

where the informativeness of annotation is controlled in two different ways: the
proportions of informative annotations p € {0.02,0.05,0.08,0.1,0.15,0.2}, and the
magnitude of the mean of individual annotation effects sizes ., € {200,500,1000}
(low, mild, and strong). Both p,,o and p, o control the sparsity of parameters n
and vy, respectively. These values are set based on actual fits of the model with the

FHS data.

Comparison Between GRAD and GPA

To elicit the best performance of GPA, we followed the data generation procedure
of GPA for simulations using a linear mixed model and the liability threshold
model, which we will refer to as GPA-LTM. We used the same parameters as in the

GPA experiments and only introduced a few differences: we used the genotype
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matrix from the FHS data, kept a continuous response variable, and simulated fifty
annotations instead of one, among which S, € {2,5, 8,10} are set to be informative.
We varied the proportion of risk SNPs as pg 4 € {0.01,0.02,0.04,0.08,0.1,0.15,0.2}.

We added a second simulation experiment because GPA-LTM simulates binary
annotations after obtaining the effect sizes and they have more non-zero entries
when there are more risk SNPs, which means that the sparsity of the annotations
depends on the sparsity of the risk SNPs. The second simulation experiment aims
to explore a scenario where annotation informs the non-zero status of the SNP,
a common design to account for annotation. We used the iFunMed hierarchical
model (Rojo et al., 2019) and created 27 simulation settings (details in Table B.1)
using the same combination of parameters as in the iFunMed experiments that vary
variances for the overall SNP effect and error, and individual annotation impact.
We generated data with one informative binary annotation at a time (randomly
selected out of fifty binary LD Score Regression annotations) with different prior
inclusion probabilities (none, mild, and strong) of the SNPs based on the annotation
information.

Since GPA does not provide a direct pipeline for annotation selection, we run it
with one annotation at a time, tested individual annotation enrichment (with the
aTest method) in each run, and retained the significant annotations using multiple
testing with FDR controlled at 10% (Benjamini and Hochberg, 1995). We re-fitted

GPA with the selected annotations to obtain the final set of selected SNPs.
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3.3 Results

Evaluation of GRAD with Simulations

Figure 3.2A compares the area under the precision-recall curves (AUPR) and evalu-
ates how annotation information impacts SNP selection. We observe that the use of
annotation always improves the detection of relevant SNPs. Such improvement is
present regardless of the generative model, although is weaker for cases with model
misspecification. For example, the average increase in the AUPR is up to 58.7% for
the linear partition model and 37.8% for model misspecification. Both maximums
occur for cases when the proportion of non-zero y and 1 are fixed at 0.2 and 0.01,
respectively. These values bring up two important patterns. For a fixed value of
Pn0, the improvement on SNP selection due to the annotation increases with p., .
This tendency is not surprising since we expect to have a better SNP selection when
there are more informative annotations. On the other hand, for fixed values of p., .,
when the proportion of risk SNPs p;, .. is small we observe greater improvement
compared to cases with larger p,, .. This can be attributed, potentially, to the error
bound in Theorem 1 increasing for denser 7 (s,,), i.e., the accuracy of our estimation
is better for a sparse 1. A similar pattern arises when looking the area under the
receiver operating characteristic (AUROC) curve in Figure B.1B.

Comparisons of fits with and without annotation in terms of partial area under
the receiver operating characteristic curve (pAUC) for assessing SNP selection
performance are shown in Figure 3.2B. When the false positive rate (FPR) is below

0.1, the pAUC reaches values of up to 0.09 and displays higher values for the fits with
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annotation and stronger annotation effect magnitudes, for both simulation schemes.
In addition, the fit with annotation showed an increased average sensitivity across
simulations at 90% specificity, i.e. FPR 0.1, reaching its maximum sensitivity of
0.92 for the linear partition simulation scheme with strong annotation effect sizes
(Figure B.6A).

Individual precision-recall curves for SNP selection with a specific parameter
combination (py,o = 0.01, pyz = 0.05, and 0* = 100) are displayed in Figure 3.2C.
When comparing the three annotation effect sizes 1, we observe better AUPR for
stronger magnitudes. Since annotation has an impact on the SNP effect size, either
by being a linear combination of it (linear partition) or by influencing its variance
(model misspecification), both simulation schemes will have larger effect sizes when
the annotation effect magnitude becomes greater, leading to better SNP selection
performance and a more moderate improvement with the use of annotation, as
shown in Table 3.2. Moreover, the curve from the fit with annotation achieves a
power of 73% compared to 16% for the fit without annotation when controlling FDR
at 10% for these parameters (Table B.2). Overall power at FDR 10% are presented
in Figure B.6B. Other simulation settings exhibit comparable patterns for AUPR
(Figure B.3) and AUROC (Figure B.4).

Evaluations of annotation selection in Figure 3.2D reveal multiple contributors
to its performance, which we summarize into two sources: how much of the SNP
effect signal B is explained by the annotation Ay in contrast to the annotation free
parameter 1, and how large the correlation among annotations is. First, for fixed

values of p, .o, AUPR increases with i, because Lasso has a better selection of
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relevant annotations when the signal of annotation effects y becomes stronger.
Second, for a fixed value of y,, the AUPR changes with p, . in a convex fashion
due to the joint effect of signal to noise ratio and correlation among annotation.
On one hand, a larger p, . brings in denser signals from the annotations that
improve the AUPR. On the other hand, a larger p, ..o makes it more possible to
have a strong correlation between informative and non-informative annotations, in
which case Lasso will pick one randomly, worsening the AUPR. For small values of
Ly, B is dominated by n instead of Ay (Figure B.8), so annotation selection benefits
more from denser signals than being hurt by more annotation correlation, making
the convex trend of AUPR increasing. For large values of p,, the effect of more
annotation correlation outstrips the effect of denser signals, so the convex trend
of AUPR becomes to behave more decreasing. In addition, Figure B.5 shows a
decreasing trend in AUPR of annotation selection when p,, .+ increases, because
larger p,.0 makes annotation effect Ay less dominant in 3. A larger p,o also
makes denser signals of y to be more prominent than the annotation correlation
when p. 4o increases, so the convex trend of AUPR becomes more increasing. For
the cases with model misspecification, we never observe decreasing tendencies and
there is virtually no difference in annotation selection across different annotation
effect magnitudes. When annotations impact the variance of the effect sizes, its
selection suffers and the only improvement we observe is attributed to a denser

annotation parameter y that allows for more informative annotations.
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GPA Comparisons with Simulations

When we evaluated SNP selection in simulations that aim to compare GRAD
with GPA in Figure 3.2E and 3.2F, we observe that GRAD outperforms GPA. For
cases when the GPA-LTM is used to simulate the data (Figure 3.2E), GPA tends to
improve its performance as the proportion of risk SNPs increases while the opposite
pattern occurs with GRAD. This is due to GPA’s over selection of SNPs. For smaller
proportions of risk SNPs, GPA displays an elevated number of false positives. When
the proportion increases, the false positives decreases in favor of true positives.
On the other hand, since GRAD'’s estimation accuracy increases with the sparsity
of B (sp in Theorem 2), selects fewer false positives for smaller proportions of
risk SNPs. When contrasting their AUROC in Figure B.1C, performance of both
methods decreases with p,,. This can be attributed to the comparable number of
correctly identified SNPs (true positives) for both methods that increase with the
proportion of risk SNPs. When comparing the two methods in terms of annotation
selection (Figure B.9A and B.9B), GPA does better under the GPA-LTM especially
when p,, 4 is large. Under the GPA-LTM, the binary annotations are simulated after
generating the SNP effect sizes and they have more overlap, i.e. non-zero entries,
for larger values of p,,. This leads us to believe that GPA selects annotations with
higher overlap, regardless of how informative they truly are. When iFunMed is
used to simulate data in Figure 3.2F, GPA is unable to select SNPs properly while
GRAD reaches average AUPR values above 0.9. This is due to the small percent of
risk SNPs (< 6%) under this simulation scheme. Moreover, GRAD lacks the ability

to select the correct annotation out of fifty under this scenario (Figure B.9C and
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B.9D) while GPA is slightly better.

Real Data Results

We run GRAD for the phenotypes specified in Table 3.1. All of the cases consid-
ered resulted in selected annotations. For simplicity, we will mainly focus on von
Willebrand factor and detailed results from other phenotypes are available on the
Supplementary Material. Figures 3.3A and 3.3B display stability selection frequency
paths with cutoff selection probability of 0.75 for the parameters considered on fits
without and with annotation, respectively. The fit without annotation identified
one non-zero SNP whereas the fit with annotation identified two annotation free
SNP (1) # 0) and 20 additional SNPs (A¥y # 0) that are attributed to four non-zero
annotations (¥ # 0). Comparisons of estimated SNP effect sizes for models with
and without annotation in Figures 3.3C-E provide information about the source and
strength of associations. We observe that SNPs that have the strongest univariate
associations (Figure 3.3C) tend to be selected by both the fit without annotation
and the annotation free SNP effect n in the fit with annotation. In contrast, non-
zero SNPs with lower univariate associations can be captured by the annotation
contribution Ay but are missed by the fit without annotation. Manhattan plots
in Figure B.13 display similar observations and provide information about the
genomic location of these SNPs, from which the annotation free non-zero SNPs are
localized in small regions and the ones boosted by the use of annotation are more
spread around the genome. These patterns are similar when other phenotypes are

considered (Figures B.10-B.12; B.14-B.16).
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Further details of the detected SNPs and annotations are provided in Table 3.3.
Five SNPs in chromosome 9 and 12 are identified as GWAS SNPs for von Willebrand
factor or blood protein levels by the GWAS Catalog (Buniello et al., 2018) in studies
with populations of majority European descent. From these SNPs, three out of
five are selected because of the annotation contribution parameter and display
overlap with the selected annotations. Three of these SNPs (rs8176749, rs505922,
and rs579459) are located in chromosome 9 and are considered to be part of the
ABO blood group locus, which has a relationship with hemostasis that influences
von Willebrand factor (Peyvandi et al., 2011; Franchini et al., 2007, 2014). rs8176749
and 5505922 do not overlap with any of the non-zero annotations. 758176749 is
detected by the model with annotation and is associated with von Willebrand factor
antigen levels and highly determines the ABO blood group (Desch et al., 2013)
while 75505922 is detected with and without annotation and it has been found
to be strongly associated with von Willebrand factor (Williams et al., 2013, 2017).
According to our fitting, 75579459 has a positive effect on Pol2 TF binding and
(Emilsson et al., 2018) identified it as a protein single-nucleotide polymorphism
(pSNP) for the von Willebrand factor protein in trans. On chromosome 12, both
rs1063857 and rs1063856 have an effect on c-Myc TF binding and reside within
the von Willebrand factor gene. rs1063857 is coding synonymous and rs1063856
coding nonsynonymous SNP and they are highly associated with von Willebrand
factor levels (Smith et al., 2010; Desch et al., 2013). This specific locus displays a
low GWAS signal in the FHS data (—1log,,(p) < 8 in Figure B.13) but it has clear

importance on von Willebrand factor. This highlights the importance of the use of
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annotations that can boost the signal of relevant SNPs that would be overlooked
otherwise.

The rest of the selected SNPs are all captured by the fit with annotation and
have an effect through at least one of the selected TF. We found well supported
TF-phenotype associations in literature for two of the selected annotations. Specif-
ically, Stat3 modulates hemostasis signals (Zhou et al., 2013; Aleva et al., 2018)
and upregulation of c-Myc increases expression of von Willebrand factor (Xiang
and Hwa, 2016). For the other phenotypes considered, we also found evidence of
potential TF-phenotype associations. One of the TF selected in factor VII, Mxil, is
induced by hypoxia, as well as factor VII (Corn et al., 2005; Koizume and Miyagi,
2015). For fasting glucose (log), all of the TF (Elf-1, MafK, Ccn-T2, and C/EBPf3)
showed relationship with either diabetes related traits or adipose tissue: Elf-1 is
related to NKT cells in mice that plays a role in diabetes (Choi et al., 2011) and
related to O-GlcNAc that perturbs insulin levels (Lim and Chang, 2010); MAFK
is a potential target gene for impaired fasting glucose (Cui et al., 2016) and MafK
negatively regulates 3—cell function in mice (Nomoto et al., 2015); CCNT2 gene
may play a role in development of adipose tissue (Broholm et al., 2016); C/EBPf3
promotes adipose tissue inflammation and insulin resistance (Rahman et al., 2012).
Moreover, the selected annotations are not necessarily the ones with the highest
overlap with the SNPs but they do tend to be the ones that overlap with SNPs that
have the strongest univariate associations (Figure B.17 and B.18).

We further examined how the selected SNPs correlate with each other to elu-

cidate how LD impacts mechanisms of association (Figure B.19). Most of them
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do not display high LD except for 2 pairs in chromosome 12 and 15 that were less
than 200 base pairs away from each other. In particular, 751063857 and rs1063856
have an LD of 0.99 and impact c-Myc TF, as discussed previously. By incorporating
nucleotide-level annotation that informs in both magnitude and direction, we are
able to separate the SNP effects for high LD pairs. Having nucleotide-precision
measurements is especially beneficial for our model to differentiate high LD SNPs
by assigning different effect size estimates.

We also provide results using 5-fold cross-validation (CV) for model estimation
instead of stability selection (Figure B.20-B.23). Because CV chooses the tuning
parameter A that minimizes prediction error, it emphasizes more on prediction
accuracy instead of offering family-wise error control like stability selection. As a
result, the model chosen by CV is generally much denser, with hundreds of selected

SNPs that are mostly captured by the annotation-free effect 7.

3.4 Conclusion

The integration of external auxiliary data, e.g. epigenomic information, into GWAS
analyses is an important step to further understand underlying mechanisms of
association and to better prioritize SNPs loci. Recently emerging methodologies
usually model annotation as a data-driven prior that informs the non-zero status of
SNP effects and are limited to binary annotations in most cases. In this study, we
develop GRAD, a flexible statistical method that models the impact of annotation

information on SNP effect $ by assuming 3 = Ay + 1. This model allows the
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utilization of continuous-valued annotation information at the nucleotide-level to
inform the magnitude and direction of TF accessibility changes.

By adopting Lasso (Tibshirani, 1996) as the estimation method of our model, we
are able to perform variable selection on both annotation and genotype information.
We provide two techniques to deal with the tuning parameter in Lasso: stability
selection and cross-validation. We mainly focus on the results yielded by stability
selection because of its error control (PCER). In our simulation experiments, we
found cross-validation to have a tendency to over-select SNPs and an inflated
number of false positives. Even though stability selection has been deemed as
overly conservative in the context of GWAS when no external information is used
(Alexander and Lange, 2011), we found in our extensive simulation experiments
that by leveraging annotation information into our analyses, we increase the number
of relevant selected SNPs and reduce the number of false positives, especially when
the true proportion of risk SNPs is small (< 6%). Ultimately, it should be up to
the users which technique to use and our code is flexible enough to provide both
options.

In this work, we assume one common tuning parameter A for both  and y in the
convex optimization problem in equation (3.4). To make the penalties comparable
on 1 and vy, we standardized columns of {GA, G} together instead of standardizing
G before its multiplication by A. This standardization procedure is interpretable
because GA can be seen as “meta SNPs” with annotation as weights, and the “meta
SNPs” GA are standardized to have the same scale as the original SNPs G. Our

initial explorations considered different tuning parameters, i.e. A; for y and A, for
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1, and we used cross-validation to choose them. No considerable improvement
was seen compared to the current approach and computing cost was significantly
increased with two tuning parameters. It is also feasible to extend stability selection
into the setting of two tuning parameters, although this has not been seen in the
current literature, to our knowledge. This could be considered in the future if
substantial improvement is detected compared to one common tuning parameter.

The variable selection performance of Lasso can be greatly undermined by
high collinearity among features, which is typically observed in GWAS because of
linkage disequilibrium patterns among SNPs in close genomic proximity. When
high LD is present, Lasso has the tendency of picking one single variant instead of
the entire LD block. For such cases, elastic net (Zou and Hastie, 2005) can be an
attractive alternative but initial inspections within our simulations failed to uphold
its use compared to Lasso. To overcome potential drawbacks that might arise from
highly correlated SNPs and /or annotations, we provide a guideline on how to filter
genotypes and annotations for optimal estimations by calculating the upper bound
of the SNP effect estimation errors. It is part of our current work to inspect how
much correlation our method can handle without compromising the quality of the
selected SNPs, and whether we can expand our analysis to smaller regions with
stronger LD structures. It could also be beneficial to inspect other sequence-based
algorithms (Alipanahi et al., 2015; Zhou and Troyanskaya, 2015) to construct signed
annotations besides (Kelley et al., 2016) and check their correlation structure.

One important strength of our method is its ability to pick up SNPs with tradi-

tionally low signal from univariate associations (—log,,(p) < 8) mainly because
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of the following reasons: (1) annotation information puts more emphasis on the
SNPs with changes in TF accessibility, regardless of the univariate signal strength
of the SNP; (2) the multivariate modeling of our method inspect the joint effects of
SNPs instead of marginal effect. For example, in our analysis with the FHS data, in
addition to recognizing GWAS SNPs that are validated by independent studies and
TF-phenotype associations well supported in literature, we are also able to identify
a high LD pair in chromosome 15 for the von Willebrand factor (rs1063857 and
rs1063856) that impacts c-Myc with different magnitude and opposite direction,

and have weak univariate associations (—log,,(p) ~ 3.6).

Web Resources

Signed LD Profile (SLDP) Annotations https://data.broadinstitute.org/
alkesgroup/SLDP/annots/;

LD Score Annotations https://data.broadinstitute.org/alkesgroup/
LDSCORE/;

GPA v1.1 https://github.com/dongjunchung/GPA.

Data Availability

The data that support the findings of this study (Framingham Heart Study
(Kannel et al.,, 1979)) are available through dbGap (phs000007.v16.p6). Ge-
netic data is under study number phs000342.v14.p10 (https://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10) and


https://data.broadinstitute.org/alkesgroup/SLDP/annots/
https://data.broadinstitute.org/alkesgroup/SLDP/annots/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://github.com/dongjunchung/GPA
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v14.p10
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expression data under study number phs000363.v13.p10 (https://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10).


https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v13.p10
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Figure 3.1: Overview of GRAD modeling framework.

(A) GRAD input consists of three different types of data: phenotype (Y. 1), geno-
type (Gnxyp), and annotation matrix (A «p). (B) The proposed model partitions
SNP effects sizes 3 into an annotation contribution (Ay) and an annotation-free
contribution (n). Selection of the features (n and ) is performed with stability
selection. For each value of A, (k = 1,...,K), N subsamples with halves of the
observations are followed by lasso to obtain a selection set §(A]‘§,) to be later on ag-
gregated into empirical selection probabilities. (C) GRAD output provides results
of empirical selection probability for n and y from stability selection for each Ay
value. Model parameters with selection probability above a certain cutoff for at
least one Ay are selected (Sstable) and highlighted in red. Estimates for fj and ¥
result on selected SNPs f = Ay + 1.
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Figure 3.2: Simulation results comparing fits with and without annotation.

(A) Percentage change in the area under the precision-recall curves (AUPR) for
SNP selection across fits with the use of annotation comparing simulations gen-
erated by linear partition and model misspecification for different proportions of
non-zero 1 and y (pn,o and p, o, respectively). (B) Partial area under the ROC
curve (pAUC) for SNP selection for false positive rate below 0.1 for fits with and
without annotation comparing simulations generated by linear partition and model
misspecification schemes for simulation scenarios with low, mild, and strong an-
notation effect magnitude p,. (C) SNP selection precision-recall curves for fits
with and without annotation comparing simulations generated by linear partition
and model misspecification schemes for simulation scenarios with p,, 2 = 0.01,
Py=0 = 0.05, and 02 = 100 for low, mild, and strong annotation effect magnitude ., .
(D) Area under the precision-recall curve (AUPR) for annotation selection (y) when
the proportion of risk SNPs is 0.04 (p,,.o = 0.04) across fits comparing simulations
generated by linear partition and model misspecification for different proportions
of non-zero v (py0). (E, F) GPA comparisons: average area under the precision-
recall curves (AUPR) for SNP selection across 100 simulation replicates and their
corresponding error bars (mean =+ standard deviation) for GRAD and GPA. (E)
Data generated using the GPA liability threshold model (GPA-LTM) . Results are
divided by the number of risk annotations S, € {2,5,8,10}. (F) Data generated
using the iFunMed model. Results are divided by their prior inclusion probabilities
with the use of annotation (no annotation effect, mild annotation effect, and strong
annotation effect).
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Figure 3.3: Stability selection results for von Willebrand factor.

(A, B) Stability paths for each parameter included in the model. Colored paths
indicate non-zero estimated parameters. Dashed line represents selection frequency
cutoff of 0.75. (A) Without annotation and (B) with annotation. (C, E) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(C) —log,, transformed p-values from univariate GWAS associations, (D) strength
of the annotation free contribution 1} from the model with annotation, and (E)
strength of the annotation contribution Ay from the model with annotation.
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Table 3.1: Details of cases considered for the analysis

Phenotype # of Annotations  # of Subjects ~ Smallest —log,,(p)  Largest —log,,(p)
(chromosome) (chromosome)
Factor VII 64 2,162 3.158 (chr12) 39.782 (chr13)
von Willebrand factor 70 2,163 3.164 (chr20) 38.468 (chr9)
Fasting glucose (log) 69 2,070 2.964 (chr2) 7.458 (chrl)
Height 78 2,268 4.150 (chrl) 9.140 (chr16)

Table 3.2: Area under the precision-recall curves (AUPR) stratified by annotation
effect magnitude p, (low, mild, and strong) for simulation scenarios displayed in
Figure 3.2C (py20 = 0.01, py-0 = 0.05, and 0? = 100) with and without annotation,
and their respective improvements due to annotation.

Low p, Mild p, Strong w,

Without With Improvement | Without With Improvement Without With Improvement
Annotation Annotation (%) Annotation Annotation (%) Annotation Annotation (%)
Linear Partition 0.446 0.659 47.824 0.596 0.838 40.641 0.647 0.843 30.318
Model Misspecification 0.440 0.544 23.638 0.463 0.580 25.411 0.541 0.655 21.042
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Table 3.3: List of SNPs selected in GRAD for von Willebrand factor. SNP signals
refers to the direction of the estimated SNP effect sizes for fits without and with
annotation. Details of the annotations included at the individual SNP level are also
displayed. Bold SNPs have evidence of association in the GWAS Catalog.

SNP Signal Annotation
SNP ID Location wo. Ann  w. Ann JunD Pol2 STAT3 c-Myc
rs12565220  chr1:61522880 0 — 0 — 0 —
rs2144555  chr1:101760889 0 + 0 0 + 0
rs12041138  chr1:190149198 0 — 0 0 — 0
rs1257019  chr2:97617140 0 — 0 0 0 —
rs1730122  chr2:97630540 0 — 0 0 0 —
rs4142942  chr3:4841657 0 — 0 0 — 0
rs2280630  chr3:39195964 0 — 0 — 0 0
rs3732610  chr3:124691470 0 — 0 0 0 —
rs261126 chr5:4375160 0 + 0 0 + 0
rs29775 chr5:172483023 0 — 0 0 0 —
rs10984077  chr9:121284915 0 + 0 0 + 0
rs8176749 chr9:136131188 0 + 0 0 0 0
rs505922 chr9:136149229 + + 0 0 0 0
rs579459 chr9:136154168 0 + 0 + 0 0
rs1063857  chr12:6153514 0 — 0 0 0 —
rs1063856  chr12:6153534 0 + 0 0 0 +
rs3912393  chr12:94594035 0 — — 0 0 0
rs8027767  chr15:99297503 0 + 0 0 + 0
rs8041224  chr15:99297665 0 + 0 0 + 0
rs2663849  chr18:55464523 0 + + 0 0 0
rs1206808  chr20:45688440 0 — 0 0 — 0
rs2154592  chr22:23947352 0 + + 0 0 0
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4 DISCUSSION

4.1 Limitations from Using Summary-level Data

The number of methodologies that use summary-level data has increased in the
last couple of years. These tools provide a convenient and practical way to analyze
thousands of genetic variants without the hassle of applications to controlled-access
repositories, extensive data cleaning and processing, and potential problems from
limited computing resources.

Ready to use data generally consist of results from univariate associations where
where patient privacy is not violated. The majority of statistical models developed to
use summary-level data typically require a combination of p-values, estimated effect
sizes, standard deviations, and linkage-disequilibrium (LD). A large proportion
of the data applications for these methods use information coming from meta-
analyses, which is a common practice to increase sample size where summarized
information from different studies is combined. One of the biggest meta-analysis ex-
plored data on blood lipids-related phenotypes (HDL, LDL, and triglycerides) data
(Teslovich et al., 2010). They combined summary statistics from over 20 different
studies and cohorts with individuals of majority European ancestry to reach sample
sizes close to 100,000. For treatment of the LD matrix, it is usually approximated
using a reference panel, e.g. 1,000 Genomes (Consortium, 2015), with matching
ancestry. Both approximations induce potential error from using multiple reference
population results that are generated by different scientists with diverse treatment

of the data and mismatched LD from the study and the reference. Moreover, al-
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though meta-analyses increase sample size, there are still only 2,504 subjects in
the data available from 1,000 Genomes. Four hundred sixty five samples are of
European ancestry which is used in the majority of larger GWAS studies.

When using the lipids data (Teslovich et al., 2010) and the LD matrix from 465
subjects with European ancestry from 1,000 Genomes, iFunMed showed convergence
problems, even after strict matching to the reference alleles. The only solution we
found was to severely filter by minor-allele frequency which considerably reduced
the number of SNPs and resulted in a very small number of discoveries.

To have a better understanding of iFunMed operative mechanisms, we inspected
the SNPs with the highest univariate associations within each loci for HDL. Our
premise was simple: if two SNPs are highly correlated (close to perfect LD) then
their summary statistics should be relatively close in magnitude.

Figure 4.1 displays information of two SNPs: 1512678919 and rs9600212 (4.1A
and 4.1B, respectively). They are located in different regions of the genome and both
display high marginal association with HDL. We compare the LD of the specific
SNP with the rest of the ones in the locus and their corresponding summary
statistics. 1512678919 (Figure 4.1A) has a t-score of 22.24 and as expected, the overall
tendency is increasing and linear. SNPs with elevated summary statistics have
stronger correlations with rs12678919 and weakly correlated SNPs are concentrated
in a cloud around zero. There are two SNPs highlighted in the figure that break
the linear pattern. Both of them have almost perfect LD with rs12678919 and yet,
their summary statistics magnitude is below 5. More importantly, one of them

has opposite direction (red in Figure 4.1A). In Figure 4.1B, rs9600212’s t-score
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is 15.69 and the tendency is linear but vertical around zero (GWAS summary
statistics around zero). The three highlighted SNPs display even weaker marginal
associations (close to zero in one case) for high LD with rs9600212. These are clear
examples of mismatched LD between the study and the reference which will most
likely have an impact on different models that use this data. This was not an isolated
event, it was observed in multiple loci with varying patterns of off-diagonal SNPs.

As a next step, we intended to reduce the sources of potential error by using
summary statistics from only one study (FHS) and approximate the LD matrix.
Many SNP pairs have small LD values (close to zero) but opposite magnitudes when
comparing FHS with the reference panel. Our results with this input data were
much more stable but there were still very few discoveries that fluctuated between
zero to two for regions with 1,000 to 2,000 SNPs and high univariate summary
statistics.

The success of these models that use summary-level data is undeniable. Strong
examples are LD Score Regression (Finucane et al., 2015) used to partition heri-
tability and TWAS (Gusev et al., 2016) used to find gene-trait associations. That
being said, there are still few studies that measure the impact of different sources
of approximation have on model estimates and results. The influence and the effect
on the results will vary across methodologies and could potentially lead to elevated
numbers of false discoveries that are not accounted for. One alternative proposed by
(Zhu and Stephens, 2017) is to use a shrinkage estimator on the reference panel LD
matrix. As scientists, we should promote such inspections when approximations

are being used. More importantly, there is an increasing need to not only share
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summary-level data but to also share LD structures.

4.2 Error Control

Traditional approaches to control for the multiple comparisons problem that arises
from univariate associations threshold p-values by 1 x 10~®. This is based on a
conservative Bonferroni correction for one million independent variants that controls
tamilywise error rate (FWER) at < « = 0.01. Due to high correlations along the
human genome, the key independence assumption is violated. Regions with high
and specific patterns of linkage-disequilibrium, i.e. LD blocks, might generate an
elevated, and not accounted for, number of false negatives which can decrease
power.

Majority of methods that leverage functional annotation data report as a final
output some sort of posterior inclusion probability, i.e. the posterior probability
for each SNP of being non-zero. With a lack of p-values, posterior probabilities are
usually thresholded based on their distributions, calibrations of the values by using
independent datasets (Pickrell, 2014), or utility functions (Kichaev et al., 2014). For
iFunMed, we used a 0.5 threshold. This value was based on our observations of
simulation results and real data applications. Our posterior probabilities behaved
as bimodal around zero and one with few to none values in the middle. We
recommend to proceed with care with SNPs around 0.5 as they could easily lead to
false positives or false negatives.

If we expect a reasonable proportion of rejections, i.e., SNPs with an association
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to the trait, it might be more appropriate to control the false discovery rate (FDR).
Methodologies that assume independence among SNPs (Chung et al., 2014), can
use a direct posterior probability approach (Newton et al., 2004) to control global false
discovery rates for Bayesian hierarchical models. There is another class of methods
within this realm that partition the genome into blocks that are assumed to be
independent between each other but not within. They control FDR at the locus-
level to identify loci of interest by calculating a common posterior probability
within each locus (Wen, 2016; Wen et al., 2016) to be followed up by the direct
posterior probability approach (Newton et al., 2004). This technique seems appropriate,
compared to others, because it takes information that we know about the human
genome and GWAS studies and treats each locus as the unit in the analysis, but
does not guarantee FDR control within each locus.

Unlike others, GRAD assumes that the SNP effect sizes can be linearly parti-
tioned into an annotation and annotation-free contribution. By adopting the Lasso
within stability selection for feature selection, we provide per-comparison error rate
(PCER) control that showed promising results within our analyses. A technique
that aims for FDR control within the Lasso called SLOPE (Bogdan et al., 2015) has
a strict orthogonal restriction for the design matrix. When used in GWAS data
(Brzyski et al., 2017), the genotype matrix follows strict procedures to pre-select

SNPs. Further inspections of this technique are part of our current plan.
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4.3 GWAS Advances and Future Directions

After more than a decade of GWAS and thousands of associated SNPs, our under-
standing of complex diseases keeps improving, but there is still significant progress
to be made. Early-stage analyses only focus on univariate associations with obsolete
thresholds to account for multiple testing. Such an approach overlooks the potential
gain from incorporating biological knowledge and the joint contribution of SNPs
on a trait. Many statistical advances are aiming to incorporate auxiliary data and
biological processes to better characterize genetic variants. These are extremely
relevant because not only they refine and improve detection but they also take into
account biological mechanisms of association by, for example, adopting multivari-
ate mediation models like iFunMed. Methodologies that use summarizy-level data
usually complement it with LD structures and annotation information (Chen et al.,
2016; Kichaev et al., 2014; Rojo et al., 2019). This is important to characterize joint
effects and boost signals of SNPs in regulatory regions.

Methods that impose strict assumptions on the data such as independence
(Chung et al., 2014), one causal variant per locus (Li and Kellis, 2016; Pickrell, 2014),
or non-overlapping annotations (Yang et al., 2017) are typically computationally-
efficient and they could provide a good first exploration of the data but their
unrealistic assumptions might hinder true discoveries. With increasing advances
in GWAS data, the need for flexible models will become greater. The majority of
existing studies mainly focus on European populations and have modest sample
sizes. For example, after filtering, we only have a little over 2,000 individuals in the

FHS that varies for different phenotypes after removing missing data. We believe
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that with larger sample sizes, both the proposed models will benefit. iFunMed'’s
input summary statistics will be more stable and less dependent on specific subjects
with rare variants, especially if the LD is approximated with a reference panel,
without sacrificing computational time once summary statistics are calculated.
GRAD’s computational cost will be greater compared to iFunMed but it will only
depend on the computation of X" X and X"Y within each round of the Lasso.

Also, it is important to point out that we are limited to the epigenomic informa-
tion that is available to us and our discoveries might be related to other features
within the human genome. With the development of software that predict signed
effects of a SNP on transcription factor binding (Alipanahi et al., 2015; Kelley et al.,
2016; Zhou and Troyanskaya, 2015) and higher quality annotations, the demand
for models that can integrate continuous auxiliary data in an efficient way (Chen
et al., 2016; Rojo et al., 2020) will increase. Annotation sources can also be extended
to single-cell data that hasn’t been explored for this context. For example, we could
construct annotations from ATAC-seq data and summarize weather or not SNPs
overlap with a peak for different cell-types or even accessibility quantifications of
the SNP region within a cell-type.

When more ethnic groups are collected, there will be a need to adapt current
methods or create new ones that account for population structure while utilizing
annotation information. With the flexibility and increasing advancements on the
Lasso, an extension of GRAD to a mixed-effect model to correct for the grouping
structure could be possible (Schelldorfer et al., 2011).

As for now, GWAS seems like only the beginning and the tip of the iceberg. Once
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there are more advances in technology, study design, sample sizes, and epigenomic

information the potential discoveries and possibilities could be endless.
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Figure 4.1: Pairwise LD versus their corresponding univariate GWAS summary
statistics for HDL (Teslovich et al., 2010) for two SNPs with high marginal asso-
ciations using a European ancestry reference panel for LD computations.

(A) 512678919 with a GWAS summary statistics of 22.24 and (B) rs9600212 with a
GWAS summary statistics of 15.69
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A APPENDIX A

A.1 Fitting iFunMed with Variational EM

In this appendix, we provide details on the derivation of the variational EM algo-

rithm for the iFunMed model.

Variational E-Step

The variational algorithm approximates the joint posterior distribution by a product

of lower dimensional functions using factorized distributions as
P P
q(te,sp,8) = q(8)q(te) [ [ alse;) and q(ts,se) = q(ts) ] [ alss;),
j=1 j=1

where ¢(-) is an arbitrary density function that generates a q—dependent lower
bound on the marginal likelihood by minimizing the Kullback-Leibler divergence
between the posterior density and q. It considers the expectation with respect
to the parameters in their corresponding factorized form of the full log posterior
distribution for minimizing. In what follows, E, 1, (L) represents the expectation
of L over distribution a, excluding the distribution of variable b, and qV(-) is
the current variational estimate of the posterior distributions of each component.
Moreover, the parameters ((726, ()'%,VB,VB,YE,‘YE) are in fact estimates from the
previous iteration, but we will drop the superscript (t) for the ease of notation.
Next, we layout the updating steps of each component, which will iterate until

T
convergence. For the DEM, we update T3, 0, and sg. Let wg) = (wgi, o .,wg,ij)
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forj =1,...,p denote the posterior inclusion probability of the elements of 3 from
the last iteration, and Wé = diag (wﬁ ) The resulting posterior distribution of

Tp from Eju) . (Lpem) follows a normal distribution

t8lq'" ~ N(uy,, Va,),
where n,, = Kg'Wi(Zy — wsZg), Vo, = 02K, and Kz = W'ZW
diag(X) {Wg) — <W( )> } +v'I,. Here, s is the posterior mean of & from the last
iteration and Kg is a p x p matrix. Next, from the computation of Eqo,—s (Loem),

we update the variational posterior distribution of & as

N

VAR A AR TV
6NN(H5/0'(25)W1’1€1‘€O%:jt—flandp(g: G Y~71G p M
Z5r Zs 715 'z¢

Finally, the variational posterior distribution of the variable sg; derived from

(t+1)

E, o (Lpem) is a Bernoulli distribution with P(sg; =1) = Wi where

9+, =5,

. 1 (-
lOglt <Wﬁt;rl)> = loglt(ﬁﬁ,j) — F {Z)’,j (LL,ZEBJ + V"ijfj> — ZuTM- [ZY,]’ — H(SZG,)'

(t) (t)
ZJ —j (”TB —j O Wp,— ﬂ +2 (Z’ - OVTB’j’_j) Wf"*j}'

For the GEM, we update tg and sg. Similar to the quantities in the DEM, let
T

w](;) = (wg&, . -/W1(3t,1)o) forj =1,...,p denote the posterior inclusion probability

of the elements of B from the last iteration, and W](3 = diag (WB ) We first update

the posterior distribution of Tg by computing E ) ., (Lgem), which follows a
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normal variational posterior

Telq' ~ N(pr,, Vo),

where p., = Kglw](;)ze, V., = G%lKgl, and Kg = W](;)ZW](;) +
- 2

diag(X) {w{;) — <W,(3t)> } + vg'I, is a p x p matrix. From Eq0,—sp, (Leem), we

update the variational posterior distribution of the signal sg ; which is a Bernoulli

distribution with P(sg; = 1) = w](;]?m, where

. ) 1 (=
logit <w](3t,]f1)) = logit(mg;) — 557 {Zj,j (M2, 5 4 Vapij) — 20, [ZGJ-

n

(t - (t)
“Ej g (e 0wl )| #2055 5 Vg wi)

Variational M-Step

Following the variational E-step, we obtain point estimates of the hyperparameters

in the variational M-step as:

1 T & ~—1
O—n = m {(HTB OWB) z (u’CB OWB) —ZZ—IC; (HTB OWB) _{’qug_Z ZG

+wg (£0Vy,) wg + diag(Z)" (W — W3) [uZ, + diag (V<,)]},
> ) Wa; (Hig,j + VTBJJ)

0-12]|WB|1

N

VB

7

where |x|; denotes number of non-zero elements of x. We update yg by maximizing

P
Q (YB |q(t+1)) _ Z [WB,]-A).T)/B —log (1 + exp (A)-TYB))] .

j=1
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Similarly, we get point estimates of 0%, v and y; as follows:

I I ~ ~

+w} (£ 0V,,) wg + diag (£)" (Wg — W3) [p.iﬁ + diag (VTB)]
+ (12 + 03) ZEE ' Zg + 2usZE Wen,, — 2pézgi’1zY},

P (t+1) 2
-1 W, (”w T VTM’J’)

UZJWBH

Vg =
We update vy by maximizing

P
Q(vpla™™) =D [wpiAfvs —log (1+exp (Afvg))]-

j=1

A.2 Pre-processing of Framingham Heart Study Data

Genotypes, expression levels, and phenotypes were acquired from the Framing-
ham Heart Study (FHS) using project number 8158 and dbGaP study accession
phs000007. Genotypes were obtained from the SHARe substudy (phs000342) that
used the [llumina HumanOmni5M-4v1 array for genome-wide genotyping array of
4,271,233 SNPs from the human genome version GRCh37 (hg19). FHS included
expression data from whole blood RNA for different cohorts from the Systems
Approach to Biomarker Research in Cardiovascular Disease (SABRe CVD) study
(phs000363) that utilized Affymetrix Human Exon 1.0 ST Array. 284,558 core probe
sets (exons) were annotated using the Affymetrix annotation file resulting in 17,873

hg18 transcripts, 15,004 of which were successfully mapped to hg19.
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A total of 1,667 subjects had both expression and genotype data. All of these
subjects are from the offspring cohort and their phenotype information was acquired
from clinical exam 5 in the case of factor VII and von Willebrand factor, exam 7 for
fasting glucose, exam 8 for HDL, and exam 9 for red and white blood cell count.
Based on initial exploratory analysis, we log transformed fasting glucose, HDL,
and white blood cell count measurements.

Preprocessing of the genotypes was performed with PLINK v1.9 (Chang et al.,
2015; Purcell et al., 2007) and the SNPs were filtered following the guidelines in
(Roshyara et al., 2014). SNPs with call rates < 95%, that were discordant with
Hardy-Weinberg equilibrium (HWE p-value < 107°), and with minor allele fre-
quency (MAF) small than 1% were filtered. After removing non-autosomal chromo-
somes, indel and repeated SNPs, a total of 2,478,340 SNPs remained for imputation.
IMPUTE2 v2.3.2 (Marchini and Howie, 2010; Marchini et al., 2007) with one phased
reference panel from 1,000 Genomes (phase 3) and a probability of 0.9 as threshold
for calling genotypes resulted in 2,244,466 SNPs. Genotypes were recoded to an

additive format (0/1/2) using the --recode A option from PLINK.

A.3 Procedure for Identifying Candidate Mediators

In order to define potential mediator genes, we followed the guidelines provided
in (Baron and Kenny, 1986) with some modifications to adapt to the fact that we
consider multiple SNPs at the same time. Specifically, we applied the following

three steps:
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1. Identify SNPs significantly associated with the phenotype. We assessed uni-
variate association between the phenotype of interest and the genotype
as Y ~ SNP;, j = 1,...p. This translated to considering regions of the
genome that showed moderate to high GWAS signal (at least one SNP with
—log,,(p-value) < 4). We formed windows around such SNPs to consider

regions of size 2 Mb approximately.

2. Identify potential mediator variables significantly associated with the phenotype. For
each gene within regions from step 1, we calculated univariate association
between the expression of the gene and the SNPs in that region as G ~
SNP;, j =1,...p. We reduced the set of candidate genes by considering
only those that showed high and dense signal (at least a couple of SNPs with

—log,,(p-value) < 8).

3. Identify potential mediator variables that significantly associate with the phenotype
adjusted for the genotype effect. For the genes with eQTL signal from step 2, we
fitted Y ~ SNP; + G, j =1,...p and required that G remained significant,

for at least one SNP within the region.

Finally, we remark that the final selection of mediator genes was further subjected
to visual inspection by paying attention to cases that were at the boundary but
didn’t pass the threshold from step 2 and setting a more liberal significance level in
step 3, if necessary. We further note that majority of the candidate mediator genes
arising from this procedure (Table 2.2) also exhibited gene-trait associations based

on TWAS results of (Gusev et al., 2016) available at http://twas-hub.org/.


http://twas-hub.org/

A4 Supplementary Figures for “iFunMed:
Integrative Functional Mediation Analysis of

GWAS and eQTL Studies”
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RPNW,A~O

B GWAS Statistics ~ A BeQTL Statistics~ Ay

Figure A.1: Heatmaps for —log,, transformed p-values from the univariate asso-
ciation analysis of GWAS and eQTL summary statistics with individual anno-
tations.

Rows depict a list of 209 epigenomic annotations from 4 activation histone marks
from the Roadmap Epigenomic Project (Roadmap Epigenomics Consortium, 2015).
Left column for each panel corresponds to p-values (—log,, transformed) from
univariate association analysis of GWAS summary statistics and individual an-
notations, i.e., Zy ~ Ay, and right column to univariate association analysis of
eQTL summary statistics and individual annotations, i.e., Zg ~ Ay (k =1,...,209).
Results depicted are for Red Blood Cell Count as phenotype. (A) NINJ1 as mediator
and (B) EVAIC as mediator.
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Figure A.2: Proportion of SNPs with annotations.

Proportion of SNPs with annotations, i.e., with corresponding entry of the A ma-
trix equal to 1, across the 209 annotations considered. Annotations used in the
simulations are boxed in black with their corresponding labels.



89

>
W

751 300

c
2
g
2 s50-
= )
: §200
‘é . 4@
[od 2
% 25- 0 5
£ . 3 . .
S E ' )
S = 100 ! . : :
[} L} .
H F L L
g
o L L
£

-25+ 0

Al A2 A3 A4 A5 DEM GEM
Annotation Used for Simulated Data
EZMild Effect®Strong Effect Ewo.AnnEBw.Ann
AUPR: 0.56 (w.Ann) - 0.50 (wo.Ann) AUPR: 0.31 (w.Ann) - 0.23 (wo.Ann)

1.00- 1.00

0.75- 0.75
o c
] o
8§ 0.50 2050
g ol
o o

0.25- 0.25

0.00+ 0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Recall Recall

—wo.Ann—w.Ann

Figure A.3: Simulations for comparing iFunMed fits with (w.Anno) and without
annotation data (wo.Anno).

(A) Percentage change in the area under the precision-recall (AUPR) curves with
the use of annotation across fits for all the 54 simulation settings. The total set of
annotations (54 x 5 settings) are stratified by the annotation effect sizes vz and y.
PR curves are obtained by thresholding the total effect estimates. (B) Boxplots of
numbers of iterations until convergence across simulation replicates. (C, D) PR
curves for simulation scenarios with a mild annotation effect (v, v = (—4.5,2)),
02 = 07 =1 and & = 0.05, using annotation A5, and varying effect size variances.
(©) vg = v = 100 for strong and (D) vg = vg = 20 for weak effect sizes of the
SNPs.
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Figure A.4: Area under the DEM and GEM ROC curves from simulation settings
with a mild annotation effect (yg, yg = (—4.5,2)), 02 = 07 =1 and & = 0.05, us-
ing annotation A5, and varying effect size variances.

(A, B) ROC curves for the direct effect model (DEM). (C, D) ROC curves for the
gene effect model (GEM). (A, C) vg = vg = 100. (B, D) vg = vg = 20.
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Figure A.5: Area under the DEM and GEM PR curves from simulation settings
with a mild annotation effect (yg, yg = (—4.5,2)), 02 = 05 =1 and 6 = 0.05, us-
ing annotation A5, and varying effect size variances.

(A, B) PR curves for the direct effect model (DEM). (C, D) PR curves for the gene

effect model (GEM). (A, C) v = v = 100. (B, D) vg = v = 20.



92

=15 = % ®
e I (I = -
7 10 g &1 :
o m 2 ® aats b -l\g"-,-',u 5
E 05 Z I s Dt -
c I I I I I I 112.5 113.0 1135 114.0 114.5
E go{——H N _ _H_ m -_ Genomic Position (MBP)
S 15
Sl C
Wio ® =15 ®
3 m 310 e -
S 05 < 25 e
T ] I--I I Lo, R 1S e e -‘“‘ﬂ"*&
0.0t=— =—t= — - 112.5 113.0 1135 114.0 1145
Genomic Position (MBP)
D,. E
R e 3
i 10 o S
o I I E _IO g
B btealhlls 1 i, 1L
@ 47 48 49
E 0.0 II- Ill--II__I lllllll II i b _REl II Genomic Position (MBP)
G 15
e .
w 1.0 0 =6
< P
S allunsnall | Lhall #
T 00 II I IIIllI I-l-ll.lllllllll IIII LI ro
E s ] z\:;
Lo g 5
£ sl L
£ oo hhseratlnllils I_ il
215 |
TP [ T ~50 Ly
Wio @ =270 .
E] m 530 -
S b=
0.5 < 2 %8 R
£l 1. M. plll. R e i,
0.0 e — 33 34 35
Genomic Position (MBP)
_______________________________________________ =~ 3
) C
7 10 o)
o m = RS T
508 I I = 135 ‘ 136 137
@
E 0.0 I--lIII IIIIIIIIIIII nal Ill III“I'IIIII .,l._l.ll...lll. Genomic Position (MBP)
O [ L o o o o -1 L
g o =1 3
S 05 | | o o=
o 0. 2 4
5 ool il |V [y ISR B
- 0
YL |.||||II|I-I|||III||II.III anll I I II.I|||I il 155 156 157
Genomic Position (MBP)
[l Adrenal/Pancreas [l Cardiovascular [l CNS [l Connective/Bone [l Gastrointestinal 01
Immune/Hematopoietic | Kidney M Liver [ Other |1 Skeletal Muscle

Figure A.6: iFunMed results for fits that the annotation screening did not identify
any enriched annotations.

(A, D, G,]) —log,, transformed enrichment p-values for annotations with more than
5% of loci SNPs with the annotation. Dashed line represents marginal significance
level of 5%. (A) TMCO3 as mediator, (D) MSH6 as mediator, (G) ITSN1 as mediator,
and (J) RALGDS as mediator. (B, C, E, F, H, I, K, L) Manhattan plots for the GWAS
(B, E, H, K) and eQTL (C, F, I, L) input summary statistics. SNPs highlighted in
purple are selected by the null model whereas gray SNPs are not selected using
posterior probability of inclusion cut-off at 0.5. (B, C) TMCO3 as mediator, (E, F)
MSHG6 as mediator, (H, I) ITSN1 as mediator, and (K, L) RALGDS as mediator.
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Figure A.7: iFunMed results for log transformed Fasting Glucose with P2RX1 as
mediator.

(A) —log,, transformed enrichment p-values for annotations with more than 5% of
loci SNPs with the annotation. Dashed line represents marginal significance level
of 5%. Annotations used for the fits are significant at FDR of 10% and are marked
with asterisks. (B, C) Manhattan plots for the GWAS and eQTL input summary
statistics, respectively. SNPs highlighted in blue/red represent SNPs with large
changes in their posterior probabilities of inclusion across the two iFunMed fits
(with and without annotation). Blue SNPs are selected with the use of annotation
whereas red SNPs are excluded, and the status of the purple (selected) and gray
SNPs (not selected) do not vary between the two fits.
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Figure A.8: atSNP (Shin et al., 2018) composite logo plots for SNPs that are iden-
tified only by the use of annotation.
The composite logo plots compare the best matches of TF motifs to the DNA se-
quences overlapping the SNP positions with the reference and SNP alleles to hy-
pothesize potential gain- or loss-of-function with atSNP p-value cutoff of < le .
(A) rs76395158-SRF pair from the model using P2RX1 as mediator, suggesting po-
tential loss-of-function. (B) rs117071988-NR5A2 pair from the model using P2RX1
as mediator, suggesting potential gain-of-function. (C) rs1075581-NFE2L1 pair from
the model using IL32 as mediator, suggesting potential loss-of-function.
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Integrative Functional Mediation Analysis of

GWAS and eQTL Studies”

Label Cell-type Histone Mark  Tissue Group Proportion
Al Gastric H3K4me3 GI 0.014
A2 Peripheralblood Mononuclear Primary H3K9ac Immune/Hematopoietic 0.036
A3 Adipose Nuclei H3K4me3 Other 0.050
A4 CD8 Memory Primary H3K4mel Immune/Hematopoietic 0.098
A5 Hippocampus Middle H3K4mel CNS 0.147

Table A.1: Details of the annotations used in the simulations. “Proportion” refers to
proportion of SNPs residing in the peak regions, i.e., candidate regulatory regions,
of the underlying histone mark.

Type I Error Power
Al A2 A3 A4 A5
Mild ~ Strong | Mild Strong | Mild  Strong | Mild  Strong | Mild  Strong
DEM 0.047 0.089 0.136 | 0256 0.286 | 0.383 0.450 | 0.447 0539 | 0.617 0.722
GEM 0.049 0.125 0.108 | 0.206 0.300 | 0.378 0.475 | 0.522 0578 | 0.672 0.736

Table A.2: Evaluation of annotation screening for Type I error control and power
with simulations for direct and gene effect models. The null hypothesis (H, :
No annotation effect) considered 18 simulation settings where annotation effect
sizes were set to 0 (v, vg = (—4,0)). For the remaining 36 simulation settings, the
alternative hypothesis was true and included scenarios with a non-zero annotation
effect (mild or strong). Within each simulation setting, we used five different
annotations and generated 20 datasets. For each dataset, we calculated enrichment
p-values for all annotations used for the simulation for direct () and gene (pz)
effect models and thresholded the Bonferroni corrected p-values at 5%.
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Mediator # Annotations # of Selected Annotations

Phenotype Gene after Filtering =~ DEM GEM
Locus 1 Factor VII TMCO3 41 0 0
Locus2  White Blood Cell Count (log)  MSH6 53 0 0
Locus3  Red Blood Cell Count NINJ2 73 0 1
Locus 4 Red Blood Cell Count EVAIC 59 0 2
Locus 5 Red Blood Cell Count ITSN1 59 0 0
Locus 6 Von Willebrand Factor RALGDS 81 0 0

Table A.3: Results of the annotation screening, including the total numbers of
candidate annotations for each locus after filtering out annotations with less than
5% of overlap with the locus SNPs.



TMCO3 Tocation  Model
kgpl0717896 112573998 DEM
rs2181540 113,753,164 DEM
kgp9453357 113,759,526 DEM
15488703 113,770,876 DEM
kepl387232 112,877,768 GEM
rs1536678 113095947 GEM
kgp12297185 114,131,289 GEM
kgp2036972 114154230 GEM
kgpd645137 114,164,811  GEM
kgp525215 114,173,204 GEM
MSHG6 Tocation _ Model
Kgp3063860 47,004,949  DEM
kgp2682188 47,095,636  DEM
kgp2427793 47,103,998 DEM
kgp11431633 47,182,740  DEM
rs17481182 47,223,522  DEM
kgp11283959 47,226,640 DEM
kgp2688517 47,477,578  DEM
kgpd611764 47555232  DEM
kgpl2183625 47,819,972 DEM
rs6716984 47,863,075 DEM
rs17504691 47,871,470 DEM
rs2348719 48408487 DEM
kgp6493984  48,815977 DEM
kgpl0514201 48,887,051  DEM
kgp9736999 49,138,080 DEM
kgp7392282 49,250,623 DEM
kgpl54300 49,568,675 DEM
kgpl0248994 49,568,756 DEM
rs10865241 49,697,619  DEM
1s7586000 47,098,968 GEM
kgpl0038202 47259497 GEM
kgp738041 47,726,765 GEM
rs1863334 47,790,611 GEM
kgpl0844215 47,823,379  GEM
kgp255139 47,961,712  GEM
15330787 48,041,377  GEM
rs4583515 48,177,487 GEM
kgp8128499  48,624433  GEM
kgp9184078 49,003,681 GEM
kgp9692670 49,011,274  GEM
kgpd392460 49,027,304 GEM
kgp1901800 49,079,247  GEM
rs7563889 49,129,890 GEM
kgpl0252206 49,558,562 GEM
kgpd555932 49,688,295  GEM
TTSN1 Tocation _ Model
kgp8102103 33,235,336 DEM
kgp3044871 33,256,005 DEM
kgp5757773 33,334,632 DEM
kgpl163247 33,895,682 DEM
kgpd934738 33,910,920 DEM
kgp349380 34535884 DEM
rs2834178 34,677,391 DEM
kgp2131229 34783522  DEM
kgp12140722  35207,719 DEM
kgp6697616 35,407,829  DEM
kgp9934392 33,083,774 GEM
kgpS64488 33,356,500 GEM
rs8134098 33,383,368 GEM
kgp4d50304 33,609,279  GEM
kgpl811605 33770584 GEM
kgp9l49520 34,971,300 GEM
kgp2881149 35029572  GEM
kgpl1178917 35,127,360 GEM
kgp7266158 35204420 GEM
kgp8478798 35430916  GEM
RALGDS Tocation  Model
kgpB40600 134,743,431 DEM
kgp27492383 134,974,875 DEM
kgp8852139 135033545 DEM
kgp5352959 135,152,029 DEM
kgpl676062 135231526 DEM
kgp5859342 135,842,732 DEM
kgp1276914  135962,024 DEM
rs7044834 136040899 DEM
rs8176704 136135552 DEM
1505922 136149229 DEM
kgp7665392 136365210 DEM
kgp3389780 136,412,638 DEM
kgp5046126 136,637,867 DEM
rs9409863 136,643,239 DEM
kgpl498770 136,769,545 DEM
kgp7940722 136,783,505 DEM
kgp6740746 136,935,656 DEM
kgp170487 137337974 DEM
kgpl0327190 135312230 GEM
1510122574 135365135 GEM
1511243956 135840945 GEM
1509064 135954310 GEM
kgp11339176 135,974,100 GEM
kgp12147077 136105515 GEM
kgp9105822 136,162,255 GEM
kgp6406543 136,451,851 GEM
1s28404378 137,038,257 GEM
kgp11596945 137,167,572  GEM
15877954 137326408 GEM
kgp6885766 137,369,131  GEM
1511791555 137,408,867 GEM
kgp11976262 137,496,884 GEM
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Table A.4: List of SNPs selected in the iFunMed fits with a posterior probability of
inclusion threshold of 0.5. The annotation screening did not identify any enriched
annotations for the listed candidate mediators; therefore, iFunMed results from fits
without annotation (null model) are displayed.
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Phenotype Mediator Gene  Chrom Start End #of SNPs # of Subjects
Fasting Glucose (log)  IL32 chrl6 1,616,201 4,617,621 1,948 1,501
Fasting Glucose (log)  P2RX1 chrl?7 2,300,929 5,319,808 2,581 1,501
HDL (log) CDA chrl 19,375,841 22,485,337 2,386 1,661
HDL (log) PSD4 chr2 112,392,625 115,500,323 2,225 1,661
HDL (log) ILIRAP chr3 188,694,749 191,913,088 3,308 1,661
HDL (log) ASGR2 chrl?7 5,467,424 8,557,608 3007 1,661
HDL (log) IGFLR1 chr19 34,691,449 37,747,799 2,180 1,661
HDL (log) APMAP chr20 23,405,281 26,309,255 1,857 1,661

Table A.5: Details of loci considered for the mediation analysis of the FHS pheno-
types fasting glucose and HDL.

# Annotations # of Identified Annotations

Phenotype Mediator Gene  after Filtering =~ DEM GEM
Fasting Glucose (log)  IL32 139 3 0
Fasting Glucose (log)  P2RX1 109 0 5*
HDL (log) CDA 91 0 0*
HDL (log) PSD4 48 0 0
HDL (log) IL1IRAP 12 1 0
HDL (log) ASGR2 115 0 0
HDL (log) IGFLR1 124 0 0
HDL (log) APMAP 54 1 0

Table A.6: Annotation strategy results for FHS phenotypes fasting glucose and
HDL. Cases in asterisk denote loci with an elevated signal in either GWAS or eQTL
(—log,,(p-value) > 20) and low density from which 0.5% of the SNPs were trimmed
to remove outliers.
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Mediator Enrichment
Gene Model  Tissue Mark Cell-type p-value
1L32 DEM Immune/Hematopoietic =~ H3K27ac CD3 primary 0.002
1L32 DEM Immune/Hematopoietic =~ H3K27ac ThO 0.001
1L32 DEM Immune/Hematopoietic =~ H3K27ac Thl 0.002
P2RX1 GEM Cardiovascular H3K4mel Fetal heart 0.001
P2RX1 GEM Skeletal Muscle H3K4mel Fetal trunk muscle 0.001
P2RX1 GEM Cardiovascular H3K9%ac Fetal heart 0.002
P2RX1 GEM Other H3K9ac Penis foreskin keratinocyte primary 0.003
P2RX1 GEM GI H3K27ac Duodenum mucosa 0.004
ILIRAP DEM Immune/Hematopoietic =~ H3K27ac CD19 0.007
APMAP DEM CNS H3K4mel Fetal brain 0.000

Table A.7: Details of the annotations that were identified for the FHS phenotypes
fasting glucose and HDL by the annotation screening strategy.
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Annotation
IL32 Location Model  Direction CD3 Primary ThO Thl
rs1075581 4,135,898 DEM 0Oto1(1) 0 1 0
Annotation
P2RX1 Location Model Direction Heart Trunk Muscle Heart Keratinocyte Duodenum
r$9652825 2,314,074 GEM 1to0 () 0 0 0 0 0
rs7219019 2,633,324 GEM 1to0 () 0 0 0 0 0
kgp23896402 2,908,975 GEM 1tol(—) 1 1 0 0 0
kgp3755826 2,937,617 GEM 1tol(—) 1 1 1 1 0
rs76056301 3,514,954 GEM 1to0 () 0 0 0 0 0
rs224498 3,519,954 GEM 1to0 () 0 0 0 0 0
kgp3692495 3,774,014 GEM 1tol(—) 1 1 1 0 1
kgp2113525 3,790,498 GEM 1tol(—) 0 1 0 1 1
kgp11900618 3,800,995 GEM 1tol(—) 0 1 0 1 0
rs8076916 3,822,637 GEM 1tol(—) 1 1 1 1 1
kgp10137990 3,822,926 GEM 1tol(—) 1 1 1 1 1
kgp9641039 4,353,359 GEM Otol(—) 0 1 0 1 0
rs76395158 4,458,005 GEM 0Oto1(1) 1 1 1 1 0
rs117071988 4,502,386 GEM 0Oto1 (1) 1 1 0 0 1
rs1050997 4,641,755 GEM 0to1(1) 0 1 0 0 1
Annotation
ILIRAP Location Model  Direction CD19
kgp9044897 188,819,337 DEM 1tol(-) 0
kgp5564150 188,952,988 DEM 1tol(—) 0
rs1515490 189,596,855 DEM 1to0(—) 0
152378570 190,154,740 DEM 1tol(—) 1
rs7641416 190,861,768  DEM 0to1(1) 1
kgp7767169 191,001,699 DEM 1tol(—) 1
rs13059172 191,348,064 DEM 1tol(—) 0

Table A.8: List of SNPs selected in the analysis of FHS phenotypes fasting glucose
and HDL. SNPs are labeled as 0 to 1 ((1) direction) if they are selected only with the
use of annotation and as 1 to 0 ((}) direction) if they are excluded from the iFunMed
fit with the use of annotation by thresholding poterior probability of inclusion at
0.5. SNPs selected with and without annotation are labeled as 1 to 1 (—). APMAP is
not shown since there were no selected SNPs. Details of the annotations included
for both models (DEM and GEM) at the individual SNP level are also displayed.
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B APPENDIX B

B.1 Supplementary Text for “High dimensional
sparse regression with auxiliary data on the
features”

In this section, we provide the upper bound for the estimation error of 3. For
simplicity of proof, we assume that the model does not have additional covariates
X to adjust for. When there is a need to adjust for X, all the assumptions on G in
the following proof should be modified into assumptions on (I — X(X"X)~1XT)G

and all other parts of the proof remain the same. Our model setting is
Y =GB +e, (B.1)

B=Ay+n, (B.2)

where Y and G are centralized to have mean zero so no intercept is needed in the
regression model. Denote Z = (GA,G), W = diag(Z"Z)"/? and Z = ZW ! as the

standardized Z so that the column 1, norm of Z is one. Then we have

Y:GAy+Gn+e:ZG+e
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where 6 = W(y",n")T. Our estimators for y and 1 are obtained through the

following optimization:

—~ 1 ~
0 = argmin {Z_HY_ ZGII% + )\HeHl} ,
) n (B.3)

~

' AT =w'e

Suppose G = (Gy,...,Gp) and A = (A4, ..., A ). Define the following constants:

!G.TG]-I
Ug = max ——— B.4
¢ = mael Gk B4
1
max — —— G B5
T max \/ﬁll ill2 (B.5)
1
min — in —||G; B.6
T min \/HH ill2 (B-6)
IA-TA)-I
Ha = max ————— B.7
AT mE R TAR B7)
AX
« = max|IAll = Al = sup 12X (B.5)
j o Ixlh
Kmin = mjin HA] HZ (B9)
Kmax — mMmMaxX HA] HZ (BlO)
)
Ko = max|Ajl (B.11)
1)

For any vector x, denote S = {i : x; # 0} as the support set of x, and s, = #S as

the number of nonzero elements of x.

Theorem B.1. Suppose y and 1) are obtained using (B.3) with

A =2Coy/log(p +m)/n (B.12)
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Then, under the condition of

n<1/(4(sy +sq)—1) (B.13)
with probability at least 1 — 2(p +m)'~"/2, we have
N 6CC, \/02(sy+sn)log(p+m)
—Bl, < B.14

where

- (Tmax/Tmin)z(uG K% + 29 Kgnax) (Tmax/Tm1n)2(PLG K1 + Koo)
UL = maX 5 — 5 rHG (s
Kmin e Kl \/Kmm UG Kl Tmax/Tmm)

. _ {\/ 1+ pa(m — 1)) 1 }
2 = Mmax 2 5 .
TmaxK m1n — HUGT max K1 Tmin

Proof. Seth = 8 — 0 and let Sy, be the set of indices of the largest s values of h. By

definition of @, we have

1 ~ ~ 1 ~ ~
Solle— Zh|3 + A6l = SllY = 20|53 + Mi6l;

1 = 1
< EIIY—ZGIE + A6l = %Ilellﬁ + AllBll,
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which gives us

1 = 1 ~
orlle— Zh|f; — Rll(—:ll% < A6l —116ll)

= 7\(Hesupp(9)||l - ”esupp(a)Hl - ||esu'p'p(9)C - esupp(ﬁ)cul)

N

)\(Hhsupp(e)”l - ||hsupp(9)CH1)

< AMllhs, [l = [[hse ).

(B.15)
Define event
~ A
A= {IIeTZIIOO < “—}.
2
So under event A,
1 ~ 1 1, =~ ~
S—lle = ZhiE — —llel} = S-lIZnjE— e Zn/n
n n n (B.16)

1 = A A
> — E”e—rz”oloHl > —5lhll = =7 (s, [+ lhsg lly).

Combining inequalities (B.15) and (B.16), we have
Ihsells < 3lhs, [|h-
Therefore, under event A,

Ihse |3 < IhselhlMselloo < 3lhs, Il - s, [li/s < 3lhs, [5. (B.17)
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Next, we will prove that

maxIZiTZj! <, (B.18)
i#j
where
1L = max Tr2nax(l‘LG K% + HaA Krznax) Trznax(llG K1 + Koo) e
T%nin K%nin - HGT%nax K% Tmin \/ Tfnin Krznjn - HGTrznax K%
In fact,
max|(ATG'GA)jl < max Z Ari(GT G 1Ay
i a2 v
G, Gl )

< maxZIAk-IIAl-I—nT
D P TN TN M

N

max {n’rfnaxug Z IAwillAg] + N Z |AKi AL ’}
KAL K

»  IATA
PENARAAS ]2

N

max {annaxHG||Ai||1||A5||1 +nt ||Ai||2||Aj||2}

N

2 2 2
nTmax(p’G K] + }‘LAKmax)/

min || GAf; =| D GiAulE =) lIGl3A% + ) (G, Gi)AwiAL
ko K kAL

> min 1G[3 - ; AL — max 1Gx|3HG - kZ# AiAn

21’LTIZnin ||A1 ||§ - nTIZnaqu ||A1||%

2 2 2 2
ZNT 0 Kmin — TG Trax K1

min "min max



Thus,

|(ATGTGA)1)| iax(uGK% + HAK%nax)

max 2

i# [(GA)i[2ll(GA)s ]2 ~

II‘lll’I mm l’l’ G max

max |(G"GA)i;| < max G'G)ikllAx;
ax(GTGA)| < max 3167 G)uxllAw

G{ Gyl
< max nt . [Axjl 4+ Nt Ayl
{ ZHG LlIGkl2 "™ ’

< max {ntZmcllAlh + Nt Ay}

< nTrznax(p’G Kl + KOO)/

thus,

|(GTGA)1]| < T?nax(p'GKl + Koo)
TGl - 1GAY [ Tmin V/ Tonin Knin — MG Tonan K3

Therefore,

L 2]z
max |Z. Z;| = max —
iz o) i ||Zy ||z||Z||2

:max{ I(ATGTGA)y;l [(GTGA)y,l (GTG)yl }

maXx , MaXx ,max
i# [HGA)[2l(GA) 1" 13 [IGill2 - [(GA); 1" 15" [IGill2lIGsl2

gmax{ Tonax (M6 KT + HAK ) Tonax (G K1 + Koo ., HG} —u

2 2 2 27
Tm'm Kmin "LG Tmax Kl Tmin \/Tiﬂn Kfnm HG Tmax Kl
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and we have (B.18). As a result of (B.18), we have

1Zhs, 1B = Y Y (Z7Z)i;hihy

i€SH jESH

> > (Z'Z2);ihi— ) ulhhyl
ieSh 1,jESH,i#]

> th w(llhs, IF — IIhs, 13)
ieSy

> |[hs, |} — u(s — Dllhs, I3

> (1—p(s —1)lhs, Il

and
M Z Zhs,| = 1) Y (Z7Z)ishihyl
ieSnjeSy
< Z Z uihillhyl = wllhs, [llhse s
"LES}L]'ESf1
< 3plhs, [} < 3splhs, |3
Therefore,

h'Z"Zhs, > ||Zhs, |} — |hg, zTZhsh|
(B.19)

> (1—p(4s —1)) s, |3

On the other hand, according to the KKT condition of optimization (B.3), we have
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IIZT (y— Z§)Iloo < nA. Therefore, under event A,

h'Z"Zhs, < |IZ"Zh|,/lhs, |l

< (M+1Z7ello) Is, I

(B.20)
< (A +nA/2) [hs, |l
3
< Sl
Combining (B.19) and (B.20), we have
3nA/s/2
h ——m———. B.21
sl < T2 (B.21)
Together with (B.17), we have that under event A,
3nAy/s
IRl = (IIhs, [+ Hhs,gH%)l/z < 2/fhs, |12 < T_uds—1) (B.22)
Note that
~ A
) = 1P (120 > )
2y 2 (B.23)
>1-2(p+m)expq— =1-2(p+m)—</2
802
Therefore,
3TL7\\/§ 1_c2
P(lhp< —X"— ) >1-2 /2 B.24
(M < ) 2 12 m) (B.24)

Next, we develop the upper bound for 3 —  based on the upper bound of ||h/J,.
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Note that for any vector v € R™,

IAVIE < Y VAR + D vivillA] Ay
i i#j

< K VIB + akZa Y villyjl
i#

N

K2 (IVIB + A (IVIE — IVI))

< 2o (1+ pa(m—1))vIE,

so that ||A|| < Kmax \/1 + pa(m — 1), where ||A]] is the spectrum norm of matrix A.

Therefore, under event A,

1B =Bl =IAF—v) +1 —nl = A TW1(8 — 0)|»

di GA);ll; hm
= iy [ReGARRTE) Il
diag({[|Gi[l,"}7_,)

< max { Al max{l|(GA)ill; "), max||Gill;* } - [z

3nAy/s max{\/ K2, (14 pa(m—1)) 1 }
)

U
S 1—p4s—1 N2, K2 —NMUGTE K2 VM i

max ' ~min max

/slog(p +m) 1 K (1 +pna(m—1)) 1
< . . .
N n T-pas—1) "\ 2 — 1 T2 K2 Tmin

max ~min

]

The constants j1g and pa characterize the orthogonality of columns of G and
A respectively. If the columns of A are normalized to have {, norm of one, then

Kmax = Kmin = 1, and k; characterizes the sparsity of the column vectors of A, and
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Ko Characterizes the concentration of values within A. If the columns of G are
normalized to have ¢, norm of one, then Tp.x = Tmin = 1. 1t in Condition (B.13)

becomes

1—pgk} ’ V1—pgk? ’

The requirement of small pu in Condition (B.13) indicates that aside from a well

2
u:max{(“GKl +ua) (HeKi + Keo) uc}-

conditioned G, we also need a well conditioned A with sparse columns and values
not concentrated on a few entries. Here are a few examples of A that would violate

Condition (B.13):
1. A; and A; are colinear, so that ua > A A; is large.
2. Ay =(1,0,...,0), so that Kk is large. In this case, GA; and G; are colinear.

3. Ay =(1/\/p,...,1/4/P), so that k; is large. In this case, the annotation A; is

not informative.

Denote V = diag(GTG)/2and G = GV as the standardized G so that the column

¢, norm of G is one. Denote & = V3. Then we have
Y=G58+e.
Theorem B.2. Consider the estimation of 3 using B = V16 where § is obtained using

~ 1 -
b :argmin{—llY—Géll%—f—?\llélll} (B.25)
s 2n
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with
A =2Co/logp/n. (B.26)
Then, under the condition of
1
<—, B.27
He 4s; — 1 ( )
with probability at least 1 — 2p*~<*/2, we have

~ 6C/Tmin o2sp logp
— < . .
1B —Bll2 < 1_%(486_1)\/ - (B.28)

Comparing Theorem 1 and Theorem 2, the rate of estimation error bound is
much smaller using annotations when f is much larger than s, + s,; < sg, which

indicates that effect of genotype on phenotype is largely through the annotations.
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B.2 Supplementary Figures for “High dimensional
sparse regression with auxiliary data on the

features”
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Figure B.1: Simulation results comparing fits and without annotation in terms
of area under the receiver operating characteristic curve (AUROC).

(A) Percentage change in the AUROC for SNP selection across fits with the use
of annotation comparing simulations generated by linear partition and model
misspecification for different proportions of non-zero n and y (pq20 and p, o,
respectively). (B) AUROC for annotation selection (y) for annotation selection
(vY) when the proportion of risk SNPs is 0.04 (p,, .0 = 0.04) across fits comparing
simulations generated by linear partition and model misspecification for different
proportions of non-zero y (p, ). (C, D) GPA comparisons: average AUROC for
SNP selection across 100 simulation replicates and their corresponding error bars
(mean =+ standard deviation) for GRAD and GPA. (C) Data generated using the
GPA liability threshold model (GPA-LTM) . Results are divided by the number of
risk annotations S, € {2,5,8,10}. (D) Data generated using the iFunMed model.
Results are divided by their prior inclusion probabilities with the use of annotation
(no annotation effect, mild annotation effect, and strong annotation effect).
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proportions of non-zero n and y (p,, o and p, o, respectively) divided by anno-
tation effect magnitude (low, mild, and strong).
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Figure B.3: SNP selection precision-recall curves for fits with and without anno-
tation comparing simulations generated by linear partition and model misspec-
ification schemes for different simulation scenarios for low, mild, and strong

annotation effect magnitude p,.

(A) prso = 0.04, pyso = 0.08, and o2 = 150. (B) pyz0 = 0.08, py.0 = 0.05, and

0'2 = 200. (C) Pn#o = 015, Py#0 = 01, and (72 = 150.
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Figure B.4: SNP selection receiver operating characteristic curves (ROC) for fits
with and without annotation comparing simulations generated by linear parti-
tion and model misspecification schemes for different simulation scenarios for
low, mild, and strong annotation effect magnitude p,.

(A) pnro = 0.01, pyxo = 0.05, and 0® = 100. (B) py.0 = 0.04, py4o = 0.08, and
0'2 = 150. (C) p-q7é0 = 008, py7g0 = 005, and O'2 = 200. (D) pﬂ7é0 = 015, py?éo = 01,
and o = 150.
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Figure B.9: Annotation selection simulations results for GRAD and GPA com-
parisons.

For the GPA liability threshold model (GPA-LTM) used for simulations, results
are divided by the number of risk annotations S, € {2,5, 8,10}, and for the iFun-
Med simulations results are divided by their prior inclusion probabilities with the
use of annotation (no annotation effect, mild annotation effect, and strong anno-
tation effect). Results are summarized by area under the precision-recall curves
(AUPR) and area under the receiver operating characteristic curves (AUROC). (A)
Average AUPR for annotation selection across 100 simulation replicates and their
corresponding error bars (mean =+ standard deviation) for GRAD and GPA. (B)
Average AUROC for annotation selection across 100 simulation replicates and their
corresponding error bars (mean =+ standard deviation) for GRAD and GPA.
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Figure B.10: Stability selection results for factor VIL.

(A, B) Stability paths for each parameter included in the model. Colored paths
indicate non-zero estimated parameters. Dashed line represents selection frequency
cutoff of 0.75. (A) Without annotation and (B) with annotation. (C, E) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(C) —log,, transformed p-values from univariate GWAS associations, (D) strength
of the annotation free contribution 1} from the model with annotation, and (E)
strength of the annotation contribution Ay from the model with annotation.
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Figure B.11: Stability selection results for fasting glucose (log).

(A, B) Stability paths for each parameter included in the model. Colored paths
indicate non-zero estimated parameters. Dashed line represents selection frequency
cutoff of 0.75. (A) Without annotation and (B) with annotation. (C, E) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(C) —log,, transformed p-values from univariate GWAS associations, (D) strength
of the annotation free contribution 1} from the model with annotation, and (E)
strength of the annotation contribution Ay from the model with annotation.
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Figure B.12: Stability selection results for Height.

(A, B) Stability paths for each parameter included in the model. Colored paths
indicate non-zero estimated parameters. Dashed line represents selection frequency
cutoff of 0.75. (A) Without annotation and (B) with annotation. (C, E) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(C) —log,, transformed p-values from univariate GWAS associations, (D) strength
of the annotation free contribution 7} from the model with annotation, and (E)
strength of the annotation contribution Ay from the model with annotation.
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Figure B.13: Manhattan plots of von Willebrand factor for the 1,000 SNPs con-
sidered in the analysis.

SNPs are colored by their effect sizes and dashed line represents GWAS traditional
cutoff at p — value = 107%. The upper panel highlights non-zero SNPs that are
captured by the annotation and lower panel represents annotation free non-zero
SNPs. In both cases, gray represents zero estimated effects.
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Figure B.14: Manhattan plots of factor VII for the 1,000 SNPs considered in the
analysis.

SNPs are colored by their effect sizes and dashed line represents GWAS traditional
cutoff at p — value = 107%. The upper panel highlights non-zero SNPs that are
captured by the annotation and lower panel represents annotation free non-zero
SNPs. In both cases, gray represents zero estimated effects.
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Figure B.15: Manbhattan plots of fasting glucose (log) for the 1,000 SNPs consid-
ered in the analysis.

SNPs are colored by their effect sizes and dashed line represents GWAS traditional
cutoff at p — value = 107%. The upper panel highlights non-zero SNPs that are
captured by the annotation and lower panel represents annotation free non-zero
SNPs. In both cases, gray represents zero estimated effects.
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Figure B.16: Manhattan plots of height for the 1,000 SNPs considered in the
analysis.

SNPs are colored by their effect sizes and dashed line represents GWAS traditional
cutoff at p — value = 107%. The upper panel highlights non-zero SNPs that are
captured by the annotation and lower panel represents annotation free non-zero
SNPs. In both cases, gray represents zero estimated effects.
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Figure B.17: Proportion of SNPs with corresponding non-zero entries across
the m annotations for the four phenotypes considered. Selected annotations by
GRAD are highlighted in purple and with asterisks.

(A) von Willebrand factor with m = 70 annotations. (B) Factor VII with m = 64
annotations. (C) Fasting glucose (log) with m = 69 annotations. (D) Height with
m = 78 annotations.
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Figure B.18: —log,, transformed p-values from the univariate association anal-
ysis of GWAS summary statistics (Zy) with individual annotations, i.e. Zy ~ A
forj =1,...,m, across the four phenotypes considered. Selected annotations by
GRAD are highlighted in purple and with asterisks.

(A) Von Willebrand factor with m = 70 annotations. (B) Factor VII with m = 64
annotations. (C) Fasting glucose (log) with m = 69 annotations. (D) Height with
m = 78 annotations.

~logso(p-val)
~logso(p-val)

u

0
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Figure B.19: Pearson’s correlation magnitude, i.e. absolute value, of non-zero

SNPs from the fit with annotation for von Willebrand factor.
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Figure B.20: 5-fold cross-validation results for von Willebrand factor.

(A) Number of selected SNPs across the five cross-validation sets for fits without
and with annotation. (B) Number of selected annotations across the five cross-
validation sets. (C) Prediction error across 40 values of the tuning parameter A for
tits without and with annotation. Colored point represents the selected A value
that minimizes the prediction error. (D) Manhattan plots from univariate GWAS
results. SNPs are colored by their effect sizes and dashed line represents GWAS
traditional cutoff at p — value = 10~%. The upper panel highlights non-zero SNPs
that are captured by the annotation and lower panel represents annotation free non-
zero SNPs. In both cases, gray represents zero estimated effects. (E, G) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(E) —log,, transformed p-values from univariate GWAS associations, (F) strength
of the annotation free contribution 1} from the model with annotation, and (G)
strength of the annotation contribution Ay from the model with annotation.
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Figure B.21: 5-fold cross-validation results for factor VII.

(A) Number of selected SNPs across the five cross-validation sets for fits without
and with annotation. (B) Number of selected annotations across the five cross-
validation sets. (C) Prediction error across 40 values of the tuning parameter A for
tits without and with annotation. Colored point represents the selected A value
that minimizes the prediction error. (D) Manhattan plots from univariate GWAS
results. SNPs are colored by their effect sizes and dashed line represents GWAS
traditional cutoff at p — value = 10~%. The upper panel highlights non-zero SNPs
that are captured by the annotation and lower panel represents annotation free non-
zero SNPs. In both cases, gray represents zero estimated effects. (E, G) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(E) —log,, transformed p-values from univariate GWAS associations, (F) strength
of the annotation free contribution 1} from the model with annotation, and (G)
strength of the annotation contribution Ay from the model with annotation.



136

0 2
B Without Annotation

N

-2

2

0
B Without Annotation

A

-2

2

0
B Without Annotation

N

-2

| | °
: zziy : 00 0 -z ° o
: T2 : ° T2
-0 : 0zIyo : 0zZ4Yo w0
i 6T4Y2 i 6442 -
i 8TIYo i 8TIYD
: LTIy : LTI
: 9TIUD : 9TIUD o
- ; STy ” &8 sw =
: vTIYO : u vTiu
: ST : £TIYO L]
& . . [} =
° ; 1Yo ; 1o
3 0 : zTy : - el
“3 ® T g W b= g
c
S ° ; o -0TIY ~ : & 0TIy o
< - : o ! <
k=] - BIU - 61y
= ! !
~> | o | o | ono
_$ © 81y o ﬂ * 81y o
<] o - 1yo : ° - ayo o ©
o ” o ” o® 0] uorreloULY YA d
; 910 ; - 91U v
o . N .
- (=] ! ! (6]
! SIyo ' GIyo °
< ! ; ° <]
= ' <= ; o‘o - o
| 1Yo ' Iy o
| | .
lo " ' ° 00
: €1y ' iy
| o ” ) b 0
| © 8
: [A%e] o 2] ° hm
m m o IS
' @ 00
TIYo | “ Ty Py
! ! P o
! ! A e
© I R I - a—
o ~ (o] o~ o ~ n o~ <
E Ef
(o) (anren-d) 9%Bo|- (anrea-d) °*Bo}-
- . - . o
c Without Annotation With Annotation
-< m o~ o
g < uonelouuy ynm g
5 ¢ " A m g
= C
S <
m < (<]
I £ ° o
ﬂm 2 H % o
&= H 28 ~ og
g5 ¢ 2
- 8 ° ° = 0®
53 ° . . S
Ny ° 8 8
2 < o ® B ° 8
= = N E
o 3 g %
£ S ~
= [2 ® 00
= = ® =] )
| [} £
o® S ” °
°® ELENC 8
° S
° S
o i=2
lo ° S
@ |
.. o
°
© o~ o

o
S

00
[
17
16-
15

< ~ ©
-

<C mn_mm paajes hol._mnE:z O ﬂotm_ :o:u_um_n_ (T}

n <
£ 3

uonelouuyY UM g
v



137

Figure B.22: 5-fold cross-validation results for fasting glucose (Llog).

(A) Number of selected SNPs across the five cross-validation sets for fits without
and with annotation. (B) Number of selected annotations across the five cross-
validation sets. (C) Prediction error across 40 values of the tuning parameter A for
tits without and with annotation. Colored point represents the selected A value
that minimizes the prediction error. (D) Manhattan plots from univariate GWAS
results. SNPs are colored by their effect sizes and dashed line represents GWAS
traditional cutoff at p — value = 10~%. The upper panel highlights non-zero SNPs
that are captured by the annotation and lower panel represents annotation free non-
zero SNPs. In both cases, gray represents zero estimated effects. (E, G) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(E) —log,, transformed p-values from univariate GWAS associations, (F) strength
of the annotation free contribution 1} from the model with annotation, and (G)
strength of the annotation contribution Ay from the model with annotation.
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Figure B.23: 5-fold cross-validation results for height.

(A) Number of selected SNPs across the five cross-validation sets for fits without
and with annotation. (B) Number of selected annotations across the five cross-
validation sets. (C) Prediction error across 40 values of the tuning parameter A for
tits without and with annotation. Colored point represents the selected A value
that minimizes the prediction error. (D) Manhattan plots from univariate GWAS
results. SNPs are colored by their effect sizes and dashed line represents GWAS
traditional cutoff at p — value = 10~%. The upper panel highlights non-zero SNPs
that are captured by the annotation and lower panel represents annotation free non-
zero SNPs. In both cases, gray represents zero estimated effects. (E, G) Estimated
SNP effect sizes across fits with and without annotation. SNPs with effect sizes
exactly equal to zero with and without annotation are omitted. SNPs are colored by
(E) —log,, transformed p-values from univariate GWAS associations, (F) strength
of the annotation free contribution 1} from the model with annotation, and (G)
strength of the annotation contribution Ay from the model with annotation.
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B.3 Supplementary Tables for “High dimensional
sparse regression with auxiliary data on the

features”

Table B.1: Details on the simulation settings for the iFunMed scheme. The SNP
effect error variance component corresponds to the v parameter and the error
variance to 02 in the iFunMed model. The annotation effects correspond to the y
parameter on iFunMed. The prior probabilities of being non-zero with the use of
annotation changes as 0.018 for with and without annotation for no effect, from
0.011 to 0.076 for a mild effect, and 0.047 to 0.269 for strong effect changes.

No Annotation Effect Mild Annotation Effect Strong Annotation Effect

Set Number 1 2 3 4 5 6 7 8 9|10 11 12 13 14 15 16 17 18 |19 20 21 22 23 24 25 26 27
?fgiiiifsCt 10 20 100 10 20 100 10 20 100 | 10 20 100 10 20 100 10 20 100 | 10 20 100 10 20 100 10 20 100
Error variance |01 01 01 1 1 1 5 5 50101 01 1 1 1 5 5 50101 01 1 1 1 5 5 5

Table B.2: Power calculations with FDR at 10% from precision-recall curves (AUPR)
stratified by annotation effect magnitude ., (low, mild, and strong) for simulation
scenarios displayed in Figure 1C (p.,20 = 0.01, p, 20 = 0.05, and 0% = 100) with and
without annotation.

Linear Partition Model Misspecification
Without With Without With
Annotation Effect Annotation  Annotation Annotation  Annotation
Low 0.004 0.303 0.153 0.197
Mild 0.295 0.662 0.209 0.372

Strong 0.157 0.729 0.231 0.352
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Table B.3: List of SNPs selected in GRAD for factor VII. SNP signals refers to the
direction of the estimated SNP effect sizes for fits without and with annotation.
Details of the annotations included at the individual SNP level are also displayed.
Bold SNPs have evidence of association in the GWAS Catalog.

Signal Annotation
SNP ID Location wo. Ann w. Ann Mxil CTCF
rs4970519 chr1:27659500 0 — 0 +
rs11264339 chr1:155140648 0 + + 0
rs2706126 chr2:178026558 0 — 0 +
rs9878609 chr3:72305546 0 + 0 —
rs13148961 chr4:40625135 0 — 0 +
rs11732608 chr4:40629682 0 — — 0
rs2553808 chr11:35164108 0 — 0 +
rs9597985 chr13:59912839 — — 0 0
rs555212 chr13:113756540 + 0 0 0
rs1755685 chr13:113757192 — — 0 0
rs488703 chr13:113770876 — — 0 0
rs11696570 chr20:37253950 0 — 0 0
rs16992555 chr20:46044044 0 — — 0
rs2239961 chr22:21363960 0 + + 0
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Table B.4: List of SNPs selected in GRAD for fasting glucose (log). SNP signals
refers to the direction of the estimated SNP effect sizes for fits without and with
annotation. Details of the annotations included at the individual SNP level are also

displayed.

SNP ID

Location

Signal

Annotation

wo. Ann w. Ann Elf-1 MafK Cen-T2 C/EBPf

rs12408116
rs12026202
rs3850625
rs715049
rs4580644
rs11556167
rs13176438
rs11134864
rs1004558
rs13238018
rs1993181
rs7350420
rs11189479
rs17146413
rs12886379
rs9322996
rs8140067

chr1:12533468

chr1:188187805
chr1:201016296
chr2:217657102
chr4:15785201

chr4:152682046
chr5:59759107

chr5:174035919
chr7:44240407

chr7:104430466
chr10:4891168

chr10:51594462
chr10:99836031
chr11:64638041
chr14:34638094
chr14:39693018
chr22:32871442
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Table B.5: List of SNPs selected in GRAD for height. SNP signals refers to the
direction of the estimated SNP effect sizes for fits without and with annotation.
Details of the annotations included at the individual SNP level are also displayed.

Signal Annotation
SNP ID Location wo. Ann w. Ann EBF1 CHD2 C/EBP Max TAL1l Stat3
rs3791020  chr1:173813197 0 — 0 0 0 0 — 0
rs1569879  chr1:186547952 0 — 0 0 0 0 0 —
rs4363479  chr1:202112285 0 — 0 0 + 0 0 0
rs7519922  ¢hr1:203991273 0 + 0 0 0 0 0 0
rs925255 chr2:28614794 0 + 0 — 0 0 0 0
rs1396733  chr2:28642747 0 + 0 0 - 0 0 0
rs3806502  chr2:136288273 0 — 0 + + 0 0 0
rs17369895  chr2:228483942 0 + 0 0 - 0 0 0
rs17685252  chr3:27719152 0 — 0 0 0 0 0 —
rs9850318  c¢hr3:34018833 0 — 0 0 + 0 0 0
rs893566 chr3:45673062 0 — 0 0 0 + 0 0
rs11717486  chr3:146536741 — — 0 0 0 0 0 0
rs1114277  chr3:172783783 + + 0 0 0 0 0 0
rs4554118  chr4:184576088 0 + 0 0 0 0 0 0
rs260718 chr5:139132796 0 — 0 0 0 + 0 0
rs2068981  chr6:127697992 0 + 0 0 0 0 0 0
rs6466121  chr7:106183083 0 + 0 0 0 — + 0
rs849299 chr7:106666157 0 + 0 0 0 0 + 0
rs1329393  chr9:98318926 0 + 0 0 0 0 0 0
rs7081523  chr10:1240519 0 + 0 0 0 0 0 0
rs793088 chr10:31364621 0 + 0 0 0 0 0 +
rs17296289  chr10:33260699 0 — 0 0 0 0 — 0
rs2275044  chr10:121201626 0 — — 0 0 0 0 0
rs15564 chr16:677854 0 + 0 — 0 0 0 0
rs1620139  chr16:8755121 0 — - 0 0 0 0 0
rs4784817  chrl6:57565774 0 — 0 0 0 0 0 0
rs872300 chrl7:16277776 0 + 0 0 0 0 0 +
rs1242482  chrl7:17352341 0 — 0 0 0 + 0 0
rs4796224  chr17:34842521 0 + 0 — 0 + 0 0
rs2016639  chr18:6943264 0 + 0 0 0 0 0 0
rs12607412  chr18:46072320 0 — 0 0 0 + 0 0
rs8108874  chr19:11797112 0 — - 0 0 0 0 0
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